
Oracle® OLAP
Expression Syntax Reference

19c
E96406-01
January 2019

Oracle OLAP Expression Syntax Reference, 19c

E96406-01

Copyright © 2006, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: David McDermid

Contributors: Donna Carver, David Greenfield, Anne Murphy, Martin Roth, Fuad Sheehab

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

Related Documents x

Conventions xi

Backus-Naur Form Syntax xi

1 Basic Elements

1.1 Dimensional Object Names 1-1

1.1.1 Syntax 1-1

1.1.2 Examples 1-1

1.2 Dimensional Data Types 1-2

1.3 Operators 1-4

1.3.1 Unary Arithmetic Operators 1-4

1.3.1.1 Syntax 1-4

1.3.1.2 Example 1-4

1.3.2 Binary Arithmetic Operators 1-4

1.3.2.1 Syntax 1-4

1.3.2.2 Examples 1-5

1.3.3 Concatenation Operator 1-5

1.3.3.1 Syntax 1-5

1.3.3.2 Example 1-6

1.4 Conditions 1-6

1.4.1 Simple Comparison Conditions 1-6

1.4.1.1 Syntax 1-7

1.4.1.2 Arguments 1-7

1.4.1.3 Examples 1-7

1.4.2 Group Comparison Conditions 1-7

1.4.2.1 Syntax 1-7

1.4.2.2 Examples 1-8

1.4.3 Hierarchical Relation Conditions 1-8

1.4.3.1 Syntax 1-8

iii

1.4.3.2 Arguments 1-8

1.4.3.3 Examples 1-9

1.4.4 Range Conditions 1-9

1.4.4.1 Syntax 1-9

1.4.4.2 Example 1-9

1.4.5 Multiple Conditions 1-9

1.4.5.1 Syntax 1-9

1.4.5.2 Example 1-9

1.4.6 Negation Conditions 1-9

1.4.6.1 Syntax 1-9

1.4.6.2 Example 1-10

1.4.7 Special Conditions 1-10

1.4.7.1 Syntax 1-10

1.4.7.2 Example 1-10

1.4.8 Pattern-Matching Conditions 1-10

1.4.8.1 LIKE Operators 1-10

1.4.8.2 Syntax 1-11

1.4.8.3 Arguments 1-11

1.4.8.4 Examples 1-11

1.5 Literal Expressions 1-11

1.5.1 Examples 1-11

1.6 CASE Expressions 1-12

1.6.1 Return Value 1-12

1.6.2 Syntax 1-12

1.6.3 Arguments 1-12

1.6.4 Examples 1-12

1.7 Qualified Data References (QDRs) 1-14

1.7.1 Syntax 1-14

1.7.2 Arguments 1-15

1.7.3 Examples 1-15

2 OLAP Functions

2.1 OLAP Functions in Alphabetical Order 2-1

2.2 OLAP Functions By Category 2-1

2.2.1 Aggregate Functions 2-2

2.2.2 Analytic Functions 2-2

2.2.3 Hierarchical Functions 2-2

2.2.4 Lag Functions 2-2

2.2.5 OLAP DML Functions 2-3

2.2.6 Rank Functions 2-3

iv

2.2.7 Share Functions 2-3

2.2.8 Window Functions 2-3

2.3 AVERAGE_RANK 2-3

2.4 AVG 2-5

2.5 COUNT 2-7

2.6 DENSE_RANK 2-9

2.7 HIER_ANCESTOR 2-11

2.8 HIER_CHILD_COUNT 2-13

2.9 HIER_DEPTH 2-14

2.10 HIER_LEVEL 2-15

2.11 HIER_ORDER 2-16

2.12 HIER_PARENT 2-18

2.13 HIER_TOP 2-19

2.14 LAG 2-20

2.15 LAG_VARIANCE 2-22

2.16 LAG_VARIANCE_PERCENT 2-24

2.17 LEAD 2-26

2.18 LEAD_VARIANCE 2-29

2.19 LEAD_VARIANCE_PERCENT 2-31

2.20 MAX 2-33

2.21 MIN 2-36

2.22 OLAP_DML_EXPRESSION 2-38

2.23 RANK 2-39

2.24 ROW_NUMBER 2-41

2.25 SHARE 2-43

2.26 SUM 2-44

3 Row Functions

3.1 Row Functions in Alphabetical Order 3-1

3.2 Row Functions By Category 3-4

3.2.1 Numeric Functions 3-4

3.2.2 Character Functions That Return Characters 3-5

3.2.3 NLS Character Functions 3-6

3.2.4 Character Functions That Return Numbers 3-6

3.2.5 Datetime Functions 3-6

3.2.6 General Comparison Functions 3-6

3.2.7 Conversion Functions 3-7

3.2.8 Encoding and Decoding Function 3-7

3.2.9 Null-Related Functions 3-7

3.2.10 Environment and Identifier Functions 3-8

v

3.3 ABS 3-8

3.4 ACOS 3-8

3.5 ADD_MONTHS 3-8

3.6 ASCII 3-9

3.7 ASCIISTR 3-9

3.8 ASIN 3-10

3.9 ATAN 3-10

3.10 ATAN2 3-10

3.11 BIN_TO_NUM 3-11

3.12 BITAND 3-11

3.13 CAST 3-12

3.14 CEIL 3-12

3.15 CHARTOROWID 3-13

3.16 CHR 3-13

3.17 COALESCE 3-14

3.18 CONCAT 3-14

3.19 COS 3-15

3.20 COSH 3-15

3.21 CURRENT_DATE 3-15

3.22 CURRENT_TIMESTAMP 3-16

3.23 DBTIMEZONE 3-16

3.24 DECODE 3-17

3.25 EXP 3-17

3.26 EXTRACT (datetime) 3-18

3.27 FLOOR 3-19

3.28 FROM_TZ 3-19

3.29 GREATEST 3-19

3.30 HEXTORAW 3-20

3.31 INITCAP 3-20

3.32 INSTR 3-21

3.33 LAST_DAY 3-21

3.34 LEAST 3-22

3.35 LENGTH 3-22

3.36 LN 3-23

3.37 LNNVL 3-23

3.38 LOCALTIMESTAMP 3-24

3.39 LOG 3-24

3.40 LOWER 3-24

3.41 LPAD 3-25

3.42 LTRIM 3-25

3.43 MOD 3-26

vi

3.44 MONTHS_BETWEEN 3-26

3.45 NANVL 3-27

3.46 NEW_TIME 3-27

3.47 NEXT_DAY 3-28

3.48 NLS_CHARSET_ID 3-28

3.49 NLS_CHARSET_NAME 3-29

3.50 NLS_INITCAP 3-29

3.51 NLS_LOWER 3-30

3.52 NLS_UPPER 3-30

3.53 NLSSORT 3-31

3.54 NULLIF 3-31

3.55 NUMTODSINTERVAL 3-32

3.56 NUMTOYMINTERVAL 3-32

3.57 NVL 3-33

3.58 NVL2 3-33

3.59 ORA_HASH 3-34

3.60 POWER 3-35

3.61 RAWTOHEX 3-35

3.62 REGEXP_COUNT 3-36

3.63 REGEXP_REPLACE 3-37

3.64 REGEXP_INSTR 3-38

3.65 REGEXP_SUBSTR 3-39

3.66 REMAINDER 3-40

3.67 REPLACE 3-40

3.68 ROUND (date) 3-41

3.69 ROUND (number) 3-41

3.70 ROWIDTOCHAR 3-42

3.71 ROWIDTONCHAR 3-42

3.72 RPAD 3-42

3.73 RTRIM 3-43

3.74 SESSIONTIMEZONE 3-43

3.75 SIGN 3-44

3.76 SIN 3-44

3.77 SINH 3-44

3.78 SOUNDEX 3-45

3.79 SQRT 3-45

3.80 SUBSTR 3-46

3.81 SYS_CONTEXT 3-47

3.82 SYSDATE 3-49

3.83 SYSTIMESTAMP 3-49

3.84 TAN 3-49

vii

3.85 TANH 3-50

3.86 TO_BINARY_DOUBLE 3-50

3.87 TO_BINARY_FLOAT 3-51

3.88 TO_CHAR (character) 3-52

3.89 TO_CHAR (datetime) 3-52

3.90 TO_CHAR (number) 3-53

3.91 TO_DATE 3-54

3.92 TO_DSINTERVAL 3-54

3.93 TO_NCHAR (character) 3-55

3.94 TO_NCHAR (datetime) 3-55

3.95 TO_NCHAR (number) 3-56

3.96 TO_NUMBER 3-57

3.97 TO_TIMESTAMP 3-58

3.98 TO_TIMESTAMP_TZ 3-58

3.99 TO_YMINTERVAL 3-59

3.100 TRANSLATE 3-60

3.101 TRANSLATE (USING) 3-60

3.102 TRIM 3-61

3.103 TRUNC (number) 3-61

3.104 TZ_OFFSET 3-62

3.105 UID 3-62

3.106 UNISTR 3-63

3.107 UPPER 3-63

3.108 USER 3-64

3.109 VSIZE 3-64

3.110 WIDTH_BUCKET 3-64

A Reserved Words

A.1 Reserved Words A-1

A.2 Special Symbols A-4

Index

viii

List of Tables

1-1 Naming Conventions for Dimensional Objects 1-1

1-2 Dimensional Data Types 1-2

1-3 Unary Operators 1-4

1-4 Binary Operators 1-4

1-5 Multiplication Operator Example 1-5

1-6 Simple Comparison Operators 1-6

1-7 Group Comparison Operators 1-7

1-8 Conjunctions 1-9

1-9 Special Conditions Operators 1-10

1-10 LIKE Pattern-Matching Operators 1-10

3-1 Compatible Data Types 3-12

3-2 Time Zones 3-27

3-3 USERENV Attributes 3-47

A-1 OLAP Expression Syntax Symbols A-4

ix

Preface

The OLAP expression syntax includes analytic functions, arithmetic operators, and
single-row functions. The OLAP syntax is an extension of the SQL syntax. If you have
used SQL analytic functions or single-row functions, then this syntax is familiar to you.

This preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

• Backus-Naur Form Syntax

Audience
This document is intended for anyone who wants to create calculated measures or
transform the data stored in relational tables for use in dimensional database objects
such as cubes, cube dimensions, and measures.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these documents in the Oracle Database 11.2
documentation set:

<xref cid="1l1qda" format="html" href="olink:OLAUG" scope="external"><i>Oracle
OLAP User's Guide</i></xref>

• Oracle OLAP User's Guide

Explains how SQL applications can extend their analytic processing capabilities
and manage summary data by using the OLAP option of Oracle Database.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle OLAP DML Reference

Contains a complete description of the OLAP Data Manipulation Language (OLAP
DML), which is used to define and manipulate analytic workspace objects.

• Oracle Database Reference

Contains full descriptions of the data dictionary views for cubes, cube dimensions,
and other dimensional objects.

• Oracle Database PL/SQL Packages and Types Reference

Contains full descriptions of several PL/SQL packages for managing cubes.

• Oracle OLAP Java API Developer's Guide

Introduces the Oracle OLAP API, a Java application programming interface for
Oracle OLAP, which is used for defining, building, and querying dimensional
objects in the database.

• Oracle OLAP Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for defining,
building, and querying dimensional objects in the database.

Conventions
These text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Backus-Naur Form Syntax
The syntax in this reference is presented in a simple variation of Backus-Naur Form
(BNF) that uses the following symbols and conventions:

Symbol or Convention Description

[] Brackets enclose optional items.

{ } Braces enclose a choice of items, only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

... Ellipses indicate that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, and vertical bars must be
entered as shown.

boldface Words appearing in boldface are keywords. They must be typed
as shown. (Keywords are case-sensitive in some, but not all,
operating systems.) Words that are not in boldface are
placeholders for which you must substitute a name or value.

Preface

xi

1
Basic Elements

This chapter describes the basic building blocks of the OLAP expression syntax. It
contains these topics:

• Dimensional Object Names

• Dimensional Data Types

• Operators

• Conditions

• Literal Expressions

• CASE Expressions

• Qualified Data References (QDRs)

1.1 Dimensional Object Names
The naming conventions for dimensional objects follow standard Oracle naming rules.
All names are case-insensitive.

1.1.1 Syntax
owner.{ cube | dimension | table }.{ measure | column | attribute }

Table 1-1 Naming Conventions for Dimensional Objects

Convention Quoted ID Unquoted ID

Initial Character Any character. Alphabetic character from the
database character set.

Other Characters All characters, punctuation marks,
and spaces are permitted.

Double quotation marks and nulls
(\0) are not permitted.

Alphanumeric characters from the
database character set and
underscore (_) are permitted.

The dollar sign ($) and pound sign
(#) are permitted but not
recommended.

Double quotation marks and nulls
(\0) are not permitted.

Reserved Words Permitted but not recommended. Not permitted.

1.1.2 Examples
GLOBAL.UNITS_CUBE.SALES identifies the SALES measure in the Units Cube.

TIME.DIM_KEY and TIME.LEVEL_NAME identify columns in the Time view.

TIME.CALENDAR identifies the CALENDAR hierarchy in the Time dimension.

1-1

TIME.CALENDAR.CALENDAR_YEAR identifies the CALENDAR_YEAR level of the CALENDAR
hierarchy in the Time dimension.

GLOBAL.UNITS_FACT.MONTH_ID identifies a foreign key column in the UNITS_FACT table.

TIME_DIM.CALENDAR_YEAR_DSC identifies a column in the TIME_DIM table.

1.2 Dimensional Data Types
Table 1-2 describes the data types that can be used for cubes and measures.

Table 1-2 Dimensional Data Types

Data Type Description

BINARY_DOUBLE A 64-bit floating number. A BINARY_DOUBLE value
requires 9 bytes.

BINARY_FLOAT A 32-bit floating number. A BINARY_FLOAT value
requires 5 bytes.

CHAR (size [BYTE|CHAR]) A fixed length character string with a length of size
characters or bytes. The size can range from 1 to 2000.

DATE A valid date in the range from January 1, 4712 BC to
December 31, 9999 CE. It contains the datetime fields
YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND. It does
not have fractional seconds or a time zone. The default
format is determined explicitly by the
NLS_DATE_FORMAT parameter and implicitly by the
NLS_TERRITORY parameter. A DATE value requires 7
bytes.

DECIMAL (p,s) A decimal number with precision p and scale s
represented as a NUMBER data type.

FLOAT [(p)] A subtype of NUMBER with precision p. A FLOAT is
represented internally as NUMBER. The precision can
range from 1 to 126 binary digits. A FLOAT value
requires from 1 to 22 bytes.

INTEGER A whole number represented as a NUMBER data type
with a scale of 0.

INTERVAL DAY[(day_precision)]
TO SECOND[(second_precision)]

A period of time in days, hours, minutes, and seconds.
The day precision is the maximum number of digits in
the DAY datetime field. The default is 2. The second
precision is the number of digits in the fractional part of
the SECOND field. The default value is 6. Both day and
second precision can have a value from 0 to 9. An
INTERVAL DAY TO SECOND value requires 11 bytes.

INTERVAL YEAR[(precision)] TO
MONTH

A period of time in years and months. The precision is
the number of digits in the YEAR datetime field, which
can have a value of 0 to 9. The default precision is 2
digits. An INTERVAL YEAR TO MONTH value requires 5
bytes.

Chapter 1
Dimensional Data Types

1-2

Table 1-2 (Cont.) Dimensional Data Types

Data Type Description

NCHAR[(size)] A fixed length character string with a length of size
characters. The size can range from 1 character to
2000 bytes. The maximum number of characters
depends on the national character set, which can
require up to four bytes per character.

NUMBER [(p[,s])] A decimal number with precision p and scale s. The
precision can range from 1 to 38. The scale can range
from -84 to 127. A NUMBER value requires from 1 to 22
bytes.

NVARCHAR2(size) A variable length Unicode character string with a
maximum length of size characters. The size can range
from 1 character to 32,767 bytes. The maximum
number of characters depends on the national
character set, which can require up to four bytes per
character.

TIMESTAMP[(precision)] A valid date that contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, and SECOND. It does not
have a time zone. The precision is the number of digits
in the fractional part of the SECOND field, which can
have a value of 0 to 9. The default precision is 6 digits.
The default format is determined explicitly by the
NLS_DATE_FORMAT parameter and implicitly by the
NLS_TERRITORY parameter. A TIMESTAMP value
requires from 7 to 11 bytes depending on the precision.

TIMESTAMP [(precision)] WITH
LOCAL TIME ZONE

A valid date with the same description as TIMESTAMP
WITH TIME ZONE with these exceptions:

• The data is stored in the database with the
database time zone.

• The data is converted to the session time zone
when it is retrieved.

• A TIMESTAMP WITH LOCAL TIME ZONE value
requires from 7 to 11 bytes depending on the
precision.

TIMESTAMP[(precision)] WITH
TIME ZONE

A valid date that contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR,
and TIMEZONE_MINUTE. The precision is the number of
digits in the fractional part of the SECOND field, which
can have a value of 0 to 9. The default precision is 6
digits. The default format is determined explicitly by the
NLS_DATE_FORMAT parameter and implicitly by the
NLS_TERRITORY parameter. A TIMESTAMP WITH
TIMEZONE value requires 13 bytes.

VARCHAR2(size [BYTE|CHAR]) A variable length character string with a maximum
length of size characters or bytes. The size can range
from 1 to 32,767 bytes.

Chapter 1
Dimensional Data Types

1-3

1.3 Operators
An operator manipulates data items and returns a result. Operators manipulate
individual data items called operands or arguments. They are represented by special
characters or by keywords. Syntactically, an operator appears before an operand, after
an operand, or between two operands.

The OLAP Expression Syntax has these types of operators:

• Unary Arithmetic Operators

• Binary Arithmetic Operators

• Concatenation Operator

For conditional operators, go to "Conditions".

1.3.1 Unary Arithmetic Operators
A unary operator operates on only one operand.

Table 1-3 Unary Operators

Operator Description

+ Positive value

- Negative value

1.3.1.1 Syntax
operator operand

1.3.1.2 Example
-5 is a negative number.

1.3.2 Binary Arithmetic Operators
A binary operator operates on two operands.

Table 1-4 Binary Operators

Operator Description

+ Add

- Subtract

* Multiply

/ Divide

1.3.2.1 Syntax
operand operator operand

Chapter 1
Operators

1-4

1.3.2.2 Examples
Here are two simple examples using numeric literals for the operands.

7 * 2 is 14.

(8/2) + 1 is 5.

This example multiplies the values of the Sales measure by a numeric literal to create
a calculated measure named Sales Budget.

UNITS_CUBE.SALES * 1.06

Table 1-5 Multiplication Operator Example

Product Level Sales Sales Budget

Hardware CLASS 124191336 131642816

Desktop PCs FAMILY 74556528 79029919

Monitors FAMILY 3972142 4210470

Memory FAMILY 5619219 5956372

Modems/Fax FAMILY 5575726 5910269

CD/DVD FAMILY 16129497 17097267

Portable PCs FAMILY 18338225 19438518

The next example creates a calculated measure named Profit by subtracting Cost from
Sales.

UNITS_CUBE.SALES - UNITS_CUBE.COST

Product Level Sales Cost Profit

Hardware CLASS 124191336 116058248 8133088

Desktop PCs FAMILY 74556528 71937312 2619215

Monitors FAMILY 3972142 3546195 425947

Memory FAMILY 5619219 4962527 656692

Modems/Fax FAMILY 5575726 5162879 412847

CD/DVD FAMILY 16129497 12510832 3618664

Portable PCs FAMILY 18338225 17938502 399723

1.3.3 Concatenation Operator
The concatenation operator (||) combines text expressions.

1.3.3.1 Syntax
operand || operand

Chapter 1
Operators

1-5

1.3.3.2 Example
'The date today is: ' || sysdate generates a text string such as The date today
is: 23-AUG-06.

The next example concatenates the level name and dimension keys of the Product
dimension to create an identifier.

PRODUCT.LEVEL_NAME || ' ' || PRODUCT.DIM_KEY

Level Dim Key Identifier

CLASS HRD CLASS HRD

FAMILY DTPC FAMILY DTPC

FAMILY MON FAMILY MON

FAMILY MEM FAMILY MEM

FAMILY MOD FAMILY MOD

FAMILY DISK FAMILY DISK

FAMILY LTPC FAMILY LTPC

1.4 Conditions
A condition specifies a combination of one or more expressions and logical (Boolean)
operators. The OLAP Expression Syntax has these types of conditions:

• Simple Comparison Conditions

• Group Comparison Conditions

• Range Conditions

• Multiple Conditions

• Negation Conditions

• Special Conditions

• Pattern-Matching Conditions

Return Value

NUMBER (0=FALSE, 1=TRUE)

1.4.1 Simple Comparison Conditions
Comparison conditions compare one expression with another.

You can use these comparison operators:

Table 1-6 Simple Comparison Operators

Operator Description

> Greater than

Chapter 1
Conditions

1-6

Table 1-6 (Cont.) Simple Comparison Operators

Operator Description

>= Greater than or equal to

< Less than

<= Less than or equal to

= Equal to

!= ˆ= <> Not equal to

1.4.1.1 Syntax
expr { > | >= | < | <= | = | != | ˆ= | <> } expr

1.4.1.2 Arguments
expr can be any expression.

1.4.1.3 Examples
5 > 3 is true, 4 != 5 is true, 6 >= 9 is false.

1.4.2 Group Comparison Conditions
A group comparison condition specifies a comparison with any or all members in a list
or subquery.

You can use these comparison operators:

Table 1-7 Group Comparison Operators

Operator Description

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

= Equal to

!= ˆ= <> Not equal to

ANY SOME Returns true if one or more values in the list match, or false if no
values match.

ALL Returns true if all values in the list match, or false if one or more
values do not match.

1.4.2.1 Syntax
expr
 { = | != | ˆ= | <> | > | < | >= | <= }

Chapter 1
Conditions

1-7

 { ANY | SOME | ALL }
 ({ expression_list | subquery })

1.4.2.2 Examples
5 <= ALL (5, 10, 15) is true, 5 <> ANY (5, 10, 15) is true.

1.4.3 Hierarchical Relation Conditions
Hierarchical relation conditions specify the comparison of the relationship of a
hierarchy member to itself or to another member of the hierarchy.

1.4.3.1 Syntax
expr1 IS [NOT]
 { PARENT
 | CHILD
 | ANCESTOR
 | ROOT_ANCESTOR
 | DESCENDANT
 | LEAF_DESCENDANT
 | RELATIVE
 }
 [OR SELF] OF expr2 WITHIN hierarchy

1.4.3.2 Arguments
expr1 is any expression, including a literal or a column, that resolves to a dimension
member.

PARENT compares expr1 as the parent of expr2.

CHILD compares expr1 as a child of expr2.

ANCESTOR compares expr1 as an ancestor of expr2.

ROOT_ANCESTOR compares expr1 as the highest-level ancestor of expr2.

DESCENDANT compares expr1 as a descendant of expr2.

LEAF_DESCENDANT compares expr1 as a descendant that has no children of expr2.

RELATIVE compares expr1 as a dimension member that has a parent in common with
expr2.

