
Oracle® Real Application Clusters
Real Application Clusters Administration and
Deployment Guide

19c
E95728-09
March 2023

Oracle Real Application Clusters Real Application Clusters Administration and Deployment Guide, 19c

E95728-09

Copyright © 1999, 2023, Oracle and/or its affiliates.

Primary Author: Subhash Chandra

Contributing Authors: Janet Stern

Contributors: Troy Anthony, Lance Ashdown, Ram Avudaiappan, Prasad Bagal, Mark Bauer, Anand
Beldalker, Eric Belden, Gajanan Bhat, David Brower, George Claborn, Maria Colgan, Carol Colrain, Jonathan
Creighton, Rajesh Dasari, Mark Dilman, Richard Frank, GP Prabhaker Gongloor, Wei Hu, Yong Hu,
Dominique Jeunot, Sameer Joshi, Raj K. Kammend, Ankita Khandelwal, Sana Karam, Roland Knapp, Karen
Li, Barb Lundhild, Venkat Maddali, Bill Manry, John McHugh, Saar Maoz, Matthew Mckerley, Markus
Michalewicz, Anil Nair, Philip Newlan, Michael Nowak, Muthu Olagappan, Bharat Paliwal, Hanlin Qian,
Hairong Qin, Mark Ramacher, Sampath Ravindhran, Kevin Reardon, Kathy Rich, Dipak Saggi, Daniel
Semler, Ara Shakian, Cathy Shea, Khethavath P. Singh, Kesavan Srinivasan, Leo Tominna, Peter Wahl, Tak
Wang, Richard Wessman, Douglas Williams, Mike Zampiceni, Michael Zoll

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxii

Documentation Accessibility xxii

Related Documents xxii

Conventions xxiii

 Changes in This Release for Oracle Real Application Clusters
Administration and Deployment Guide

Changes in Oracle Real Application Clusters Release 19c xxiv

Changes in Oracle Real Application Clusters Release 18c, Version 18.1 xxvi

Changes in Oracle Real Application Clusters 12c Release 2 (12.2) xxvii

Changes in Oracle Real Application Clusters 12c Release 1 (12.1) xxix

1 Introduction to Oracle RAC

Overview of Oracle RAC 1-1

Overview of Installing Oracle RAC 1-3

Understanding Compatibility in Oracle RAC Environments 1-4

Oracle RAC Database Management Styles and Database Installation 1-4

Oracle RAC Database Management Styles and Database Creation 1-5

Overview of Extending an Oracle RAC Cluster 1-6

Overview of Oracle Real Application Clusters One Node 1-8

Overview of Oracle Clusterware for Oracle RAC 1-9

Overview of Oracle Flex Clusters 1-10

Overview of Reader Nodes 1-10

Overview of Local Temporary Tablespaces 1-10

Overview of Oracle RAC Architecture and Processing 1-17

Understanding Cluster-Aware Storage Solutions 1-17

Oracle RAC and Network Connectivity 1-18

Overview of Using Dynamic Database Services to Connect to Oracle Databases 1-18

Overview of Virtual IP Addresses 1-19

Restricted Service Registration in Oracle RAC 1-20

iii

About Oracle RAC Software Components 1-20

About Oracle RAC Background Processes 1-21

Overview of Automatic Workload Management with Dynamic Database Services 1-22

Overview of Server Pools and Policy-Managed Databases 1-25

Introduction to Server Pools 1-25

Examples of Using Server Pools 1-26

Deploying Policy-Managed Databases 1-29

Managing Policy-Managed Databases 1-30

Policy-Based Cluster Management 1-32

Overview of Oracle Database Quality of Service Management 1-32

Overview of Hang Manager 1-33

Overview of Oracle Multitenant with Oracle RAC 1-34

Overview of Database In-Memory and Oracle RAC 1-34

Overview of Managing Oracle RAC Environments 1-35

About Designing and Deploying Oracle RAC Environments 1-35

About Administrative Tools for Oracle RAC Environments 1-36

About Monitoring Oracle RAC Environments 1-37

About Evaluating Performance in Oracle RAC Environments 1-38

2 Administering Storage in Oracle RAC

Overview of Storage Management for Oracle RAC 2-2

Data File Access in Oracle RAC 2-2

NFS Server for Storage 2-3

Redo Log File Storage in Oracle RAC 2-3

Automatic Undo Management in Oracle RAC 2-4

Oracle Automatic Storage Management with Oracle RAC 2-4

Storage Management in Oracle RAC 2-5

Modifying Disk Group Configurations for Oracle ASM 2-6

Oracle ASM Disk Group Management 2-6

Configuring Preferred Mirror Read Disks in Extended Distance Clusters 2-7

Converting Nonclustered Oracle ASM to Clustered Oracle ASM 2-7

Administering Oracle ASM Instances with SRVCTL in Oracle RAC 2-7

3 Administering Database Instances and Cluster Databases

Overview of Oracle RAC Database Administration 3-1

Tools for Administering Oracle RAC 3-4

Administering Oracle RAC with SRVCTL 3-4

Administering Oracle RAC with Oracle Enterprise Manager 3-5

Administering Oracle RAC with SQL*Plus 3-5

iv

Starting and Stopping Instances and Oracle RAC Databases 3-7

Starting One or More Instances and Oracle RAC Databases Using SRVCTL 3-8

Stopping One or More Instances and Oracle RAC Databases Using SRVCTL 3-10

Stopping All Databases and Instances Using CRSCTL 3-11

Starting and Stopping Individual Instances Using SQL*Plus 3-11

Starting and Stopping PDBs in Oracle RAC 3-13

Verifying That Instances are Running 3-14

Using SRVCTL to Verify That Instances are Running 3-14

Using SQL*Plus to Verify That Instances are Running 3-15

Terminating Sessions On a Specific Cluster Instance 3-15

Overview of Initialization Parameter Files in Oracle RAC 3-18

Setting SPFILE Parameter Values for Oracle RAC 3-18

Parameter File Search Order in Oracle RAC 3-19

Backing Up the Server Parameter File 3-20

Initialization Parameter Use in Oracle RAC 3-20

Parameters That Must Have Identical Settings on All Instances 3-23

Parameters That Have Unique Settings on All Instances 3-24

Parameters That Should Have Identical Settings on All Instances 3-25

Converting an Administrator-Managed Database to a Policy-Managed Database 3-26

Managing Memory Pressure for Database Servers 3-28

Quiescing Oracle RAC Databases 3-28

Administering Multiple Cluster Interconnects on Linux and UNIX Platforms 3-29

Use Cases for Setting the CLUSTER_INTERCONNECTS Parameter 3-30

Customizing How Oracle Clusterware Manages Oracle RAC Databases 3-32

Advanced Oracle Enterprise Manager Administration 3-33

Using Oracle Enterprise Manager Cloud Control to Discover Nodes and Instances 3-33

Other Oracle Enterprise Manager Capabilities 3-34

Administering Jobs and Alerts in Oracle RAC 3-35

Administering Jobs in Oracle RAC 3-35

Administering Alerts in Oracle RAC with Oracle Enterprise Manager 3-35

Using Defined Suspensions in Oracle Enterprise Manager 3-36

4 Administering Oracle RAC One Node

Creating an Oracle RAC One Node Database 4-1

Converting Databases 4-2

Converting a Database from Oracle RAC to Oracle RAC One Node 4-2

Converting a Database from Oracle RAC One Node to Oracle RAC 4-3

Online Database Relocation 4-4

v

5 Workload Management with Dynamic Database Services

Connection Load Balancing 5-1

Server-Side Load Balancing 5-2

Generic Database Clients 5-2

Client-Side Connection Configuration for Older Clients 5-3

JDBC-Thin Clients 5-3

OCI Clients 5-4

Client-Side Load Balancing 5-4

Load Balancing Advisory 5-5

Overview of the Load Balancing Advisory 5-5

Configuring Your Environment to Use the Load Balancing Advisory 5-6

Load Balancing Advisory FAN Events 5-6

Monitoring Load Balancing Advisory FAN Events 5-7

Enabling Clients for Oracle RAC 5-8

Overview of Oracle Integrated Clients and FAN 5-8

Enabling JDBC-Thin Clients for Fast Connection Failover 5-9

Oracle Notification Service for JDBC-Thin Clients 5-10

Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients 5-10

Enabling JDBC Clients for Run-time Connection Load Balancing 5-12

Configuring JDBC-Thin Clients for Application Continuity for Java 5-12

Configuring JDBC-Thin Clients for Transaction Guard 5-13

Enabling OCI Clients for Fast Connection Failover 5-14

Enabling OCI Clients for Run-time Connection Load Balancing 5-15

Configuring OCI Clients to use Transaction Guard 5-16

Enabling ODP.NET Clients to Receive FAN High Availability Events 5-16

Enabling ODP.NET Clients to Receive FAN Load Balancing Advisory Events 5-17

Configuring ODP.NET Clients to use Transaction Guard 5-18

Distributed Transaction Processing in Oracle RAC 5-18

Overview of XA Transactions and Oracle RAC 5-18

Using Global Transactions and XA Affinity for XA Transactions 5-19

Using Services with XA Transactions on Oracle RAC 5-20

Configuring Services for XA Applications 5-20

Relocating Services in Administrator-Managed Databases 5-21

Oracle RAC Sharding 5-21

Automatic Workload Repository 5-22

Measuring Performance by Service Using the Automatic Workload Repository 5-23

Automatic Workload Repository Service Thresholds and Alerts 5-25

Example of Services and Thresholds Alerts 5-25

Enable Service, Module, and Action Monitoring 5-26

Using Oracle Services 5-27

vi

Service Deployment Options 5-27

Service Usage in an Oracle RAC Database 5-27

Oracle Clusterware Resources for a Service 5-27

Database Resource Manager Consumer Group Mappings for Services 5-27

Performance Monitoring by Service with AWR 5-28

Parallel Operations and Services 5-28

Oracle GoldenGate and Oracle RAC 5-28

Service Characteristics 5-29

Service Name 5-29

Service Edition 5-29

Service Management Policy 5-30

Database Role for a Service 5-30

Instance Preference 5-31

Service Co-location 5-31

Server Pool Assignment 5-32

Load Balancing Advisory Goal for Run-time Connection Load Balancing 5-32

Connection Load Balancing Goal 5-32

Distributed Transaction Processing 5-33

Default Service Connections 5-33

Restricted Service Registration 5-34

Administering Services 5-35

Overview of Service Administration 5-35

Administering Services with Oracle Enterprise Manager 5-37

Administering Services with SRVCTL 5-38

Creating Services with SRVCTL 5-38

Creating Services for Application Continuity and Transaction Guard 5-38

Starting and Stopping Services with SRVCTL 5-40

Enabling and Disabling Services with SRVCTL 5-40

Relocating Services with SRVCTL 5-40

Obtaining the Status of Services with SRVCTL 5-41

Obtaining the Configuration of Services with SRVCTL 5-41

Global Services 5-42

Service-Oriented Buffer Cache Access 5-42

Connecting to a Service: An Example 5-43

6 Ensuring Application Continuity

Fast Application Notification 6-2

Overview of Fast Application Notification 6-2

Fast Application Notification High Availability Events 6-6

Subscription to High Availability Events 6-9

vii

Using Fast Application Notification Callouts 6-9

Managing Unplanned Outages 6-10

Managing Planned Maintenance 6-11

Managing Planned Maintenance Without User Interruption 6-11

Managing a Group of Services for Maintenance 6-13

Starting Services 6-14

Pluggable Database-Level Operations 6-15

Relocating Services 6-15

Stopping Services 6-16

Server Draining Ahead of Planned Maintenance 6-17

About Application Continuity 6-22

Key Concepts for Application Continuity 6-23

Transparent Application Continuity 6-25

About Transparent Application Continuity 6-25

Transparent Application Continuity for Various Applications 6-27

Application Continuity Protection Check 6-28

About Application Continuity Protection Check 6-28

Creating ACCHK Views and Role for Oracle Database 19c 6-29

Enabling and Disabling Application Continuity Protection Check 6-29

Running Application Continuity Protection Check 6-31

Application Continuity Operation and Usage 6-34

How Application Continuity Works for Applications 6-34

Actions for Using Application Continuity 6-37

Support for Oracle Application Continuity and Transparent Application Continuity 6-37

Overview of Application Continuity Configuration Tasks 6-38

Configuring Connections for High Availability and Application Continuity 6-41

Configuring Oracle Database for Application Continuity 6-42

Establishing the Initial State Before Application Continuity Replays 6-43

Delaying the Reconnection in Application Continuity 6-52

Using Application Continuity for Planned Maintenance 6-54

Running Without Application Continuity 6-55

Disabling Replay in Application Continuity 6-56

Terminating or Disconnecting a Session Without Replay 6-58

Mutable Functions and Application Continuity 6-59

Administering Mutable Values 6-61

Granting and Revoking Keep Permissions for Mutables 6-61

Granting Permission to Keep Mutables for Oracle Sequences 6-61

Rules for Grants on Mutables 6-62

Protection-Level Statistics 6-62

Session State Consistency 6-63

Auto Session State Consistency 6-64

viii

Dynamic Session State Consistency 6-64

Static Session State Consistency 6-65

Potential Side Effects of Application Continuity 6-67

Restrictions and Other Considerations for Application Continuity 6-68

Transaction Guard for Improving Client Failover 6-70

Transaction Guard Configuration Checklist 6-71

Configuring Services for Transaction Guard 6-71

Failing Over OCI Clients with Transparent Application Failover 6-73

7 Configuring Recovery Manager and Archiving

Overview of Configuring RMAN for Oracle RAC 7-1

Archiving Mode in Oracle RAC 7-1

Configuring the RMAN Snapshot Control File Location 7-2

Configuring RMAN to Automatically Backup the Control File and SPFILE 7-3

Crosschecking on Multiple Oracle RAC Nodes 7-3

Configuring Channels for RMAN in Oracle RAC 7-4

Configuring Channels to Use Automatic Load Balancing 7-4

Configuring Channels to Use a Specific Node 7-4

Managing Archived Redo Logs Using RMAN in Oracle RAC 7-4

Archived Redo Log File Conventions in Oracle RAC 7-5

RMAN Archiving Configuration Scenarios 7-6

Oracle Automatic Storage Management and Cluster File System Archiving Scheme 7-6

Advantages of the Cluster File System Archiving Scheme 7-7

Initialization Parameter Settings for the Cluster File System Archiving Scheme 7-7

Location of Archived Logs for the Cluster File System Archiving Scheme 7-8

Noncluster File System Local Archiving Scheme 7-8

Considerations for Using Noncluster File System Local Archiving 7-8

Initialization Parameter Settings for Noncluster File System Local Archiving 7-9

Location of Archived Logs for Noncluster File System Local Archiving 7-9

File System Configuration for Noncluster File System Local Archiving 7-10

Monitoring the Archiver Processes 7-10

8 Managing Backup and Recovery

RMAN Backup Scenario for Noncluster File System Backups 8-1

RMAN Restore Scenarios for Oracle RAC 8-2

Restoring Backups from a Cluster File System 8-2

Restoring Backups from a Noncluster File System 8-3

Using RMAN or Oracle Enterprise Manager to Restore the Server Parameter File
(SPFILE) 8-3

Instance Recovery in Oracle RAC 8-3

ix

Single Node Failure in Oracle RAC 8-4

Multiple-Node Failures in Oracle RAC 8-4

Using RMAN to Create Backups in Oracle RAC 8-4

Channel Connections to Cluster Instances with RMAN 8-5

Node Affinity Awareness of Fast Connections 8-6

Deleting Archived Redo Logs after a Successful Backup 8-6

Autolocation for Backup and Restore Commands 8-6

Media Recovery in Oracle RAC 8-7

Parallel Recovery in Oracle RAC 8-7

Parallel Recovery with RMAN 8-7

Disabling Parallel Recovery 8-8

Disabling Instance and Crash Recovery Parallelism 8-8

Disabling Media Recovery Parallelism 8-8

Using a Fast Recovery Area in Oracle RAC 8-8

9 Cloning Oracle RAC to Nodes in a New Cluster

Introduction to Cloning Oracle RAC 9-1

Preparing to Clone Oracle RAC 9-2

Deploying Oracle RAC Clone to Nodes in a Cluster 9-3

Locating and Viewing Log Files Generated During Cloning 9-7

10

Using Cloning to Extend Oracle RAC to Nodes in the Same Cluster

About Adding Nodes Using Cloning in Oracle RAC Environments 10-1

Cloning Local Oracle Homes on Linux and UNIX Systems 10-1

Cloning Shared Oracle Homes on Linux and UNIX Systems 10-3

Cloning Oracle Homes on Windows Systems 10-4

11

Adding and Deleting Oracle RAC from Nodes on Linux and UNIX
Systems

Adding Oracle RAC to Nodes with Oracle Clusterware Installed 11-1

Adding Policy-Managed Oracle RAC Database Instances to Target Nodes 11-3

Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes 11-4

Using DBCA in Interactive Mode to Add Database Instances to Target Nodes 11-5

Using DBCA in Silent Mode to Add Database Instances to Target Nodes 11-5

Deleting Oracle RAC from a Cluster Node 11-6

Deleting Instances from Oracle RAC Databases 11-7

Using DBCA in Interactive Mode to Delete Instances from Nodes 11-8

Using DBCA in Silent Mode to Delete Instances from Nodes 11-8

x

Removing Oracle RAC 11-9

Deleting Nodes from the Cluster 11-9

12

Adding and Deleting Oracle RAC from Nodes on Windows Systems

Adding Oracle RAC to Nodes with Oracle Clusterware Installed 12-2

Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes 12-4

Using DBCA in Interactive Mode to Add Database Instances to Target Nodes 12-4

Using DBCA in Silent Mode to Add Database Instances to Target Nodes 12-6

Deleting Oracle RAC from a Cluster Node 12-6

Deleting Instances from Oracle RAC Databases 12-7

Using DBCA in Interactive Mode to Delete Instances from Nodes 12-7

Using DBCA in Silent Mode to Delete Instances from Nodes 12-8

Removing Oracle RAC 12-9

Deleting Nodes from the Cluster 12-9

13

Design and Deployment Techniques

Deploying Oracle RAC for High Availability 13-1

About Designing a High Availability System 13-1

Best Practices for Deploying Oracle RAC in a High Availability Environment 13-2

Consolidating Multiple Applications in a Database or Multiple Databases in a Cluster 13-3

Managing Capacity During Consolidation 13-4

Managing the Global Cache Service Processes During Consolidation 13-4

Using a Database Cloud for Consolidation 13-4

Scalability of Oracle RAC 13-5

General Design Considerations for Oracle RAC 13-6

General Database Deployment Topics for Oracle RAC 13-6

Tablespace Use in Oracle RAC 13-7

Object Creation and Performance in Oracle RAC 13-7

Node Addition and Deletion and the SYSAUX Tablespace in Oracle RAC 13-7

Distributed Transactions and Oracle RAC 13-7

Deploying OLTP Applications in Oracle RAC 13-8

Flexible Implementation with Cache Fusion 13-8

Deploying Data Warehouse Applications with Oracle RAC 13-8

Speed-Up for Data Warehouse Applications on Oracle RAC 13-8

Parallel Execution in Data Warehouse Systems and Oracle RAC 13-9

Data Security Considerations in Oracle RAC 13-9

Transparent Data Encryption and Keystores 13-9

Windows Firewall Considerations 13-10

Securely Run ONS Clients Using Wallets 13-10

xi

Introduction to Hang Manager 13-11

Hang Manager Architecture 13-12

Optional Configuration for Hang Manager 13-12

Hang Manager Diagnostics and Logging 13-13

14

Monitoring Performance

Overview of Monitoring and Tuning Oracle RAC Databases 14-1

Monitoring Oracle RAC and Oracle Clusterware 14-1

The Cluster Database Home Page 14-2

The Interconnects Page 14-2

The Cluster Database Performance Page 14-3

Tuning Oracle RAC Databases 14-4

Database Reliability Framework 14-4

Verifying the Interconnect Settings for Oracle RAC 14-4

Influencing Interconnect Processing 14-5

Performance Views in Oracle RAC 14-6

Creating Oracle RAC Data Dictionary Views with CATCLUST.SQL 14-6

Oracle RAC Performance Statistics 14-7

Automatic Workload Repository in Oracle RAC Environments 14-7

Active Session History Reports for Oracle RAC 14-7

Overview of ASH Reports for Oracle RAC 14-8

ASH Report for Oracle RAC: Top Cluster Events 14-8

ASH Report for Oracle RAC: Top Remote Instance 14-8

Monitoring Oracle RAC Statistics and Wait Events 14-8

Oracle RAC Statistics and Events in AWR and Statspack Reports 14-9

Oracle RAC Wait Events 14-9

Monitoring Performance by Analyzing GCS and GES Statistics 14-10

Analyzing the Effect of Cache Fusion in Oracle RAC 14-10

Analyzing Performance Using GCS and GES Statistics 14-10

Analyzing Cache Fusion Transfer Impact Using GCS Statistics 14-11

Analyzing Response Times Based on Wait Events 14-12

Block-Related Wait Events 14-12

Message-Related Wait Events 14-12

Contention-Related Wait Events 14-13

Load-Related Wait Events 14-13

15

Converting Single-Instance Oracle Databases to Oracle RAC and Oracle
RAC One Node

Administrative Issues for Converting Databases to Oracle RAC 15-1

xii

Converting to Oracle RAC and Oracle RAC One Node Using DBCA 15-2

Converting Oracle Database Installations to Oracle RAC Using DBCA 15-2

Use DBCA to Create an Image of the Single-Instance Database 15-3

Complete the Oracle Clusterware Installation 15-3

Validate the Cluster 15-3

Copy the Preconfigured Database Image 15-4

Install Oracle Database 12c Software with Oracle RAC 15-4

Converting Single Instance on a Cluster to Oracle RAC One Node Using DBCA 15-4

Converting Single Instance on a Cluster to Oracle RAC Using DBCA 15-5

Single-Instance Database on a Cluster Running from an Oracle RAC-Enabled
Home 15-5

Single-Instance Database on a Cluster Running from an Oracle RAC-Disabled
Home 15-8

Preparing to Convert with rconfig and Oracle Enterprise Manager 15-8

Prerequisites for Converting to Oracle RAC Databases 15-9

Configuration Changes During Oracle RAC Conversion Using rconfig 15-9

Converting Databases to Oracle RAC Using rconfig or Oracle Enterprise Manager 15-10

Converting Databases to Oracle RAC Using Oracle Enterprise Manager 15-11

Converting Databases to Oracle RAC Using rconfig 15-12

Example of rconfig XML Input Files for ConvertToRAC 15-13

Postconversion Steps 15-16

A Server Control Utility Reference

SRVCTL Usage Information A-1

Specifying Command Parameters as Keywords Instead of Single Letters A-3

Character Set and Case Sensitivity of SRVCTL Object Values A-3

Summary of Tasks for Which SRVCTL Is Used A-4

Using SRVCTL Help A-6

SRVCTL Privileges and Security A-6

Additional SRVCTL Topics A-7

Deprecated SRVCTL Subprograms or Commands A-7

Single Character Parameters for all SRVCTL Commands A-7

Miscellaneous SRVCTL Commands and Parameters A-15

SRVCTL Command Reference A-15

srvctl add database A-17

srvctl config database A-20

srvctl convert database A-21

srvctl disable database A-22

srvctl downgrade database A-23

srvctl enable database A-23

srvctl getenv database A-24

xiii

srvctl modify database A-24

srvctl predict database A-28

srvctl relocate database A-29

srvctl remove database A-30

srvctl setenv database A-31

srvctl start database A-31

srvctl status database A-33

srvctl stop database A-35

srvctl unsetenv database A-36

srvctl update database A-36

srvctl upgrade database A-37

srvctl disable diskgroup A-37

srvctl enable diskgroup A-37

srvctl predict diskgroup A-38

srvctl remove diskgroup A-38

srvctl start diskgroup A-39

srvctl status diskgroup A-39

srvctl stop diskgroup A-40

srvctl start home A-41

srvctl status home A-41

srvctl stop home A-42

srvctl add instance A-43

srvctl disable instance A-44

srvctl enable instance A-45

srvctl modify instance A-45

srvctl remove instance A-46

srvctl start instance A-47

srvctl status instance A-48

srvctl stop instance A-48

srvctl update instance A-50

srvctl add listener A-50

srvctl config listener A-52

srvctl disable listener A-53

srvctl enable listener A-54

srvctl getenv listener A-54

srvctl modify listener A-55

srvctl predict listener A-56

srvctl remove listener A-56

srvctl setenv listener A-57

srvctl start listener A-58

srvctl status listener A-58

xiv

srvctl stop listener A-59

srvctl unsetenv listener A-60

srvctl update listener A-60

srvctl add network A-60

srvctl config network A-62

srvctl modify network A-62

srvctl predict network A-64

srvctl remove network A-64

srvctl add nodeapps A-65

srvctl config nodeapps A-66

srvctl disable nodeapps A-67

srvctl enable nodeapps A-67

srvctl getenv nodeapps A-68

srvctl modify nodeapps A-69

srvctl remove nodeapps A-70

srvctl setenv nodeapps A-71

srvctl start nodeapps A-72

srvctl status nodeapps A-72

srvctl stop nodeapps A-73

srvctl unsetenv nodeapps A-73

srvctl add ons A-74

srvctl config ons A-75

srvctl disable ons A-75

srvctl enable ons A-76

srvctl modify ons A-76

srvctl remove ons A-77

srvctl start ons A-77

srvctl status ons A-77

srvctl stop ons A-78

srvctl add scan A-78

srvctl config scan A-79

srvctl disable scan A-80

srvctl enable scan A-80

srvctl modify scan A-81

srvctl predict scan A-81

srvctl relocate scan A-82

srvctl remove scan A-82

srvctl start scan A-83

srvctl status scan A-84

srvctl stop scan A-84

srvctl add scan_listener A-85

xv

srvctl config scan_listener A-86

srvctl disable scan_listener A-86

srvctl enable scan_listener A-87

srvctl modify scan_listener A-88

srvctl predict scan_listener A-89

srvctl relocate scan_listener A-89

srvctl remove scan_listener A-90

srvctl start scan_listener A-90

srvctl status scan_listener A-91

srvctl stop scan_listener A-92

srvctl update scan_listener A-92

srvctl relocate server A-93

srvctl status server A-93

srvctl add service A-93

srvctl config service A-100

srvctl disable service A-102

srvctl enable service A-103

srvctl modify service A-104

srvctl predict service A-110

srvctl relocate service A-111

srvctl remove service A-113

srvctl start service A-113

srvctl status service A-115

srvctl stop service A-116

srvctl add srvpool A-119

srvctl config srvpool A-120

srvctl modify srvpool A-120

srvctl remove srvpool A-121

srvctl status srvpool A-122

srvctl add vip A-122

srvctl config vip A-123

srvctl disable vip A-124

srvctl enable vip A-124

srvctl getenv vip A-125

srvctl modify vip A-125

srvctl predict vip A-126

srvctl relocate vip A-127

srvctl remove vip A-127

srvctl setenv vip A-128

srvctl start vip A-129

srvctl status vip A-129

xvi

srvctl stop vip A-130

srvctl unsetenv vip A-131

srvctl config volume A-131

srvctl disable volume A-133

srvctl enable volume A-133

srvctl remove volume A-134

srvctl start volume A-135

srvctl status volume A-136

srvctl stop volume A-137

B Troubleshooting Oracle RAC

Where to Find Files for Analyzing Errors B-1

Managing Diagnostic Data in Oracle RAC B-2

Using Instance-Specific Alert Files in Oracle RAC B-2

Enabling Tracing for Java-Based Tools and Utilities in Oracle RAC B-3

Resolving Pending Shutdown Issues B-3

How to Determine If Oracle RAC Instances Are Using the Private Network B-3

Glossary

Index

xvii

List of Tables

3-1 How SQL*Plus Commands Affect Instances 3-7

3-2 Descriptions of V$ACTIVE_INSTANCES Columns 3-15

3-3 Initialization Parameters Specific to Oracle RAC 3-21

3-4 Parameters That Should Have Identical Settings on All Instances 3-25

5-1 Load Balancing Advisory FAN Events 5-7

6-1 Event Parameter Name-Value Pairs and Descriptions 6-6

6-2 FAN Parameters and Matching Session Information 6-8

6-3 Standard Connection Tests for Some Common Application Servers 6-21

6-4 Example Treatment of Mutable Objects by Products During Replay 6-59

7-1 Archived Redo Log File Name Format Parameters 7-5

7-2 UNIX/NFS Location Log Examples, Noncluster File System Local Archiving 7-9

7-3 UNIX/NFS Configuration for Shared Read Local Archiving Examples 7-10

9-1 clone.pl Script Parameters 9-4

9-2 Environment Variables Passed to the clone.pl Script 9-5

9-3 Cloning Parameters Passed to the clone.pl Script. 9-5

9-4 Finding the Location of the Oracle Inventory Directory 9-7

11-1 Variables in the DBCA Silent Mode Syntax 11-6

12-1 Variables in the DBCA Silent Mode Syntax 12-9

A-1 String Restrictions for SRVCTL Object Names A-3

A-2 Deprecated Single-Character Parameters for SRVCTL Commands A-8

A-3 Deprecated Commands and Parameters for SRVCTL A-15

A-4 Object Keywords and Abbreviations A-16

A-5 srvctl add database Command Parameters A-17

A-6 srvctl config database Command Parameters A-20

A-7 srvctl convert database Command Parameters A-21

A-8 srvctl disable database Command Parameters A-22

A-9 srvctl downgrade database Command Parameters A-23

A-10 srvctl enable database Command Parameters A-24

A-11 srvctl getenv database Command Parameters A-24

A-12 srvctl modify database Command Parameters A-25

A-13 srvctl relocate database Command Parameters A-29

A-14 srvctl remove database Command Parameters A-30

A-15 srvctl setenv database Command Parameters A-31

A-16 srvctl start database Command Parameters A-32

A-17 srvctl status database Parameters A-34

xviii

A-18 srvctl stop database Command Parameters A-35

A-19 srvctl unsetenv database Command Parameters A-36

A-20 srvctl upgrade database Command Parameters A-37

A-21 srvctl disable diskgroup Command Parameters A-37

A-22 srvctl enable diskgroup Command Parameters A-38

A-23 srvctl start diskgroup Command Parameters A-39

A-24 srvctl status diskgroup Command Parameters A-40

A-25 srvctl stop diskgroup Command Parameters A-40

A-26 srvctl start home Command Parameters A-41

A-27 srvctl status home Command Parameters A-42

A-28 srvctl stop home Command Parameters A-42

A-29 srvctl add instance Command Parameters A-43

A-30 srvctl disable instance Command Parameters A-44

A-31 srvctl enable instance Command Parameters A-45

A-32 srvctl modify instance Command Parameters A-46

A-33 srvctl remove instance Command Parameters A-47

A-34 srvctl start instance Parameters A-48

A-35 srvctl stop instance Command Parameters A-49

A-36 srvctl add listener Command Parameters A-51

A-37 srvctl config listener Command Parameters A-53

A-38 srvctl disable listener Command Parameters A-53

A-39 srvctl enable listener Command Parameters A-54

A-40 srvctl getenv listener Command Parameters A-54

A-41 srvctl modify listener Command Parameters A-55

A-42 srvctl setenv listener Command Parameters A-57

A-43 srvctl start listener Command Parameters A-58

A-44 srvctl status listener Command Parameters A-59

A-45 srvctl stop listener Command Parameters A-59

A-46 srvctl unsetenv listener Command Parameters A-60

A-47 srvctl add network Command Parameters A-61

A-48 srvctl modify network Command Parameters A-62

A-49 srvctl remove network Command Parameters A-64

A-50 srvctl add nodeapps Command Parameters A-65

A-51 srvctl disable nodeapps Command Parameters A-67

A-52 srvctl enable nodeapps Command Parameters A-68

A-53 srvctl getenv nodeapps Command Parameters A-68

A-54 srvctl modify nodeapps Command Parameters A-69

xix

A-55 srvctl remove nodeapps Command Parameters A-71

A-56 srvctl setenv nodeapps Command Parameters A-71

A-57 srvctl start nodeapps Command Parameters A-72

A-58 srvctl stop nodeapps Command Parameters A-73

A-59 srvctl unsetenv nodeapps Command Parameters A-74

A-60 srvctl add ons Command Parameters A-74

A-61 srvctl modify ons Command Parameters A-76

A-62 srvctl add scan Command Parameters A-78

A-63 srvctl config scan Command Parameters A-79

A-64 srvctl modify scan Command Parameters A-81

A-65 srvctl relocate scan Command Parameters A-82

A-66 srvctl remove scan Command Parameters A-82

A-67 srvctl start scan Command Parameters A-83

A-68 srvctl add scan_listener Command Parameters A-85

A-69 srvctl config scan_listener Command Parameters A-86

A-70 srvctl disable scan_listener Command Parameters A-87

A-71 srvctl enable scan_listener Command Parameters A-87

A-72 srvctl modify scan_listener Command Parameters A-88

A-73 srvctl remove scan_listener Command Parameters A-90

A-74 srvctl start scan_listener Command Parameters A-91

A-75 srvctl status scan_listener Command Parameters A-91

A-76 srvctl stop scan_listener Command Parameters A-92

A-77 srvctl relocate server Command Parameters A-93

A-78 srvctl add service Command Parameters A-95

A-79 srvctl config service Command Parameters A-100

A-80 srvctl disable service Command Parameters A-102

A-81 srvctl enable service Command Parameters A-103

A-82 srvctl modify service Parameters for Moving a Service A-104

A-83 srvctl modify service Parameters for Changing to a Preferred Instance A-105

A-84 srvctl modify service Parameters for Changing the Statuses of Multiple Instances A-106

A-85 srvctl modify service Parameters A-107

A-86 srvctl predict service Command Parameters A-111

A-87 srvctl relocate service Command Parameters A-111

A-88 srvctl remove service Command Parameters A-113

A-89 srvctl status service Command Parameters A-116

A-90 srvctl stop service Command Parameters A-117

A-91 srvctl add srvpool Command Parameters A-119

xx

A-92 srvctl modify srvpool Command Parameters A-120

A-93 srvctl remove srvpool Command Parameters A-121

A-94 srvctl add vip Command Parameters A-123

A-95 srvctl config vip Command Parameters A-124

A-96 srvctl getenv vip Command Parameters A-125

A-97 srvctl modify vip Command Parameters A-126

A-98 srvctl relocate vip Command Parameters A-127

A-99 srvctl remove vip Command Parameters A-127

A-100 srvctl setenv vip Command Parameters A-128

A-101 srvctl start vip Command Parameters A-129

A-102 srvctl status vip Command Parameters A-130

A-103 srvctl stop vip Command Parameters A-130

A-104 srvctl unsetenv vip Command Parameters A-131

A-105 srvctl config volume Command Parameters A-131

A-106 srvctl disable volume Command Parameters A-133

A-107 srvctl enable volume Command Parameters A-134

A-108 srvctl remove volume Command Parameters A-134

A-109 srvctl start volume Command Parameters A-135

A-110 srvctl status volume Command Parameters A-136

A-111 srvctl stop volume Command Parameters A-137

xxi

Preface

Oracle Real Application Clusters Administration and Deployment Guide describes the
Oracle Real Application Clusters (Oracle RAC) architecture.

This publication provides an overview of the product, including Oracle Real Application
Clusters One Node (Oracle RAC One Node). This publication also describes
administrative and deployment topics for Oracle RAC.

Information in this manual applies to Oracle RAC as it runs on all platforms, unless
otherwise noted. In addition, the content of this manual supplements administrative
and deployment topics for noncluster Oracle Database that appear in other Oracle
documentation. Where necessary, this publication refers to platform-specific
documentation.

Audience
The Oracle Real Application Clusters Administration and Deployment Guide is
intended for database administrators, network administrators, and system
administrators who perform the following tasks:

• Install and configure an Oracle RAC database

• Administer and manage Oracle RAC databases

• Manage and troubleshoot clusters and networks that use Oracle RAC

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
This book, the Oracle Real Application Clusters Administration and Deployment Guide,
provides administration and application deployment information that is specific to
Oracle RAC. The discussions herein assume a knowledge of Oracle Clusterware.

For more information, see the Oracle resources listed in this section.

Preface

xxii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Clusterware Administration and Deployment Guide

This is an essential companion book that describes Oracle Clusterware components such
as the voting disks and the Oracle Cluster Registry (OCR).

• Platform-specific Oracle Clusterware and Oracle RAC installation guides

Each platform-specific Oracle Database installation media contains a copy of an Oracle
Clusterware and Oracle RAC platform-specific installation and configuration guide in
HTML and PDF formats. These installation books contain the preinstallation, installation,
and postinstallation information for the various UNIX, Linux, and Windows platforms on
which Oracle Clusterware and Oracle RAC operate.

• Oracle Database 2 Day DBA

• Oracle Database Administrator's Guide

• Oracle Database Net Services Administrator's Guide

• Oracle Database Platform Guide for Microsoft Windows

• Oracle Database Administrator's Reference for Linux and UNIX-Based Operating
Systems

• Oracle Database 11g Administrator's Reference Release 1 (11.1) for UNIX Systems: AIX
Systems, HP-UX, Linux, and the Solaris Operating System (SPARC)

Note:

Additional information for this release may be available in the Oracle Database 12c
README or Release Notes. If these documents are available for this release, then
they are on your Oracle product installation media.

