Oracle® Spatial and Graph
GeoRaster Developer's Guide

19c
E94793-13
April 2025

ORACLE"

Oracle Spatial and Graph GeoRaster Developer's Guide, 19¢

E94793-13

Copyright © 1999, 2025, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Chuck Murray, Fengting Chen, Ivan Lucena, Qingyun (Jeffrey) Xie, Zhihai Zhang

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience XVi
Documentation Accessibility XVi
Related Documents XVil
Conventions XVii
Changes in This Release for Oracle Spatial and Graph GeoRaster
Developer's Guide
Changes in Oracle Database 19.1 Xviii
Changes in Oracle Database 18.1 Xviii
1 GeoRaster Overview and Concepts
1.1 Vector and Raster Data 1-3
1.2 Raster Data Sources 1-3
1.2.1 Remote Sensing 1-4
1.2.2 Photogrammetry 1-4
1.2.3 Geographic Information Systems 1-4
1.2.4 Cartography 1-5
1.2.5 Digital Image Processing 1-5
1.2.6 Geology, Geophysics, and Geochemistry 1-5
1.3 GeoRaster Data Model 1-5
1.4 GeoRaster Physical Storage 1-9
1.4.1 Storage Parameters 1-13
1.4.2 Raster Data Table 1-17
1.4.3 Blank and Empty GeoRaster Objects 1-18
1.4.4 Empty Raster Blocks 1-19
1.4.5 Cross-Schema Support with GeoRaster 1-19
1.5 Bands, Layers, and Metadata 1-20
1.6 Georeferencing 1-22
1.6.1 Functional Fitting Georeferencing Model 1-22
1.6.2 Ground Control Point (GCP) Georeferencing Model 1-25
1.6.3 Cell Coordinate and Model Coordinate Transformation 1-26

ORACLE

1.7 Resampling and Interpolation 1-27
1.8 Pyramids 1-27
1.9 Bitmap Masks 1-29
1.10 NODATA Values and Value Ranges 1-30
1.11 Compression and Decompression 1-31
1.11.1 JPEG (JPEG-F) Compression of GeoRaster Objects 1-32
1.11.1.1 JPEG-B Support Deprecated 1-33

1.11.2 JPEG 2000 Compression of GeoRaster Objects 1-33
1.11.3 DEFLATE Compression of GeoRaster Objects 1-34
1.11.4 Decompression of GeoRaster Objects 1-34
1.11.5 Third-Party Plug-ins for Compression 1-34
1.11.6 Advanced LOB Compression 1-35
1.12 GeoRaster and Database Management 1-35
1.13 Parallel Processing in GeoRaster 1-36
1.14 Reporting Operation Progress in GeoRaster 1-37
1.15 GeoRaster PL/SQL API 1-37
1.16 GeoRaster Java API 1-38
1.17 GeoRaster Spatial Web Services 1-39
1.18 MapViewer and GeoRaster 1-39
1.19 GeoRaster Tools: Viewer, Loader, Exporter 1-39
1.19.1 JAIl-Based Viewer, Loader, and Exporter 1-40
1.19.2 GDAL-Based ETL Wizard for Concurrent Batch Loading and Exporting 1-41
1.19.3 Using GDAL from the Spatial and Graph Installation 1-42
1.19.4 Using the SDO_GEOR_GDAL Package 1-42
1.20 GeoRaster PL/SQL and Java Sample Files 1-44
1.21 README File for Spatial and Graph and Related Features 1-44

2 GeoRaster Data Types and Related Structures

2.1 SDO_GEORASTER Object Type 2-1
2.1.1 rasterType Attribute 2-2
2.1.2 spatialExtent Attribute 2-2
2.1.3 rasterDataTable Attribute 2-3
2.1.4 rasterID Attribute 2-3
2.1.5 metadata Attribute 2-3

2.2 SDO_RASTER Object Type and the Raster Data Table 2-3
2.2.1 rasterID Attribute 2-4
2.2.2 pyramidLevel Attribute 2-4
2.2.3 bandBlockNumber Attribute 2-4
2.2.4 rowBlockNumber Attribute 2-4
2.2.5 columnBlockNumber Attribute 2-4
2.2.6 blockMBR Attribute 2-5

ORACLE

2.2.7 rasterBlock Attribute 2-5

2.3 Other GeoRaster Types 2-5
2.3.1 SDO_GEOR_HISTOGRAM Object Type 2-5
2.3.2 SDO_GEOR_HISTOGRAM_ARRAY Collection Type 2-6
2.3.3 SDO_GEOR_COLORMAP Object Type 2-6
2.3.4 SDO_GEOR_GRAYSCALE Object Type 2-7
2.3.5 SDO_RASTERSET Collection Type 2-8
2.3.6 SDO_GEOR_SRS Object Type 2-8
2.3.7 SDO_GEOR_GCP Object Type 2-11
2.3.8 SDO_GEOR_GCP_ COLLECTION Collection Type 2-12
2.3.9 SDO_GEOR_GCPGEOREFTYPE Object Type 2-12

2.4 GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA) 2-13
2.4.1 TABLE_NAME Column 2-14
2.4.2 COLUMN_NAME Column 2-14
2.4.3 METADATA_COLUMN_NAME Column 2-14
2.4.4 RDT_TABLE_ NAME Column 2-15
2.45 RASTER_ID Column 2-15
2.46 OTHER_TABLE_NAMES Column 2-15

2.5 GeoRaster XML Schema 2-15

3 GeoRaster Database Creation and Management

3.1 Enabling GeoRaster at the Schema Level 3-2

3.2 Adding Data Files and Temporary Tablespaces for GeoRaster Users 3-2

3.3 Creating the GeoRaster Table and Raster Data Tables 3-3
3.3.1 Creating a GeoRaster Table 3-3
3.3.2 Creating Raster Data Tables 3-3
3.3.3 Creating GeoRaster DML Triggers 3-5

3.4 Creating New GeoRaster Objects 3-5

3.5 Loading Raster Data 3-6
3.5.1 Loading with Blocking and Optimal Padding 3-7
3.5.2 Loading JPEG and JPEG 2000 Images Without Decompression 3-7
3.5.3 Reformatting the Source Raster Before Loading 3-8

3.6 Validating GeoRaster Objects 3-9

3.7 Georeferencing GeoRaster Objects 3-9

3.8 Generating and Setting Spatial Extents 3-11
3.8.1 Special Considerations if the GeoRaster Table Has a Spatial Index 3-12

3.9 Indexing GeoRaster Objects 3-12

3.10 Viewing GeoRaster Objects 3-13

3.11 Exporting GeoRaster Objects 3-14

3.12 Using GeoRaster with Workspace Manager and Label Security 3-15
3.12.1 Using GeoRaster with Workspace Manager 3-15

ORACLE

3.12.2 Using GeoRaster with Label Security 3-16

3.13 Maintaining Efficient Tablespace Use by GeoRaster Objects 3-17
3.14 Checking GeoRaster Tables and Objects in the Database 3-17
3.15 Maintaining GeoRaster Objects and System Data in the Database 3-19
3.16 Transferring GeoRaster Data Between Databases 3-20
3.16.1 Using Data Pump Utility to Transfer GeoRaster Data 3-20
3.16.2 Using Transportable Tablespaces To Transfer GeoRaster Data 3-23
3.16.2.1 Export the Tablespaces from the Source Database 3-24
3.16.2.2 Import the Tablespaces into the Target Database 3-24

3.16.3 Using Database Link with GeoRaster Data 3-26

4 GeoRaster Data Query and Manipulation

4.1 Querying and Searching GeoRaster Objects 4-1
4.2 Changing and Optimizing Raster Storage 4-2
4.3 Copying GeoRaster Objects 4-3
4.4 Subsetting GeoRaster Objects with Polygon Clipping 4-4
4.5 Querying and Updating GeoRaster Metadata 4-4
4.6 Querying and Updating GeoRaster Cell Data 4-5
4.7 Interpolating Cell Values 4-6
4.8 Processing and Analyzing GeoRaster Objects 4-7
4.9 Monitoring and Reporting GeoRaster Operation Progress 4-7
4,10 Compressing and Decompressing GeoRaster Objects 4-9
4.11 Deleting GeoRaster Objects, and Performing Actions on GeoRaster Tables and RDTs 4-10
4.12 Performing Cross-Schema Operations 4-11
4.13 Managing Memory to Improve Performance 4-12
4.14 Updating GeoRaster Objects Before Committing 4-13
4.15 Updating GeoRaster Objects in a Loop 4-14
4,16 Using Template-Related Subprograms to Develop GeoRaster Applications 4-15

5 Raster Algebra and Analytics

5.1 Raster Algebra Language 5-2

5.1.1 Examples of Raster Algebra Expressions 5-5
5.2 Cell Value-Based Conditional Queries 5-7
5.3 Cell Value-Based Conditional Updates (Edits) 5-9
5.4 Mathematical Operations 5-12
5.5 Classification Operations 5-15
5.6 Statistical Operations 5-16

5.6.1 On-the-Fly Statistical Analysis 5-16

5.6.2 Stack Statistical Analysis 5-17
5.7 Logical Operations 5-20

ORACLE

Vi

5.7.1 Using Raster Algebra Procedures with Logical Expressions 5-20

5.7.2 Using Raster Algebra Functions Only 5-22

5.8 Raster Data Scaling and Offsetting 5-24
5.9 Raster Data Casting 5-26
5.10 Cartographic Modeling 5-27
5.11 Terrain Modeling and Analysis 5-28

6 Image Processing and Virtual Mosaic

6.1 Advanced Georeferencing 6-2
6.2 Image Reprojection 6-5
6.3 Image Rectification 6-6
6.4 Image Orthorectification 6-7
6.4.1 Orthorectification with Average Height 6-7
6.4.2 Orthorectification with DEM 6-8

6.5 Image Warping 6-10
6.6 Image Affine Transformation and Scaling 6-11
6.7 Image Stretching, Normalization, Equalization, Histogram Matching, and Dodging 6-13
6.8 Image Filtering 6-14
6.9 Image Segmentation 6-14
6.10 Image Pyramiding: Parallel Generation and Partial Update 6-14
6.11 Bitmap Pyramiding 6-16
6.12 Vegetation Index Computation 6-16
6.13 Tasseled Cap Transformation 6-17
6.14 Image Masking 6-17
6.15 Band Merging 6-18
6.16 Image Appending 6-19
6.17 Large-Scale Image Mosaicking 6-19
6.17.1 Color Balancing During Mosaicking 6-22
6.17.2 Parallel Compression, Copying, and Subsetting 6-24
6.18 Virtual Mosaic 6-26
6.18.1 Virtual Mosaic as One or a List of GeoRaster Tables 6-27
6.18.2 Virtual Mosaic as a View with a GeoRaster Column 6-28
6.18.3 Virtual Mosaic as a SQL Query Statement or a Cursor 6-28
6.18.4 Using Virtual Mosaic in Applications 6-30
6.18.5 Special Considerations for Large-Scale Virtual Mosaic 6-31
6.18.5.1 Improving Query Performance Using MIN_X_RES$ and MAX_X_RES$ 6-31

6.19 Image Serving 6-32

7 SDO_GEOR Package Reference

7.1 SDO_GEOR.addNODATA 7-5

ORACLE Vii

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43

ORACLE

SDO_GEOR.addSourcelnfo
SDO_GEOR:.affineTransform
SDO_GEOR:.calcCompressionRatio
SDO_GEOR.changeCellValue
SDO_GEOR:.changeCellValues
SDO_GEOR.changeFormatCopy
SDO_GEOR.compressJP2
SDO_GEOR.copy
SDO_GEOR.createBlank
SDO_GEOR:.createTemplate
SDO_GEOR.decompressJP2
SDO_GEOR.deleteControlPoint
SDO_GEOR.deleteNODATA
SDO_GEOR:.deletePyramid
SDO_GEOR.evaluateDouble
SDO_GEOR.evaluateDoubles
SDO_GEOR.exportTo
SDO_GEOR.generateAreaWeightedMean
SDO_GEOR.generateBitmapPyramid
SDO_GEOR:.generateBlockMBR
SDO_GEOR.generatePyramid
SDO_GEOR.generateSpatialExtent
SDO_GEOR.generateSpatialResolutions
SDO_GEOR.generateStatistics
SDO_GEOR.generateStatisticsMax
SDO_GEOR:.generateStatisticsMean
SDO_GEOR.generateStatisticsMedian
SDO_GEOR.generateStatisticsMin
SDO_GEOR:.generateStatisticsMode
SDO_GEOR.generateStatisticsSTD
SDO_GEOR.georeference
SDO_GEOR.getBandDimSize
SDO_GEOR.getBeginDateTime
SDO_GEOR.getBinFunction
SDO_GEOR.getBinTable
SDO_GEOR.getBinType
SDO_GEOR.getBitmapMask
SDO_GEOR.getBitmapMaskSubset
SDO_GEOR.getBitmapMaskValue
SDO_GEOR.getBitmapMaskValues
SDO_GEOR:.getBlankCellValue
SDO_GEOR.getBlockingType

viii

7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.69
7.70
7.71
7.72
7.73
7.74
7.75
7.76
7.77
7.78
7.79
7.80
7.81
7.82
7.83
7.84
7.85

ORACLE

SDO_GEOR.getBlockSize
SDO_GEOR:.getCellCoordinate
SDO_GEOR.getCellDepth
SDO_GEOR.getCellValue
SDO_GEOR:.getCellValues
SDO_GEOR.getColorMap
SDO_GEOR.getColorMapTable
SDO_GEOR.getCompressionType
SDO_GEOR.getControlPoint
SDO_GEOR.getDefaultAlpha
SDO_GEOR.getDefaultBlue
SDO_GEOR.getDefaultColorLayer
SDO_GEOR.getDefaultGreen
SDO_GEOR.getDefaultPyramidLevel
SDO_GEOR.getDefaultRed
SDO_GEOR.getEndDateTime
SDO_GEOR.getGCPGeorefMethod
SDO_GEOR.getGCPGeorefModel
SDO_GEOR.getGeoreferenceType
SDO_GEOR.getGrayScale
SDO_GEOR.getGrayScaleTable
SDO_GEOR.getHistogram
SDO_GEOR.getHistogramTable
SDO_GEOR.getID
SDO_GEOR.getinterleavingType
SDO_GEOR.getJP2TileSize
SDO_GEOR.getLayerDimension
SDO_GEOR.getLayerID
SDO_GEOR:.getLayerOrdinate
SDO_GEOR.getModelCoordinate
SDO_GEOR.getModelCoordLocation
SDO_GEOR.getModelSRID
SDO_GEOR.getNODATA
SDO_GEOR.getPyramidMaxLevel
SDO_GEOR.getPyramidType
SDO_GEOR.getRasterBlockLocator
SDO_GEOR.getRasterBlocks
SDO_GEOR.getRasterData
SDO_GEOR.getRasterRange
SDO_GEOR.getRasterSubset
SDO_GEOR.getScaling
SDO_GEOR.getSourcelnfo

7-82
7-82
7-85
7-86
7-88
7-89
7-91
7-92
7-93
7-94
7-95
7-95
7-96
7-97
7-98
7-99
7-99
7-100
7-101
7-102
7-103
7-104
7-104
7-105
7-106
7-107
7-107
7-108
7-109
7-110
7-111
7-112
7-112
7-114
7-114
7-115
7-117
7-118
7-120
7-120
7-126
7-127

7.86
7.87
7.88
7.89
7.90
7.91
7.92
7.93
7.94
7.95
7.96
7.97
7.98
7.99
7.100
7.101
7.102
7.103
7.104
7.105
7.106
7.107
7.108
7.109
7.110
7.111
7.112
7.113
7.114
7.115
7.116
7.117
7.118
7.119
7.120
7.121
7.122
7.123
7.124
7.125
7.126
7.127

ORACLE

SDO_GEOR.getSpatialDimNumber
SDO_GEOR:.getSpatialDimSizes
SDO_GEOR.getSpatialResolutions
SDO_GEOR.getSpectralResolution
SDO_GEOR.getSpectralUnit
SDO_GEOR.getSRS
SDO_GEOR.getStatistics
SDO_GEOR:.getTotalLayerNumber
SDO_GEOR.getULTCoordinate
SDO_GEOR.getVAT
SDO_GEOR.getVersion
SDO_GEOR:.hasBitmapMask
SDO_GEOR.hasGrayScale
SDO_GEOR.hasNODATAMask
SDO_GEOR:.hasPseudoColor
SDO_GEOR.importFrom
SDO_GEOR.init
SDO_GEOR.isBlank
SDO_GEOR:.isOrthoRectified
SDO_GEOR:.isRectified
SDO_GEOR.isSpatialReferenced
SDO_GEOR.mask
SDO_GEOR.mergelLayers
SDO_GEOR.mosaic
SDO_GEOR:.rectify
SDO_GEOR:.reproject
SDO_GEOR.scaleCopy
SDO_GEOR.schemaValidate
SDO_GEOR:.setBeginDateTime
SDO_GEOR:.setBinFunction
SDO_GEOR:.setBinTable
SDO_GEOR:.setBitmapMask
SDO_GEOR:.setBlankCellValue
SDO_GEOR.setColorMap
SDO_GEOR:.setColorMapTable
SDO_GEOR:.setControlPoint
SDO_GEOR.setDefaultAlpha
SDO_GEOR:.setDefaultBlue
SDO_GEOR:.setDefaultColorLayer
SDO_GEOR:.setDefaultGreen

SDO_GEOR:.setDefaultPyramidLevel

SDO_GEOR.setDefaultRed

7-127
7-128
7-129
7-130
7-130
7-131
7-132
7-133
7-133
7-134
7-135
7-135
7-136
7-137
7-138
7-138
7-142
7-143
7-144
7-145
7-146
7-146
7-149
7-151
7-153
7-160
7-164
7-167
7-167
7-168
7-169
7-170
7-171
7-172
7-174
7-175
7-176
7-177
7-178
7-179
7-180
7-181

7.128 SDO_GEOR:.setEndDateTime 7-182

7.129 SDO_GEOR.setGCPGeorefMethod 7-183
7.130 SDO_GEOR.setGCPGeorefModel 7-184
7.131 SDO_GEOR.setGrayScale 7-185
7.132 SDO_GEOR:.setGrayScaleTable 7-187
7.133 SDO_GEOR.setHistogramTable 7-188
7.134 SDO_GEOR:.setIlD 7-189
7.135 SDO_GEOR.setLayerlD 7-190
7.136 SDO_GEOR.setLayerOrdinate 7-191
7.137 SDO_GEOR.setModelCoordLocation 7-192
7.138 SDO_GEOR.setModelSRID 7-193
7.139 SDO_GEOR.setNODATAMask 7-194
7.140 SDO_GEOR:.setOrthoRectified 7-194
7.141 SDO_GEOR:.setRasterType 7-195
7.142 SDO_GEOR.setRectified 7-196
7.143 SDO_GEOR.setScaling 7-197
7.144 SDO_GEOR:.setSourcelnfo 7-198
7.145 SDO_GEOR.setSpatialReferenced 7-199
7.146 SDO_GEOR.setSpatialResolutions 7-200
7.147 SDO_GEOR.setSpectralResolution 7-201
7.148 SDO_GEOR.setSpectralUnit 7-201
7.149 SDO_GEOR.setSRS 7-202
7.150 SDO_GEOR:.setStatistics 7-205
7.151 SDO_GEOR.setULTCoordinate 7-207
7.152 SDO_GEOR.setVAT 7-208
7.153 SDO_GEOR:.setVersion 7-209
7.154 SDO_GEOR.subset 7-210
7.155 SDO_GEOR.updateRaster 7-214
7.156 SDO_GEOR.validateBlockMBR 7-217
7.157 SDO_GEOR.validateGeoRaster 7-217
7.158 SDO_GEOR.warp 7-220

8 SDO_GEOR_ADMIN Package Reference

8.1 SDO_GEOR_ADMIN.checkSysdataEntries 8-1
8.2 SDO_GEOR_ADMIN.disableGeoRaster 8-2
8.3 SDO_GEOR_ADMIN.enableGeoRaster 8-3
8.4 SDO_GEOR_ADMIN.isGeoRasterEnabled 8-3
8.5 SDO_GEOR_ADMIN.isRDTNameUnique 8-4
8.6 SDO_GEOR_ADMIN.isUpgradeNeeded 8-5
8.7 SDO_GEOR_ADMIN.listGeoRasterColumns 8-6
8.8 SDO_GEOR_ADMIN.listGeoRasterObjects 8-7
ORACLE

Xi

8.9 SDO_GEOR_ADMIN.listGeoRasterTables 8-7
8.10 SDO_GEOR_ADMIN.listDanglingRasterData 8-8
8.11 SDO_GEOR_ADMIN.IistRDT 8-9
8.12 SDO_GEOR_ADMIN.listRegisteredRDT 8-10
8.13 SDO_GEOR_ADMIN.listUnregisteredRDT 8-10
8.14 SDO_GEOR_ADMIN.maintainSysdataEntries 8-11
8.15 SDO_GEOR_ADMIN.registerGeoRasterColumns 8-12
8.16 SDO_GEOR_ADMIN.registerGeoRasterObjects 8-12
8.17 SDO_GEOR_ADMIN.upgradeGeoRaster 8-13
9 SDO_GEOR_AGGR Package Reference
9.1 SDO_GEOR_AGGR.append 9-1
9.2 SDO_GEOR_AGGR.getMosaicExtent 9-3
9.3 SDO_GEOR_AGGR.getMosaicResolutions 9-4
9.4 SDO_GEOR_AGGR.getMosaicStatistics 9-5
9.5 SDO_GEOR_AGGR.getMosaicSubset 9-7
9.6 SDO _GEOR_AGGR.mosaicSubset 9-13
9.7 SDO_GEOR_AGGR.validateForMosaicSubset 9-23
10 SDO_GEOR_GDAL Package Reference
10.1 SDO_GEOR_GDAL.dem 10-1
10.2 SDO_GEOR_GDAL.translate 10-3
11 SDO_GEOR_IP Package Reference
11.1 SDO_GEOR_IP.dodge 11-1
11.2 SDO_GEOR_IP.equalize 11-4
11.3 SDO_GEOR_IPfilter 11-7
11.4 SDO_GEOR_IP.histogramMatch 11-11
11.5 SDO_GEOR_IP.normalize 11-14
11.6 SDO_GEOR_IP.piecewiseStretch 11-19
11.7 SDO_GEOR_IP.stretch 11-23
12 SDO_GEOR_RA Package Reference
12.1 SDO_GEOR_RA.classify 12-1
12.2 SDO_GEOR_RA. diff 12-7
12.3 SDO_GEOR_RA.findCells 12-10
12.4 SDO_GEOR_RA.isOverlap 12-14
12.5 SDO_GEOR_RA.over 12-16

ORACLE"

Xii

12.6 SDO_GEOR_RA.rasterMathOp 12-19
12.7 SDO_GEOR_RA.rasterUpdate 12-28
12.8 SDO_GEOR_RA.stack 12-31

13 SDO_GEOR_UTL Package Reference

13.1 SDO_GEOR_UTL.calcOptimizedBlockSize 13-2
13.2 SDO_GEOR_UTL.calcRasterNominalSize 13-3
13.3 SDO_GEOR_UTL.calcRasterStorageSize 13-4
13.4 SDO_GEOR_UTL.calcSurfaceArea 13-5
13.5 SDO_GEOR_UTL.clearReportTable 13-6
13.6 SDO_GEOR_UTL.createDMLTrigger 13-6
13.7 SDO_GEOR_UTL.createReportTable 13-7
13.8 SDO_GEOR_UTL.disableReport 13-8
13.9 SDO_GEOR_UTL.dropReportTable 13-8
13.10 SDO_GEOR_UTL.emptyBlocks 13-9
13.11 SDO_GEOR_UTL.enableReport 13-9
13.12 SDO_GEOR_UTL.fillEmptyBlocks 13-10
13.13 SDO_GEOR_UTL.generateColorRamp 13-11
13.14 SDO_GEOR_UTL.generateGrayRamp 13-13
13.15 SDO_GEOR_UTL.getAllStatusReport 13-15
13.16 SDO_GEOR_UTL.getMaxMemSize 13-16
13.17 SDO_GEOR_UTL.getReadBlockMemSize 13-17
13.18 SDO_GEOR_UTL.getProgress 13-17
13.19 SDO_GEOR_UTL.getStatusReport 13-18
13.20 SDO_GEOR_UTL.getWriteBlockMemSize 13-19
13.21 SDO_GEOR_UTL.isReporting 13-20
13.22 SDO_GEOR_UTL.makeRDTNamesUnique 13-20
13.23 SDO_GEOR_UTL.recreateDMLTriggers 13-21
13.24 SDO_GEOR_UTL.renameRDT 13-21
13.25 SDO_GEOR_UTL.setClientID 13-22
13.26 SDO_GEOR_UTL.setMaxMemSize 13-23
13.27 SDO_GEOR_UTL.setReadBlockMemSize 13-23
13.28 SDO_GEOR_UTL.setSeqID 13-24
13.29 SDO_GEOR_UTL.setWriteBlockMemSize 13-25

A GeoRaster Metadata XML Schema

Index

ORACLE Xiii

List of Figures

1-1 Raster Space and Model Space

1-2 Two Types of Cell Coordinate Systems
1-3 Physical Storage of GeoRaster Data

1-4 GeoRaster Data in an Oracle Database
1-5 Layers, Bands, and the Raster Data Table
1-6 Polynomials Used for Georeferencing

1-7 Pyramid Levels

ORACLE

1-7

1-8
1-11
1-12
1-21
1-23
1-28

Xiv

List of Tables

1-1 storageParam Keywords for Raster Data

2-1 SDO_GEOR_HISTOGRAM Object Type Attributes

2-2 SDO_GEOR_COLORMAP Object Type Attributes

2-3 SDO_GEOR_GRAYSCALE Object Type Attributes

2-4 SDO_GEOR_SRS Object Type Attributes

2-5 SDO_GEOR_GCP Object Type Attributes

2-6 SDO_GEOR_GCPGEOREFTYPE Object Type Attributes
2-7 SDO_GEOR_XMLSCHEMA_TABLE Table Columns

4-1 GeoRaster Buffering Parameters

7-1 compressParam Keywords for JPEG 2000 (JP2) Compression
9-1 mosaicParam Keywords

10-1 openOptions Parameter Possible Values for dem Operations
10-2 options Parameter Possible Values for translate Operations
ORACLE

1-14
2-6
2-7
2-8
2-9

2-12

2-13

2-15

4-12

7-19

9-16

10-2

10-5

XV

Preface

Preface

Oracle Spatial and Graph GeoRaster Developer's Guide provides usage and reference
information for the GeoRaster feature of Oracle Spatial and Graph, referred to in this guide as
GeoRaster. GeoRaster lets you store, index, query, analyze, and deliver raster image and
gridded data and its associated metadata. GeoRaster provides Oracle Spatial and Graph data
types and an object-relational schema. You can use these data types and schema objects to
store multidimensional grid layers and digital images that can be referenced to positions on the
Earth's surface or a local coordinate system.

GeoRaster is not a separate product. It is available when you install Oracle Spatial and Graph.

< Note:

To use GeoRaster, you must understand the main concepts, data types, techniques,
operators, procedures, and functions of Oracle Spatial and Graph, which are
documented in Oracle Spatial and Graph Developer's Guide.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

This guide is intended for anyone who needs to store raster data in an Oracle database.

You should be familiar with Oracle Spatial and Graph, PL/SQL programming, and Oracle
object-relational technology.

You should also be familiar with raster concepts and terminology, techniques for capturing or
creating raster data, and techniques for processing raster data. For example, this guide
mentions that data can be georeferenced if it is georectified; however, it does not explain the
process of georectification or the challenges and techniques involved.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

ORACLE XVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Preface

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following document:

e Oracle Spatial and Graph Developer's Guide

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE XVii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Changes in This Release for Oracle Spatial and Graph GeoRaster Developer's Guide

Changes in This Release for Oracle Spatial
and Graph GeoRaster Developer's Guide

This preface contains the following.

e Changes in Oracle Database 19.1

e Changes in Oracle Database 18.1

Changes in Oracle Database 19.1

The following are changes in Oracle Spatial and Graph GeoRaster Developer's Guide for
Oracle Database 19.1.

* GeoRaster Must Be Enabled at Schema Level
e SDO_GEOR_RA Support for Result Data in a BLOB

GeoRaster Must Be Enabled at Schema Level

The GeoRaster feature of Oracle Spatial and Graph must be enabled for each schema that will
be using GeoRaster. In previous releases, you enabled GeoRaster for the entire database (by
executing a procedure named MDSYS.enableGeoRaster).

See Enabling GeoRaster at the Schema Level for information and instructions. See also the
following new PL/SQL related subprograms:

e SDO_GEOR_ADMIN.enableGeoRaster (enable GeoRaster for the current schema)

e SDO_GEOR_ADMIN.isGeoRasterEnabled (check if GeoRaster is enabled for the current
schema)

SDO_GEOR_RA Support for Result Data in a BLOB

All subprograms in the SDO_GEOR_RA package support putting the result data in a BLOB to
support on-the-fly raster algebra. These subprograms include one or more formats that include
a parameter named rasterBlob.

For information, see the individual subprogram topics in the SDO_GEOR_RA Package
Reference chapter.

Changes in Oracle Database 18.1

The following are changes in Oracle Spatial and Graph GeoRaster Developer's Guide for
Oracle Database 18.1.

e New SDO_GEOR_GDAL Package
e GeoRaster PL/SQL API Changes

ORACLE Xviii

Changes in This Release for Oracle Spatial and Graph GeoRaster Developer's Guide

GeoRaster Java API Changes
4GB Limit Removed for External JPEG 2000 Image Files

Mixed Case User and Schema Names Supported

New SDO_GEOR_GDAL Package

The new SDO_GEOR_GDAL PL/SQL package integrates part of GDAL into Oracle database
server. It provides server-side raster data loading, exporting, and in-database terrain analysis
and visualization capabilities. It also enables and simplifies development of C/C++ plug-ins
through the GDAL API.

For a description of this package and reference information about its subprograms, see
SDO_GEOR_GDAL Package Reference.

GeoRaster PL/SQL API Changes

The following changes relate to GeoRaster PL/SQL subprograms.

Several SDO_GEOR_IP subprograms have new formats with BLOB as output to support
on-the-fly image processing and visualization: SDO_GEOR_IP.equalize,
SDO_GEOR_IP-filter, SDO_GEOR_IP.normalize, SDO_GEOR_IP.piecewiseStretch,
SDO_GEOR_|IP.stretch.

Many SDO_GEOR_RA subprograms have new formats to support putting the result data
in a BLOB instead of a GeoRaster object. These new BLOB-related formats include the
parameters rasterBlob, outArea, and outWindow. The reference information for all of
these subprograms is in SDO_GEOR_RA Package Reference.

A new format for SDO_GEOR_IP.dodge dodges an image to a reference image.

The new SDO_GEOR_AGGR.getMosaicStatistics procedure generates statistics and a
histogram for virtual mosaics.

A new pipelined table function for SDO_GEOR.getRasterSubset returns a table of cell
values, so that users can leverage SQL analytics more easily.

GeoRaster Java APl Changes

The following changes relate to GeoRaster Java API.

ORACLE

Java APls are added for the new PL/SQL functions and procedures, except for the
SDO_GEOR_GDAL package.

New global image processing functions are added to the Java API, including automatic
linear stretching, manual linear stretching, piecewise stretching, normalization, and
equalization. These functions allow image processing based on the statistics of the
GeoRaster object to achieve consistent visualization enhancements for large images and
virtual mosaics.

The GeoRaster Viewer is enhanced to use the new set of global image processing in the
Java API.

Reference information about the GeoRaster Java API is included in Oracle Spatial and Graph
Java API Reference.

XiX

Changes in This Release for Oracle Spatial and Graph GeoRaster Developer's Guide

AGB Limit Removed for External JPEG 2000 Image Files

The size limit of 4GB for external JPEG 2000 image files is removed, so that such large JPEG
2000 images can be directly loaded into database without decompression.

Mixed Case User and Schema Names Supported

Mixed case user names and schema names are supported for use with GeoRaster.

ORACLE Yx

GeoRaster Overview and Concepts

ORACLE

GeoRaster is a feature of Oracle Spatial and Graph that lets you store, index, query, analyze,
and deliver raster image and gridded data and its associated metadata.

GeoRaster provides Oracle spatial data types and an object-relational schema. You can use
these data types and schema objects to store multidimensional grid layers and digital images
that can be referenced to positions on the Earth's surface or in a local coordinate system. If the
data is georeferenced, you can find the location on Earth for a cell in an image; or given a
location on Earth, you can find the cell in an image associated with that location.

GeoRaster can be used with data from any technology that captures or generates images,
such as remote sensing, photogrammetry, and thematic mapping. It can be used in a wide
variety of application areas, including location based services, geoimagery archiving,
environmental monitoring and assessment, geological engineering and exploration, natural
resource management, defense, emergency response, telecommunications, transportation,
urban planning, and homeland security.

Note:

e To use GeoRaster, you must understand the main concepts, data types,
techniques, operators, procedures, and functions of Oracle Spatial and Graph,
which are documented in Oracle Spatial and Graph Developer's Guide.

* You should also be familiar with raster and image concepts and terminology,
techniques for capturing or creating raster data, and techniques for processing
raster data.

e By default, the GeoRaster feature is disabled after Oracle Spatial and Graph is
initially installed, and it must be enabled for each schema that will use
GeoRaster. In order to enable GeoRaster, the schema must have the CREATE
TRIGGER privilege. See Enabling GeoRaster at the Schema Level for information
and instructions.

e After a database upgrade, you should call the
SDO_GEOR_ADMIN.isUpgradeNeeded function to check for any invalid
GeoRaster objects and invalid system data for the current version. For more
information, see Maintaining GeoRaster Objects and System Data in the
Database.

This chapter describes the core concepts and features of GeoRaster, including the GeoRaster
data model and storage schema, georeferencing models, metadata support, resampling
algorithms, pyramids, compression, parallel processing, loading and exporting capabilities, and
the Java API. It contains the following major sections.

e Vector and Raster Data
Geographic features can be represented in vector or raster format, or both.

1-1

ORACLE

Chapter 1

Raster Data Sources

Raster data is collected and used by a variety of geographic information technologies,
including remote sensing, airborne photogrammetry, cartography, and global positioning
systems.

GeoRaster Data Model
Raster data can have some or all of the following elements.

GeoRaster Physical Storage
GeoRaster optimizes the physical storage of metadata and data.

Bands, Layers, and Metadata
In GeoRaster, band and layer are different concepts.

Georeferencing

The GeoRaster spatial reference system (SRS), a metadata component of the GeoRaster
object, includes information related to georeferencing. Georeferencing establishes the
relationship between cell coordinates of GeoRaster data and real-world ground
coordinates (or some local coordinates). Georeferencing assigns ground coordinates to
cell coordinates, and cell coordinates to ground coordinates.

Resampling and Interpolation
Many image and raster transformations and operations involve pixel or cell resampling and
interpolation.

Pyramids
Pyramids are subobjects of a GeoRaster object that represent the raster image or raster
data at differing sizes and degrees of resolution.

Bitmap Masks

A bitmap mask is a special one-bit deep rectangular raster grid with each pixel having
either the value of O or 1. It is used to define an irregularly shaped region inside another
image. The 1-bits define the interior of the region, and the 0-bits define the exterior of the
region.

NODATA Values and Value Ranges
A NODATA value is used for cells whose values are either not known or meaningless.

Compression and Decompression
GeoRaster provides the following types of native compression to reduce storage space
requirements for GeoRaster objects: JPEG (JPEG-F), JPEG 2000, and DEFLATE.

GeoRaster and Database Management
GeoRaster enables you to perform database management tasks.

Parallel Processing in GeoRaster
There are two types of parallel processing with GeoRaster.

Reporting Operation Progress in GeoRaster
For some resource-intensive operations, GeoRaster enables you to monitor and report
their execution progress.

GeoRaster PL/SQL API

GeoRaster provides the SDO_GEOR, SDO_GEOR_ADMIN, SDO_GEOR_AGGR,
SDO_GEOR_RA, and SDO_GEOR_UTL PL/SQL packages, which contain subprograms
(functions and procedures) to work with GeoRaster data and metadata.

GeoRaster Java API
The Oracle Spatial and Graph GeoRaster Java API consists of interfaces and classes that
support features available with the GeoRaster feature of Oracle Spatial and Graph.

GeoRaster Spatial Web Services
A web service enables developers of Oracle Spatial and Graph GeoRaster applications to
provide raster data and metadata to their application users over the web. GeoRaster

1-2

Chapter 1
Vector and Raster Data

supports Open Geospatial Consortium (OGC) web services, specifically, Web Coverage
Services (WCS) and Web Map Services (WMS).

* MapViewer and GeoRaster
Oracle Fusion Middleware MapViewer (MapViewer) is a programmable tool for rendering
maps using spatial data managed by Oracle Spatial and Graph or Oracle Locator (also
referred to as Locator). It fully supports GeoRaster data types and is the web-based
mapping and visualization application platform for GeoRaster.

* GeoRaster Tools: Viewer, Loader, Exporter
Oracle Spatial includes tools for viewing, loading, and exporting GeoRaster data.

* GeoRaster PL/SQL and Java Sample Files
GeoRaster includes several PL/SQL and Java sample code files that show common
operations.

* README File for Spatial and Graph and Related Features
Oracle Spatial and Graph includes a README . txt file.

1.1 Vector and Raster Data

Geographic features can be represented in vector or raster format, or both.

With vector data, points are represented by their explicit x,y,z coordinates, lines are strings of
points, and areas are represented as polygons whose borders are lines. This kind of vector
format can be used to record precisely the location and shape of spatial objects. With raster
data, you can represent spatial objects by assigning values to the cells that cover the objects,
and you can represent the cells as arrays. This kind of raster format has less precision than
vector format, but it is ideal for many types of spatial analysis.

In the raster geographic information systems (GIS) world, this kind of raster data is normally
called gridded data. In image processing systems, the raster data representations are typically
called images instead of grids. Despite any differences between grids and images, both forms
of spatial information are usually represented as matrix structures (that is, arrays of cells), and
each cell is usually regularly aligned in the space.

1.2 Raster Data Sources

ORACLE

Raster data is collected and used by a variety of geographic information technologies,
including remote sensing, airborne photogrammetry, cartography, and global positioning
systems.

The collected data is then analyzed by digital image processing systems, computer graphics
applications, and computer vision technologies. These technologies use several data formats
and create a variety of products.

This section briefly describes some of the main data sources and uses for GeoRaster, focusing
on concepts and techniques you need to be aware of in developing applications. It does not
present detailed explanations of the technologies; you should consult standard textbooks and
reference materials for that information.

* Remote Sensing

e Photogrammetry

e Geographic Information Systems
e Cartography

» Digital Image Processing

1-3

Chapter 1
Raster Data Sources

* Geology, Geophysics, and Geochemistry

1.2.1 Remote Sensing

Remote sensing obtains information about an area or object through a device that is not
physically connected to the area or object. For example, the sensor might be in a satellite,
balloon, airplane, boat, or ground station. The sensor device can be any of a variety of devices,
including a frame camera, pushbroom (swath) imager, synthetic aperture radar (SAR),
hydrographic sonar, or paper or film scanner. Remote sensing applications include
environmental assessment and monitoring, global change detection and monitoring, and
natural resource surveying.

The data collected by remote sensing is often called geoimagery. The wavelength, number of
bands, and other factors determine the radiometric characteristics of the geocimages. The
geoimages can be single-band, multiband, or hyperspectral, all of which can be managed by
GeoRaster. These geoimages can cover any area of the Earth (especially for images sensed
by satellite). The temporal resolution can be high, such as with meteorological satellites,
making it easier to detect changes. For remote sensing applications, various types of
resolution (temporal, spatial, spectral, and radiometric) are often important.

1.2.2 Photogrammetry

Photogrammetry derives metric information from measurements made on photographs. Most
photogrammetry applications use airborne photos or high-resolution images collected by
satellite remote sensing. In traditional photogrammetry, the main data includes images such as
black and white photographs, color photographs, and stereo photograph pairs.

Photogrammetry rigorously establishes the geometric relationship between the image and the
object as it existed at the time of the imaging event, and enables you to derive information
about the object from its imagery. The relationship between image and object can be
established by several means, which can be grouped in two categories: analog (using optical,
mechanical, and electronic components) or analytical (where the modeling is mathematical and
the processing is digital). Analog solutions are increasingly being replaced by analytical/digital
solutions, which are also referred to as softcopy photogrammetry.

The main product from a softcopy photogrammetry system may include digital elevation
models (DEMs) and orthoimagery. GeoRaster can manage all this raster data, together with its
georeferencing information.

1.2.3 Geographic Information Systems

ORACLE

A geographic information system (GIS) captures, stores, and processes geographically
referenced information. GIS software has traditionally been either vector-based or raster-
based; however, with the GeoRaster feature, Oracle Spatial and Graph handles both raster
and vector data.

Raster-based GIS systems typically process georectified gridded data. Gridded data can be
discrete or continuous. Discrete data, such as political subdivisions, land use and cover, bus
routes, and oil wells, is usually stored as integer grids. Continuous data, such as elevation,
aspect, pollution concentration, ambient noise level, and wind speed, is usually stored as
floating-point grids. GeoRaster can store all this data.

The attributes of a discrete grid layer are stored in a relational table called a value attribute
table (VAT). A VAT contains columns specified by the GIS vendor, and may also contain user-
defined columns. The VAT can be stored in the Oracle database as a plain table. The VAT

1-4

Chapter 1
GeoRaster Data Model

name can be registered within the corresponding GeoRaster object so that raster GIS
applications can use the table.

1.2.4 Cartography

Cartography is the science of creating maps, which are two-dimensional representations of
the three-dimensional Earth (or of a non-Earth space using a local coordinate system). Today,
maps are digitized or scanned into digital forms, and map production is largely automated.
Maps stored on a computer can be queried, analyzed, and updated quickly.

There are many types of maps, corresponding to a variety of uses or purposes. Examples of
map types include base (background), thematic, relief (three-dimensional), aspect, cadastral
(land use), and inset. Maps usually contain several annotation elements to help explain the
map, such as scale bars, legends, symbols (such as the north arrow), and labels (hames of
cities, rivers, and so on).

Maps can be stored in raster format (and thus can be managed by GeoRaster), in vector
format, or in a hybrid format.

1.2.5 Digital Image Processing

Digital image processing is used to process raster data in standard image formats, such as
TIFF, GIF, JFIF (JPEG), as well as in many geoimage formats, such as NITF, GeoTIFF,
ERDAS IMG, and PCI PIX. Image processing techniques are widely used in remote sensing
and photogrammetry applications. These techniques are used as needed to enhance, correct,
and restore images to facilitate interpretation; to correct for any blurring, distortion, or other
degradation that may have occurred; and to classify geo-objects automatically and identify
targets. The source, intermediate, and result imagery can be loaded and managed by
GeoRaster.

1.2.6 Geology, Geophysics, and Geochemistry

Geology, geophysics, and geochemistry all use digital data and produce some digital raster
maps that can be managed by GeoRaster.

* In geology, the data includes regional geological maps, stratum maps, and rock slide
pictures. In geological exploration and petroleum geology, computerized geostratum
simulation, synthetic mineral prediction, and 3-D oil field characterization, all of which
involve raster data, are widely used.

* In geophysics, data about gravity, the magnetic field, seismic wave transportation, and
other subjects is saved, along with georeferencing information.

* In geochemistry, the contents of multiple chemical elements can be analyzed and
measured. The triangulated irregular network (TIN) technique is often used to produce
raster maps for further analysis, and image processing is widely used.

1.3 GeoRaster Data Model

ORACLE

Raster data can have some or all of the following elements.
e Cells or pixels

e Spatial domain (footprint)

e Spatial, temporal, and band reference information

e Cell attributes

1-5

ORACLE

Chapter 1
GeoRaster Data Model

* Metadata
* Processing data and map support data

GeoRaster defines a generic raster data model that is component-based, logically layered, and
multidimensional. The core data in a raster is a multidimensional array or matrix of raster cells.
Each cell is one element of the matrix, and its value is called the cell value, which is sampled
at the center of the cell. If the GeoRaster object represents an image, a cell can also be called
a pixel, which has only one value. (In GeoRaster, the terms cell and pixel are interchangeable.)
The matrix has a number of dimensions, a cell depth, and a size for each dimension. The cell
depth is the data size of the value of each cell. The cell depth defines the range of all cell
values, and it applies to each single cell, not to an array of cells. This core raster data set can
be blocked for optimal storage and retrieval.

The data model has a logically layered structure. The core data consists of one or more logical
layers. For example, for multichannel remote sensing imagery, the layers are used to model
the channels of the imagery. (Bands and layers are explained in Bands_ Layers_ and
Metadata.) In the current release, each layer is a two-dimensional matrix of cells that consists
of the row dimension and the column dimension.

GeoRaster data has metadata and attributes, and each layer of the GeoRaster data can have
its own metadata and attributes. In the GeoRaster data model, all data other than the core cell
matrix is the GeoRaster metadata. The GeoRaster metadata is further divided into different
components (and is thus called component-based), which contain the following kinds of
information:

e Object information

* Raster information

» Spatial reference system information

» Date and time (temporal reference system) information
* Band reference system information

e Layer information for each layer

Based on this data model, GeoRaster objects are described by the GeoRaster metadata XML
schema (described in GeoRaster Metadata XML Schema), which is used to organize the
metadata. Some schema components and subcomponents are required and others are
optional. You must understand this XML schema if you develop GeoRaster loaders, exporters,
or other applications. Some restrictions on the metadata exist for the current release, and
these are described in the Usage Notes for the SDO_GEOR.validateGeoRaster function
(documented in SDO_GEOR Package Reference), which checks the validity of the metadata
for a GeoRaster object.

The GeoRaster object data types, described in GeoRaster Data Types and Related Structures,
are based on the GeoRaster data model.

In this data model, two different types of coordinates need to be considered: the coordinates of
each pixel (cell) in the raster matrix and the coordinates on the Earth that they represent.
Consequently, two types of coordinate systems or spaces are defined: the cell coordinate
system and the model coordinate system.

The cell coordinate system (also called the raster space) is used to describe cells in the
raster matrix and their spacing, and its dimensions are (in this order) row, column, and band.
The model coordinate system (also called the ground coordinate system or the model space)
is used to describe points on the Earth or any other coordinate system associated with an
Oracle SRID value. The spatial dimensions of the model coordinate system are (in this order)
X and Y, corresponding to the column and row dimensions, respectively, in the cell coordinate
system. The logical layers correspond to the band dimension in the cell space.

1-6

ORACLE

Chapter 1
GeoRaster Data Model

Figure 1-1 shows the relationship between a raster image and its associated geographical
(spatial) extent, and between parts of the image and their associated geographical entities.

Figure 1-1 Raster Space and Model Space
Image Geographic Entities
= Raster (cell) space = Model (ground) space

- Cell coordinate system - Model (ground) coordinate system

column
ULTCoerdirate
Hl e .
oW . T
> i Mational
s . Park
S -
e i
-y A
= Sy
- -
Sy
"
S
L
e
T
Y
L
b
e
.
* @ Bestaurant
Y
X
In Figure 1-1:

* Inthe objects on the left, the medium-size rectangle represents a raster image, and within
it are a rectangular area showing a national park and a point identifying the location of a
specific restaurant. Each pixel in the image can be identified by its coordinates in a cell
coordinate system (the coordinate system associated with the raster image). The upper-left
corner of the medium-size rectangle has the coordinate values associated with the
ULTCoordinate value of the cell space for the GeoRaster object.

« Inthe objects on the right, the large rectangle represents the geographical area (in the
model, or ground, space) that is shown in the raster image, and within it are spatial
geometries for the national park and the specific restaurant. Each entire geographical area
and geometries within it can be identified using coordinates in its model (or, ground)
coordinate system, such as WGS 84 for longitude/latitude data.

For two-dimensional single-layer GeoRaster data, the cell coordinate system has a row
dimension pointing downward and a column dimension pointing to the right, as shown in
Figure 1-1. The origin of the cell space is always (0,0). The spacing is 1 cell or 1 pixel, and in
most cases the cell coordinates are identified by integer row and column numbers. For a
multiband image, the axis along bands is called the band dimension. For a time series
multilayer image (where each layer has a different date or timestamp), the axis along layers is
called the temporal dimension. Three-dimensional GeoRaster data includes the vertical
dimension, which is vertical to both the row and column dimensions.

1-7

ORACLE

Chapter 1
GeoRaster Data Model

Note:

Only row, column, and band dimensions in the cell coordinate system are currently
supported. The row and column dimensions are used to model two-dimensional
spatial coordinates. The band dimension can be used to model multichannel remote
sensing imagery or photographs and any other types of layers, such as temporal
layers and multiple-grid themes.

When the raster data is treated and processed as an array of numbers, integer addressing
using row and column numbers is sufficient in most applications. However, the raster data
array is generally a discretized representation of a continuous space, and so a one-to-one
mapping of coordinates between the cell space and the model space is required, regardless of
whether the value of a cell represents a collective value of an area or a single value of a point.

In other words, sub-cell (sub-pixel) addressing in the cell space is necessary. To support sub-
cell addressing, GeoRaster defines two types of cell coordinate systems, depending on where
the origin (0,0) of cells is defined. Figure 1-2, where each square represents one cell, shows
the two types of cell coordinate systems: center-based and upperleft-based.

Figure 1-2 Two Types of Cell Coordinate Systems

0 1
= COlUmN
] 1 2
4 4 = COlumn
1
1k
2
a4
Y
row
Y
row
Center-Based Upperleft-Based

The default cell coordinate system has its origin at the center of a cell, and is called the center-
based cell coordinate system. The other cell coordinate system has its origin at the upper-left
corner of a cell, and is called the upperleft-based cell coordinate system. In both systems, the
cells are squares with equal size and the unit is 1 cell. Assuming that | and J are integers, and
x and y are floating numbers:

« In center-based cell space, coordinate (X, y) is mapped to (1,J) as long as I-0.5 <= x < |+0.5
and J-0.5 <=y < J+0.5.

e In upperleft-based cell space, coordinate (x, y) is mapped to cell (1,J) as long as | <= x <
I+1.0 and J <=y < J+1.0.

For example, sub-cell coordinate (0.3, 0.3) has the same integer cell coordinate (0,0) in both
coordinate systems, while (0.3,0.6) means (0,1) in center-based cell space but means (0,0) in
upperleft-based cell space. This two types of cell coordinate systems are defined by the
modelCoordinateLocation elementin the spatialReferenceInfo metadata; otherwise, the
default type is center-based. GeoRaster supports both cell coordinate systems, and effective

1-8

Chapter 1
GeoRaster Physical Storage

with Oracle Database 11g, sub-cell addresses are supported in the GeoRaster PL/SQL API.
(Sub-cell addresses were internally supported in previous releases.)

In GeoRaster, while the origin of the cell space is always at (0,0), the upper-left corner cell of
the raster data itself can have a different coordinate in its cell space from the coordinate of the
origin of the cell space. In other words, the integer (row, column) coordinate of the upper-left
corner cell is not necessarily (0,0). The upper-left corner is called the ULTCoordinate, and its
value is registered in the metadata. It basically defines the relative location of the data in the
cell space. If there is a band dimension, the ULTCoordinate value is always (row,column,0).
The coordinate of each cell is relative to the origin of the cell space, not to the ULTCoordinate
value. The origin of the cell coordinate system might not be exactly at the ULTCoordinate
value.

The model coordinate system consists of spatial dimensions, and other dimensions if there are
any. The spatial dimensions are called the X, y, and z dimensions, and values in these
dimensions can be associated with a geodetic, projected, or local coordinate system. Other
dimensions include spectral and temporal dimensions (called the s dimension and t dimension,
respectively). GeoRaster SRS currently supports two spatial dimensions (X,Y) and three
spatial dimensions (X, Y, Z) in the model coordinate system. (For information about coordinate
systems, including the different types of coordinate systems, see Oracle Spatial and Graph
Developer's Guide.)

The GeoRaster model coordinate system is defined by an Oracle Spatial and Graph SRID. The
model coordinates have the same unit as that of the specified SRID and should be in the value
range defined by the model coordinate system. For example, if the GeoRaster object is
georeferenced to a geodetic coordinate system such as 4326 (EPSG WGS84), the unit of the
model coordinates derived from the spatial reference system (SRS) must be decimal degrees,
and values should be in the ranges of -180.0 to +180.0 for longitude and -90.0 to +90.0 for
latitude.

The relationships between cell coordinates and model coordinates are modeled by GeoRaster
reference systems (mapping schemes). The following GeoRaster reference systems are
defined:

e Spatial reference system, also called GeoRaster SRS, which maps cell coordinates
(row,column,vertical) to model coordinates (X,Y,Z). Using the spatial reference system with
GeoRaster data is referred to as georeferencing the data. (Georeferencing is discussed in
Georeferencing.)

« Temporal reference system, also called GeoRaster TRS, which maps cell coordinates
(temporal) to model coordinates (T).

- Band reference system, also called GeoRaster BRS, which maps cell coordinates (band)
to model coordinates (S, for Spectral).

Each of these reference systems is currently defined, at least partially, in the GeoRaster XML
schema. However, for the current release, only the spatial reference system is supported. This
means that only the relationship between (row,column) and (X,Y) or (X, Y, Z) coordinates can
be mapped. If the model coordinate system is geodetic, (X,Y) means (longitude,latitude). The
temporal and band reference systems can be used, however, to store useful temporal and
spectral information, such as the spectral resolution and when the raster data was collected.

Other metadata is stored in the <layerInfo> element in the GeoRaster XML metadata, as
explained in Bands_ Layers_ and Metadata.

1.4 GeoRaster Physical Storage

GeoRaster optimizes the physical storage of metadata and data.

ORACLE 19

ORACLE

Chapter 1
GeoRaster Physical Storage

As mentioned in GeoRaster Data Model, GeoRaster data consists of a multidimensional matrix
of cells and the GeoRaster metadata. Most metadata is stored as an XML document using the
Oracle XMLType data type. The metadata is defined according to the GeoRaster metadata
XML schema, which is described in GeoRaster Metadata XML Schema. The spatial extent
(footprint) of a GeoRaster object is part of the metadata, but it is stored separately as an
attribute of the GeoRaster object. This approach allows GeoRaster to take advantage of the
spatial geometry type and related capabilities, such as using R-tree indexing on GeoRaster
objects. The spatial extent is described in spatialExtent Attribute.

The GeoRaster metadata is stored using either the CLOB storage option or the binary XML
storage option. The binary XML storage option for the GeoRaster metadata is the default,
which saves disk space and improves performance. You can specify or change the storage
option when you create a GeoRaster table.

The multidimensional matrix of cells is blocked into small subsets for large-scale GeoRaster
object storage and optimal retrieval and processing. Each block is stored in a table as a binary
large object (BLOB), and a geometry object (of type SDO_GEOMETRY) is used to define the
precise extent of the block. Each row of the table stores only one block and the blocking
information related to that block. (This blocking scheme applies to pyramids also.)

The dimension sizes (along row, column, and band dimensions) may not be evenly divided by
their respective block sizes. GeoRaster adds padding to the boundary blocks that do not have
enough original cells to be completely filled. The boundary blocks are the end blocks along the
positive direction of each dimension. The padding cells have the same cell depth as other cells
and have values equal to zero. Padding makes each block have the same BLOB size. Padding
mainly applies to row and column blocks, but for multiband and hyperspectral imagery, padding
can be applied to the band dimension also. For example, assume the following specification:
band interleaved by line, blocking as (64,64,3), and 8 bands, each with 64 rows and 64
columns. In this case:

1. Bands 0, 1, and 2 are stored interleaved by line in the first block.
2. Bands 3, 4, and 5 are stored interleaved by line in the second block.

3. The third block holds the following in this order: line 1 of band 6, line 1 of band 7, 64
column values that are padding, line 2 of band 6, line 2 of band 7, 64 column values that
are padding, and so on, until all 64 rows are stored.

However, the top-level pyramids are not padded if both the row and column dimension sizes of
the pyramid level are less than or equal to one-half the row block size and column block size,
respectively. See Pyramids for information about the physical storage of pyramids.

Each GeoRaster block has the same size. The dimension sizes of the blocks do not need to be
a power of 2. They can be random integer values. The block sizes can be optimized
automatically based on the dimension sizes of the GeoRaster object, so that each GeoRaster
object uses only minimum padding space. See Table 1-1 in Storage Parameters for more
information.

The raster blocks (BLOBSs) contain the binary representation of the raster cell values.
Specifically, floating-point cell values are represented in the IEEE 754 standard formats on
supported platforms. If the cell depth is greater than 8 bits, GeoRaster cell data is stored in big-
endian format in raster blocks. If the cell depth is less than 8 bits, each byte in the raster blocks
contains two or more cells, so that the bits of a byte are fully filled with cell data. The cells are
always filled into the byte from left to right. For example, if the cell depth is 4 bits, one byte
contains two cells: the first four bits of the byte contain the value of a cell, and the second four
bits contain the value of its following cell, which is determined by the interleaving type.

Based on this physical storage model, two object types are provided: SDO_GEORASTER for
the raster data set and related metadata, and SDO_RASTER for each block in a raster image.

1-10

Chapter 1
GeoRaster Physical Storage

« The SDO_GEORASTER object contains a spatial extent geometry (footprint or coverage
extent) and relevant metadata. A table containing one or more columns of this object type
is called a GeoRaster table.

« The SDO_RASTER object contains information about a block (tile) of a GeoRaster object,
and it uses a BLOB object to store the raster cell data for the block. An object table of this
object type, or a relational table containing the same columns as the attributes of this
object type, is called a raster data table (RDT).

The SDO_GEORASTER object stores and refers to an image or a raster data set. The
SDO_RASTER object is an internal object for GeoRaster. The SDO_GEORASTER object fully
encapsulates the raster data set's metadata and raster cell data, that is, a collection of
SDO_RASTER objects. The relationship between the SDO_GEORASTER object and its
SDO_RASTER objects is maintained by GeoRaster automatically. All interfaces of GeoRaster
functions and procedures deal with the SDO_GEORASTER objects only; the SDO_RASTER
objects of a SDO_GEORASTER object are internally handled automatically. The
SDO_GEORASTER obiject is the major interface for users to build and manage a GeoRaster
database; you only need to use the SDO_RASTER object to create raster data tables (RDTS).

Each SDO_GEORASTER object has a pair of attributes (rasterDataTable, rasterID) that
uniquely identify the RDT and the rows within the RDT that are used to store the raster cell
data for the GeoRaster object.

Figure 1-3 shows the storage of GeoRaster objects, using as an example an image of Boston,
Massachusetts in a table that contains rows with images of various cities.

Figure 1-3 Physical Storage of GeoRaster Data

CITY _IMAGES table
(one row per city)

For each row
(each image);

(Various user-defined columns...) 500_GEORASTER objact

(for example, for Boston)

SDO_GEORASTER object

.

GeoRaster
typa

Spatial extent for
this image
(SDO_GEOMETRY)

Raster data table name Raster ID
(table of SD0_RASTER)

Metadata
(SYS.XMLType)

Y

Rastar data table
fone row of 300_HASTER objsct type for each block)

For each row
(each block
of the imaga):

(Rastar 1D,
pyramid laval,

)

MEBR for this block |mange data for
(SDO_GEOMETRY) | this block (BLOB)

As shown in Figure 1-3:

ORACLE

Each row in the table of city images contains information about the image for a specific city
(such as Boston), including an SDO_GEORASTER object.

1-11

ORACLE

Chapter 1
GeoRaster Physical Storage

The SDO_GEORASTER object includes the spatial extent geometry covering the entire
area of the image, the metadata, the raster ID, and the name of the raster data table
associated with this image.

Each row in the raster data table contains information about a block (or tile) of the image,
including the block's minimum bounding rectangle (MBR) and image data (stored as a
BLOB). The raster data table is described in Raster Data Table.

The SDO_GEORASTER and SDO_RASTER object types are described in detail in GeoRaster
Data Types and Related Structures.

Figure 1-4 shows the physical storage of GeoRaster data and several related objects in a
database.

Figure 1-4 GeoRaster Data in an Oracle Database

/ GeoRaster Database \
\ /

GeoRaster system data

Indexes Indexes

\ 4)(,
GeoRaster

GeoRaster table objects
\ 4 Y

= Raster data table [=®] (BLOBs)

O
0o

J

\ 4

Other related tables
(VAT, GCP, and so on)

N— -

In Figure 1-4:

Each GeoRaster object in the GeoRaster table has an associated raster data table, which
has an entry for each block of the raster image.

The BLOB with image data for each raster image block is stored separately from the raster
table data. You can specify storage parameters (described in Storage Parameters) for the
BLOBs.

Each GeoRaster object has a raster data table associated with it. However, a raster data
table can store blocks of multiple GeoRaster objects, and GeoRaster objects in a
GeoRaster table can be associated with one or multiple raster data tables.

GeoRaster system data (described in GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)) maintains the relationship between the GeoRaster tables
and the raster data tables.

Indexes (standard and spatial) can be built on the GeoRaster table and raster data tables.
For information about indexing GeoRaster data, see Indexing GeoRaster Objects.

Additional information, such as ground control points (GCPs) and value attribute tables
(VATSs), can be related to the GeoRaster objects.

1-12

Chapter 1
GeoRaster Physical Storage

You generally maintain a one-to-many relationship between a GeoRaster table and its
associated raster data tables, even though they could have a many-to-many relationship. That
is, let a raster data table only contain cell data of GeoRaster objects that belong to the same
GeoRaster table. A GeoRaster table can contain a large number (potentially unlimited) of
GeoRaster objects. An RDT should be used to contain the raster blocks of a limited number of
GeoRaster objects, depending on the size of the rasters.

The following considerations apply to schema, table, and column names that are stored in any
Oracle Spatial and Graph metadata views. For example, these considerations apply to
geometry tables, GeoRaster tables, raster data tables, and geometry and GeoRaster columns.

e The name must contain only letters, numbers, and underscores. For example, the name
cannot contain a space (), an apostrophe ('), a quotation mark ("), or a comma (,).

« All letters in the names are converted to uppercase before the names are stored in
geometry metadata views or GeoRaster system data (xxx_SDO_GEOR_SYSDATA) views
or before the tables are accessed. This conversion also applies to any schema name
specified with the table name.

For more information about raster data tables, see Raster Data Table.

e Storage Parameters

e Raster Data Table

- Blank and Empty GeoRaster Objects
e Empty Raster Blocks

e Cross-Schema Support with GeoRaster

1.4.1 Storage Parameters

Several GeoRaster operations let you specify or change aspects of the storage. The relevant

subprograms contain a parameter named storageParam, which is a quoted string of keywords
and their values. The storageParam parameter keywords apply to characteristics of the raster
data (see Table 1-1).

Note:

The keywords in this section either do not apply or only partially apply to the
storageParam parameter of the SDO_GEOR.importFrom procedure and the
subsetParam parameter of the SDO_GEOR.exportTo procedure. See the reference
information about the relevant parameters for each of these procedures in
SDO_GEOR Package Reference.

¢ Note:

For any numbers in string (VARCHAR?2) parameters to GeoRaster subprograms, the
period (.) must be used for any decimal points regardless of the locale.

ORACLE 112

ORACLE

Chapter 1
GeoRaster Physical Storage

Table 1-1 storageParam Keywords for Raster Data

Keyword

Explanation

bitmapmask

blocking

Specifies whether or not bitmap masks are
considered. TRUE specifies to consider any
associated bitmap masks; FALSE specifies not to
consider the bitmap masks. The default is TRUE for
SDO_GEOR.copy,
SDO_GEOR.changeFormatCopy,
SDO_GEOR.mergelLayers,
SDO_GEOR:.scaleCopy, and SDO_GEOR.subset;
the default is FALSE for SDO_GEOR.mosaic (A
value of TRUE is invalid and is ignored for
SDO_GEOR.mosaic.)

Specifies whether or not raster data is blocked.
TRUE causes raster data to be blocked using the
blocks of the specified or default blockSize value;
OPTIMALPADDING is the same as TRUE except
that the specified blockSize value will be adjusted
to an optimal value to reduce padding space;
FALSE causes raster data not to be blocked (that is,
only one block will be used for the entire image).
Specifying OPTIMALPADDING causes GeoRaster to
call the SDO_GEOR_UTL.calcOptimizedBlockSize
procedure internally.

The default value for blocking is TRUE if you
specify the blockSize keyword. If you specify
blocking=TRUE but do not specify the blockSize
keyword, the default blockSize is (512,512,B),
where B is the number of bands in the output
GeoRaster object. If you specify neither blocking
nor blockSize, default values are derived from the
source GeoRaster object: that is, if the original data
is not blocked, the data in the output GeoRaster
object is by default not blocked; and if the original
data is blocked, the data in the output GeoRaster
object is blocked with the same blocking scheme.

1-14

ORACLE

Chapter 1
GeoRaster Physical Storage

Table 1-1 (Cont.) storageParam Keywords for Raster Data

Keyword

Explanation

blockSize

cellDepth

compression

Specifies the block size, that is, the number of cells
per block. You must specify a value for each
dimension of the output GeoRaster object. For
example, blocksize=(512,512, 3) specifies 512
for the row dimension, 512 for the column
dimension, and 3 for the band dimension; and
blocksize=(512,512) specifies row and column
block sizes of 512 for a GeoRaster object that has
no band dimension. The values must be non-
negative integers. If a value is 0, it means the block
size is the corresponding dimension size. If a value
is greater than the corresponding dimension size,
padding is applied. See also the explanation of the
blocking keyword in this table and of the
SDO_GEOR_UTL.calcOptimizedBlockSize
procedure.

Only regular blocking is supported; that is, all
blocks must be the same size and be aligned with
each other, except for some top-level pyramids.
However, the dimension sizes of the blocks do not
need to be a power of 2. They can be random
integer values. For example, the blockSize value
can be (589,1236,7).

The physical storage size of a raster block must be
less than or equal to 4GB.

Specifies the cell depth of the raster data set,
which indicates the number of bits and the sign for
the data type of all cells. Note, however, that
changing the cell depth can cause loss of data and
a reduction in precision and image quality. Must be
one of the following values (_U indicating unsigned
and _S indicating signed): 1BIT, 2BIT, 4BIT,
8BIT U, 8BIT S, 16BIT U, 16BIT S, 32BIT U,
32BIT_S, 32BIT_REAL, or 64BIT_REAL. (Complex
cellDepth types are not supported.) If
cellDepth is not specified, the value from the
source GeoRaster object is used by default.
Example: celldepth=16BIT U

Specifies the compression type to be applied to the
GeoRaster object. Must be one of the following
values: JPEG-F, DEFLATE, or NONE. (You can use
NONE to decompress a compressed GeoRaster
object.) If compression is not specified, the
compression type of the source GeoRaster object
is used. For more information about compression
and decompression, see Compression and
Decompression. Example: compression=JPEG-F

If the source GeoRaster object is blank, the
compression keyword is ignored, except for the
SDO_GEOR.getRasterSubset and
SDO_GEOR.getRasterData functions. (Blank
GeoRaster objects are explained in Blank and
Empty GeoRaster Objects.)

1-15

Chapter 1
GeoRaster Physical Storage

Table 1-1 (Cont.) storageParam Keywords for Raster Data

___|
Keyword Explanation

interleaving Specifies the interleaving type. (Interleaving is
explained in Bands_ Layers_ and Metadata.) Must
be one of the following values: BSQ (band
sequential), BIL (band interleaved by line), or BIP
(band interleaved by pixel). Example:
interleaving=BSQ

parallel Specifies the degree of parallelism for the
compression operation. (This parameter is ignored
when a subprogram call specifies the
parallelParam parameter.) If specified, must be
in the form parallel=n, where nis greater than 1.
Must be used with the compression storage
parameter. Parallelism is supported for the
following compression operations:

. From NONE to JPEG-F
. From NONE to DEFLATE
. From JPEG-F to NONE
. From DEFLATE to NONE

Parallelism is not supported for the following
compression operations:

. From JPEG-F to DEFLATE
. From DEFLATE to JPEG-F

pyramid TRUE specifies to keep the original pyramid data;
FALSE specifies not to keep the original pyramid
data. The default value depends on the specific
procedure: the default is TRUE for
SDO_GEOR.copy and
SDO_GEOR.changeFormatCopy; the default is
FALSE for SDO_GEOR.scaleCopy,
SDO_GEOR.mosaic, and SDO_GEOR.subset. (A
value of TRUE is invalid and is ignored for
SDO_GEOR:.scaleCopy or SDO_GEOR.subset.)

You cannot generate pyramid data through the use
of storage parameters; instead, you must use the
SDO_GEOR.generatePyramid procedure after
creating the GeoRaster object.

quality Specifies the JPEG compression quality, which is
the degree of lossiness caused by the
compression. Must be an integer from O (lowest
quality) through 100 (highest quality) to be applied
to the GeoRaster object. The default value is 75.
For more information about compression quality,
see JPEG Compression of GeoRaster Objects.
Example: quality=80

Example 1-1 shows a GeoRaster object being copied, with its block size changed and any
pyramid data from the original object not copied.

Example 1-1 Using storageParam Keywords

DECLARE
grl sdo georaster;

ORACLE 116

Chapter 1
GeoRaster Physical Storage

gr2 sdo_georaster;
BEGIN
INSERT INTO georaster table (georid, georaster) VALUES (2, sdo geor.init('RDT_1'"))
RETURNING georaster INTO gr2;
SELECT georaster INTO grl FROM georaster table WHERE georid=1;
sdo_geor.changeFormatCopy(grl, 'blocking=OPTIMALPADDING
blocksize=(512,512) pyramid=FALSE', gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=2;
COMMIT;
END;
/

In Example 1-1, the raster data table for GeoRaster object gr2 is RDT_1. If raster data is to be
written into table RDT_1, that table must exist before the PL/SQL block is run; otherwise, an
error is generated by the SDO_GEOR.changeFormatCopy procedure.

Note:

If you insert, update, or delete GeoRaster cell data or metadata, update the
GeoRaster object before committing the transaction, as shown in Example 1-1 and
as explained in Updating GeoRaster Objects Before Committing.

Example 1-1 and many examples in SDO_GEOR Package Reference refer to a table named
GEORASTER_TABLE, which has the following definition:

CREATE TABLE georaster table

(georid NUMBER PRIMARY KEY,
name VARCHARZ (32),
georaster SDO GEORASTER) ;

1.4.2 Raster Data Table

ORACLE

A raster data table (RDT) must be an object table of SDO_RASTER type, or a relational table
with the following column definitions:

rasterID NUMBER,
pyramidLevel NUMBER,
bandBlockNumber NUMBER,
rowBlockNumber NUMBER,
columnBlockNumber NUMBER,
blockMBR SDO_GEOMETRY,
rasterBlock BLOB

The RDT, whether an object table or a relational table, must have the primary key defined on
the columns (rasterID, pyramidLevel, bandBlockNumber, rowBlockNumber,
columnBlockNumber).

Each RDT name must be or equivalent to a valid nonquoted identifier, and it will be stored in
the GeoRaster sysdata views and in the SDO_GEORASTER objects in all uppercase
characters, without any schema prefix. (Each GeoRaster column name must be or equivalent
to a valid nonquoted identifier, and it is stored in the GeoRaster sysdata views in all uppercase
characters.)

Note, the RDTs used or referenced by the GeoRaster objects in a GeoRaster table must
be in the same schema as that of the GeoRaster table. The name of each RDT must be
unique and the pair of (rasterDataTable, rasterID) of a GeoRaster object must be

1-17

Chapter 1
GeoRaster Physical Storage

unique in the database in order to support cross-schema manipulation and ensure data
integrity of GeoRaster objects. When you initiate a GeoRaster object using the
SDO_GEOR:.init and SDO_GEOR.createBlank functions without specifying the RDT name and
RID number, those functions will automatically generate a rasterDataTable hame and a
rasterID number for the new GeoRaster object to ensure the uniqueness requirements. You
can use the SDO_GEOR_ADMIN.isRDTNameUnique function to check if an RDT name is
already used by GeoRaster before you create it. You can use the
SDO_GEOR_UTL.renameRDT procedure to rename an existing RDT already used by
GeoRaster to a different name. To resolve any duplication in raster data table names, you can
use the SDO_GEOR_ADMIN.maintainSysdataEntries function. For transferring GeoRaster
data between databases, see Transferring GeoRaster Data Between Databases for
information on how to resolve conflicts.

Creating a raster data table enables you to control the placement and storage characteristics
of the RDT (for example, if the table should be partitioned for better performance). For a large
GeoRaster object, consider putting its raster data in a separate raster data table and
partitioning the raster data table by pyramid level or block numbers, or both; however, always
consider sharing an RDT for a certain number of smaller GeoRaster objects to avoid creating
too many RDTs. Do not use the SYSTEM tablespace for storing GeoRaster tables and raster
data tables. Instead, create separate locally managed (the default) tablespaces for GeoRaster
tables.

Never insert or delete any rows directly in a raster data table. The rows in the appropriate
RDTs are automatically inserted or deleted when GeoRaster objects are created with raster
data or deleted from a GeoRaster table.

In choosing block sizes for raster data, consider the following:

e The maximum length of a raster block is 4 GB; therefore, do not specify a block size
greater than 4 GB.

e Consider the cellDepth value of the GeoRaster object when you calculate the desired size
for a raster block.

* Choosing an appropriate block size is a trade-off between the size of a raster block and the
number of blocks needed for a GeoRaster object. For raster data of a large size, Oracle
recommends at least 512 by 512 for the row and column dimension sizes. A blocking size
value that results in a raster block smaller than or close to 4 KB (such as 64 by 64) is
usually a bad choice, because 4 KB is the threshold for storing an Oracle BLOB out-of-line.

For information about creating object or relational raster data tables, see Creating Raster Data
Tables.

1.4.3 Blank and Empty GeoRaster Objects

ORACLE

A blank GeoRaster object is a special type of GeoRaster object in which all cells have the
same value. There is no need to store its cells in any SDO_RASTER block; instead, the cell
value is registered in the metadata in the blankCellvalue element. Otherwise, blank
GeoRaster objects are treated in the same way as other GeoRaster objects. Use the
SDO_GEOR:.createBlank function to create a blank GeoRaster object, the
SDO_GEOR:.isBlank function to check if a GeoRaster object is a blank GeoRaster object, and
the SDO_GEOR.getBlankCellValue function to return the value of the cells in a blank
GeoRaster object.

An empty GeoRaster object contains only a rasterDataTable name and a rasterID. To create
an empty GeoRaster object, use the SDO_GEOR:.init function. You must create an empty
GeoRaster object before you perform an action that outputs a new GeoRaster object, so that
the output can be stored in the previously initialized empty GeoRaster object.

1-18

Chapter 1
GeoRaster Physical Storage

1.4.4 Empty Raster Blocks

GeoRaster supports empty raster blocks to save storage space with large mosaic objects and
to improve raster processing speed. Empty raster blocks are used when there is no raster data
available for a specific raster block of a large GeoRaster object. Such GeoRaster data is of a
special sparse data type. There is still an entry in the raster data table for each empty raster
block, but the length of the BLOB is zero (indicating empty).

When a GeoRaster operation (for example, SDO_GEOR.changeCellValue,
SDO_GEOR.changeFormatCopy, SDO_GEOR.generatePyramid,
SDO_GEOR.getRasterData, SDO_GEOR.getRasterSubset, SDO_GEOR.mergeLayers,
SDO_GEOR.mosaic, SDO_GEOR:.scaleCopy, SDO_GEOR.subset, or
SDO_GEOR.updateRaster) is applied to a source GeoRaster object with empty raster blocks,
it may lead to empty or partially empty result raster blocks.

A resulting raster block is empty if all the cells in it are derived from empty source raster
blocks. A resulting raster block is partially empty if only some of the cells in it are derived from
empty source raster blocks. Any cells in a partially empty result raster block that are derived
from an empty source raster block are either set to certain background values (as specified in
the bgvalues parameter) or set to O (if the bgvalues parameter is not specified). Once this is
done, a partially empty raster block becomes just like a normal non-empty raster block; and
after the operation is finished, each raster block in the resulting GeoRaster object is either
empty or non-empty.

Because the filling of partially empty raster blocks changes the raster data permanently, you
should carefully choose consistent background values when manipulating a GeoRaster object.
The NODATA values stored in the GeoRaster metadata, if present, are good choices for
background values, although you can also select other background values as long as they are
used consistently.

If a GeoRaster object has empty raster blocks, its pyramid data may not contain any empty
raster blocks at all because partially empty raster blocks are filled with background values or 0
during the SDO_GEOR.generatePyramid operation. When you call this function to generate
the pyramid, be careful in choosing a consistent background value, as explained in this
section.

A bitmap mask (see Bitmap Masks) can also have empty raster blocks, with the missing cell
values indicating 0. If filling is required, the missing cells are always filled with the value 0.

1.4.5 Cross-Schema Support with GeoRaster

ORACLE

A GeoRaster table and its associated raster data table or tables must have the same owner.
However, users with appropriate privileges can create GeoRaster tables and associated raster
data tables owned by other schemas, and they can also create, query, update, and delete
GeoRaster objects owned by other schemas. For cross-schema query of GeoRaster objects,
you must have the SELECT or READ privilege on the GeoRaster tables and their associated
raster data tables. For cross-schema update of GeoRaster objects, you must have the
SELECT or READ privilege and the INSERT, UPDATE, and DELETE privileges on the
GeoRaster tables and their associated raster data tables.

The ALL_SDO_GEOR_SYSDATA view (described in GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)) contains information about all GeoRaster objects accessible to
the current user. For each object listed, the GeoRaster table must be accessible by the current
user. If the current user also needs to access the raster data, that user must also have the
appropriate privileges on the associated raster data table.

1-19

Chapter 1
Bands, Layers, and Metadata

All SDO_GEOR subprograms can work on GeoRaster objects defined in schemas other than
the current connection schema.

For examples of cross-schema GeoRaster operations, see Performing Cross-Schema
Operations.

1.5 Bands, Layers, and Metadata

ORACLE

In GeoRaster, band and layer are different concepts.

Band is a physical dimension of the multidimensional raster data set; that is, it is one ordinate
in the cell space. For example, the cell space might have the ordinates row, column, and band.
Bands are numbered from 0 to n-1, where n is the highest layer number. Layer is a logical
concept in the GeoRaster data model. Layers are mapped to bands. Typically, one layer
corresponds to one band, and it consists of a two-dimensional matrix of size
rowDimensionSize and columnDimensionSize. Layers are numbered from 1 to n; that is,
layerNumber = bandNumber + 1.

A GeoRaster object can contain multiple bands, which can also be called multiple layers. For
example, electromagnetic wave data from remote sensing devices is grouped into a certain
number of channels, where the number of possible channels depends on the capabilities of the
sensing device. Multispectral images contain multiple channels, and hyperspectral images
contain a very large number (say, 50 or more) of channels. The channels are all mapped into
GeoRaster bands, which are associated with layers.

In raster GIS applications, a data set can contain multiple raster layers, and each layer is
called a theme. For example, a raster may have a population density layer, where different cell
values are used to depict neighborhoods or counties depending on their average number of
inhabitants per square mile or kilometer. Other examples of themes might be average income
levels, land use (agricultural, residential, industrial, and so on), and elevation above sea level.
The raster GIS themes can be stored in different GeoRaster objects or in one GeoRaster
object, and each theme is modeled as one layer. The raster themes and multispectral image
channels can also be stored together in one GeoRaster object as different layers, as long as
they have the same dimensions.

Figure 1-5 shows an image with multiple layers and a single raster data table. Each layer
contains multiple blocks, each of which typically contains many cells. Each block has an entry
in the raster data table. Note that GeoRaster starts layer numbering at 1 and band numbering
at 0 (zero), as shown in Figure 1-5.

1-20

ORACLE

Figure 1-5 Layers, Bands, and the Raster Data Table

Chapter 1
Bands, Layers, and Metadata

: K Raster data table
Layer n : Band n-1 ',-' -

I

I

I

I .

Layer2 | Band 1 ——» I

I

I

I

I

I

I

I

Layer1 1 Band 0 —f-

I

I

I

I

I

I

LOGICAL 1 PHYSICAL

The GeoRaster XML metadata refers to the object layer and to layers. The object layer refers
to the whole GeoRaster object, which may or may not contain multiple layers. If the GeoRaster
object contains multiple layers, each layer is a sublayer of the object layer, and it refers to a
single band.

Each layer can have an optional set of metadata associated with it. The metadata items for a
layer include the user-defined layer ID, description, bitmap mask, NODATA values and value
ranges, scaling function, bin function, statistical data set (including histogram), grayscale
lookup table, and colormap (or, pseudocolor lookup table, also called a PCT). The metadata
items are defined in the GeoRaster metadata XML schema, which is presented in GeoRaster
Metadata XML Schema. the SDO_GEOR_HISTOGRAM object type in
SDO_GEOR_HISTOGRAM Object Type, the SDO_GEOR_COLORMAP object type in
SDO_GEOR_COLORMAP Object Type, SDO_GEOR_GRAYSCALE object type in
SDO_GEOR_GRAYSCALE Object Type, and the SDO_GEOR_SRS object type in
SDO_GEOR_SRS Object Type.

The metadata associated with the object layer applies to the whole GeoRaster object. The
metadata associated with a layer applies only to that layer. For example, the statistical data set
for the object layer is calculated based on all cells of the GeoRaster object, regardless of how
many layers the object has; but the statistical data for a layer is calculated based only on the
cells in that layer.

The metadata for the object layer and other layers is stored using <layerInfo> elements in the
GeoRaster XML metadata and sometimes in separate tables, such as a colormap table or a
histogram table. Metadata stored in the GeoRaster XML metadata is managed by GeoRaster,
and you can use the GeoRaster API to retrieve and modify this metadata. For metadata stored
in separate tables, the table name can be registered in the GeoRaster XML schema, in which
case applications can retrieve the name of the table. However, GeoRaster does not check the
existence or validity of that table or provide any operations on that table.

Three types of interleaving are supported: BSQ (band sequential), BIL (band interleaved by
line), and BIP (band interleaved by pixel). Interleaving applies between bands or layers only.
Interleaving is limited to the interleaving of cells inside each block of a GeoRaster object. This
means GeoRaster always applies blocking on a GeoRaster object first, and then it applies
interleaving inside each block independently. However, each block of the same GeoRaster

1-21

Chapter 1
Georeferencing

object has the same interleaving type. You can change the interleaving type of a copy of a
GeoRaster object by calling SDO_GEOR.changeFormatCopy procedure, so that the data can
be more efficiently processed and used.

1.6 Georeferencing

The GeoRaster spatial reference system (SRS), a metadata component of the GeoRaster
object, includes information related to georeferencing. Georeferencing establishes the
relationship between cell coordinates of GeoRaster data and real-world ground coordinates (or
some local coordinates). Georeferencing assigns ground coordinates to cell coordinates, and
cell coordinates to ground coordinates.

In GeoRaster, georeferencing is different from geocorrection, rectification, or orthorectification.
In these three latter processes, cell resampling is often performed on the raster data, and the
resulting GeoRaster data might have a different model coordinate system and dimension sizes.
Georeferencing establishes the relationship between cell coordinates and real-world
coordinates or some local coordinates. Georeferencing can be accomplished by providing an
appropriate mathematical formula, enough ground control point (GCP) coordinates, or rigorous
model data from the remote sensing system. Georeferencing does not change the GeoRaster
cell data or other metadata, except as needed to facilitate the transformation of coordinates
between the cell coordinate system and the model coordinate system.

GeoRaster supports both the functional fitting model (explained in Functional Fitting
Georeferencing Model) and the stored function model (explained in Ground Control Point
(GCP) Georeferencing Model) for georeferencing. Rigorous models are not supported. When a
GeoRaster object is georeferenced with the functional fitting model, the isReferenced value in
the SRS metadata will be TRUE; otherwise, it should be FALSE.

Rectification can be done with horizontal coordinates, so that cells of a GeoRaster data set
can be mapped to a projection map coordinate system. After rectification, each cell is regularly
sized in the map units and is aligned with the model coordinate system, that is, with the East-
West dimension and the North-South dimension. If elevation data (DEM) is used in
rectification, it is called orthorectification, a special form of rectification that corrects terrain
displacement. If a GeoRaster object is rectified and georeferenced with the functional fitting
model, the isRectified value in its metadata will be TRUE; otherwise, it should be FALSE. If a
GeoRaster object is orthorectified and georeferenced with the functional fitting model, the
isOrthoRectified value in its metadata will be TRUE; otherwise, it should be FALSE.

To georeference a GeoRaster object, see Georeferencing GeoRaster Objects and Advanced
Georeferencing. To rectify and orthorectify a GeoRaster object, see Image Rectification and
Image Orthorectification.

* Functional Fitting Georeferencing Model
e Ground Control Point (GCP) Georeferencing Model

e Cell Coordinate and Model Coordinate Transformation

1.6.1 Functional Fitting Georeferencing Model

ORACLE

GeoRaster defines a generic functional fitting georeferencing model that is stored in the
GeoRaster metadata. It includes several widely used geometric models, and it enables many
non-rectified GeoRaster objects to be georeferenced.

This model supports transformations between two-dimensional or three-dimensional ground
coordinates and two-dimensional cell coordinates, or between two-dimensional cell
coordinates and two-dimensional or three-dimensional ground coordinates. The following
equations describe the model:

1-22

Chapter 1
Georeferencing

' = PXn,Yn,Zn) 1 d(Xn,Yn,Zn)
Cn = I(Xn,Yn,Zn) I S(Xn,Yn,Zn)
In these equations:

* I, = Normalized row index of the cell in the raster
* ¢y = Normalized column index of the cell in the raster
* Xn, Yn,Z,=Normalized ground coordinate values

The polynomials p(X,, , Yn, Zn): A(Xn s Yn» Zn), %4 s Ya, Zn), and s(X,, , Y, , Z,) have the form
shown in Figure 1-6:

Figure 1-6 Polynomials Used for Georeferencing

ml m2 m> _ i
2 2, 2y Xa'ynizn
1=0 1=01=0

In the polynomial form shown in Figure 1-6, aj are the coefficients for the polynomial.

Each of the four polynomials can be different, and each polynomial is described independently
by the following:

e pType = Polynomial type (1 or 2)
e nVars = Total number of variables (ground coordinate dimensions; 0, 2, or 3)

* order = Maximum order of power for each variable or maximum total order of power for
each polynomial term (up to 5)

* nCoefficients = Total number of coefficients (must be derived from the preceding three
numbers)

The pType indicates the meaning of the maximum total order of the polynomial, and thus
affects the total number of terms in the polynomial. pType = 1 indicates that the maximum
order is the maximum total order of all variables in each polynomial term. pType = 2 indicates
that the maximum order is the maximum order of each variable in all polynomial term. The
nVars indicates whether or not the ground coordinate system is 2D (X, Y) or 3D (X,Y,Z). The
cell coordinate systems are always 2D. For example, it supports 2D-to-2D affine transformation
and 3D-to-2D DLT and RPC models.

The total number and sequential ordering of the polynomial terms and their coefficients are
determined by the logic in the following looping pseudocode:

= = order; k+t+)
(3 = j <= order; j++)
For (1 = 0; 1 <= order; i++)
{

if (pType == 1 & (i+j+k) > order)

break;
polynomialCoefficients[n]=COEF[ijk];
n++;

}

In the preceding pseudocode, assume i is the order of X, 7 is the order of Y and k is the order
of Z, and n is the index of the coefficients inside the GeoRaster metadata element

ORACLE ey

ORACLE

Chapter 1
Georeferencing

<polynomialCoefficients>. Thus, COEF[ijk] is the coefficient of the term x (1) y () z (k) of
numerator p or denominator q; polynomialCoefficients[n] is the nth double number of the
<polynomialCoefficients> element (a list type of doubles) inside the XML metadata; and
COEF[ijk] and polynomialCoefficients[n] have a one-to-one match.

Normalized values, rather than actual values, may or may not be stored and used in order to
minimize introduction of errors during the calculations, depending on the data itself. The
transformation between row and column values (row,column) and normalized row and column
values (r,, cp), and between the model coordinate (x,y,z) and normalized model coordinate
(Xn s Yn, Zy), is defined by a set of normalizing translations (offsets) and scales:

* = (row - rowOff) / rowScale

e ¢p = (column - columnOff) / columnScale
e X, = (x-xOff) / xScale

e Y,=(y-yOff)/ yScale

e Z,=(z-zOff) [zScale

The coefficients, scales, and offsets are stored in the GeoRaster SRS metadata, and are
described in SDO_GEOR_SRS Object Type.

This functional fitting model is generic. It includes specific geometric models, such as Affine
Transformation, Quadratic Polynomial, Cubic Polynomial, Direct Linear Transformation (DLT),
Quadratic Rational, and Rational Polynomial Coefficients (RPC, also called Rapid Positioning
Coefficients). The coefficients of those standard models are converted to the sequential
ordering described in this section, for storage in GeoRaster.

You can use the SDO_GEOR.setSRS procedure to directly set the spatial reference
information of a GeoRaster object, and the SDO_GEOR.getGeoreferenceType function to find
out the specific georeferencing model type in a GeoRaster object.

The simplest georeferencing model type is a special affine transformation, as follows:

row =a+tc*y
column = d - ¢ * x

In the preceding formulas, if ¢ is not zero, the raster data is considered rectified, and the
isRectified value in its metadata will be TRUE.

For the Affine Transformation, pType can be either 1 or 2. nvars is 2, order is 1, and
nCoefficients is 3 for the p and r polynomials; and nvars is 0, order is 0, and nCoefficients
is 1 for the g and s polynomials.

For the Quadratic Polynomial model, pType is 1. nvars is 2, order is 2, and nCoefficients is 6
for the p and r polynomials; and nvars is 0, order is 0, and nCoefficients is 1 for the gand s
polynomials.

For the Cubic Polynomial model, pType is 1. nvars is 2, order is 3, and nCoefficients is 10
for the p and r polynomials; and nvars is 0, order is 0, and nCoefficients is 1 for the gand s
polynomials.

For the DLT model, pType can be either 1 or 2. nvars is 3, order is 1, and nCoefficients is 4
for all polynomials. In addition, the g and s polynomials must be identical.

For the Quadratic Rational model, pType iS 1. nvars is 3, order is 2, and nCoefficients is 10
for all polynomials.

For the RPC model, pType is 1. nVars is 3, order is 3, and nCoefficients is 20 for all
polynomials.

1-24

Chapter 1
Georeferencing

For detailed information about the DLT, RPC, and other geometric models, see any relevant
third-party documentation.

1.6.2 Ground Control Point (GCP) Georeferencing Model

ORACLE

GeoRaster supports ground control point (GCP) storage and georeferencing. A ground
control point (GCP), or simply a control point, is a point for which you know its coordinates
(X,Y or X,Y,Z) in some reference coordinate system, as well as its corresponding location (row,
column) in cell space in the GeoRaster object. The reference coordinate system can be any
valid Oracle Spatial and Graph coordinate system, including SRID 999999 for an "unknown"
coordinate system. A collection of GCPs and its associated geometric model (functional fitting
method) are also referred to as (called) the stored function georeferencing model in
GeoRaster.

You can use GCPs that are either stored in the GeoRaster SRS or specified in parameters to
generate the Functional Fitting model. For more information, see the
SDO_GEOR.georeference function.

The guidelines for selecting GCPs include the following:

e The points should be easy to identify both in the GeoRaster object and in the reference
coordinate system.

* The points should be evenly distributed within the area covered by the GeoRaster object,
to ensure that results are not skewed.

* The points should not be on a line, so that the results can be stable.

GCPs or the stored function are specified using the SDO_GEOR_GCP object type (see
SDO_GEOR_GCP Object Type), the SDO_GEOR_GCP_ COLLECTION collection type (see
SDO_GEOR_GCP_ COLLECTION Collection Type), and the
SDO_GEOR_GCPGEOREFTYPE object type (see SDO_GEOR_GCPGEOREFTYPE Object

Type).

To georeference using GCPs, you must also select the geometric model, that is, how the
relationship between the GeoRaster object's cell space and the reference coordinate system
should be mathematically modeled. In GeoRaster, the following geometric models are
supported with GCP georeferencing: Affine (the default model), Quadratic Polynomial, Cubic
Polynomial, DLT, Quadratic Rational, and RPC. Affine, Quadratic Polynomial, and Cubic
Polynomial are two-dimensional polynomial models with polynomial order 1, 2, and 3,
respectively; DLT, Quadratic Rational, and RPC are three-dimensional rational polynomial
models with polynomial order 1, 2, and 3, respectively. All the polynomials have polynomial
type pType=1. (See Functional Fitting Georeferencing Model for more information about the
georeferencing model types.)

In georeferencing using GCPs, the cell and model coordinates of the GCPs are used in the
formula of the polynomial or rational polynomial model, and then a linear equation system is
formed. No weight is used in the formula, that is, all points have equal weight 1.0. The linear
equation system is solved by the least square method, which generates the coefficients for the
model that best fits the given control points. Only GCPs with type Control Point are involved in
the solution calculation; the GCP with type Check Point is used to check the positioning
accuracy of the solved model. The solution accuracy is evaluated based on the residuals of the
cell coordinates of those control points involved in the solution.

Different geometric models require different model coordinate dimensions and a different
minimum number of GCPs. For two-dimensional geometric models, the model coordinates
must be 2D (X,Y); and for three-dimensional geometric models, the model coordinates must be
3D (X, Y, Z). The minimum number of GCPs required for the geometric models are as follows:
Affine: 3, Quadratic Polynomial: 6, Cubic Polynomial: 10, DLT: 7, Quadratic Rational: 19, and

1-25

Chapter 1
Georeferencing

RPC: 39. However, you should generally use more than the minimum number of GCPs to do
georeferencing.

For more information, see Advanced Georeferencing.

1.6.3 Cell Coordinate and Model Coordinate Transformation

ORACLE

Through the functional fitting georeferencing model, GeoRaster assigns ground coordinates to
cell coordinates, and cell coordinates to ground coordinates. As a special case, a cell's integer
coordinate (the array index of a cell in the cell matrix) can be transformed into a model
coordinate, which identifies an exact location of a point in the model space. This point or model
coordinate may be either the upper-left corner or the center of the area represented by the cell
in the model space.

Similarly, a model coordinate can be transformed into a cell coordinate through georeferencing.
However, the resulting cell coordinate from the direct solution of the functional fitting
georeferencing model is mostly in floating numbers. The type of the cell space coordinate
system, which is decided by the modelCoordinateLocation element, determines which cell the
floating coordinate refers to, as described in GeoRaster Data Model. GeoRaster supports both
floating (subcell) cell coordinates and integer cell coordinates in all parts of its API.

Cell coordinate and model coordinate transformations are based on the functional fitting model
of the GeoRaster spatial reference system (SRS). Both before and after transformation using
the GeoRaster SRS, the (row, column) coordinate values of a cell are relative to the GeoRaster
cell space, not necessarily relative to the upper-left corner of the raster data itself. The
ULTCoordinate can have a different coordinate (row and column values) from the coordinate of
the origin of the cell space. That is, the (row, column) coordinate of the upper-left corner is not
necessarily (0,0).

Any application that defines the upper-left corner of a raster data as the origin (0, 0) of its own
cell space, as in many image file formats, must convert the (row, column) derived from the
GeoRaster SRS to be relative to that origin, if the value of GeoRaster ULTCoordinate (rowO,
columnO) is not (0, 0). This conversion must take the GeoRaster ULTCoordinate into
consideration, as shown in the following formulas:

row = row0 + m
column = column0 + n

In these formulas:

* row = Row index of the cell relative to the origin of the GeoRaster cell space.
e column = Column index of the cell relative to the origin of the GeoRaster cell space.
* row0 = Row index of the ULTCoordinate relative to the origin of the GeoRaster cell space.

e columnO = Column index of the ULTCoordinate relative to the origin of the GeoRaster cell
space.

* m = Row index (that is, the mth row, starting at O for the first row) of the cell relative to the
ULTCoordinate.

* n = Column index (that is, the nth column, starting at O for the first column) of the cell
relative to the ULTCoordinate.

In most applications, the ULTCoordinate and the origin of cell space are the same (that is, row0
=0 and columnO = 0), in which case m =row and n = column.

1-26

Chapter 1
Resampling and Interpolation

1.7 Resampling and Interpolation

Many image and raster transformations and operations involve pixel or cell resampling and
interpolation.

GeoRaster supports the following standard resampling and interpolation methods:

* Nearest neighbor (NN)

« Bilinear interpolation using 4 neighboring cells (BILINEAR)

* Biquadratic interpolation using 9 neighboring cells (BIQUADRATIC)
e Cubic convolution using 16 neighboring cells (CUBIC)

e Average using 4 neighboring cells (AVERAGE4)

e Average using 16 neighboring cells (AVERAGE16)

* OTHER

The keywords for these resampling types are defined in the resamplingType element definition
in the GeoRaster XML metadata schema (described in GeoRaster Metadata XML Schema).
Except for OTHER, the keywords can be used in several subprograms including the following:

e SDO_GEOR.generatePyramid

e SDO_GEOR.scaleCopy

e SDO_GEOR:.reproject

e SDO_GEOR:.rectify

e SDO_GEOR_AGGR.append

e SDO_GEOR_AGGR.getMosaicSubset
e SDO_GEOR_AGGR.mosaicSubset

The resampling type OTHER is used only to indicate an unknown or external resampling type
when the pyramids of a GeoRaster object are generated or imported from external sources,
such as afile.