OR SELF compares expr1 as the same dimension member as expr2.

expr2 is any expression, including a literal or a column, that resolves to a dimension
member.

hierarchy is the hierarchy to consider when determining the relationship between
expr1 and expr2, expressed in the form dimension_name.hierarchy_name, as in
PRODUCT.PRIMARY, or owner.dimension_name.hierarchy_name, as in
GLOBAL.PRODUCT.PRIMARY.

Chapter 1
Conditions

1-8

1.4.3.3 Examples
TIME.DIM_KEY IS CHILD OR SELF OF 'FY2008' WITHIN TIME.FISCAL
'FY2008' IS ROOT_ANCESTOR OR SELF OF TIME.DIM_KEY WITHIN TIME.FISCAL
'MEMORY' IS NOT ANCESTOR OF PRODUCT.DIM_KEY WITHIN GLOBAL.PRODUCT.PRIMARY

1.4.4 Range Conditions
The BETWEEN operator tests whether a value is in a specific range of values. It returns
true if the value being tested is greater than or equal to a low value and less than or
equal to a high value.

1.4.4.1 Syntax
expr [NOT] BETWEEN expr AND expr

1.4.4.2 Example
7 NOT BETWEEN 10 AND 15 is true.

1.4.5 Multiple Conditions
Conjunctions compare a single expression with two conditions.

Table 1-8 Conjunctions

Operator Description

AND Returns true if both component conditions are true. Returns false
if either is false.

OR Returns true if either component condition is true. Returns false if
both are false.

1.4.5.1 Syntax
expr operator condition1 { AND | OR } condition2

1.4.5.2 Example
5 < 7 AND 5 > 3 is true; 5 < 3 OR 10 < 15 is true.

1.4.6 Negation Conditions
The NOT operator reverses the meaning of a condition. It returns true if the condition is
false. It returns false if the condition is true.

1.4.6.1 Syntax
NOT {BETWEEN | IN | LIKE | NULL }

Chapter 1
Conditions

1-9

1.4.6.2 Example
5 IS NOT NULL is true; 5 NOT IN (5, 10, 15) is false.

1.4.7 Special Conditions
The IS operator tests for special conditions, such as nulls, infinity and values that are
not numbers.

Table 1-9 Special Conditions Operators

Operator Description

IS INFINITE Returns true if the expression is infinite, or false otherwise. For
mappings only.

IS NAN Returns true if the expression is not a number, or false otherwise.
For mappings only.

IS NULL Returns true if the expression is null, or false otherwise.

1.4.7.1 Syntax
expr IS [NOT] NULL

1.4.7.2 Example
13 IS NOT NULL is true.

1.4.8 Pattern-Matching Conditions
The pattern-matching conditions compare character data.

1.4.8.1 LIKE Operators
The LIKE operators specify a test involving pattern matching. Whereas the equality
operator (=) exactly matches one character value to another, the LIKE operators can
match patterns defined by special pattern-matching ("wildcard") characters.

You can choose from these LIKE operators:

Table 1-10 LIKE Pattern-Matching Operators

Operator Description

LIKE Uses characters in the input character set.

LIKEC Uses Unicode complete characters. It treats a Unicode
supplementary character as two characters.

LIKE2 Uses UCS2 code points. It treats a Unicode supplementary
character as one character.

LIKE4 Uses UCS4 code points. It treats a composite character as one
character.

Chapter 1
Conditions

1-10

1.4.8.2 Syntax
char1 [NOT] (LIKE | LIKEC | LIKE2 | LIKE4)
 char2 [ESCAPE esc_char]

1.4.8.3 Arguments
char1 is a text expression for the search value.

char2 is a text expression for the pattern. The pattern can contain these wildcard
characters:

• An underscore (_) matches exactly one character (as opposed to one byte in a
multibyte character set) in the value.

• A percent sign (%) can match zero or more characters (as opposed to bytes in a
multibyte character set) in the value. A '%' cannot match a null.

esc_char is a text expression, usually a literal, that is one character long. This escape
character identifies an underscore or a percent sign in the pattern as literal characters
instead of wildcard characters. You can also search for the escape character itself by
repeating it. For example, if @ is the escape character, then you can use @% to
search for % and @@ to search for @.

1.4.8.4 Examples
'Ducks' LIKE 'Duck_' and 'Ducky' LIKE 'Duck_' are true.

'Duckling' LIKE 'Duck_' is false.

'Duckling' LIKE 'Duck%' is true.

1.5 Literal Expressions
The OLAP Expression Syntax has three types of literal expressions: strings, numbers,
and null. Other data types must be created using conversion functions such as
TO_DATE.

The terms text literal, character literal, and string are used interchangeably. They
are always enclosed in single quotes to distinguish them from object names.

1.5.1 Examples
'A Literal Text String'

'A Literal Text String with ''Quotes '''

'A Literal Text String
That Crosses Into a Second Line'

2

2.4

+1

Chapter 1
Literal Expressions

1-11

-1

NULL

1.6 CASE Expressions
CASE expressions let you use IF... THEN... ELSE logic in expressions.

In a simple case expression, CASE searches for the first WHEN... THEN pair for which expr
equals comparison_expr, then it returns return_expr. If none of the WHEN... THEN pairs
meet this condition, and an ELSE clause exists, then CASE returns else_expr.
Otherwise, CASE returns NULL.

In a searched CASE expression, CASE searches from left to right until it finds an
occurrence of condition that is true, and then returns return_expr. If no condition is
found to be true, and an ELSE clause exists, CASE returns else_expr. Otherwise, CASE
returns NULL.

1.6.1 Return Value
Same as the else_expression argument

1.6.2 Syntax
CASE { simple_case_expression
 | searched_case_expression
 }
 [ELSE else_expression]
 END

simple_case_expression::=
 expr WHEN comparison_expr
 THEN return_expr
 [WHEN comparison_expr
 THEN return_expr]...

searched_case_expression::=
 WHEN condition THEN return_expr
 [WHEN condition THEN return_expr]...

1.6.3 Arguments
expr is the base expression being tested.

comparison_expr is the expression against which expr is being tested. It must be the
same basic data type (numeric or text) as expr.

condition is a conditional expression.

return_expr is the value returned when a match is found or the condition is true.

1.6.4 Examples
This statement returns Single Item or Value Pack depending on whether the PACKAGE
attribute of the PRODUCT dimension is null or has a value:

Chapter 1
CASE Expressions

1-12

CASE PRODUCT.PACKAGE WHEN NULL THEN 'Single Item' ELSE 'Value Pack'END

Product Package Category

1.44MB External 3.5" Diskette Executive Value Pack

1GB USB Drive -- Single Item

512MB USB Drive -- Single Item

56Kbps V.90 Type II Modem Executive Value Pack

56Kbps V.92 Type II Fax/Modem Laptop Value Pack Value Pack

Deluxe Mouse Executive Value Pack

Envoy Ambassador -- Single Item

Envoy Executive Executive Value Pack

Envoy External Keyboard Executive Value Pack

Envoy Standard Laptop Value Pack Value Pack

External - DVD-RW - 8X Executive Value Pack

External 101-key keyboard Multimedia Value Pack

External 48X CD-ROM -- Single Item

Internal - DVD-RW - 6X Multimedia Value Pack

The next statement increases the unit price by 20%, truncated to the nearest dollar, if
the difference between price and cost is less than 10%. Otherwise, it returns the
current unit price.

CASE
 WHEN PRICE_CUBE.UNIT_PRICE < PRICE_CUBE.UNIT_COST * 1.1
 THEN TRUNC(PRICE_CUBE.UNIT_COST * 1.2) ELSE PRICE_CUBE.UNIT_PRICE
END

Product Cost Price

1GB USB Drive 483.55 546.83

512MB USB Drive 234.69 275.91

56Kbps V.90 Type II Modem 135.72 158.58

56Kbps V.92 Type II Fax/Modem 95.01 111.08

Envoy Ambassador 2686.01 2850.88

Envoy Executive 2799.80 2943.96

Envoy Standard 1933.82 1921.62

External - DVD-RW - 8X 263.83 300.34

External 48X CD-ROM 223.11 254.15

Internal - DVD-RW - 6X 134.46 160.18

Internal 48X CD-ROM 108.32 127.54

Internal 48X CD-ROM USB 46.00 68.54

Monitor- 17"Super VGA 228.53 269.70

Monitor- 19"Super VGA 445.04 504.84

Sentinel Financial 1685.72 1764.14

Sentinel Multimedia 1849.17 1932.54

Chapter 1
CASE Expressions

1-13

Product Cost Price

Sentinel Standard 1572.98 1610.53

The next example creates a Sales Budget calculated measure by multiplying Sales
from the previous year by 1.06 for a 6% increase. The detail levels of all dimensions
are excluded from the calculation. The Budget is projected only using data from 2006
or later.

CASE
 WHEN TIME.END_DATE >= TO_DATE('01-JAN-2006')
 AND TIME.LEVEL_NAME IN ('CALENDAR_YEAR', 'CALENDAR_QUARTER')
 AND PRODUCT.LEVEL_NAME != 'ITEM'
 AND CUSTOMER.LEVEL_NAME IN ('TOTAL', 'REGION', 'WAREHOUSE')
 THEN TRUNC(LAG(UNITS_CUBE.SALES, 1) OVER HIERARCHY
 (TIME.CALENDAR BY ANCESTOR AT LEVEL TIME.CALENDAR.CALENDAR_YEAR
 POSITION FROM BEGINNING) * 1.06)
 ELSE NULL
END

Product Time Sales

Hardware Q1.05 28172590

Hardware Q2.05 34520379

Hardware Q3.05 29466573

Hardware Q4.05 32031795

Hardware Q1.06 32711891

Hardware Q2.06 33637473

Hardware Q3.06 29227635

Hardware Q4.06 31319881

Hardware Q1.07 --

Hardware Q2.07 --

Hardware Q3.07 --

Hardware Q4.07 --

1.7 Qualified Data References (QDRs)
Qualified data references (QDRs) limit a dimensional object to a single member in one
or more dimensions for the duration of a query.

1.7.1 Syntax
expression [qualifier [, qualifier]...]

qualifier::=

dimension_id = member_expression

Note: The outside square brackets shown in bold are part of the syntax. In this case,
they do not indicate an optional argument.

Chapter 1
Qualified Data References (QDRs)

1-14

1.7.2 Arguments
expression is a dimensional expression, typically the name of a measure.

dimension_id is a cube dimension of expression.

member_expression resolves to a single member of dimension_id.

1.7.3 Examples
global.sales[global.time = 'CY2007'] returns Sales values for the year 2007.

sales[customer = 'US', time = 'CY2007'] returns Sales values only for the United
States in calendar year 2007.

Chapter 1
Qualified Data References (QDRs)

1-15

2
OLAP Functions

The OLAP functions extend the syntax of the SQL analytic functions. This syntax is
familiar to SQL developers and DBAs, so you can adopt it more easily than proprietary
OLAP languages and APIs. Using the OLAP functions, you can create all standard
calculated measures, including rank, share, prior and future periods, period-to-date,
parallel period, moving aggregates, and cumulative aggregates.

This chapter describes the OLAP functions. It contains these topics:

• OLAP Functions in Alphabetical Order

• OLAP Functions By Category

2.1 OLAP Functions in Alphabetical Order
AVERAGE_RANK
AVG
COUNT
DENSE_RANK
HIER_ANCESTOR
HIER_CHILD_COUNT
HIER_DEPTH
HIER_LEVEL
HIER_ORDER
HIER_PARENT
HIER_TOP
LAG
LAG_VARIANCE
LAG_VARIANCE_PERCENT
LEAD
LEAD_VARIANCE
LEAD_VARIANCE_PERCENT
MAX
MIN
OLAP_DML_EXPRESSION
RANK
ROW_NUMBER
SHARE
SUM

2.2 OLAP Functions By Category
The OLAP functions are grouped into these categories:

• Aggregate Functions

2-1

• Analytic Functions

• Hierarchical Functions

• Lag Functions

• OLAP DML Functions

• Rank Functions

• Share Functions

• Window Functions

2.2.1 Aggregate Functions
AVERAGE_RANK
AVG
COUNT
DENSE_RANK
MAX
MIN
RANK
SUM

2.2.2 Analytic Functions
AVERAGE_RANK
AVG
COUNT
DENSE_RANK
LAG
LAG_VARIANCE
LEAD_VARIANCE_PERCENT
MAX
MIN
RANK
ROW_NUMBER
SUM

2.2.3 Hierarchical Functions
HIER_ANCESTOR
HIER_CHILD_COUNT
HIER_DEPTH
HIER_LEVEL
HIER_ORDER
HIER_PARENT
HIER_TOP

2.2.4 Lag Functions
LAG

Chapter 2
OLAP Functions By Category

2-2

LAG_VARIANCE
LAG_VARIANCE_PERCENT
LEAD
LEAD_VARIANCE
LEAD_VARIANCE_PERCENT

2.2.5 OLAP DML Functions
OLAP_DML_EXPRESSION

2.2.6 Rank Functions
AVERAGE_RANK
DENSE_RANK
RANK
ROW_NUMBER

2.2.7 Share Functions
SHARE

2.2.8 Window Functions
AVG
COUNT
MAX
MIN
SUM

2.3 AVERAGE_RANK
AVERAGE_RANK orders the members of a dimension based on the values of an
expression. The function returns the sequence numbers of the dimension members.

AVERAGE_RANK assigns the same average rank to identical values. For example,
AVERAGE_RANK may return 1, 2, 3.5, 3.5, 5 for a series of five dimension members.

Return Value

NUMBER

Syntax

AVERAGE_RANK () OVER (rank_clause)

rank_clause::=

{ DIMENSION dimension_id | HIERARCHY hierarchy_id }
 ORDER BY order_by_clause [, order_by_clause]...
 [WITHIN { LEVEL
 | PARENT
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id

Chapter 2
AVERAGE_RANK

2-3

 }
 }
]

order_by_clause::=

expression [ASC | DESC] [NULLS {FIRST | LAST}]

Arguments

dimension_id
The dimension over which the values are calculated using the default hierarchy.

hierarchy_id
The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

ORDER BY
Provides the basis for the ranking. You can provide additional ORDER BY clauses to
break any ties in the order.

expression
Provides the values to use as the basis for the rankings.

ASC | DESC
Sorts the ranking from smallest to largest (ascending) or from largest to smallest
(descending).

NULLS {FIRST | LAST}
Determines whether members with null values are listed first or last.

WITHIN
Selects a set of related dimension members to be ranked.
LEVEL ranks all members at the same level.
PARENT ranks members at the same level with the same parent.
ANCESTOR ranks all members at the same level and with the same ancestor at a
specified level.

dim_level_id
The name of a level of dimension_id.

hier_level_id
The name of a level of hierarchy_id.

Example

This example ranks time periods within a calendar year by Unit Cost. Notice that no
month is ranked 7, because two months (JAN-02 and JUL-02) have the same value
and the same rank (6.5).

AVERAGE_RANK() OVER (HIERARCHY TIME.CALENDAR ORDER BY PRICE_CUBE.UNIT_COST
DESC NULLS LAST WITHIN ANCESTOR AT DIMENSION LEVEL TIME.CALENDAR_YEAR)

Product Time Cost Average Rank

Deluxe Mouse MAR-02 24.05 1

Deluxe Mouse APR-02 23.95 2

Chapter 2
AVERAGE_RANK

2-4

Product Time Cost Average Rank

Deluxe Mouse FEB-02 23.94 3

Deluxe Mouse AUG-02 23.88 4

Deluxe Mouse MAY-02 23.84 5

Deluxe Mouse JAN-02 23.73 6.5

Deluxe Mouse JUL-02 23.73 6.5

Deluxe Mouse JUN-02 23.72 8

Deluxe Mouse SEP-02 23.71 9

Deluxe Mouse NOV-02 23.65 10

Deluxe Mouse DEC-02 23.62 11

Deluxe Mouse OCT-02 23.37 12

Related Topics

DENSE_RANK, RANK, ROW_NUMBER

2.4 AVG
AVG returns the average of a selection of values calculated over a Time dimension.
Use this function to create cumulative averages and moving averages.

The GREGORIAN relations superimpose the Gregorian calendar on the Time dimension.
These relations can be useful for calculations on fiscal and nonstandard hierarchies.

Return Value

NUMBER

Syntax

AVG (value_expr) OVER (window_clause)

window_clause::=

[{ DIMENSION dimension_id | HIERARCHY hierarchy_id }]
 BETWEEN preceding_boundary | following_boundary
 [WITHIN { LEVEL
 | PARENT
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
]

preceding_boundary::=

{UNBOUNDED PRECEDING | expression PRECEDING} AND
 { CURRENT MEMBER
 | expression {PRECEDING | FOLLOWING}
 | UNBOUNDED FOLLOWING
 }

Chapter 2
AVG

2-5

following_boundary::=

{CURRENT MEMBER | expression FOLLOWING} AND
 { expression FOLLOWING
 | UNBOUNDED FOLLOWING
 }

Arguments

value_expr
A dimensional expression whose values you want to calculate.

dimension_id
The Time dimension over which the values are calculated using the default hierarchy.

hierarchy_id
The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

dim_level_id
The name of a level of dimension_id.

hier_level_id
The name of a level of hierarchy_id.

boundaries
The preceding_boundary and following_boundary identify a range of time periods
within the group identified by the dimension or hierarchy.
UNBOUNDED starts with the first period or ends with the last period of the group.
CURRENT MEMBER starts or ends the calculation at the current time period.

expression
A numeric value identifying a period at a particular distance from the current time
period that starts or ends the range.

WITHIN
Identifies the range of time periods used in the calculation. Following are descriptions
of the keywords.

Range Description

LEVEL Calculates all time periods at the same level.
(Default)

PARENT Calculates time periods at the same level with the
same parent.

GREGORIAN YEAR Calculates time periods within the same Gregorian
year.

GREGORIAN QUARTER Calculates time periods within the same Gregorian
quarter.

GREGORIAN MONTH Calculates time periods within the same Gregorian
month.

GREGORIAN WEEK Calculates time periods within the same Gregorian
week.

ANCESTOR Includes time periods at the same level and with the
same ancestor at a specified level.

Chapter 2
AVG

2-6

Example

This example calculates a cumulative average within each parent. The selection of
data shows the cumulative averages for quarters within the 2005 and 2006 calendar
years.

AVG(GLOBAL.UNITS_CUBE.UNITS) OVER (HIERARCHY GLOBAL.TIME.CALENDAR BETWEEN
UNBOUNDED PRECEDING AND CURRENT MEMBER WITHIN PARENT)

TIME PARENT UNITS AVERAGE

Q1.05 CY2005 143607 143607

Q2.05 CY2005 138096 140852

Q3.05 CY2005 138953 140219

Q4.05 CY2005 145062 141430

Q1.06 CY2006 146819 146819

Q2.06 CY2006 145233 146026

Q3.06 CY2006 143572 145208

Q4.06 CY2006 149305 146232

Related Topics

COUNT, MAX, MIN, SUM

2.5 COUNT
COUNT tallies the number of data values identified by a selection of members in a Time
dimension.

The GREGORIAN relations superimpose the Gregorian calendar on the Time dimension.
These relations can be useful for calculations on fiscal and nonstandard hierarchies.

Return Value

NUMBER

Syntax

COUNT (value_expr) OVER (window_clause)

window_clause::=

{ DIMENSION dimension_id | HIERARCHY hierarchy_id }
 BETWEEN preceding_boundary AND following_boundary
 [WITHIN { LEVEL
 | PARENT
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
]

preceding_boundary::=

Chapter 2
COUNT

2-7

{UNBOUNDED PRECEDING | expression PRECEDING} AND
 { CURRENT MEMBER
 | expression {PRECEDING | FOLLOWING}
 | UNBOUNDED FOLLOWING
 }

following_boundary::=

{CURRENT MEMBER | expression FOLLOWING} AND
 { expression FOLLOWING
 | UNBOUNDED FOLLOWING
 }

Arguments

value_expr
A dimensional expression whose values you want to calculate.

dimension_id
The Time dimension over which the values are calculated using the default hierarchy.

hierarchy_id
The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

dim_level_id
The name of a level of dimension_id.

hier_level_id
The name of a level of hierarchy_id.

boundaries
The preceding_boundary and following_boundary identify a range of time periods
within the group identified by the dimension or hierarchy.
UNBOUNDED starts with the first period or ends with the last period of the group.
CURRENT MEMBER starts or ends the calculation at the current time period.

expression
A numeric value identifying a period at a particular distance from the current time
period that starts or ends the range.

WITHIN subclause
Identifies the range of time periods used in the calculation. Following are descriptions
of the keywords.

Range Description

LEVEL Calculates all time periods at the same level.
(Default)

PARENT Calculates time periods at the same level with the
same parent.

GREGORIAN YEAR Calculates time periods within the same Gregorian
year.

GREGORIAN QUARTER Calculates time periods within the same Gregorian
quarter.

Chapter 2
COUNT

2-8

Range Description

GREGORIAN MONTH Calculates time periods within the same Gregorian
month.

GREGORIAN WEEK Calculates time periods within the same Gregorian
week.

ANCESTOR Includes time periods at the same level and with the
same ancestor at a specified level.

Example

This example tallies the number of time periods at the same level and the same year
up to and including the current time period. The selected data displays the number of
each month in the year.

COUNT(GLOBAL.UNITS_CUBE.UNITS) OVER (HIERARCHY GLOBAL.TIME.CALENDAR
BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER WITHIN ANCESTOR AT
DIMENSION LEVEL GLOBAL.TIME.CALENDAR_YEAR)

TIME UNITS COUNT

JAN-06 47776 1

FEB-06 47695 2

MAR-06 51348 3

APR-06 47005 4

MAY-06 52809 5

JUN-06 45419 6

JUL-06 48388 7

AUG-06 48830 8

SEP-06 46354 9

OCT-06 47411 10

NOV-06 46842 11

DEC-06 55052 12

Related Topics

AVG, MAX, MIN, SUM

2.6 DENSE_RANK
DENSE_RANK orders the members of a dimension based on the values of an expression.
The function returns the sequence numbers of the dimension members.

DENSE_RANK assigns the same minimum rank to identical values, and returns the
results in a sequential list. The result may be fewer ranks than values in the series. For
example, DENSE_RANK may return 1, 2, 3, 3, 4 for a series of five dimension members.

Return Value

NUMBER

Chapter 2
DENSE_RANK

2-9

Syntax

DENSE_RANK () OVER (rank_clause)

rank_clause::=

{ DIMENSION dimension_id | HIERARCHY hierarchy_id }
 ORDER BY order_by_clause [, order_by_clause]...
 [WITHIN { LEVEL
 | PARENT
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
]

order_by_clause::=

expression [ASC | DESC] [NULLS {FIRST | LAST}]

Arguments

dimension_id
The dimension over which the values are calculated using the default hierarchy.

hierarchy_id
The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

ORDER BY
Provides the basis for the ranking. You can provide additional ORDER BY clauses to
break any ties in the order.

expression
Provides the values to use as the basis for the rankings.

ASC | DESC
Sorts the ranking from smallest to largest (ascending) or from largest to smallest
(descending).

NULLS {FIRST | LAST}
Determines whether members with null values are listed first or last.

WITHIN
Selects a set of related dimension members to be ranked.
LEVEL ranks all members at the same level.
PARENT ranks members at the same level with the same parent.
ANCESTOR ranks all members at the same level and with the same ancestor at a
specified level.

dim_level_id
The name of a level of dimension_id.

hier_level_id
The name of a level of hierarchy_id.