Database error messages descriptions are available online or by way of a Tahiti
documentation search.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxiii

Changes in This Release for Oracle Real
Application Clusters Administration and
Deployment Guide

This preface includes:

• Changes in Oracle Real Application Clusters Release 19c

• Changes in Oracle Real Application Clusters Release 18c, Version 18.1

• Changes in Oracle Real Application Clusters 12c Release 2 (12.2)

• Changes in Oracle Real Application Clusters 12c Release 1 (12.1)

Changes in Oracle Real Application Clusters Release 19c
The following topics list features that are new, deprecated, or desupported in the
Oracle Real Application Clusters Administration and Deployment Guide for Oracle
Database 19c.

New Features
The following features are new in this release.

• Co-location Tag for Client Routing

Starting with Oracle Database release 19.3, a colocation_tag allows for providing
a string value as part of the CONNECT_DATA of a connect string. Clients with the
same colocation tag are routed to the same instance that offers a given service,
when possible. If co-location is not possible at the time the connection is made,
then the tag is ignored and the connections are routed to an available instance as
they would be without the tag.

Co-location of sessions on the same instance can help to decrease inter-instance
communication and thereby increase performance for workload that benefits from
being executed in the same instance.

See Service Co-location.

• Dynamic Services Fallback Option

For a dynamic database service that is placed using preferred and available
settings, starting with Oracle Database release 19.3, you can now specify that this
service should fall back to a preferred instance when it becomes available and
after it was failed over to an available instance. A service fails over to an available
instance when there are no preferred instances available. The Dynamic Services
Fallback Option allows for more control in placing dynamic database services and
ensures that a given service is available on a preferred instance as much as
possible.

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxiv

See Instance Preference.

• RAC Resource Runtime Management

With Oracle Database SGA Runtime Management, the SGA can grow during runtime.
Starting with Oracle Database 19.3, Oracle RAC Resource Runtime Management allows
for automatic and runtime adjustment of resources that otherwise used to be allocated at
database startup only. This enables more efficient resource allocation.

For information about automatic memory management, see About Automatic Memory
Management in the Oracle Database Administrator’s Guide.

• Optional Install for the Grid Infrastructure Management Repository
Starting with Oracle Grid Infrastructure 19c, the Grid Infrastructure Management
Repository (GIMR) is optional for new installations of Oracle Standalone Cluster. Oracle
Domain Services Clusters still require the installation of a GIMR as a service component.

The data contained in the GIMR is the basis for preventative diagnostics based on
applied Machine Learning and can help to increase the availability of Oracle Real
Application Clusters (Oracle RAC) databases. Having an optional installation for the
GIMR allows for more flexible storage space management and faster deployment,
especially during the installation of test and development systems.

See About Grid Infrastructure Management Repository in Oracle Grid Infrastructure
Installation and Upgrade Guide for Linux.

Resupport of Direct File Placement for OCR and Voting Disks
Starting with Oracle Grid Infrastructure 19c, the desupport for direct placement of OCR and
voting files on shared file systems is rescinded for Oracle Standalone Clusters.

In Oracle Grid Infrastructure 12c Release 2 (12.2), Oracle announced that it would no longer
support the placement of the Oracle Grid Infrastructure Oracle Cluster Registry (OCR) and
voting files directly on a shared file system. This desupport is now rescinded. Starting with
Oracle Grid Infrastructure 19c (19.3), with Oracle Standalone Clusters, you can again place
OCR and voting disk files directly on shared file systems. However, for Oracle Domain
Services Clusters, you must continue to place OCR and voting files in quorum failure groups
managed by Oracle Automatic Storage Management (Oracle ASM).

Deprecated Features in Oracle Real Application Clusters 19c
The following features are deprecated in Oracle Real Application Clusters 19c, and may be
desupported in a future release:

Deprecation of Addnode Script

The addnode script is deprecated in Oracle Grid Infrastructure 19c. The functionality of adding
nodes to clusters is available in the installer wizard.

The addnode script can be removed in a future release. Instead of using the addnode script
(addnode.sh or addnode.bat), add nodes by using the installer wizard. The installer wizard
provides many enhancements over the addnode script. Using the installer wizard simplifies
management by consolidating all software lifecycle operations into a single tool.

Deprecation of clone.pl Script

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxv

The clone.pl script can be removed in a future release. Instead of using the clone.pl
script, Oracle recommends that you install the extracted gold image as a home, using
the installer wizard.

Deprecation of Vendor Clusterware Integration with Oracle Clusterware

Starting with Oracle Clusterware 19c (19.5), the integration of vendor or third party
clusterware with Oracle Clusterware is deprecated.

The integration of vendor clusterware with Oracle Clusterware is deprecated, and can
be desupported in a future release. Deprecating certain clustering features with limited
adoption allows Oracle to focus on improving core scaling, availability, and
manageability across all features and functionality. In the absence of an integration
between different cluster solutions, the system is subject to the dueling cluster
solutions issue: Independent cluster solutions can make individual decisions about
which corrective actions must be taken in case of certain failures. To avoid conflicts,
only one cluster solution should be active at any point in time. For this reason, Oracle
recommends that you align your next software or hardware upgrade with the transition
off of vendor cluster solutions.

Desupported Features in Oracle Real Application Clusters 19c

See Also:

Oracle Database Upgrade Guide for more information

• Desupport of Oracle Real Application Clusters in the Standard Edition 2
(SE2) Database Edition

Starting with Oracle Database 19c, Oracle Real Application Clusters (Oracle RAC)
is not supported in Oracle Database Standard Edition 2 (SE2).

• Desupport of Oracle Streams

Starting in Oracle Database 19c (19.1), Oracle Streams is desupported. Oracle
GoldenGate is the replication solution for Oracle Database.

Note that Oracle Database Advanced Queuing is not deprecated, and is fully
supported in Oracle Database 19c. Oracle Streams did not support features added
in Oracle Database 12c (12.1) and later releases, including the multitenant
architecture, LONG VARCHAR, and other new features. Oracle Streams replication
functionality is superseded by GoldenGate.

Changes in Oracle Real Application Clusters Release 18c,
Version 18.1

Following is a list of features that are new in the Oracle Real Application Clusters
Administration and Deployment Guide for Oracle Real Application Clusters 18c (18.1).

Continuous Application Availability

Continuous application availability is achieved with a combination of planned
maintenance and Transparent Application Continuity. Planned maintenance of a

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxvi

database includes draining and migration of database sessions before you begin any planned
maintenance, without applications being aware of the activity. Transparent database session
draining occurs when Application Continuity is enabled and fails sessions over to another
database instance at points within the transaction that are safe, such as when an application
submits a connection test or at request boundaries within a transaction.

Transparent Application Continuity transparently tracks and records session and transactional
states so that the database session can be recovered following recoverable outages. This is
done safely and with no reliance on application knowledge or code changes, enabling
Application Continuity to be standard for your applications. Transparency is achieved by
consuming a new state-tracking infrastructure that categorizes session state usage as the
application issues user calls.

See "Transparent Application Continuity".

Oracle RAC Sharding

Oracle RAC Sharding affinitizes table partitions to Oracle RAC instances, and routes
database requests that specify a partitioning key to the instance that logically holds the
corresponding partition. This provides better cache utilization and dramatically reduces block
pings across instances. The partitioning key can only be added to the most performance
critical requests. Requests that don’t specify the key still work transparently and can be
routed to any instance. No changes to the database schema are required to enable this
feature. Oracle RAC Sharding provides performance and scalability benefits with minimal
application changes.

See "Oracle RAC Sharding".

Scalable Sequences

Scalable sequences alleviate index leaf block contention when loading data into tables that
use sequence values as keys.

See Also:

Making a Sequence Scalable

Changes in Oracle Real Application Clusters 12c Release 2
(12.2)

Following is a list of features that are new in the Oracle Real Application Clusters
Administration and Deployment Guide for Oracle Real Application Clusters 12c release 2
(12.2).

SCAN Listener Supports HTTP Protocol

Currently, when a connection request comes in, the SCAN listener load balances among the
handlers located on the same node. It then directly hands off the connection to the least
loaded handler on the node. With this release, the SCAN listener is aware of the HTTP
protocol so that it can redirect HTTP clients to the appropriate handler, which can reside on
nodes in the cluster other than the node on which the SCAN listener resides.

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxvii

IPv6 Support for Oracle Real Application Clusters on The Private Network

You can configure cluster nodes to use either IPv4- or IPv6-based IP addresses on a
private network, and you can use more than one private network for a cluster.

See Also:

Oracle Clusterware Administration and Deployment Guide

Extend Oracle Database QoS Management to Fully Support Administrator-
Managed Databases

In this release, full Oracle Database Quality of Service Management (Oracle Database
QoS Management) support is available by also supporting its Management mode.
Oracle supports schema consolidation within an administrator-managed Oracle RAC
database by adjusting the CPU shares of performance classes running in the
database. Additionally, database consolidation is supported by adjusting CPU counts
per databases hosted on the same physical servers.

As administrator-managed databases do not run in server pools, the ability to expand
or shrink the number of instances by changing the server pool size that is supported in
policy-managed database deployments is not available for administrator-managed
databases. This deployment support is integrated into the Oracle Database QoS
Management pages in Oracle Enterprise Manager Cloud Control.

See Also:

Oracle Database Quality of Service Management User's Guide

Oracle Real Application Clusters Reader Nodes

Oracle RAC Reader Nodes facilitate Oracle Flex Cluster architecture by allocating a
set of read/write instances running Online Transaction Processing (OLTP) workloads
and a set of read-only database instances across Hub Nodes and Leaf Nodes in the
cluster. In this architecture, updates to the read-write instances are immediately
propagated to the read-only instances on the Leaf Nodes, where they can be used for
online reporting or instantaneous queries.

See Also:

Oracle Clusterware Administration and Deployment Guide

Server Weight-Based Node Eviction

Server weight-based node eviction acts as a tie-breaker mechanism in situations
where Oracle Clusterware must evict a particular node or a group of nodes from a
cluster, in which all nodes represent an equal choice for eviction. The server weight-
based node eviction mechanism helps to identify the node or the group of nodes to be
evicted based on additional information about the load on those servers. Two principle

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxviii

mechanisms, a system-inherent automatic mechanism and a user input-based mechanism,
exist to provide respective guidance.

See Also:

Oracle Clusterware Administration and Deployment Guide

Separation of Duty for Administering Oracle Real Application Clusters

Starting with Oracle Database 12c release 2 (12.2), Oracle Database provides support for
separation of duty best practices when administering Oracle Real Application Clusters
(Oracle RAC) by introducing the SYSRAC administrative privilege for the clusterware agent.
This feature removes the need to use the powerful SYSDBA administrative privilege for
Oracle RAC.

SYSRAC, like SYSDG, SYSBACKUP and SYSKM, helps enforce separation of duties and
reduce reliance on the use of SYSDBA on production systems. This administrative privilege
is the default mode for connecting to the database by the clusterware agent on behalf of the
Oracle RAC utilities, such as SRVCTL.

In-Memory FastStart

In-Memory FastStart optimizes the population of database objects in the In-Memory column
store by storing In-Memory compression units directly on disk.

See Also:

Oracle Database In-Memory Guide

Changes in Oracle Real Application Clusters 12c Release 1
(12.1)

The following are changes in Oracle Real Application Clusters Administration and
Deployment Guide for Oracle Real Application Clusters (Oracle RAC) 12c:

• Changes in Oracle Real Application Clusters 12c Release 1 (12.1.0.2)

• Changes in Oracle Real Application Clusters 12c Release 1 (12.1.0.1)

• Deprecated Features

• Desupported Features

Changes in Oracle Real Application Clusters 12c Release 1 (12.1.0.2)
The following features are new in this release:

• In-Memory Column Store

The In-Memory Column Store is an optional area in the SGA that stores whole tables,
table partitions, and individual columns in a compressed columnar format. The database
uses special techniques, including SIMD vector processing, to scan columnar data

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxix

extremely rapidly. The In-Memory Column Store is a supplement to, rather than a
replacement for, the database buffer cache.

See Also:

Oracle Database Data Warehousing Guide for more information

• In-Memory Transaction Manager

The In-Memory Transaction Manager is an independent engine that automatically
provides read consistency for transactions that apply changes to the In-Memory
Column Store. This engine is necessary because tables and partitions residing in
the In-Memory Column Store are stored in columnar format in memory and in row-
major format in the data files and database buffer cache.

See Also:

Improving Query Performance with the In-Memory Column Store in
Oracle Database Administrator’s Guide for more information

• Fleet Patching and Provisioning

Fleet Patching and Provisioning enables you to deploy Oracle homes based on
images stored in a catalog of precreated software homes.

See Also:

Oracle Clusterware Administration and Deployment Guide for more
information

• Full Database In-Memory Caching

In this release you can cache an entire database in memory. Use this feature
when the buffer cache size of each instance is greater than the size of the whole
database. In Oracle RAC systems, for well-partitioned applications, you can use
this feature when the combined buffer caches of all database instances (with some
extra space to handle duplicate cached blocks between instances) is greater than
the database size.

See Also:

Oracle Database Performance Tuning Guide for more information

• Memory Guard Does Not Require Oracle Database QoS Management to be
Active

With this release, Memory Guard is enabled by default independent of whether
you use Oracle Database Quality of Service Management (Oracle Database QoS
Management). Memory Guard detects memory stress on a node and causes new
sessions to be directed to other instances until the existing workload drains and

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxx

frees memory. When free memory increases on the node, then services are enabled
again to automatically accept new connections.

Changes in Oracle Real Application Clusters 12c Release 1 (12.1.0.1)
The following features are new in this release:

• Application Continuity

Before this release, application developers were required to deal explicitly with outages of
the underlying software, hardware, and communications layers if they wanted to mask
outages from end users.

In Oracle Database 10g, Fast Application Notification (FAN) quickly delivered exception
conditions to applications. However, neither FAN nor earlier Oracle technology reported
the outcome of the last transaction to the application, or recovered the in-progress
request from an application perspective. As a result, outages were exposed leading to
user inconvenience and lost revenue. Users could unintentionally make duplicate
purchases and submit multiple payments for the same invoice. In the problematic cases,
the administrator needed to reboot the mid-tier to deal with the incoming problems this
caused.

Application Continuity is an application-independent feature that attempts to recover
incomplete requests from an application perspective and masks many system,
communication, hardware failures, and storage outages from the end user.

See Also:

– Oracle Database Concepts for more information

– Ensuring Application Continuity

• Transaction Guard for Java

This feature exposes the new Application Continuity infrastructure to Java. It provides
support for:

– At-most-once transaction execution protocol, such as transaction idempotence

– API for retrieving logical transaction ID (LTXID)

– Attribute to get Connection or Session status

See Also:

Oracle Database JDBC Developer’s Guide for more information

• Transaction Idempotence

This feature delivers a general purpose, application-independent infrastructure that
enables recovery of work from an application perspective and masks most system,
communication, and hardware failures from the user. Transaction idempotence ensures
that your transactions are executed on time and, at most, once.

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxxi

See Also:

Oracle Database Development Guide for more information

• Oracle Flex Clusters

Large clusters consisting of, potentially, thousands of nodes, provide a platform for
Oracle RAC to support massive parallel query operations.

See Also:

Oracle Clusterware Administration and Deployment Guide for more
information about Oracle Flex Clusters

• Shared Oracle ASM Password File in a Disk Group

This feature implements the infrastructure needed to address the bootstrapping
issues of storing an Oracle Automatic Storage Management (Oracle ASM) shared
password file in an Oracle ASM disk group.

See Also:

Oracle Automatic Storage Management Administrator's Guide

• Global Data Services

Similar to the way Oracle RAC supports a database service and enables service-
level workload management across database instances in a cluster, Global Data
Services provides Oracle RAC-like connect-time and run-time load balancing,
failover, and centralized service management for a set of replicated databases that
offer common services. The set of databases can include Oracle RAC and
nonclustered Oracle databases interconnected with Oracle Data Guard, Oracle
GoldenGate, or any other replication technology.

See Also:

Oracle Database Global Data Services Concepts and Administration
Guide for more information

• Shared Grid Naming Service

One instance of Grid Naming Service (GNS) can service any number of clusters.

See Also:

Oracle Clusterware Administration and Deployment Guide for more
information

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxxii

• What-If Command Evaluation for Oracle RAC

This feature of Oracle Clusterware improves resource management and availability,
through a mechanism that provides a policy response to a hypothetical planned or
unplanned event, without modifying the state of the system.

In Oracle RAC, enhancements to SRVCTL aid you in determining the impact of certain
commands before you run them to determine the potential impact of the command.

See Also:

– "SRVCTL Usage Information" for a list of SRVCTL commands with What-If
functionality

– Oracle Clusterware Administration and Deployment Guide for a list of
Oracle Clusterware Control (CRSCTL) utility commands with similar
enhancements

• Restricting Service Registration for Oracle RAC Deployments

This feature allows listener registration only from local IPs by default and provides the
ability to configure and dynamically update a set of IP addresses or subnets from which
registration requests are allowed by the listener.

See Also:

Oracle Database Net Services Administrator's Guide for more information

• Restricting Service Registration with Valid Node Checking

This feature enables the network administrator to specify a list of nodes and subnet
information from which the Single Client Access Name (SCAN) listener accepts
registration. You can specify the nodes and subnets information using SRVCTL, and
SRVCTL stores the information in the SCAN listener resource profile and this information
is also written to the listener.ora file. Restricting client access to a database makes
Oracle RAC even more secure and less vulnerable to security threads and attacks.

• Pluggable Databases

Pluggable Databases enables an Oracle database to contain a portable collection of
schemas, schema objects, and nonschema objects that appears to an Oracle Net client
as a separate database. This self-contained collection is called a pluggable database
(PDB). A container database (CDB) is an Oracle database that includes zero, one, or
many user-created pluggable databases (PDBs). You can unplug a PDB from a CDB and
plug it into a different CDB.

See Also:

Oracle Database Administrator’s Guide

• Support of Oracle Home User on Windows

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxxiii

Starting with Oracle Database 12c, Oracle Database supports the use of an
Oracle home user, which you can specify at installation time. The Oracle home
user is associated with a Windows domain user. The Windows domain user should
be a low-privileged (non-Administrator) account to ensure that the Oracle home
user has a limited set of privileges, thus ensuring that the Oracle Database
services have only those privileges required to run Oracle products.

Windows Administrator user privileges are still required to perform Oracle software
maintenance tasks including installation, upgrade, patching, and so on. Oracle
Database administrative tools have been enhanced to ask for the password of the
Oracle home user, if needed. In Oracle RAC environments, you can store the
password for the Oracle home user in a secure wallet. If such a wallet exists, then
the Oracle Database administrative tools automatically use the password from the
wallet and do not require the user to enter the password for the Oracle home user.

• Cluster Resources for Oracle ACFS and Oracle ADVM

Oracle Clusterware resource support includes enhancements for Oracle homes
stored on Oracle Automatic Storage Management Cluster File System (Oracle
ACFS), Oracle ACFS General Purpose file systems for Grid homes, and Oracle
ASM Dynamic Volume Manager (Oracle ADVM) volumes. These resources, that
Oracle Clusterware manages, support automatic loading of Oracle ACFS, Oracle
ADVM and OKS drivers, disk group mounts, dynamic volume enablement, and
automatic Oracle ACFS file system mounts.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more
information

• Oracle Highly Available NFS

You can configure Oracle ACFS as a highly available, exported file system service.
This service uses Oracle ACFS' clusterwide data consistency and coherency, in
combination with virtual IP addresses, to provide failover capability for NFS
exports. By mounting the NFS export from this virtual IP address, a client can be
assured that, if one node of the cluster is available, then the NFS export will be
available.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more
information

• Policy-Based Cluster Management and Administration

Oracle Grid Infrastructure allows running multiple applications in one cluster. Using
a policy-based approach, the workload introduced by these applications can be
allocated across the cluster using a policy. In addition, a policy set enables
different policies to be applied to the cluster over time as required. You can define
policy sets using a web-based interface or a command-line interface.

Hosting various workloads in the same cluster helps to consolidate the workloads
into a shared infrastructure that provides high availability and scalability. Using a

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxxiv

centralized policy-based approach allows for dynamic resource reallocation and
prioritization as the demand changes.

See Also:

Oracle Clusterware Administration and Deployment Guide for more information

• Online Resource Attribute Modification

Oracle Clusterware manages hardware and software components for high availability
using a resource model. You use resource attributes to define how Oracle Clusterware
manages those resources. You can modify certain resource attributes and implement
those changes without having to restart the resource using online resource attribute
modification. You manage online resource attribute modification with certain SRVCTL and
CRSCTL commands.

Deprecated Features
Deprecation of single-letter SRVCTL CLI options

All SRVCTL commands have been enhanced to accept full-word options instead of the
single-letter options. All new SRVCTL command options added in this release support full-
word options, only, and do not have single-letter equivalents. The use of single-letter options
with SRVCTL commands might be desupported in a future release.

Desupported Features

See Also:

Oracle Database Upgrade Guide for more information

• Oracle Cluster File System for Windows

Oracle no longer supports Oracle Cluster File System (OCFS) on Windows.

• Raw (block) storage devices for Oracle Database and related technologies

Oracle Database 12c release 1 (12.1) and its related grid technologies, such as Oracle
Clusterware, no longer support the direct use of raw or block storage devices. You must
move existing files from raw or block devices to Oracle ASM before you upgrade to
Oracle Clusterware 12c release 1 (12.1).

Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide

xxxv

1
Introduction to Oracle RAC

Provides an overview of Oracle Real Application Clusters (Oracle RAC) installation and
administration, and various components and functions.

This chapter includes the following topics:

• Overview of Oracle RAC

• Overview of Installing Oracle RAC

• Overview of Oracle Real Application Clusters One Node

• Overview of Oracle Clusterware for Oracle RAC

• Overview of Oracle RAC Architecture and Processing

• Overview of Automatic Workload Management with Dynamic Database Services

• Overview of Server Pools and Policy-Managed Databases

• Overview of Oracle Database Quality of Service Management

• Overview of Hang Manager

• Overview of Oracle Multitenant with Oracle RAC

• Overview of Database In-Memory and Oracle RAC

• Overview of Managing Oracle RAC Environments

Overview of Oracle RAC
This topic provides an introduction to Oracle RAC and its functionality.

Non-cluster Oracle databases have a one-to-one relationship between the Oracle database
and the instance. Oracle RAC environments, however, have a one-to-many relationship
between the database and instances. An Oracle RAC database can have several instances,
all of which access one database. All database instances must use the same interconnect,
which can also be used by Oracle Clusterware.

Oracle RAC databases differ architecturally from non-cluster Oracle databases in that each
Oracle RAC database instance also has:

• At least one additional thread of redo for each instance

• An instance-specific undo tablespace

The combined processing power of the multiple servers can provide greater throughput and
Oracle RAC scalability than is available from a single server.

A cluster comprises multiple interconnected computers or servers that appear as if they are
one server to end users and applications. The Oracle RAC option with Oracle Database
enables you to cluster Oracle databases. Oracle RAC uses Oracle Clusterware for the
infrastructure to bind multiple servers so they operate as a single system.

Oracle Clusterware is a portable cluster management solution that is integrated with Oracle
Database. Oracle Clusterware is a required component for using Oracle RAC that provides

1-1

the infrastructure necessary to run Oracle RAC. Oracle Clusterware also manages
resources, such as Virtual Internet Protocol (VIP) addresses, databases, listeners,
services, and so on. In addition, Oracle Clusterware enables both non-cluster Oracle
databases and Oracle RAC databases to use the Oracle high-availability
infrastructure. Oracle Clusterware along with Oracle Automatic Storage Management
(Oracle ASM) (the two together comprise the Oracle Grid Infrastructure) enables you
to create a clustered pool of storage to be used by any combination of non cluster and
Oracle RAC databases.

Oracle Clusterware is the only clusterware that you need for most platforms on which
Oracle RAC operates. If your database applications require vendor clusterware, then
you can use such clusterware in conjunction with Oracle Clusterware if that vendor
clusterware is certified for Oracle RAC.

Figure 1-1 shows how Oracle RAC is the Oracle Database option that provides a
single system image for multiple servers to access one Oracle database. In Oracle
RAC, each Oracle instance must run on a separate server.

Figure 1-1 Oracle Database with Oracle RAC Architecture

HR

Sales�

Call Center

HR

Sales

Call Center

HR

Sales�

Call Center

Node 3

Call Center Service

Node 1 Node 2

Application / Web Servers

HR Service Sales Service

RAC

Database

Oracle Net Services Client Access

hb
hb

Instance 1

Heartbeat hb

hb
hb

Instance 2 Instance 3

Traditionally, an Oracle RAC environment is located in one data center. However, you
can configure Oracle RAC on an Oracle Extended Cluster, which is an architecture
that provides extremely fast recovery from a site failure and allows for all nodes, at all
sites, to actively process transactions as part of a single database cluster. In an
extended cluster, the nodes in the cluster are typically dispersed, geographically, such
as between two fire cells, between two rooms or buildings, or between two different

Chapter 1
Overview of Oracle RAC

1-2

data centers or cities. For availability reasons, the data must be located at both sites, thus
requiring the implementation of disk mirroring technology for storage.

If you choose to implement this architecture, you must assess whether this architecture is a
good solution for your business, especially considering distance, latency, and the degree of
protection it provides. Oracle RAC on extended clusters provides higher availability than is
possible with local Oracle RAC configurations, but an extended cluster may not fulfill all of the
disaster-recovery requirements of your organization. A feasible separation provides great
protection for some disasters (for example, local power outage or server room flooding) but it
cannot provide protection against all types of outages. For comprehensive protection against
disasters—including protection against corruptions and regional disasters—Oracle
recommends the use of Oracle Data Guard with Oracle RAC, as described in the Oracle Data
Guard Concepts and Administration and on the Maximum Availability Architecture (MAA)
Web site.

Oracle RAC is a unique technology that provides high availability and scalability for all
application types. The Oracle RAC infrastructure is also a key component for implementing
the Oracle enterprise grid computing architecture. Having multiple instances access a single
database prevents the server from being a single point of failure. Oracle RAC enables you to
combine smaller commodity servers into a cluster to create scalable environments that
support mission critical business applications. Applications that you deploy on Oracle RAC
databases can operate without code changes.

Related Topics

• Introduction to Oracle Clusterware

• Oracle Grid Infrastructure Installation and Upgrade Guide

• Oracle Data Guard and Oracle Real Application Clusters

• Maximum Availability Architecture (MAA)

Overview of Installing Oracle RAC
Install Oracle Grid Infrastructure and Oracle Database software using Oracle Universal
Installer, and create your database with Oracle Database Configuration Assistant (Oracle
DBCA).

This ensures that your Oracle RAC environment has the optimal network configuration,
database structure, and parameter settings for the environment that you selected.

Alternatively, you can install Oracle RAC using Fleet Patching and Provisioning, which offers
all of the advantages of Oracle Universal Installer and Oracle DBCA previously specified. In
addition, Fleet Patching and Provisioning allows for standardization and automation.

This section introduces the installation processes for Oracle RAC under the following topics:

• Understanding Compatibility in Oracle RAC Environments

• Oracle RAC Database Management Styles and Database Installation

• Oracle RAC Database Management Styles and Database Creation

• Overview of Extending an Oracle RAC Cluster

Chapter 1
Overview of Installing Oracle RAC

1-3

http://www.oracle.com/au/products/database/maa-096107.html

Note:

You must first install Oracle Grid Infrastructure before installing Oracle
RAC.

Related Topics

• Oracle Real Application Clusters Installation Guide

• Oracle Grid Infrastructure Installation and Upgrade Guide

Understanding Compatibility in Oracle RAC Environments
To run Oracle RAC in configurations with different versions of Oracle Database in the
same cluster, you must first install Oracle Grid Infrastructure, which must be the same
version, or higher, as the highest version of Oracle Database that you want to deploy
in this cluster. For example, to run an Oracle RAC 12c database and an Oracle RAC
18c database in the same cluster, you must install Oracle Grid Infrastructure 18c.
Contact My Oracle Support for more information about version compatibility in Oracle
RAC environments.

Note:

Oracle does not support deploying an Oracle9i cluster in an Oracle Grid
Infrastructure 12c, or later, environment.

Oracle RAC Database Management Styles and Database Installation
Before installing the Oracle RAC database software and creating respective
databases, decide on the management style you want to apply to the Oracle RAC
databases, as described in "Overview of Server Pools and Policy-Managed
Databases".

The management style you choose impacts the software deployment and database
creation. If you choose the administrator-managed database deployment model, using
a per-node installation of software, then it is sufficient to deploy the Oracle Database
software (the database home) on only those nodes on which you plan to run Oracle
Database.

If you choose the policy-managed deployment model, using a per-node installation of
software, then you must deploy the software on all nodes in the cluster, because the
dynamic allocation of servers to server pools, in principle, does not predict on which
server a database instance can potentially run. To avoid instance startup failures on
servers that do not host the respective database home, Oracle strongly recommends
that you deploy the database software on all nodes in the cluster. When you use a
shared Oracle Database home, accessibility to this home from all nodes in the cluster
is assumed and the setup needs to ensure that the respective file system is mounted
on all servers, as required.

Oracle Universal Installer will only allow you to deploy an Oracle Database home
across nodes in the cluster if you previously installed and configured Oracle Grid
Infrastructure for the cluster. If Oracle Universal Installer does not give you an option to

Chapter 1
Overview of Installing Oracle RAC

1-4

deploy the database home across all nodes in the cluster, then check the prerequisite, as
stated, by Oracle Universal Installer.

During installation, you can choose to create a database during the database home
installation. Oracle Universal Installer runs DBCA to create your Oracle RAC database
according to the options that you select.

See Also:

"Oracle RAC Database Management Styles and Database Creation" for more
information if you choose this option

Note:

Before you create a database, a default listener must be running in the Oracle Grid
Infrastructure home. If a default listener is not present in the Oracle Grid
Infrastructure home, then DBCA returns an error instructing you to run NETCA from
the Oracle Grid Infrastructure home to create a default listener.

The Oracle RAC software is distributed as part of the Oracle Database installation media. By
default, the Oracle Database software installation process installs the Oracle RAC option
when it recognizes that you are performing the installation on a cluster. Oracle Universal
Installer installs Oracle RAC into a directory structure referred to as the Oracle home, which
is separate from the Oracle home directory for other Oracle software running on the system.
Because Oracle Universal Installer is cluster aware, it installs the Oracle RAC software on all
of the nodes that you defined to be part of the cluster.

Related Topics

• Overview of Server Pools and Policy-Managed Databases
Server pools are the basis for policy-managed databases.

• Oracle RAC Database Management Styles and Database Creation
Part of Oracle Database deployment is the creation of the database.

• Oracle Database Net Services Administrator's Guide

Oracle RAC Database Management Styles and Database Creation
Part of Oracle Database deployment is the creation of the database.

You can choose to create a database as part of the database software deployment, or you
can choose to only deploy the database software, first, and then, subsequently, create any
database that is meant to run out of the newly created Oracle home by using DBCA. In either
case, you must consider the management style that you plan to use for the Oracle RAC
databases.

For administrator-managed databases, you must ensure that the database software is
deployed on the nodes on which you plan to run the respective database instances. You must
also ensure that these nodes have access to the storage in which you want to store the
database files. Oracle recommends that you select Oracle ASM during database installation

Chapter 1
Overview of Installing Oracle RAC

1-5

to simplify storage management. Oracle ASM automatically manages the storage of all
database files within disk groups.

For policy-managed databases, you must ensure that the database software is
deployed on all nodes on which database instances can potentially run, given your
active server pool setup. You must also ensure that these nodes have access to the
storage in which you want to store the database files. Oracle recommends using
Oracle ASM, as previously described for administrator-managed databases.

Server pools are a feature of Oracle Grid Infrastructure (specifically Oracle
Clusterware). There are different ways you can set up server pools on the Oracle
Clusterware level, and Oracle recommends you create server pools for database
management before you create the respective databases. DBCA, however, will
present you with a choice of either using precreated server pools or creating a new
server pool, when you are creating a policy-managed database. Whether you can
create a new server pool during database creation depends on the server pool
configuration that is active at the time.

By default, DBCA creates one service for your Oracle RAC installation. This is the
default database service and should not be used for user connectivity. The default
database service is typically identified using the combination of the DB_NAME and
DB_DOMAIN initialization parameters: db_name.db_domain. The default service is
available on all instances in an Oracle RAC environment, unless the database is in
restricted mode.

Note:

Oracle recommends that you reserve the default database service for
maintenance operations and create dynamic database services for user or
application connectivity as a post-database-creation step, using either
SRVCTL or Oracle Enterprise Manager. DBCA no longer offers a dynamic
database service creation option for Oracle RAC databases. For Oracle RAC
One Node databases, you must create at least one dynamic database
service.

Related Topics

• Oracle RAC Database Management Styles and Database Installation

• Oracle Clusterware Administration and Deployment Guide

Overview of Extending an Oracle RAC Cluster
If you want to extend the Oracle RAC cluster (also known as cloning) and add nodes
to the existing environment after your initial deployment, then you must to do this on
multiple layers, considering the management style that you currently use in the cluster.

Oracle provides various means of extending an Oracle RAC cluster. In principle, you
can choose from the following approaches to extend the current environment:

• Fleet Patching and Provisioning to provision new Oracle RAC databases and other
software

• Cloning using cloning scripts

Chapter 1
Overview of Installing Oracle RAC

1-6

• Adding nodes using the addnode.sh (addnode.bat on Windows) script

Both approaches are applicable, regardless of how you initially deployed the environment.
Both approaches copy the required Oracle software on to the node that you plan to add to the
cluster. Software that gets copied to the node includes the Oracle Grid Infrastructure software
and the Oracle database homes.

For Oracle database homes, you must consider the management style deployed in the
cluster. For administrator-managed databases, you must ensure that the database software
is deployed on the nodes on which you plan to run the respective database instances. For
policy-managed databases, you must ensure that the database software is deployed on all
nodes on which database instances can potentially run, given your active server pool setup.
In either case, you must first deploy Oracle Grid Infrastructure on all nodes that are meant to
be part of the cluster.

Note:

Oracle cloning is not a replacement for cloning using Oracle Enterprise Manager as
part of the Provisioning Pack. When you clone Oracle RAC using Oracle Enterprise
Manager, the provisioning process includes a series of steps where details about
the home you want to capture, the location to which you want to deploy, and various
other parameters are collected.

For new installations or if you install only one Oracle RAC database, use the traditional
automated and interactive installation methods, such as Oracle Universal Installer, Fleet
Patching and Provisioning, or the Provisioning Pack feature of Oracle Enterprise Manager. If
your goal is to add or delete Oracle RAC from nodes in the cluster, you can use the
procedures detailed in "Adding and Deleting Oracle RAC from Nodes on Linux and UNIX
Systems".

The cloning process assumes that you successfully installed an Oracle Clusterware home
and an Oracle home with Oracle RAC on at least one node. In addition, all root scripts must
have run successfully on the node from which you are extending your cluster database.

Related Topics

• Cloning Oracle RAC to Nodes in a New Cluster
This chapter describes how to clone Oracle Real Application Clusters (Oracle RAC)
database homes on Linux and UNIX systems to nodes in a new cluster.

• Adding and Deleting Oracle RAC from Nodes on Linux and UNIX Systems
Extend an existing Oracle Real Application Clusters (Oracle RAC) home to other nodes
and instances in the cluster, and delete Oracle RAC from nodes and instances in the
cluster.

• Adding and Deleting Oracle RAC from Nodes on Windows Systems

• Oracle Clusterware Administration and Deployment Guide

Chapter 1
Overview of Installing Oracle RAC

1-7

See Also:

• Oracle Clusterware Administration and Deployment Guide for more
information about Fleet Patching and Provisioning

• Oracle Enterprise Manager online help system for more information
about the Provisioning Pack

Overview of Oracle Real Application Clusters One Node
Oracle Real Application Clusters One Node (Oracle RAC One Node) is an option to
Oracle Database Enterprise Edition available since Oracle Database 11g release 2
(11.2).

Oracle RAC One Node is a single instance of an Oracle RAC-enabled database
running on one node in the cluster, only, under normal operations. This option adds to
the flexibility that Oracle offers for database consolidation while reducing management
overhead by providing a standard deployment for Oracle databases in the enterprise.
Oracle RAC One Node database requires Oracle Grid Infrastructure and, therefore,
requires the same hardware setup as an Oracle RAC database.

Oracle supports Oracle RAC One Node on all platforms on which Oracle RAC is
certified. Similar to Oracle RAC, Oracle RAC One Node is certified on Oracle Virtual
Machine (Oracle VM). Using Oracle RAC or Oracle RAC One Node with Oracle VM
increases the benefits of Oracle VM with the high availability and scalability of Oracle
RAC.

With Oracle RAC One Node, there is no limit to server scalability and, if applications
grow to require more resources than a single node can supply, then you can upgrade
your applications online to Oracle RAC. If the node that is running Oracle RAC One
Node becomes overloaded, then you can relocate the instance to another node in the
cluster. With Oracle RAC One Node you can use the Online Database Relocation
feature to relocate the database instance with no downtime for application users.
Alternatively, you can limit the CPU consumption of individual database instances per
server within the cluster using Resource Manager Instance Caging and dynamically
change this limit, if necessary, depending on the demand scenario.