Raster data deals with real world phenomena that vary continuously over space. This data is
usually associated with grid interpolation, a method for interpolating values at spatial
positions between the cells or within the cells. In GeoRaster, SDO_GEOR:.evaluateDouble is
the grid interpolation function. It uses the same keywords for interpolation methods as those for
resampling.

1.8 Pyramids

ORACLE

Pyramids are subobjects of a GeoRaster object that represent the raster image or raster data
at differing sizes and degrees of resolution.

The size is usually related to the amount of time that an application needs to retrieve and
display an image, particularly over the Web. That is, the smaller the image size, the faster it
can be displayed; and as long as detailed resolution is not needed (for example, if the user has
"zoomed out" considerably), the display quality for the smaller image is adequate.

Pyramid levels represent reduced or increased resolution images that require less or more
storage space, respectively. (GeoRaster supports only reduced resolution pyramids.) A
pyramid level of O indicates the original raster data; that is, there is no reduction in the image

1-27

ORACLE

Chapter 1
Pyramids

resolution and no change in the storage space required. Values greater than 0 (zero) indicate
increasingly reduced levels of image resolution and reduced storage space requirements.

Pyramid type indicates the type of pyramid, and can be one of the following values:
* DECREASE means that pyramids decrease in size as the pyramid level increases.
* NONE means that there are no pyramids associated with the GeoRaster object.

Figure 1-7 shows the concept of pyramid levels with a pyramid type of DECREASE. It conveys the
idea that as the pyramid level number increases, the file size decreases, but the resolution also
decreases because fewer pixels are used to represent the image.

Figure 1-7 Pyramid Levels

Pyramid
Level 2 =9

Pyramid
Level 1 =P

Pyramid
Level 0 =9

The size of the pyramid image at each level is determined by the original image size and the
pyramid level, according to the following formulas:

r(n) = (int) (r(0) / 2"n)
c(n) = (int) (c(0) / 2"n)

In the preceding formulas:

* r(0) and c(0) are the original row and column dimension size.

* r(n) and c(n) are the row and column dimension size of pyramid level n.

e int rounds off a number to the integer value that is less than but closest to that number.
e 2”n means 2 to the power of n.

The smaller of the row and column dimension sizes of the top-level overview (the smallest top-
level pyramid) is 1. This determines the maximum reduced-resolution pyramid level, which is
calculated as follows: (int) (log2(a))

In the preceding calculation:

e log2 is a logarithmic function with 2 as its base.

1-28

Chapter 1
Bitmap Masks

e ais the smaller of the original row and column dimension size.

The addressing of cells in the pyramid uses the same type of cell addressing as that defined
for the original raster data, as described in GeoRaster Data Model. Each pyramid level has its
own cell space; however, all cell spaces of the pyramid levels have the same type of cell
coordinate system (either center-based or upper-left based) as that of the original level (level
zero). The cells are squares with equal size and the unit is 1 cell. The upper-left corner cell in
each pyramid level has the same ULTCoordinate as that of the original raster data, registered
in the metadata. Based on this cell space definition and the pyramid levels, the cell coordinates
in one pyramid level can be converted to another.

There is no separate SRS defined for each pyramid level in the GeoRaster metadata. The
model coordinates of the cells in the pyramid are derived by first converting the cell
coordinates of different pyramid level into cell coordinates of pyramid level zero and then
applying the GeoRaster SRS. Conversely, the cell coordinates of ground points in the pyramid
are derived by first obtaining the cell coordinates of those ground points in pyramid level zero
using the GeoRaster SRS, and then converting them into a specific pyramid level. GeoRaster
supports subcell addressing of pyramids in all parts of its API.

The pyramids are stored in the same raster data table as the GeoRaster object. The
pyramidLevel attribute in the raster data table identifies all the blocks related to a specific
pyramid level. In general, the blocking scheme for each pyramid level is the same as that for
the original level (which is defined in the GeoRaster object metadata), except in the following
cases:

« If the original GeoRaster object is not blocked, that is, if the original cell data is stored in
one block (BLOB) of the exact size of the object, the cell data of each pyramid level is
stored in one block, and its size is the same as that of the actual pyramid level image.

« If the original GeoRaster object is blocked (even if blocked as one block), the cell data of
each pyramid level is blocked in the same way as for the original level data, and each
block is stored in a different BLOB object as long as the maximum dimension size of the
actual pyramid level image is larger than the block sizes. However, if lower-resolution
pyramids are generated (that is, if both the row and column dimension sizes of the pyramid
level are less than or equal to one-half the row block size and column block size,
respectively), the cell data of each such pyramid level is stored in one BLOB object and its
size is the same as that of the actual pyramid level image.

When pyramids are generated on a GeoRaster object or when a GeoRaster object is scaled,
resampling of cell data is required. GeoRaster provides the standard resampling methods
described in Resampling and Interpolation.

The following subprograms are associated with GeoRaster support for pyramids:

« SDO_GEOR.generatePyramid generates pyramid data for a GeoRaster object.
« SDO_GEOR.deletePyramid deletes pyramid data for a GeoRaster object.

« SDO_GEOR.getPyramidMaxLevel returns the maximum pyramid level of a GeoRaster
object.

« SDO_GEOR.getPyramidType returns the pyramid type for a GeoRaster object.

1.9 Bitmap Masks

A bitmap mask is a special one-bit deep rectangular raster grid with each pixel having either
the value of 0 or 1. It is used to define an irregularly shaped region inside another image. The
1-bits define the interior of the region, and the 0-bits define the exterior of the region.

ORACLE 190

Chapter 1
NODATA Values and Value Ranges

A bitmap mask can be attached to or removed from a nonblank GeoRaster object. Each band
or layer of a nonblank GeoRaster object can also have a separate bitmap mask associated
with it. Thus, there can be at most n+1 bitmap masks associated with a nonblank GeoRaster
object, where n is the total number of sublayers of the GeoRaster object. A bitmap mask can
also be edited or updated independently.

If a bitmap mask is associated with the object layer, it also becomes the default bitmap mask
for all sublayers. A bitmap mask associated with a sublayer overrides the default bitmap mask
associated with the object layer.

A bitmap mask attached to a raster layer must have the same number of rows and columns as
any other raster layers in the image, and must precisely cover the same area. It uses the same
ULTCoordinate and SRS as that of the GeoRaster object itself. Logically, it is not an integral
part of the raster image itself, but rather an ancillary piece of information; however, physically, it
is stored inside the GeoRaster object.

The physical storage of bitmap masks is similar to that of a GeoRaster object's raster data.
Bitmap masks are stored in the raster data table of the associated GeoRaster object, with
exactly the same blocking attributes. However, the bandBlockNumber of a bitmap mask entry is
always set to the layer number with which the bitmap mask is associated. For information
about the relationship between bands and layers, see Bands, Layers, and Metadata.

The pyramidLevel value starts with the value -99999 instead of 0, and it increases by 1 for
each upper pyramid level. Pyramids are built on bitmap masks along with pyramids on the
regular raster data, and bitmap masks can be scaled together with the associated GeoRaster
object with the SDO_GEOR:.scaleCopy procedure, but the resampling method used for bitmap
masks is always NN (Nearest Neighbor). Bitmap masks are compressed or decompressed
when its associated GeoRaster object is compressed or decompressed, and bitmap masks are
always compressed with the DEFLATE method (lossless). A bitmap mask can also be sparse
and thus can contain empty blocks, with the missing cell values indicating O.

Bitmap masks are generally used by applications in either or both of the following ways:

* When used as a transparency mask, a bitmap mask can be used by a display application
to determine which part of the image to display. For example, main image pixels that
correspond to 1-bits in the bitmap mask are imaged to the screen or printer, but main
image pixels that correspond to 0-bits in the mask are not displayed or printed. It can also
be used as the alpha channel of the image, and so the 0 and 1 values can be mapped to
different transparency values for display.

* When used as a NODATA mask in a GIS application, a bitmap mask tells the application to
treat pixels that correspond to the exterior (0-bits) of the mask as NODATA. For this
purpose, it can be registered as a special type of NODATA in the GeoRaster metadata, as
explained in NODATA Values and Value Ranges.

Several PL/SQL subprograms perform operations on bitmap masks such as attaching a bitmap
mask to a GeoRaster object, replacing an existing bitmap mask, removing a bitmap mask,
checking whether a GeoRaster object has a certain bitmap mask, and extracting an entire
bitmap mask, a subset of it, or a single cell value of it. You can also apply the masking
operation inside the database using the SDO_GEOR.mask procedure. For more information
about image masking, see Image Masking.

1.10 NODATA Values and Value Ranges

ORACLE

A NODATA value is used for cells whose values are either not known or meaningless.

Each individual raster layer can have multiple NODATA values or NODATA value ranges, or
both, associated with it. The GeoRaster metadata schema stores the NODATA information with
each raster layer. Specifically, the NODATA values and value ranges associated with the object

1-30

Chapter 1
Compression and Decompression

layer apply to any other sublayers. The NODATA values and value ranges for a sublayer is the
union of those for the object layer and any NODATA metadata present in the sublayer. When
you delete NODATA values or value ranges from a sublayer, any values or value ranges
present in the object layer cannot be removed.

NODATA values and value ranges can be considered during resampling, for example, when
pyramids are generated or when an image is generated by scaling. NODATA cells are by
default treated as regular cells in those processes, to avoid dilations or erosions. However,
when NODATA values or value ranges are chosen to be considered and the resampling
method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, OF AVERAGE1L6, then whenever a cell value
involved in the resampling calculation is a NODATA value, the result of the resampling is also a
NODATA value. The resulting NODATA value is the first NODATA value inside each resampling
window, where the cell values are ordered row by row from the upper-left corner to the lower-
right corner.

If you have GeoRaster objects from before release 11g with NODATA metadata stored in the
raster description, that metadata is still valid for backward compatibility. The old NODATA value
is considered to be object-wide, and it is moved to the object layer when you call the
SDO_GEOR.addNODATA procedure on the object layer or when you call the
SDO_GEOR:.deleteNODATA procedure on the object layer without deleting the old NODATA
value.

A NODATA value or value range is described using the SDO_RANGE_ARRAY type, which is
defined as VARRAY (1048576) OF SDO_RANGE; the SDO_RANGE type specifies a lower and
upper bound and is defined as (LB NUMBER, UB NUMBER).

* To specify a single number in an SDO_RANGE definition, specify LB as the number and
UB as null. The following example specifies 2 as the NODATA value:
SDO_RANGE ARRAY (SDO RANGE (2, NULL))

« SDO_RANGE(LB, UB) where LB=UB is considered the same as SDO_RANGE(LB,
NULL).

* Areal NODATA value range (where UB is not NULL and LB is less than UB) is inclusive at
the lower bound and exclusive at the upper bound.

* You can specify multiple NODATA value ranges and individual NODATA values. The
following example specifies one single NODATA value (5) and two NODATA value ranges
(1,3) and (7,8): SDO_RANGE ARRAY (SDO_RANGE (1,3), SDO RANGE (5,NULL),

SDO_RANGE (7, 8))

Several PL/SQL subprograms perform operations (such as adding, removing, and querying) on
NODATA values and value ranges associated with a GeoRaster layer.

In GeoRaster, a bitmap mask can be treated as a special type of NODATA, that is, a NODATA
mask specifying one or more irregular areas as NODATA areas. In this case, the bitmap mask
is not only identified in the bitmapMask element of the 1ayerInfo metadata, but is also
registered with the NODATA element of the layerInfo metadata. However, bitmap mask
NODATA values are not considered during any resampling processing and statistical analysis.

1.11 Compression and Decompression

ORACLE

GeoRaster provides the following types of native compression to reduce storage space
requirements for GeoRaster objects: JPEG (JPEG-F), JPEG 2000, and DEFLATE.

* With JPEG (JPEG-F) and DEFLATE compression, each block of a GeoRaster object is
compressed individually, as a distinct raster representation; and when a compressed
GeoRaster object is decompressed, each block is decompressed individually

1-31

Chapter 1
Compression and Decompression

* With JPEG 2000 compression, each GeoRaster object is stored in a single BLOB as a JP2
file, in which the raster can be internally blocked.

For JPEG (JPEG-F) and DEFLATE compression, any GeoRaster operation that can be
performed on a decompressed (uncompressed) GeoRaster object can also be performed on a
compressed GeoRaster object. When GeoRaster performs an operation, if the source
GeoRaster object is compressed, GeoRaster internally decompresses blocks of the source
object as needed, performs the specified operation, and then compresses the resulting object
in the format specified by the compression keyword or, if the compression keyword is not
specified, in the source object's compression format. Therefore, you do not need to
decompress compressed GeoRaster objects before performing certain operations, but you
might gain some overall performance benefit if you decompress the objects before performing
other operations.

For JPEG 2000 compression, most GeoRaster operations can internally decompress the JP2
compressed GeoRaster object while performing the operation.

Before a database user compresses or decompresses a GeoRaster object, ensure that the
database has been created with a default temporary tablespace or that the user has been
assigned a temporary tablespace or tablespace group. Otherwise, by default the SYSTEM
tablespace is used for the temporary tablespace, and large temporary LOB data generated
during GeoRaster operations are put in the SYSTEM tablespace, possibly affecting overall
database performance. For information about managing temporary tablespaces, see Oracle
Database Administrator's Guide.

To specify compression or decompression of a GeoRaster object, use the compression
keyword in the storageParam parameter, which is described in Storage Parameters. You can
use the compression keyword in the storageParam parameter with all GeoRaster procedures.
(For JPEG (JPEG-F) and DEFLATE compression, there are no separate procedures for
compressing and decompressing a GeoRaster object.)

If the source GeoRaster object is blank, the compression keyword is ignored, except for the
SDO_GEOR.getRasterSubset and SDO_GEOR.getRasterData functions. That is, a blank
GeoRaster object is never compressed, and the compression type in the metadata is always
NONE. (Blank GeoRaster objects are explained in Blank and Empty GeoRaster Objects.)

This section covers the following topics.

e JPEG (JPEG-F) Compression of GeoRaster Objects
e JPEG 2000 Compression of GeoRaster Objects

* DEFLATE Compression of GeoRaster Objects

o Decompression of GeoRaster Objects

e Third-Party Plug-ins for Compression

e Advanced LOB Compression

1.11.1 JPEG (JPEG-F) Compression of GeoRaster Objects

ORACLE

JPEG (JPEG-F) compression is supported only for GeoRaster objects with a cel1Depth value
of 8BIT U and no more than 4 bands per block, and each block must have 1 band, 3 bands, or
4 bands. (2 bands per block is not supported for JPEG compression.) You can JPEG compress
GeoRaster objects of more than 4 bands by reblocking the GeoRaster object with a band block
size of 1, 3, or 4 bands. JPEG compression is not supported for GeoRaster objects with a
colormap.

1-32

Chapter 1
Compression and Decompression

Although JPEG compression is supported for GeoRaster objects of any size, the total size
(columnsPerBlock * rowsPerBlock * bandsPerBlock * cellDepth / 8) of each block of the
GeoRaster object must not exceed 50 megabytes (MB). For large GeoRaster objects, you can
call the SDO_GEOR.changeFormatCopy procedure to block the GeoRaster object into blocks
smaller than 50 MB, and then compress the GeoRaster object; or you can perform the blocking
and compression in the same call to the SDO_GEOR.changeFormatCopy procedure.

GeoRaster supports the JPEG-F compression mode, which compresses objects in the full-
format baseline JPEG format.

JPEG-F compression is described in the CCITT Rec. T.81 JPEG specification (or ICO/IEC IS
10918-1). GeoRaster uses the quantization table in Table K.2 of the CCITT Rec. T.81 JPEG
specification and (for the Huffman tables) standard chrominance tables in Tables K.4 and K.6
of that specification. The quantization table is scaled by the compression quality before the
table is applied to data during the compression process.

JPEG-F is a lossy compression format. You can control the degree of loss with the quality
keyword to the storageParam parameter. The quality keyword takes an integer value from 0
to 100. A value of 0 (zero) provides maximum compression, but causes substantial loss of
data. A value of 75 (the GeoRaster default) provides an image that most people perceive as
having no loss of quality, but that provides significant compression. A value of 100 provides the
least compression, but the best quality.

e JPEG-B Support Deprecated

1.11.1.1 JPEG-B Support Deprecated

GeoRaster support for JPEG-B compression, which compresses objects in the abbreviated
baseline JPEG format, is deprecated, and will be desupported in a future release. If JPEG-B is
specified in a parameter to a GeoRaster subprogram, JPEG-F compression is used instead.
You are encouraged to use the JPEG-F support.

1.11.2 JPEG 2000 Compression of GeoRaster Objects

ORACLE

GeoRaster supports JPEG 2000 (JP2) compression on cell depth 8BIT U and 16BIT U raster
images following the standard ISO/IEC 15444-1. A JPEG 2000 compressed GeoRaster object
is stored in one raster block. The data in this raster block is in JP2 file format as described in
standard ISO/IEC 15444-1 Annex |. The image contained in the JPEG 2000 compressed
GeoRaster object can be internally tiled.

With JPEG 2000 compression, the pyramids are implicitly embedded in the JP2 compressed
data, and thus there is no separate, explicit pyramid storage in the JP2 compressed
GeoRaster object. The maximum level of pyramids that can be retrieved from a JP2
compressed GeoRaster object is 1og2 (min (tile width, tile height)), where tile width
and tile height are the width and height of the internal tiles, respectively. Both lossy and
lossless compressions are supported.

The SDO_GEOR.compressJP2 procedure is used to compress a GeoRaster object into JP2
compressed GeoRaster object. The SDO_GEOR.decompressJP2 procedure can be used to
explicitly decompress a JP2 compressed GeoRaster object into another GeoRaster object.
Other GeoRaster operations, such as rectification, mosaicking, and raster algebra — but not
SDO_GEOR:.changeCellValue, SDO_GEOR.reproject, SDO_GEOR.scaleScopy, and
SDO_GEOR.mosaic — can internally decompress the JP2 compressed GeoRaster object while
performing the operation.

Large images can be compressed, but the size is limited by memory and max number of tiles
(max_mem_size / 20 * 65535). To improve scalability and performance, always apply

1-33

Chapter 1
Compression and Decompression

internal tiling. The tile size can be specified using the tilesize keyword in the
compressParam parameter of the SDO_GEOR.compressJP2 procedure. The maximum number
of tiles supported is 65535.

1.11.3 DEFLATE Compression of GeoRaster Objects

DEFLATE compression compresses objects according to the Deflate Compressed Data
Format Specification (Network Working Group RFC 1951), and it stores the compressed data
in ZLIB format, as described in the ZLIB Compressed Data Format Specification (Network
Working Group RFC 1950). The ZLIB header and checksum fields are included in the
compressed GeoRaster object.

Although DEFLATE compression is supported for GeoRaster objects of any size, the total size
(columnsPerBlock * rowsPerBlock * bandsPerBlock * cellDepth / 8) of each block of the
GeoRaster object must not exceed 1 gigabyte (GB). For large GeoRaster objects, you can call
the SDO_GEOR.changeFormatCopy procedure to block the GeoRaster object into blocks
smaller thanl GB, and then compress the GeoRaster object; or you can perform the blocking
and compression in the same call to the SDO_GEOR.changeFormatCopy procedure.

Because DEFLATE compression is lossless, compression quality does not apply, and is
ignored if it is specified.

1.11.4 Decompression of GeoRaster Objects

You can decompress a compressed GeoRaster object in the database by specifying
compression=NONE in the storageParam parameter. For JPEG-F compression, you should not
specify compression quality as a storage parameter.

You can decompress a compressed GeoRaster object outside the database (that is, on the
client side) by using an existing application programming interface (API), such as PL/SQL or
the Oracle Call Interface (OCI), to retrieve the BLOB objects corresponding to the GeoRaster
object's blocks, and decoding each compressed block individually according to the
specifications of the relevant compression format. For example, if a GeoRaster object is
compressed in JPEG-F mode, the decoding process should first parse the JPEG headers to
retrieve the tables and block dimensions, and then apply Huffman decoding and
dequantization to the image data.

Implementing JPEG decompression completely on your own is a complex, detail-oriented
process. Depending on the application, it may be better to use an existing implementation.
Libraries such as jpeglib in C and several imaging APIs in Java (for example, Oracle J2SE
and JAI) already implement JPEG decompression, and you can adapt them to perform the
decoding process on JPEG-compressed GeoRaster objects. You can apply essentially the
same approach for DEFLATE compression using a ZLIB C library or Java API.

1.11.5 Third-Party Plug-ins for Compression

ORACLE

GeoRaster provides a plug-in architecture for third-party compression solutions. LizardTech
Corporation provides a plug-in that enables users to compress and store raster imagery, in
MrSID and JPEG 2000 compression types, natively in Oracle Spatial and Graph GeoRaster.

Before you install the LizardTech plug-in, you must follow these steps:

1. Go to the $ORACLE HOME/md/admin directory.
2. Connect to the database as SYS AS SYSDBA.

3. Enter the following SQL statement:

1-34

Chapter 1
GeoRaster and Database Management

SQL> @prvtgrlt.plb

To get the LizardTech plug-in and related information, contact LizardTech Corporation.

1.11.6 Advanced LOB Compression

You can use Oracle Database Advanced LOB Compression (described briefly in Oracle
Database SecureFiles and Large Objects Developer's Guide) to achieve lossless compression
of GeoRaster raster data tables (RDTs), thus compressing the GeoRaster objects. If you
specify Advanced LOB Compression for LOB storage when you create a table (such as the
rasterBlock column of an RDT), then the SecureFiles LOBs in all rows of that table are
compressed using Advanced LOB Compression. The compression is transparent to
GeoRaster, and thus no application changes are required. However, you should avoid using
Advanced LOB Compression on the RDT raster blocks if you are also using any GeoRaster-
specific compression types (such as JPEG, DEFLATE, or a third-party plug-in) on these blocks.

The use of Advanced LOB Compression requires licensing for the Oracle Database Advanced
Compression Option, which is described in Oracle Database Licensing Information. Note that
the Oracle Database Advanced Compression Option is not required for GeoRaster
compression operations that do not involve Advanced LOB Compression.

1.12 GeoRaster and Database Management

ORACLE

GeoRaster enables you to perform database management tasks.

These tasks are described in GeoRaster Database Creation and Management. It also performs
many management tasks automatically, and enforces several guidelines to facilitate its
automatic management operations.

GeoRaster provides several subprograms for users who need to perform specialized
management tasks:

e SDO_GEOR_ADMIN.isRDTNameUnique checks for the uniqueness of an RDT name, and
SDO_GEOR_UTL.renameRDT renames the RDT in the database to solve conflicts, which
might happen during data migration.

e SDO_GEOR_ADMIN.checkSysdataEntries and
SDO_GEOR_ADMIN.maintainSysdataEntries check for and fix corrupt SYSDATA entries
in the current schema or the database, depending on the privileges associated with the
database connection.

e The following subprograms check the status of existing GeoRaster objects and related
objects in the current schema or the database, depending on the privileges associated with
the database connection: SDO_GEOR_ADMIN.listGeoRasterObjects,
SDO_GEOR_ADMIN.listGeoRasterColumns, SDO_GEOR_ADMIN.listGeoRasterTables,
SDO_GEOR_ADMIN.IistRDT, SDO_GEOR_ADMIN.listRegisteredRDT, and
SDO_GEOR_ADMIN.listUnregisteredRDT.

e The following subprograms enable you to register existing GeoRaster objects in the current
schema or the database, depending on the privileges associated with the database
connection: SDO_GEOR_ADMIN.registerGeoRasterObjects and
SDO_GEOR_ADMIN.registerGeoRasterColumns.

e SDO_GEOR_ADMIN.upgradeGeoRaster checks for and corrects errors after a database
upgrade.

For usage information related to the preceding subprograms, see Maintaining GeoRaster
Objects and System Data in the Database.

1-35

Chapter 1
Parallel Processing in GeoRaster

To ensure the reliability of GeoRaster data and metadata, the following actions are performed
and the following guidelines are enforced:

e To ensure the consistency and integrity of internal GeoRaster tables and data structures,
GeoRaster automatically creates a unique DML trigger for each GeoRaster column
whenever a user creates a GeoRaster table.

e GeoRaster triggers are maintained by GeoRaster, and they cannot be dropped or altered
by SQL statements issued by users directly.

* The name pattern GRDMLTR * is reserved for GeoRaster triggers. Users must not create
any triggers whose names start with GRDMLTR .

* The associated GeoRaster metadata entries are updated automatically in all of the
following cases: if a GeoRaster table is dropped, truncated, renamed, or altered; if a
GeoRaster column is dropped; or if a schema is dropped.

e Araster data table (RDT) cannot be dropped or directly renamed using standard SQL
statement as long as any GeoRaster object references that RDT.

For more information, see Creating GeoRaster DML Triggers and Deleting GeoRaster Objects,
and Performing Actions on GeoRaster Tables and RDTs.

1.13 Parallel Processing in GeoRaster

ORACLE

There are two types of parallel processing with GeoRaster.

« Parallel execution of SQL statements
e Parallelized GeoRaster procedures

Parallel execution of SQL statements allows most SQL statements, both query and DML, to
run in parallel. When a SQL statement is executed, it is decomposed into individual steps or
row-sources, which are identified as separate lines in an execution plan.

All GeoRaster read-only functions such as metadata-related query operations (that is, all
GeoRaster metadata get functions and SDO_GEOR.validateGeoRaster) and all single-raster
cell queries (SDO_GEOR.getCellValue and SDO_GEOR.evaluateDouble) are enabled for
parallel query. This means that in a multi-CPU environment, if these functions are used to
guery many GeoRaster objects in one or more GeoRaster tables and if the SQL statement is
made to run in parallel, the GeoRaster rows are automatically divided into multiple subsets,
and multiple Oracle server processes will work simultaneously to process each subset to
reduce the overall response time. By dividing the work to run a GeoRaster SQL statement
among multiple processes, you can more quickly maintain spatial indexes and find GeoRaster
objects based on their locations, various metadata, and attributes. You can also use the
pipelined and parallel table function to implement more sophisticated procedures, including
parallelizing some operations on a single GeoRaster object.

Parallelized GeoRaster procedures let you specify multiple subprocesses for simultaneous
processing of a GeoRaster object. Some individual raster and image processing procedures
are specifically implemented to support this type of parallelism. With these procedures, you
simply specify an integer number for the degree of parallelism (DOP) as an input parameter, to
cause the operation to be split into that number of subprocesses to process the subsets of a
single GeoRaster object simultaneously. Each of those subprocesses runs independently.
When all subprocesses are finished, the whole process is finished. The following procedures
directly support this kind of parallel processing:

« SDO_GEOR.generatePyramid
e SDO_GEOR_RA. classify

1-36

Chapter 1
Reporting Operation Progress in GeoRaster

e SDO_GEOR_RA findCells

» SDO_GEOR_RA. rasterMathOp

e SDO_GEOR_RA. rasterUpdate

* SDO_GEOR_AGGR.mosaicSubset

Through the SDO_GEOR_AGGR.mosaicSubset procedure, other types of parallel operations
are supported. These include parallel compression and decompression, parallel copying or
change format copying, parallel subsetting, parallel reprojection, and parallel rectification. See
Parallel Compression, Copying, and Subsetting for more information.

Imagery and raster data are typically very large, so the preceding operations can be time
consuming. Therefore, when using multi-CPU or multicore servers, always consider using
parallel processing to improve the performance.

1.14 Reporting Operation Progress in GeoRaster

For some resource-intensive operations, GeoRaster enables you to monitor and report their
execution progress.

This capability applies to the execution of the following subprograms:

» SDO_GEOR_AGGR.getMosaicSubset
* SDO_GEOR_AGGR.mosaicSubset

« SDO_GEOR.generatePyramid
 SDO_GEOR.mosaic

To monitor and report on execution progress, you can use the following subprograms:

e SDO_GEOR_UTL.clearReportTable

e SDO_GEOR_UTL.createReportTable
e SDO_GEOR_UTL.disableReport

e SDO_GEOR_UTL.dropReportTable

e SDO_GEOR_UTL.enableReport

e SDO_GEOR_UTL.getAllStatusReport
e SDO_GEOR_UTL.getProgress

e SDO_GEOR_UTL.getStatusReport

e SDO_GEOR_UTL.isReporting

e SDO_GEOR_UTL.setClientID

e SDO_GEOR_UTL.setSeqlD

For information about monitoring and reporting the progress of GeoRaster operations, see
Monitoring and Reporting GeoRaster Operation Progress.

1.15 GeoRaster PL/SQL API

GeoRaster provides the SDO_GEOR, SDO_GEOR_ADMIN, SDO_GEOR_AGGR,
SDO_GEOR_RA, and SDO_GEOR_UTL PL/SQL packages, which contain subprograms
(functions and procedures) to work with GeoRaster data and metadata.

ORACLE 1-37

Chapter 1
GeoRaster Java API

Most of these subprograms fit into one of the following logical categories reflecting the purpose
of the subprogram:

e Create, load, and export GeoRaster data

e Georeference and validate GeoRaster objects

e Query and update GeoRaster metadata

e Query and update GeoRaster cell data

e Format, transform, process, and analyze GeoRaster objects
* Perform GeoRaster administrative functions

GeoRaster automatically validates the GeoRaster object after any set or process procedure
completes.

Reference chapters provide detailed information about the subprograms in the SDO_GEOR
(SDO_GEOR Package Reference), SDO_GEOR_ADMIN (SDO_GEOR_ADMIN Package
Reference), SDO_GEOR_AGGR (SDO_GEOR_AGGR Package Reference), SDO_GEOR_RA
(SDO_GEOR_RA Package Reference), and SDO_GEOR_UTL (SDO_GEOR_UTL Package
Reference) PL/SQL packages. The subprograms are presented in alphabetical order in those
chapters. Basic GeoRaster Operations, Raster Algebra and Analytics, and Image Processing
and Virtual Mosaic describe operations that involve the use of many of those subprograms,
including the general steps for calling them.

GeoRaster uses spatial indexing capabilities and related operations, which are described in
Oracle Spatial and Graph Developer's Guide.

1.16 GeoRaster Java API

ORACLE

The Oracle Spatial and Graph GeoRaster Java API consists of interfaces and classes that
support features available with the GeoRaster feature of Oracle Spatial and Graph.

This API provides a complete mapping of the SDO_GEORASTER object type and its metadata
to Java objects, and it offers Java methods to manipulate GeoRaster objects.

This API includes the following major packages:

* Theoracle.spatial.georaster package is the core of this API. It provides a complete
mapping of the SDO_GEORASTER object type and its metadata to Java objects, and it
offers Java methods to manipulate GeoRaster objects. It also provides a virtual mosaic
class to support advanced visualization applications. It is in pure Java and does not
depend upon JAI.

e The oracle.spatial.georaster.sql package provides support for wrapping some of the
GeoRaster PL/SQL subprograms that do not have support included in the
oracle.spatial.georaster package.

e The oracle.spatial.georaster.image package provides support for generating Java
images from a GeoRaster object, a subset of a GeoRaster object, or a virtual mosaic, and
for processing the images. This package depends upon and leverages JAI.

For detailed information about these packages, see Oracle Spatial and Graph Java API
Reference (Javadoc).

The Spatial and Graph Java class libraries are in .jar files under the <ORACLE HOME>/md/j1lib/
directory. The GeoRaster Java API .jar file is SORACLE _HOME/md/jlib/georasterapi.jar.

1-38

Chapter 1
GeoRaster Spatial Web Services

1.17 GeoRaster Spatial Web Services

A web service enables developers of Oracle Spatial and Graph GeoRaster applications to
provide raster data and metadata to their application users over the web. GeoRaster supports
Open Geospatial Consortium (OGC) web services, specifically, Web Coverage Services
(WCS) and Web Map Services (WMS).

WCS offers multidimensional coverage data (imagery and gridded rasters) for access over the
Internet. You can publish GeoRaster objects in the database and allow users to retrieve the
raster data over the web, including subsetting, reprojection, and GeoTIFF format support. WCS
is described in a chapter in the Oracle Spatial and Graph Developer’s Guide.

MapViewer supports the rendering of data delivered using the OGC Web Map Service (WMS)
protocol, specifically the WMS 1.1.1 and 1.3.0 implementation specifications. It supports any
images and gridded rasters stored in GeoRaster. WMS is described in an appendix in the
User’s Guide to Oracle MapViewer.

1.18 MapViewer and GeoRaster

Oracle Fusion Middleware MapViewer (MapViewer) is a programmable tool for rendering maps
using spatial data managed by Oracle Spatial and Graph or Oracle Locator (also referred to as
Locator). It fully supports GeoRaster data types and is the web-based mapping and
visualization application platform for GeoRaster.

MapViewer allows you to define GeoRaster themes (based on an individual GeoRaster object)
and GeoRaster virtual mosaic themes (based on a collection of GeoRaster objects). You can
use the Map Builder tool to define GeoRaster themes and virtual mosaic themes, and to
specify image processing operations and rendering styles.

MapViewer also has a map tile server, which is a map image caching engine that fetches,
caches, and serves pregenerated, fixed-size map image tiles. You can leverage it to cache
GeoRaster images in the middle tier to speed up applications.

MapViewer is documented in theUser’s Guide to Oracle MapViewer.

1.19 GeoRaster Tools: Viewer, Loader, Exporter

ORACLE

Oracle Spatial includes tools for viewing, loading, and exporting GeoRaster data.

Oracle works closely with third parties to provide comprehensive ETL (extract, transform, load)
tools for loading and exporting various raster data formats and to provide visualization clients
to display GeoRaster objects. See the Spatial and Graph partner solutions information at
http://www.oracle.com/technetwork/database-options/spatialandgraph/learnmore/ and
the open source GDAL support at http://www.gdal.org/frmt georaster.html.

GeoRaster also includes the following client-side tools:

* JAl-based GeoRaster viewer, loader and exporter

* GDAL-based ETL wizard for concurrent batch loading and exporting of large numbers of
image and raster files

To use these client-side tools, you must install the demo files from the Oracle Database
Examples media (see Oracle Database Examples Installation Guide). After the installation,
these tools are in the following . jar file (assuming the default Spatial and Graph installation
directory of SORACLE HOME/md):

1-39

http://www.oracle.com/technetwork/database-options/spatialandgraph/learnmore/
http://www.gdal.org/frmt_georaster.html

Chapter 1
GeoRaster Tools: Viewer, Loader, Exporter

$ORACLE HOME/md/demo/georaster/tool/georastertool.jar

In addition, GDAL itself is included with the Oracle Spatial and Graph installation.

JAl-Based Viewer, Loader, and Exporter

GDAL-Based ETL Wizard for Concurrent Batch Loading and Exporting
Using GDAL from the Spatial and Graph Installation

Using the SDO_GEOR_GDAL Package

1.19.1 JAI-Based Viewer, Loader, and Exporter

The GeoRaster JAl-based tools include a viewer, a loader, and an exporter. These tools are
intended for DBAs and application developers. The viewer is especially useful for examining all
types of GeoRaster objects and their metadata. It can also display a virtual mosaic defined as
one or a list of GeoRaster tables or views. The loader and exporter are lightweight tools for
conveniently load and export a limited number of image and raster files one at a time. They are
very limited in loading and exporting capabilities and have many restrictions. Therefore, it is
always recommended to use the GDAL-Based ETL, GDAL, or the

SDO_GEOR_GDAL .translate to load and export image and raster files. The SORACLE HOME/md/
demo/georaster/tool/README. txt file includes helpful usage information and instructions for
using the following tools:

ORACLE

GeoRaster viewer displays GeoRaster objects and metadata, as well as virtual mosaics.
You can connect to multiple databases simultaneously, and see the GeoRaster objects
from each database listed in the left pane. You can quickly switch among views at various
resolutions, from the original image (pyramid level 0) to the overview (highest pyramid
level). You can perform image enhancement, such as linear stretch (automatic, manual, or
piecewise), normalization, equalization, and controls for brightness, contrast, and
threshold. (For more information about viewing GeoRaster objects, see Viewing
GeoRaster Objects.)

In the viewer, you can call the GeoRaster loader and exporter tools and invoke the GDAL-
Based ETL tool, thus enabling you to use a single tool as an interface to the capabilities of
all the GeoRaster tools. The loader and exporter tools are described in this section and in

the $ORACLE HOME/md/demo/georaster/tool/JAI based tools user guide.txt file.

GeoRaster loader, which loads raster data into the GeoRaster objects. It can load the
following image formats: TIFF, GeoTIFF, JPEG, BMP, GIF, PNG, and JP2. Georeferencing
information can be loaded from ESRI world files, GeoTIFF files and Digital Globe RPC text
files.

On non-Windows systems this loader tool does not support the BMP or GIF image formats.
This tool does not support raster data that has a cell depth value of 2BIT, or source
multiband raster data with BIL or BSQ interleaving types. The imported GeoRaster object
has the BIP interleaving type. The loading operation of this tool cannot be rolled back.

When an image in JPEG file format is loaded, the amount of memory required for the
operation depends on the size of the uncompressed image, and can be specified as a
command line parameter using the -xmx option (for example, java -Xmx256M
oracle.spatial.georaster.tools.GeoRasterLoader ...).

GeoRaster exporter, which exports GeoRaster objects to image files. The GeoRaster
exporter tool supports the following destination image file formats: TIFF, GeoTIFF, JPEG,
BMP, GIF, PNG, and JP2. Georeferencing information can be exported to ESRI world files,
GeoTIFF files and Digital Globe RPC text files.

Note, the GeoRaster exporter tool does not support GIF as a destination file format. The
GeoRaster exporter tool does not support GeoRaster objects that have a cel1Depth value

1-40

Chapter 1
GeoRaster Tools: Viewer, Loader, Exporter

of 2BIT. GeoRaster objects with a cell depth of 8 bits or greater that have a BSQ or BIL
interleaving are exported in BIP interleaved format.

Some restrictions on load and export operations may apply regarding image size and type; see
the $ORACLE HOME/md/demo/georaster/tool/JAI based tools user guide.txt file for the
GeoRaster tools.

These tools are developed in Java, so you can run them anywhere through an intranet or the
Internet, as long as you establish a network connection with the Oracle database.

To load or export GeoTIFF images with the GeoRaster client-side tools, add the following
libraries to your CLASSPATH definition:

e xtiff-jai.jar (available from the SourceForge Extensible-TIFF-JAI group)
e geotiff-jai.jar (available from the SourceForge GeoTIFF-JAI group)

To load or export JP2 images, add the following library to your CLASSPATH definition: jai-
imageio.jar (available from the Oracle Java Advanced Imaging Image I/O Tools download

page).

After raster or image files are loaded into GeoRaster objects, the data is completely stored in
the native GeoRaster object data type and is independent from any specific file formats.

If you want to create your own GeoRaster loader and exporter tools, you can develop them
using OCI, Oracle C++ Call Interface (OCCI), or Java, and you can implement them as client-
side commands or server-side SQL procedures or functions.

1.19.2 GDAL-Based ETL Wizard for Concurrent Batch Loading and
Exporting

GeoRaster includes an ETL wizard tool to automate and enable concurrent batch loading and
exporting of various image and raster files using GDAL. This powerful tool can load and export
large numbers of raster and image files in batches and concurrently.

It defines an XML schema and provides a graphical user interface to create loading and
exporting description files in XML. Each description file describes how to load or export a
series of raster files into or from GeoRaster in a batch. After the XML description files are
created, you can use the same wizard tool to invoke multiple description files to concurrently
load and export raster files in batches. Any run-time failures are caught and logged, but they
do not stop the batch loading or exporting processes. This tool supports the raster formats
supported by the GDAL installed with it.

To use this wizard, you must install the demo files from the Oracle Database Examples media
(see Oracle Database Examples Installation Guide). After the installation, this wizard is in the
following . jar file (assuming the default Spatial installation directory of SORACLE HOME/md):

$ORACLE HOME/md/demo/georaster/tool/georastertool.jar

The $ORACLE HOME/md/demo/georaster/tool/README. txt file describes how to set up GDAL
and launch the wizard.

The $ORACLE HOME/md/demo/georaster/tool/GDAL based etl user guide.pdf file describes
the usage in detail.

ORACLE L

Chapter 1
GeoRaster Tools: Viewer, Loader, Exporter

1.19.3 Using GDAL from the Spatial and Graph Installation

The GeoSpatial Data Abstraction Library (GDAL) is an Open Source software library that
supports many data formats and services. Oracle Spatial geometries and GeoRaster objects
are supported by the GDAL library, command line tools, and programing interface.

GDAL is distributed with Oracle Spatial and Graph, where it is installed

under $ORACLE HOME/md/gdal on Linux systems and $ORACLE_HOME% \md\gdal on Windows
systems. (GDAL is distributed with Linux x86-64 and Microsoft Windows x64 (64-bit) platforms
only. It is not distributed with Oracle Spatial and Graph on other platforms.)

To prepare GDAL for command line use, you must add the GDAL bin, data, 1ib, and plugins
folders to the system environment variables.

The following examples set up GDAL on Linux x86-64:

setenv GDAL HOME ${ORACLE HOME}/md/gdal

setenv GDAL DATA ${GDAL_HOME}/data

setenv GDAL DRIVER PATH ${GDAL HOME}/lib/gdalplugins
setenv PATH ${GDAL_HOME}/bin:${PATH}

setenv LD LIBRARY PATH ${GDAL HOME}/lib:${LD_LIBRARY PATH}

The following examples set up GDAL on Windows x64 (64-bit):

set GDAL HOME=%0RACLE HOME%\md\gdal

set GDAL DATA=%GDAL HOME%\data

set GDAL DRIVER PATH=%GDAL HOME%\bin\gdalplugins
set PATH=$GDAL HOME$\bin;$PATHS

The preceding examples assume that Oracle OCI shared libraries are already configured in the
system. Oracle OCI shared libraries can be found in the Oracle Database or Instant Client
installation.

The following example adds Oracle Instant Client to the Windows PATH variable:

set PATH=C:\instantclient 12 1;%PATH%

The scripts to automatically set up GDAL are setup gdal.conf and setup gdal.bat, which
can be found in the following folder: $ORACLE HOME/md/demo/georaster/tool

Loading Raster Data and its subtopics provide explanations and examples of how to use
GDAL to load raster files into GeoRaster.

1.19.4 Using the SDO_GEOR_GDAL Package

The SDO_GEOR_GDAL PL/SQL package integrates the open source software GDAL with
Oracle Database Server through external procedures and provides PL/SQL APIs to execute a
set of GDAL functions.

ORACLE vy

http://www.gdal.org/

ORACLE

Chapter 1
GeoRaster Tools: Viewer, Loader, Exporter

Note:

SDO_GEOR_GDAL is not supported in Oracle Autonomous Database in both shared
and dedicated deployments.

The functions and procedures from the SDO_GEOR_GDAL package will execute on the
Oracle Database server system and can work together with any other GeoRaster PL/SQL
APIs,

Currently the SDO_GEOR_GDAL package is only available on the Linux x86-64 and Microsoft
Windows x64 (64-bit) operating systems.

SDO_GEOR_GDAL Package Reference describes the SDO_GEOR_GDAL package and
includes reference information for the subprograms in that package.

Configuration Requirements for Using SDO_GEOR_GDAL
To use the SDO_GEOR_GDAL package, follow the instructions for your operating system.
Linux x86-64 Systems:

Add the following lines to the server configuration file: ${ORACLE HOME}/hs/admin/extproc.ora
However, in each of these lines, replace ${ORACLE HOME} with the actual path to the Oracle
home directory.

set EXTPROC_DLLS=${ORACLE HOME}/md/1lib/libsdogdal.so

set GDAL DATA=S${ORACLE HOME}/md/gdal/data

set GDAL DRIVER PATH=${ORACLE HOME}/md/gdal/lib/gdalplugins

set LD LIBRARY PATH=${ORACLE HOME}/lib:${ORACLE HOME}/md/gdal/lib

You need to shut down and restart the database for the preceding configuration to take effect.

Note:

If you get an error “ORA-06520: PL/SQL: Error loading external library” while
invoking SDO_GEOR_GDAL package methods for the configuration, then you can
create symbolic links for all the libraries (*.so*) at ${ORALE HOME}/md/gdal/lib in
directory ${ORACLE HOME}/lib and try again. For example:

1n -s ${ORACLE HOME}/md/gdal/lib/libgdal.so ${ORACLE HOME}/1lib/
libgdal.so

Windows x64 (64-bit) Systems:

Add the following lines to the server configuration file: $ORACLE HOME$\hs\admin\extproc.ora
However, in each of these lines, replace $ORACLE HOMES$ with the actual path to the Oracle
home directory.

set EXTPROC DLLS=%ORACLE HOME%\\md\\bin\\orasdogdal.dll
set GDAL DATA=%0RACLE HOME$\\md\\gdal\\data

1-43

Chapter 1
GeoRaster PL/SQL and Java Sample Files

set GDAL DRIVER PATH=%0RACLE HOME%\\md\\gdal\\bin\\gdalplugins
set PATH=%0RACLE HOME%\\bin;$ORACLE HOME%$\\lib;%ORACLE HOMES%\\md\\gdal\\bin

You need to shut down and restart the database for the preceding configuration to take effect.

Note:

If you get an error “0RA-06520: PL/SQL: Error loading external library” while
invoking SDO_GEOR_GDAL package methods for the configuration, then you can
copy all the libraries (*.d11) at $ORACLE HOME%\md\gdal\bin to directory

%ORALCE HOME%\bin and try again.

1.20 GeoRaster PL/SQL and Java Sample Files

GeoRaster includes several PL/SQL and Java sample code files that show common
operations.

If you installed the example files from the Oracle Database Examples media (see Oracle
Database Examples Installation Guide), these sample code files are in the following directories
under the Spatial and Graph installation directory (which by default is SORACLE HOME/md):

/demo/georaster/plsql
/demo/georaster/java

The PL/SQL code examples demonstrate basic operations using the GeoRaster PL/SQL API
to initialize, import, insert, delete, query, process, update, and export GeoRaster objects.

The Java code examples demonstrate how to use the GeoRaster Java API to develop
GeoRaster ETL (extract, transform, load) tools and applications.

1.21 README File for Spatial and Graph and Related Features

ORACLE

Oracle Spatial and Graph includes a README. txt file.

This file supplements the information in the following manuals: Oracle Spatial and Graph
Developer's Guide, Oracle Spatial and Graph GeoRaster Developer's Guide (this manual), and
Oracle Spatial and Graph Topology Data Model and Network Data Model Graph Developer's
Guide. This file is located at:

$ORACLE_HOME/md/doc/README. txt

1-44

GeoRaster Data Types and Related Structures

The object-relational implementation of GeoRaster consists of a set of object data types for
storing data and system data.

Each image or gridded raster data is stored in a column of type SDO_GEORASTER, and the
blocks in that raster data are stored in a raster data table of type SDO_RASTER, as explained
and illustrated in GeoRaster Physical Storage. This chapter contains the following major
sections.

* SDO_GEORASTER Object Type
In the GeoRaster object-relational model, a raster image or grid object is stored in a single
row, in a single column of object type SDO_GEORASTER in a user-defined table. Tables
with at least one column of type SDO_GEORASTER are referred to as GeoRaster tables.

 SDO_RASTER Object Type and the Raster Data Table
In the GeoRaster object-relational model, a raster data table (RDT) is used to store all cell
data in a raster image.

e Other GeoRaster Types
GeoRaster also porvides some other data types.

e GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)
GeoRaster uses a system data table (also called the sysdata table) to maintain the
relationship between GeoRaster tables and their related raster data tables.

* GeoRaster XML Schema
GeoRaster defines an XML schema to store and manage the GeoRaster metadata.

2.1 SDO_GEORASTER Obiject Type

ORACLE

In the GeoRaster object-relational model, a raster image or grid object is stored in a single row,
in a single column of object type SDO_GEORASTER in a user-defined table. Tables with at
least one column of type SDO_GEORASTER are referred to as GeoRaster tables.

The SDO_GEORASTER object type is defined as:

CREATE TYPE sdo georaster AS OBJECT (
rasterType NUMBER,
spatialExtent SDO_GEOMETRY,
rasterDataTable VARCHARZ (128),
rasterID NUMBER,
metadata XMLType) ;

The sections that follow describe the semantics of each SDO_GEORASTER attribute.
e rasterType Attribute

e spatialExtent Attribute

» rasterDataTable Attribute

» rasterID Attribute

« metadata Attribute

2-1

Chapter 2
SDO_GEORASTER Object Type

2.1.1 rasterType Attribute

The rasterType attribute must be a 5-digit number in the format [d] [b] [t] [gt], where:

e [d] identifies the number of spatial dimensions. Must be 2 for the current release.

* [b] indicates band or layer information: 0 means one band or layer; 1 means one or more
than one band or layer. Note that you are not specifying the total number of bands or
layers in this field. (For information about bands and layers, see Bands_ Layers_ and
Metadata.)

* [t] isreserved for future use and should be specified as 0 (zero).

* [gt] identifies the 2-digit GeoRaster type, and must be one of the following values:

[gt] Value Meaning

00 Reserved for Oracle use.

01 Any GeoRaster type. This is the only value supported for the current release. This
value causes GeoRaster not to apply any restrictions associated with specific types
that might be implemented in future releases.

02-50 Reserved for Oracle use.

51-99 Reserved for customer use in future releases.

For example, a RasterType value of 20001 means:
* Two-dimensional data

e One band (layer)

* Any GeoRaster type

2.1.2 spatialExtent Attribute

ORACLE

The spatialExtent attribute identifies the spatial extent, or footprint, associated with the
raster data. The spatial extent is an Oracle Spatial and Graph geometry of type
SDO_GEOMETRY. The spatial extent geometry can be in any coordinate system, not
necessarily in the GeoRaster model space, and can be directly updated by a SQL UPDATE
statement specifying a geometry. However, the spatial extent geometry is in the model
(ground) space of the GeoRaster object if the GeoRaster object is georeferenced and if you
generate the spatial extent geometry using any of the following methods: calling the
SDO_GEOR:.generateSpatialExtent function, or specifying spatialExtent=TRUE as a storage
parameter to the SDO_GEOR.importFrom procedure or the GeoRaster client-side loader
(described in GeoRaster Tools: Viewer Loader_ Exporter).

You can call SDO_CS.transform to convert it to any other supported coordinate system. The
spatial extent is set to null, rather than cell space, if its SRID value is null or 0 (zero). The
SDO_GEOMETRY data type is described in Oracle Spatial and Graph Developer's Guide.

The GeoRaster spatial extent is generally used to build a spatial R-tree index on the
GeoRaster column. For example, you can use a geodetic SRID for all the spatial extents when
all GeoRaster objects are in different local projections, and then build a whole-Earth based
spatial index on the GeoRaster table and spatially search GeoRaster objects globally. Because
of the potential performance benefits of spatial indexing for GeoRaster applications, the
geometry is associated with the spatialExtent attribute, rather than being included in the XML
metadata attribute described in metadata Attribute. For information about indexing GeoRaster
data, see Indexing GeoRaster Objects.

2-2

Chapter 2
SDO_RASTER Object Type and the Raster Data Table

2.1.3 rasterDataTable Attribute

The rasterDataTable attribute identifies the name of the raster data table. The raster data
table must be an object table of type SDO_RASTER or a relational table that includes all
columns defined by object type SDO_RASTER. It contains a row for each raster block that is
stored. You must create and (if necessary) drop the raster data table. You should never modify
the rows in this table directly, but you can query this table to access the raster data.

This attribute must be a valid nonquoted identifier without any period separators, and all the
alphanumeric characters must be uppercase.

For more information about the raster data table and the SDO_RASTER type, see
SDO_RASTER Object Type and the Raster Data Table.

2.1.4 rasterID Attribute

The rasterID attribute value is stored in the rows of the raster data table to identify which rows
belong to the GeoRaster object. The rasterDataTable attribute and rasterID attribute
together uniquely identify the GeoRaster object in the database. That is, each GeoRaster
object has a raster data table, although a raster data table can contain data from multiple
GeoRaster objects.

You can specify the rasterID and rasterDataTable attributes for new GeoRaster objects, as
long as each pair is unique in the database. If you do not specify these values, they are
automatically generated by the SDO_GEOR.init and SDO_GEOR.createBlank functions.

2.1.5 metadata Attribute

The metadata attribute contains the GeoRaster metadata that is defined by Oracle. The
metadata is described by the GeoRaster metadata XML schema, which is documented in
GeoRaster Metadata XML Schema. The metadata of any GeoRaster object must be validated
against this XML schema, and it must also be validated using the
SDO_GEOR.validateGeoRaster function, which imposes additional restrictions not defined by
this XML schema.

The default storage option for GeoRaster metadata is binary XML.

2.2 SDO_RASTER Object Type and the Raster Data Table

ORACLE

In the GeoRaster object-relational model, a raster data table (RDT) is used to store all cell data
in a raster image.

The cell data of a GeoRaster object is blocked, and each block is stored in the RDT as one
row. You specify this table in the rasterDataTable attribute of the SDO_GEORASTER object,
as explained in rasterDataTable Attribute. You must create the RDT before you store any cell
data in it.

The RDT is an object table, defined as a table of SDO_RASTER object type or as a relational
table that includes all columns defined by object type SDO_RASTER. The RDT name must be
unigue in the database, as described in Raster Data Table.

The SDO_RASTER object type is defined as:

CREATE TYPE sdo raster AS OBJECT (
rasterID NUMBER,
pyramidLevel NUMBER,

2-3

Chapter 2
SDO_RASTER Object Type and the Raster Data Table

bandBlockNumber NUMBER,

rowBlockNumber NUMBER,
columnBlockNumber NUMBER,
blockMBR SDO_GEOMETRY,
rasterBlock BLOB) ;

The sections that follow describe the semantics of each SDO_RASTER attribute.

* rasterlD Attribute

e pyramidLevel Attribute

* bandBlockNumber Attribute

* rowBlockNumber Attribute

¢ columnBlockNumber Attribute
* blockMBR Attribute

» rasterBlock Attribute

2.2.1 raster|D Attribute

The rasterID attribute in the SDO_RASTER object must be a number that matches the
rasterID value in its associated SDO_GEORASTER object. (The rasterID attribute of the
SDO_GEORASTER object is described in rasterlD Attribute.) The matching of these numbers
identifies the raster block as belonging to a specific GeoRaster object.

2.2.2 pyramidLevel Attribute

The pyramidLevel attribute identifies the pyramid level for this block of cells. The pyramid level
is 0 or any positive integer. Pyramid levels are used to create reduced resolution images that
require less storage space. A pyramid level of O indicates the original raster data; that is, there
is no reduction in the image resolution and no change in the storage space required. Values
greater than 0 (zero) indicate increasingly reduced levels of image resolution and reduced
storage space requirements. For more information about pyramids, see Pyramids.

This attribute and the bandBlockNumber attribute (described in bandBlockNumber Attribute) are
also used to indicate bitmap masks and their pyramids. For more information about bitmap
masks, bitmap mask pyramids, and how the pyramidLevel and bandBlockNumber attributes are
used, see Bitmap Masks.

2.2.3 bandBlockNumber Attribute

The bandBlockNumber attribute identifies the block number along the band dimension. For
information about bands and layers, see Bands_ Layers_ and Metadata. For more information
about how the bandBlockNumber attribute is used with bitmap masks and their pyramids, see
Bitmap Masks.

2.2.4 rowBlockNumber Attribute

The rowBlockNumber attribute identifies the block number along the row dimension.

2.2.5 columnBlockNumber Attribute

The columnBlockNumber attribute identifies the block number along the column dimension.

ORACLE 4

Chapter 2
Other GeoRaster Types

2.2.6 blockMBR Attribute

The blockMBR attribute is the geometry (of type SDO_GEOMETRY) for the minimum bounding
rectangle (MBR) for this block. The geometry is in cell space (that is, its SRID value is null),
and all ordinates are integers. The ordinates represent the minimum row and column and the
maximum row and column stored in this block.

2.2.7 rasterBlock Attribute

The rasterBlock attribute contains all raster cell data for this block. It is also used to store
bitmap masks of the GeoRaster object. The rasterBlock attribute is of type BLOB.

2.3 Other GeoRaster Types

GeoRaster also porvides some other data types.

In addition to SDO_GEORASTER, SDO_RASTER, and SDO_RANGE_ARRAY and
SDO_RANGE, GeoRaster provides several other object and collection types, which are used
for specific kinds of operations. Unlike the SDO_GEORASTER and SDO_RASTER types,
which are used for storage in the database (for example, to define a column in a table), the
types described in this section are used only with the GeoRaster PL/SQL API in the current
release.

e SDO_GEOR_HISTOGRAM Object Type

e SDO_GEOR_HISTOGRAM_ARRAY Collection Type
e SDO_GEOR_COLORMAP Object Type

e SDO_GEOR_GRAYSCALE Object Type

e SDO_RASTERSET Collection Type

e SDO_GEOR_SRS Object Type

e SDO_GEOR_GCP Object Type

e SDO_GEOR_GCP_ COLLECTION Collection Type
« SDO_GEOR_GCPGEOREFTYPE Object Type
Related Topics

e SDO_GEORASTER Object Type

e SDO_RASTER Object Type and the Raster Data Table
NODATA Values and Value Ranges

2.3.1SDO_GEOR_HISTOGRAM Object Type

ORACLE

In GeoRaster, the histogram is stored in the GeoRaster metadata using the XML schema
defined in GeoRaster Metadata XML Schema. The SDO_GEOR_HISTOGRAM object type is
used in the PL/SQL API to contain the histogram data of a GeoRaster object or a layer. The
layers have the same histogram data structure. Each cell has a value, and for each cell value
or a value range there may be any number of cells having that value or falling in that range.

The SDO_GEOR_HISTOGRAM object type is defined as:

2-5

Chapter 2
Other GeoRaster Types

CREATE TYPE sdo_geor histogram AS OBJECT (
cellValue SDO_NUMBER_ARRAY,
count SDO_NUMBER_ARRAY) ;

Table 2-1 describes the attributes of the SDO_GEOR_HISTOGRAM object type. The
cellvalue array and the count array must have the same length.

Table 2-1 SDO_GEOR_HISTOGRAM Object Type Attributes
]

Attribute Description
cellValue Array of cell values.
count Number of cells that correspond to each cell value

or cell value range.

The histogram contains the cell values (and the implied value ranges) and the total number of
cells related to each cell value or each cell value range. For example, if (cellValuel, countl)
and (cellValue2, count?) are the two adjacent entries in ascending order in the histogram, the
implied value range is [cellValuel, cellValue2) and the total number of cells in this range is
countl. The cell value range is always inclusive in its lower boundary and exclusive in the
upper boundary. The size of each range does not necessarily have to be the same. Using this
example, the range is equal to or greater than cellValuel and less than cellValue2. For a lower
cell depth (for example, 1-bit to 8-bit integers), the cell value ranges are typically the same as
the cell values.

2.3.2 SDO_GEOR_HISTOGRAM_ARRAY Collection Type

The SDO_GEOR_HISTOGRAM_ARRAY collection type is used to store an array (collection) of
SDO_GEOR_HISTOGRAM objects.

The SDO_GEOR_HISTOGRAM_ARRAY collection type is defined as:

CREATE TYPE sdo_geor histogram array AS
VARRAY (10485760) OF SDO_GEOR HISTOGRAM;

2.3.3SDO_GEOR_COLORMAP Object Type

ORACLE

In GeoRaster, the color information is stored in the GeoRaster metadata using the XML
schema defined in GeoRaster Metadata XML Schema. The SDO_GEOR_COLORMAP object
type is used in the PL/SQL API to contain colormap information, that is, pseudocolor
information for identifying the red, green, blue, and (optionally) alpha values of the color to be
used to display cells that have a specific value or are in a specific value range. The colormap is
also called the pseudocolor table or the palette table. The colormap in GeoRaster is in the
default SRGB ColorSpace, which is a proposed standard RGB color space, as explained at

http://www.w3.0rg/Graphics/Color/sRGB.html

The ranges for red, green, blue, and alpha values are all scaled to be 8-bit unsigned integers
from O to 255.

Alpha is also called opacity. An alpha value of 255 means that the color is completely opaque,
and an alpha value of 0 means that the color is completely transparent. The color component
values are never premultiplied by the alpha value.

The SDO_GEOR_COLORMAP object type is defined as:

CREATE TYPE sdo_geor colormap AS OBJECT (
cellValue SDO_NUMBER_ARRAY,

2-6

http://www.w3.org/Graphics/Color/sRGB.html

Chapter 2

Other GeoRaster Types
red SDO_NUMBER ARRAY,
green SDO_NUMBER ARRAY,
blue SDO_NUMBER ARRAY,
alpha SDO_NUMBER ARRAY) ;

Table 2-2 describes the attributes of the SDO_GEOR_COLORMAP object type. Each attribute
is an array of numbers. The arrays must have the same length, and the values of the same
index in each array must correspond to each other. Each cellvalue value must be consistent
with the cellDepth value of the GeoRaster object.

The colormap contains the cell values (and the implied value ranges) and the red, green, blue,
and/or alpha values related to each cell value or each cell value range. For example, if
(cellvaluel, redl, greenl, bluel, alphal) and (cellValue2, red2, green2, blue2, alpha?) are the
two adjacent entries in ascending order in the colormap, the implied value range is [cellValuel,
cellvValue2), and the color components associated with all cells in this range are (redl, greenl,
bluel, alphal). The cell value range is always inclusive in its lower boundary and exclusive in
the upper boundary. The size of each range does not necessarily have to be the same. In this
example, the range is equal to or greater than cellValuel and less than cellValue2. For a lower
cell depth (for example, 1-bit to 8-bit integers), the cell value ranges are typically the same as
the cell values.

Table 2-2 SDO_GEOR_COLORMAP Object Type Attributes

]
Attribute Description

cellValue Array of cell values. The values must be stored in
ascending order.

red Array of red component values for pseudocolor
display of cells that have the values or value ranges
in cellValue. Must be integer values from 0 to
255.

green Array of green component values for pseudocolor
display of cells that have the values or value ranges
in cellValue. Must be integer values from O to
255.

blue Array of blue component values for pseudocolor
display of cells that have the values or value ranges
in cel1lValue. Must be integer values from 0 to
255.

alpha Array of alpha component values for pseudocolor
display of cells that have the values or value ranges
in cel1lValue. Must be integer values from 0 to
255.

2.3.4 SDO_GEOR_GRAYSCALE Object Type

In GeoRaster, the grayscale information is stored in the GeoRaster metadata using the XML
schema defined in GeoRaster Metadata XML Schema. The SDO_GEOR_GRAYSCALE object
type is used in the PL/SQL API to contain grayscale information for identifying the grayscale
value to be used to display cells that have a specific value or fall into a specific value range.
The grayscale table cell values can be "stretched" in linear proportion using this grayscale
table, so that the original raster data can be properly displayed. The grayscale table value
range is 8-bit unsigned integer values from O to 255. The grayscale table is also called the
contrast table or the lookup table.

The SDO_GEOR_GRAYSCALE object type is defined as:

ORACLE .

Chapter 2
Other GeoRaster Types

CREATE TYPE sdo_geor grayscale AS OBJECT (
cellvalue SDO NUMBER ARRAY,
gray SDO_NUMBER ARRAY) ;

Table 2-3 describes the attributes of the SDO_GEOR_GRAYSCALE object type. The
cellvValue array and the gray array must have the same length. Each cellvalue value must
be consistent with the cel1Depth value of the GeoRaster object.

The grayscale contains the cell values (and the implied value ranges) and the gray values
related to each cell value or each cell value range. For example, if (cellValuel, grayl) and
(cellvalue2, gray?2) are the two adjacent entries in ascending order in the grayscale table, the
implied value range is [cellValuel, cellValue2), and the gray color associated with all cells in
this range is grayl. The cell value range is always inclusive in its lower boundary and exclusive
in the upper boundary. The size of each range does not necessarily have to be the same.
Taking the same example, the range is equal to or greater than cellValuel and less than
cellvalue2. For a lower cell depth (for example, 1-bit to 8-bit integers), the cell value ranges are
typically the same as the cell values.

Table 2-3 SDO_GEOR_GRAYSCALE Object Type Attributes

]
Attribute Description

cellValue Array of cell values. The values must be stored in
ascending order.

gray Array of gray component values for grayscale
display of cells that have the values or value ranges
in cellValue. Must be integer values from 0 to
255.

2.3.5 SDO_RASTERSET Collection Type

The SDO_RASTERSET collection type is used as the return type of table functions that query
the raster data blocks (one or many blocks, the whole set or a subset).

The SDO_RASTERSET collection type is defined as:

CREATE TYPE sdo_rasterset AS TABLE of SDO_RASTER;

Related Topics
¢ SDO_RASTER Object Type and the Raster Data Table

2.3.6 SDO_GEOR_SRS Obiject Type

ORACLE

In GeoRaster, the spatial reference system (SRS) information is stored in the GeoRaster
metadata using the XML schema defined in GeoRaster Metadata XML Schema. The
SDO_GEOR_SRS object type is used in the PL/SQL API to contain information related to the
spatial referencing of a GeoRaster object. The metadata and the object type contain the same
information. You can use the object type to retrieve the SRS information from GeoRaster
objects or to load and update the SRS information in GeoRaster objects.

The SDO_GEOR_SRS object type is defined as:

CREATE TYPE sdo_geor srs AS OBJECT (

isReferenced VARCHAR2 (5),
isRectified VARCHAR2 (5),
isOrthoRectified VARCHAR2 (5),
srid NUMBER,

2-8

ORACLE

Chapter 2
Other GeoRaster Types

spatialResolution SDO NUMBER ARRAY,
spatialTolerance NUMBER,

coordLocation NUMBER,
rowOff NUMBER,
columnOff NUMBER,
x0ff NUMBER,
yOff NUMBER,
zOff NUMBER,
rowScale NUMBER,
columnScale NUMBER,
xScale NUMBER,
yScale NUMBER,
zScale NUMBER,
rowRMS NUMBER,
columnRMS NUMBER,
totalRMS NUMBER,
rowNumerator SDO_NUMBER ARRAY,
rowDenominator SDO_NUMBER ARRAY,

columnNumerator SDO_NUMBER ARRAY,
columnDenominator SDO_NUMBER ARRAY,

xRMS NUMBER,
yRMS NUMBER,
ZRMS NUMBER,
modelTotalRMS NUMBER,

GCPgeoreferenceModel SDO GEOR GCPGEOREFTYPE) ;

Table 2-4 describes the attributes of the SDO_GEOR_SRS object type.

Table 2-4 SDO_GEOR_SRS Object Type Attributes
]

Attribute Description

isReferenced TRUE if the GeoRaster object is georeferenced;
FALSE if the GeoRaster object is not
georeferenced.

isRectified TRUE if the GeoRaster object is both georectified

and georeferenced; FALSE if the GeoRaster object
is not georectified.

isOrthoRectified TRUE if the GeoRaster object is orthorectified,
georectified, and georeferenced; FALSE if the
GeoRaster object is not orthorectified.

srid SRID value of the model (ground) coordinate
system.
spatialResolution Spatial resolution values: an array of numeric

values, one for each spatial dimension. Each value
indicates the number of units of measurement
associated with the data area represented by that
spatial dimension of a cell.

spatialTolerance Tolerance value, for control of the precision.

coordLocation The model coordinate location defines the type of
the cell space, which represents either upperleft-
based (that is, coordLocation=1) or center-based
(that is, coordLocation=0). For more information
about model space and cell (raster) space, see
GeoRaster Data Model.

rowOff Row offset value.

columnOff Column offset value.

2-9

ORACLE

Chapter 2
Other GeoRaster Types

Table 2-4 (Cont.) SDO_GEOR_SRS Object Type Attributes
]

Attribute Description

xOff X offset value.

yOff Y offset value.

zOff Z offset value.

rowScale Row scaling factor value.

columnScale
xScale
yScale
zScale
rowRMS

columnRMS

totalRMS

rowNumerator

rowDenominator

columnNumerator

columnDenominator

XRMS

Column scaling factor value.
X scaling factor value.
Y scaling factor value.
Z scaling factor value.

The row-dimension accuracy. It is computed using
control points if you call SDO_GEOR.georeference
using GCPs.

The column-dimension accuracy. It is computed
using control points if you call
SDO_GEOR.georeference using GCPs

The total row and column accuracy. It is computed
using control points if you call
SDO_GEOR.georeference using GCPs

pType, nVars, order, nCoefficients, and all
coefficients of the numerator of the row polynomial,
where pType=1 or 2; nVars=0, 2, or 3;
O<=order<=5; and nCoefficients is derived
from pType, nVars, and order. The polynomials
are explained in Functional Fitting Georeferencing
Model.

pType, nVars, order, nCoefficients, and all
coefficients of the denominator of the row
polynomial, where pType=1 or 2; nVars=0, 2, or 3;
O<=order<=5; and nCoefficients is derived
from pType, nVars, and order. The polynomials
are explained in Functional Fitting Georeferencing
Model.

pType, nVars, order, nCoefficients, and all
coefficients of the numerator of the column
polynomial, where pType=1 or 2; nVars=0, 2, or 3;
O<=order<=5; and nCoefficients is derived
from pType, nVars, and order. The polynomials
are explained in Functional Fitting Georeferencing
Model.

pType, nVars, order, nCoefficients, and all
coefficients of the denominator of the column
polynomial, where pType=1 or 2; nVars=0, 2, or 3;
O<=order<=5; and nCoefficients is derived
from pType, nVars, and order. The polynomials
are explained in Functional Fitting Georeferencing
Model.

The x-dimension accuracy. It is computed using
check points if you call SDO_GEOR.georeference
using GCPs.

2-10

Chapter 2
Other GeoRaster Types

Table 2-4 (Cont.) SDO_GEOR_SRS Object Type Attributes

Attribute Description

yRMS The y-dimension accuracy. It is computed using
check points if you call SDO_GEOR.georeference
using GCPs.

ZRMS The z-dimension accuracy. It is computed using
check points if you call SDO_GEOR.georeference
using GCPs.

modelTotalRMS The total model accuracy. It is computed using
check points if you call SDO_GEOR.georeference
using GCPs.

GCPgeoreferenceModel The stored function model information, that is, all

information about the GCP-based georeferencing
model. For information about GCP-based
georeferencing model information, see
SDO_GEOR_GCPGEOREFTYPE Object Type.

However, when the direct and inverse solutions are derived from the functional fitting model,
the accuracy values listed in Table 2-4 are not considered in GeoRaster internal cell coordinate
and model coordinate transformation computations for the current release.

The SDO_GEOR_SRS object type has two constructors:

* One constructor takes no parameters and creates an instance of the type with the
isReferenced attribute set to FALSE and the other attributes set to null values. This
constructor allows you to set up either the functional fitting model or the stored function
(GCP) model, or to set up both of them together.

* The other constructor takes all the attributes of this object type as parameters, except
those related to the stored function (GCP) model.

For examples of how to use the SDO_GEOR_SRS constructor, see the reference section for
the SDO_GEOR.setSRS procedure in SDO_GEOR Package Reference.

2.3.7 SDO_GEOR_GCP Obiject Type

ORACLE

In GeoRaster, the ground control point (GCP) information is stored in the GeoRaster metadata
using the XML schema defined in GeoRaster Metadata XML Schema. The SDO_GEOR_GCP
object type is used in the PL/SQL API to contain GCP information related to the georeferencing
of a GeoRaster object. The metadata and the object type contain the same information. You
can use the object type to retrieve the GCP information from GeoRaster objects or to load and
update the GCP information in GeoRaster objects.

The SDO_GEOR_GCP object type is defined as:

CREATE TYPE sdo _geor gcp AS OBJECT (

pointID VARCHAR?2 (32),
description VARCHAR2 (256) ,
pointType NUMBER,

cellDimension NUMBER,
cellCoordinates SDO NUMBER ARRAY,
modelDimension NUMBER,
modelCoordinates SDO NUMBER ARRAY,
accuracy SDO_NUMBER ARRAY,
status NUMBER

2-11

Chapter 2
Other GeoRaster Types

Table 2-5 describes the attributes of the SDO_GEOR_GCP object type.

Table 2-5 SDO_GEOR_GCP Object Type Attributes
]

Attribute Description

pointID Unique ID of the control point. Must not more 32
characters.

description Descriptive information about the control point.

pointType Point type: 1 (control point) or 2 (check point).

cellDimension Dimensionality (number of dimensions) of the cell

coordinates: 2 or 3.

cellCoordinates Array of cell coordinates for the control points; (row,
column) or (row, column, vertical) for each point.

modelDimension Dimensionality (number of dimensions) of the
model coordinates: 2 or 3.

modelCoordinates Array of model coordinates for the control point,
corresponding to the points in cell space; (X,Y) or
(X,Y,Z) for each point.

accuracy Accuracy of the control point, expressed as the
values of (xXRMS, yRMS) or (xRMS, yRMS, zRMS).
status Status of the GCP: Measured, Removed,

Estimated, Validated, or Invalid. The value of
this column is informational only, and it has no
effect on the usage of the GCP by GeoRaster.

The SDO_GEOR_GCP constructor can be used to create an empty instance of this object
type. You should then fill in the necessary data before you use this instance.

2.3.8 SDO_GEOR_GCP_ COLLECTION Collection Type

The SDO_GEOR_GCP_ COLLECTION collection type is used to store an array (a collection)
of ground control points (GCPs).

The SDO_GEOR_GCP_ COLLECTION collection type is defined as:

CREATE TYPE sdo _geor gcp collection VARRAY (1048576) OF SDO_GEOR GCP;

Related Topics
e SDO_GEOR_GCP Object Type

2.3.9 SDO_GEOR_GCPGEOREFTYPE Object Type

ORACLE

In GeoRaster, the GCP-based georeferencing model information is stored in the GeoRaster
metadata using the XML schema defined in GeoRaster Metadata XML Schema. The
SDO_GEOR_GCPGEOREFTYPE object includes the georeferencing functional fitting method
(that is, the geometric model), control points for solving the model parameters, and solution
accuracy. The SDO_GEOR __GCPGEOREFTYPE object type is used in the PL/SQL API to
contain georeferencing model information related to the GCP-based georeferencing of a
GeoRaster object. The metadata and the object type contain the same information. You can
use the object type to retrieve the georeferencing model information from GeoRaster objects or
to load and update the georeferencing model information in GeoRaster objects.

The SDO_GEOR_GCPGEOREFTYPE object type is defined as:

2-12

Chapter 2
GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)

CREATE TYPE sdo_geor gcpgeoreftype AS OBJECT (

FFMethodType VARCHARZ2 (32),
numberGCP NUMBER,
GCPs SDO_GEOR_GCP_COLLECTION,

solutionAccuracy SDO_NUMBER ARRAY
)i

Table 2-6 describes the attributes of the SDO_GEOR_GCPGEOREFTYPE object type.

Table 2-6 SDO_GEOR_GCPGEOREFTYPE Object Type Attributes

___|
Attribute Description

FFMethodType Functional fitting method. Must be one of the
following: Affine, QuadraticPolynomial,
CubicPolynomial, DLT, QuadraticRational, or
RPC.

numberGCP Number of ground control points in the GCP
collection (GCPs parameter).

GCPs The GCP collection, of type
SDO_GEOR_GCP_COLLECTION (described in
SDO_GEOR_GCP_ COLLECTION Collection
Type).

solutionAccuracy Array storing the accuracy of the georeferencing
solution in the following format: (rowRMS,
columnRMS, totalRMS, XRMS, yRMS, zZRMS,
modelTotalRMS). The first three RMS numbers are
computed using control points, and the last four
RMS numbers are computed using check points (if
any). This information is for output only; do not
store or modify values in this attribute.

The SDO_GEOR_GCPGEOREFTYPE object type has one constructor. The constructor takes
no parameters, and it creates an instance of the type with the FFMethodType attribute set to
Affine and the other attributes set to null values.

2.4 GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)

ORACLE

GeoRaster uses a system data table (also called the sysdata table) to maintain the relationship
between GeoRaster tables and their related raster data tables.

Each GeoRaster object (if it is not null) has a related raster data table, and it might have other
information, such as ground control points (GCPs) and value attribute tables (VATS).

For a given user, the raster data table name plus the rasterID uniquely identify a GeoRaster
object. It is possible for many GeoRaster objects (each with a different rasterID value) in one
GeoRaster table to share one raster data table.

Whenever a new GeoRaster object (including empty and blank GeoRaster objects) is created,
a raster data table is assigned to it and a rasterID value is assigned. All SDO_GEORASTER
objects (except atomic null objects) are automatically recorded in the system data table when

they are created.

The GeoRaster sysdata table is under the MDSYS schema. Most of the information in the
GeoRaster system data table is available for retrieval through system data views, and thus it

2-13

Chapter 2
GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)

can be used as a dictionary or a catalog of all GeoRaster objects in a GeoRaster database.
Each GeoRaster user has the following system data views available in the schema associated
with that user:

e USER_SDO_GEOR_SYSDATA contains system data for all GeoRaster objects owned by
the current user.

e ALL _SDO_GEOR_SYSDATA contains system data for all GeoRaster objects accessible
by the current user.

The GeoRaster sysdata table and the USER_SDO_GEOR_SYSDATA and

ALL _SDO_GEOR_SYSDATA views should never be modified directly by users, although they
are updated by the DML trigger that is automatically created on each SDO_GEORASTER
column in each GeoRaster table.

The USER_SDO_GEOR_SYSDATA view has the following definition:
(

TABLE NAME VARCHAR2 (128),
COLUMN_NAME VARCHAR2 (1024),
METADATA COLUMN NAME VARCHAR2 (1024),
RDT TABLE NAME VARCHAR2 (128),
RASTER ID NUMBER,

OTHER TABLE NAMES SDO_STRING ARRAY

)i

The ALL_SDO_GEOR_SYSDATA view has all columns in the USER_SDO_GEOR_SYSDATA
view, but it also has an OWNER column identifying the schema that owns the table specified in
the TABLE_NAME column.

This section describes each of the columns common to both views. Note that for VARCHAR2
data in any columns, names are stored in all uppercase characters.

¢ TABLE_NAME Column

¢+ COLUMN_NAME Column

« METADATA_COLUMN_NAME Column
* RDT_TABLE_NAME Column

* RASTER_ID Column

« OTHER_TABLE_NAMES Column

2.4.1 TABLE_NAME Column

The TABLE_NAME column contains the name of a GeoRaster table that has at least one
column of type SDO_GEORASTER.

2.4.2 COLUMN_NAME Column

The COLUMN_NAME column contains the name of a column of type SDO_GEORASTER in
the GeoRaster table specified in the TABLE_NAME column.

2.4.3 METADATA_COLUMN_NAME Column

ORACLE

The METADATA_COLUMN_NAME column is ignored for the current release.

2-14

Chapter 2
GeoRaster XML Schema

2.4.4 RDT_TABLE_NAME Column

The RDT_TABLE_NAME column contains the name of the raster data table associated with
the table and column specified in the TABLE_NAME and COLUMN_NAME columns.)

Related Topics
e SDO_RASTER Object Type and the Raster Data Table

2.4.5 RASTER_ID Column

The RASTER_ID column contains a number that, together with the RDT_TABLE_NAME
column value, uniquely identifies each GeoRaster object.

2.4.6 OTHER_TABLE_NAMES Column

The OTHER_TABLE_NAMES column is ignored for the current release.

2.5 GeoRaster XML Schema

ORACLE

GeoRaster defines an XML schema to store and manage the GeoRaster metadata.

The definition of this XML schema is included in GeoRaster Metadata XML Schema. The
namespace defined by the GeoRaster XML schema is http://xmlns.oracle.com/spatial/
georaster, and it is reserved for use by Oracle. You must refer to this namespace if you want
to manipulate a GeoRaster metadata document using the SQL XML functions or the XMLType
methods.

GeoRaster uses a table named SDO_GEOR_XMLSCHEMA TABLE to store the GeoRaster
metadata XML schema and other information. This table is under the MDSYS schema, and
you must include the schema name if you reference this table. For example:

DESCRIBE mdsys.sdo geor xmlschema table

Name Null? Type

ID NOT NULL NUMBER
GEORASTERFORMAT VARCHAR2 (1024)
XMLSCHEMA CLOB

Table 2-7 describes the columns of the SDO_GEOR_XMLSCHEMA_ TABLE table.

Table 2-7 SDO_GEOR_XMLSCHEMA_TABLE Table Columns

. ___|
Column Name Data Type Description

id NUMBER ID number, assigned by Oracle.
Values 1 through 50 are reserved
for use by Oracle.

georasterFormat VARCHAR2(1024) GeoRaster format identifier,
assigned by Oracle. The value
GEORASTER is reserved for use by
Oracle.

2-15

ORACLE

Chapter 2
GeoRaster XML Schema

Table 2-7 (Cont.) SDO_GEOR_XMLSCHEMA_TABLE Table Columns

. ___|
Column Name Data Type Description

xmlSchema CLOB GeoRaster metadata XML
schema definition. This definition
is included in GeoRaster
Metadata XML Schema.

There are no GeoRaster views defined on this table. It is mainly of interest to advanced users
who might want to query the table for GeoRaster XML schema information.

You are encouraged not to modify the contents of this table, unless you want to define your
own XML schema for other metadata that is not included in the GeoRaster XML schema, and
to store that metadata in a new row in this table. If you add a row for your own metadata, do
not use an ID column value of 1 through 50 or a GEORASTERFORMAT column value of
GEORASTER, because these column values are reserved for use by Oracle. If you specify an
XMLSCHEMA column value, you should choose a unique hamespace for your own XML
schema and register it using a corresponding schema URL that will also be unique in the
database. (For more information, see Oracle XML DB Developer's Guide.)

2-16

GeoRaster Database Creation and
Management

This chapter describes how to perform important GeoRaster database creation and
management operations. A typical workflow to build and manage a GeoRaster database
consists of most or all of the steps described.

After you enable GeoRaster for all schemas that will use the feature, create the GeoRaster
objects, load the data, and validate the GeoRaster objects, you can perform the remaining
operations in any order, depending on your application needs. You may also be able to skip
certain operations.

Some operations can be performed using SQL, and some operations must be performed using
PL/SQL blocks. You must update the GeoRaster object after you insert, update, reformat,
compress, decompress, or delete the metadata or cell data of the GeoRaster object and before
you commit the changes (see Updating GeoRaster Objects Before Committing). For some
examples of these operations, see the demo files described in GeoRaster PL/SQL and Java
Demo Files and the examples in SDO_GEOR Package Reference.

See also the operations in GeoRaster Data Query and Manipulation.

Other chapters in this book cover advanced topics (Raster Algebra and Analytics and Image
Processing and Virtual Mosaic), and provide detailed reference information about GeoRaster
PL/SQL packages (SDO_GEOR Package Reference, SDO_GEOR_ADMIN Package
Reference, SDO_GEOR_AGGR Package Reference, SDO_GEOR_RA Package Reference,
and SDO_GEOR_UTL Package Reference).

e Enabling GeoRaster at the Schema Level

e Adding Data Files and Temporary Tablespaces for GeoRaster Users
e Creating the GeoRaster Table and Raster Data Tables

e Creating New GeoRaster Objects

e Loading Raster Data

e Validating GeoRaster Objects

e Georeferencing GeoRaster Objects

e Generating and Setting Spatial Extents

e Indexing GeoRaster Objects

e Viewing GeoRaster Objects

e Exporting GeoRaster Objects

e Using GeoRaster with Workspace Manager and Label Security

e Maintaining Efficient Tablespace Use by GeoRaster Objects

e Checking GeoRaster Tables and Objects in the Database

e Maintaining GeoRaster Objects and System Data in the Database

e Transferring GeoRaster Data Between Databases

ORACLE -

Chapter 3
Enabling GeoRaster at the Schema Level

3.1 Enabling GeoRaster at the Schema Level

GeoRaster must be enabled for each database schema that will use the GeoRaster feature.

By default, the GeoRaster feature is disabled after the Oracle Spatial and Graph is initially
installed. GeoRaster can be enabled only within the scope of a schema (that is, not for the
entire database), and it must be enabled for each schema that will use the GeoRaster feature.

To enable GeoRaster, follow these steps for each schema for which GeoRaster will be
enabled:

1. Ensure that the user for this schema has the CREATE TRIGGER privilege (which is required
for GeoRaster to work properly). If the user does not have the CREATE TRIGGER privilege (or
if you do not know), connect as a user with DBA privilege and execute the following code:

GRANT CREATE TRIGGER TO scott;

2. Connect to the database as the user for that schema. For example:
CONNECT scott/<password-for-scott>

3. Enter the following statement:
EXECUTE SDO GEOR ADMIN.enableGeoRaster;

4. \Verify that GeoRaster is now enabled by checking that the following statement returns
TRUE:

SELECT /*+ NO_RESULT CACHE */ SDO_GEOR ADMIN.isGeoRasterEnabled FROM DUAL;

For each database schema, SDO_GEOR_ADMIN.enableGeoRaster only needs to be called
once. In any case, user can call SDO_GEOR_ADMIN.isGeoRasterEnabled function to check if
GeoRaster feature is enabled. SDO_GEOS_ADMIN.disableGeoRaster procedure can be used
to disable GeoRaster feature for the database schema.

If a GeoRaster table has been created and populated with data, then after a database
upgrade, GeoRaster is automatically enabled for that table’s schema, and you do not need to
re-enable GeoRaster for the schema. (Just ensure that the CREATE TRIGGER privilege is
granted to the user.)

3.2 Adding Data Files and Temporary Tablespaces for GeoRaster

Users

ORACLE

A GeoRaster database is typically very large. For storage and performance reasons, a
database schema should use one or more user tablespaces for GeoRaster data storage (avoid
using the system tablespace for storing GeoRaster data), and you should add data files to the
tablespaces appropriately. If Oracle Automatic Storage Management (Oracle ASM) or a bigfile
tablespace is not being used, you should create many data files for each tablespace and
distribute the data files on different disks if possible. You also should create data files or alter
existing data files, so that they automatically increase in size when more space is needed in
the database.

A GeoRaster table can contain a large (potentially almost unlimited) number of GeoRaster
objects. A raster data table (RDT) should be used to contain the raster blocks of a limited
number of GeoRaster objects, depending on the size of the rasters. In contrast with GeoRaster
tables, an RDT should not grow too large, unless partitioning is to be applied. Also, RDTs can

3-2

Chapter 3
Creating the GeoRaster Table and Raster Data Tables

be created on different tablespaces, so that the raster blocks are distributed to different disks.
(See also Creating the GeoRaster Table and Raster Data Tables.)

A GeoRaster database may use a temporary tablespace for some operations. When
compression is involved in GeoRaster operations, particularly for large scale mosaicking
operations, some temporary spaces are needed to store intermediate compressed or
uncompressed data. If the GeoRaster user does not have a temporary tablespace, the
database system temporary tablespace is used. This is not efficient and may slow down the
mosaicking and other operations. Therefore, you should always create temporary tablespaces
for GeoRaster users. For example:

CONNECT system/<password>;
CREATE TEMPORARY TABLESPACE geor temp TEMPFILE 'geor temp 1.f' SIZE 1G AUTOEXTEND ON;
ALTER USER <georaster user> TEMPORARY TABLESPACE geor temp;

In general, the amount of temporary space needed is limited. However, for large scale
mosaicking, if the result is to be compressed, the temporary space needed is equal to the
uncompressed image size of the result. Therefore, specify AUTOEXTEND ON when you create
temporary tablespaces for GeoRaster users.

3.3 Creating the GeoRaster Table and Raster Data Tables

Before you can work with GeoRaster objects, you must create a GeoRaster table and one or
more raster data tables, if they do not already exist.

e Creating a GeoRaster Table
* Creating Raster Data Tables

e Creating GeoRaster DML Triggers

3.3.1 Creating a GeoRaster Table

A GeoRaster table is any table that includes at least one column of type SDO_GEORASTER.
The column can be an attribute column of another user-defined object type. Example 3-1
creates a GeoRaster table named CITY_IMAGES, which contains a column named IMAGE for
storing GeoRaster objects.

Example 3-1 Creating a GeoRaster Table for City Images

CREATE TABLE city images (image id NUMBER PRIMARY KEY, image description VARCHARZ (50),
image SDO GEORASTER) ;

For more information about GeoRaster tables, see GeoRaster Physical Storage.

3.3.2 Creating Raster Data Tables

ORACLE

After creating a GeoRaster table, you should create one or more raster data tables (RDTSs) to
be used with the objects in the GeoRaster table. You can create the RDT as an object table or
as a relational table. You should use the LOB storage format SecureFiles LOBs (SecureFiles)
when creating RDTs. Using SecureFiles significantly improves the performance of GeoRaster
operations, compared to using the original LOB storage paradigm BasicFiles LOBS
(BasicFiles).

3-3

ORACLE

Chapter 3
Creating the GeoRaster Table and Raster Data Tables

Note:

The RDT names must be unique in the database as described in Raster Data Table.

Example 3-2 creates an RDT using SecureFiles. The RDT will be used to store all raster
blocks of one or many GeoRaster objects in the CITY_IMAGES table or other GeoRaster
tables. (The association between a GeoRaster object and the RDT is not made until you create
a GeoRaster object, as explained in Creating New GeoRaster Objects.)

Example 3-2 Creating a Raster Data Table Using SecureFiles

CREATE TABLE city images_rdt OF SDO RASTER
(PRIMARY KEY (rasterID, pyramidLevel, bandBlockNumber,
rowBlockNumber, columnBlockNumber))
TABLESPACE im tbs 2
LOB (rasterBlock) STORE AS SECUREFILE
(CACHE) ;

Example 3-3 Creating a Raster Data Table (Relational) Using SecureFiles

Example 3-3 creates an RDT with the same name as in Example 3-2, also using SecureFiles,
but creating it as a relational table instead of an object table.

CREATE TABLE city images rdt
(rasterID NUMBER,
pyramidLevel NUMBER,
bandBlockNumber NUMBER,
rowBlockNumber NUMBER,
columnBlockNumber NUMBER,
blockMBR SDO_GEOMETRY,
rasterBlock BLOB,
CONSTRAINT pkey PRIMARY KEY (rasterId, pyramidLevel, bandBlockNumber,
rowBlockNumber, columnBlockNumber))
LOB (rasterblock) STORE AS SECUREFILE (cache);

The CREATE TABLE statement for the RDT must include the following clause (which is
included in the preceding examples):

(PRIMARY KEY (rasterID, pyramidLevel, bandBlockNumber,
rowBlockNumber, columnBlockNumber))

This PRIMARY KEY clause creates a B-tree index on the raster data table, and this index is
essential for optimal query performance.

When you use BasicFiles, you can specify a larger CHUNK size (16 or 32 KB) for the LOB
storage to improve performance. With SecureFiles, there is no need to specify the CHUNK
size parameter, and there are few other storage parameters to consider. Raster data tables
using SecureFiles LOBs must be created in a tablespace with the automatic segment space
management option. For information about using Oracle SecureFiles and performance
considerations for BasicFiles LOBs, see Oracle Database SecureFiles and Large Objects
Developer's Guide.

For reference information about creating tables, including specifying LOB storage, see the
section about the CREATE TABLE statement in Oracle Database SQL Language Reference.

For more information about the keywords and options when creating an RDT, see Raster Data
Table.

3-4

Chapter 3
Creating New GeoRaster Objects

3.3.3 Creating GeoRaster DML Triggers

To ensure the consistency and integrity of internal GeoRaster tables and data structures,
GeoRaster automatically creates a unique DML trigger for each GeoRaster column whenever
a user creates a GeoRaster table (that is, a table with at least one GeoRaster column). This
implies that you do not need to manually create the GeoRaster DML triggers in general.

However, there is an exception. That is, if you use the ALTER TABLE statement to add one or
more GeoRaster columns, you must call the SDO_GEOR_UTL.createDMLTrigger procedure to
create the DML trigger on each added GeoRaster column. For example, if you added a new
column added _geor col to your table my geor tab, you must run the following command:

EXECUTE SDO_GEOR UTL.createDMLTrigger ('MY GEOR TAB', 'ADDED GEOR COL');

Also, in some scenarios, such as a database upgrade or a data migration, you can call the
SDO_GEOR_UTL.recreateDMLTriggers procedure to re-create the DML triggers on all
GeoRaster columns.

The trigger is fired after each of the following data manipulation language (DML) operations
affecting a GeoRaster object: insertion of a row, update of a GeoRaster object, and deletion of
a row.

GeoRaster automatically performs the following actions when the trigger is fired:

« After an insert operation, the trigger inserts a row with the GeoRaster table name,
GeoRaster column name, raster data table name, and rasterID value into the
USER_SDO_GEOR_SYSDATA view (described in GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)). If an identical entry already exists, an exception is raised.

« After an update operation, if the new GeoRaster object is null or empty, the trigger deletes
the old GeoRaster object. If there is no entry in the USER_SDO_GEOR_SYSDATA view
for the old GeoRaster object (that is, if the old GeoRaster object is null), the trigger inserts
a row into that view for the new GeoRaster object. If there is an entry in the
USER_SDO_GEOR_SYSDATA view for the old GeoRaster object, the trigger updates the
information to reflect the new GeoRaster object.

« After a delete operation, the trigger deletes raster data blocks for the GeoRaster object in
its raster data table, and it deletes the row in the USER_SDO_GEOR_SYSDATA view for
the GeoRaster object.

3.4 Creating New GeoRaster Objects

ORACLE

Before you can store a GeoRaster image in a GeoRaster table, you must create the
GeoRaster object and insert it into a GeoRaster table before you start working on it. To create
a new GeoRaster object, you have the following options:

e Initialize an empty GeoRaster object, using the SDO_GEORU.init function.
e Create a blank GeoRaster object, using the SDO_GEOR.createBlank function.

You cannot perform any GeoRaster operations if the object has not been properly created (that
is, if the object is an atomic null). The SDO_GEOR.init and SDO_GEOR.createBlank functions
initialize GeoRaster objects with their raster data table and raster ID values if these are not
already specified, and the GeoRaster DML trigger ensures that the raster data table name and
raster ID value pair is unique for the current user.

3-5

Chapter 3
Loading Raster Data

If the new GeoRaster object will hold raster cell data (resulting from another GeoRaster
procedure, such as SDO_GEOR.importFrom, SDO_GEOR.subset, or SDO_GEOR.copy), and
if the raster data table for this new GeoRaster object does not exist, you must first create the
raster data table. For information about creating a raster data table, including examples, see
Creating Raster Data Tables.

To avoid potential GeoRaster data problems (some of which are described in Maintaining
GeoRaster Objects and System Data in the Database), an initialized GeoRaster object must be
registered in the GeoRaster system views, which is done automatically when you insert the
GeoRaster object into a GeoRaster table. This should be done before you perform any other
operations on the GeoRaster object. Any GeoRaster operations that need to manipulate the
raster data table raise an exception if the source or target GeoRaster object is not registered.

3.5 Loading Raster Data

ORACLE

To load and export imagery or raster data, you can consider third-party ETL tools (see the note
in GeoRaster Tools: Viewer_ Loader_ Exporter). For example, you can use the gdal_translate
command line and other GDAL utilities, which fully support GeoRaster through the Oracle
Spatial and Graph GeoRaster driver.

You can also use features in GeoRaster to load raster data, With GeoRaster, you have the
following options:

* Use the GDAL based ETL tool for concurrent batch loading and exporting of large amount
of images in GDAL supported formats. This tool is described in GDAL-Based ETL Wizard
for Concurrent Batch Loading and Exporting.

e In PL/SQL call the SDO_GEOR_GDAL.translate procedure (for non-autonomous
databases only) to load images into GeoRaster objects.

e In PL/SQL, call the SDO_GEOR.importFrom procedure to load some small images into
GeoRaster objects.

» Use the GeoRaster JAl-based loader tool or viewer tool, which are described in JAlI-Based
Viewer_ Loader_ and Exporter.

It is recommended to use GDAL, the GDAL-Based ETL, and SDO_GEOR_GDAL.translate to
load and export image and raster files. With the last option (JAl-based tool), you can do the
following:

e Compress raster data and store the data in JPEG-compressed or DEFLATE-compressed
GeoRaster objects.

« Load an ESRI world file or a Digital Globe RPC text file (.rpb) into an existing GeoRaster
object, and georeference the raster data without reloading it. You can also specify an SRID
with the world file and generate the spatial extent of the data.

* Load a GeoTIFF format file with georeferencing, with or without raster data. To load and
export the georeferencing information of GeoTIFF images, the GeoTIFF libraries are
required. See Georeferencing GeoRaster Objects for instructions.

After loading raster data into a GeoRaster object, you must ensure that the object is valid by
calling the SDO_GEOR.validateGeoRaster function, as explained in Validating GeoRaster
Objects.

Because an ESRI world file or .rpb file does not contain coordinate system information, you
can specify the SRID value of a coordinate reference system for the load operation. However,
if you do not specify an SRID, the model SRID of the GeoRaster objects is set to 0 (zero) by
the loader, which means that the GeoRaster object is invalid, and therefore you must use the
SDO_GEOR:.setModelSRID procedure to specify a valid model space for this object. If you do

3-6

Chapter 3
Loading Raster Data

not yet know the coordinate system of the model space, you can specify the SRID value as
999999, which means that the coordinate reference system is unknown. (Specifically, SRID
999999 is associated with a coordinate reference system named unknown CRS.) Later, when
you know the actual coordinate reference system of the model space, you can set the SRID
value accordingly.