Chapter 2
DENSE_RANK

2-10

Example

This example ranks time periods within a calendar year by Unit Cost, using the default
Calendar hierarchy. Notice that although two months (JAN-02 and JUL-02) have the
same value and the same rank (6), the ranking continues at 7 for JUN-02.

DENSE_RANK() OVER (DIMENSION "TIME" ORDER BY PRICE_CUBE.UNIT_COST DESC
NULLS LAST WITHIN ANCESTOR AT DIMENSION LEVEL TIME.CALENDAR_YEAR)

Product Time Cost Dense Rank

Deluxe Mouse MAR-02 24.05 1

Deluxe Mouse APR-02 23.95 2

Deluxe Mouse FEB-02 23.94 3

Deluxe Mouse AUG-02 23.88 4

Deluxe Mouse MAY-02 23.84 5

Deluxe Mouse JAN-02 23.73 6

Deluxe Mouse JUL-02 23.73 6

Deluxe Mouse JUN-02 23.72 7

Deluxe Mouse SEP-02 23.71 8

Deluxe Mouse NOV-02 23.65 9

Deluxe Mouse DEC-02 23.62 10

Deluxe Mouse OCT-02 23.37 11

Related Topics

AVERAGE_RANK, RANK, ROW_NUMBER

2.7 HIER_ANCESTOR
HIER_ANCESTOR returns the ancestor at a particular level of a hierarchy for either all
members in the hierarchy or a particular member. The hierarchy must be level-based.

Return Value

VARCHAR2

Syntax

HIER_ANCESTOR(
 [member_expression] [WITHIN]
 {DIMENSION dimension_id | HIERARCHY hierarchy_id}
 {DIMENSION LEVEL dim_level_id | HIERARCHY LEVEL hier_level_id})

Arguments

member_expression
Identifies a dimension member within the hierarchy whose ancestor is returned. If this
optional argument is specified, then the result does not vary across dimension
members.

Chapter 2
HIER_ANCESTOR

2-11

dimension_id
The dimension over which the values are calculated using the default hierarchy.

hierarchy_id
The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

dim_level_id
The level of the ancestor in dimension_id.

hier_level_id
The level of the ancestor in hierarchy_id.

Example

This example returns the ancestor at the Calendar Quarter level for members of the
default Calendar hierarchy of the Time dimension.

HIER_ANCESTOR(DIMENSION "TIME" DIMENSION LEVEL TIME.CALENDAR_QUARTER)

Time Ancestor

2006 --

Q1.06 CY2006.Q1

Q2.06 CY2006.Q2

Q3.06 CY2006.Q3

Q4.06 CY2006.Q4

JAN-06 CY2006.Q1

FEB-06 CY2006.Q1

MAR-06 CY2006.Q1

APR-06 CY2006.Q2

MAY-06 CY2006.Q2

JUN-06 CY2006.Q2

JUL-06 CY2006.Q3

AUG-06 CY2006.Q3

SEP-06 CY2006.Q3

OCT-06 CY2006.Q4

NOV-06 CY2006.Q4

DEC-06 CY2006.Q4

The next example returns GOV as the ancestor of the US Department of Labor at the
Customer Market Segment level in the Market hierarchy of the Customer dimension.

HIER_ANCESTOR('US DPT LBR' WITHIN HIERARCHY CUSTOMER.MARKET DIMENSION
LEVEL CUSTOMER.MARKET_SEGMENT)

Chapter 2
HIER_ANCESTOR

2-12

2.8 HIER_CHILD_COUNT
HIER_CHILD_COUNT returns the number of children of either all dimension members in a
hierarchy or a particular member. The hierarchy can be either level-based or value-
based.

Return Value

NUMBER

Syntax

HIER_CHILD_COUNT (
 [member_expression] [WITHIN]
 {DIMENSION dimension_id | HIERARCHY hierarchy_id})

Arguments

member_expression

Identifies a single dimension member within the hierarchy used for the calculation. If
this optional argument is specified, then the result does not vary across dimension
members.

dimension_id

The dimension over which the values are calculated using the default hierarchy.

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

Example

This example returns the number of children for each member of the default hierarchy
of the Time dimension.

HIER_CHILD_COUNT(DIMENSION "TIME")

Time Children

2006 4

Q1.06 3

Q2.06 3

Q3.06 3

Q4.06 3

JAN-06 0

FEB-06 0

MAR-06 0

APR-06 0

MAY-06 0

JUN-06 0

Chapter 2
HIER_CHILD_COUNT

2-13

Time Children

JUL-06 0

AUG-06 0

SEP-06 0

OCT-06 0

NOV-06 0

DEC-06 0

The next example returns 8 as the number of children for Government within the
Market hierarchy of the Customer dimension.

HIER_CHILD_COUNT('GOV' WITHIN HIERARCHY CUSTOMER.MARKET)

2.9 HIER_DEPTH
HIER_DEPTH returns a number representing the level depth of either all members of a
hierarchy or a particular member, where 0 is the top level. The hierarchy can be either
level-based or value-based.

Return Value

NUMBER

Syntax

HIER_DEPTH (
 [member_expression] [WITHIN]
 {DIMENSION dimension_id | HIERARCHY hierarchy_id})

Arguments

member_expression

Identifies a single dimension member within the hierarchy used for the calculation. If
this optional argument is specified, then the result does not vary across dimension
members.

dimension_id

The dimension over which the values are calculated using the default hierarchy.

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

Example

This example returns the depth of each member in the default hierarchy of the Time
dimension.

HIER_DEPTH(DIMENSION "TIME")

Chapter 2
HIER_DEPTH

2-14

Time Depth

2006 1

Q1.06 2

Q2.06 2

Q3.06 2

Q4.06 2

JAN-06 3

FEB-06 3

MAR-06 3

APR-06 3

MAY-06 3

JUN-06 3

JUL-06 3

AUG-06 3

SEP-06 3

OCT-06 3

NOV-06 3

DEC-06 3

The next example returns 2 as the depth of Italy in the default Customer hierarchy.

HIER_DEPTH('ITA' WITHIN DIMENSION CUSTOMER)

2.10 HIER_LEVEL
HIER_LEVEL returns the level of either all members of a hierarchy or a particular
member. The hierarchy must be level-based.

Return Value

VARCHAR2

Syntax

HIER_LEVEL (
 [member_expression] [WITHIN]
 {DIMENSION dimension_id | HIERARCHY hierarchy_id})

Arguments

member_expression

Identifies a single dimension member within the hierarchy used for the calculation. If
this optional argument is specified, then the result does not vary across dimension
members.

dimension_id

The dimension over which the values are calculated using the default hierarchy.

Chapter 2
HIER_LEVEL

2-15

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

Example

This example returns the level of each member of the default hierarchy of the Time
dimension.

HIER_LEVEL(DIMENSION "TIME")

Time Level

2006 CALENDAR_YEAR

Q1.06 CALENDAR_QUARTER

Q2.06 CALENDAR_QUARTER

Q3.06 CALENDAR_QUARTER

Q4.06 CALENDAR_QUARTER

JAN-06 MONTH

FEB-06 MONTH

MAR-06 MONTH

APR-06 MONTH

MAY-06 MONTH

JUN-06 MONTH

JUL-06 MONTH

AUG-06 MONTH

SEP-06 MONTH

OCT-06 MONTH

NOV-06 MONTH

DEC-06 MONTH

The next example returns ACCOUNT as the level of Business World in the Market
hierarchy of the Customer dimension.

HIER_LEVEL('BUSN WRLD' WITHIN HIERARCHY CUSTOMER.MARKET)

2.11 HIER_ORDER
HIER_ORDER sorts the members of a dimension with children immediately after their
parents, and returns a sequential number for each member.

Return Value

NUMBER

Chapter 2
HIER_ORDER

2-16

Syntax

HIER_ORDER (
 [member_expression] [WITHIN]
 {DIMENSION dimension_id | HIERARCHY hierarchy_id})

Arguments

member_expression

Identifies a single dimension member within the hierarchy used for the calculation. If
this optional argument is specified, then the result does not vary across dimension
members.

dimension_id

The dimension over which the values are calculated using the default hierarchy.

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

Example

This example orders the values of the Time dimension:

HIER_ORDER(DIMENSION "TIME")

Time Order

2006 138

Q1.06 139

JAN-06 140

FEB-06 141

MAR-06 142

Q2.06 143

APR-06 144

MAY-06 145

JUN-06 146

Q3.06 147

JUL-06 148

AUG-06 149

SEP-06 150

Q4.06 151

OCT-06 152

NOV-06 153

DEC-06 154

The next example returns 78 as the order number of Business World in the Market
hierarchy of the Customer dimension.

Chapter 2
HIER_ORDER

2-17

HIER_ORDER('BUSN WRLD' WITHIN HIERARCHY CUSTOMER.MARKET)

2.12 HIER_PARENT
HIER_PARENT returns the parent of either all dimension members in a hierarchy or a
particular member. The hierarchy can be either level-based or value-based.

Return Value

VARCHAR2

Syntax

HIER_PARENT (
 [member_expression] [WITHIN]
 {DIMENSION dimension_id | HIERARCHY hierarchy_id})

Arguments

member_expression

Identifies a single dimension member within the hierarchy used for the calculation. If
this optional argument is specified, then the result does not vary across dimension
members.

dimension_id

The dimension over which the values are calculated using the default hierarchy.

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

Example

This example returns the parents of all members of the default hierarchy of the Time
dimension.

HIER_PARENT(DIMENSION GLOBAL.TIME)

Time Parent

2006 TOTAL

Q1.06 CY2006

Q2.06 CY2006

Q3.06 CY2006

Q4.06 CY2006

JAN-06 CY2006.Q1

FEB-06 CY2006.Q1

MAR-06 CY2006.Q1

APR-06 CY2006.Q2

MAY-06 CY2006.Q2

JUN-06 CY2006.Q2

Chapter 2
HIER_PARENT

2-18

Time Parent

JUL-06 CY2006.Q3

AUG-06 CY2006.Q3

SEP-06 CY2006.Q3

OCT-06 CY2006.Q4

NOV-06 CY2006.Q4

DEC-06 CY2006.Q4

The next example returns EMEA as the parent of Italy within the default hierarchy of the
Customer dimension.

HIER_PARENT('ITA' WITHIN DIMENSION CUSTOMER)

2.13 HIER_TOP
HIER_TOP returns the topmost ancestor of either all members of a hierarchy or a
particular member. The hierarchy can be either level-based or value-based.

Return Value

VARCHAR2

Syntax

HIER_TOP (
 [member_expression] [WITHIN]
 {DIMENSION dimension_id | HIERARCHY hierarchy_id})

Arguments

member_expression

Identifies a single dimension member within the hierarchy used for the calculation. If
this optional argument is specified, then the result does not vary across dimension
members.

dimension_id

The dimension over which the values are calculated using the default hierarchy.

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

Example

This example returns the top member of the default hierarchy of the Time dimension.

HIER_TOP(DIMENSION "TIME")

Time Top

2006 TOTAL

Chapter 2
HIER_TOP

2-19

Time Top

Q1.06 TOTAL

Q2.06 TOTAL

Q3.06 TOTAL

Q4.06 TOTAL

JAN-06 TOTAL

FEB-06 TOTAL

MAR-06 TOTAL

APR-06 TOTAL

MAY-06 TOTAL

JUN-06 TOTAL

JUL-06 TOTAL

AUG-06 TOTAL

SEP-06 TOTAL

OCT-06 TOTAL

NOV-06 TOTAL

DEC-06 TOTAL

The next example returns TOTAL, which is the top member for Europe in the default
hierarchy of the Customer dimension.

HIER_TOP('EMEA' WITHIN DIMENSION CUSTOMER)

2.14 LAG
LAG returns the value from an earlier time period.

Return Value

The same data type as the value expression

Syntax

LAG (lag_args) OVER (lag_clause)

lag_args::=

expression, offset [, {default_expression | CLOSEST}]

lag_clause::=

[{DIMENSION dimension_id | HIERARCHY hierarchy_id}]
[[BY] { LEVEL
 | PARENT
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK | DAY}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }

Chapter 2
LAG

2-20

 [POSITION FROM {BEGINNING | END}]
]

Arguments

Offset Unit Description

LEVEL The member at the same level offset periods before the
current member. (Default)

PARENT The member at the same level with the same parent offset
periods before the current member.

GREGORIAN YEAR The period at the same level with a start date exactly offset
years before the start date of the current period.

GREGORIAN QUARTER The period at the same level with a start date exactly offset
quarters before the start date of the current period.

GREGORIAN MONTH The period at the same level with a start date exactly offset
months before the start date of the current period.

GREGORIAN WEEK The period at the same level with a start date exactly offset
weeks before the start date of the current period.

GREGORIAN DAY The period at the same level with a start date exactly offset
days before the start date of the current period.

ANCESTOR The period at the same level as the current period and whose
ancestor is offset positions before the ancestor of the current
period.

expression

A dimensional expression whose values you want to calculate.

offset

A numeric expression for the number of periods to count back from the current time
period.

default_expression

The value returned when offset does not identify a valid period. This clause is either
an expression of any data type or the CLOSEST keyword for the closest match. The
closest match is the first member when counting back.

dimension_id

The Time dimension over which the lag is calculated.

hierarchy_id

The hierarchy over which the lag is calculated. Otherwise, the default hierarchy for
dimension_id is used.

dim_level_id

The name of a level of dimension_id.

Chapter 2
LAG

2-21

hier_level_id

The name of a level of hierarchy_id.

BY subclause

The BY subclause identifies the range of time periods used when counting the offset.
Following are descriptions of the keywords:

Example

This example returns the value from the prior year for each period.

LAG(UNITS_CUBE.UNITS, 1) OVER (HIERARCHY "TIME".CALENDAR ANCESTOR AT
DIMENSION LEVEL "TIME".CALENDAR_YEAR)

Time Units Last Year

Q1.05 143607 146529

Q2.05 138096 143070

Q3.05 138953 148292

Q4.05 145062 149528

Q1.06 146819 143607

Q2.06 145233 138096

Q3.06 143572 138953

Q4.06 149305 145062

Related Topics

LAG_VARIANCE, LAG_VARIANCE_PERCENT, LEAD

2.15 LAG_VARIANCE
LAG_VARIANCE returns the difference between values for the current time period and an
earlier period.

Return Value

The same data type as the value expression

Syntax

LAG_VARIANCE (lag_args) OVER (lag_clause)

lag_args::=

expression, offset [, {default_expression | CLOSEST}]

lag_clause::=

[{DIMENSION dimension_id | HIERARCHY hierarchy_id}]
[[BY] { LEVEL
 | PARENT
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK | DAY}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id

Chapter 2
LAG_VARIANCE

2-22

 | HIERARCHY LEVEL hier_level_id
 }
 }
 [POSITION FROM {BEGINNING | END}]
]

Arguments

Offset Unit Description

LEVEL The member at the same level offset periods before the
current member. (Default)

PARENT The member at the same level with the same parent offset
periods before the current member.

GREGORIAN YEAR The period at the same level with a start date exactly offset
years before the start date of the current period.

GREGORIAN QUARTER The period at the same level with a start date exactly offset
quarters before the start date of the current period.

GREGORIAN MONTH The period at the same level with a start date exactly offset
months before the start date of the current period.

GREGORIAN WEEK The period at the same level with a start date exactly offset
weeks before the start date of the current period.

GREGORIAN DAY The period at the same level with a start date exactly offset
days before the start date of the current period.

ANCESTOR The period at the same level as the current period and whose
ancestor is offset positions before the ancestor of the current
period.

expression

A dimensional expression whose values you want to calculate.

offset

A numeric expression for the number of periods to count back from the current time
period.

default_expression

The value returned when offset does not identify a valid period. This clause is either
an expression of any data type or the CLOSEST keyword for the closest match. The
closest match is the first member when counting back.

dimension_id

The Time dimension over which the lag is calculated.

hierarchy_id

The hierarchy over which the lag is calculated. Otherwise, the default hierarchy for
dimension_id is used.

dim_level_id

The name of a level of dimension_id.

Chapter 2
LAG_VARIANCE

2-23

hier_level_id

The name of a level of hierarchy_id.

BY subclause

The BY subclause identifies the range of time periods used when counting the offset.
Following are descriptions of the keywords:

Examples

This example returns the difference in values between the current period and the
equivalent period in the prior year.

LAG_VARIANCE (GLOBAL.UNITS_CUBE.UNITS, 1) OVER (HIERARCHY
GLOBAL.TIME.CALENDAR ANCESTOR AT DIMENSION LEVEL
GLOBAL.TIME.CALENDAR_YEAR)

Time Units Last Year Difference

Q1.05 143607 146529 -2922

Q2.05 138096 143070 -4974

Q3.05 138953 148292 -9339

Q4.05 145062 149528 -4466

Q1.06 146819 143607 3212

Q2.06 145233 138096 7137

Q3.06 143572 138953 4619

Q4.06 149305 145062 4243

Related Topics

LAG, LAG_VARIANCE_PERCENT, LEAD

2.16 LAG_VARIANCE_PERCENT
LAG_VARIANCE_PERCENT returns the percent difference between values for the current
time period and an earlier period.

Return Value

NUMBER

Syntax

LAG_VARIANCE_PERCENT (lag_args) OVER (lag_clause)

lag_args::=

expression, offset [, {default_expression | CLOSEST}]

lag_clause::=

[{DIMENSION dimension_id | HIERARCHY hierarchy_id}]
[[BY] { LEVEL
 | PARENT

Chapter 2
LAG_VARIANCE_PERCENT

2-24

 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK | DAY}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
 [POSITION FROM {BEGINNING | END}]
]

Arguments

Offset Unit Description

LEVEL The member at the same level offset periods before the
current member. (Default)

PARENT The member at the same level with the same parent offset
periods before the current member.

GREGORIAN YEAR The period at the same level with a start date exactly offset
years before the start date of the current period.

GREGORIAN QUARTER The period at the same level with a start date exactly offset
quarters before the start date of the current period.

GREGORIAN MONTH The period at the same level with a start date exactly offset
months before the start date of the current period.

GREGORIAN WEEK The period at the same level with a start date exactly offset
weeks before the start date of the current period.

GREGORIAN DAY The period at the same level with a start date exactly offset
days before the start date of the current period.

ANCESTOR The period at the same level as the current period and whose
ancestor is offset positions before the ancestor of the current
period.

expression

A dimensional expression whose values you want to calculate.

offset

A numeric expression for the number of periods to count back from the current time
period.

default_expression

The value returned when offset does not identify a valid period. This clause is either
an expression of any data type or the CLOSEST keyword for the closest match. The
closest match is the first member when counting back.

dimension_id

The Time dimension over which the lag is calculated.

hierarchy_id

The hierarchy over which the lag is calculated. Otherwise, the default hierarchy for
dimension_id is used.

Chapter 2
LAG_VARIANCE_PERCENT

2-25

dim_level_id

The name of a level of dimension_id.

hier_level_id

The name of a level of hierarchy_id.

BY subclause

The BY subclause identifies the range of time periods used when counting the offset.
Following are descriptions of the keywords:

Examples

This example returns the percent difference in value between the current period and
the equivalent period in the prior year.

LAG_VARIANCE_PERCENT (GLOBAL.UNITS_CUBE.UNITS, 1) OVER (HIERARCHY
GLOBAL.TIME.CALENDAR ANCESTOR AT DIMENSION LEVEL
GLOBAL.TIME.CALENDAR_YEAR)

Time Units Last Year Difference Percent

Q1.05 143607 146529 -2922 -.02

Q2.05 138096 143070 -4974 -.03

Q3.05 138953 148292 -9339 -.06

Q4.05 145062 149528 -4466 -.03

Q1.06 146819 143607 3212 .02

Q2.06 145233 138096 7137 .05

Q3.06 143572 138953 4619 .03

Q4.06 149305 145062 4243 .03

Related Topics

LAG, LAG_VARIANCE, LEAD

2.17 LEAD
LEAD returns the value of an expression for a later time period.

Return Value

The same data type as the value expression

Syntax

LEAD (lead_args) OVER (lead_clause)

lead_args::=

expression, offset [, {default_expression | CLOSEST}]

lead_clause::=

Chapter 2
LEAD

2-26

[{DIMENSION dimension_id | HIERARCHY hierarchy_id}]
[[BY] { LEVEL
 | PARENT
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK | DAY}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
 [POSITION FROM {BEGINNING | END}]
]

Arguments

Offset Unit Description

LEVEL The member at the same level offset periods after the current
member. (Default)

PARENT The member at the same level with the same parent offset
periods after the current member.

GREGORIAN YEAR The period at the same level with a start date exactly offset
years after the start date of the current period.

GREGORIAN QUARTER The period at the same level with a start date exactly offset
quarters after the start date of the current period.

GREGORIAN MONTH The period at the same level with a start date exactly offset
months after the start date of the current period.

GREGORIAN WEEK The period at the same level with a start date exactly offset
weeks after the start date of the current period.

GREGORIAN DAY The period at the same level with a start date exactly offset
days after the start date of the current period.

ANCESTOR The period at the same level as the current period and whose
ancestor is offset positions after the ancestor of the current
period.

expression

A dimensional expression whose values you want to calculate.

offset

A numeric expression for the number of periods to count forward from the current time
period.

default_expression

The value returned when offset does not identify a valid period. This clause is either
an expression of any data type or the CLOSEST keyword for the closest match. The
closest match is the first member when counting forward.

dimension_id

The Time dimension over which the lead is calculated.

Chapter 2
LEAD

2-27

hierarchy_id

The hierarchy over which the lead is calculated. Otherwise, the default hierarchy for
dimension_id is used.

dim_level_id

The name of a level of dimension_id.

hier_level_id

The name of a level of hierarchy_id.

BY subclause

The BY subclause identifies the range of time periods used when counting the offset.
Following are descriptions of the keywords:

Examples

This calculation returns the value of the next time period based on calendar quarter.
The sample output from this calculation appears in the Next Qtr column.

LEAD (GLOBAL.UNITS_CUBE.UNITS, 1, CLOSEST) OVER (DIMENSION GLOBAL.TIME BY
ANCESTOR AT DIMENSION LEVEL GLOBAL.TIME.CALENDAR_QUARTER)

Time Parent Units Next Qtr

2005 TOTAL 565718 --

Q1-05 CY2005 143607 138096

Q2-05 CY2005 138096 138953

Q3-05 CY2005 138953 145062

Q4-05 CY2005 145062 146819

Jan-05 CY2005.Q1 50098 40223

Feb-05 CY2005.Q1 43990 45477

Mar-05 CY2005.Q1 49519 52396

Apr-05 CY2005.Q2 40223 45595

May-05 CY2005.Q2 45477 46882

Jun-05 CY2005.Q2 52396 46476

Jul-05 CY2005.Q3 45595 47476

Aug-05 CY2005.Q3 46882 47496

Sep-05 CY2005.Q3 46476 50090

Oct-05 CY2005.Q4 47476 47776

Nov-05 CY2005.Q4 47496 47695

Dec-05 CY2005.Q4 50090 51348

Related Topics

LAG, LEAD_VARIANCE, LEAD_VARIANCE_PERCENT

Chapter 2
LEAD

2-28

2.18 LEAD_VARIANCE
LEAD_VARIANCE returns the difference between values for the current time period and
the offset period.