Using the Single Client Access Name (SCAN) to connect to the database, clients can
locate the service independently of the node on which it is running. Relocating an
Oracle RAC One Node instance is therefore mostly transparent to the client,
depending on the client connection. Oracle recommends to use either Application
Continuity and Oracle Fast Application Notification or Transparent Application Failover
to minimize the impact of a relocation on the client.

Oracle RAC One Node databases are administered slightly differently from Oracle
RAC or non-cluster databases. For administrator-managed Oracle RAC One Node
databases, you must monitor the candidate node list and make sure a server is always
available for failover, if possible. Candidate servers reside in the Generic server pool
and the database and its services will fail over to one of those servers.

For policy-managed Oracle RAC One Node databases, you must ensure that the
server pools are configured such that a server will be available for the database to fail
over to in case its current node becomes unavailable. In this case, the destination
node for online database relocation must be located in the server pool in which the

Chapter 1
Overview of Oracle Real Application Clusters One Node

1-8

database is located. Alternatively, you can use a server pool of size 1 (one server in the
server pool), setting the minimum size to 1 and the importance high enough in relation to all
other server pools used in the cluster, to ensure that, upon failure of the one server used in
the server pool, a new server from another server pool or the Free server pool is relocated
into the server pool, as required.

Note:

• Oracle RAC One Node supports Transaction Guard and Application Continuity
for failing clients over.

• To prepare for all failure possibilities, you must add at least one Dynamic
Database Service (Oracle Clusterware-managed database service) to an
Oracle RAC One Node database.

Related Topics

• Oracle Real Application Clusters Installation Guide for Linux and UNIX

• Transaction Guard for Improving Client Failover
Transaction Guard prevents a transaction being replayed by Application Continuity from
being applied more than once.

Overview of Oracle Clusterware for Oracle RAC
Oracle Clusterware provides a complete, integrated clusterware management solution on all
Oracle Database platforms.

This clusterware functionality provides all of the features required to manage your cluster
database including node membership, group services, global resource management, and
high availability functions.

You can install Oracle Clusterware independently or as a prerequisite to the Oracle RAC
installation process. Oracle Database features, such as services, use the underlying Oracle
Clusterware mechanisms to provide advanced capabilities. Oracle Database also continues
to support select third-party clusterware products on specified platforms.

Oracle Clusterware is designed for, and tightly integrated with, Oracle RAC. You can use
Oracle Clusterware to manage high-availability operations in a cluster. When you create an
Oracle RAC database using any of the management tools, the database is registered with
and managed by Oracle Clusterware, along with the other required components such as the
VIP address, the Single Client Access Name (SCAN) (which includes the SCAN VIPs and the
SCAN listener), Oracle Notification Service, and the Oracle Net listeners. These resources
are automatically started when the node starts and automatically restart if they fail. The
Oracle Clusterware daemons run on each node.

Anything that Oracle Clusterware manages is known as a CRS resource. A CRS resource
can be a database, an instance, a service, a listener, a VIP address, or an application
process. Oracle Clusterware manages CRS resources based on the resource's configuration
information that is stored in the Oracle Cluster Registry (OCR). You can use SRVCTL
commands to administer any Oracle-defined CRS resources. Oracle Clusterware provides
the framework that enables you to create CRS resources to manage any process running on
servers in the cluster which are not predefined by Oracle. Oracle Clusterware stores the

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-9

information that describes the configuration of these components in OCR that you can
administer.

This section includes the following topics:

• Overview of Oracle Flex Clusters

• Overview of Reader Nodes

• Overview of Local Temporary Tablespaces

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Oracle Clusterware Administration and Deployment Guide

Overview of Oracle Flex Clusters
Oracle Flex Clusters provide a platform for a variety of applications, including Oracle
RAC databases with large numbers of nodes.

Oracle Flex Clusters also provide a platform for other service deployments that require
coordination and automation for high availability.

All nodes in an Oracle Flex Cluster belong to a single Oracle Grid Infrastructure
cluster. This architecture centralizes policy decisions for deployment of resources
based on application needs, to account for various service levels, loads, failure
responses, and recovery.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Overview of Reader Nodes
Reader nodes are instances of an Oracle RAC database that provide read-only
access, primarily for reporting and analytical purposes.

The advantage of read-only instances is that they do not suffer performance impacts
like normal (read/write) database instances do during cluster reconfigurations, for
example, when a node is undergoing maintenance or suffers a failure.

You can create services to direct queries to read-only instances running on reader
nodes. These services can use parallel query to further speed up performance. Oracle
recommends that you size the memory in these reader nodes as high as possible so
that parallel queries can use the memory for best performance.

While it is possible for a reader node to host a writable database instance, Oracle
recommends that reader nodes be dedicated to hosting read-only instances to achieve
the best performance.

Overview of Local Temporary Tablespaces
Oracle uses local temporary tablespaces to write spill-overs to the local (non-shared)
temporary tablespaces which are created on local disks on the reader nodes.

It is still possible for SQL operations, such as hash aggregation, sort, hash join,
creation of cursor-duration temporary tables for the WITH clause, and star

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-10

transformation to spill over to disk (specifically to the global temporary tablespace on shared
disks). Management of the local temporary tablespace is similar to that of the existing
temporary tablespace.

Local temporary tablespaces improve temporary tablespace management in read-only
instances by:

• Storing temp files in reader node private storage to take advantage of the I/O benefits of
local storage.

• Avoiding expensive cross-instance temporary tablespace management.

• Increased addressability of temporary tablespace.

• Improving instance warm-up performance by eliminating on-disk space metadata
management.

Note:

You cannot use local temporary tablespaces to store database objects, such as
tables or indexes. This same restriction is also true for space for Oracle global
temporary tables.

This section includes the following topics:

• Parallel Execution Support for Cursor-Duration Temporary Tablespaces

• Local Temporary Tablespace Organization

• Temporary Tablespace Hierarchy

• Local Temporary Tablespace Features

• Metadata Management of Local Temporary Files

• DDL Support for Local Temporary Tablespaces

• Local Temporary Tablespaces for Users

• Atomicity Requirement for Commands

• Local Temporary Tablespace and Dictionary Views

Parallel Execution Support for Cursor-Duration Temporary Tablespaces

The temporary tablespaces created for the WITH clause and star transformation exist in the
temporary tablespace on the shared disk. A set of parallel query child processes load
intermediate query results into these temporary tablespaces, which are then read later by a
different set of child processes. There is no restriction on how these child processes reading
these results are allocated, as any parallel query child process on any instance can read the
temporary tablespaces residing on the shared disk.

For read-write and read-only instance architecture, as the parallel query child processes load
intermediate results to the local temporary tablespaces of these instances, the parallel query
child processes belonging to the instance where the intermediate results are stored share
affinity with the reads for the intermediate results and can thus read them.

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-11

Local Temporary Tablespace Organization

You can create local temporary tablespace as follows:

CREATE LOCAL TEMPORARY TABLESPACE TEMPFILE\
 '/u01/app/oracle/database/12.2.0.1/dbs/temp_file'\
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M AUTOEXTEND ON;

• Creation of a local temporary tablespace results in the creation of local temporary
files on every instance and not a single file, as is currently true for shared global
temporary tablespaces.

• You can create local temporary tablespaces for both read-only and read-write
instances. For example:

CREATE LOCAL TEMPORARY TABLESPACE TEMPFILE\
 ‘/u01/app/oracle/database/12.2.0.1/dbs/temp_file’\
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M AUTOEXTEND ON;

Temporary Tablespace Hierarchy

When you define local temporary tablespace and shared (existing) temporary
tablespace, there is a hierarchy in which they are used. To understand the hierarchy,
remember that there can be multiple shared temporary tablespaces in a database,
such the default shared temporary tablespace for the database and multiple temporary
tablespaces assigned to individual users. If a user has a shared temporary tablespace
assigned, then that tablespace is used first, otherwise the database default temporary
tablespace is used.

Once a tablespace has been selected for spilling during query processing, there is no
switching to another tablespace. For example, if a user has a shared temporary
tablespace assigned and during spilling it runs out of space, then there is no switching
to an alternative tablespace. The spilling, in that case, will result in an error.
Additionally, remember that shared temporary tablespaces are shared among
instances.

The allocation of temporary space for spilling to a local temporary tablespace differs
between read-only and read-write instances. For read-only instances, the following is
the priority of selecting which temporary location to use for spills:

1. Allocate from a user's local temporary tablespace.

2. Allocate from the database default local temporary tablespace.

3. Allocate from a user's temporary tablespace.

4. Allocate from the database default temporary tablespace.

Note:

If there is no local temporary tablespace in the database, then read-only
instances will spill to shared temporary tablespace.

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-12

For read-write instances, the priority of allocation differs from the preceding allocation order,
as shared temporary tablespaces are given priority, as follows:

1. Allocate from a user’s shared temporary tablespace.

2. Allocate from a user’s local temporary tablespace.

3. Allocate from the database default shared temporary tablespace.

4. Allocate from the database default local temporary tablespace.

Local Temporary Tablespace Features

Instances cannot share local temporary tablespace, hence one instance cannot take local
temporary tablespace from another. If an instance runs out of temporary tablespace during
spilling, then the statement resutls in an error.

• Local temporary tablespace support only one BIGFILE per tablespace.

• To address contention issues arising from having only one BIGFILE-based local
temporary tablespace, multiple local temporary tablespaces can be assigned to different
users, as default.

• A database administrator can specify the default temporary tablespace for a user using
ALTER USER syntax. For example:

ALTER USER MAYNARD LOCAL TEMPORARY TABLESPACE temp_ts;

• A user can be configured with two default temporary tablespaces:

– One local temporary when the user is connected to the read-only instance running on
reader nodes.

– One shared temporary tablespace to be used when the same user is connected on
the read-write instances running on a Hub Node.

Metadata Management of Local Temporary Files

Currently, temporary file information (such as file name, creation size, creation SCN,
temporary block size, and file status) is stored in the control file along with the initial and max
files, as well as auto extent attributes. However, the information about local temporary files in
the control file is common to all applicable instances.

Instance-specific information, such as bitmap for allocation, current size for a temporary file,
and the file status, is stored in the SGA on instances and not in the control file because this
information can be different for different instances. When an instance starts up, it reads the
information in the control file and creates the temporary files that constitute the local
temporary tablespace for that instance. If there are two or more instances running on a node,
then each instance will have its own local temporary files.

For local temporary tablespaces, there is a separate file for each involved instance. The local
temporary file names follow a naming convention such that the instance numbers are
appended to the temporary file names specified while creating the local temporary
tablespace.

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-13

For example, assume that a read-only node, N1, runs two Oracle read-only database
instances with numbers 3 and 4. The following DDL command creates two files on
node N1—/temp/temp_file_3 and /temp/temp_file_4, for instance 3 and 4
respectively:

CREATE LOCAL TEMPORARY TABLESPACE TEMPFILE '/temp/temp_file'\
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M AUTOEXTEND ON;

Assuming that there are two read-write instances (instance numbers 1 and 2) and two
read-only instances (instance numbers 3 and 4), the following DDL command creates
four files—/temp/temp_file_all_1 and /temp/temp_file_all_2 for instances
1 and 2, respectively, and /temp/temp_file_all_3 and /temp/
temp_file_all_4 for instances 3 and 4, respectively:

CREATE LOCAL TEMPORARY TABLESPACE temp_ts TEMPFILE '/temp/
temp_file_all'\
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M AUTOEXTEND ON;

DDL Support for Local Temporary Tablespaces

You manage local temporary tablespaces and temporary files with either ALTER
TABLESPACE, ALTER DATABASE, or both DDL commands. All DDL commands related to
local temporary tablespace management and creation are run from the read-write
instances. Running all other DDL commands will affect all instances in a
homogeneous manner.

For example, the following command resizes the temporary files on all read-only
instances:

ALTER TABLESPACE temp_ts RESIZE 1G;

For local temporary tablespaces, Oracle supports the allocation options and their
restrictions currently active for temporary files.

To run a DDL command on a local temporary tablespace on a read-only instance,
there must be at least one read-only instance in the cluster. Users can assign a default
local temporary tablespace to the database with a DEFAULT LOCAL TEMPORARY
TABLESPACE clause appended to the ALTER DATABASE command.

For example:

ALTER DATABASE DEFAULT LOCAL TEMPORARY TABLESPACE temp_ts;

A database administrator can specify default temporary tablespace when creating the
database, as follows:

CREATE DATABASE .. DEFAULT TEMPORARY TABLESPACE temp_ts_for_dbtemp_ts
TEMPFILE\
 '/temp/temp_file_for_db' EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M
AUTOEXTEND ON;

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-14

It is not possible to specify default local temporary tablespaces using the CREATE DATABASE
command. When you create a database, its default local temporary tablespace will point to
the default shared temporary tablespace. Database administrators must run the ALTER
DATABASE command to assign an existing local temporary tablespace as the default for the
database.

Local Temporary Tablespace for Users

When you create a user without explicitly specifying shared or local temporary tablespace,
the user inherits shared and local temporary tablespace from the corresponding default
database tablespaces. You can specify default local temporary tablespace for a user, as
follows:

CREATE USER new_user IDENTIFIED BY new_user LOCAL TEMPORARY TABLESPACE
temp_ts_for_all;

You can change the local temporary tablespace for a user using the ALTER USER command,
as follows:

ALTER USER maynard LOCAL TEMPORARY TABLESPACE temp_ts;

As previously mentioned, default user local temporary tablespace can be shared temporary
space. Consider the following items for the ALTER USER...TEMPORARY TABLESPACE command:

• You can change the user default local temporary tablespace to any existing local
temporary tablespace.

• If you want to set the user default local temporary tablespace to a shared temporary
tablespace, T, then T must be the same as the default shared temporary tablespace.

• If a default user local temporary tablespace points to a shared temporary tablespace,
then, when you change the default shared temporary tablespace of the user, you also
change the default local temporary tablespace to that tablespace.

Following are some examples of local temporary space management using the ALTER
command:

• To take a local temporary tablespace offline:

ALTER DATABASE TEMPFILE ‘/temp/temp_file’ OFFLINE;

• To decrease the size of a local temporary tablespace:

ALTER TABLESPACE temp_ts SHRINK SPACE KEEP 20M

• To change the auto-extension attributes of a local temporary file:

ALTER TABLESPACE temp_ts AUTOEXTEND ON NEXT 20G

• To resize a local temporary file:

ALTER TABLESPACE temp_ts RESIZE 10G

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-15

Note:

When you resize a local temporary file, it applies to individual files.

Some read-only instances may be down when you run any of the preceding
commands. This does not prevent the commands from succeeding because, when a
read-only instance starts up later, it creates the temporary files based on information in
the control file. Creation is fast because Oracle reformats only the header block of the
temporary file, recording information about the file size, among other things. If you
cannot create any of the temporary files, then the read-only instance stays down.
Commands that were submitted from a read-write instance are replayed, immediately,
on all open read-only instances.

Atomicity Requirement for Commands

All the commands that you run from the read-write instances are performed in an
atomic manner, which means the command succeeds only when it succeeds on all live
instances.

Local Temporary Tablespace and Dictionary Views

Oracle extended dictionary views to display information about local temporary
tablespaces. Oracle made the following changes:

• All the diagnosibility information related to temporary tablespaces and temporary
files exposed through AWR, SQL monitor, and other utilities, is also available for
local temporary tablespaces and local temporary files. This information is available
with the exisiting dictionary views for temporary tablespaces and temporary files:
DBA_TEMP_FILES, DBA_TEMP_FREE_SPACE.

• The USER_TABLESPACES and DBA_TABLESPACES dictionary view are extended by a
column, called SHARED, that indicates whether the temporary file is local or shared.

• The DBA_TEMP_FILES dictionary view is extended by two columns: SHARED and
INST_ID. The SHARED column indicates whether the temp file is local or shared.
The INST_ID column contains the instance number. For shared temporary files,
there is a single row per file, and the INST_ID is null. For local temporary files, this
column contains information about temporary files per instance, such as the size
of the file in bytes (BYTES column).

• The DBA_TEMP_FREE_SPACE dictionary view is extended by two columns: SHARED
and INST_ID. The SHARED column indicates whether the temporary file is local or
shared. The INST_ID column contains the instance number. For shared temporary
files, there is a single row per file, and the INST_ID is null. For local temporary
files, this column contains information about temporary files per instance, such as
total free space available (FREE_SPACE column).

• In the dictionary views, such as DBA_TABLESPACES, Oracle distinguishes the type of
the tablespace using the SHARED column with the following values:

– SHARED: for shared temporary tablespace

Chapter 1
Overview of Oracle Clusterware for Oracle RAC

1-16

Note:

Currently, spills onto temporary tablespace for queries (such as sort and hash
join spills) are automatically encrypted. This is also true for spills to local
temporary tablespace.

Related Topics

• Oracle Database SQL Language Reference

Overview of Oracle RAC Architecture and Processing
At a minimum, Oracle RAC requires Oracle Clusterware software infrastructure to provide
concurrent access to the same storage and the same set of data files from all nodes in the
cluster, a communications protocol for enabling interprocess communication (IPC) across the
nodes in the cluster, enable multiple database instances to process data as if the data
resided on a logically combined, single cache, and a mechanism for monitoring and
communicating the status of the nodes in the cluster.

The following sections describe these concepts in more detail:

• Understanding Cluster-Aware Storage Solutions

• Oracle RAC and Network Connectivity

• Overview of Using Dynamic Database Services to Connect to Oracle Databases

• Restricted Service Registration in Oracle RAC

• About Oracle RAC Software Components

• About Oracle RAC Background Processes

Understanding Cluster-Aware Storage Solutions
An Oracle RAC database is a shared everything database. All data files, control files,
SPFILEs, and redo log files in Oracle RAC environments must reside on cluster-aware
shared disks, so that all of the cluster database instances can access these storage
components. Because Oracle RAC databases use a shared everything architecture, Oracle
RAC requires cluster-aware storage for all database files.

In Oracle RAC, the Oracle Database software manages disk access and is certified for use
on a variety of storage architectures. It is your choice how to configure your storage, but you
must use a supported cluster-aware storage solution. Oracle Database provides the following
storage options for Oracle RAC:

• Oracle Automatic Storage Management (Oracle ASM)

Oracle recommends this solution to manage your storage.

• A certified cluster file system

– Oracle recommends Oracle Automatic Storage Management Cluster File System
(Oracle ACFS).

– A third-party cluster file system on a cluster-aware volume manager that is certified
for Oracle RAC. For example:

* Oracle OCFS2 (Linux, only)

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-17

* IBM GPFS (IBM AIX, only)

• Certified network file system (NFS) solution

Oracle RAC and Network Connectivity
All nodes in an Oracle RAC environment must connect to at least one Local Area
Network (LAN) (commonly referred to as the public network) to enable users and
applications to access the database.

In addition to the public network, Oracle RAC requires private network connectivity
used exclusively for communication between the nodes and database instances
running on those nodes. This network is commonly referred to as the interconnect.

The interconnect network is a private network that connects all of the servers in the
cluster. The interconnect network must use at least one switch and a Gigabit Ethernet
adapter.

Note:

• Oracle supports interfaces with higher bandwidth but does not support
using crossover cables with the interconnect.

• Do not use the interconnect (the private network) for user
communication, because Cache Fusion uses the interconnect for
interinstance communication.

You can configure Oracle RAC to use either the User Datagram Protocol (UDP) or
Reliable Data Socket (RDS) protocols for inter-instance communication on the
interconnect. Oracle Clusterware uses the same interconnect using the UDP protocol,
but cannot be configured to use RDS.

An additional network connectivity is required when using Network Attached Storage
(NAS). Network attached storage can be typical NAS devices, such as NFS filers, or
can be storage that is connected using Fibre Channel over IP, for example. This
additional network communication channel should be independent of the other
communication channels used by Oracle RAC (the public and private network
communication). If the storage network communication must be converged with one of
the other network communication channels, then you must ensure that storage-related
communication gets first priority.

Overview of Using Dynamic Database Services to Connect to Oracle
Databases

Applications should use the Dynamic Database Services feature to connect to an
Oracle database over the public network.

Dynamic Database Services enable you to define rules and characteristics to control
how users and applications connect to database instances. These characteristics
include a unique name, workload balancing and failover options, and high availability
characteristics.

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-18

Users can access an Oracle RAC database using a client/server configuration or through one
or more middle tiers, with or without connection pooling. By default, a user connection to an
Oracle RAC database is established using the TCP/IP protocol but Oracle supports other
protocols. Oracle RAC database instances must be accessed through the SCAN for the
cluster.

Related Topics

• Overview of Automatic Workload Management with Dynamic Database Services
Services represent groups of applications with common attributes, service level
thresholds, and priorities.

Overview of Virtual IP Addresses
Node VIPs are virtual IP (VIP) addresses that clients use to connect to an Oracle RAC
database.

Oracle Clusterware hosts node VIP addresses on the public network. A typical connect
attempt from a database client to an Oracle RAC database instance can be summarized, as
follows:

1. The database client connects to SCAN (which includes a SCAN VIP on a public network),
providing the SCAN listener with a valid service name.

2. The SCAN listener then determines which database instance hosts this service and
routes the client to the local or node listener on the respective node.

3. The node listener, listening on a node VIP and a given port, retrieves the connection
request and connects the client to the an instance on the local node.

If multiple public networks are used on the cluster to support client connectivity through
multiple subnets, then the preceding operation is performed within a given subnet.

If a node fails, then the VIP address fails over to another node on which the VIP address can
accept TCP connections, but it does not accept connections to the Oracle database. Clients
that attempt to connect to a VIP address not residing on its home node receive a rapid
connection refused error instead of waiting for TCP connect timeout messages. When the
network on which the VIP is configured comes back online, Oracle Clusterware fails back the
VIP to its home node, where connections are accepted. Generally, VIP addresses fail over
when:

• The node on which a VIP address runs fails

• All interfaces for the VIP address fail

• All interfaces for the VIP address are disconnected from the network

Oracle RAC supports multiple public networks to enable access to the cluster through
different subnets. Each network resource represents its own subnet and each database
service uses a particular network to access the Oracle RAC database. Each network
resource is a resource managed by Oracle Clusterware, which enables the VIP behavior
previously described.

SCAN is a single network name defined either in your organization's Domain Name Server
(DNS) or in the Grid Naming Service (GNS) that round robins to three IP addresses. Oracle
recommends that all connections to the Oracle RAC database use the SCAN in their client
connection string. Incoming connections are load balanced across the active instances
providing the requested service through the three SCAN listeners. With SCAN, you do not
have to change the client connection even if the configuration of the cluster changes (nodes

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-19

added or removed). SCAN fully supports multiple subnets, which means you can
create one SCAN for each subnet in which you want the cluster to operate.

Restricted Service Registration in Oracle RAC
The valid node checking feature provides the ability to configure and dynamically
update a set of IP addresses or subnets from which registration requests are allowed
by the listener.

Database instance registration with a listener succeeds only when the request
originates from a valid node. The network administrator can specify a list of valid
nodes, excluded nodes, or disable valid node checking altogether. The list of valid
nodes explicitly lists the nodes and subnets that can register with the database. The
list of excluded nodes explicitly lists the nodes that cannot register with the database.
The control of dynamic registration results in increased manageability and security of
Oracle RAC deployments.

By default, the SCAN listener agent sets
REMOTE_ADDRESS_REGISTRATION_listener_name to a private IP endpoint. The SCAN
listener accepts registration requests only from the private network. Remote nodes
that are not accessible to the private network of the SCAN listener must be included in
the list of valid nodes by using the registration_invited_nodes_alias parameter in
the listener.ora file, or by modifying the SCAN listener using the command-line
interface, SRVCTL.

Note:

Starting with Oracle Grid Infrastructure 12c, for a SCAN listener, if the
VALID_NODE_CHECKING_REGISTRATION_listener_name and
REGISTRATION_INVITED_NODES_listener_name parameters are set in the
listener.ora file, then the listener agent overwrites these parameters.

If you use the SRVCTL utility to set the invitednodes and invitedsubnets values,
then the listener agent automatically sets
VALID_NODE_CHECKING_REGISTRATION_listener_name to SUBNET and sets
REGISTRATION_INVITED_NODES_listener_name to the specified list in the listener.ora
file.

For other listeners managed by CRS, the listener agent sets
VALID_NODE_CHECKING_REGISTRATION_listener_name to be SUBNET in the
listener.ora file only if it is not already set in the listener.ora file. The SRVCTL
utility does not support setting the invitednodes and invitedsubnets values for a
non-SCAN listener. The listener agent does not update
REGISTRATION_INVITED_NODES_listener_name in the listener.ora file for a non
SCAN listener.

About Oracle RAC Software Components
Oracle RAC databases generally have two or more database instances that each
contain memory structures and background processes.

An Oracle RAC database has the same processes and memory structures as a
noncluster Oracle database and additional processes and memory structures that are

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-20

specific to Oracle RAC. Any one instance's database view is nearly identical to any other
instance's view in the same Oracle RAC database; the view is a single system image of the
environment.

Each instance has a buffer cache in its System Global Area (SGA). Using Cache Fusion,
Oracle RAC environments logically combine each instance's buffer cache to enable the
instances to process data as if the data resided on a logically combined, single cache.

Note:

• The In-Memory Transaction Manager integrates with the Cache Fusion
protocol.

• The SGA size requirements for Oracle RAC are greater than the SGA
requirements for noncluster Oracle databases due to Cache Fusion.

To ensure that each Oracle RAC database instance obtains the block that it requires to
satisfy a query or transaction, Oracle RAC instances use two processes, the Global Cache
Service (GCS) and the Global Enqueue Service (GES). The GCS and GES maintain records
of the statuses of each data file and each cached block using a Global Resource Directory
(GRD). The GRD contents are distributed across all of the active instances, which effectively
increases the size of the SGA for an Oracle RAC instance.

After one instance caches data, any other instance within the same cluster database can
acquire a block image from another instance in the same database faster than by reading the
block from disk. Therefore, Cache Fusion moves current blocks between instances rather
than re-reading the blocks from disk. When a consistent block is needed or a changed block
is required on another instance, Cache Fusion transfers the block image directly between the
affected instances. Oracle RAC uses the private interconnect for interinstance communication
and block transfers. The GES Monitor and the Instance Enqueue Process manage access to
Cache Fusion resources and enqueue recovery processing.\

Cache Fusion monitors the latency on the private networks and the service time on the disks,
and automatically chooses the best path. If shared disks include low latency SSDs, then
Oracle automatically chooses the best path.

Related Topics

• Oracle Database In-Memory Guide

About Oracle RAC Background Processes
The global cache service (GCS) and the global enqueue service (GES) processes, along
with the global resource directory (GRD) collaborate to enable Cache Fusion.

The Oracle RAC processes and their identifiers are as follows:

• ACMS: Atomic Controlfile to Memory Service (ACMS)

In Oracle RAC environments, the ACMS process on each instance is an agent that
contributes to ensuring a distributed SGA memory update is either globally committed on
success or globally terminated if a failure occurs.

• GTX0-j: Global Transaction Process

Chapter 1
Overview of Oracle RAC Architecture and Processing

1-21

The GTX0-j process provides transparent support for XA global transactions in
Oracle RAC environments. The database autotunes the number of these
processes based on the workload of XA global transactions.

• LMON: Global Enqueue Service Monitor

The LMON process monitors global enqueues and resources across the cluster and
performs global enqueue recovery operations.

• LMD: Global Enqueue Service Daemon

The LMD process manages incoming remote resource requests within each
instance.

• LMS: Global Cache Service Process

The LMS process maintains records of the data file statuses and each cached block
by recording information in the global resource directory (GRD). The LMS
process also controls the flow of messages to remote instances and manages
global data block access and transmits block images between the buffer caches of
different instances. This processing is part of Cache Fusion.

• LCK0: Instance Enqueue Process

The LCK0 process manages non-Cache Fusion resource requests such as library
and row cache requests.

• RMSn: Oracle RAC Management Processes (RMSn)

The RMSn processes perform manageability tasks for Oracle RAC. Tasks that are
accomplished by an RMSn process include the creation of resources that are
related to Oracle RAC when new instances are added to the clusters.

• RSMN: Remote Slave Monitor manages background secondary process creation
and communication on remote instances. These background secondary processes
perform tasks on behalf of a coordinating process running in another instance.

Note:

Many of the Oracle Database components that this section describes are in
addition to the components that are described for single-instance Oracle
databases in Oracle Database Concepts.

Related Topics

• Oracle Database Concepts

Overview of Automatic Workload Management with Dynamic
Database Services

Services represent groups of applications with common attributes, service level
thresholds, and priorities.

Application functions can be divided into workloads identified by services. For
example, Oracle E-Business Suite can define a service for each responsibility, such as
general ledger, accounts receivable, order entry, and so on. A service can span one or

Chapter 1
Overview of Automatic Workload Management with Dynamic Database Services

1-22

more instances of an Oracle database, multiple databases in a global cluster, and a single
instance can support multiple services. The number of instances that are serving the service
is transparent to the application. Services provide a single system image to manage
competing applications, and allow each workload to be managed as a unit.

Middle tier applications and clients select a service by specifying the service name as part of
the connection in the TNS connect string. For example, data sources for Oracle WebLogic
Server are set to route to a service. Using Net Easy*Connection, this connection comprises
simply the service name and network address, as follows: user_name/password@SCAN/
service_name. Server-side work such as Oracle Scheduler, Parallel Query, and Oracle
GoldenGate queues set the service name as part of the workload definition. For Oracle
Scheduler, jobs are assigned to job classes and job classes execute within services. For
Parallel Query and Parallel DML, the query coordinator connects to a service and the parallel
query slaves inherit the service for the duration of the parallel execution. For Oracle
GoldenGate, streams queues are accessed using services. Work executing under a service
inherits the thresholds and attributes for the service and is measured as part of the service.

Oracle Database Resource Manager binds services to consumer groups and priorities. This
allows the database to manage the services in the order of their importance. For example,
the DBA can define separate services for high priority online users and lower priority internal
reporting applications. Likewise, the DBA can define Gold, Silver and Bronze services to
prioritize the order in which requests are serviced for the same application. When planning
the services for a system, the plan should include the priority of each service relative to the
other services. In this way, Oracle Database Resource Manager can satisfy the priority-one
services first, followed by the priority-two services, and so on.

When users or applications connect to a database, Oracle recommends that you use a
service specified in the CONNECT_DATA portion of the connect string. Oracle Database
automatically creates one database service when the database is created but the behavior of
this service is different from that of database services that you subsequently create. To
enable more flexibility in the management of a workload using the database, Oracle
Database enables you to create multiple services and specify on which instances (or in which
server pools) the services start. If you are interested in greater workload management
flexibility, then continue reading this chapter to understand the added features that you can
use with services.

Note:

The features discussed in this chapter do not work with the following default
database services: DB_NAME, DB_UNIQUE_NAME, PDB_NAME, SYS$BACKGROUND, and
SYS$USERS. Oracle strongly recommends that you do not use these services for
applications to connect to the database. You must create cluster managed services
to take advantage of these features. You can only manage the services that you
create. Any service that the database create automatically is managed by the
database server.

Dynamic Database Services

Dynamic database services enable you to manage workload distributions to provide optimal
performance for users and applications. Dynamic database services offer the following
features:

• Services: Oracle Database provides a powerful automatic workload management facility,
called services, to enable the enterprise grid vision. Services are entities that you can

Chapter 1
Overview of Automatic Workload Management with Dynamic Database Services

1-23

define in Oracle RAC databases that enable you to group database workloads,
route work to the optimal instances that are assigned to offer the service, and
achieve high availability for planned and unplanned actions.

• High Availability Framework: An Oracle RAC component that enables Oracle
Database to always maintain components in a running state.

• Fast Application Notification (FAN): Provides information to Oracle RAC
applications and clients about cluster state changes and Load Balancing Advisory
events, such as UP and DOWN events for instances, services, or nodes. FAN has
two methods for publishing events to clients, the Oracle Notification Service
daemon, which is used by Java Database Connectivity (JDBC) clients including
the Oracle Application Server, and Oracle GoldenGate Advanced Queueing, which
is only used by previous releases of Oracle Call Interface (OCI) and Oracle Data
Provider for .NET (ODP.NET) clients.

Note:

All clients beginning with Oracle Database 12c release 2 (12.2) use
Oracle Notification Service.

• Transaction Guard: A tool that provides a protocol and an API for at-most-once
execution of transactions in case of unplanned outages and duplicate
submissions.

• Application Continuity: Provides a general purpose infrastructure that replays
the in-flight request when a recoverable error is received, masking many system,
communication, and storage outages, and hardware failures. Unlike existing
recovery technologies, this feature attempts to recover the transactional and non-
transactional session states beneath the application, so that the outage appears to
the application as a delayed execution.

• Connection Load Balancing: A feature of Oracle Net Services that balances
incoming connections across all of the instances that provide the requested
database service.

• Load Balancing Advisory: Provides information to applications about the current
service levels that the database and its instances are providing. The load
balancing advisory makes recommendations to applications about where to direct
application requests to obtain the best service based on the management policy
that you have defined for that service. Load balancing advisory events are
published through Oracle Notification Service.

• Automatic Workload Repository (AWR): Tracks service-level statistics as
metrics. Server generated alerts can be created for these metrics when they
exceed or fail to meet certain thresholds.

• Fast Connection Failover (FCF): This is the ability of Oracle Clients to provide
rapid failover of connections by subscribing to FAN events.

• Runtime Connection Load Balancing: This is the ability of Oracle Clients to
provide intelligent allocations of connections in the connection pool based on the
current service level provided by the database instances when applications
request a connection to complete some work.

• Single Client Access Name (SCAN): Provides a single name to the clients
connecting to Oracle RAC that does not change throughout the life of the cluster,
even if you add or remove nodes from the cluster. Clients connecting with SCAN

Chapter 1
Overview of Automatic Workload Management with Dynamic Database Services

1-24

can use a simple connection string, such as a thin JDBC URL or EZConnect, and still
achieve the load balancing and client connection failover.

You can deploy Oracle RAC and noncluster Oracle database environments to use dynamic
database service features in many different ways. Depending on the number of nodes and
your environment's complexity and objectives, your choices for optimal automatic workload
management and high-availability configuration depend on several considerations that are
described in this chapter.

Related Topics

• Oracle Database Administrator’s Guide

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

Overview of Server Pools and Policy-Managed Databases
Server pools are the basis for policy-managed databases.

You can create Oracle RAC databases, whether multinode or Oracle Real Application
Clusters One Node (Oracle RAC One Node), using the following deployment models:

• Administrator-managed deployment is based on the Oracle RAC deployment types that
existed before Oracle Database 11g release 2 (11.2) and requires that you statically
configure each database instance to run on a specific node in the cluster, and that you
configure database services to run on specific instances belonging to a certain database
using the preferred and available designation.

• Policy-managed deployment is based on server pools, where database services run
within a server pool as singleton or uniform across all of the servers in the server pool.
Databases are deployed in one or more server pools and the size of the server pools
determine the number of database instances in the deployment.

Related Topics

• Oracle Database Quality of Service Management User's Guide

Introduction to Server Pools
Server pools logically apportion a cluster into groups of servers offering database or
application services.

Server pool properties control the scalability and availability of those databases and
applications. You can configure each server pool with a minimum and maximum size, which
determines scalability. Oracle Clusterware manages availability between server pools, and
you can further regulate availability by configuring the importance value of individual server
pools.

Servers are not assigned to server pools by name but by number. Therefore, you must
configure any server to run any database. If you cannot configure servers due to, for
example, heterogeneous servers or storage connectivity, then you can restrict servers by
using server category definitions to determine server pool membership eligibility.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Chapter 1
Overview of Server Pools and Policy-Managed Databases

1-25

Examples of Using Server Pools
This section includes the following examples of using server pools:

• Minimum and Maximum Number of Servers

• IMPORTANCE Attribute of Server Pools

• Consolidation of Databases

Minimum and Maximum Number of Servers

Consider a four-node cluster configured into two server pools named online and
backoffice. A database named dbsales runs in the online server pool offering the
browse, search, and salescart services. A database named dberp runs in the
backoffice server pool and offers the inventory and shipping services, as shown in
Figure 1-2. During normal business hours the enterprise requires a minimum of two
instances of the dbsales database and one instance of the dberp database to meet
normal demand.

Figure 1-2 Server Placement by Minimum and Maximum Limits

Online Server Pool Backoffice Server Pool Free Server Pool

Min = 2, Max = 3, Imp = 5 Min = 1, Max = 2, Imp = 10 Min = 0, Max = 1, Imp = 0

ASM Disk
Groups

ASM Disk
Groups

ASM Disk
Groups

ASM Disk
Groups

dbsales

browse search salescart

dberp

inventory

rprprprprprprprprprprprprprprprp

shipping

In this policy-managed deployment, the value of the MIN_SIZE server pool attribute for
the online server pool is 2, while the value of the MIN_SIZE server pool attribute for
the backoffice server pool is 1. Configured this way, Oracle Clusterware ensures that
there are always two servers in the online server pool and one server in the
backoffice server pool. Because this is a four-node cluster, there is one server left not
assigned to either server pool. Where that last server gets deployed is determined by
the MAX_SIZE server pool parameter of each server pool. If the sum of the values of the
MAX_SIZE server pool attribute for each server pool is less than the total number of

Chapter 1
Overview of Server Pools and Policy-Managed Databases

1-26

servers in the cluster, then the remaining servers stay in the Free server pool awaiting a
failure of a deployed node.