For more information about the unknown CRS (SRID 999999) coordinate reference system, see
Oracle Spatial and Graph Developer's Guide.

* Loading with Blocking and Optimal Padding
e Loading JPEG and JPEG 2000 Images Without Decompression

* Reformatting the Source Raster Before Loading

3.5.1 Loading with Blocking and Optimal Padding

Unless you want to load JPEG or JPEG2000 images and store them without any change,
when you load an image or raster file into GeoRaster object, always consider and apply
appropriate blocking of the data, because file formats might have very different blocking
schemes. In general, blocking sizes should be 512x512 or larger. There is no absolute rule for
the blocking sizes, but the larger the raster, the larger the blocking sizes you might use. For
regular rasters, 512x512 to 2048x2048 is appropriate. For very small images (less than
1024x1024x3), no blocking may be a good choice. Avoid blocking sizes that are either too
small (such as 64x64 and 128x128) or too large, and avoid extreme blocking sizes such as 0.5
(one-half), 1, or 8 rows of pixels per block. Generally, the rectangular shape of blocks should
be a square or close to a square. For different applications, you might tune the blocking to
balance efficient storage with optimal performance.

You should also always apply optimal padding during loading. In other words, specify
blocking=0PTIMALPADDING in addition to specifying blocksize. GeoRaster applies padding to
the right column and bottom row of blocks to make them the same size as other blocks. If the
block size is not optimal for a specific raster, the default resulting padding would waste some
storage space. When you specifyblocking=0PTIMALPADDING, all GeoRaster procedures and
the ETL tools automatically adjust the GeoRaster dimension size array so that it will be optimal
for reducing the amount of padding in GeoRaster object storage. The adjustment is always
made around the user-specified values. See the explanation of the blocking keyword in the
table in the Usage Notes for the SDO_GEOR_UTL.calcOptimizedBlockSizeprocedure.

For how to apply optimal padding when using the GDAL command line, see the following
example:

gdal translate -of georaster /images/image 1.tif \
georaster:georaster/georaster@my db, image table, raster \
-co "insert=(id, label,raster) values (1, 'image 1',
sdo_geor.init ('rdt table', 1)" \
-co blockxsize= 512 \
-co blockysize=512 \
-co blockbsize=3 \
-co blocking=optimalpadding \
-co interleave=BIP

3.5.2 Loading JPEG and JPEG 2000 Images Without Decompression

GeoRaster supports JPEG compression, in which the GeoRaster blocks are stored as JPEG
files. GeoRaster also supports JPEG 2000 compression, in which the GeoRaster has a single

ORACLE .

Chapter 3
Loading Raster Data

block stored as a JPEG 2000 file. There are some special cases where you can load and
export JPEG or JPEG 2000 images without decompressing and recompressing, thus
improving performance significantly.

For JPEG, you can use the JAl-based GeoRaster loader to load the image directly without
decompression and recompression if the image file is a JPEG file, the GeoRaster object's
compression type is specified as JPEG-F and no blocking is specified for the GeoRaster
object's storage (that is, the GeoRaster object has only one block).

For JPEG 2000, you can use GDAL or the GDAL-based GeoRaster ETL tool to load the image
directly without decompression and recompression — if the image file is a JPEG2000 file and if
no parameters in use require any change to the internal structure of the JPEG 2000 file. For
example, the following script loads the JPEG 2000 file directly without decompression.

gdal translate -of georaster /images/image 3.jp2 \
georaster:georaster/georaster@my db,image table,raster \
-co "insert=(id, label,raster) values (3, 'image 3',

sdo _geor.init('rdt table', 3)" \
-co compress=jp2-£f

However, if any of the parameter in use require changing the internal structure of the JPEG
2000 data, direct loading will not be possible. The following example requires decompression
and recompression, resulting in a substantial increase of the loading time.

gdal translate -of georaster /images/image 4.jp2 \
georaster:georaster/georaster@my db,image table,raster \
-co "insert=(id, label,raster) values (4, 'image 4',
sdo geor.init('rdt table', 4)" \
-co compress=Jjp2-f \
-co blockxsize=1024 \
-co blockysize=1024 \
-srcwin 100 200 1000 1000 \
-outsize 50% 50%

3.5.3 Reformatting the Source Raster Before Loading

ORACLE

The GeoRaster JAl-based loader does not support source raster files in BSQ interleaving, and
it might raise an "insufficient memory" error if the files are too big, and it might have other
restrictions. To avoid such problems, you can reformat and reblock the source files so that they
can be properly loaded. However, it is always recommended that you use the GDAL-based
ETL loader, which generally does not have such issues and requirements, before you consider
the following approach.

As an example, one way to do this is to use GDAL, an Open Source raster transformation
library available from http://www.gdal.org, to reformat or reblock the image or raster file so
that JAI (Java Advanced Imaging) can handle it. GDAL supports GeoRaster natively and can
import and export GeoRaster objects directly, and can also process GeoRaster objects; for
more information, see http://www.oracle.com/technetwork/database/enterprise-edition/
getting-started-with-gdal-133874.pdf. You can also use GDAL to generate TFW files. For
example, execute commands such as the following two (each command on a single line) using
the GDAL command line or (for batch conversion) shell:

qdal_translate -of GTiff -co "TFW=YES" -co "INTERLEAVE=PIXEL" -co "TILED=YES"
D:\my image.tif D:\my new image.tif

3-8

http://www.gdal.org
http://www.oracle.com/technetwork/database/enterprise-edition/getting-started-with-gdal-133874.pdf
http://www.oracle.com/technetwork/database/enterprise-edition/getting-started-with-gdal-133874.pdf

Chapter 3
Validating GeoRaster Objects

gdal translate -of GTiff -co "TILED=YES" -co "TFW=YES" D:\my image.ecw
D:\my new_image.tif

In the preceding example, the first command generates a TFW file, changes the interleaving to
BIP (which is supported by JAI), and reblocks the image to 256x256. The second command
converts ECW to TIFF, generates TFW, and reblocks the image.

Then use the GeoRaster loader tool (described in GeoRaster Tools: Viewer_ Loader_
Exporter) , specifying reblocking so that the image can be loaded successfully and later
retrieved from the database efficiently, as in the following example (a single command):

java -Xmx1024m oracle.spatial.georaster.tools.GeoRasterLoader mymachine dbll 6521
georaster georaster thin 32 T globe image "blocking=true, blocksize=(512,512,3)"
"D:my image.tif,2,RDT 15, D:\my image.tfw,82213"

If you receive an "insufficient memory" error when calling SDO_GEOR.importFrom to load a
very large image, try loading the image with a different blocking size parameter or reblock the
image into smaller internal tile sizes using GDAL before loading. For extremely large images,
you can also use GDAL to tile the image into multiple smaller image files with sizes that JAI
can handle, or you use GDAL to load and export the images directly.

3.6 Validating GeoRaster Objects

Before you use a GeoRaster object or after you manually edit the raster data and metadata of
a GeoRaster object, you should ensure that the object is valid. Validation for a GeoRaster
object includes checking the registration of the GeoRaster object, checking the metadata and
the raster cell data, and making sure that the metadata and data are consistent. For example,
validation checks the raster type, dimension information, and the actual sizes of cell blocks,
and it performs other checks.

If you used the GeoRaster loader tool described in GeoRaster Tools: Viewer_ Loader_
Exporter, the GeoRaster objects were validated during the load operation.

GeoRaster provides the following validation subprograms:

¢ SDO_GEOR.validateGeoRaster validates the GeoRaster object, including cell data and
metadata. It returns TRUE if the object is valid; otherwise, it returns one of the following: an
Oracle error code indicating why the GeoRaster object is invalid, FALSE if validation fails for
an unknown reason, or NULL if the GeoRaster object is null. You should always use this
function after you create a GeoRaster object.

- SDO_GEOR.schemaValidate validates the metadata against the GeoRaster XML schema.
You can use this function to locate errors if the SDO_GEOR.validateGeoRaster function
returned the error code 13454. The SDO_GEOR.schemaValidate and
SDO_GEOR.validateGeoRaster functions do not validate the spatial extent geometry.

« SDO_GEOR.validateBlockMBR validates the blockMBR geometry associated with each
raster block stored in the raster data table. If there are any invalid b1ockMBR geometries,
call the SDO_GEOR.generateBlockMBR procedure to regenerate them.

3.7 Georeferencing GeoRaster Objects

ORACLE

Georeferencing, as explained in Georeferencing, establishes the relationship between cell
coordinates of GeoRaster data and real-world ground coordinates (or some local coordinates).
If you need to georeference GeoRaster objects, the following approaches are available:

« If the original image is already georeferenced and if the georeferencing information is
stored in an ESRI world file or .rpb file containing RPC coefficients you can use the

3-9

ORACLE

Chapter 3
Georeferencing GeoRaster Objects

SDO_GEOR.importFrom procedure to load an ESRI world file or .rpb file from a file or
from a CLOB object, along with the image data itself (in either FILE or BLOB format). You
can also use the GeoRaster client-side loader tool (described in GeoRaster Tools: Viewer_
Loader_ Exporter) to load an ESRI world file or .rpb file from a file, along with the image
file itself.

Because an ESRI world file or .rpb file does not specify the model coordinate system, you
can set the model space of the georeferenced GeoRaster object using an Oracle SRID in
either of the following ways: specify the SRID along with the world file as a parameter to
the SDO_GEOR.importFrom procedure or the GeoRaster client-side loader (described in
GeoRaster Tools: Viewer_ Loader_ Exporter); or, after loading the world file, call the
SDO_GEOR:.setModelSRID procedure. You can also call the SDO_GEOR.setModelSRID
procedure to change the model space of a georeferenced GeoRaster object.

If the original image is a georeferenced GeoTIFF image, you can use the GeoRaster client-
side loader tool (described in GeoRaster Tools: Viewer, Loader, Exporter) to load only the
georeferencing information from a GeoTIFF image, without the raster image data, into an
existing GeoRaster object, by specifying raster=false along with geotiff=true. You can
specify a backup SRID with the srid storage parameter, in case the GeoTIFF configuration
values do not match any SRID recognized by Oracle Spatial and Graph.

You can use the SDO_GEOR.setSRS procedure to add, modify, and delete georeferencing
information by directly accessing the GeoRaster SRS metadata. For example, you can
create an SDO_GEOR_SRS object and assign the coefficients and related georeferencing
information, and then call the SDO_GEOR.setSRS procedure to add or update the spatial
reference information of any GeoRaster object. You can use the SDO_GEOR.setSRS
procedure to set up the spatial reference information for all supported functional fitting
georeferencing models. Examples of setting up the SRS information from an existing DLT
model and from an existing RPC model are included in reference section for the
SDO_GEOR:.setSRS procedure.

If you know that one GeoRaster object has the same SRS information as another
GeoRaster object, you can call the SDO_GEOR.getSRS function to retrieve an
SDO_GEOR_SRS object from this GeoRaster object, and then call the
SDO_GEOR:.setSRS procedure to georeference the first GeoRaster object.

If the GeoRaster object can be georeferenced using an affine transformation, you can call
the SDO_GEOR.georeference procedure to georeference a GeoRaster object directly. As
described in the reference information for the SDO_GEOR.georeference, this procedure
takes the coefficients 2, B, C, D, E, F and other information, converts them into the
coefficients a, b, ¢, d, e, £, and stores them in the spatial reference information of a
GeoRaster object. If the original raster data is rectified and if the model coordinate of its
origin (upper-left corner) is (x0, y0) and its spatial resolution or scale is s, then the following
aretrue:A=s,B=0,C=x0,D=0,E=-s, F=Yy0.

If you have ground control points (GCPs) or want to collect GCPs yourself, you can call the
SDO_GEOR.georeference function to georeference the GeoRaster object. For more
information, see Advanced Georeferencing.

Based on the SRS information of a georeferenced GeoRaster object, transforming GeoRaster
coordinate information means finding the model (ground) coordinate associated with a specific
cell (raster) coordinate, and the reverse. That is, you can do the following:

Given a specific cell coordinate, you can find the associated model space coordinate using
the SDO_GEOR.getModelCoordinate function. For example, if you identify a point in an
image, you can find the longitude and latitude coordinates associated with that point.

Given a model space coordinate, you can find the associated cell coordinate using the
SDO_GEOR:.getCellCoordinate function. For example, if you identify longitude and latitude
coordinates, you can find the cell in an image associated with those coordinates.

3-10

Chapter 3
Generating and Setting Spatial Extents

3.8 Generating and Setting Spatial Extents

ORACLE

When a GeoRaster object is created, its spatial extent (spatialExtent attribute, described in
spatialExtent Attribute) is not necessarily the enclosing geometry in its model space coordinate
system. The spatial extent (footprint) geometry might initially be null, or it might reflect the cell
space coordinate system or some other coordinate system. The ability to generate and set
spatial extents is useful for building large GeoRaster databases of a global or large regional
scope, in which the spatial extents are in one global geodetic coordinate system while the
GeoRaster objects (imagery, DEMs, and so on) are in different projected coordinate systems.
In such a case, you can create a spatial (R-tree) index on the spatial extents, which requires
that all spatial extent geometries have the same SRID value.

To ensure that the spatial extent geometry of each GeoRaster object in a table is correct for its
model space coordinate system (or for any other coordinate system that you may want to use),
you must set the spatial extent. Moreover, to use a spatial index on the spatial extent
geometries (described in Indexing GeoRaster Objects), all indexed geometries must be based
on the same coordinate system (that is, have the same SRID value).

You can set the spatial extent in any of the following ways: specify spatialExtent=TRUE as a
storage parameter to the SDO_GEOR.importFrom procedure or the GeoRaster client-side
loader (described in GeoRaster Tools: Viewer_ Loader_ Exporter), use the SQL UPDATE
statement, or set the spatial extent during loading with GDAL. If you use the
SDO_GEOR.importFrom procedure or the loader, the SRID cannot be null or 0 (zero), and if
there is an R-tree index on the GeoRaster spatial extent, the SRID of the spatial extent must
match the SRID of the existing spatial index; otherwise, the spatial extent is set to a null value.

In addition, if you do not already have the spatial extent geometry, you can generate it using
the SDO_GEOR.generateSpatialExtent function, and use that geometry to update the
GeoRaster object. The following example updates the spatial extent geometry of a specified
GeoRaster object in the CITY_IMAGES table (created in Example 3-1 in Creating a GeoRaster
Table) to the generated spatial extent (reflecting the model coordinate system) of that object:

UPDATE city images c
SET c.image.spatialExtent = sdo geor.generateSpatialExtent (image)
WHERE c.image id = 100;
COMMIT;

The following example updates the spatial extent geometry of all GeoRaster objects in the
CITY_IMAGES table to the generated spatial extent (reflecting the model coordinate system)
of that object:

UPDATE city images c
SET c.image.spatialExtent = sdo geor.generateSpatialExtent (image)
WHERE c.image.spatialExtent is null;
COMMIT;

If you already know the spatial extent geometry for a GeoRaster object, or if you want the
spatial extent geometry to be based on a coordinate system other than the one for the model
space, construct the SDO_GEOMETRY object or select it from a table, and then update the
GeoRaster object to set its spatial extent attribute to that geometry, as shown in the following
example:

DECLARE

geom sdo geometry;

BEGIN

-- Set geom to an SDO GEOMETRY object that covers the spatial extent
-- of the desired GeoRaster object. If necessary, perform coordinate
-- system transformation before setting geom.

3-11

Chapter 3
Indexing GeoRaster Objects

-- geom := sdo_geometry(...);
UPDATE city images c
SET c.image.spatialExtent = geom WHERE c.image id = 100;
COMMIT;
END;

* Special Considerations if the GeoRaster Table Has a Spatial Index

3.8.1 Special Considerations if the GeoRaster Table Has a Spatial Index

If you create a spatial R-tree index on the GeoRaster spatial extents (as described in Indexing
GeoRaster Objects), all spatial extent geometries must have the same SRID value. Howevetr,
the GeoRaster objects may have different model SRIDs, and most GeoRaster operations
automatically generate a spatial extent for the output GeoRaster objects based on the model
SRID of the source GeoRaster object or objects. This can cause problems when the resulting
GeoRaster object with a spatial extent is updated into a GeoRaster table, which might already
have a spatial index built on its spatialExtent attribute but using a different SRID.

In such cases, you must transform the spatial extent to the same SRID as that of the spatial
index before the insert or update operation. The following example performs a mosaic
operation, but then transforms the spatial extent of the resulting GeoRaster object to SRID
4326 before updating the GeoRaster table with that object.

DECLARE
gr sdo_georaster;
BEGIN
SELECT georaster INTO gr FROM mosaic test WHERE georid=1 FOR UPDATE;
sdo_geor.mosaic('mosaic data', 'georaster', gr, 'blocking=OPTIMALPADDING,
blocksize=(512,512)");
-- Transform the spatial extent geometry, if ncessary.
-- In this example example, the modelSRID of the mosaic is 27302,
-- but the SRID of the spatial index on mosaic test is 4326.
gr.spatialExtent := sdo_cs.transform(gr.spatialExtent, 4326);
UPDATE mosaic test SET georaster=gr WHERE georid=1;
END;
/

If a spatial R-tree index exists, a commit operation after an insert or update operation causes
the index to be updated if the inserted or updated GeoRaster object has a spatial extent
geometry. This could slow some operations if you perform a commit after each operation,
particularly for batch jobs such as batch image loading. It is usually more efficient to balance
the performance of index updates with GeoRaster operations, and to commit only in batches
after the operations.

For example, image data loading (the SDO_GEOR.importFrom procedure and the GeoRaster
loader) is followed by an internal commit operation, so it would be inefficient to load while
generating spatial extents by specifying spatialExtent=TRUE. Instead, you should probably
specify spatialExtent=FALSE, and then update the spatialExtent attribute afterward, to
speed the loading process.

3.9 Indexing GeoRaster Objects

ORACLE

GeoRaster data can be indexed in various ways. The most important index you can create on
a GeoRaster object is a spatial (R-tree) index on the spatial extent (footprint) geometry of the
GeoRaster object (spatialExtent attribute, described in spatialExtent Attribute). For large-
scale geospatial image and raster databases, you should always create spatial indexes on the
GeoRaster columns. The following are the basic steps to create a spatial index on GeoRaster

3-12

Chapter 3
Viewing GeoRaster Objects

column. (The examples assume that the GeoRaster table name is CITY_IMAGES and its
GeoRaster column name is IMAGE.)

1. Insert arow into the USER_SDO_GEOM_METADATA view with the georaster table name
(CITY_IMAGES in this example) and the spatial extent of the GeoRaster column name
(IMAGE.SPATIALEXTENT). Be sure that the correct SRID value (3371 in this example) is
registered.

INSERT INTO user sdo geom metadata
(TABLE NAME,
COLUMN NAME,
DIMINFO,
SRID)
VALUES (
'city images',
'image.spatialextent',
SDO_DIM ARRAY (
SDO_DIM ELEMENT ('X', -1000000000, 1000000000, 0.005),
SDO_DIM ELEMENT ('Y', -1000000000, 1000000000, 0.005)),
3371
);
2. Create a spatial index on the GeoRaster column, as in the following example which

creates a spatial index named CITY_IMAGES_IDX on the spatial extents of the images
using default values for all parameters.

CREATE INDEX city images idx
ON city images (image.spatialextent)
INDEXTYPE IS MDSYS.SPATIAL INDEX;

The preceding statement may fail if there are some invalid spatial extents or if the SRID
values in the GeoRaster table do not match the SRID registered in the preceding step. If
the statement fails, ensure that all GeoRaster objects have a valid spatialExtent
geometry attribute and that all spatialExtent geometries have the same SRID. (Null for
the spatialExtent values is acceptable.) Then re-create the spatial index.

See also Special Considerations if the GeoRaster Table Has a Spatial Index for special
considerations if the GeoRaster table already has a spatial index. For more information about
creating spatial indexes and about advanced capabilities, see Oracle Spatial and Graph
Developer's Guide.

You can also create one or more other indexes, such as:

« Function-based indexes on metadata objects using the Oracle XMLType or Oracle Text
document indexing functionality

« Standard indexes on other user-defined columns of the GeoRaster table, such as cloud
coverage, water coverage, or vegetation

You should also create a single B-tree index on the rasterId, pyramidLevel,
bandBlockNumber, rowBlockNumber, and columnBlockNumber columns of each raster data
table. This should be done using PRIMARY KEY (rasterID, pyramidLevel,
bandBlockNumber, rowBlockNumber, columnBlockNumber), as shown in Example 3-2 and
Example 3-3.

3.10 Viewing GeoRaster Objects

To view GeoRaster objects, you have the following options:

e Callthe SDO_GEOR.exportTo procedure to export GeoRaster objects to image files, and
then display the images using image tools or a Web browser.

ORACLE 313

Chapter 3
Exporting GeoRaster Objects

* Use the standalone GeoRaster viewer tool (one of the tools described in GeoRaster Tools:
Viewer_ Loader_ Exporter).

* Use Oracle Fusion Middleware MapViewer or its associated Map Builder utility.

With the GeoRaster viewer tool, you can select a GeoRaster object of a database schema
(user), query and display the whole or a subset of a GeoRaster object, zoom in and zoom out,
scroll, and perform other basic operations. The pyramid level, cell coordinates, and model
coordinates (if the object is georeferenced) are displayed for the point at the mouse pointer
location. You can display individual cell values and choose different layers of a multiband or
hyperspectral image for RGB full color display. The blocking boundaries can be overlapped on
the top of the display. Depending on the data and your requests, the viewer can display the
raster data in grayscale, pseudocolor, and 24-bit true color over an intranet or the Internet.
Some of the basic GeoRaster metadata is also displayed.

The GeoRaster viewer tool allows you to display a virtual mosaic defined as one or a list of
GeoRaster tables or views.

The GeoRaster viewer tool provides a set of image processing operators for enhanced display
of the GeoRaster objects, especially for those whose cell depth is greater than 8 or is a
floating-point number. It can also display and apply bitmap masks on the GeoRaster objects if
they have bitmap masks.

The GeoRaster viewer tool also includes menu commands to call the GeoRaster loader and
exporter tools, thus enabling you to use a single tool as an interface to the capabilities of all the
GeoRaster tools.

Visualization applications can leverage the default RGBA and default pyramid level
specifications in the GeoRaster objects. You can set up different bands in a multiband image
as the default Red, Green, Blue, and Alpha channels by calling
SDO_GEOR:.setDefaultColorLayer or SDO_GEOR.setDefaultRed,
SDO_GEOR:.setDefaultGreen, SDO_GEOR.setDefaultBlue, and SDO_GEOR.setDefaultAlpha.
For large images, you can call SDO_GEOR.setDefaultPyramidLevel to set up the best
resolution (pyramid) level of an image for initial display in the applications. For example, for a
complete overview of a whole image, it is best to set the top pyramid level as the default
pyramid level.

3.11 Exporting GeoRaster Objects

To load and export imagery or raster data, always consider third-party ETL tools (see the note
in GeoRaster Tools: Viewer_ Loader_ Exporter)

If you use features in GeoRaster to export GeoRaster objects to image files, you have the
following options:

* Use the GDAL-based ETL tool for concurrent batch exporting, which is described in GDAL-
Based ETL Wizard for Concurrent Batch Loading and Exporting.

* Call the SDO_GEOR.exportTo procedure (which can export either to a file or to a BLOB
object).

* Use the GeoRaster exporter tool or viewer tool, which are described in GeoRaster Tools:
Viewer_ Loader_ Exporter.

ORACLE 314

Chapter 3
Using GeoRaster with Workspace Manager and Label Security

3.12 Using GeoRaster with Workspace Manager and Label

Security

Oracle Workspace Manager provides a versioning capability for the raster blocks of a
GeoRaster object. Oracle Label Security supports GeoRaster objects with enhanced security
at the row level of raster blocks.

To use GeoRaster with Oracle Workspace Manager or Oracle Label Security, you should
create a raster data table (RDT) as a relational table for the GeoRaster objects (see
Example 3-3). You do not need to define an object view of SDO_RASTER type on the base
relational RDT.

* Using GeoRaster with Workspace Manager

» Using GeoRaster with Label Security

3.12.1 Using GeoRaster with Workspace Manager

ORACLE

With Workspace Manager, you can conveniently manage changes to the raster data by saving
different raster data versions and making modifications in different workspaces. To use
GeoRaster with Workspace Manager, you must use relational raster data tables for raster
storage and version-enable these relational raster data tables. For example (general format):

EXECUTE DBMS WM.EnableVersioning (<rdt relational table>, 'VIEW WO OVERWRITE');

Note:

You can version-enable only raster data tables. Do not version-enable any
GeoRaster tables, where GeoRaster objects are stored, and do not perform any
operations that will require a GeoRaster table to be modified while you are in a
workspace.

After you version-enable a relational RDT, you can use the subprograms in the DBMS_WM
package to manage changes to the raster data. If you need to directly modify a raster block,
call the DBMS_WM.copyForUpdate procedure before the operation, as shown in the following
example:

declare
geor sdo_georaster;
cond varchar2 (1000);
1b blob;
rl raw(1024);
amt number;
begin
rl := utl raw.copies(utl raw.cast to raw('0'),1024);

select georaster into geor from georaster table where georid=l;
cond := 'rasterId=' || geor.rasterId || ' AND pyramidLevel=0 AND ' ||

' bandBlockNumber=0 AND rowBlockNumber=0 AND columnBlockNumber=0"';
dbms_wm.copyForUpdate (geor.rasterDataTable, cond);
sdo_geor.getRasterBlockLocator(geor, 0, 0, 0, 0, 1lb, null, 'TRUE');
amt := 1024;
dbms lob.write(lb, amt, 1, rl);

3-15

Chapter 3
Using GeoRaster with Workspace Manager and Label Security

end;

However, if you modify raster data using GeoRaster subprograms, you do not need to call the
DBMS_WM.copyForUpdate procedure beforehand.

For information about Workspace Manager, see Oracle Database Workspace Manager
Developer's Guide.

3.12.2 Using GeoRaster with Label Security

ORACLE

Oracle Label Security provides row-level access control for sensitive data based on a user's
level of security clearance. To use GeoRaster with Label Security, follow these basic steps:

1. Create the GeoRaster table and relational RDT or RDTSs.
2. Create an Oracle Label Security policy and define the label components.
3. Create labeling functions for the GeoRaster table and the relational RDT or RDTs.

The labels for rows in a GeoRaster table should be generated according to the
application's requirements. Use the same label for both the row that stores a GeoRaster
object and for the GeoRaster object's raster rows in the associated RDT; otherwise, the
GeoRaster objects might be invalid or have an inconsistent status.

The following example creates the labeling function for a relational RDT:

CREATE OR REPLACE FUNCTION gen rdt label (rdt name varchar2, rid number)
RETURN LBACSYS.LBAC_LABEL
AS
tabname varchar?2
schema varchar?
grcol varchar?
colname varchar?
label NUMBER;
BEGIN
EXECUTE IMMEDIATE
'SELECT v.owner, v.table name, v.column name grcol, p.column name ' ||
' FROM all sdo geor sysdata v, all sa policies p, all sa table policies t '
|| " WHERE v.rdt table name=:1 AND v.raster id=:2 AND ' ||
' v.owner=t.schema name AND v.table name=t.table name AND ' ||
' p.policy name=t.policy name '
INTO schema, tabname, grcol, colname
USING upper (rdt name), rid;
EXECUTE IMMEDIATE

80);
32);
1024);
30);

(
(
(
(30)7

'SELECT t.' || colname ||
' FROM ' || schema || '.'" || tabname || " t ' ||
' WHERE t.' || grcol || '.rasterdatatable=:1 AND ' ||
' t." || grcol || '.rasterid=:2"'

INTO label

USING upper (rdt name), rid;
RETURN LBACSYS.LBAC_LABEL.NEW_LBAC_LABEL(label);
END;
/

4. Apply the Label Security policy to a GeoRaster table and its associated RDT or RDTs.

The following example (general format) applies a Label Security policy to an RDT using the
labeling function example from the preceding step.

BEGIN

SA POLICY ADMIN.REMOVE TABLE POLICY (<policy name>,<schema name>,<rdt relational table

3-16

Chapter 3
Maintaining Efficient Tablespace Use by GeoRaster Objects

>) i
SA_POLICY ADMIN.APPLY TABLE_ POLICY (

POLICY NAME => <policy name>,
SCHEMA NAME => <schema name>,
TABLE NAME => <rdt relational table>,
TABLE_OPTIONS => 'READ CONTROL,WRITE_CONTROL, CHECK_CONTROL',
LABEL_FUNCTION =>

'<schema name>.gen rdt label (<rdt relational table>,:new.rasterid)’',
PREDICATE => NULL);

END;

/

5. Create and authorize users, and complete other administrative tasks related to Label
Security.

You can load GeoRaster data before or after applying the policy to the tables.

The ALL_SDO_GEOR_SYSDATA view (described in GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)) contains system data for all GeoRaster objects accessible by
the current user, and accessibility in this case is determined by the user's privileges as defined
in the context of discretionary access control (DAC).

After the label for a GeoRaster table row is updated, ensure that the related data labels in the
RDT are updated, so that the labels are synchronized.

For information about Label Security, see Oracle Label Security Administrator's Guide.

3.13 Maintaining Efficient Tablespace Use by GeoRaster Objects

After delete or rollback operations, unused space allocated to a raster data table is not
automatically returned to the underlying tablespace. This could result in wasted tablespace
area. Since GeoRaster databases are usually large, it's a good practice to efficiently maintain
tablespace usage, particularly when disk space is limited. If the raster data table is created
using BasicFiles LOBs in an automatic segment space management tablespace, you can
explicitly shrink the rasterBlock LOB segment or the raster data table by altering the raster
data table, so that the table segment can be compacted and unused LOB segment can be
released to the tablespace, as shown in Example 3-4 and Example 3-5.

Example 3-4 Shrinking a BasicFile RasterBlock LOB Segment

ALTER TABLE city_images_rdt MODIFY LOB (rasterBlock) (SHRINK SPACE);

Example 3-5 Shrinking a Raster Data Table

ALTER TABLE city images rdt ENABLE ROW MOVEMENT;
ALTER TABLE city images rdt SHRINK SPACE CASCADE;

As a good practice, if there will be some temporary GeoRaster objects to be created and used,
you can always consider creating temporary GeoRaster tables and RDT tables to hold those
GeoRaster objects. Once they are not needed, the temporary GeoRaster and RDT tables can
be dropped to release the disk space.

3.14 Checking GeoRaster Tables and Objects in the Database

ORACLE

For database management purposes, you might need check on GeoRaster tables and objects
in the whole database or under a specific schema. After the GeoRaster database is created,
you have the following options for checking or listing existing GeoRaster tables, RDT tables,
and GeoRaster objects.

3-17

ORACLE

Chapter 3
Checking GeoRaster Tables and Objects in the Database

Use the following subprograms check the status of existing GeoRaster objects and related
objects in the current schema or the database, depending on the privileges associated with
the database connection.

SDO_GEOR_ADMIN.listGeoRasterObijects lists all GeoRaster objects defined in the
current schema; or if you call this function as a user with DBA role, all GeoRaster objects
defined in the database are listed.

SDO_GEOR_ADMIN.listGeoRasterColumns lists all GeoRaster columns defined in the
current schema; or if you call this function as a user with DBA role, all GeoRaster columns
defined in the database are listed.

SDO_GEOR_ADMIN.listGeoRasterTables lists all GeoRaster tables defined in the current
schema; or if you call this function as a user with DBA role, all GeoRaster tables defined in
the database are listed.

SDO_GEOR_ADMIN.IistRDT lists all raster data tables (RDTs) defined in the current
schema; or if you call this function as a user with DBA role, all raster data tables (RDTS)
defined in the database are listed.

SDO_GEOR_ADMIN.listRegisteredRDT lists all registered raster data tables (RDTs)
defined in the current schema; or if you call this function as a user with DBA role, all
registered RDTs defined in the database are listed . An RDT is registered if at least one
entry in the SYSDATA table refers to it.

SDO_GEOR_ADMIN.listUnregisteredRDT lists all unregistered raster data tables (RDTS)
defined in the current schema; or if you call this function as a user with DBA role, all
unregistered RDTs defined in the database are listed.. An RDT is unregistered if no entry in
the SYSDATA table refers to it.

Run SQL queries directly against GeoRaster sysdata views, and check or list GeoRaster
tables and objects stored in the different schemas. This approach is more flexible than
calling subprograms. It also enables some query results that cannot be returned by
functions defined in the SDO_GEOR_ADMIN package. The following are some sample
queries.

List all GeoRaster objects that are defined in the schema HERMAN and MYTEST and
accessible by the current schema.

SELECT owner, TABLE NAME,COLUMN NAME,RDT TABLE NAME,RASTER ID
from all sdo geor sysdata where owner='HERMAN' or owner='MYTEST';

Count the total number of GeoRaster objects accessible by the current schema.

SELECT count (*) from all sdo geor sysdata;

Count the total number of GeoRaster objects stored in the GeoRaster table GTF_TABLE in
the current schema.

SELECT count (*) from user sdo geor sysdata where TABLE NAME='GTF TABLE';

List all GeoRaster objects stored in the RDT table RDT_1 in the current schema.

SELECT TABLE NAME,COLUMN NAME,RDT TABLE NAME,RASTER ID from
user sdo_geor sysdata where RDT TABLE NAME='RDT 1';

3-18

Chapter 3
Maintaining GeoRaster Objects and System Data in the Database

Find out all GeoRaster tables that store some raster data in or reference the RDT table
RDT_1 in the current schema.

SELECT distinct TABLE NAME from user sdo geor sysdata where
RDT TABLE NAME='RDT 1';

List all RDT tables that are used by the GeoRaster table GTF_TABLE in the current
schema.

SELECT distinct RDT TABLE NAME from user sdo geor sysdata where
TABLE NAME='GTF TABLE';

3.15 Maintaining GeoRaster Objects and System Data in the

Database

ORACLE

Although GeoRaster provides internal database mechanism to prevent the creation of invalid
GeoRaster objects and system data, sometimes such GeoRaster objects and system data
might exist in the database, especially after an upgrade from a previous release, or after some
user errors in operations on GeoRaster system data. Examples of such invalid objects and
system data include the following:

e An entry in the GeoRaster system data views (xxx_SDO_GEOR_SYSDATA, described in
GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)) refers to a nonexistent
GeoRaster table or column.

* Two or more GeoRaster objects have the same pair of RDT name and raster ID values.
* Some GeoRaster objects, tables, columns, or RDTs not registered.

e An RDT name is not unique.

A GeoRaster object is hon-empty or nonblank, but an associated RDT does not exist.

After a database upgrade, you should do the following.

e Callthe SDO_GEOR_ADMIN.isGeoRasterEnabled function to ensure that GeoRaster is
enabled for the current schema.

e Callthe SDO_GEOR_ADMIN.isUpgradeNeeded function to check for any invalid
GeoRaster objects and invalid system data for the current version.

e If there are any errors or invalid data, call the SDO_GEOR_ADMIN.upgradeGeoRaster
function to have the problems automatically corrected.

e If you connect as a user with DBA role, the SDO_GEOR_ADMIN.upgradeGeoRaster
function upgrades all GeoRaster objects in the database; otherwise, it upgrades only
GeoRaster objects in the schema of the current user. (See the reference and usage
information about SDO_GEOR_ADMIN.upgradeGeoRaster.

For regular maintenance due to possible user errors, several functions and procedures will be
helpful in checking for and correcting invalid GeoRaster objects and system data entries:

« To check if GeoRaster is enabled, call SDO_GEOR_ADMIN.isGeoRasterEnabled.
* To enable GeoRaster, call SDO_GEOR_ADMIN.enableGeoRaster.

* To check for errors, call SDO_GEOR_ADMIN.checkSysdataEntries and
SDO_GEOR_ADMIN.listUnregisteredRDT.

* To check for dangling raster data, call SDO_GEOR_ADMIN.listDanglingRasterData.

3-19

Chapter 3
Transferring GeoRaster Data Between Databases

e To correct all invalid system data entries, call
SDO_GEOR_ADMIN.maintainSysdataEntries.

e To create correct DML triggers for all GeoRaster columns, call
SDO_GEOR_ADMIN.registerGeoRasterColumns.

« To register all existing GeoRaster objects in the sysdata table, call
SDO_GEOR_ADMIN.registerGeoRasterObjects.

See the reference and usage information about these procedures and functions in
SDO_GEOR_ADMIN Package Reference.

3.16 Transferring GeoRaster Data Between Databases

GeoRaster data can be transferred between schemas in the same database or between
databases. There are several ways to transfer the GeoRaster data:

e Using GDAL or the GeoRaster ETL tool to transport the GeoRaster data between schemas
in the same database or between databases. In this approach, you export the rasters from
the source GeoRaster table into an exchange file format, such as GeoTIFF, and then
import them into the target schema or database.

e Using the SDO_GEOR.copy or SDO_GEOR.changeFormatCopy procedures to transfer
GeoRaster data between schemas in the same database. The GeoRaster objects are
copied from one schema to another directly, if access is granted.

e Using Data Pump Export and Import utilities to transfer GeoRaster data between schemas
in the same database or between databases. See Using Data Pump Utility to Transfer
GeoRaster Data for more information.

e Using Transportable Tablespaces to transfer GeoRaster data between databases. See
Using Transportable Tablespaces To Transfer GeoRaster Data for more information.

e Using Oracle Database Link to transfer GeoRaster data between databases. See Using
Database Link with GeoRaster Data for more information.

It is required that in any GeoRaster database, the name of each raster data table (RDT) must
be unique and the pair of (rasterDataTable, rasterID) of a GeoRaster object must be
unigue in a database (see Raster Data Table). So, when transferring GeoRaster data between
databases using the Data Pump, the Transportable Tablespace, or Database Link approaches,
conflicts of rasterDataTable name or rasterID in the target database might happen. Since
changing the RDT name and making it unique will automatically make the pair of attributes
(rasterDataTable, rasterID) unique, it is recommended to always resolve the conflicts by
changing RDT names, as shown in the examples in the following subsections for each of these
data transfer approaches. If a GeoRaster table with the same name already exists in the target
database, it is also recommended to create a new GeoRaster table for the transferred
GeoRaster objects in the target database instead of appending them to the existing GeoRaster
table.

e Using Data Pump Utility to Transfer GeoRaster Data
e Using Transportable Tablespaces To Transfer GeoRaster Data

e Using Database Link with GeoRaster Data

3.16.1 Using Data Pump Utility to Transfer GeoRaster Data

Data Pump Utility can be used to transfer the GeoRaster data between schemas in the same
database or between databases. The following instructions are for transferring GeoRaster data
between databases. But, they also apply to GeoRaster data transfer between schemas. For

ORACLE 350

ORACLE

Chapter 3
Transferring GeoRaster Data Between Databases

information about the Data Pump Export and Import utilities and the original Export and Import
utilities, see Oracle Database Ultilities.

To export GeoRaster data using Data Pump, do as you would for other types of data, but
exclude the GeoRaster internal DML triggers (whose names start with GRDMLTR) and the
internal DDL triggers (named SDO_GEOR ADDL TRIGGER and SDO_GEOR BDDL TRIGGER). For
example:

expdp herman DIRECTORY=dump dir DUMPFILE=data.dmp
TABLES=herman.georaster table,herman.rdt 1,herman.rdt 2
PARFILE=exclude.par

Enter password: password

In the preceding code, the exclude.par file contains the following:

exclude=trigger:"like 'GRDMLTR %'"
exclude=trigger:"= 'SDO_GEOR ADDL TRIGGER""
exclude=trigger:"= 'SDO_GEOR BDDL TRIGGER""

The following are the general steps to import GeoRaster data (that is, the GeoRaster tables
and the associated raster data tables (RDTSs)) into a target database using Data Pump:

1. Ensure the target database schema is GeoRaster enabled. Follow the steps explained in
Enabling GeoRaster at the Schema Level.

2. Check if there is a conflict between the GeoRaster objects in the Data Pump dump file and
the GeoRaster objects in the target database.

a. If the target database has no GeoRaster objects, then there is no conflict.

b. If the GeoRaster table names and RDT names in the dump file are known, use
SDO_GEOR_ADMIN.isRDTNameUnique function in the target database to find out if
there is RDT name conflict. For example:

SELECT SDO_GEOR_ADMIN.isRDTNameUnique(<rdt_name>) FROM DUAL;

In the preceding code, <rdt name> is the name of the RDT in the dump file. If the
query returns ‘FALSE’, then there is RDT name conflict on <rdt name>.

c. If the GeoRaster table names and RDT names in the dump file are not known, use
impdp with the SQLFILE option to retrieve all the import DDL statements into a file. Get
the GeoRaster table names and RDT names from the DDL statements in that file. For
example:

impdp scott DIRECTORY=dpump dir DUMPFILE=data.dmp
SQLFILE=dpump dir:ddl.sql REMAP SCHEMA=herman:scott

In the preceding code, ddl1.sqgl contains the DDL statements to be executed by impdp.
Then for each RDT name in ddl1.sql, use SDO_GEOR_ADMIN.isRDTNameUnique
function in the target database to find out if there is RDT name conflict.

3. Skip this step and go to step 4 if you detect a RDT name conflict in step 2 or if you intend
to change the names of the imported RDT tables. Otherwise, import the GeoRaster tables
and RDT tables as described in the following and validate the imported data. After this, you
may skip step 4 as the GeoRaster data is already imported as required by the end of this
step.

3-21

ORACLE

Chapter 3
Transferring GeoRaster Data Between Databases

Import GeoRaster data as you would for other types of data, but exclude the GeoRaster
internal DML triggers (whose names start with GRDMLTR) and DDL triggers
(SDO_GEOR_ADDL TRIGGER and SDO_GEOR_BDDL TRIGGER) if you did not exclude them in the
export operation. For example:

impdp scott DIRECTORY=dpump dir DUMPFILE=data.dmp PARFILE=exclude.par
REMAP SCHEMA=herman:scott
TABLES=herman.georaster table,herman.rdt 1,herman.rdt 2

In the preceding code, the exclude.par file contains the following:

exclude=trigger:"like 'GRDMLTR %'"
exclude=trigger:"= 'SDO_GEOR ADDL TRIGGER'"
exclude=trigger:"= 'SDO_GEOR BDDL TRIGGER'"

If you do not exclude the GeoRaster internal DML triggers and DDL triggers, some impdp
errors such as the following will be raised. However, you can safely ignore the errors.

ORA-39083: Object type TRIGGER failed to create with error:
ORA-13391: GeoRaster reserved names cannot be used to create regular
triggers

Resolve the conflicts and import GeoRaster data.

a. Import RDTs using impdp with REMAP TABLE option to change the RDT names to new
RDT names during the import (make sure the RDT names are unique across the target
database). To make the data transfer easier and as a recommendation, the new RDT
names can be constructed by appending a string and a number to the end of all old
RDT names.

For example:

impdp scott DIRECTORY=dpump dir DUMPFILE=data.dmp
TABLES=herman.rdt 1,herman.rdt 2 REMAP SCHEMA=herman:scott
REMAP TABLE=herman.rdt l:rdt 1 imp 1, herman.rdt 2:rdt 2 imp 1

In the preceding code, rdt 1 is remappedto rdt 1 imp 1, and rdt 2 is remapped to
rdt 2 imp 1.

b. Import GeoRaster table metadata using impdp with CONTENT=METADATA ONLY option
and exclude the GeoRaster DML and DDL triggers as described in step 3.

For example:

impdp scott DIRECTORY=dpump dir DUMPFILE=data.dmp
TABLES=herman.georaster table
REMAP SCHEMA=herman:scott CONTENT=metadata only PARFILE=exclude.par

If the GeoRaster table already exists in the target schema, it is recommended to use
REMAP TABLE option in the preceding code to remap the imported GeoRaster table
name to a new name.

c. Login to the target database where the GeoRaster table metadata are imported and
create a temporary DML trigger for each imported GeoRaster table, which will
automatically replace the rasterDataTable attribute of the imported GeoRaster

3-22

Chapter 3
Transferring GeoRaster Data Between Databases

objects with the new RDT names during the data import in step d. The new RDT
names must be the same as the new RDT names in step a.

This is a sample DML trigger definition:

DEFINE tname=georaster table -- the georaster table name
DEFINE cname=grobj -- the georaster column name
DEFINE rdt suffix='IMP’ -- the string to append to the RDT names
DEFINE seq num=1 -- the number to append to the RDT names

CREATE OR REPLACE TRIGGER tmp dml trigger

BEFORE INSERT ON &tname

FOR EACH ROW

BEGIN

-- the new RDT table name is constructed as the old RDT table name
appended with

-- the string defined in rdt suffix and the sequence number defined
in seq num.

:new.&cname.rasterDataTable := :new.é&cname.rasterDataTable||’ &rdt suf
fix’ |17 " ||’ &seq num’;

END;
/

d. Import GeoRaster table data using impdp with CONTENT=DATA ONLY option. For
example:

impdp scott DIRECTORY=dpump dir DUMPFILE=data.dmp
TABLES=herman.georaster table REMAP SCHEMA=herman:scott
CONTENT=data only

If you used the REMAP TABLE option in step b, then include the option in the preceding
code too.

e. Drop the temporary DML trigger created in step c. Validate and verify the imported
data.

The preceding examples transfer a GeoRaster table, georaster table, and two RDTS,
rdt 1 and rdt 2, from schema HERMAN in the source database to schema SCOTT in the
target database. It assumes all GeoRaster objects in the georaster table store their
raster cell data in either rdt 1 or rdt 2 and these two RDTs are not used by any other
GeoRaster tables.

3.16.2 Using Transportable Tablespaces To Transfer GeoRaster Data

ORACLE

Oracle Database transportable tablespaces feature can be used to transfer GeoRaster data
between databases. See Transporting Tablespaces Between Databases in Oracle Database
Administrator’s Guidefor more information about using the transporting tablespaces feature
with spatial data.

If a tablespace to be transported contains any spatial indexes on the GeoRaster tables or
raster data tables (RDTs), you may have to take some preparatory steps. See the Usage Notes
for the SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS procedure in Oracle Spatial and Graph
Developer's Guide for more information about using the transportable tablespace feature with
spatial data.

The steps explained in the following sections enable you to use transportable tablespaces to
transfer GeoRaster data between databases:

3-23

Chapter 3
Transferring GeoRaster Data Between Databases

Export the Tablespaces from the Source Database

Import the Tablespaces into the Target Database

3.16.2.1 Export the Tablespaces from the Source Database

To export the tablespaces from the source database for GeoRaster data migration, perform the
following steps:

1.

Ensure the tablespaces to be transferred is self-contained. For example, run the following
as DBA in SQL*Plus:

EXECUTE DBMS TTS.TRANSPORT SET CHECK(‘tbs 1, tbs 2’, TRUE);
SELECT * FROM TRANSPORT SET VIOLATIONS;

In the preceding code, tbs 1 and tbs 2 are the names of the tablespaces to be
transported.

Make the tablespaces to be transported READ ONLY. For example, run the following as DBA
in SQL*Plus:

ALTER TABLESPACE tbs 1 READ ONLY;
ALTER TABLESPACE tbs 2 READ ONLY;

Run Data Pump export utility as a user with DATAPUMP EXP FULL DATABASE role. For
example:

$ expdp <user name> DUMPFILE=tbs meta.dmp DIRECTORY=data pump dir
TRANSPORT TABLESPACES=tbs 1,tbs 2 LOGFILE=tts exp.log

Transport the exported dump file from step 3 and tablespace data files to a directory that is
accessible to the target database.

Restore the tablespaces to READ WRITE mode.

ALTER TABLESPACE tbs 1 READ WRITE;
ALTER TABLESPACE tbs 2 READ WRITE;

3.16.2.2 Import the Tablespaces into the Target Database

To import the tablespaces into the target database for GeoRaster data migration, perform the
following steps:

ORACLE

1.

Ensure the target database schema is GeoRaster enabled. Follow the steps explained in
Enabling GeoRaster at the Schema Level.

Run the Data Pump import utility. For example:

$ impdp <user name> DIRECTORY=data pump dir DUMPFILE=tbs meta.dmp
LOGFILE=tts imp.log TRANSPORT DATAFILES='/app/oracle/oradata/

tbs 1.dbf', ’/app/oracle/oradata/tbs 2.dbf’

REMAP SCHEMA=src gruserl:target gruserl
REMAP SCHEMA=src gruserZ:target gruser2 PARFILE=exclude.par

In the preceding code, <user name> is a user with DATAPUMP EXP FULL DATABASE role.

3-24

Chapter 3
Transferring GeoRaster Data Between Databases

The exclude.par file contains the following:

exclude=trigger:"like 'GRDMLTR %'"
exclude=trigger:"= 'SDO_GEOR ADDL TRIGGER""
exclude=trigger:"= 'SDO_GEOR BDDL TRIGGER""

If the GeoRaster table name already exists in the target database schema, use
REMAP TABLE option of the impdp command to remap the GeoRaster table name to a new
name.

3. Place the transported tablespaces into READ WRITE mode.

ALTER TABLESPACE tbs 1 READ WRITE;
ALTER TABLESPACE tbs 2 READ WRITE;

4. Check if there are conflicts of RDT names in the target database.

a. Determine the GeoRaster tables and columns in the transported tablespaces by
running the following query as DBA:

SELECT t.owner, t.table name, c.column name
FROM dba_all tables t, dba tab columns c
WHERE t.tablespace name IN ('TBS 1', ‘TBS 27)
AND t.owner = c.owner
AND t.table name = c.table name
AND c.data type = 'SDO GEORASTER'
AND c.data type owner IN ('MDSYS', 'PUBLIC');

In the preceding code, *TBS 1’ and ‘TBS 2’ are the names of the transported
tablespaces. This query returns a list of GeoRaster table and column names that are in
the transported tablespaces.

b. Determine if there are RDT name conflicts.

SELECT a.rdt name
FROM (SELECT UNIQUE t.<column name>.rasterdatatable
rdt name
FROM <owner>.<table name> t) a
WHERE
SDO_GEOR_ADMIN.1isRDTNameUnique (a.rdt name)='FALSE’;

In the preceding code, <owner>, <table name> and <column name> are the names
returned in step a.

This query will return the conflicted RDT names in the transported tablespaces that
need to be renamed.

5. Skip this step and go to step 6 if there are no RDT name conflicts in step 4. Otherwise,
resolve the conflicts in the target database by renaming the transported RDT.

ORACLE .

Chapter 3
Transferring GeoRaster Data Between Databases

Determine the DML trigger name (starts with *GRDMLTR ') on the transported
GeoRaster table by querying DBA TRIGGERS view.

SELECT owner, trigger name FROM dba triggers WHERE table owner =
‘<owner>'
AND table name = ‘<table name>' AND trigger name LIKE 'GRDMLTR %';

In the preceding code, <table name> and <owner> are the name and the owner of the
GeoRaster table that has conflicted RDT name found in step 4.

Connect as DBA and disable the DML trigger returned in step a:
ALTER TRIGGER <owner>.<TRIGGER NAME> DISABLE;

Rename the conflicting RDT to a new name and update the rasterDataTable attribute
of the GeoRaster objects in the GeoRaster table. Connect as the owner to the RDT in
SQL*Plus:

RENAME <old rdt> to <new_ rdt>;

UPDATE <table name> t SET t.<column name>.rasterDataTable =
‘<new_rdt>’

WHERE t.<column name>.rasterDataTable='<old rdt>';

In the preceding code:

* <old rdt>: Old RDT name that conflicts

* <new_rdt>: New RDT name that is unique in the target database
* <table name>: GeoRaster table name

* <column name>: GeoRaster column name associated with the conflicted RDT
name returned in step 4

Repeat this step for all conflicting RDTs.
Connect as DBA and enable the DML trigger that was disabled at step b.

ALTER TRIGGER <owner>.<TRIGGER NAME> ENABLE;

If there are no conflicts or the conflicts have been resolved in step 5, call
SDO_GEOR_ADMIN.registerGeoRasterObjects to register the transported GeoRaster
object. For example run the following as DBA in SQL*Plus:

EXECUTE SDO GEOR ADMIN.registerGeoRasterObjects;

3.16.3 Using Database Link with GeoRaster Data

ORACLE

From Oracle Database Release 12.2 onwards, database link can be used to transfer
GeoRaster data from one database to another.

You can execute a SQL query through a database link to access remote GeoRaster object’s
attributes and binary data in the raster data tables (RDTs). The GeoRaster data manipulations
provided in the GeoRaster PL/SQL packages cannot be used on the remote GeoRaster
objects through a database link.

3-26

Chapter 3
Transferring GeoRaster Data Between Databases

Note:

You can check the interoperability support between different releases of the database
in Oracle Interoperability Support.

To transfer GeoRaster data through a database link:

1. Ensure the target database schema is GeoRaster enabled. Follow the steps explained in
Enabling GeoRaster at the Schema Level.

2. Create the database link in the target database by executing the following SQL statement:

CREATE PUBLIC DATABASE LINK <dblink name>
CONNECT TO <username> IDENTIFIED BY <password>
USING '<tnsname>';

In the preceding code:
e <dblink name>: Name of the database link

* <username>: Username to connect to the source database schema where the
GeoRaster table is located

e <password>: Password for the source database user

e <tnsname>: Source database connection name defined in the tnsname.ora in the
target database

3. Identify the GeoRaster table and RDT(s) to be transferred from the source database. Run
the following query from the target database to get the RDTs associated with the
GeoRaster objects in the GeoRaster table.

SELECT UNIQUE t.<column name>.rasterDataTable FROM
<source_ georaster table>@<dblink name> t;

In the preceding code, <column name> is the GeoRaster column name of
<source georaster table> in the source database.

4. Transfer the RDT data from the source database to the target database:

CREATE TABLE <target_rdt_table> AS (SELECT * FROM
<source rdt table>@<dblink name>);

The <source rdt table> in the preceding code is the RDT identified in step 3 (this
example assumes that <source rdt table> only contains the raster data that is to be
transferred). If <source rdt table> is unique in the target database
(SDO_GEOR_ADMIN.1isRDTNameUnique (‘<source rdt table>’) returns true), then
<target rdt table> should be the same as <source rdt table>. Otherwise, choose a
unigue name for <target rdt table>.

ORACLE 3-27

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=148065162110635&id=207303.1&_afrWindowMode=0&_adf.ctrl-state=d9x9exsy1_4

Chapter 3
Transferring GeoRaster Data Between Databases

5. Transfer the GeoRaster objects in the GeoRaster table from the source database to the
target database. A new GeoRaster table can be created in the target database as follows:

CREATE TABLE <target georaster table> AS (SELECT * FROM
<source georaster table>@<dblink name>);

If the name of the new RDT created in step 4 in the target database, <target rdt table>,
is different from the RDT name in the source database, <source rdt_table>, then the
rasterDataTable attribute of the GeoRaster objects in the <target georaster table>
needs to be updated as follows:

a. Connect as the schema user to find out the GeoRaster DML trigger name on the
GeoRaster table:

SELECT trigger name FROM user triggers WHERE table name =
‘<target georaster table>’ AND trigger name LIKE 'GRDMLTR %';

In the preceding code, <target georaster table> is the GeoRaster table name in the
target database

b. Connect as DBA and disable the GeoRaster DML trigger:
ALTER TRIGGER <owner>.<trigger name> DISABLE;

c. Connect as the schema user and update the rasterDataTable attribute of the
GeoRaster object:

UPDATE <target georaster table> t SET t.<column name>.rasterDataTable
= ‘<target rdt table>’
WHERE t.<column name>.rasterDataTable=’<source rdt table>’;

In the preceding code, <source rdt table>and <target rdt table> are the table
names used in step 4. <column name> is the GeoRaster column name in the
<target georaster table>

d. Connect as DBA and enable the GeoRaster DML trigger:
ALTER TRIGGER <owner>.<trigger name> ENABLE;

6. Connect as the schema user and register the transferred GeoRaster objects in the target
database:

EXECUTE SDO_GEOR ADMIN.registerGeorasterObjects;

Database link can also be used in the Data Pump import utility to transfer GeoRaster data
directly from the source database to the target database. See Using Data Pump Ultility to
Transfer GeoRaster Data about how to use Data Pump import utility to transfer GeoRaster
data.

ORACLE 308

GeoRaster Data Query and Manipulation

This chapter describes how to perform several important GeoRaster data query and
manipulation operations. Typical GeoRaster data query and manipulation involve most or all of
the operations described.

See also the operations in GeoRaster Database Creation and Management.

Other chapters in this book cover advanced topics (Raster Algebra and Analytics and Image
Processing and Virtual Mosaic), and provide detailed reference information about GeoRaster
PL/SQL packages (SDO_GEOR Package Reference, SDO_GEOR_ADMIN Package
Reference, SDO_GEOR_AGGR Package Reference, SDO_GEOR_RA Package Reference,
and SDO_GEOR_UTL Package Reference).

* Querying and Searching GeoRaster Objects

* Changing and Optimizing Raster Storage

e Copying GeoRaster Objects

* Subsetting GeoRaster Objects with Polygon Clipping

* Querying and Updating GeoRaster Metadata

* Querying and Updating GeoRaster Cell Data

e Interpolating Cell Values

* Processing and Analyzing GeoRaster Objects

* Monitoring and Reporting GeoRaster Operation Progress
e Compressing and Decompressing GeoRaster Objects

* Deleting GeoRaster Objects, and Performing Actions on GeoRaster Tables and RDTs
e Performing Cross-Schema Operations

e Managing Memory to Improve Performance

» Updating GeoRaster Objects Before Committing

* Updating GeoRaster Objects in a Loop

* Using Template-Related Subprograms to Develop GeoRaster Applications

4.1 Querying and Searching GeoRaster Objects

ORACLE

GeoRaster tables are regular relational tables that can have various columns, such as an ID
number, a name, a timestamp, and a unique description in the form of a string. These columns
can be indexed, and GeoRaster objects can be queried using the standard database indexing
and query statements, as shown in many examples in this manual.

After the GeoRaster tables are spatially indexed (see Indexing GeoRaster Objects), you can
quickly query or search GeoRaster objects using a geometry as well. For example, you may
want to find all images (maybe hundreds or more) inside a specific region and then generate
full pyramids for each image, as in the following example.

4-1

Chapter 4
Changing and Optimizing Raster Storage

Example 4-1 Searching GeoRaster Objects and Generating Pyramids for Them

DECLARE
type curtype is ref cursor;
my cursor curtype;
stmt varchar2(1000);

tid number;

gr sdo_georaster;

gm sdo_geometry;
BEGIN

-- 1. Define the query area in EPSG 4326 (WGS84) coordinate system
gm := sdo_geometry (2003, 4326, null,
sdo_elem info array(1,1003,3),
sdo_ordinate array(5,6,30,30));

-- 2. Define the query statement on the GeoRaster table (city images)using the given
geometry
stmt := 'select id from city images t ' ||
'where sdo_inside (t.image.spatialextent, :1)=''TRUE''';

-- 3. Spatially query all images INSIDE the query area

- and generate full pyramids for each of the images

open my cursor for stmt using gm;

loop
fetch my cursor into tid;
exit when my cursorsNOTFOUND;
-- retrieve the image to generate the pyramids
select image into gr from city images where id = tid for update;
sdo_geor.generatePyramid(gr, 'resampling=bilinear', null, ‘parallel=4");
update city images set image=gr

where id = tid;

commit;

end loop;

close my cursor;

END;

You can also wrap up such blocks into a PL/SQL procedure and store it in the database, then
call the stored procedure directly. These features enable you to organize complex processes
and automate database administration tasks.

4.2 Changing and Optimizing Raster Storage

ORACLE

You can change or specify some aspects of the way raster image data is or will be stored: the
raster blocking size, cell depth, interleaving type, and other aspects. Such flexibility allows you
to optimize the raster data storage format to save disk space and improve application
performance.

To load and process a GeoRaster object to create another GeoRaster object, you can specify
storage parameters with GeoRaster PL/SQL subprograms. That is, you can specify the output
format when you call functions or procedures such as SDO_GEOR.importFrom,
SDO_GEOR:.subset, SDO_GEOR¢.rectify, SDO_GEOR_AGGR.append,
SDO_GEOR.mergeLayers, SDO_GEOR.createTemplate, SDO_GEOR_RA.rasterMathOp, and
SDO_GEOR_AGGR.mosaicSubset. You cannot directly make such changes on an existing
GeoRaster object; however, you can use the SDO_GEOR.changeFormatCopyprocedure, and
specify the desired storage parameter values with the storageParam parameter, to make a
copy of the existing GeoRaster object.

The storageParam parameter for the resulting GeoRaster objects should be based on factors
such as the data size, dimension sizes, and application needs, as you determine them.
However, the block sizes can also be optimized automatically based on the dimension sizes of

4-2

Chapter 4
Copying GeoRaster Objects

the GeoRaster object and the desired output required by users, so that each GeoRaster object
uses only minimum padding space but still meets the application requirements. Depending on
the raster dimension size and your desired blocking size, padding might waste some storage
space, so you should always consider specifying blocking=0PTIMALPADDING in the
storageParam parameter for the output GeoRaster when a GeoRaster procedure is called.

For more information, see Storage Parameters, especially Table 1-1. For examples of applying
optimal padding, see the PL/SQL example at the end of Storage Parameters and the GDAL
example in Loading with Blocking and Optimal Padding

4.3 Copying GeoRaster Objects

To copy a GeoRaster object, you must either copy it into an empty GeoRaster object or
overwrite an existing valid GeoRaster object. (Empty GeoRaster objects are explained in Blank
and Empty GeoRaster Objects.) To make an identical copy of the source GeoRaster object,
use the SDO_GEOR.copy procedure; to make a copy that includes storage format changes,
use the SDO_GEOR.changeFormatCopy procedure (see Changing and Optimizing Raster
Storage).

To copy a GeoRaster object using an empty GeoRaster object, follow these steps:

1. Initialize an empty GeoRaster object while inserting it into the destination table, returning
the empty GeoRaster object.

2. Use the SDO_GEOR.copy or SDO_GEOR.changeFormatCopy procedure to copy the
GeoRaster object into the returned empty GeoRaster object.

3. Use UPDATE statement to update the desired row in the destination table so that its
GeoRaster column contains the copied GeoRaster object.

4. When you are ready to commit the transaction, use the COMMIT statement.

For an example of copying using an empty GeoRaster object, see the example for the
SDO_GEOR:.copy procedure in SDO_GEOR Package Reference.

To copy a GeoRaster object so that it overwrites (replaces) an existing GeoRaster object,
follow these steps:

1. Select the existing GeoRaster object for update.

2. Usethe SDO_GEOR.copy or SDO_GEOR.changeFormatCopy procedure to copy the
selected GeoRaster object into either a valid existing GeoRaster object or an empty
GeoRaster object.

3. Use UPDATE statement to update the desired row in the destination table so that its
GeoRaster column contains the copied GeoRaster object.

4. When you are ready to commit the transaction, use the COMMIT statement.

For an example of copying to replace an existing GeoRaster object and to change its storage
format, see the example for the SDO_GEOR.changeFormatCopy procedure in SDO_GEOR
Package Reference.

Parallel copying and subsetting are supported with the SDO_GEOR_AGGR.mosaicSubset
procedure. For parallelized copying and change format copying, See Example 6-24 in Parallel
Compression, Copying, and Subsetting.

ORACLE 43

Chapter 4
Subsetting GeoRaster Objects with Polygon Clipping

4.4 Subsetting GeoRaster Objects with Polygon Clipping

With GeoRaster, subsetting means cropping rasters spatially, extracting or duplicating raster
layers, or doing both together. To perform subsetting, use the SDO_GEOR.subset procedure.
For example, you can call this procedure to crop a small area or obtain a subset of a few layers
of a GeoRaster object, to duplicate layers, to specify storage parameters such as blocking and
interleaving for the resulting object, and to perform polygon clipping.

For examples, see the SDO_GEOR.subset reference topic.

You can also use the SDO_GEOR_AGGR.mosaicSubset procedure to perform subsetting with
parallelism (see Parallel Compression, Copying, and Subsetting).

4.5 Querying and Updating GeoRaster Metadata

ORACLE

You can query metadata for a GeoRaster object, and you can update many attributes of the
metadata.

You can use many functions, most of whose names start with get, to query the metadata and
ancillary information (for example, SDO_GEOR.getTotalLayerNumber and
SDO_GEOR:.hasPseudoColor).

You can use several subprograms, most of whose names start with set, to update metadata
and ancillary data (for example, SDO_GEOR.setSRS and SDO_GEOR.setColorMap).

For many of the get functions, there is a corresponding procedure, whose name starts with set,
to set, modify, or delete the value of a metadata attribute. For most set procedures, to delete
the value of the metadata attribute that the procedure is designed to modify, specify a null
value for the attribute. For example, to delete the bin table for a layer of a GeoRaster object,
call the SDO_GEOR.setBinTable procedure and specify a null tableName parameter. However,
in most cases you cannot specify a null value for other related attributes. For example, you
cannot specify a null LayerNumber parameter in a call to the SDO_GEOR.setBinTable
procedure.

Note the following recommendations, requirements, and restrictions:

e Most GeoRaster metadata can also be retrieved using XMLType methods or XML-specific
SQL functions, such as extract, and be modified using XQuery Update. However, if a
GeoRaster get or set subprogram exists for the metadata attribute you want to retrieve or
change, use the GeoRaster subprogram instead of an XMLType interface, because the
GeoRaster subprograms validate any changes before they are made. If you do call
XMLType methods or XML-specific SQL functions to update metadata, you should validate
the GeoRaster object before you commit the transaction.

* Never directly set the metadata to be null.

* Do not directly update the rasterType attribute of a GeoRaster object; instead, call the
SDO_GEOR:.setRasterType procedure.

* To change the raster data table name, use the SDO_GEOR_UTL.renameRDT procedure.

* In general, you should not directly update the attributes of a GeoRaster object, except for
the spatialExtent attribute.

* After updating a GeoRaster object's metadata or cell data (or both) and before you commit
a database transaction, you should call the SQL UPDATE statement to update the
GeoRaster object (see Updating GeoRaster Objects Before Committing).

4-4

Chapter 4
Querying and Updating GeoRaster Cell Data

4.6 Querying and Updating GeoRaster Cell Data

To query cell (pixel) data of a GeoRaster object for processing and visualization, you can query
the raster data for a cell (pixel), a range of cells, or the entire raster of a GeoRaster object:

ORACLE

SDO_GEOR.getCellValue returns cell values of one or multiple layers or bands for a
specified location.

SDO_GEOR.getCellValues returns the cell values of one or more cells in an array.

SDO_GEOR:.evaluateDouble evaluates a direct location based on neighboring cell values
by using a specified interpolation method, and returns the raster values (double precision
numbers) for the specified bands or layers for that location. (See Interpolating Cell Values
for more information.)

SDO_GEOR:.evaluateDoubles evaluates multiple locations using a specified interpolation
method, and returns the raster values (double precision numbers) for the specified band or
layer for those locations.

SDO_GEOR.getRasterSubset creates a single BLOB object or a single in-memory
SDO_NUMBER_ARRAY object containing all cells of a precise subset of the GeoRaster
object (as specified by a rectangular window or a clipping polygon geometry, layer or band
numbers, and pyramid level). This BLOB object or SDO_NUMBER_ARRAY object
contains only raster cells and no related metadata.

SDO_GEOR.getRasterData creates a single BLOB object containing all cells of the
GeoRaster object at a specified pyramid level. This BLOB object contains only raster cells
and no related metadata.

SDO_GEOR.getRasterBlocks returns an object that includes all image data inside or
touching a specified window. Specifically, it returns an object of the SDO_RASTERSET
collection type that identifies all blocks of a specified pyramid level that are inside or touch
a specified window.

SDO_GEOR:.reproject not only transforms a whole GeoRaster object from one projected
coordinate system to another, but can also include the same capability as
SDO_GEOR.getRasterSubset by directly transforming the query result into a different
coordinate system on-the-fly.

SDO_GEOR:.rectify performs reprojection, rectification, or orthorectification on all or part of
a georeferenced GeoRaster object based on a query window. The resulting object can be
a new GeoRaster object (for persistent storage) or a BLOB (for temporary use).

SDO_GEOR_RA findCells generates a new GeoRaster object based on the cell values
using the GeoRaster Raster Algebra language. (See Cell Value-Based Conditional Queries
for more information.)

SDO_GEOR_AGGR.mosaicSubset mosaics a number of GeoRaster objects into one
GeoRaster object.

SDO_GEOR_AGGR.getMosaicSubset lets you query a virtual mosaic and returns a
mosaicked subset on-the-fly.

SDO_GEOR.getBitmapMask, SDO_GEOR.getBitmapMaskSubset,
SDO_GEOR.getBitmapMaskValue, and SDO_GEOR.getBitmapMaskValues let you query
bitmap masks on the basis of a full raster, a window, or single cells.

You can also use the SDO_GEOR.exportTo procedure to export all or part of a raster image to
a BLOB obiject (binary image format) or to a file of a specified file format type.

There are two types of raster updates: space-based and cell value-based

4-5

Chapter 4
Interpolating Cell Values

e Space-based raster update allows you update a GeoRaster object's raster data inside a

specified window entirely using either a single value or another GeoRaster object.

To update or change the value of raster cells in a specified window to a single value, you
can use the SDO_GEOR.changeCellValue procedure. To change the value of raster cells
specified by row/column arrays or by a multipoint geometry to new values, you can use the
SDO_GEOR.changeCellValuesprocedure. You can call the SDO_GEOR.updateRaster
procedure to update a specified pyramid of a specified area, or the overlapping parts of
one GeoRaster object, with a specified pyramid and specified bands or layers of another
GeoRaster object. Both the SDO_GEOR.changeCellValue and the
SDO_GEOR.updateRaster procedures support all pyramid levels, including the original
raster data (that is, pyramid level 0).

The SDO_GEOR_AGGR.append procedure can also be used to update an existing image
with a new image (see Image Appending).

» Cell value-based raster update allows you update a GeoRaster object's raster data based
on the cell values using the GeoRaster Raster Algebra language.

SDO_GEOR_RA rasterUpdate selects cells from the specified GeoRaster object based on
Boolean strings specified in the conditions parameter, and updates corresponding cell
values by calculating expression strings specified in the vals parameter. Both the
conditions and vals parameters can be complicated expressions using the raster algebra
language. (See Cell Value-Based Conditional Updates (Edits) for more information.)

If statistics are already set in the GeoRaster object when you perform space-based or raster
cell value-based updates, the statistics are not removed or updated automatically after you run
the raster update procedures. If necessary, you should remove or regenerate the statistics.

¢ Note:

If you use any procedure that adds or overwrites data in the input GeoRaster object,
you should make a copy of the original GeoRaster object and use the procedure on
the copied object. After you are satisfied with the result of the procedure, you can
discard the original GeoRaster object if you wish.

If you want to change the raster data table name, the attributes of a GeoRaster object, or any
other metadata, see the recommendations, requirements, and restrictions noted in Querying
and Updating GeoRaster Metadata.

After updating a GeoRaster object's metadata or cell data (or both) and before you commit a
database transaction, you should call the SQL UPDATE statement to update the GeoRaster
object (see Updating GeoRaster Objects Before Committing).

4.7 Interpolating Cell Values

ORACLE

GeoRaster objects are grid coverages. The "evaluate" operation of a grid coverage is also
called grid interpolation, a method for interpolating cell values at point positions between the
cells or within the cells. This operation in GeoRaster is performed by the
SDO_GEOR.evaluateDouble function, which evaluates any point in the raster and returns a
double number value for that location. You can use any one of the six different interpolation
methods (listed in Resampling and Interpolation) to do the evaluation. For example, if a
georaster object is a DEM layer, you can find out the elevation of a random point location,
using the following example:

4-6

Chapter 4
Processing and Analyzing GeoRaster Objects

SELECT SDO_GEOR.evaluateDouble (a.georaster, 0,
SDO_GEOMETRY (2001, 4326, SDO_POINT TYPE(112.704, 41.917, NULL),
NULL, NULL),
Yll,
'interpolationMethod=BILINEAR')
FROM georaster table a WHERE raster name='myDEM';

If you call SDO_GEOR.evaluateDouble with "interpolationMethod=NN', the GeoRaster
object is treated as a discrete raster and the preceding is the same as calling
SDO_GEOR.getCellValue, which gives you the same value (that is, the cell value) at a different
point location inside a cell. In this case, you can directly call SDO_GEOR.getCellValue instead,
particularly when you query only the cell values of a single band. Other interpolation methods
treat the raster as a continuous surface and may give you different values at different point
locations inside a cell.

4.8 Processing and Analyzing GeoRaster Objects

You can perform a variety of raster and image processing operations on GeoRaster data,
including changing the internal raster storage format, subsetting (cropping), scaling, rotating,
masking, stretching, filtering, dodging, reprojecting (from one coordinate system to another),
rectifying, orthorectifying, warping, mosaicking, appending, and generating pyramids.
GeoRaster also supports virtual mosaic. Some relevant subprograms are
SDO_GEOR.changeFormatCopy, SDO_GEOR.subset, SDO_GEOR.reproject,
SDO_GEOR:.rectify, SDO_GEOR.generatePyramid, SDO_GEOR.deletePyramid,
SDO_GEOR:.scaleCopy, SDO_GEOR.mergelLayers, SDO_GEOR_AGGR.mosaicSubset,
SDO_GEOR_AGGR.getMosaicSubset, and SDO_GEOR_AGGR.append. For detailed
descriptions, see Image Processing and Virtual Mosaic, SDO_GEOR Package Reference, and
SDO_GEOR_AGGR Package Reference.

For raster cell value-based algebraic operations and cartographic modeling and analysis,
GeoRaster supports a raster algebra language (PL/SQL and Algebraic Expressions) and
related raster operations, including conditional queries (SDO_GEOR_RA findCells), cell value-
based updates or edits (SDO_GEOR_RA.rasterUpdate), logical and mathematical operations
(SDO_GEOR_RA. rasterMathOp), and image and raster segmentation
(SDO_GEOR_RA.classify). The SDO_GEOR.generateStatistics function supports polygon-
based statistics and histogram generation. The following on-the-fly functions support
interactive statistical analysis of a GeoRaster object or its layers:
SDO_GEOR.generateStatisticsMax, SDO_GEOR.generateStatisticsMean,
SDO_GEOR.generateStatisticsMedian, SDO_GEOR.generateStatisticsMin,
SDO_GEOR.generateStatisticsMode, and SDO_GEOR.generateStatisticsSTD. For detailed
descriptions, see Raster Algebra and Analytics and SDO_GEOR_RA Package Reference.

See also the GeoRaster PL/SQL demo files, described in GeoRaster PL/SQL and Java Demo
Files, for examples and explanatory comments.

4.9 Monitoring and Reporting GeoRaster Operation Progress

ORACLE

GeoRaster lets you monitor and report the execution progress of many operations (listed in
Reporting Operation Progress in GeoRaster). The following are the basic steps for reporting
the progress of an operation:

1. Usethe SDO_GEOR_UTL.createReportTable procedure to create the report table under
the appropriate user's schema. (This must be called once before you can monitor any
operations.)

EXECUTE SDO_GEOR UTL.createReportTable;

4-7

ORACLE

Chapter 4
Monitoring and Reporting GeoRaster Operation Progress

In the user session where the operations are to be executed and monitored, perform the
following actions:

a.

Use SDO_GEOR_UTL.enableReport to enable the monitoring. (You must call this
procedure in order to be able to get the status report later.)

EXECUTE SDO_GEOR UTL.enableReport;

Optionally, use SDO_GEOR_UTL.setClientID to set the client ID. The client ID is used
to identify the user session that executes the operation. If this procedure is not called,
the client ID defaults to the SQL session ID. For example:

EXECUTE SDO GEOR UTL.setClientID(100);

Optionally, use SDO_GEOR_UTL.setSeqID to set the sequence ID. The sequence ID
is used to identify the repeated operations in the same SQL session. If this procedure
is not called, the sequence ID defaults to 0. For example:

EXECUTE SDO_GEOR UTL.setSeqID(1);
Execute the operation to be monitored. For example:

-- Generate pyramid for georid=6. The progress of this generatePyramid call
-- can be monitored by step 3.
DECLARE
gr sdo_georaster;
BEGIN
SELECT georaster INTO gr
FROM georaster table WHERE georid = 6 FOR UPDATE;
sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN');
UPDATE georaster table SET georaster = gr WHERE georid =
COMMIT;
END;
/

Optionally, repeat steps ¢ and d for each additional operation to be monitored. For
example:

6;

EXECUTE SDO_GEOR UTL.setSeqID(2);
-- Generate pyramid for georid=7. The progress of this generatePyramid call
-- can be monitored by step 3.
DECLARE
gr sdo_georaster;
BEGIN
SELECT georaster INTO gr
FROM georaster table WHERE georid = 7 FOR UPDATE;
sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN');
UPDATE georaster table SET georaster = gr WHERE georid =
COMMIT;
END;
/

Optionally, use SDO_GEOR_UTL.disableReport to disable the monitoring. If this
procedure is not called, the monitoring is automatically stopped when the user session
ends.

T;

EXECUTE SDO_GEOR UTL.disableReport;

From another session under the same user, retrieve the execution status report.

To get the progress of a specific operation identified by client ID and sequence ID, use the
SDO_GEOR_UTL.getProgress function. This function returns the progress as a number
between 0 and 1 reflecting the percentage of completion. For example, the following query
shows that the operation if 55% complete:

4-8

Chapter 4
Compressing and Decompressing GeoRaster Objects

SELECT sdo_geor utl.getProgress (100, 2) progress FROM DUAL;

PROGRESS

1 row selected.

To get the status report of a specific operation identified by client ID and sequence ID, use
the SDO_GEOR_UTL.getStatusReport function. This function returns an array of strings
describing the progress and other information about the operation. For example:

-- Check the status of the generatePyramid on georid=6
SELECT sdo_geor utl.getStatusReport (100, 1) FROM DUAL;
SDO_GEOR _UTL.GETSTATUSREPORT (100, 1)

SDO_STRING2 ARRAY ('31-0CT-11 02.20.04.854558 PM', 'GeneratePyramid', 'RDT:RDT 1',
'RID:6', '100% complete', 'operation completed')

1 row selected.

-- Check the status of the generatePyramid on georid=7
SELECT sdo_geor utl.getStatusReport (100, 2) FROM DUAL;

SDO_GEOR _UTL.GETSTATUSREPORT (100, 2)

SDO_STRING2 ARRAY ('31-0CT-11 02.20.08.854558 PM', 'GeneratePyramid', 'RDT:RDT 1',
'RID:7', '55% complete', 'operation completed')

1 row selected.

To get the status of all the monitored operations, enter the following statement:

SELECT * from the (select sdo geor utl.getAllStatusReport() FROM DUAL) ;
COLUMN VALUE

SDO_STRING2 ARRAY('Client:100', 'Sequence:1', '31-0CT-11 02.20.04.854558 PM',
'GeneratePyramid', 'RDT:RDT 1', 'RID:6', '100% complete', 'operation completed')
SDO_STRING2 ARRAY('Client:100', 'Sequence:2', '31-0CT-11 02.20.08.854558 PM',
'GeneratePyramid', 'RDT:RDT 1', 'RID:7', '55% complete', NULL)

2 rows selected.

If you need to clear or drop the report table, use the SDO_GEOR_UTL.clearReportTable or
SDO_GEOR_UTL.dropReportTable procedure, respectively:

EXECUTE SDO GEOR UTL.clearReportTable;
-- or:
EXECUTE SDO GEOR UTL.dropReportTable;

4.10 Compressing and Decompressing GeoRaster Objects

ORACLE

You can reduce the storage space requirements for GeoRaster objects by compressing them
using JPEG-F, DEFLATE, or JPEG 2000 compression. You can decompress any compressed
GeoRaster object, although this is not required for any GeoRaster operations, because any
GeoRaster operation that can be performed on an uncompressed (decompressed) GeoRaster
object can be performed on a compressed GeoRaster object.

For JPEG-F and DEFLATE, to compress or decompress a GeoRaster object, use the
compression keyword in the storageParam parameter with the
SDO_GEOR.changeFormatCopy procedure, or with several other procedures that load and

4-9

Chapter 4
Deleting GeoRaster Objects, and Performing Actions on GeoRaster Tables and RDTs

process a GeoRaster object to create another GeoRaster object, including
SDO_GEOR.importFrom, SDO_GEOR.mosaic, SDO_GEOR.scaleCopy, SDO_GEOR.subset,
raster algebra (SDO_GEOR_RA) procedures, and SDO_GEOR_AGGR.mosaicSubset. (For
JPEG-F and DEFLATE compression, there are no separate procedures for compressing and
decompressing a GeoRaster object.)

For JPEG 2000, use the SDO_GEOR.compressJP2 and SDO_GEOR.decompressJP2
procedures to compress and decompress a GeoRastrer object, respectively. Most other
procedures and functions (except for SDO_GEOR.changeCellValue, SDO_GEOR.reproject,
sdo_geor.scaleScopy, and sdo_geor.mosaic) can internally decompress the JP2 compressed
GeoRaster object while performing the operation.

For more information about GeoRaster compression and decompression, see Compression
and Decompression, including information about support for third-party compression solutions
in Third-Party Plug-ins for Compression.

In addition, when JPEG-F or DEFLATE compression is used with GeoRaster objects, some
special usage considerations apply:

« If alarge GeoRaster object is to be compressed and will have full pyramids built on it, it is
faster to generate pyramids on the uncompressed GeoRaster object first, then apply
compression.

* For large scale mosaicking, it is faster to mosaic without applying compression first, then
generate pyramids, then apply compression.

e In some operations, GeoRaster uses temporary tablespaces to compress and decompress
data, so adding temporary tablespaces for GeoRaster users is essential for performance
(see Adding Temporary Tablespaces for GeoRaster Users).

Parallel compression and decompression for JPEG and DEFLATE are supported with the
SDO_GEOR.changeFormatCopy procedure, if reformatting is not needed, by using the
parallel keyword in the storageParam parameter. You can also call the
SDO_GEOR_AGGR.mosaicSubset procedure, which provides better performance if you want
to change the raster format while doing parallelized compression or decompression. Parallel
compression and decompression significantly improve performance, which is especially useful
for large images. See Example 6-23 in Parallel Compression, Copying, and Subsetting

If you want to store compressed GeoRaster objects, make sure you create a temporary
tablespace for the users. For more information, see Adding Temporary Tablespaces for
GeoRaster Users.

4.11 Deleting GeoRaster Objects, and Performing Actions on
GeoRaster Tables and RDTs

ORACLE

GeoRaster automatically maintains the GeoRaster metadata and the relationship between
GeoRaster tables and raster data tables (RDTs). Therefore, for most operations you can use
the relevant traditional SQL statement.

* To delete a GeoRaster object, delete the row containing the object using the DELETE
statement (for example, DELETE FROM geor table WHERE ...;).

After a GeoRaster object is deleted from a GeoRaster table, all related raster data stored
in the RDT is deleted automatically. Never insert or delete any rows directly in a raster data
table.

+ To drop a GeoRaster table, use the DROP statement (for example, DROP geor table;).

4-10

Chapter 4
Performing Cross-Schema Operations

After a GeoRaster table is dropped, all raster data associated with GeoRaster objects in
the deleted GeoRaster table is deleted automatically.

* To rename a GeoRaster table, use the RENAME statement (for example, RENAME
geor tablel TO geor table2;).

« To add a GeoRaster column to a table, use the ALTER TABLE statement.

However, if you use the ALTER TABLE statement to add one or more GeoRaster columns,
you must call the SDO_GEOR_UTL.createDMLTrigger procedure to create the DML trigger
on each added GeoRaster column. For example:

ALTER TABLE geor table ADD (image SDO_GEORASTER) ;
CALL sdo_geor utl.createdmltrigger ('GEOR TABLE', 'IMAGE');)

* To drop a GeoRaster column in a table, use the ALTER TABLE statement (for example,
ALTER TABLE geor table DROP COLUMN image;).
Caution: Dropping a GeoRaster column will delete all GeoRaster objects in that column.

* To drop an RDT, you must first delete all GeoRaster objects that reference the RDT, after
which you can use the DROP statement on the RDT.

If you do not delete all GeoRaster objects that reference the RDT before attempting to drop
the RDT, an exception is raised.

* Torename an RDT, use the SDO_GEOR_UTL.renameRDT procedure.

4.12 Performing Cross-Schema Operations

ORACLE

All GeoRaster operations can work on GeoRaster objects defined in schemas other than the
current connection schema. In other words, GeoRaster fully supports cross-schema access,
update, and processing.

For more information, see Cross-Schema Support with GeoRaster.
Example 4-2 Cross-Schema Copy Operation

In the following example, USER2 makes a copy of an image from USER1 and stores it in the
USER2 schema. Assume that USER1 owns the GEORASTER_TABLE table and that USER2
owns the G_TABLE table.

--connect to userl and grant permissons to user2

--assume userl stores the image in georaster table and the image’s RDT table
is rdt 1

conn userl/pswdl

grant select on georaster table to user2;

grant select on rdt 1 to user2;

--connect to user?2 and make a copy of a georaster from userl
conn user2/pswd2
SQL> DECLARE
grl sdo _georaster;
gr2 sdo_georaster;
BEGIN
--select the image from georaster table in userl
select georaster into grl from userl.georaster table where georid = 100;
-- the copy is to be stored in g table in user2, assuming the georaster
object is already initiated

4-11

Chapter 4
Managing Memory to Improve Performance

select geor into gr2 from g table where id = 1 for update;
sdo_geor.changeFormatCopy (grl, 'blocking=OPTIMALPADDING
blocksize=(512,512,3) interleaving=BIP', gr2);
update g table set geor=gr2 where id=1;
commit;
END;
/

Example 4-3 Cross-Schema Raster Algebra and Copy Operation

In the following example, USER?2 runs a raster algebra operation on an image in the USER1
schema and stores the result in USER1. Assume that USER1 owns both the
GEORASTER_TABLE and G_TABLE tables. The existing image is in GEORASTER_TABLE
and the image’s raster data table is RDT_1. The resulting image is stored in G_TABLE and its
raster data table is RDT_2.

--connect to userl and grant permissons to user2

conn userl/pswdl

grant select on georaster table to user2;

grant select on rdt 1 to user2;

grant select, update, insert, delete on g table to user2;
grant select, update, insert, delete on rdt 2 to user2;

--connect to user2 and run a raster algebra operation on an image in userl
conn user2/pswd2
DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN
--select the image from georaster table in userl
select georaster into grl from userl.georaster table where georid = 100;
-- the result is to be stored in g table in userl, assuming the georaster
object is already initiated
select geor into gr2 from userl.g table where id = 1 for update;
sdo_geor ra.rasterMathOp(grl,sdo_string2 array('{0}','{1}','{2}"),
'blocking=0PTIMALPADDING blocksize=(512,512,3) interleaving=BIP',gr2);
update userl.g table set geor=gr2 where id=l;
commit;
END;
/

4.13 Managing Memory to Improve Performance

GeoRaster has its own buffer system to read and write raster (LOB) data. This system is
separate from the Oracle Database buffer system. The following table lists parameters that can
be used to configure the GeoRaster buffer system, which is used for all I/O operations on
GeoRaster objects.

Table 4-1 GeoRaster Buffering Parameters

Parameter Name Description Default
Value
MemMaxSize Upper limit size of the memory that can be used for GeoRaster 17 MB

buffering for each GeoRaster object.

ORACLE 415

Chapter 4
Updating GeoRaster Objects Before Committing

Table 4-1 (Cont.) GeoRaster Buffering Parameters

Parameter Name Description Default
Value

MemReadBlockSize Internal data block size for read-only operations for caching raster 32 KB
data.

MemWriteBlockSize Internal data block size for read/write operations for caching raster 64 KB
data.

You can get and set the values of these parameters using the following PL/SQL subprograms:

e SDO_GEOR_UTL.getMaxMemSize
e SDO_GEOR_UTL.setMaxMemSize
e SDO_GEOR_UTL.getReadBlockMemSize
e SDO_GEOR_UTL.setReadBlockMemSize
e SDO_GEOR_UTL.getWriteBlockMemSize
e SDO_GEOR_UTL.setWriteBlockMemSize

Because the parameters are set using PL/SQL, their values are defined for the duration of the
database session. For any subsequent sessions, if you want to use any nondefault values for
any of the parameters, you must set them using the appropriate procedures.

In general, using large values for the parameters improves performance for GeoRaster 1/0
operations. The following are some specific considerations and guidelines.

* Allocating more memory (increasing MemMaxSize) reduces disk access; and ideally,
allocating big enough memory to hold an entire GeoRaster object will dramatically improve
performance. However, Oracle Database allows multiple users and concurrent access, and
so you should aim for balanced memory allocation in such an environment.

* Increasing the read block size (increasing MemReadBlockSize) reduces the number of OCI
LOB read operations, thus improving performance. However, due to different interleaving
between source and target GeoRaster objects in an operation, if the MemReadBlockSize
value cannot hold the entire GeoRaster object, the read block size might be too large and
cause frequent read block page-in and page-out operations, thus degrading performance.

* Almost all GeoRaster operations are write-driven, so that a larger write block size
(increasing MemiiriteBlockSize) will reduce number of OCI LOB write operations and thus
improve performance.

4.14 Updating GeoRaster Objects Before Committing

ORACLE

Before you commit a database transaction that inserts, updates, reformats, compresses,
decompresses, or deletes GeoRaster cell data or metadata, you should use the SQL UPDATE
statement to update the GeoRaster object. If you do not update the GeoRaster object after
changing cell data, one or more of the following can result: an invalid GeoRaster object,
dangling raster data, and inconsistent metadata. If you do not update the GeoRaster object
after changing GeoRaster metadata, the metadata changes will not take effect.

If you decide to roll back the transaction instead of committing it, an UPDATE statement is not
needed.

In Example 4-4, the UPDATE statement is required after the call to the
SDO_GEOR.changeFormatCopy procedure and before the COMMIT statement.

4-13

Chapter 4
Updating GeoRaster Objects in a Loop

Example 4-4 Updating a GeoRaster Object Before Committing

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN
SELECT georaster INTO gr2 from georaster table WHERE georid=11 FOR UPDATE;
SELECT georaster INTO grl from georaster table WHERE georid=1l;
sdo_geor.changeFormatCopy (grl, 'blocksize=(2048,2048)', gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=11;
COMMIT;
END;

4.15 Updating GeoRaster Objects in a Loop

ORACLE

When multiple GeoRaster objects are to be updated, a cursor is generally used. However, if
the GeoRaster operation in the loop is parallel enabled or the COMMIT statement is executed
after each UPDATE statement, the SQL query for the cursor cannot have the FOR UPDATE
clause because the commit within the loop will invalidate the cursor with that clause.

Example 4-5 Updating GeoRaster Objects in a Loop With Parallel Processing Enabled

In the following example, pyramids were generated on all the GeoRaster objects in the table.
An explicit commit is executed after each update, and parallel processing is enabled
(parallel=4) for the SDO_GEOR.generatePyramid procedure. The query of the GeoRaster
object with FOR UPDATE clause is executed within the loop, not in the cursor query statement.

DECLARE
grl sdo_georaster;
BEGIN
FOR rec in (SELECT georid FROM georaster table ORDER BY georid) LOOP
SELECT georaster INTO grl FROM georaster table WHERE georid=rec.georid FOR UPDATE;
sdo_geor.generatePyramid(grl, 'rlevel=5, resampling=bilinear', null, 'parallel=4');
UPDATE georaster table SET georaster=grl WHERE georid=rec.georid;
COMMIT;
END LOOP;
END;
/

Example 4-6 Updating GeoRaster Objects in a Loop Without Parallel Processing
Enabled

If the GeoRaster operation in the loop is not parallel enabled (as is the case in this example),
instead of executing a COMMIT after each update, the COMMIT statement can be executed
outside the cursor loop, to avoid invalidating the cursor with FOR UPDATE clause. Also note
that the example adds NODATA to all the GeoRaster objects in the table.

BEGIN
FOR rec in (SELECT georid, georaster FROM georaster table FOR UPDATE)
LOOP
sdo_geor.addNODATA (rec.georaster, 0, 0);
UPDATE georaster table SET georaster=rec.georaster
WHERE georid=rec.georid;

END LOOP;
COMMIT;
END;
/

4-14

Chapter 4
Using Template-Related Subprograms to Develop GeoRaster Applications

4.16 Using Template-Related Subprograms to Develop
GeoRaster Applications

ORACLE

The SDO_GEOR.createTemplate and SDO_GEOR.getRasterBlockLocator subprograms
enable you to develop GeoRaster applications, such as ETL tools and image processing
systems that work with GeoRaster objects, by reading and writing GeoRaster metadata and
binary raster data without dealing directly with the Oracle XMLType, the GeoRaster XML
schema, and Oracle BLOBs.

After you create a new GeoRaster object (explained in Creating New GeoRaster Objects), you
can use the SDO_GEOR:.createTemplate function to populate the metadata of the GeoRaster
object with basic information, such as raster type, dimension sizes, ultCoordinates, cell depth,
interleaving type, blocking and block size, pyramid resampling method and reducing level, and
compression method and quality. This function can optionally populate the raster data table
with the correct number of rows and row data consisting of raster blocks containing empty
BLOBs.

The XML metadata generated by the SDO_GEOR.createTemplate function conforms to the
GeoRaster metadata schema. You can then use other GeoRaster subprogams to query or
update the metadata (see Querying and Updating GeoRaster Metadata).

You can use the SDO_GEOR.getRasterBlockLocator procedure to get the raster block locator
by specifying the pyramid level and block number. If you have the raster block locator, you can
then use the OCI or Java JDBC LOB interfaces to read and write the binary raster data. (The
SDO_GEOR.getRasterBlockLocator procedure does not itself read or process LOB data.) To
use this approach, you must understand the physical storage of the raster data (explained in
GeoRaster Physical Storage), and you must compress and decompress the data as necessary
before reading from or writing to the BLOB.

4-15

Raster Algebra and Analytics

ORACLE

This chapter describes the raster algebra language (PL/SQL and algebraic expressions) and
related raster operations, including conditional queries, cell value-based updates or edits,
mathematical operations, classify, on-the-fly statistical analysis, logical operations, and their
applications in cartographic modeling.

It contains the following major sections.

Raster Algebra Language
Raster algebra is commonly used in raster data analysis and GIS modeling. In GeoRaster,
raster algebra is supported by the GeoRaster raster algebra language.

Cell Value-Based Conditional Queries
Using cell-based conditional queries, you can generate a new GeoRaster object based on
a specified condition.

Cell Value-Based Conditional Updates (Edits)
You can update raster cell values based on conditions.

Mathematical Operations
A major use of raster algebra is to apply mathematical models to raster layers from
different sources.

Classification Operations
Classification (segmentation) operations can be applied on source GeoRaster objects to
generate new objects.

Statistical Operations
To apply statistical operations on one or more layers, which are from one or more
GeoRaster objects, the following types of operations are available.

Logical Operations

A major use of raster algebra is to apply logical models to raster layers from different
sources; that is, you can apply logical operations on one or more layers, from one or more
GeoRaster objects, to generate a new GeoRaster object.

Raster Data Scaling and Offsetting
You can perform raster data scaling and offsetting operations.

Raster Data Casting
Raster data casting maps cell values from one data type to another.

Cartographic Modeling

Raster algebra is widely used in cartographic modeling and is considered an essential
component of GIS systems. Using the PL/SQL and the raster algebra expressions and
functions, you can conduct cartographic modeling over a large number of rasters and
images of virtually unlimited size.

Terrain Modeling and Analysis
You can use the data from input GeoRaster objects to perform terrain modeling and
analysis.

5-1

Chapter 5
Raster Algebra Language

5.1 Raster Algebra Language

ORACLE

Raster algebra is commonly used in raster data analysis and GIS modeling. In GeoRaster,
raster algebra is supported by the GeoRaster raster algebra language.

The GeoRaster raster algebra language is an extension to the Oracle PL/SQL language.
PL/SQL provides declarations of variables and constants, general mathematical expressions,
basic functions, statements, and programming capabilities. GeoRaster provides a raster
algebra expression language and a set of raster algebra functions for raster layer operations.
The raster algebra expression language includes general arithmetic, casting, logical, and
relational operators and allows any combination of them. The raster algebra functions enable
the usage of the expressions and support cell value-based conditional queries, mathematical
modeling, classify operations, and cell value-based updates or edits over one or many raster
layers from one or many GeoRaster objects.

This combination of the PL/SQL language and GeoRaster algebraic expressions and functions
provides an easy-to-use, powerful way to define raster analyses as algebraic expressions, so
that users can easily apply algebraic functions on raster data to derive new results. For
example, a simple raster operation can use two or more raster layers with the same dimension
sizes to produce a new raster layer by using algebraic operations (addition, subtraction, and so
on), or a sophisticated raster operation to generate a Normalized Difference Vegetation Index
(NDVI) from multiple bands of satellite imagery.

GeoRaster supports raster algebra local operations, so the raster algebra operations work on
individual raster cells, or pixels.