Return Value

The same data type as the value expression

Syntax

LEAD_VARIANCE (lead_args) OVER (lead_clause)

lead_args::=

expression, offset [, {default_expression | CLOSEST}]

lead_clause::=

[{DIMENSION dimension_id | HIERARCHY hierarchy_id}]
[[BY] { LEVEL
 | PARENT
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK | DAY}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
 [POSITION FROM {BEGINNING | END}]
]

Arguments

Offset Unit Description

LEVEL The member at the same level offset periods after the current
member. (Default)

PARENT The member at the same level with the same parent offset
periods after the current member.

GREGORIAN YEAR The period at the same level with a start date exactly offset
years after the start date of the current period.

GREGORIAN QUARTER The period at the same level with a start date exactly offset
quarters after the start date of the current period.

GREGORIAN MONTH The period at the same level with a start date exactly offset
months after the start date of the current period.

GREGORIAN WEEK The period at the same level with a start date exactly offset
weeks after the start date of the current period.

GREGORIAN DAY The period at the same level with a start date exactly offset
days after the start date of the current period.

ANCESTOR The period at the same level as the current period and whose
ancestor is offset positions after the ancestor of the current
period.

Chapter 2
LEAD_VARIANCE

2-29

expression

A dimensional expression whose values you want to calculate.

offset

A numeric expression for the number of periods to count forward from the current time
period.

default_expression

The value returned when offset does not identify a valid period. This clause is either
an expression of any data type or the CLOSEST keyword for the closest match. The
closest match is the first member when counting forward.

dimension_id

The Time dimension over which the lead is calculated.

hierarchy_id

The hierarchy over which the lead is calculated. Otherwise, the default hierarchy for
dimension_id is used.

dim_level_id

The name of a level of dimension_id.

hier_level_id

The name of a level of hierarchy_id.

BY subclause

The BY subclause identifies the range of time periods used when counting the offset.
Following are descriptions of the keywords:

Examples

This calculation returns the difference between the current value and the value of the
next time period based on calendar quarter. The sample output from this calculation
appears in the Difference column.

LEAD_VARIANCE (GLOBAL.UNITS_CUBE.UNITS, 1, CLOSEST) OVER (DIMENSION
GLOBAL.TIME BY ANCESTOR AT DIMENSION LEVEL GLOBAL.TIME.CALENDAR_QUARTER)

Time Parent Units Next Qtr Difference

2005 TOTAL 565718 -- --

Q1-05 CY2005 143607 138096 5511

Q2-05 CY2005 138096 138953 -857

Q3-05 CY2005 138953 145062 -6109

Q4-05 CY2005 145062 146819 -1757

Jan-05 CY2005.Q1 50098 40223 9875

Feb-05 CY2005.Q1 43990 45477 -1487

Chapter 2
LEAD_VARIANCE

2-30

Time Parent Units Next Qtr Difference

Mar-05 CY2005.Q1 49519 52396 -2877

Apr-05 CY2005.Q2 40223 45595 -5372

May-05 CY2005.Q2 45477 46882 -1405

Jun-05 CY2005.Q2 52396 46476 5920

Jul-05 CY2005.Q3 45595 47476 -1881

Aug-05 CY2005.Q3 46882 47496 -614

Sep-05 CY2005.Q3 46476 50090 -3614

Oct-05 CY2005.Q4 47476 47776 -300

Nov-05 CY2005.Q4 47496 47695 -199

Dec-05 CY2005.Q4 50090 51348 -1258

Related Topics

LAG, LEAD, LEAD_VARIANCE_PERCENT

2.19 LEAD_VARIANCE_PERCENT
LEAD_VARIANCE_PERCENT returns the percent difference between values for the current
time period and the offset period.

Return Value

NUMBER

Syntax

LEAD_VARIANCE_PERCENT (lead_args) OVER (lead_clause)

lead_args::=

expression, offset [, {default_expression | CLOSEST}]

lead_clause::=

[{DIMENSION dimension_id | HIERARCHY hierarchy_id}]
[[BY] { LEVEL
 | PARENT
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK | DAY}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
 [POSITION FROM {BEGINNING | END}]
]

Chapter 2
LEAD_VARIANCE_PERCENT

2-31

Arguments

Offset Unit Description

LEVEL The member at the same level offset periods after the current
member. (Default)

PARENT The member at the same level with the same parent offset
periods after the current member.

GREGORIAN YEAR The period at the same level with a start date exactly offset
years after the start date of the current period.

GREGORIAN QUARTER The period at the same level with a start date exactly offset
quarters after the start date of the current period.

GREGORIAN MONTH The period at the same level with a start date exactly offset
months after the start date of the current period.

GREGORIAN WEEK The period at the same level with a start date exactly offset
weeks after the start date of the current period.

GREGORIAN DAY The period at the same level with a start date exactly offset
days after the start date of the current period.

ANCESTOR The period at the same level as the current period and whose
ancestor is offset positions after the ancestor of the current
period.

expression

A dimensional expression whose values you want to calculate.

offset

A numeric expression for the number of periods to count forward from the current time
period.

default_expression

The value returned when offset does not identify a valid period. This clause is either
an expression of any data type or the CLOSEST keyword for the closest match. The
closest match is the first member when counting forward.

dimension_id

The Time dimension over which the lead is calculated.

hierarchy_id

The hierarchy over which the lead is calculated. Otherwise, the default hierarchy for
dimension_id is used.

dim_level_id

The name of a level of dimension_id.

hier_level_id

The name of a level of hierarchy_id.

Chapter 2
LEAD_VARIANCE_PERCENT

2-32

BY subclause

The BY subclause identifies the range of time periods used when counting the offset.
Following are descriptions of the keywords:

Example

This calculation returns the percent difference between the current value and the value
of the next time period based on calendar quarter. The sample output from this
calculation appears in the Percent column.

LEAD_VARIANCE_PERCENT (GLOBAL.UNITS_CUBE.UNITS, 1, CLOSEST) OVER
(DIMENSION GLOBAL.TIME BY ANCESTOR AT DIMENSION LEVEL
GLOBAL.TIME.CALENDAR_QUARTER)

Time Parent Units Next Qtr Difference Percent

2005 TOTAL 565718 -- -- --

Q1-05 CY2005 143607 138096 5511 .04

Q2-05 CY2005 138096 138953 -857 -.01

Q3-05 CY2005 138953 145062 -6109 -.04

Q4-05 CY2005 145062 146819 -1757 -.01

Jan-05 CY2005.Q1 50098 40223 9875 .25

Feb-05 CY2005.Q1 43990 45477 -1487 -.03

Mar-05 CY2005.Q1 49519 52396 -2877 -.05

Apr-05 CY2005.Q2 40223 45595 -5372 -.12

May-05 CY2005.Q2 45477 46882 -1405 -.03

Jun-05 CY2005.Q2 52396 46476 5920 .13

Jul-05 CY2005.Q3 45595 47476 -1881 -.04

Aug-05 CY2005.Q3 46882 47496 -614 -.01

Sep-05 CY2005.Q3 46476 50090 -3614 -.07

Oct-05 CY2005.Q4 47476 47776 -300 -.01

Nov-05 CY2005.Q4 47496 47695 -199 0

Dec-05 CY2005.Q4 50090 51348 -1258 -.02

Related Topics

LAG, LEAD, LEAD_VARIANCE

2.20 MAX
MAX returns the largest of a selection of data values calculated over a Time dimension.

The GREGORIAN relations superimpose the Gregorian calendar on the Time dimension.
These relations can be useful for calculations on fiscal and nonstandard hierarchies.

Chapter 2
MAX

2-33

Return Value

NUMBER

Syntax

MAX (value_expr) OVER (window_clause)

window_clause::=

[{ DIMENSION dimension_id | HIERARCHY hierarchy_id }]
 BETWEEN preceding_boundary | following_boundary
 [WITHIN { PARENT
 | LEVEL
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
]

preceding_boundary::=

{UNBOUNDED PRECEDING | expression PRECEDING} AND
 { CURRENT MEMBER
 | expression {PRECEDING | FOLLOWING}
 | UNBOUNDED FOLLOWING
 }

following_boundary::=

{CURRENT MEMBER | expression FOLLOWING} AND
 { expression FOLLOWING
 | UNBOUNDED FOLLOWING
 }

Arguments

Range Description

LEVEL Calculates all time periods at the same level. (Default)

PARENT Calculates time periods at the same level with the same parent.

GREGORIAN YEAR Calculates time periods within the same Gregorian year.

GREGORIAN QUARTER Calculates time periods within the same Gregorian quarter.

GREGORIAN MONTH Calculates time periods within the same Gregorian month.

GREGORIAN WEEK Calculates time periods within the same Gregorian week.

ANCESTOR Includes time periods at the same level and with the same
ancestor at a specified level.

value_expr

A dimensional expression whose values you want to calculate.

dimension_id

The Time dimension over which the values are calculated using the default hierarchy.

Chapter 2
MAX

2-34

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

dim_level_id

The name of a level of dimension_id.

hier_level_id

The name of a level of hierarchy_id.

boundaries

The preceding_boundary and following_boundary identify a range of time periods
within the group identified by the dimension or hierarchy.

UNBOUNDED starts with the first period or ends with the last period of the group.

CURRENT MEMBER starts or ends the calculation at the current time period.

expression

A numeric value identifying a period at a particular distance from the current time
period that starts or ends the range.

WITHIN subclause

Identifies the range of time periods used in the calculation. Following are descriptions
of the keywords.

Example

This example calculates a moving maximum within the calendar year.

MAX(GLOBAL.UNITS_CUBE.UNITS) OVER (DIMENSION GLOBAL.TIME BETWEEN UNBOUNDED
PRECEDING AND CURRENT MEMBER WITHIN ANCESTOR AT DIMENSION LEVEL
GLOBAL.TIME.CALENDAR_YEAR)

Time Units Maximum

JAN-06 47776 47776

FEB-06 47695 47776

MAR-06 51348 51348

APR-06 47005 51348

MAY-06 52809 52809

JUN-06 45419 52809

JUL-06 48388 52809

AUG-06 48830 52809

SEP-06 46354 52809

OCT-06 47411 52809

NOV-06 46842 52809

DEC-06 55052 55052

Chapter 2
MAX

2-35

Related Topics

AVG, COUNT, MIN, SUM

2.21 MIN
MIN returns the smallest of a selection of data values calculated over a Time
dimension.

The GREGORIAN relations superimpose the Gregorian calendar on the Time dimension.
These relations can be useful for calculations on fiscal and nonstandard hierarchies.

Return Value

NUMBER

Syntax

MIN (value_expr) OVER (window_clause)

window_clause::=

[{ DIMENSION dimension_id | HIERARCHY hierarchy_id }]
 BETWEEN preceding_boundary | following_boundary
 [WITHIN { LEVEL
 | PARENT
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
]

preceding_boundary::=

{UNBOUNDED PRECEDING | expression PRECEDING} AND
 { CURRENT MEMBER
 | expression {PRECEDING | FOLLOWING}
 | UNBOUNDED FOLLOWING
 }

following_boundary::=

{CURRENT MEMBER | expression FOLLOWING} AND
 { expression FOLLOWING
 | UNBOUNDED FOLLOWING
 }

Arguments

Range Description

LEVEL Calculates all time periods at the same level. (Default)

PARENT Calculates time periods at the same level with the same parent.

GREGORIAN YEAR Calculates time periods within the same Gregorian year.

GREGORIAN QUARTER Calculates time periods within the same Gregorian quarter.

Chapter 2
MIN

2-36

Range Description

GREGORIAN MONTH Calculates time periods within the same Gregorian month.

GREGORIAN WEEK Calculates time periods within the same Gregorian week.

ANCESTOR Includes time periods at the same level and with the same
ancestor at a specified level.

value_expr

A dimensional expression whose values you want to calculate.

dimension_id

The Time dimension over which the values are calculated using the default hierarchy.

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

dim_level_id

The name of a level of dimension_id.

hier_level_id

The name of a level of hierarchy_id.

boundaries

The preceding_boundary and following_boundary identify a range of time periods
within the group identified by the dimension or hierarchy.

UNBOUNDED starts with the first period or ends with the last period of the group.

CURRENT MEMBER starts or ends the calculation at the current time period.

expression

A numeric value identifying a period at a particular distance from the current time
period that starts or ends the range.

WITHIN subclause

Identifies the range of time periods used in the calculation. Following are descriptions
of the keywords.

Example

This example calculates the minimum value between the current member and all
subsequent members in the same calendar year. The selection of the data displays
the minimum values for the months in 2006.

MIN(GLOBAL.UNITS_CUBE.UNITS) OVER (DIMENSION GLOBAL.TIME BETWEEN CURRENT
MEMBER AND UNBOUNDED FOLLOWING WITHIN ANCESTOR AT DIMENSION LEVEL
GLOBAL.TIME.CALENDAR_YEAR)

Chapter 2
MIN

2-37

Time Units Minimum

JAN-06 47776 45419

FEB-06 47695 45419

MAR-06 51348 45419

APR-06 47005 45419

MAY-06 52809 45419

JUN-06 45419 45419

JUL-06 48388 46354

AUG-06 48830 46354

SEP-06 46354 46354

OCT-06 47411 46842

NOV-06 46842 46842

DEC-06 55052 55052

Related Topics

AVG, COUNT, MAX, SUM

2.22 OLAP_DML_EXPRESSION
OLAP_DML_EXPRESSION executes an expression in the OLAP DML language.

Return Value

The data type specified in the syntax

Syntax

OLAP_DML_EXPRESSION (expression, datatype)

Arguments

expression

An expression in the OLAP DML language, such as a call to a function or a program.

datatype

The data type of the return value from expression.

Example

In this example, the OLAP_DML_EXPRESSION function executes the OLAP DML RANDOM
function to generate a calculated measure with random numbers between 1.05 and
1.10.

OLAP_DML_EXPRESSION('RANDOM(1.05, 1.10)', NUMBER)

Time Product Random

2005 Hardware 1.07663806

Chapter 2
OLAP_DML_EXPRESSION

2-38

Time Product Random

2005 Software/Other 1.08295738

2006 Hardware 1.08707305

2006 Software/Other 1.09730881

2.23 RANK
RANK orders the members of a dimension based on the values of an expression. The
function returns the sequence numbers of the dimension members.

RANK assigns the same rank to identical values. For example, RANK may return 1, 2, 3,
3, 5 for a series of five dimension members.

Return Value

NUMBER

Syntax

RANK () OVER (rank_clause)

rank_clause::=

{ DIMENSION dimension_id | HIERARCHY hierarchy_id }
 ORDER BY order_by_clause [, order_by_clause]...
 [WITHIN { PARENT
 | LEVEL
 | ANCESTOR AT { DIMENSION LEVEL dim_lvl_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
]

order_by_clause::=

expression [ASC | DESC] [NULLS {FIRST | LAST}]

Arguments

PARENT ranks members at the same level with the same parent.

LEVEL ranks all members at the same level.

ANCESTOR ranks all members at the same level and with the same ancestor at a
specified level.

dimension_id

The dimension over which the values are calculated using the default hierarchy.

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
then the default hierarchy is used.

Chapter 2
RANK

2-39

ORDER BY

Provides the basis for the ranking. You can provide additional ORDER BY clauses to
break any ties in the order.

expression

Provides the values to use as the basis for the rankings.

ASC | DESC

Sorts the ranking from smallest to largest (ascending) or from largest to smallest
(descending).

NULLS {FIRST | LAST}

Determines whether members with null values are listed first or last.

WITHIN

Selects a set of related dimension members to be ranked.

dim_level_id

The name of a level of dimension_id.

hier_level_id

The name of a level of hierarchy_id.

Example

This example ranks time periods within a calendar year by Unit Cost. Notice that no
month is ranked 7, because two months (JAN-02 and JUL-02) have the same value
and the same rank (6).

RANK() OVER (DIMENSION TIME.CALENDAR ORDER BY PRICE_CUBE.UNIT_COST DESC
NULLS LAST WITHIN ANCESTOR AT DIMENSION LEVEL TIME.CALENDAR_YEAR)

Product Time Cost Rank

Deluxe Mouse MAR-02 24.05 1

Deluxe Mouse APR-02 23.95 2

Deluxe Mouse FEB-02 23.94 3

Deluxe Mouse AUG-02 23.88 4

Deluxe Mouse MAY-02 23.84 5

Deluxe Mouse JAN-02 23.73 6

Deluxe Mouse JUL-02 23.73 6

Deluxe Mouse JUN-02 23.72 8

Deluxe Mouse SEP-02 23.71 9

Deluxe Mouse NOV-02 23.65 10

Deluxe Mouse DEC-02 23.62 11

Deluxe Mouse OCT-02 23.37 12

Chapter 2
RANK

2-40

Related Topics

AVERAGE_RANK, DENSE_RANK, ROW_NUMBER

2.24 ROW_NUMBER
ROW_NUMBER orders the members of a dimension based on the values of an expression.
The function returns the sequence numbers of the dimension members.

ROW_NUMBER assigns a unique rank to each dimension member; for identical values, the
rank is arbitrary. For example, ROW_NUMBER always returns 1, 2, 3, 4, 5 for a series of
five dimension members, even when they have the same value.

Return Value

NUMBER

Syntax

ROW_NUMBER () OVER (rank_clause)

rank_clause::=

{ DIMENSION dimension_id | HIERARCHY hierarchy_id }
 ORDER BY order_by_clause [, order_by_clause]...
 [WITHIN { PARENT
 | LEVEL
 | ANCESTOR AT { DIMENSION LEVEL dim_lvl_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
]

order_by_clause::=

expression [ASC | DESC] [NULLS {FIRST | LAST}]

Arguments

PARENT ranks members at the same level with the same parent.

LEVEL ranks all members at the same level.

ANCESTOR ranks all members at the same level and with the same ancestor at a
specified level.

dimension_id

The dimension over which the values are calculated using the default hierarchy.

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
then the default hierarchy is used.

ORDER BY

Provides the basis for the ranking. You can provide additional ORDER BY clauses to
break any ties in the order.

Chapter 2
ROW_NUMBER

2-41

expression

Provides the values to use as the basis for the rankings.

ASC | DESC

Sorts the ranking from smallest to largest (ascending) or from largest to smallest
(descending).

NULLS {FIRST | LAST}

Determines whether members with null values are listed first or last.

WITHIN

Selects a set of related dimension members to be ranked.

dim_level_id

The name of a level of dimension_id.

hier_level_id

The name of a level of hierarchy_id.

Example

This example ranks time periods within a calendar year by Unit Cost. Notice even
though two months (JAN-02 and JUL-02) have the same value, they are assigned
sequential numbers (6 and 7).

ROW_NUMBER() OVER (HIERARCHY TIME.CALENDAR ORDER BY PRICE_CUBE.UNIT_COST
DESC NULLS LAST WITHIN ANCESTOR AT DIMENSION LEVEL TIME.CALENDAR_YEAR)

Product Time Cost Row Number

Deluxe Mouse MAR-02 24.05 1

Deluxe Mouse APR-02 23.95 2

Deluxe Mouse FEB-02 23.94 3

Deluxe Mouse AUG-02 23.88 4

Deluxe Mouse MAY-02 23.84 5

Deluxe Mouse JAN-02 23.73 6

Deluxe Mouse JUL-02 23.73 7

Deluxe Mouse JUN-02 23.72 8

Deluxe Mouse SEP-02 23.71 9

Deluxe Mouse NOV-02 23.65 10

Deluxe Mouse DEC-02 23.62 11

Deluxe Mouse OCT-02 23.37 12

Related Topics

AVERAGE_RANK, DENSE_RANK, RANK

Chapter 2
ROW_NUMBER

2-42

2.25 SHARE
SHARE calculates the ratio of an expression's value for the current dimension member
to the value for a related member of the same dimension. Arguments to this function
identify which related member is used in the ratio.

Return Value

NUMBER

Syntax

share_expression::=

SHARE (expression share_clause [share_clause]...)

share_clause::=

OF { DIMENSION dimension_id | HIERARCHY hierarchy_id }
 { PARENT
 | TOP
 | MEMBER 'member_name'
 | DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }

Arguments

Share is calculated with these formulas:

Keyword Formula

PARENT current member/parent

TOP current member/root ancestor

MEMBER current member/specified member

DIMENSION LEVEL current member/ancestor at specified level or null if the current
member is above the specified level.

expression

A dimensional expression whose values you want to calculate.

dimension_id

A dimension of expression. The default hierarchy is used in the calculation. If you
want to use a different hierarchy, then use the HIERARCHY argument instead.

hierarchy_id

A level hierarchy of expression.

member_name

A member of the specified dimension or hierarchy.

Chapter 2
SHARE

2-43

dim_level_id

The name of a level of dimension_id.

hier_level_id

The name of a level of hierarchy_id.

Example

This example calculates the percent share of the parent member for each product. The
results appear in the Share of Parent column.

(SHARE(UNITS_CUBE.SALES OF HIERARCHY PRODUCT.PRIMARY PARENT))*100

The next example calculates the percent share of Total Product for each product. The
results appear in the Share of Top column.

(SHARE(UNITS_CUBE.SALES OF HIERARCHY PRODUCT.PRIMARY TOP))*100

Product Parent Sales Share of Parent Share of Top

Desktop PCs HRD 74556528 60 54

Portable PCs HRD 18338225 15 13

CD/DVD HRD 16129497 13 12

Memory HRD 5619219 5 4

Modems/Fax HRD 5575726 4 4

Monitors HRD 3972142 3 3

Accessories SFT 6213535 49 5

Operating
Systems

SFT 4766857 37 3

Documentation SFT 1814844 14 1

Hardware TOTAL 124191336 91 91

Software/Other TOTAL 12795236 9 9

2.26 SUM
SUM returns the total of a selection of values calculated over a Time dimension. You
can use the SUM function to create period-to-date calculations.

The GREGORIAN relations superimpose the Gregorian calendar on the Time dimension.
These relations can be useful for calculations on fiscal and nonstandard hierarchies.

Return Value

NUMBER

Syntax

SUM (value_expr) OVER (window_clause)

window_clause::=

Chapter 2
SUM

2-44

[{ DIMENSION dimension_id | HIERARCHY hierarchy_id }]
 BETWEEN preceding_boundary | following_boundary
 [WITHIN { PARENT
 | LEVEL
 | GREGORIAN {YEAR | QUARTER | MONTH | WEEK}
 | ANCESTOR AT { DIMENSION LEVEL dim_level_id
 | HIERARCHY LEVEL hier_level_id
 }
 }
]

preceding_boundary::=

{UNBOUNDED PRECEDING | expression PRECEDING} AND
 { CURRENT MEMBER
 | expression {PRECEDING | FOLLOWING}
 | UNBOUNDED FOLLOWING
 }

following_boundary::=

{CURRENT MEMBER | expression FOLLOWING} AND
 { expression FOLLOWING
 | UNBOUNDED FOLLOWING
 }

Arguments

Range Description

LEVEL Calculates all time periods at the same level. (Default)

PARENT Calculates time periods at the same level with the same parent.

GREGORIAN YEAR Calculates time periods within the same Gregorian year.