If the value of MAX_SIZE is greater than that of MIN_SIZE, then the remaining server will be
deployed into the server pool whose importance value is greatest, as shown in Figure 1-2,
and fully discussed in the next section. In this case, the server is a shareable resource that
can be relocated online to join the server pool where it is required. For example, during
business hours the server could be given to the online server pool to add an instance of the
dbsales database but after hours could be relocated to the backoffice server pool, adding a
dberp database instance. All such movements are online and instances are shut down,
transactionally.

These two policy-managed databases are running only the instances that are required and
they can be dynamically increased or decreased to meet demand or business requirements.

IMPORTANCE Attribute of Server Pools

The IMPORTANCE server pool attribute is used at cluster startup and in response to a node
failure or eviction. In contrast to administrator-managed databases, you can configure server
pools with different importance levels to determine which databases are started first and
which databases remain online in case there is a multinode outage.

Consider a four-node cluster that hosts a database named dbapps in two server pools, sales
and backoffice. Two services, orderentry and billing, run in the sales server pool, while
two other services, erp and reports, run in the backoffice server pool, as shown in
Figure 1-3. By configuring the value of the IMPORTANCE server pool attribute of the sales
server pool higher than that of the backoffice server pool, the services in sales start first
when the cluster starts and are always available, even if there is only one server left running
after a multinode failure. The IMPORTANCE server pool attribute enables you to rank services
and also eliminates the requirement to run a service on all nodes in a cluster to ensure that it
is always available.

Chapter 1
Overview of Server Pools and Policy-Managed Databases

1-27

Figure 1-3 Server Pool Importance

dbapps

orderentry

ppsppsppsppsppsppsppsppsppsppsppsppsppsppsppspps

billing

dbapps

erp

ppsppsppsppsppsppsppsppsppsppsppsppsppsppsppspps

reports

Sales Server Pool Backoffice Server Pool Free Server Pool

Min = 2, Max = 3, Imp = 5 Min = 2, Max = 2, Imp = 10 Min = 0, Max = -1, Imp = 0

ASM Disk
Groups

ASM Disk
Groups

ASM Disk
Groups

ASM Disk
Groups

Consolidation of Databases

You can use several different approaches, either discretely or combined, to
consolidate Oracle databases. Policy-managed deployments facilitate consolidation. In
the case of schema consolidation, where multiple applications are being hosted in a
single database separated into discrete schemas or pluggable databases (PDBs), you
can use server pools to meet required capacity. Because of the dynamic scaling
property of server pools, you can increase or decrease the number of database
instances to meet current demand or business requirements. Since server pools also
determine which services run together or separately, you can configure and maintain
required affinity or isolation.

When it is not possible to use schema consolidation because of, for example, version
requirements, you can host multiple databases on a single set of servers. Using policy-
managed databases facilitates this database consolidation because they can share
the same server pool by making use of instance caging, which enables you to
dynamically increase or decrease databases, both horizontally (using server pool size)
and vertically (using the CPU_COUNT server configuration attribute) to meet demand or
business policies and schedules.

By contrast, with administrator-managed databases, you are required to reserve
capacity on each server to absorb workload failing over should a database instance or
server fail. With policy-managed databases, however, you can effectively rank server
pools by the business necessity of the workloads that they are running using the
MIN_SIZE, MAX_SIZE, and IMPORTANCE server pool attributes.

When the failure of a server brings a server pool to below its configured minimum
number of servers, another server will move from a less important server pool to take
its place and bring the number of servers back up to the configured minimum. This

Chapter 1
Overview of Server Pools and Policy-Managed Databases

1-28

eliminates the risk of cascade failures due to overloading the remaining servers and enables
you to significantly reduce or even eliminate the need to reserve capacity for handling
failures.

Migrating or converting to policy-managed databases also enables cluster consolidation and
creates larger clusters that have greater availability and scalability because of the increased
number of servers available to host and scale databases. Because policy-managed
databases do not require binding their instance names to a particular server and binding
services to particular instances, the complexity of configuring and managing large clusters is
greatly reduced.

An example deployment is shown in Figure 1-4 where the previous two cluster examples
(shown in Figure 1-2 and Figure 1-3) are consolidated into a single cluster, making use of
both database consolidation (using instance caging) and cluster consolidation (using server
pools) configured so that workloads are properly sized and prioritized.

Figure 1-4 Consolidating Databases

dbsales CPU=6

browse search salescart

dbapps CPU=6ppsppsppsppsppsppsppsppsppsppsppsppsppsppsppspps

orderentry billing

dberp CPU=4

dbapps CPU=8ppsppsppsppsppsppsppsppsppspps

erp reports

rprprprp

inventory shipping

Online Server Pool Backoffice Server Pool Free Server Pool

Min = 2, Max = 3, Imp = 5 Min = 2, Max = 2, Imp = 10 Min = 0, Max = -1, Imp = 0

ASM Disk
Groups

ASM Disk
Groups

ASM Disk
Groups

ASM Disk
Groups

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Deploying Policy-Managed Databases
When you deploy a policy-managed database you must first determine the services and their
required sizing, taking into account that services cannot span server pools.

If you are going to collocate this database with other databases, then you should factor in its
CPU requirements relative to the other hosted databases, and also factor in the value of its
CPU_COUNT attribute for instance caging, so that you can size the database both vertically and
horizontally in one or more server pools.

Chapter 1
Overview of Server Pools and Policy-Managed Databases

1-29

If you are going to collocate the server pools for this database with other server pools,
then consider configuring the server pools to adjust the server pool sizes on a
calendar or event basis to optimize meeting demand and business requirements.
Once you have determined the sizes of the server pools, and configured the
appropriate values for the MIN_SIZE and MAX_SIZE server pool attributes, you can then
determine the relative importance of each server pool.

You, as the cluster administrator, create policy-managed database server pools using
the srvctl add serverpool command. You can modify the properties of the server
pool using the srvctl modify serverpool command in the Oracle Grid Infrastructure
home.

While it is possible to create a server pool using DBCA, Oracle recommends this only
for small, single server pool deployments, because DBCA will fail if servers are already
allocated to other server pools. Additionally, if the cluster is made up of servers with
different capacities, such as old and new servers, Oracle recommends that you set up
server category definitions defining the minimum server requirements for a server to
join each server pool.

After you create the server pools, you can run DBCA from the appropriate database
home. Depending on the database type and task, you will be presented with different
default options. For all new Oracle RAC and Oracle RAC One Node databases,
including container databases (CDBs), the Policy-Managed option is the default and
the option that Oracle recommends.

If you are upgrading your database from an administrator-managed database or a
database earlier than Oracle Database 11g release 2 (11.2), then you will not have the
option to directly upgrade to a policy-managed database. After you upgrade, however,
you can convert the database to policy managed using the srvctl modify database
command.

When you convert from an administrator-managed database to a policy-managed
database, the instance names are automatically updated to include the underscore (for
example: orcl1 becomes orcl_1). The underscore is required so that the database
can automatically create instances when a server pool grows in size.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Oracle Clusterware Administration and Deployment Guide

• Converting an Administrator-Managed Database to a Policy-Managed Database
You can convert an administrator-managed database to a policy-managed
database.

Managing Policy-Managed Databases
Managing a policy-managed database requires less configuration and reconfiguration
steps than an administrator-managed one with respect to creation, sizing, patching,
and load balancing.

Also, because any server in the server pools within the cluster can run any of the
databases, you do not have to create and maintain database instance-to-node-name
mappings. If, however, you want a database to use a specific instance name whenever
it runs on a particular node, then you can create instance-to-node-name mappings
using the srvctl modify instance -db db_unique_name -instance inst_name -

Chapter 1
Overview of Server Pools and Policy-Managed Databases

1-30

node node_name command. This can be useful when scripts on a particular node connect to
the database using a fixed ORACLE_SID value.

You can perform maintenance tasks such as patching by relocating servers into the Free pool
or by adjusting the server pool minimum and maximum sizes, thereby retaining required
availability.

Policy-managed databases also facilitate the management of services, because they are
assigned to a single server pool and run as singletons or uniform across all servers in the
pool. You no longer have to create or maintain explicit preferred and available database
instance lists for each service. If a server moves into a server pool because of manual
relocation or a high availability event, all uniform services and their dependent database
instances are automatically started. If a server hosting one or more singleton services goes
down, those services will automatically be started on one or more of the remaining servers in
the server pool. In the case of Oracle RAC One Node, the corresponding database instance
will also be started automatically.

Managing services relative to each other is improved by making use of the importance
attribute of each server pool. Each service running in a server pool inherits the server pool's
importance relative to the other server pool-hosted services in the cluster. If the minimum size
of the most important server pool is greater than zero, then the services and associated
database instances in that server pool are started first on cluster startup and will be the last
services and database instances running, as long as there is one server running in the
cluster. You can offer services not critical to the business in the least important server pool,
ensuring that, should sufficient resources not be available due to demand or failures, those
services will eventually be shut down and the more business-critical services remain
available.

Because many management tasks may involve making changes that can affect multiple
databases, services, or server pools in a consolidated environment, you can use the evaluate
mode for certain SRVCTL commands to get a report of the resource impact of a command.

Consider the following example, that evaluates the effect on the system of modifying a server
pool:

$ srvctl modify srvpool -l 3 -g online -eval

Service erp1 will be stopped on node test3
Service reports will be stopped on node test3
Service inventory will be stopped on node test3
Service shipping will be stopped on node test3
Database dbsales will be started on node test3
Service orderentry will be started on node test3
Service billing will be started on node test3
Service browse will be started on node test3
Service search will be started on node test3
Service salescart will be started on node test3
Server test3 will be moved from pool backoffice to pool online

As shown in the preceding example, modifying a server pool can result in many resource
state changes. You can use a policy set through either Oracle Clusterware or Oracle
Database Quality of Service Management.

Related Topics

• srvctl modify srvpool

Chapter 1
Overview of Server Pools and Policy-Managed Databases

1-31

• srvctl relocate server

• SRVCTL Usage Information
SRVCTL is installed on each node in a cluster by default. To use SRVCTL, log in
to the operating system of a node and enter the SRVCTL command and its
parameters in case-sensitive syntax.

• Oracle Clusterware Administration and Deployment Guide

Policy-Based Cluster Management
Oracle Clusterware supports the management of a cluster configuration policy set as a
native Oracle Clusterware feature.

A cluster configuration policy contains one definition for each server pool that is
defined in the system. A cluster configuration policy also specifies resource placement
and cluster node availability. A cluster configuration policy set defines the names of all
of the server pools that are configured in a cluster, and contains one or more
configuration policies.

There is always only one configuration policy in effect at any one time. However,
administrators typically create several configuration policies to reflect the different
business needs and demands based on calendar dates or time of day parameters. For
instance, morning hours during business days are typically when most users log in and
download their email; email-related workloads are usually light at nighttime and on
weekends. In such cases, you can use cluster configuration policies to define the
server allocation based on the expected demand. More specifically for this example, a
configuration policy that allocates more servers to OLTP workloads is in effect during
workday mornings, and another configuration policy allocates more servers to batch
workloads on weekends and workday evenings.

Using cluster configuration policies can also help manage clusters that comprise
servers of different capabilities, such as different computer and memory sizes
(heterogeneous). To create management and availability policies for clusters
comprised of heterogeneous server types, the cluster administrator can create server
categories based on server attributes. These attributes can restrict which servers can
be assigned to which server pools. For example, if you have some servers in a cluster
that run older hardware, then you can use an attribute to specify that these servers
should only be allocated to the server pools that support batch jobs and testing,
instead of allocating them to the server pools that are used for online sales or other
business-critical applications.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Overview of Oracle Database Quality of Service
Management

Oracle Database Quality of Service Management (Oracle Database QoS
Management) is an automated, policy-based product that monitors the workload
requests for an entire system.

Oracle Database QoS Management manages the resources that are shared across
applications, and adjusts the system configuration to keep the applications running at
the performance levels needed by your business. Oracle Database QoS Management

Chapter 1
Overview of Oracle Database Quality of Service Management

1-32

responds gracefully to changes in system configuration and demand, thus avoiding additional
oscillations in the performance levels of your applications.

Oracle Database QoS Management monitors and manages Oracle RAC database workload
performance objectives by identifying bottlenecked resources impacting these objectives, and
both recommending and taking actions to restore performance. Administrator-managed
deployments bind database instances to nodes but policy-managed deployments do not, so
the Oracle Database QoS Management server pool size resource control is only available for
the latter. All other resource management controls are available for both deployments.

Oracle Database QoS Management supports administrator-managed Oracle RAC and Oracle
RAC One Node databases with its Measure-Only, Monitor, and Management modes. This
enables schema consolidation support within an administrator-managed Oracle RAC
database by adjusting the CPU shares of performance classes running in the database.
Additionally, database consolidation is supported by adjusting CPU counts for databases
hosted on the same physical servers.

Because administrator-managed databases do not run in server pools, the ability to expand
or shrink the number of instances by changing the server pool size that is supported in policy-
managed database deployments is not available for administrator-managed databases. This
new deployment support is integrated into the Oracle QoS Management pages in Oracle
Enterprise Manager Cloud Control.

Overview of Hang Manager
Hang Manager is an Oracle Database feature that automatically detects and resolves system
hangs.

Hang Manager was first available in Oracle Database 11g release 1 (11.1) and, initially,
identified system hangs and then dumped the relevant information about the hang into a
trace file. In Oracle Database 12c release 2 (12.2), Hang Manager can take action on and
attempt to resolve the system hang. Hang Manager also runs in both single-instance and
Oracle RAC database instances.

Hang Manager functions, as follows:

• First detects a system hang and then analyzes the hang and verifies the cause of the
hang. It then applies heuristics to decide on a course of action to resolve the hang.

• Automates the tasks that used to require manual steps by a DBA to provide the trace files
to My Oracle Support so that someone there could identify the source of the hang,
minimizing or eliminating database and application downtime.

• Periodically scans all processes and analyzes a smaller subset of processes that are
holding resources in successive scans. Hang manager ignores processes if there is
nothing waiting on the resource.

• Considers cross-instance hangs, which are hangs where the holder is a database
process waiting on a response from an Oracle ASM instance.

• Is aware of processes running in reader nodes instances, and checks whether any of
these processes are blocking progress on Hub Nodes and takes action, if possible.

• Considers the Oracle Database Quality of Service Management settings of the holder.

• Terminates the holder process so the next process waiting on that resource can move on
and prevent a hang.

• Notifies a DBA with an ORA-32701 error message in the alert log.

Chapter 1
Overview of Hang Manager

1-33

Overview of Oracle Multitenant with Oracle RAC
You can configure a multitenant Container Database (CDB) to use Oracle RAC.

You can make each PDB available on either every database instance of the Oracle
RAC CDB or on a subset of instances. In either case, access to PDBs is regulated
using dynamic database services. Applications uses these services to connect to a
PDB, like they would connect to a single-instance non-CDB.

You can isolate PDBs to prevent certain operations from being performed on or within
a particular PDB that may interfere with other PDBs sharing the same Oracle RAC
database or instance. PDB isolation allows for greater consolidation.

If you create an Oracle RAC database as a CDB, and if you plug PDBs into the CDB,
then by default a PDB is not started automatically on any instance. With the first
dynamic database service assigned to the PDB (other than the default database
service, which has the same name as the database name), the PDB is made available
on those instances on which the service runs.

Regardless of whether a PDB is available on multiple instances of an Oracle RAC
CDB, the CDB is typically managed by the services running on the PDB. You can
manually enable PDB access on each instance by starting the PDB manually on that
instance.

Overview of Database In-Memory and Oracle RAC
Every Oracle RAC node has its own In-Memory (IM) column store. By default,
populated objects are distributed across all IM column stores in the cluster.

Oracle recommends that you size the IM column stores equally on every Oracle RAC
node. If an Oracle RAC node does not require an IM column store, then set the
INMEMORY_SIZE parameter to 0.

Starting with Oracle Database 19c, Release Update 19.8, Database In-Memory has a
new Base Level feature that allows you to use Database In-Memory with up to a 16
GB column store without requiring the Database In-Memory option. In an Oracle RAC
database, the INMEMORY_SIZE setting in each database instance must not exceed 16
GB. Set the INMEMORY_FORCE parameter to BASE_LEVEL to enable this feature.

It is possible to have completely different objects populated on every node, or to have
larger objects distributed across all of the IM column stores in the cluster. On Oracle
Engineered Systems, it is also possible for the same objects to appear in the IM
column store on every node. The distribution of objects across the IM column stores in
a cluster is controlled by two subclauses to the INMEMORY attribute: DISTRIBUTE and
DUPLICATE.

In an Oracle RAC environment, an object that only has the INMEMORY attribute specified
is automatically distributed across the IM column stores in the cluster. You can use the
DISTRIBUTE clause to specify how an object is distributed across the cluster. By
default, the type of partitioning used (if any) determines how the object is distributed. If
the object is not partitioned, then it is distributed by rowid range. Alternatively, you can
specify the DISTRIBUTE clause to override the default behavior.

On an Oracle Engineered System, you can duplicate or mirror populated objects
across the IM column stores in the cluster. This technique provides the highest level of

Chapter 1
Overview of Oracle Multitenant with Oracle RAC

1-34

redundancy. The DUPLICATE clause controls how an object is duplicated. If you specify only
DUPLICATE, then one mirrored copy of the data is distributed across the IM column stores in
the cluster. To duplicate the entire object in each IM column store, specify DUPLICATE ALL.

Note:

When you deploy Oracle RAC on a non-Engineered System, the DUPLICATE clause
is treated as NO DUPLICATE.

Related Topics

• Oracle Database In-Memory Guide

Overview of Managing Oracle RAC Environments
This section describes the following Oracle RAC environment management topics:

• About Designing and Deploying Oracle RAC Environments

• About Administrative Tools for Oracle RAC Environments

• About Monitoring Oracle RAC Environments

• About Evaluating Performance in Oracle RAC Environments

About Designing and Deploying Oracle RAC Environments
Any enterprise that is designing and implementing a high availability strategy with Oracle
RAC must begin by performing a thorough analysis of the business drivers that require high
availability.

An analysis of business requirements for high availability combined with an understanding of
the level of investment required to implement different high availability solutions enables the
development of a high availability architecture that achieves both business and technical
objectives.

Related Topics

• Design and Deployment Techniques

Chapter 1
Overview of Managing Oracle RAC Environments

1-35

See Also:

For help choosing and implementing the architecture that best fits your
availability requirements:

• "Design and Deployment Techniques" provides a high-level overview you
can use to evaluate the high availability requirements of your business.

• Oracle Database High Availability Overview describes how to select the
most suitable architecture for your organization, describes several high
availability architectures, and provides guidelines for choosing the one
that best meets your requirements, and also provides information about
the Oracle Maximum Availability Architecture

About Administrative Tools for Oracle RAC Environments
You administer a cluster database as a single-system image using the Server Control
Utility (SRVCTL), Oracle Enterprise Manager, SQL*Plus, and other utilities.

• Server Control Utility (SRVCTL): SRVCTL is a command-line interface that you
can use to manage an Oracle RAC database from a single point. You can use
SRVCTL to start and stop the database and instances and to delete or move
instances and services. You can also use SRVCTL to manage configuration
information, Oracle Real Application Clusters One Node (Oracle RAC One Node),
Oracle Clusterware, and Oracle ASM.

• Oracle Fleet Patching and Provisioning (Oracle FPP): Use Oracle Fleet
Patching and Provisioning to patch, upgrade, and provision Oracle RAC
databases.

• Oracle Enterprise Manager: Oracle Enterprise Manager Cloud Control GUI
interface for managing both noncluster database and Oracle RAC database
environments. Oracle recommends that you use Oracle Enterprise Manager to
perform administrative tasks whenever feasible.

You can use Oracle Enterprise Manager Cloud Control to also manage Oracle
RAC One Node databases.

• SQL*Plus: SQL*Plus commands operate on the current instance. The current
instance can be either the local default instance on which you initiated your
SQL*Plus session, or it can be a remote instance to which you connect with
Oracle Net Services.

• Cluster Verification Utility (CVU): CVU is a command-line tool that you can use
to verify a range of cluster and Oracle RAC components, such as shared storage
devices, networking configurations, system requirements, and Oracle Clusterware,
in addition to operating system groups and users. You can use CVU for
preinstallation checks and for postinstallation checks of your cluster environment.
CVU is especially useful during preinstallation and during installation of Oracle
Clusterware and Oracle RAC components. Oracle Universal Installer runs CVU
after installing Oracle Clusterware and Oracle Database to verify your
environment.

Install and use CVU before you install Oracle RAC to ensure that your
configuration meets the minimum Oracle RAC installation requirements. Also, use

Chapter 1
Overview of Managing Oracle RAC Environments

1-36

CVU for verifying the completion of ongoing administrative tasks, such as node addition
and node deletion.

• Oracle DBCA: The recommended utility for creating and initially configuring Oracle RAC,
Oracle RAC One Node, and Oracle noncluster databases.

• NETCA: Configures the network for your Oracle RAC environment.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Administering Database Instances and Cluster Databases

• Monitoring Oracle RAC and Oracle Clusterware

• Server Control Utility Reference

• Oracle Clusterware Administration and Deployment Guide

• Oracle Database Net Services Administrator's Guide

See Also:

• "Administering Database Instances and Cluster Databases" for an introduction
to Oracle RAC administration using SRVCTL, Oracle Enterprise Manager, and
SQL*Plus

• "Monitoring Oracle RAC and Oracle Clusterware"

• "Server Control Utility Reference" for SRVCTL reference information

• Oracle Clusterware Administration and Deployment Guide for information about
the Cluster Verification Utility (CVU), in addition to other Oracle Clusterware
tools, such as the OIFCFG tool for allocating and deallocating network
interfaces and the OCRCONFIG command-line tool for managing OCR

• Oracle Database Net Services Administrator's Guide for more information about
NETCA

About Monitoring Oracle RAC Environments
Web-based Oracle Enterprise Manager Cloud Control enables you to monitor an Oracle RAC
database.

Oracle Enterprise Manager Cloud Control is a central point of control for the Oracle
environment that you access by way of a graphical user interface (GUI). See "Monitoring
Oracle RAC and Oracle Clusterware" for more information about using Oracle Enterprise
Manager to monitor Oracle RAC environments.

Also, note the following recommendations about monitoring Oracle RAC environments:

• Use Oracle Enterprise Manager Cloud Control to initiate cluster database management
tasks.

• Use Oracle Enterprise Manager Cloud Control to administer multiple or individual Oracle
RAC databases.

Chapter 1
Overview of Managing Oracle RAC Environments

1-37

• Use the global views (GV$ views), which are based on V$ views. The
catclustdb.sql script creates the GV$ views. Run this script if you do not create
your database with Oracle DBCA. Otherwise, Oracle DBCA runs this script for
you.

For almost every V$ view, there is a corresponding global GV$ view. In addition to
the V$ information, each GV$ view contains an extra column named INST_ID, which
displays the instance number from which the associated V$ view information was
obtained.

• Use the sophisticated management and monitoring features of the Oracle
Database Diagnostic and Tuning packs within Oracle Enterprise Manager that
include the Automatic Database Diagnostic Monitor (ADDM) and Automatic
Workload Repository (AWR).

Note:

Although Statspack is available for backward compatibility, Statspack
provides reporting only. You must run Statspack at level 7 to collect
statistics related to block contention and segment block waits.

Related Topics

• Monitoring Oracle RAC and Oracle Clusterware

• Oracle Database Performance Tuning Guide

About Evaluating Performance in Oracle RAC Environments
You do not need to perform special tuning for Oracle RAC; Oracle RAC scales without
special configuration changes.

If your application performs well on a noncluster Oracle database, then it will perform
well in an Oracle RAC environment. Many of the tuning tasks that you would perform
on a noncluster Oracle database can also improve Oracle RAC database
performance. This is especially true if your environment requires scalability across a
greater number of CPUs.

Some of the performance features specific to Oracle RAC include:

• Dynamic resource allocation

– Oracle Database dynamically allocates Cache Fusion resources as needed

– The dynamic acquiring of resources improves performance by keeping
resources local to data blocks

• Cache Fusion enables a simplified tuning methodology

– You do not have to tune any parameters for Cache Fusion

– No application-level tuning is necessary

– You can use a bottom-up tuning approach with virtually no effect on your
existing applications

• More detailed performance statistics

– More views for Oracle RAC performance monitoring

Chapter 1
Overview of Managing Oracle RAC Environments

1-38

– Oracle RAC-specific performance views in Oracle Enterprise Manager

Chapter 1
Overview of Managing Oracle RAC Environments

1-39

2
Administering Storage in Oracle RAC

Oracle recommends Oracle Automatic Storage Management (Oracle ASM) as a storage
management solution that provides an alternative to conventional volume managers, file
systems, and raw devices.

Oracle ASM is a volume manager and a file system for Oracle database files that supports
single-instance Oracle Database and Oracle Real Application Clusters (Oracle RAC)
configurations.

Oracle ASM uses disk groups to store data files; an Oracle ASM disk group is a collection of
disks that Oracle ASM manages as a unit. Within a disk group, Oracle ASM exposes a file
system interface for Oracle database files. The content of files that are stored in a disk group
is evenly distributed to eliminate hot spots and to provide uniform performance across the
disks. The performance is comparable to the performance of raw devices.

You can add or remove disks from a disk group while a database continues to access files
from the disk group. When you add or remove disks from a disk group, Oracle ASM
automatically redistributes the file contents and eliminates the need for downtime when
redistributing the content.

The Oracle ASM volume manager functionality provides flexible server-based mirroring
options. The Oracle ASM normal and high redundancy disk groups enable two-way and
three-way mirroring respectively. You can use external redundancy to enable a Redundant
Array of Independent Disks (RAID) storage subsystem to perform the mirroring protection
function.

Oracle ASM also uses the Oracle Managed Files feature to simplify database file
management. Oracle Managed Files automatically creates files in designated locations.
Oracle Managed Files also names files and removes them while relinquishing space when
tablespaces or files are deleted.

Oracle ASM reduces the administrative overhead for managing database storage by
consolidating data storage into a small number of disk groups. The smaller number of disk
groups consolidates the storage for multiple databases and dprovides for improved I/O
performance.

Oracle ASM files can coexist with other storage management options such as raw disks and
third-party file systems. This capability simplifies the integration of Oracle ASM into pre-
existing environments.

Oracle ASM has easy to use management interfaces such as SQL*Plus, the Oracle ASM
Command Line Utility (ASMCMD) command-line interface, and Oracle ASM Configuration
Assistant (ASMCA).

This chapter includes the following topics:

• Overview of Storage Management for Oracle RAC

• Data File Access in Oracle RAC

• NFS Server for Storage

• Redo Log File Storage in Oracle RAC

2-1

• Automatic Undo Management in Oracle RAC

• Oracle Automatic Storage Management with Oracle RAC

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Automatic Storage Management Administrator's Guide

Overview of Storage Management for Oracle RAC
All data files (including an undo tablespace for each instance) and redo log files (at
least two for each instance) for an Oracle RAC database must reside on shared
storage.

Oracle recommends that you use Oracle ASM to store these files in an Oracle ASM
disk group.

Oracle supports alternative ways of using shared storage, such as certified cluster file
systems. In addition, Oracle recommends that you use one shared server parameter
file (SPFILE) with instance-specific entries. Oracle RAC 12c allows storing shared
password files in Oracle ASM and storing Oracle Database files on Oracle Automatic
Storage Management Cluster File System (Oracle ACFS).

Note:

Oracle Database and related technologies, such as Oracle Clusterware, no
longer support the use of raw (block) storage devices. You must move files to
Oracle ASM before upgrading to Oracle Clusterware 12c.

Unless otherwise noted, Oracle Database storage features such as Oracle ASM,
Oracle Managed Files, automatic segment-space management, and so on, function
the same in Oracle RAC environments as they do in non-cluster Oracle database
environments.

Related Topics

• Overview of Installing Oracle Database Software and Creating a Database

• Introducing Oracle Automatic Storage Management

• Oracle Database Structure and Storage

Data File Access in Oracle RAC
All Oracle RAC instances must be able to access all data files. If a data file must be
recovered when the database is opened, then the first Oracle RAC instance to start is
the instance that performs the recovery and verifies access to the file. As other
instances start, they also verify their access to the data files. Similarly, when you add a
tablespace or data file or bring a tablespace or data file online, all instances verify
access to the file or files.

If you add a data file to a disk that other instances cannot access, then verification
fails. Verification also fails if instances access different copies of the same data file. If

Chapter 2
Overview of Storage Management for Oracle RAC

2-2

verification fails for any instance, then diagnose and fix the problem. Then run the ALTER
SYSTEM CHECK DATAFILES statement on each instance to verify data file access.

NFS Server for Storage
An Oracle database can serve as a network file system (NFS) server. The database
responds to NFS requests from any NFS client and stores both the files and their metadata
within the database.

Files associated with a primary database, such as SQL scripts, can be automatically
replicated on a standby database. You can also store unstructured data, such as emails, on
the database.

You can create or destroy an Oracle file system and access it though the NFS server using
the procedures documented in Oracle Database SecureFiles and Large Objects Developer's
Guide.

Related Topics

• Oracle Database SecureFiles and Large Objects Developer's Guide

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Reference

Redo Log File Storage in Oracle RAC
In an Oracle RAC database, each instance must have at least two groups of redo log files.
You must allocate the redo log groups before enabling a new instance with the ALTER
DATABASE ENABLE INSTANCE instance_name command. When you use DBCA to create the
database, DBCA allocates redo log files to instances, as required, automatically. You can
change the number of redo log groups and the size of the redo log files as required either
during the initial database creation or as a post-creation step.

When the current group fills, an instance begins writing to the next log file group. If your
database is in ARCHIVELOG mode, then each instance must save filled online log groups as
archived redo log files that are tracked in the control file. During database recovery, all
enabled instances are checked to see if recovery is needed. If you remove an instance from
your Oracle RAC database, then you should disable the instance's thread of redo so that
Oracle does not have to check the thread during database recovery.

Redo log management must be considered when the number of instances for a particular
production Oracle RAC database changes. For example, if you increase the cardinality of a
server pool for a policy-managed database and a new server is allocated to the server pool,
then Oracle starts an instance on the new server. As soon as the database instance on the
new server starts, it will require a set of redo log groups. Using Oracle Managed Files based
on an Oracle ASM disk group, allocation of the required redo log thread and respective files
is performed automatically. You should create redo log groups only if you use administrator-
managed databases.

For administrator-managed databases, each instance has its own online redo log groups.
Create these redo log groups and establish group members. To add a redo log group to a
specific instance, specify the INSTANCE clause in the ALTER DATABASE ADD LOGFILE
statement. If you do not specify the instance when adding the redo log group, then the redo
log group is added to the instance to which you are currently connected.

Chapter 2
NFS Server for Storage

2-3

Each instance must have at least two groups of redo log files. You must allocate the
redo log groups before enabling a new instance with the ALTER DATABASE ENABLE
INSTANCE instance_name command. When the current group fills, an instance begins
writing to the next log file group. If your database is in ARCHIVELOG mode, then each
instance must save filled online log groups as archived redo log files that are tracked
in the control file.

During database recovery, all enabled instances are checked to see if recovery is
needed. If you remove an instance from your Oracle RAC database, then you should
disable the instance's thread of redo so that Oracle does not have to check the thread
during database recovery.

Related Topics

• About Designing and Deploying Oracle RAC Environments
Any enterprise that is designing and implementing a high availability strategy with
Oracle RAC must begin by performing a thorough analysis of the business drivers
that require high availability.

• Oracle Database Administrator’s Guide

• Oracle Database SQL Language Reference

Automatic Undo Management in Oracle RAC
Oracle Database automatically manages undo segments within a specific undo
tablespace that is assigned to an instance. Instances can always read all undo blocks
throughout the cluster environment for consistent read purposes. Also, any instance
can update any undo tablespace during transaction recovery, if that undo tablespace is
not currently used by another instance for undo generation or transaction recovery.

You assign undo tablespaces in your Oracle RAC administrator-managed database by
specifying a different value for the UNDO_TABLESPACE parameter for each instance in
your SPFILE or individual PFILEs. For policy-managed databases, Oracle
automatically allocates the undo tablespace when the instance starts if you have
Oracle Managed Files enabled. You cannot simultaneously use automatic undo
management and manual undo management in an Oracle RAC database. In other
words, all instances of an Oracle RAC database must operate in the same undo mode.

Related Topics

• Setting SPFILE Parameter Values for Oracle RAC
You can change SPFILE settings with Oracle Enterprise Manager or by using the
SET clause of the ALTER SYSTEM statement.

• Oracle Database Administrator’s Guide

Oracle Automatic Storage Management with Oracle RAC
Oracle ASM automatically maximizes I/O performance by managing the storage
configuration across the disks that Oracle ASM manages.

Oracle ASM does this by evenly distributing the database files across all of the
available storage assigned to the disk groups within Oracle ASM. Oracle ASM
allocates your total disk space requirements into uniformly sized units across all disks
in a disk group. Oracle ASM can also automatically mirror files to prevent data loss.

Chapter 2
Automatic Undo Management in Oracle RAC

2-4

Because of these features, Oracle ASM also significantly reduces your administrative
overhead.

Oracle ASM instances are created on each node where you install Oracle Clusterware. Each
Oracle ASM instance has either an SPFILE or PFILE type parameter file. Oracle
recommends that you back up the parameter files and the TNS entries for nondefault Oracle
Net listeners.

To use Oracle ASM with Oracle RAC, select Oracle ASM as your storage option when you
create your database with the Database Configuration Assistant (DBCA). As in noncluster
Oracle databases, using Oracle ASM with Oracle RAC does not require I/O tuning.

The following topics describe Oracle ASM and Oracle ASM administration, as follows:

• Storage Management in Oracle RAC

• Modifying Disk Group Configurations for Oracle ASM

• Oracle ASM Disk Group Management

• Configuring Preferred Mirror Read Disks in Extended Distance Clusters

• Converting Nonclustered Oracle ASM to Clustered Oracle ASM

• Administering Oracle ASM Instances with SRVCTL in Oracle RAC

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

Storage Management in Oracle RAC
You can create Oracle ASM disk groups and configure mirroring for Oracle ASM disk groups
using the Oracle ASM configuration assistant (ASMCA).

Alternatively, you can use Oracle Enterprise Manager to administer Oracle ASM disk groups
after you have discovered the respective servers with Oracle Enterprise Manager.

The Oracle tools that you use to manage Oracle ASM, including ASMCA, Oracle Enterprise
Manager, and the silent mode install and upgrade commands, include options to manage
Oracle ASM instances and disk groups.

You can use the Cluster Verification Utility (CVU) to verify the integrity of Oracle ASM across
the cluster. Typically, this check ensures that the Oracle ASM instances on all nodes run from
the same Oracle home and, if asmlib exists, that it is a valid version and has valid ownership.
Run the following command to perform this check:

cluvfy comp asm [-n node_list] [-verbose]

Replace node_list with a comma-delimited list of node names on which the check is to be
performed. Specify all to check all nodes in the cluster.

Use the cluvfy comp ssa command to locate shared storage.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Chapter 2
Oracle Automatic Storage Management with Oracle RAC

2-5

Modifying Disk Group Configurations for Oracle ASM
When you create a disk group for a cluster or add new disks to an existing clustered
disk group, prepare the underlying physical storage on shared disks and give the
Oracle user permission to read and write to the disk.

The shared disk requirement is the only substantial difference between using Oracle
ASM with an Oracle RAC database compared to using it with a noncluster Oracle
database. Oracle ASM automatically redistributes the data files after you add or delete
a disk or disk group.

In a cluster, each Oracle ASM instance manages its node's metadata updates to the
disk groups. In addition, each Oracle ASM instance coordinates disk group metadata
with other nodes in the cluster. As with noncluster Oracle databases, you can use
Oracle Enterprise Manager, ASMCA, SQL*Plus, and the Server Control Utility
(SRVCTL) to administer disk groups for Oracle ASM that are used by Oracle RAC.
Oracle Automatic Storage Management Administrator's Guide explains how to use
SQL*Plus to administer Oracle ASM instances. Subsequent sections describe how to
use the other tools.

Note:

When you start ASMCA, if there is not an Oracle ASM instance, then the
utility prompts you to create one.

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

Oracle ASM Disk Group Management
To use Oracle ASM, you must first create disk groups with ASMCA before creating a
database with Oracle DBCA.

You can also use the disk group management commands to create and manage an
Oracle ASM instance and its associated disk groups independently of creating a
database. You can use Oracle Enterprise Manager or ASMCA to add disks to a disk
group, to mount a disk group or to mount all of the disk groups, or to create Oracle
ASM instances. Additionally, you can use Oracle Enterprise Manager to dismount and
drop disk groups or to delete Oracle ASM instances.