The following is the GeoRaster raster algebra expression language definition:

<arithmeticExpr> ::=

<unaryArithmeticExpr>
<binaryArithmeticExpr>
<functionalArithmeticExpr>
<conditionalExpr>
<castingExpr>
<booleanExpr>
<constantNumber>
<identifier>

(<arithmeticExpr>)

<unaryArithmeticExpr> ::=
(<unaryArithmeticOp> <arithmeticExpr>)

<unaryArithmeticOp> ::=
+

<binaryArithmeticExpr> ::=
<arithmeticExpr> <binaryArithmeticOp> <arithmeticExpr>

<binaryArithmeticOp> ::=
+

S~ *

o\

<functionalArithmeticExpr> ::=
<statisticalFunction> ()
| <numericFunction with 1 param> (<arithmeticExpr>)

5-2

ORACLE

Chapter 5
Raster Algebra Language

| <numericFunction with 2 param> (<arithmeticExpr> , <arithmeticExpr>)
| <numericFunction with 3 param> (<arithmeticExpr> , <arithmeticExpr> ,
<arithmeticExpr>)

<statisticalFunction> ::=

min

max

mean
median
std
minority
majority
sum
variety

<numericFunction with 1 param> ::=

abs
sqrt
exp
exp2
expl0
log

1n

log?2
sin

cos

tan
sinh
cosh
tanh
arcsin
arccos
arctan
arcsinh
arccosh
arctanh
ceil
floor
factorial

<numericFunction with 2 param> ::=

power
max2
min2

<numericFunction with_ 3 param> ::=

max3
min3

<conditionalExpr> ::=

<conditionalFunction>

<conditionalFunction> ::=

<castingFunction> (<arithmeticExpr>)

condition
<castingExpr> =
<castingFunction> ::=
castint
| castonebit
| casttwobit

(<booleanExpr> , <arithmeticExpr> , <arithmeticExpr>)

5-3

ORACLE

Chapter 5
Raster Algebra Language

castfourbit
casteightbit
castBoolean

<booleanExpr> ::=
<unaryBooleanExpr>
<binaryBooleanExpr>
| (<booleanExpr>)

<unaryBooleanExpr> ::=
<unaryBooleanOp> <booleanExpr>

<unaryBooleanOp> ::=
|

<binaryBooleanExpr> ::=
<booleanExpr> <binaryBooleanOp> <booleanExpr>

| <arithmeticExpr> <comparisonOp> <arithmeticExpr>

<binaryBooleanOp> ::=

<comparisonOp> ::=

<constantNumber> ::=
<double number>

<identifier> ::=
{ <ID> , <band> }
| { <band> }
<ID> ::=
<integer number>
<band> ::=

<integer number>

The precedence of the algebraic operators (+, -, *, /, and so on) in the expression language
complies with general conventions. However, in any case where the expression might be
misinterpreted, you should use parentheses to clarify which interpretation is intended.

The booleanExpr can be used as arithmeticExpr, as defined in the GeoRaster raster algebra
expression language. In this case, the TRUE and FALSE evaluation results of booleanExpr are
cast to numeric values 1 and 0O, respectively.

The identifier in the expression refers to a raster layer of a GeoRaster object. It is either a
single band number if there is only one GeoRaster object involved, or a pair of (1D, band) where
1D refers to one of GeoRaster objects in the expression and band refers to a specific layer of
that GeoRaster object. The band number in this language refers to the ordinate number of a
layer along the band dimension in the cell space, so it always starts with O (zero). The
GeoRaster ID number always starts with 0 (zero).

The following procedures provide the main support for raster algebra operations:

5-4

Chapter 5
Raster Algebra Language

+ SDO_GEOR_RA rasterMathOp takes arithmeticExpr to perform mathematical operations
or modeling, conditionalExpr and booleanExpr to perform logical operations, and
statisticalFunction expression to perform statistical analysis.

e SDO_GEOR_RA findCells searches/masks cells based on a booleanExpr condition.
» SDO_GEOR_RA.classify applies arithmeticExpr to cells and then segments the raster.

+ SDO_GEOR_RA. rasterUpdate updates cell values of a raster based on different
booleanExpr conditions.

« SDO_GEOR_RA.diff and SDO_GEOR_RA.over perform logical operations without using
expressions.

« SDO_GEOR_RA.stack and many other subprograms perform statistical analysis or
generate statistics.

These raster algebra functions take many layers from one or many GeoRaster objects, apply
booleanExpr and/or arithmeticExpr expressions over those layers, do the specific algebraic
computation or modeling, and output a new GeoRaster object. The expressions can be defined
in any way based on the syntax described earlier in this section.

Note:

All raster algebra functions require that the raster layers overlap each other and have
the same dimension sizes and resolution if they are georeferenced, or have the same
dimension sizes if they are not georeferenced. Before you apply raster algebra
operations over two or more GeoRaster objects, you can use the
SDO_GEOR_RA.isOverlap function to determine if the GeoRaster objects are of the
same size and cover the same ground area.

Raster and image databases are generally very large. Querying and manipulating such
databases are computationally intensive operations. To improve performance, all GeoRaster
raster algebra functions are parallelized. You should always consider applying parallel
processing when using multi-CPU or multicore servers.

e Examples of Raster Algebra Expressions

5.1.1 Examples of Raster Algebra Expressions

ORACLE

This section contains examples showing how to define raster algebra expressions.
Example 5-1 Finding Pixels Based on a Comparison (>)

Example 5-1 finds all pixels that meet the condition defined by algebra expression ' {1}>200" ,
because there is only one GeoRaster object involved in the procedure, so {1} refers to the cell
value of second layer ({0} would be for the first layer), and ' {1}>200' means any pixels whose
second layer value is greater than 200. The example assumes that the source GeoRaster
object has at least two layers.

DECLARE
geor MDSYS.SDO GEORASTER;
georl MDSYS.SDO GEORASTER;
BEGIN

select georaster into geor from georaster table where georid = 1;

select georaster into georl from georaster table where georid = 5 for update;

sdo geor ra.findcells(geor, '{1}>200', 'blocking=optimalpadding, blocking=true,
blocksize=(512,512,3)"',georl);

5-5

ORACLE

Chapter 5
Raster Algebra Language

update georaster table set georaster = georl where georid = 5;
commit;

END;

/

Example 5-2 Generating a GeoRaster Object Based on an Expressions Array

Example 5-2 generates a new GeoRaster object geor2 from two input GeoRaster objects geor
and georl based on the algebra expressions array

SDO_STRING2 ARRAY ('{0,0}-0.5%{1,0}','{0,1}-0.5%{1,1}','{0,2}-0.5%{1,2}"). The
example assumes that both of the source GeoRaster objects are images with three bands.

DECLARE
geor MDSYS.SDO_GEORASTER;
georl MDSYS.SDO_GEORASTER;
geor2 MDSYS.SDO_GEORASTER;
geo_array MDSYS.SDO GEORASTER ARRAY;
BEGIN

select georaster into geor from georaster table where georid = 1;

select georaster into georl from georaster table where georid = 2;

insert into georaster table values (17, sdo geor.init('rdt 1', 17)) returning
georaster into geor2;

geo_array:=MDSYS.SDO GEORASTER ARRAY (geor,georl);

sdo_geor ra.rasterMathOp(geo array,SDO_STRING2_ARRAY('{0,0}-0.5*{1,0}','{0,1}-0.5*{1,1}",
'{0,2}-0.5*{1,2}'),null,geor2);
update georaster table set georaster = geor2 where georid = 17;
commit;
END;
/

In the algebra expressions array in Example 5-2:

e {0,0)} refers to the cell value of band 0 of the first input GeoRaster object geor.

e {0,1} refers to the cell value of band 1 of the first input GeoRaster object geor.

* {0,2} refers to the cell value of band 2 of the first input GeoRaster object geor.

* {1,0} refers to the cell value of band 0 of the second input GeoRaster object georl.
 {1,1} refers to the cell value of band 1 of the second input GeoRaster object georl.
e {1,2)} refers to the cell value of band 2 of the second input GeoRaster object georl.

In Example 5-2, then, the target GeoRaster object geor2 will have three bands, and:

e The cell value of band 0 of target GeoRaster object geor2 is: {0,0}-0.5*{1,0}
e The cell value of band 1 of target GeoRaster object geor2 is: {0,1}-0.5*{1,1}
* The cell value of band 2 of target GeoRaster object geor2 is: {0,2}-0.5*%{1,2}
Example 5-3 Updating a GeoRaster Object Based on an Expressions Array

Example 5-3 updates cell values of the input GeoRaster object based on the algebra
expression array SDO_STRING2 ARRAY (' (abs ({0}-{1})=48)&({2}-{1}=-101)",'2*{0}-{1}/
3=108"). The example assumes that the source GeoRaster object has three layers.

DECLARE
geor MDSYS.SDO_GEORASTER;
georl MDSYS.SDO_GEORASTER;
begin

select georaster into geor from georaster table where georid = 1;

5-6

Chapter 5
Cell Value-Based Conditional Queries

sdo_geor_ra.rasterUpdate (geor,0,SDO_STRING2_ ARRAY (' (abs({0}-{1})=48)&({2}-{1}=-101)", '2%{
0}-{1}/

3=108') ,SDO_STRING2_ARRAYSET (SDO_STRING2 ARRAY('123','54','89'),SDO_STRING2 ARRAY('98','S
6','123')));

END;

/

In Example 5-3, for each pixel:

e If (abs({0}-{1})=48)&({2}-{1}=-101) is true, then the cell values of the three layers will
be updatedto ('123','54','89").

o If2*{0}-{1}/3=108 is true, then the cell values of the three layers will be updated to
('98','56"',"'123").

5.2 Cell Value-Based Conditional Queries

ORACLE

Using cell-based conditional queries, you can generate a new GeoRaster object based on a
specified condition.

In addition to their use in space-based queries on rasters (such as with
SDO_GEOR.getRasterSubset), cell value-based queries are particularly useful in analytics and
application modeling. To perform cell value based conditional queries and generate a new
GeoRaster object based on the specified condition, you can use the SDO_GEOR_RA.findCells
procedure and specify an appropriate condition parameter.

The condition parameter must specify a valid booleanExpr value (explained in Raster Algebra
Language). The procedure computes the booleanExpr against each cell in the source
GeoRaster object. If the result is TRUE, the original cell values are kept in the output GeoRaster
object; if the result is FALSE, the bgValues are used to fill cell values in the output GeoRaster
object. This can also be considered as a masking operation.

Example 5-4 Conditional Query

Example 5-4 calls the SDO_GEOR_RA.findCells procedure to find all pixels where the value of
the second band is greater than 200. Because the bgValues parameter is not specified, the
value 0 is used as the background value to fill all pixels that make the condition false. The
example assumes that the source GeoRaster object is an image with more than two bands.

DECLARE
geor SDO_GEORASTER;
georl SDO GEORASTER;
BEGIN
SELECT georaster INTO geor FROM georaster table WHERE georid = 1;
INSERT into georaster table values (5, sdo geor.init('rdt 1', 5)) returning georaster
into georl;
sdo_geor_ra.findcells(geor, '{ 1 }>200', 'blocking=optimalpadding,
blocksize=(512,512,3)"', georl);
UPDATE georaster table set georaster = georl WHERE georid = 5;
COMMIT;
END;
/

-- This pixel is set to (0,0,0) because the cell value of the

-- second band is 136, which is not greater than 200.

SELECT sdo_geor.getcellvalue (georaster,0,30,30,'"') FROM georaster table WHERE georid =1
OR georid=5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,30,30,'")

SDO_NUMBER ARRAY (88, 136, 35)

5-7

ORACLE

Chapter 5
Cell Value-Based Conditional Queries

SDO_NUMBER_ARRAY(O, 0, 0)
2 rows selected.

-- This pixel keeps the original values because the cell value

-- of the second band is greater than 200.

SELECT sdo_geor.getcellvalue (georaster,0,132,116,"'") FROM georaster table WHERE georid
=1 OR georid=5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,132,116, "'")
SDO_NUMBER ARRAY (242, 225, 233)
SDO_NUMBER ARRAY (242, 225, 233)

2 rows selected.

-- This pixel keeps the original values because the cell value

-- of the second band is greater than 200.

SELECT sdo_geor.getcellvalue (georaster,0,261,185,'") FROM georaster table WHERE georid
=1 OR georid=5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,261,185,"'")
SDO_NUMBER ARRAY (255, 214, 2)
SDO_NUMBER ARRAY (255, 214, 2)

Example 5-5 Conditional Query with nodata Parameter

Example 5-5 is basically the same as Example 5-4, except that the nodata parameter value is
set to 'TRUE', so that all NODATA pixels keep their original values from the input GeoRaster
object in the output GeoRaster object.

DECLARE
geor SDO_GEORASTER;
georl SDO GEORASTER;
BEGIN
SELECT georaster INTO geor FROM georaster table WHERE georid = 1;
INSERT into georaster table values (5, sdo geor.init('rdt 1', 5)) returning georaster
into georl;
sdo_geor_ra.findcells(geor, '{ 1 }>200', null, georl, null, 'TRUE');
UPDATE georaster table set georaster = georl WHERE georid = 5;
COMMIT;
END;
/

SELECT sdo_geor.getcellvalue (georaster,0,30,30,"'") FROM georaster table WHERE georid =1;
SDO_GEOR.GETCELLVALUE (GEORASTER, 0,30,30,"")

SDO_NUMBER ARRAY (88, 136, 35)

1 row selected.

-- This pixel keeps its original cell values because it is nodata, even though

-- the cell value of the second band is not greater than 200.

SELECT sdo_geor.getcellvalue (georaster,0,30,30,'") FROM georaster table WHERE georid=5;
SDO_GEOR.GETCELLVALUE (GEORASTER, 0, 30,30, "")

SDO_NUMBER ARRAY (88, 136, 35)

1 row selected.

5-8

Chapter 5
Cell Value-Based Conditional Updates (Edits)

Example 5-6 Conditional Query with parallelParam
Example 5-6 finds all pixels that meet all of the following conditions:

e The cell value of the first band is between (100,200).
e The cell value of the second band is between [50,250].
* The cell value of the third band is greater than 100.

In addition, because parallelParam is specified as 'parallel=4", the procedure in
Example 5-6 will run in parallel with four processes.

DECLARE

geor SDO_GEORASTER;

georl SDO GEORASTER;
BEGIN

SELECT georaster INTO geor FROM georaster table WHERE georid = 2;

INSERT into georaster table values (10, sdo geor.init('rdt 1', 10)) returning
georaster into georl;

sdo_geor_ra.findcells(geor,' ({1}>=50)&({1}<=250)&({0}>100)&({0}<200)&{2}>100)
',null,georl,null, 'false', 'parallel=4");

UPDATE georaster table SET georaster = georl WHERE georid = 10;

COMMIT;
END;
/

5.3 Cell Value-Based Conditional Updates (Edits)

ORACLE

You can update raster cell values based on conditions.

This section pertains to cell value-based raster updates and not space-based raster updates,
both of which types of update are described in Querying and Updating GeoRaster Cell Data.

To update raster cell values based on conditions, you can use the
SDO_GEOR_RA rasterUpdate procedure and specify appropriate condition and vals
parameters.

The condition parameter specifies an array of Boolean expressions, and the vals parameter
specifies an array of arrays of math expressions. (See the raster algebra operation
explanations in Raster Algebra Language). For each cell, if condition is TRUE, its cell value is
updated to the result of the corresponding math expression in the vals array.

Example 5-7 Cell Value-Based Update

Example 5-7 assumes that the GeoRaster object to be updated is an image with three bands,
and it calls the SDO_GEOR_RA.rasterUpdate procedure to do the following:

* For any pixels if abs(first_band_value - second_band_value)=48 and (third_band_value -
second_band_value=-101), then the three band values will be updated to (123,54,89),
respectively.

* For any pixels if (2*first_band_value - second_band_value/3)=108, then the three band
values will be updated to (98,56,123), respectively.

Example 5-7 also includes several calls to the SDO_GEOR.getCellValue function to show
"before" and "after" values.

SELECT sdo_geor.getcellvalue (georaster,0,30,30,"'"') FROM georaster table WHERE georid =1;
SDO_GEOR.GETCELLVALUE (GEORASTER, 0, 30,30, "")

SDO_NUMBER ARRAY (88, 136, 35)

5-9

ORACLE

Chapter 5
Cell Value-Based Conditional Updates (Edits)

1 row selected.

SELECT sdo_geor.getcellvalue (georaster,0,130,130,'") FROM georaster table WHERE georid
=1;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,130,130, "'")

SDO_NUMBER ARRAY (64, 60, 48)
1 row selected.

SELECT sdo_geor.getcellvalue (georaster,0,230,230,'") FROM georaster table WHERE georid
=1;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,230,230, "'")

SDO_NUMBER ARRAY (11,11, 11)
1 row selected.

DECLARE
geor SDO_GEORASTER;
georl SDO GEORASTER;
BEGIN

SELECT georaster into geor FROM georaster table WHERE georid = 1;

sdo_geor_ra.rasterUpdate (geor,0,SDO_STRING2 ARRAY (' (abs({0}-{1})=48)&({2}-{1}=-101)", '2*{
0}-{1}/

3=108') ,SDO_STRING2_ARRAYSET (SDO_STRING2 ARRAY('123','54','89'),SDO_STRING2 ARRAY('98','S5
6','123')));

END;

/

PL/SQL procedure successfully completed.

show errors;
No errors.

-- This pixel gets updated because it meets the first condition.
SELECT sdo_geor.getcellvalue (georaster,0,30,30,"'") FROM georaster table WHERE georid =1;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,30,30,"")
SDO_NUMBER ARRAY (123, 54, 89)

1 row selected.

--This pixel gets updated because it meets the second condition.
SELECT sdo_geor.getcellvalue (georaster,0,130,130,"'") FROM georaster table WHERE georid=1;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,130,130, "'")

1 row selected.

-- This pixel keeps its original values because it does not meet any condition
-- in the "condition" array.

SELECT sdo_geor.getcellvalue (georaster,0,230,230,'") FROM georaster table WHERE georid
=1;

5-10

ORACLE

Chapter 5
Cell Value-Based Conditional Updates (Edits)

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,230,230, "'")

SDO_NUMBER ARRAY (11,11, 11)

1 row selected.

Example 5-8 Cell Value-Based Update with nodata Parameter

Example 5-8 is basically the same as Example 5-7, except that the nodata parameter value is
set to 'TRUE', so that all NODATA pixels keep their original values from the input GeoRaster
object in the output GeoRaster object.

SELECT sdo_geor.getcellvalue (georaster,0,30,30,"'") FROM georaster table WHERE georid =1;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,30,30,"")

SDO_NUMBER ARRAY (88, 136, 35)
1 row selected.

SELECT sdo_geor.getcellvalue (georaster,0,130,130,'") FROM georaster table WHERE georid
:l;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,130,130, "'")

SDO_NUMBER ARRAY (64, 60, 48)
1 row selected.

SELECT sdo_geor.getcellvalue (georaster,0,230,230,'") FROM georaster table WHERE georid
:l;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,230,230, "'")

SDO_NUMBER ARRAY (11,11, 11)
1 row selected.

DECLARE
geor SDO_GEORASTER;
georl SDO GEORASTER;
BEGIN

SELECT georaster into geor FROM georaster table WHERE georid = 1;
sdo_geor.addNODATA (geor, 1,88);

sdo_geor_ra.rasterUpdate (geor,0,SDO_STRING2_ARRAY (' (abs ({0}-{1})=48)&({2}-{1}=-101)", '2*{
0}-{1}/

3=108"'),SDO_STRING2 ARRAYSET (SDO_STRING2 ARRAY('123','54','89'),SDO_STRING2 ARRAY('98','5
6','123")),null, 'true');

END;

/

PL/SQL procedure successfully completed.

-- This pixel keeps its original values because it is a NODATA pixel.
SELECT sdo_geor.getcellvalue (georaster,0,30,30,"'") FROM georaster table WHERE georid =1;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,30,30,"")

SDO_NUMBER ARRAY (88, 136, 35)

5-11

Chapter 5
Mathematical Operations

1 row selected.

--This pixel gets updated because it meets the second condition.
SELECT sdo_geor.getcellvalue (georaster,0,130,130,"'") FROM georaster table WHERE georid=1;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,130,130, "")

1 row selected.

5.4 Mathematical Operations

ORACLE

A major use of raster algebra is to apply mathematical models to raster layers from different
sources.

To apply mathematical operations on one or multiple layers, which could be from one or more
GeoRaster objects, to generate a new GeoRaster object, you can use the
SDO_GEOR_RA . rasterMathOp procedure.

For most formats of this procedure, the operation parameter specifies an array of
arithmeticExpr strings used to calculate raster cell values in the output GeoRaster object.
Each element of the array corresponds to a layer in the output GeoRaster object.

Note that booleanExpr can be also used as arithmeticExpr, as is done in Example 5-8.
Example 5-9 Mathematical Operations (1)

Example 5-9 calls the SDO_GEOR_RA rasterMathOp procedure to generate a new 6-layer
GeoRaster object from a 3-layer source GeoRaster object, and follows these rules to calculate
cell values of the target GeoRaster object:

e The cell value of the first three layers of target GeoRaster object is equal to the value of
the corresponding layer of source GeoRaster object, minus 10.

e The cell value of the last three layers of target GeoRaster object is equal to the value of the
first three layers of the source GeoRaster object, respectively.

DECLARE

geor SDO_GEORASTER;

georl SDO GEORASTER;

geor2 SDO_GEORASTER;
BEGIN

SELECT georaster INTO geor FROM georaster table WHERE georid = 1;

INSERT into georaster table values (16, sdo geor.init('rdt 1', 16)) returning
georaster into georl;

sdo_geor_ra.rasterMathOp (geor,SDO_STRING2_ ARRAY('{0,0}-10','{0,1}-10','{0,2}-10','{0,0}",
'{0,1}','{0,2}') ,null,georl);
UPDATE georaster table SET georaster = georl WHERE georid = 16;
COMMIT,;
END;
/

PL/SQL procedure successfully completed.
SELECT sdo_geor.getcellvalue (georaster,0,100,100,'") FROM georaster table WHERE georid=1l;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, "'")

5-12

ORACLE

Chapter 5
Mathematical Operations

1 row selected.

-- In the results of the next SELECT statement, note:

-- 171=181-10

-- 153=163-10

-- 149=159-10

-- 181=181

-- 163=163

-- 159=159

SELECT sdo_geor.getcellvalue (georaster,0,100,100,'") FROM georaster table WHERE georid
=16;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, "")

1 row selected.

Example 5-10 Mathematical Operations (2)

Example 5-10 applies an operation on a 2-element GeoRaster array (containing two 3-layer
source GeoRaster objects) to generate a new 3-layer GeoRaster object.

DECLARE

geor SDO_GEORASTER;

georl SDO_GEORASTER;

geor? SDO_GEORASTER;

geo array SDO GEORASTER ARRAY;
BEGIN

SELECT georaster INTO geor FROM georaster table WHERE georid = 1;

SELECT georaster INTO geor2 FROM georaster table WHERE georid = 2

INSERT into georaster table values (17, sdo geor.init('rdt 1', 17
georaster into georl;

geo_array:=SDO_GEORASTER ARRAY (geor,geor2);

)) returning

sdo_geor_ra.rasterMathOp(geo_array,SDO_STRING2_ARRAY('{0,0}-0.5*{1,0}','{0,1}-0.5*{1,1}',
'{0,2}-0.5*{1,2}') ,null,georl, 'false', null, 'parallel=4");
UPDATE georaster table SET georaster = georl WHERE georid = 17;
COMMIT;
END;
/

PL/SQL procedure successfully completed.

SELECT sdo _geor.getcellvalue(georaster,0,100,100,"') FROM georaster table WHERE georid=1
or georid=2;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")
SDO_NUMBER ARRAY (181, 163, 159)
SDO_NUMBER ARRAY (60, 80, 90)

2 rows selected.

-- In the results of the next SELECT statement, note:

-- 151=181-0.5*60

-- 123=163-0.5*80

-- 114=159-0.5*90

SELECT sdo _geor.getcellvalue(georaster,0,100,100,"') FROM georaster table WHERE georid
=17;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, ')

5-13

ORACLE

Chapter 5
Mathematical Operations

SDO_NUMBER ARRAY (151, 123 114)

1 row selected.

Example 5-11 Mathematical Operations (3)

Example 5-11 applies a subtraction operation on two 3-layer input GeoRaster objects to
generate a new GeoRaster object. The example also includes several calls to the
SDO_GEOR.getCellValue function to show "before" and "after" values.

SELECT sdo geor.getcellvalue (georaster,0,10,10,'0-2"') FROM georaster table WHERE
georid=1 OR georid=5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,10, 10, '0-2")
SDO_NUMBER ARRAY (88, 137, 32)
SDO_NUMBER ARRAY (98, 147, 42)

2 rows selected.

SELECT sdo geor.getcellvalue (georaster,0,100,100,'0-2") FROM georaster table WHERE
georid=1 OR georid=5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '0-2")
SDO_NUMBER ARRAY (181, 163, 159)
SDO_NUMBER ARRAY (191, 173, 169)

2 rows selected.

DECLARE
geor0 SDO GEORASTER;
geor SDO_GEORASTER;
georl SDO GEORASTER;
BEGIN
SELECT georaster INTO geor FROM georaster table WHERE georid = 1;
SELECT georaster INTO geor(O FROM georaster table WHERE georid = 5;
INSERT into georaster table values (6, sdo geor.init('rdt 1', 6))
into georl;
sdo_geor_ra.rasterMathOp(geor0,geor,null, sdo_geor_ra.OPERATOR SUBTRACT,null,georl);
UPDATE georaster table SET georaster = georl WHERE georid = 6;
COMMIT;
END;
/

returning georaster

PL/SQL procedure successfully completed.

SELECT sdo geor.getcellvalue (georaster,0,10,10,'0-2"') FROM georaster table WHERE
georid=6;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,10,10, '0-2")
SDO_NUMBER ARRAY (10, 10, 10)

1 row selected.

SELECT sdo geor.getcellvalue (georaster,0,100,100,'0-2") FROM georaster table WHERE
georid=6;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '0-2")

SDO_NUMBER ARRAY (10, 10, 10)

5-14

Chapter 5
Classification Operations

1 row selected.

5.5 Classification Operations

ORACLE

Classification (segmentation) operations can be applied on source GeoRaster objects to
generate new objects.

To apply simple classification operations on source GeoRaster objects and generate new
GeoRaster objects based on your specifications, you can use the SDO_GEOR_RA.classify
procedure and specify the expression, rangeArray, and valueArray parameters. This
classification procedure is also called segmentation.

The expression parameter is used to compute values that are used to map into the value
ranges defined in the rangeArray parameter. The rangeArray parameter specifies a number
array that defines ranges for classifying cell values, and this array must have at least one
element. The valueArray parameter is a number array that defines the target cell value for
each range, and its length must be the length of rangeArray plus one.

Example 5-12 Classification

Example 5-12 calls the SDO_GEOR_RA .classify procedure to apply a segmentation operation
on the value of the first band of the input GeoRaster object. The example assumes that the
GeoRaster object is an image.

DECLARE
geor SDO_GEORASTER;
georl SDO_GEORASTER;

rangeArray SDO NUMBER ARRAY;
valueArray SDO NUMBER ARRAY;
BEGIN
rangeArray:=sdo_number array(70,80,90,100,110,120,130,140,150,160,170,180);
valueArray:=sdo_number array(70,80,90,100,110,120,130,140,150,160,170,180,190);
SELECT georaster INTO geor FROM georaster table WHERE georid = 1;
INSERT into georaster table values (5, sdo geor.init('rdt 1', 5)) returning georaster
into georl;
sdo_geor_ra.classify(geor,'{0}',6 rangeArray,valueArray,null, georl);
UPDATE georaster table SET georaster = georl WHERE georid = 5;
COMMIT,;
END;
/

PL/SQL procedure successfully completed.

-- In the next statement, the target value is 90 because the value of the

-- first band of source GeoRaster object is 88, which is between 80 and 90.

SELECT sdo_geor.getcellvalue (georaster,0,30,30,"'') FROM georaster table WHERE georid =1
OR georid =5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,30,30,"")

SDO_NUMBER ARRAY (88, 136, 35)
SDO_NUMBER ARRAY (90)

2 rows selected.
-- In the next statement, the target value is 190 because the value of the
-- first band of source GeoRaster object is 242, which is greater than 180.

SELECT sdo_geor.getcellvalue (georaster,0,132,116,'") FROM georaster table WHERE georid
=1 OR georid =5 ORDER BY georid;

5-15

Chapter 5
Statistical Operations

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,132,116, "'")

SDO_NUMBER ARRAY (242, 225, 233)
SDO_NUMBER ARRAY (190)

2 rows selected.

Example 5-13 Classification with nodata and nodataValue Parameters

Example 5-13 calls the SDO_GEOR_RA .classify procedure to apply a segmentation operation
on the value of the first layer of the source GeoRaster object, and to set the nodata parameter
to '"TRUE' and the nodatavalue parameter to 5, so that all NODATA pixels will be set with a
NODATA value of 5 in the target GeoRaster object.

DECLARE
geor SDO_GEORASTER;
georl SDO_GEORASTER;

rangeArray SDO NUMEBR ARRAY;
valueArray SDO NUMEBR ARRAY;
BEGIN
rangeArray:=sdo_number array(70,80,90,100,110,120,130,140,150,160,170,180);
valueArray:=sdo_number array(70,80,90,100,110,120,130,140,150,160,170,180,190);
SELECT georaster INTO geor FROM georaster table WHERE georid = 1;
sdo_geor.addNODATA (geor, 2,136);
INSERT into georaster table values (5, sdo geor.init('rdt 1', 5)) returning georaster
into georl;
sdo_geor ra.classify(geor,'{0}', rangeArray,valueArray,null,georl, 'true',5);
UPDATE georaster table SET georaster = georl WHERE georid = 5;
END;
/

PL/SQL procedure successfully completed.

-- In the next statement, the target value of the cell is 5 because the value

-- of the second layer of the input GeoRaster object is 136, which is nodata.

SELECT sdo_geor.getcellvalue (georaster,0,30,30,"'') FROM georaster table WHERE georid =1
OR georid =5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,30,30,"")

SDO_NUMBER ARRAY (88, 136, 35)
SDO_NUMBER ARRAY (5)

2 rows selected.

5.6 Statistical Operations

To apply statistical operations on one or more layers, which are from one or more GeoRaster
objects, the following types of operations are available.

e On-the-Fly Statistical Analysis
e Stack Statistical Analysis

5.6.1 On-the-Fly Statistical Analysis

Many applications require statistical analysis. GeoRaster provides statistical analysis functions
that dynamically ("on the fly") compute complete statistical values for a GeoRaster object or
the following individual statistical values: minimum, maximum, mean, median, mode, and

ORACLE - 16

Chapter 5
Statistical Operations

standard deviation. You can do this without generating a histogram and updating the
GeoRaster object metadata.

These subprograms support pyramids, band by band and the aggregation of specified band
numbers. Each subprogram returns an SDO_NUMBER_ARRAY object or a number.

See the reference information for explanations and examples of these on-the-fly statistics
computation subprograms:

 SDO_GEOR.generateStatistics
 SDO_GEOR.generateStatisticsMax
 SDO_GEOR.generateStatisticsMean
 SDO_GEOR.generateStatisticsMedian
 SDO_GEOR.generateStatisticsMin
 SDO_GEOR.generateStatisticsMode
 SDO_GEOR.generateStatisticsSTD

These subprograms do not modify the metadata in the GeoRaster object, except for some
formats of SDO_GEOR.generateStatistics that set statistical data in the GeoRaster object
metadata and return a string value of TRUE or FALSE instead of an SDO_NUMBER_ARRAY
object.

GeoRaster also provides statistical analysis functions that compute the area weighted
statistical mean value for the cells and sub-cells within a specific window of the input
GeoRaster object, and that calculate the three—dimensional (3D) surface area represented by
digital elevation model (DEM) data that is stored in a GeoRaster object. See the reference
information for explanations and examples of these on-the-fly statistics computation functions:

« SDO_GEOR.generateAreaWeightedMean
¢ SDO_GEOR_UTL.calcSurfaceArea

These two functions support irregular polygon clipping and sub-cell computation, thus
providing very accurate results.

5.6.2 Stack Statistical Analysis

ORACLE

Stack statistical analysis generates a new one-layer GeoRaster object from one or more
layers, which are from one or more GeoRaster objects, by computing one of the following
statistical values for each cell: max, min, median, std, sum, minority, majority, or diversity.

To perform stack statistical analysis, you have the following options:

e Usethe SDO_GEOR_RA.stack procedure.

This option is more intuitive and does not require constructing raster algebra expressions
(especially for GeoRaster objects with many layers), and it allows you to specify a list of
layers instead of all layers.

e Use the SDO_GEOR_RA.rasterMathOp procedure.

This option is more flexible and powerful, allowing you to perform more comlpicated
statistical analysis.

5-17

ORACLE

Chapter 5
Statistical Operations

Example 5-14 Using SDO_GEOR_RA.stack

This example uses the first option for performing stack statistical analysis. It calls the
SDO_GEOR_RA.stack procedure to generate a new GeoRaster object by computing the
maximum (max) value of layers 2 and 5 of two 3—layer source GeoRaster objects.

DECLARE
geor MDSYS.SDO_GEORASTER;
georl MDSYS.SDO_GEORASTER;
geor?2 MDSYS.SDO_GEORASTER;
geom mdsys.sdo _geometry;
BEGIN

geom:= sdo_geometry(2003,82394, NULL,
sdo_elem info array(l, 1003, 1),
sdo_ordinate array(20283.775, 1011087.9,
18783.775, 1008687.9,
21783.775, 1008687.9,
22683.775+0.001, 1009587.9+0.001,
20283.775, 1011087.9));
select georaster into geor from georaster table where georid = 100;
select georaster into geor2 from georaster table where georid = 102;
select georaster into georl from georaster table where georid = 101 for
update;

sdo_geor ra.stack(SDO_GEORASTER ARRAY (geor,geor2),geom, SDO NUMBER ARRAY (2,5),'
max',null,georl, 'false',0, 'TRUE");
update georaster table set georaster = georl where georid = 101;

END;
/

PL/SQL procedure successfully completed.

SELECT sdo geor.getcellvalue (georaster,0,100,100,'"') FROM georaster table
WHERE georid=100;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

SDO NUMBER ARRAY (121, 66, 181)
1 row selected.

SELECT sdo geor.getcellvalue (georaster,0,100,100,'') FROM georaster table
WHERE georid=102;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

SDO_NUMBER ARRAY (33, 55, 56)
1 row selected.

-- In the results of the next SELECT statement, note:
-- max(181,56) == 181

SELECT sdo _geor.getcellvalue (georaster,0,100,100,'') FROM georaster table

5-18

ORACLE

Chapter 5
Statistical Operations

WHERE georid =101;
SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

SDO_NUMBER ARRAY (181)

1 row selected.

Example 5-15 Using SDO_GEOR_RA.rasterMathOp

This example uses the second option for performing stack statistical analysis. It calls the
sdo_GEOR_RA rasterMathOp specifying a statistical operation (max) to perform an operation
similar to the preceding example, except that this example applies to all layers.

DECLARE
geor MDSYS.SDO_GEORASTER;
georl MDSYS.SDO_GEORASTER;
geor? MDSYS.SDO_GEORASTER;
geo_array MDSYS.SDO GEORASTER ARRAY;
BEGIN

select georaster into geor from georaster table where georid = 100;
select georaster into georl from georaster table where georid 101;
select georaster into geor2 from georaster table where georid = 102 for
update;
geo_array:=MDSYS.SDO GEORASTER ARRAY (geor,georl);
sdo_geor ra.rasterMathOp(geo array,SDO_STRINGZ ARRAY ('max()'),null,geor2);
update georaster table set georaster = geor2 where georid = 102;
commit;
END;
/

PL/SQL procedure successfully completed.

SELECT sdo geor.getcellvalue (georaster,0,100,100,'') FROM georaster table
WHERE georid=100;
SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

SDO NUMBER ARRAY (181, 163, 159)
1 row selected.

SELECT sdo geor.getcellvalue (georaster,0,100,100,'') FROM georaster table
WHERE georid=101;
SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

SDO_NUMBER ARRAY (181, 122, 159) 1 row selected.

-- In the results of the next SELECT statement, note:
-- max(181,163,159,181,122,159) ==> 181

SELECT sdo _geor.getcellvalue (georaster,0,100,100,'') FROM georaster table

WHERE georid =102;
SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

5-19

Chapter 5
Logical Operations

S DO_NUMBER_Z—\RRAY (181)
1 row selected.

5.7 Logical Operations

A major use of raster algebra is to apply logical models to raster layers from different sources;
that is, you can apply logical operations on one or more layers, from one or more GeoRaster
objects, to generate a new GeoRaster object.

To apply logical operations, you can either use raster algebra procedures with logical
expressions, which is more flexible and powerful and mostly be used for some complicated
raster logical operations, or use raster algebra procedures only, which are straightforward and
do not require constructing complicated logical expressions. However, using raster algebra
procedures only (that is, without logical expressions) has some limitations and is mainly used
for some specific raster logical operations.

e Using Raster Algebra Procedures with Logical Expressions

« Using Raster Algebra Functions Only

5.7.1 Using Raster Algebra Procedures with Logical Expressions

ORACLE

GeoRaster logical expressions can be conditional expressions, boolean expressions, or both,
which can take any combination of unary and binary boolean operators (!, &, |, *) and
comparison operators (=, <, >, <=, >=, I=).

To apply logical expressions on the raster data, you must use raster algebra procedures
defined in the SDO_GEOR_RA package and specify appropriate parameters with your
constructed logical expressions.

Example 5-16 Using SDO_GEOR_RA.rasterMathOp with condition operators

This example implements logic described in the following pseudocode to implement 3—band
raster data segmentation:

if ((layerl < 100)
& (layerz2< 1000)
& (layer3< 500))
then output = 10
elsif ((layerl < 200)
& (layer2< 2000)
& (layer3< 1000))
then output = 20
elsif ((layerl < 300)
& (layer2< 3000)
& (layer3< 1500))
then output = 30
elsif ((layerl < 400)
& (layer2< 4000)
& (layer3< 2000))
then output = 40
elsif ((layerl < 500)
& (layer2< 5000)
& (layer3< 2500))
then output = 50

5-20

Chapter 5
Logical Operations

else
output = 0

The example calls the SDO_GEOR_RA.rasterMathOp procedure, as follows

DECLARE
geor SDO_GEORASTER;
georl SDO_GEORASTER;
mycursor sys_refcursor;
expr varchar2(1024);
BEGIN

select georaster into geor from georaster table where georid = 100;

select georaster into georl from georaster table where georid = 101 for
update;

--construct logical expression

expr :='condition((({0}<100)&({1}<1000)&({2}<500)),"||

'10, "1
'condition((({0}<200)&({1}<2000)&({2}<1000)),"||
20, "1
'condition ((({0}<300)&({1}<3000)&({2}<1500)),"I|

"30, "I

"condition ((({0}<400)& ({1}<4000)&({2}<2000)),"]|]|
40, ' 1|

"condition ((({0}<500)&({1}<5000)&({2}<2500)),"I|
'50, "
HORRN
")
")
AN

l)l;

sdo_geor ra.rasterMathOp(geor, sdo _string2 array(expr),null, georl, 'true',
0, 'parallel=4');

update georaster table set georaster = georl where georid = 101;

commit;
END;
/

Example 5-17 Using SDO_GEOR_RA.rasterMathOp with a condition operator

This example uses statistical functions and arithmetic operations to implement the simple logic
described in the following pseudocode:

if (sum()>min () *3)
then

output = sqrt(layer(O+layer2)
else

output = layerl*1.5

ORACLE _

Chapter 5
Logical Operations

The example calls the SDO_GEOR_RA.rasterMathOp procedure, as follows

DECLARE
geor SDO_GEORASTER;
georl SDO_GEORASTER;
mycursor sys_refcursor;
expr varchar2(1024);
BEGIN

select georaster into geor from georaster table where georid = 100;
select georaster into georl from georaster table where georid = 101 for
update;
--construct logical expression
expr :='condition(sum()>min()*3,sqrt({0}+{2}),{1}*1.5)";
sdo_geor ra.rasterMathOp(geor, sdo_string2 array(expr),null, georl, 'true',
0, 'parallel=4');
update georaster table set georaster = georl where georid = 101;
commit;
END;
/

5.7.2 Using Raster Algebra Functions Only

ORACLE

To perform logical operations using only raster algebra functions, you have the following
options

* Usethe SDO_GEOR_RA.diff procedure.

For example, if a cell value in raster A is different from the cell value in raster B, the cell
value in raster A is returned. If the cell values are the same, the value 0 (zero) is returned.

e Usethe SDO_GEOR_RA.over procedure.

For example, if a cell value in raster A is not equal to 0 (zero), the cell value in raster A is
returned. If the cell value in raster A is equal to 0, the cell value in raster B is returned.

Example 5-18 Using SDO_GEOR_RA.diff

This example calls the SDO_GEOR_RA.diff procedure to generate a new GeoRaster object
from two 3—layer source GeoRaster objects.

DECLARE
geor SDO_GEORASTER;
georl SDO_GEORASTER;
geor2 SDO_GEORASTER;
geom sdo_geometry;
BEGIN

select georaster into geor from georaster table where georid = 100;
select georaster into georl from georaster table where georid = 101;
select georaster into geor2 from georaster table where georid = 102 for
update;
geom:=null;
sdo_geor ra.diff (geor,georl,geom,null,geor2);
update georaster table set georaster = geor2 where georid = 102;
END;
/

PL/SQL procedure successfully completed.

5-22

ORACLE

Chapter 5
Logical Operations

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'") FROM georaster table
WHERE georid=100;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

SDO_NUMBER_ARRAY(181, 163, 159)
1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'") FROM georaster table
WHERE georid=101;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

SDO_NUMBER_ARRAY(181, 122, 159)
1 row selected.

-- In the results of the next SELECT statement, note:
-- 181 =181 ==> 0

-- 163!=122 ==> 163

-- 159 =159 ==> 0

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'") FROM georaster table
WHERE georid =102;
SDO_GEOR.GETCELLVALUE(GEORASTER,O,IOO,100,")

SDO_NUMBER_ARRAY(O, 163, 0)
1 row selected.

Example 5-19 Using SDO_GEOR_RA.over

This example calls the SDO_GEOR_RA.over procedure to generate a new GeoRaster object
from two 3—layer source GeoRaster objects.

DECLARE
geor SDO_GEORASTER;
georl SDO_GEORASTER;
geor?2 SDO_GEORASTER;
geom sdo_geometry;
BEGIN

select georaster into geor from georaster table where georid = 102;
select georaster into georl from georaster table where georid = 101;
select georaster into geor2 from georaster table where georid = 100 for
update;
geom:=null;
sdo_geor ra.over (geor,georl,geom,null,geor?2);
update georaster table set georaster = geor2 where georid = 100;
END;
/

5-23

Chapter 5
Raster Data Scaling and Offsetting

PL/SQL procedure successfully completed.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'") FROM georaster table
WHERE georid=102;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

SDO_NUMBER_ARRAY(O, 163, 0)
1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'") FROM georaster table
WHERE georid=101;

SDO_GEOR.GETCELLVALUE (GEORASTER, 0,100,100, '")

SDO_NUMBER_ARRAY(181, 122, 159)
1 row selected.

-- In the results of the next SELECT statement, note:

-- =0 ==> 181 result from georid=101
-- 163!=0 ==> 163 result from georid=102
- =0 ==> 159 result from georid=101

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'") FROM georaster table
WHERE georid =100;
SDO_GEOR.GETCELLVALUE(GEORASTER,O,100,lOO,")

SDO_NUMBER ARRAY (181, 163, 159)

1 row selected.

5.8 Raster Data Scaling and Offsetting

ORACLE

You can perform raster data scaling and offsetting operations.

Raster algebra has many applications, such as cartographic modeling (see Cartographic
Modeling), vegetation index computing (see Vegetation Index Computation), and tasseled cap
transformation (see Tasseled Cap Transformation). Topics in this chapter and in Image
Processing and Virtual Mosaic describe a few sample applications of the GeoRaster raster
algebra.

Example 5-20 Converting DEM Data from Feet to Meters

The cell value of a GeoRaster object may represent a quantitative attribute of spatial objects,
which could be in a specific unit. For example, the elevation data in a DEM GeoRaster object
could be in the unit of feet. An application may require you to convert the elevations into
another unit, such as meters, for georectification and other operations. You can use the raster
algebra to scale the DEM data from feet into meters (that is, unit conversion), as shown in
Example 5-20.

5-24

Chapter 5
Raster Data Scaling and Offsetting

DECLARE
georl SDO_GEORASTER;
geor?2 SDO_GEORASTER;
BEGIN
--Source GeoRaster object with a single DEM layer
select georaster into georl from georaster table where georid = 1;
--To store the output DEM layer
select georaster into geor2 from georaster table where georid = 2 for update;
--Scale elevation from feet to meters using the unit factor
sdo_geor ra.rasterMathOp(georl,SDO STRINGZ ARRAY('{0} * 0.3048'),null,geor2);
--Commit changes to the output georaster object
update georaster table set georaster = geor2 where georid = 2;
commit;
END;
/

Example 5-21 Offsetting DEM by Geoid Height

The cell data of a GeoRaster object may need to be offset by a constant for further processing.
For example, a DEM layer may represent orthometric elevation instead of ellipsoidal elevation.
To orthorectify a raw image georeferenced by an RPC model requires ellipsoidal elevation.

Example 5-21 offsets the orthometric DEM by the geoid height, resulting in an ellipsoidal DEM.

DECLARE
georl SDO_GEORASTER;
geor? SDO_GEORASTER;

BEGIN
--Source GeoRaster object with a single orthometric DEM layer
select georaster into georl from georaster table where georid
--To store the output DEM layer
select georaster into geor2 from georaster table where georid = 2 for update;
--0ffset elevation by geoid height to get ellipsoidal elevation
sdo _geor ra.rasterMathOp(georl,SDO STRINGZ ARRAY('{0} - 28.8"),null,geor2);
--Commit changes to the output GeoRaster object
update georaster table set georaster = geor2 where georid = 2;
commit;

END;

/

1;

Example 5-22 Converting (Scaling) and Offsetting

You can combine the operations of Example 5-20 and Example 5-21 into a single simple step,
as shown in Example 5-22.

DECLARE
georl SDO_GEORASTER;
geor?2 SDO_GEORASTER;
BEGIN
--Source GeoRaster object with a single DEM layer
select georaster into georl from georaster table where georid = 1;
--To store the output DEM layer
select georaster into geor2 from georaster table where georid = 2 for update;
--Scale elevation from feet to meters and offset elevation by geoid height
sdo_geor ra.rasterMathOp(georl,SDO STRING2 ARRAY('{0} * 0.3048 - 28.8'),null,geor2);
--Commit changes to the output georaster object
update georaster table set georaster = geor2 where georid = 2;
commit;
END;
/

ORACLE c e

Chapter 5
Raster Data Casting

5.9 Raster Data Casting

ORACLE

Raster data casting maps cell values from one data type to another.

In GeoRaster, there are two types of casting operations: one uses the cel1Depth keyword in
the storageParam parameter of operations, and the other uses the castingExpr operation in
the GeoRaster raster algebra. (castingExpr is one of the arithmeticExpr operations, as
described in Raster Algebra Language.)

Whenever you apply an operation which stores the raster data result into a new GeoRaster
object, you can use the cellDepth keyword in the storageParam parameter of that operation.
(The cellDepth keyword and its values are described in Table 1-1.) If the cellDepth is
specified, the target GeoRaster object will be created using that cel1Depth value, and the
raster cell data will be automatically cast to that ce11Depth value for storage. You can directly
use cellDepth in the storageParam parameter to do the casting if the source data is in lower
cell depth and the resulting data is in higher cell depth. In this case, the casting is transparent
and fast.

However, if you specify a lower cell depth for data in higher cell depth, changing the cell depth
using the cellDepth keyword in the storageParam parameter can cause loss or change of data
and reduced precision or quality. To have better control of the precision and accuracy, you can
use the Raster Algebra casting operator, castingExpr.

For example, assume you have a raster with a cell depth of 32BIT REAL and a value range in
[0.0, 100.0). You can use Example 5-23 to perform linear segmentation of the raster into 10
different classes, each of which has a cell value that is a multiple of 10 (0, 10, 20, ..., 90), using
the castint operator. This operation casts all cell values to their closest lower multiple of 10;
for example, all numbers from 60 to 69 are cast to 60.

Example 5-23 Linear Segmentation of a Raster

DECLARE
georl SDO_GEORASTER;
geor?2 SDO_GEORASTER;
BEGIN
--Source georaster object with cell value range [0.0,100.0)
select georaster into georl from georaster table where georid = 1;
--Target georaster object to store the output layer
select georaster into geor2 from georaster table where georid = 2 for update;
--Linearly segment the source raster into 10 classes and store in 8BIT cell depth
sdo _geor ra.rasterMathOp (georl,
SDO_STRING2 ARRAY (' (castint ({0} /10)*10'"),
'celldepth=8BIT',
geor2);
--Commit changes to the output georaster object
update georaster table set georaster = geor2 where georid = 2;
commit;
END;
/

As shown in Example 5-23, you can combine the usage of the cellDepth keyword in the
storageParam parameter with the raster algebra casting operator, so that the result can be
calculated correctly as well as stored in an appropriate and concise way. In Example 5-23, the
output cell values are integers equal to or less than 90, so the resulting raster can be stored
using 8BIT cell depth (instead of 32BIT REAL), which saves storage space.

5-26

Chapter 5
Cartographic Modeling

5.10 Cartographic Modeling

Raster algebra is widely used in cartographic modeling and is considered an essential
component of GIS systems. Using the PL/SQL and the raster algebra expressions and
functions, you can conduct cartographic modeling over a large number of rasters and images
of virtually unlimited size.

For example, a cartographic modeling process for wildfire evaluation might retrieve the
elevation, slope, aspect, temperature, wetness, and other information from a series of raster
layers and then evaluate the cells one-by-one to create a resulting raster map, which can be
further classified to create a thematic map. Change analysis, site selection, suitability analysis,
climate modeling, and oil field evaluation using the raster layer overlay technique are other
typical cartographic modeling processes. In those cases, arithmetic, relational, and logical
operations may need to be combined.

Assume that a hypothetical cartographic model involves seven different raster layers and has
an expression as follows. and that the modeling result is a raster map with 0 and 1 as cell
values:

output = 1 if ((100 < layerl <= 500)
& (layer2 == 3 or layer2 == 10)
& ((layer3+layerd) * log(Layerb5) / sqrt(layer5)) >= layer6)
|| (layer?7 != 1))
is TRUE and
0 if otherwise

Example 5-24 shows how to run the preceding cartographic model in GeoRaster and store the
result as a bitmap.

Example 5-24 Cartographic Modeling

DECLARE

geor SDO_GEORASTER;

georl SDO_GEORASTER;

mycursor sys_refcursor;

expr varchar2 (1024) ;
BEGIN

--7 source GeoRaster objects, each of which contains one source layer in the order of
1 to 7

OPEN mycursor FOR
select georaster from georaster table where georid >0 and georid <=7 order by georid;
--Output GeoRaster object to contain the result
insert into georaster table (georid, georaster) values (8, sdo geor.init('RDT 1',8)
returning georaster into georl;
--Modeling using arithmeticExpr, booleanExpr, and rasterMathOp

expr :=
'condition (
((100<{0,0}) & ({0,0}<=500))
& (({1,0}=3) | ({1,0}=10))
& (((({2,0}4{3,0}) * log({4,0}) / sqrt({4,0})) >= {5,0}) | ({6,0}!=1)

)!
1!
0)";
sdo geor ra.rasterMathOp (mycursor, sdo string2 array(expr),
'celldepth=1BIT', georl, 'true', 0, 'parallel=4"');
update georaster table set georaster = georl where georid = 8;
commit;
END;
/

ORACLE 5-27

Chapter 5
Terrain Modeling and Analysis

The process in Example 5-24 considers NODATA and will assign 0 (zero) to any cell that is a
NODATA cell in one or more source layers. It is also parallelized into four processes to
leverage multiple CPUs of the database server to improve performance.

5.11 Terrain Modeling and Analysis

You can use the data from input GeoRaster objects to perform terrain modeling and analysis.

The SDO_GEOR_GDAL.dem procedure uses the data from an input GeoRaster object to
generate output based on the specified processing parameter. The input GeoRaster object is
usually a Digital Elevation Model, and the processing values could be a value such as
hillshade, slope, aspect, color-relief, Or roughness.

Example 5-25 Hillshade

If the processing parameter value is hillshade the procedue generates a grayscale image
that represent the shadows of the elevated areas over the adjacent areas, mimicking the visual
effect of sunlight.

This example creates a hillshade image.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN
select raster into grl from imagery where id = 1;
delete from imagery where id = 2;
insert into imagery values(2, sdo geor.init('imagery rdt',2))
returning raster into gr2;
sdo_geor gdal.dem(grl, gr2, 'hillshade');
update imagery set raster = gr2 where id = 2;
commit;
END;
/

Example 5-26 Slope

The procedure can generate a slope or aspect raster based on the elevation values of an input
raster. In that case the output pixel values does not produce a visual appealing output, but a
useful raster surface that might be used for land use and land allocation analyses. For
example, it could be used to define areas good for wine production based on the slope and the
angle of exposure to the sun (aspect).

The following example creates a raster representing the slope generated from raster elevation
data. The resulting pixel values will be represented in percentage, instead of the default degree
output.

DECLARE
grl sdo georaster;
gr3 sdo_georaster;
BEGIN
select raster into grl from imagery where id = 1;
delete from imagery where id = 3;
insert into imagery values(3, sdo geor.init('imagery rdt', 3))
returning raster into gr3;
sdo_geor gdal.dem(grl, gr3, 'slope', 'slopevalue=percent');

ORACLE - o8

ORACLE

Chapter 5
Terrain Modeling and Analysis

update imagery set raster = gr3 where id = 3;
commit;

END;

/

Example 5-27 Aspect

This example creates a raster representing the aspect o generated from raster elevation data.
The pixel representing flat areas will have the value 0 instead of the default -9999.

DECLARE
grl sdo_georaster;
gr4 sdo_georaster;
BEGIN
select raster into grl from imagery where id = 1;
delete from imagery where id = 4;
insert into imagery values(4, sdo geor.init('imagery rdt', 4))
returning raster into gré;
sdo_geor gdal.dem(grl, gr4, 'aspect', 'zeroforflat=yes');
update imagery set raster = gr4 where id = 4;
commit;
END;
/

Example 5-28 Color-relief

This example creates a raster representing the color-relief generated from raster elevation data
using the file colorfile.txt. For this example, the colorfile.txt file contains the following
"elevation-percent red green blue" values

0% 180 0 255
10% 70 0 255
20% 0 70 255
30% 0 180 255
40% 0 255 180
50% 0 255 70
60% 70 255 0
70% 180 255
80% 255 180
90% 255 170
nv 0 0

DECLARE
grl sdo_georaster;
gr5 sdo_georaster;
BEGIN
select raster into grl from imagery where id = 1;
delete from imagery where id = 5;
insert into imagery values (5, sdo geor.init('imagery rdt', 5))
returning raster into gr5;

sdo_geor gdal.dem(inGeoRaster => grl,
outGeoRaster => grb,
processing => 'color-relief',

colorDirectory => 'mydir’,
colorFilename => 'colorfile.txt');
update imagery set raster = gr5 where id = 5;
commit;

5-29

Chapter 5
Terrain Modeling and Analysis

END;
In addition to the operations shown in these examples, you can use the procedure to generate

Terrain Ruggedness Index (TRI) maps, Topographic Position Index (TPI) maps, and roughness
maps from DEM GeoRaster objects.

ORACLE = 30

Image Processing and Virtual Mosaic

This chapter describes advanced image processing capabilities, including GCP
georeferencing, reprojection, rectification, orthorectification, warping, image scaling, stretching,
filtering, masking, segmentation, NDVI computation, Tasseled Cap Transformation, image
appending, bands merging, and large-scale advanced image mosaicking.

This chapter also describes the concept and application of virtual mosaic within the context of
a large-scale image database and on-the-fly spatial queries over it.

The operations in this chapter are most commonly used to process geospatial images,
particularly raw satellite imagery and airborne photographs. However, those operations, just
like the GeoRaster raster algebra, apply to all raster data types.

This chapter contains the following major sections.

e Advanced Georeferencing
In addition to spatial referencing capability, advanced georeferencing capabilities are
available.

* Image Reprojection
Image reprojection is the process of transforming an image from one SRS (spatial
reference system, or coordinate system) to another.

* Image Rectification
Most raster data originating from remote sensors above the ground is usually subject to
distortion caused by the terrain, the view angles of the instrument, and the irregular shape
of the Earth. Image rectification as explained in this section is the process of transforming
the images to reduce some of that distortion.

* Image Orthorectification
Orthorectification is a rectification transformation process where information about the
elevation, the terrain, and the shape of the Earth is used to improve the quality of the
output rectified image. Oracle GeoRaster supports single image orthorectification with
average height value or DEM.

e Image Warping
Image warping transforms an input GeoRaster object to an output GeoRaster object using
the spatial reference information from a specified SDO_GEOR_SRS object.

e Image Affine Transformation and Scaling
Affine transformation is the process of using geometric transformations of translation,
scaling, rotation, shearing, and reflection on an image to produce another image.

e Image Stretching, Normalization, Equalization, Histogram Matching, and Dodging
The color and contrast of images can be enhanced to improve their visual quality. The
SDO_GEOR_IP package (“IP” for image processing) provides a set of subprograms for
image enhancement, including performing image stretching, image normalization, image
equalization, histogram matching, and image dodging.

e Image Filtering
Image filtering is the process of applying a convolution filter on an image to achieve a
specific purpose. For example, applying a low-pass filter on an image can smooth and
reduce noise in an image, while applying a high-pass filter on an image can enhance the
details of the image or even detect the edges inside the image.

ORACLE 61

Chapter 6
Advanced Georeferencing

Image Segmentation

Segmentation is a simple type of classification algorithm, and can be useful in classifying
certain types of images into larger ground feature categories, such as land, cloud, water, or
snow.

Image Pyramiding: Parallel Generation and Partial Update
Image pyramiding is one of the most commonly used processes in building large-scale
image databases.

Bitmap Pyramiding
Bitmap pyramiding can produce high-quality pyramids in certain cases where traditional
pyramiding is not adequate.

Vegetation Index Computation

In remote sensing, the Normalized Difference Vegetation Index (NDVI) is a widely used
vegetation index, enabling users to quickly identify vegetated areas and monitor the growth
and "condition" of plants.

Tasseled Cap Transformation
Tasseled Cap Transformation (TCT) is a useful tool for analyzing physical ground features
using remotely sensed imagery.

Image Masking

To perform image masking, an application can query the GeoRaster database for bitmap
masks, retrieve the desired bitmap mask or masks, and apply the masking operation on

the target GeoRaster object for the purpose of displaying the object or performing some

other processing.

Band Merging

For image classification, time series analysis, and raster GIS modeling, multiple bands or
layers of different GeoRaster objects may need to be merged into a single GeoRaster
object.

Image Appending
You can append one image to another image when the two images have the same number
of bands.

Large-Scale Image Mosaicking

A large geospatial area typically consists of many smaller aerial photographs or satellite
images. Large-scale image mosaicking can stitch these small geospatial images into one
large image to get a better view of the whole spatial area.

Virtual Mosaic
A virtual mosaic treats a set of GeoRaster images as one large virtually mosaicked image.

Image Serving
Serving of image and raster data to clients or applications is supported through many
features of the GeoRaster PL/SQL and Java APls.

6.1 Advanced Georeferencing

ORACLE

In addition to spatial referencing capability, advanced georeferencing capabilities are available.

In GeoRaster, the spatial referencing capability is called SRS (spatial reference system) or
georeferencing, which may or may not be related to geography or a geospatial scheme.
Georeferencing is a key feature of GeoRaster and is the foundation of spatial query and
operations over geospatial image and gridded raster data. See Georeferencing for a detailed
description of the SRS models.

GeoRaster supports non-geospatial images, fine art photos, and multi-dimensional arrays,
which might not be associated with any coordinate system. For those images and rasters,

6-2

ORACLE

Chapter 6
Advanced Georeferencing

there is generally no need for georeferencing, but most of the GeoRaster operations still work
on them, such as pyramiding, scaling, subsetting, band merging, stretching, and algebraic
operations. In these cases, you address the pixels (cells) using the raster's cell space
coordinates (that is, row, column, and band).

You can also create a user-defined coordinate system (a new SRID) that is not related to
geography, and you can use that SRID as the model coordinate system for the rasters. Then,
you can spatially reference these rasters to that SRID; that is, an SRS metadata component
will be created for each of those rasters. Doing this causes those rasters to be spatially
referenced, and thus co-located in that user-defined model coordinate system. After this is
done for all related rasters, GeoRaster operations will work on those rasters as if they are
georeferenced to a geographic coordinate system. For example, assume that an artist has
painted a large mural on a wall, and that you want to be able to take many high-resolution
photographs of different tiles of this wall and then stitch them together. You can spatially
reference the tile images and then use the GeoRaster mosaicking capability to do the stitching.

If you do not define a new coordinate system, you can still co-locate the images in the cell
space. That is, you can set up different ULT coordinates for the images by calling the
SDO_GEOR:.setULTCoordinate procedure, so that the images are aligned in the same
coordinate system and then can be mosaicked.

Most geospatial image and raster files that you have are probably already georeferenced by
other software tools, and thus they may come with georeferencing information. In those cases,
the georeferencing information can be directly loaded with the rasters or afterward by using
SDO_GEOR.importFrom, SDO_GEOR.setSRS, the GeoRaster loader tool, GDAL, or other
third-party ETL tools. For more information, check GeoRaster Tools: Viewer_ Loader_ Exporter
and Georeferencing GeoRaster Objects.

If a geospatial image does not have spatial reference information, you can use the GeoRaster
Ground Control Point (GCP) support to georeference the image. GCPs are collected either
automatically by the remote sensing system or manually afterward. For an image without GCP
information, you can use a GeoRaster visualization tool to collection GCPs for the GeoRaster
object. GCPs are described in Ground Control Point (GCP) Georeferencing Model.

After you have the GCPs and want to store them in the GeoRaster metadata, you can get and
set the GCP-based georeferencing mode by using the SDO_GEOR.getGCPGeorefModel
function and the SDO_GEOR.setGCPGeorefModel procedure. To get, set, and edit only GCPs,
use the SDO_GEOR.getControlPoint function and the SDO_GEOR.setControlPoint and
SDO_GEOR:.deleteControlPoint procedures. The GCPs can also be stored in the GeoRaster
metadata when you call SDO_GEOR.georeference.

To get and set only the geometric model, use the SDO_GEOR.getGCPGeorefMethod function
and the SDO_GEOR.setGCPGeorefMethod procedure. GeoRaster also allows you to store
check points (pointType = 2), which are treated and manipulated in the same way as control
points (pointType = 1) except that check points are not used to create the SRS coefficient
when SDO_GEOR.georeference is called with the GCPs.

If you have ground control points (GCPs) that are either stored in the GeoRaster object or not,
and if you want to calculate the functional fitting georeferencing model, you can call the
SDO_GEOR.georeference procedure to find the solution. The functional fitting georeferencing
model stores all coefficients in the GeoRaster SRS and enables the coordinate transformations
between cell space and model space. To generate the functional fitting georeferencing model
using GCP, you must specify an appropriate geometric model. The specific geometric models
supported by SDO_GEOR.georeference are Affine Transformation, Quadratic Polynomial,
Cubic Polynomial, DLT, Quadratic Rational, and RPC. These models are described in
Functional Fitting Georeferencing Model.

6-3

ORACLE

Chapter 6
Advanced Georeferencing

Example 6-1 Setting Up the GCP Georeferencing Model

For example, if you have a Landsat image in a plain area and want to georeference it, you
might choose the Quadratic Polynomial geometric model. For that purpose, assuming you
have collected 9 GCPs (at least 6 GCPs in this case) and 3 check points, you can set up the
GCPs and store them in the GeoRaster's metadata using the code in Example 6-1.

DECLARE
grl sdo_georaster;
georefModel SDO GEOR GCPGEOREFTYPE;
GCPs SDO_GEOR GCP_COLLECTION;
BEGIN

SELECT georaster INTO grl from georaster table WHERE georid=1 FOR UPDATE;
GCPs := SDO_GEOR GCP_COLLECTION (
SDO_GEOR GCP('1', '', 1,
2, sdo number array(25, 73),
2, sdo number array(237036.9, 897987.2),
NULL, NULL),
SDO_GEOR GCP('2', '', 1,
2, sdo number array(100, 459),
2, sdo number array(237229.6, 897949.7),
NULL, NULL),
SDO_GEOR GCP('3', '', 1,
2, sdo number array (362, 77),
2, sdo number array(237038.9, 897818.8),
NULL, NULL),
SDO_GEOR GCP('4', '', 1,
2, sdo number array (478, 402),
2, sdo _number array(237201.06, 897760.56),
NULL, NULL),
SDO_GEOR GCP('S5', '', 1,
2, sdo number array(167, 64),
2, sdo number array(237032.02, 897916.26),
NULL, NULL),
SDO_GEOR GCP('6', '', 1,
2, sdo number array (101, 257),
2, sdo number array(237128.9, 897949.3),
NULL, NULL),
SDO_GEOR GCP('7', '', 1,
2, sdo _number array (235, 501),
2, sdo number array(237250.9, 897882.2),
NULL, NULL),
SDO_GEOR GCP('8', '', 1,
2, sdo number array (423, 214),
2, sdo number array(237107.3, 897788.0),
NULL, NULL),
SDO_GEOR GCP('S9', '', 1,
2, sdo _number array (127, 178),
2, sdo number array(237089.0, 897936.5),
NULL, NULL),
SDO_GEOR GCP('10', "', 2,
2, sdo number array (131, 425),
2, sdo number array(237212.8, 897934.2),
NULL, NULL),
SDO_GEOR GCP('11', "', 2,
2, sdo number array (299, 111),
2, sdo number array(237055.7, 897850.4),
NULL, NULL),
SDO_GEOR GCP('12', '', 2,
2, sdo number array (329, 253),
2, sdo number array(237126.9,897835.4),
NULL, NULL));

6-4

Chapter 6
Image Reprojection

georefModel := SDO_GEOR_GCPGEOREFTYPE('QuadraticPolynomial', GCPs.count, GCPs, NULL);
-- Set and store the GCP georeference model into the GeoRaster object's metadata
sdo_geor.setGCPGeorefModel (grl, georefModel);
UPDATE georaster table SET georaster=grl WHERE georid=1;
COMMIT;

END;

/

Example 6-2 Generating the Functional Fitting Model Using GCPs

After using the code in Example 6-1, you can generate the functional fitting model coefficients
by using the code in Example 6-2.

DECLARE
grl sdo georaster;
rms sdo number array;
BEGIN
SELECT georaster INTO grl from georaster table WHERE georid=1 FOR UPDATE;
-- georeference the image using the GCPs stored in the image's metadata

rms := sdo geor.georeference(grl, null, 26986, 0, 'TRUE');
UPDATE georaster table SET georaster=grl WHERE georid=1;
COMMIT;

END;

/

The steps in Example 6-1 and Example 6-2 can be combined without the need to pre-set the
GCPs into the GeoRaster object's metadata (see the example for SDO_GEOR.georeference in
SDO_GEOR Package Reference). The returned value array of SDO_GEOR.georeference in
Example 6-2 contains RMS values and residuals for each GCP. Using these, you can examine
the solution accuracy and identify erratic GCPs. If the accuracy is not satisfactory, recheck all
GCPs to make sure they are accurate and add more GCPs as necessary, and then run the
script or scripts again.

The GCP support in GeoRaster enables you to spatially reference any non-geospatial images
and rasters also.

After geospatial images are georeferenced, you can process those images, such as applying
rectification, reprojection, and mosaicking, and spatially querying and subsetting the rasters
using geometry polygons in different coordinate systems.

6.2 Image Reprojection

ORACLE

Image reprojection is the process of transforming an image from one SRS (spatial reference
system, or coordinate system) to another.

Reprojection is particularly useful with certain GeoRaster operations that combine two or more
objects, because it requires that all the GeoRaster objects involved be in the same SRS.

Basic reprojection in GeoRaster is performed by the SDO_GEOR.reproject procedure and
requires that the source GeoRaster SRID be different from the output SRID.

Example 6-3 Image Reprojection

Example 6-3 reprojects a raster image that had been loaded into a GeoRaster object with
SRID 4326, but needs to be reprojected to have the same SRID as other images previously
stored with SRID 23619.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN

6-5

Chapter 6
Image Rectification

select raster into grl from georaster load table where georid = 10;
delete from georaster table where georid = 54;
insert into georaster table

values (54, 'reprojected', sdo geor.init()

returning georaster into gr2;

sdo_geor.reproject (inGeoRaster => grl,
pyramidLevel => 0,
CcropArea => null,

layerNumbers => null,
resampleParam => 'resampling=BILINEAR',
storageParam => null,
outSRID => 32619,
outGeoraster => gr2);
update georaster table set georaster = gr2 where georid = 54;
commit;
END;

The same operation can be accomplished by the SDO_GEOR:.rectify procedure, producing
similar results. The SDO_GEOR.rectify procedure offers more capabilities and flexibility than
SDO_GEOR:.reproject; for example, the input and output SRID can be the same and users can
specify the precise resolution of the output (see Image Rectification).

If a GeoRaster object does not have an associated SRS, the process for georeferencing and
rectifying it is explained in Georeferencing GeoRaster Objects and Image Rectification.

Parallel reprojection is supported with the SDO_GEOR_AGGR.mosaicSubset procedure.

6.3 Image Rectification

ORACLE

Most raster data originating from remote sensors above the ground is usually subject to
distortion caused by the terrain, the view angles of the instrument, and the irregular shape of
the Earth. Image rectification as explained in this section is the process of transforming the
images to reduce some of that distortion.

Rectification is performed by the SDO_GEOR.rectify procedure, and requires that the source
GeoRaster object have at least a functional fitting georeferencing model. This means that the
image does not need to be rectified, but it needs to have georeference information in the
metadata (see Georeferencing GeoRaster Objects).

The SDO_GEOR.rectify procedure can use the information available in the source GeoRaster
object to automatically establish the spatial extents, dimension, and SRID of the output
GeoRaster, and users can also specify different values by using the appropriate parameters.

Example 6-4 Image Rectification

Example 6-3 rectifies an aerial image that had been loaded into GeoRaster and later
georeferenced with GCPs (see Advanced Georeferencing). The image is rectified so that the
output GeoRaster object has the same SRS and resolution of an existing GeoRaster object.
The image is to be restricted to the area of existing GeoRaster object, and the pixels should be
perfectly aligned with the existing GeoRaster object.

DECLARE
gr_src sdo_georaster;
gr_ref sdo georaster;
gr_out sdo_georaster;
BEGIN
select raster into gr src from georaster load table where georid = 15;
select raster into gr ref from georaster table where georid = 1;
delete from georaster table where georid = 2;
insert into georaster table

6-6

Chapter 6
Image Orthorectification

values (2, 'rectified', sdo_geor.init())
returning georaster into gr out;

sdo_geor.rectify(inGeoRaster => gr_src,
pyramidLevel => null,
elevationParam => null,
dem => null,
outSRID => sdo_geor.getModelSRID(gr_ref),
outModelCoordLoc => null,
CcropArea => sdo_geor.generateSpatialExtent (gr_ref),
polygonClip => null,
layerNumbers => null,
outResolutions => sdo_geor.getSpatialResolutions(gr_ref),
resolutionUnit => 'unit=meters',
referencePoint => sdo_geor.getModelCoordinate (gr_ref,

0, sdo_number array(-0.5,-0.5)),

resampleParam => null,
storageParam => null,
outGeoraster => gr _out);

update georaster table set georaster = gr out where georid = 2;

commit;

END;

Rectification output can be significantly improved if information about elevation is passed to the
SDO_GEOR:.rectify procedure. (See Image Orthorectification for more information about
elevation.)

Parallel rectification is supported with the SDO_GEOR_AGGR.mosaicSubset procedure.

6.4 Image Orthorectification

Orthorectification is a rectification transformation process where information about the
elevation, the terrain, and the shape of the Earth is used to improve the quality of the output
rectified image. Oracle GeoRaster supports single image orthorectification with average height
value or DEM.

The orthorectification is done by the SDO_GEOR:.rectify procedure and requires that the
source GeoRaster have a 3D SRS. The SDO_GEOR:.rectify procedure can execute
orthorectification with just the average height of the area or with a detailed Digital Elevation
Model (DEM).

* Orthorectification with Average Height
e Orthorectification with DEM

6.4.1 Orthorectification with Average Height

ORACLE

A GeoRaster object with a Digital Elevation Model (DEM) is optional for orthorectification. For
relatively flat terrains, the 3D SRS together with the average height value might be sufficient to
correct the distortion of the source image.

Example 6-5 Orthorectification with Average Height

Example 6-5 shows orthorectification with average height. For this example, the source image
was acquired from DigitalGlobe with RPC. The DEM was not available, but the average
elevation of the area is known to be 1748.0 meters.

DECLARE
gr_src sdo_georaster;
gr_out sdo georaster;
BEGIN

6-7

Chapter 6
Image Orthorectification

select georaster into gr src from georaster table where georid = 1;
delete from georaster table where georid = 3;
insert into georaster table values(3, 'orthorectified without DEM',
sdo_geor.init('rdt 4',3)
returning georaster into gr out;

sdo_geor.rectify(inGeoRaster => gr_src,
pyramidLevel => null,
elevationParam => 'average=1748.8"',
dem => null,
outSRID => 32613,
outModelCoordLoc => null,
CcropArea => null,
polygonClip => null,
layerNumbers => null,
outResolutions => null,
resolutionUnit => null,
referencePoint => null,
resampleParam => 'resampling=AVERAGE4',
storageParam => null,
outGeoraster => gr _out);
update georaster table set georaster = gr out where georid = 3;
commit;
END;

In Example 6-5, the dem parameter is null, and the elevationParam average elevation must be
in the same unit as the SRS. Also, in elevationParam the offset and scale keywords are not
specified because they are relevant only if DEM is specified.

6.4.2 Orthorectification with DEM

The use of a DEM (Digital Elevation Model) layer improves the accuracy of the rectification
process and therefore produces a higher quality output GeoRaster object.

Orthorectification with DEM requires that the source GeoRaster have a 3D SRS. The DEM
must cover all the target output area, and it should be in the same SRID as the output. The
resolution of the DEM should be similar to the expected resolution of the output GeoRaster
object.

For orthorectification with DEM, the elevationParam average keyword is optional; and if it is
not specified, the procedure estimates elevation values based on sample values extracted
from the DEM on the target area.

The elevationParam offset and scale values can be used to modify the values from the
DEM. For example, scale can be used for unit conversion if the DEM values are in a unit other
than that of the source GeoRaster SRS, and offset can be used to perform geoidal correction
or other offsetting. However, these specifications do not apply the changes to DEM values in
the GeoRaster object. An alternative is to pre-process the DEM values by applying the scaling
and offsetting to the DEM data before the orthorectification, as explained in Raster Data
Scaling and Offsetting.

Example 6-6 Orthorectification with DEM

Example 6-6 example performs orthorectification with DEM. The DEM covers all the output
area in a resolution approximated to the resolution of the output GeoRaster. The DEM values
are in meters but the source image SRS is in feet. There is also a geoid correction on that area
of about -15.3 meters:

DECLARE
gr_src sdo_georaster;
gr _dem sdo georaster;

ORACLE 68

ORACLE

Chapter 6
Image Orthorectification

gr_out sdo georaster;
BEGIN
select georaster into gr src from georaster table where georid = 1;
select georaster into gr dem from georaster table where georid = 5;
delete from georaster table where georid = 6;
insert into georaster table values(5, 'orthorectified with DEM',
sdo_geor.init('rdt 4',6)
returning georaster into gr out;
sdo_geor.rectify(inGeoRaster => gr_src,
pyramidLevel => null,
elevationParam => 'average=1748.8 offset=-15.3",
dem => gr dem,
outSRID => 32613,
outModelCoordLoc => null,
CcropArea => null,
polygonClip => null,
layerNumbers => null,
outResolutions => null,
resolutionUnit => null,
referencePoint => null,
resampleParam => 'resampling=BILINEAR',
storageParam => null,
outGeoraster => gr_out);

update georaster table set georaster
commit;
END;

= gr_out where georid = 6;

Example 6-7 Orthorectification with Cropped DEM

Typically, the DEM covers an area much larger than the target area, and the resolution is
coarser than the target resolution of the output GeoRaster object. Using this DEM "as is" would
result in poor quality orthorectification. The solution to that common problem is to crop the
DEM to the target area and rescale it to the desired resolution, as shown in Example 6-7. This
example uses the SDO_GEOR:.rectify procedure to transform the low-resolution DEM
GeoRaster object into a second DEM GeoRaster object that has the same resolution as the
orthorectified GeoRaster object generated by the second call to the SDO_GEOR.rectify

procedure.
DECLARE
height number := 1748.8;
gr_src sdo_georaster;
gr_out sdo_georaster;
gr dem sdo georaster;
gr dem2 sdo georaster;
gm_area sdo_geometry;
begin

select georaster into gr src from georaster table where

georid = 1;

select georaster into gr dem from georaster table where georid 2;

-- Calculate crop area
gm area := sdo_cs.make 2d(

sdo_geor.generateSpatialExtent (gr src,height),
sdo_geor.getModelSRID (gr dem));
-- Rectify dem (re-project, crop area, re-escale and resample)
delete from georaster table where georid = 4;

insert into georaster table values (4,
'rectified DEM',
sdo geor.init('rdt 4',4))

returning georaster into gr dem2;
sdo_geor.rectify(inGeoRaster => gr dem,
pyramidLevel => null,
elevationParam => null,
dem => null,

6-9

outSRID =>
outModelCoordLoc =>
CropArea =>
polygonClip =>
layerNumbers =>
outResolutions =>
resolutionUnit =>
referencePoint =>
resampleParam =>
storageParam =>
outGeoraster =>

update georaster table set georaster
commit;
-- Orthorectification with DEM

Chapter 6
Image Warping

32613,

null,

gm_area,

null,

null,

sdo_number array(0.6,0.6),
null,

null,

'resampling=CUBIC',

null,

gr_dem2) ;

= gr_dem2 where georid = 4;

select georaster into gr dem2 from georaster table where georid = 4;
delete from georaster table where georid = 5;
insert into georaster table
values (5, 'orthorectified', sdo geor.init('rdt 4',5)
returning georaster into gr out;
sdo_geor.rectify(inGeoRaster => gr_src,
pyramidLevel => null,
elevationParam =>
'average=' || height || ' offset=-15.588",
dem => gr_dem2,
outSRID => 32613,
outModelCoordLoc => null,
CropArea => gm_area,
polygonClip => null,
layerNumbers => null,
outResolutions => sdo_number array(0.6,0.6),
resolutionUnit => null,
referencePoint => null,
resampleParam => 'resampling=averagel6',
storageParam => null,
outGeoraster => gr _out);

update georaster table set georaster
commit;
end;

/

6.5 Image Warping

Image warping transforms an input GeoRaster object to an output GeoRaster object using the
spatial reference information from a specified SDO_GEOR_SRS object.

ORACLE

= gr_out where georid = 5;

The reference SDO_GEOR_SRS object can be copied from an existing GeoRaster object or
created using a constructor. (For more information, see SDO_GEOR_SRS Object Type.)

Warping is performed by the SDO_GEOR.warp procedure, and requires that the source
GeoRaster object have at least a functional fitting georeferencing model. This means that the
image does not need to be rectified, but it needs to have georeference information in the
metadata (see Georeferencing GeoRaster Objects).

Example 6-8 Image Warping

The following example uses the SDO_GEOR_SRS information from one GeoRaster image
(gr1) as a reference to transform an existing GeoRaster object (gr2) into a new (warped)
GeoRaster object (gr3). Thus, the third GeoRaster object is a “copy” (actually, a
transformation) of the second GeoRaster object, but reflects the same georeferencing as the

first GeoRaster object.

6-10

Chapter 6
Image Affine Transformation and Scaling

DECLARE
srs sdo _geor srs;
grl sdo georaster;
gr2 sdo_georaster;
gr3 sdo_georaster;
BEGIN
select georaster into grl from georaster table where georid = 1;
select georaster into gr2 from georaster table where georid = 2;

srs := sdo_geor.getSRS(grl); -- get the SRS from image 1.

insert into georaster table values(3,
sdo_geor.init ('imagery rdt'))

'Warped Object',

returning georaster into gr3;

sdo_geor.warp(inGeoRaster => gr2,
pyramidLevel => null,
outSRS => srs, -- apply SRS to warp transformation
cropArea => null,
dimensionSize => null,
layerNumbers => null,
elevationParam => null,
resampleParam => ‘resampling=AVERAGE4’,
storageParam => ‘pyramid=true’,
outGeoRaster => gr3,
bgValues => sdo_number array(0,0,0),
parallelParam => ‘parellel=4');

update georaster table set georaster = gr3 where georid = 3;
commit;
END;

6.6 Image Affine Transformation and Scaling

ORACLE

Affine transformation is the process of using geometric transformations of translation, scaling,
rotation, shearing, and reflection on an image to produce another image.

For details and examples, see the SDO_GEOR.affineTransform reference topic.

Image scaling is the process of enlarging or shrinking an image by changing the pixel size for
the row and column dimensions of an image. Image scaling resamples the pixel values from
the original image to construct the rescaled version of that image. Image scaling can be
performed in several ways:

* Use the SDO_GEOR:.scaleCopy procedure and specify for scaleParam a scaleFactor to
be applied to the input image dimensions or a maxDimSize for the output image.

e Use the SDO_GEOR:.rectify procedure and specify the resolution of the output image.
(This procedure can be executed in parallel.)

e During affine transformation, use the scales parameter of the
SDO_GEOR:.affineTransform procedure. In that procedure, the scales parameter is a two-
number array where you can specify a scale factor for rows and for columns
independently. (This procedure can be executed in parallel.)

Example 6-9 Image Scaling Using SDO_GEOR.scaleCopy

This example performs rescaling by using SDO_GEOR.scaleCopy and specifying the
scaleFactor value as 2. The input image will have 2 times more rows and 2 times more
columns than the original, and the values will be resampled by the averagel6 algorithm. Note
that the image will be 4 times larger than the original.

6-11

ORACLE

DECLARE
gr_src
gr_out

BEGIN
select georaster into gr src from geo
-- Rescale
delete from georaster table where geo
insert into georaster table values(9,

sdo_geor.init ('rdt 4',9))
returning georaster into
sdo_geor.scaleCopy (inGeoRaster
scaleFactor =
resampleParam =
storageParam =
outGeoraster =
update georaster table set georaster

sdo_georaster;
sdo_georaster;

Chapter 6
Image Affine Transformation and Scaling

raster table where georid = 7;

rid = 9;
're-scaled by scaleCopy',

gr_out;

=> null,

> 'scaleFactor=2',

> 'resampling=AVERAGE16',
> null,

> gr out);

= gr_out where georid = 9;

commit;
END;
/

Example 6-10 Image Scaling Using SDO_GEOR.rectify

This example performs rescaling by using SDO_GEOR.rectify and specifying the
outResolutions parameter. The input image is already rectified, and the output will have the
same SRID as the input.

DECLARE
gr_src
gr_out

BEGIN
select georaster into gr src from georaster table where georid = 7;
-- Rescale
delete from georaster table where georid = 10;
insert into georaster table values (10, 're-scaled by rectify',

sdo_geor.init ('rdt 4',10)
returning georaster into gr out;

sdo_georaster;
sdo_georaster;

sdo_geor.rectify (inGeoRaster => null,
pyramidLevel => null,
elevationParam => null,
dem => null,
outSRID => null,
outModelCoordLoc => null,
cropArea => null,
polygonClip => null,
layerNumbers => null,
outResolutions => sdo_number_array(1.2,1.2),
resolutionUnit => null,
referencePoint => null,
resampleParam => 'resampling=CUBIC',
storageParam => null,
outGeoraster => gr out,
parallelParam => 'parallel=4");
update georaster table set georaster = gr out where georid = 10;
commit;
END;

/

Example 6-11 Rescaling Using SDO_GEOR.affineTransform

This example performs rescaling by using the SDO_GEOR.affineTransform procedure and
specifying he scales parameter as sdo_number array(2, 2), indicating that the image will be
enlarged 2 times on the rows dimension and 2 times on the columns dimension.

6-12

Chapter 6
Image Stretching, Normalization, Equalization, Histogram Matching, and Dodging

DECLARE
grl sdo georaster;
gr2 sdo_georaster;
BEGIN
select georaster into grl from georaster table where georid = 1;

insert into georaster table values(2, 'Rotated 90 left',
sdo _geor.init('rdt0',2)) returning georaster into gr2;

sdo_geor.affineTransform(inGeoRaster => grl,
translation => null,
scales => sdo_number_array(2,2),
rotatePt => null,
rotateAngle => null,
shear => null,
reflection => null,

storageParam => null,
outGeoraster => gr2,
parallelParam => 'parallel=4"');

update georaster table set georaster = gr2 where georid = 2;
commit;
END;

6.7 Image Stretching, Normalization, Equalization, Histogram
Matching, and Dodging

ORACLE

The color and contrast of images can be enhanced to improve their visual quality. The
SDO_GEOR_IP package (“IP” for image processing) provides a set of subprograms for image
enhancement, including performing image stretching, image normalization, image equalization,
histogram matching, and image dodging.

Linear stretching and piecewise stretching can stretch the image cell values linearly for all
cells values based on the minimum and maximum cell values or at specified value range, to
achieve better color and contrast. To perform image stretching, you can use the following
procedures:

« SDO_GEOR_IP.stretch stretches GeoRaster objects in any supported cell depth (1BIT to
64BIT_REAL) to cell depth of 8BIT_U for display purposes.

« SDO_GEOR_IP.piecewiseStretch stretches GeoRaster objects of any supported cell depth
to the GeoRaster objects in higher or lower cell depth, not limited to 8BIT_U.

Image normalization linearly stretches the image based on the statistics (mean and standard
deviation) of the image cell values. To perform image normalization, use the
SDO_GEOR_IP.normalize.

Image equalization enhances image contrast by equalizaing its histogram. To perform
equalization, use the SDO_GEOR_IP.equalize procedure.

Image histogram matching stretches the image to match the specified histogram or the
histogram of a reference image. To perform image histogram matching, use the
SDO_GEOR_IP.histogramMatch procedure.

Image dodging balances image color by stretching the contrast of the image locally instead of
globally. To perform image dodging, use the SDO_GEOR_IP.dodge procedure.

6-13

Chapter 6
Image Filtering

6.8 Image Filtering

Image filtering is the process of applying a convolution filter on an image to achieve a specific
purpose. For example, applying a low-pass filter on an image can smooth and reduce noise in
an image, while applying a high-pass filter on an image can enhance the details of the image

or even detect the edges inside the image.

The SDO_GEOR_IPfilter procedure provides standard filters such as low-pass filter (LPF),
high-pass filter (HPF), and high-boost filter (HBF). It also allows you to apply customized filters
on images.

The following example performs image filtering by providing a customized 3-by-3 Laplacian
filter on the image for edge detection.

DECLARE
grl sdo georaster;
gr2 sdo_georaster;
cropArea sdo_geometry;
BEGIN
INSERT INTO georaster table (georid, georaster)
VALUES (41, sdo geor.init('RDT 1'"))
RETURNING georaster INTO gr2;

SELECT georaster INTO grl FROM georaster table WHERE georid=4;

sdo_geor ip.filter(grl, 0, cropArea, null, ‘filtertype=CUSTOM,
kernelsize=(3,3)’, sdo number array(0, 1, 0, 1, -4, 1, 0, 1, 0), null, gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=41;
COMMIT,;
END;
/

6.9 Image Segmentation

Segmentation is a simple type of classification algorithm, and can be useful in classifying
certain types of images into larger ground feature categories, such as land, cloud, water, or
snow.

You can use the SDO_GEOR_RA.classify procedure to apply thresholding to images.
Thresholding is the simplest segmentation, which classifies an image into two categories by
using a single cell value as the threshold. The resulting image has only two values and can be
cast into a binary bitmap mask directly in the same process.

You can also apply more image segmentation operations using the SDO_GEOR_RA.classify
procedure, by first applying arithmetic operations on multiple bands and then classifying the
results into a number of categories.

For examples of using the SDO_GEOR_RA.classify procedure, see Classification Operations.

6.10 Image Pyramiding: Parallel Generation and Partial Update

Image pyramiding is one of the most commonly used processes in building large-scale image
databases.

ORACLE 614

ORACLE

Chapter 6
Image Pyramiding: Parallel Generation and Partial Update

This topic discusses some related techniques: pyramid generation in parallel, partial updating
of pyramids, and batch and concurrent processing.

For working more efficiently with pyramids, you can generate pyramids in parallel and perform
a partial update of a pyramid. (This section assumes you understand the concepts explained in
Pyramids.)

Example 6-12 Parallel Generation of Pyramids

For faster pyramid generation, you can specify the parallelParam parameter with the
SDO_GEOR.generatePyramid procedure. In Example 6-12, the degree of parallelism is set to
4. (The actual performance improvement for pyramid generation depends on the number of
CPUs available to Oracle Database.)

DECLARE
gr sdo_georaster;
BEGIN

SELECT georaster INTO gr
FROM georaster table WHERE georid = 6 FOR UPDATE;

-- Generate pyramids.
sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN', null, 'parallel=4');

-- Update the original GeoRaster object.
UPDATE georaster table SET georaster = gr WHERE georid = 6;

COMMIT;
END;
/

To enable parallel processing of the pyramid generation, SDO_GEOR.generatePyramid
performs an implicit commit operation. If an error during the call, the GeoRaster object may in
an invalid state. If this occurs, use SDO_GEOR.deletePyramid to remove the newly generated
and upper pyramid levels of the GeoRaster object.

Example 6-13 Partial Updating of Pyramids

You can partially update pyramids by using the SDO_GEOR.updateRaster procedure. In
Example 6-13, the target GeoRaster object at a specified area (targetArea is specified as
area) is updated by another GeoRaster object. The updateUpperPyramids parameter is set to
true, so the upper pyramids of the target GeoRaster object are only partially updated at the
specified area. In other words, the upper pyramid levels are not regenerated in full, but only the
cells in that targetArea are regenerated, and thus performance is improved.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
area sdo number array := sdo number array(-200,-50,201,162);
BEGIN
SELECT georaster INTO gr2 FROM georaster table WHERE georid=0 FOR UPDATE;
SELECT georaster INTO grl FROM georaster table WHERE georid=1;
SDO_GEOR.updateRaster (gr2, 0, null, area, grl, 0, null, 'true');
UPDATE GEORASTER TABLE SET georaster=gr2 WHERE georid=0;
COMMIT;
END;
/

Other techniques to speed up and automate the pyramiding process include batch processing
and concurrent processing can be used. To batch pyramid many images in a certain area, see

6-15

Chapter 6
Bitmap Pyramiding

the example in Querying and Searching GeoRaster Objects. To process many batches
concurrently, you can start different database sessions

6.11 Bitmap Pyramiding

Bitmap pyramiding can produce high-quality pyramids in certain cases where traditional
pyramiding is not adequate.

For most raster data types, image pyramiding as described in Image Pyramiding: Parallel
Generation and Partial Update results in pyramids of great quality. However, for bitmap rasters
of points, lines, or polylines, which are typically stored in 1-bit cell depth, the same pyramiding
approach may not create high-quality pyramids. Distorted point patterns and dashed lines are
commonly seen in those pyramids.

To solve such problems, you can use the SDO_GEOR.generateBitmapPyramid procedure,
instead of SDOGEOR.generatePyramid, to perform pyramiding on bitmap GeoRaster objects.
The SDO_GEOR.generateBitmapPyramid procedure significantly improves the pyramid quality
by avoiding distorted patterns, particularly dashed lines or missing lines in a bitmap raster,
such as a road raster map or utility network raster map.

6.12 Vegetation Index Computation

ORACLE

In remote sensing, the Normalized Difference Vegetation Index (NDVI) is a widely used
vegetation index, enabling users to quickly identify vegetated areas and monitor the growth
and "condition" of plants.

Using Landsat TM imagery, the standard NDVI computation formula is: (TM4 - TM3) / (TM4 +
TM3).

Example 6-14 Vegetation Index Computation

Example 6-14takes a Landsat 7 ETM+ image and computes the NDVI with parallelism. The
result is stored as another raster of floating number data type. Note that in the GeoRaster
algebra language, band numbering starts with 0, so the formula translates into the expression:

({3-{2D/({3}+{2})-

DECLARE
georl SDO_GEORASTER;
geor2 SDO_GEORASTER;
EBGIN
-- Source ETM+ image
select georaster into georl from georaster table where georid = 2;
-- Store NDVI
select georaster into geor2 from georaster table where georid = 3 for update;
sdo_geor ra.rasterMathOp (georl,
SDO_STRINGZ_ARRAY('({3}—{2})/({3}+{2})'),
'celldepth=32bit real',geor2, null, null, ‘parallel=4’);
update georaster table set georaster = geor2 where georid = 3;
commit;
end;

/

In addition to NDVI, there are many other vegetation indexes in the area of remote sensing.
Many of these can be similarly computed using the GeoRaster raster algebra.

6-16

Chapter 6
Tasseled Cap Transformation

6.13 Tasseled Cap Transformation

Tasseled Cap Transformation (TCT) is a useful tool for analyzing physical ground features
using remotely sensed imagery.

With various Landsat imagery, it uses 5 bands of either original digital number (DN) or
reflectance data to generate 6 new bands, each of which represents different ground features.
The 6 resulting bands are generally called (soil) brightness, (vegetation) greenness, (soil and
canopy) wetness, haze, TC5, and TC6. Each one or a combination of them is useful for
different applications, such as crop growth monitoring and analysis, biomass study, and
agriculture planning.

Example 6-15 Tasseled Cap Transformation

Example 6-15 takes the DN data of a Landsat 5 TM image as input, executes the TCT using
the GeoRaster raster algebra with parallelism, and creates a new image holding the results.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
ret varchar?(32);
BEGIN
select georaster into grl from georaster table where georid = 2;
select georaster into gr2 from georaster table where georid = 4 for update;
sdo_geor ra.rasterMathOp(

grl,

SDO_STRING2 ARRAY (
'0.3561*{0}+0.3972*{1}+0.3904*{2}+0.6966*{3}+0.2286*{4}+0.1596*{6}",
'(-0.3344)*{0}-0.3544*{1}-0.4556*{2}+0.6966*{3}-0.0242*{4}-0.2630*{6}",
'0.2626*{0}+0.2141*{1}+0.0926*{2}+0.0656*{3}-0.7629*{4}-0.5388*{6}",
'0.0805%{0}-0.0498*{1}+0.1950%{2}-0.1327*{3}+0.5752*{4}-0.7775%{6}",
'(-0.7252)*{0}-0.0202*{1}+0.6683*{2}+0.0631*{3}-0.1494*{4}-0.0274*{6}",
'0.4000%{0}-0.8172*{1}+0.3832*{2}+0.0602*{3}-0.1095*{4}+0.0985*{6}"'),

'celldepth=32BIT REAL',

gr2, null, null, ‘parallel=4’);

update georaster table set georaster = gr2 where georid = 4;
commit;

END;

/

You can also use the same raster algebra language to add code in Example 6-15 to convert
the 32-bit floating number image into an 8-bit integer image and to apply image stretching
(described in Image Stretching) on the resulting TCT image to generate a new GeoRaster
object for visualization and analysis.

In addition to using the optimized implementation of raster algebra algorithms and the
embedded parallel processing, you can further take advantage of the Oracle grid computing
infrastructure to quickly compute NDVI or apply TCT on thousands of images stored in the
GeoRaster database.

6.14 Image Masking

ORACLE

To perform image masking, an application can query the GeoRaster database for bitmap
masks, retrieve the desired bitmap mask or masks, and apply the masking operation on the
target GeoRaster object for the purpose of displaying the object or performing some other
processing.

6-17

Chapter 6
Band Merging

A bitmap mask (described in Bitmap Masks) can be stored as an independent GeoRaster
object; it can also be stored as metadata inside a GeoRaster object and be associated with a
single band or with the whole GeoRaster object.

You can also perform masking operations inside the database to generate new GeoRaster
objects, using the SDO_GEOR.mask procedure.

6.15 Band Merging

ORACLE

For image classification, time series analysis, and raster GIS modeling, multiple bands or
layers of different GeoRaster objects may need to be merged into a single GeoRaster object.

This operation is called band or layer merging in GeoRaster, and can be performed by using
the SDO_GEOR.mergeLayers procedure or the SDO_GEOR_RA .rasterMathOp procedure.
You can either append specified bands of a source GeoRaster object to a target GeoRaster
object or merge different bands from two GeoRaster objects into a new GeoRaster object. By
doing this merging or appending iteratively, you can merge an unlimited number of bands into
a single GeoRaster object.

Example 6-16 Band Merging

Example 6-16 includes two examples. The first example assumes there are eight GeoRaster
objects, each of which contains only one band loaded from a single-band Landsat ETM+ image
file in GeoTIFF format. The number of the band in each GeoRaster object is the same as the
GEORID column value for the GeoRaster object. The example merges all bands into a single
GeoRaster object to create a complete ETM+ scene.