GREGORIAN QUARTER Calculates time periods within the same Gregorian quarter.

GREGORIAN MONTH Calculates time periods within the same Gregorian month.

GREGORIAN WEEK Calculates time periods within the same Gregorian week.

ANCESTOR Includes time periods at the same level and with the same
ancestor at a specified level.

value_expr

A dimensional expression whose values you want to calculate.

dimension_id

The Time dimension over which the values are calculated using the default hierarchy.

hierarchy_id

The hierarchy over which the values are calculated. If dimension_id is used instead,
the default hierarchy is used.

dim_level_id

The name of a level of dimension_id.

Chapter 2
SUM

2-45

hier_level_id

The name of a level of hierarchy_id.

boundaries

The preceding_boundary and following_boundary identify a range of time periods
within the group identified by the dimension or hierarchy.

UNBOUNDED starts with the first period or ends with the last period of the group.

CURRENT MEMBER starts or ends the calculation at the current time period.

expression

A numeric value identifying a period at a particular distance from the current time
period that starts or ends the range.

WITHIN subclause

Identifies the range of time periods used in the calculation. Following are descriptions
of the keywords.

Example

This example calculates the sum of two values, for the current and the following time
periods, within a level. The results appear in the Sum column.

SUM(UNITS_CUBE.SALES) OVER (DIMENSION "TIME" BETWEEN 1 PRECEDING AND
CURRENT MEMBER WITHIN LEVEL)

Time Sales Sum

Q1.04 146529 289599

Q2.04 143070 291362

Q3.04 148292 297820

Q4.04 149528 293135

Q1.05 143607 281703

Q2.05 138096 277049

Q3.05 138953 284015

Q4.05 145062 291881

The next example calculates Year-to-Date Sales.

SUM(UNITS_CUBE.SALES) OVER (HIERARCHY TIME.CALENDAR BETWEEN UNBOUNDED
PRECEDING AND CURRENT MEMBER WITHIN ANCESTOR AT DIMENSION LEVEL
TIME.CALENDAR_YEAR)

Time Sales Sales YTD

JAN-05 12093518 12093518

FEB-05 10103162 22196680

MAR-05 9184658 31381338

Chapter 2
SUM

2-46

Time Sales Sales YTD

APR-05 9185964 40567302

MAY-05 11640216 52207519

JUN-05 16816561 69024079

JUL-05 11110903 80134982

AUG-05 9475807 89610789

SEP-05 12030538 101641328

OCT-05 11135032 112776359

NOV-05 11067754 123844113

Related Topics

AVG, COUNT, MAX, MIN

Chapter 2
SUM

2-47

3
Row Functions

The OLAP row functions extend the syntax of the SQL row functions for use with
dimensional objects. If you use the SQL row functions, then this syntax is familiar. You
can use these functions on relational data when loading it into cubes and cube
dimensions, and with the OLAP functions when creating calculated measures.

This chapter describes the row functions of the OLAP expression syntax. It contains
these topics:

• Row Functions in Alphabetical Order

• Row Functions By Category

3.1 Row Functions in Alphabetical Order
A B C D E F G H I L M N O P R S T U V W

A

ABS
ACOS
ADD_MONTHS
ASCII
ASCIISTR
ASIN
ATAN
ATAN2

B

BIN_TO_NUM
BITAND

C

CAST
CEIL
CHARTOROWID
CHR
COALESCE
CONCAT
COS
COSH
CURRENT_DATE
CURRENT_TIMESTAMP

3-1

D

DBTIMEZONE
DECODE

E

EXP
EXTRACT (datetime)

F

FLOOR
FROM_TZ

G

GREATEST

H

HEXTORAW

I

INITCAP
INSTR

L

LAST_DAY
LEAST
LENGTH
LN
LNNVL
LOCALTIMESTAMP
LOG
LOWER
LPAD
LTRIM

M

MOD
MONTHS_BETWEEN

N

NANVL
NEW_TIME
NEXT_DAY
NLS_CHARSET_ID
NLS_CHARSET_NAME
NLS_INITCAP
NLS_LOWER

Chapter 3
Row Functions in Alphabetical Order

3-2

NLS_UPPER
NLSSORT
NULLIF
NUMTODSINTERVAL
NUMTOYMINTERVAL
NVL
NVL2

O

ORA_HASH

P

POWER

R

RAWTOHEX
REGEXP_COUNT
REGEXP_INSTR
REGEXP_REPLACE
REGEXP_SUBSTR
REMAINDER
REPLACE
ROUND (date)
ROUND (number)
ROWIDTOCHAR
ROWIDTONCHAR
RPAD
RTRIM

S

SESSIONTIMEZONE
SIGN
SIN
SINH
SOUNDEX
SQRT
SUBSTR
SYS_CONTEXT
SYSDATE
SYSTIMESTAMP

T

TAN
TANH
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_CHAR (character)
TO_CHAR (datetime)

Chapter 3
Row Functions in Alphabetical Order

3-3

TO_CHAR (number)
TO_DATE
TO_DSINTERVAL
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NUMBER
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TRANSLATE
TRANSLATE (USING)
TRIM
TRUNC (number)
TZ_OFFSET

U

UID
UNISTR
UPPER
USER

V

VSIZE

W

WIDTH_BUCKET

3.2 Row Functions By Category
The row functions are grouped into the following categories:

• Numeric Functions

• Character Functions That Return Characters

• NLS Character Functions

• Character Functions That Return Numbers

• Datetime Functions

• General Comparison Functions

• Conversion Functions

• Encoding and Decoding Function

• Null-Related Functions

• Environment and Identifier Functions

3.2.1 Numeric Functions
These functions accept numeric input and return numeric values:

Chapter 3
Row Functions By Category

3-4

ABS
ACOS
ASIN
ATAN
ATAN2
BITAND
CEIL
COS
COSH
EXP
FLOOR
LN
LOG
MOD
NANVL
POWER
REMAINDER
ROUND (number)
SIGN
SIN
SINH
SQRT
TAN
TANH
TRUNC (number)
WIDTH_BUCKET

3.2.2 Character Functions That Return Characters
These functions accept character input and return character values:

CHR
CONCAT
INITCAP
LOWER
LPAD
LTRIM
NLS_CHARSET_NAME
NLS_INITCAP
NLS_LOWER
NLS_UPPER
NLSSORT
REGEXP_REPLACE
REGEXP_SUBSTR
REPLACE
RPAD
RTRIM
SOUNDEX
SUBSTR
TRANSLATE

Chapter 3
Row Functions By Category

3-5

TRIM
UPPER

3.2.3 NLS Character Functions
These functions return information about a character set:

NLS_CHARSET_ID
NLS_CHARSET_NAME

3.2.4 Character Functions That Return Numbers
These functions accept character input and return numeric values:

ASCII
INSTR
LENGTH
REGEXP_COUNT
REGEXP_INSTR

3.2.5 Datetime Functions
These functions operate on date, timestamp, or interval values:

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)
FROM_TZ
LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME
NEXT_DAY
NUMTODSINTERVAL
NUMTOYMINTERVAL
ROUND (date)
SESSIONTIMEZONE
SYSDATE
SYSTIMESTAMP
TO_CHAR (datetime)
TO_DSINTERVAL
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TZ_OFFSET

3.2.6 General Comparison Functions
These functions determine the greatest or least value in a set of values:

Chapter 3
Row Functions By Category

3-6

GREATEST
LEAST

3.2.7 Conversion Functions
These functions change a value from one data type to another:

ASCIISTR
BIN_TO_NUM
CAST
CHARTOROWID
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
ROWIDTOCHAR
ROWIDTONCHAR
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_DATE
TO_DSINTERVAL
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NUMBER
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TRANSLATE (USING)
UNISTR

3.2.8 Encoding and Decoding Function
These functions return a numeric value for each input value:

DECODE
ORA_HASH
VSIZE

3.2.9 Null-Related Functions
These functions facilitate null handling:

COALESCE
LNNVL
NANVL
NULLIF
NVL

Chapter 3
Row Functions By Category

3-7

NVL2

3.2.10 Environment and Identifier Functions
These functions provide information about the instance and the session:

SYS_CONTEXT
UID
USER

3.3 ABS
ABS returns the absolute value of a numeric expression.

Return Value

NUMBER

Syntax

ABS(n)

Arguments

n is any numeric expression.

Example

ABS(-15) returns the value 15.

3.4 ACOS
ACOS calculates the angle value in radians of a specified cosine.

Return Value

NUMBER

Syntax

ACOS(n)

Arguments

n is a numeric expression for the cosine in the range of -1 to 1.

Example

ACOS(.3) returns the value 1.26610367.

3.5 ADD_MONTHS
ADD_MONTHS returns a date that is a specified number of months after a specified date.

Chapter 3
ABS

3-8

When the starting date is the last day of the month or when the returned month has
fewer days, then ADD_MONTHS returns the last day of the month. Otherwise, the returned
day is the starting day.

Return Value

DATE

Syntax

ADD_MONTHS(date, integer)

Arguments

date is the starting date.

integer is the number of months to be added to the starting date.

Example

ADD_MONTHS('17-JUN-06', 1) returns the value 17-JUL-06.

3.6 ASCII
ASCII returns the decimal representation of the first character of an expression.

Return Value

NUMBER

Syntax

ASCII(char)

Arguments

char can be any text expression.

Example

ASCII('Boston') returns the value 66, which is the ASCII equivalent of the letter B.

3.7 ASCIISTR
ASCIISTR converts a string in any character set to ASCII in the database character set.
Non-ASCII characters are represented as \xxxx, where xxxx is a UTF-16 code unit.

Return Value

VARCHAR2

Syntax

ASCIISTR(char)

Arguments

char can be any character string.

Chapter 3
ASCII

3-9

Example

ASCIISTR('Skåne') returns the value Sk\00E5ne.

3.8 ASIN
ASIN calculates the angle value in radians of a specified sine.

Return Value

NUMBER

Syntax

ASIN(n)

Arguments

n is a numeric expression in the range of -1 to 1 that contains the decimal value of a
sine.

Example

ASIN(.3) returns the value 0.304692654.

3.9 ATAN
ATAN calculates the angle value in radians of a specified tangent.

Use ATAN2 to retrieve a full-range (0 - 2 pi) numeric value indicating the arc tangent of
a given ratio.

Return Value

NUMBER

Syntax

ATAN(n)

Arguments

n is a numeric expression that contains the decimal value of a tangent.

Example

ATAN(.3) returns the value 0.291456794.

3.10 ATAN2
ATAN2 returns a full-range (0 - 2 pi) numeric value of the arc tangent of a given ratio.
The function returns values in the range of -pi to pi, depending on the signs of the
arguments.

Use ATAN to calculate the angle value (in radians) of a specified tangent that is not a
ratio.

Chapter 3
ASIN

3-10

Return Value

NUMBER

Syntax

ATAN2(n1, n2)

Arguments

n1 and n2 are numeric expressions for the components of the ratio.

Example

ATAN2(.3, .2) returns the value 0.982793723.

3.11 BIN_TO_NUM
BIN_TO_NUM converts a bit vector to its equivalent number.

Return Value

NUMBER

Syntax

BIN_TO_NUM(expr [, expr]...)

Arguments

expr is a numeric expression with a value of 0 or 1 for the value of a bit in the bit
vector.

Example

BIN_TO_NUM(1,0,1,0) returns the value 10.

3.12 BITAND
BITAND computes an AND operation on the bits of two nonnegative integers, and returns
an integer. This function is commonly used with the DECODE function.

An AND operation compares two bit values. If both values are 1, the operator returns 1.
If one or both values are 0, the operator returns 0.

Return Value

NUMBER

Syntax

BITAND(expr1, expr2)

Arguments

expr1 and expr2 are numeric expressions for nonnegative integers.

Chapter 3
BIN_TO_NUM

3-11

Example

BITAND(7, 29) returns the value 5.

The binary value of 7 is 111 and of 29 is 11101. A bit-by-bit comparison generates the
binary value 101, which is decimal 5.

3.13 CAST
CAST converts values from one data type to another.

Return Value

The data type specified by type_name.

Syntax

CAST(expr AS type_name)

Arguments

expr can be an expression in one of the data types.

type_name is one of the data types listed in Table 1-2.

Table 3-1 shows which data types can be cast into which other built-in data types.
NUMBER includes NUMBER, DECIMAL, and INTEGER. DATETIME includes DATE, TIMESTAMP,
TIMESTAMP WITH TIMEZONE, and TIMESTAMP WITH LOCAL TIMEZONE. INTERVAL includes
INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH.

Table 3-1 Compatible Data Types

From To
BINARY_FLOAT,
BINARY_DOUBLE

To CHAR,
VARCHAR2

To NUMBER To DATETIME,
INTERVAL

To NCHAR,
NVARCHAR2

BINARY_FLOAT,
BINARY_DOUBLE

yes yes yes no yes

CHAR, VARCHAR2 yes yes yes yes no

NUMBER yes yes yes no yes

DATETIME,
INTERVAL

no yes no yes yes

NCHAR,
NVARCHAR2

yes no yes no yes

Example

CAST('123.4567' AS NUMBER(10,2)) returns the value 123.46.

3.14 CEIL
CEIL returns the smallest whole number greater than or equal to a specified number.

Chapter 3
CAST

3-12

Return Value

NUMBER

Syntax

CEIL(n)

Arguments

n is a numeric expression.

Examples

CEIL(3.1415927) returns the value 4.

CEIL(-3.4) returns the value -3.00.

3.15 CHARTOROWID
CHARTOROWID converts a value from a text data type to a ROWID data type.

For more information about the ROWID pseudocolumn, refer to the Oracle Database
SQL Language Reference.

Return Value

ROWID

Syntax

CHARTOROWID(char)

Arguments

char is a text expression that forms a valid rowid.

Example

chartorowid('AAAN6EAALAAAAAMAAB') returns the text string AAAN6EAALAAAAAMAAB as
a rowid.

3.16 CHR
CHR converts an integer to the character with its binary equivalent in either the
database character set or the national character set.

For single-byte character sets, if n > 256, then CHR converts the binary equivalent of
mod(n, 256).

For the Unicode national character sets and all multibyte character sets, n must
resolve to one entire code point. Code points are not validated, and the result of
specifying invalid code points is indeterminate.

Return Value

VARCHAR2 | NVARCHAR2

Chapter 3
CHARTOROWID

3-13

Syntax

CHR(n [USING NCHAR_CS])

Arguments

n is a numeric expression.

USING NCHAR_CS returns a character in the national character set. Otherwise, the return
value is in the database character set. The OLAP engine uses the UTF8 national
character set, so the return value may be different from the SQL CHR function, which
uses the database UTF16 national character set.

Example

CHR(67), CHR(67 USING NCHAR_CS), and CHR(323) all return the letter C on an ASCII-
based system with the WE8DEC database character set and the UTF8 national
character set. CHR(323) is evaluated as CHR(MOD(323, 256)).

3.17 COALESCE
COALESCE returns the first non-null expression in a list of expressions, or NULL when all
of the expressions evaluate to null.

Return Value

Data type of the first argument

Syntax

COALESCE(expr [, expr]...)

Arguments

expr can be any expression.

Examples

COALESCE(5, 8, 3) returns the value 5.

COALESCE(NULL, 8, 3) returns the value 8.

3.18 CONCAT
CONCAT joins two expressions as a single character string. The data type of the return
value is the same as the expressions, or if they are mixed, the one that results in a
lossless conversion.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

CONCAT(char1, char2)

Chapter 3
COALESCE

3-14

Arguments

char1 and char2 are text expressions.

Example

CONCAT('The current date is ', 'October 13, 2006') returns the string The
current date is October 13, 2006.

3.19 COS
COS calculates the cosine of an angle.

Return Value

NUMBER

Syntax

COS(n)

Arguments

n is a numeric expression for an angle represented in radians.

Example

COS(180 * 3.1415927/180) returns the cosine of 180 degrees as the value -1. The
expression converts degrees to radians.

3.20 COSH
COSH calculates the cosine of a hyperbolic angle.

Return Value

NUMBER

Syntax

COSH(n)

Arguments

n is a numeric expression for a hyperbolic angle.

Example

COSH(0) returns the value 1.

3.21 CURRENT_DATE
CURRENT_DATE returns the current date in the session time zone.

Chapter 3
COS

3-15

Return Value

DATE

Syntax

CURRENT_DATE

Example

CURRENT_DATE returns a value such as 12-AUG-08.

3.22 CURRENT_TIMESTAMP
CURRENT_TIMESTAMP returns the current date and time in the session time zone. The
time zone offset identifies the current local time of the session.

Return Value

TIMESTAMP WITH TIME ZONE

Syntax

CURRENT_TIMESTAMP [(precision)]

Arguments

precision specifies the fractional second precision of the returned time value. The
default value is 6.

Examples

CURRENT_TIMESTAMP returns a value such as 08-AUG-06 11.18.31.082257 AM -08:00.

CURRENT_TIMESTAMP(2) returns a value such as 08-AUG-06 11.18.31.08 AM -08:00.

3.23 DBTIMEZONE
DBTIMEZONE returns the value of the database time zone as either a time zone offset
from Coordinated Universal Time (UTC) or a time zone region name.

To obtain other time zone offsets, use TZ_OFFSET.

Return Value

VARCHAR2

Syntax

DBTIMEZONE

Example

DBTIMEZONE returns the offset -08:00 for Mountain Standard Time.

Chapter 3
CURRENT_TIMESTAMP

3-16

3.24 DECODE
DECODE compares an expression to one or more search strings one by one.

If expr is search, then DECODE returns the corresponding result. If there is no match,
then DECODE returns default. If you omit default, then DECODE returns NULL.

Return Value

Data type of the first result argument

Syntax

DECODE(expr, search, result
 [, search, result]...
 [, default]
)

Arguments

expr is an expression that is compared to one or more search strings.

search is a string that is searched for a match to expr.

result is the return value when expr matches the corresponding search string.

default is the return value when expr does not match any of the search strings. If
default is omitted, then DECODE returns NULL.

The arguments can be any numeric or character type. Two nulls are equivalent. If expr
is null, then DECODE returns the result of the first search that is also null.

The maximum number of components, including expr, searches, results, and
default, is 255.

Example

DECODE(sysdate, '21-JUN-06', 'Summer Solstice', '21-DEC-06', 'Winter
Solstice', 'Have a nice day!')

returns these values:

Summer Solstice on June 21, 2006

Winter Solstice on December 21, 2006

Have a nice day! on all other days

3.25 EXP
EXP returns e raised to the nth power, where e = 2.71828183. The function returns a
value of the same type as the argument.

Return Value

NUMBER

Chapter 3
DECODE

3-17

Syntax

EXP(n)

Arguments

n is a numeric expression for the exponent.

Example

EXP(4) returns the value 54.59815.

3.26 EXTRACT (datetime)
EXTRACT returns the value of a specified field from a datetime or interval expression.

Return Value

NUMBER

Syntax

EXTRACT({ { YEAR
 | MONTH
 | DAY
 | HOUR
 | MINUTE
 | SECOND
 }
 | { TIMEZONE_HOUR
 | TIMEZONE_MINUTE
 }
 | { TIMEZONE_REGION
 | TIMEZONE_ABBR
 }
 }
 FROM { datetime_value_expression
 | interval_value_expression
 }
)

Arguments

datetime_value_expression is an expression with a datetime data type.

interval_value_expression is an expression with an interval data type.

Example

EXTRACT(MONTH FROM CURRENT_TIMESTAMP) returns the value 8 for August when the
current timestamp is 08-AUG-06 01.10.55.330120 PM -07:00.

EXTRACT(TIMEZONE_HOUR FROM CURRENT_TIMESTAMP) returns the value -7 from the
same example.

Chapter 3
EXTRACT (datetime)

3-18

3.27 FLOOR
FLOOR returns the largest integer equal to or less than a specified number.

Return Value

NUMBER

Syntax

FLOOR(n)

Arguments

n can be any numeric expression.

Examples

FLOOR(15.7) returns the value 15.

FLOOR(-15.7) returns the value -16.

3.28 FROM_TZ
FROM_TZ converts a timestamp value and a time zone to a TIMESTAMP WITH TIME ZONE
data type.

Return Value

TIMESTAMP WITH TIME ZONE

Syntax

FROM_TZ (timestamp_value, time_zone_value)

Arguments

timestamp_value is an expression with a TIMESTAMP data type.

time_zone_value is a text expression that returns a string in the format TZH:TZM or in
TZR with optional TZD format.

Example

FROM_TZ(TIMESTAMP '2008-03-26 08:00:00', '3:00') returns the value 26-MAR-08
08.00.00.000000 AM +03:00.

3.29 GREATEST
GREATEST returns the largest expression in a list of expressions. All expressions after
the first are implicitly converted to the data type of the first expression before the
comparison. Text expressions are compared character by character.

To retrieve the smallest expression in a list of expressions, use LEAST.

Chapter 3
FLOOR

3-19

Return Value

The data type of the first expression

Syntax

GREATEST(expr [, expr]...)

Arguments

expr can be any expression.

Examples

GREATEST('Harry','Harriot','Harold') returns the value Harry.

GREATEST(7, 19, 3) returns the value 19.

3.30 HEXTORAW
HEXTORAW converts a hexadecimal value to a raw value.

Return Value

RAW

Syntax

HEXTORAW (char)

Arguments

char is a hexadecimal value in the CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type.

Example

HEXTORAW('7D') returns the RAW value 7D.

3.31 INITCAP
INITCAP returns a specified text expression, with the first letter of each word in
uppercase and all other letters in lowercase. Words are delimited by white space or
non-alphanumeric characters. The data type of the return value is the same as the
original text.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

INITCAP(char)

Arguments

char can be any text expression.

Chapter 3
HEXTORAW

3-20

Example

INITCAP('top ten tunes') and INITCAP('TOP TEN TUNES') both return the string Top
Ten Tunes.

3.32 INSTR
The INSTR functions search string for substring. The function returns an integer
indicating the position of the character in string, or a zero (0) if does not find a match.

• INSTR calculates strings using characters as defined by the input character set.

• INSTRB uses bytes instead of characters.

• INSTRC uses Unicode complete characters.

REGEXP_INSTR provides additional options.

Return Value

NUMBER

Syntax

{ INSTR | INSTRB | INSTRC }
(string , substring [, position [, occurrence]])

Arguments

string is the text expression to search.

substring is the text string to search for.

position is a nonzero integer indicating the character in string where the function
begins the search. When position is negative, then INSTR counts and searches
backward from the end of string. The default value of position is 1, which means that
the function begins searching at the first character of string.

occurrence is an integer indicating which occurrence of string the function should
search for. The value of occurrence must be positive. The default values of occurrence
is 1, meaning the function searches for the first occurrence of substring.

Example

INSTR('CORPORATE FLOOR','OR', 3, 2) searches the string CORPORATE FLOOR
beginning with the third character (R) for the second instance of the substring OR. It
returns the value 14, which is the position of the second O in FLOOR.

3.33 LAST_DAY
LAST_DAY returns the last day of the month in which a particular date falls.

Return Value

DATE

Chapter 3
INSTR

3-21

Syntax

LAST_DAY(date)

Arguments

date can be any datetime expression.

Example

LAST_DAY('26-MAR-06') returns the value 31-MAR-06.