Oracle ASM instances are created when you install Oracle Clusterware. To create an
Oracle ASM disk group, run ASMCA from the Grid_home/bin directory. You can also
use the Oracle ASM Disk Groups page in ASMCA for Oracle ASM management. That
is, you can configure Oracle ASM storage separately from database creation. For
example, from the ASM Disk Groups page, you can create disk groups, add disks to
existing disk groups, or mount disk groups that are not currently mounted.

When you start ASMCA, if the Oracle ASM instance has not been created, then
ASMCA prompts you to create the instance. ASMCA prompts you for the sysasm
password and the ASMSNMP password.

Chapter 2
Oracle Automatic Storage Management with Oracle RAC

2-6

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

Configuring Preferred Mirror Read Disks in Extended Distance Clusters
You can configure preferred read disks to improve performance.

When you configure Oracle Automatic Storage Management (Oracle ASM) failure groups, it
may be more efficient for a node to read from an extent that is closest to the node, even if
that extent is a secondary extent. You can configure Oracle ASM to read from a secondary
extent if that extent is closer to the node instead of Oracle ASM reading from the primary
copy which might be farther from the node. Using preferred read failure groups is most
beneficial in an extended distance cluster.

To configure this feature, set the ASM_PREFERRED_READ_FAILURE_GROUPS initialization
parameter to specify a list of failure group names as preferred read disks. Oracle
recommends that you configure at least one mirrored extent copy from a disk that is local to a
node in an extended cluster. However, a failure group that is preferred for one instance might
be remote to another instance in the same Oracle Real Application Clusters (Oracle RAC)
database. The parameter setting for preferred read failure groups is instance specific.

Related Topics

• Preferred Read Failure Groups

• ASM_PREFERRED_READ_FAILURE_GROUPS

Converting Nonclustered Oracle ASM to Clustered Oracle ASM
When installing Oracle Grid Infrastructure, any nonclustered Oracle Automatic Storage
Management (Oracle ASM) instances are automatically converted to clustered Oracle ASM.

Related Topics

• Preferred Read Failure Groups

Administering Oracle ASM Instances with SRVCTL in Oracle RAC
You can use the Server Control Utility (SRVCTL) to add or remove an Oracle ASM instance.

To issue SRVCTL commands to manage Oracle ASM, log in as the operating system user
who owns the Oracle Grid Infrastructure home and issue the SRVCTL commands from the
bin directory of the Oracle Grid Infrastructure home.

Use the following syntax to add an Oracle ASM instance:

srvctl add asm

Use the following syntax to remove an Oracle ASM instance:

srvctl remove asm [-force]

You can also use SRVCTL to start, stop, and obtain the status of an Oracle ASM instance as
in the following examples.

Chapter 2
Oracle Automatic Storage Management with Oracle RAC

2-7

Use the following syntax to start an Oracle ASM instance:

srvctl start asm [-node node_name] [-startoption start_options]

Use the following syntax to stop an Oracle ASM instance:

srvctl stop asm [-node node_name] [-stopoption stop_options]

Use the following syntax to show the configuration of an Oracle ASM instance:

srvctl config asm -node node_name

Use the following syntax to display the state of an Oracle ASM instance:

srvctl status asm [-node node_name]

Related Topics

• Server Control Utility Reference

• Oracle Automatic Storage Management Administrator's Guide

Chapter 2
Oracle Automatic Storage Management with Oracle RAC

2-8

3
Administering Database Instances and
Cluster Databases

This chapter describes how to administer Oracle Real Application Clusters (Oracle RAC)
databases and database instances.

The topics in this chapter include:

• Overview of Oracle RAC Database Administration

• Starting and Stopping Instances and Oracle RAC Databases

• Starting and Stopping PDBs in Oracle RAC

• Verifying That Instances are Running

• Terminating Sessions On a Specific Cluster Instance

• Overview of Initialization Parameter Files in Oracle RAC

• Initialization Parameter Use in Oracle RAC

• Converting an Administrator-Managed Database to a Policy-Managed Database

• Managing Memory Pressure for Database Servers

• Quiescing Oracle RAC Databases

• Administering Multiple Cluster Interconnects on Linux and UNIX Platforms

• Customizing How Oracle Clusterware Manages Oracle RAC Databases

• Advanced Oracle Enterprise Manager Administration

See Also:

The Oracle Enterprise Manager Cloud Control online help for more information
about Oracle Enterprise Manager Cloud Control

Overview of Oracle RAC Database Administration
Oracle RAC database administration requires certain privileges and involves either a policy-
managed or administrator-managed deployment model.

Required Privileges for Oracle RAC Database Administration

To increase security and further separate administrative duties, Oracle RAC database
administrators manage Oracle RAC databases with the SYSRAC administrative privilege,
and no longer require the SYSDBA administrative privilege. The SYSRAC administrative
privilege is the default mode of connecting to the database by the Oracle Clusterware agent
on behalf of Oracle RAC utilities, such as SRVCTL, meaning that no SYSDBA connections to
the database are necessary for everyday administration of Oracle RAC database clusters.

3-1

Oracle RAC Database Depolyment Models

Oracle RAC databases support two different management styles and deployment
models:

• Administrator-managed deployment is based on the Oracle RAC deployment
types that existed before Oracle Database 11g release 2 (11.2) and requires that
you statically configure each database instance to run on a specific node in the
cluster, and that you configure database services to run on specific instances
belonging to a certain database using the preferred and available designation.

• Policy-managed deployment is based on server pools, where database services
run within a server pool as singleton or uniform across all of the servers in the
server pool. Databases are deployed in one or more server pools and the size of
the server pools determine the number of database instances in the deployment.

You can manage databases with either the administrator-managed or policy-managed
deployment model using the same commands or methods (such as DBCA or Oracle
Enterprise Manager). All commands and utilities maintain backward compatibility to
support the management of Oracle databases that only support administrator-based
management (Oracle databases before Oracle Database 11g release 2 (11.2)).

In general, a database is defined as a resource in Oracle Clusterware. The database
resource is automatically created when you create your database with DBCA or
provision a database using Rapid Home Provisioning, or you can manually create the
database resource by adding your database with SRVCTL. The database resource
contains the Oracle home, the SPFILE, one or more server pools, and one or more
Oracle ASM disk groups required for the database to start. You can specify the Oracle
ASM disk groups using either the srvctl add database or srvctl modify database
commands, or, when the database opens a data file on a disk group that is not on this
list, the disk group gets added to the list.

The database resource also has a weak start dependency on the listener type, which
means that the resource tries to start all listeners for the node when the database
instance starts. Oracle Clusterware tries to start listeners on the node where the
database instance starts. Starting the listeners in turn starts the VIP for the node.

When you review the database resource for an administrator-managed database, you
see a server pool defined with the same name as the Oracle database. This server
pool is part of a special Oracle-defined server pool called Generic. Oracle RAC
manages the Generic server pool to support administrator-managed databases. When
you add or remove an administrator-managed database using either SRVCTL or
DBCA, Oracle RAC creates or removes the server pools that are members of Generic.
You cannot use SRVCTL or CRSCTL commands to modify the Generic server pool.

Use policy-managed databases to simplify management of dynamic systems. Policy
management allows clusters and databases to expand or shrink as requirements
change. If you use policy-managed databases, then you must install the Oracle home
software on every node in your cluster. Policy-managed databases must use Oracle
Database 11g release 2 (11.2) or higher software and cannot coexist on the same
servers as administrator-managed databases.

Chapter 3
Overview of Oracle RAC Database Administration

3-2

Note:

You cannot run more than one instance of the same database on the same node.

A policy-managed database is defined by cardinality, which is the number of database
instances you want running during normal operations. A policy-managed database runs in
one or more database server pools that the cluster administrator creates in the cluster, and it
can run on different servers at different times. Every server pool of a policy-managed
database should have at least one database service. A database instance starts on a server
that is in the server pools defined for the database. If you are using Oracle Automatic Storage
Management (Oracle ASM) with Oracle Managed Files for your database storage, then,
when an instance starts and there is no redo thread available, Oracle RAC automatically
enables one and creates the required redo log files and undo tablespace. Clients can connect
to a policy-managed database using the same SCAN-based connect string no matter which
servers they happen to be running on at the time.

Policy-managed database instances are named db_unique_name_cardinality, where
cardinality is the cardinality ID of the server in the server pool. Use the srvctl status
database -sid command to retrieve the instance name on the local node. You can also
create a fixed mapping of nodes-to-instance name using the srvctl modify instance
command.

Using the Same Cluster for Administrator-Managed and Policy-Managed Databases

If you want to create an administrator-managed database on a cluster that already hosts
policy-managed databases, then you must carefully select the nodes for the administrator-
managed database. This is because the nodes that you select for an administrator-managed
database that are in policy-managed server pools will be moved into the Generic server pool
as part of this process.

If you select nodes that already run other policy-managed database instances, then DBCA
prompts you with a message that lists the instances and services that will be shut down when
DBCA creates the administrator-managed database. If you select the Yes button on the
dialog box when DBCA asks "Do you want to continue?", then your policy-managed database
instances and services will be shut down because of the administrator-managed database
creation process.

Note:

This is also true if you use the srvctl add instance command, which returns a
similar error message indicating that the databases would be shut down. If you also
use the force option (-f) with the srvctl add instance command, then this is the
same as choosing Yes on the DBCA dialog. Doing this shuts down any policy-
managed databases that are running on the node before moving the node into the
Generic server pool.

Related Topics

• Oracle Database Security Guide

• Oracle Clusterware Administration and Deployment Guide

Chapter 3
Overview of Oracle RAC Database Administration

3-3

• Converting an Administrator-Managed Database to a Policy-Managed Database
You can convert an administrator-managed database to a policy-managed
database.

Tools for Administering Oracle RAC
The following sections introduce Oracle RAC administration using the three tools that
you commonly use to manage Oracle RAC databases and instances: the SRVCTL
utility, Oracle Enterprise Manager, and SQL*Plus. In many cases, you use these tools
the same way to manage Oracle RAC environments as you would use them manage
noncluster Oracle databases:

• Administering Oracle RAC with SRVCTL

• Administering Oracle RAC with Oracle Enterprise Manager

• Administering Oracle RAC with SQL*Plus

Administering Oracle RAC with SRVCTL
The Server Control Utility (SRVCTL) is a command-line interface that you can use to
manage Oracle Databases in a centralized manner.

Oracle made centralized, SRVCTL-based database management available in Oracle
Database 11g release 2 (11.2) for single-instance Oracle Databases, using Oracle
ASM in the Oracle Grid Infrastructure, for both a noncluster environment and Oracle
RAC databases, based on Oracle Grid Infrastructure for a cluster. This enables
homogeneous management of all Oracle Database types using SRVCTL. You can use
SRVCTL to start and stop the database and instances, and to delete or move
instances and services. You can also use SRVCTL to add services and manage
configuration information, in addition to other resources in the cluster.

When you use SRVCTL to perform configuration operations on your cluster, SRVCTL
stores configuration data in the Oracle Cluster Registry (OCR) in a cluster or Oracle
Local Registry (OLR) in Oracle Restart environments. SRVCTL performs other
operations, such as starting and stopping instances, by configuring and managing
Oracle Clusterware resources, which define agents that perform database startup and
shutdown operations using Oracle Call Interface APIs.

Note:

If you require your database (or database instance) to start using certain
environment variables, then use the srvctl setenv command to set those
variables for the database profile that is maintained for the database using
SRVCTL. You do not need to set the ORACLE_HOME and ORACLE_SID
environment variables, because SRVCTL maintains and sets those
parameters, automatically.

Related Topics

• Server Control Utility Reference

Chapter 3
Overview of Oracle RAC Database Administration

3-4

Administering Oracle RAC with Oracle Enterprise Manager
Oracle Enterprise Manager provides a central point of control for the Oracle RAC
environment, allowing you to perform administrative tasks simultaneously on multiple cluster
databases.

Based on the Oracle Enterprise Manager Cloud Control (Grid Control in Oracle Enterprise
Manager 11g) graphical user interface (GUI), you can manage both non-clustered and Oracle
RAC environments.

In Oracle Enterprise Manager, Oracle RAC-specific administrative tasks generally focus on
two levels: tasks that affect an entire cluster database and tasks that affect specific instances.
For example, you can use Oracle Enterprise Manager to start, stop, and monitor databases,
cluster database instances, and their listeners, and to schedule jobs or set up alert thresholds
for metrics. Or you can perform instance-specific commands such as setting parameters or
creating resource plans. You can also use Oracle Enterprise Manager to manage schemas,
security, and cluster database storage features.

Related Topics

• Advanced Oracle Enterprise Manager Administration
You can install, configure, and monitor an Oracle RAC database from a single location
using Oracle Enterprise Manager Cloud Control.

Administering Oracle RAC with SQL*Plus
Unlike SRVCTL or Oracle Enterprise Manager, SQL*Plus is an instance-oriented
management tool.

SQL*Plus commands operate on the current instance. The current instance can be either the
local default instance on which you initiated your SQL*Plus session, or it can be a remote
instance to which you connect with Oracle Net Services. For an Oracle RAC environment that
runs multiple instances on one database at the same time, this implies that you need to
consider the extent to which SQL*Plus can operate on this instance. Due to those
restrictions, you should not use SQL*Plus to manage policy-managed databases.

Note:

Starting with Oracle Grid Infrastructure 21c, policy-managed databases are
deprecated.

For example, when using pluggable databases (PDBs)—regardless of whether those
databases are managed in an administrator-managed or a policy-managed style—you must
consider that any alteration performed on the PDB using a SQL*Plus connection will, by
default, only affect the current instance. To make changes affecting all instances that belong
to the PDB, you must use the ALTER PLUGGABLE DATABASE command with instance=all.
When using PDBs you must connect, using a dynamic database service (net_service_name),
to an instance, as PDBs represent themselves as dynamic database services associated with
one or more instances of an Oracle RAC database.

Because, by default, the SQL*Plus prompt does not identify the current instance, you should
direct your commands to the correct instance. Starting a SQL*Plus session and connecting to
the database without specifying an instance directs all SQL*Plus commands to the local
instance. In this case, the default instance is also the current instance.

Chapter 3
Overview of Oracle RAC Database Administration

3-5

Since the SQL*Plus prompt does not identify the current instance by default, you
should direct your commands to the correct instance. Starting a SQL*Plus session and
connecting to the database without specifying an instance directs all SQL*Plus
commands to the local instance. In this case, the default instance is also the current
instance. To connect to a different instance in SQL*Plus, issue a new CONNECT
command and specify a remote instance net service name, as shown in the following
example, where password is the password:

CONNECT user_name@net_service_name
Enter password: password

Connecting as SYSOPER or SYSRAC enables you to perform privileged operations, such
as instance startup and shutdown. Multiple SQL*Plus sessions can connect to the
same instance at the same time. SQL*Plus automatically disconnects you from the
first instance whenever you connect to another one.

Note:

Use the SYSASM privilege instead of the SYSRAC privilege to connect to and
administer an Oracle ASM instance. If you use the SYSRAC privilege to
connect to an Oracle ASM instance, then Oracle Database writes warnings
to the alert log files because commands that run using the SYSRAC privilege
on an Oracle ASM instance are deprecated.

Related Topics

• Authentication for Accessing Oracle ASM Instances

• Configuring Naming Methods

• Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement

How SQL*Plus Commands Affect Instances
You can use SQL*Plus to start and stop instances in the Oracle RAC database.

Most SQL statements affect the current instance. You do not need to run SQL*Plus
commands as root on Linux and UNIX systems or as Administrator on Windows
systems. You need only the proper database account with the privileges that you
normally use for a noncluster Oracle database. Some examples of how SQL*Plus
commands affect instances are:

• ALTER SYSTEM CHECKPOINT LOCAL affects only the instance to which you are
currently connected, rather than the default instance or all instances.

• ALTER SYSTEM CHECKPOINT or ALTER SYSTEM CHECKPOINT GLOBAL affects all
instances in the cluster database.

• ALTER SYSTEM SWITCH LOGFILE affects only the current instance.

– To force a global log switch, use the ALTER SYSTEM ARCHIVE LOG CURRENT
statement.

– The INSTANCE option of ALTER SYSTEM ARCHIVE LOG enables you to archive
each online redo log file for a specific instance.

Chapter 3
Overview of Oracle RAC Database Administration

3-6

The following table describes how SQL*Plus commands affect instances.

Table 3-1 How SQL*Plus Commands Affect Instances

SQL*Plus Command Associated Instance

ARCHIVE LOG
Always affects the current instance.

CONNECT
Affects the default instance if no instance is specified in the CONNECT
command.

HOST
Affects the node running the SQL*Plus session, regardless of the location
of the current and default instances.

RECOVER
Does not affect any particular instance, but rather the database.

SHOW INSTANCE
Displays information about the current instance, which can be different
from the default local instance if you have redirected your commands to a
remote instance.

SHOW PARAMETER

and

SHOW SGA

Displays parameter and SGA information from the current instance.

STARTUP

and

SHUTDOWN

Always affects the current instance. These are privileged SQL*Plus
commands.

Starting and Stopping Instances and Oracle RAC Databases
You can start and stop instances with Oracle Enterprise Manager, SQL*Plus, or SRVCTL.

Both Oracle Enterprise Manager and SRVCTL provide options to start and stop all of the
instances in an Oracle RAC database with a single step.

Using any tool, you can choose the startup state to which you want to start the database. The
state of the database and database instance will determine what operations you can perform.
You can perform certain operations only when the database is in the MOUNT (NOMOUNT)
state. Performing other operations requires that the database be in the OPEN state.

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-7

Note:

Oracle does not support running more than one instance of the same
database on the same node.

To start an Oracle RAC database instance on a node in the cluster, you must first start
the Oracle Grid Infrastructure stack on the node. An Oracle RAC database instance
will not start on a server on which the Oracle Grid Infrastructure stack is not running.

Oracle Database QoS Management Policy Workload Criticality Determines
Database Startup Order

If a user-created Oracle Database Quality of Service Management (Oracle Database
QoS Management) policy is active, then the ranked order of the performance classes
determines the order in which the associated Oracle RAC databases start or request
real-time LMS process slots. Using the performance class rankings ensures that
mission-critical databases running in a consolidated environment have their LMS
processes run in real time, thus eliminating a resource bottleneck within inter-node
communication. Because the Oracle Database QoS Management policy specifies the
rank of each workload, using the value of Max(Ranks) for each database provides a
consistent expression of the expressed business criticality of each database.

The procedures in the following sections discuss starting and stopping Oracle RAC
database instances:

• Starting One or More Instances and Oracle RAC Databases Using SRVCTL

• Stopping One or More Instances and Oracle RAC Databases Using SRVCTL

• Stopping All Databases and Instances Using CRSCTL

• Starting and Stopping Individual Instances Using SQL*Plus

Related Topics

• Oracle Database Concepts

Starting One or More Instances and Oracle RAC Databases Using
SRVCTL

Use SRVCTL start Oracle RAC databases and instances.

Note:

This section assumes that you are using an SPFILE for your database.

Enter the following SRVCTL syntax from the command line, providing the required
database name and instance name, or include multiple instance names to start
multiple specific instances:

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-8

• To start or stop your entire cluster database, that is, all of the instances and its enabled
services, enter the following SRVCTL commands:

$ srvctl start database -db db_unique_name [-startoption start_options]

$ srvctl stop database -db db_unique_name [-o stop_options]

The following SRVCTL command, for example, mounts all of the non-running instances
of an Oracle RAC database:

$ srvctl start database -db orcl -startoption mount

• To start administrator-managed databases, enter a comma-delimited list of instance
names:

$ srvctl start instance -db db_unique_name -instance instance_name_list
 [-startoption start_options]

In Windows you must enclose a comma-delimited list in double quotation marks ("").

• To start policy-managed databases, enter a single node name:

$ srvctl start instance -db db_unique_name -node node_name
 [-startoption start_options]

Note that this command also starts all enabled and non-running services that have
AUTOMATIC management policy, and for which the database role matches one of the
service's roles.

• To stop one or more instances, enter the following SRVCTL syntax from the command
line:

$ srvctl stop instance -db db_unique_name [-instance "instance_name_list"
|
 -node node_name] [-stopoption stop_options]

You can enter either a comma-delimited list of instance names to stop several instances
or you can enter a node name to stop one instance. In Windows you must enclose a
comma-delimited list in double quotation marks ("").

This command also stops the services related to the terminated instances on the nodes
where the instances were running. As an example, the following command shuts down the
two instances, orcl3 and orcl4, on the orcl database using the immediate stop option:

$ srvctl stop instance -db orcl -instance "orcl3,orcl4" -stopoption immediate

Related Topics

• Server Control Utility Reference

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-9

Stopping One or More Instances and Oracle RAC Databases Using
SRVCTL

Use SRVCTL to stop instances and Oracle RAC databases.

The procedure for shutting down Oracle RAC instances is identical to shutting down
instances in noncluster Oracle databases, with the following exceptions:

• In Oracle RAC, shutting down one instance does not interfere with the operation of
other running instances.

• To shut down an Oracle RAC database completely, shut down every instance that
has the database open or mounted.

• After a NORMAL or IMMEDIATE shutdown, instance recovery is not required.
Recovery is required, however, after you issue the SHUTDOWN ABORT command or
after an instance terminates unusually. An instance that is still running performs
instance recovery for the instance that shut down. If no other instances are
running, the next instance to open the database performs instance recovery for
any instances needing it.

• Using the SHUTDOWN TRANSACTIONAL command with the LOCAL option is useful to
shut down a particular Oracle RAC database instance. Transactions on other
instances do not block this operation. If you omit the LOCAL option, then this
operation waits until transactions on all other instances that started before you ran
the SHUTDOWN command either commit or rollback, which is a valid approach, if you
intend to shut down all instances of an Oracle RAC database.

Note:

SHUTDOWN TRANSACTIONAL and SHUTDOWN TRANSACTIONAL LOCAL both
perform the same action on a nonclustered database but the two
commands are different on an Oracle RAC database.

Enter the following SRVCTL syntax from the command line, providing the required
database name and instance name, or include multiple instance names to stop
multiple specific instances:

• To stop your entire cluster database, that is, all of the instances and its enabled
services, enter the following SRVCTL command:

$ srvctl stop database -db db_unique_name [-stopoption stop_options]

Use the TRANSACTIONAL stop option with the srvctl stop database command and
the TRANSACTIONAL LOCAL stop option with the srvctl stop instance command.

• To stop all instances and their enabled services that are managed by Oracle
Clusterware on one or more nodes, enter the following SRVCTL command:

$ srvctl stop instance -node "node_list" [-stopoption stop_options]

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-10

• To stop one or more instances, enter the following SRVCTL syntax from the command
line:

$ srvctl stop instance -db db_unique_name {-node "node_list" | -instance
"inst_name_list"}
 [-stopoption stop_options]

You can enter either a comma-delimited list of instance names to stop several instances
or you can enter a node name to stop one instance. In Windows you must enclose a
comma-delimited list in double quotation marks ("").

This command also stops the services related to the terminated instances on the nodes
where the instances were running. As an example, the following command shuts down
the two instances, orcl3 and orcl4, on the orcl database using the failover option for
CRS to find another node to run the services from it and the immediate stop option:

$ srvctl stop instance -db orcl -instance "orcl3,orcl4" -failover -
stopoption immediate

Related Topics

• srvctl stop database
Stops a database, its instances, and its services.

• srvctl stop instance
The srvctl stop instance command stops instances and stops any services running
on specified instances.

• Overview of Database and Instance Shutdown

• Shutting Down a Database

Stopping All Databases and Instances Using CRSCTL
You can use the crsctl stop crs command on the node or the crsctl stop cluster -all
command to stop all instances on a node or the entire cluster.

When you want to stop an entire node or cluster (for maintenance purposes, for example),
you run either the crsctl stop crs command on the node or the crsctl stop cluster -
all command, provided you have the required cluster privileges. These commands stop all
database instances running on a server or in the cluster and ensure that their state is
recovered after you restart the cluster. Using CRSCTL also enables Oracle Clusterware to
relocate services and other resources that can run elsewhere.

Using either of these CRSCTL commands to stop all database instances on a server or in the
cluster can lead to the database instances being stopped similar to shutdown abort, which
requires an instance recovery on startup. If you use SRVCTL to stop the database instances
manually before stopping the cluster, then you can prevent a shutdown abort, but this
requires that you manually restart the database instances after restarting Oracle Clusterware.

Starting and Stopping Individual Instances Using SQL*Plus
If you want to start or stop only one instance and you are connected to your local node, then
you must first ensure that your current environment includes the SID for the local instance.

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-11

Note that any subsequent commands in your session, whether inside or outside a
SQL*Plus session, are associated with that same SID.

Note:

This section assumes you are using an SPFILE.

To start or shutdown your local instance, initiate a SQL*Plus session and connect with
the SYSRAC or SYSOPER privilege and then issue the required command. For
example to start and mount an instance on your local node, run the following
commands in your SQL*Plus session:

 CONNECT / AS SYSRAC
 STARTUP MOUNT

Note:

If you use Oracle ASM disk groups, then use the SYSASM privilege instead
of the SYSRAC privilege to connect to and administer the Oracle ASM
instances.

Oracle recommends that you do not use SQL*Plus to manage Oracle ASM
instances in an Oracle RAC environment. Oracle Clusterware automatically
manages Oracle ASM instances, as required. If manual intervention is
necessary, then use respective SRVCTL commands.

You can start multiple instances from a single SQL*Plus session on one node using
Oracle Net Services. Connect to each instance in turn by using a Net Services
connection string, typically an instance-specific alias from your tnsnames.ora file.

For example, you can use a SQL*Plus session on a local node to perform a
transactional shutdown for two instances on remote nodes by connecting to each in
turn using the instance's individual alias name. Assume the alias name for the first
instance is db1 and that the alias for the second instance is db2. Connect to the first
instance and shut it down as follows:

 CONNECT /@db1 AS SYSRAC
 SHUTDOWN TRANSACTIONAL

Note:

To ensure that you connect to the correct instance, you must use an alias in
the connect string that is associated with only one instance. If you use a
connect string that uses a TNS alias that connects to a service or an Oracle
Net address that lists multiple IP addresses, then you might not be
connected to the specific instance you want to shut down.

Chapter 3
Starting and Stopping Instances and Oracle RAC Databases

3-12

Then connect to and shutdown the second instance by entering the following from your
SQL*Plus session:

 CONNECT /@db2 AS SYSRAC
 SHUTDOWN TRANSACTIONAL

It is not possible to start or stop multiple instances, simultaneously, with SQL*Plus, so you
cannot start or stop all of the instances for a cluster database with a single SQL*Plus
command. You may want to create a script that connects to each instance in turn and start it
up and shut it down. However, you must maintain this script manually if you add or drop
instances.

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

• SQL*Plus User's Guide and Reference

Starting and Stopping PDBs in Oracle RAC
Administering a pluggable database (PDB) involves a small subset of the tasks required to
administer a non-CDB.

Administering an Oracle RAC-based multitenant container database (CDB) is similar to
administering a non-CDB. The differences are that some administrative tasks apply to the
entire CDB, some to the CDB root, and some to specific PDBs. In this subset of tasks, most
are the same for a PDB and a non-CDB. There are some differences, however, such as when
you modify the open mode of a PDB. Also, a PDB administrator is limited to managing a
single PDB and is not affected by other PDBs in the CDB.

You manage PDBs in an Oracle RAC CDB by managing services. This is true regardless of
whether the PDBs are policy managed or administrator managed. Assign one dynamic
database service to each PDB to coordinate start, stop, and placement of PDBs across
instances in a clustered container database.

For example, if you have a CDB called raccont with a policy-managed PDB called spark in a
server pool called prod, then assign a service called plug to this database using the following
command:

srvctl add service –db raccont –pdb spark –service plug –serverpool prod

The service plug is uniformly managed across all nodes in the server pool. If you want to
have this service running as a singleton service in the same server pool, then use the -
cardinality singleton parameter with the preceding command.

To open the PDB spark, you must start the service plug as follows:

srvctl start service -db raccont -service plug

To stop the service plug:

srvctl stop service -db raccont -service plug

Chapter 3
Starting and Stopping PDBs in Oracle RAC

3-13

The PDB spark remains open until you close the PDB using the SQL command ALTER
PLUGGABLE DATABASE PDB_NAME CLOSE IMMEDIATE. You can check the status of the
database using the srvctl status service command.

Because PDBs are managed using dynamic database services, typical Oracle RAC-
based management practices apply. For this reason, if the service plug is in the online
state when Oracle Clusterware is shut down on a server hosting this service, then the
service is restored to its original state after the restart of Oracle Clusterware on this
server. Thus, starting PDBs is automated as with any other Oracle RAC database.

Note:

Unlike SQL*Plus, SRVCTL operates on an entire cluster database. Starting a
PDB using services therefore applies to multiple instances of the clustered
CDB at the same time when the service is defined to run on multiple servers
simultaneously and the current status of the cluster allows for this placement.

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and
services.

Verifying That Instances are Running
To verify that a database instance is available, use Oracle Enterprise Manager,
SRVCTL, or SQL*Plus.

• Using SRVCTL to Verify That Instances are Running

• Using SQL*Plus to Verify That Instances are Running

Using SRVCTL to Verify That Instances are Running
You can use SRVCTL to verify that instances are running on a particular database.

The following command provides an example of using SRVCTL to check the status of
the database instances for the Oracle RAC database named mail:

$ srvctl status database -db mail

This command returns output similar to the following:

Instance mail1 is running on node betal011Instance mail2 is running on node
betal010

Additionally, you can check whether PDBs are running in the cluster by checking the
availability of their assigned services, as follows:

$ srvctl status service -db db_unique_name -service service_name

Chapter 3
Verifying That Instances are Running

3-14

Using SQL*Plus to Verify That Instances are Running
You can use SQL*Plus to verify that database instances are running.

1. On any node, from a SQL*Plus prompt, connect to a database instance by using a Net
Services connection string, typically an instance-specific alias from your tnsnames.ora
file.

CONNECT /@db1 as SYSRAC

2. Query the V$ACTIVE_INSTANCES view, using the following statement:

CONNECT SYS/as SYSRAC
Enter password: password
SELECT * FROM V$ACTIVE_INSTANCES;

This query returns output similar to the following:

INST_NUMBER INST_NAME
----------- -----------------
1 db1-sun:db1
2 db2-sun:db2
3 db3-sun:db3

The output columns for this example are shown in the following table.

Table 3-2 Descriptions of V$ACTIVE_INSTANCES Columns

Column Description

INST_NUMBER Identifies the instance number.

INST_NAME Identifies the host name and instance name as
host_name:instance_name.

Terminating Sessions On a Specific Cluster Instance
You can use the ALTER SYSTEM KILL SESSION statement to terminate a session on a
specific instance.

When a session is terminated, any session active transactions are rolled back, and resources
held by the session (such as locks and memory areas) are immediately released and
available to other sessions.

Using the ALTER SYSTEM KILL SESSION statement enables you to maintain strict application
service-level agreements in Oracle RAC environments. Often, the goal of a service-level
agreement is to carry out a transaction in a specified time limit. In an Oracle RAC
environment, this may require terminating a transaction on an instance, and retrying the
transaction on another instance within a specified time frame.

Chapter 3
Terminating Sessions On a Specific Cluster Instance

3-15

Note:

You can use Application Continuity to hide the cancellation of a transaction
from the user, if the application initially used an Application Continuity-
enabled dynamic database service to connect to the database instance.

For a more granular approach to service-level management, Oracle
recommends that you use Oracle Database Quality of Service Management
(Oracle Database QoS Management) for all Oracle RAC-based databases.

To terminate sessions, follow these steps:

1. Query the value of the INST_ID column in the GV$SESSION dynamic performance
view to identify which session to terminate.

2. Issue the ALTER SYSTEM KILL SESSION and specify the session index number
(SID) and serial number of a session that you identified with the GV$SESSION
dynamic performance view.

KILL SESSION 'integer1, integer2[, @integer3]'

• For integer1, specify the value of the SID column.

• For integer2, specify the value of the SERIAL# column.

• For the optional integer3, specify the ID of the instance where the session to
be terminated exists. You can find the instance ID by querying the GV$ tables.

To use this statement, your instance must have the database open, and your
session and the session to be terminated must be on the same instance unless
you specify integer3.

If the session is performing some activity that must be completed, such as waiting for a
reply from a remote database or rolling back a transaction, then Oracle Database
waits for this activity to complete, marks the session as terminated, and then returns
control to you. If the waiting lasts a minute, then Oracle Database marks the session to
be terminated and returns control to you with a message that the session is marked to
be terminated. The PMON background process then marks the session as terminated
when the activity is complete.

Examples of Identifying and Terminating Sessions

The following examples provide three scenarios in which a user identifies and
terminates a specific session. In each example, the SYSDBA first queries the
GV$SESSION view for the SCOTT user's session to identify the session to terminate, and
then runs the ALTER SYSTEM KILL SESSION statement to terminate the session on the
instance.

Chapter 3
Terminating Sessions On a Specific Cluster Instance

3-16

Example 3-1 Identify and terminate the session on an busy instance

In this example, assume that the running session is SYSDBA on the instance INST_ID=1. The
ORA-00031 message is returned because some activity must be completed before the session
can be terminated.

SQL> SELECT SID, SERIAL#, INST_ID FROM GV$SESSION WHERE USERNAME='SCOTT';

 SID SERIAL# INST_ID
---------- ---------- ----------
 80 4 2

SQL> ALTER SYSTEM KILL SESSION '80, 4, @2';
alter system kill session '80, 4, @2'
*
ERROR at line 1:
ORA-00031: session marked for kill
SQL>

Example 3-2 Identify and terminate the session on an idle instance

In this example, assume that the running session is SYSDBA on the instance INST_ID=1. The
session on instance INST_ID=2 is terminated immediately when Oracle Database runs the
statement within 60 seconds.

SQL> SELECT SID, SERIAL#, INST_ID FROM GV$SESSION WHERE USERNAME='SCOTT';

 SID SERIAL# INST_ID
---------- ---------- ----------
 80 6 2

SQL> ALTER SYSTEM KILL SESSION '80, 6, @2';

System altered.

SQL>

Example 3-3 Using the IMMEDIATE parameter

The following example includes the optional IMMEDIATE clause to immediately terminate the
session without waiting for outstanding activity to complete.

SQL> SELECT SID, SERIAL#, INST_ID FROM GV$SESSION WHERE USERNAME='SCOTT';

 SID SERIAL# INST_ID
---------- ---------- ----------
 80 8 2

SQL> ALTER SYSTEM KILL SESSION '80, 8, @2' IMMEDIATE;

System altered.

SQL>

Chapter 3
Terminating Sessions On a Specific Cluster Instance

3-17

Related Topics

• Oracle Database Administrator’s Guide

• Oracle Database 2 Day + Performance Tuning Guide

• About Application Continuity
The Application Continuity feature offered with Oracle Database increases fault
tolerance for systems and applications using the database.

Overview of Initialization Parameter Files in Oracle RAC
The initialization parameters for an Oracle RAC database are stored in a SPFILE.

When you create the database, Oracle Database creates an SPFILE in the file location
that you specify. This location can be either an Oracle Automatic Storage Management
(Oracle ASM) disk group or a cluster file system. If you manually create your
database, then Oracle recommends that you create an SPFILE from an initialization
parameter file (PFILE).

Note:

Oracle RAC uses a traditional PFILE only if an SPFILE does not exist or if
you specify PFILE in your STARTUP command. Oracle recommends that you
use an SPFILE to simplify administration, to maintain parameter setting
consistency, and to guarantee parameter setting persistence across
database shutdown and startup events. In addition, you can configure Oracle
Recovery Manager (RMAN) to back up your SPFILE.

All instances in the cluster database use the same SPFILE at startup. Because the
SPFILE is a binary file, do not directly edit the SPFILE with an editor. Instead, change
SPFILE parameter settings using Oracle Enterprise Manager or ALTER SYSTEM SQL
statements.

Setting SPFILE Parameter Values for Oracle RAC
You can change SPFILE settings with Oracle Enterprise Manager or by using the SET
clause of the ALTER SYSTEM statement.

Note:

Modifying the SPFILE using tools other than Oracle Enterprise Manager or
SQL*Plus can corrupt the file and prevent database startup. To repair the file,
you might be required to create a PFILE and then regenerate the SPFILE.

The examples in this section appear in ASCII text although the SPFILE is a binary file.
Assume that you start an instance with an SPFILE containing the following entries:

*.OPEN_CURSORS=500
prod1.OPEN_CURSORS=1000

Chapter 3
Overview of Initialization Parameter Files in Oracle RAC

3-18

The value before the period (.) in an SPFILE entry identifies the instance to which the
particular parameter value belongs. When an asterisk (*) precedes the period, the value is
applied to all instances that do not have a subsequent, individual value listed in the SPFILE.

For the instance with the Oracle system identifier (SID) prod1, the OPEN_CURSORS parameter is
set to 1000 even though it has a database-wide setting of 500. Parameter file entries that
have the asterisk (*) wildcard character only affect the instances without an instance-specific
entry. This gives you control over parameter settings for instance prod1. These two types of
settings can appear in any order in the parameter file.

