Overview of Oracle Data Guard Tuning and Troubleshooting

To get the best performance from your Oracle Data Guard configuration, use the following Oracle MAA best practices for monitoring, assessment, and performance tuning.

  • Ensure that Oracle Database and Oracle Data Guard configuration best practices are in place.

    The assumption when assessing and tuning is that all of the Oracle Database and Data Guard configuration best practices are already integrated in the environment. Evaluate the adherence to those best practices before doing any tuning.

  • Assess and tune redo transport services

    Oracle Data Guard automatically tunes redo transport to optimize performance. However, if you observe performance issues, you can monitor and tune redo transport services.

    Asynchronous redo transport with Maximum Performance data protection mode is the default Oracle Data Guard configuration. Tuning asynchronous redo transport consists mainly of ensuring that the primary, standby, and network resources are sufficient for handling the workload, and that you monitor those resources for bottlenecks.

    Synchronous redo transport does sacrifice some performance for zero data loss; however, using sound MAA recommended methods, you can monitor and assess the impact and distribute resources appropriately.

  • Assess and tune redo apply

    In most cases, the default Oracle settings result in satisfactory performance for media recovery when the standby is always up to date. However, as applications and databases increase in size and throughput, media recovery operations can benefit from additional tuning to further optimize recovery time or redo apply throughput on a standby database

  • Assess and tune role transitions

    With proper planning and implementation, Oracle Data Guard and Active Data Guard role transitions can effectively minimize downtime and ensure that the database environment is restored with minimal impact on the business. Performance tests using a physical standby database and Oracle Maximum Availability Architecture (MAA) best practices have shown that switchover and failover can be reduced to seconds.