3.34 LEAST
LEAST returns the smallest expression in a list of expressions. All expressions after the
first are implicitly converted to the data type of the first expression before the
comparison. Text expressions are compared character by character.

To retrieve the largest expression in a list of expressions, use GREATEST.

Return Value

The data type of the first expression

Syntax

LEAST(expr [, expr]...)

Arguments

expr can be any expression.

Examples

LEAST('Harry','Harriot','Harold') returns the value Harold.

LEAST(19, 3, 7) returns the value 3.

3.35 LENGTH
The LENGTH functions return the length of a text expression.

• LENGTH counts the number of characters.

• LENGTHB uses bytes instead of characters.

• LENGTHC uses Unicode complete characters.

Return Value

NUMBER

Syntax

{ LENGTH | LENGTHB | LENGTHC }(char)

Chapter 3
LEAST

3-22

Arguments

char is any text expression.

Example

LENGTH('CANDIDE') returns the value 7.

3.36 LN
LN returns the natural logarithm of a number greater than 0.

Return Value

NUMBER

Syntax

LN(n)

Arguments

n can be any numeric expression with a value greater than 0.

Example

LN(95) returns the value 4.55387689.

3.37 LNNVL
LNNVL evaluates a condition when one or both operands of the condition may be null.
LNNVL can be used anywhere a scalar expression can appear, even in contexts where
the IS [NOT] NULL, AND, or OR conditions are not valid but would otherwise be required
to account for potential nulls.

NOTE: This function returns 1 (true) if the condition is false or unknown, and 0 (false) if
the condition is true.

Return Value

NUMBER

Syntax

LNNVL(condition)

Arguments

condition can be any expression containing scalar values.

Examples

LNNVL(1 > 4) returns 1 (true).

Chapter 3
LN

3-23

3.38 LOCALTIMESTAMP
LOCALTIMESTAMP returns the current date and time in the session time zone.

Return Value

TIMESTAMP

Syntax

LOCALTIMESTAMP [(timestamp_precision)]

Arguments

timestamp_precision specifies the fractional second precision of the time value
returned.

Examples

LOCALTIMESTAMP returns a value such as 09-AUG-06 08.11.37.045186 AM.

LOCALTIMESTAMP(2) returns a value such as 09-AUG-06 08.11.37.040000 AM.

3.39 LOG
LOG computes the logarithm of an expression.

Return Value

NUMBER

Syntax

LOG(n2, n1)

Arguments

n2 is the base by which to compute the logarithm.

n1 is the value whose logarithm is calculated. It can be any numeric expression that is
greater than zero. When the value is equal to or less than zero, LOG returns a null
value.

Example

LOG(10,100) returns the value 2.

3.40 LOWER
LOWER converts all alphabetic characters in a text expression to lowercase. The data
type of the return value is the same as the original text.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Chapter 3
LOCALTIMESTAMP

3-24

Syntax

LOWER(char)

Arguments

char can be any text expression.

Example

LOWER('STOP SHOUTING') returns the string stop shouting.

3.41 LPAD
LPAD adds characters to the left of an expression to a specified length. The data type
of the return value is the same as the original text.

Use RPAD to add characters to the right.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

LPAD(expr1, n [, expr2])

Arguments

expr1 is a text expression for the base string.

n is the total length of the returned expression. If expr1 is longer than n, then this
function truncates expr1 to n characters.

expr2 is a text expression for the padding characters. By default, it is a space.

Example

LPAD('Page 1',15,'*.') returns the value *.*.*.*.*Page 1.

LPAD('Stay tuned', 4) returns the value Stay.

3.42 LTRIM
LTRIM scans a text expression from left to right and removes all the characters that
match the characters in the trim expression, until it finds an unmatched character. The
data type of the return value is the same as the original text.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

LTRIM(char [, set])

Chapter 3
LPAD

3-25

Arguments

char is the text expression to be trimmed.

set is a text expression with the characters to remove. The default value of set is a
single blank.

Examples

LTRIM('Last Word', ' .') returns the value Last Word.

3.43 MOD
MOD returns the remainder after a number is divided by another, or the number if the
divisor is 0 (zero).

Return Value

NUMBER

Syntax

MOD(n2, n1)

Arguments

n2 is a numeric expression for the number to be divided.

n1 is a numeric expression for the divisor.

Example

MOD(13,7) returns the value 6.

3.44 MONTHS_BETWEEN
MONTHS_BETWEEN calculates the number of months between two dates. When the two
dates have the same day component or are both the last day of the month, then the
return value is a whole number. Otherwise, the return value includes a fraction that
considers the difference in the days based on a 31-day month.

Return Value

NUMBER

Syntax

MONTHS_BETWEEN(date1, date2)

Arguments

date1 and date2 are datetime expressions. If date1 is later than date2, then the result
is positive. If date1 is earlier than date2, then the result is negative.

Example

MONTHS_BETWEEN('15-APR-06', '01-JAN-06') returns the value 3.4516129.

Chapter 3
MOD

3-26

3.45 NANVL
NANVL checks if a value is a number. If it is, then NANVL returns that value. If not, it
returns an alternate value. This function is typically used to convert a binary double or
binary float NaN (Not a Number) value to zero or null.

Return Value

datatype

Syntax

NANVL (expression, alternate)

Arguments

expression can be any value.

alternate is the numeric value returned if expression is not a number.

3.46 NEW_TIME
NEW_TIME converts the date and time from one time zone to another. Before using this
function, set the NLS_DATE_FORMAT parameter to display 24-hour time.

Return Value

DATE

Syntax

NEW_TIME(date, timezone1, timezone2)

Arguments

date is a datetime expression to be converted to a new time zone.

timezone1 is the time zone of date.

timezone2 is the new time zone.

The time zone arguments are limited to the values in Table 3-2. For other time zones,
use FROM_TZ.

Table 3-2 Time Zones

Time Zone Abbreviation

Alaska-Hawaii Daylight Time HDT

Alaska-Hawaii Standard Time HST

Atlantic Daylight Time ADT

Atlantic Standard Time AST

Bering Daylight Time BDT

Bering Standard Time BST

Chapter 3
NANVL

3-27

Table 3-2 (Cont.) Time Zones

Time Zone Abbreviation

Central Daylight Time CDT

Central Standard Time CST

Eastern Daylight Time EDT

Eastern Standard Time EST

Greenwich Mean Time GMT

Mountain Daylight Time MDT

Mountain Standard Time MST

Newfoundland Standard Time NST

Pacific Daylight Time PDT

Pacific Standard Time PST

Yukon Daylight Time YDT

Yukon Standard Time YST

Example

NEW_TIME(SYSDATE, 'PST', 'EST') returns a value such as 18-JAN-07 04:38:07 in
Eastern Standard Time when SYSDATE is 18-JAN-07 01:38:07 in Pacific Standard
Time. For this example, NLS_DATE_FORMAT is set to DD-MON-RR HH:MI:SS.

3.47 NEXT_DAY
NEXT_DAY returns the date of the first instance of a particular day of the week that
follows the specified date.

Return Value

DATE

Syntax

NEXT_DAY(date, char)

Arguments

date is a datetime expression.

char is a text expression that identifies a day of the week (for example, Monday) in the
language of your session.

Example

NEXT_DAY('11-SEP-01', 'Monday') returns the value 17-SEP-01.

3.48 NLS_CHARSET_ID
NLS_CHARSET_ID returns the identification number corresponding to a specified
character set name.

Chapter 3
NEXT_DAY

3-28

Return Value

NUMBER

Syntax

NLS_CHARSET_ID (charset_name)

Arguments

charset_name is a VARCHAR2 expression that is a valid character set name.

Example

NLS_CHARSET_ID('AL32UTF8') returns the value 873.

3.49 NLS_CHARSET_NAME
NLS_CHARSET_NAME returns the name corresponding to a specified character set
number.

Return Value

VARCHAR2

Syntax

NLS_CHARSET_NAME (charset_id)

Arguments

charset_id is a valid character set number or one of these keywords:

• CHAR_CS represents the database character set.

• NCHAR_CS represents the national character set. The national character set for the
database can be either UTF-8 or AL16UTF16 (default). However, the national
character set for analytic workspaces is always UTF-8.

If the number does not correspond to a character set, then the function returns NULL.

Example

NLS_CHARSET_NAME(2000) returns the value AL16UTF16.

3.50 NLS_INITCAP
NLS_INITCAP returns a string in which each word begins with a capital followed by
lower-case letters. White space and nonalphanumeric characters delimit the words.

Return Value

VARCHAR2

Syntax

NLS_INITCAP (char [, 'nlsparam'])

Chapter 3
NLS_CHARSET_NAME

3-29

Arguments

char can be any text string.

nlsparam can have the form 'NLS_SORT =sort' where sort is either a linguistic sort
sequence or BINARY. The linguistic sort sequence handles special linguistic
requirements for case conversions. These requirements can result in a return value of
a different length than char. If you omit nlsparam, then this function uses the default
sort sequence for your session.

Example

NLS_INITCAP('WALKING&THROUGH*A*winter wonderland') returns the value
Walking#Through*A*Winter Wonderland.

NLS_INITCAP('ijsland') returns the value Ijsland, but
NLS_INITCAP(NLS_INITCAP('ijsland', 'NLS_SORT = XDutch') returns IJsland.

3.51 NLS_LOWER
NLS_LOWER converts all alphabetic characters in a text expression to lowercase. The
data type of the return value is the same as the original text.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

NLS_LOWER (char [, 'nlsparam'])

Arguments

char can be any text expression.

nlsparam is a linguistic sort sequence in the form NLS_SORT =sort[_ai |_ci], where
sort is an NLS language. You can add a suffix to the language to modify the sort: _ai
for an accent-insensitive sort, or _ci for a case-insensitive sort.

Example

NLS_LOWER('STOP SHOUTING') returns the string stop shouting.

3.52 NLS_UPPER
NLS_UPPER converts all alphabetic characters in a text expression to uppercase. The
data type of the return value is the same as the original text.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

NLS_UPPER (char [, 'nlsparam'])

Chapter 3
NLS_LOWER

3-30

Arguments

char can be any text expression.

nlsparam is a linguistic sort sequence in the form NLS_SORT =sort[_ai |_ci], where
sort is an NLS language. You can add a suffix to the language to modify the sort: _ai
for an accent-insensitive sort, or _ci for a case-insensitive sort.

Example

NLS_UPPER('This is an emergency') returns the string THIS IS AN EMERGENCY.

3.53 NLSSORT
NLSSORT returns the string of bytes used to sort a text string. You can use this function
to specify sorting and comparison operations based on a linguistic sort sequence
rather than on the binary value of a string.

Note: NLSSORT returns a RAW value, which you may pass to another function. To create
a measure or a calculated measure for the values returned by NLSSORT, use the
RAWTOHEX function.

For more information about linguistic sorting, refer to the Oracle Database
Globalization Support Guide.

Return Value

RAW

Syntax

NLSSORT(char [, 'nlsparam'])

Arguments

char is a text expression.

nlsparam is a linguistic sort sequence in the form NLS_SORT =sort[_ai |_ci], where
sort is an NLS language. You can add a suffix to the language to modify the sort: _ai
for an accent-insensitive sort, or _ci for a case-insensitive sort.

Example

NLSSORT('Rumpelstiltskin') returns the value 52756D70656C7374696C74736B696E00
for a default linguistic sort, which in this case is American.

3.54 NULLIF
NULLIF compares one expression with another. It returns NULL when the expressions
are equal, or the first expression when they are not.

Return Value

Data type of the first argument

Chapter 3
NLSSORT

3-31

Syntax

NULLIF(expr1, expr2)

Arguments

expr1 is the base expression. It cannot be a literal null.

expr2 is the expression to compare with the base expression.

Example

NULLIF('red', 'Red') returns the value red.

3.55 NUMTODSINTERVAL
NUMTODSINTERVAL converts a number to an INTERVAL DAY TO SECOND data type.

Return Value

INTERVAL DAY TO SECOND

Syntax

NUMTODSINTERVAL(n, 'interval_unit')

Arguments

n can be any numeric expression.

interval_unit is a text expression that specifies the units. It must resolve to one of
the following values:

• DAY

• HOUR

• MINUTE

• SECOND

These values are case insensitive.

Example

NUMTODSINTERVAL(100, 'MINUTE') returns the value +00 01:40:00.000000.

3.56 NUMTOYMINTERVAL
NUMTOYMINTERVAL converts a number to an INTERVAL YEAR TO MONTH data type.

Return Value

INTERVAL YEAR TO MONTH

Syntax

NUMTOYMINTERVAL(n, 'interval_unit')

Chapter 3
NUMTODSINTERVAL

3-32

Arguments

n can be any numeric expression.

interval_unit is a text expression that specifies the units. It must resolve to one of
the following values:

• YEAR

• MONTH

These values are case insensitive.

Example

NUMTOYMINTERVAL(18, 'MONTH') returns the value +01-06.

3.57 NVL
NVL replaces a null with a string. NVL returns the replacement string when the base
expression is null, and the value of the base expression when it is not null.

To replace an expression with one value if it is null and a different value if it is not, use
NVL2.

Return Value

Data type of the first argument

Syntax

NVL(expr1, expr2)

Arguments

expr1 is the base expression that is evaluated.

expr2 is the replacement string that is returned when expr1 is null.

Examples

NVL('First String', 'Second String') returns the value First String.

NVL(null, 'Second String') returns the value Second String.

3.58 NVL2
NVL2 returns one value when the value of a specified expression is not null, or another
value when the value of the specified expression is null.

To replace a null value with a string, use NVL.

Return Value

Data type of the first argument

Chapter 3
NVL

3-33

Syntax

NVL2(expr1, expr2, expr3)

Arguments

expr1 is the base expression whose value this function evaluates.

expr2 is an expression whose value is returned when expr1 is not null.

expr3 is an expression whose value is returned when expr1 is null.

Example

NVL2('Which string?', 'First String', 'Second String') returns the value
First String.

3.59 ORA_HASH
ORA_HASH generates hash values for an expression. You can use it to randomly assign
a set of values into several buckets for analysis, or to generate a set of random
numbers.

Return Value

NUMBER

Syntax

ORA_HASH (expr [, max_bucket [, seed_value]])

Arguments

expr can be any expression that provides the data for generating the hash values.

max_bucket is the maximum bucket number. For example, when max_bucket is set to
5, ORA_HASH returns values of 0 to 5, creating six buckets. Set this value from 0 to
4294967295 or 2^32-1 (default).

seed_value is a value used by ORA_HASH to generate the hash values. Enter a different
seed_value for different results. Set this value from 0 (default) to 4294967295 or
2^32-1.

Example

ORA_HASH(PRODUCT_CUBE.PRICES, 5) returns a value in the range of 0 to 5 for each
value of the Prices measure, as shown in the Hash 5 column. The rows are also
sorted on the Hash 5 column.

ORA_HASH(PRODUCT_CUBE.PRICES, 5, 13) also returns values in the range of 0 to 5,
but uses a different seed.

Product Prices Hash 5 Seed 13

ENVY STD 200539.83 0 4

ENVY EXE 255029.31 0 5

1GB USB DRV 44645.65 1 2

Chapter 3
ORA_HASH

3-34

Product Prices Hash 5 Seed 13

DLX MOUSE 1379.49 2 2

144MB DISK 3011.43 2 5

512 USB DRV 22139.99 2 2

19 SVGA 34837.16 3 0

56KPS MODEM 12478 3 2

ENVY EXT KBD 4312.22 3 5

17 SVGA 22605.55 4 1

EXT CD ROM 17990.14 4 0

ENVY ABM 205462.25 5 1

3.60 POWER
POWER raises a number to a power.

Return Value

NUMBER

Syntax

POWER(n2, n1)

Arguments

n2 is any numeric expression that is raised to a power.

n1 is the exponent.

Example

POWER(3,2) returns the value 9.

3.61 RAWTOHEX
RAWTOHEX converts raw data to a character value containing its hexadecimal
representation.

Return Value

VARCHAR2

Syntax

RAWTOHEX(raw)

Arguments

raw can be any scalar data type other than LONG, LONG RAW, CLOB, BLOB, or BFILE.

Chapter 3
POWER

3-35

Example

RAWTOHEX(NLSSORT('Rumpelstiltskin')) converts the raw value returned by NLSSORT
to the hexadecimal value 52756D70656C7374696C74736B696E00.

3.62 REGEXP_COUNT
REGEXP_COUNT searches a string for a regular pattern and returns the number of times
the pattern occurs. If no match is found, the function returns 0.

The function evaluates strings using characters as defined by the input character set.

Return Value

NUMBER

Syntax

REGEXP_COUNT (source_char, pattern
 [, position
 [, match_parameter]
]
)

Arguments

source_char is the text expression to search.

pattern is the string to search for. A period matches any character. For a list of
operators, refer to the Oracle Database SQL Language Reference, Appendix D,
"Oracle Regular Expression Support."

position is a nonzero integer indicating the character of source_char where the
function begins the search. When position is negative, then the function counts and
searches backward from the end of string. The default value of position is 1, which
means that the function begins searching at the first character of source_char.

match_parameter is a text literal that lets you change the default matching behavior of
the function. You can specify one or more of the following values:

• c: Case-sensitive matching.

• i: Case-insensitive matching.

• m: Treat the source string as multiple lines. The function interprets ^ and $ as the
start and end, respectively, of any line anywhere in the source string, rather than
only at the start or end of the entire source string. By default, the function treats
the source string as a single line.

• n: New-line character is among the characters matched by a period (the wildcard
character). By default, it is not.

• x: Ignore whitespace characters.

Example

REGEXP_COUNT('Mississippi', 'i', 1) searches the string Mississippi for the letter
i, beginning the search at the first letter. It returns the value 4.

Chapter 3
REGEXP_COUNT

3-36

3.63 REGEXP_REPLACE
REGEXP_REPLACE searches a string for a regular pattern and replaces it with another
string. By default, the function returns source_char with every occurrence of the
regular expression pattern replaced with replace_string.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

REGEXP_REPLACE(source_char, pattern
 [, replace_string
 [, position
 [, occurrence
 [, match_parameter]
]
]
]
)

Arguments

source_char is the text expression that is searched.

pattern is the text expression to search for. It is usually a text literal and can contain
up to 512 bytes. For a list of operators, refer to the Oracle Database SQL Language
Reference, Appendix D, "Oracle Regular Expression Support."

replace_string is the text that replaces pattern in source_char.

position is a nonzero integer indicating the character of source_char where the
function begins the search. When position is negative, then the function counts and
searches backward from the end of string. The default value of position is 1, which
means that the function begins searching at the first character of source_char.

occurrence is an integer indicating which occurrence of pattern the function should
search for. The value of occurrence must be positive. The default values of
occurrence is 1, meaning the function searches for the first occurrence of pattern.

match_parameter is a text literal that lets you change the default matching behavior of
the function. You can specify one or more of the following values:

• c: Case-sensitive matching.

• i: Case-insensitive matching.

• m: Treat the source string as multiple lines. The function interprets ^ and $ as the
start and end, respectively, of any line anywhere in the source string, rather than
only at the start or end of the entire source string. By default, the function treats
the source string as a single line.

• n: New-line character is among the characters matched by a period (the wildcard
character). By default, it is not.

• x: Ignore whitespace characters.

Chapter 3
REGEXP_REPLACE

3-37

Example

REGEXP_REPLACE('500 Oracle Parkway, Redwood Shores, CA', '(){2,}', ' ')

eliminates extra spaces and returns the string

500 Oracle Parkway, Redwood Shores, CA

3.64 REGEXP_INSTR
REGEXP_INSTR searches a string for a regular pattern. It can return an integer indicating
either the beginning or the ending position of the matched substring. If no match is
found, then the function returns 0.

The function evaluates strings using characters as defined by the input character set.

Return Value

NUMBER

Syntax

REGEXP_INSTR (source_char, pattern
 [, position
 [, occurrence
 [, return_option
 [, match_parameter]
]
]
]
)

Arguments

source_char is the text expression to search.

pattern is the string to search for. A period matches any character. For a list of
operators, refer to the Oracle Database SQL Language Reference, Appendix D,
Oracle Regular Expression Support.

position is a nonzero integer indicating the character of source_char where the
function begins the search. When position is negative, then the function counts and
searches backward from the end of string. The default value of position is 1, which
means that the function begins searching at the first character of source_char.

occurrence is an integer indicating which occurrence of pattern the function should
search for. The value of occurrence must be positive. The default values of
occurrence is 1, meaning the function searches for the first occurrence of pattern.

return_option is either 0 to return the position of the match (default), or 1 to return the
position of the character following the match.

match_parameter is a text literal that lets you change the default matching behavior of
the function. You can specify one or more of the following values:

• c: Case-sensitive matching.

• i: Case-insensitive matching.

Chapter 3
REGEXP_INSTR

3-38

• m: Treat the source string as multiple lines. The function interprets ^ and $ as the
start and end, respectively, of any line anywhere in the source string, rather than
only at the start or end of the entire source string. By default, the function treats
the source string as a single line.

• n: New-line character is among the characters matched by a period (the wildcard
character). By default, it is not.

• x: Ignore whitespace characters.

Example

REGEXP_INSTR('Mississippi', 'i', 1, 3) searches the string Mississippi for the
third instance of the letter i, beginning the search at the first letter. It returns the value
8.

3.65 REGEXP_SUBSTR
REGEXP_SUBSTR searches a string for a pattern and returns the matching string.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR

Syntax

REGEXP_SUBSTR(source_char, pattern
 [, position
 [, occurrence
 [, match_parameter]
]
]
)

Arguments

source_char is the text expression that is searched.

pattern is the text expression to search for. It is usually a text literal and can contain
up to 512 bytes. For a list of operators, refer to the Oracle Database SQL Language
Reference, Appendix D, "Oracle Regular Expression Support."

position is a nonzero integer indicating the character of source_char where the
function begins the search. When position is negative, then the function counts and
searches backward from the end of string. The default value of position is 1, which
means that the function begins searching at the first character of source_char.

occurrence is an integer indicating which occurrence of pattern the function should
search for. The value of occurrence must be positive. The default values of
occurrence is 1, meaning the function searches for the first occurrence of pattern.

match_parameter is a text expression that lets you change the default matching
behavior of the function. You can specify one or more of the following values:

• c: Case-sensitive matching.

• i: Case-insensitive matching.

• m: Treat the source string as multiple lines. The function interprets ^ and $ as the
start and end, respectively, of any line anywhere in the source string, rather than

Chapter 3
REGEXP_SUBSTR

3-39

only at the start or end of the entire source string. By default, the function treats
the source string as a single line.

• n: New-line character is among the characters matched by a period (the wildcard
character). By default, it is not.

• x: Ignore whitespace characters.

Examples

REGEXP_SUBSTR('7 W 96th St, New York, NEW YORK', 'new york', 10, 2, 'i')
starts searching at the tenth character and matches NEW YORK in a case-insensitive
match.

REGEXP_SUBSTR('parsley, sage, rosemary, thyme', 's[^,]+e', 1, 2) starts
searching at the first character and matches the second substring consisting of the
letter s, any number of characters that are not commas, and the letter e. In this
example, the function returns the value sage.

3.66 REMAINDER
REMAINDER returns a rounded remainder when one number is divided by another using
this equation:

n2 - (n1 * N)

where N is the integer nearest n2/n1.