If another DBA runs the following statement, then Oracle Database updates the setting on all
instances except the instance with SID prod1:

ALTER SYSTEM SET OPEN_CURSORS=1500 sid='*' SCOPE=SPFILE;

The SPFILE now has the following entries for OPEN_CURSORS:

*.OPEN_CURSORS=1500
prod1.OPEN_CURSORS=1000

Run the following statement to reset OPEN_CURSORS to its default value for all instances except
prod1:

ALTER SYSTEM RESET OPEN_CURSORS SCOPE=SPFILE;

The SPFILE now has only the following entry for prod1:

prod1.OPEN_CURSORS=1000

Run the following statement to reset the OPEN_CURSORS parameter to its default value for
instance prod1 only:

ALTER SYSTEM RESET OPEN_CURSORS SCOPE=SPFILE SID='prod1';

Parameter File Search Order in Oracle RAC
Oracle Database searches for your parameter file in a particular order depending on your
platform. For Oracle RAC databases, you can easily determine the location of the parameter
file by using the srvctl config database command.

On Linux and UNIX platforms, the search order is as follows:

1. $ORACLE_HOME/dbs/spfilesid.ora
2. $ORACLE_HOME/dbs/spfile.ora
3. $ORACLE_HOME/dbs/initsid.ora
On Windows platforms, the search order is as follows:

1. %ORACLE_HOME%\database\spfilesid.ora
2. %ORACLE_HOME%\database\spfile.ora

Chapter 3
Overview of Initialization Parameter Files in Oracle RAC

3-19

3. %ORACLE_HOME%\database\initsid.ora

Note:

Oracle recommends that you do not use the default SPFILE names because
all instances must use the same file and they all have different SIDs. Instead,
store the SPFILE on Oracle ASM. If you store the SPFILE on a cluster file
system, then use the following naming convention for the
SPFILE: $ORACLE_HOME/dbs/spfiledb_unique_name.ora. Create a PFILE
named $ORACLE_HOME/dbs/initsid.ora that contains the name
SPFILE=ORACLE_HOME/dbs/spfiledb_unique_name.ora.

Related Topics

• srvctl config database
Displays the configuration for an Oracle RAC database or lists all configured
databases that are registered with Oracle Clusterware.

Backing Up the Server Parameter File
Oracle recommends that you regularly back up the server parameter file for recovery
purposes.

Do this using Oracle Enterprise Manager or use the CREATE PFILE statement. For
example:

CREATE PFILE='/u01/oracle/dbs/test_init.ora'
FROM SPFILE='/u01/oracle/dbs/test_spfile.ora';

You can use Recovery Manager (RMAN) to create backups of the server parameter
file. You can also recover an SPFILE by starting an instance using a client-side
initialization parameter file. Then re-create the server parameter file using the CREATE
SPFILE statement. Note that if the parameter file that you use for this operation was for
a single instance, then the parameter file does not contain instance-specific values,
even those that must be unique in Oracle RAC instances. Therefore, ensure that your
parameter file contains the appropriate settings as described earlier in this chapter.

To ensure that your SPFILE (and control files) are automatically backed up by RMAN
during typical backup operations, use Oracle Enterprise Manager or the RMAN
CONTROLFILE AUTOBACKUP statement to enable the RMAN autobackup feature

Related Topics

• CREATE SPFILE

• Oracle Database Backup and Recovery Reference

Initialization Parameter Use in Oracle RAC
By default, most parameters are set to a default value and this value is the same
across all instances.

Chapter 3
Initialization Parameter Use in Oracle RAC

3-20

However, many initialization parameters can also have different values on different instances
as described in Table 3-3. Other parameters must either be unique or identical as described
in the following sections

• Parameters That Must Have Identical Settings on All Instances

• Parameters That Have Unique Settings on All Instances

• Parameters That Should Have Identical Settings on All Instances

Table 3-3 summarizes the initialization parameters used specifically for Oracle RAC
databases.

Table 3-3 Initialization Parameters Specific to Oracle RAC

Parameter Description

ACTIVE_INSTANCE_COUNT This initialization parameter was deprecated in Oracle RAC 11g release 2 (11.2).
Instead, use a service with one preferred and one available instance.

ASM_PREFERRED_READ_FAILU
RE_GROUPS

Specifies a set of disks to be the preferred disks from which to read mirror data
copies. The values you set for this parameter are instance specific and need not
be the same on all instances.

CLUSTER_DATABASE Enables a database to be started in cluster mode. Set this parameter to TRUE.

CLUSTER_DATABASE_INSTANC
ES

Oracle RAC uses this parameter to allocate adequate memory resources. It must
be set to the same value on all instances.

• For policy-managed databases, Oracle internally sets this parameter to 16
• For administrator-managed databases, Oracle internally sets it to the number

of configured Oracle RAC instances
You can set this parameter to a value that is greater than the current number of
instances, if you are planning to add instances. For policy-managed databases,
you should set this parameter to a higher value only if you intend to run a
database with more than 16 instances. In this case, set the parameter to the
expected maximum number of instances on which this database will run.

CLUSTER_INTERCONNECTS Specifies an alternative cluster interconnect for the private network when there
are multiple interconnects.

Notes:
• Oracle recommends that all Oracle databases and Oracle Clusterware use

the same interconnect network.
• Oracle does not recommend setting the CLUSTER_INTERCONNECTS

parameter except in certain situations. See "Administering Multiple Cluster
Interconnects on Linux and UNIX Platforms" for more details.

• This parameter is stored in the Grid Plug and Play profile in a Grid Plug and
Play environment.

DB_NAME If you set a value for DB_NAME in instance-specific parameter files, the setting
must be identical for all instances.

Chapter 3
Initialization Parameter Use in Oracle RAC

3-21

Table 3-3 (Cont.) Initialization Parameters Specific to Oracle RAC

Parameter Description

DISPATCHERS Set the DISPATCHERS parameter to enable a shared server configuration, that is
a server that is configured to enable many user processes to share very few
server processes. With shared server configurations, many user processes
connect to a dispatcher. The DISPATCHERS parameter may contain many
attributes.

Oracle recommends that you configure at least the PROTOCOL and LISTENER
attributes. PROTOCOL specifies the network protocol for which the dispatcher
process generates a listening end point. LISTENER specifies an alias name for
the Oracle Net Services listeners. Set the alias to a name that is resolved through
a naming method such as a tnsnames.ora file. The tnsnames.ora file contains
net service names. Clients, nodes, and the Oracle Performance Manager node
need this file. Oracle Enterprise Manager does not require tnsnames.ora
entries on the client for Cloud Control.

See Also: Oracle Database Net Services Administrator's Guide for complete
information about configuring the DISPATCHERS parameter and its attributes and
for configuring the shared server

GCS_SERVER_PROCESSES This static parameter specifies the initial number of server processes for an
Oracle RAC instance's Global Cache Service (GCS). The GCS processes
manage the routing of inter-instance traffic among Oracle RAC instances. The
default number of GCS server processes is calculated based on system
resources with a minimum setting of 2. For systems with one CPU, there is one
GCS server process. For systems with two to eight CPUs, there are two GCS
server processes. For systems with more than eight CPUs, the number of GCS
server processes equals the number of CPUs divided by 4, dropping any
fractions. For example, if you have 10 CPUs, then 10 divided by 4 means that
your system has 2 GCS processes. You can set this parameter to different values
on different instances.

INSTANCE_NAME Specifies the unique name of an instance. Clients can use this name to force their
session to be connected to a specific instance in the cluster. The format of the
INSTANCE_NAME parameter is generally db_unique_name_instance_number,
such as orcldb_2.

Note: In Grid Plug and Play environments, the INSTANCE_NAME parameter is not
required and defaults to db_unique_name_instance_number if not specified.

RESULT_CACHE_MAX_SIZE In a clustered database, you can either set RESULT_CACHE_MAX_SIZE=0 on
every instance to disable the result cache, or use a nonzero value on every
instance to enable the result cache. To switch between enabled and disabled
result cache requires that you restart every instance:

• Enabling the result cache: Set RESULT_CACHE_MAX_SIZE to a value
greater than 0, or leave the parameter unset. You can size the cache
differently on individual instances.

• Disabling the result cache: Set RESULT_CACHE_MAX_SIZE=0 on all
instances to disable the result cache. If you set
RESULT_CACHE_MAX_SIZE=0 upon startup of any one instance, then you
must set the parameter to zero on all instance startups because disabling the
result cache must done clusterwide. Disabling the result cache on some
instances may lead to incorrect results.

If you do not set the RESULT_CACHE_MAX_SIZE parameter, the parameter
resolves to a default, nonzero value.

Chapter 3
Initialization Parameter Use in Oracle RAC

3-22

Table 3-3 (Cont.) Initialization Parameters Specific to Oracle RAC

Parameter Description

SERVICE_NAMES When you use services, Oracle recommends that you do not set a value for the
SERVICE_NAMES parameter but instead you should create cluster managed
services through the Cluster Managed Services page in Oracle Enterprise
Manager Cloud Control. This is because Oracle Clusterware controls the setting
for this parameter for the services that you create and for the default database
service. The service features described in Workload Management with Dynamic
Database Services are not directly related to the features that Oracle provides
when you set SERVICE_NAMES. In addition, setting a value for this parameter may
override some benefits of using services.

Note: Oracle recommends that client connections use services rather than
instance names. Entries in the SERVICE_NAMES parameter may be used by client
connections rather than the INSTANCE_NAME parameter value. The
SERVICE_NAMES parameter may include one or more names and different
instances may share one or more names with other instances, enabling a client to
connect to either a specific instance or to any one of a set of instances,
depending on the service name chosen in the connection string.

SPFILE When you use an SPFILE, all Oracle RAC database instances must use the
SPFILE and the file must be on shared storage.

THREAD Specifies the number of the redo threads to be used by an instance. You can
specify any available redo thread number if that thread number is enabled and is
not used. If specified, this parameter must have unique values on all instances.
The best practice is to use the INSTANCE_NAME parameter to specify redo log
groups.

Related Topics

• Oracle Database Reference

Parameters That Must Have Identical Settings on All Instances
Certain parameters that are critical at database creation or that affect certain database
operations must have the same value for every instance in an Oracle RAC database.

Specify these initialization parameter values in the SPFILE or in the individual PFILEs for
each instance. The following list contains the parameters that must be identical on every
instance:

COMPATIBLE
CLUSTER_DATABASE
CONTROL_FILES
DB_BLOCK_SIZE
DB_DOMAIN
DB_FILES
DB_NAME
DB_RECOVERY_FILE_DEST
DB_RECOVERY_FILE_DEST_SIZE
DB_UNIQUE_NAME
INSTANCE_TYPE (RDBMS or ASM)
PARALLEL_EXECUTION_MESSAGE_SIZE

Chapter 3
Initialization Parameter Use in Oracle RAC

3-23

REMOTE_LOGIN_PASSWORDFILE
UNDO_MANAGEMENT

The following parameters must be identical on every instance only if the parameter
value is set to zero:

DML_LOCKS
RESULT_CACHE_MAX_SIZE

Parameters That Have Unique Settings on All Instances
Certain parameters are unique to each instance, such as the INSTANCE_NUMBER
parameter.

Starting with Oracle Grid Infrastructure 21c, policy-managed databases are
deprecated.

When it is necessary to set parameters that have unique settings on a policy-managed
database, you can ensure that instances always use the same name on particular
nodes by running the srvctl modify instance -n node_name -i instance_name
command for each server that can be assigned to the database's server pool. Then a
unique value of the parameter can be specified for instance_name that is used
whenever the database runs on node_name.

Specify the ORACLE_SID environment variable, which consists of the database name
and the number of the INSTANCE_NAME assigned to the instance.

Use the CLUSTER_INTERCONNECTS initialization parameter to specify an alternative
interconnect to the one Oracle Clusterware is using for the private network. Each
instance of the Oracle RAC database gets a unique value when setting the
CLUSTER_INTERCONNECTS initialization parameter.

Oracle Database uses the INSTANCE_NUMBER parameter to distinguish among instances
at startup and the INSTANCE_NAME parameter to assign redo log groups to specific
instances. The instance name can take the form db_unique_name_instance_number
and when it has this form of name and number separated by an underscore, the
number after the underscore is used as the INSTANCE_NUMBER. With Oracle Database
11.2 using Grid Plug and Play, you no longer have to explicitly assign instance
numbers for policy-managed databases and the instance name defaults to
db_unique_name_instance_number, where Oracle Database assigns the instance
number.

When you specify UNDO_TABLESPACE with automatic undo management enabled, then
set this parameter to a unique undo tablespace name for each instance.

If you use the ROLLBACK_SEGMENTS parameters, then Oracle recommends setting
unique values for it by using the SID identifier in the SPFILE. However, you must set a
unique value for INSTANCE_NUMBER for each instance and you cannot use a default
value.

Using the ASM_PREFERRED_READ_FAILURE_GROUPS initialization parameter, you can
specify a list of preferred read failure group names. The disks in those failure groups
become the preferred read disks. Thus, every node can read from its local disks. This
results in higher efficiency and performance and reduced network traffic. The setting
for this parameter is instance-specific, and the values need not be the same on all
instances.

Chapter 3
Initialization Parameter Use in Oracle RAC

3-24

Related Topics

• Administering Multiple Cluster Interconnects on Linux and UNIX Platforms
In Oracle RAC environments that run on Linux and UNIX platforms, you can use the
CLUSTER_INTERCONNECTS initialization parameter to specify an alternative interconnect to
the one Oracle Clusterware is using for the private network.

Parameters That Should Have Identical Settings on All Instances
Oracle recommends that the parameters listed here have identical settings on all instances.

Oracle recommends that you set the values for the parameters in Table 3-4 to the same value
on all instances. Although you can have different settings for these parameters on different
instances, setting each parameter to the same value on all instances simplifies
administration.

Table 3-4 Parameters That Should Have Identical Settings on All Instances

Parameter Description

ARCHIVE_LAG_TARGET Different values for instances in your Oracle RAC database are likely to
increase overhead because of additional automatic synchronization
performed by the database processing.

When using either Oracle GoldenGate downstream capture or Oracle
GoldenGate integrated capture mode in a downstream capture
configuration with your Oracle RAC database, the value must be greater
than zero.

CLUSTER_DATABASE_INST
ANCES

While it is preferable for this parameter to have identical settings across
all Oracle RAC database instances, it is not required.

LICENSE_MAX_USERS Because this parameter determines a database-wide limit on the number
of users defined in the database, it is useful to have the same value on
all instances of your database so you can see the current value no
matter which instance you are using. Setting different values may cause
Oracle Database to generate additional warning messages during
instance startup, or cause commands related to database user
management to fail on some instances.

LOG_ARCHIVE_FORMAT If you do not use the same value for all your instances, then you
unnecessarily complicate media recovery. The recovering instance
expects the required archive log file names to have the format defined by
its own value of LOG_ARCHIVE_FORMAT, regardless of which instance
created the archive log files.

Databases that support Oracle Data Guard, either to send or receive
archived redo log files, must use the same value of
LOG_ARCHIVE_FORMAT for all instances.

SPFILE If this parameter does not identify the same file to all instances, then
each instance may behave differently and unpredictably in fail over, load-
balancing, and during normal operations. Additionally, a change you
make to the SPFILE with an ALTER SYSTEM SET or ALTER SYSTEM
RESET command is saved only in the SPFILE used by the instance
where you run the command. Your change is not reflected in instances
using different SPFILEs.

If the SPFILE values are different in instances for which the values were
set by the server, then you should restart the instances that are not using
the default SPFILE.

Chapter 3
Initialization Parameter Use in Oracle RAC

3-25

Table 3-4 (Cont.) Parameters That Should Have Identical Settings on All Instances

Parameter Description

TRACE_ENABLED If you want diagnostic trace information to be always available for your
Oracle RAC database, you must set TRACE_ENABLED to TRUE on all of
your database instances. If you trace on only some of your instances,
then diagnostic information might not be available when required should
the only accessible instances be those with TRACE_ENABLED set to
FALSE.

UNDO_RETENTION By setting different values for UNDO_RETENTION in each instance, you
are likely to reduce scalability and encounter unpredictable behavior
following a failover. Therefore, you should carefully consider whether
there are any benefits before you assign different values for this
parameter to the instances in your Oracle RAC database.

Converting an Administrator-Managed Database to a Policy-
Managed Database

You can convert an administrator-managed database to a policy-managed database.

Note:

If the administrator-managed database is configured for a low-privileged user
and you attempt to convert the database to a policy-managed database, then
you must manually add a wallet (if one does not already exist) for this low
privileged user, so that a Windows service for Oracle Database can be
created.

To convert an administrator-managed database:

1. Check the current configuration of all services and the database (if you make a
mistake and need to recover, then you can know what the configuration looked like
when you began), as follows:

srvctl config database -db db_unique_name
srvctl config service -db db_unique_name

2. Create a server pool for the policy-managed database (you must be a cluster
administrator to do this), as follows:

srvctl add srvpool -serverpool server_pool -min 0 -max n

In the preceding command, 0 is the minimum number of servers you want in the
server pool and n is the maximum.

Chapter 3
Converting an Administrator-Managed Database to a Policy-Managed Database

3-26

Note:

This step does not necessarily place servers in the newly-created server pool. If
there are no servers in the Free pool from which the new server pool can
allocate servers, for example, then you may have to use the srvctl relocate
server command to relocate a server from another server pool once the
conversion is complete.

3. Stop the database using Oracle Enterprise Manager or SRVCTL, as follows:

srvctl stop database -db db_unique_name

4. Modify the database to be in the new server pool, as follows:

srvctl modify database -db db_unique_name -serverpool server_pool

5. Add a service user to the wallet, as follows:

crsctl add wallet -type OSUSER -user user_name -passwd

6. Check the status of the database to confirm that it is now policy managed by repeating
the commands in step 1.

Configure Oracle Enterprise Manager to recognize the change you made in the previous
procedure, as follows:

1. In order for Oracle Enterprise Manager Cloud Control to recognize the new database
instances, you must change the instance name from db_unique_name# to
db_unique_name_# (notice the additional underscore (_) before the number sign (#)
character).

2. Rename the orapwd file in the dbs/database directory (or create a new orapwd file by
running the orapwd command).

By default, there is an orapwd file with the instance name appended to it, such as
orapwdORCL1. You must change the name of the file to correspond to the instance name
you changed in the previous step. For example, you must change orapwdORCL1 to
orapwdORCL_1 or create a new orapwd file.

You cannot directly convert a policy-managed database to an administrator-managed
database. Instead, you can remove the policy-managed configuration using the srvctl
remove database and srvctl remove service commands, and then register the same
database as an administrator-managed database using the srvctl add database and
srvctl add instance commands. Once you register the database and instance, you must
use the srvctl add service command to add back the services as you removed them.

Services for administrator-managed databases continue to be defined by the PREFERRED and
AVAILABLE definitions. For policy-managed databases, a service is defined to a database
server pool and can either be uniform (running on all instances in the server pool) or
singleton (running on only one instance in the server pool). If you change the management
policy of the database, then you must recreate the database services to be either uniform/
singleton or PREFERRED/AVAILABLE, depending upon which database management policy you
choose.

Chapter 3
Converting an Administrator-Managed Database to a Policy-Managed Database

3-27

Related Topics

• Server Control Utility Reference

• Service Deployment Options

Managing Memory Pressure for Database Servers
Memory Guard detects memory pressure on a server in real time and redirects new
sessions to other servers to prevent using all available memory on the stressed server.

Enterprise database servers can use all available memory due to too many open
sessions or runaway workloads. Running out of memory can result in failed
transactions or, in extreme cases, a restart of the server and the loss of a valuable
resource for your applications. Memory Guard detects memory pressure on a server in
real time and redirects new sessions to other servers to prevent using all available
memory on the stressed server.

Rerouting new sessions to different servers protects the existing workloads on the
memory-stressed server and enables the server to remain available. Memory Guard is
a feature of Oracle RAC that manages the memory pressure for servers, adding a new
resource protection capability in managing service levels for applications hosted on
Oracle RAC databases.

When Oracle Database Oracle Database Quality of Service Management is enabled,
Cluster Health Monitor sends a metrics stream that provides real-time information
about memory resources for the cluster servers to Memory Guard. This information
includes the following:

• Amount of available memory

• Amount of memory currently in use

If Memory Guard determines that a node is experiencing memory pressure, then the
database services managed by Oracle Clusterware are stopped on that node,
preventing new connections from being created. After the memory stress is relieved,
the services on that node are restarted automatically, and the listener starts sending
new connections to that server. The memory pressure can be relieved in several ways
(for example, by closing existing sessions or by user intervention).

Quiescing Oracle RAC Databases
The procedure for quiescing Oracle RAC databases is identical to quiescing a
noncluster database.

You use the ALTER SYSTEM QUIESCE RESTRICTED statement from one instance. You
cannot open the database from any instance while the database is in the process of
being quiesced. When all non-DBA sessions become inactive, the ALTER SYSTEM
QUIESCE RESTRICTED statement finishes, and the database is considered as in a
quiesced state. In an Oracle RAC environment, this statement affects all instances, not
only the one from which the statement is issued.

To successfully issue the ALTER SYSTEM QUIESCE RESTRICTED statement in an Oracle
RAC environment, you must have the Database Resource Manager feature activated,
and it must have been activated since instance startup for all instances in the cluster
database. It is through the facilities of the Database Resource Manager that non-DBA
sessions are prevented from becoming active. Also, while this statement is in effect,

Chapter 3
Managing Memory Pressure for Database Servers

3-28

any attempt to change the current resource plan is queued until after the system is
unquiesced.

These conditions apply to Oracle RAC:

• If you issued the ALTER SYSTEM QUIESCE RESTRICTED statement but Oracle Database has
not finished processing it, you cannot open the database.

• You cannot open the database if it is in a quiesced state.

• The ALTER SYSTEM QUIESCE RESTRICTED and ALTER SYSTEM UNQUIESCE statements affect
all instances in an Oracle RAC environment, not only the instance that issues the
command.

Note:

You cannot use the quiesced state to take a cold backup. This is because Oracle
Database background processes may still perform updates for Oracle Database
internal purposes even while the database is in quiesced state. In addition, the file
headers of online data files continue to look like they are being accessed. They do
not look the same as if a clean shutdown were done. You can still take online
backups while the database is in a quiesced state.

Related Topics

• Oracle Database Administrator’s Guide

• ALTER SYSTEM

Administering Multiple Cluster Interconnects on Linux and UNIX
Platforms

In Oracle RAC environments that run on Linux and UNIX platforms, you can use the
CLUSTER_INTERCONNECTS initialization parameter to specify an alternative interconnect to the
one Oracle Clusterware is using for the private network.

Note:

The CLUSTER_INTERCONNECTS initialization parameter should not be set to highly
available IP (HAIP) addresses provided by Redundant Interconnect Usage. HAIP
addresses are recognized automatically.

If you set multiple values for CLUSTER_INTERCONNECTS, then Oracle Database uses all of the
network interfaces that you specify for the interconnect, providing load balancing if all of the
listed interconnects remain operational. You must use identical values, including the order in
which the interconnects are listed, on all instances of your database when defining multiple
interconnects with this parameter.

Chapter 3
Administering Multiple Cluster Interconnects on Linux and UNIX Platforms

3-29

Note:

Oracle does not recommend setting the CLUSTER_INTERCONNECTS initialization
parameter, which overrides the default interconnect settings at the operating
system level.

Instead, the best practice is to use Redundant Interconnect Usage, available with
Oracle Grid Infrastructure 11g release 2 (11.2) for Oracle RAC and Oracle Real
Application Clusters One Node 11g release 2 (11.2) databases, and later. For
databases that precede Oracle Database 11g release 2 (11.2), use operating system-
based network bonding technologies to enable high availability (and load balancing)
for network interface cards meant to be used as the cluster interconnect. If you want to
use multiple database versions in one cluster, you can combine both techniques.
Redundant Interconnect Usage will use the interfaces as presented on the operating
system level, regardless of bonding. For more information regarding bonding
technologies contact your operating system vendor.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Use Cases for Setting the CLUSTER_INTERCONNECTS Parameter
The CLUSTER_INTERCONNECTS initialization parameter requires an IP address. It enables
you to specify multiple IP addresses, separated by colons. Oracle RAC network traffic
is distributed between the specified IP addresses.

Note:

• Oracle does not recommend setting the CLUSTER_INTERCONNECTS
parameter when using a policy-managed database.

• Oracle recommends that all databases and Oracle Clusterware use the
same interconnect network.

Typically, you set the CLUSTER_INTERCONNECTS parameter only in the following
situations:

• The cluster is running multiple databases and you need the interconnect traffic to
be separated and you do not use Redundant Interconnect Usage.

• You have a single IP address that is made highly available by the operating
system, and it does not have a stable interface name (for example, the name can
change when you restart).

Do not set the CLUSTER_INTERCONNECTS parameter for the following common
configurations:

• If you want to use Redundant Interconnect Usage.

• If you have only one cluster interconnect.

Chapter 3
Administering Multiple Cluster Interconnects on Linux and UNIX Platforms

3-30

• If the default cluster interconnect meets the bandwidth requirements of your Oracle RAC
database, which is typically the case.

Consider the following important points when specifying the CLUSTER_INTERCONNECTS
initialization parameter:

• The CLUSTER_INTERCONNECTS initialization parameter is useful only in Linux and UNIX
environments where UDP IPC is enabled.

• Specify a different value for each instance of the Oracle RAC database when setting the
CLUSTER_INTERCONNECTS initialization parameter in the parameter file.

• The IP addresses you specify for the different instances of the same database on
different nodes must belong to network adapters that connect to the same interconnect
network.

• If you specify multiple IP addresses for this parameter, then list them in the same order
for all instances of the same database. For example, if the parameter for the first instance
on node1 lists the IP addresses of the alt0:, fta0:, and ics0: devices in that order, then
the parameter for the second instance on node2 must list the IP addresses of the
equivalent network adapters in the same order.

• If an operating system error occurs while Oracle Database is writing to the interconnect
that you specify with the CLUSTER_INTERCONNECTS parameter, then Oracle Database
returns an error even if some other interfaces are available. This is because the
communication protocols between Oracle Database and the interconnect can vary greatly
depending on your platform. See your Oracle Database platform-specific documentation
for more information.

Example

Consider setting CLUSTER_INTERCONNECTS when a single cluster interconnect cannot meet
your bandwidth requirements. You may need to set this parameter in data warehouse
environments with high interconnect bandwidth demands from one or more databases that
cannot use Redundant Interconnect Usage.

For example, if you have two databases with high interconnect bandwidth requirements, then
you can override the default interconnect provided by your operating system and nominate a
different interconnect for each database using the following syntax in each server parameter
file where ipn is an IP address in standard dot-decimal format, for example: 144.25.16.214:

Database One: crm1.CLUSTER_INTERCONNECTS = ip1
Database Two: ext1.CLUSTER_INTERCONNECTS = ip2

If you have one database with high bandwidth demands, then you can nominate multiple
interconnects using the following syntax:

CLUSTER_INTERCONNECTS = ip1:ip2:...:ipn

Related Topics

• Oracle Database Reference

Chapter 3
Administering Multiple Cluster Interconnects on Linux and UNIX Platforms

3-31

Customizing How Oracle Clusterware Manages Oracle RAC
Databases

Use these examples to minimize Oracle Clusterware control over Oracle RAC
databases, which you may need to do during upgrades.

By default, Oracle Clusterware controls database restarts in Oracle RAC
environments. In some cases, you may need to minimize the level of control that
Oracle Clusterware has over your Oracle RAC database, for example, during
database upgrades.

Note:

When using third-party clusterware, Oracle recommends that you use Oracle
Clusterware to manage the Oracle RAC instances. If you set the instance to
manual and start it with third-party clusterware, then do not use the third-
party clusterware to monitor and restart database instances because Oracle
Clusterware must do that.

To prevent Oracle Clusterware from restarting your Oracle RAC database when you
restart your system, or to avoid restarting failed instances more than once, configure a
management policy to define the degree of control. There are two management
policies: AUTOMATIC, which is the default, and MANUAL. If the management policy is
set to AUTOMATIC, the database is automatically restored to its previous running
condition (started or stopped) upon restart of the database host computer. If MANUAL,
the database is never automatically restarted upon restart of the database host
computer. A MANUAL setting does not prevent Oracle Restart from monitoring the
database while it is running and restarting it if a failure occurs.

Use SRVCTL commands to display and change the Oracle Clusterware management
policies, as shown in the following examples:

Example 1: Display the Current Management Policy

Use the following command syntax to display the current management policy where
db_unique_name is the name of the database for which you want to change
management policies:

srvctl config database -db db_unique_name -all

Example 2: Change the Current Management Policy to Another Management
Policy

Use the following SRVCTL command syntax to change the current management policy
to either AUTOMATIC, MANUAL, or NORESTART:

srvctl modify database -db db_unique_name -policy [AUTOMATIC | MANUAL
| NORESTART]

Chapter 3
Customizing How Oracle Clusterware Manages Oracle RAC Databases

3-32

This command syntax sets the resource attribute of the database resource.

Example 3: Specify a Management Policy for a New Database

When you add a new database using the srvctl add database command, you can use
the -policy parameter to specify the management policy as either AUTOMATIC, MANUAL, or
NORESTART, as shown in the following example where db_unique_name is the name of the
database:

srvctl add database -db db_unique_name -policy [AUTOMATIC | MANUAL |
NORESTART]
 -oraclehome $ORACLE_HOME -dbname DATA

This command syntax places the new database under the control of Oracle Clusterware. If
you do not provide a management policy option, then Oracle Database uses the default value
of automatic. After you change the management policy, the Oracle Clusterware resource
records the new value for the affected database.

Related Topics

• srvctl config database
Displays the configuration for an Oracle RAC database or lists all configured databases
that are registered with Oracle Clusterware.

• srvctl modify database
Modifies the configuration for a database.

• srvctl add database
Adds a database configuration to Oracle Clusterware.

Advanced Oracle Enterprise Manager Administration
You can install, configure, and monitor an Oracle RAC database from a single location using
Oracle Enterprise Manager Cloud Control.

This section provides advanced administration tasks that are not covered inOracle Database
2 Day + Real Application Clusters Guide or in "Overview of Monitoring and Tuning Oracle
RAC Databases".

This section includes the following topics:

• Using Oracle Enterprise Manager Cloud Control to Discover Nodes and Instances

• Other Oracle Enterprise Manager Capabilities

• Administering Jobs and Alerts in Oracle RAC

Using Oracle Enterprise Manager Cloud Control to Discover Nodes and
Instances

Discovering Oracle RAC database and instance targets in Oracle Enterprise Manager
enables monitoring and administration.

Oracle Enterprise Manager Cloud Control enables you to use the Oracle Enterprise
Manager console interface to discover Oracle Real Application Clusters (Oracle RAC)
database and instance targets.

Chapter 3
Advanced Oracle Enterprise Manager Administration

3-33

If the Oracle Enterprise Manager Cloud Control agents are installed on a cluster that
has an Oracle RAC database, then Oracle RAC database targets are discovered at
install time. You can use the console interface to discover targets if a database is
created after agents are installed or if a database is not automatically discovered at
agent install time.

To discover nodes and instances, use Oracle Enterprise Manager Cloud Control as
follows:

1. Log in to Oracle Enterprise Manager and click the Targets tab.

2. Click the Database tab to view all of the available targets. The column labeled
Types shows the Oracle RAC databases using the entry Cluster Database.

3. Add the database target by selecting the target name, then clicking Add. The Add
Database Target: Specify Host page appears, which enables you to add
databases, listeners, and Oracle Automatic Storage Management (Oracle ASM)
as monitored targets.

4. Click the flashlight icon to display the available host names, select a host, then
click Continue. The Add Database: Specify Source page appears.

5. Either request Oracle Enterprise Managerr to discover only noncluster databases
and listeners, or to discover all cluster databases, noncluster databases, and
listeners on the cluster, then click Continue.

6. If this procedure did not discover your reconfigured cluster database and all of its
instances, you can use the Targets Discovered on Cluster page to manually
configure your cluster database and noncluster databases.

Other Oracle Enterprise Manager Capabilities
Oracle Enterprise Manager provides a variety of administrative capabilities starting
with Oracle Enterprise Manager 12c.

• The Oracle Grid Infrastructure/Oracle RAC Provisioning deployment procedure
provisions Oracle RAC 12c and Oracle Grid Infrastructure. This procedure also
has a feature called Profiles, which enables you to record the inputs and
subsequently use them for repeated deployments.

• Dynamic prerequisites for the new procedures enable Oracle Enterprise Manager,
when connected to My Oracle Support, to download the latest prerequisites and
tools for Oracle RAC provisioning.

• The existing One-Click Extend Cluster Database capability now supports Oracle
RAC 12c stack.

• The existing Delete/Scale down Oracle Real Application Clusters capability is
certified with Oracle RAC 12c clusters.

• The existing Oracle Database Provisioning procedure now supports provisioning
of single instances of Oracle Database 12c.

• A new deployment procedure—Oracle Grid Infrastructure Provisioning for
Standalone Servers—has been introduced to provision Oracle Grid Infrastructure
12c for noncluster databases.

Chapter 3
Advanced Oracle Enterprise Manager Administration

3-34

Administering Jobs and Alerts in Oracle RAC
You can use the Administration tab in Oracle Enterprise Manager for an Oracle RAC
database.

The Cluster Database Home page shows all of the instances in the Oracle Real Application
Clusters (Oracle RAC) database and provides an aggregate collection of several statistics
specific to Oracle RAC that are collected by the Automatic Workload Repository (AWR) for
server manageability.

You do not need to navigate to an instance-specific page to see these details. However, on
the Cluster Database Home page, if an instance is down that should be operating, or if an
instance has a high number of alerts, then you can drill down to the instance-specific page for
each alert.

To perform specific administrative tasks as described in the remainder of this section, log in to
the target Oracle RAC database, navigate to the Cluster Database Home page, and click the
Administration tab.

Administering Jobs in Oracle RAC
You can administer Oracle Enterprise Manager jobs at both the database and instance levels.

For example, you can create a job at the cluster database level to run on any active instance
of the target Oracle Real Application Clusters (Oracle RAC) database. Or you can create a
job at the instance level to run on the specific instance for which you created it. If there is a
failure, then recurring jobs can run on a remaining instance.

Because you can create jobs at the instance level, cluster level, or cluster database level,
jobs can run on any available host in the cluster database. This applies to scheduled jobs as
well. Oracle Enterprise Manager also displays job activity in several categories, including,
Active, History, and Library.

Use the Jobs tab to submit operating system scripts and SQL scripts and to examine
scheduled jobs. For example, to create a backup job for a specific Oracle RAC database:

1. Click Targets and click the database for which you want to create the job.

2. Log in to the target database.

3. When Oracle Enterprise Manager displays the Database Home page, click Maintenance.

4. Complete the Enterprise Manage Job Wizard pages to create the job.

Administering Alerts in Oracle RAC with Oracle Enterprise Manager
You can use Oracle Enterprise Manager to configure Oracle RAC environment alerts.

You can also configure special Oracle RAC database tests, such as global cache converts,
consistent read requests, and so on.

Oracle Enterprise Manager distinguishes between database- and instance-level alerts in
Oracle RAC environments. Alert thresholds for instance-level alerts, such as archive log
alerts, can be set at the instance target level. This function enables you to receive alerts for
the specific instance if performance exceeds your threshold. You can also configure alerts at
the database level, such as setting alerts for tablespaces, to avoid receiving duplicate alerts
at each instance.

Chapter 3
Advanced Oracle Enterprise Manager Administration

3-35

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

See Also:

Oracle Technology Network for an example of configuring alerts in Oracle
RAC, and Oracle Database PL/SQL Packages and Types Reference for
information about using packages to configure thresholds

Using Defined Suspensions in Oracle Enterprise Manager
You can define suspensions (which are time periods in which database monitoring is
suspended so that maintenance operations do not skew monitoring data or generate
needless alerts) for all managed targets of an Oracle Real Application Clusters (Oracle
RAC) database.

Defining suspensions prevents alerts from occurring while performing maintenance.
You can define suspensions for an entire cluster database or for specific cluster
database instances.

Chapter 3
Advanced Oracle Enterprise Manager Administration

3-36

4
Administering Oracle RAC One Node

Oracle Real Application Clusters One Node (Oracle RAC One Node) is a single instance of
an Oracle Real Application Clusters (Oracle RAC) database that runs on one node in a
cluster. This option adds to the flexibility that Oracle offers for database consolidation. You
can consolidate many databases into one cluster with minimal overhead while also providing
the high availability benefits of failover protection, online rolling patch application, and rolling
upgrades for the operating system and Oracle Clusterware.

This chapter includes the following topics:

• Creating an Oracle RAC One Node Database

• Converting Databases

• Online Database Relocation

Creating an Oracle RAC One Node Database
You can create Oracle RAC One Node databases by using Fleet Patching and Provisioning
or the Database Configuration Assistant (DBCA), as with any other Oracle database
(manually created scripts are also a valid alternative).

You can create an Oracle RAC One Node database using Fleet Patching and Provisioning
and the rhpctl add database command with the -dbtype RACONENODE parameter. You can
also include an Oracle RAC One Node database using the rhpctl add workingcopy
command.

Oracle RAC One Node databases may also be the result of a conversion from either a single-
instance Oracle database or an Oracle RAC database. Typically, Oracle-provided tools
register the Oracle RAC One Node database with Oracle Clusterware. Depending on your
configuration, automatic registration of an Oracle RAC One Node database with Oracle
Clusterware may not have happened. If this is the case, then follow the steps in this section
to register the Oracle RAC One Node database with Oracle Clusterware.