DECLARE
grl sdo georaster;
BEGIN
select georaster into grl from georaster table where georid = 1 for update;
for rec in (select georaster from georaster table
where georid >= 2 and georid <= 8
order by georid)

loop
sdo_geor.mergelayers (grl, rec.georaster);
end loop;
update georaster table set georaster = grl where georid = 1;
commit;
END;

/

The second example assumes there are eight GeoRaster objects, each of which contains
three bands. The example picks up one band from each GeoRaster object and merges them
into a single 8-band GeoRaster object in parallel.

DECLARE
geor SDO_GEORASTER;
geo_array SDO_GEORASTER ARRAY;
BEGIN

SELECT georaster INTO geor FROM georaster table WHERE georid = 0 for update;
geo_array:=SDO_GEORASTER ARRAY () ;
for rec in (select georaster from georaster table
where georid >= 1 and georid <= 8
order by georid)
loop
geo_array.extend(1l);
geo_array(geo array.last):=rec.georaster;
end loop;

6-18

Chapter 6

Image Appending
sdo_geor ra.rasterMathOp(geo array,SDO_STRING2 ARRAY('{0,0}',"'{1,1}',"'{2,2}',"{3,0}"',"'{4,
1y, "{5,2}",'{6,0}',"{7,1}",) ,null,geor, 'false',null, 'parallel=4");
UPDATE georaster table SET georaster = geor WHERE georid = 0;
COMMIT;

END;

/

6.16 Image Appending

You can append one image to another image when the two images have the same number of
bands.

Image appending is useful when the geospatial images are collected at intervals and the
captured image later needs to be appended to the existing image to make a large image of the
whole spatial area. Image appending is also useful for updating the existing image with a new
image.

The SDO_GEOR_AGGR.append procedure implements image appending by partially
updating the existing GeoRaster object with another GeoRaster object. If the existing
GeoRaster object contains pyramids, the pyramids with blocking are partially updated with the
new data.

Example 6-17 appends one image to another, with pyramids with blocking are updated at the
same time. Because the appendParam parameter specifies 'nodata=true’', the NODATA
values in the overlapping area are considered transparent.

Example 6-17 Appending One Image to Another Image

DECLARE
grl sdo georaster;
grl sdo georaster;
BEGIN
select georaster into grl from georaster table where georid = 1 for update;
select georaster into gr2 from georaster table where georid = 2;
sdo_geor_aggr.append(grl, gr2, 0, 'nodata=true');
update georaster table set georaster = grl where georid= 1;
commit;
END;

6.17 Large-Scale Image Mosaicking

ORACLE

A large geospatial area typically consists of many smaller aerial photographs or satellite
images. Large-scale image mosaicking can stitch these small geospatial images into one large
image to get a better view of the whole spatial area.

GeoRaster provides large-scale mosaicking functions that allow gaps, overlaps, and missing
source GeoRaster objects. It supports both rectified and unrectified images. It supports internal
reprojection and rectification, common point rules, and simple color balancing. You can also
mosaic at a certain pyramid level. This mosaicking process results in a single GeoRaster
object, which is also called a physical mosaic as opposed to virtual mosaic (For information
about virtual mosaic, see Virtual Mosaic).

The SDO_GEOR.mosaic and SDO_GEOR_AGGR.mosaicSubset procedures provide support
for image mosaicking; however, you are strongly encouraged to use
SDO_GEOR_AGGR.mosaicSubset because it provides much more advanced features and
options, and it is also implemented with parallelism. SDO_GEOR_AGGR.mosaicSubset can
take a virtual mosaic, such as a list of GeoRaster tables, a database view with a GeoRaster
column, or a REF CURSOR, as the source images.

6-19

ORACLE

Chapter 6
Large-Scale Image Mosaicking

The SDO_GEOR.mosaic procedure mosaics a set of source GeoRaster images that are
rectified, are geospatially aligned under the same SRID, and have the same resolution. The
result of the mosaic is another GeoRaster object. If there are overlaps between the source
images, the mosaic result will have the last source image's content at the overlapping area.
This procedure works well for preprocessed and perfectly aligned source images.

In the examples in this section, the source images are stored in source GeoRaster tables
GRTAB, GRTAB1, and GRTAB2, which are defined with the following columns:

(id NUMBER PRIMARY KEY,

cloud cover NUMBER -- percentage of cloud coverage

last update TIMESTAMP -- GeoRaster object's last update time
grobj SDO_GEORASTER)

Oracle Spatial and Graph spatial indexes have been created on the spatialExtent attribute of
the GeoRaster object in these tables.

In these examples, the mosaicked image is stored in GEORASTER_TABLE, which is defined
in Storage Parameters.

Example 6-18 SDO_GEOR.mosaic (Table and Column Name)

Example 6-18 shows the SDO_GEOR.mosaic procedure.

DECLARE
gr sdo_georaster;
BEGIN
INSERT INTO georaster table (georid, georaster)
VALUES (12, sdo geor.init('rdt 1'))
RETURNING georaster INTO gr;
sdo_geor.mosaic('grtab', 'grobj', gr, 'blocking=optimalpadding blocksize=(512,512,1)"');
UPDATE georaster table SET georaster=gr WHERE id=12;
END;
/

In the real world, however, the source images are often collected under different circumstances
S0 as to have different resolutions or large areas of overlap, or using a different georeference
system. In such cases, you can use the SDO_GEOR_AGGR.mosaicSubset procedure to
mosaic these source images into one uniform mosaicked image. Compared to
SDO_GEOR.mosaic, the SDO_GEOR_AGGR.mosaicSubset procedure provides more
features and options:

e The source images do not have to be in the same coordinate system (SRID) and have the
same georeferencing information or resolutions.

e The source images can be mosaicked on a user-specified pyramid level.
e The source images can be mosaicked on user-specified bands.

e The output images can have a different coordinate system and resolution than the input
images (outSRID and outResolutions parameters).

* You have more control on the output of the overlapping area through the mosaicParam
parameter: commonPointRule can specify which cell value to use for the output at the
overlapping area, and NODATA can indicate whether to consider the NODATA value at the
overlapping area.

* The output mosaicked image can be aligned at a specified point (the reference point). The
source image can be resampled in order to align with the reference point if the source
image is out of alignment more than the resampleTolerance value specified in
mosaicParam.

6-20

ORACLE

Chapter 6
Large-Scale Image Mosaicking

» If there is small gap between the source images that is less than 2 pixels wide, it can be
filled using the neighboring pixel values when £i11Gap iS true in mosaicParam.

e Limited color balancing (linear stretching and normalization) is supported.
« Parallel processing is supported to speed up the mosaicking process.
Example 6-19 SDO_GEOR_AGGR.mosaicSubset

Example 6-19 uses SDO_GEOR_AGGR.mosaicSubset to mosaic all the source images from
two GeoRaster tables (GRTAB1 and GRTAB?2) into a large mosaicked image in SRID 4326
with a resolution of 30 meters on the x and y dimensions.

DECLARE
resolutions sdo number array;
gr sdo_georaster;
BEGIN
insert into georaster table (georid, georaster)
values (10, sdo geor.init ('RDT 1',10)
returning georaster into gr;

resolutions := sdo_number_array (30, 30);
sdo_geor_aggr.mosaicSubset('grtabl, grtab2',6 'grobj, grobj',
0, 4326, null, null, null,
null, null, null, resolutions, 'unit=meter',
'commonPointRule = end, nodata=true,
resampleTolerance=0.2, resampling=bilinear, fillGap=true',
'blocking=optimalpadding blocksize=(512, 512, 3)', gr,
null, 'parallel=4');

update georaster table set georaster = gr where georid=10;
commit;

END;

/

In Example 6-19:

* Any source image that is not rectified is rectified; any source image that is not in SRID
4326 is reprojected to SRID 4326.

* Any source image that has a resolution other than 30 meters is scaled to a resolution of 30
meters.

e The nodata keyword in the mosaicParam parameter is specified as true, which means the
NODATA values in the overlapping area are not considered.

e The resampleTolerance keyword in the mosaicParam parameter is specified as 0.2, which
means that if the source image is offset from the target by more than 0.2 pixel, the source
image is resampled.

e The resampling method is specified as bilinear in the mosaicParam parameter.
e The degree of parallelism is specified as 4 in the parallelParam parameter.

You can call SDO_GEOR_AGGR.validateForMosaicSubset before calling
SDO_GEOR_AGGR.getMosaicSubset to make sure that the source images can be
mosaicked.

e Color Balancing During Mosaicking

e Parallel Compression, Copying, and Subsetting

6-21

Chapter 6
Large-Scale Image Mosaicking

6.17.1 Color Balancing During Mosaicking

The source images of the mosaicking operation can have different luminance or colors due to
the differences in the lighting conditions, time of day, or other factors when the images were
captured. Color balancing minimizes the color differences between the neighboring images
and makes the resulting mosaic look more seamless.

SDO_GEOR_AGGR.mosaicSubset and SDO_GEOR_AGGR.getMosaicSubset provide some
basic color balancing methods during the mosaicking process. Several color balancing
methods are provided. They are identified by the keyword colorbalance in the mosaicParam
parameter:

° LINEARSTRETCHING: Perform the min-max stretch on each band of the source images to a
reference minimum and maximum range.

e STATISTICSMATCHING: Perform the image stretching so that the mean and standard
deviation of each band of the source images is stretched and matched to the reference
mean and standard deviation values.

e HISTOGRAMMATCHING: Perform the image stretching so that the histograms of the resulting
images match the reference histograms.

There are several ways to specify the reference values for the color balancing methods. They
are identified by the keyword cbreference in the mosaicParam parameter:

* VALUE: The reference values are provided through referencevaluel, referencevalue?2,
or refHistograms parameters directly.

* IMAGE: The reference values are derived from the image specified by the referenceImage
parameter. The reference image must have the same number of bands as the source
image.

e« OVERLAP: The reference values are determined by the neighboring image through the
overlapped area with the neighboring image. This option requires the source images have
large enough overlaps so that the reference values can be derived from the overlapped
area. Note that because linear stretching method does not provide a good result for this
option, overlapped area reference is not supported for the linear stretching method.

Example 6-20 LINEARSTRETCHING Color Balancing

This example shows how to use the LINEARSTRETCHING color balancing method on the source
images in the SDO_GEOR_AGGR.mosaicSubset procedure. The reference minimum and
maximum values are specified in the referencevaluel and referenceValue2 parameters. In
the example, each band has different reference value.

DECLARE
gr sdo_georaster;
resolutions sdo number array;

ref min sdo_number arrray;
ref max sdo number array;
BEGIN

-- create the new GeoRaster object for mosaic
insert into georaster table (georid, georaster)
values (10, sdo geor.init ('RDT_1',10))

returning georaster into gr;

-- set the output resolution
resolutions := sdo _number array (30, 30);

ORACLE 699

Chapter 6
Large-Scale Image Mosaicking

-- Set the reference values, there are 3 values, one for each band
ref min := sdo number array(10, 10, 10);
ref max := sdo number array (200, 255, 230);

-- Mosaic

sdo_geor aggr.MosaicSubset ('georaster table 1',
'georaster', null, 32610, null, null, null, null,
null, null, null, resolutions, null,
'colorBalance=linearstretching, cbreference=value',
'blocking=optimalpadding, blocksize=(512,512,3)"',
gr, null, 'parallel=4', referenceValuel=>ref min,
referenceValue2=>ref max);

update georaster table set georaster = gr where georid=10;
commit;

END;

/

Example 6-21 HISTOGRAMMATCHING Color Balancing

This example shows how to use the HISTOGRAMMATCHING color balancing method on the
source images in the SDO_GEOR_AGGR.mosaicSubset procedure. The reference histograms
are derived from the reference image. The reference image must have the same number of
bands as the source images.

DECLARE

gr sdo _georaster;

resolutions sdo number array;

ref gr sdo_georaster;

BEGIN
-- create the new GeoRaster object for mosaic
insert into georaster table (georid, georaster)

values (10, sdo geor.init ('RDT_1',10))
returning georaster into gr;

-- set the output resolution
resolutions := sdo number array (30, 30);

-- retrieve the reference image
Select georaster into ref gr from georaster table where georid = 1;

-- Mosaic

sdo_geor aggr.MosaicSubset ('georaster table 1',
'georaster', null, 32610, null, null, null, null,
null, null, null, resolutions, null,
'colorBalance=histogramMatching, cbreference=image',
'blocking=optimalpadding, blocksize=(512,512,3)",
gr, null, 'parallel=4', refereneImage=>ref gr);

update georaster table set georaster = gr where georid=10;
commit;

END;

/

ORACLE 603

Chapter 6
Large-Scale Image Mosaicking

Example 6-22 STATISTICSMATCHING Color Balancing

This example shows how to use the STATISTICSMATCHING color balancing method on the
source images in the SDO_GEOR_AGGR.mosaicSubsetprocedure. The reference statistics
values are calculated from the overlapped area of the neighboring images. This requires that
the source images have significant overlaps so that the statistics of the overlapped area can
reflect the color difference between neighboring images.

DECLARE

gr sdo_georaster;

resolutions sdo number array;

BEGIN
-- create the new GeoRaster object for mosaic
insert into georaster table (georid, georaster)

values (10, sdo geor.init ('RDT 1',10))
returning georaster into gr;

-- set the output resolution
resolutions := sdo number array (30, 30);

-- Mosaic

sdo_geor aggr.MosaicSubset ('georaster table 1',
'georaster', null, 32610, null, null, null, null,
null, null, null, resolutions, null,
'colorBalance=statisticsMatching, cbreference=overlap',
'blocking=optimalpadding, blocksize=(512,512,3)",
gr, null, 'parallel=4');

update georaster table set georaster = gr where georid=10;
commit;

END;

/

6.17.2 Parallel Compression, Copying, and Subsetting

ORACLE

To parallelize rectification, orthorectification and reprojecting, use SDO_GEOR:.rectify. To
parallelize warping, call SDO_GEOR.warp. All raster algebra operations are parallelized too.

You can use the SDO_GEOR_AGGR.mosaicSubset procedure to conduct several types of
parallel operations, including parallel compression and decompression, parallel copying or
change format copying, parallel subsetting, parallel reprojection, and parallel rectification. The
copying and subsetting operations are not parallelized directly. For JPEG and DEFLATE, the
SDO_GEOR.changeFormatCopy procedure can be called to do parallel compression and
decompression if reformatting is not required. This topic gives some examples for parallelized
compressing, copying, and subsetting operations. In all these cases, the
SDO_GEOR_AGGR.mosaicSubset procedure works on single GeoRaster objects.

To illustrate the parallelized operations, the examples in this section use a null value for most
parameters. In your applications, you can apply all other parameters of the
SDO_GEOR_AGGR.mosaicSubset procedure; however, the mosaicParam parameter has no
effect when the input is a single GeoRaster object.

Example 6-23 Parallel Compression

Example 6-23 shows parallel compression using the SDO_GEOR_AGGR.mosaicSubset
procedure. This applies to both DEFLATE and JPEG compression and decompression.

6-24

Chapter 6
Large-Scale Image Mosaicking

DECLARE
gr sdo_georaster;
cur sys refcursor;
crop_area sdo geometry := null;
BEGIN
-- create a new georaster object with georid = 2
-- to hold the compressed image
delete from georaster table where georid = 2;
insert into georaster table(georid, georaster) values (2,
sdo_geor.init ('RDT2', 2)) returning georaster into gr;

-- reblock and compress the image with georid = 1 into JPEG using parallel degree of 8
open cur for 'select georaster from georaster table where georid = 1';
sdo_geor aggr.mosaicSubset (cur, 0, null, null, null, crop area,
null, null, null, null, null, null,
'compression=JPEG-F, blocking=optimalpadding,
blocksize=(512,512,3)"',
gr, null, 'parallel=8"');

update georaster table set georaster = gr where georid = 2;
commit;

END;

/

In the preceding example, if you adjust the storageParam parameter, it works as a parallelized
SDO_GEOR.changeFormatCopy operation, including compression and decompression.

Example 6-24 Parallel Subsetting and Copying

Example 6-24 shows parallel subsetting and copying using
theSDO_GEOR_AGGR.mosaicSubset procedure.

DECLARE
gr sdo_georaster;
cur sys refcursor;
crop area sdo geometry := null;
BEGIN
-- create a new georaster object with georid = 2 to hold the copy
delete from georaster table where georid = 2;
insert into georaster table(georid, georaster) values (2,
sdo_geor.init ('RDT2', 2)) returning georaster into gr;

-- set the crop area for subsetting.
crop_area := sdo_geometry (2003, 26986, null, sdo elem info array(1,1003,1),
sdo_ordinate array (237040, 897924,
237013.3, 897831.6,
237129, 897840,
237182.5, 897785.5,
237239.9, 897902.7,
237223, 897954,
237133, 897899,
237040, 897924)) ;

-- subset from the image with georid = 1 using parallel degree of 8
-- and do polygon clipping
-- If the crop area is set to null, the same call will do a simple parallelized
copying without subsetting.
open cur for 'select georaster from georaster table where georid = 1';
sdo_geor aggr.mosaicSubset (cur, 0, null, null, null, crop area,
'true', null, null, null, null, null,
'pyramid=true', gr, null, 'parallel=8"');

ORACLE 6on

Chapter 6
Virtual Mosaic

update georaster table set georaster = gr where georid = 2;
commit;

END;

/

In Example 6-24, if you adjust the storageParam parameter, it works as a parallelized copy or
SDO_GEOR.changeFormatCopy operation, including compression and decompression.

6.18 Virtual Mosalic

ORACLE

A virtual mosaic treats a set of GeoRaster images as one large virtually mosaicked image.

For some applications, mosaicking a collection of images into a single physical mosaic is not
necessary or desirable. For example, you might not have enough disk space for storing the
mosaic separately or you simply want to save disk space. Another example is if you do not
want to keep two identical copies of the same data set but prefer to have the original data set
stored as is, such as a DEM data set, yet you want to query over this data set seamlessly. Yet
another example is if you want to apply different processing and mosaicking rules for the same
region when mosaicking the source images -- a physical mosaic has no such flexibility.

In such cases, instead of mosaicking a set of GeoRaster images into one large GeoRaster
image and storing it in a GeoRaster table, you can create a virtual mosaic. A virtual mosaic
treats a set of GeoRaster images as one large virtually mosaicked image, without storing it in a
GeoRaster table.

In GeoRaster, a virtual mosaic is defined as any large collection of georeferenced GeoRaster
objects, rectified or unrectified, from one or more GeoRaster tables or views that is treated as if
it is a single GeoRaster object. Pyramids of virtual mosaic are supported. A virtual mosaic can
contain unlimited number of images, and a whole GeoRaster database can be treated as a
virtual mosaic. You issue a single call to query the virtual mosaic based on area-of-interest
(that is, subsetting or cropping), and you can request the cropped images to be in different
coordinate system with different resolutions. On-the-fly transformations with resampling and
mosaicking with common point rules, based on user requests, are done internally and
automatically during the query processes.

The following are ways to define a virtual mosaic:

* As a GeoRaster table or a list of GeoRaster tables (see Virtual Mosaic as One or a List of
GeoRaster Tables)

e As adatabase view with a GeoRaster column (see Virtual Mosaic as a View with a
GeoRaster Column)

e As a SQL query statement (a cursor) that results in a collection of GeoRaster objects (see
Virtual Mosaic as a SQL Query Statement or a Cursor)

Regardless of how the virtual mosaic is defined, the GeoRaster objects in the GeoRaster
tables must have the spatialExtent attribute generated or set; otherwise, the
SDO_GEOR_AGGR.getMosaicSubset and SDO_GEOR_AGGR.mosaicSubset procedures
return an empty lob locator or empty GeoRaster object. For general use cases and best query
performance, you should always create a spatial index beforehand on the spatialExtent
attribute.

After a virtual mosaic is defined, you can use these procedures to query or process it:

« SDO_GEOR_AGGR.getMosaicSubset to perform on-the-fly queries over the virtual mosaic

In spatial query of any portion of that virtually mosaicked image, the
SDO_GEOR_AGGR.getMosaicSubset procedure performs the mosaic operation

6-26

Chapter 6
Virtual Mosaic

dynamically for the queried area and returns the required result in a BLOB on-the-fly, as if
it were subsetting a physically stored mosaicked image.

* SDO_GEOR_AGGR.mosaicSubset to store the mosaicked subset in the database as a
GeoRaster object

The SDO_GEOR_AGGR.mosaicSubset procedure performs the mosaic operation for the
queried area and stores the required result in another GeoRaster object persistently

For a typical workflow of using virtual mosaic, see Using Virtual Mosaic in Applications, and
Special Considerations for Large-Scale Virtual Mosaic and its related topic Improving Query
Performance Using MIN_X_RES$ and MAX_X_RES$.

* Virtual Mosaic as One or a List of GeoRaster Tables

e Virtual Mosaic as a View with a GeoRaster Column

e Virtual Mosaic as a SQL Query Statement or a Cursor
e Using Virtual Mosaic in Applications

e Special Considerations for Large-Scale Virtual Mosaic

6.18.1 Virtual Mosaic as One or a List of GeoRaster Tables

A virtual mosaic can be defined as one GeoRaster table or a list of GeoRaster tables.
Applications specify each table and its GeoRaster column. In this approach, all GeoRaster
objects in the specified GeoRaster columns of those GeoRaster tables are part of the virtual
mosaic.

Example 6-25 specifies the source images for virtual mosaicking in a list of GeoRaster tables
(GRTAB1, GRTAB2, and GRTABS3, which have the same definitions as GRTAB in Large-Scale
Image Mosaicking).

Example 6-25 Virtual Mosaic as a List of GeoRaster Tables

DECLARE
1b blob;
cropArea sdo geometry;
outArea sdo geometry := null;
outWin sdo number array:=null;
resolutions sdo number array;
BEGIN
dbms_lob.createTemporary(lb, TRUE);

cropArea := sdo geometry (2003, 32610, null,
sdo_elem info array(l, 1003, 3),
sdo_ordinate array (399180, 4247820,
496140,4353900));
resolutions := sdo number array (30, 30);
sdo_geor aggr.getMosaicSubset ('grtabl, grtab2, grtab3',
'grobj, grobj, grobj',
0, 32610, null, null, cropArea,
null, null, null, resolutions, null,
'commonPointRule = end, nodata=true',
1b, outArea, outWin);
dbms_lob.freeTemporary (1b);
if outWin is not null then

dbms output.put line('output window: (' || outWin(l) || ',"' || outWin(2) ||', '
[l outWin(3) || ', ' || outWin(4) [] ")');
end if;
END;
/

ORACLE 6-27

Chapter 6
Virtual Mosaic

6.18.2 Virtual Mosaic as a View with a GeoRaster Column

A virtual mosaic can be defined as one database view with a GeoRaster column. Applications
specify the view name and its GeoRaster column. In this approach, all GeoRaster objects in
the specified GeoRaster column of the view are part of the virtual mosaic. This approach
allows you to select the images for the virtual mosaic in complex ways from any number of
GeoRaster tables, taking advantage of the spatial index and any other relevant indexes.

You can also define a virtual mosaic as a list combining GeoRaster views and GeoRaster
tables.

When a virtual mosaic is defined as a database view, the view can be specified in the
georasterTableNames parameter when you query it. Example 6-26 queries the virtual mosaic
defined as a view. Note that in this example, the queries sort the images based on their
creation time and pick the latest (newest) image for the resulting mosaic in the overlapping
areas.

Example 6-26 Using a View on GeoRaster Tables for Virtual Mosaic

Create or replace view grview as select * from (
Select grobj, last update from grtabl where cloud cover=0 union all
Select grobj, last update from grtab2 where cloud cover=0 union all
Select grobj, last update from grtab3) order by last update;

DECLARE
1b blob;
cropArea sdo geometry;
outArea sdo geometry := null;
outWin sdo number array:=null;
resolutions sdo number array;
BEGIN
dbms_lob.createTemporary(lb, TRUE);

cropArea := sdo _geometry (2003, 32610, null,
sdo_elem info array(l, 1003, 3),
sdo_ordinate array(399180, 4247820,
496140,4353900));
resolutions := sdo number array (30, 30);
sdo_geor aggr.getMosaicSubset ('grview', 'grobj',
0, 32610, null, null, cropArea,
null, null, null, resolutions, null,
'commonPointRule = end, nodata=true',
1b, outArea, outWin);
dbms_lob.freeTemporary (1b);
if outWin is not null then

dbms output.put line('output window: (' || outWin(1l) || ',' || outWin(2) ||', '
[l outWin(3) || ', ' || outWin(4) [[")');
end if;
END;
/

6.18.3 Virtual Mosaic as a SQL Query Statement or a Cursor

ORACLE

Instead of creating a view, you can define a virtual mosaic as a SQL statement or a runtime
database cursor, which selects a collection of GeoRaster objects from the database.
Applications create the cursor from the SQL statement and use the cursor as the virtual
mosaic. In this definition, all GeoRaster objects in the cursor are part of the virtual mosaic. This
approach allows you to select the images for the virtual mosaic in complex ways from any
number of GeoRaster tables. However, the spatial indexes are not automatically used in

6-28

Chapter 6
Virtual Mosaic

gueries over this type of virtual mosaic. To take advantage of spatial indexes, dynamically add
a spatial query condition directly using the query window to the SQL statement, so that all
images in that query window can be more quickly located.

The SDO_GEOR_AGGR.getMosaicSubset and
SDO_GEOR_AGGR.mosaicSubsetprocedures accept a cursor of GeoRaster objects as the
virtual mosaic, as shown in Example 6-27. Note that in this example, the queries sort the
images based on their creation time and pick the latest (newest) image for the resulting mosaic
in the overlapping areas. For best performance when there are many GeoRaster objects in the
table, the query of the cursor should use the spatial query window to filter out the unrelated
GeoRaster objects, as described in the preceding paragraph.

Example 6-27 Using a Cursor for Virtual Mosaic

DECLARE
1b blob;
outArea sdo geometry := null;
outWin sdo number array:=null;
resolutions sdo number array;
mosaic_stmt wvarchar2(1000);
condition varchar2 (1000) ;
BEGIN
dbms_ lob.createTemporary(lb, TRUE);

resolutions := sdo number array(30, 30);

-- Define the query window (cropArea)

cropArea := sdo geometry (2003, 32610, null,
sdo_elem info array(l, 1003, 3),
sdo_ordinate array (399180, 4247820, 496140,4353900));

-- Define the virtual mosaic
mosaic stmt := 'select grobj from (select grobj, last update from grtabl ' ||
'where cloud cover=0 wunion all select grobj, last update from grtab2
"l
'where cloud cover=0) t ';

-- Apply filtering using the query window (cropArea) to speed up query performance
condition := 'where sdo anyinteract(t.grobj.spatialExtent,:1) = ''true'' ' ||
' order by last update';

-- Open the virtual mosaic for query
open cur for mosaic stmt || condition using cropArea;

-- Query the virtual mosaic (make sure the cropArea used here is the same
-- as the one used at opening the cursor)
sdo_geor aggr.getMosaicSubset (cur,
0, 32610, null, null, cropArea,
null, null, null, resolutions, null,
'commonPointRule=end, nodata=true',
1b, outArea, outWin);
dbms_lob.freeTemporary (1b);

close cur;
if outWin is not null then
dbms output.put line('output window: (' || outWin(l) || ',"' || outWin(2) ||', '
[l outWin(3) [[| ', " [| outWin(4) [| ")');
end if;
END;
/

ORACLE 699

Chapter 6
Virtual Mosaic

6.18.4 Using Virtual Mosaic in Applications

ORACLE

Virtual mosaic can be used as an image serving engine and in a variety of other application
scenarios. The definitions of virtual mosaics can be stored by applications separately as strings
or other forms. Besides the major query procedures SDO_GEOR_AGGR.getMosaicSubset
and SDO_GEOR_AGGR.mosaicSubset, GeoRaster provides other subprograms in the
SDO_GEOR_AGGR package to facilitate application development:

e SDO_GEOR_AGGR.validateForMosaicSubset
e SDO_GEOR_AGGR.getMosaicExtent
e SDO_GEOR_AGGR.getMosaicResolutions

SDO_GEOR_AGGR.validateForMosaicSubset, SDO_GEOR_AGGR.getMosaicExtent, and
SDO_GEOR_AGGR.getMosaicResolutions can be called in an application to make sure that
the virtual mosaic is valid and that the spatial query falls inside the virtual mosaic. The
following steps describe a possible workflow for virtual mosaic in an application:

1. Define a virtual mosaic. For example:

Create or replace view grview as select * from (

Select grobj, last update from grtabl where cloud cover=0 union all
Select grobj, last update from grtab2 where cloud cover=0 union all
Select grobj, last update from grtab3) order by last update;

Note that tables GRTAB1, GRTAB2, and GRTAB3 were created using the same definition
as GRTAB in Large-Scale Image Mosaicking, and Oracle Spatial and Graph spatial
indexes have been created on the spatialExtent attribute of the GeoRaster object in
these tables.

2. Validate the virtual mosaic data set. For example:

EXECUTE SDO GEOR AGGR.validateForMosaicSubset ('grview', 'grobj', OUTSRID,
OUTResolutions);

A validation error table can be created and passed to the call if more detailed validation
information is needed. See the SDO_GEOR_AGGR.validateForMosaicSubset reference
section for details.

3. Get the spatial extent of the virtual mosaic. For example:
SELECT SDO_GEOR AGGR.getMosaicExtent('grview', 'grobj', OUTSRID) from dual;

4. Get the resolution range of the existing source images. For example:
SELECT SDO_GEOR AGGR.getMosaicResolutions('grview', 'grobj', 'unit=meter') from dual;
The resolution range reflects the minimum and maximum resolutions of the source images,
including all pyramid levels.

5. Based on the information acquired in the preceding two steps, pass in the spatial query
window cropArea and OUTResolutions according to the application requests to get a
subset of the virtual mosaic and optionally to apply different resampling methods, different
common point rules, special nodata handling, and color balancing. For example:

SDO_GEOR AGGR.getMosaicSubset ('grview', 'grobj', null, OUTSRID, null, null,
cropArea, null, null, null, OUTResolutions, null,
'commonPointRule=end, nodata=true', 1lb, outArea, outWin);

Note that OUTResolutions must be within the source image resolution range. If
OUTResolutions is the same as the resolutions of the source image at a specified pyramid

6-30

Chapter 6
Virtual Mosaic

level, the pyramid data is used in the output mosaic; otherwise, the source image is scaled
to the target resolution.

A typical application repeatedly applies this step to query different areas of interest over
the same virtual mosaic for image display, image distribution, or other purposes.

6.18.5 Special Considerations for Large-Scale Virtual Mosaic

A virtual mosaic can contain just several images, but it can also contain tens of thousands or
millions of images. Both SDO_GEOR_AGGR.getMosaicSubset and
SDO_GEOR_AGGR.mosaicSubset automatically search (using native spatial indexes) the
virtual mosaic for all images touching or inside the cropArea and check the resolutions of those
images and their pyramids. Only those images or their appropriate pyramid levels touching or
inside the cropArea and with their resolutions close to the requested resolution will be used in
the mosaicking process. So, the configuration of the source images and their pyramids is
critical for the quality of the results and the overall query performance.

The guideline is to avoid too many small images from either different source images or their
pyramids in the requested crop areas at the requested resolution.

For a smaller virtual mosaic with only a limited number of images, simply generate full
pyramids for each source image, and the query performance will be good for most
applications.

For a large area with a larger number of images (more than a few hundred images), the
application can generate only a certain number of pyramid levels for each source image,
mosaic their top pyramids into new GeoRaster objects, and then generate pyramids for those
mosaics, and so forth. For large-scale web visualization projects, all images at source
resolutions and at lower resolution levels might be stored as GeoRaster objects without any
pyramids built for them.

In these cases (large number of images and large-scale web visualization), if each source
image is small and there are many resolution levels in the virtual mosaic, a query on the lower
resolution levels would involve metadata resolution queries on many unnecessary images at
the higher resolution levels, which slows the query. To improve performance, applications can
define many virtual mosaics, each of which includes only all the images at a specific resolution
or a few resolution levels. Then, the application finds the right virtual mosaic or mosaics based
on the requested resolution as the first step, and then only spatially queries those selected
virtual mosaics. This approach can significantly improve performance.

In addition to the preceding considerations, see Improving Query Performance Using
MIN_X_ RES$ and MAX_X_RESS$ for queries where many different resolution levels are
involved for the same area.

* Improving Query Performance Using MIN_X_RES$ and MAX_X_RES$

6.18.5.1 Improving Query Performance Using MIN_X RES$ and MAX X RES$

ORACLE

A more general solution (instead of defining multiple virtual mosaics) for speeding virtual
mosaic queries if there are many different resolution levels involved for the same area is to use
the resolution range columns (MIN_X_RES$ and MAX_X_RESS$) in the GeoRaster tables or
views. You must define these columns (NUMBER data type) in the GeoRaster tables of a
virtual mosaic, where they specify the minimum and maximum spatial resolution values,
respectively, of the source GeoRaster object. After these columns are added and populated
with correct resolution data, the SDO_GEOR_AGGR.getMosaicSubset procedure will (if you
use the format with the georasterTableNames parameter) use the resolution range stored in
these columns to filter out the source GeoRaster objects that are not at the requested

6-31

Chapter 6
Image Serving

resolutions as specified in the outResolutions parameter. This avoids parsing the metadata of
each GeoRaster objects in the cropArea, thus significantly improving performance.

To use this approach, follow these steps:

1. Add the columns MIN_X_ RES$ and MAX_X_RES$ to the GeoRaster tables. For example:
ALTER TABLE georaster table ADD (MIN_X_RES$ number, MAX_X_RES$ number) ;
2. Populate the MIN_X_RES$ column. For example:

UPDATE georaster table t
SET min x res$ = (select column value from the
(select sdo_geor.generateSpatialResolutions(t.georaster, null,
t.georaster.spatialextent.sdo _srid) from dual)
WHERE rownum=1) ;

3. Populate the MAX_X_RESS$ column. For example:

UPDATE georaster table t
max X res$ = min x res$ * power (2,
sdo_geor.getPyramidMaxLevel (t.georaster));

4. Optionally, create index on the resolution range columns if the table contains large number
of source images:

CREATE INDEX georaster table res idx ON georaster table (MIN X RESS,
MAX X RES$);

If the virtual mosaic is defined as a view, the view should also have both columns. For
example, the view definition in Example 6-26 must be changed to the following:

Create or replace view grview as select * from (

Select grobj, min x res$, max x res$, last update from grtabl where
cloud cover=0 union all

Select grobj, min x res$, max x res$, last update from grtab2 where
cloud cover=0 union all

Select grobj, min x res$, max x res$, last update from grtab3)

order by last update;

After a virtual mosaic is defined as described in this section, applications can query and use it
in the same ways as with all other virtual mosaics, but with better performance for large-scale
virtual mosaics that involve many resolution levels. For more information, see the
SDO_GEOR_AGGR.getMosaicSubset and SDO_GEOR_AGGR.mosaicSubset reference
sections.

6.19 Image Serving

ORACLE

Serving of image and raster data to clients or applications is supported through many features
of the GeoRaster PL/SQL and Java APIs.

Direct image serving includes searching and then subsetting or cropping the rasters
(SDO_GEOR.getRasterSubset), applying reprojection and rectification on-the-fly while
cropping the images (SDO_GEOR.reproject and SDO_GEOR.rectify), and directly exporting to
files (SDO_GEOR.exportTo).

6-32

ORACLE

Chapter 6
Image Serving

Virtual mosaic is used mainly, and effectively, to serve an image database to various
applications, particularly when you do not want to create large physical mosaics. Virtual mosaic
does not require the source images to be preprocessed or mosaicked beforehand. Instead, all
images are stored as is, and the whole image data set can be served based on small areas of
interest using single calls (SDO_GEOR_AGGR.getMosaicSubset) to the server.

Often, one or a series of preprocessing operations are applied to multiple GeoRaster objects to
create the resulting GeoRaster object, and then the features described in this section are used
on the resulting GeoRaster object to serve the raster data directly to applications. Thus, a rich
set of GeoRaster image manipulation and raster algebra capabilities (described in GeoRaster
Data Query and Manipulation, Raster Algebra and Analytics, and this chapter) can be
incorporated into the workflow to meet complex image serving requirements.

6-33

SDO_GEOR Package Reference

The SDO_GEOR package contains subprograms (functions and procedures) for creating,
modifying, and retrieving information about GeoRaster objects. This chapter presents
reference information, with one or more examples, for each subprogram.

The subprograms are presented in alphabetical order in this chapter. They can be grouped into
several logical categories, as explained in GeoRaster PL/SQL API. Many of the subprograms
are also discussed in GeoRaster Database Creation and Management and GeoRaster Data
Query and Manipulation.

Many examples in this chapter refer to a table named GEORASTER_TABLE, whose definition
is presented after Example 1-1 in Storage Parameters.

All SDO_GEOR subprograms can work on GeoRaster objects defined in schemas other than
the current connection schema.

e SDO_GEOR.addNODATA

e SDO_GEOR.addSourcelnfo

e« SDO_GEOR:.affineTransform

e SDO_GEOR.calcCompressionRatio
¢ SDO_GEOR.changeCellValue

¢ SDO_GEOR.changeCellValues

e SDO_GEOR.changeFormatCopy

e SDO_GEOR.compressJP2

e SDO_GEOR.copy

¢ SDO_GEOR.createBlank

e SDO_GEOR.createTemplate

e SDO_GEOR.decompressJP2

e SDO_GEOR.deleteControlPoint

e SDO_GEOR.deleteNODATA

e SDO_GEOR.deletePyramid

e SDO_GEOR.evaluateDouble

e SDO_GEOR.evaluateDoubles

e SDO_GEOR.exportTo

e« SDO_GEOR.generateAreaWeightedMean
e« SDO_GEOR.generateBitmapPyramid
e SDO_GEOR.generateBlockMBR

e SDO_GEOR.generatePyramid

e« SDO_GEOR.generateSpatialExtent

ORACLE -

ORACLE

SDO_GEOR.generateSpatialResolutions
SDO_GEOR.generateStatistics
SDO_GEOR.generateStatisticsMax
SDO_GEOR:.generateStatisticsMean
SDO_GEOR.generateStatisticsMedian
SDO_GEOR.generateStatisticsMin
SDO_GEOR.generateStatisticsMode
SDO_GEOR:.generateStatisticsSTD
SDO_GEOR.georeference
SDO_GEOR.getBandDimSize
SDO_GEOR.getBeginDateTime
SDO_GEOR.getBinFunction
SDO_GEOR.getBinTable
SDO_GEOR.getBinType
SDO_GEOR.getBitmapMask
SDO_GEOR.getBitmapMaskSubset
SDO_GEOR.getBitmapMaskValue
SDO_GEOR.getBitmapMaskValues
SDO_GEOR:.getBlankCellValue
SDO_GEOR.getBlockingType
SDO_GEOR.getBlockSize
SDO_GEOR.getCellCoordinate
SDO_GEOR.getCellDepth
SDO_GEOR.getCellValue
SDO_GEOR.getCellValues
SDO_GEOR.getColorMap
SDO_GEOR.getColorMapTable
SDO_GEOR.getCompressionType
SDO_GEOR.getControlPoint
SDO_GEOR:.getDefaultAlpha
SDO_GEOR.getDefaultBlue
SDO_GEOR.getDefaultColorLayer
SDO_GEOR.getDefaultGreen
SDO_GEOR.getDefaultPyramidLevel
SDO_GEOR.getDefaultRed
SDO_GEOR.getEndDateTime
SDO_GEOR.getGCPGeorefMethod
SDO_GEOR.getGCPGeorefModel

Chapter 7

7-2

ORACLE

SDO_GEOR.getGeoreferenceType
SDO_GEOR.getGrayScale
SDO_GEOR.getGrayScaleTable
SDO_GEOR.getHistogram
SDO_GEOR.getHistogramTable
SDO_GEOR.getID
SDO_GEOR:.getinterleavingType
SDO_GEOR.getJP2TileSize
SDO_GEOR.getLayerDimension
SDO_GEOR:.getLayerID
SDO_GEOR.getLayerOrdinate
SDO_GEOR.getModelCoordinate

SDO_GEOR.getModelCoordLocation

SDO_GEOR.getModelSRID
SDO_GEOR.getNODATA
SDO_GEOR.getPyramidMaxLevel
SDO_GEOR.getPyramidType
SDO_GEOR.getRasterBlockLocator
SDO_GEOR.getRasterBlocks
SDO_GEOR:.getRasterData
SDO_GEOR.getRasterRange
SDO_GEOR.getRasterSubset
SDO_GEOR.getScaling
SDO_GEOR.getSourcelnfo
SDO_GEOR.getSpatialDimNumber
SDO_GEOR.getSpatialDimSizes
SDO_GEOR.getSpatialResolutions
SDO_GEOR.getSpectralResolution
SDO_GEOR.getSpectralUnit
SDO_GEOR.getSRS
SDO_GEOR.getStatistics
SDO_GEOR:.getTotalLayerNumber
SDO_GEOR.getULTCoordinate
SDO_GEOR.getVAT
SDO_GEOR.getVersion
SDO_GEOR:.hasBitmapMask
SDO_GEOR:.hasGrayScale
SDO_GEOR.hasNODATAMask

Chapter 7

7-3

ORACLE

SDO_GEOR.hasPseudoColor
SDO_GEOR.importFrom
SDO_GEOR:.init
SDO_GEOR:.isBlank
SDO_GEOR:.isOrthoRectified
SDO_GEOR:.isRectified
SDO_GEOR.isSpatialReferenced
SDO_GEOR.mask
SDO_GEOR.mergeLayers
SDO_GEOR.mosaic
SDO_GEOR:.rectify
SDO_GEOR:.reproject
SDO_GEOR:.scaleCopy
SDO_GEOR.schemaValidate
SDO_GEOR:.setBeginDateTime
SDO_GEOR:.setBinFunction
SDO_GEOR:.setBinTable
SDO_GEOR:.setBitmapMask
SDO_GEOR:.setBlankCellValue
SDO_GEOR:.setColorMap
SDO_GEOR:.setColorMapTable
SDO_GEOR:.setControlPoint
SDO_GEOR:.setDefaultAlpha
SDO_GEOR:.setDefaultBlue
SDO_GEOR:.setDefaultColorLayer
SDO_GEOR:.setDefaultGreen
SDO_GEOR:.setDefaultPyramidLevel
SDO_GEOR:.setDefaultRed
SDO_GEOR:.setEndDateTime
SDO_GEOR.setGCPGeorefMethod
SDO_GEOR.setGCPGeorefModel
SDO_GEOR:.setGrayScale
SDO_GEOR:.setGrayScaleTable
SDO_GEOR:.setHistogramTable
SDO_GEOR:.setlD
SDO_GEOR:.setLayerID
SDO_GEOR:.setLayerOrdinate
SDO_GEOR:.setModelCoordLocation

Chapter 7

7-4

« SDO_GEOR.setM

odelSRID

* SDO_GEOR.setNODATAMask

« SDO_GEOR:.setO

rthoRectified

e SDO_GEOR:.setRasterType

* SDO_GEOR.setRectified

+ SDO_GEOR.setScaling

« SDO_GEOR:.setSourcelnfo

* SDO_GEOR.setSpatialReferenced
* SDO_GEOR:.setSpatialResolutions
« SDO_GEOR.setSpectralResolution
« SDO_GEOR.setSpectralUnit

* SDO_GEOR.setSRS

* SDO_GEOR.setStatistics

* SDO_GEOR.setULTCoordinate

* SDO_GEOR.setVAT

¢ SDO_GEOR.setVersion

e SDO_GEOR.subs

et

« SDO_GEOR.updateRaster
e SDO_GEOR.validateBlockMBR
 SDO_GEOR.validateGeoRaster

« SDO_GEOR.warp

7.1 SDO_GEOR.addNODATA

ORACLE

Format

SDO_GEOR.addNODATA (

georaster IN
layerNumber 1IN
nodata IN

or

SDO_GEOR.addNODATA (

georaster IN

layerNumber 1IN

nodata IN
Description

OUT SDO_GEORASTER,
NUMBER,
NUMBER) ;

OUT SDO_GEORASTER,
NUMBER,
SDO_RANGE ARRAY) ;

Chapter 7
SDO_GEOR.addNODATA

Adds one or more NODATA values or value ranges, to represent NODATA cells in one layer or
all layers in a GeoRaster object.

7-5

ORACLE

Chapter 7
SDO_GEOR.addNODATA

Parameters

georaster
GeoRaster object.

layerNumber
Layer number in the GeoRaster object. A value of 0 (zero) indicates the object layer.

nodata

Either a single numeric value, or an array of numbers or number ranges. Any NODATA value
range is inclusive at the lower bound and exclusive at the upper bound.

The SDO_RANGE_ARRAY type is described in NODATA Values and Value Ranges

Usage Notes

Some cells of a GeoRaster object may have no meaningful value assigned or collected. Such
cells contain a NODATA value are thus called NODATA cells, which means that those cells are
not semantically defined. The application is responsible for defining the meaning or
significance of cells identified as NODATA cells. For more information about NODATA values
and value ranges, see NODATA Values and Value Ranges.

Any NODATA values or value ranges associated with the object layer apply to all sublayers.
For an explanation of layers, the object layer, and sublayers, see Bands_ Layers_ and
Metadata.

NODATA values must be in the valid cell value range. Both the lower bound and the upper
bound of a NODATA value range must be valid cell values as specified by the cell depth.
Because NODATA value ranges are exclusive at the upper bound, if you want to specify the
maximum valid cell value as NODATA, you must specify the maximum valid cell value as a
single numeric NODATA value.

This procedure associates NODATA values or value ranges with a raster layer incrementally. It
removes duplicate values or value ranges and combines adjacent values or value ranges to
form a compact representation in the metadata whenever feasible. However, a single numeric
NODATA value that is equal to the upper bound of a NODATA value range will not be
combined together with the value range because it is not always feasible to calculate the new
exclusive upper bound.

To delete one or more NODATA values or value ranges, use the SDO_GEOR.deleteNODATA
procedure. To return the NODATA values for a GeoRaster object, use the
SDO_GEOR.getNODATA function.

Examples

The following example specifies that cells with values that are greater than or equal to 5 and
less than 7, or that are equal to 9, are to be considered NODATA cells for the object layer (and
thus all sublayers) of a specified GeoRaster object.

DECLARE
gr sdo_georaster;

BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=1 FOR UPDATE;
SDO_GEOR.addNODATA (gr, 0, sdo_range array(sdo range(5,7), sdo_range(9,null)));
UPDATE georaster table SET georaster=gr WHERE georid=1;
COMMIT,;

END;

/

7-6

Chapter 7
SDO_GEOR.addSourcelnfo

7.2 SDO_GEOR.addSourcelnfo

ORACLE

Format

SDO_GEOR.addSourceInfo(
georaster IN OUT SDO_GEORASTER,
sourceInfo IN VARCHAR2);

Description

Adds to the source information for a GeoRaster object.
Parameters

georaster
GeoRaster object.

sourcelnfo
String with source information. Cannot exceed 4096 characters.

Usage Notes

The specified sourceInfo string is added to the <sourceInfo> element in the metadata for the
GeoRaster object (described in GeoRaster Metadata XML Schema). You can call this
procedure as many times as needed to put multiple string values in the <sourceInfo> element
or to add string values to any existing values.

If you want to replace any existing source information value or values, use the
SDO_GEOR:.setSourcelnfo procedure.

Examples

The following example sets and adds some source information for a specified GeoRaster
object, and then retrieves the information.

declare

gr sdo_georaster;
begin

select georaster into gr from georaster table where georid=1 for update;
sdo_geor.setSourceInfo(gr, 'Copyright (c) 2002, 2007, Oracle Corporation.');
sdo_geor.addSourceInfo(gr, 'All rights reserved.');

update georaster table set georaster=gr where georid=1;

end;

/

select * from table(select sdo geor.getSourceInfo(georaster) from georaster table where
id=1);

COLUMN VALUE

Copyright (c) 2002, 2007, Oracle Corporation.
All rights reserved.

7-7

7.3 SDO_GEOR.affineTransform

ORACLE

Format

SDO GEOR.affineTransform(

inGeoRaster
translation
scales
rotatePt
rotateAngle
shear
reflection
storageParam
outGeoRaster
bgValues
parallelParam

or

inGeoRaster
translation
scales
rotatePt
rotateAngle
shear
reflection
storageParam
rasterBlob
outArea
outWindow
bgValues
parallelParam

Description

IN SDO GEORASTER,

IN SDO NUMBER ARRAY DEFAULT
IN SDO NUMBER ARRAY DEFAULT
IN SDO NUMBER ARRAY DEFAULT
IN NUMBER DEFAULT NULL,

IN SDO NUMBER ARRAY DEFAULT
IN NUMBER DEFAULT NULL,

IN VARCHAR2 DEFAULT NULL,
IN OUT SDO_GEORASTER,

IN SDO NUMBER ARRAY DEFAULT
IN VARCHAR2 DEFAULT NULL);

IN SDO GEORASTER,

IN SDO NUMBER ARRAY DEFAULT
IN SDO NUMBER ARRAY DEFAULT
IN SDO NUMBER ARRAY DEFAULT
IN NUMBER DEFAULT NULL,

IN SDO NUMBER ARRAY DEFAULT
IN NUMBER DEFAULT NULL,

IN VARCHAR DEFAULT2 DEFAULT
IN OUT NOCOPY BLOB,

OUT SDO_GEOMTRY,

OUT SDO_NUMBER ARRAY,

IN SDO NUMBER ARRAY DEFAULT
IN VARCHAR2 DEFAULT NULL);

Chapter 7
SDO_GEOR.affineTransform

NULL,
NULL,
NULL,

NULL,

NULL,

NULL,
NULL,
NULL,
NULL,

NULL,

NULL,

Performs affine transformation on the input GeoRaster image to produce an output GeoRaster
image based on the values of the parameters translation, scales, rotatePt. rotateAngle,
shear, and reflection.

Parameters

inGeoRaster

GeoRaster object on which to perform the operation. It does not need to be georeferenced.
(Georeferencing is explained in Georeferencing GeoRaster Objects and Advanced

Georeferencing.)

translation

When specified, should contain two integer numeric values with the number of rows and
columns to be applied to the translation transformation. The values for row and columns
translation are independent of each other, but positive values will translate the image to the
right and to the bottom, and negative values will translate the image to the left and to the top.
If this parameter is omitted, no translation is performed.

scales

When specified, should contain two numeric values with the scale factor to be applied to the
rows and columns to be applied to the scale transformation. The values for row and columns
scaling are independent from each other but values between 0 and 1 will reduce the size of

7-8

ORACLE

Chapter 7
SDO_GEOR.affineTransform

the image in rows and/or columns while values greater than 1 will enlarge the size of image is
rows and/or columns. If this parameter is omitted, no scaling is performed.

rotatePt

When specified, should contain two numeric value representing the cell space coordinate (row
and columns) to be used as the center of the rotation operation. In practical terms, the image
feature associated with rotatePt will be the center of the new output image. If this parameter is
omitted, the center of the image is assumed.

rotateAngle

When specified, should contain a numeric value between -180 to 180 identifying the angle to
be applied to the rotation transformation. A positive value indicates that the rotation will turn to
the right and negative value indicates rotation to the left. See usage notes for more
information. If this parameter is omitted, no rotation is performed.

shear

When specified, should contain two numeric value between the shear factor to be applied to
the x and y coordinates respectively in a shear transformation. The values for row and
columns shear are independent from each other. If this parameter is omitted, no shearing is
performed.

reflection
When specified, should contain the numeric values 1 or 2, representing vertical or horizontal
reflection, respectively. If this parameter is omitted, no reflection is performed.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster

GeoRaster object to hold the result of the operation. Must be either a valid existing GeoRaster
object or an empty GeoRaster object. (Empty GeoRaster objects are explained in Blank and
Empty GeoRaster Objects.) Cannot be the same GeoRaster object as inGeoRaster

rasterBlob
BLOB to hold the output reflecting the rectification. It must exist or have been initialized before
the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in the model
coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and lower-right
corners of the output window in the cell space.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER_ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

7-9

Chapter 7
SDO_GEOR.affineTransform

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where nis greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, the procedure performs an internal commit operation. If an error
occurs (even if it is raised by the Oracle parallel server), you must delete the resulting output
GeoRaster object explicitly in order to roll back the operation.

Usage Notes
This procedure has two formats:

e The first format generates a GeoRaster object for persistent storage in the database.

e The second format generates a BLOB for temporary storage or immediate use, such as to
display data on the screen.

This procedure performs the specified simple affine transformation operations individually or in
combination.

For all the possible operations and combinations of operations, this procedure will transform
the physical representation of the stored image and build new georeferencing information that
preserves the original location of features in the image. Thus, the image might look the same
when projected by a visualization tool.

Examples

In the following example, the output GeoRaster object will be generated from rotating the
source image by -90 degrees (90 degrees to the left).

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN
select georaster into grl from georaster table where georid = 1;

insert into georaster table values(2, 'Rotated 90 left',
sdo _geor.init('rdt0',2)) returning georaster into gr2;

sdo_geor.affineTransform(inGeoRaster => grl,
translation => null,
scales => null,
rotatePt => null,
rotateAngle => -90,
shear => null,
reflection => null,

storageParam => 'pyramid=true',
outGeoraster => gr2);

update georaster table set georaster = gr2 where georid = 2;
commit;
END;

In the following example, the output GeoRaster object will be generated from enlarging the
source image two times bigger while rotating it by 15 degrees to the right.

DECLARE
grl sdo_georaster;
gr3 sdo_georaster;
BEGIN
select georaster into gr2 from georaster table where georid = 1;

ORACLE 7-10

ORACLE

insert into georaster table values(3,
sdo_geor.init('rdt0',3)) returning

sdo_geor.affineTransform(inGeoRaster =>
translation =>
scales =>
rotatePt =>
rotateAngle =>
shear =>
reflection =>

storageParam =>
outGeoraster =>
parallelParam =>

update georaster table set georaster =
commit;
END;

Chapter 7
SDO_GEOR.affineTransform

'Scaled x 2 Rotated 15',

georaster into gr3;

grl,
null,

sdo_number array(2,2),
null,

15,

null,

null,
'blocksize=(512,512,3)"',
gr3,

'parallel=4");

gr3 where georid = 3;

In the following example, the output GeoRaster object will be generated from shearing the
source image by a factor of 5 in both rows and columns:

DECLARE
grl sdo georaster;
grd sdo_georaster;
BEGIN

select georaster into gr2 from georaster table where georid = 1;

insert into georaster table values (4,
sdo_geor.init('rdt0',4)) returning

sdo_geor.affineTransform(inGeoRaster =>
translation =>
scales =>
rotatePt =>
rotateAngle =>
shear =>
reflection =>

storageParam =>
outGeoraster =>
parallelParam =>

'Shear 5,5',

georaster into gré4;

grl,

null,

null,

null,

null,

sdo_number array(5,5),
null,

'pyramid=true’,

gr4,

'parallel=4");

update georaster table set georaster = gr4 where georid = 4;

commit;
END;

In the following example, the output GeoRaster object will be generated from the vertical

reflection of the source image.

DECLARE
grl sdo georaster;
gr5 sdo georaster;
BEGIN

select georaster into gr2 from georaster table where georid = 1;

insert into georaster table values(5, 'Vertical reflection',

sdo geor.init('rdt0',5)) returning

sdo geor.affineTransform(inGeoRaster =>
translation =>
scales =>
rotatePt =>

georaster into grb;

grl,

null,
null,
null,

7-11

Chapter 7
SDO_GEOR.calcCompressionRatio

rotateAngle => null,
shear => null,
reflection =1,

storageParam => 'pyramid=true',
outGeoraster => grj,
parallelParam => 'parallel=4"');

update georaster table set georaster = gr5 where georid = 5;
commit;
END;

7.4 SDO_GEOR.calcCompressionRatio

Format

SDO_GEOR.calcCompressionRatio (
georaster 1IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the compression ratio of a specified GeoRaster object.
Parameters

georaster
GeoRaster object.

Usage Notes

The compression ratio is the sum of the sizes of all raster blocks (including pyramids) in the
uncompressed GeoRaster object divided by the sum of these sizes in the compressed form of
the object. If the input GeoRaster object is not compressed, the compression ratio is 1 (that is,
1:1).

For a given original GeoRaster object, the greater the compression ratio, the smaller is the
compressed GeoRaster object. For example, a compression ratio of 20 (that is, 20:1), the data
is compressed to 5 percent of its original size.

For more information about GeoRaster compression, see Compression and Decompression.

Examples

The following example returns the compression type and compression ratio for the GeoRaster
object in the GEORASTER column of table GEORASTER_TABLE where the GEORID column
value is 1.

SELECT sdo_geor.getCompressionType (georaster) compType,
sdo_geor.calcCompressionRatio (georaster) compRatio
FROM georaster table WHERE georid=1l;

7.5 SDO_GEOR.changeCellValue

ORACLE

Format

SDO_GEOR.changeCellValue (
georaster IN OUT SDO GEORASTER,
window IN SDO_NUMBER ARRAY,
bandNumbers IN VARCHARZ,

7-12

ORACLE

Chapter 7
SDO_GEOR.changeCellValue

newCellValue IN NUMBER,
bgValues IN SDO_NUMBER ARRAY DEFAULT NULL);

or

SDO_GEOR.changeCellValue (
georaster IN OUT SDO_GEORASTER,
window IN SDO GEOMETRY,
layerNumbers IN VARCHAR2,
newCellValue IN NUMBER,
bgValues IN SDO_NUMBER ARRAY DEFAULT NULL);

Description

Changes the value of raster cells in a specified window of a GeoRaster object to a single new
value.

Parameters

georaster
GeoRaster object.

window

Window in which to change the values of all cells to newCellvalue. The data type can be
SDO_NUMBER_ARRAY or SDO_GEOMETRY. If the data type is SDO_NUMBER_ARRAY,
the parameter identifies the upper-left (row, column) and lower-right (row, column) coordinates
of a rectangular window, and raster space is assumed. If the data type is SDO_GEOMETRY,
see the Usage Notes for SDO_SRID requirements and other information.

bandNumbers

A string identifying the physical band numbers on which the operation is to be performed. Use
commas to delimit the values, and a hyphen to indicate a range (for example, 1-3 for bands 1,
2, and 3).

layerNumbers

A string identifying the logical layer numbers on which the operation is to be performed. Use
commas to delimit the values, and a hyphen to indicate a range (for example, 2-4 for layers 2,
3, and 4).

newCellValue
The new cell value for each cell inside the window in the specified bands or layers. The value
must be in the range designated by the ce11Depth value for the GeoRaster object.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

Usage Notes

Because this procedure overwrites data in the input GeoRaster object, you should make a
copy of the original GeoRaster object and use this procedure on the copied object. After you

7-13

ORACLE

Chapter 7
SDO_GEOR.changeCellValue

are satisfied with the result of this procedure, you can discard the original GeoRaster object if
you wish.

This procedure can be used to mask, or conceal, parts of an image. For example, you can
change irrelevant parts of an image to a dull color before displaying the image, to help people
to focus on the relevant parts.

If the window parameter data type is SDO_GEOMETRY, the SDO_SRID value must be one of
the following:

* Null, to specify raster space
e Avalue from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the window parameter geometry and the model space are
different, the window parameter geometry is automatically transformed to the coordinate
system of the model space before the operation is performed. (Raster space and model
space are explained in GeoRaster Data Model.)

If the window parameter specifies a nonrectangular SDO_GEOMETRY object, this function
calculates the MBR of the geometry and update the cells inside that MBR, including the cells
on the boundary of the MBR.

If the window parameter specifies a geodetic MBR, it cannot cross the date line meridian. For
information about geodetic MBRS, see Oracle Spatial and Graph Developer's Guide.

If georaster is a blank GeoRaster object and the whole area is updated, the result is a blank
GeoRaster object with the blankCellValue value set to newCellValue.

If georaster is a blank GeoRaster object and it is only partially updated, the result is a
nonblank GeoRaster object with the original blankCellvalue and newCellValue values set
according to the window parameter and the bandNumbers or layerNumbers parameter.

If georaster is a nonblank GeoRaster object, the result is a nonblank GeoRaster object, even
if all cells are set to the newCellValue value.

If georaster is null, this procedure performs no operation. If georaster is invalid, an exception
is raised.

If any pyramids are defined on the GeoRaster object, the corresponding cell values for the
pyramids are updated.

To return the value of a single cell located anywhere in the GeoRaster object, use the
SDO_GEOR.getCellValue function.

Examples

The following example changes the value of all cells to 151 in a specified window in band
number 1. (It refers to a table named GEORASTER_TABLE, whose definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
gr sdo_georaster;

BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=110 FOR UPDATE;
sdo_geor.changeCellValue (gr, sdo number array(100,67,134,113), 'l', 151);
UPDATE georaster table SET georaster=gr WHERE georid=110;
COMMIT,;

END;

/

7-14

Chapter 7
SDO_GEOR.changeCellValues

7.6 SDO_GEOR.changeCellValues

ORACLE

Format

SDO_GEOR.changeCellValues (
georaster IN OUT SDO_GEORASTER,
rowNumbers IN SDO NUMBER ARRAY,
colNumbers IN SDO NUMBER ARRAY,
bandNumber IN NUMBER,
newCellValues IN SDO_NUMBER ARRAY,
bgValues IN SDO NUMBER ARRAY DEFAULT NULL);

or

SDO_GEOR.changeCellValues (
georaster IN OUT SDO GEORASTER,
ptGeom IN SDO_GEOMETRY,
layerNumber IN NUMBER,
newCellValues IN SDO NUMBER ARRAY,
bgValues IN SDO_NUMBER ARRAY DEFAULT NULL);

Description

Changes the value of raster cells specified by row/column arrays or by a multipoint geometry to
new values.

Parameters

georaster
GeoRaster object.

rowNumbers
Numbers of the rows that contains the cells whose values are to be changed.

colNumbers
Numbers of the columns that contains the cells whose values are to be changed.

bandNumber
Number of the physical band that contains the cells whose value is to be changed.

ptGeom
Multipoint geometry that identifies the cells whose values are to be changed.

layerNumber

Number of the logical layer that contains the cells whose value is to be changed. (As
mentioned in Bands_ Layers_ and Metadata, the logical layer number is the physical band
number plus 1.)

newCellValues
The new cell value for each cell inside the window in the specified bands or layers. The value
must be in the range designated by the ce11Depth value for the GeoRaster object.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or

7-15

Chapter 7
SDO_GEOR.changeFormatCopy

the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1, 5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

Usage Notes

Because this procedure overwrites data in the input GeoRaster object, you should make a
copy of the original GeoRaster object and use this procedure on the copied object. After you
are satisfied with the result of this procedure, you can discard the original GeoRaster object if
you wish.

This procedure can be used to mask, or conceal, parts of an image. For example, you can
change irrelevant parts of an image to a dull color before displaying the image, to help people
to focus on the relevant parts.

In the ptGeom SDO_GEOMETRY object, the SDO_SRID value must be one of the following:

e Null, to specify raster space
e Avalue from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the ptGeom parameter geometry and the model space are
different, the ptGeom parameter geometry is automatically transformed to the coordinate
system of the model space before the operation is performed. (Raster space and model
space are explained in GeoRaster Data Model.)

If georaster is null, this procedure performs no operation. If georaster is invalid, an exception
is raised.

If any pyramids are defined on the GeoRaster object, the corresponding cell values for the
pyramids are updated.

To return the values of cells located anywhere in the GeoRaster object, use the
SDO_GEOR.getCellValues function.

Examples

The following example changes the value of two cells to 151 and 152 in band number 1. (It
refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
gr sdo_georaster;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=110 FOR UPDATE;
sdo_geor.changeCellValues (gr, sdo number array(100,67),sdo number array(134,113), 1,
sdo_number_array(151,152));
UPDATE georaster table SET georaster=gr WHERE georid=110;
COMMIT;
END;
/

7.7 SDO_GEOR.changeFormatCopy

ORACLE

Format

SDO_GEOR.changeFormatCopy (
inGeoRaster IN SDO_GEORASTER,

7-16

ORACLE

Chapter 7
SDO_GEOR.changeFormatCopy

storageParam IN VARCHAR2,
outGeoRaster IN OUT SDO_GEORASTER,
bgValues IN SDO NUMBER ARRAY DEFAULT NULL);

or

SDO_GEOR.changeFormatCopy (
inGeoRaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,
storageParam IN VARCHAR2,
outGeoRaster IN OUT SDO_GEORASTER,
bgValues IN SDO NUMBER ARRAY DEFAULT NULL);

Description

Makes a copy of an existing GeoRaster object using a different storage format (for example,
changing the blocking, cell depth, or interleaving).

Parameters

inGeoRaster
The SDO_GEORASTER object whose format is to be copied.

pyramidLevel
A number specifying the pyramid level of the source GeoRaster object.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster

The SDO_GEORASTER object to hold the copy. Must be either a valid existing GeoRaster
object or an empty GeoRaster object. (Empty GeoRaster objects are explained in Blank and
Empty GeoRaster Objects.) Cannot be the same GeoRaster object as inGeoRaster.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

Usage Notes

This procedure creates a new GeoRaster object that has the specified changes, based on the
original GeoRaster object or a specified pyramid level of it. After you use this procedure, you
can check to ensure that the desired changes were made in the copy, and then discard the
original GeoRaster object if you wish.

If you use the format that does not include the pyramidLevel parameter, the copy is based on
the original GeoRaster object (pyramidLevel=0).

If the copy is to be made from a pyramid of the original GeoRaster object (pyramidLevel > 0),
and if the original GeoRaster object is georeferenced, georeferencing information is generated
for the resulting GeoRaster object only when the georeference is a valid polynomial
transformation. The resulting object's row and column ultCoordinates are set to (0,0).

7-17

ORACLE

Chapter 7
SDO_GEOR.changeFormatCopy

To compress or decompress a GeoRaster object, use the compression keyword in the
storageParam parameter. (There is no separate GeoRaster function or procedure for
compressing or decompressing a GeoRaster object.)

If inGeoRaster is null, this procedure performs no operation.

If storageParam is null, inGeoRaster is copied to outGeoRaster.

If outGeoRaster has any raster data, it is deleted before the copy operation.
inGeoRaster and outGeoRaster must be different GeoRaster objects.

If pyramid data exists for inGeoRaster, any upper level pyramid data is copied to outGeoRaster
unless the storageParam String contains pyramid=FALSE.

An exception is raised if one or more of the following are true:
e inGeoRaster is invalid.
* outGeoRaster has not been initialized.

* Araster data table for outGeoRaster does not exist and outGeoRaster is not a blank
GeoRaster object.

Examples

The following example creates a GeoRaster object that is the same as the input object except
that the block size is set to 2048 for both dimensions. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN
SELECT georaster INTO gr2 from georaster table WHERE georid=11 FOR UPDATE;
SELECT georaster INTO grl from georaster table WHERE georid=1l;

sdo_geor.changeFormatCopy(grl, 'blocksize=(2048,2048)", gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=11;
COMMIT;

END;

/

The following example creates a GeoRaster object that is the same as the input object except
that raster data is compressed to deflate format and the compression process is running in
parallel. (It refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grl sdo georaster;
gr2 sdo georaster;
BEGIN
SELECT georaster INTO gr2 from georaster table WHERE georid=11 FOR UPDATE;
SELECT georaster INTO grl from georaster table WHERE georid=1;

sdo_geor.changeFormatCopy(grl, 'compression=deflate parallel=4', gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=11;
COMMIT;

END;

/

7-18

Chapter 7
SDO_GEOR.compressJP2

7.8 SDO_GEOR.compressJP?2

ORACLE

Format

SDO_GEOR.compressJP2 (
inGeoRaster IN SDO GEORASTER,
compressParam IN VARCHARZ,
outGeoRaster IN OUT SDO_GEORASTER) ;

Description

Compresses the image in a GeoRaster object using JPEG 2000 compression.

Parameters

inGeoRaster
The SDO_GEORASTER object whose data is to be compressed.

compressParam
A string specifying one or more keywords for the compression parameter. For an explanation
of the available keywords, see the table in the Usage Notes.

outGeoRaster

The SDO_GEORASTER object to hold the result of the compression. Must be either a valid
existing GeoRaster object or an empty GeoRaster object. (Empty GeoRaster objects are
explained in Blank and Empty GeoRaster Objects.) Cannot be the same GeoRaster object as
inGeoRaster.

Usage Notes

The output compressed image is in JPEG 2000 (JP2) file format and stored in one raster block
of the outGeoRaster object. There are no pyramid raster blocks stored in the raster data table,
because the pyramids are stored in the JP2 file as part of the compression.

If not specified in rlevel keyword of compressParam, the maximum number of pyramid level is
calculated as: floor (log2 (tsize)), where tsize is the minimal value of the tilesize
parameter values for rows and columns. If the tiling parameter value isfalse, tsize is the
minimal value of the image height and width.

If neither ratio nor psnr is specified, the compression is loss-less

This procedure supports 8—bit and 16—bit source GeoRaster objects. The maximum of number
of tiles allowed is 65535.

The following table lists the available compressParam keywords for JPEG 2000 (JP2)
compression.

Table 7-1 compressParam Keywords for JPEG 2000 (JP2) Compression

___|
Keyword Explanation

codeBlockSize=(cbrow, cbcol) Specifies the code block row and column size,
where cbrow and cbcol are the size of the code
block in rows and columns, respectively. It must be
in the range of [4, 1024] and cbrow * cbcol <=
4096. By default, it is 64 x 64.

7-19

ORACLE

Chapter 7
SDO_GEOR.compressJP2

Table 7-1 (Cont.) compressParam Keywords for JPEG 2000 (JP2) Compression

Keyword

Explanation

dwt=reversible | irreversible

mct=true | false

precinctSize=(pcrow, pccol)

progressOrder=LRCP|RLCP|RPCL|PCRL|CPRL

psnr=(p1, p2, p3, ...)

ratio=(r1, r2, r3, ...)

rlevel=n

tileSize=(trow, tcol)

tiling=true | false

Specifies the discrete wavelet transform, where
reversible means to use the DWT 5-3
transform, and irreversible means to use the
DWT 9-7 transform. Irreversible transforms always
result in lossy compression.

Specifies whether to use multiple component
transform. By default, RGB->YCC conversion is
used if there are 3 bands or more.

Specifies the precinct size, where pcrow and
pccol are the size of the precinct in rows and
columns, respectively. By default it is 512 x 512 on
each resolution.

Specifies the progression order: LRCP (layer-
resolution-component-position progressive, or rate
scalable), RLCP (resolution-layer-component-
position progressive, or resolution scalable), RPCL
(resolution-position-component-layer progressive),
PCRL (position-component-resolution-layer
progressive), or CPRL (component-position-
resolution-layer) progressive. By default, it is LRCP.

Specifies the peak signal-to-noise ratio (PSNR),
where pl, p2, p3, ... are the compression PSNR for
layer 1, 2, 3, and so on of the JP2 code stream. It
should be in increasing order. Example: psnr=(30,
40, 50). By default, the compression is loss-less.
This parameter cannot be specified together with
the ratio parameter.

Specifies the compression ratio, where p1, p2,

p3, ... are the compression ratios for layers 1, 2, 3,
and so on of the JP2 code stream. It should be in
decreasing order. Example: ratio=(30, 20, 10). By
default, the compression is loss-less. This
parameter cannot be specified together with the
psnr parameter.

Specifies the number of decompositions of the
wavelet transform, and thus the number of
pyramids of the image. By default, the level of
decomposition is floor(log2(tileSize)).

trow and tcol specify the row and column size of
the tile. If the tile size is greater than the image
size, no tiling is applied.

Specifies whether to use tiling in the JPEG2000
compression. By default, tiling is true. If tilingis
true and if tileSize is not set, the default tile
size is 512 x 512.

7-20

Chapter 7
SDO_GEOR.copy

Note:

For any numbers in string (VARCHAR?2) parameters to GeoRaster subprograms, the
period (.) must be used for any decimal points regardless of the locale.

Examples

The following example creates a JPEG 2000 compressed GeoRaster object from the original
object. The JP2 file internal tile size is 512 by 512 and the compression ratio values for JP2
layers 1, 2, and 3 are 30, 20, and 10, respectively. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN
INSERT INTO georaster table (georid, georaster)
VALUES (4, sdo _geor.init ('RDT 1'"))
RETURNING georaster INTO gr2;

SELECT georaster INTO grl FROM georaster table WHERE georid=l;

sdo_geor.compressJP2 (grl,’tilesize=(512, 512), ratio=(30, 20, 10)', gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=4;
COMMIT,;

END;

/

7.9 SDO_GEOR.copy

ORACLE

Format

SDO_GEOR. copy (
inGeoRaster IN SDO_GEORASTER,
outGeoRaster IN OUT SDO_GEORASTER) ;

Description

Makes a copy of an existing GeoRaster object.

Parameters

inGeoRaster
GeoRaster object to be copied.

outGeoRaster

GeoRaster object to hold the result of the copy operation. Must be either a valid existing
GeoRaster object or an empty GeoRaster object. (Empty GeoRaster objects are explained in
Blank and Empty GeoRaster Objects.) Cannot be the same GeoRaster object as
inGeoRaster.

7-21

Chapter 7
SDO_GEOR.createBlank

Usage Notes

The outGeoRaster object is an exact copy of the inGeoRaster object. To make any changes to
the output GeoRaster object during a copy operation, use the
SDO_GEOR.changeFormatCopy procedure.

If inGeoRaster is null, this procedure performs no operation.

If outGeoRaster has any raster data, it is deleted before the copy operation.
inGeoRaster and outGeoRaster must be different GeoRaster objects.

If pyramid data exists for inGeoRaster, the pyramid data is copied to outGeoRaster.
An exception is raised if one or more of the following are true:

e inGeoRaster is invalid.
* outGeoRaster has not been initialized.

* Araster data table for outGeoRaster does not exist and outGeoRaster is not a blank
GeoRaster object.

Examples

The following example inserts an initialized GeoRaster object (gr2) into the GEORASTER
column of table GEORASTER_TABLE, makes gr2 an exact copy of another GeoRaster object
(gr1), and updates the row that had been inserted using gr2 for the GEORASTER column
value. (It refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grl sdo georaster;
gr2 sdo_georaster;
BEGIN
INSERT INTO georaster table VALUES (11, sdo geor.init ('RDT_11', 1)
RETURNING georaster INTO gr2;
SELECT georaster INTO grl from georaster table WHERE georid=1;

sdo_geor.copy(grl, gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=11;
COMMIT;

END;

/

7.10 SDO_GEOR.createBlank

ORACLE

Format

SDO_GEOR.createBlank (

rasterType IN INTEGER,

ultCoord IN SDO NUMBER ARRAY,
dimSizes IN SDO_NUMBER ARRAY,
cellValue IN NUMBER,
rasterDataTable IN VARCHAR2 DEFAULT NULL,
rasterID IN NUMBER DEFAULT NULL

) RETURN SDO GEORASTER;

7-22

ORACLE

Chapter 7
SDO_GEOR.createBlank

Description

Creates a blank GeoRaster object, in which all cells have the same value; the object must then
be registered in the xxx_SDO_GEOR_SYSDATA views (see the Usage Notes).

Parameters

rasterType
The 5-digit rasterType attribute value, as specified in rasterType Attribute.

ultCoord

An array of the upper-left coordinate integer values for the GeoRaster object. The default
value is (0,0) for a GeoRaster object without a band dimension, and (0,0, 0) for a GeoRaster
object with a band dimension. If this parameter is null, the default value of 0 is used for each
dimension. If a value in the specified array is null, the default value of 0 is used for the
corresponding dimension. The value for the band dimension must be 0, and you do not need
to specify it. (If you specify an array of values, the number of values must not be less than the
number of the spatial dimensions or more than the number of total dimensions.)

dimSizes

The number of cells along each dimension. The number of values in the array must be equal
to the total number of dimensions, and the size of each dimension must be explicitly specified.
The row and column dimension sizes must be greater than 1.

cellvalue
The cell value for all raster cells in the created GeoRaster object. Must be from 0 to 255,
because the cell depth of the created GeoRaster object is 8BIT UNSIGNED.

rasterDataTable

Name of the object table of type SDO_RASTER that stores the cell data blocks. Must not
contain spaces, period separators, or mixed-case letters in a quoted string; the name is
always converted to uppercase when stored in an SDO_GEORASTER object. The RDT
should be in the same schema as its associated GeoRaster table. If you do not specify this
parameter, GeoRaster generates a unique table name to be used for the raster data table. If
you specify this parameter and the table already exists but is not an object table of type
SDO_RASTER, an exception is raised.

rasterlD
Number that uniquely identifies the cell blocks of this GeoRaster object in the raster data
table. If you do not specify this parameter, a unique sequence number is generated for the ID.

Usage Notes

After creating the blank GeoRaster object and before performing any operations on the object,
you must register it in the xxx_SDO_GEOR_SYSDATA views by inserting the empty
GeoRaster object into a GeoRaster table. (The xxx_SDO_GEOR_SYSDATA views are
described in GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA). GeoRaster
operations are described in GeoRaster Database Creation and Management and GeoRaster
Data Query and Manipulation.)

The created GeoRaster object has no spatial reference information; therefore, its spatial extent
geometry has a null SRID (coordinate system) value. The spatial extent geometry reflects the
ultCoord and dimSizes values.

This function does not require that the specified raster data table exist. However, the table
must exist before any raster data can be inserted into it.

7-23

Chapter 7
SDO_GEOR:.createTemplate

Although the cell depth of the created GeoRaster object is 8BIT UNSIGNED, you can change the
cell depth after you create the blank GeoRaster object by calling the
SDO_GEOR.changeFormatCopy procedure. You can then call the
SDO_GEOR:.setBlankCellValue procedure to reset the cell value in a different range.

For guidelines that apply to the SDO_GEOR.createBlank and SDO_GEOR.init functions when
a table has multiple GeoRaster object columns, see the Usage Notes for the SDO_GEOR.init
function.

An exception is raised if any value for an input parameter is invalid.

Examples

The following example inserts a row containing a blank GeoRaster object into the table. (It
refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

INSERT INTO georaster table (georid, georaster) VALUES (
1,
sdo_geor.createBlank (20001, SDO NUMBER ARRAY (0,0),
SDO_NUMBER ARRAY (1024,1024), 255, 'RDT 1')
)i

7.11 SDO_GEOR:.createTemplate

Format

SDO_GEOR.createTemplate (
georaster IN OUT SDO GEORASTER,
rasterType IN INTEGER,
rasterSpec IN VARCHARZ,
maskLayers IN VARCHAR2 DEFAULT NULL,
initRDTEntry IN VARCHAR2 DEFAULT NULL);

Description

Populates a GeoRaster object with metadata of a general pattern, and optionally inserts entries
with empty raster blocks into its raster data table.

Parameters

georaster
The GeoRaster object to be updated.

rasterType
The 5-digit rasterType attribute value, as specified in rasterType Attribute.

rasterSpec
A string with raster specification parameters, as explained in the Usage Notes.

maskLayers

A string identifying the logical layer numbers on which there are associated bitmap masks.
Use commas to delimit the values, and a hyphen to indicate a range (for example, 2-4 for
layers 2, 3, and 4).

ORACLE 7-24

ORACLE

Chapter 7
SDO_GEOR.createTemplate

initRDTEntry

The string TRUE causes the raster data table to be populated; the string FALSE causes the
raster data table not to be populated. If you do not specify this parameter, the raster data table
is not populated.

Usage Notes

This function populates a GeoRaster object with metadata of a general pattern and optionally
inserts proper rows (with empty raster blocks) into its raster data table. If the raster data table
is to be populated, the raster data table must exist and the GeoRaster object must have been
registered in the GeoRaster SYSDATA table.

In general, only use this procedure with an empty GeoRaster object to populate its XML
metadata and raster blocks. If you use an existing (good) GeoRaster object, the GeoRaster
object will be replaced with the new template object upon update.

The rasterSpec parameter must be a quoted string that contains one or more keyword-value
pairs. The following keywords are supported for this parameter:

* Dblocking (for example, blocking=TRUE). For an explanation of this keyword, see Table 1-1
in Storage Parameters.

* Dblocksize (for example, blocksize=(512,512, 3)). For an explanation of this keyword, see
Table 1-1 in Storage Parameters.

e cellDepth (for example, cellDepth=8BIT S). For an explanation of this keyword, see
Table 1-1 in Storage Parameters.

* compression (for example, compression=JPEG-F). For an explanation of this keyword, see
Table 1-1 in Storage Parameters.

° dimSize (for example, dimSize=(512,512, 3)): Specifies the row, column, and band
dimension sizes. This keyword must be specified and must be consistent with the
rasterType parameter.

e interleaving (for example, interleaving=BIP). For an explanation of this keyword, see
Table 1-1 in Storage Parameters.

e quality (for example, quality=75). For an explanation of this keyword, see Table 1-1 in
Storage Parameters.

* resampling (for example, resampling=NN): Specifies the resampling method. Must be one
of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, AVERAGEL6. For more
information, see Resampling and Interpolation.

The resampling keyword is ignored if rLevel is not set.

* rLevel (for example, rLevel=2): Specifies the maximum pyramid reduction level. Must be
a positive integer. If you specify this keyword, the pyramid type is set to DECREASE in the
metadata; otherwise, the pyramid type is set to NONE.

* ultCoord (for example, ultCoord=(0,0,0)): Specifies the upper-left coordinate integer
values for the GeoRaster object. The default value is O for all the dimensions. The value for
the band dimension must be 0.

(Note that the following keywords in Table 1-1 in Storage Parameters are not supported for the
rasterSpec parameter: bitmapmask and pyramid.)

If the compression keyword in the rasterSpec parameter is set as Jp2-F, the blocking defaults
to non-blocking no matter what the rasterSpec parameter specifies. If the rlevel keyword in

the rasterSpec parameter is not set and compression is Jp2-F, the pyramid maximum level in
the GeoRaster metadata defaults to floor(log2(imageSize)), where imageSize is the minimum

7-25

Chapter 7
SDO_GEOR.decompressJP2

of the image row and column size. The pyramid maximum level should be adjusted later if the
actual data has different levels of resolutions.

For more information about using this function in developing GeoRaster applications, see
Using Template-Related Subprograms to Develop GeoRaster Applications.

Examples

The following example populates a GeoRaster object with metadata and initial raster data table
rows.

DECLARE
gr sdo_georaster;
BEGIN
INSERT INTO georaster table (georid, georaster)
VALUES (1, sdo geor.init('RDT 1'"))
RETURNING georaster into gr;
sdo_geor.createTemplate (gr, 21001,
'dimSize=(512,512,3) blocking=false rlevel=2"',

null, 'TRUE');
UPDATE georaster table set georaster=gr where georid=1;
COMMIT;
END;

/

7.12 SDO_GEOR.decompressJP2

ORACLE

Format

SDO_GEOR.decompressJP2 (
inGeoRaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
CropArea IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2Z,
storageParam IN VARCHAR2Z,
outGeoraster IN OUT SDO_GEORASTER) ;

or

SDO_GEOR.decompressJP2 (
inGeoRaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,
CcropArea IN SDO_GEOMETRY,
layerNumbers IN VARCHAR2,
storageParam IN VARCHAR2,
outGeoraster IN OUT SDO_GEORASTER);

Description
Decompress the JPEG 2000 compressed GeoRaster image into a GeoRaster object.
Parameters

inGeoRaster
The SDO_GEORASTER object to be decompressed.

pyramidLevel
A number specifying the pyramid level to be decompressed in the source GeoRaster object.

7-26

ORACLE

Chapter 7
SDO_GEOR.decompressJP2

cropArea

Crop area definition. If the data type is SDO_NUMBER_ARRAY, the parameter identifies the
upper-left (row, column) and lower-right (row, column) coordinates of a rectangular window,
and raster space is assumed. If the data type is SDO_GEOMETRY, the minimum bounding
rectangle (MBR) of the geometry object is used as the crop area; see also the Usage Notes
for SDO_SRID requirements.

If cropArea is of type SDO_GEOMETRY, use the layerNumbers parameter to specify one or
more layer numbers; if cropArea is of type SDO_NUMBER_ARRAY, use the bandNumbers
parameter to specify one or more band numbers.

bandNumbers

A string identifying the physical band numbers on which the operation is to be performed. Use
commas to delimit the values, and a hyphen to indicate a range (for example, 1-3 for bands 1,
2, and 3).

layerNumbers

A string identifying the logical layer numbers on which the operation is to be performed. Use
commas to delimit the values, and a hyphen to indicate a range (for example, 2-4 for layers 2,
3, and 4).

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster

The output SDO_GEORASTER object that reflects the results of the operation. Must be either
a valid existing GeoRaster object or an empty GeoRaster object. (Empty GeoRaster objects
are explained in Blank and Empty GeoRaster Objects.) Cannot be the same GeoRaster object
as inGeoRaster.

Usage Notes

In the storageParam parameter, any bitmapmask, compression, quality, and pyramid
keywords are ignored.

If the cropArea parameter data type is SDO_GEOMETRY, the SDO_SRID value must be one
of the following:

e Null, to specify raster space
e Avalue from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the cropArea parameter geometry and the model space are
different, the window parameter geometry is automatically transformed to the coordinate
system of the model space before the operation is performed. (Raster space and model
space are explained in GeoRaster Data Model.)

Examples

The following example creates an uncompressed GeoRaster object that contains only
specified bands from a specified window from the original object. The original object’s raster
data is compressed in JPEG 2000 compression. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN
INSERT INTO georaster table (georid, georaster)

7-27

Chapter 7
SDO_GEOR.deleteControlPoint

VALUES (41, sdo geor.init('RDT_1'))
RETURNING georaster INTO gr2;

SELECT georaster INTO grl FROM georaster table WHERE georid=4;

sdo_geor.decompressJP2(grl, 0, sdo geometry (2003, NULL, NULL,
sdo_elem info array(l, 1003, 3),
sdo_ordinate array(0,256,255,511)),
'3,1-2",'blocksize=(512, 512, 3)', gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=41;
COMMIT;
END;
/

7.13 SDO_GEOR.deleteControlPoint

Format

SDO_GEOR.deleteControlPoint (
inGeoraster IN SDO GEORASTER,
controlPointID 1IN VARCHAR2);

Description

Deletes a ground control point (GCP) that has the specified control point ID value.

Parameters

inGeoraster
GeoRaster object.

controlPointID
Control point ID for inGeoraster. Must be a string not more than 32 characters.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

If the controlPointID is null, empty or not found in the existing GCPs stored in the GeoRaster
object metadata, an exception is raised. If a GCP with the specified point ID is found, that GCP
is deleted from the georeferencing model.

Examples

The following example deletes the GCP that has the ID value 23 in a specified GeoRaster
object.

DECLARE
grl sdo georaster;
BEGIN
SELECT georaster INTO grl from herman.georaster table WHERE georid=10 FOR UPDATE;
sdo _geor.deleteControlPoint (grl, '23");
UPDATE georaster table SET georaster=grl WHERE georid=10;
COMMIT;
END;
/

ORACLE 7-28

Chapter 7
SDO_GEOR.deleteNODATA

7.14 SDO_GEOR.deleteNODATA

ORACLE

Format

SDO_GEOR.deleteNODATA (title
georaster IN OUT SDO_GEORASTER
layerNumber IN NUMBER
nodata IN NUMBER) ;

or

SDO_GEOR.deleteNODATA (
georaster IN OUT SDO_GEORASTER
layerNumber IN NUMBER
nodata IN SDO_RANGE_ARRAY) ;

Description

Deletes one or more NODATA values or value ranges.
Parameters

georaster
GeoRaster object.

layerNumber
Layer number in the GeoRaster object. A value of 0 (zero) indicates the object layer.

nodata

Either a single numeric value, or an array of numbers or number ranges. Any NODATA value
range is inclusive at the lower bound and exclusive at the upper bound.

The SDO_RANGE_ARRAY type is described in NODATA Values and Value Ranges

Usage Notes

When a NODATA value or value range is deleted, the cell depth of the GeoRaster object is
taken into consideration to generate the correct new ranges. If the cell depth specifies floating
cell values, you can only remove existing single numeric NODATA values or remove a sub-
range from an existing NODATA value range.

For information about NODATA values and value ranges, see NODATA Values and Value
Ranges.

To add one or more NODATA values or value ranges, use the SDO_GEOR.addNODATA
procedure. To return the NODATA values for a GeoRaster object, use the
SDO_GEOR.getNODATA function.

Examples

The following example removes cell value 9 from the NODATA metadata associated with the
object layer.

DECLARE
gr sdo_georaster;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=0 FOR UPDATE;
SDO_GEOR.deleteNODATA (gr, 0, 9);
UPDATE georaster table SET georaster=gr WHERE georid=0;
COMMIT;

7-29

Chapter 7
SDO_GEOR.deletePyramid

END;

7.15 SDO_GEOR.deletePyramid

ORACLE

Format

SDO_GEOR.deletePyramid (
georaster IN OUT SDO_GEORASTER,
pyramidLevel IN NUMBER DEFAULT NULL);

Description

Deletes the pyramid data of a GeoRaster object from the given pyramid level and above.
Parameters

georaster
GeoRaster object for which pyramid data is to be deleted.

pyramidLevel
The level of pyramid (and above) for which to delete pyramid data. By default, all the pyramid
data is deleted.

Usage Notes
For information about pyramid data, see Pyramids.
If georaster is null or has no pyramid data, this procedure performs no operation.

An exception is raised if georaster is invalid or if the value of pyramidLevel is less than 1.

Examples

The following example deletes the pyramid data for a GeoRaster object. (It refers to a table
named GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
grl sdo_georaster;
BEGIN
SELECT georaster INTO grl FROM georaster table WHERE georid=21;

sdo_geor.deletePyramid(grl);
UPDATE georaster table SET georaster=grl WHERE georid=21;
COMMIT;

END;

/

The following example deletes the pyramid data for a GeoRaster object where the pyramid
level is greater than or equal to 3. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grl sdo georaster;
BEGIN
SELECT georaster INTO grl FROM georaster table WHERE georid=21;

sdo_geor.deletePyramid(grl, 3);
UPDATE georaster table SET georaster=grl WHERE georid=21;

7-30

Chapter 7
SDO_GEOR.evaluateDouble

COMMIT;
END;
/

7.16 SDO_GEOR.evaluateDouble

ORACLE

Format

SDO_GEOR.evaluateDouble (

georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,

row IN NUMBER,

column IN NUMBER,

bands IN VARCHARZ,

interpolationMethod IN VARCHAR2
) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.evaluateDouble (

georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
ptGeom IN SDO_GEOMETRY,
layers IN VARCHARZ,

interpolationMethod IN VARCHAR2
) RETURN SDO_NUMBER ARRAY;

Description

Evaluates a direct location using a specified interpolation method, and returns the raster values
(double precision numbers) for the specified bands or layers for that location.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the location whose raster values are to be returned.

row
The row coordinate of the location whose raster values are to be returned. This can be a
floating point number.

column
The column coordinate of the location whose raster values are to be returned. This can be a
floating point number.

bands

A string identifying the physical band numbers on which the operation is to be performed. Use
commas to delimit the values, and a hyphen to indicate a range (for example, 1-3 for bands 1,
2, and 3).

ptGeom
Point geometry that identifies the direct location whose raster values are to be returned.

7-31

ORACLE

Chapter 7
SDO_GEOR.evaluateDouble

layers

A string identifying the logical layer numbers on which the operation is to be performed. Use
commas to delimit the values, and a hyphen to indicate a range (for example, 2-4 for layers 2,
3, and 4). (As mentioned in Bands_ Layers_ and Metadata, the logical layer number is the
physical band number plus 1.)

interpolationMethod
A quoted string containing one or more keywords, each with an appropriate value. See the
Usage Notes for information about the available keywords and values.

Usage Notes

This function returns interpolated raster values in double precision. In GeoRaster, the original
cell values are always associated with the center of the cells, regardless of whether the cell
coordinate system type is center-based or upperleft-based.

Identify the location in the GeoRaster object either by specifying its row, column, and band
numbers in cell coordinate space, or by specifying a point geometry in either model coordinate
space or cell coordinate space.

interpolationMethod must be a quoted string that contains one or more of the following
keywords, each with an appropriate value:

° interpolationMethod (for example, interpolationMethod=NN): Specifies the interpolation
method. Must be one of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGEA4,
AVERAGE16. For more information, see Resampling and Interpolation.

e nodata (for example, nodata=TRUE): Specifies whether NODATA values and value ranges
should be considered during the procedure. Must be either TRUE (NODATA values and
value ranges should be considered) or FALSE (NODATA values and value ranges should
not be considered). The default value is FALSE. If the value is TRUE and the interpolation
method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, Or AVERAGE16, whenever a cell value
involved in the interpolation calculation is a NODATA value, the result of the interpolation is
also a NODATA value. The resulting NODATA value is the minimum NODATA value
associated with the current raster layer, if multiple NODATA values or value ranges exist.

If interpolationMethod is specified as 'interpolationMethod=NN', this function is equivalent
to calling the SDO_GEOR.getCellValue function.

Examples

The following examples return the raster values for a specified location in the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 21 in the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

The examples show the two function formats, and they return the same values for the same
location specified in either cell space or model space.

SELECT SDO_GEOR.evaluateDouble (a.georaster, 0,
10.2, 10.3,
'0-2",
'interpolationMethod=BILINEAR')
FROM georaster table a WHERE georid=21;

SDO_GEOR.EVALUATEDOUBLE (A.GEORASTER, 0,10.2,10.3,'0-2", 'interpolationMethod=BILINEAR")

SDO_NUMBER ARRAY (86.68, 135.68, 31.72)

1 row selected.

7-32

Chapter 7
SDO_GEOR.evaluateDoubles

SELECT SDO_GEOR.evaluateDouble (a.georaster, 0,
SDO_GEOMETRY(ZOOl, 82394, SDO_POINT_TYPE(18492.775, 1012881.9, NULL),
NULL, NULL),
'1-3"',
'interpolationMethod=BILINEAR')
FROM georaster table a WHERE georid=21;

SDO_GEOR.EVALUATEDOUBLE (A.GEORASTER, 0, SDO_GEOR.GETMODELCOORDINATE (A.GEORASTER, 0,

SDO_NUMBER ARRAY (86.68, 135.68, 31.72)

1 row selected.

7.17 SDO_GEOR.evaluateDoubles

Format

SDO_GEOR.evaluateDoubles (

georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,

rows IN SDO_NUMBER ARRAY,
cols IN SDO_NUMBER ARRAY,
band IN NUMBER,

interpolationMethod IN VARCHAR2
) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.evaluateDoubles (

georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
ptGeom IN SDO_GEOMETRY,
layer IN NUMBER,

interpolationMethod IN VARCHAR2
) RETURN SDO NUMBER ARRAY;

Description

Evaluates multiple locations using a specified interpolation method, and returns the raster
values (double precision numbers) for the specified band or layer for those locations.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the locations whose raster values are to be returned.

row
The row coordinates of the locations whose raster values are to be returned.

column
The column coordinates of the locations whose raster values are to be returned.

band
Number of the physical band that contains the cell whose value is to be returned.

ORACLE 7-33

Chapter 7
SDO_GEOR.evaluateDoubles

ptGeom
Multipoint geometry that identifies the cells whose values are to be returned.

layers

Number of the logical layer that contains the cell whose value is to be returned. (As mentioned
in Bands_ Layers_ and Metadata, the logical layer number is the physical band number plus
1)

interpolationMethod
A quoted string containing one or more keywords, each with an appropriate value. See the
Usage Notes for information about the available keywords and values.

Usage Notes

This function returns interpolated raster values in double precision. In GeoRaster, the original
cell values are always associated with the center of the cells, regardless of whether the cell
coordinate system type is center-based or upperleft-based.

interpolationMethod must be a quoted string that contains one or more of the following
keywords, each with an appropriate value:

° interpolationMethod (for example, interpolationMethod=NN): Specifies the interpolation
method. Must be one of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGEA4,
AVERAGE16. For more information, see Resampling and Interpolation.

* nodata (for example, nodata=TRUE): Specifies whether NODATA values and value ranges
should be considered during the procedure. Must be either TRUE (NODATA values and
value ranges should be considered) or FALSE (NODATA values and value ranges should
not be considered). The default value is FALSE. If the value is TRUE and the interpolation
method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, Or AVERAGEL6, whenever a cell value
involved in the interpolation calculation is a NODATA value, the result of the interpolation is
also a NODATA value. The resulting NODATA value is the minimum NODATA value
associated with the current raster layer, if multiple NODATA values or value ranges exist.

If interpolationMethod is specified as 'interpolationMethod=NN', this function is equivalent
to calling the SDO_GEOR.getCellValues function.

Examples

The following example returns the raster values for specified locations in the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 21 in the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT SDO_GEOR.evaluateDoubles (a.georaster,
O,SDO_NUMBER_ARRAY(10.2,11.5),SDO_NUMBER_ARRAY(9.2,8.3),0,
'interpolationMethod=BILINEAR')
FROM georaster table a WHERE georid=21;

SDO_GEOR.EVALUATEDOUBLES(A.GEORASTER,O,SDO_NUMBER_ARRAY(10.2,11.5),SDO_NUMBER_ARRAY(9.2,8
.3),0, "interpolationMethod=BILINEAR"')

SDO_NUMBER ARRAY (86.68, 135.68)

1 row selected.