Return Value

NUMBER

Syntax

REMAINDER(n2, n1)

Arguments

n1 is a numeric expression for the divisor.

n2 is a numeric expression for the dividend.

Example

REMAINDER(18,7) returns the value -3.

3.67 REPLACE
REPLACE searches a string for a regular pattern, replaces it with another string, and
returns the modified string.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

REPLACE(char, search_string [, replacement_string])

Chapter 3
REMAINDER

3-40

Arguments

char is the text expression that is searched.

search_string is the text expression to search for.

replacement_string is the text expression that replaces search_string in char.

Example

REPLACE('Nick Nack', 'N', 'Cl') returns the string Click Clack.

3.68 ROUND (date)
ROUND returns a date rounded to the unit specified by the date format.

Return Value

DATE

Syntax

ROUND(date [, fmt])

Arguments

date is an expression that identifies a date and time.

fmt is a text literal with a date format, as described in the Oracle Database SQL
Language Reference.

Examples

ROUND(SYSDATE, 'YEAR') returns the value 01-JAN-07 for any day in the last half of
2006.

ROUND(TO_DATE('13-OCT-06'), 'MONTH') returns the value 01-OCT-06.

3.69 ROUND (number)
ROUND returns a number rounded to a specified number of places.

Return Value

NUMBER

Syntax

ROUND(n [, integer])

Arguments

n is the number to round.

integer is the number of decimal places of the rounded number. A negative value
rounds to the left of the decimal point. The default value is 0.

Chapter 3
ROUND (date)

3-41

Examples

ROUND(15.193) returns the value 15.

ROUND(15.193,1) returns the value 15.2.

ROUND(15.193,-1) returns the value 20.

3.70 ROWIDTOCHAR
ROWIDTOCHAR converts a row address from a ROWID data type to text.The return value is
always 18 characters long in the database character set.

Return Value

VARCHAR2

Syntax

ROWIDTOCHAR(rowid)

Arguments

rowid is a row address to convert.

3.71 ROWIDTONCHAR
ROWIDTONCHAR converts a row address from the ROWID data type to text. The return
value is always 18 characters in the national character set.

Return Value

NVARCHAR2

Syntax

ROWIDTONCHAR(rowid)

Arguments

rowid is a row address to convert.

3.72 RPAD
RPAD adds characters to the right of an expression to a specified length. The data type
of the return value is the same as the original text.

Use LPAD to add characters to the left.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

RPAD(expr1 , n [, expr2])

Chapter 3
ROWIDTOCHAR

3-42

Arguments

expr1 is a text expression for the base string.

n is the total length of the returned expression. If expr1 is longer than n, then this
function truncates expr1 to n characters.

expr2 is a text expression for the padding characters. By default, it is a space.

Example

RPAD('Stay tuned', 15, '. ') returns the value Stay tuned. . .

RPAD('Stay tuned', 4) returns the value Stay.

3.73 RTRIM
RTRIM scans a text expression from right to left and removes all the characters that
match the characters in the trim expression, until it finds an unmatched character. The
data type of the return value is the same as the original text.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

RTRIM(char [, set])

Arguments

char is the text expression to be trimmed.

set is a text expression with the characters to remove. The default value of set is a
single blank.

Examples

RTRIM('You did that!?!?!?!', '?!') returns the value You did that.

RTRIM('3.14848', '84') returns the text value 3.1.

3.74 SESSIONTIMEZONE
SESSIONTIMEZONE returns the time zone of the current session. The return type is a
time zone offset from Coordinated Universal Time (UTC) or a time zone region name.

Return Value

VARCHAR2

Syntax

SESSIONTIMEZONE

Chapter 3
RTRIM

3-43

Example

SESSIONTIMEZONE returns the value -05:00 for Eastern Standard Time.

3.75 SIGN
SIGN returns a value that indicates whether a specified number is less than, equal to,
or greater than 0 (zero):

• -1 if n < 0

• 0 if n = 0

• 1 if n > 0

Return Value

NUMBER

Syntax

SIGN(n)

Arguments

n is a numeric expression.

Example

SIGN(-15) returns the value -1.

3.76 SIN
SIN returns the sine of an angle.

Return Value

NUMBER

Syntax

SIN(n)

Arguments

n is a numeric expression for an angle in radians.

Example

SIN(30 * 3.1415927/180) calculates the sine of a 30 degrees angle as the value
0.500000007. The numeric expression converts degrees to radians.

3.77 SINH
SINH returns the sine of a hyperbolic angle.

Chapter 3
SIGN

3-44

Return Value

NUMBER

Syntax

SINH(n)

Arguments

n is a numeric expression for a hyperbolic angle.

Example

SINH(1) returns the value 1.17520119.

3.78 SOUNDEX
SOUNDEX returns a character string containing the phonetic representation of a text
expression. This function lets you compare words that are spelled differently but sound
alike.

The function is based on the algorithm described in Donald Knuth's The Art of
Computer Programming. This algorithm was designed specifically for English. Its
results for other languages other than English are unpredictable and typically
unsatisfactory.

Return Value

VARCHAR2

Syntax

SOUNDEX (char)

Arguments

char can be any text expression.

Example

All of these examples return the value D500:

soundex('Donna')

soundex('Diane')

soundex('Dana')

3.79 SQRT
SQRT returns the square root of a number.

Return Value

NUMBER

Chapter 3
SOUNDEX

3-45

Syntax

SQRT(n)

Arguments

n is a numeric expression for a positive number.

Example

SQRT(13) returns the value 3.60555128.

3.80 SUBSTR
SUBSTR returns a portion of string, beginning at a specified character position and
extending a specified number of characters.

• SUBSTR calculates lengths using characters as defined by the input character set.

• SUBSTRB uses bytes instead of characters.

• SUBSTRC uses Unicode complete characters.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

{ SUBSTR | SUBSTRB | SUBSTRC }(char, position [, substring_length])

Arguments

char is a text expression that provides the base string from which the substring is
derived.

position identifies the first character of the substring:

• When position is positive, then the function counts from the beginning of char to
find the first character.

• When position is negative, then the function counts backward from the end of
char.

• When position is 0 (zero), then the first character is the beginning of the
substring.

substring_length is the number of characters in the returned string. By default, the
function returns all characters to the end of the base string. If you specify a value less
than 1, then the function returns a null.

Examples

SUBSTR('firefly', 1, 4) returns the substring fire.

SUBSTR('firefly', -3, 3) returns the substring fly.

Chapter 3
SUBSTR

3-46

3.81 SYS_CONTEXT
SYS_CONTEXT returns the value of an attribute of a named context. The context,
attribute, and value must already be defined in the database. If the context is not
defined, SYS_CONTEXT returns NULL.

Return Value

VARCHAR2

Syntax

SYS_CONTEXT ('namespace', 'parameter')

Arguments

namespace can be any named context in the database. USERENV is a built-in context
that describes the current session.

parameter is a defined attribute of namespace. Table 3-3 describes the predefined
attributes of USERENV that are most likely to have values. For a complete list, refer to
the SYS_CONTEXT entry in the Oracle Database SQL Language Reference.

Table 3-3 USERENV Attributes

USERENV Attribute Description

AUTHENTICATED_IDENTITY The identity used for authentication, such as database user
name, schema name, or operating system login name.

AUTHENTICATION_METHOD The method of authentication, such as PASSWORD, OS, or SSL.

CURRENT_EDITION_ID The session edition identifier, such as 100.

CURRENT_EDITION_NAME The session edition name, such as ORA$BASE.

CURRENT_SCHEMA The name of the currently active default schema, such as SH.

CURRENT_SCHEMA_ID The numeric identifier of the currently active default schema,
such as 80.

CURRENT_USER The name of the database user whose privileges are currently
active, such as SH.

CURRENT_USERID The numeric identifier of the database user whose privileges are
currently active, such as 80.

DATABASE_ROLE Data Guard role of the database: PRIMARY, PHYSICAL
STANDBY, LOGICAL STANDBY, or SNAPSHOT STANDBY.

DB_DOMAIN The network domain of the database as specified by the
DB_DOMAIN initialization parameter, such as us.example.com.

DB_NAME The name of the database as specified by the DB_NAME
initialization parameter.

DB_UNIQUE_NAME The unique name of the database within the domain as specified
by the DB_UNIQUE_NAME initialization parameter.

ENTERPRISE_IDENTITY The enterprise-wide identity of the user, or NULL for local users,
SYSDBA, and SYSOPER.

Chapter 3
SYS_CONTEXT

3-47

Table 3-3 (Cont.) USERENV Attributes

USERENV Attribute Description

FG_JOB_ID Job identifier of the current session if a client foreground process
opened it; otherwise, NULL.

GLOBAL_CONTEXT_MEMORY The number used in the System Global Area by the globally
accessed context.

GLOBAL_UID The global user identification from Oracle Internet Directory for
Enterprise User Security logins; otherwise, NULL.

HOST The name of the client host computer.

IDENTIFICATION_TYPE The way the user schema was created in the database: LOCAL,
EXTERNAL, GLOBAL SHARED, or GLOBAL PRIVATE.

INSTANCE The identification number of the current instance, such as 1.

INSTANCE_NAME The name of the database instance.

IP_ADDRESS The IP address of the client, such as 10.255.255.255.

ISDBA TRUE if the user was authenticated with DBA privileges;
otherwise, FALSE.

LANG A short name for the session language, such as US for
AMERICAN.

LANGUAGE The language, territory, and database character set in the form
language_territory.characterset, such as
AMERICA_AMERICAN.WE8DEC.

MODULE The application name set through the
DBMS_APPLICATION_INFO package or OCI, such as JDBC Thin
Client or SQL Developer.

NETWORK_PROTOCOL The network protocol being used for communication, such as
TCP.

NLS_CALENDAR The session calendar, such as GREGORIAN.

NLS_CURRENCY The session currency mark, such as $.

NLS_DATE_FORMAT The session date format, such as DD-MON-RR.

NLS_DATE_LANGUAGE The session date language, such as AMERICAN.

NLS_SORT BINARY or a linguistic sort basis, such as XSPANISH.

NLS_TERRITORY The session territory, such as AMERICA.

OS_USER The operating system user name of the client process that
initiated the database session.

SERVER_HOST The host name of the computer where the database instance is
running.

SERVICE_NAME The name of the service the session is connected to, such as
SYS$USERS.

SESSION_USER The database user name or schema name that identified the
user at login, such as SH.

SESSIONID The session identifier, such as 120456.

SID The session number, such as 86.

Chapter 3
SYS_CONTEXT

3-48

Example

SYS_CONTEXT('USERENV','NLS_DATE_FORMAT') returns a value such as DD-MON-RR.

3.82 SYSDATE
SYSDATE returns the current date and time of the operating system on which the
database resides. The format of the value depends on the value of the
NLS_DATE_FORMAT initialization parameter.

Return Value

DATE

Syntax

SYSDATE

Examples

SYSDATE returns a value such as 13-AUG-06 with NLS_DATE_FORMAT set to DD-MON-RR.

TO_CHAR(SYSDATE, 'MM-DD-YYYY HH24:MI:SS') returns a value such as 08-13-2006
17:20:47. The date format provided in the call to TO_CHAR displays both the date and
the time.

3.83 SYSTIMESTAMP
SYSTIMESTAMP returns the system date, including fractional seconds and time zone, of
the system on which the database resides.

Return Value

TIMESTAMP WITH TIME ZONE

Syntax

SYSTIMESTAMP

Example

SYSTIMESTAMP returns a value such as

13-AUG-06 05.28.10.385799 PM -08:00.

3.84 TAN
TAN returns the tangent of an angle.

Return Value

NUMBER

Syntax

TAN(n)

Chapter 3
SYSDATE

3-49

Arguments

n is a numeric expression for an angle in radians.

Example

TAN(135 * 3.1415927/180) calculates the tangent of a 135 degree angle as the value
-0.99999993. The expression converts degrees to radians.

3.85 TANH
TANH returns the tangent of a hyperbolic angle.

Return Value

NUMBER

Syntax

TANH(n)

Arguments

n is a numeric expression for a hyperbolic angle.

Example

TANH(.5) returns the value 0.462117157.

3.86 TO_BINARY_DOUBLE
TO_BINARY_DOUBLE converts a text or numeric expression to a double-precision
floating-point number.

Return Value

BINARY_DOUBLE

Syntax

TO_BINARY_DOUBLE (expr [, fmt [, 'nlsparam']])

Arguments

n can be any text or numeric expression.

fmt is a text expression that identifies a number format model as described in the
Oracle Database SQL Language Reference.

nlsparam specifies the characters used by these number format elements:

• Decimal character

• Group separator

• Local currency symbol

• International currency symbol

Chapter 3
TANH

3-50

This argument has the format shown here:

'NLS_NUMERIC_CHARACTERS = ''dg''
 NLS_CURRENCY = ''text''
 NLS_ISO_CURRENCY = territory '

The d is the decimal character, and the g is the group separator. They must be
different single-byte characters. Within the quoted string, use two single quotation
marks around the parameter values. Ten characters are available for the currency
symbol.

If you omit this argument or any of the NLS parameters, then this function uses the
default values for your session to interpret expr.

Example

All of these examples return the value 1.235E+003:

TO_BINARY_DOUBLE(1234.56)

TO_BINARY_DOUBLE('$1,234.56', '$9,999.99')

TO_BINARY_DOUBLE('1.234,56', '9G999D99', 'NLS_NUMERIC_CHARACTERS='',.''')

3.87 TO_BINARY_FLOAT
TO_BINARY_FLOAT converts a text or numeric expression to a single-precision floating-
point number.

Return Value

BINARY_FLOAT

Syntax

TO_BINARY_FLOAT (expr [, fmt [, 'nlsparam']])

Arguments

n can be any text or numeric expression.

fmt is a text expression that identifies a number format model as described in the
Oracle Database SQL Language Reference.

nlsparam specifies the characters used by these number format elements:

• Decimal character

• Group separator

• Local currency symbol

• International currency symbol

This argument has the format shown here:

'NLS_NUMERIC_CHARACTERS = ''dg''
 NLS_CURRENCY = ''text''
 NLS_ISO_CURRENCY = territory '

Chapter 3
TO_BINARY_FLOAT

3-51

The d is the decimal character, and the g is the group separator. They must be
different single-byte characters. Within the quoted string, use two single quotation
marks around the parameter values. Ten characters are available for the currency
symbol.

If you omit this argument or any of the NLS parameters, then this function uses the
default values for your session to interpret expr.

Examples

All of these examples return the value 1.235E+003:

TO_BINARY_FLOAT(1234.56)

TO_BINARY_FLOAT('$1,234.56', '$9,999.99')

TO_BINARY_FLOAT('1.234,56', '9G999D99', 'NLS_NUMERIC_CHARACTERS='',.''')

3.88 TO_CHAR (character)
TO_CHAR(character) converts a text expression to the database character set.

Return Value

VARCHAR2

Syntax

TO_CHAR(exp)

Arguments

char is a text expression. If it contains characters that are not represented in the
database character set, then the conversion results in a loss of data.

Examples

TO_CHAR('¡Una qué sorpresa!') returns the value ?Una qu? sorpresa! Two letters
are lost in the conversion (¡and é) because they are not in the database character set.

TO_CHAR('David Ortiz') returns the value David Ortiz in the database character
set. No characters are lost in this conversion because all of them are in the database
character set.

3.89 TO_CHAR (datetime)
TO_CHAR(datetime) converts a datetime or interval expression to a text string in a
specified format.

Return Value

VARCHAR2

Syntax

TO_CHAR({ datetime | interval } [, fmt [, 'nlsparam']])

Chapter 3
TO_CHAR (character)

3-52

Arguments

datetime is a datetime expression to be converted to text.

interval is an interval expression to be converted to text.

fmt is a datetime model format specifying the format of char. The default date format
is determined implicitly by the NLS_TERRITORY initialization parameter or can be set
explicitly by the NLS_DATE_FORMAT parameter. For data type formats, refer to the Oracle
Database SQL Language Reference.

nlsparam specifies the language in which month and day names and abbreviations are
returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

By default, the return value is in the session date language.

Examples

TO_CHAR(SYSDATE) returns a value such as 11-APR-08.

TO_CHAR(SYSDATE, 'Day: MONTH DD, YYYY') returns a value such as Friday : APRIL
11, 2008.

TO_CHAR(SYSDATE, 'Day: MONTH DD, YYYY', 'NLS_DATE_LANGUAGE = Spanish')
returns a value such as Viernes : ABRIL 11, 2008.

3.90 TO_CHAR (number)
TO_CHAR(number) converts a numeric expression to a text value in the database
character set.

Return Value

VARCHAR2

Syntax

TO_CHAR(n [, fmt [, 'nlsparam']])

Arguments

n is a numeric expression to be converted.

fmt is a text expression that identifies a number format model as described in the
Oracle Database SQL Language Reference.

nlsparam specifies the characters that are returned by these number format elements:

• Decimal character

• Group separator

• Local currency symbol

• International currency symbol

This argument has the format shown here:

Chapter 3
TO_CHAR (number)

3-53

'NLS_NUMERIC_CHARACTERS = ''dg''
 NLS_CURRENCY = ''text''
 NLS_ISO_CURRENCY = territory '

The characters d and g represent the decimal character and group separator,
respectively. They must be different single-byte characters. Within the quoted string,
use two single quotation marks around the parameter values. Ten characters are
available for the currency symbol.

If you omit this argument or any of the NLS parameters, then this function uses the
default values for your session.

Examples

TO_CHAR(1234567, 'C9G999G999D99') returns a text string such as USD1,234,567.00.

TO_CHAR(1234567, 'C9G999G999D99', 'NLS_ISO_CURRENCY = SPAIN') returns the
text string EUR1,234,567.00.

3.91 TO_DATE
TO_DATE converts a text expression to a DATE data type.

Return Value

DATE

Syntax

TO_DATE(char [, fmt [, 'nlsparam']])

Arguments

char is a text expression that represents a date.

fmt is a datetime model format specifying the format of char. The default date format
is determined implicitly by the NLS_TERRITORY initialization parameter or can be set
explicitly by the NLS_DATE_FORMAT parameter. For data type formats, refer to the Oracle
Database SQL Language Reference.

nlsparam specifies the language of char. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

By default, char is in the session date language.

Examples

TO_DATE('October 13, 2008', 'MONTH DD, YYYY') returns the value 13-OCT-08.

TO_DATE('13 Octubre 2008', 'dd month yyyy', 'NLS_DATE_LANGUAGE=SPANISH')
also returns the value 13-OCT-08

3.92 TO_DSINTERVAL
TO_DSINTERVAL converts a text expression to an INTERVAL DAY TO SECOND data type.

Chapter 3
TO_DATE

3-54

Return Value

INTERVAL DAY TO SECOND

Syntax

TO_DSINTERVAL(char)

Arguments

char is a text expression to be converted.

Example

TO_DSINTERVAL('360 12:45:49') returns the value +360 12:45:49.000000.

3.93 TO_NCHAR (character)
TO_NCHAR(character) converts a character string to the national character set.

Return Value

NVARCHAR2

Syntax

TO_NCHAR(exp)

Arguments

exp is a text expression. If it contains characters that are not represented in the
national character set, then the conversion results in a loss of data.

Example

TO_NCHAR('David Ortiz') returns the value David Ortiz in the national character set.

3.94 TO_NCHAR (datetime)
TO_NCHAR(datetime) converts a datetime or interval value to the national character
set.

Return Value

NVARCHAR2

Syntax

TO_NCHAR({ datetime | interval }
 [, fmt [, 'nlsparam']]
)

Arguments

datetime is a datetime expression to be converted to text.

interval is an interval expression to be converted to text.

Chapter 3
TO_NCHAR (character)

3-55

fmt is a datetime model format specifying the format of char. The default date format
is determined implicitly by the NLS_TERRITORY initialization parameter or can be set
explicitly by the NLS_DATE_FORMAT parameter. For data type formats, refer to the Oracle
Database SQL Language Reference.

nlsparam specifies the language in which month and day names and abbreviations are
returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

By default, the return value is in the session date language.

Examples

TO_NCHAR(SYSDATE) returns a value such as 11-APR-08.

TO_NCHAR(SYSDATE, 'Day: MONTH DD, YYYY') returns a value such as Friday :
APRIL 11, 2008.

TO_NCHAR(SYSDATE, 'Day: MONTH DD, YYYY', 'NLS_DATE_LANGUAGE = Spanish')
returns a value such as Viernes : ABRIL 11, 2008.

3.95 TO_NCHAR (number)
TO_NCHAR(number) converts a number to the national character set.

Return Value

NVARCHAR2

Syntax

TO_CHAR(n [, fmt [, 'nlsparam']])

Arguments

n is a numeric expression to be converted.

fmt is a text expression that identifies a number format model as described in the
Oracle Database SQL Language Reference.

nlsparam is a text expression that specifies the characters that are returned by these
number format elements:

• Decimal character

• Group separator

• Local currency symbol

• International currency symbol

This argument has the format shown here:

'NLS_NUMERIC_CHARACTERS = ''dg''
 NLS_CURRENCY = ''text''
 NLS_ISO_CURRENCY = territory '

The characters d and g represent the decimal character and group separator,
respectively. They must be different single-byte characters. Within the quoted string,

Chapter 3
TO_NCHAR (number)

3-56

use two single quotation marks around the parameter values. Ten characters are
available for the currency symbol.

If you omit this argument or any of the NLS parameters, then this function uses the
default values for your session.

Examples

TO_NCHAR(1234567, 'C9G999G999D99') returns a text string such as
USD1,234,567.00.

TO_NCHAR(1234567, 'C9G999G999D99', 'NLS_ISO_CURRENCY = SPAIN') returns the
text string EUR1,234,567.00.

3.96 TO_NUMBER
TO_NUMBER converts a text expression containing a number to a value of NUMBER data
type.

Return Value

NUMBER

Syntax

TO_NUMBER(expr [, fmt [, 'nlsparam']])

Arguments

expr is an expression to be converted to a number.

fmt is a text expression that identifies a number format model as described in the
Oracle Database SQL Language Reference.

nlsparam specifies the characters used by these number format elements:

• Decimal character

• Group separator

• Local currency symbol

• International currency symbol

This argument has the format shown here:

'NLS_NUMERIC_CHARACTERS = ''dg''
 NLS_CURRENCY = ''text''
 NLS_ISO_CURRENCY = territory '

The d is the decimal character, and the g is the group separator. They must be
different single-byte characters. Within the quoted string, use two single quotation
marks around the parameter values. Ten characters are available for the currency
symbol.

If you omit this argument or any of the NLS parameters, then this function uses the
default values for your session to interpret expr.

Examples

TO_NUMBER('$1,234,567.89', 'L999G999G999D99') returns the value 1234567.89.

Chapter 3
TO_NUMBER

3-57

TO_NUMBER('EUR1,234,567.89', 'C999G999G999D99', 'NLS_ISO_CURRENCY=SPAIN')
also returns the value 1234567.89.

3.97 TO_TIMESTAMP
TO_TIMESTAMP converts a text expression to a value of TIMESTAMP.

Return Value

TIMESTAMP

Syntax

TO_TIMESTAMP(char [, fmt ['nlsparam']])

Arguments

char is a text expression to be converted.

fmt is a datetime model format specifying the format of char. The default date format
is determined implicitly by the NLS_TERRITORY initialization parameter or can be set
explicitly by the NLS_DATE_FORMAT parameter. For data type formats, refer to the Oracle
Database SQL Language Reference.

nlsparam specifies the language in which month and day names and abbreviations
given in char. This argument has this form:

'NLS_DATE_LANGUAGE = language'

By default, char is in the session date language.