Note:

Oracle recommends that you manage Oracle RAC One Node databases with
Server Control Utility (SRVCTL). You can only perform certain operations (such as
Online Database Relocation) using SRVCTL.

If your Oracle RAC One Node database did not register automatically with Oracle
Clusterware, then use the srvctl add database command to add an Oracle RAC One Node
database to your cluster. For example:

$ srvctl add database -dbtype RACONENODE [-server server_list]
 [-instance instance_name] [-timeout timeout]

4-1

Use the -server option and the -instance option when adding an administrator-
managed Oracle RAC One Node database.

For Oracle RAC One Node databases, you must configure at least one dynamic
database service (in addition to and opposed to the default database service). When
using an administrator-managed Oracle RAC One Node database, service registration
is performed as with any other Oracle RAC database. When you add services to a
policy-managed Oracle RAC One Node database, SRVCTL does not accept any
placement information, but instead configures those services using the value of the
SERVER_POOLS attribute.

Note:

When adding an administrator-managed Oracle RAC One Node database,
you can optionally supply an instance prefix with the -instance
instance_name option of the srvctl add database command. The name of
the instance will then be prefix_1. If you do not specify an instance prefix,
then the first 12 characters of the unique name of the database becomes the
prefix. The instance name changes to prefix_2 during an online database
relocation and reverts back to prefix_1 during a subsequent online
database relocation. The same instance name is used on failover.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• srvctl add database
Adds a database configuration to Oracle Clusterware.

• Using DBCA in Interactive Mode to Add Database Instances to Target Nodes

Converting Databases
Using SRVCTL, you can convert an Oracle RAC database with one instance to an
Oracle RAC One Node database and vice versa.

This section includes the following topics:

• Converting a Database from Oracle RAC to Oracle RAC One Node

• Converting a Database from Oracle RAC One Node to Oracle RAC

Converting a Database from Oracle RAC to Oracle RAC One Node
Use SRVCTL to convert an Oracle RAC database to an Oracle RAC One Node
database.

Before converting an Oracle RAC database to an Oracle RAC One Node database,
you must first ensure that the Oracle RAC database has only one instance. If your
Oracle RAC database is administrator managed and has more than one instance, then
you must remove all instances except one using the srvctl remove instance
command. If your Oracle RAC database is policy managed and has more than one
instance, then you must stop all instances except one using the srvctl stop
instance command.

Chapter 4
Converting Databases

4-2

If the Oracle RAC database is administrator managed, then you must change the
configuration of all services to set the preferred instance to the instance that you want to keep
as an Oracle RAC One Node database after conversion. If any service had a PRECONNECT
TAF policy, then its TAF policy must be updated to BASIC or NONE before starting the
conversion process. These services must no longer have any available instance.

If the Oracle RAC database is policy managed, then you must change the configuration of all
services so that they all use the same server pool before you convert the Oracle RAC
database to an Oracle RAC One Node database.

You can convert an Oracle RAC database with one instance to an Oracle RAC One Node
database using the srvctl convert database command, as follows:

$ srvctl convert database -db db_unique_name -dbtype RACONENODE
 [-instance instance_name -timeout timeout]
 -w timeout]

Note:

An Oracle RAC database that you want to convert to Oracle RAC One Node must
either use Oracle Managed Files (to enable automatic thread allocation) or have at
least two redo threads.

Related Topics

• srvctl remove instance

• srvctl stop instance

• srvctl convert database

Converting a Database from Oracle RAC One Node to Oracle RAC
You can convert an Oracle RAC One Node database to an Oracle RAC database by logging
in as the Oracle RAC One Node database owner and entering the following SRVCTL
command:

srvctl convert database -db db_unique_name -dbtype RAC

If you are relocating the database you want to convert to Oracle RAC using online database
relocation, or an online database relocation has failed, then you must either quit or complete
the relocation before you run the srvctl convert database command.

After you run this command, you must create server pools for each database service, in
addition to the database server pool. The values for SERVER_NAMES for the server pools used
by the database services must be set to the node that you converted from an Oracle RAC
One Node to an Oracle RAC node. You can use the CRSCTL utility or Oracle Enterprise
Manager to create and configure the server pools.

Converting an administrator-managed Oracle RAC One Node database to an Oracle RAC
database configures all database services so that the single-instance database is the
preferred instance for that service. After you convert the database, you can add instances to
your database by using the srvctl add instance command.

Chapter 4
Converting Databases

4-3

Converting a policy-managed Oracle RAC One Node database to an Oracle RAC
database sets all database services to UNIFORM cardinality. It also results in reusing
the server pool in which the database currently runs. The conversion reconfigures the
database to run on all nodes in the server pool. The command does not start any
additional instances but running the srvctl start database command starts the
database on all nodes in the server pool.

Related Topics

• srvctl convert database

Online Database Relocation
You can relocate an Oracle RAC One Node database to another node while still
maintaining service availability using the online database relocation feature.

Only during a planned online database relocation is a second instance of an Oracle
RAC One Node database created, so that any database sessions can continue while
the database is relocated to a new node. You can only use online database relocation
with Oracle RAC One Node databases but you cannot use online database relocation
with Oracle RAC databases regardless of their management style (either administrator
or policy managed).

You can use the srvctl relocate database command configure the amount of time
after the relocated database starts and services are migrated, before the former
instance of the database stops. This configured amount of time is not an upper bound
on the amount of time taken by the entire operation, but only controls how long the
relocated database waits for connections to migrate from the former instance to the
new instance, before stopping the former instance.

Online database relocation occurs, as follows:

1. Start a new database instance in a different location.

2. Move all the services to the relocated instance.

3. Wait for all the connections to migrate to the relocated instance.

4. Shut down the former database instance, forcing any remaining connections to
move to the relocated instance.

The online relocation timeout is the amount of time you configure to complete step 3.

Before you initiate the online relocation of a database instance, perform the following
tasks:

• When you relocate a database instance to a target node that is not currently in the
candidate server list for the database, you must copy the password file, if
configured, to the target node, unless you use shared password files stored in
Oracle ASM.

• When you use password file-based authentication for remote management of
Oracle RAC One Node databases without any shared password file, you must
have two password files on each node where the database can run: one named
SID_prefix_1 and the other named SID_prefix_2. You must recopy both of these
files to all candidate nodes every time you update the password file. This is true for
both policy-managed and administrator-managed databases.

Oracle recommends using Oracle Clusterware to start and stop the database, and
defining users in the data dictionary for other management.

Chapter 4
Online Database Relocation

4-4

• If your operating system is Microsoft Windows, then before you relocate a database
instance, you must ensure that the database service user is added to the wallet. Run
crsctl query wallet -type OSUSER -all to check whether the database service user
is in the wallet. If not, then run crsctl add wallet -type OSUSER -user user_name -
passwd to add the database service user to the wallet.

Use the srvctl relocate database command to initiate relocation of an Oracle RAC One
Node database. For example:

$ srvctl relocate database -d rac1 -n node7

Related Topics

• Creating and Maintaining a Database Password File

• srvctl relocate database

Chapter 4
Online Database Relocation

4-5

5
Workload Management with Dynamic
Database Services

Workload management includes load balancing, enabling clients for Oracle Real Application
Clusters (Oracle RAC), distributed transaction processing, and services.

This chapter includes the following topics:

• Connection Load Balancing

• Load Balancing Advisory

• Enabling Clients for Oracle RAC

• Distributed Transaction Processing in Oracle RAC

• Automatic Workload Repository

• Measuring Performance by Service Using the Automatic Workload Repository

• Automatic Workload Repository Service Thresholds and Alerts

• Using Oracle Services

• Service Deployment Options

• Administering Services

• Global Services

• Connecting to a Service: An Example

Connection Load Balancing
Oracle Net Services provides the ability to distribute client connections across the instances
in an Oracle RAC configuration.

There are two types of load balancing that you can implement: client-side and server-side
load balancing. Client-side load balancing distributes the connection requests across the
listeners, independently at each client. With server-side load balancing, the SCAN listener
directs a connection request to the best instance currently providing the service, based on the
-clbgoal and -rlbgoal settings for the service.

The SCAN listener is aware of the HTTP protocol so that it can redirect HTTP clients to the
appropriate handler, which can reside on different nodes in the cluster than the node on
which the SCAN listener resides.

In an Oracle RAC database, client connections should use both types of connection load
balancing.

• Server-Side Load Balancing

• Generic Database Clients

• Client-Side Load Balancing

• Client-Side Connection Configuration for Older Clients

5-1

Related Topics

• Oracle Database Net Services Administrator's Guide

Server-Side Load Balancing
When you create an Oracle RAC database with DBCA, it automatically:

• Configures and enables server-side load balancing

• Creates a sample client-side load balancing connection definition in the
tnsnames.ora file on the server

The Oracle Clusterware Database Agent is responsible for managing the
LISTENER_NETWORKS parameter.

Note:

Note: If you set the REMOTE_LISTENER parameter manually, then set this
parameter to scan_name:scan_port.

FAN, Fast Connection Failover, and the load balancing advisory depend on an
accurate connection load balancing configuration that includes setting the connection
load balancing goal for the service. You can use a goal of either LONG or SHORT for
connection load balancing. These goals have the following characteristics:

• SHORT: Use the SHORT connection load balancing method for applications that
use run-time load balancing. When using connection pools that are integrated with
Load Balancing Advisory, set the CLB_GOAL to SHORT. The following example
modifies the service known as oltpapp, using SRVCTL to set the connection load
balancing goal to SHORT:

$ srvctl modify service -db db_unique_name -service oltpapp -clbgoal SHORT
• LONG: Use the LONG connection load balancing method if run-time load balancing

is not required. This is typical for batch operations. LONG is the default connection
load balancing goal. The following is an example of modifying a service,
batchconn, using SRVCTL to define the connection load balancing goal for long-
lived sessions:

$ srvctl modify service -db db_unique_name -service batchconn -clbgoal LONG

Generic Database Clients
Oracle Net Services enables you to add the CONNECT_TIMEOUT, RETRY_COUNT, and
TRANSPORT_CONNECT_TIMEOUT parameters to the tnsnames.ora connection string.

For example, when using SCAN addresses for the remote listeners at the database:

jdbc:oracle:thin:@(DESCRIPTION =
 (TRANSPORT_CONNECT_TIMEOUT=3)(CONNECT_TIMEOUT=60)
 (RETRY_COUNT=3)(FAILOVER=ON)
 (ADDRESS_LIST =(ADDRESS=(PROTOCOL=tcp)
 (HOST=CLOUD-SCANVIP.example.com)(PORT=5221))

Chapter 5
Connection Load Balancing

5-2

 (CONNECT_DATA=(SERVICE_NAME=orcl)))
Remote_listeners=CLOUD-SCANVIP.example.com:5221

For example, when using remote listeners pointing to VIPs at the database:

jdbc:oracle:thin:@(DESCRIPTION =
 (TRANSPORT_CONNECT_TIMEOUT=3)
 (CONNECT_TIMEOUT=60)(RETRY_COUNT=20)
 (RETRY_DELAY=3)(FAILOVER=ON)
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-VIP1)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-VIP2)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-VIP3)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=GOLD)))

The value of these parameters is expressed in seconds. In the preceding examples, Oracle
Net waits for 60 seconds for each full connection to receive a response, after which it
assumes that a failure occurred and retries the next address in the ADDRESS_LIST. Oracle Net
retries the address list 3 times before it returns a failure message to the client. The
TRANSPORT_CONNECT_TIMEOUT parameter establishes the time to wait to establish a TCP
connection to the database server.

For SCAN, Oracle Net Services tries all three addresses (returned by the SCAN address)
before returning a failure to the client. EZConnect with SCAN includes this connection failover
feature.

This behavior is called Oracle Net connection failover. If an error is returned from a chosen
address in the list, then Oracle Net Services tries the next address in the list until it is either
successful or it has exhausted all addresses in its list.

Client-Side Connection Configuration for Older Clients
In addition to client-side load balancing, Oracle Net Services include connection failover. If
an error is returned from the chosen address in the list, Oracle Net Services tries the next
address in the list until it is either successful or it has exhausted all addresses in its list. For
SCAN, Oracle Net Services tries all three addresses before returning a failure to the client.
EZConnect with SCAN includes this connection failover feature.

To increase availability, you can specify a timeout that specifies how long Oracle Net waits for
a response from the listener before returning an error. The method of setting this timeout
parameter depends on the type of client access. Oracle Net maintains these parameters for
backward compatibility.

This section includes the following topics:

• JDBC-Thin Clients

• OCI Clients

JDBC-Thin Clients
You can avoid delays by setting the oracle.net.ns.SQLnetDef.TCP_CONNTIMEOUT_STR
property, as follows:

Properties prop = new Properties ();
prop.put (oracle.net.ns.SQLnetDef.TCP_CONNTIMEOUT_STR,

Chapter 5
Connection Load Balancing

5-3

"" + (1 * 1000)); // 1 second
dbPools[poolIndex].setConnectionProperties (prop);

The parameter value is specified in milliseconds. Therefore, it is possible to reduce the
timeout to 500Ms if the application retries connecting.

OCI Clients
For OCI clients, create a local sqlnet.ora file on the client side.

Configure the connection timeout in this file by adding the following line:

sqlnet.outbound_connect_timeout = number_of_seconds

The granularity of the timeout value for the OCI client is in seconds. The sqlnet.ora
file affects all connections using this client.

Note:

Do not configure the connection timeout in the sqlnet.ora file on the server.

Related Topics

• Oracle Call Interface Programmer's Guide

Client-Side Load Balancing
Client-side load balancing is defined in your client connection definition (tnsnames.ora
file, for example) by setting the parameter LOAD_BALANCE=ON. When you set this
parameter to ON, Oracle Database randomly selects an address in the address list, and
connects to that node's listener. This balances client connections across the available
SCAN listeners in the cluster.

If you configured SCAN for connection requests, then client-side load balancing is not
relevant for those clients that support SCAN access. When clients connect using
SCAN, Oracle Net automatically balances the load of client connection requests
across the three IP addresses you defined for the SCAN, unless you are using
EZConnect.

The SCAN listener redirects the connection request to the local listener of the instance
that is least loaded (if -clbgoal is set to SHORT) and provides the requested service.
When the listener receives the connection request, the listener connects the user to an
instance that the listener knows provides the requested service. To see what services
a listener supports, run the lsnrctl services command.

When clients connect using SCAN, Oracle Net automatically load balances client
connection requests across the three IP addresses you defined for the SCAN, unless
you are using EZConnect.

If you are using clients that do not support SCAN (for example, the client version is
pre-Oracle Database 11g release 2 (11.2)), then, to use SCAN you must change the

Chapter 5
Connection Load Balancing

5-4

client tnsnames.ora to include the SCAN VIPs, and set LOAD_BALANCE=ON to balance requests
across the VIPs. For example:

Sales.example.com=(DESCRIPTION=
 (ADDRESS_LIST=(LOAD_BALANCE=ON)(FAILOVER=ON)
 (ADDRESS=(PROTOCOL=TCP)(HOST=172.22.67.192)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=172.22.67.193)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=172.22.67.194)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=salesservice.example.com))
)

Note:

If your database is not Oracle Database 11g release 2 (11.2), or later, and you want
to use SCAN, then you must add SCAN VIPs to the REMOTE_LISTENER parameter to
enable correct listener cross-registration.

Related Topics

• Oracle Database Reference

Load Balancing Advisory
This section describes the load balancing advisory under the following topics:

• Overview of the Load Balancing Advisory

• Configuring Your Environment to Use the Load Balancing Advisory

• Load Balancing Advisory FAN Events

• Monitoring Load Balancing Advisory FAN Events

Overview of the Load Balancing Advisory
Load balancing distributes work across all of the available Oracle RAC database instances.
Oracle recommends that applications use connection pools with persistent connections that
span the instances that offer a particular service. When using persistent connections,
connections are created infrequently and exist for a long duration. Work comes into the
system with high frequency, borrows these connections, and exists for a relatively short
duration. The load balancing advisory provides advice about how to direct incoming work to
the instances that provide the optimal quality of service for that work. This minimizes the
need to relocate the work later.

By using the Load Balancing Advisory and run-time connection load balancing goals,
feedback is built in to the system. Work is routed to provide the best service times globally,
and routing responds gracefully to changing system conditions. In a steady state, the system
approaches equilibrium with improved throughput across all of the Oracle RAC instances.

Standard architectures that can use the load balancing advisory include connection load
balancing, transaction processing monitors, application servers, connection concentrators,
hardware and software load balancers, job schedulers, batch schedulers, and message
queuing systems. All of these applications can allocate work.

Chapter 5
Load Balancing Advisory

5-5

The load balancing advisory is deployed with key Oracle clients, such as a listener, the
JDBC universal connection pool, OCI session pool, Oracle WebLogic Server Active
GridLink for Oracle RAC, and the ODP.NET Connection Pools. Third-party applications
can also subscribe to load balancing advisory events by using JDBC and Oracle RAC
FAN API or by using callbacks with OCI.

Configuring Your Environment to Use the Load Balancing Advisory
You can configure your environment to use the load balancing advisory by defining
service-level goals for each service for which you want to enable load balancing.

Configuring a service-level goal enables the load balancing advisory and the
publishing of FAN load balancing events for that service. There are two types of
service-level goals for run-time connection load balancing:

• SERVICE_TIME: Attempts to direct work requests to instances according to
response time. Load balancing advisory data is based on elapsed time for work
done in the service plus available bandwidth to the service. An example for the
use of SERVICE_TIME is for workloads such as internet shopping where the rate of
demand changes. The following example shows how to set the goal to
SERVICE_TIME for connections using the online service:

$ srvctl modify service -db db_unique_name -service online
 -rlbgoal SERVICE_TIME -clbgoal SHORT

• THROUGHPUT: Attempts to direct work requests according to throughput. The load
balancing advisory is based on the rate that work is completed in the service plus
available bandwidth to the service. An example for the use of THROUGHPUT is for
workloads such as batch processes, where the next job starts when the last job
completes. The following example shows how to set the goal to THROUGHPUT for
connections using the sjob service:

$ srvctl modify service -db db_unique_name -service sjob
 -rlbgoal THROUGHPUT -clbgoal LONG

Setting the run-time connection load balancing goal to NONE disables load balancing for
the service. You can see the goal settings for a service in the data dictionary by
querying the DBA_SERVICES, V$SERVICES, and V$ACTIVE_SERVICES views. You can also
review the load balancing settings for a service using Oracle Enterprise Manager.

Related Topics

• Administering Services

Load Balancing Advisory FAN Events
The load balancing advisory FAN events provide metrics for load balancing algorithms.

The easiest way to take advantage of these events is to use the run-time connection
load balancing feature of an Oracle integrated client such as JDBC, Universal
Connection Pool (or the deprecated Implicit Connection Cache), ODP.NET Connection
Pools, OCI session pools, or Oracle WebLogic Server Active GridLink for Oracle RAC.
Other client applications can take advantage of FAN programatically by using the
Oracle RAC FAN API to subscribe to FAN events and execute event-handling actions
upon receipt. Table 5-1 describes the load balancing advisory FAN event parameters.

Chapter 5
Load Balancing Advisory

5-6

See Also:

Oracle Database JDBC Developer’s Guide for more information about the Oracle
RAC FAN API

Table 5-1 Load Balancing Advisory FAN Events

Parameter Description

VERSION Version of the event record. Used to identify release changes.

EVENT_TYPE A load balancing advisory event is always of the SERVICEMETRICS event type.

SERVICE The service name; matches the value of NAME in DBA_SERVICES.

DATABASE The unique database supporting the service; matches the initialization parameter value
for DB_UNIQUE_NAME, which defaults to the value of the initialization parameter DB_NAME.

INSTANCE The name of the instance that supports the service; matches the ORACLE_SID value.

PERCENT The percentage of work requests to send to this database instance.

FLAG Indication of the service quality relative to the service goal. Valid values are GOOD,
VIOLATING, NO DATA, and BLOCKED.

TIMESTAMP The local time zone to use when ordering notification events.

Note:

The INSTANCE, PERCENT, and FLAG event parameters are generated for each
instance offering the service. Each set of instance data is enclosed within braces
({}).

Related Topics

• Oracle Database JDBC Developer’s Guide

Monitoring Load Balancing Advisory FAN Events
You can use the following query against the internal queue table for load balancing advisory
FAN events to monitor load balancing advisory events generated for an instance:

SET PAGES 60 COLSEP '|' LINES 132 NUM 8 VERIFY OFF FEEDBACK OFF
COLUMN user_data HEADING "AQ Service Metrics" FORMAT A60 WRAP
BREAK ON service_name SKIP 1
SELECT
 TO_CHAR(enq_time, 'HH:MI:SS') Enq_time, user_data
 FROM sys.sys$service_metrics_tab
 ORDER BY 1 ;

Chapter 5
Load Balancing Advisory

5-7

The results of this query contain rows similar to the following:

02:56:05|SYS$RLBTYP('hr', 'VERSION=1.0 database=sales service=hr
 { {instance=sales_4 percent=38 flag=GOOD aff=TRUE}{instance=sales_1
 percent=62 flag=GOOD aff=TRUE} } timestamp=2012-07-16 07:56:05')

Following is an example of a load balancing advisory event for the lba_serv service
offered on two instances (orcl1 and orcl2), as captured from Oracle Notification
Service using the Oracle RAC FAN API:

Notification Type: database/event/servicemetrics/lba_serv.example.com
 VERSION=1.0 database=orcl service=lba_serv.example.com { {instance=orcl2
 percent=50 flag=UNKNOWN aff=FALSE}{instance=orcl1 percent=50 flag=UNKNOWN
 aff=FALSE} } timestamp=2012-07-06 13:19:12

Note:

The SERVICMETRICS events are not visible through the FAN callout
mechanism.

Enabling Clients for Oracle RAC
Oracle has integrated FAN with many of the common client application environments
that are used to connect to Oracle RAC databases. Therefore, the easiest way to use
FAN is to use an integrated Oracle Client.

The following sections discuss how FAN is integrated with Oracle Clients and how to
enable FAN events for the several specific client development environments:

• Overview of Oracle Integrated Clients and FAN

• Enabling JDBC-Thin Clients for Fast Connection Failover

• Enabling JDBC Clients for Run-time Connection Load Balancing

• Configuring JDBC-Thin Clients for Application Continuity for Java

• Configuring JDBC-Thin Clients for Transaction Guard

• Enabling OCI Clients for Fast Connection Failover

• Enabling OCI Clients for Run-time Connection Load Balancing

• Configuring OCI Clients to use Transaction Guard

• Enabling ODP.NET Clients to Receive FAN High Availability Events

• Enabling ODP.NET Clients to Receive FAN Load Balancing Advisory Events

• Configuring ODP.NET Clients to use Transaction Guard

Overview of Oracle Integrated Clients and FAN
The overall goals of FAN are to enable end-to-end, lights-out recovery of applications
and load balancing based on real transaction performance.

Chapter 5
Enabling Clients for Oracle RAC

5-8

Applications use the FAN high availability (HA) events to achieve very fast detection of
failures, balancing of connection pools following failures, and distribution of connections
again when the failed components are repaired.

The FAN events carrying load balancing advice help connection pools consistently deliver
connections to available instances that provide the best service. FAN HA is integrated with
the JDBC-thin and OCI drivers. FAN HA and FAN load balancing are both integrated with the
JDBC Universal Connection Pool (and the deprecated Implicit Connection Cache), the OCI
session pools, the ODP.NET connection pool, and Oracle WebLogic Server Active GridLink
for Oracle RAC.

Due to the integration with FAN, Oracle integrated clients are more aware of the current
status of an Oracle RAC cluster. This prevents client connections from waiting or trying to
connect to instances or services that are no longer available. When instances start, Oracle
RAC uses FAN to notify the connection pool so that the connection pool can create
connections to the recently started instance and take advantage of the additional resources
that this instance provides.

Oracle client drivers that are integrated with FAN can:

• Remove terminated connections immediately when a service is declared DOWN at an
instance, and immediately when nodes are declared DOWN

• Report errors to clients immediately when Oracle Database detects the NOT RESTARTING
state, instead of making the client wait while the service repeatedly attempts to restart

Oracle connection pools that are integrated with FAN can:

• Balance connections across all of the Oracle RAC instances when a service starts; this is
preferable to directing the sessions that are defined for the connection pool to the first
Oracle RAC instance that supports the service

• Balance work requests at run time using load balancing advisory events

The use of client drivers or connection pools and FAN requires that you properly configure
the Oracle Notification Service to deliver the FAN events to the clients. In addition, for load
balancing, configure database connection load balancing across all of the instances that
provide the services used by the connection pool. Oracle recommends that you configure
both client-side and server-side load balancing with Oracle Net Services. If you use Oracle
DBCA to create your database, then both client-side and server-side load balancing are
configured by default.

Related Topics

• Connection Load Balancing
Oracle Net Services provides the ability to distribute client connections across the
instances in an Oracle RAC configuration.

• Fast Application Notification
The Oracle RAC high availability framework monitors a database and its services and
sends event notifications using Fast Application Notification (FAN).

Enabling JDBC-Thin Clients for Fast Connection Failover
Enabling Fast Connection Failover (FCF) for Universal Connection Pool and Oracle
WebLogic Server Active GridLink for Oracle RAC enables the use of FAN HA and load
balancing advisory events.

For Universal Connection Pool to use FAN, your application can use the JDBC development
environment for either JDBC OCI or JDBC Thin clients. The Java Database Connectivity

Chapter 5
Enabling Clients for Oracle RAC

5-9

Oracle Call Interface (JDBC/OCI) driver connection pooling functionality is part of the
JDBC-thin client. This functionality is provided by the OracleOCIConnectionPool class.

To enable FCF for the JDBC-thin client, call the method
setFastConnectionFailoverEnabled(true) of the OracleDataSource class in the
oracle.jdbc.pool package before making the first getConnection() request. When
you enable FCF for the JDBC-thin client, the failover property applies to every
connection in the connection pool. Enabling FCF with JDBC-thin driver or JDBC/OCI
clients enables the connection pool to receive and react to all FAN events.

JDBC application developers can programmatically integrate with FAN by using a set
of APIs introduced in Oracle Database 11g release 2 (11.2). The Oracle RAC FAN
APIs enable application code to receive and respond to FAN event notifications sent
by Oracle RAC in the following ways:

• Listening for Oracle RAC service down, service up, and node down events

• Listening for load balancing advisory events and responding to them

Related Topics

• Oracle Database JDBC Developer’s Guide

Oracle Notification Service for JDBC-Thin Clients
FCF relies on Oracle Notification Service to propagate database events between the
connection pool and the Oracle RAC database. At run time, the connection pool must
be able to setup an Oracle Notification Service environment. Oracle Notification
Service (ons.jar) is included as part of the Oracle Client software. Oracle Notification
Service can be configured using either remote configuration or client-side Oracle
Notification Service daemon configuration. Remote Oracle Notification Service
subscription offers the following advantages:

• Support for an All Java mid-tier software

• An Oracle Notification Service daemon is not necessary on the client system, so
you do not have to manage this process

• Simple configuration by way of a DataSource property

Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients
You can enable FCF for Universal Connection Pool or Implicit Connection Cache.

Oracle recommends using the Universal Connection Pool for Java because the Implicit
Connection Cache is deprecated. You can also use Oracle WebLogic Server Active
GridLink for Oracle RAC.

This procedure explains how to enable FCF for JDBC. For JDBC/OCI clients, if you
enable FCF, then do not use the method used with Oracle Database 11g release 2
(11.2) of enabling FAN for OCI clients (setting notification to TRUE on the service),
and do not configure TAF, either on the client or for the service. You can also configure
Application Continuity and Transaction Guard.

To enable FCF, you must first enable the Universal Connection Pool, as described in
the following procedure:

1. Create the connection pool and set setFastConnectionFailoverEnabled(true).

Chapter 5
Enabling Clients for Oracle RAC

5-10

The following example creates a connection pool and enables FCF. The ucp.jar library
must be included in the classpath of an application to use this example.

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setFastConnectionFailoverEnabled(true);

2. Determine the ports to use for Oracle Notification Service remote subscriptions.

Use the following command to view the Oracle Notification Service configuration on each
node that is running Oracle Clusterware as in the following example:

srvctl config nodeapps -onsonly

The output of this command lists the local and remote ports configured for Oracle
Notification Service.

Note:

Oracle Notification Service configuration should have been automatically
completed during the Oracle Clusterware installation.

3. Configure the remote Oracle Notification Service subscription.

When using the Universal Connection Pool, an application calls setONSConfiguration for
an OracleDataSource instance and specifies the nodes and port numbers to use. The
port numbers used for each node are the same as the remote port displayed for each
node in Step 2, as shown in the following example. The ons.jar library must be included
in the classpath of an application to use this example.

pds.setONSConfiguration("nodes=racnode1:6200,racnode2:6200");

Applications that use remote Oracle Notification Service configuration must set the
oracle.ons.oraclehome system property to the location of ORACLE_HOME before starting
the application, for example:

java -Doracle.ons.oraclehome=$ORACLE_HOME ...

4. Configure the connection URL.

A connection factory's connection URL must use the service name syntax when using
FCF. The service name is used to map the connection pool to the service. The following
example demonstrates configuring the connection URL:

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@//SCAN_name:service_name");...

Related Topics

• Oracle Database JDBC Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

Chapter 5
Enabling Clients for Oracle RAC

5-11

Enabling JDBC Clients for Run-time Connection Load Balancing
Run-time connection load balancing requires the use of an Oracle JDBC driver and an
Oracle RAC database.

Oracle JDBC Universal Connection Pool and Oracle WebLogic Server Active GridLink
for Oracle RAC leverage the load balancing functionality provided by an Oracle RAC
database.

The Universal Connection Pool and Oracle WebLogic Server Active GridLink for
Oracle RAC are integrated to take advantage of Load Balancing Advisory information.
Oracle introduced the Universal Connection Pool for JDBC in Oracle Database 11g
release 11.1.0.7.0. Consequently, Oracle deprecated the existing JDBC connection
pool, the Implicit Connection Cache, which was introduced in Oracle Database 10g
release 1 for use with Oracle RAC databases. In addition to Oracle Database 12c, you
can also use the Universal Connection Pool with Oracle Database 10g or Oracle
Database 11g.

Run-time connection load balancing requires that FCF is enabled and configured
properly. In addition, the Oracle RAC load balancing advisory must be configured with
service-level goals for each service used by the connection pool. The connection load
balancing goal should be set to SHORT, for example:

srvctl modify service -db db_unique_name -service service_name
 -rlbgoal SERVICE_TIME -clbgoal SHORT

Related Topics

• Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients
You can enable FCF for Universal Connection Pool or Implicit Connection Cache.

• Oracle Universal Connection Pool Developer’s Guide

Configuring JDBC-Thin Clients for Application Continuity for Java
The Replay data source (oracle.jdbc.replay.OracleDataSource) is a JDBC-thin
data source that Application Continuity requires for Java.

This data source serves as the connection factory that produces new physical JDBC
connections, for both Universal Connection Pool and Oracle WebLogic Server Active
GridLink for Oracle RAC data sources. The JDBC replay driver maintains a history of
calls during a client conversation with Oracle Database 12c, in collaboration with
Oracle Database. Following any outage of the session caused by a loss of database
service, planned or unplanned, under the direction of the database, the JDBC replay
driver attempts to rebuild the non-transactional and transactional database session
states, so that the outage appears as a delayed execution.

To use Application Continuity for Java and the JDBC replay driver, you must use an
Oracle Database 12c client and connect to an Oracle Database 12c database.
Application Continuity for Java is supported in the following configurations:

• JDBC applications using Oracle JDBC Replay data source and using neither
Universal Connection Pool or Oracle WebLogic Server Active GridLink—typical
third-party, JDBC-based connection pools

Chapter 5
Enabling Clients for Oracle RAC

5-12

• JDBC applications using Universal Connection Pool data sources—standalone or third-
party application servers configured to use a Universal Connection Pool data source

• JDBC applications using only Oracle WebLogic Server Active GridLink but not Universal
Connection Pool data sources—typical Oracle WebLogic Server J2EE cases

To configure JDBC-thin clients to use the JDBC Replay Driver:

1. Ensure that you are using an application that is certified for replay.

2. Use SRVCTL to create a service for use by the application, if one does not already exist.
Set the -failovertype parameter to TRANSACTION and the -commit_outcome parameter
to TRUE for this service.

3. Configure the connection element using the PoolDataSource object, as shown in the
following example:

PoolDataSource rds = PoolDataSourceFactory.getPoolDataSource();
rds.setConnnectionPoolName("replayExample");
rds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200");
rds.setFastConnectionFailoverEnabled(true);
rds.setConnectionFactoryClassName("oracle.jdbc.replay.OracleDataSourceImpl
");

Connection conn = rds.getConnection();

4. When connecting to the database, use a URL that can access all instances offering the
service.

Related Topics

• About Application Continuity
The Application Continuity feature offered with Oracle Database increases fault tolerance
for systems and applications using the database.

• Creating Services for Application Continuity and Transaction Guard
To configure services for Application Continuity, when you create a service using
SRVCTL, set the -failovertype parameter to TRANSACTION and -commit_outcome to
TRUE.

• Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients
You can enable FCF for Universal Connection Pool or Implicit Connection Cache.

• Oracle Database JDBC Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

See Also:

Oracle Database JDBC Developer’s Guide for information about configuring
Transaction Guard without enabling Application Continuity

Configuring JDBC-Thin Clients for Transaction Guard
Transaction Guard provides a protocol and a generic tool for applications to use for at-most-
once processing in case of planned and unplanned outages.

Chapter 5
Enabling Clients for Oracle RAC

5-13

Applications use the logical transaction ID to determine the outcome of the last
transaction open in a database session following an outage. Without Transaction
Guard, end users or applications that attempt to retry operations following outages can
cause logical corruption by committing duplicate transactions or committing
transactions out of order.

Related Topics

• Oracle Database JDBC Developer’s Guide

• Oracle Database Development Guide

• Oracle Call Interface Programmer's Guide

Enabling OCI Clients for Fast Connection Failover
OCI clients can enable FCF by registering to receive notifications for Oracle RAC high
availability FAN events and responding when events occur. Using FCF improves the
session failover response time in OCI applications and also removes connections to
nonfunctioning instances from connection and session pools. FCF can be used in OCI
applications that also use TAF, OCI drivers (including your own connection pools), OCI
connection pool, and OCI session pools. FAN is posted over the Oracle Notification
Service for both high availability and load balancing events.

To use FCF, you must use a service with FAN enabled. FAN is published over Oracle
Notification Service. Client applications can also register callbacks that are used
whenever an event occurs. This reduces the time that it takes to detect a connection
failure.

During DOWN event processing, OCI:

• Terminates affected connections at the client and returns an error

• Removes connections from the OCI connection pool and the OCI session pool—
the session pool maps each session to a physical connection in the connection
pool, and there can be multiple sessions for each connection

• Fails over the connection if you have configured TAF. If TAF is not configured, then
the client only receives an error if the instance it is connected to fails.

If your application is using TAF, then you must enable the TAF properties for the
service using SRVCTL or Oracle Enterprise Manager. Configure your OCI client
applications to connect to an Oracle RAC database using the configured service.

Note:

OCI does not manage UP events.

Configuring FCF for OCI Clients

OCI applications must connect to an Oracle RAC instance to enable HA event
notification. Furthermore, these applications must perform the following steps to
configure FCF for an OCI client:

Chapter 5
Enabling Clients for Oracle RAC

5-14

1. Configure the service for your OCI connection pool to enable FAN, connection load
balancing, and run-time connection load balancing, as shown in the following example:

$ srvctl modify service -db crm -service ociapp.example.com -notification
TRUE

2. Link the application with a thread library.

3. After linking with the thread library, the applications can register a callback that is invoked
whenever a FAN event occurs.

Related Topics

• Oracle Database Net Services Administrator's Guide

• Oracle Call Interface Programmer's Guide

Enabling OCI Clients for Run-time Connection Load Balancing
As of Oracle Database 12c, OCI session pooling enables multiple threads of an application to
use a dynamically managed set of pre-created database sessions.

In connection pooling, the pool element is a connection, but in session pooling, the pool
element is a session. Oracle Database continually reuses the sessions in the session pool to
form nearly permanent channels to the instances, thus saving the overhead of creating and
closing sessions every time applications need them.

Run-time connection load balancing is enabled by default in an Oracle Database 11g release
11.1, or later, client communicating with a server of Oracle Database 10g release 10.2, or
later. For Oracle RAC environments, session pools use service metrics received from the
Oracle RAC load balancing advisory1 through Fast Application Notification (FAN) events to
balance application session requests. The work requests coming into the session pool can be
distributed across the instances of Oracle RAC offering a service, using the current service
performance.