ORACLE 7-34

7.18 SDO_GEOR.exportTo

ORACLE

Format

SDO_GEOR.exportTo (
georaster IN
subsetParam IN
r destFormat IN
r destType IN
r destName IN
h destFormat 1IN
h destType IN
h destName IN

or

SDO_GEOR.exportTo (

SDO_GEORASTER,
VARCHARZ,

VARCHARZ,

VARCHARZ,

VARCHARZ,

VARCHAR2 DEFAULT NULL,
VARCHAR2 DEFAULT NULL,
VARCHAR2 DEFAULT NULL) ;

georaster IN SDO GEORASTER,
subsetParam IN VARCHARZ,

r destFormat IN VARCHARZ,

r destBLOB IN OUT NOCOPY BLOB);

or

SDO_GEOR.exportTo (
georaster IN
subsetParam IN
r destFormat 1IN
r destBLOB IN
h destFormat 1IN
h destCLOB IN

Description

SDO_GEORASTER,
VARCHARZ,

VARCHARZ,

OUT NOCOPY BLOB,
VARCHAR2 DEFAULT NULL,

OUT NOCOPY CLOB DEFAULT NULL) ;

Chapter 7
SDO_GEOR.exportTo

Exports a GeoRaster object or a subset of a GeoRaster object to a file or to a BLOB object.

Parameters

georaster

GeoRaster object that will be exported.

subsetParam

String containing subset parameters, for exporting a subset of the GeoRaster object. The
format and usage are as explained in Storage Parameters, although some keywords
described in that section do not apply to this procedure. The following keywords are

supported:

e pLevel: Pyramid level to be exported. The default is 0.

* cropArea: Specify the area to be exported in the format cropArea

(startRow,

startCol, endRow, endCol). Itidentifies the upper-left (startRow, startCol) and lower-
right (endRow, endCol) coordinates of a rectangular window to be exported, and raster
space is assumed. If cropArea is not specified, the entire image is exported.

e layerNumber: Layer numbers of the layers to be exported. For example,

layerNumber=(3-5) exports layers 3, 4, and 5; and layerNumber=(1,3,5) exports layers

1, 3, and 5.

7-35

ORACLE

Chapter 7
SDO_GEOR.exportTo

r_destFormat
Raster destination format. Must be one of the following: TIFF, BMP, or PNG. (JPEG and GIF are
not supported for this procedure.)

r_destType
Type of destination for the export operation. Must be FILE.

r_destName

Destination file name (with full path specification) if destType is FILE. Do not specify the file
extension. If you are using this procedure only to export the world file, specify a null value for
this parameter.

r_destBLOB
BLOB object to hold the image file resulting from the export operation.

h_destFormat
Geoheader destination format. Must be WORLDFILE.

h_destType
Geoheader type of destination for the export operation. Must be FILE.

h_destName
Geoheader destination file name (with full path specification) if h_destType is FILE. Do not
specify the file extension.

h_destCLOB
CLOB object to hold the geoheader file resulting from the export operation.

Usage Notes

Note:

This SDO_GEOR.exportTo procedure is not supported in Oracle Autonomous
Database both in Serverless and Dedicated deployments.

Use a format with both r_xxx and h_xxx parameters only if the raster image and geoheader are
in separate files.

This procedure does not support JPEG or GIF as a destination file format.
This procedure does not support GeoRaster objects that have a cellDepth value of 2BIT.

GeoRaster objects with a cell depth of 8 bits or greater that have a BSQ or BIL interleaving are
exported in BIP interleaved format.

Before you call this procedure, you must have write permission on the output file or the
directory to contain the files. The following example (run as user SYSTEM) grants write
permission on a specified file to user HERMAN:

call dbms java.grant permission('HERMAN','SYS:java.io.FilePermission',
'/mydirectory/myimages/imgl.tif', 'write');

The maximum amount of GeoRaster data that can be exported in a single operation is 67
megabytes (MB). Thus, the maximum dimensions of a GeoRaster object that can be exported
at one time must be such that width*height*bands*cellDepth/8 <= 67 MB and
rowBlockSize*columnBlockSize*bands*cellDepth/8 <= 67 MB. For example, for a 3-band, 8-
bit GeoRaster object in which the width and height are equal:

7-36

ORACLE

Chapter 7
SDO_GEOR.exportTo

e The largest exportable width and height are 4728x4728.

e The largest exportable block dimensions are 4096x4096.

Examples

The following example shows two export operations. The first operation exports an entire
GeoRaster object (except for any georeferencing information) into a BMP format file. The
second operation exports a subset of the GeoRaster object to a file with an ESRI world file.

DECLARE
geor SDO GEORASTER;
fileName VARCHAR2 (1024);
tfwName VARCHAR2 (1024);

BEGIN
SELECT georaster INTO geor FROM georaster table WHERE georid = 1;

-- Export the whole GeoRaster object into a BMP file, excluding any

-- georeferencing information.

sdo_geor.exportTo(geor, NULL, 'BMP', 'file',
'/mydirectory/myimages/imgl export');

-- Export a subset to a file with a world file.
fileName := '/mydir/parrotExported’;
tfwName := '/mydir/parrotWorldFile';
SELECT georaster INTO geor FROM georaster table WHERE georid = 8;
sdo_geor.exportTo(geor, 'cropArea=(0,0,500,500)",
'TIFF', 'file', fileName, 'WORLDFILE', 'FILE', tfwName);

END;
/

The following example exports GeoRaster objects into BLOB and CLOB objects.

CREATE TABLE blob table (blob col BLOB, blobid NUMBER unique, clob col CLOB);
INSERT INTO blob table values (empty blob(), 3, null);
INSERT INTO blob table VALUES (empty blob(), 4, empty clob());

DECLARE
lobdl BLOB;
lobd2 BLOB;
lobd3 CLOB;
georl SDO GEORASTER;
geor2 SDO_GEORASTER;

BEGIN
-- Example 1: Export to BLOB.

SELECT blob col INTO lobdl FROM blob table WHERE blobid=3 for update;
SELECT georaster INTO georl FROM georaster table WHERE georid = 13;

sdo_geor.exportTo(georl, '', 'TIFF', lobdl);
UPDATE blob table set blob col = lobdl WHERE blobid=3;
COMMIT;

-- Example 2: Export GeoRaster to BLOB with world file exported to CLOB.

SELECT blob col INTO lobd2 FROM blob table WHERE blobid=4 for update;

SELECT clob col INTO lobd3 FROM blob table WHERE blobid=4 for update;

SELECT georaster INTO geor2 FROM georaster table WHERE georid = 8;

sdo_geor.exportTo(geor2, 'cropArea=(0,0,500,500)", 'TIFF', lobd2,
'"WORLDFILE', lobd3);

UPDATE blob table set blob col = lobd2, clob col = lobd3 WHERE blobid = 4;

7-37

Chapter 7
SDO_GEOR.generateAreaWeightedMean

COMMIT;

END;
/

7.19 SDO_GEOR.generateAreaWeightedMean

Format

SDO_GEOR.generateAreaWeightedMean (
georaster IN SDO GEORASTER,

window IN SDO_GEOMETRY,
bandNumber IN NUMBER,
nodata IN VARCHAR2 DEFAULT 'FALSE'

) RETURN NUMBER;

Description

Computes the area weighted statistical mean value on a specified band of the input GeoRaster
object.

Parameters

georaster
GeoRaster object.

window

A polygon geometry object from which to generate statistics. If it is in the model space, it is
transformed into raster space. See also the Usage Notes for the
SDO_GEOR.generateStatisticsfunction for SDO_SRID requirements.

bandNumber
Band ordinate number of the layer for which to perform the operation.

nodata

Specifies whether or not to compare each cell values with NODATA values defined in the
metadata when computing statistics. TRUE causes all pixels with a NODATA value not to be
considered; FALSE (the default) causes pixels with NODATA values to be considered as
regular pixels. NODATA values and value ranges are discussed in NODATA Values and Value
Ranges.

Usage Notes

This function computes area weighted statistical mean value for the cells within a specific
window of the input GeoRaster object. It uses the area of the cell as the weight for each cell
value when computing the statistical mean value, so that all subcells cut by the window
boundary are processed appropriately.

Examples

The following example computes area weighted statistical mean value for the first band of the
input GeoRaster object.

SELECT sdo_geor.generateAreaWeightedMean (tmimage, sdo_geometry (2003,
null,NULL,
MDSYS.SDO ELEM INFO ARRAY (1, 1003, 3),
MDSYS.SDO ORDINATE ARRAY(9.5,9.5,12.5,12.5)),0)
FROM landsat WHERE id=11;

ORACLE 7-38

Chapter 7
SDO_GEOR.generateBitmapPyramid

7.20 SDO_GEOR.generateBitmapPyramid

ORACLE

Format

SDO_GEOR.generateBitmapPyramid (
src_geor IN SDO GEORASTER,
tmp geor IN OUT SDO_GEORASTER,
target geor IN OUT SDO_GEORASTER,
pyramidParams IN VARCHAR2,
bgValues IN SDO NUMBER ARRAY DEFAULT NULL,
parallelParam IN VARCHAR2 DEFAULT NULL,
addColorMap IN NUMBER DEFAULT 1);

Description

Generates pyramid data for a bitmap GeoRaster object.

Parameters

src_geor
Source GeoRaster object for which pyramid data is to be generated.

tmp_geor
Temporary GeoRaster object used to store temporary data

target_geor
Target GeoRaster object used to store the resulting GeoRaster data.

pyramidParams
A string containing the pyramid parameters. See the Usage Notes for information about the
available keywords and values.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

addColorMap

A number to specify whether to add a colormap to the target GeoRaster object to display
roads as white. O (zero) does not add such a colormap; 1 (the default) or any other nonzero
value adds such a colormap.

7-39

ORACLE

Chapter 7
SDO_GEOR.generateBitmapPyramid

Usage Notes

For bitmap raster of points, lines, or polylines, which are typically stored in 1-bit cell depth, the
pyramiding approach described in Image Pyramiding: Parallel Generation and Partial Update
may not create high-quality pyramids. Distorted point patterns and dashed lines are commonly
seen in those pyramids. To solve such problems, you can instead use the GeoRaster raster
algebra to perform bitmap pyramiding, as explained in Bitmap Pyramiding.

pyramidParams must be a quoted string that contains one or more of the following keywords,
each with an appropriate value:

* rLevel (for example, rLevel=2): Specifies the maximum reduction level: the number of
pyramid levels to create at a smaller (reduced) size than the original object. If you do not
specify this keyword, pyramid levels are generated until the smaller of the number of rows
or columns is between 64 and 128. The dimension sizes at each lower resolution level are
equal to the truncated integer values of the dimension sizes at the next higher resolution
level, divided by 2.

e resampling (for example, resampling=NN): Specifies the resampling method. Must be one
of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, AVERAGE16. For more
information, see Resampling and Interpolation.

Note that for this procedure, BILINEAR and AVERAGE4 have the same effect.

e nodata (for example, nodata=TRUE): Specifies whether NODATA values and value ranges
should be considered during the procedure. Must be either TRUE (NODATA values and
value ranges should be considered) or FALSE (NODATA values and value ranges should
not be considered). The default value is FALSE. If the value is TRUE and the resampling
method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, Or AVERAGE16, whenever a cell value
involved in the resampling calculation is a NODATA value, the result of the resampling is
also a NODATA value. The resulting NODATA value is the minimum NODATA value
associated with the current raster layer, if multiple NODATA values or value ranges exist.

If you do not specify an rLevel value, the rLevel value is set to the default, which is calculated
as follows:

(int) (log2(a / 64))

In the preceding calculation:
* log2 is a logarithmic function with 2 as its base.
e aisthe smaller of the original row or column dimension size.

In the default case, the smaller of the row and column dimension sizes of the top-level
overview (the smallest top-level pyramid) is between 64 and 128. If you specify an rLevel
value greater than the maximum reduced-resolution level, the rLevel value is set to the
maximum reduced-resolution level, which is calculated as follows:

(int) (log2(a))
In this case, the smaller of the row and column dimension sizes of the top-level overview is 1.

Examples
The following example generates a bitmap pyramid.

DECLARE
src_gr sdo_georaster;
tmp gr sdo _georaster;
target gr sdo georaster;

7-40

Chapter 7
SDO_GEOR.generateBlockMBR

BEGIN

SELECT georaster INTO src gr

FROM georaster table WHERE georid = 6;
SELECT georaster INTO tmp gr

FROM georaster table WHERE georid = 7 FOR UPDATE;
SELECT georaster INTO target gr

FROM georaster table WHERE georid = 8 FOR UPDATE;

-- Generate bitmap pyramids.
sdo_geor.generateBitmapPyramid(src_gr,tmp gr,target gr 'rLevel=5, resampling=NN');

-- Update the target GeoRaster object.
UPDATE georaster table SET georaster =target gr WHERE georid = 8;

END;
/

7.21 SDO_GEOR.generateBlockMBR

ORACLE

Format

SDO_GEOR.generateBlockMBR (
georaster 1IN SDO_GEORASTER);

Description

Computes the minimum bounding rectangle (MBR) for each block in a GeoRaster object, and
sets the blockMBR attribute for each raster block in the raster data table.

Parameters

georaster
GeoRaster object.

Usage Notes

This procedure does not change the GeoRaster object. It sets the value of the blockMBR
attribute (described in blockMBR Attribute) in each row of the raster data table associated with
the GeoRaster object.

If you created the GeoRaster object as described in Creating New GeoRaster Objects, the
blockMBR attribute values were automatically calculated and they should not need to be
validated or generated. However, if the GeoRaster object was generated by a third party, you
should validate the b1ockMBR attribute values using the SDO_GEOR.validateBlockMBR
function; and if any are not valid, call the SDO_GEOR.generateBlockMBR procedure.

Examples

The following example computes the MBR for a specified GeoRaster object and sets its
blockMBR attribute.

DECLARE
gr sdo_georaster;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=1 FOR UPDATE;
sdo_geor.generateBlockMBR(gr) ;
COMMIT;
END;
/

7-41

Chapter 7
SDO_GEOR.generatePyramid

7.22 SDO_GEOR.generatePyramid

ORACLE

Format

SDO_GEOR.generatePyramid (

georaster IN OUT SDO_GEORASTER,
pyramidParams IN VARCHAR2,
bgValues IN SDO NUMBER ARRAY DEFAULT NULL,

parallelParam IN VARCHAR? DEFAULT NULL);

Description

Generates pyramid data, which is stored together with the original data.
Parameters

georaster
GeoRaster object for which pyramid data is to be generated and stored.

pyramidParams
A string containing the pyramid parameters. See the Usage Notes for information about the
available keywords and values.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where nis greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, the procedure performs an internal commit while the process is
running. Therefore, you cannot roll back the results of this procedure. If an error occurs (even
if it is raised by the Oracle parallel server), you must delete the resulting output GeoRaster
object explicitly in order to roll back the operation.

Usage Notes
For information about pyramid data, see Pyramids.

pyramidParams must be a quoted string that contains one or more of the following keywords,
each with an appropriate value:

* rLevel (for example, rLevel=2): Specifies the maximum reduction level: the number of
pyramid levels to create at a smaller (reduced) size than the original object. If you do not
specify this keyword, pyramid levels are generated until the smaller of the number of rows
or columns is between 64 and 128. The dimension sizes at each lower resolution level are
equal to the truncated integer values of the dimension sizes at the next higher resolution
level, divided by 2.

7-42

Chapter 7
SDO_GEOR.generatePyramid

e resampling (for example, resampling=NN): Specifies the resampling method. Must be one
of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, AVERAGE16. For more
information, see Resampling and Interpolation.

Note that for this procedure, BILINEAR and AVERAGE4 have the same effect.

e nodata (for example, nodata=TRUE): Specifies whether NODATA values and value ranges
should be considered during the procedure. Must be either TRUE (NODATA values and
value ranges should be considered) or FALSE (NODATA values and value ranges should
not be considered). The default value is FALSE. If the value is TRUE and the resampling
method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, Or AVERAGE16, whenever a cell value
involved in the resampling calculation is a NODATA value, the result of the resampling is
also a NODATA value. The resulting NODATA value is the minimum NODATA value
associated with the current raster layer, if multiple NODATA values or value ranges exist.

If georaster is null or is a blank GeoRaster object, or if pyramid data exists for georaster but it
was created with the same pyramid parameters specified in pyramidParams, this procedure
performs no operation.

If pyramid data exists for georaster and it was created using a different resampling value from
that specified in pyramidParams, the old pyramid data is deleted and new pyramid data is
generated. However, a different nodata specification in pyramidParams does not cause the
pyramid data to be regenerated. To cause a hew nodata value to take effect, you must delete
the old pyramid data and then regenerate it.

If you do not specify an rLevel value, the rLevel value is set to the default, which is calculated
as follows:

(int) (log2(a / 64))

In the preceding calculation:
* log2 is a logarithmic function with 2 as its base.
* ais the smaller of the original row or column dimension size.

In the default case, the smaller of the row and column dimension sizes of the top-level
overview (the smallest top-level pyramid) is between 64 and 128. If you specify an rLevel
value greater than the maximum reduced-resolution level, the rLevel value is set to the
maximum reduced-resolution level, which is calculated as follows:

(int) (log2(a))
In this case, the smaller of the row and column dimension sizes of the top-level overview is 1.

An exception is raised if georaster is invalid.

Examples

The following example creates pyramid data for a GeoRaster object.

DECLARE
gr sdo georaster;
BEGIN

SELECT georaster INTO gr
FROM georaster table WHERE georid = 6 FOR UPDATE;

-- Generate pyramids.
sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN');

ORACLE 7-43

Chapter 7
SDO_GEOR.generateSpatialExtent

-- Update the original GeoRaster object.
UPDATE georaster table SET georaster = gr WHERE georid = 6;

COMMIT;
END;
/

7.23 SDO_GEOR.generateSpatialExtent

ORACLE

Format

SDO_GEOR.generateSpatialExtent (
georaster 1IN SDO_GEORASTER,
height IN NUMBER DEFAULT NULL
) RETURN SDO_GEOMETRY;

Description

Generates a spatial geometry that contains the spatial extent (footprint) of the GeoRaster
object.

Parameters

georaster
GeoRaster object.

height
Number specifying the Z value for three-dimensional (X, Y, Z) georeferencing.

Usage Notes

The returned SDO_GEOMETRY object is based on the model coordinate system of the
GeoRaster object. If the GeoRaster object is not georeferenced, the SDO_GEOMETRY object
has a null SDO_SRID value, which means the footprint geometry is in cell space; otherwise,
the SDO_SRID value of the SDO_GEOMETRY object is the model SRID. Specifically:

e If the GeoRaster object is not georeferenced or if the model coordinate system is
projected, the spatial extent object is a single polygon derived from eight boundary points.

< If the model coordinate system is geodetic, the spatial extent is densified according to the
object's spatial footprint. If the area of the footprint is not larger than half of the Earth's
surface, the result is a single geodetic polygon. Otherwise, a geodetic MBR is returned as
the generated spatial extent object, and this returned object will be an invalid geometry
according to Oracle Spatial and Graph validation rules, but index and query operations will
work on this returned object.

The footprint is automatically adjusted, based on the GeoRaster object's model coordinate
location (CENTER or UPPERLEFT), to cover the whole area in the model space. CENTER is the
default model coordinate location for non-georeferenced cases.

If the model coordinate system is three-dimensional, the generated spatial extent is a three-
dimensional geometry. To build a spatial index based on the generated value, you may need to
convert it into a two-dimensional geometry before saving it in the spatialExtent attribute of
the GeoRaster object. For more information about cross-dimensionality transformations, see
Oracle Spatial and Graph Developer's Guide.

This function does not set the spatial extent of the GeoRaster object (spatialExtent attribute,
described in spatialExtent Attribute). For information about setting the spatial extent, see
Generating and Setting Spatial Extents.

7-44

Chapter 7
SDO_GEOR.generateSpatialExtent

If georaster is null, this function returns a null SDO_GEOMETRY object. If georaster is not
valid, an exception is raised.

Examples

The following example generates a three-dimensional spatial extent, with a Z or height
dimension value of 10, in the geographic 3D coordinate system 4327 (the model SRID). (The
output is slightly reformatted.)

SELECT SDO GEOR.generateSpatialExtent (georaster,10) spatialExtent
FROM georaster table where georid=10;

SPATIALEXTENT (A.GEORASTER, 10) (SDO_GTYPE, SDO SRID, SDO POINT(X, Y, Z), SDO_ELEM IN
SDO_GEOMETRY (3003, 4327, NULL, SDO_ELEM INFO ARRAY (1, 1003, 1),

SDO_ORDINATE ARRAY(.181818182, 1.1627907, 10, 12.1228111, 1.07010227, 10, 19.3902574,
1.07010229, 10, 25.1482989, 1.07010229, 10, 30.0714774, 1.07010229,

10, 34.4500035, 1.07010229, 10, 38.3920079, 1.07010229, 10, 42.0490801,
1.07010229, 10, 45.4612165, 1.07010229, 10, 48.6719786, 1.07010229, 10,
53.6193472, 1.07010229, 10, 53.6193472, 12.346373, 10, 53.6178888, 15.3903048,

10, 53.6178888, 18.3032341, 10, 50.6322061, 18.3032341, 10, 47.5331761,
18.3032341, 10, 44.2541078, 18.3032341, 10, 40.7594212, 18.3032341, 10, 37,
18.3032341, 10, 32.9046537, 18.3032341, 10, 28.3630834, 18.3032341, 10,
23.1869539, 18.3032341, 10, 17, 18.3032341, 10, -2.220E-16, 18.3032341, 10, O,
16.3247208, 10, -2.220E-16, 13.6133114, 10, .181818182, 1.1627907, 10))

The following examples return the spatial extent geometry of GeoRaster objects in the
GEORASTER column of the GEORASTER_TABLE table. (They refer to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

SELECT sdo geor.generateSpatialExtent (georaster) spatialExtent
FROM georaster table WHERE georid=2;

SPATTALEXTENT (SDO_GTYPE, SDO SRID, SDO POINT(X, Y, Z), SDO ELEM INFO, SDO_ORDINA

SDO_GEOMETRY (2003, NULL, NULL, SDO ELEM INFO ARRAY (1, 1003, 1), SDO ORDINATE ARR
AY (0, 0, 256, O, 511, O, 511, 256, 511, 511, 256, 511, O, 511, O, 256, 0, 0))

SET NUMWIDTH 20
SELECT sdo _geor.generateSpatialExtent (georaster) spatialExtent
FROM georaster table WHERE georid=4;

SPATTALEXTENT (SDO _GTYPE, SDO SRID, SDO POINT(X, Y, Z), SDO ELEM INFO,
SDO_ORDINA

SDO_GEOMETRY (2003, 82263, NULL, SDO ELEM INFO ARRAY (1, 1003, 1), SDO ORDINATE AR
RAY (1828466.0909315, 646447.1932945, 1828466.0909315, 644479.85524, 1828466.0909
315, 642512.5171855, 1830433.428986, 642512.5171855, 1832400.7670405, 642512.517
1855, 1832400.7670405, 644479.85524, 1832400.7670405, 646447.1932945, 1830433.42
8986, 646447.1932945, 1828466.0909315, 646447.1932945))

ORACLE 7-45

Chapter 7
SDO_GEOR.generateSpatialResolutions

7.24 SDO_GEOR.generateSpatialResolutions

ORACLE

Format (Procedure)

SDO_GEOR.generateSpatialResolutions (
georaster IN OUT SDO_GEORASTER,
outResolution OUT SDO NUMBER ARRAY);

Format (Function)

SDO_GEOR.generateSpatialResolutions (

georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER DEFAULT NULL,
SRID IN NUMBER DEFAULT NULL,

resolutionUnit IN VARCHAR2 DEFAULT NULL,
) RETURN SDO NUMBER ARRAY;

Description

Generates the spatial resolution value along each spatial dimension of a GeoRaster object.
Parameters

georaster
GeoRaster object.

outResolution
Generated spatial resolutions of the GeoRaster object. It is an array of two humbers that
represent spatial resolutions on the X axis and Y axis, respectively.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

SRID

Coordinate system. Must be a value from the SRID column of the MDSYS.CS_SRS table. The
srid value cannot be 0 (zero). If not specified, the default is the SRID associated with
georaster

resolutionUnit
Unit of measurement: a quoted string with unit=. If not specified, the unit associated with SRID
is used.

Usage Notes
SDO_GEOR.generateSpatialResolutions has two formats:

e The procedure format sets the generated spatial resolutions in the metadata for the
GeoRaster object. The metadata for the GeoRaster object is updated. The GeoRaster
object must be georeferenced in order to get the spatial resolution generated.

e The function format generates and returns the spatial resolutions based on the
georeferencing information in the metadata for the GeoRaster object. The metadata for the
GeoRaster object is not updated.

The GeoRaster object must be georeferenced. The generated spatial resolution is the
resolution at the center cell of the GeoRaster object.

In the returned array of numeric values, each value indicates the number of units of
measurement associated with the data area represented by that spatial dimension of a pixel.

7-46

Chapter 7
SDO_GEOR.generateStatistics

For example, if the spatial resolution values are (10,10) and the unit of measurement for the
ground data is meters, each pixel represents an area of 10 meters by 10 meters.

The GeoRaster object is automatically validated after the operation completes.

See also the Usage Notes for the SDO_GEOR.getSpatialResolutions function.

Examples

The following example generates the spatial resolution value along each spatial dimension for
pyramid level 2 of a specified GeoRaster object

SELECT sdo_geor.generateSpatialResolutions (georaster, 2, 4326, null) FROM
georaster table WHERE georid=2;

SDO_GEOR.GENERATESPATIALRESOLUTIONS (GEORASTER, 2,4326,NULL)

SDO_NUMBER ARRAY (.000024266, .000018006

7.25 SDO_GEOR.generateStatistics

ORACLE

Format (Storage in Metadata)

SDO_GEOR.generateStatistics(
georaster IN OUT SDO GEORASTER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO NUMBER ARRAY,

histogram IN VARCHARZ,

layerNumbers IN VARCHAR2 DEFAULT NULL,

useBin IN VARCHAR2 DEFAULT 'TRUE',
binFunction IN SDO NUMBER ARRAY DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE'

) RETURN VARCHAR2;

or

SDO_GEOR.generateStatistics(
georaster IN OUT SDO_GEORASTER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO GEOMETRY,

histogram IN VARCHAR2,

layerNumbers IN VARCHAR2 DEFAULT NULL,

useBin IN VARCHAR2 DEFAULT 'TRUE',
binFunction IN SDO NUMBER ARRAY DEFAULT NULL,
nodata IN VARCHAR2? DEFAULT 'FALSE'

) RETURN VARCHAR2;

Format (No Storage in Metadata)

SDO_GEOR.generateStatistics(
georaster IN OUT SDO_GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2? DEFAULT 'FALSE',
parallelParam IN VARCHAR2? DEFAULT NULL,
) RETURN SDO_NUMBER ARRAY;

or

7-47

ORACLE

Chapter 7
SDO_GEOR.generateStatistics

SDO_GEOR.generateStatistics(
georaster IN OUT SDO_GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO GEOMETRY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
polygonClip IN VARCHAR2 DEFAULT NULL',
parallelParam IN VARCHAR2 DEFAULT NULL,
) RETURN SDO_NUMBER ARRAY;

Description

Computes statistical data associated with one or more layers, or with one or more layers and
pyramid levels. The two sets of function formats have significant usage differences:

- Storage in Metadata formats also set statistical data in the GeoRaster object metadata for
each specified layer, and optionally for the whole raster. These formats return the string
TRUE or FALSE, indicating success or failure of the operation.

* No Storage in Metadata formats do not set any GeoRaster object metadata, and they
calculate statistics for a single layer or for the aggregation of specified layers. These
formats return an SDO_NUMBER_ARRAY object where the six numbers reflect the
aggregated minimum, maximum, mean, median, mode, and standard deviation values.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level on which to perform the operation.

samplingFactor

Sampling factor in the format 'samplingFactor=n", with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in computing the
statistics. For example, if samplingFactor is 4, one-sixteenth of the cells are sampled; but if
samplingFactor is 1, all cells are sampled. The higher the value, the less accurate the
statistics are likely to be, but the more quickly they will be computed.

samplingWindow

A sampling window for which to generate statistics, specified either as a numeric array or as
an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY (defined as

VARRAY (1048576) OF NUMBER), the parameter identifies the upper-left (row, column) and lower-
right (row, column) coordinates of a rectangular window, and raster space is assumed. If the
data type is SDO_GEOMETRY, it is transformed into raster space if it is in model space, and
then the minimum bounding rectangle (MBR) of the geometry object in raster space is used as
the window. The default value is the entire image.

In both cases, the intersection of the MBR of the sampling window in raster space and the
MBR of the GeoRaster object in raster space is used for computing statistics. However, if
polygonClip iS TRUE, then the samplingWindow geometry object will be used for the operation
instead of the MBR of the sampling window, in which case only cells within the
samplingWindow geometry are counted.

histogram
Specify TRUE to cause a histogram to be computed and stored, or FALSE to cause a histogram
not to be computed and stored. Histograms are discussed in SDO_GEOR_HISTOGRAM

7-48

Chapter 7
SDO_GEOR.generateStatistics

Object Type. The XML definitions of the <histogram> element and the histogramType
complex type are included in GeoRaster Metadata XML Schema.

layerNumbers

Numbers of the layers for which to compute the statistics. This is a string that can include
numbers, number ranges indicated by hyphens (-), and commas to separate numbers and
number ranges. For example, '1,3-5, 7' specifies layers 1, 3, 4, 5, and 7. Layer O (zero)
indicates the object layer.

bandNumbers

Band ordinate numbers of the layers for which values are used in computing the statistics.
This is a string that can include numbers, number ranges indicated by hyphens (-), and
commas to separate numbers and number ranges. For example, '0,1,3-5, 7' specifies layers
1,2,4,5, 6, and 8. If bandNumbers is null, all bands are used in computing the statistics.

useBin

Specifies whether or not to use a provided bin function (specified in the binFunction
parameter) when generating statistics. TRUE (the default) causes a bin function to be used as
follows: (1) the bin function specified by the binFunction parameter, if it is not null; otherwise,
(2) the bin function specified by the <binFunction> element in the GeoRaster XML metadata,
if one is specified; otherwise, (3) a dynamically generated bin function, as explained in the
Usage Notes. FALSE causes a dynamically generated bin function to be used, and causes the
binFunction parameter and <binFunction> element to be ignored.

For information about bin functions, see the Usage Notes for the SDO_GEOR.setBinFunction
procedure.

binFunction

Bin function as an array whose elements specify the bin type, total number of bins, first bin
number, minimum cell value, and maximum cell value. The SDO_NUMBER_ARRAY type is
defined as VARRAY (1048576) OF NUMBER. For more information about the bin function for
SQO_GEOR.generateStatistics, see the Usage Notes. For information about bin functions and
an example, see the Usage Notes for the SDO_GEOR.setBinFunction procedure.

nodata

Specifies whether or not to compare each cell values with NODATA values defined in the
metadata when computing statistics. TRUE causes all pixels with a NODATA value not to be
considered; FALSE (the default) causes pixels with NODATA values to be considered as
regular pixels. NODATA values and value ranges are discussed in NODATA Values and Value
Ranges.

polygonClip

The string TRUE causes the samplingWindow geometry object to be used for the operation; the
string FALSE or a null value causes the MBR (minimum bounding rectangle) of the
samplingWindow geometry object to be used for the operation.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, you cannot roll back the results of this function.

ORACLE 7-49

ORACLE

Chapter 7
SDO_GEOR.generateStatistics

Usage Notes

This function computes and can set the statistical data described by the
<statisticDatasetType> element in the GeoRaster metadata XML schema, which is
described in GeoRaster Metadata XML Schema.

If samplingWindow is outside the GeoRaster object or if it contains only NODATA values, the
following error is raised:

ORA-13393: null or invalid samplingWindow parameter

If histogram is TRUE, this function determines the range of each bin based on the bin function
being used, and within each range it computes the count of each pixel value. The histogram

and the bin function are related as follows: each bin is mapped to a (value, count) pair of the

histogram, and the lower boundary of each bin is mapped to corresponding value of histogram
(value, count) pair, with the following exceptions:

e If Min_r < Min, then one more pair (Min_r, count) is added as the first pair of the histogram.
(Min_r is the real minimum value of the data set computed by this function, and Min is the
min value specified in the bin function.)

e If Max_r > Max, then one more pair (Max_r, count) is added as the last pair of the
histogram. (Max_r is the real maximum value of the data set computed by this function,
and Max is the max value specified in the bin function.)

* Leading and trailing count=0 pairs in the histogram are suppressed. For example:

(1,0) (2,0) (3,11) (4,12) becomes (3,11) (4,12)
(1,11) (2,12) (3,0) (4,0) becomes (1,11) (2,12)

If histogram is TRUE, any existing histogram in the XML metadata is replaced by the new
generated histogram.

SQO_GEOR.generateStatistics supports only LINEAR bin functions (binType = 0), not
LOGARITHM or EXPLICIT bin functions. (The XML definitions of all bin function types are in
GeoRaster Metadata XML Schema.) If the useBin parameter value is FALSE, this function
ignores any binFunction parameter value and any <binFunction> element in the GeoRaster
XML metadata, and it uses a LINEAR bin function in which the min and max values are the
actual minimum and maximum values of the data set, and the numbins value depends on the
cell depth, as follows:

e If cellDepth =1, numbins = 2.

e If cellDepth = 2, numbins = 4.

e If cellDepth = 4, numbins = 8.

e If cellDepth >= 8, numbins = 256.

If the useBin parameter value is TRUE, this function uses a bin function as follows:

1. Ifthe binFunction parameter specifies a valid bin function, it is used.

2. Otherwise, if a valid bin function is defined in the GeoRaster metadata, it is used.

3. Otherwise, the same bin function is used as when the useBin parameter value is FALSE.

Contrast this function, which causes GeoRaster to compute and optionally set the statistics,
with the SDO_GEOR:.setStatistics procedure, in which you specify the statistics to be set.

To retrieve the statistical data associated with a layer, use the SDO_GEOR.getStatistics
function.

7-50

Chapter 7
SDO_GEOR.generateStatisticsMax

Examples
The following example generates the statistical data and a histogram.

DECLARE
gr SDO_GEORASTER;
ret VARCHAR2 (256);
window SDO NUMBER ARRAY := SDO NUMBER ARRAY (20,10,50,50);
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=1 FOR UPDATE;
SDO_GEOR.setBinFunction(gr,1,sdo number array(0,10,1,50,200));
ret := SDO _GEOR.generateStatistics(gr, 'samplingFactor=5', window, 'TRUE',

"1-1', 'TRUE');
UPDATE georaster table SET georaster=gr WHERE georid=1l;
COMMIT;
END;
/

The following example generates the statistical data for all bands on pyramid level 1; however,
it does not create a histogram or modify the GeoRaster object metadata.

DECLARE
gr sdo_georaster;
window sdo geometry;
stat sdo _number array;
BEGIN
SELECT tmimage INTO gr FROM landsat WHERE 1d=2021;
stat:=sdo geor.generateStatistics(gr,1, 'samplingFactor=7',window,null, 'false');
dbms output.put line('min='||stat(1));
dbms output.put line('max='||stat(2));
dbms output.put line('mean='||stat(3));
dbms output.put line('median='||stat(4));
()
(

’

dbms output.put line('mode="'||stat (5)
dbms output.put line('std='"||stat(6));
END;
/

7.26 SDO_GEOR.generateStatisticsMax

ORACLE

Format

SDO_GEOR.generateStatisticsMax (

or

georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,

samplingWindow IN
bandNumbers IN
nodata IN
) RETURN NUMBER;

SDO_NUMBER ARRAY,

VARCHAR2 DEFAULT NULL,
VARCHAR2 DEFAULT 'FALSE'

SDO_GEOR.generateStatisticsMax (

georaster IN SDO_ GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,

samplingWindow IN
bandNumbers IN
nodata IN

SDO_GEOMETRY,

VARCHAR2 DEFAULT NULL,
VARCHAR2 DEFAULT 'FALSE',

7-51

ORACLE

Chapter 7
SDO_GEOR.generateStatisticsMax

polygonClip IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMax (
georaster IN OUT SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
parallelParam IN VARCHAR2? DEFAULT NULL,
) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.generateStatisticsMax (
georaster IN OUT SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHARZ2,
samplingWindow IN SDO GEOMETRY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
polygonClip IN VARCHAR2 DEFAULT NULL',
parallelParam IN VARCHAR2 DEFAULT NULL,
) RETURN SDO NUMBER ARRAY;

Description

Computes statistical data associated with one or more layers on a specified pyramid level, and
returns the maximum value. (It does not modify metadata in the GeoRaster object.)

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor

Sampling factor in the format 'samplingFactor=n", with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in computing the
statistics. For example, if samplingFactor is 4, one-sixteenth of the cells are sampled; but if
samplingFactor is 1, all cells are sampled. The higher the value, the less accurate the
statistics are likely to be, but the more quickly they will be computed.

samplingWindow

A sampling window for which to generate statistics, specified either as a numeric array or as
an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY (defined as

VARRAY (1048576) OF NUMBER), the parameter identifies the upper-left (row, column) and lower-
right (row, column) coordinates of a rectangular window, and raster space is assumed. If the
data type is SDO_GEOMETRY, it is transformed into raster space if it is in model space, and
then the minimum bounding rectangle (MBR) of the geometry object in raster space is used as
the window. The default value is the entire image.

In both cases, the intersection of the MBR of the sampling window in raster space and the
MBR of the GeoRaster object in raster space is used for computing statistics. However, if
polygonClip iS TRUE, then the samplingWindow geometry object will be used for the operation

7-52

ORACLE

Chapter 7
SDO_GEOR.generateStatisticsMax

instead of the MBR of the sampling window, in which case only cells within the
samplingWindow geometry are counted.

If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers

Band ordinate numbers of the layers for which to compute the statistics. This is a string that
can include numbers, number ranges indicated by hyphens (-), and commas to separate
numbers and number ranges. For example, '1,3-5, 7' specifies layers 2, 4, 5, 6, and 8. If
bandNumbers is null, all bands are used in computing the statistics.

nodata

Specifies whether or not to compare each cell values with NODATA values defined in the
metadata when computing statistics. TRUE causes all pixels with a NODATA value not to be
considered; FALSE (the default) causes pixels with NODATA values to be considered as
regular pixels. NODATA values and value ranges are discussed in NODATA Values and Value
Ranges.

polygonClip

The string TRUE causes the samplingWindow geometry object to be used for the operation; the
string FALSE or a null value causes the MBR (minimum bounding rectangle) of the
samplingWindow geometry object to be used for the operation.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where nis greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MAX value. (The statistical data is
described by the <statisticDatasetType> element in the GeoRaster metadata XML schema,
which is described in GeoRaster Metadata XML Schema; however, this function does not
update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA values, the
following error is raised:

ORA-13393: null or invalid samplingWindow parameter
See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and returns
the maximum value.

DECLARE

gr sdo_georaster;

window sdo geometry;

max number;

BEGIN

SELECT tmimage INTO gr FROM landsat WHERE 1d=2021;
max:=sdo_geor.generateStatisticsMax(gr,1, 'samplingFactor=7"',window,null, 'false');
END;

/

7-53

7.27 SDO_GEOR.generateStatisticsMean

ORACLE

Format

SDO_GEOR.generateStatisticsMean (

georaster
pyramidLevel

IN
IN

samplingFactor IN
samplingWindow IN

bandNumbers
nodata

IN
IN

) RETURN NUMBER;

or

SDO_GEORASTER,

NUMBER,

VARCHARZ,

SDO_NUMBER ARRAY,
VARCHAR2 DEFAULT NULL,
VARCHAR2 DEFAULT 'FALSE'

SDO_GEOR.generateStatisticsMean (

georaster
pyramidLevel

IN
IN

samplingFactor IN
samplingWindow IN

bandNumbers
nodata
polygonClip

IN
IN
IN

) RETURN NUMBER;

or

SDO_GEORASTER,

NUMBER,

VARCHAR2,

SDO_GEOMETRY,

VARCHAR2 DEFAULT NULL,
VARCHAR2 DEFAULT 'FALSE',
VARCHAR2 DEFAULT NULL

SDO_GEOR.generateStatisticsMean (

georaster
pyramidLevel

samplingFactor
samplingWindow

bandNumbers
nodata
parallelParam

IN
IN
IN
IN
IN
IN
IN

OUT SDO_GEORASTER,
NUMBER,

VARCHAR2,

SDO_NUMBER ARRAY,
VARCHAR2 DEFAULT NULL,
VARCHAR2 DEFAULT 'FALSE',
VARCHAR2 DEFAULT NULL,

) RETURN SDO NUMBER ARRAY;

or

SDO GEOR.generateStatisticsMean (

georaster
pyramidLevel

samplingFactor
samplingWindow

bandNumbers
nodata
polygonClip
parallelParam

IN
IN
IN
IN
IN
IN
IN
IN

OUT SDO_GEORASTER,
NUMBER,

VARCHAR2,

SDO_GEOMETRY,

VARCHAR2 DEFAULT NULL,
VARCHAR2 DEFAULT 'FALSE',
VARCHAR2 DEFAULT NULL',
VARCHAR2 DEFAULT NULL,

) RETURN SDO NUMBER ARRAY;

Description

Chapter 7
SDO_GEOR.generateStatisticsMean

Computes statistical data associated with one or more layers on a specified pyramid level, and
returns the mean (average) value. (It does not modify metadata in the GeoRaster object.)

Parameters

georaster
GeoRaster object.

7-54

ORACLE

Chapter 7
SDO_GEOR.generateStatisticsMean

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor

Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in computing the
statistics. For example, if samplingFactor is 4, one-sixteenth of the cells are sampled; but if
samplingFactor is 1, all cells are sampled. The higher the value, the less accurate the
statistics are likely to be, but the more quickly they will be computed.

samplingWindow

A sampling window for which to generate statistics, specified either as a numeric array or as
an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY (defined as

VARRAY (1048576) OF NUMBER), the parameter identifies the upper-left (row, column) and lower-
right (row, column) coordinates of a rectangular window, and raster space is assumed. If the
data type is SDO_GEOMETRY, it is transformed into raster space if it is in model space, and
then the minimum bounding rectangle (MBR) of the geometry object in raster space is used as
the window. The default value is the entire image.

In both cases, the intersection of the MBR of the sampling window in raster space and the
MBR of the GeoRaster object in raster space is used for computing statistics. However, if
polygonClip is TRUE, then the samplingWindow geometry object will be used for the operation
instead of the MBR of the sampling window, in which case only cells within the
samplingWindow geometry are counted.

If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers

Band ordinate numbers of the layers for which to compute the statistics. This is a string that
can include numbers, number ranges indicated by hyphens (-), and commas to separate
numbers and number ranges. For example, '1,3-5, 7' specifies layers 2, 4, 5, 6, and 8. If
bandNumbers is null, all bands are used in computing the statistics.

nodata

Specifies whether or not to compare each cell values with NODATA values defined in the
metadata when computing statistics. TRUE causes all pixels with a NODATA value not to be
considered; FALSE (the default) causes pixels with NODATA values to be considered as
regular pixels. NODATA values and value ranges are discussed in NODATA Values and Value
Ranges.

polygonClip

The string TRUE causes the samplingWindow geometry object to be used for the operation; the
string FALSE or a null value causes the MBR (minimum bounding rectangle) of the
samplingWindow geometry object to be used for the operation.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where nis greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MEAN value. (The statistical data is
described by the <statisticDatasetType> element in the GeoRaster metadata XML schema,

7-55

Chapter 7
SDO_GEOR.generateStatisticsMedian

which is described in GeoRaster Metadata XML Schema; however, this function does not
update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA values, the
following error is raised:

ORA-13393: null or invalid samplingWindow parameter
See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and returns
the mean value.

DECLARE
gr sdo_georaster;
window sdo_geometry;
mean number;
BEGIN
SELECT tmimage INTO gr FROM landsat WHERE 1d=2021;
mean:=sdo_geor.generateStatisticsMean(gr,1, 'samplingFactor=7"',window,null, 'false');
END;
/

7.28 SDO_GEOR.generateStatisticsMedian

ORACLE

Format

SDO_GEOR.generateStatisticsMedian (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2? DEFAULT 'FALSE'
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMedian (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO GEOMETRY,
bandNumbers IN VARCHAR? DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
polygonClip IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMedian (
georaster IN OUT SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHARZ2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
parallelParam IN VARCHAR2 DEFAULT NULL,
) RETURN SDO_NUMBER ARRAY;

7-56

Chapter 7
SDO_GEOR.generateStatisticsMedian

or

SDO_GEOR.generateStatisticsMedian (
georaster IN OUT SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO GEOMETRY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
polygonClip IN VARCHAR2 DEFAULT NULL',
parallelParam IN VARCHAR2? DEFAULT NULL,
) RETURN SDO NUMBER ARRAY;

Description

Computes statistical data associated with one or more layers on a specified pyramid level, and
returns the median value. (It does not modify metadata in the GeoRaster object.)

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor

Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in computing the
statistics. For example, if samplingFactor is 4, one-sixteenth of the cells are sampled; but if
samplingFactor is 1, all cells are sampled. The higher the value, the less accurate the
statistics are likely to be, but the more quickly they will be computed.

samplingWindow

A sampling window for which to generate statistics, specified either as a numeric array or as
an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY (defined as

VARRAY (1048576) OF NUMBER), the parameter identifies the upper-left (row, column) and lower-
right (row, column) coordinates of a rectangular window, and raster space is assumed. If the
data type is SDO_GEOMETRY, it is transformed into raster space if it is in model space, and
then the minimum bounding rectangle (MBR) of the geometry object in raster space is used as
the window. The default value is the entire image.

In both cases, the intersection of the MBR of the sampling window in raster space and the
MBR of the GeoRaster object in raster space is used for computing statistics. However, if
polygonClip is TRUE, then the samplingWindow geometry object will be used for the operation
instead of the MBR of the sampling window, in which case only cells within the
samplingWindow geometry are counted.

If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR:.generateStatistics function for SDO_SRID requirements.

bandNumbers

Band ordinate numbers of the layers for which to compute the statistics. This is a string that
can include numbers, number ranges indicated by hyphens (-), and commas to separate
numbers and number ranges. For example, '1,3-5, 7' specifies layers 2, 4, 5, 6, and 8. If
bandNumbers is null, all bands are used in computing the statistics.

ORACLE .

Chapter 7
SDO_GEOR.generateStatisticsMin

nodata

Specifies whether or not to compare each cell values with NODATA values defined in the
metadata when computing statistics. TRUE causes all pixels with a NODATA value not to be
considered; FALSE (the default) causes pixels with NODATA values to be considered as
regular pixels. NODATA values and value ranges are discussed in NODATA Values and Value
Ranges.

polygonClip

The string TRUE causes the samplingWindow geometry object to be used for the operation; the
string FALSE or a null value causes the MBR (minimum bounding rectangle) of the
samplingWindow geometry object to be used for the operation.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where nis greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MEDIAN value. (The statistical data is
described by the <statisticDatasetType> element in the GeoRaster metadata XML schema,
which is described in GeoRaster Metadata XML Schema; however, this function does not
update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA values, the
following error is raised:

ORA-13393: null or invalid samplingWindow parameter
See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and returns
the median value.

DECLARE
gr sdo_georaster;
window sdo geometry;
median number;
BEGIN
SELECT tmimage INTO gr FROM landsat WHERE id=2021;
median:=sdo_geor.generateStatisticsMedian(gr, 1, 'samplingFactor=7"',window,null, 'false');
END;
/

7.29 SDO_GEOR.generateStatisticsMin

ORACLE

Format

SDO_GEOR.generateStatisticsMin (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHARZ2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,

7-58

ORACLE

Chapter 7
SDO_GEOR.generateStatisticsMin

nodata IN VARCHAR2 DEFAULT 'FALSE'
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMin (
georaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO GEOMETRY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
polygonClip IN VARCHAR? DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMin (
georaster IN OUT SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHARZ2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
parallelParam IN VARCHAR2 DEFAULT NULL,
) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.generateStatisticsMin (
georaster IN OUT SDO_GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO GEOMETRY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
polygonClip IN VARCHAR2 DEFAULT NULL',
parallelParam IN VARCHAR2 DEFAULT NULL,
) RETURN SDO_NUMBER ARRAY;

Description

Computes statistical data associated with one or more layers on a specified pyramid level, and
returns the minimum value. (It does not modify metadata in the GeoRaster object.)

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor

Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in computing the
statistics. For example, if samplingFactor is 4, one-sixteenth of the cells are sampled; but if
samplingFactor is 1, all cells are sampled. The higher the value, the less accurate the
statistics are likely to be, but the more quickly they will be computed.

7-59

ORACLE

Chapter 7
SDO_GEOR.generateStatisticsMin

samplingWindow

A sampling window for which to generate statistics, specified either as a numeric array or as
an SDO_GEOMETRY obiject. If the data type is SDO_NUMBER_ARRAY (defined as

VARRAY (1048576) OF NUMBER), the parameter identifies the upper-left (row, column) and lower-
right (row, column) coordinates of a rectangular window, and raster space is assumed. If the
data type is SDO_GEOMETRY, it is transformed into raster space if it is in model space, and
then the minimum bounding rectangle (MBR) of the geometry object in raster space is used as
the window. The default value is the entire image.

In both cases, the intersection of the MBR of the sampling window in raster space and the
MBR of the GeoRaster object in raster space is used for computing statistics. However, if
polygonClip is TRUE, then the samplingWindow geometry object will be used for the operation
instead of the MBR of the sampling window, in which case only cells within the
samplingWindow geometry are counted.

If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers

Band ordinate numbers of the layers for which to compute the statistics. This is a string that
can include numbers, number ranges indicated by hyphens (-), and commas to separate
numbers and number ranges. For example, '1,3-5, 7' specifies layers 2, 4, 5, 6, and 8. If
bandNumbers is null, all bands are used in computing the statistics.

nodata

Specifies whether or not to compare each cell values with NODATA values defined in the
metadata when computing statistics. TRUE causes all pixels with a NODATA value not to be
considered; FALSE (the default) causes pixels with NODATA values to be considered as
regular pixels. NODATA values and value ranges are discussed in NODATA Values and Value
Ranges.

polygonClip

The string TRUE causes the samplingWindow geometry object to be used for the operation; the
string FALSE or a null value causes the MBR (minimum bounding rectangle) of the
samplingWindow geometry object to be used for the operation.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MIN value. (The statistical data is
described by the <statisticDatasetType> element in the GeoRaster metadata XML schema,
which is described in GeoRaster Metadata XML Schema; however, this function does not
update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA values, the
following error is raised:

ORA-13393: null or invalid samplingWindow parameter

See also the SDO_GEOR.generateStatistics function.

7-60

Chapter 7
SDO_GEOR.generateStatisticsMode

Examples

The following example computes statistical data for all bands on pyramid level 1, and returns
the minimum value.

DECLARE

gr sdo_georaster;

window sdo_geometry;

min number;
BEGIN

SELECT tmimage INTO gr FROM landsat WHERE 1d=2021;
min:=sdo_geor.generateStatisticsMin(gr, 1, 'samplingFactor=7"',window,null, 'false');
END;

/

7.30 SDO_GEOR.generateStatisticsMode

ORACLE

Format

SDO_GEOR.generateStatisticsMode (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR? DEFAULT 'FALSE'
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMode (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO GEOMETRY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
polygonClip IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMode (
georaster IN OUT SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
parallelParam IN VARCHAR2 DEFAULT NULL,
) RETURN SDO_NUMBER ARRAY;

or

SDO_GEOR.generateStatisticsMode (
georaster IN OUT SDO_GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO GEOMETRY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',

7-61

Chapter 7
SDO_GEOR.generateStatisticsMode

polygonClip IN VARCHAR2 DEFAULT NULL',
parallelParam IN VARCHAR2? DEFAULT NULL,
) RETURN SDO NUMBER ARRAY;

Description

Computes statistical data associated with one or more layers on a specified pyramid level, and
returns the mode value (the value that occurs most frequently). (It does not modify metadata in
the GeoRaster object.)

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor

Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in computing the
statistics. For example, if samplingFactor is 4, one-sixteenth of the cells are sampled; but if
samplingFactor is 1, all cells are sampled. The higher the value, the less accurate the
statistics are likely to be, but the more quickly they will be computed.

samplingWindow

A sampling window for which to generate statistics, specified either as a numeric array or as
an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY (defined as

VARRAY (1048576) OF NUMBER), the parameter identifies the upper-left (row, column) and lower-
right (row, column) coordinates of a rectangular window, and raster space is assumed. If the
data type is SDO_GEOMETRY, it is transformed into raster space if it is in model space, and
then the minimum bounding rectangle (MBR) of the geometry object in raster space is used as
the window. The default value is the entire image.

In both cases, the intersection of the MBR of the sampling window in raster space and the
MBR of the GeoRaster object in raster space is used for computing statistics. However, if
polygonClip is TRUE, then the samplingWindow geometry object will be used for the operation
instead of the MBR of the sampling window, in which case only cells within the
samplingWindow geometry are counted.

If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR:.generateStatistics function for SDO_SRID requirements.

bandNumbers

Band ordinate numbers of the layers for which to compute the statistics. This is a string that
can include numbers, number ranges indicated by hyphens (-), and commas to separate
numbers and number ranges. For example, '1,3-5, 7' specifies layers 2, 4, 5, 6, and 8. If
bandNumbers is null, all bands are used in computing the statistics.

nodata

Specifies whether or not to compare each cell values with NODATA values defined in the
metadata when computing statistics. TRUE causes all pixels with a NODATA value not to be
considered; FALSE (the default) causes pixels with NODATA values to be considered as
regular pixels. NODATA values and value ranges are discussed in NODATA Values and Value
Ranges.

ORACLE 7-62

Chapter 7
SDO_GEOR.generateStatisticsSTD

polygonClip

The string TRUE causes the samplingWindow geometry object to be used for the operation; the
string FALSE or a null value causes the MBR (minimum bounding rectangle) of the
samplingWindow geometry object to be used for the operation.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where nis greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MODEVALUE value. (The statistical data is
described by the <statisticDatasetType> element in the GeoRaster metadata XML schema,
which is described in GeoRaster Metadata XML Schema; however, this function does not
update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA values, the
following error is raised:

ORA-13393: null or invalid samplingWindow parameter
See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and returns
the mode value.

DECLARE
gr sdo_georaster;
window sdo geometry;
mode number;
BEGIN
SELECT tmimage INTO gr FROM landsat WHERE 1d=2021;
mode:=sdo_geor.generateStatisticsMode (gr,1, 'samplingFactor=7"',window,null, 'false');
END;
/

7.31 SDO_GEOR.generateStatisticsSTD

ORACLE

Format

SDO_GEOR.generateStatisticsSTD (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHARZ2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE'
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsSTD(
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,

7-63

ORACLE

Chapter 7
SDO_GEOR.generateStatisticsSTD

samplingWindow IN SDO GEOMETRY,

bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
polygonClip IN VARCHAR2 DEFAULT NULL

) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsSTD(
georaster IN OUT SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHAR2,
samplingWindow IN SDO NUMBER ARRAY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
parallelParam IN VARCHAR2? DEFAULT NULL,
) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.generateStatisticsSTD(
georaster IN OUT SDO GEORASTER,
pyramidLevel IN NUMBER,
samplingFactor IN VARCHARZ2,
samplingWindow IN SDO GEOMETRY,
bandNumbers IN VARCHAR2 DEFAULT NULL,
nodata IN VARCHAR2 DEFAULT 'FALSE',
polygonClip IN VARCHAR? DEFAULT NULL',
parallelParam IN VARCHAR2 DEFAULT NULL,
) RETURN SDO _NUMBER ARRAY;

Description

Computes statistical data associated with one or more layers on a specified pyramid level, and
returns the standard deviation value. (It does not modify metadata in the GeoRaster object.)

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor

Sampling factor in the format 'samplingFactor=n", with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in computing the
statistics. For example, if samplingFactor is 4, one-sixteenth of the cells are sampled; but if
samplingFactor is 1, all cells are sampled. The higher the value, the less accurate the
statistics are likely to be, but the more quickly they will be computed.

samplingWindow

A sampling window for which to generate statistics, specified either as a numeric array or as
an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY (defined as

VARRAY (1048576) OF NUMBER), the parameter identifies the upper-left (row, column) and lower-
right (row, column) coordinates of a rectangular window, and raster space is assumed. If the
data type is SDO_GEOMETRY, it is transformed into raster space if it is in model space, and
then the minimum bounding rectangle (MBR) of the geometry object in raster space is used as
the window. The default value is the entire image.

7-64

ORACLE

Chapter 7
SDO_GEOR.generateStatisticsSTD

In both cases, the intersection of the MBR of the sampling window in raster space and the
MBR of the GeoRaster object in raster space is used for computing statistics. However, if
polygonClip is TRUE, then the samplingWindow geometry object will be used for the operation
instead of the MBR of the sampling window, in which case only cells within the
samplingWindow geometry are counted.

If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers

Band ordinate numbers of the layers for which to compute the statistics. This is a string that
can include numbers, number ranges indicated by hyphens (-), and commas to separate
numbers and number ranges. For example, '1,3-5, 7' specifies layers 2, 4, 5, 6, and 8. If
bandNumbers is null, all bands are used in computing the statistics.

nodata

Specifies whether or not to compare each cell values with NODATA values defined in the
metadata when computing statistics. TRUE causes all pixels with a NODATA value not to be
considered; FALSE (the default) causes pixels with NODATA values to be considered as
regular pixels. NODATA values and value ranges are discussed in NODATA Values and Value
Ranges.

polygonClip

The string TRUE causes the samplingWindow geometry object to be used for the operation; the
string FALSE or a null value causes the MBR (minimum bounding rectangle) of the
samplingWindow geometry object to be used for the operation.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where nis greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the STD value. (The statistical data is
described by the <statisticDatasetType> element in the GeoRaster metadata XML schema,
which is described in GeoRaster Metadata XML Schema; however, this function does not
update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA values, the
following error is raised:

ORA-13393: null or invalid samplingWindow parameter
See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and returns
the standard deviation value.

DECLARE

gr sdo_georaster;

window sdo geometry;

std number;

BEGIN

SELECT tmimage INTO gr FROM landsat WHERE 1d=2021;
std:=sdo_geor.generateStatisticsSTD(gr,1, 'samplingFactor=7",window,null, 'false');

7-65

END;

7.32 SDO_GEOR.georeference

ORACLE

Format (procedure)

SDO_GEOR.georeference (
georaster
srid

modelCoordinateLocation

xCoefficients
yCoefficients

Format (function)

SDO_GEOR.georeference (
georaster
FFMethodType
nGCP
GCPs
storeGCP
srid

modelCoordinateLocation

setResolution

IN OUT SDO_GEORASTER,
IN NUMBER,

IN NUMBER,

IN SDO NUMBER ARRAY,

IN SDO NUMBER ARRAY);

IN
IN
IN
IN
IN
IN
IN
IN

) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.georeference (
georaster
gcpGeorefModel
storeGCP
srid

modelCoordinateLocation

setResolution

IN
IN
IN
IN
IN
IN

) RETURN SDO_NUMBER ARRAY;

or

SDO_GEOR.georeference (
georaster
FFMethodType
srid

IN
IN
IN

modelCoordinateLocation IN

setResolution

IN

) RETURN SDO NUMBER ARRAY;

Description

OUT SDO_GEORASTER,
VARCHARZ,

NUMBER,

SDO_GEOR GCP_COLLECTION,
VARCHAR2 DEFAULT 'TRUE',
NUMBER DEFAULT NULL,
NUMBER DEFAULT NULL,
VARCHAR2 DEFAULT NULL

OUT SDO_GEORASTER,
SDO_GEOR GCPGEOREFTYPE,
VARCHAR2 DEFAULT 'TRUE',
NUMBER DEFAULT NULL,
NUMBER DEFAULT NULL,
VARCHAR2 DEFAULT NULL

OUT SDO_GEORASTER,
VARCHAR2 DEFAULT NULL,
NUMBER DEFAULT NULL,
NUMBER DEFAULT NULL,
VARCHAR2 DEFAULT NULL

Chapter 7
SDO_GEOR.georeference

As a procedure, georeferences a GeoRaster object using specified cell-to-model
transformation coefficients of an affine transformation. As a function, returns the solution of any
one of the supported geometric models using ground control points (GCPs) that are either
stored in the database or specified in parameters.

Parameters

georaster

The SDO_GEORASTER obiject to be georeferenced.

7-66

ORACLE

Chapter 7
SDO_GEOR.georeference

srid

Model coordinate system. For the procedure, must not be null or 0 (zero); for function, it can
be null. It can be a value from the SRID column of the MDSYS.CS_SRS table. If it is not a
value from the SRID column of the MDSYS.CS_SRS table, the SRID is not supported by
Oracle Spatial and Graph, and some SRID-related operations may not be supported.

modelCoordinateLocation
A value specifying the model location of the base of the area represented by a cell: 0 for
CENTER or 1 for UPPERLEFT.

xCoefficients
An array specifying the A, B, and C coefficient values in the calculation, as explained in the
Usage Notes.

yCoefficients
An array specifying the D, E, and F coefficient values in the calculation, as explained in the
Usage Notes.

FFMethodType

Polynomial or rational polynomial function used as georeference geometric model. Must be
one of the following string values: Affine, QuadraticPolynomial, CubicPolynomial, DLT,
QuadraticRational, Or RPC.

gcpGeorefModel
Object containing the following: FFMethodType, nGCP, GCPs, solutionAccuracy.

nGCP
Number of ground control points in the GCP collection (GCPs parameter).

GCPs
The GCP collection, of type SDO_GEOR_GCP_COLLECTION (described in
SDO_GEOR_GCP_ COLLECTION Collection Type).

storeGCP

A flag indicating whether the GCPs should be stored in the GeoRaster metadata. The string
TRUE (the default) stores the points in the GeoRaster metadata; the string FALSE does not store
the points in the GeoRaster metadata.

setResolution

A flag indicating whether the spatial resolution is calculated and stored in the GeoRaster
metadata. The string FALSE or a null value does not store the spatial resolution in the
GeoRaster metadata; the string TRUE stores the spatial resolution in the GeoRaster metadata.

Usage Notes
Notes for the Procedure Format

Use this procedure to georeference a GeoRaster object based on an existing affine
transformation. Georeferencing is explained in Georeferencing and Georeferencing GeoRaster
Objects.

This procedure assumes that in the original georeferencing information in the source data,
such as in an ESRI world file, the transformation formulas are the following:

A * column + B * row + C
y =D * column + E * row + F

7-67

ORACLE

Chapter 7
SDO_GEOR.georeference

Specify the preceding A, B, C, D, E, and F coefficients to the SDO_GEOR.georeference
procedure. They are automatically adjusted internally to produce the correct georeferencing
result: a, b, ¢, d, e, and f coefficients, as in the following formulas:

row =a+t+b*x+c*ry

column =d +e * x + £ *y

In these formulas:

* row = Row index of the cell in raster space.

e column = Column index of the cell in raster space.

* x = East-West position of the point on the ground or in model space.

* y = North-South position of the point on the ground or in model space.

* a,b,c,d,e, and f are coefficients, and they are stored in the GeoRaster SRS metadata.
e b*f — c*e should not be equal to O (zero).

In these formulas, if b =0, f =0, ¢ = -e, and both ¢ and e are not 0 (zero), the raster data is
called rectified, and the formula becomes:

row =a+t+c*y
column = d - ¢ * x

This procedure sets the spatial resolutions of the GeoRaster object.
The following also perform operations related to georeferencing:

e The SDO_GEOR.setSRS procedure sets or deletes georeferencing information.

e The SDO_GEOR.importFrom procedure can load an ESRI world file or a Digital Globe
RPC file from a file or from a CLOB object.

e The GeoRaster loader tool (described in GeoRaster Tools: Viewer_ Loader_ Exporter) can
load an ESRI world file, a Digital Globe RPC file, or the geometadata from a GeoTIFF file.

Notes for the Function Formats (for Use with GCPs)

This function calculates the solution of the specified geometric model (the FFMethodType) using
the GCPs that are either stored in the database or specified in parameters, and it stores the
solution in the GeoRaster functional fitting model.

The returned array contains RMS values and residuals, which have the following order: the
solution accuracy (rowRMS, colRMS, totalRMS) computed using control points, the ground
positioning accuracy (XRMS, yRMS, zRMS, modelTotalRMS) computed using check points, the
ground positioning accuracy (xRMS, yRMS, zRMS, modelTotalRMS) computed using control
points, and the (xResidual, yResidual) for each control point (not for check points). The
ordering of the residuals is the same as the control points stored in the XML metadata (not
necessarily in the sequential order of the control point ID values if the ID values are numbers).

There are always at least 17 values returned (assuming at least 3 control points). A positioning
accuracy (RMS) value of —1.0 means that value does not exist. For a two-dimensional
geometric model, the zRMS value is always —1.0; otherwise, zZRMS values are always 0 in the
current release.

The GCPs can either be retrieved from the GeoRaster metadata or provided using the GCP-
related object types.

For the interface without GCP information (that is, the format without the gcpGeorefModel
parameter), the GCPs are assumed to be stored in the GeoRaster object's metadata. If no

7-68

ORACLE

Chapter 7
SDO_GEOR.georeference

GCPs are stored or if not enough GCPs are stored for the specified model, an exception is
raised.

After this function call, the GeoRaster object is georeferenced and the coefficients of the
functional fitting model are set in the GeoRaster SRS metadata component.

For more information about georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

Examples

The following example georeferences a GeoRaster object directly using the cell-to-model
coefficients of an affine transformation. (It refers to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
gr sdo_georaster;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid = 1 FOR UPDATE;
sdo_geor.georeference(gr, 82394, 0,
sdo_number array(28.5, 0, 1232804.04),
sdo_number array(0, -28.5, 13678.09));
UPDATE georaster table SET georaster = gr WHERE georid = 1;
COMMIT;
END;
/

PL/SQL procedure successfully completed.

SET NUMWIDTH 20
SELECT georid, sdo geor.getSRS(georaster) SRS FROM georaster table
WHERE georid = 1;

GEORID

SRS (ISREFERENCED, ISRECTIFIED, ISORTHORECTIFIED, SRID,
SPATIALRESOLUTION, SPATIA

SDO_GEOR SRS ('TRUE', 'TRUE', NULL, 82394, SDO NUMBER ARRAY (28.5, 28.5), NULL, NU
., 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, NULL, NULL, NULL, SDO NUMBER ARRAY(1l, 2, 1, 3,

479.93298245614, 0, -.0350877192982456), SDO NUMBER ARRAY (1, 0, 0, 1, 1), SDO N
UMBER ARRAY (1, 2, 1, 3, -43256.2821052632, .0350877192982456, 0), SDO NUMBER ARR
AY(1, 0, 0, 1, 1)

If the original raster data is rectified and if the model coordinate of the center point of the
upper-left corner cell is (x0, y0) and its spatial resolution is s, you can directly use the
preceding example code to georeference the GeoRaster object by replacing 28.5 with s,
1232804.04 with x0, and 13678.09 with yO0. If you have other information about the GeoRaster
object, such as a well-defined precise envelope of the raster or the model coordinates of the
center point, you can compute the (x0, y0) and the spatial resolution s, and then use the same
approach to georeference the object.

The following example georeferences a GeoRaster object, using ground control point (GCP)
information.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
georefModel SDO_GEOR GCPGEOREFTYPE;
GCPs SDO_GEOR _GCP_COLLECTION;

7-69

rms
BEGIN

SELECT georaster INTO grl from georaster table WHERE georid=10 FOR UPDATE;

sdo number array;

GCPs := SDO_GEOR GCP COLLECTION (
SDO_GEOR GCP('1', '', 1,

georefModel :=
GCPs.count, GCPs,

2, sdo_number array(25.625000, 73.875000),
2, sdo_number array(237036.937500, 897987.187500),

NULL, NULL),
SDO_GEOR GCP('2', "'

NULL, NULL),
SDO_GEOR GCP('3', "'

NULL, NULL),
SDO_GEOR GCP('4', "'

NULL, NULL),
SDO_GEOR GCP('5', "'

NULL, NULL),
SDO_GEOR GCP('6', "'

NULL, NULL)
)i

SDO_GEOR GCPGEOREFTYPE ('Affine',
NULL) ;

rms := sdo geor.georeference(grl, georefModel,
UPDATE georaster table SET georaster=grl WHERE georid=10;

COMMIT;
END;
/

7.33 SDO_GEOR.getBandDimSize

ORACLE

Format

SDO_GEOR.getBandDimSize (

georaster

IN SDO_GEORASTER

) RETURN NUMBER;

Description

Returns the number of bands in a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

14 1/
2, sdo_number array(100.625000, 459.125000),
2, sdo_number array(237229.562500, 897949.687500),

14 1/
2, sdo_number array(362.375000, 77.875000),
2, sdo number array(237038.937500, 897818.812500),

14 1/
2, sdo_number array(478.875000, 402.125000),
2, sdo_number array(237201.062500, 897760.562500),

’ 2/
2, sdo_number array(167.470583,
2, sdo number array(237032.015343, 897916.264708),

’ 2/
2, sdo_number array(101.456177,
2, sdo number array(237128.957767, 897949.271912),

'FALSE',

26986,

For an explanation of bands, see Bands_ Layers_ and Metadata.

64.030686),

257.915534),

1);

Chapter 7

SDO_GEOR.getBandDimSize

7-70

Chapter 7
SDO_GEOR.getBeginDateTime

If georaster or its metadata is null, this function returns a null value.

Examples

The following example returns the spatial dimension sizes and the number of bands (one in
this case) for a GeoRaster object. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters. The output is reformatted for
readability.)

SELECT sdo_geor.getSpatialDimSizes(georaster) spatialDimSizes,
sdo_geor.getBandDimSize (georaster) bandDimSize
FROM georaster table WHERE georid=21;

SPATIALDIMSIZES BANDDIMSIZE

SDO_NUMBER ARRAY (512, 512) 1

7.34 SDO_GEOR.getBeginDateTime

ORACLE

Format

SDO_GEOR.getBeginDateTime (
georaster IN SDO GEORASTER
) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns the beginning date and time for raster data collection in the metadata for a GeoRaster
object.

Parameters

georaster
GeoRaster object.

Usage Notes

To set the beginning date and time for raster data collection in the metadata for a GeoRaster
object, use the SDO_GEOR.setBeginDateTime procedure.

If georaster or its metadata is null, this function returns a null value.

Examples

The following example returns the beginning and ending dates and times for raster data
collection in the metadata for the GeoRaster object in a table named GEORASTER_TABLE
where the GEORID column contains the value 4. (The GEORASTER_TABLE table definition is
presented after Example 1-1 in Storage Parameters.)

SELECT sdo geor.getBeginDateTime (georaster) beginDateTime,
sdo_geor.getEndDateTime (georaster) endDateTime
FROM georaster table WHERE georid=4;

BEGINDATETIME

01-JAN-00 05.00.00.000000000 AM +00:00
15-NOv-02 08.00.00.000000000 PM +00:00

7-71

Chapter 7
SDO_GEOR.getBinFunction

7.35 SDO_GEOR.getBinFunction

Format

SDO_GEOR.getBinFunction (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN SDO NUMBER ARRAY;

Description

Gets the bin function associated with a layer.
Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the bin type. A value of 0 (zero) indicates the object
layer.

Usage Notes

This function returns the bin function as an array whose elements specify the bin type, total
number of bins, first bin number, minimum cell value, and maximum cell value. The
SDO_NUMBER_ARRAY type is defined as VARRAY (1048576) OF NUMBER.

If the bin type is EXPLICIT, an external bin table is used and this function returns a null value.

For a more detailed explanation of the bin function format, see the Usage Notes for the
SDO_GEOR:.setBinFunction procedure.

An exception is raised if 1ayerNumber is null, negative, or greater than the maximum layer
number.

Examples
The following example gets the bin function for layer 3 of a specified GeoRaster object.

SELECT sdo geor.getBinFunction(georaster,3) FROM georaster table WHERE georid=4;

SDO_GEOR.GETBINFUNCTION (GEORASTER, 3)

SDO_NUMBER ARRAY (0, 10, 1, 0, 511)

7.36 SDO_GEOR.getBinTable

Format

SDO_GEOR.getBinTable (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHARZ2;

Description

Returns the name of the bin table associated with a layer.

ORACLE i

Chapter 7
SDO_GEOR.getBinType

Note:

GeoRaster does not perform operations using the bin table in the current release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the bin table name. A value of O (zero) indicates the
object layer.

Usage Notes

This function is relevant only if the bin type is EXPLICIT. To retrieve the bin type, use the
SDO_GEOR.getBinType function.

To specify a bin table for a layer, use the SDO_GEOR.setBinTable procedure.
See also the information in the Usage Notes for the SDO_GEOR.getBinType function.
If georaster or its metadata is null, this function returns a null value.

An exception is raised if layerNumber is null, negative, or greater than the maximum layer
number.

Examples

The following example returns the name of the bin table for layer number 4 of a specified
GeoRaster object in a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT sdo_geor.getBinTable (georaster, 4) FROM georaster table WHERE georid=4;

7.37 SDO_GEOR.getBinType

ORACLE

Format

SDO_GEOR.getBinType (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHARZ;

Description
Returns the bin type associated with a layer.
Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the bin type. A value of 0 (zero) indicates the object
layer.

7-73

Chapter 7
SDO_GEOR.getBitmapMask

Usage Notes
This function returns one of the following bin type values: LINEAR, LOGARITHM, Oof EXPLICIT.

The LINEAR bin type is defined as follows:

binNumber = numbins * (cellValue - min) / (max - min) + firstBinNumber
if (binNumber less than 0) binNumber = firstBinNumber
if (binNumber greater than or equal to numbins) binNumber = numbins + firstBinNumber - 1

The LOGARITHM bin type is defined as follows:

binNumber = numbins * (ln (1.0 + ((cellValue - min)/(max - min)))/ 1n (2.0)) +
firstBinNumber

if (binNumber less than 0) binNumber = firstBinNumber

if (binNumber greater than or equal to numbins) binNumber = numbins + firstBinNumber - 1

The EXPLICIT bin type means that the value (or value range) for each bin is stored in a bin
table (which you can set using the SDO_GEOR.setBinTable procedure and retrieve using the
SDO_GEOR.getBinTable function).

A bin function maps values or value ranges of the GeoRaster cells to specific bin numbers,
which are all integers. GeoRaster does not provide interfaces to manipulate and process bin
functions.

If georaster or its metadata is null, this function returns a null value.

An exception is raised if layerNumber is null, negative, or greater than the maximum layer
number.

Examples

The following example returns the bin types for layers 0 and 1 of a GeoRaster object. (It refers
to a table named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters. The output is reformatted for readability.)

SELECT substr (sdo_geor.getBinType (georaster, 0),1,20) binType0,
substr (sdo_geor.getBinType (georaster, 1),1,20) binTypel
FROM georaster table WHERE georid=4;

BINTYPEOQ BINTYPEL

EXPLICIT LINEAR

7.38 SDO_GEOR.getBitmapMask

ORACLE

Format

SDO_GEOR.getBitmapMask (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER,
storageParam IN VARCHAR2,
mask IN OUT SDO_GEORASTER) ;

Description

Gets the bitmap mask that is associated with a GeoRaster object or a layer in a GeoRaster
object.

7-74

Chapter 7
SDO_GEOR.getBitmapMaskSubset

Parameters

georaster
GeoRaster object.

layerNumber
The layer on which to perform the operation. A value of 0 (zero) indicates the object layer.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

mask

The resulting GeoRaster object to hold the bitmap mask. Must be either a valid existing
GeoRaster object or an empty GeoRaster object. (Empty GeoRaster objects are explained in
Blank and Empty GeoRaster Objects.) Cannot be the same GeoRaster object as the input
GeoRaster object (georaster parameter).

Usage Notes

If no bitmap mask is associated with the specified layer of the GeoRaster object, the resulting
GeoRaster object is not updated.

If the storageParam parameter is null, the resulting GeoRaster object has a celldepth value of
1BIT celldepth, has DEFLATE compression if the input GeoRaster object is compressed, and
has the same interleaving type and blocking size as the input GeoRaster object. It also
contains all the bitmap mask pyramids if the input GeoRaster object has pyramids built on it.

A bitmap mask may have empty raster blocks (see Empty Raster Blocks). If there is reblocking
that leads to partially empty raster blocks, any cells in a partially empty block that are derived
from an empty raster block are filled with the value 0 (zero).

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example retrieves the bitmap mask associated with the object layer of the
specified GeoRaster object.

DECLARE
gr sdo_georaster;
mk sdo georaster;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=4;
INSERT INTO georaster table (georid, georaster)
VALUES (100, sdo geor.init('rdt 1', 100))
RETURNING georaster INTO mk;
sdo_geor.getBitmapMask(gr, 0, 'compression=none', mk);
UPDATE georaster table SET georaster=mk WHERE georid=100;
COMMIT;
END;
/

7.39 SDO_GEOR.getBitmapMaskSubset

Format

SDO_GEOR.getBitmapMaskSubset (
georaster IN SDO_GEORASTER,

ORACLE 7-75

ORACLE

layerNumber IN NUMBER,

pyramidLevel IN VARCHAR2,

window IN SDO_NUMBER ARRAY,
rasterBlob IN OUT NOCOPY BLOB,
storageParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getBitmapMaskSubset (
georaster IN SDO_GEORASTER,
layerNumber IN NUMBER,
pyramidLevel IN VARCHAR2,
inWindow IN SDO NUMBER ARRAY,
rasterBlob IN OUT NOCOPY BLOB,
outWindow OUT SDO_NUMBER ARRAY,
storageParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getBitmapMaskSubset (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER,
pyramidLevel IN VARCHAR2,
window IN SDO GEOMETRY,
rasterBlob IN OUT NOCOPY BLOB,
storageParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getBitmapMaskSubset (
georaster IN SDO_GEORASTER,
layerNumber IN NUMBER,
pyramidLevel IN VARCHAR2,
inWindow IN SDO_GEOMETRY,
rasterBlob IN OUT NOCOPY BLOB,
outWindow OUT SDO_NUMBER ARRAY,
storageParam IN VARCHAR2? DEFAULT NULL);

Description
Gets a subset of a bitmap mask.
Parameters

georaster
GeoRaster object.

layerNumber

Chapter 7
SDO_GEOR.getBitmapMaskSubset

Number of the layer on which to perform the operation. A value of O (zero) indicates the object

layer.

pyramidLevel
Pyramid level containing the specified cell.

window, inWindow

A rectangular window for the subset, specified either as a numeric array with the lower-left and
upper-right coordinates or as an SDO_GEOMETRY object. The SDO_NUMBER_ARRAY type

is defined as VARRAY (1048576) OF NUMBER.

7-76

ORACLE

Chapter 7
SDO_GEOR.getBitmapMaskSubset

rasterBlob
BLOB to hold the output (the resulting subset).

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and lower-right
corners of the output window in the cell space.

storageParam

A string specifying storage parameters to be applied in creating rasterBlob. The only
storageParam keywords supported for this procedure are celldepth, compression,
interleaving, and quality; all other keywords are ignored. Storage parameters are
explained in Storage Parameters.

If the storageParam parameter is null, the resulting GeoRaster object has a celldepth value
of 1BIT celldepth, has DEFLATE compression if the input GeoRaster object is compressed, and
has the same interleaving type as the input GeoRaster object.

Usage Notes

If there is no bitmap associated with the specified GeoRaster object at the specified raster
layer, or the specified input window does not intersect with the spatial extent of the GeoRaster
object, the procedure returns with rasterBlob truncated to length zero and the outWindow set
to a null value.

This procedure operates on a single GeoRaster object. The procedure has four formats,
depending on whether the input window is specified as a geometry object or as the upper-left
and lower-right corners of a box, and on whether the outWindow parameter is used to return the
coordinates of the output window.

If the window or inWindow parameter data type is SDO_GEOMETRY, the SDO_SRID value

must be one of the following: null (to specify raster space) or a value from the SRID column of
the MDSYS.CS_SRS table.

If the SDO_SRID values for the window or inWindow parameter geometry and the model space
are different, the geometry parameter is automatically transformed to the coordinate system of
the model space before the operation is performed. (Raster space and model space are
explained in GeoRaster Data Model.)

If the window parameter specifies a geodetic MBR, it cannot cross the date line meridian. For
information about geodetic MBRs, see Oracle Spatial and Graph Developer's Guide.

After the procedure completes, the rasterBLOB parameter contains the cell (pixel) data in the
cropped window without tiling. The cropped window is the overlapping portion of the specified
window of interest and the source GeoRaster object's spatial extent. If the outWindow
parameter is specified, after the procedure completes it contains the coordinates of the
cropped window in the cell space.

A bitmap mask may have empty raster blocks (see Empty Raster Blocks). Any cells in the
output window that are derived from an empty raster block are filled with the value 0 in the
output BLOB.

The BLOB has no padding, except when the cell depth is less than 8 bits and the total number
of bits needed for the output cannot be divided by 8; in these cases, unlike normal padding,
only the last byte of the result is padded with 0 (zeros) for the trailing bits.

You can specify compression regardless of whether the input GeoRaster object is compressed
or not. To have decompressed output for a compressed input GeoRaster object, specify
compression=NONE in the storageParam parameter. For information about GeoRaster
compression and decompression, see Compression and Decompression.

7-77

Chapter 7
SDO_GEOR.getBitmapMaskValue

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example retrieves a subset of a bitmap mask associated with the object layer of
a specified GeoRaster object.

DECLARE
gr sdo_georaster;
1b blob;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=4;
dbms_lob.createTemporary(1b, TRUE);
sdo_geor.getBitmapMaskSubset (gr, 0, 0, sdo number array(0,0,99,99), 1b,
'compression=none"');
dbms_1lob.freeTemporary (1b);
END;
/

7.40 SDO_GEOR.getBitmapMaskValue

ORACLE

Format

SDO_GEOR.getBitmapMaskValue (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER,
pyramidLevel IN VARCHAR2,
rowNumber IN NUMBER,
colNumber IN NUMBER
) RETURN NUMBER;

or

SDO_GEOR.getBitmapMaskValue (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER,
pyramidLevel IN VARCHAR2,
ptGeom IN SDO_GEOMETRY
) RETURN NUMBER;

Description
Gets the value of a single cell from a bitmap mask.
Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer on which to perform the operation. A value of O (zero) indicates the object
layer.

pyramidLevel
Pyramid level containing the specified cell.

rowNumber
Row number in cell space.

7-78

Chapter 7
SDO_GEOR.getBitmapMaskValues

colNumber
Column number in cell space.

ptGeom
Point geometry in cell space or model space.

Usage Notes
You can specify the cell by its row and column numbers or by a point geometry object.

If there is no bitmap associated with the specified GeoRaster object at the specified raster
layer, or the specified cell is in an empty raster block, the function returns a null value.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example gets the value of four cells from the bitmap mask associated with a
specified GeoRaster object.

SELECT sdo geor.getBitmapMaskValue (georaster,0,0,0,0) cI,
sdo_geor.getBitmapMaskValue (georaster,0,0,9,9) c2,
sdo_geor.getBitmapMaskValue (georaster,0,0,9,10) c3,
sdo_geor.getBitmapMaskValue (georaster,0,0,10,9) c4

FROM georaster table WHERE georid=0;

7.41 SDO_GEOR.getBitmapMaskValues

ORACLE

Format

SDO_GEOR.getBitmapMaskValues (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER,
pyramidLevel IN VARCHAR2,
rowNumbers IN SDO NUMBER ARRAY,
colNumbers IN SDO NUMBER ARRAY
) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.getBitmapMaskValues (
georaster IN SDO_GEORASTER,
layerNumber IN NUMBER,
pyramidLevel IN VARCHAR2,
ptGeom IN SDO_GEOMETRY
) RETURN SDO_NUMBER ARRAY;

Description
Gets the values of multiple cells from a bitmap mask.
Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer on which to perform the operation. A value of O (zero) indicates the object
layer.

7-79

Chapter 7
SDO_GEOR.getBlankCellValue

pyramidLevel
Pyramid level containing the specified cell.

rowNumbers
Numbers of the rows that contain the cells whose values are to be returned.

colNumbers
Numbers of the columns that contain the cells whose values are to be returned.

ptGeom
Multipoint geometry that identifies the cells whose values are to be returned.

Usage Notes

You can specify the cells by an array of row and column numbers or by a multipoint geometry
object.

If there is no bitmap associated with the specified GeoRaster object at the specified raster
layer, or the specified cell is in an empty raster block, the function returns a null value.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example gets the value of four cells from the bitmap mask associated with a
specified GeoRaster object.

SELECT
sdo_geor.getBitmapMaskValues (georaster,0,0,sdo number array(0,9,9,10),sdo _number array (0,
9,10,9)

FROM georaster table WHERE georid=0;

7.42 SDO_GEOR.getBlankCellValue

ORACLE

Format

SDO_GEOR.getBlankCellValue (
georaster 1IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the cell value for all cells if a specified GeoRaster object is a blank GeoRaster object.
Parameters

georaster
GeoRaster object.

Usage Notes

In a blank GeoRaster object, all cells have the same cell value. This function returns the cell
value for all cells if the specified GeoRaster object is a blank GeoRaster object.

To set the cell value to be used if a specified GeoRaster object is a blank GeoRaster object,
use the SDO_GEOR.setBlankCellValue procedure. To determine if a specified GeoRaster
object is a blank GeoRaster object, use the SDO_GEOR:.isBlank function.

If georaster is null, invalid, or is not a blank GeoRaster object, the
SDO_GEOR.getBlankCellValue function returns a null value.

7-80

Chapter 7
SDO_GEOR.getBlockingType

Examples

The following example returns the blank cell values for all blank GeoRaster objects in the
GEORASTER column of table GEORASTER_TABLE.

SELECT georid, sdo geor.getBlankCellValue (georaster) blankValue
FROM georaster table WHERE sdo_geor.isBlank(georaster)='TRUE';

GEORID BLANKVALUE

7.43 SDO_GEOR.getBlockingType

ORACLE

Format

SDO_GEOR.getBlockingType (
georaster IN SDO_GEORASTER
) RETURN VARCHARZ2;

Description

Returns the blocking type for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes
This function returns one of the following values: NONE or REGULAR:

° NONE means that the GeoRaster object is not blocked, but is a single BLOB object.

e REGULAR means that the GeoRaster object uses regular blocking, that is, each block has
the same dimension sizes.

If georaster or its metadata is null, this function returns a null value.

Examples

The following example returns the cell depth, interleaving type, and blocking type of the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of 21 in
the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT sdo_geor.getCellDepth (georaster) CellDepth,
substr(sdo geor.getInterleavingType (georaster),1,8) interleavingType,
substr (sdo geor.getBlockingType (georaster),1,8) blocking
FROM georaster table WHERE georid=21;

CELLDEPTH INTERLEA BLOCKING

7-81

Chapter 7
SDO_GEOR.getBlockSize

7.44 SDO_GEOR.getBlockSize

Format

SDO_GEOR.getBlockSize (
georaster IN SDO_GEORASTER
) RETURN SDO_NUMBER ARRAY;

Description

Returns the number of cells for each dimension in each block of a GeoRaster object in an
array showing the number of cells for each row, column, and (if relevant) band.

Parameters

georaster
GeoRaster object.

Usage Notes

If georaster or its metadata is null, or if georaster is not blocked, this function returns a null
value.

Examples

The following example returns the number of cells (512 in each dimension) in each block of the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of 21 in
the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT sdo_geor.getBlockSize (georaster) blockSize
FROM georaster table WHERE georid=21;

BLOCKSIZE

SDO_NUMBER ARRAY (512, 512)

7.45 SDO_GEOR.getCellCoordinate

ORACLE

Format

SDO_GEOR.getCellCoordinate (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
modelCoordinate IN SDO GEOMETRY,

subCell IN VARCHAR2 DEFAULT NULL,
height IN NUMBER DEFAULT NULL,
vert id IN NUMBER DEFAULT NULL,
ellipsoidal IN VARCHAR2 DEFAULT NULL

) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.getCellCoordinate (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
modelCoordinate IN SDO GEOMETRY,
cellCoordinate OUT SDO_GEOMETRY,

7-82

Chapter 7
SDO_GEOR.getCellCoordinate

subCell IN VARCHAR2 DEFAULT NULL,
height IN NUMBER DEFAULT NULL,
vert id IN NUMBER DEFAULT NULL,
ellipsoidal IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getCellCoordinate (
georaster IN SDO_GEORASTER,
sourcePyramidLevel IN NUMBER,
sourceCellCoordinate IN SDO NUMBER ARRAY,
targetPyramidLevel IN NUMBER,
subCell IN VARCHAR2 DEFAULT NULL,
) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.getCellCoordinate (
georaster IN SDO GEORASTER,
sourcePyramidLevel IN NUMBER,
sourceCellCoordinate IN SDO GEOMETRY,
targetPyramidLevel IN NUMBER,
subCell IN VARCHAR2 DEFAULT NULL,
) RETURN SDO_GEOMETRY;

Description

Returns the coordinates in the cell (raster) coordinate system associated with the geometry at
the specified model (ground) coordinates (first two formats), or converts cell coordinates
between pyramid levels (last two formats).

Note that the second format is a procedure; the other formats are functions.
Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the cell specified in modelCoordinate.

modelCoordinate
The geometry that is to be converted.

cellCoordinate
The output geometry in the cell space of the GeoRaster object.

sourcePyramidLevel (last two formats)
Pyramid level with which the input cell coordinate is associated.

sourceCellCoordinate (last two formats)
Input cell coordinates to be converted. Must be a two-dimensional geometry, and its
SDO_SRID value must be null.

targetPyramidLevel (last two formats)
Pyramid level of the returned (target) GeoRaster object.

subCell
String (TRUE or FALSE) specifying whether to return the cell coordinates in sub-pixel (floating)
values.

ORACLE 7-83

ORACLE

Chapter 7
SDO_GEOR.getCellCoordinate

height
Number specifying the Z value for three-dimensional (X, Y, Z) georeferencing.

vert_id
Number specifying the vertical reference ID.

ellipsoidal
String specifying whether the vertical reference system is ellipsoidal (TRUE) or not ellipsoidal
(FALSE).

Usage Notes

The first two formats of this function return the coordinates in the cell (raster) coordinate
system associated with the geometry at the specified model (ground) coordinates:

e Use the first format (a function without the cel1Coordinate parameter) to transform a point
in the ground coordinate system (a longitude, latitude pair) to the location of a point on the
GeoRaster image.

e Use the second format (a procedure with the cellCoordinate parameter) to transform a
geometry in the ground coordinate system to the location of a geometry in the raster space
of the GeoRaster object. The conversion is done by converting the coordinates of each
vertex of the input geometry from the ground coordinate system to the raster space of the
GeoRaster object.

The last two formats of this function convert cell coordinates between pyramid levels. If the
type of the sourceCellCoordinate parameter is SDO_NUMBER_ARRAY, it specifies the
<row,column> pair for a point in the cell space at the source pyramid level. If the type of the
sourceCellCoordinate parameter is SDO_GEOMETRY, it specifies a geometry in the cell space
at the source pyramid level. The coordinates of each vertex of the input geometry are
converted according to the specified pyramid levels.

* Use the first format (without the cel1Coordinate parameter) to transform a point in the
ground coordinate system (a longitude, latitude pair) to the location of a point on the
GeoRaster image.

e Use the second format (with the cellCoordinate parameter) to transform a geometry in
the ground coordinate system to the location of a geometry in the raster space of the
GeoRaster object. The conversion is done by converting the coordinates of each vertex of
the input geometry from the ground coordinate system to the raster space of the
GeoRaster object.

If the SDO_SRID value of the modelCoordinate geometry is null, the parameter specifies a
geometry in the raster space; otherwise, it specifies a point in a ground coordinate system. If
the ground coordinate system is different from the model coordinate system, the
modelCoordinate parameter geometry is automatically transformed to the coordinate system of
the model space before the operation is performed.

Contrast this function with SDO_GEOR.getModelCoordinate, which returns a point geometry
containing the coordinates in the model (ground) coordinate system associated with the point
at the specified cell coordinates.

Examples

The following example returns the cell coordinates in the raster image associated with model
coordinate values (32343.64,7489527.23) in a specified GeoRaster object. (It refers to a table
named GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

7-84

Chapter 7
SDO_GEOR.getCellDepth

SELECT sdo_geor.getCellCoordinate (georaster, 0, sdo geometry(2001,82394,
sdo_point type(32343.64,7489527.23,null), null,null)) coord
FROM georaster table WHERE georid=4;

SDO_NUMBER ARRAY (100, 100)

The following example returns the geometry at pyramid level O that is associated with the
specified geometry at pyramid level 2, assuming the geometry is not georeferenced (the model
coordination location is CENTER) and the ultCoordinate is (100,-100,0).

SELECT sdo_geor.getCellCoordinate (georaster, 2,
sdo_geometry(2003,NULL,NULL, sdo_elem info array(1,1003,3),
sdo_ordinate array(100.8,-100.2,220.15,0.3)),
0, 'true') coord
FROM georaster table WHERE georid=1;

SDO_GEOMETRY (2003, NULL, NULL, SDO ELEM INFO ARRAY (1, 1003, 3), SDO ORDINATE ARR
AY(104.7, -99.3, 582.1, 302.7)

7.46 SDO_GEOR.getCellDepth

ORACLE

Format

SDO_GEOR.getCellDepth (
georaster 1IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the cell depth in bits.

Parameters

georaster
GeoRaster object.

Usage Notes

The cell depth determines the precision and the data size of an image. As the cell depth value
decreases, less disk space is needed to store the image; as the cell depth value increases,
more disk space is needed to store the image.

To return the cell depth as a string (such as 32BIT 8) instead of a number, you can use the
XMLType PL/SQL interface extract. The possible string values are listed in the
cellDepthType definition in the GeoRaster metadata XML schema, which is described in
GeoRaster Metadata XML Schema. The following example returns a string value for the cell
depth of the GeoRaster object with the GEORID column value of 21 in the
GEORASTER_TABLE table:

SELECT t.georaster.metadata.extract (
'/georasterMetadata/rasterInfo/cellDepth/text () ',
'sxmlns=http://xmlns.oracle.com/spatial/georaster")

FROM georaster table t WHERE t.georid=21;

7-85

Chapter 7
SDO_GEOR.getCellValue

Examples

The following example returns the cell depth, interleaving type, and blocking type of the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of 21 in
the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT sdo_geor.getCellDepth (georaster) CellDepth,
substr(sdo _geor.getInterleavingType (georaster),1,8) interleavingType,
substr(sdo_geor.getBlockingType (georaster),1,8) blocking
FROM georaster table WHERE georid=21;

CELLDEPTH INTERLEA BLOCKING

7.47 SDO_GEOR.getCellValue

ORACLE

Format

SDO_GEOR.getCellValue (
georaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,
rowNumber IN NUMBER,
colNumber IN NUMBER,
bandNumber IN NUMBER
) RETURN NUMBER;

or

SDO_GEOR.getCellValue (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
rowNumber IN NUMBER,
colNumber IN NUMBER,
bands IN VARCHAR2
) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.getCellValue (
georaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,
ptGeom IN SDO_GEOMETRY,
layerNumber IN NUMBER
) RETURN NUMBER;

or

SDO_GEOR.getCellValue (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
ptGeom IN SDO_GEOMETRY,
layers IN VARCHAR?
) RETURN SDO NUMBER ARRAY;

7-86

ORACLE

Chapter 7
SDO_GEOR.getCellValue

Description

Returns the value of a single cell located anywhere in the GeoRaster object by specifying its
row, column, and band number or numbers in its cell coordinate system, or by specifying a
point geometry in its model coordinate system and its logical layer number or numbers.

If the specified cell is in an empty raster block, the function returns a null value.

To change the value of raster data cells in a specified window of a GeoRaster object, use the
SDO_GEOR:.changeCellValue procedure.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the cell whose value is to be returned.

rowNumber
Number of the row that contains the cell whose value is to be returned.

colNumber
Number of the column that contains the cell whose value is to be returned.

bandNumber
Number of the physical band that contains the cell whose value is to be returned.

bands

A string identifying the physical band numbers on which the operation or operations are to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for example,
1-3 for bands 1, 2, and 3).

ptGeom
Point geometry that identifies the cell whose value is to be returned.

layerNumber

Number of the logical layer that contains the cell whose value is to be returned. (As mentioned
in Bands_ Layers_ and Metadata, the logical layer number is the physical band number plus
1)

layers

A string identifying the logical layer numbers on which the operation or operations are to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for example,
2-4 for layers 2, 3, and 4). (As mentioned in Bands_ Layers_ and Metadata, the logical layer
number is the physical band number plus 1.)

Usage Notes

This function returns the original cell value stored in the raster object. It does not do any
interpolation using cell values. (To evaluate a point location using an interpolation method, use
the SDO_GEOR:.evaluateDouble function.) It does not apply the scaling function defined in the
metadata (which is typically used to scale the original cell data to a desired value or range of
values), and it does not apply the bin function. To get the scaled cell value, follow these steps:

1. Callthe SDO_GEOR.getCellValue function to return the original cell value.

2. Call the SDO_GEOR.getScaling function to return the coefficients of the scaling function
(a0, a1, bo, by).

7-87

Chapter 7
SDO_GEOR.getCellValues

3. Using PL/SQL or another programming language, calculate the result using the following
formula:

value = (ap + a; * cellvalue) / (bg + by * cellvalue)

Examples

The following example returns the values of four cells of the GeoRaster object (GEORASTER
column) in the row with the GEORID column value of 21 in the GEORASTER_TABLE table,
whose definition is presented after Example 1-1 in Storage Parameters.