Examples

TO_TIMESTAMP('10-SEP-0614:10:10.123000','DD-MON-RRHH24:MI:SS.FF') returns
the value 10-SEP-06 02.10.10.123000 PM.

TO_TIMESTAMP('10-AGOSTO-0714:10:10', 'DD-MON-RRHH24:MI:SS.FF',
'NLS_DATE_LANGUAGE=SPANISH') returns the value 10-AUG-07 02.10.10.000000 PM.

3.98 TO_TIMESTAMP_TZ
TO_TIMESTAMP_TZ converts a text expression to a value of TIMESTAMPWITHTIMEZONE
data type.

Return Value

TIMESTAMP WITH TIME ZONE

Syntax

TO_TIMESTAMP_TZ(char [, fmt ['nlsparam']])

Arguments

char is a text expression to be converted.

fmt is a datetime model format specifying the format of char. The default date format
is determined implicitly by the NLS_TERRITORY initialization parameter or can be set

Chapter 3
TO_TIMESTAMP

3-58

explicitly by the NLS_DATE_FORMAT parameter. For data type formats, refer to the Oracle
Database SQL Language Reference.

nlsparam specifies the language in which month and day names and abbreviations
given in char. This argument has this form:

'NLS_DATE_LANGUAGE = language'

By default, char is in the session date language.

Examples

TO_TIMESTAMP_TZ('2006-03-26 7:33:00 -4:00', 'YYYY-MM-DD HH:MI:SS TZH:TZM')
returns the value 26-MAR-06 07.33.00.000000 AM -04:00.

TO_TIMESTAMP_TZ('2006-AGOSTO-13 7:33:00 -4:00', 'YYYY-MONTH-DD HH:MI:SS
TZH:TZM', 'NLS_DATE_LANGUAGE=SPANISH') returns the value 13-AUG-06
07.33.00.000000 AM -04:00.

3.99 TO_YMINTERVAL
TO_YMINTERVAL converts a text expression to an INTERVAL YEAR TO MONTH data type.
The function accepts argument in one of the two formats:

• SQL interval format compatible with the SQL standard (ISO/IEC 9075:2003)

• ISO duration format compatible with the ISO 8601:2004 standard

Return Value

INTERVAL YEAR TO MONTH

Syntax

TO_YMINTERVAL (' { sql_format | ym_iso_format } ')

sql_format::=
[+|-] years - months

ym_iso_format::=
[-] P [years Y] [months M] [days D] [T [hours H] [minutes M] [seconds [.
frac_secs] S]]

Arguments

In SQL format:

years is an integer between 0 and 999999999

months is an integer between 0 and 11.

Additional blanks are allowed between format elements.

In ISO format:

years and months are integers between 0 and 999999999.

days, hours, minutes, seconds, and frac_secs are nonnegative integers and are
ignored.

No blanks are allowed in the value.

Chapter 3
TO_YMINTERVAL

3-59

Examples

TO_YMINTERVAL('1-6') and TO_YMINTERVAL('P1Y6M') return the value +01-06 for 1
year and 6 months.

SYSDATE + TO_YMINTERVAL('1-6') adds one year and six months to the current date.
When SYSDATE is 15-APR-08, the value is 15-OCT-09.

SYSDATE + TO_YMINTERVAL('P1Y6M') adds one year and six months to the current
date using ISO format. When SYSDATE is 15-APR-08, the value is 15-OCT-09.

SYSDATE + TO_YMINTERVAL('-1-2') subtracts one year and two months from the
current date. When SYSDATE is 15-APR-08, the value is 15-FEB-07.

3.100 TRANSLATE
TRANSLATE enables you to make several single-character, one-to-one substitutions in
one operation. This expression returns an expression with all occurrences of each
character in one string replaced by its corresponding character in a second string.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

TRANSLATE(expr, from_string, to_string)

Arguments

expr is a text expression to be modified.

from_string consists of one or more characters to be replaced in expr.

to_string consists of one or more characters that replace the corresponding
characters in from_string. This string can be shorter than from_string, so that a null
replaces the extra characters. However, to_string cannot be empty.

Example

TRANSLATE('disk', 'dk', 'Dc') returns the value Disc.

3.101 TRANSLATE (USING)
TRANSLATE converts a text string between the database character set and the national
character set.

Note: The TRANSLATE USING function is supported primarily for ANSI compatibility.
Oracle recommends that you use the TO_CHAR and TO_NCHAR functions for converting
data to the database or national character sets. TO_CHAR and TO_NCHAR can take as
arguments a greater variety of data types than TRANSLATE USING, which accepts only
character data.

Return Value

VARCHAR2 | NVARCHAR2

Chapter 3
TRANSLATE

3-60

Syntax

TRANSLATE (char USING { CHAR_CS | NCHAR_CS })

Arguments

char is a text expression to be converted to the database character set (USING
CHAR_CS) or the national character set (USING NCHAR_CS).

Example

TRANSLATE('north by northwest' USING NCHAR_CS) returns the value north by
northwest in the national character set.

3.102 TRIM
TRIM removes leading or trailing characters (or both) from a character string.

Return Value

VARCHAR2

Syntax

TRIM([{ { LEADING | TRAILING | BOTH }[trim_character]
 | trim_character
 }
 FROM
]
 trim_source
)

Arguments

LEADING removes matching characters from the beginning of the string.

TRAILING removes matching characters from the end of the string.

BOTH removes matching characters from both the beginning and the end of the string.
(Default)

trim_character is a single character to be removed. By default, it is a space.

trim_source is the text expression to be trimmed.

Examples

TRIM('0' FROM '00026501.6703000') returns the value 26501.6703.

TRIM(LEADING '!' FROM '!!Help! Help!!') returns the value Help! Help!!.

3.103 TRUNC (number)
TRUNC shortens a numeric expression to a specified number of decimal places.

Return Value

NUMBER

Chapter 3
TRIM

3-61

Syntax

TRUNC(n1 [, n2])

Arguments

n1 is the numeric expression to be truncated.

n2 is the number of decimal places. A positive number truncates digits to the right of
the decimal point, and a negative number replaces digits to the left of the decimal
point. The default value is zero (0).

Examples

TRUNC(15.79) returns the value 15.

TRUNC(15.79, 1) returns the value 15.7.

TRUNC(15.79, -1) returns the value 10.

3.104 TZ_OFFSET
TZ_OFFSET returns the time zone offset from Coordinated Universal Time (UTC).

Return Value

VARCHAR2

Syntax

TZ_OFFSET({ 'time_zone_name' | '{ + | - } hh:mi'
 | SESSIONTIMEZONE | DBTMEZONE
 }
)

Arguments

time_zone_name is the name of a time zone.

hh:mm are hours and minutes. This argument simply returns itself.

SESSIONTIMEZONE returns the session time zone.

DBTIMEZONE returns the database time zone.

Examples

TZ_OFFSET('US/Eastern') returns the offset -04:00 during Daylight Savings Time.

TZ_OFFSET('EST') returns the offset -05:00.

TZ_OFFSET(DBTIMEZONE) returns the offset -07:00 for Mountain Standard Time.

3.105 UID
UID returns a unique identifier (UID) for the session user (the user who logged on).

Chapter 3
TZ_OFFSET

3-62

Return Value

INTEGER

Syntax

UID

Example

UID returns a value such as 76.

3.106 UNISTR
UNISTR converts a text string to the national character set.

Return Value

NVARCHAR2

Syntax

UNISTR (string)

Arguments

string can be any text expression. For portability, Oracle recommends using only
ASCII characters and Unicode encoding values as text literals. A Unicode encoding
value has the form \xxxx where xxxx is the hexadecimal value of a character.
Supplementary characters are encoded as two code units, the first from the high-
surrogates range (U+D800 to U+DBFF), and the second from the low-surrogates
range (U+DC00 to U+DFFF). To include a literal backslash in the string, precede it
with another backslash (\\).

Example

UNISTR('abc\00e5\00f1\00f6') returns the value abcåñö.

3.107 UPPER
UPPER converts all alphabetic characters in a text expression to uppercase. The data
type of the return value is the same as the original text.

Return Value

CHAR | NCHAR | VARCHAR2 | NVARCHAR2

Syntax

UPPER(char)

Arguments

char can be any text expression.

Chapter 3
UNISTR

3-63

Example

UPPER('This is an emergency') returns the string THIS IS AN EMERGENCY.

3.108 USER
USER returns the name of the session user (the user who logged on).

Return Value

VARCHAR2

Syntax

USER

Example

USER returns a value such as GLOBAL.

3.109 VSIZE
VSIZE returns the number of bytes in the internal representation of an expression. It
returns NULL for a null expression.

Return Value

NUMBER

Syntax

VSIZE (expr)

Arguments

expr can be an expression of any data type.

Example

VSIZE('Sound of thunder') returns the value 16.

VSIZE(CHANNEL.LONG_DESCRIPTION) returns the following values:

Channel VSIZE

Catalog 7

Direct Sales 12

Internet 8

3.110 WIDTH_BUCKET
WIDTH_BUCKET enables you to construct a histogram range divided into intervals of
identical size. The function returns the bucket number into which the value of an
expression falls.

Chapter 3
USER

3-64

When needed, WIDTH_BUCKET creates an underflow bucket numbered 0 and an
overflow bucket numbered num_buckets+1. These buckets handle values outside the
specified range and are helpful in checking the reasonableness of the end points.

Return Value

NUMBER

Syntax

WIDTH_BUCKET
 (expr, min_value, max_value, num_buckets)

Arguments

expr is the expression for which the histogram is being created. This expression must
evaluate to a numeric or datetime value or to a value. If expr evaluates to null, then
the function returns NULL.

min_value and max_value are expressions for the end points of the acceptable range
for expr. Both of these expressions must evaluate to numeric or datetime values, and
neither can evaluate to null.

num_buckets is an expression for the number of buckets. This expression must
evaluate to a positive integer.

Example

WIDTH_BUCKET(13, 0, 20, 4) returns the value 3. It creates four buckets from 0 to 20
and sorts the value 13 into bucket 3.

WIDTH_BUCKET(-5, 0, 20, 4) returns the value 0. The value -5 is below the beginning
of the range.

Chapter 3
WIDTH_BUCKET

3-65

A
Reserved Words

This appendix lists the reserved words for the OLAP expression syntax.

A.1 Reserved Words
The following are reserved words for the OLAP Expression Syntax. You should not
use them or Oracle Database reserved words as object names. However, if you do, be
sure to enclose them in double quotes in the expression syntax.

Refer to the Oracle Database SQL Language Reference for a list of Oracle Database
reserved words.

AGGREGATE
AGGREGATES
ALL
ALLOW
ANALYZE
ANCESTOR
AND
ANY
AS
ASC
AT
AVG
BETWEEN
BINARY_DOUBLE
BINARY_FLOAT
BLOB
BRANCH
BUILD
BY
BYTE
CASE
CAST
CHAR
CHILD
CLEAR
CLOB
COMMIT
COMPILE
CONSIDER
COUNT
DATATYPE
DATE

A-1

DATE_MEASURE
DAY
DECIMAL
DELETE
DESC
DESCENDANT
DIMENSION
DISALLOW
DIVISION
DML
ELSE
END
ESCAPE
EXECUTE
FIRST
FLOAT
FOR
FROM
HIERARCHIES
HIERARCHY
HOUR
IGNORE
IN
INFINITE
INSERT
INTEGER
INTERVAL
INTO
IS
LAST
LEAF_DESCENDANT
LEAVES
LEVEL
LEVELS
LIKE
LIKEC
LIKE2
LIKE4
LOAD
LOCAL
LOG_SPEC
LONG
MAINTAIN
MAX
MEASURE
MEASURES
MEMBER
MEMBERS
MERGE

Appendix A
Reserved Words

A-2

MLSLABEL
MIN
MINUTE
MODEL
MONTH
NAN
NCHAR
NCLOB
NO
NONE
NOT
NULL
NULLS
NUMBER
NVARCHAR2
OF
OLAP
OLAP_DML_EXPRESSION
ON
ONLY
OPERATOR
OR
ORDER
OVER
OVERFLOW
PARALLEL
PARENT
PLSQL
PRUNE
RAW
RELATIVE
ROOT_ANCESTOR
ROWID
SCN
SECOND
SELF
SERIAL
SET
SOLVE
SOME
SORT
SPEC
SUM
SYNCH
TEXT_MEASURE
THEN
TIME
TIMESTAMP
TO

Appendix A
Reserved Words

A-3

UNBRANCH
UPDATE
USING
VALIDATE
VALUES
VARCHAR2
WHEN
WHERE
WITHIN
WITH
YEAR
ZERO
ZONE

A.2 Special Symbols
Table A-1 lists symbols that are used in the OLAP expression syntax. To enter them
as literal characters, enclose them in quotes the same as any other literal text.

Table A-1 OLAP Expression Syntax Symbols

Symbol Description

, Comma

|| Concatenate

/ Divide

= Equals

> Greater than

>= Greater than or equal to

[Left bracket

(Left parenthesis

< Less than

<= Less than or equal to

- Minus

!= Not equal to

<> Not equal to

ˆ= Not equal to

+ Plus

] Right bracket

) Right parenthesis

* Star

Appendix A
Special Symbols

A-4

Index

A
ancestor function, 2-11
arguments, 1-15
average function, 2-5
AVERAGE_RANK, 2-3
AVG, 2-5

B
BETWEEN operator, 1-9
binary operators, 1-4

C
CASE expressions, 1-12
character literal, 1-11
child count function, 2-13
comparison operators, 1-6
concatenation operator, 1-5
conditions, 1-6
COUNT, 2-7
counting functions, 2-7, 2-13
cumulative averages, 2-5

D
data types, 1-2
DENSE_RANK, 2-9
depth function, 2-14
difference from future period, 2-29
difference from prior period, 2-22, 2-24
DML expressions, 2-38

F
future period functions, 2-26, 2-29, 2-31

G
group comparison operators, 1-7

H
HIER_ANCESTOR, 2-11
HIER_CHILD_COUNT, 2-13
HIER_DEPTH, 2-14
HIER_LEVEL, 2-15
HIER_ORDER, 2-16
HIER_PARENT, 2-18
HIER_TOP, 2-19

I
identifiers, 1-1
IF ... THEN ... ELSE, 1-12
IS operator, 1-10

L
LAG, 2-20
LAG_VARIANCE, 2-22
LAG_VARIANCE_PERCENT, 2-24
largest values, 2-33
later period functions, 2-26, 2-29, 2-31
LEAD, 2-26
LEAD_VARIANCE, 2-29
LEAD_VARIANCE_PERCENT, 2-31
level depth function, 2-14
level function, 2-15
LIKE operators, 1-10
literal expressions, 1-11

M
MAX, 2-33
MIN, 2-36
moving averages, 2-5

N
naming conventions, 1-1
NOT operator, 1-9

Index-1

O
object names, 1-1
OLAP_DML_EXPRESSION, 2-38
ordering function, 2-16

P
parent function, 2-18
percent difference from future period, 2-31
percent difference from prior period, 2-24
period-to-date function, 2-44
prior period functions, 2-20, 2-22, 2-24

Q
qualified data references, 1-14
quotes

double, for reserved words, A-1
in naming conventions, 1-1
single, for text literals, 1-11

R
RANK, 2-39
ranking functions, 2-3, 2-9, 2-39, 2-41
ratios, 2-43
ROW_NUMBER, 2-41

S
SHARE, 2-43
smallest values, 2-36
sorting functions, 2-3, 2-9, 2-16, 2-39, 2-41
SPL expressions, 2-38
string, 1-11
SUM, 2-44

T
text literal, 1-11
top function, 2-19

U
unary operators, 1-4

V
variance functions, 2-22, 2-24, 2-29, 2-31

W
WHEN ... THEN, 1-12
windowing functions, 2-5, 2-7, 2-33, 2-36, 2-44

Index

Index-2

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Backus-Naur Form Syntax

	1 Basic Elements
	1.1 Dimensional Object Names
	1.1.1 Syntax
	1.1.2 Examples

	1.2 Dimensional Data Types
	1.3 Operators
	1.3.1 Unary Arithmetic Operators
	1.3.1.1 Syntax
	1.3.1.2 Example

	1.3.2 Binary Arithmetic Operators
	1.3.2.1 Syntax
	1.3.2.2 Examples

	1.3.3 Concatenation Operator
	1.3.3.1 Syntax
	1.3.3.2 Example

	1.4 Conditions
	1.4.1 Simple Comparison Conditions
	1.4.1.1 Syntax
	1.4.1.2 Arguments
	1.4.1.3 Examples

	1.4.2 Group Comparison Conditions
	1.4.2.1 Syntax
	1.4.2.2 Examples

	1.4.3 Hierarchical Relation Conditions
	1.4.3.1 Syntax
	1.4.3.2 Arguments
	1.4.3.3 Examples

	1.4.4 Range Conditions
	1.4.4.1 Syntax
	1.4.4.2 Example

	1.4.5 Multiple Conditions
	1.4.5.1 Syntax
	1.4.5.2 Example

	1.4.6 Negation Conditions
	1.4.6.1 Syntax
	1.4.6.2 Example

	1.4.7 Special Conditions
	1.4.7.1 Syntax
	1.4.7.2 Example

	1.4.8 Pattern-Matching Conditions
	1.4.8.1 LIKE Operators
	1.4.8.2 Syntax
	1.4.8.3 Arguments
	1.4.8.4 Examples

	1.5 Literal Expressions
	1.5.1 Examples

	1.6 CASE Expressions
	1.6.1 Return Value
	1.6.2 Syntax
	1.6.3 Arguments
	1.6.4 Examples

	1.7 Qualified Data References (QDRs)
	1.7.1 Syntax
	1.7.2 Arguments
	1.7.3 Examples

	2 OLAP Functions
	2.1 OLAP Functions in Alphabetical Order
	2.2 OLAP Functions By Category
	2.2.1 Aggregate Functions
	2.2.2 Analytic Functions
	2.2.3 Hierarchical Functions
	2.2.4 Lag Functions
	2.2.5 OLAP DML Functions
	2.2.6 Rank Functions
	2.2.7 Share Functions
	2.2.8 Window Functions

	2.3 AVERAGE_RANK
	2.4 AVG
	2.5 COUNT
	2.6 DENSE_RANK
	2.7 HIER_ANCESTOR
	2.8 HIER_CHILD_COUNT
	2.9 HIER_DEPTH
	2.10 HIER_LEVEL
	2.11 HIER_ORDER
	2.12 HIER_PARENT
	2.13 HIER_TOP
	2.14 LAG
	2.15 LAG_VARIANCE
	2.16 LAG_VARIANCE_PERCENT
	2.17 LEAD
	2.18 LEAD_VARIANCE
	2.19 LEAD_VARIANCE_PERCENT
	2.20 MAX
	2.21 MIN
	2.22 OLAP_DML_EXPRESSION
	2.23 RANK
	2.24 ROW_NUMBER
	2.25 SHARE
	2.26 SUM

	3 Row Functions
	3.1 Row Functions in Alphabetical Order
	3.2 Row Functions By Category
	3.2.1 Numeric Functions
	3.2.2 Character Functions That Return Characters
	3.2.3 NLS Character Functions
	3.2.4 Character Functions That Return Numbers
	3.2.5 Datetime Functions
	3.2.6 General Comparison Functions
	3.2.7 Conversion Functions
	3.2.8 Encoding and Decoding Function
	3.2.9 Null-Related Functions
	3.2.10 Environment and Identifier Functions

	3.3 ABS
	3.4 ACOS
	3.5 ADD_MONTHS
	3.6 ASCII
	3.7 ASCIISTR
	3.8 ASIN
	3.9 ATAN
	3.10 ATAN2
	3.11 BIN_TO_NUM
	3.12 BITAND
	3.13 CAST
	3.14 CEIL
	3.15 CHARTOROWID
	3.16 CHR
	3.17 COALESCE
	3.18 CONCAT
	3.19 COS
	3.20 COSH
	3.21 CURRENT_DATE
	3.22 CURRENT_TIMESTAMP
	3.23 DBTIMEZONE
	3.24 DECODE
	3.25 EXP
	3.26 EXTRACT (datetime)
	3.27 FLOOR
	3.28 FROM_TZ
	3.29 GREATEST
	3.30 HEXTORAW
	3.31 INITCAP
	3.32 INSTR
	3.33 LAST_DAY
	3.34 LEAST
	3.35 LENGTH
	3.36 LN
	3.37 LNNVL
	3.38 LOCALTIMESTAMP
	3.39 LOG
	3.40 LOWER
	3.41 LPAD
	3.42 LTRIM
	3.43 MOD
	3.44 MONTHS_BETWEEN
	3.45 NANVL
	3.46 NEW_TIME
	3.47 NEXT_DAY
	3.48 NLS_CHARSET_ID
	3.49 NLS_CHARSET_NAME
	3.50 NLS_INITCAP
	3.51 NLS_LOWER
	3.52 NLS_UPPER
	3.53 NLSSORT
	3.54 NULLIF
	3.55 NUMTODSINTERVAL
	3.56 NUMTOYMINTERVAL
	3.57 NVL
	3.58 NVL2
	3.59 ORA_HASH
	3.60 POWER
	3.61 RAWTOHEX
	3.62 REGEXP_COUNT
	3.63 REGEXP_REPLACE
	3.64 REGEXP_INSTR
	3.65 REGEXP_SUBSTR
	3.66 REMAINDER
	3.67 REPLACE
	3.68 ROUND (date)
	3.69 ROUND (number)
	3.70 ROWIDTOCHAR
	3.71 ROWIDTONCHAR
	3.72 RPAD
	3.73 RTRIM
	3.74 SESSIONTIMEZONE
	3.75 SIGN
	3.76 SIN
	3.77 SINH
	3.78 SOUNDEX
	3.79 SQRT
	3.80 SUBSTR
	3.81 SYS_CONTEXT
	3.82 SYSDATE
	3.83 SYSTIMESTAMP
	3.84 TAN
	3.85 TANH
	3.86 TO_BINARY_DOUBLE
	3.87 TO_BINARY_FLOAT
	3.88 TO_CHAR (character)
	3.89 TO_CHAR (datetime)
	3.90 TO_CHAR (number)
	3.91 TO_DATE
	3.92 TO_DSINTERVAL
	3.93 TO_NCHAR (character)
	3.94 TO_NCHAR (datetime)
	3.95 TO_NCHAR (number)
	3.96 TO_NUMBER
	3.97 TO_TIMESTAMP
	3.98 TO_TIMESTAMP_TZ
	3.99 TO_YMINTERVAL
	3.100 TRANSLATE
	3.101 TRANSLATE (USING)
	3.102 TRIM
	3.103 TRUNC (number)
	3.104 TZ_OFFSET
	3.105 UID
	3.106 UNISTR
	3.107 UPPER
	3.108 USER
	3.109 VSIZE
	3.110 WIDTH_BUCKET

	A Reserved Words
	A.1 Reserved Words
	A.2 Special Symbols

	Index