SELECT sdo_geor.getCellValue (georaster,0,383,47,0) v383 47,
sdo_geor.getCellValue (georaster,0,47,383,0) V47 383,
sdo_geor.getCellValue (georaster,0,128,192,0) V128 192,
sdo_geor.getCellValue (georaster,0,320,256,0) V320 256

FROM georaster table WHERE georid=21;

V383 47 V47 383 V128 192 V320 256

The following example returns the values of the cells in bands 0, 1, and 2 for row number 10,
column number 10 of the GeoRaster object (GEORASTER column) in the row with the
GEORID column value of 1 in the GEORASTER_TABLE table, whose definition is presented
after Example 1-1 in Storage Parameters.

SELECT sdo geor.getcellvalue (a.georaster,0,10,10,'0-2")
FROM georaster table a WHERE georid=1;

SDO_GEOR.GETCELLVALUE (A.GEORASTER, 0,10,10,'0-2")

SDO_NUMBER ARRAY (88, 137, 32)

7.48 SDO_GEOR.getCellValues

ORACLE

Format

SDO_GEOR.getCellValues (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
rowNumbers IN SDO NUMBER ARRAY,
colNumbers IN SDO NUMBER ARRAY,
bandNumber IN NUMBER
) RETURN SDO NUMBER ARRAY;

or

SDO_GEOR.getCellValues (
georaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,
ptGeom IN SDO_GEOMETRY,
layerNumber IN NUMBER
) RETURN SDO_NUMBER ARRAY;

Description

Returns the values of one or more cells located anywhere in the GeoRaster object by
specifying its row/column/band numbers in its cell coordinate space, or by specifying a
multipoint geometry in either model coordinate space or cell coordinate space and its logical
layer number.

7-88

Chapter 7
SDO_GEOR.getColorMap

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the cells whose values are to be returned.

rowNumbers
Numbers of the rows that contains the cells whose values are to be returned.

colNumbers
Numbers of the columns that contains the cells whose values are to be returned.

bandNumber
Number of the physical band that contains the cells whose values are to be returned.

ptGeom
Multipoint geometry that identifies the cell whose value is to be returned.

layerNumber

Number of the logical layer that contains the cells whose values are to be returned. (As
mentioned in Bands_ Layers_ and Metadata, the logical layer number is the physical band
number plus 1.)

Usage Notes

This function returns the original cell values stored in the raster object. It does not do any
interpolation using cell values. (To evaluate a point location using an interpolation method, use
the SDO_GEOR:.evaluateDoubles function.) It does not apply the scaling function defined in
the metadata (which is typically used to scale the original cell data to a desired value or range
of values), and it does not apply the bin function.

Examples

The following example returns the values of four cells of the GeoRaster object (GEORASTER
column) in the row with the GEORID column value of 21 in the GEORASTER_TABLE table,
whose definition is presented after Example 1-1 in Storage Parameters.

SELECT
sdo_geor.getCellValues (georaster,0,SDO_NUMBER ARRAY (383,47,128,320),SDO NUMBER ARRAY (47,3
83,192,256),0)

FROM georaster table WHERE georid=21;

SDO_GEOR.GETCELLVALUES (A.GEORASTER, 0, SDO_NUMBER ARRAY (383,47,128,320),SDO_NUMBER ARRAY (47
,383,192,256),0)

SDO_NUMBER ARRAY (48,55,52,53)

7.49 SDO_GEOR.getColorMap

ORACLE

Format

SDO_GEOR.getColorMap (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN SDO GEOR COLORMAP;

7-89

ORACLE

Description

Returns the colormap for pseudocolor display of a layer in a GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the colormap. A value of O (zero) indicates the object

layer.

Usage Notes

Chapter 7

SDO_GEOR.getColorMap

This function returns an object of type SDO_GEOR_COLORMAP. SDO_GEOR_COLORMAP
Object Type describes colormaps and this object type.

To set the colormap for a layer in a GeoRaster object, use the SDO_GEOR.setColorMap
procedure.

If georaster or its metadata is null, this function returns a null value.

An exception is raised if 1ayerNumber is null, negative, or greater than the maximum layer

number.

Examples

The following example returns the colormap for layer 1 of a GeoRaster object. (Part of the
output is omitted.)

SELECT sdo_geor.getColorMap (georaster, 1) FROM georaster table
WHERE georid = 4;

SDO_GEOR.GETCOLORMAP (GEORASTER, 1) (CELLVALUE, RED, GREEN, BLUE, ALPHA)

SDO_GEOR_COLORMAP (SDO_NUMBER ARRAY (0, 1, 2,

14, 15,
34, 35,
54, 55,
74, 75,
94, 95,
111, 112,
127, 128,
143, 144,
159, 160,
175, 176,
191, 192,
207, 208,
223, 224,
239, 240,

16, 17,
36, 37,
56, 57,
76, 77,
96, 97,

113,
129,
145,
161,
177,
193,
209,
225,
241,

114,
130,
146,
162,
178,
194,
210,
226,
242,

18, 19,
38, 39,
58, 59,
78, 19,
98, 99,

115,
131,
147,
163,
179,
195,
211,
227,
243,

20,

40,

60,

80,

100,
116,
132,
148,
164,
180,
196,
212,
228,
244,

21, 22,
41, 42,
61, 62,
81, 82,

101,
117,
133,
149,
165,
181,
197,
213,
229,
245,

102,
118,
134,
150,
166,
182,
198,
214,
230,
246,

23, 24,
43, 44,
63, 64,
83, 84,

103,
119,
135,
151,
167,
183,
199,
215,
231,
247,

3, 4,
25,
45,
65,
85,
104,
120,
136,
152,
168,
184,
200,
216,
232,
248,

5, 6,
26, 27
46, 47
66, 67
86, 87
105,
121,
137,
153,
169,
185,
201,
217,
233,
249,

7,

8, 9,

, 28, 29,
, 48, 49,
, 68, 69,
, 88, 89,

106,
122,
138,
154,
170,
186,
202,
218,
234,
250,

107,
123,
139,
155,
171,
187,
203,
219,
235,
251,

10,
30,
50,
70,
90,
108,
124,
140,
156,
172,
188,
204,
220,
236,
252,

91,

109,
125,
141,
157,
173,
189,
205,
221,
237,
253,
255), SDO_NUMBER ARRAY (180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 18

72,
92,

73,
93,

110,
126,
142,
158,
174,
190,
206,
222,
238,
254,

0, 127, 127, 1007 50, 50, 127, 159, 191, 223, 255, 255, 255, 255, 218, 182, 145,
0, 0, 0,

109, 72,
0, 0, 36,
248, 255,
255, 255,
255, 255,
255, 255,
255, 255,
255, 255,

36,
72,

255,
255,
255,
255,
255,
255,

0, 0,
109,
255,
255,
255,
255,
255,
255,

0, 0, 0,

145,
255,
255,
255,
255,
255,
255,

182,
255,
255,
255,
255,
255,
255,

0, 0,
218,
255,
255,
255,
255,
255,
255,

0, 0, 0,

255,
255,
255,
255,
255,
255,
255,

200,
255,
255,
255,
255,
255,
255,

0, 0,
206,
255,
255,
255,
255,
255,
255,

0, 0,
212, 2
255,
255,
255,
255,
255,
255,

0,
18,
255,
255,
255,
255,
255,
255,

0, 0,
224,
255,
255,
255,
255,
255,
255,

230,
255,
255,
255,
255,
255,
255,

236,

255,
255,
255,
255,
255,
255,

0,

0,

242,

255,
255,
255,
255,
255,
255,

7-90

Chapter 7
SDO_GEOR.getColorMapTable

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255), SDO _NUMBER ARRAY (127, 127,
127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 180, 127, 50, 100, 50, 127,
159, 191, 223, 255, 200, 150, 100, 122, 144, 166, 188, 210, 232, 255, 255, 255,
248, 241, 234, 227, 220, 213, 206, 200, 150, 100, 87, 75, 62, 50, 37, 25, 12, O,
200, 127, 0, O, O, O, O, O, O, O, O, 28, 56, 85, 113, 141, 170, 198, 226, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255), SDO_NUMBER ARRAY (127, 127, 127, 127,
127, 127, 127, 127, 127, 127, 127, 127, 127, 180, 50, 50, 100, 127, 95, 63, 31,
o, o, o, 0, 18, 36, 54, 72, 90, 108, 127, 100, 50, 43, 37, 31, 25, 18, 12, 6, O,
0, 0, 31, 63, 95, 127, 159, 191, 223, 255, 255, 255, 127, 108, 90, 72, 54, 36,
18, 0, 0, 28, 56, 85, 113, 141, 170, 198, 226, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255), SDO NUMBER ARRAY (255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255))

7.50 SDO_GEOR.getColorMapTable

Format

SDO_GEOR.getColorMapTable (
georaster IN SDO GEORASTER,

ORACLE 7-91

Chapter 7
SDO_GEOR.getCompressionType

layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Returns the colormap table for pseudocolor display of a layer in a GeoRaster object.

Note:

GeoRaster does not perform operations using the colormap table in the current
release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the colormap table. A value of O (zero) indicates the
object layer.

Usage Notes

This function returns the name of a user-defined colormap table. For information about
colormaps, see SDO_GEOR_COLORMAP Object Type.

To set the colormap table for a layer in a GeoRaster object, use the
SDO_GEOR:.setColorMapTable procedure.

If georaster or its metadata is null, this function returns a null value.

An exception is raised if layerNumber is null, negative, or greater than the maximum layer
number.

Examples

The following example returns the colormap table for layer 2 of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT sdo_geor.getColorMapTable (georaster, 2) FROM georaster table WHERE georid=4;

SDO_GEOR.GETCOLORMAPTABLE (GEORASTER, 2)

1 row selected.

7.51 SDO_GEOR.getCompressionType

ORACLE

Format

SDO_GEOR.getCompressionType (
georaster 1IN SDO_GEORASTER
) RETURN VARCHARZ;

7-92

Chapter 7
SDO_GEOR.getControlPoint

Description

Returns the compression type for a GeoRaster object.
Parameters

georaster
GeoRaster object.

Usage Notes

This function can return DEFLATE, JPEG-F, or NONE (the latter value meaning that the GeoRaster
object is not compressed). For information about GeoRaster compression, see Compression
and Decompression.

Examples

The following example returns the compression type for the GeoRaster objects (GEORASTER
column) in the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in
Storage Parameters.

SELECT georid, substr(sdo geor.getCompressionType (georaster),1,20) compressionType
FROM georaster table;

GEORID COMPRESSIONTYPE

2 DEFLATE
4 JPEG-F

7.52 SDO_GEOR.getControlPoint

ORACLE

Format

SDO_GEOR.getControlPoint (
inGeoraster IN SDO GEORASTER,
controlPointID IN VARCHAR2
) RETURN SDO GEOR GCP;

Description

Returns the ground control point (GCP) that has the specified control point ID value.

Parameters

inGeoraster
GeoRaster object.

controlPointID
Control point ID of inGeoraster. Must be a string not more than 32 characters.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

This function returns an object of type SDO_GEOR_GCP, which is described in
SDO_GEOR_GCP Object Type.

In the control point ID is null, empty, or missing in inGeoraster, an exception is raised.

7-93

Chapter 7
SDO_GEOR.getDefaultAlpha

Examples

The following example returns the GCP that has the ID value 25 in a specified GeoRaster
object.

SELECT sdo_geor.getControlPoint (georaster, '25') FROM georaster table
WHERE georid =10;

SDO_GEOR.GETCONTROLPOINT (GEORASTER, '25') (POINTID, DESCRIPTION, POINTTYPE, CELLDI

SDO_GEOR GCP('25', NULL, 2, 2, SDO NUMBER ARRAY(167.470583, 64.030686), 2, SDO N
UMBER ARRAY (237032.015, 897916.265), NULL, NULL)

7.53 SDO_GEOR.getDefaultAlpha

Format

SDO_GEOR.getDefaultAlpha (
georaster 1IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of the layer to be used for the alpha color component (in the RGBA color
space) for displaying a GeoRaster object. If this value is not set in the metadata, a null value is
returned.

Parameters

georaster
GeoRaster object.

Usage Notes

The default red, green, blue, and alpha values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended for use
only when visualizing multilayer or hyperspectral GeoRaster objects.

You can return the layer numbers for all four color components (RGBA) by using the
SDO_GEOR.getDefaultColorLayer function.

Examples

The following example returns the layer numbers for the red, green, blue, and alpha color
components for displaying the GeoRaster objects in the table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.

SELECT georid, sdo geor.getDefaultRed(georaster) red,
sdo_geor.getDefaultGreen(georaster) green,
sdo_geor.getDefaultBlue (georaster) blue,
sdo_geor.getDefaultAlpha (georaster) alpha

FROM georaster table;

GEORID RED GREEN BLUE ALPHA
1 1 2 3 4
2
3 31 20 13 10

ORACLE 7-94

Chapter 7
SDO_GEOR.getDefaultBlue

7.54 SDO_GEOR.getDefaultBlue

Format

SDO_GEOR.getDefaultBlue (
georaster 1IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of the layer to be used for the blue color component (in the RGB color
space) for displaying a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for pseudocolor or
grayscale displays. These values are optional, and they are intended for use only when
visualizing multilayer or hyperspectral GeoRaster objects.

You can return the layer numbers for all three color components (RGB) by using the
SDO_GEOR:.getDefaultColorLayer function.

Examples

The following example returns the layer numbers for the red, blue, and green color
components for displaying the GeoRaster objects in the table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.

SELECT georid, sdo geor.getDefaultRed(georaster) red,
sdo geor.getDefaultGreen (georaster) green,
sdo_geor.getDefaultBlue (georaster) blue

FROM georaster table;

GEORID RED GREEN BLUE
1 1 2 3
2
3 31 20 13

7.55 SDO_GEOR.getDefaultColorLayer

ORACLE

Format

SDO_GEOR.getDefaultColorLayer (
georaster IN SDO GEORASTER
) RETURN SDO_NUMBER ARRAY;

Description

Returns the default numbers of the layers to be used for the red, green, blue, and alpha color
components, respectively, for displaying a GeoRaster object.

7-95

Chapter 7
SDO_GEOR.getDefaultGreen

Parameters

georaster
GeoRaster object.

Usage Notes

The RGB layer numbers returned are used for true-color displays, not for pseudocolor or
grayscale displays.

You can return the layer number for each color component (RGBA) by using the
SDO_GEOR.getDefaultRed, SDO_GEOR.getDefaultGreen, SDO_GEOR.getDefaultBlue, and
SDO_GEOR.getDefaultAlpha functions.

The alpha color component is optional. If the default alpha color component exists in the
metadata, this functions returns an array of four numbers identifying the red, green, blue, and
alpha color components, respectively. If only the default red, green, and blue color components
exist in the metadata, this functions returns an array of three numbers identifying the red,
green, and blue color components respectively.

Examples

The following example sets the default red, green, and blue color layers for the GeoRaster
objects (GEORASTER column) in table GEORASTER_TABLE, and it returns an array with the
layer numbers for the red, green, and blue color components for displaying these GeoRaster
objects. (It refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo _georaster;

BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setDefaultRed(grobj, 2);
sdo_geor.setDefaultGreen(grobj, 3);
sdo_geor.setDefaultBlue (grobj, 1);
sdo_geor.setDefaultAlpha(grobj, 4);
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;

END;

/

SELECT sdo_geor.getDefaultColorLayer (georaster) FROM georaster table WHERE georid=4;

SDO_GEOR.GETDEFAULTCOLORLAYER (GEORASTER)

SDO NUMBER ARRAY (2, 3, 1)
SDO NUMBER ARRAY (2, 3, 1, 4)

1 row selected.

7.56 SDO_GEOR.getDefaultGreen

Format

SDO_GEOR.getDefaultGreen (
georaster IN SDO GEORASTER
) RETURN NUMBER;

ORACLE 7-96

Chapter 7
SDO_GEOR.getDefaultPyramidLevel

Description

Returns the number of the layer to be used for the green color component (in the RGB color
space) for displaying a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for pseudocolor or
grayscale displays. These values are optional, and they are intended for use only when
visualizing multilayer or hyperspectral GeoRaster objects.

You can return the layer numbers for all three color components (RGB) by using the
SDO_GEOR.getDefaultColorLayer function.

Examples

The following example returns the layer numbers for the red, blue, and green color
components for displaying the GeoRaster objects in the table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.

SELECT georid, sdo geor.getDefaultRed(georaster) red,
sdo_geor.getDefaultGreen (georaster) green,
sdo_geor.getDefaultBlue (georaster) blue

FROM georaster table;

GEORID RED GREEN BLUE
1 1 2 3
2
3 31 20 13

7.57 SDO_GEOR.getDefaultPyramidLevel

ORACLE

Format

SDO_GEOR.getDefaultPyramidLevel (
georaster 1IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of the default pyramid level for displaying a GeoRaster object. If this value
is not set in the metadata, a null value is returned.

Parameters

georaster
GeoRaster object.

Usage Notes

Pyramid levels represent reduced or increased resolution images that require less or more
storage space, respectively. For information about pyramids and pyramid levels, see Pyramids.

7-97

Chapter 7
SDO_GEOR.getDefaultRed

You can set the default pyramid level by using the SDO_GEOR.setDefaultPyramidLevel
procedure.

Examples

The following example returns the default pyramid level for displaying a specified GeoRaster
object in the table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT georid, sdo geor.getDefaultPyramidLevel (georaster) plevel,
FROM georaster table WHERE georid = 6;

7.58 SDO_GEOR.getDefaultRed

SDO_GEOR.getDefaultRed (
georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of the layer to be used for the red color component (in the RGB color
space) for displaying a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for pseudocolor or
grayscale displays. These values are optional, and they are intended for use only when
visualizing multilayer or hyperspectral GeoRaster objects.

You can return the layer numbers for all three color components (RGB) by using the
SDO_GEOR.getDefaultColorLayer function.

Examples

The following example returns the layer numbers for the red, blue, and green color
components for displaying the GeoRaster objects in the table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.

SELECT georid, sdo geor.getDefaultRed(georaster) red,
sdo_geor.getDefaultGreen(georaster) green,
sdo_geor.getDefaultBlue (georaster) blue

FROM georaster table;

GEORID RED GREEN BLUE
1 1 2 3
2
3 31 20 13

ORACLE 7-98

Chapter 7
SDO_GEOR.getEndDateTime

7.59 SDO_GEOR.getEndDateTime

Format

SDO_GEOR.getEndDateTime (
georaster 1IN SDO_GEORASTER
) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns the ending date and time for raster data collection in the metadata for a GeoRaster
object.

Parameters

georaster
GeoRaster object.

Usage Notes

To set the ending date and time for raster data collection in the metadata for a GeoRaster
object, use the SDO_GEOR.setEndDateTime procedure.

If georaster or its metadata is null, this function returns a null value.

Examples

The following example returns the beginning and ending dates and times for raster data
collection in the metadata for the GeoRaster object in a table named GEORASTER_TABLE
where the GEORID column contains the value 4. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

SELECT sdo_geor.getBeginDateTime (georaster) beginDateTime,
sdo_geor.getEndDateTime (georaster) endDateTime
FROM georaster table WHERE georid=4;

BEGINDATETIME

01-JAN-00 05.00.00.000000000 AM +00:00
15-NOv-02 08.00.00.000000000 PM +00:00

7.60 SDO_GEOR.getGCPGeorefMethod

ORACLE

Format

SDO_GEOR.getGCPGeorefMethod (
inGeoraster IN SDO_ GEORASTER
) RETURN VARCHARZ;

Description

Returns the ground control point (GCP)-based georeferencing geometric model type of a
GeoRaster object.

7-99

Chapter 7
SDO_GEOR.getGCPGeorefModel

Parameters

inGeoraster
GeoRaster object.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

If inGeoraster does contains valid georeferencing model information, it returns one of the
following values: Affine, QuadraticPolynomial, CubicPolynomial, DLT, QuadraticRational,
or RPC.

If inGeoraster does not contain any georeferencing model information, this function returns a
null value.

Examples

The following example returns the GCP-based georeferencing model information in a specified
GeoRaster object. (The output is reformatted for readability.)

SELECT sdo_geor.getGCPGeorefMethod (georaster) FROM georaster table
WHERE georid =10;

SDO_GEOR.GETGCPGEOREFMETHOD (GEORASTER)

Affine

7.61 SDO_GEOR.getGCPGeorefModel

ORACLE

Format

SDO_GEOR.getGCPGeorefModel (
inGeoraster IN SDO_GEORASTER
) RETURN SDO_GEOR GCPGEOREFTYPE;

Description

Returns all information about the ground control point (GCP)-based georeferencing model in a
GeoRaster object.

Parameters

inGeoraster
GeoRaster object.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

The SDO_GEOR_GCPGEOREFTYPE object type is defined in
SDO_GEOR_GCPGEOREFTYPE Object Type.

If inGeoraster does not contain any georeferencing model information, this function returns a
null value.

7-100

Chapter 7
SDO_GEOR.getGeoreferenceType

Examples

The following example returns the GCP-based georeferencing model information in a specified
GeoRaster object. (The output is reformatted for readability.)

SELECT sdo_geor.getGCPGeorefModel (georaster) FROM georaster table WHERE georid=10;

SDO_GEOR.GETGCPGEOREFMODEL (GEORASTER) (FFMETHODTYPE,

NUMBERGCP, GCPS (POINTID, DES...

SDO_GEOR_GCPGEOREFTYPE ('Affine', 6,

SDO_GEOR_GCP_COLLECTION (

SDO_GEOR GCP('21', NULL, 1, 2,SDO NUMBER ARRAY (25.625, 73.875), 2,
SDO_NUMBER ARRAY (237036.938,897987.188), NULL, NULL),
SDO_GEOR_GCP('22', NULL, 1, 2,SDO NUMBER ARRAY(100.625, 459.125),
2,SDO_NUMBER ARRAY (237229.563, 897949.688), NULL, NULL),

SDO_GEOR GCP('23', NULL, 1, 2, SDO NUMBER ARRAY(362.375, 77.875), 2,
SDO_NUMBER ARRAY (237038.938, 897818.813), NULL, NULL),

SDO_GEOR GCP('24', NULL, 1, 2, SDO NUMBER ARRAY(478.875, 402.125), 2,
SDO_NUMBER ARRAY (237201.063, 897760.563), NULL, NULL),

SDO_GEOR GCP('25', NULL, 2, 2, SDO NUMBER ARRAY(167.470583,
64.030686), 2, SDO_NUMBER ARRAY(237032.015, 897916.265), NULL, NULL),
SDO_GEOR GCP('26', NULL, 2, 2, SDO NUMBER ARRAY(101.456177,
257.915534), 2, SDO_NUMBER ARRAY (237128.958, 897949.272), NULL, NULL)),
NULL)

7.62 SDO_GEOR.getGeoreferenceType

ORACLE

Format

SDO_GEOR.getGeoreferenceType (
georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns a number that indicates the georeference type for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function returns one of the following numbers to indicate the georeference type: 1 for
unknown type or null GeoRaster object, 2 for affine transform, 3 for direct linear transform
(DLT), 4 for rational polynomial coefficient (RPC), 5 for cubic polynomial, 6 for quadratic
rational polynomial, or 7 for quadratic polynomial.

For an explanation of georeferencing, see Georeferencing.

Examples

The following example returns the georeference type for the GeoRaster objects in a table
named GEORASTER_TABLE. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.)

7-101

Chapter 7
SDO_GEOR.getGrayScale

SELECT georid, sdo_geor.getGeoreferenceType (a.georaster)
FROM georaster table a ORDER BY georid;

GEORID SDO_GEOR.GETGEOREFERENCETYPE (A.GEORASTER)

-
w
N N R T e e S T e e e S e S S e e S

7.63 SDO_GEOR.getGrayScale

Format

SDO_GEOR.getGrayScale (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN SDO GEOR GRAYSCALE;

Description

Returns the grayscale mappings for a layer in a GeoRaster object.
Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the grayscale mappings. A value of O (zero) indicates
the object layer.

Usage Notes

This function returns an object of type SDO_GEOR_GRAYSCALE. SDO_GEOR_GRAYSCALE
Object Type describes grayscale display and this object type.

To set the grayscale mappings for a layer in a GeoRaster object, use the
SDO_GEOR:.setGrayScale procedure.

Examples

The following example returns the grayscale mappings for layer 0 of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 0 in the

ORACLE 7-102

Chapter 7
SDO_GEOR.getGrayScaleTable

GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT sdo_geor.getGrayScale (georaster, 0) FROM georaster table WHERE georid=0;

SDO_GEOR.GETGRAYSCALE (GEORASTER, 0) (CELLVALUE, GRAY)

SDO_GEOR _GRAYSCALE (SDO_NUMBER ARRAY (10, 20, 30, 255), SDO_NUMBER ARRAY (180, 210,
230, 250))

7.64 SDO_GEOR.getGrayScaleTable

ORACLE

Format

SDO_GEOR.getGrayScaleTable (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Returns the grayscale mapping table for a layer in a GeoRaster object.

Note:

GeoRaster does not perform operations using the grayscale mapping table in the
current release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the grayscale mapping table. A value of 0 (zero)
indicates the object layer.

Usage Notes

This function returns the name of a user-defined grayscale table. SDO_GEOR_GRAYSCALE
Object Type describes grayscale display.

To set the grayscale mapping table for a layer in a GeoRaster object, use the
SDO_GEOR:.setGrayScaleTable procedure.

Examples

The following example returns the grayscale mapping tables for layers 0, 1, 2, and 3 of the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters. The output is reformatted for
readability.)

SELECT substr(sdo_geor.getGrayScaleTable (georaster, 0),1,20) grayScaleTable0,
substr(sdo _geor.getGrayScaleTable (georaster, 1),1,20) grayScaleTablel,
substr (sdo _geor.getGrayScaleTable (georaster, 2),1,20) grayScaleTable2,
substr (sdo _geor.getGrayScaleTable (georaster, 3),1,20) grayScaleTable3

7-103

Chapter 7
SDO_GEOR.getHistogram

FROM georaster table WHERE georid=4;

GRAYSCALETABLEOQ GRAYSCALETABLEL GRAYSCALETABLE?2 GRAYSCALETABLE3

sto st sz sz
7.65 SDO_GEOR.getHistogram

Format

SDO_GEOR.getHistogram (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN SDO GEOR HISTOGRAM;

Description

Returns the histogram for a layer in a GeoRaster object.
Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the histogram. A value of O (zero) indicates the object
layer.

Usage Notes

This function returns an object of type SDO_GEOR_HISTOGRAM. SDO_GEOR_HISTOGRAM
Object Type describes this object type and briefly discusses histograms.

Examples

The following example returns the histogram for layer 1 of a 4-bit GeoRaster object in the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT sdo_geor.getHistogram(georaster, 1) layerl
FROM georaster table WHERE georid=17;

LAYER1 (CELLVALUE, COUNT)

SDO_GEOR_HISTOGRAM (SDO NUMBER ARRAY (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13,
14, 15), SDO NUMBER ARRAY (10, 18, 10, 110, 200, 120, 130, 150, 160, 103, 106,
190, 12, 17, 10, 5))

7.66 SDO_GEOR.getHistogramTable

Format

SDO_GEOR.getHistogramTable (
georaster IN SDO_GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHAR2;

ORACLE 7-104

Chapter 7
SDO_GEOR.getID

Description

Returns the histogram table for a layer in a GeoRaster object.

Note:

GeoRaster does not perform operations using the histogram table in the current
release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the name of the histogram table. A value of 0 (zero)
indicates the object layer.

Usage Notes

This function returns a user-defined histogram table. SDO_GEOR_HISTOGRAM Object Type
briefly discusses histograms.

To set the name of the histogram table for a layer, use the SDO_GEOR.setHistogramTable
procedure.

Examples

The following example returns the histogram tables for layers 0 (the whole object), 1, 2, and 3
of the GeoRaster object (GEORASTER column) in the row with the GEORID column value of 4
in the GEORASTER_TABLE table. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters. The output is reformatted for
readability.)

SELECT substr(sdo_geor.getHistogramTable (georaster, 0),1,20) histogramTableO,
substr (sdo geor.getHistogramTable (georaster, 1),1,20) histogramTablel,
substr (sdo _geor.getHistogramTable (georaster, 2),1,20) histogramTable2,
substr (sdo _geor.getHistogramTable (georaster, 3),1,20) histogramTable3

FROM georaster table WHERE georid=4;
HISTOGRAMTABLEOQ HISTOGRAMTABLEL HISTOGRAMTABLE?2 HISTOGRAMTABLE3
HISTO HISTI1 HIST2 HIST3

7.67 SDO_GEOR.getID

ORACLE

Format

SDO_GEOR.getID(
georaster 1IN SDO_GEORASTER
) RETURN VARCHARZ;

Description

Returns the user-defined identifier value associated with a GeoRaster object.

7-105

Chapter 7
SDO_GEOR.getInterleavingType

Parameters

georaster
GeoRaster object.

Usage Notes

To set a user-defined identifier value for a GeoRaster object, use the SDO_GEOR.setID
procedure.

Examples

The following example returns the user-defined identifier values of the GeoRaster objects
(GEORASTER column) in the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT georid, substr(sdo geor.getID(georaster),1,50) GEOR ID
FROM georaster table;

GEORID GEOR ID

2 ™ 102
4 TM 104

7.68 SDO_GEOR.getInterleavingType

ORACLE

Format

SDO_GEOR.getInterleavingType (
georaster IN SDO GEORASTER
) RETURN VARCHAR2;

Description

Returns the interleaving type for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function returns one of the following values: Bsg (band sequential), BIL (band interleaved
by line), or BIP (band interleaved by pixel).

To change the interleaving type for a GeoRaster object, use the
SDO_GEOR.changeFormatCopy procedure, and use the interleaving keyword in the
storageParam parameter string.

Examples

The following example returns the cell depth, interleaving type, and blocking type of the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of 21 in
the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

7-106

Chapter 7
SDO_GEOR.getJP2TileSize

SELECT sdo_geor.getCellDepth (georaster) CellDepth,
substr(sdo _geor.getInterleavingType (georaster),1,8) interleavingType,
substr (sdo_geor.getBlockingType (georaster),1,8) blocking
FROM georaster table WHERE georid=21;

CELLDEPTH INTERLEA BLOCKING

7.69 SDO_GEOR.getJP2TileSize

Format

SDO_GEOR.getJP2TileSize (
georaster IN SDO GEORASTER
) RETURN SDO_NUMBER ARRAY;

Description

Returns an array showing the size of tiles in the JPEG2000 compressed GeoRaster image, in
row and column order.

Parameters

georaster
GeoRaster object.

Usage Notes

If there is no tiling in the JPEG2000 compressed GeoRaster image, null is returned.

Examples

The following example returns the tile size in the JPEG2000 compressed GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 21 in the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT sdo geor.getJP2TileSize (georaster) JP2TileSize
FROM georaster_table WHERE georid=21;

JP2TILESIZE

SDO_NUMBER ARRAY (350, 512)

7.70 SDO_GEOR.getLayerDimension

ORACLE

Format

SDO_GEOR.getLayerDimension (
georaster IN SDO GEORASTER
) RETURN SDO_ STRING ARRAY;

Description

Returns the dimension that is mapped as the logical layer dimension of a GeoRaster object.

7-107

Chapter 7
SDO_GEOR.getLayerlD

Parameters

georaster
GeoRaster object.

Usage Notes

The layer dimension refers to the physical entity associated with the logical term layer. For
the current release, the only supported layer dimension is BAND: that is, the logical concept
layer is associated with the physical term band, as shown in Figure 1-5 in Bands_ Layers_ and
Metadata. In this case, layers will be mapped to the BAND dimension, so that the first layer is
band 0, the second layer is band 1, and so on.

Examples

The following example returns the layer dimension of each GeoRaster object (GEORASTER
column) in the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in
Storage Parameters. (The output is reformatted for readability.)

SELECT georid, sdo geor.getlLayerDimension(georaster) FROM georaster table;

GEORID SDO GEOR.GETLAYERDIMENSION (GEORASTER)

2 SDO_STRING ARRAY ('BAND')
4 SDO_STRING ARRAY ('BAND')

7.71 SDO_GEOR.getLayerlD

ORACLE

Format

SDO_GEOR.getLayerID(
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHARZ2;

Description

Returns the user-defined identifier value associated with a layer in a GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the user-defined identifier value. A value of 0 (zero)
indicates the object layer.

Usage Notes

To set a user-defined identifier value for a layer in a GeoRaster object, use the
SDO_GEOR:.setLayerID procedure.

Examples

The following example returns the user-defined identifier values of layers 0, 1, 2, and 3 of the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of 4 in the

7-108

Chapter 7
SDO_GEOR.getLayerOrdinate

GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage

Parameters.

SELECT substr(sdo_geor.getLayerID(georaster, 0),1,12) layerIDO,
substr(sdo_geor.getlLayerID(georaster, 1),1,12) layerIDI,
substr(sdo _geor.getlLayerID(georaster, 2),1,12) layerID2,
substr(sdo _geor.getLayerID(georaster, 3),1,12) layerID3

FROM georaster table WHERE georid=4;

LAYERIDO LAYERID1 LAYERID2 LAYERID3

TM543 TM3 TM4 TM5

Format

SDO_GEOR.getLayerOrdinate (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN NUMBER;

Description

Returns the band ordinate for a layer in a GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the physical band ordinate. A value of 0 (zero)
indicates the object layer.

Usage Notes

The returned number refers to the physical band that a layer (1ayerNumber parameter value) is
associated with. For the current release, by default the associations are as shown in Figure 1-5
in Bands_ Layers_ and Metadata: layer 1 is band 0, layer 2 is band 1, and so on.

To set the band ordinate value for a layer, use the SDO_GEOR.setLayerOrdinate procedure.

Examples

The following example returns the band numbers associated with layers 0, 1, 2, and 3 of the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage

Parameters.

SELECT sdo_geor.getLayerOrdinate(georaster, 0) layerOrdinateO,
sdo_geor.getLayerOrdinate (georaster, 1) layerOrdinatel,
sdo_geor.getLayerOrdinate (georaster, 2) layerOrdinateZ2,
sdo_geor.getLayerOrdinate (georaster, 3) layerOrdinate3

FROM georaster table WHERE georid=4;

LAYERORDINATEO LAYERORDINATE1l LAYERORDINATE2 LAYERORDINATE3

ORACLE 7-109

Chapter 7
SDO_GEOR.getModelCoordinate

7.73 SDO_GEOR.getModelCoordinate

ORACLE

Format

SDO_GEOR.getModelCoordinate (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
cellCoordinate IN SDO NUMBER ARRAY,
height IN NUMBER DEFAULT NULL,
) RETURN SDO GEOMETRY;

or

SDO_GEOR.getModelCoordinate (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
cellCoordinate IN SDO_GEOMETRY,
modelCoordinate OUT SDO GEOMETRY,
height IN NUMBER DEFAULT NULL);

Description

Returns a geometry associated with the specified cell (raster) coordinates at the specified
pyramid level.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the cell specified in cel1Coordinate.

cellCoordinate

If the type is SDO_NUMBER_ARRAY, cellCoordinate is an array of two coordinates
identifying the point in the cell coordinate system: the two coordinates are the row number and
column number of the point. If the type is SDO_GEOMETRY, cellCoordinate specifies a
geometry in the cell coordinate system

modelCoordinate
The output geometry.

height
Number specifying the Z value for three-dimensional (X, Y, Z) georeferencing.

Usage Notes
SDO_GEOR.getModelCoordinate has two formats:

e Use the first format (a function without the mode1Coordinate parameter) to transform the
location of a point in the GeoRaster object's raster space.

e Use the second format (a procedure with the modelCoordinate parameter) to transform a
geometry in the raster space of the GeoRaster object. The conversion is done by
converting the coordinates of each vertex of the input geometry. Use an appropriate input
geometry so that the output geometry will be valid. For example, if the model coordinate
system is geodetic, the input geometry should not contain any arcs.

7-110

Chapter 7
SDO_GEOR.getModelCoordLocation

Use SDO_GEOR.getModelCoordinate to transform the location of a point on the GeoRaster
object to the longitude and latitude coordinates of its associated point in the ground coordinate
system.

If the GeoRaster object is georeferenced, the output geometry contains the coordinates in the
model (ground) coordinate system. If the GeoRaster object is not georeferenced, the output
geometry contains cell coordinates at the original image level.

If the GeoRaster object is georeferenced, the SDO_SRID value of the output geometry is the
same as the model SRID of the GeoRaster object.

Contrast SDO_GEOR.getModelCoordinate with SDO_GEOR.getCellCoordinate, which returns
the coordinates in the cell (raster) coordinate system associated with the point at the specified
model (ground) coordinates.

Examples

The following example returns a point geometry object containing the model coordinates
associated with cell coordinates (100,100) in a specified GeoRaster object. (It refers to a table
named GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

SET NUMWIDTH 20
SELECT sdo_geor.getModelCoordinate (georaster, 0,
sdo_number array(100,100)) mcoord

FROM georaster table WHERE georid=4;

MCOORD (SDO_GTYPE, SDO_SRID, SDO POINT(X, Y, Z), SDO_ELEM INFO, SDO ORDINATES)

SDO_GEOMETRY (2001, 82394, SDO POINT TYPE(347.666315789474, 43274.9052631579, NUL
L), NULL, NULL)

7.74 SDO_GEOR.getModelCoordLocation

ORACLE

Format

SDO_GEOR.getModelCoordLocation (
georaster 1IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the model coordinate location value for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function returns a null value if the GeoRaster object is not georeferenced or if the
modelCoordinateLocation element is not specified in the SRS metadata. Otherwise, it returns
the modelCoordinateLocation element value specified in the SRS metadata.

A null return value or a value of CENTER means that the cell coordinate system is center-based.
A value of UPPERLEFT means that the cell coordinate system is based on the upper-left corner.

7-111

Chapter 7
SDO_GEOR.getModelSRID

To set or delete the model coordinate location value for a GeoRaster object, use the
SDO_GEOR:.setModelCoordLocation procedure.

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

Examples

The following example returns the model coordinate location of a specified GeoRaster object.

SELECT sdo geor.getModelCoordLocation (georaster) modelCoordLocation
FROM georaster table
WHERE georid = 1;

7.75 SDO_GEOR.getModelSRID

Format

SDO_GEOR.getModelSRID (
georaster IN SDO GEORASTER
) RETURN NUMBER;

Description

Returns the coordinate system (SDO_SRID value) associated with the model (ground) space
for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes
This function returns a null value if no coordinate system is associated with the model space.

To set the coordinate system (SDO_SRID value) associated with the model space, use the
SDO_GEOR:.setModelSRID procedure.

Examples

The following example returns the SDO_SRID values associated with the GeoRaster objects
(GEORASTER column) in the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT georid, sdo_geor.getModelSRID(georaster) SRID FROM georaster table;

7.76 SDO_GEOR.getNODATA

SDO_GEOR.getNODATA (
georaster IN SDO GEORASTER,

ORACLE 7-112

Chapter 7
SDO_GEOR.getNODATA

layerNumber IN NUMBER
) RETURN SDO RANGE ARRAY;

Description

Returns the values or value ranges that represent NODATA cells in a GeoRaster object (in
ascending order, without duplicates).

Parameters

georaster
GeoRaster object.

layerNumber
Layer number in the GeoRaster object. A value of 0 (zero) indicates the object layer.

Usage Notes

Some cells of a GeoRaster object may have no meaningful value assigned or collected. Such
cells contain a NODATA value are thus called NODATA cells, which means that those cells are
not semantically defined. The application is responsible for defining the meaning or
significance of cells identified as NODATA cells. For more information about NODATA values
and value ranges, see NODATA Values and Value Ranges.

This function returns all the NODATA values and value ranges associated with a specified
raster layer of the specified GeoRaster object, in ascending order and in a compact form with
duplicates eliminated. The set of NODATA values and value ranges associated with a sublayer
(layerNumber > 0) is always a superset of the values and value ranges of the object layer
(layerNumber = 0). The result for a sublayer is the combination of the NODATA metadata
entries for the specified sublayer, the object layer, and any pre-release 11g NODATA metadata
stored as part of the raster description information.

If the specified GeoRaster object or layer has more than one NODATA value, you must use the
function format that returns an SDO_RANGE_ARRAY object. The SDO_RANGE_ARRAY type
is described in NODATA Values and Value Ranges.

If this function returns a null value, it means that all cells of the GeoRaster object or of the
specified layer are defined and have a meaningful cell value.

To specify the NODATA values for a GeoRaster object, use the SDO_GEOR.addNODATA
procedure.

Examples

The following example returns the value to be used for NODATA cells in the GeoRaster objects
(GEORASTER column) in table GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT SDO_GEOR.getNODATA (georaster, 0) NODATA FROM georaster table WHERE georid=0;

NODATA

SDO_RANGE ARRAY (SDO_RANGE (5, 7)

ORACLE 7-113

Chapter 7

SDO_GEOR.getPyramidMaxLevel

7.77 SDO_GEOR.getPyramidMaxLevel

Format

SDO_GEOR.getPyramidMaxLevel (
georaster 1IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the level number of the top pyramid of a GeoRaster object.
Parameters

georaster
GeoRaster object.

Usage Notes

For information about pyramids, see Pyramids.

Examples

The following example returns the pyramid type and level number of the top pyramid for the
GeoRaster object (GEORASTER column) in the row with an GEORID column value of 21 in
the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage

Parameters.

SELECT substr (sdo_geor.getPyramidType (georaster),1,10) pyramidType,

sdo_geor.getPyramidMaxLevel (georaster) maxLevel
FROM georaster_table WHERE georid=21;

PYRAMIDTYP MAXLEVEL

DECREASE 3

7.78 SDO_GEOR.getPyramidType

ORACLE

Format

SDO_GEOR.getPyramidType (
georaster IN SDO GEORASTER
) RETURN VARCHARZ;

Description
Returns the pyramid type for a GeoRaster object.
Parameters

georaster
GeoRaster object.

Usage Notes
The pyramid type can be NONE (no pyramids) or DECREASE.

For information about pyramids, see Pyramids.

7-114

7.79 SDO_GEOR.getRasterBlockLocator

ORACLE

Examples

Chapter 7
SDO_GEOR.getRasterBlockLocator

The following example returns the pyramid type and level number of the top pyramid for the
GeoRaster object (GEORASTER column) in the row with an GEORID column value of 21 in
the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT substr(sdo_geor.getPyramidType (georaster),1,10) pyramidType,
sdo_geor.getPyramidMaxLevel (georaster) maxLevel
FROM georaster table WHERE georid=21;

PYRAMIDTYP MAXLEVEL

DECREASE 3

Format

SDO_GEOR.getRasterBlockLocator (

georaster
pyramidLevel
bandBlockNumber
rowBlockNumber
columnBlockNumber
loc

isBitmapMask

IN
IN
IN
IN
IN
IN

SDO_GEORASTER,
NUMBER,

NUMBER,

NUMBER,

NUMBER,

OUT NOCOPY BLOB,
VARCHAR2 DEFAULT

lock for write

or

IN VARCHAR2 DEFAULT NULL);

SDO GEOR.getRasterBlockLocator (

georaster
pyramidLevel
rowNumber
colNumber
bandNumber
offset

loc
isBitmapMask

or

IN SDO GEORASTER,
IN NUMBER,

IN NUMBER,

IN NUMBER,

IN NUMBER,

OUT NUMBER,

IN OUT NOCOPY BLOB,

NULL,

IN VARCHAR2 DEFAULT NULL,
lockiforiwrite IN VARCHAR2 DEFAULT NULL);

SDO_GEOR.getRasterBlockLocator (

georaster
pyramidLevel
ptGeom
layerNumber
offset

loc
isBitmapMask

Description

IN SDO_GEORASTER,
IN NUMBER,

IN SDO_GEOMETRY,

IN NUMBER,

OUT NUMBER,

IN OUT NOCOPY BLOB,

IN VARCHAR2 DEFAULT NULL,
lock for write IN VARCHARZ DEFAULT NULL);

This procedure has three formats:

e The first listed format returns the LOB locator of a raster block by specifying the

pyramidLevel, bandBlockNumber, rowBlockNumber, and columnBlockNumber parameters.

7-115

ORACLE

Chapter 7
SDO_GEOR.getRasterBlockLocator

* The second and third listed formats return the LOB locator of a raster block that contains a
specific single cell and the offset of the cell within the raster block. The specific single cell
is identified by the pyramidLevel, rowNumber, columnNumber, and bandNumber parameters
or by a point geometry parameter (ptGeom) in either the cell coordinate space or the model
coordinate space.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level of the block.

bandBlockNumber
Band number of the block.

bandNumber
Band number of the cell.

rowBlockNumber
Row number of the block.

rowNumber
Row number of the cell.

columnBlockNumber
Column number of the block.

columnNumber
Column number of the cell.

ptGeom
Point geometry that locates the cell.

layerNumber

Number of the logical layer that contains the cell whose value is to be returned. (As mentioned
in Bands_ Layers_and Metadata, the logical layer number is the physical band ordinate
number plus 1.

offset

Output parameter to contain the offset (in bytes) of the cell inside the raster block that is
located. If the raster block is compressed, it always refers to the offset of the cell in the
decompressed version of the block.

loc
LOB locator.

isBitmapMask

The string TRUE specifies that a bitmap mask block will be accessed; the string FALSE specifies
that a regular raster block will be accessed. If you do not specify this parameter, a regular
raster block will be accessed. For an explanation of bitmap masks, see Bitmap Masks.

lockForWrite

The string TRUE locks the row in the raster data table so that other users cannot lock or update
that row until the current transaction ends; the string FALSE does not lock the row in the raster
data table. If you do not specify this parameter, the row is not locked.

7-116

Chapter 7
SDO_GEOR.getRasterBlocks

Usage Notes

This procedure gets the raster block locator (and for some formats, the offset) using the
specified parameters. The LOB locator is not opened, and no data is read or processed. You
should use standard LOB operations to open and close the LOB locator and to read data from
and write data to the LOB locator.

To ensure that data is read or written correctly, you must understand the physical storage of the
raster data (described in GeoRaster Physical Storage), and you must compress and
decompress the raster data as needed.

For information about LOB locators, see Oracle Database SecureFiles and Large Objects
Developer's Guide.

Examples

The following example gets the LOB locators of two raster blocks, the first a regular raster
block and the second a bitmap mask block. Both calls to the
SDO_GEOR:.getRasterBlockLocator procedure lock the row in the raster data table.

DECLARE
gr sdo_georaster;
1b blob;
offset number;
BEGIN
select georaster into gr from georaster table where georid=1;
sdo_geor.getRasterBlockLocator(gr, 0, 0, 0, 0, offset,lb, null, 'TRUE');
sdo_geor.getRasterBlockLocator(gr, 0, 0, 0, 0, offset,lb, 'TRUE', 'TRUE');
END;
/

7.80 SDO_GEOR.getRasterBlocks

ORACLE

Format

SDO_GEOR.getRasterBlocks (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
window IN SDO NUMBER ARRAY
) RETURN SDO RASTERSET;

or

SDO_GEOR.getRasterBlocks (
georaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
window IN SDO_GEOMETRY
) RETURN SDO RASTERSET;

Description

Returns an object of the SDO_RASTERSET collection type that identifies all blocks of a
specified pyramid level that have any spatial interaction with a specified window.

Parameters

georaster
GeoRaster object.

7-117

Chapter 7
SDO_GEOR.getRasterData

pyramidLevel
Pyramid level from which to return the blocks that have any spatial interaction with the
specified window.

window

Window from which to return the blocks that are in pyramidLevel. The data type can be
SDO_NUMBER_ARRAY or SDO_GEOMETRY. If the data type is SDO_NUMBER_ARRAY,
the parameter identifies the upper-left (row, column) and lower-right (row, column) coordinates
of a rectangular window, and raster space is assumed. If the data type is SDO_GEOMETRY,
see the Usage Notes for SDO_SRID requirements.

Usage Notes
The SDO_RASTERSET collection type is described in SDO_RASTERSET Collection Type.

If the window parameter data type is SDO_GEOMETRY, the SDO_SRID value must be one of
the following:

* Null, to specify raster space
* Avalue from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the window parameter geometry and the model space are
different, the window parameter geometry is automatically transformed to the coordinate
system of the model space before the operation is performed. (Raster space and model
space are explained in GeoRaster Data Model.)

Examples

The following example returns a collection set that identifies all raster blocks that have any
spatial interaction with the specified window. (It refers to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
gr sdo_georaster;
ds sdo_rasterset;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=2;
ds := sdo_geor.getRasterBlocks(gr, 0, sdo number array(l1l,65,192,244));
COMMIT;
END;
/

7.81 SDO_GEOR.getRasterData

Format

SDO_GEOR.getRasterData (
georaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,
rasterBlob IN OUT NOCOPY BLOB,
storageParam IN VARCHAR2 DEFAULT NULL,
bgValues IN SDO_NUMBER ARRAY DEFAULT NULL);

Description

Creates a single BLOB object that contains all raster data of the input GeoRaster object at the
specified pyramid level.

ORACLE 7-118

ORACLE

Chapter 7
SDO_GEOR.getRasterData

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level for which to perform the operation.

rasterBlob
BLOB object to hold the result.

storageParam

A string specifying storage parameters to be applied in creating rasterBlob. The only
storageParam keywords supported for this procedure are celldepth, compression,
interleaving, and quality; all other keywords are ignored. Storage parameters are
explained in Storage Parameters.

If storageParam is null or not specified, the cell depth, interleaving, and compression type (and
compression quality, if applicable) are the same as for the input GeoRaster object.

bgValues

Background values for filling sparse data. The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

This parameter is useful when the source has empty raster blocks (see Empty Raster Blocks).
If this parameter is not specified, any cells that are derived from an empty raster block are
filled with the value 0 in the output BLOB.

Usage Notes

If the GeoRaster object is blocked, the mosaic of all blocks of the specified pyramid level is
returned.

After the procedure completes, the rasterBlob object contains the cell (pixel) data without
tiling.

You can specify compression even if the input GeoRaster object is not compressed or is
compressed in a different format from what you specify in the storageParam parameter. To
have decompressed output for a compressed input GeoRaster object, specify
compression=NONE in the storageParam parameter. For information about GeoRaster
compression and decompression, see Compression and Decompression.

Examples

The following example creates a BLOB obiject, using full-format baseline JPEG (JPEG-F)
compression, with all raster data from the GeoRaster object whose ID value is 2 in the
GEORASTER_TABLE table. The definition of this table is presented after Example 1-1 in
Storage Parameters.

DECLARE
gr sdo georaster;
1b blob;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=2;
dbms lob.createTemporary (lb, FALSE);
sdo geor.getRasterData(gr, 0, 1lb, 'compress=JPEG-F');
dbms lob.freeTemporary (1b);

7-119

Chapter 7
SDO_GEOR.getRasterRange

END;

7.82 SDO_GEOR.getRasterRange

Format

SDO_GEOR.getRasterRange (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER DEFAULT 0
) RETURN SDO NUMBER ARRAY;

Description

Computes and returns the minimum and maximum cell values of a specified layer of a
GeoRaster object or of the GeoRaster object itself (the object layer).

Parameters

georaster
GeoRaster object.

layerNumber

Number of the layer for which to return the range of cell values. A value of O (zero, the default)
indicates the object layer. (As mentioned in Bands_ Layers_ and Metadata, the logical layer
number is the physical band number plus 1.)

Usage Notes

This function goes through all cell values of a specified layer of a GeoRaster object, and
returns an SDO_NUMBER_ARRAY object with two values: the minimum and maximum cell
values.

If the GeoRaster object already has statistical metadata generated, you can call the
SDO_GEOR.getStatistics function to quickly retrieve the minimum and maximum values
directly for the raster range.

For information about bands and layers, see Bands_ Layers_ and Metadata.

Examples
The following example computes and returns the raster range for the whole GeoRaster object.

DECLARE
gr sdo_georaster;
range sdo number array;
BEGIN
select georaster into gr from georaster table where georid=1;
range:=sdo_geor.getRasterRange (gr, 0);
END;
/

7.83 SDO_GEOR.getRasterSubset

Format

SDO_GEOR.getRasterSubset (
georaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,

ORACLE 7-120

ORACLE

or

window IN
bandNumbers 1IN
rasterBlob IN
storageParam IN
bgValues

SDO_NUMBER ARRAY,
VARCHARZ,

OUT NOCOPY BLOB,
VARCHAR2 DEFAULT NULL,

IN SDO_NUMBER ARRAY DEFAULT NULL);

SDO_GEOR.getRasterSubset (

or

georaster IN
pyramidLevel IN
inWindow IN
bandNumbers IN
rasterBlob IN
outWindow
storageParam IN
bgValues

SDO_GEORASTER,
NUMBER,
SDO_NUMBER ARRAY,
VARCHAR2,

OUT NOCOPY BLOB,

OUT SDO_NUMBER ARRAY,

VARCHAR2 DEFAULT NULL,

IN SDO_NUMBER ARRAY DEFAULT NULL);

SDO GEOR.getRasterSubset (

or

georaster IN
pyramidLevel IN
window IN

layerNumbers IN
rasterBlob IN
storageParam IN

SDO_GEORASTER,

NUMBER,

SDO_GEOMETRY,
VARCHARZ,

OUT NOCOPY BLOB,
VARCHAR2 DEFAULT NULL,

bgValues IN SDO NUMBER ARRAY DEFAULT NULL,
polygonClip IN VARCHAR2 DEFAULT NULL);

SDO_GEOR.getRasterSubset (

or

georaster IN SDO_GEORASTER,

pyramidLevel IN NUMBER,

inWindow IN SDO_GEOMETRY,

layerNumbers IN VARCHAR2,

rasterBlob IN OUT NOCOPY BLOB,

outWindow OUT SDO_NUMBER ARRAY,
storageParam IN VARCHAR2 DEFAULT NULL,
bgValues IN SDO_NUMBER ARRAY DEFAULT NULL,
polygonClip IN VARCHAR2 DEFAULT NULL);

SDO_GEOR.getRasterSubset (

or

georaster IN SDO GEORASTER,

pyramidLevel IN NUMBER,

inWindow IN SDO_NUMBER ARRAY,

bandNumbers IN VARCHAR2,

rasterData IN OUT SDO_NUMBER ARRAY,

outWindow OUT SDO_NUMBER ARRAY,

storageParam IN VARCHAR2 DEFAULT NULL,

bgValues IN SDO_NUMBER ARRAY DEFAULT NULL);

SDO GEOR.getRasterSubset (

georaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,

inWindow IN SDO_GEOMETRY,
layerNumbers IN VARCHARZ,

rasterData IN OUT SDO _NUMBER ARRAY,

Chapter 7
SDO_GEOR.getRasterSubset

7-121

ORACLE

Chapter 7
SDO_GEOR.getRasterSubset

outWindow OUT SDO_NUMBER ARRAY,
storageParam IN VARCHAR2 DEFAULT NULL,
bgValues IN SDO_NUMBER ARRAY DEFAULT NULL,
polygonClip IN VARCHAR2 DEFAULT NULL);

or

FUNCTION SDO GEOR.getRasterSubset (
georaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER DEFAULT O,
inWindow IN SDO_GEOMETRY DEFAULT NULL,
layerNumber IN NUMBER DEFAULT 1,
pointPolygon IN NUMBER DEFAULT 1,
bgValues IN SDO_NUMBER ARRAY DEFAULT NULL,
polygonClip IN VARCHAR2 DEFAULT NULL
) RETURN SDO GEOR CELL TABLE PIPELINED;

Description

The procedure formats create a single BLOB object or a single SDO_NUMBER_ARRAY object
containing all cells of a specified pyramid level that are inside or on the boundary of either a
specified rectangular window or polygon geometry object. The function format returns a nested
table that holds the cell value, pyramid, row, column, layer, and area or point geometry of all
cells inside and touching the specified window.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level on which to perform the operation.

window, inWindow

A rectangular window or a polygon geometry object from which to crop the cells. If the data
type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left (row, column) and
lower-right (row, column) coordinates of a rectangular window, and raster space is assumed. If
the data type is SDO_GEOMETRY and the polygonClip value is FALSE, the MBR of the
geometry object is used as the window; if the data type is SDO_GEOMETRY and the
polygonClip value is TRUE, the polygon geometry object (if valid) is used as the window. If the
data type is SDO_GEOMETRY, see also the Usage Notes for SDO_SRID requirements.

If window or inWindow is of type SDO_NUMBER_ARRAY, use the bandNumbers parameter to
specify one or more band numbers; if window or inWindow is of type SDO_GEOMETRY, use
the layerNumbers parameter to specify one or more layer numbers.

layerNumbers

A string identifying the logical layer numbers on which the operation or operations are to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for example,
2-4 for layers 2, 3, and 4). If you specify a null value for this parameter, the operation or
operations are performed on all layers.

layerNumber
For the function format, the layer number on which to perform the operation. The default value
is 1.

bandNumbers

A string identifying the physical band numbers on which the operation or operations are to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for example,

7-122

ORACLE

Chapter 7
SDO_GEOR.getRasterSubset

1-3 for bands 1, 2, and 3). If you specify a null value for this parameter, the operation or
operations are performed on all bands.

rasterBlob
BLOB object to hold the result (the mosaicked raster subset) of the operation. It must exist or
have been initialized before the operation.

rasterData

SDO_NUMBER_ARRAY object to hold the result (the mosaicked raster subset) of the
operation.

(Note: The upper limit of element numbers in an SDO_NUMBER_ARRAY object is 1048576.)

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and lower-right
corners of the output window in the cell space.

storageParam

A string specifying storage parameters to be applied in creating rasterBlob. The only
supported storageParam keywords supported for this procedure are celldepth, compression,
interleaving, and quality; all other keywords are ignored. Storage parameters are
explained in Storage Parameters.

If storageParam is null or not specified, the cell depth, interleaving, and compression type (and
compression quality, if applicable) are the same as for the input GeoRaster object.

pointPolygon
If 0, the function returns a boundary polygon geometry for each cell; if 1 (the default), the
function returns the central point geometry for each cell.

bgValues

Background values for filling sparse data. The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER_ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

This parameter is useful when the source has empty raster blocks and the output window
intersects any empty raster blocks (see Empty Raster Blocks). If this parameter is not
specified, any cells in the output window that are derived from an empty raster block are filled
with the value 0 in the output BLOB.

polygonClip

The string TRUE causes the window Or inWindow geometry object to be used for the subset
operation; the string FALSE or a null value causes the MBR (minimum bounding rectangle) of
the window or inWindow geometry object to be used for the subset operation.

Usage Notes

This subprogram has several procedure formats and a function format. The procedure format
to use depends whether the input window is specified as a geometry object or as the upper-left
and lower-right corners of a box, whether the result of the operation is a BLOB or
SDO_NUMEBR_ARRAY object, and on whether the outWindow parameter is used to return the
coordinates of the output window.

If the window or inWindow parameter data type is SDO_GEOMETRY, the SDO_SRID value
must be one of the following:

e Null, to specify raster space
e Avalue from the SRID column of the MDSYS.CS_SRS table

7-123

ORACLE

Chapter 7
SDO_GEOR.getRasterSubset

If the SDO_SRID values for the window parameter geometry and the model space are
different, the window parameter geometry is automatically transformed to the coordinate
system of the model space before the operation is performed. (Raster space and model
space are explained in GeoRaster Data Model.)

If the window or inWindow parameter specifies a geodetic MBR, it cannot cross the date line
meridian. For information about geodetic MBRs, see Oracle Spatial and Graph Developer's
Guide.

After the procedure completes, the rasterBLOB parameter contains the cell (pixel) data in the
cropped window without tiling. The cropped window is the overlapping portion of the specified
window of interest and the source GeoRaster object's spatial extent. If the outWindow
parameter is specified, after the procedure completes it contains the coordinates of the
cropped window in the cell space.

The BLOB has no padding, except when the cell depth is less than 8 bits and the total number
of bits needed for the output cannot be divided by 8; in these cases, unlike normal padding,
only the last byte of the result is padded with 0 (zeros) for the trailing bits.

If polygonClip is TRUE, and if this procedure creates a rectangular image subset but the
geometry is not a rectangle, check the validity of the inWindow geometry object with the
function SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT. For an invalid geometry,
this procedure operates as if the polygonClip value is FALSE or a null value.

You can specify compression even if the input GeoRaster object is not compressed or is
compressed in a different format from what you specify in the storageParam parameter. To
have decompressed output for a compressed input GeoRaster object, specify
compression=NONE in the storageParam parameter. For information about GeoRaster
compression and decompression, see Compression and Decompression.

If you want to get a subset and reproject it to another coordinate system, do not use this
procedure, but instead use the SDO_GEOR:.rectify or SDO_GEOR:.reproject procedure using a
format that includes the rasterBlob parameter, so that this BLOB holds the desired subset.

The SDO_GEOR_CELL_TABLE type for the result of the function format has the following
definition:

SDO_GEOR CELL_TABLE TABLE OF MDSYS.SDO GEOR CELL

Name Null? Type

VALUE NUMBER
PYRAMIDLEVEL NUMBER

ROWNUMBER NUMBER

COLNUMBER NUMBER
LAYERNUMBER NUMBER

GEOM MDSYS.SDO_GEOMETRY
Examples

The following two examples retrieve raster data of a specified pyramid level inside a specified
window into a BLOB object and an SDO_NUMBER_ARRAY object. (They refer to the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
gr sdo_georaster;
1b blob;
win sdo_number array;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=4;

7-124

Chapter 7
SDO_GEOR.getRasterSubset

dbms_lob.createTemporary (1b, TRUE);
win := sdo number array(-21,100,100,200);
sdo_geor.getRasterSubset (gr, 0, win, null, 1b);
dbms_lob.freeTemporary (1b);

END;

/

DECLARE
gr sdo_georaster;
data sdo number array;
win sdo number array;

BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=4;
win := sdo number array(-21,100,100,200);
sdo_geor.getRasterSubset(gr, 0, win, null, data);

END;

/

The following example demonstrates how to get the window for the cropping.

DECLARE
gr sdo_georaster;
1b blob;
winl sdo geometry;
win2 sdo number array;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=4;
dbms_lob.createTemporary (1b, TRUE);
winl := sdo geometry(2003,82263,null,sdo_elem info array(1,1003,3),
sdo_ordinate array(1828466,646447,1823400,642512));
sdo_geor.getRasterSubset (gr, 0, winl, '1-3', 1lb, win2, 'compression=NONE');
dbms_lob.freeTemporary (1b);
IF win2 IS NOT NULL THEN
dbms output.put line('output window: (' || win2(1) || '," [/
win2(2) || '," || win2(3) |

=
i
o)
N
=

END IF;
END;
/

The following example demonstrates how to do clipping while querying a subset using a
polygon.

DECLARE

gr sdo georaster;

1b blob;

winl sdo geometry;

win2 sdo number array;

BEGIN

dbms lob.createTemporary (lb, TRUE);

SELECT georaster INTO gr FROM rstpoly table WHERE georid=1;

-- querying/clipping polygon

winl := sdo geometry(2003, 26986, null, sdo elem info array(1,1003,1),

sdo ordinate array (237040, 897924,

237013.3, 897831.6,
237129, 897840,
237182.5, 897785.5,
237239.9, 897902.7,
237223, 897954,
237133, 897899,
237040, 897924));

sdo_geor.getRasterSubset (gr, 0, winl, '1-3',

1b, win2, NULL, NULL, 'TRUE');
-- Then work on the resulting subset stored in 1lb.

ORACLE 7-125

Chapter 7
SDO_GEOR.getScaling

END;

7.84 SDO_GEOR.getScaling

Format

SDO_GEOR.getScaling (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN SDO NUMBER ARRAY;

Description

Returns the coefficients of the scaling function for a layer of a GeoRaster object.

Note:

GeoRaster does not perform operations using the scaling function in the current
release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the coefficients. A value of 0 (zero) indicates the object
layer.

Usage Notes

The scaling function is as follows:

value = (ag + a; * cellvalue) / (by + by * cellvalue)
The order of the coefficients is: ag, a;, bg, b;.

Examples

The following example returns the scaling coefficients for layer number 0 (the whole object) of
a specified GeoRaster object in a table named GEORASTER_TABLE, whose definition is
presented after Example 1-1 in Storage Parameters. It scales original value range 0.0 to
1000.0 to be in the range 0.0 to 250.0.

SELECT sdo_geor.getScaling(georaster, 0) FROM georaster table WHERE georid=0;

SDO_GEOR.GETSCALING (GEORASTER, 0)

SDO_NUMBER ARRAY (0.0, 0.25, 1, 0.0)

ORACLE 7-126

Chapter 7
SDO_GEOR.getSourcelnfo

7.85 SDO_GEOR.getSourcelnfo

Format

SDO_GEOR.getSourceInfo(
georaster IN OUT SDO_GEORASTER,
) RETURN SDO STRING2 ARRAY;

Description

Gets the source information for a GeoRaster object.
Parameters

georaster
GeoRaster object.

Usage Notes

This function returns the source information stored in the <sourceInfo> element in the
metadata for the GeoRaster object (described in GeoRaster Metadata XML Schema).

The SDO_STRING2_ARRAY type is defined as VARRAY (2147483647) OF VARCHAR2 (4096).

To replace or delete source information, use the SDO_GEOR.setSourcelnfo procedure. To add
source information, use the SDO_GEOR.addSourcelnfo procedure.

Examples

The following example sets and adds some source information for a specified GeoRaster
object, and then retrieves the information.

declare
gr sdo georaster;
begin
select georaster into gr from georaster table where georid=1 for update;
sdo geor.setSourcelnfo(gr, 'Copyright (c) 2002, 2007, Oracle Corporation.');
sdo_geor.addSourcelInfo(gr, 'All rights reserved.');
update georaster table set georaster=gr where georid=l;
end;

/

select * from table(select sdo geor.getSourceInfo(georaster) from georaster table where
id=1);

COLUMN VALUE

Copyright (c) 2002, 2007, Oracle Corporation.
All rights reserved.

7.86 SDO_GEOR.getSpatialDimNumber

ORACLE

Format

SDO_GEOR.getSpatialDimNumber (
georaster IN SDO GEORASTER
) RETURN NUMBER;

7-127

Chapter 7
SDO_GEOR.getSpatialDimSizes

Description

Returns the number of spatial dimensions of a GeoRaster object.
Parameters

georaster
GeoRaster object.

Usage Notes
For the current release, this function always returns 2.

To return the number of cells in each spatial dimension of a GeoRaster object, use the
SDO_GEOR.getSpatialDimSizes function.

Examples

The following example returns the GEORID column value, the number of spatial dimensions,
and the number of cells in each spatial dimension for the GeoRaster objects in the table
named GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters. (The output is reformatted for readability.)

SELECT georid, sdo geor.getSpatialDimNumber (georaster) spatialDim,
sdo_geor.getSpatialDimSizes (georaster) spatialDimSizes
FROM georaster table;

GEORID SPATIALDIM SPATIALDIMSIZES

0 2 SDO_NUMBER ARRAY (1024, 1024)
1 2 SDO_NUMBER ARRAY (384, 251)
2 2 SDO_NUMBER ARRAY (512, 512)
4 2 SDO_NUMBER ARRAY (512, 512)
11 2 SDO_NUMBER ARRAY (7957, 5828)

7.87 SDO_GEOR.getSpatialDimSizes

ORACLE

Format

SDO_GEOR.getSpatialDimSizes (
georaster IN SDO_GEORASTER
) RETURN SDO NUMBER ARRAY;

Description

Returns the number of cells in each spatial dimension of a GeoRaster object.
Parameters

georaster
GeoRaster object.

7-128

Chapter 7
SDO_GEOR.getSpatialResolutions

Usage Notes

To return the number of spatial dimensions for a GeoRaster object, use the
SDO_GEOR.getSpatialDimNumber function.

Examples

The following example returns the spatial dimension sizes and the number of bands for a
GeoRaster object. (It refers to a table named GEORASTER_TABLE, whose definition is
presented after Example 1-1 in Storage Parameters. The output is reformatted for readability.)

SELECT sdo_geor.getSpatialDimSizes (georaster) spatialDimSizes,
sdo_geor.getBandDimSize (georaster) bandDimSize
FROM georaster table WHERE georid=21;

SPATIALDIMSIZES BANDDIMSIZE

SDO_NUMBER ARRAY (512, 512) 1

7.88 SDO_GEOR.getSpatialResolutions

ORACLE

Format

SDO_GEOR.getSpatialResolutions (
georaster IN SDO GEORASTER
) RETURN SDO NUMBER ARRAY;

Description

Returns the spatial resolution value along each spatial dimension of a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

Each value indicates the number of units of measurement associated with the data area
represented by that spatial dimension of a pixel. For example, if the spatial resolution values
are (10,10) and the unit of measurement for the ground data is meters, each pixel represents
an area of 10 meters by 10 meters.

The spatial resolutions may be inconsistent with the georeferencing information, especially
when the GeoRaster object is not georectified. You can use the
SDO_GEOR:.setSpatialResolutions procedure to set the spatial resolutions to be the average
resolutions for an image or the resolutions when the data was collected. In this case,
georeferencing information should be used for precise measurement.

Examples

The following example returns the spatial resolution values along the column and row (X and
Y) dimensions of a GeoRaster object. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.)

SELECT sdo_geor.getSpatialResolutions (georaster) spatialResolution
FROM georaster table WHERE georid=42;

SPATIALRESOLUTION

7-129

Chapter 7
SDO_GEOR.getSpectralResolution

SDO_NUMBER ARRAY (28.5, 28.5)

7.89 SDO_GEOR.getSpectralResolution

Format

SDO_GEOR.getSpectralResolution (
georaster 1IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the spectral resolution of a GeoRaster object if it is a hyperspectral or multiband
image.

Parameters

georaster
GeoRaster object.

Usage Notes

Taken together, the spectral unit and spectral resolution identify the wavelength interval for a
band. For example, if the spectral resolution value is 2 and the spectral unit value is
MILLIMETER, the wavelength interval for a band is 2 millimeters.

To set the spectral resolution for a GeoRaster object, use the
SDO_GEOR:.setSpectralResolution procedure.

Examples

The following example returns the spectral unit and spectral resolution for all spatially
referenced GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE table,
whose definition is presented after Example 1-1 in Storage Parameters.

SELECT georid, substr(sdo _geor.getSpectralUnit (georaster),1,20) spectralUnit,
sdo_geor.getSpectralResolution(georaster) spectralResolution
FROM georaster table
WHERE sdo_geor.isSpatialReferenced(georaster)="TRUE';

© sumner 0.0%
7.90 SDO_GEOR.getSpectralUnit
Format

SDO_GEOR.getSpectralUnit (
georaster 1IN SDO_GEORASTER
) RETURN VARCHARZ2;

Description

Returns the unit of measurement for identifying the wavelength interval for a band.

ORACLE 7-130

Chapter 7
SDO_GEOR.getSRS

Parameters

georaster
GeoRaster object.

Usage Notes

This function can return one of the following values: METER, MILLIMETER, MICROMETER,
NANOMETER.

Taken together, the spectral unit and spectral resolution identify the wavelength interval for a
band. For example, if the spectral resolution value is 2 and the spectral unit value is
MILLIMETER, the wavelength interval for a band is 2 millimeters.

To set the spectral unit for a GeoRaster object, use the SDO_GEOR.setSpectralUnit
procedure.

Examples

The following example returns the spectral unit and spectral resolution for all spatially
referenced GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE table,
whose definition is presented after Example 1-1 in Storage Parameters.

SELECT georid, substr(sdo geor.getSpectralUnit (georaster),1,20) spectralUnit,
sdo_geor.getSpectralResolution(georaster) spectralResolution
FROM georaster table
WHERE sdo geor.isSpatialReferenced(georaster)="TRUE';

GEORID SPECTRALUNIT SPECTRALRESOLUTION
© ywmimersr 0.078
7.91 SDO_GEOR.getSRS
Format

SDO_GEOR.getSRS (
georaster IN SDO GEORASTER
) RETURN SDO GEOR SRS;

Description

Returns an object of type SDO_GEOR_SRS containing information related to the spatial
referencing of a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The SDO_GEOR_SRS object type is described in SDO_GEOR_SRS Object Type.

ORACLE 7-131

Chapter 7
SDO_GEOR.getStatistics

Examples

The following example returns information related to the spatial referencing of all spatially
referenced GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE table,
whose definition is presented after Example 1-1 in Storage Parameters.

SELECT georid, sdo geor.getSRS(georaster) SRS
FROM georaster table
WHERE sdo_geor.isSpatialReferenced(georaster)="'TRUE';

GEORID

SRS (ISREFERENCED, ISRECTIFIED, ISORTHORECTIFIED, SRID, SPATIALRESOLUTION, SPATIA

SDO_GEOR SRS ('TRUE', 'TRUE', NULL, 82262, SDO NUMBER ARRAY(28.5, 28.5), NULL, NU
L, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, NULL, NULL, NULL, SDO NUMBER ARRAY (1, 2, 1, 3,
32631.5614, 0, -.03508772), SDO NUMBER ARRAY (1, 0, 0, 1, 1), SDO NUMBER ARRAY (1
, 2, 1, 3, -7894.7544, .035087719, 0), SDO NUMBER ARRAY(1, 0, 0, 1, 1) , NULL,
NULL, NULL, NULL, NULL)

7.92 SDO_GEOR.getStatistics

ORACLE

Format

SDO_GEOR.getStatistics(
georaster IN SDO_GEORASTER,
layerNumber IN NUMBER
) RETURN SDO NUMBER ARRAY;

Description

Returns statistical data associated with a layer.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the statistics. A value of 0 (zero) indicates the object
layer.

Usage Notes

This function returns statistical data described by the <statisticDatasetType> elementin the
GeoRaster metadata XML schema, which is described in GeoRaster Metadata XML Schema.
The function returns an array with the following values: MIN, MAX, MEAN, MEDIAN, MODEVALUE, and
STD.

To set the statistical data associated with a layer, use the SDO_GEOR.setStatistics procedure.

Examples

The following example returns statistical data for layer 1 of a GeoRaster object. (It refers to a
table named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters.)

7-132

SELECT sdo_geor.getStatistics(georaster, 1) layerl
FROM georaster table WHERE georid=4;

LAYER1

SDO_NUMBER ARRAY (0, 255, 100, 127, 95, 25)

7.93 SDO_GEOR.getTotalLayerNumber

Format

SDO_GEOR.getTotalLayerNumber (
georaster 1IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the total number of layers in a GeoRaster object.
Parameters

georaster
GeoRaster object.

Usage Notes

For information about layers, see Bands_ Layers_ and Metadata.

Examples

Chapter 7
SDO_GEOR.getTotalLayerNumber

The following example returns the total number of layers in each GeoRaster object
(GEORASTER column) in the GEORASTER_TABLE table, whose definition is presented after

Example 1-1 in Storage Parameters.

SELECT georid, sdo geor.getTotalLayerNumber (georaster) totalLayerNumber

FROM georaster table;

GEORID TOTALLAYERNUMBER

7.94 SDO_GEOR.getULTCoordinate

ORACLE

Format

SDO_GEOR.getULTCoordinate (
georaster IN SDO GEORASTER
) RETURN SDO NUMBER ARRAY ;

Description

Returns the cell coordinates of the upper-left corner of a GeoRaster object.

Parameters

georaster
GeoRaster object.

7-133

Chapter 7
SDO_GEOR.getVAT

Usage Notes

This function returns two or three numbers. If it returns two numbers, they are row and column
ordinates. If it returns three numbers, they are row, column, and band ordinates.

Examples

The following example returns the row, column, and band ordinates for the upper-left corner of
a GeoRaster object. (It refers to a table named GEORASTER_TABLE, whose definition is
presented after Example 1-1 in Storage Parameters.)

SELECT sdo_geor.getULTCoordinate (georaster) FROM georaster table WHERE georid=23;

SDO_GEOR.GETULTCOORDINATE (GEORASTER)

SDO_NUMBER ARRAY (256, 0, 0)

7.95 SDO_GEOR.getVAT

ORACLE

Format

SDO_GEOR.getVAT (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Returns the name of the value attribute table (VAT) associated with a layer of a GeoRaster
object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the VAT. A value of 0 (zero) indicates the object layer.

Usage Notes
For more information about value attribute tables, see Geographic Information Systems.

To set the name of the value attribute table to be associated with a layer of a GeoRaster
object, use the SDO_GEOR.setVAT procedure.

Examples

The following example returns the value attribute tables for layers 0, 1, 2, and 3 of the
GeoRaster objects (GEORASTER column) in the row with the GEORID column value of 4 in
the GEORASTER_TABLE table. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters. The output is reformatted for
readability.)

SELECT substr (sdo_geor.getVAT (georaster, 0),1,20) vatTableO,
substr (sdo_geor.getVAT (georaster, 1),1,20) vatTablel,
substr (sdo _geor.getVAT (georaster, 2),1,20) vatTable2,
substr (sdo_geor.getVAT (georaster, 3),1,20) vatTable3

FROM georaster table WHERE georid=4;

7-134

Chapter 7
SDO_GEOR.getVersion

VATTABLE(Q VATTABLEL VATTABLE2 VATTABLE3

7.96 SDO_GEOR.getVersion

Format

SDO_GEOR.getVersion (
georaster 1IN SDO_GEORASTER
) RETURN VARCHARZ;

Description

Returns the user-specified version of a GeoRaster object.
Parameters

georaster
GeoRaster object.

Usage Notes
The version returned is in the format major-version.minor-version.

To set the user-specified version of a GeoRaster object, use the SDO_GEOR.setVersion
procedure.

Examples

The following example returns the user-specified version of the GeoRaster objects
(GEORASTER column) in the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters. (The output is reformatted for readability.)

SELECT georid, sdo geor.getVersion(georaster) version FROM georaster table;

GEORID VERSION

7.97 SDO_GEOR.hasBitmapMask

ORACLE

Format

SDO_GEOR.hasBitmapMask (
georaster IN SDO_GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Checks if a GeoRaster object or layer has an associated bitmap mask.

7-135

Chapter 7
SDO_GEOR.hasGrayScale

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer to check. A value of O (zero) indicates the object layer.

Usage Notes

This function returns the string TRUE if the GeoRaster object or layer has an associated bitmap
mask, or FALSE if it does not have an associated bitmap mask.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example checks if layers 0 through 4 of a specified GeoRaster object have
associated bitmap masks.

SELECT substr(sdo_geor.hasBitmapMask (georaster,0),1,12) BMO,
substr (sdo_geor.hasBitmapMask (georaster,1),1,12) BMI,
substr (sdo_geor.hasBitmapMask (georaster,2),1,12) BM2,
substr (sdo_geor.hasBitmapMask (georaster,3),1,12) BM3

FROM georaster table WHERE georid=0;

7.98 SDO_GEOR.hasGrayScale

ORACLE

Format

SDO_GEOR.hasGrayScale (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHARZ;

Description

Checks if a layer of a GeoRaster object has grayscale information.
Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer to check. A value of O (zero) indicates the object layer.

Usage Notes

This function returns the string TRUE if the layer has grayscale information, or FALSE if the layer
does not use grayscale representation. SDO_GEOR_GRAYSCALE Object Type describes
grayscale display.

If the layer has grayscale information, you can get and set the grayscale mappings and the
grayscale mapping table name. See the following: SDO_GEOR.getGrayScale and
SDO_GEOR.getGrayScaleTable functions, and SDO_GEOR.setGrayScale and
SDO_GEOR.setGrayScaleTable procedures.

7-136

Chapter 7
SDO_GEOR.hasNODATAMask

Examples

The following example checks if layers 0 and 1 of a specified GeoRaster object (GEORASTER
column) have grayscale information. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.)

SELECT substr(sdo_geor.hasGrayScale(georaster, 0),1,15) hasGrayScale0,
substr(sdo_geor.hasGrayScale (georaster, 1),1,15) hasGrayScalel
FROM georaster table WHERE georid=4;

HASGRAYSCALEO HASGRAYSCALEL

7.99 SDO_GEOR.hasNODATAMask

SDO_GEOR.hasNODATAMask (
georaster IN SDO_GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHARZ;

Description

Checks if a GeoRaster object or layer has an associated NODATA bitmap mask.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer to check. A value of O (zero) indicates the object layer.

Usage Notes

This function returns the string TRUE if the GeoRaster object or layer has an associated
NODATA bitmap mask, or FALSE if it does not have an associated NODATA bitmap mask.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example checks if layers 0 through 4 of a specified GeoRaster object have
associated NODATA bitmap masks.

SELECT substr(sdo_geor.hasNODATAMask (georaster,0),1,12) BMO,
substr (sdo_geor.hasNODATAMask (georaster,1),1,12) BMI,
substr (sdo_geor.hasNODATAMask (georaster,2),1,12) BM2,
substr (sdo_geor.hasNODATAMask (georaster, 3),1,12) BM3

FROM georaster table WHERE georid=0;

ORACLE 7-137

Chapter 7
SDO_GEOR.hasPseudoColor

7.100 SDO_GEOR.hasPseudoColor

Format

SDO_GEOR.hasPseudoColor (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Checks if a layer of a GeoRaster object has pseudocolor information.
Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer to check. A value of O (zero) indicates the object layer.

Usage Notes

This function returns the string TRUE if the layer has pseudocolor information, or FALSE if the
layer does not have pseudocolor information (that is, does not use pseudocolor
representation). SDO_GEOR_COLORMAP Object Type describes colormaps and pseudocolor
display.

If the layer has pseudocolor information, you can get and set the colormap and colormap table
name. See the following: SDO_GEOR.getColorMap and SDO_GEOR.getColorMapTable
functions, and SDO_GEOR.setColorMap and SDO_GEOR.setColorMapTable procedures.

Examples

The following example checks if layers 0 and 1 of a specified GeoRaster object (GEORASTER
column) have pseudocolor information. (It refers to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.)

SELECT substr (sdo_geor.hasPseudoColor (
substr (sdo geor.hasPseudoColor (
FROM georaster table WHERE georid=4;

georaster, 0),1,15) hasPseudoColorO,
georaster, 1),1,15) hasPseudoColorl

HASPSEUDOCOLORO HASPSEUDOCOLOR1

7.101 SDO_GEOR.importFrom

ORACLE

Format

SDO_GEOR. importFrom (
georaster IN OUT SDO GEORASTER,
storageParam IN VARCHARZ,
r sourceFormat IN VARCHARZ,
r sourceType IN VARCHARZ,
r sourceName IN VARCHARZ,
h_sourceFormat IN VARCHAR2 DEFAULT NULL,

7-138

Chapter 7
SDO_GEOR.importFrom

h sourceType IN VARCHAR2 DEFAULT NULL,
h sourceName IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR. importFrom (
georaster IN OUT SDO GEORASTER,
storageParam IN VARCHAR2,
r sourceFormat IN VARCHAR2,
r sourceBLOB IN BLOB,
h sourceFormat IN VARCHAR2 DEFAULT NULL,
h sourceCLOB IN CLOB DEFAULT NULL);

Description

Imports an image file or BLOB object into a GeoRaster object stored in the database.

Parameters

georaster
GeoRaster object to hold the result of the operation.

storageParam
String containing storage parameters. The format and usage are as explained in Storage
Parameters. Currently, the keywords supported for this operation are:

e blocking: (See the explanation in Table 1-1 in Storage Parameters.)
* Dblocksize: (See the explanation in Table 1-1 in Storage Parameters.)

* compression: (See the explanation in Table 1-1 in Storage Parameters.) The default value
is NONE, which causes the raw data to be loaded without any compression.

* quality: (See the explanation in Table 1-1 in Storage Parameters.)

e raster: TRUE (the default) causes the raster image data in a GeoTIFF format file to be
loaded along with the georeferencing information; FALSE causes only the georeferencing
information to be loaded from the GeoTIFF format file, without the raster image data, into
an existing GeoRaster object.

* spatialExtent: FALSE (the default) causes a spatial extent not to be generated; TRUE
causes a spatial extent to be generated if the SRID is nonzero and matches the SRID of
any existing spatial extent index.

r_sourceFormat
Raster source format. Must be one of the following: TIFF, GIF, BMP, or PNG. (JPEG iS not
supported for this procedure.)

r_sourceType
Type of source for the import operation. Must be FILE.

r_sourceName

Source file name (with full path specification) if r _sourceType is FILE. If you are using this
procedure only to load the world file into an existing GeoRaster object, specify a null value for
this parameter.

r_sourceBLOB
Raster source object of type BLOB.

ORACLE 7-139

ORACLE

Chapter 7
SDO_GEOR.importFrom

h_sourceFormat
Geoheader source format. Must be WORLDFILE.

h_sourceType
Geoheader type of source for the import operation. Must be FILE.

h_sourceName

Geoheader source file name (with full path specification) if h _sourceType is FILE., and
optionally an SRID value. To specify the SRID value, add it after the file name, separated by a
comma. Example: ' /mypath/mydir/worldfile.tfw,82934" (UNIX or Linux) or
'C:\mypath\mydir\worldfile.tfw,82934" (Windows)

h_sourceCLOB
Geoheader source as an object of type CLOB.

Usage Notes

< Note:

This SDO_GEOR.importFrom procedure is not supported in Oracle Autonomous
Database both in Serverless and Dedicated deployments.

For information about using this procedure or the GeoRaster loader tool to load raster data,
see Loading Raster Data.

If you receive an "insufficient memory" error when loading a very large image, see
Reformatting the Source Raster Before Loading.

When loading an image into a GeoRaster database, you should always specify a block size,
and it should generally be 512x512 or larger.

Specify values for the parameters with names that start with r_ and h_ only if the raster image
and the geoheader are in separate files or objects.

This procedure can load an ESRI world file from a file or from a CLOB object.
This procedure does not support JPEG as a source file format.

This procedure does not support raster data that has a cell depth value of 2BIT or source
multiband raster data with BIL and BSQ interleaving types.

The imported GeoRaster object has the BIP interleaving type.

Before this procedure is called, the calling user and the MDSY'S user must have read
permission on the files to be imported or the directory that contains the files. The following
example (run as user SYSTEM) grants read permission on a file to users HERMAN and MDSYS:

call dbms java.grant permission('HERMAN','SYS:java.io.FilePermission',
'/mydirectory/myimages/imgl.tif', 'read');

call dbms java.grant permission('MDSYS','SYS:java.io.FilePermission',
'/mydirectory/myimages/imgl.tif', 'read');

Examples

The following example initializes an empty GeoRaster object into which an external image in
TIFF format is to be imported, and then imports the image. The example grants the necessary
permissions at the beginning and revokes them at the end.

7-140

ORACLE

Chapter 7
SDO_GEOR.importFrom

connect / as sysdba

call dbms java.grant permission('HERMAN','SYS:java.io.FilePermission',
'/mydirectory/myimages/imgl.tif"', 'read');

call dbms java.grant permission('MDSYS','SYS:java.io.FilePermission',
'/mydirectory/myimages/imgl.tif"', 'read');

connect herman/<password>

DECLARE
geor SDO_GEORASTER;
BEGIN
-- Initialize an empty GeoRaster object into which the external image
-- is to be imported.
INSERT INTO georaster table
values(1, 'TIFF', sdo geor.init('rdt 1'));

-- Import the TIFF image.
SELECT georaster INTO geor FROM georaster table
WHERE georid = 1 FOR UPDATE;
sdo_geor.importFrom(geor, 'blocking=OPTIMALPADDING,blocksize=(512,512,3)"', 'TIFF',
'file',
'/mydirectory/myimages/imgl.tif");
UPDATE georaster table SET georaster = geor WHERE georid = 1;
COMMIT;
END; /

connect / as sysdba

call dbms java.revoke permission('HERMAN','SYS:java.io.FilePermission',
'/mydirectory/myimages/imgl.tif"', 'read');

call dbms java.revoke permission('MDSYS','SYS:java.io.FilePermission',
'/mydirectory/myimages/imgl.tif"', 'read');

The following example imports images from a BLOB and an ESRI world file from a CLOB.

CREATE TABLE blob table (blob col BLOB, blobid NUMBER unique, clob col CLOB);
INSERT INTO blob table VALUES (empty blob(), 1, null);

INSERT INTO blob table VALUES (empty blob(), 2, empty clob());

COMMIT;

DECLARE
georl SDO GEORASTER;
lobdl BLOB;
lobd2 CLOB;
fileName VARCHAR2 (1024);
file BFILE;
wfile BFILE;
wfname VARCHAR2 (1024);
amt INTEGER;
amtl INTEGER;

BEGIN

-- Import BLOB into GeoRaster object.

-- First, if appropriate, load an existing image file into a BLOB object.
EXECUTE IMMEDIATE 'CREATE DIRECTORY blob test one AS YV xyzttt Yy

fileName := '/parrot.tif';
file := BFILENAME ('BLOB TEST ONE', fileName);
wfname := '/parrot.tfw';

wfile := BFILENAME ('BLOB _TEST ONE', wfname);
SELECT clob col into lobd2 from blob table WHERE blobid = 2 for update;
SELECT blob col into lobdl from blob table WHERE blobid = 2 for update;

7-141

Chapter 7
SDO_GEORu.init

dbms lob.fileopen(file, dbms lob.file readonly);
dbms lob.fileopen(wfile, dbms lob.file readonly);
amtl := dbms lob.getLength(wfile);

dbms lob.loadfromfile(lobdl, file, amt);

dbms lob.loadfromfile(lobd2, wfile, amtl);
COMMIT;

dbms lob.fileclose(file);

dbms lob.fileclose (wfile);

-- Then, import this BLOB into a GeoRaster object.

SELECT georaster INTO georl from georaster table WHERE georid = 14 for update;
sdo_geor.importFrom(georl,'', 'TIFF', lobdl, 'WORLDFILE', lobd2);
sdo_geor.setModelSRID (georl, 82394);

UPDATE georaster table SET georaster = georl WHERE georid = 14;

COMMIT;

END;

/

7.102 SDO_GEOR.init

ORACLE

Format

SDO_GEOR.init (
rasterDataTable IN VARCHAR2 DEFAULT NULL,
rasterID IN NUMBER DEFAULT NULL
) RETURN SDO GEORASTER;

Description

Initializes an empty GeoRaster object, which must then be registered n the
xxX_SDO_GEOR_SYSDATA views (see the Usage Notes).

Parameters

rasterDataTable

Name of the object table of type SDO_RASTER that stores the cell data blocks. Must not
contain spaces, period separators, or mixed-case letters in a quoted string; the name is
always converted to uppercase when stored in an SDO_GEORASTER object. The RDT
should be in the same schema as its associated GeoRaster table. If you do not specify this
parameter, GeoRaster generates a unique table name to be used for the raster data table. If
you specify this parameter and the table already exists but is not an object table of type
SDO_RASTER, an exception is raised.

rasterID
Number that uniquely identifies the blocks of this GeoRaster object in its raster data table. If
you do not specify this parameter, a unique sequence number is generated for the ID.

Usage Notes

After initializing the empty GeoRaster object and before performing any operations on the
object, you must register it in the xxx_SDO_GEOR_SYSDATA views by inserting the empty
GeoRaster object into a GeoRaster table. (The xxx_SDO_GEOR_SYSDATA views are
described in GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA). GeoRaster
operations are described in GeoRaster Database Creation and Management and GeoRaster
Data Query and Manipulation.)

This function returns an empty SDO_GEORASTER object with its rasterDataTable and
rasterID attributes set. All other attributes of the SDO_GEORASTER object are null.

7-142

Chapter 7
SDO_GEOR.isBlank

This function does not require that the specified raster data table exist. However, the table
must exist before any data can be inserted into it, and you must create the table.

If a table has multiple GeoRaster object columns, and if for each column you plan to call the
SDO_GEOR:.init or SDO_GEOR:.createBlank function with identical parameter values that
contain a null rasterDataTable Or rasterID parameter value, do not try to use the
SDO_GEOR.init or SDO_GEOR:.createBlank function on all such columns with a single
INSERT or UPDATE statement. For example, assuming a table named LSAT_TABLE
containing the columns (georid NUMBER, type VARCHAR2(32), image date VARCHAR2(32),
image 15m SDO GEORASTER, image 30m SDO GEORASTER, image 60m SDO GEORASTER), do not
use a statement like the following:

INSERT INTO lsat table VALUES(1, 'L1G', '2004-02-25",
sdo_geor.init ('RDT_1'"), sdo geor.init('RDT 1'"),
sdo_geor.init ('RDT 1'"));

Instead, in cases such as this, do either of the following:

e Always specify a rasterID parameter value when calling the function. The following
example specifies raster ID values of 1, 2, and 3 for the GeoRaster objects being inserted
into the last three columns:

INSERT INTO lsatitable VALUES (1, 'L1G', '2004-02-25",
sdo_geor.init ('RDT 1', 1), sdo geor.init ('RDT 1', 2),
sdo_geor.init ('RDT 1", 3));

e Use the function with only one GeoRaster object with each INSERT or UPDATE statement.
The following example inserts a row initializing one GeoRaster object column and
specifying the other two as null, and then updates the row twice to initialize the second and
third GeoRaster object columns:

INSERT INTO lsat table VALUES(1, 'L1G', '2004-02-25'",
sdo_geor.init ('RDT 1'), null, null);

UPDATE lsat table SET image 30m = sdo geor.init ('RDT 1')
WHERE georid = 1;

UPDATE lsat table SET image 60m = sdo geor.init ('RDT 1')
WHERE georid = 1;

Examples

The following example inserts an initialized GeoRaster object into the GEORASTER_TABLE
table. The raster data table associated with the GeoRaster object is RDT_1. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage Parameters.)

INSERT INTO georaster table (georid, georaster)
VALUES (1, sdo geor.init('RDT 1"));

7.103 SDO_GEOR.isBlank

ORACLE

Format

SDO_GEOR.isBlank (
georaster IN SDO GEORASTER
) RETURN VARCHARZ2;

Description

Returns the string TRUE if the GeoRaster object is a blank GeoRaster object, or FALSE if the
GeoRaster object is not a blank GeoRaster object.

7-143

Chapter 7
SDO_GEOR.isOrthoRectified

Parameters

georaster
GeoRaster object.

Usage Notes
In a blank GeoRaster object, all cells have the same cell value.

To change the cell value of an existing blank GeoRaster object, use the
SDO_GEOR:.setBlankCellValue procedure. To return the cell value of a specified GeoRaster
object, use the SDO_GEOR.getBlankCellValue function.

Examples

The following example determines whether or not each GeoRaster object in the GEORASTER
column of the GEORASTER_TABLE table is a blank GeoRaster object. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage Parameters.)

SELECT georid, substr(sdo geor.isBlank(georaster),1,7) isBlank
FROM georaster table;

GEORID ISBLANK

2 FALSE
4 FALSE

7.104 SDO_GEOR.isOrthoRectified

ORACLE

Format

SDO_GEOR.isOrthoRectified(
georaster 1IN SDO_GEORASTER
) RETURN VARCHARZ;

Description

Returns the string TRUE if the GeoRaster object is identified as orthorectified, or FALSE if the
GeoRaster object is not identified as orthorectified.

Parameters

georaster
GeoRaster object.

Usage Notes

This function checks the GeoRaster metadata for the object to see if it is specified as
orthorectified. It does not check if the object is actually orthorectified. Users are responsible for
validating the GeoRaster object and ensuring that orthorectification is performed.

To specify that a GeoRaster object is orthorectified, use the SDO_GEOR.setOrthoRectified
procedure.

Examples

The following example checks if the GeoRaster objects (GEORASTER column) in the
GEORASTER_TABLE table are specified as spatially referenced, rectified, and orthorectified.

7-144

Chapter 7
SDO_GEOR:.isRectified

(The GEORASTER_TABLE table definition is presented after Example 1-1 in Storage
Parameters.)

SELECT georid, substr(sdo geor.isSpatialReferenced(georaster),1,20)
isSpatialReferenced,
substr(sdo_geor.isRectified(georaster),1,20) isRectified,
substr(sdo_geor.isOrthoRectified(georaster),1,20) isOrthoRectified
FROM georaster table;

GEORID ISSPATIALREFERENCED ISRECTIFIED ISORTHORECTIFIED
2 TRUE TRUE TRUE
4 TRUE TRUE FALSE
7.105 SDO_GEOR.isRectified
Format

SDO_GEOR.isRectified(
georaster 1IN SDO_GEORASTER
) RETURN VARCHARZ;

Description

Returns the string TRUE if the GeoRaster object is identified as rectified, or FALSE if the
GeoRaster object is not identified as rectified.

Parameters

georaster
GeoRaster object.

Usage Notes

This function checks the GeoRaster metadata for the object to see if it is specified as rectified.
Users are responsible for validating the GeoRaster object and ensuring that rectification is
performed.

To specify that a GeoRaster object is rectified, use the SDO_GEOR.setRectified procedure.

Examples

The following example checks if the GeoRaster objects (GEORASTER column) in the
GEORASTER_TABLE table are specified as spatially referenced, rectified, and orthorectified.
(The GEORASTER_TABLE table definition is presented after Example 1-1 in Storage
Parameters.)

SELECT georid, substr(sdo geor.isSpatialReferenced(georaster),1,20)
isSpatialReferenced,
substr(sdo_geor.isRectified(georaster),1,20) isRectified,
substr(sdo _geor.isOrthoRectified(georaster),1,20) isOrthoRectified
FROM georaster table;

GEORID ISSPATIALREFERENCED ISRECTIFIED ISORTHORECTIFIED
2 TRUE TRUE TRUE
4 TRUE TRUE FALSE

ORACLE 7-145

Chapter 7
SDO_GEOR:.isSpatialReferenced

7.106 SDO_GEOR.isSpatialReferenced

Format

SDO_GEOR.isSpatialReferenced (
georaster 1IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the string TRUE if the GeoRaster object is spatially referenced, or FALSE if the
GeoRaster object is not spatially referenced.

Parameters

georaster
GeoRaster object.

Usage Notes

The GeoRaster object must have been validated.

Examples

The following example checks if the GeoRaster objects (GEORASTER column) in the
GEORASTER_TABLE table are specified as spatially referenced, rectified, and orthorectified.
(The GEORASTER_TABLE table definition is presented after Example 1-1 in Storage
Parameters.)

SELECT georid, substr(sdo geor.isSpatialReferenced(georaster),1,20)
isSpatialReferenced,
substr(sdo _geor.isRectified(georaster),1,20) isRectified,
substr (sdo geor.isOrthoRectified(georaster),1,20) isOrthoRectified
FROM georaster table;

GEORID ISSPATIALREFERENCED ISRECTIFIED ISORTHORECTIFIED
2 TRUE TRUE TRUE
4 TRUE TRUE FALSE

The following example searches for all empty and nongeoreferenced GeoRaster objects.

SELECT georid FROM georaster table a
WHERE sdo_geor.isSpatialReferenced(a.georaster) IS NULL OR
sdo_geor.isSpatialReferenced(a.georaster) = 'FALSE';

7.107 SDO_GEOR.mask

ORACLE

Format

SDO_GEOR.mask (
inGeoRaster IN SDO GEORASTER,
bandNumbers IN VARCHARZ,
mask IN SDO GEORASTER,
storageParam IN VARCHAR2,
outGeoraster IN OUT SDO_GEORASTER,
zeroMapping IN NUMBER DEFAULT O,

7-146

ORACLE

Chapter 7
SDO_GEOR.mask

oneMapping IN NUMBER DEFAULT 1,
bgValues IN SDO NUMBER ARRAY DEFAULT NULL);

Description

Applies a mask to specified layers of an existing (input) GeoRaster object. The mask
GeoRaster object and the input GeoRaster object can have the same storage format or
different storage formats, and you can specify storage format options for the output GeoRaster
object (for example, to change the blocking, cell depth, or interleaving).

For information about how to determine the mask value to use, see the Usage Notes.

Parameters

inGeoRaster
The SDO_GEORASTER object on which the mask operation is to be performed to create the
new object.

bandNumbers

A string identifying the physical band numbers on which the operation is to be performed. Use
commas to delimit the values, and a hyphen to indicate a range (for example, 1-3 for the
second, third, and forth layers).

mask

The SDO_GEORASTER object to be used as a mask on the input GeoRaster object for
generating the output GeoRaster object. If this parameter is specified as null, then available
attached masks of the input GeoRaster object are applied to the specified layers.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster

The new SDO_GEORASTER object that reflects the results of the mask operation. Must be
either a valid existing GeoRaster object or an empty GeoRaster object. (Empty GeoRaster
objects are explained in Blank and Empty GeoRaster Objects.) Cannot be the same
GeoRaster object as inGeoRaster.

If the output GeoRaster object has any existing raster data, it is deleted before the mask
operation is performed. The output GeoRaster object is overwritten as a result of this function.

zeroMapping
Value used for mask cell value 0 (zero). The default value is 0.

oheMapping
Value used for mask cell value 1 (one). The default value is 1.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all layers) or
the band dimension size (a different filling value for each layer, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first layer with 1, the second layer with 5, and the third
layer with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

7-147

Chapter 7
SDO_GEOR.mask

Usage Notes
To determine the mask value to use with the mask parameter, apply the following logic:

If (cellValue mask==0)

cellvValue target=cellValue source * zeroMapping;
else

cellValue target=cellValue source * oneMapping;

where:

* cellValue_ source is the cell value of inGeoraster at coordinate (X,y).
* cellValue target is the cell value of outGeoraster at coordinate (x,y).
* cellValue mask is the cell value of mask at coordinate (X,y).

If inGeoRaster is null, no operation is performed.

If pyramid data exists for inGeoRaster, then the mask GeoRaster object must have at least the
same number of pyramid levels as inGeoRaster.

If mask is not null, its dimension (row and column) size must be equal to that of inGeoRaster,
and mask must overlap on inGeoRaster. (You can check for overlap using the
SDO_GEOR_RA.isOverlap function.)

If mask is null and if no attached mask is available for the specified layers, then inGeoRaster is
copied to outGeoRaster, which is also modified as specified by any storageParam
specifications.

Contrast this function with the SDO_GEOR.setBitmapMask function: SDO_GEOR.mask
calculates cell values in layers and stores them in the target GeoRaster object, whereas
SDO_GEOR:.setBitmapMask associates mask data with specified layers of the source
GeoRaster object.

An exception is raised if one or more of the following are true:
° inGeoRaster is invalid.
* outGeoRaster has not been initialized.

* Araster data table for outGeoRaster does not exist and outGeoRaster is not a blank
GeoRaster object.

Examples

The following example applies mask GeoRaster object gr2 to the source GeoRaster object
grl. (It refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
gr3 sdo_georaster;

BEGIN
select tmimage into grl from landsat where i1d=103;
select tmimage into gr3 from landsat where i1d=1015;
select grobj into gr2 from grtab where id=1;
SDO_GEOR.mask (grl,null,gr2, 'blocksize=(100,100,3)"',9r3,0.1,0.9,null);
update landsat set tmimage=gr3 where id=1007;

END;

/

ORACLE 7-148

Chapter 7
SDO_GEOR.mergeLayers

The following example applies the attached mask of the source GeoRaster object gr1 to its
second layer.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
gr3 sdo_georaster;

BEGIN
select tmimage into grl from landsat where 1d=103;
select tmimage into gr3 from landsat where 1d=1015;
gr2:=null;
SDO_GEOR.mask (grl,'l',gr2, 'blocksize=(100,100,3)"',9r3,0.1,0.9,null);
update landsat set tmimage=gr3 where id=1007;

END;

/

7.108 SDO_GEOR.mergeLayers

ORACLE

Format

SDO_GEOR.mergeLayers (
targetGeoRaster IN OUT SDO_GEORASTER,
sourceGeoRaster IN SDO_GEORASTER,
sourceLayerNumbers IN VARCHAR2 DEFAULT NULL,
bgValues IN SDO_NUMBER ARRAY DEFAULT NULL);

or

SDO GEOR.mergelLayers (
sourcelGeoRaster IN SDO_GEORASTER,
sourcellLayerNumbers IN VARCHARZ,
source2GeoRaster IN SDO_GEORASTER,
source2LayerNumbers IN VARCHARZ,

storageParam IN VARCHAR2Z,

outGeoRaster IN OUT SDO GEORASTER,

bgValues IN SDO NUMBER ARRAY DEFAULT NULL,

pyramidLevel IN NUMBER DEFAULT NULL);
Description

Merges the layers of two GeoRaster objects, either by appending source layers to a target
GeoRaster object (first format) or by performing a union operation (second format).

Parameters

targetGeoRaster

GeoRaster object to which layers in sourceGeoRaster are to be appended. Cannot be the
same GeoRaster object as sourceGeoRaster. (Be sure to make a copy of this object before
calling this procedure.)

sourceGeoRaster
GeoRaster object in which specified layers are to be appended to targetGeoRaster.

sourceLayerNumbers

String specifying one or more layer numbers of layers in sourceGeoRaster to be appended to
targetGeoRaster. Use commas to delimit numbers or ranges, and use a hyphen to indicate a
range. Example: '1,3-5,7' for layers 1, 3, 4, 5, and 7.

7-149

ORACLE

Chapter 7
SDO_GEOR.mergeLayers

sourcelGeoRaster
One GeoRaster object in which specified layers are to be joined in a union operation with
layers from source2GeoRaster in the output GeoRaster object outGeoRaster.

sourcellLayerNumbers

String specifying one or more layer numbers of layers in sourcelGeoRaster to be joined in a
union operation with layers from source2GeoRaster in the output GeoRaster object
outGeoRaster. Use commas to delimit numbers or ranges, and use a hyphen to indicate a
range. Example: '1,3-5,7' for layers 1, 3,4, 5,and 7.

source2GeoRaster
One GeoRaster object in which specified layers are to be joined in a union operation with
layers from sourcelGeoRaster in the output GeoRaster object outGeoRaster.

source2LayerNumbers

String specifying one or more layer numbers of layers in source2GeoRaster to be joined in a
union operation with layers from sourcelGeoRaster in the output GeoRaster object
outGeoRaster. Use commas to delimit numbers or ranges, and use a hyphen to indicate a
range. Example: '1,3-5,7' for layers 1, 3,4, 5,and 7.

storageParam
A string specifying storage parameters to be applied in creating outGeoRaster. Storage
parameters are explained in Storage Parameters.

outGeoRaster

The new SDO_GEORASTER object that reflects the results of the union operation. Must be
either a valid existing GeoRaster object or an empty GeoRaster object. (Empty GeoRaster
objects are explained in Blank and Empty GeoRaster Objects.) Cannot be the same
GeoRaster object as sourcelGeoRaster or source2GeoRaster.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

pyramidLevel
A number specifying the pyramid level at which the source GeoRaster objects are merged. If
not specified, pyramid level 0 is used.

Usage Notes

< Note:

Be sure to make a copy of the targetGeoRaster object before you call this
procedure, because the changes made to this GeoRaster object might not be
reversible after the procedure completes.

7-150

Chapter 7
SDO_GEOR.mosaic

The resulting GeoRaster object (georaster Or outGeoRaster parameter) must not be the same
GeoRaster object as sourceGeoRaster, sourcelGeoRaster, Or source2GeoRaster.

The two GeoRaster objects to be appended or unioned together must have the same spatial
dimension sizes and cover the same area. If one of the GeoRaster objects is georeferenced,
the other one must also be georeferenced, have the same model SRID and spatial resolutions,
and cover the same area in the model space. If neither GeoRaster object is georeferenced,
their ultCoordinates must be the same.

The two GeoRaster objects to be appended or unioned together need not have the same cell
depth. By default, the cell depth of the first source GeoRaster object will be used for the
resulting GeoRaster object. To avoid data loss, or change the output cell depth, you can
specify a different ce11Depth in the storageParam for the resulting GeoRaster object.

Examples

The following example merges specified layers of two GeoRaster objects into a third
GeoRaster object, by performing a union operation.

declare
grl sdo georaster;
gr2 sdo georaster;
gr3 sdo georaster;
begin
select georaster into grl from georaster table where georid=l;
select georaster into gr2 from georaster table where georid=2;
insert into georaster table(georid, georaster) values (3, sdo geor.init ('RDT 1'"))
returning georaster into gr3;
sdo geor.mergelayers(grl, '3', gr2, '2,1', 'blocking=false', gr3);
update georaster table set georaster=gr3 where georid=3;
commit;
end;

/

For an example of using SDO_GEOR.mergLayers to append several layers to an existing
GeoRaster object, see the example in Band Merging.

7.109 SDO_GEOR.mosaic

ORACLE

Format

SDO_GEOR.mosaic (
georasterTableName IN VARCHARZ,
georasterColumnName IN VARCHARZ,

georaster IN OUT SDO_GEORASTER,

storageParam IN VARCHAR2?,

bgValues IN SDO _NUMBER ARRAY DEFAULT NULL);
Description

Mosaics a set of source GeoRaster objects that are rectified, are geospatially aligned under
the same SRID, and have the same resolution.

Parameters

georasterTableName
Name of the table or view containing all source GeoRaster objects.

7-151

ORACLE

Chapter 7
SDO_GEOR.mosaic

georasterColumnName
Column of type SDO_GEORASTER in georasterTableName.

georaster
GeoRaster object to hold the result of the mosaic operation. Cannot be the same as any
GeoRaster object in georasterColumnName in georasterTableName.

storageParam

A string specifying storage parameters, as explained in Storage Parameters. If this parameter
is null, the resulting GeoRaster object has the same storage parameters (blockSize,
cellDepth, interleaving, and compression) as the upper-left corner source GeoRaster
object in the model space (if applicable) or cell space. However, it is recommended that you
specify the storage parameters, particularly the blocking size, as appropriate for the size of the
output mosaic, unless you want the mosaic to have the same storage parameters as those of
the upper-left corner GeoRaster object to be mosaicked.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the current
operation leads to partially empty raster blocks (see Empty Raster Blocks), which could
happen when the source GeoRaster objects have empty raster blocks or when the source
GeoRaster objects do not cover the whole area. The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

Usage Notes

This procedure has limited mosaicking capabilities, and works well for preprocessed and
perfectly aligned source GeoRaster objects only. It does not work on unrectified rasters and
does not support parallel processing. For advanced mosaicking capabilities, including parallel
processing, use the SDO_GEOR_AGGR.mosaicSubset procedure. See Large-Scale Image
Mosaicking for more information.

For this procedure, the source GeoRaster objects must be prepared images or raster data so
that they can be mosaicked directly. The GeoRaster objects to be mosaicked must:

* Not be a mixture of georeferenced and nongeoreferenced objects. Either all of the objects
are georeferenced, or none of the objects is georeferenced.

* Have the same SRID value if the objects are georeferenced, and the georeferencing
method must be affine transformation. The affine transformations of the GeoRaster objects
must have the same set of coefficients (A, B, D and E) or (b, c, e, f). This means that the
images must have the same X resolution and Y resolution (although the X and Y
resolutions do not have to be the same), the same rotation angle, and the same skewing
factor; in other words, the images must have the same resolutions, and be rotated and
skewed in the same way if the images are rotated and skewed.

e Have the same number of layers or bands. There is no restriction on the row and column
dimension sizes of the source objects; for example, they do not need to be a power of 2.

* Have the same mapping between band number and layers.

If the GeoRaster objects to be mosaicked are georeferenced, they are co-located according to
their georeferencing information. If the GeoRaster objects are not georeferenced, they are co-
located according to their ULTCoordinate values. (The ULTCoordinate is explained in
GeoRaster Data Model.)

7-152

Chapter 7
SDO_GEOR:.rectify

If applicable, the resulting GeoRaster object takes the spatial reference metadata information
from the upper-left corner source GeoRaster object in the model space. It also takes the cell
space and any default storage attributes from the upper-left corner source GeoRaster object in
the model space.

If the source GeoRaster objects have empty raster blocks or do not cover the whole area, the
mosaicked result GeoRaster object may have empty or partially empty raster blocks (see
Empty Raster Blocks). A result raster block that is not covered by any of the source GeoRaster
objects is kept empty. Any partially empty raster blocks are filled with the values specified in
the bgValues parameter, or with 0O if the bgValues parameter is not specified.

If the source GeoRaster objects overlap, data of the overlapping area comes from the source
object that covers it and that has the largest ultCoordinate in the cell space where all the
source objects are co-located.

Any bitmap masks associated with the source GeoRaster objects are not considered, and the
bitmapmask parameter is ignored if it is specified in the storageParam string.

If all source GeoRaster objects are blank and have the same blankCellvalue value, the
resulting GeoRaster object is blank and has that blankCellvalue value; otherwise, the
resulting GeoRaster object is not blank.

The GeoRaster object to contain the results of the mosaic operation (georaster parameter)
must not be any of the source GeoRaster objects (the objects on which the mosaic operation is
performed).

The mosaic operation performs internal commit operations at regular intervals, and thus it
cannot be rolled back. If the operation is interrupted, dangling raster blocks may exist in the
raster data table. You can handle dangling raster blocks by maintaining GeoRaster objects and
system data in the database, as explained in Maintaining GeoRaster Objects and System Data
in the Database.

Examples

The following example inserts an initialized GeoRaster object into the GEORASTER_TABLE
table, returns the GeoRaster object into a variable named gr, mosaics all the GeoRaster
objects in the GROBJ column of a table named GRTAB, and stores the resulting mosaicked
GeoRaster object in the same variable. (The GEORASTER_TABLE table definition is
presented after Example 1-1 in Storage Parameters. The GRTAB table definition is not
important to the example and is not presented here.)

DECLARE
gr sdo_georaster;
BEGIN
INSERT INTO georaster table (georid, georaster)
VALUES (12, sdo_geor.init('rdt 1'))
RETURNING georaster INTO gr;
sdo_geor.mosaic('grtab', 'grobj', gr, 'blocking=optimalpadding blocksize=(512,512,1)");
UPDATE georaster table SET georaster=gr WHERE id=12;
END;
/

7.110 SDO_GEOR:.rectify

Format

SDO_GEOR.rectify(
inGeoRaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,

ORACLE 7-153

ORACLE

or

elevationParam
DEM
outSRID

outModelCoordLoc

cropArea
polygonClip
layerNumbers
outResolutions
resolutionUnit
referencePoint
resampleParam
storageParam
outGeoRaster
bgValues
parallelParam

SDO_GEOR.rectify(

inGeoRaster
pyramidLevel
elevationParam
DEM

outSRID

outModelCoordLoc

cropArea
polygonClip
layerNumbers
outResolutions
resolutionUnit
referencePoint
resampleParam
storageParam
rasterBlob
outArea
outWindow
bgValues
parallelParam

Description

IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN

IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN

VARCHARZ,
SDO_GEORASTER,

NUMBER,

NUMBER,

SDO_GEOMETRY,

VARCHARZ,

VARCHARZ,

SDO_NUMBER ARRAY,
VARCHARZ,

SDO_GEOMETRY,

VARCHARZ,

VARCHARZ,

OUT SDO_GEORASTER,
SDO_NUMBER ARRAY DEFAULT NULL,
VARCHAR2 DEFAULT NULL) ;

SDO_GFORASTER,
NUMBER,

VARCHAR2,
SDO_GFORASTER,
NUMBER,

NUMBER,
SDO_GEOMETRY,
VARCHAR?2,
VARCHAR?2,

SDO NUMBER ARRAY,
VARCHAR?2,
SDO_GEOMETRY,
VARCHAR2,
VARCHAR2,

OUT NOCOPY BLOB,

OUT SDO_GEOMETRY,
OUT SDO_NUMBER ARRAY,

IN
IN

SDO_NUMBER ARRAY DEFAULT NULL,
VARCHAR2 DEFAULT NULL) ;

Chapter 7
SDO_GEOR:.rectify

Perform rectification on all or part of a georeferenced GeoRaster object. The resulting object
can be a new GeoRaster object (for persistent storage) or a BLOB (for temporary use). If the
input model coordinate system (SRID) is three-dimensional, the average elevation or a Digital

Elevation Model (DEM) can be used to perform the orthorectification.

Parameters

inGeoRaster
GeoRaster object on which to perform the operation. It must be georeferenced (see the
SDO_GEOR:.georeference subprogram).

pyramidLevel

Pyramid level of the source GeoRaster object for the operation.

For BLOB output, this parameter is required.

For SDO_GEORASTER output, if this parameter is null and the storageParam pyramid
value is FALSE, only the pyramid level O is rectified and the output will have only level 0. If

7-154

ORACLE

Chapter 7
SDO_GEOR:.rectify

this parameter is null and the storageParam pyramid value is TRUE, all the pyramid levels
from the input are rectified.

< If the number O or greater is specified, only that pyramid level is used for the rectification,
producing a result in scale based on that pyramid level image.

elevationParam

A string containing one or more of the elevation parameters average (average surface height),
scale (scale value applied to all DEM values), and of fset (offset applied to all DEM values),
where the new value is (value + offset) * scale. This parameter must be a quoted string
that contains one or more keyword=value pairs (for example, 'average=800 scale=3.2808399
offset=10"). If this parameter is null, 0 is assumed for average and offset, and 1 is used for
scale. Any scale and offset values are ignored if DEM is not specified.

The use of the elevationParam parameter requires that the input GeoRaster object have a 3D
model SRID.

When the input GeoRaster object has a 3D model SRID, the average elevation is important for
defining the extents of the output image. If that information is available, it should be specified
even if DEM is also specified. If the average elevation is not specified, the procedure will
calculate an approximate value for the average elevation.

Note:

For any numbers in string (VARCHAR?2) parameters to GeoRaster subprograms, the
period (.) must be used for any decimal points regardless of the locale.

DEM

GeoRaster object with a digital elevation model (DEM); used to perform orthorectification, as
explained in the Usage Notes. Must have the same SRID as outGeoRaster. The DEM area
should cover the entire outGeoRaster area, or the croparea if used. The elevation data is
assumed to be on the first layer of the DEM GeoRaster object. If this parameter is null, the
elevationParam value is used. For best results, the resolution of the DEM GeoRaster object
should be close to the resolution of the input GeoRaster object.

The use of the DEM parameter requires that the input GeoRaster object have a 3D model
SRID.

When the input GeoRaster object has a 3D model SRID, the average elevation is important for
defining the extents of the output image. If that information is available, it should be specified
in the elevationParam parameter even if DEM is also specified. If the average elevation is not
specified, the procedure will calculate an approximate value for the average elevation.

OoutSRID

Coordinate system for the output GeoRaster object. Must be either null or a value from the
SRID column of the MDSYS.CS_SRS table. If it is null, the output GeoRaster object will have
the same SRID as the input GeoRaster object.

outModelCoordLoc
A value specifying the model location of the base of the area represented by a cell: 0 for
CENTER or 1 for UPPERLEFT. If null, CENTER is used.

cropArea

Crop area definition. If null, no cropping is performed, and polygonClip is ignored.

If polygonClip is FALSE, the MBR of the cropArea is used to crop the output image. If
polygonClip is TRUE, the geometry of the cropArea is used to crop the output image. Areas
outside the crop area are filled with the background value

7-155

ORACLE

Chapter 7
SDO_GEOR:.rectify

polygonClip

Ignored if cropArea is null. Otherwise, the string TRUE causes the cropArea value to be used to
crop the mosaicked data; the string FALSE or a null value causes the MBR of cropArea to be
used to crop the output image.

layerNumbers

A string identifying the logical layer numbers for the rectification and the output to
outGeoRaster. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

outResolutions

An array of numeric values, one for each spatial dimension. Each value indicates the number
of units of measure associated with the data area represented by that spatial dimension of a
pixel. For example, if the spatial resolution values are (10,10) and the unit of measure for the
ground data is meters, each pixel represents an area of 10 meters by 10 meters. If null, the
default is the resolution of the source data at the specified pyramid level.

resolutionUnit

The unit of the outResolutions parameter. If resolutionUnit is different from the
outGeoRaster SRID unit, an appropriate conversion is computed (the value of the output
resolution is calculated by converting the outResolutions value in resolutionUnit to the unit
of the output SRID) . If resolutionUnit is null, the default is the unit of the output SRID. If
specified, it must be a quoted string in the format "unit=value" where value is the unit name.
This parameter is ignored if outResolutions is null.

referencePoint

A point of type SDO_GEOMETRY indicating a reference to where the outGeoRaster object
should be aligned so that the distance between the referencePoint and the upper-left corner
of the output will have an integer number of pixels.

resampleParam
A comma-separated quoted string of keyword=value pairs for specifying resampling
parameters. See the Usage Notes for more information.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster

GeoRaster object to hold the result of the operation. Must be either a valid existing GeoRaster
object or an empty GeoRaster object. (Empty GeoRaster objects are explained in Blank and
Empty GeoRaster Objects.) Cannot be the same GeoRaster object as inGeoRaster

rasterBlob
BLOB to hold the output reflecting the rectification. It must exist or have been initialized before
the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in the model
coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and lower-right
corners of the output window in the cell space.

7-156

ORACLE

Chapter 7
SDO_GEOR:.rectify

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

parallelParam

Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where nis greater than 1. The database optimizer uses the degree of parallelism
specified by this parameter. If not specified, then by default there is no parallel processing.
(For more information, see Parallel Processing in GeoRaster.)

If parallelism is specified, the procedure performs an internal commit operation. If an error
occurs (even if it is raised by the Oracle parallel server), you must delete the resulting output
GeoRaster object explicitly in order to roll back the operation.

Usage Notes
This procedure has two formats:

e One format generates a GeoRaster object for persistent storage in the database.

e The other format generates a BLOB for temporary storage or immediate use, such as to
display data on the screen.

This procedure uses a non-parametric rectification method that takes the georeferencing
polynomials from the input GeoRaster object to transform the original image space into the
target image space. Therefore, the input GeoRaster object must be georeferenced (see the
SDO_GEOR.georeference subprogram).

Orthorectification can be performed if the input GeoRaster object has a 3D model SRID. A
digital elevation model (DEM) GeoRaster object can be used to improve the accuracy of the
orthorectification. If the DEM parameter is not specified, the elevationParam average value is
used as the height for the whole target area. If the elevationParam average value is not
specified, it is estimated based on the SRS and DEM information (see Image
Orthorectification).

resampleParam, if specified, must be a quoted string that contains one or more of the following
keywords, each with an appropriate value:

* resampling (for example, resampling=NN): Specifies the resampling method. Must be one
of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, Or AVERAGE16. For more
information, see Resampling and Interpolation.

* nodata (for example, nodata=TRUE): Specifies whether NODATA values and value ranges
should be considered during the procedure. Must be either TRUE (NODATA values and
value ranges should be considered) or FALSE (NODATA values and value ranges should
not be considered). The default value is FALSE. If the value is TRUE and the resampling
method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, Or AVERAGE16, whenever a cell value
involved in the resampling calculation is a NODATA value, the result of the resampling is
also a NODATA value. The resulting NODATA value is the minimum NODATA value
associated with the current raster layer, if multiple NODATA values or value ranges exist.

7-157

ORACLE

Examples

Chapter 7
SDO_GEOR:.rectify

In the following example, the input GeoRaster object is rectified to the same SRID. The input
GeoRaster object was georeferenced using GCPs with SRID 32619.

The layerNumbers parameter indicates the order of selection of three bands of the seven
bands from the input GeoRaster object, producing a three-band output GeoRaster object.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN

select raster into grl from georaster

insert into georaster table values(2,

table where georid = 1;
'Rectified image’,

sdo _geor.init('georaster rdt')) returning raster into gr2;
sdo_geor.rectify(inGeoRaster => grl,
pyramidLevel => null,
elevationParam => null,
dem => null,
outSRID => null,
outModelCoordLoc => null,
cropArea => null,
polygonClip => null,
layerNumbers => '2,4,5",
outResolutions => null,
resolutionUnit => null,
referencePoint => null,
resampleParam => null,
storageParam => null,
outGeoraster => gr2);
update georaster table set georaster = gr2 where georid = 2;
commit;
END;

In the following example, the input GeoRaster object was georeferenced using 3D GCPs with
SRID 32619, and the function produces an orthorectified GeoRaster with SRID 4326.

* The dem parameter specifies the GeoRaster object gr3 as the digital elevation model for
providing height values for each pixel for the orthorectification.

e resampleParam specifies the resampling method as BILINEAR.

e The storageParam parameter specifies the interleaving as BSQ and the compression as
DEFLATE.

* The specified outResolutions value has the same unit of measurement as the output
GeoRaster SRID because resolutionUnit is null.

e The point geometry specified by referencePoint causes the output image upper-left
corner to be aligned with that coordinate, with a integer number of pixel (rows and columns
resolution) in between them.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
gr3 sdo_georaster;
pto sdo_geometry;
BEGIN

pto := sdo_geometry (2001, 4326, sdo point type(-71.50,42.0, null));
select raster into grl from georaster table where georid = 1;
select raster into grl from georaster table where georid = 3;
insert into georaster table values(2, 'Rectified image',

7-158

ORACLE

Chapter 7
SDO_GEOR:.rectify

sdo_geor.init ('georaster rdt')) returning raster into gr2;

sdo_geor.rectify(inGeoRaster => grl,
pyramidLevel =1,
elevationParam => null,
dem => gr3,
outSRID => 4326,
outModelCoordLoc => null,
CcropArea => null,
polygonClip => null,
layerNumbers => null,
outResolutions => sdo_number array(0.0025,0.0025),
resolutionUnit => null,
referencePoint => pto,
resampleParam => 'resampling=BILINEAR',
storageParam => 'interleaving=BSQ compress=DEFLATE',
outGeoraster => gr2);

update georaster table set georaster = gr2 where georid = 2;

commit;

END;

In the following example, the input GeoRaster object was georeferenced using GCPs with
SRID 32619, and the output GeoRaster object is projected to SRID 4326.

° resampleParam specifies the resampling method as CUBIC.

e The storageParam parameter specifies blockSize as (512,512,3). Because interleaving
is not specified, the interleaving method for inGeoRaster is used.

° outResolutions and resolutionUnit are specified in meters, which is a different unit from
outSRID 4316. In this case, the SDO_NUMBER_ARRAY values (30,30) are converted to

degrees.

¢ The SDO_GEOMETRY polygon specified for cropArea is used to crop the output area to
the extents of that polygon; and because polygonClip is TRUE, the area of the image
outside of the polygon is set to background values.

e The model coordinate location of the output object is UpperLeft because

outModelCoordLoc is specified as 1.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
pol sdo_geometry;
BEGIN
pol := sdo geometry(2003,4326,NULL,sdo_elem info array(1,1003,1),

sdo_ordinate array(-70.869495075803073, 42.
42.

-70.468523716196913,
-70.957334345349082,
-71.350984405166344,
-70.869495075803073,

43

349420282160885,
813138293441916,

.218053058782452,
42.
42.

736563729419181,
349420282160885)) ;

select raster into grl from

georaster table where georid = 1;

insert into georaster table values(2, 'Rectified image',
sdo _geor.init('georaster rdt')) returning raster into gr2;
sdo_geor.rectify(inGeoRaster => grl,
pyramidLevel = 0,
elevationParam => null,
dem => null,
OutSRID => 4326,
outModelCoordLoc => 1,
cropArea => pol,
polygonClip => 'true',
layerNumbers => null,
outResolutions => sdo_number array(30,30),

7-159

Chapter 7
SDO_GEOR.reproject

'unit=meter',

null,

'resampling=CUBIC',

'blocking=optimalpadding blockSize=(512,512,3)",
gr2);

gr2 where georid = 2;

SDO NUMBER ARRAY DEFAULT NULL);

SDO _NUMBER ARRAY DEFAULT NULL);

SDO_NUMBER ARRAY DEFAULT NULL);

resolutionUnit =>
referencePoint =>
resampleParam =>
storageParam =>
outGeoraster =>
update georaster table set georaster =
commit;
END;
7.111 SDO_GEOR.reproject
Format
SDO_GEOR.reproject (
inGeoRaster IN SDO_GEORASTER,
resampleParam IN VARCHARZ,
storageParam IN VARCHARZ,
outSRID IN NUMBER,
outGeoraster IN OUT SDO_GEORASTER,
bgValues IN
or
SDO_GEOR.reproject (
inGeoRaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
cropArea IN SDO_GEOMETRY,
layerNumbers IN VARCHARZ?,
resampleParam IN VARCHARZ?,
storageParam IN VARCHARZ?,
outSRID IN NUMBER,
outGeoraster IN OUT SDO GEORASTER,
bgValues IN
or
SDO_GEOR.reproject (
inGeoRaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,
cropArea IN SDO_NUMBER ARRAY,
bandNumbers IN VARCHARZ,
resampleParam IN VARCHARZ?,
storageParam IN VARCHARZ?,
outSRID IN NUMBER,
outGeoraster IN OUT SDO_GEORASTER,
bgValues IN
or
SDO_GEOR.reproject (
inGeoRaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,
cropArea IN SDO_GEOMETRY,
layerNumbers IN VARCHARZ,
resampleParam IN VARCHARZ,
storageParam IN VARCHARZ,
OoutSRID IN NUMBER,
rasterBlob IN OUT NOCOPY BLOB,
outArea OUT SDO_GEOMETRY,
outWindow OUT SDO_NUMBER ARRAY,
bgValues

ORACLE

IN SDO_NUMBER_XRRAY DEFAULT NULL) ;

7-160

Chapter 7
SDO_GEOR:.reproject

or

SDO_GEOR.reproject (

inGeoRaster IN SDO_GEORASTER,
pyramidLevel IN NUMBER,

CropArea IN SDO_NUMBER ARRAY,
bandNumbers IN VARCHARZ,

resampleParam IN VARCHARZ?,
storageParam IN VARCHARZ?,

OutSRID IN NUMBER,

rasterBlob IN OUT NOCOPY BLOB,

outArea OUT SDO_GEOMETRY,

outWindow OUT SDO_NUMBER ARRAY,

bgValues IN SDO_NUMBER ARRAY DEFAULT NULL);
Description

Reprojects all or part of a GeoRaster object to a different Oracle Spatial and Graph coordinate
system (specified by the outSRID parameter). The resulting object can be a new GeoRaster
object (for persistent storage) or a BLOB (for temporary use).

Parameters

inGeoRaster
The SDO_GEORASTER object on which the reprojection operation is to be performed to
create the new object.

pyramidLevel
A number specifying the pyramid level of the source GeoRaster object.

cropArea

Crop area definition. If cropArea is of type SDO_GEOMETRY, use the layerNumbers
parameter to specify one or more layer numbers; if cropArea is of type
SDO_NUMBER_ARRAY, use the bandNumbers parameter to specify one or more band
numbers.

If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster space
is assumed. If the data type is SDO_GEOMETRY, the minimum bounding rectangle (MBR) of
the geometry object is used as the crop area; see also the Usage Notes for SDO_SRID
requirements.

layerNumbers

A string identifying the logical layer numbers on which the operation is to be performed. Use
commas to delimit the values, and a hyphen to indicate a range (for example, 2-4 for layers 2,
3, and 4).

bandNumbers

A string identifying the physical band numbers on which the operation is to be performed. Use
commas to delimit the values, and a hyphen to indicate a range (for example, 1-3 for bands 1,
2, and 3).

resampleParam
A string containing the resampling parameters. See the Usage Notes for information about the
available keywords and values.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

ORACLE 7-161

ORACLE

Chapter 7
SDO_GEOR.reproject

outGeoRaster

The new SDO_GEORASTER object that reflects the results of the scaling operation. Must be
either a valid existing GeoRaster object or an empty GeoRaster object. (Empty GeoRaster
objects are explained in Blank and Empty GeoRaster Objects.) Cannot be the same
GeoRaster object as inGeoRaster.

rasterBlob
BLOB to hold the output reflecting the new coordinate system. It must exist or have been
initialized before the reprojection operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in the model
coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and lower-right
corners of the output window in the cell space.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER_ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

Usage Notes
This procedure has two general kinds of interfaces:

e The first three formats generate a persistent GeoRaster object for storage in the database.

e The remaining formats generate a BLOB for temporary storage for immediate use, such as
to display data on the screen.

inGeoRaster should be georeferenced and have a SRID value from the SRID column of the
MDSYS.CS_SRS table. outSRID should be different from the SRID of inGeoRaster. In some
cases, the reprojection is inappropriate, such as reprojecting a GeoRaster object in NAD83,
Massachusetts Mainland (SRID = 26986) to coordinate system NAD 27, UTM zone 49N (SRID
= 2032649). In this case, the reprojection would result in a large distortion and thus is not
performed.

inGeoRaster and outGeoRaster must be different GeoRaster objects. After the operation, the
ULT coordinates of the resulting GeoRaster object are set to zero (0).

If the source or destination object has a three-dimensional coordinate system, the height (2)
values are set to zero (0).

If you use the format that includes the pyramidLevel parameter and you specify a value
greater than zero (0), the reprojection is based on the specified pyramid level of the source
GeoRaster object; otherwise, the reprojection is based on the original GeoRaster object
(pyramidLevel=0). The output GeoRaster object has no pyramid data.

If the cropArea parameter data type is SDO_GEOMETRY, its SDO_SRID value must be a
value from the SRID column of the MDSYS.CS_SRS table. If the SDO_SRID values for the
cropArea parameter geometry and the inGeoraster object model space are different, the

7-162

Chapter 7
SDO_GEOR:.reproject

cropArea parameter geometry is automatically transformed to the coordinate system of the
model space before the operation is performed. (Raster space and model space are explained
in GeoRaster Data Model.)

If the cropArea parameter specifies a geodetic MBR, it cannot cross the date line meridian.
(For information about geodetic MBRs, see Oracle Spatial and Graph Developer's Guide.) Only
the overlapping portion of the specified crop area and the spatial extent of the source
GeoRaster object is reprojected.

resampleParam must be a quoted string that contains one or more of the following keywords,
each with an appropriate value:

e resampling (for example, resampling=NN): Specifies the resampling method. Must be one
of the following: NN, BILINEAR, CUBIC, AVERAGE4, AVERAGE16. For more information, see
Resampling and Interpolation.

* nodata (for example, nodata=TRUE): Specifies whether NODATA values and value ranges
should be considered during the procedure. Must be either TRUE (NODATA values and
value ranges should be considered) or FALSE (NODATA values and value ranges should
not be considered). The default value is FALSE. If the value is TRUE and the resampling
method is BILINEAR, CUBIC, AVERAGE4, Or AVERAGE16, whenever a cell value involved in the
resampling calculation is a NODATA value, the result of the resampling is also a NODATA
value. The resulting NODATA value is the minimum NODATA value associated with the
current raster layer, if multiple NODATA values or value ranges exist.

Examples

The following example reprojects a GeoRaster object into the coordinate system defined by
SRID 32618. The result is another GeoRaster object.

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN
SELECT georaster INTO grl from georaster table WHERE georid=10;
INSERT INTO reproject table VALUES (21, 'WGS 84 / UTM zone 18N',
SDO_GEOR.init ('rdt 5', 21))
RETURNING georaster INTO gr2;
sdo_geor.Reproject (grl, 0, 0, SDO NUMBER ARRAY (0, 0, 517, 517),
null, null, 'blocking=optimalpadding, blocksize=(512,512,3),
interleaving=BSQ', 32618, gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=21;
COMMIT;
END;
/

The following example reprojects a GeoRaster object into the coordinate system defined by
SRID 32618. The result is temporary BLOB containing data in JPEG-F format.

DECLARE
grl sdo_georaster;
lobl BLOB;
outArea SDO Geometry;
outWindow SDO_NUMBER ARRAY;
BEGIN
SELECT georaster INTO grl from georaster table WHERE georid=10;
dbms lob.createTemporary(lobl, TRUE);
sdo_geor.Reproject (grl, 0, SDO NUMBER ARRAY (0, 0, 120, 300),
'0', null, 'compression = JPEG-F', 32618,
lobl, outArea, outWindow);

ORACLE 7-163

Chapter 7
SDO_GEOR.scaleCopy

dbms lob.freeTemporary (lobl);
COMMIT;

END;

/

7.112 SDO_GEOR.scaleCopy

ORACLE

Format

SDO_GEOR.scaleCopy (
inGeoRaster IN SDO GEORASTER,
scaleParam IN VARCHAR2,
resampleParam IN VARCHARZ,
storageParam IN VARCHAR2,
outGeoRaster IN OUT SDO_GEORASTER,
bgValues IN SDO NUMBER ARRAY DEFAULT NULL);

or

SDO_GEOR. scaleCopy (
inGeoRaster IN SDO GEORASTER,
pyramidLevel IN NUMBER,
scaleParam IN VARCHAR2,
resampleParam IN VARCHAR2,
storageParam IN VARCHAR2,
outGeoRaster IN OUT SDO_GEORASTER,
bgValues IN SDO NUMBER ARRAY DEFAULT NULL);

Description

Scales a GeoRaster object by enlarging or reducing the image along row and column
dimensions, and puts the result into a new object that reflects the scaling.

Parameters

inGeoRaster
The SDO_GEORASTER object on which the scaling operation is to be performed to create
the new object (outGeoRaster).

pyramidLevel
A number specifying the pyramid level of the source GeoRaster object.

scaleParam
A string specifying a scaling parameter keyword and its associated value. The keyword must
be one of the following:

Note:

For any numbers in string (VARCHAR?2) parameters to GeoRaster subprograms, the
period (.) must be used for any decimal points regardless of the locale.

* scaleFactor, to reduce or enlarge as a multiple of the original size. This keyword must
have a numeric value greater than 0 (zero) (for example, 'scaleFactor=0.75"). A value of
1.0 will not change the current size; a value less than 1 will reduce the image; a value

7-164

ORACLE

Chapter 7
SDO_GEOR.scaleCopy

greater than 1 will enlarge the image. The number of cells along each dimension is the
original number multiplied by scaleFactor. For example, if the scaleFactor value is 2 and
the GeoRaster object has X and Y dimensions, the number of cells along each dimension
is doubled.

* maxDimSize, to specify a size in terms of the maximum number of cells for each
dimension. This keyword must have a numeric value for each dimension (for example,
'maxDimSize=(512,512)). The aspect ratio is not changed.

e rowMaxDimSize and columnMaxDimSize, to specify sizes in terms of the maximum number
of cells for row and column dimensions. This pair of keywords must have numeric values
for each dimension (for example, 'rowMaxDimSize=512, columnMaxDimSize=256"). The
aspect ratio can be changed, and the two keywords must be specified together.

* rowScaleFactor and columnScaleFactor, to reduce or enlarge as a multiple of the original
size. This pair of keywords must have numeric values greater than 0 (zero). A value of 1.0
will not change the current size; a value less than 1 will reduce the image; a value greater
than 1 will enlarge the image. The number of cells along row dimension is the original
number multiplied by rowScaleFactor. The number of cells along column dimension is the
original number multiplied by columnScaleFactor. rowScaleFactor and
columnScaleFactor can be different numbers, but must be specified together.

resampleParam
A string containing the resampling parameters. See the Usage Notes for information about the
available keywords and values.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster

The new SDO_GEORASTER object that reflects the results of the scaling operation. Must be
either a valid existing GeoRaster object or an empty GeoRaster object. (Empty GeoRaster
objects are explained in Blank and Empty GeoRaster Objects.) Cannot be the same
GeoRaster object as inGeoRaster.

bgValues

Background values for filling partially empty raster blocks. It is only useful when the source
GeoRaster object has empty raster blocks and the current operation leads to partially empty
raster blocks (see Empty Raster Blocks). The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for all bands) or
the band dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER ARRAY (1,5,10) fills the first band with 1, the second band with 5, and the third
band with 10. The default bgvalues are zero (0).

The filling values must be valid cell values as specified by the target cell depth background
values for filling sparse data.

Usage Notes

Use this procedure to create a new GeoRaster object reflecting the specified scaling, based on
the original GeoRaster object or a specified pyramid level of the GeoRaster object. After you
use this procedure, you can check to ensure that the desired changes were made in the copy
of the original GeoRaster object, and then discard the original GeoRaster object if you wish.

If you use the format that does not include the pyramidLevel parameter, the scaling is based
on the original GeoRaster object (pyramidLevel=0).

If you need to get the scaled cell values, use the procedure described in the Usage Notes for
the SDO_GEOR:.getCellValue function.

7-165

Chapter 7
SDO_GEOR.scaleCopy

inGeoRaster and outGeoRaster must be different GeoRaster objects.

resampleParam must be a quoted string that contains one or more of the following keywords,
each with an appropriate value:

* resampling (for example, resampling=NN): Specifies the resampling method. Must be one
of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, AVERAGE16. For more
information, see Resampling and Interpolation.

* nodata (for example, nodata=TRUE): Specifies whether NODATA values and value ranges
should be considered during the procedure. Must be either TRUE (NODATA values and
value ranges should be considered) or FALSE (NODATA values and value ranges should
not be considered). The default value is FALSE. If the value is TRUE and the resampling
method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, Or AVERAGE16, whenever a cell value
involved in the resampling calculation is a NODATA value, the result of the resampling is
also a NODATA value. The resulting NODATA value is the minimum NODATA value
associated with the current raster layer, if multiple NODATA values or value ranges exist.

Any upper-level pyramid data in the input GeoRaster object is not considered during this
operation, and the output GeoRaster object has no pyramid data.

After the operation, the row and column ULT coordinates are always set to 0 (zero), even if no
scaling is performed (that is, even if scaleFactor=1).

This procedure does not scale along the band dimension.

If the source GeoRaster object is georeferenced with a valid polynomial transformation, the
georeferencing information for the resulting GeoRaster object is generated accordingly;
otherwise, the result GeoRaster object contains no spatial reference information.

An exception is raised if one or more of the following are true:
e inGeoRaster is invalid.
* outGeoRaster has not been initialized.

* Araster data table for outGeoRaster does not exist and outGeoRaster is not a blank
GeoRaster object.

Examples

The following example reduces an image to three-fourths (0.75) size, specifies AVERAGE 4
resampling, and specifies an optimized block size around 512 for each dimension in the
storage parameters. (It refers to a table named GEORASTER_TABLE, whose definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
grl sdo_georaster;
gr2 sdo_georaster;
BEGIN
INSERT INTO georaster table (georid, georaster)
VALUES (21, sdo geor.init ('RDT 1'))
RETURNING georaster INTO gr2;

SELECT georaster INTO grl FROM georaster table WHERE georid=2;

sdo_geor.scaleCopy(grl, 'scaleFactor=0.75"', 'resampling=AVERAGE4',
'blocking=optimalpadding blocksize=(512,512)"', gr2);
UPDATE georaster table SET georaster=gr2 WHERE georid=21;
COMMIT;
END;
/

ORACLE 7-166

Chapter 7
SDO_GEOR.schemaValidate

7.113 SDO_GEOR.schemaValidate

Format

SDO_GEOR.schemaValidate (
georaster IN SDO_GEORASTER
) RETURN VARCHARZ;

Description

Validates a GeoRaster object's metadata against the GeoRaster XML schema.
Parameters

georaster
GeoRaster object.

Usage Notes

This function returns the string TRUE if the metadata is valid, a null value if the GeoRaster
object or its metadata is null, or one or more Oracle error codes indicating why the metadata is
not valid and the exact location of the errors.

Use this function with the SDO_GEOR.validateGeoRaster function. If the
SDO_GEOR.validateGeoRaster function identifies a GeoRaster object as invalid with an error
code of 13454, the object's metadata is not valid according to the GeoRaster XML schema. If
this happens, call the SDO_GEOR.schemaValidate function to get specific information,
including the location in the metadata, about the errors.

Examples

The following example validates a GeoRaster object's metadata.

SELECT t.georid,
sdo_geor.schemavalidate (t.georaster)
FROM georaster table t
WHERE t.georid = 1;

7.114 SDO_GEOR.setBeginDateTime

ORACLE

Format

SDO_GEOR.setBeginDateTime (
georaster 1IN OUT SDO GEORASTER,
beginTime TIMESTAMP WITH TIME ZONE);

Description

Sets the beginning date and time for raster data collection in the metadata for a GeoRaster
object, or deletes the existing value if you specify a null beginTime parameter.

Parameters

georaster
GeoRaster object.

7-167

Chapter 7
SDO_GEOR.setBinFunction

beginTime
Time specification.

Usage Notes

To see the current beginning date and time (if any) in the metadata for the GeoRaster object,
use the SDO_GEOR.getBeginDateTime function.

An exception is raised if beginTime is later than the ending date and time specified in the
metadata for the GeoRaster object (see the SDO_GEOR.setEndDateTime procedure).

The GeoRaster object is automatically validated after the operation completes.

Examples

The following example sets the beginning and ending dates and times for raster data collection
in the metadata for a GeoRaster object. (It refers to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo _georaster;

BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setBeginDateTime (grobj, timestamp '2002-11-15 15:00:00");
sdo_geor.setEndDateTime (grobj, timestamp '2002-11-15 15:00:10');
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;

END;

/

7.115 SDO_GEOR.setBinFunction

Format

SDO_GEOR.setBinFunction (
georaster IN SDO GEORASTER,
layerNumber IN NUMBER
binFunction IN SDO NUMBER ARRAY);

Description

Sets the bin function associated with a layer.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the bin type. A value of 0 (zero) indicates the object
layer.

binFunction

Bin function as an array whose elements specify the bin type, total number of bins, first bin
number, minimum cell value, and maximum cell value. The SDO_NUMBER_ARRAY type is
defined as VARRAY (1048576) OF NUMBER. See the Usage Notes for more information and an
example.

ORACLE 7-168

Chapter 7
SDO_GEOR:.setBinTable

Usage Notes

A bin function maps values or value ranges of the GeoRaster cells to specific bin numbers,
which are all integers. If a bin function of type LINEAR is defined, it is used by the
SDO_GEOR.generateStatistics function for calculating statistics on cell values. GeoRaster
does not provide interfaces to manipulate and process bin functions.

The binFunction parameter specifies an array of five numbers, which have the following
meaning:

e The first number identifies the bin type, and must be 0 (LINEAR) or 1 (LOGARIGHM).
* The second number identifies the total number of bins.

e The third number identifies the number of the first bin.

e The fourth number is the minimum cell value in the range.

e The fifth number is the maximum cell value in the range.

For example, if binFunction is SDO_NUMBER ARRAY (0,10,1,0,511), the bin type is LINEAR,
there are 10 bins numbered 1 through 10 (that is, starting at 1), and cell values from 0 through
511 are uniformly distributed to bins 1 through 10.

An exception is raised if layerNumber is null, negative, or greater than the maximum layer
number.

Examples

The following example sets the bin function for layer 3 of a specified GeoRaster object, using
the binFunction parameter value explained in the Usage Notes.

DECLARE
gr sdo_georaster;
BEGIN
SELECT georaster INTO gr FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setBinFunction(gr, 3, sdo number array(0,10,1,0,511));
UPDATE georaster table SET georaster=gr WHERE georid=4;
END;
/

7.116 SDO_GEOR.setBinTable

ORACLE

Format

SDO_GEOR.setBinTable (
georaster IN OUT SDO GEORASTER,
layerNumber IN NUMBER,
tableName IN VARCHAR?) ;

Description

Sets the name of the bin table associated with a layer, or deletes the existing value if you
specify a null tableName parameter.

Note:

GeoRaster does not perform operations using the bin table in the current release.

7-169

Chapter 7
SDO_GEOR:.setBitmapMask

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to set the bin table name. A value of 0 (zero) indicates the
object layer.

tableName
Name of the bin table associated with a layer.

Usage Notes
The GeoRaster object is automatically validated after the operation completes.

This procedure is relevant only if the bin type is EXPLICIT. To retrieve the bin type, use the
SDO_GEOR.getBinType function.

To return the bin table for a layer, use the SDO_GEOR.getBinTable function.
See also the information in the Usage Notes for the SDO_GEOR.getBinType function.

An exception is raised if 1ayerNumber is null or invalid for the GeoRaster object, or if tableName
is an empty string (' ").

Examples

The following example sets BINT1 as the name of the bin table for layer number 3 of a
specified GeoRaster object in the GEORASTER_TABLE table, whose definition is presented
after Example 1-1 in Storage Parameters.

DECLARE
grobj sdo_georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setBinTable (grobj, 3, 'BINT1');
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

7.117 SDO_GEOR.setBitmapMask

Format

SDO_GEOR.setBitmapMask (
georaster IN OUT SDO_GEORASTER,
layerNumber IN NUMBER,
mask IN SDO GEORASTER,
NODATAMask IN VARCHAR2 DEFAULT NULL);

Description

Attaches a bitmap mask to a GeoRaster object, or replaces or removes the current bitmap
mask.

ORACLE 7-170

Chapter 7
SDO_GEOR:.setBlankCellValue

Parameters

georaster
GeoRaster object.

layerNumber
Layer with which to associate the bitmap mask. A value of 0 (zero) indicates the object layer.

mask
The bitmap mask to be attached to the GeoRaster object. If this parameter is null, any existing
bitmap mask associated with the specified layer of the GeoRaster object is removed.

NODATAMask

Specifies whether mask is to be interpreted as a NODATA mask. The string TRUE causes mask
to be interpreted as a NODATA mask; any other value (including null) causes mask not to be
interpreted as a NODATA mask.

Usage Notes

If the specified GeoRaster object or layer already has an associated bitmap mask, this
procedure replaces it with the specified mask, or removes it if the mask parameter specifies a
null value.

If the mask parameter value is not null, the bitmap mask must be a valid 1BIT GeoRaster object
with only one band, and the row and column dimension sizes of the bitmap mask must be the
same as those of the target GeoRaster object. It cannot be the same GeoRaster object as the
input GeoRaster object (georaster parameter).

This procedure raises an exception if the target GeoRaster object is a blank GeoRaster object.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example uses a GeoRaster object in the table GRTAB (where id=1) as the
bitmap mask to be attached to layer number 1 of an GeoRaster object in the
GEORASTER_TABLE (where georid=1). The bitmap mask will be interpreted as a NODATA
mask.

declare
gr sdo _georaster;
mk sdo georaster;
begin
select georaster into gr from georaster table where georid=1 for update;
select grobj into mk from grtab where id=1;
sdo geor.setBitmapMask(gr, 1, mk, 'true');
update georaster table set georaster=gr where georid=0;
commit;
end;

/

7.118 SDO_GEOR.setBlankCellValue

Format

SDO_GEOR.setBlankCellValue (
georaster IN OUT SDO GEORASTER,
value IN NUMBER) ;

ORACLE 7-171

Chapter 7
SDO_GEOR:.setColorMap

Description

Sets (modifies) the cell value to be used for all cells if a specified GeoRaster object is a blank
GeoRaster object.

Parameters

georaster
GeoRaster object.

value
Cell value to be used for the blank GeoRaster object. Cannot be a null value.

Usage Notes
In a blank GeoRaster object, all cells have the same cell value.
The GeoRaster object is automatically validated after the operation completes.

To return the blank cell value of a blank GeoRaster object, use the
SDO_GEOR:.getBlankCellValue function. To determine if a specified GeoRaster object is a
blank GeoRaster object, use the SDO_GEOR.isBlank function.

An exception is raised if value is null or inconsistent with the ce11Depth specification, or if the
GeoRaster object is not blank.

Examples

The following example specifies a value of 255 to be used for all cells in the GeoRaster object
column (GEORASTER) in the GEORASTER_TABLE table for the row with an GEORID column
value of 1. (The GEORASTER_TABLE table definition is presented after Example 1-1 in
Storage Parameters.)

DECLARE
grobj sdo georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=1 FOR UPDATE;
sdo_geor.setBlankCellValue (grobj, 255);
UPDATE georaster table SET georaster = grobj WHERE georid=1;
COMMIT;
END;
/

7.119 SDO_GEOR.setColorMap

Format

SDO_GEOR.setColorMap (
georaster IN OUT SDO_GEORASTER,
layerNumber IN NUMBER,
colorMap IN SDO_GEOR COLORMAP) ;

Description

Sets the colormap for a layer in a GeoRaster object, or deletes the existing value if you specify
a null colorMap parameter.

ORACLE 7-172

Chapter 7
SDO_GEOR.setColorMap

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

colorMap
Colormap object of type SDO_GEOR_COLORMAP, which is described in
SDO_GEOR_COLORMAP Object Type.

Usage Notes
The following must be true of the specified colormap object:

* The cellvalue values are consistent with and in the value range for the cellDepth value
of the GeoRaster object.

e The red, green, blue, and alpha values are integers from 0 to 255.
e The cellvalue array contains no duplicate entries.
e The entries in the cellValue array are in ascending order.

The GeoRaster object is automatically validated after the operation completes.

You can create a colormap or retrieve a colormap from an existing GeoRaster object for use.
To return the colormap for a layer in a GeoRaster object, use the SDO_GEOR.getColorMap
function.

An exception is raised if 1ayerNumber is null or invalid for the GeoRaster object, or if any of the
following exist in colorMap: the red, green, blue, or alpha value is null or out of scope; duplicate
values exist in the cellvalue array, or any cellValue values are null, out of scope, or out of
order.

Examples

The following example sets the colormap for layer 2 of the GeoRaster object (GEORASTER
column) in the row with the GEORID column value of 4 in the GEORASTER_TABLE table. It
assumes that the GeoRaster object is a bitmap. (The GEORASTER_TABLE table definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;
cmobj sdo_geor colormap;
BEGIN
cmobj := sdo _geor colormap(sdo number array
sdo_number array 255),

(1),

(
sdo_number array (0),

(

(

0,
0,
0,
sdo_number array (0, 0),
sdo_number array (255, 255));

SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setColorMap (grobj, 2, cmobj);
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

ORACLE 7-173

Chapter 7
SDO_GEOR.setColorMapTable

7.120 SDO_GEOR:.setColorMapTable

ORACLE

Format

SDO_GEOR.setColorMapTable (
georaster IN OUT SDO GEORASTER,
layerNumber IN NUMBER,
tableName IN VARCHAR?) ;

Description

Sets the colormap table for a layer in a GeoRaster object, or deletes the existing value if you
specify a null tableName parameter.

Note:

This procedure registers the colormap table name with GeoRaster; however,
GeoRaster does not perform operations using the colormap table in the current
release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

tableName
Name of the user-defined colormap table. SDO_GEOR_COLORMAP Object Type describes
colormaps.

Usage Notes
The GeoRaster object is automatically validated after the operation completes.

To return the colormap table for a layer in a GeoRaster object, use the
SDO_GEOR.getColorMapTable function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, or if tableName
is an empty string (' ').

Examples

The following example sets the colormap table to be null for layer 2 of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setColorMapTable (grobj, 2, null);
UPDATE georaster table SET georaster = grobj WHERE georid=4;

7-174

Chapter 7
SDO_GEOR.setControlPoint

COMMIT;
END;
/

7.121 SDO_GEOR:.setControlPoint

Format

SDO_GEOR.setControlPoint (
inGeoraster IN OUT SDO GEORASTER,
controlPoint IN SDO GEOR GCP);

Description

Adds a ground control point (GCP) for the GeoRaster object, or replaces an existing GCP if it
has the same ID value as the input control point.

Parameters

inGeoraster
GeoRaster object.

controlPoint
GCP to be added for inGeoraster. Must be an object of type SDO_GEOR_GCP, which is
described in SDO_GEOR_GCP Object Type.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

If the controlPoint is null, the function returns without performing any action. If a GCP is
found in the GeoRaster object metadata with the same point ID as defined in controlPoint,
that GCP is replaced; otherwise, this GCP is added to the georeferencing model.

Examples

The following example adds a GCP for a specified GeoRaster object.

DECLARE
grl sdo_georaster;
GCP SDO_GEOR_GCP;
BEGIN

SELECT georaster INTO grl from georaster table WHERE georid=10 FOR UPDATE;

GCP := SDO_GEOR_GCP('21', 'Updated’, 1,
2, sdo_number array(25.625000, 73.875000),
2, sdo_number array(237036.937500, 897987.187500),
NULL, NULL);
sdo_geor.setControlPoint(grl, GCP) ;
UPDATE georaster table SET georaster=grl WHERE georid=10;
COMMIT;
END;
/

ORACLE 7-175

Chapter 7
SDO_GEOR:.setDefaultAlpha

7.122 SDO_GEOR.setDefaultAlpha

ORACLE

Format

SDO_GEOR.setDefaultAlpha (
georaster IN OUT SDO_GEORASTER,
defaultAlpha IN NUMBER);

Description

Sets the number of the layer to be used for the alpha color component (in the RGBA color
space) for displaying a GeoRaster object, or deletes the existing value if you specify a null
defaultAlpha parameter.

Parameters

georaster
GeoRaster object.

defaultAlpha

Number of the layer to be used for the alpha color component (in the RGBA color space) for
displaying the specified GeoRaster object. Must be greater than O (zero) and less than or
equal to the highest layer number in the GeoRaster object.

Usage Notes

The default red, green, blue, and alpha values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended for use
only when visualizing multilayer or hyperspectral GeoRaster objects.

The GeoRaster object is automatically validated after the operation completes.

An exception is raised if you are trying to set the number of the layer to be used for the alpha
color component only, or if defaultAlpha is not a valid layer number for the GeoRaster object.

Examples

The following example sets the default red, green, blue, and alpha color layers for the
GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE table, and it returns
an array with the layer numbers for the red, green, blue, and alpha color components for
displaying these GeoRaster objects. (The GEORASTER_TABLE table definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;

BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setDefaultRed(grobj, 5);
sdo_geor.setDefaultGreen(grobj, 4);
sdo_geor.setDefaultBlue (grobj, 3);
sdo_geor.setDefaultAlpha(grobj, 2);
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;

END;

/

SELECT sdo_geor.getDefaultColorLayer (georaster) FROM georaster table
WHERE georid=4;

7-176

Chapter 7
SDO_GEOR.setDefaultBlue

SDO_GEOR.GETDEFAULTCOLORLAYER (GEORASTER)

SDO_NUMBER ARRAY (5, 4, 3, 2)

1 row selected.

7.123 SDO_GEOR.setDefaultBlue

ORACLE

Format

SDO_GEOR.setDefaultBlue (
georaster IN OUT SDO GEORASTER,
defaultBlue 1IN NUMBER);

Description

Sets the number of the layer to be used for the blue color component (in the RGB color space)
for displaying a GeoRaster object, or deletes the existing value if you specify a null
defaultBlue parameter.

Parameters

georaster
GeoRaster object.

defaultBlue

Number of the layer to be used for the blue color component (in the RGB color space) for
displaying the specified GeoRaster object. Must be greater than O (zero) and less than or
equal to the highest layer number in the GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for pseudocolor or
grayscale displays. These values are optional, and they are intended for use only when
visualizing multilayer or hyperspectral GeoRaster objects.

The GeoRaster object is automatically validated after the operation completes.

An exception is raised if you are trying to set or remove the number of the layer to be used for
the blue color component only, or if defaultBlue is not a valid layer number for the GeoRaster
object.

Examples

The following example sets the default red, green, and blue color layers for the GeoRaster
objects (GEORASTER column) in the GEORASTER_TABLE table, and it returns an array with
the layer numbers for the red, green, and blue color components for displaying these
GeoRaster objects. (The GEORASTER_TABLE table definition is presented after Example 1-1
in Storage Parameters.)

DECLARE
grobj sdo_georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setDefaultRed(grobj, 5);
sdo_geor.setDefaultGreen(grobj, 4);
sdo_geor.setDefaultBlue (grobj, 3);
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT,;

7-177

Chapter 7
SDO_GEOR.setDefaultColorLayer

END;
/

SELECT sdo_geor.getDefaultColorLayer (georaster) FROM georaster table
WHERE georid=4;

SDO_GEOR.GETDEFAULTCOLORLAYER (GEORASTER)

SDO_NUMBER ARRAY (5, 4, 3)

1 row selected.

7.124 SDO_GEOR:.setDefaultColorLayer

ORACLE

Format

SDO_GEOR.setDefaultColorLayer (
georaster IN OUT SDO_GEORASTER,
defaultRGB IN SDO NUMBER ARRAY);

Description

Sets the default numbers of the layers to be used for the red, green, blue, and alpha color
components, respectively, for displaying a GeoRaster object, or deletes the existing values if
you specify a null defaultRGB parameter.

Parameters

georaster
GeoRaster object.

defaultRGB

Array of three or four numbers identifying the red, green, blue, and alpha color components,
respectively, for displaying the specified GeoRaster object. Each number must be greater than
0 (zero) and less than or equal to the highest layer number in the GeoRaster object.

Usage Notes

The RGBA layer numbers specified are used for true-color displays, not for pseudocolor or
grayscale displays.

The GeoRaster object is automatically validated after the operation completes.

You can set the layer number for each color component (RGB) by using the
SDO_GEOR.setDefaultRed, SDO_GEOR:.setDefaultGreen, SDO_GEOR.setDefaultBlue, and
SDO_GEOR:.setDefaultAlpha procedures.

The default RGBA layer numbers must be set or removed at the same time. The default alpha
layer number is optional. If the default red, green, and blue layer numbers are set, the default
alpha layer number can be set. If the default red, green, and blue layer numbers are removed,
the default alpha layer number must also be removed.

Because the default alpha layer is optional, you can either (A) set the default red, green, and
blue color components only by providing three numbers to this procedure or (B) set the default
red, green, blue, and alpha color components by providing four numbers to this procedure. If
defaultRGB is an array of three numbers, it identifies the red, green and blue color components
only. If defaultRGB is an array of four numbers, it identifies the red, green, blue, and alpha
components.

7-178

Chapter 7
SDO_GEOR.setDefaultGreen

An exception is raised if defaultRGB is of the wrong size or if any elements in it are null or are
invalid layer numbers for the GeoRaster object.

Examples

The following example specifies that layer number 1 is to be used for the red, green, blue. and
alpha color components for displaying the GeoRaster object (GEORASTER column) in the row
with an GEORID column value of 2 in the GEORASTER_TABLE table. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=2 FOR UPDATE;
sdo_geor.setDefaultColorLayer (grobj, sdo number array(l,1,1,1));
UPDATE georaster table SET georaster = grobj WHERE georid=2;
COMMIT;
END;
/

7.125 SDO_GEOR:.setDefaultGreen

ORACLE

Format

SDO_GEOR.setDefaultGreen (
georaster IN OUT SDO_GEORASTER,
defaultGreen 1IN NUMBER);

Description

Sets the number of the layer to be used for the green color component (in the RGB color
space) for displaying a GeoRaster object, or deletes the existing value if you specify a null
defaultGreen parameter.

Parameters

georaster
GeoRaster object.

defaultGreen

Number of the layer to be used for the green color component (in the RGB color space) for
displaying the specified GeoRaster object. Must be greater than O (zero) and less than or
equal to the highest layer number in the GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for pseudocolor or
grayscale displays. These values are optional, and they are intended for use only when
visualizing multilayer or hyperspectral GeoRaster objects.

The GeoRaster object is automatically validated after the operation completes.

An exception is raised if you are trying to set or remove the number of the layer to be used for
the green color component only, or if defaultGreen is not a valid layer number for the
GeoRaster object.

7-179

Chapter 7
SDO_GEOR:.setDefaultPyramidLevel

Examples

The following example sets the default red, green, and blue color layers for the GeoRaster
objects (GEORASTER column) in the GEORASTER_TABLE table, and it returns an array with
the layer numbers for the red, green, and blue color components for displaying these
GeoRaster objects. (The GEORASTER_TABLE table definition is presented after Example 1-1
in Storage Parameters.)

DECLARE
grobj sdo_georaster;

BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setDefaultRed(grobj, 5);
sdo_geor.setDefaultGreen(grobj, 4);
sdo_geor.setDefaultBlue (grobj, 3);
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT,;

END;

/

SELECT sdo_geor.getDefaultColorLayer (georaster) FROM georaster table
WHERE georid=4;

SDO_GEOR.GETDEFAULTCOLORLAYER (GEORASTER)

SDO_NUMBER ARRAY (5, 4, 3)

1 row selected.

7.126 SDO_GEOR:.setDefaultPyramidLevel

ORACLE

Format

SDO_GEOR.setDefaultPyramidLevel (
georaster IN OUT SDO_GEORASTER,
defaultPyramidLevel IN NUMBER);

Description

Sets the number of the layer to be used for the default pyramid level for displaying a
GeoRaster object, or deletes the existing value if you specify a null defaultPyramidLevel
parameter.

Parameters

georaster
GeoRaster object.

defaultPyramidLevel

The default pyramid level for displaying the specified GeoRaster object. Must be greater than
or equal to 0 (zero) and less than or equal to the maximum pyramid level in the GeoRaster
object.

Usage Notes

Pyramid levels represent reduced or increased resolution images that require less or more
storage space, respectively. For information about pyramids and pyramid levels, see Pyramids.

7-180

Chapter 7
SDO_GEOR:.setDefaultRed

Specifying a default pyramid level is an optional operation, and is intended for use only when
visualizing GeoRaster objects with pyramids generated.

The GeoRaster object is automatically validated after the operation completes.

When pyramids are removed from a GeoRaster object by any other operation (such as
SDO_GEOR:.deletePyramid or SDO_GEOR.subset), the default pyramid level for the object is
also removed from the metadata.

An exception is raised if there are no pyramids generated for the GeoRaster object, or if
defaultPyramidLevel is not a valid pyramid level number for the GeoRaster object.

You can get the default pyramid level by using the SDO_GEOR.getDefaultPyramidLevel
function.

Examples

The following example generates the pyramids and sets the default pyramid level for a
specified GeoRaster object (GEORASTER column) in the GEORASTER_TABLE table, and it
returns the default pyramid level set for the GeoRaster object. (The GEORASTER_TABLE
table definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo georaster;

BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=6 FOR UPDATE;
sdo_geor.generatePyramid(grobj, 'rLevel=5, resampling=NN');
sdo_geor.setDefaultPyramidLevel (grobj, 3);
UPDATE georaster table SET georaster = grobj WHERE georid=6;
COMMIT;

END;

/

SELECT georid, sdo geor.getDefaultPyramidLevel (georaster) FROM georaster table
WHERE georid=6;

GEORID PLEVEL

7.127 SDO_GEOR.setDefaultRed

ORACLE

Format

SDO_GEOR.setDefaultRed (
georaster IN OUT SDO GEORASTER,
defaultRed 1IN NUMBER);

Description

Sets the number of the layer to be used for the red color component (in the RGB color space)
for displaying a GeoRaster object, or deletes the existing value if you specify a null defaultRed
parameter.

Parameters

georaster
GeoRaster object.

7-181

Chapter 7
SDO_GEOR.setEndDateTime

defaultRed

Number of the layer to be used for the red color component (in the RGB color space) for
displaying the specified GeoRaster object. Must be greater than O (zero) and less than or
equal to the highest layer number in the GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for pseudocolor or
grayscale displays. These values are optional, and they are intended for use only when
visualizing multilayer or hyperspectral GeoRaster objects.

The GeoRaster object is automatically validated after the operation completes.

An exception is raised if you are trying to set or remove the number of the layer to be used for
the red color component only, or if defaultRed is not a valid layer number for the GeoRaster
object.

Examples

The following example sets the default red, green, and blue color layers for the GeoRaster
objects (GEORASTER column) in the GEORASTER_TABLE table, and it returns an array with
the layer numbers for the red, green, and blue color components for displaying these
GeoRaster objects. (The GEORASTER_TABLE table definition is presented after Example 1-1
in Storage Parameters.)

DECLARE
grobj sdo_georaster;

BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setDefaultRed(grobj, 5);
sdo_geor.setDefaultGreen(grobj, 4);
sdo_geor.setDefaultBlue (grobj, 3);
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;

END;

/

SELECT sdo_geor.getDefaultColorLayer (georaster) FROM georaster table
WHERE georid=4;

SDO_GEOR.GETDEFAULTCOLORLAYER (GEORASTER)

SDO_NUMBER ARRAY (5, 4, 3)

1 row selected.

7.128 SDO_GEOR:.setEndDateTime

ORACLE

Format

SDO_GEOR.setEndDateTime (
georaster IN OUT SDO GEORASTER,
endTime IN TIMESTAMP WITH TIME ZONE);

Description

Sets the ending date and time for raster data collection in the metadata for a GeoRaster object,
or deletes the existing value if you specify a null endTime parameter.

7-182

Chapter 7
SDO_GEOR.setGCPGeorefMethod

Parameters

georaster
GeoRaster object.

endTime
Time specification.

Usage Notes
The GeoRaster object is automatically validated after the operation completes.

To see the current ending date and time (if any) in the metadata for the GeoRaster object, use
the SDO_GEOR.getEndDateTime function.

An exception is raised if endTime is earlier than the beginning date and time specified in the
metadata for the GeoRaster object (see the SDO_GEOR.setBeginDateTime procedure).

Examples

The following example sets the beginning and ending dates and times for raster data collection
in the metadata for a GeoRaster object. (It refers to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;

BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setBeginDateTime (grobj, timestamp '2002-11-15 15:00:00");
sdo_geor.setEndDateTime (grobj, timestamp '2002-11-15 15:00:10');
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT,;

END;

/

7.129 SDO_GEOR.setGCPGeorefMethod

ORACLE

Format

SDO_GEOR. setGCPGeorefMethod (
inGeoraster IN OUT SDO_GEORASTER
gcpGeorefMethod IN VARCHAR2);

Description

Sets the GCP-based georeferencing geometric model type of a GeoRaster object.

Parameters

inGeoraster
GeoRaster object.

gcpGeorefMethod

Georeferencing geometric model type to set for the GeoRaster object. Its value must be one
of following strings: Affine, QuadraticPolynomial, CubicPolynomial, DLT,
QuadraticRational, or RPC

7-183

Chapter 7
SDO_GEOR.setGCPGeorefModel

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

If inGeoraster does not contain GCP-based georeferencing information, no action is
performed; otherwise, the existing model type is replaced with the specified gcpGeorefMethod
value.

The procedure just set the model type value; no new solution is calculated. To get the solution
for the newly set model type, use the SDO_GEOR.georeference function.

Examples

The following example sets the GCP-based georeferencing geometric model type of a
specified GeoRaster object, and updates the object.

DECLARE
grl sdo_georaster;
BEGIN
SELECT georaster INTO grl from georaster table WHERE georid=10 FOR UPDATE;
sdo_geor.setGCPGeorefMethod (grl, 'DLT');
UPDATE georaster table SET georaster=grl WHERE georid=10;
COMMIT;
END;
/

7.130 SDO_GEOR.setGCPGeorefModel

ORACLE

Format

SDO_GEOR. setGCPGeorefModel (
inGeoraster IN OUT SDO_GEORASTER
gcpGeorefModel 1IN SDO _GEOR GCPGEOREFTYPE) ;

Description

Sets the GCP-based georeferencing model information for a GeoRaster object.

Parameters

inGeoraster
GeoRaster object.

gcpGeorefModel
Object containing the following: FFMethodType, nGCP, GCPs, solutionAccuracy.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

The SDO_GEOR_GCPGEOREFTYPE object type is defined in
SDO_GEOR_GCPGEOREFTYPE Object Type.

This procedure stores the GCP information in the GeoRaster SRS metadata component. If
gcpGeorefModel is null and if the GeoRaster object has a georeferencing model, this model
information will be deleted.

7-184

Chapter 7
SDO_GEOR.setGrayScale

If there are not enough GCPs specified in gcpGeorefModel for the geometric model specified,
the function will still succeed, but an exception will be raised if the SDO_GEOR.georeference
is called specifying this GeoRaster object.

Examples

The following example sets the GCP-based georeferencing model information in a specified
GeoRaster object.

DECLARE
grl sdo_georaster;
georefModel SDO GEOR GCPGEOREFTYPE;
GCPs SDO_GEOR GCP_COLLECTION;
rms sdo_number array;

BEGIN

SELECT georaster INTO grl from herman.georaster table WHERE georid=10 FOR UPDATE;

GCPs:=SDO_GEOR GCP_COLLECTION (
SDO_GEOR GCP('21', "', 1,

2, sdo number array(25.625000, 73.875000),

2, sdo number array(237036.937500, 897987.187500),

NULL, NULL),

SDO_GEOR GCP('22', '', 1,

2, sdo number array(100.625000, 459.125000),

2, sdo number array(237229.562500, 897949.687500),

NULL, NULL),

SDO_GEOR GCP('23', '', 1,
2, sdo number array(362.375000, 77.875000),
2, sdo number array(237038.937500, 897818.812500),
NULL, NULL),
SDO_GEOR GCP('24', "', 1,
2, sdo _number array(478.875000, 402.125000),
2, sdo number array(237201.062500, 897760.562500),
NULL, NULL),
SDO_GEOR GCP('25', '', 2,
2, sdo number array(167.470583, 64.030686),
2, sdo number array(237032.015343, 897916.264708),
NULL, NULL),
SDO_GEOR GCP('26', '', 2,
2, sdo _number array(101.456177, 257.915534),
2, sdo number array(237128.957767, 897949.271912),
NULL, NULL)
)i

georefModel := SDO GEOR GCPGEOREFTYPE ('Affine’,
GCPs.count,

GCPs, rms);
sdo_geor.setGCPGeorefModel (grl, georefModel);
UPDATE georaster table SET georaster=grl WHERE georid=10;

COMMIT;

END;
/

7.131 SDO_GEOR.setGrayScale

Format

SDO_GEOR.setGrayScale (
georaster IN OUT SDO_GEORASTER,

ORACLE 7-185

ORACLE

Chapter 7
SDO_GEOR.setGrayScale

layerNumber IN NUMBER,
grayScale IN SDO_GEOR GRAYSCALE) ;

Description

Sets the grayscale mappings for a layer in a GeoRaster object, or deletes the existing values if
you specify a null grayScale parameter.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to set the grayscale mappings. A value of 0 (zero) indicates the
object layer.

grayScale
An object of type SDO_GEOR_GRAYSCALE, which is described in
SDO_GEOR_GRAYSCALE Object Type.

Usage Notes
The following must be true of the specified SDO_GEOR_GRAYSCALE object:

e The cellvalue values are consistent with and in the value range for the cellDepth value
of the GeoRaster object.

e The gray value is an integer from 0 to 255.

* The cellvalue array contains no duplicate entries.

* The entries in the cellvalue array are in ascending order.

The GeoRaster object is automatically validated after the operation completes.

To return the grayscale mappings for a layer in a GeoRaster object, use the
SDO_GEOR.getGrayScale function.

An exception is raised if 1ayerNumber is null or invalid for the GeoRaster object, any gray
values are null or out of scope, the cellvalue array contains any duplicate values, or any
cellvalue values are null, out of scope, or out of order.

Examples

The following example sets the grayscale mappings for layer 3 of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo _georaster;
gsobj sdo geor grayscale;
BEGIN
gsobj := sdo_geor grayscale(sdo number array(l, 10, 20, 30, 255),
sdo_number array(0, 180, 210, 230, 250));

SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setGrayScale(grobj, 3, gsobj);

UPDATE georaster table SET georaster = grobj WHERE georid=4;

COMMIT,;

7-186

Chapter 7
SDO_GEOR.setGrayScaleTable

END;

7.132 SDO_GEOR.setGrayScaleTable

ORACLE

Format

SDO_GEOR.setGrayScaleTable (
georaster IN OUT SDO GEORASTER,
layerNumber IN NUMBER,
tableName IN VARCHAR?) ;

Description

Sets the grayscale mapping table for a layer in a GeoRaster object, or deletes the existing
value if you specify a null tableName parameter.

Note:

This procedure registers the grayscale mapping table name with GeoRaster;
however, GeoRaster does not perform operations using the grayscale mapping table
in the current release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to set the grayscale mapping table. A value of O (zero) indicates
the object layer.

tableName
Name of the grayscale mapping table for a layer in the specified GeoRaster object.

Usage Notes
SDO_GEOR_GRAYSCALE Object Type describes grayscale display.
The GeoRaster object is automatically validated after the operation completes.

To return the grayscale mapping table for a layer in a GeoRaster object, use the
SDO_GEOR.getGrayScaleTable function.

An exception is raised if 1ayerNumber is null or invalid for the GeoRaster object, or if tableName
is an empty string (' ').

Examples

The following example sets GST1 as the grayscale mapping table for layer 3 of the GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo georaster;

7-187

Chapter 7
SDO_GEOR.setHistogramTable

BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setGrayScaleTable (grobj, 3, 'GST1');
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

7.133 SDO_GEOR:.setHistogramTable

ORACLE

Format

SDO_GEOR.setHistogramTable (
georaster IN OUT SDO GEORASTER,
layerNumber IN NUMBER
tableName IN VARCHAR?2) ;

Description

Sets the histogram table for a layer in a GeoRaster object.

Note:

This procedure registers the histogram table name with GeoRaster; however,
GeoRaster does not perform operations using the histogram table in the current
release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to set the name of the histogram table. A value of 0 (zero)
indicates the object layer.

tableName

Name of the histogram table. If this parameter is null, the metadata information for any
existing histogram table (but not the actual table) is deleted. If there is no statistics information
for the layer, this parameter must be null. The parameter value cannot be an empty string (that
is, it cannot be ').

Usage Notes

This procedure specifies a user-defined histogram table. SDO_GEOR_HISTOGRAM Object
Type briefly discusses histograms.

To return the name of the histogram table for a layer, use the SDO_GEOR.getHistogramTable
function.

An exception is raised if one or more of the following are true:
e layerNumber is null or invalid for the GeoRaster object,.
° tableName is an empty string ('').

e The statistical data associated with the specified layer is not set.

7-188

Chapter 7
SDO_GEOR.setID

To set the statistical data for a layer, call the SDO_GEOR.setStatistics procedure.

Examples

The following example sets HIST1 as the histogram table for layer 3 of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setHistogramTable (grobj, 3, 'HIST1');
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT,;
END;
/

7.134 SDO_GEOR.setID

ORACLE

Format

SDO_GEOR.setID(
georaster IN OUT SDO GEORASTER,
id IN VARCHARZ) ;

Description

Sets a user-defined identifier to be associated with a GeoRaster object, or deletes the existing
value if you specify a null id parameter.

Parameters

georaster
GeoRaster object.

id
ID value to be associated with the GeoRaster object.

Usage Notes

This procedure is useful for assigning unique meaningful alphanumeric identifiers to
GeoRaster objects, so that users and applications can easily identify the objects.

The GeoRaster object is automatically validated after the operation completes.

To return the user-defined identifier value for a GeoRaster object, use the SDO_GEOR.getID
function.

Examples

The following example sets newid as the user-defined identifier value of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 2 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo georaster;
BEGIN

7-189

Chapter 7
SDO_GEOR.setLayerlD

SELECT georaster INTO grobj FROM georaster table WHERE georid=2 FOR UPDATE;
sdo_geor.setID(grobj, 'newid');
UPDATE georaster table SET georaster = grobj WHERE georid=2;
COMMIT;
END;
/

7.135 SDO_GEOR.setLayerID

Format

SDO_GEOR.setLayerID(
georaster IN OUT SDO GEORASTER,
layerNumber IN NUMBER,
id IN VARCHAR2) ;

Description

Sets a user-defined identifier to be associated with a layer in a GeoRaster object, or deletes
the existing value if you specify a null 1d parameter.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

id
ID value to be associated with the specified layer in the GeoRaster object.

Usage Notes
The GeoRaster object is automatically validated after the operation completes.

To return the user-defined identifier value for a layer in a GeoRaster object, use the
SDO_GEOR.getLayerID function.

An exception is raised if 1ayerNumber is null or invalid for the GeoRaster object, or if id is null
yet the corresponding layer information does exist.

Examples

The following example sets TM Band 2 as the user-defined identifier value of layer 2 in the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setLayerID(grobj, 2, 'TM Band 2');
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

ORACLE 7-190

Chapter 7
SDO_GEOR.setLayerOrdinate

7.136 SDO_GEOR:.setLayerOrdinate

ORACLE

Format

SDO_GEOR.setLayerOrdinate (
georaster IN OUT SDO GEORASTER,
layerNumber IN NUMBER,
ordinate IN NUMBER) ;

Description

Sets the band ordinate value for a specified layer in a GeoRaster object, or deletes the existing
value if you specify a null ordinate parameter.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

ordinate
Band ordinate value of the layer along the band dimension.

Usage Notes

The band ordinate of the layer refers to the physical band that a layer (LayerNumber parameter
value) is associated with. For the current release, the associations must be as shown in
Figure 1-5 in Bands_ Layers_ and Metadata: layer 1 is band 0, layer 2 is band 1, and so on.

The band ordinate for the object layer is ignored by GeoRaster.
The GeoRaster object is automatically validated after the operation completes.
To return the band ordinate value for a layer, use the SDO_GEOR.getLayerOrdinate function.

An exception is raised if 1ayerNumber is null or invalid for the GeoRaster object, if ordinate is
null, or if ordinate does not equal 1ayerNumber-1 when layerNumber does not specify the
object layer.

Examples

The following example sets the band ordinate value for layer 1 to be 0 (zero) in the GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setlLayerOrdinate (grobj, 1, 0);
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

7-191

Chapter 7
SDO_GEOR.setModelCoordLocation

7.137 SDO_GEOR.setModelCoordLocation

Format

SDO_GEOR.setModelCoordLocation (
georaster IN OUT SDO_GEORASTER
modelCoordLoc IN VARCHAR2);

Description

Sets the model coordinate location value for a GeoRaster object, or deletes the current model
coordinate location value (if any) if the mode1CoordLoc parameter is specified as null.

Parameters

georaster
GeoRaster object.

modelCoordLoc

Model coordinate location to set for the GeoRaster object. It must be specified as either null
(to delete any current model coordinate location value) or one of the following string values:
CENTER (the cell coordinate system is center-based) or UPPERLEFT (the cell coordinate system
is based on the upper-left corner).

Usage Notes

This procedure enables you to change the cell coordinate system from CENTER to
UPPERLEFT or from UPPERLEFT to CENTER.

This procedure applies only to georeferenced GeoRaster objects, and it automatically adjusts
the functional fitting coefficients of the GeoRaster SRS accordingly to reflect the change (to
ensure that the relationship between cell coordinates and model coordinates does not change).

To get the model coordinate location value for a GeoRaster object, use the
SDO_GEOR.getModelCoordLocation function.

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

Examples
The following example changes the cell coordinate system to CENTER for a GeoRaster object.

DECLARE
grobj sdo georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setModelCoordLocation(grobj, 'CENTER');
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

ORACLE 7-192

Chapter 7
SDO_GEOR.setModelSRID

7.138 SDO_GEOR.setModelSRID

Format

SDO_GEOR. setModel SRID (
georaster IN OUT SDO GEORASTER,
srid IN NUMBER) ;

Description

Sets the coordinate system (SDO_SRID value) for the model (ground) space for a GeoRaster
object, or deletes the existing value if you specify a null srid parameter and the GeoRaster
metadata does not contain spatial reference information.

Parameters

georaster
GeoRaster object.

srid

Coordinate system. Must be a value from the SRID column of the MDSYS.CS_SRS table if
the GeoRaster metadata contains spatial reference information; or must be null (causing no
coordinate system associated with the model space) if the GeoRaster metadata does not
contain spatial reference information. The srid value cannot be 0 (zero).

Usage Notes
The GeoRaster object is automatically validated after the operation completes.

If the original GeoRaster object had a different model space SRID value, this procedure does
not change the raster data itself and it does not adjust the georeferencing coefficients
accordingly. In other words, this procedure does not cause any reprojection or resampling on
the cell data of the GeoRaster object, and you must specify the correct SRID.

To return the coordinate system (SDO_SRID value) associated with the model space for a
GeoRaster object, use the SDO_GEOR.getModelSRID function.

Examples

The following example changes the coordinate system for a GeoRaster object to Longitude /
Latitude (WGS 66), which is the coordinate system associated with SRID value 82394 in the
MDSYS.CS_SRS system table. (The example refers to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setModelSRID(grobj, 82394);
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

ORACLE 7-193

Chapter 7
SDO_GEOR.setNODATAMask

7.139 SDO_GEOR.setNODATAMask

Format

SDO_GEOR. setNODATAMask (
georaster IN OUT SDO_GEORASTER,
layerNumber IN NUMBER,
1sNODATAMask IN VARCHAR2);

Description

Specifies whether a bitmap mask of the specified GeoRaster layer is a NODATA mask, and
updates the GeoRaster metadata accordingly.

Parameters

georaster
GeoRaster object.

layerNumber
Layer with the relevant bitmap mask. A value of 0 (zero) indicates the object layer.

mask
The bitmap mask to be attached to the GeoRaster object. If this parameter is null, any existing
bitmap mask associated with the specified layer of the GeoRaster object is removed.

isSNODATAMask

Specifies whether the bitmap mask of the 1ayerNumber layer is to be interpreted as a NODATA
mask. The string TRUE causes that bitmap mask to be interpreted as a NODATA mask; the
string FALSE causes that bitmap mask not to be interpreted as a NODATA mask.

Usage Notes

For information about a bitmap mask being treated as a special type of NODATA, that is, a
NODATA mask specifying one or more irregular areas as NODATA areas, see NODATA Values
and Value Ranges.

Examples
The following example sets the bitmap mask of sublayer 1 to be a NODATA mask.

declare
gr sdo_georaster;
begin
select georaster into gr from georaster table where georid=1 for update;
sdo geor.setNODATAMask (gr, 1, 'true');
update georaster table set georster=gr where georid=1;
commit;
end;

7.140 SDO_GEOR:.setOrthoRectified

Format

SDO_GEOR.setOrthoRectified(
georaster IN OUT SDO_GEORASTER,
isOrthoRectified 1IN VARCHAR2);

ORACLE 7-194

Chapter 7
SDO_GEOR.setRasterType

Description

Specifies whether or not a GeoRaster object is orthorectified, or deletes the existing value if
you specify a null isOrthoRectified parameter.

Parameters

georaster
GeoRaster object.

isOrthoRectified

Specify TRUE to specify that the GeoRaster object is orthorectified, FALSE to specify that the
GeoRaster object is not orthorectified, or null if the GeoRaster metadata does not contain
spatial reference information. Must be TRUE or FALSE (case-insensitive) if the GeoRaster
metadata contains spatial reference information.

Usage Notes

This procedure modifies the GeoRaster metadata for the object. It does not actually
orthorectify the object. Users are responsible for ensuring that orthorectification is performed.

The GeoRaster object is automatically validated after the operation completes.

To be set as orthorectified, a GeoRaster object must be spatially referenced and rectified.

Examples

The following example identifies the GeoRaster object (GEORASTER column) in the row with
the GEORID column value of 4 in the GEORASTER_TABLE table as orthorectified. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setOrthoRectified(grobj, 'TRUE');
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

7.141 SDO_GEOR.setRasterType

ORACLE

Format

SDO_GEOR.setRasterType (
georaster IN OUT SDO_GEORASTER,
rasterType IN NUMBER);

Description

Sets the raster type of a GeoRaster object.
Parameters

georaster
GeoRaster object.

7-195

Chapter 7
SDO_GEOR.setRectified

rasterType
Numeric value to be set as the rasterType attribute of the GeoRaster object. Must be a valid 5-
digit numeric value, in the format described in rasterType Attribute.

Usage Notes
The GeoRaster object is automatically validated after the operation completes.

An exception is raised if rasterType is null or if the first three digits of the existing rasterType
value are changed.

Examples

The following example sets the rasterType attribute value of a GeoRaster object to 20001. (It
refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=2 FOR UPDATE;
sdo_geor.setRasterType (grobj, 20001);
UPDATE georaster table SET georaster = grobj WHERE georid=2;
COMMIT;
END;
/

7.142 SDO_GEOR:.setRectified

ORACLE

Format

SDO_GEOR.setRectified(
georaster IN OUT SDO_GEORASTER,
isRectified IN VARCHARZ);

Description

Specifies whether or not a GeoRaster object is rectified, or deletes the existing value if you
specify a null isRectified parameter.

Parameters

georaster
GeoRaster object.

isRectified

Specify TRUE to specify that the GeoRaster object is rectified, FALSE to specify that the
GeoRaster object is not rectified, or null if the GeoRaster metadata does not contain spatial
reference information. Must be TRUE or FALSE (case-insensitive) if the GeoRaster metadata
contains spatial reference information.

Usage Notes

This procedure modifies the GeoRaster metadata for the object. It does not actually rectify the
object. Users are responsible for ensuring that rectification is performed. (To rectify or
orthorectify a GeoRaster object, you can use the SDO_GEOR:.rectify procedure.)

The GeoRaster object is automatically validated after the operation completes.

7-196

Chapter 7
SDO_GEOR.setScaling

A GeoRaster object must be spatially referenced if you want to set isRectified to TRUE (see
the SDO_GEOR:.setSpatialReferenced procedure).

Examples

The following example identifies the GeoRaster object (GEORASTER column) in the row with
the GEORID column value of 4 in the GEORASTER_TABLE table as not rectified. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo geor.setRectified(grobj, 'false');
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

7.143 SDO_GEOR.setScaling

ORACLE

Format

SDO_GEOR.setScaling (
georaster IN OUT SDO_GEORASTER,
layerNumber IN NUMBER,
scalingFunc IN SDO NUMBER ARRAY);

Description

Sets the scaling function associated with a layer, or deletes the existing value if you specify a
null scalingFunc parameter.

Note:

GeoRaster does not perform operations using the scaling function in the current
release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

scalingFunc
An array of numeric values, with one value for each coefficient in the scaling function. The
scaling function is as follows:

value = (ag + a; * cellvalue) / (by + by * cellvalue)

The order of the coefficients is: ag, a;, bg, b;.

7-197

Chapter 7
SDO_GEOR.setSourcelnfo

Usage Notes
The GeoRaster object is automatically validated after the operation completes.

An exception is raised if 1ayerNumber is null or invalid for the GeoRaster object; if scalingFunc
is of the wrong array size; if one of ag, a1, bg, and by is null; or if both by and b, are 0 (zero).

Examples

The following example sets the coefficients of the scaling function for layer 2 of a GeoRaster
object. (It refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setScaling(grobj, 2, sdo number array(l, 0.5, 1, 0));
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

7.144 SDO_GEOR.setSourcelnfo

ORACLE

Format

SDO_GEOR.setSourceInfo(
georaster IN OUT SDO GEORASTER,
sourceInfo IN VARCHAR2);

Description

Sets the source information for a GeoRaster object, or deletes the existing value if you specify
a null sourceInfo parameter.

Parameters

georaster
GeoRaster object.

sourcelnfo
String with source information. Cannot exceed 4096 characters.

Usage Notes

The specified sourceInfo string is stored in the <sourceInfo> element in the metadata for the
GeoRaster object (described in GeoRaster Metadata XML Schema).

This procedure replaces any existing source information value or values. If you want to keep
any existing values and add one or more values, use the SDO_GEOR.addSourcelnfo
procedure.

Examples

The following example sets and adds some source information for a specified GeoRaster
object, and then retrieves the information.

7-198

Chapter 7
SDO_GEOR.setSpatialReferenced

declare

gr sdo_georaster;

begin
select georaster into gr from georaster table where georid=1 for update;
sdo_geor.setSourceInfo(gr, 'Copyright (c) 2002, 2007, Oracle Corporation.');
sdo_geor.addSourcelInfo(gr, 'All rights reserved.');

update georaster table set georaster=gr where georid=1;

end;

/

select * from table(select sdo geor.getSourcelnfo(georaster) from georaster table where
id=1);

COLUMN_ VALUE

Copyright (c) 2002, 2007, Oracle Corporation.
All rights reserved.

7.145 SDO_GEOR.setSpatialReferenced

ORACLE

Format

SDO_GEOR.setSpatialReferenced (
georaster IN OUT SDO_GEORASTER,
isReferenced IN VARCHAR?2);

Description

Specifies whether or not a GeoRaster object is spatially referenced, or deletes the existing
value if you specify a null isReferenced parameter.

Parameters

georaster
GeoRaster object.

isReferenced

Specify TRUE to specify that the GeoRaster object is spatially referenced, FALSE to specify that
the GeoRaster object is not spatially referenced, or null if the GeoRaster metadata does not
contain spatial reference information. Must be TRUE or FALSE (case-insensitive) if the
GeoRaster metadata contains spatial reference information.

Usage Notes
This procedure sets the GeoRaster object to be spatially referenced or not spatially referenced.

The GeoRaster object is automatically validated after the operation completes.

Examples

The following example sets the GeoRaster object (GEORASTER column) in the row with the
GEORID column value of 4 in the GEORASTER_TABLE table as not spatially referenced. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setSpatialReferenced(grobj, 'FALSE');
UPDATE georaster table SET georaster = grobj WHERE georid=4;

7-199

Chapter 7
SDO_GEOR:.setSpatialResolutions

COMMIT;
END;
/

7.146 SDO_GEOR:.setSpatialResolutions

Format

SDO_GEOR.setSpatialResolutions (
georaster IN OUT SDO GEORASTER,
resolutions 1IN SDO NUMBER ARRAY);

Description

Sets the spatial resolution value along each spatial dimension of a GeoRaster object, or
deletes the existing values if you specify a null resolutions parameter.

Parameters

georaster
GeoRaster object.

resolutions

An array of numeric values, one for each spatial dimension. Each value indicates the number
of units of measurement associated with the data area represented by that spatial dimension
of a pixel. For example, if the spatial resolution values are (10,10) and the unit of
measurement for the ground data is meters, each pixel represents an area of 10 meters by 10
meters.

Usage Notes
The GeoRaster object is automatically validated after the operation completes.

If resolutions is not null and if the GeoRaster metadata currently does not contain spatial
reference information, this procedure adds spatial reference information with minimum default
values.

See also the Usage Notes for the SDO_GEOR.getSpatialResolutions function.

Examples

The following example sets the spatial resolution values along the column and row (X and Y)
dimensions of a GeoRaster object. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
grobj sdo_georaster;
BEGIN
SELECT georaster INTO grobj FROM georaster table WHERE georid=4 FOR UPDATE;
sdo_geor.setSpatialResolutions(grobj, sdo number array(28.5,28.5));
UPDATE georaster table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

ORACLE 7-200

Chapter 7
SDO_GEOR.setSpectralResolution

7.147 SDO_GEOR.setSpectralResolution

Format

SDO_GEOR.setSpectralResolution (
georaster IN OUT SDO GEORASTER,
resolution IN NUMBER) ;

Description

Sets the spectral resolution of a GeoRaster object if it is a hyperspectral or multiband image, or
deletes the existing value if you specify a null resolution parameter.

Parameters

georaster
GeoRaster object.

resolution
Spectral resolution value. Must be null if the GeoRaster metadata does not contain band
reference information.

Usage Notes

Taken together, the spectral unit and spectral resolution identify the wavelength interval for a
band. For example, if the spectral resolution value is 2 and the spectral unit value is
MILLIMETER, the wavelength interval for a band is 2 millimeters.

The GeoRaster object is automatically validated after the operation completes.

To return the spectral resolution for a GeoRaster object, use the
SDO_GEOR.getSpectralResolution function.

Examples

The following example sets 0.5 as the spectral resoluti