Configuring OCI Clients to Receive Load Balancing Advisory FAN Events

For Oracle RAC environments, session pools use service metrics received from the Oracle
RAC load balancing advisory through Fast Application Notification (FAN) events to balance
application session requests. To enable your application to receive the service metrics based
on the service time, ensure that you configure FAN, the load balancing advisory goal (-
rlbgoal parameter), and the connection load balancing goal (-clbgoal parameter) for a
service that is used by the session pool, as shown in the following example:

$ srvctl modify service -db crm -service ociapp.example.com -rlbgoal
SERVICE_TIME
 -clbgoal SHORT -notification TRUE

Related Topics

• Oracle Call Interface Programmer's Guide

1 Run-time connection load balancing is basically routing work requests to sessions in a session pool that can best serve
the work. It comes into effect when selecting a session from an existing session pool. Thus, run-time connection load
balancing is a very frequent activity.

Chapter 5
Enabling Clients for Oracle RAC

5-15

Configuring OCI Clients to use Transaction Guard
OCI supports FAN messages and Transaction Guard. FAN is designed to quickly notify
an OCI-based application of outages at the node, database, instance, service, and
public network levels.

Once notified of the failure, an application can leverage Transaction Guard to reliably
determine the outcome of the last in-flight transaction.

Transaction Guard avoids the costs of ambiguous errors that lead to user frustration,
customer support calls, and lost opportunities. Transaction Guard is safer and
performs better, with lower overheads, than home grown solutions for a known
outcome.

Related Topics

• Fast Application Notification
The Oracle RAC high availability framework monitors a database and its services
and sends event notifications using Fast Application Notification (FAN).

• Enabling Clients for Oracle RAC

• Oracle Call Interface Programmer's Guide

Enabling ODP.NET Clients to Receive FAN High Availability Events
ODP.NET connection pools can subscribe to FAN HA notifications that indicate when
nodes, services, and service members are down.

After a DOWN event, Oracle Database cleans up sessions in the connection pool that go
to the instance and ODP.NET proactively removes connections that are no longer
valid. ODP.NET establishes additional connections to existing Oracle RAC instances if
the removal of invalid connections reduces the total number of connections to below
the value for the Min Pool Size parameter.

When connecting to Oracle Database 12c and later, ODP.NET uses Oracle Notification
Service, rather than Advanced Queuing.

Enable Fast Connection Failover for ODP.NET connection pools by subscribing to FAN
high availability events. To enable Fast Connection Failover, include "HA Events=true"
and "pooling=true" (the default value) in the connection string, as shown in the
following example where user_name is the name of the database user and password is
the password for that user:

con.ConnectionString =
 "User Id=user_name;Password=password;Data Source=odpnet;" +
 "Min Pool Size=10;Connection Lifetime=120;Connection Timeout=60;" +
 "HA Events=true;Incr Pool Size=5;Decr Pool Size=2";

Related Topics

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

• Fast Application Notification
The Oracle RAC high availability framework monitors a database and its services
and sends event notifications using Fast Application Notification (FAN).

Chapter 5
Enabling Clients for Oracle RAC

5-16

Enabling ODP.NET Clients to Receive FAN Load Balancing Advisory
Events

When connecting to Oracle Database 12c and later, ODP.NET uses Oracle Notification
Service, rather than Advanced Queuing.

Use the following procedure to enable ODP.NET clients or applications to receive FAN load
balancing advisory events:

1. Enable Oracle Notification Service notifications by using SRVCTL, and set the run-time
load balancing goal, as shown in the following example:

$ srvctl modify service -db crm -service odpapp.example.com
 -notification TRUE -clbgoal LONG -rlbgoal SERVICE_TIME

2. Ensure Oracle Notification Service (ONS) is configured for FAN events including run-time
load balancing advice.

3. To take advantage of load balancing events with ODP.NET connection pools, set the load
balancing attribute in the ConnectionString to TRUE (the default is FALSE). You can do this
at connect time. This only works if you are using connection pools, or when the pooling
attribute is set to TRUE which is the default.

The following example demonstrates how to configure the ConnectionString to enable
load balancing, where user_name is the name of the user and password is the password:

con.ConnectionString =
 "User Id=user_name;Password=password;Data Source=odpapp;" +
 "Min Pool Size=10;Connection Lifetime=120;Connection Timeout=60;" +
 "Load Balancing=true;Incr Pool Size=5;Decr Pool Size=2";

Note:

ODP.NET does not support connection redistribution when a node starts (UP
events). However, if you have enabled failover on the server-side, then ODP.NET
can migrate connections to newly available instances.

Related Topics

• srvctl modify service
Modifies service configurations.

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

• Fast Application Notification
The Oracle RAC high availability framework monitors a database and its services and
sends event notifications using Fast Application Notification (FAN).

Chapter 5
Enabling Clients for Oracle RAC

5-17

Configuring ODP.NET Clients to use Transaction Guard
ODP.NET supports FAN messages and Transaction Guard. FAN is designed to quickly
notify an ODP.NET-based application of outages at the node, database, instance,
service, and public network levels.

Once notified of the failure, an application can leverage Transaction Guard to reliably
determine the outcome of the last in-flight transaction.

Transaction Guard avoids the costs of ambiguous errors that lead to user frustration,
customer support calls, and lost opportunities. Transaction Guard is safer and
performs better, with lower overheads, than home grown solutions for a known
outcome.

Related Topics

• Fast Application Notification
The Oracle RAC high availability framework monitors a database and its services
and sends event notifications using Fast Application Notification (FAN).

• Administering Services

• Creating Services for Application Continuity and Transaction Guard
To configure services for Application Continuity, when you create a service using
SRVCTL, set the -failovertype parameter to TRANSACTION and -commit_outcome
to TRUE.

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

Distributed Transaction Processing in Oracle RAC
The X/Open Distributed Transaction Processing (DTP) architecture defines a standard
architecture or interface that enables multiple application programs (APs) to share
resources provided by multiple, and possibly different, resource managers (RMs). It
coordinates the work between APs and RMs into global transactions.

The following sections discuss how Oracle RAC supports global (XA) transactions and
DTP processing:

• Overview of XA Transactions and Oracle RAC

• Using Global Transactions and XA Affinity for XA Transactions

• Using Services with XA Transactions on Oracle RAC

• Configuring Services for XA Applications

• Relocating Services in Administrator-Managed Databases

Overview of XA Transactions and Oracle RAC
A global (XA) transaction can span Oracle RAC instances by default, allowing any
application that uses the Oracle XA library to take full advantage of the Oracle RAC
environment to enhance the availability and scalability of the application.

GTXn background processes support XA transactions in an Oracle RAC environment.
The GLOBAL_TXN_PROCESSES initialization parameter, which is set to 1 by default,
specifies the initial number of GTXn background processes for each Oracle RAC

Chapter 5
Distributed Transaction Processing in Oracle RAC

5-18

instance. Use the default value for this parameter clusterwide to allow distributed transactions
to span multiple Oracle RAC instances. Using the default value allows the units of work
performed across these Oracle RAC instances to share resources and act as a single
transaction (that is, the units of work are tightly coupled). It also allows 2PC requests to be
sent to any node in the cluster.

Before Oracle RAC 11g release 1 (11.1), the way to achieve tight coupling in Oracle RAC was
to use distributed transaction processing (DTP) services, that is, services whose cardinality
(one) ensured that all tightly-coupled branches landed on the same instance—regardless of
whether load balancing was enabled. If the XA application does not use suspend and resume
on the same transaction branch, and does not issue savepoints that span branches, then
tightly coupled XA transactions no longer require the special type of singleton services to be
deployed on Oracle RAC databases. If your application cannot determine whether a
transaction branch has been suspended and resumed, then the application must continue to
use DTP services or preferably use XA affinity.

XA affinity (placing all branches of the same XA transaction at the same Oracle RAC
instance) is a requirement when suspending and resuming the same XA branch or if using
savepoints across branches. It also provides much better performance because different
transactions can be balanced. XA affinity is available with Oracle WebLogic Server Active
GridLink for Oracle RAC, JDBC Universal Connection Pool, and Oracle Tuxedo. XA affinity is
also standard for RedHat JBoss, IBM WebSphere, and IBM Liberty.

Note:

Transaction Processing monitors with XA work best when using services with one
preferred instance and many available instances. Oracle does not recommend
using the DTP setting for Oracle Database 11g release 1 (11.1) and later.

Related Topics

• Using Global Transactions and XA Affinity for XA Transactions
To provide improved application performance with distributed transaction processing
(DTP) in Oracle RAC, you can take advantage of XA affinity.

• Oracle Database Reference

Using Global Transactions and XA Affinity for XA Transactions
To provide improved application performance with distributed transaction processing (DTP) in
Oracle RAC, you can take advantage of XA affinity.

Using XA affinity, you can direct all branches of a distributed transaction to a single instance
in the cluster. To implement XA affinity you can use an application server that provides XA
affinity, such as WebLogic Server and Universal Connection Pool. If your application server
does not have XA affinity, then you can also use singleton services across Oracle RAC.

Connection pools at the application server tier that load balance across multiple connections
to an Oracle RAC database use XA affinity to ensure that all tightly-coupled branches of a
global distributed transaction run on only one Oracle RAC instance. When using a connection
pool with XA affinity, your services using XA can span Oracle RAC. This is also true in
distributed transaction environments using protocols such as X/Open Distributed Transaction
Processing or the Microsoft Distributed Transaction Coordinator.

Chapter 5
Distributed Transaction Processing in Oracle RAC

5-19

To enhance the performance of distributed transactions, use services with one
preferred instance. A singleton service runs on one Oracle RAC instance at time in an
Oracle RAC database. This service still allows draining for maintenance, so has better
high-availability characteristics than an older DTP service. To load balance across the
cluster, it is better to have several groups of smaller application servers with each
group directing its transactions to a single service, or set of services, than it is to have
one or two larger application servers. Using singleton services, global distributed
transactions performed through the services have their tightly-coupled branches
running on a single Oracle RAC instance. This has the following benefits:

• The changes are available locally within one Oracle RAC instance when tightly
coupled branches need information about changes made by each other

• Relocation and failover of services are fully supported using global transactions

• By using more singleton services than there are Oracle RAC instances, Oracle
Database can balance the load by services across all of the Oracle RAC database
instances

Note:

Oracle does not recommend using the DTP setting for Oracle Database 11g
release 1 (11.1) and later.

Using Services with XA Transactions on Oracle RAC
Most applications using XA on Oracle RAC can use uniform or (all preferred) services
with XA affinity provided by the connection pool or transaction processing monitor.

The application may also use singleton services to provide XA affinity.

When using singleton services, to leverage all of the instances in a cluster, create one
or more singleton services for each Oracle RAC instance that hosts distributed
transactions. Choose different services for application servers to balance the workload
among the Oracle RAC database instances. Because all of the branches of a
distributed transaction are on one instance, you can leverage all of the instances to
balance the load of many distributed transaction processing (DTP) transactions
through multiple singleton services, thereby maximizing application throughput.

If you add or delete nodes from your cluster database, then you may have to identify
and relocate services to ensure that you maintain optimum performance levels. Using
singleton services, current work can complete. If you use DTP services, then current
work is terminated.

You only need to use DTP services for XA applications that suspend and resume the
same branch. When you are using DTP, the same approach applies as that for
singletons, but you cannot drain the work when relocating services.

Configuring Services for XA Applications
To create distributed transaction processing (DTP) services for distributed transaction
processing, perform the following steps:

1. Create a singleton service using Oracle Enterprise Manager or SRVCTL.

Chapter 5
Distributed Transaction Processing in Oracle RAC

5-20

For an administrator-managed database, define only one instance as the preferred
instance. You can have as many available instances as you want, for example:

$ srvctl add service -db crm -service xa_01.example.com -preferred RAC01
 -available RAC02,RAC03

For a policy-managed database, specify the server pool to use, and set the cardinality of
the service to SINGLETON, for example:

$ srvctl add service -db crm -service xa_01.example.com -serverpool mypool
 -cardinality SINGLETON

2. Set the DTP parameter (-dtp) for the service to TRUE (the default value is FALSE). You
can use Oracle Enterprise Manager or SRVCTL to modify the DTP property of the
singleton service. The following example shows how to modify the xa_01.example.com
service using SRVCTL:

$ srvctl modify service -db crm -service xa_01.example.com -dtp TRUE

Note:

If the application does require DTP services, then use the -dtp parameter. If
not, then use the preceding example with no -dtp parameter.

Related Topics

• srvctl add service
Adds services to a database and assigns them to instances.

• srvctl modify service
Modifies service configurations.

Relocating Services in Administrator-Managed Databases
Beginning with Oracle Real Application Clusters 11g release 1 (11.1), global transactions and
XA affinity replace the need for distributed transaction processing (DTP) services.

Most XA deployments should be using global transactions with XA affinity for improved load
balancing and flexibility rather than the DTP attribute.

If services migrate to other instances, then you might have to force the relocation of the
service back to the preferred instance after it is restarted to evenly re-balance the load on all
of the available hardware. You can use data from the GV$ACTIVE_SERVICES view to determine
whether you need to relocate the DTP service.

Oracle RAC Sharding
Oracle RAC Sharding creates an affinity between table partitions and Oracle RAC instances,
and routes database requests that specify a partitioning key to the instance that logically
holds the corresponding partition.

Chapter 5
Oracle RAC Sharding

5-21

Oracle routes database requests to Oracle RAC instances in such a way that each
instance always gets requests for a disjoint subset of rows in the database, which
creates affinity of rows with instances. The affinity leads to higher Oracle RAC
performance and scalability because of improved cache locality and reduced inter-
node synchronization and block pings.

Sharding for Oracle RAC affinity uses client and server-side support for key-based
routing, which is part of the Oracle Database sharding. An application that supplies a
sharding key in the database using the same API implemented for sharding support in
Oracle connection pools (such as Universal Connection Pool, OCI), in the same way it
is done for sharding, utilizes key-based routing and, by doing so, enables Oracle RAC
affinity.

Application changes that are required to supply the sharding key, do not have to affect
all modules of the application. Changes can only be applied to a few frequently
processed database requests. Requests that do not provide the sharding key in the
connect string are routed based on the load-balancing policy. Keyless requests do not
have any negative impact on data affinity because of the explicit ownership
assignment of data objects to instances.

Note:

Oracle only supports Oracle RAC affinity for partitioned tables. You can
partition a table using any supported method without making changes to the
database schema to enable this feature and then run the ALTER SYSTEM
ENABLE AFFINITY command.

If you want to make changes to your applications to take advantage of affinity-enabling
routing, then you may also take advantage of sharding when data is distributed across
multiple independent databases. You can later move to distributed sharding if you
require extreme scalability or fault isolation.

Related Topics

• Oracle Database SQL Language Reference

• Oracle Database Net Services Administrator's Guide

• Using Oracle Sharding

• Oracle Database JDBC Developer’s Guide

• Oracle Call Interface Programmer's Guide

Automatic Workload Repository
The Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for the database.

The gathered data can be displayed in both reports and views. If you use services with
your database, then AWR tracks metrics at the service level.

Metrics can be measured against a variety of units, including time, transactions, or
database calls. For example, the number of database calls per second is a metric.
Server generated alerts can be placed on these metrics when they exceed or fail to

Chapter 5
Automatic Workload Repository

5-22

meet user-specified thresholds. The database or system administrator can then respond, for
example, by:

• Using the Oracle Database Resource Manager to configure the service level for one
service to have priorities relative to other services

• Stopping overloaded processes

• Modifying a service level requirement

• Implementing recovery scenarios in response to service quality changes

Using AWR metrics and performance alerts enables you to maintain continued service
availability despite service level changes. It also enables you to measure the quality of
service provided by the database services.

The AWR ensures that the Oracle Clusterware workload management framework and the
database resource manager have persistent and global representations of performance data.
This information helps Oracle Database schedule job classes by service and to assign
priorities to consumer groups. If necessary, you can rebalance workloads manually with either
Oracle Enterprise Manager or SRVCTL. You can also disconnect a series of sessions, but
leave the service running.

Note:

Oracle does not recommend using the DBMS_SERVICE package for use with
services used by an Oracle RAC database. Use SRVCTL or Oracle Enterprise
Manager to create database services for Oracle RAC.

Related Topics

• Oracle Database 2 Day + Performance Tuning Guide

• Oracle Database Performance Tuning Guide

• Oracle Database PL/SQL Packages and Types Reference

Measuring Performance by Service Using the Automatic
Workload Repository

Services add a new dimension for performance tuning because workloads are visible and
measurable, and therefore resource consumption and wait times are attributable by
application.

Tuning by using "service and SQL" replaces tuning by "session and SQL" in the majority of
systems where all sessions are anonymous and shared.

The AWR maintains performance statistics that include information about response time,
throughput, resource consumption, and wait events for all services and work that a database
performs. Oracle Database also maintains metrics, statistics, wait events, wait classes, and
SQL-level traces for services. You can optionally augment these statistics by defining
modules within your application to monitor certain statistics. You can also define the actions
within those modules that business critical transactions should run in response to particular
statistical values.

Chapter 5
Measuring Performance by Service Using the Automatic Workload Repository

5-23

Enable module and action monitoring using the DBMS_MONITOR PL/SQL package. For
example, for connections that use the erp service, the following command enables
monitoring for the exceptions pay action in the payroll module:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(SERVICE_NAME => 'ERP',
 MODULE_NAME=> 'PAYROLL', ACTION_NAME => 'EXCEPTIONS PAY');

For connections that use the erp service, the following command enables monitoring
for all actions in the payroll module:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(SERVICE_NAME => 'ERP',
 MODULE_NAME=> 'PAYROLL', ACTION_NAME => NULL);

Use the DBA_ENABLED_AGGREGATIONS view to verify that you have enabled monitoring
for application modules and actions.

Statistics aggregation and tracing by service are global in scope for Oracle RAC
databases. In addition, these statistic aggregations are persistent across instance
restarts and service relocations for both Oracle RAC and noncluster Oracle databases.

The service, module, and action names are visible in V$SESSION,
V$ACTIVE_SESSION_HISTORY, and V$SQL views. The call times and performance
statistics are visible in V$SERVICE_STATS, V$SERVICE_EVENT, V$SERVICE_WAIT_CLASS,
V$SERVICEMETRIC, and V$SERVICEMETRIC_HISTORY. When you enable statistics
collection for an important transaction, you can see the call speed for each service,
module, and action name at each database instance using the V$SERV_MOD_ACT_STATS
view.

The following sample SQL*Plus script provides service quality statistics for a five
second interval. You can use these service quality statistics to monitor the quality of a
service, to direct work, and to balance services across Oracle RAC instances:

SET PAGESIZE 60 COLSEP '|' NUMWIDTH 8 LINESIZE 132 VERIFY OFF FEEDBACK
OFF
COLUMN service_name FORMAT A20 TRUNCATED HEADING 'Service'
COLUMN begin_time HEADING 'Begin Time' FORMAT A10
COLUMN end_time HEADING 'End Time' FORMAT A10
COLUMN instance_name HEADING 'Instance' FORMAT A10
COLUMN service_time HEADING 'Service Time|mSec/Call' FORMAT 999999999
COLUMN throughput HEADING 'Calls/sec'FORMAT 99.99
BREAK ON service_name SKIP 1
SELECT
 service_name
 , TO_CHAR(begin_time, 'HH:MI:SS') begin_time
 , TO_CHAR(end_time, 'HH:MI:SS') end_time
 , instance_name
 , elapsedpercall service_time
 , callspersec throughput
FROM
 gv$instance i
 , gv$active_services s
 , gv$servicemetric m
WHERE s.inst_id = m.inst_id
 AND s.name_hash = m.service_name_hash

Chapter 5
Measuring Performance by Service Using the Automatic Workload Repository

5-24

 AND i.inst_id = m.inst_id
 AND m.group_id = 10
ORDER BY
 service_name
 , i.inst_id
 , begin_time ;

Automatic Workload Repository Service Thresholds and Alerts
Service level thresholds enable you to compare actual service levels against required levels
of service. This provides accountability for the delivery or the failure to deliver an agreed
service level. The end goal is a predictable system that achieves service levels. There is no
requirement to perform as fast as possible with minimum resource consumption; the
requirement is to meet the quality of service.

AWR enables you to explicitly specify two performance thresholds for each service: the
response time for calls (ELAPSED_TIME_PER_CALL), and the CPU time for calls
(CPU_TIME_PER_CALL). The response time threshold indicates that the elapsed time for each
user call for each service should not exceed a certain value, and the CPU time for calls
threshold indicates that the time spent using the CPU for each call for each service should
not exceed a certain value. Response time is a fundamental measure that reflects all delays
and faults that might be blocking the call from running on behalf of the user. Response time
can also indicate differences in node power across the nodes of an Oracle RAC database.

You must set these thresholds on each instance of an Oracle RAC database. The elapsed
time and CPU time are calculated as the moving average of the elapsed, server-side call
time. The AWR monitors the elapsed time and CPU time and publishes AWR alerts when the
performance exceeds the thresholds. You can schedule actions using Oracle Enterprise
Manager jobs for these alerts, or you can schedule actions to occur programmatically when
the alert is received. You can respond to these alerts by changing the priority of a job,
stopping overloaded processes, or by relocating, starting or stopping a service. This permits
you to maintain service availability despite changes in demand.

This section includes the following topics:

• Example of Services and Thresholds Alerts

• Enable Service_ Module_ and Action Monitoring

Example of Services and Thresholds Alerts
In this scenario, you need to check the thresholds for the payroll service. You can use the
AWR report to get this information. You should compare the results from reports run over
several successive intervals during which time the system is running optimally. For example,
assume that for servers accessed by a payroll application, the AWR report runs each
Thursday during the peak usage times of 1:00 p.m. to 5:00 p.m. The AWR report contains the
response time, or elapsed database time, and the CPU consumption time, or CPU time, for
calls for each server, including the payroll service. The AWR report also provides a
breakdown of the work done and the wait times that are contributing to the response times.

Using DBMS_MONITOR, you set a warning threshold for the elapsed time per call for the payroll
service at 0.5 seconds (500000 microseconds). You also set a critical threshold for the
elapsed time per call for the payroll service at 0.75 seconds (750000 microseconds).

In this example, thresholds are added for the payroll service as follows:

Chapter 5
Automatic Workload Repository Service Thresholds and Alerts

5-25

EXECUTE DBMS_SERVER_ALERT.SET_THRESHOLD(
METRICS_ID => DBMS_SERVER_ALERT.ELAPSED_TIME_PER_CALL
, warning_operator => DBMS_SERVER_ALERT.OPERATOR_GE
, warning_value => '500000'
, critical_operator => DBMS_SERVER_ALERT.OPERATOR_GE
, critical_value => '750000'
, observation_period => 30
, consecutive_occurrences => 5
, instance_name => NULL
, object_type => DBMS_SERVER_ALERT.OBJECT_TYPE_SERVICE
, object_name => 'payroll');

You can verify the threshold configuration is set on all the instances using the following
SELECT statement:

SELECT METRICS_NAME, INSTANCE_NAME, WARNING_VALUE, CRITICAL_VALUE,
OBSERVATION_PERIOD FROM dba_thresholds ;

Enable Service, Module, and Action Monitoring
You can enable performance data tracing for important modules and actions within
each service. The performance statistics are available in the V$SERV_MOD_ACT_STATS
view. For example, you might decide to set the following:

• For the ERP service, enable monitoring for the exceptions pay action in the
payroll module.

• For the ERP service, enable monitoring for the all actions in the payroll module.

• For the HOT_BATCH service, enable monitoring for all actions in the posting
module.

The following commands show how to enable the module and action monitoring for the
services:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(service_name => 'erp',
module_name=>
 'payroll', action_name => 'exceptions pay');
EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(service_name => 'erp',
module_name=>
 'payroll');
EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(service_name => 'hot_batch',
module_name =>'posting');

To verify monitoring is enabled for the service, module, and actions, use the following
SELECT statement:

COLUMN AGGREGATION_TYPE FORMAT A21 TRUNCATED HEADING 'AGGREGATION'
COLUMN PRIMARY_ID FORMAT A20 TRUNCATED HEADING 'SERVICE'
COLUMN QUALIFIER_ID1 FORMAT A20 TRUNCATED HEADING 'MODULE'
COLUMN QUALIFIER_ID2 FORMAT A20 TRUNCATED HEADING 'ACTION'
SELECT * FROM DBA_ENABLED_AGGREGATIONS ;

The output is similar to the following:

AGGREGATION SERVICE MODULE ACTION
------------ -------------------- ---------- -------------
SERVICE_MODULE_ACTION erp payroll exceptions pay
SERVICE_MODULE erp payroll
SERVICE_MODULE hot_batch posting

Chapter 5
Automatic Workload Repository Service Thresholds and Alerts

5-26

Using Oracle Services
To manage workloads or a group of applications, you can define services that you assign to a
particular application or to a subset of an application's operations. You can also group work
by type under services. For example, online users can use one service, while batch
processing can use another and reporting can use yet another service to connect to the
database.

Oracle recommends that all users who share a service have the same service level
requirements. You can define specific characteristics for services and each service can
represent a separate unit of work. There are many options that you can take advantage of
when using services. Although you do not have to implement these options, using them helps
optimize application performance.

Service Deployment Options
This section describes the following service deployment topics:

• Service Usage in an Oracle RAC Database

• Service Characteristics

• Default Service Connections

• Restricted Service Registration

Service Usage in an Oracle RAC Database
Services provide location transparency. A service name can identify multiple database
instances, and an instance can belong to multiple services. Several database features use
services for an Oracle RAC database:

This section includes the following topics:

• Oracle Clusterware Resources for a Service

• Database Resource Manager Consumer Group Mappings for Services

• Performance Monitoring by Service with AWR

• Parallel Operations and Services

• Oracle GoldenGate and Oracle RAC

Oracle Clusterware Resources for a Service
Resource profiles are automatically created when you define a service. A resource profile
describes how Oracle Clusterware should manage the service and which instance the service
should failover to if the preferred instance stops. Resource profiles also define service
dependencies for the instance and the database. Due to these dependencies, if you stop a
database, then the instances and services are automatically stopped in the correct order.

Database Resource Manager Consumer Group Mappings for Services
Services are integrated with Oracle Resource Manager, which enables you to restrict the
resources that users use to connect to an instance by using a service. Oracle Resource

Chapter 5
Using Oracle Services

5-27

Manager enables you to map a consumer group to a service so that users who
connect to an instance using that service are members of the specified consumer
group. Oracle Resource Manager operates at an instance level.

Performance Monitoring by Service with AWR
The metric data generated by Automatic Workload Repository (AWR) is organized into
various groups, such as event, event class, session, service, and tablespace metrics.
Typically, you view the AWR data using Oracle Enterprise Manager or AWR reports.

Related Topics

• Oracle Database Performance Tuning Guide

Parallel Operations and Services
By default, in an Oracle RAC environment, a SQL statement processed in parallel can
run across all of the nodes in the cluster.

For this cross-node or inter-node parallel processing to perform well, the interconnect
in the Oracle RAC environment must be sized appropriately because inter-node
parallel processing may result in a lot of interconnect traffic. To limit inter-node parallel
processing, you can control parallel processing in an Oracle RAC environment using
the PARALLEL_FORCE_LOCAL initialization parameter. By setting this parameter to TRUE,
the parallel processing servers can only run on the same Oracle RAC node where the
SQL statement was started.

Services are used to limit the number of instances that participate in a parallel SQL
operation. When the default database service is used, the parallel SQL operation can
run on all available instances. You can create any number of services, each consisting
of one or more instances. When a parallel SQL operation is started, the parallel
processing servers are only spawned on instances which offer the specified service
used in the initial database connection.

PARALLEL_INSTANCE_GROUP is an Oracle RAC parameter that, when used with services,
lets you restrict parallel query operations to a limited number of instances.To restrict
parallel query operations to a limited number of instances, set the
PARALLEL_INSTANCE_GROUP initialization parameter to the name of a service. This does
not affect other parallel operations such as parallel recovery or the processing of GV$
queries.

Oracle GoldenGate and Oracle RAC
Oracle GoldenGate takes advantage of Oracle RAC features.

When Oracle GoldenGate is configured in an Oracle RAC environment, each queue
table has an owning instance. If the instance that hosts a queue table fails, another
instance in the Oracle RAC database becomes the owning instance for the queue
table, allowing Oracle GoldenGate to continue operating.

Also, on an Oracle RAC database, a service is created for each buffered queue. This
service always runs on the owner instance of the destination queue and follows the
ownership of this queue if the ownership switches because of instance startup,
instance shutdown, and so on. This service is used by queue-to-queue propagations.

Chapter 5
Service Deployment Options

5-28

Service Characteristics
When you create new services for your database, you should define the automatic workload
management characteristics for each service. The characteristics of a service include:

• Service Name

• Service Edition

• Service Management Policy

• Database Role for a Service

• Instance Preference

• Server Pool Assignment

• Load Balancing Advisory Goal for Run-time Connection Load Balancing

• Connection Load Balancing Goal

• Distributed Transaction Processing

• Failing Over OCI Clients with TAF

Service Name
The service name is used by clients to connect to one or more instances.

Each service has a service name. The service name must be unique throughout your system.

The service name must meet the following qualifications:

• The name must consist of alphanumeric characters (a-z, A-Z, 0-9), underscore (_), and
hyphen (-).

• The service domain portion of the name must consist of alphanumeric characters (a-z, A-
Z, 0-9), underscore (_), dollar sign ($), number sign (#), period (.), and hyphen (-)

• A domain qualified service name is of the form service_name.service_domain.

• You cannot create a service with the same name as the database default service, which
is db_unique_name.db_domain.

Service Edition
Edition-based redefinition of database objects enables you to upgrade an application's
objects while these objects are in use. You can set the edition attribute of a database service
when you create it, or modify an existing service to set the edition. When you set the service
edition, connections that use this service use this edition as the initial session edition. If the
service does not specify the edition name, then the initial session edition is the database
default edition.

You can set the service edition using SRVCTL, as follows:

$ srvctl modify service –db hr –s crmsrv –edition e2

Chapter 5
Service Deployment Options

5-29

Service Management Policy
When you use Oracle Clusterware to manage your database, you can configure
startup options for each individual database service when you add the service using
the srvctl add service command with the -policy parameter.

If you set the management policy for a service to AUTOMATIC (the default), then the
service starts automatically when you start the database with SRVCTL. If you set the
management policy to MANUAL, then the service does not automatically start, and you
must manually start it with SRVCTL. A MANUAL setting does not prevent Oracle
Clusterware from monitoring the service when it is running and restarting it if a failure
occurs. Before Oracle RAC 11g release 2 (11.2), all services worked as though they
were defined with a MANUAL management policy.

Using CRSCTL to stop and restart Oracle Clusterware is treated as a failure and the
service is restarted if it was previously running.

Note:

When you use automatic services in an administrator-managed database,
during planned database startup, services may start on the first instances to
start rather than their preferred instances, provided that the started instances
are in the (combined) preferred and available services list.

Related Topics

• srvctl add service
Adds services to a database and assigns them to instances.

Database Role for a Service
If you configured Oracle Data Guard in your environment, then you can define a role
for services when you add or modify a service using SRVCTL and the -role
parameter with the appropriate command.

When you specify a role for a service, Oracle Clusterware automatically starts the
service only when the database role matches the role you specified for the service.
Valid roles are PRIMARY, PHYSICAL_STANDBY, LOGICAL_STANDBY, and SNAPSHOT_STANDBY
and you can specify more than one role for a service.

Note:

The service role only controls automatic startup of services. Using SRVCTL
to manually start a service will succeed even if the roles do not match.

Redo Apply (physical standby database) can run on all or some standby instances that
you can configure. This enables Redo Apply performance to scale, if necessary, by
adding additional standby instances.

Chapter 5
Service Deployment Options

5-30

If multiple databases in the cluster offer the same service name, then Oracle RAC balances
connections to that service across all such databases. This is useful for standby and active
Oracle Data Guard databases, but if you want client connections to a service to be directed to
a particular database, then the service name must be unique within the cluster (not offered by
any other database).

Related Topics

• Oracle Data Guard Concepts and Administration

Instance Preference
When you define a service for an administrator-managed database, you define which
instances normally support that service using SRVCTL with the -preferred parameter.

These are known as the preferred instances. You can also define other instances to support a
service if the service's preferred instance fails using SRVCTL with the -available parameter.
These are known as available instances.

When you specify preferred instances, you are specifying the number of instances on which a
service normally runs. This is the maximum cardinality of the service. Oracle Clusterware
attempts to ensure that the service always runs on the number of instances for which you
have configured the service. Afterward, due to either instance failure or planned service
relocations, a service may be running on an available instance.

If an instance fails, then, because Oracle Clusterware interprets the preferred and available
lists as ordered lists, you have some control to which available instance Oracle Clusterware
relocates the services, if there are multiple instances in the lists. During a planned operation,
however, you can manually direct the service to any instance in either the preferred or the
available list not currently offering the service.

When a service moves to an available instance, Oracle Database does not automatically
move the service back to the preferred instance when the preferred instance restarts
because:

• The service is running on the desired number of instances.

• Maintaining the service on the current instance provides a higher level of service
availability.

• Not moving the service back to the initial preferred instance prevents a second outage.

Starting with Oracle Database release 19.3, if you specify yes for the -failback attribute of a
service, then, after failing over to an available instance when the last preferred instance went
down, the service transfers back to a preferred instance when one becomes available. For
earlier releases, you can automate fail back to the preferred instance by using FAN callouts.

Related Topics

• Tools for Administering Oracle RAC

Service Co-location
Oracle RAC routes clients with the same COLOCATION_TAG to the same database instance,
when possible.

Co-location of sessions on the same instance can help decrease inter-instance
communication and increase performance for workloads that benefit from being executed in
the same instance. You configure the COLOCATION_TAG in the CONNECT_DATA parameter of the

Chapter 5
Service Deployment Options

5-31

TNS connect string used by the service as described in Oracle Database Net Services
Reference.

Related Topics

• COLOCATION_TAG

Server Pool Assignment
When you define services for a policy-managed database, you assign the service to a
server pool in which the database is hosted using SRVCTL with the -serverpool
parameter.

You can define the service as either UNIFORM (running on all instances in the server
pool) or SINGLETON (running on only one instance in the server pool) using the -
cardinality parameter. For singleton services, Oracle RAC chooses on which
instance in the server pool the service is active. If that instance fails, then the service
fails over to another instance in the server pool. A service can only run in one server
pool and Oracle recommends that every server pool has at least one service.

Note:

Oracle Database Quality of Service Management (Oracle Database QoS
Management) manages singleton services in a server pool, if the maximum
size of that server pool is one.

Related Topics

• Tools for Administering Oracle RAC

Load Balancing Advisory Goal for Run-time Connection Load Balancing
With run-time connection load balancing, applications can use load balancing advisory
events to provide better service to users. Oracle JDBC, Oracle Universal Connection
Pool for Java, OCI session pool, ODP.NET, and Oracle WebLogic Server Active
GridLink for Oracle RAC clients are automatically integrated to take advantage of load
balancing advisory events. The load balancing advisory informs the client about the
current service level that an instance is providing for a service. To enable the load
balancing advisory, use SRVCTL with the -rlbgoal parameter when creating or
modifying the service.

The load balancing advisory also recommends how much of the workload should be
sent to that instance. The goal determines whether connections are made to the
service based on best service quality (how efficiently a single transaction completes)
or best throughput (how efficiently a complete job or long-running query completes).

Connection Load Balancing Goal
Oracle Net Services provides connection load balancing to enable you to spread user
connections across all of the instances that are supporting a service.

For each service, you can use SRVCTL to define the method you want the listener to
use for load balancing by setting the connection load balancing goal, specified with the
-clbgoal parameter. Connections are classified as LONG (such as connection pools

Chapter 5
Service Deployment Options

5-32

and SQL*FORMS), which tells the listener to use session count, or SHORT, which tells the
listener to use response-time or throughput statistics.

If load balancing advisory is enabled (the -rlbgoal parameter does not equal NONE), then
connection load balancing attempts to use load balancing advisory (whether load balancing
goal is set to SHORT or LONG). If load balancing is set to SHORT, then it uses the GOODNESS value
of a service to try to prevent all connection requests from going to one instance. If load
balancing is set to LONG, then it uses run queue length if the service is singleton, or session
count if the service is uniform. A singleton service runs on only one server instance in the
server pool, however a uniform service runs on all server instances in the server pool.

Distributed Transaction Processing

Oracle XA applications have unique requirements. Oracle provides global transactions across
Oracle RAC. For best performance, use XA affinity (all branches at the same instance) for
most transactions, and global transactions when needed. You can use XA affinity with
connection pools, such as Universal Connection Pools and WebLogic Server. You can also
use singleton services that you create using SRVCTL. Use SRVCTL, as well, to set the
distributed transaction processing parameter (-dtp) to TRUE if you are suspending and
resuming the same Oracle XA branch. Do not use this in general, however, because it does
not offer rolling planned maintenance.

Related Topics

• Distributed Transaction Processing in Oracle RAC

• srvctl add service
Adds services to a database and assigns them to instances.

Default Service Connections
Your Oracle RAC database includes an Oracle database service identified by
DB_UNIQUE_NAME, if set, or DB_NAME or PDB_NAME, if not. This default service is always available
on all instances in an Oracle RAC environment, unless an instance is in restricted mode. You
cannot alter this service or its properties. Additionally, the database supports the following two
internal services:

• SYS$BACKGROUND is used by the background processes only

• SYS$USERS is the default service for user sessions that are not associated with any
application service

All of these services are used for internal management. You cannot stop or disable any of
these internal services to do planned outages or to failover to Oracle Data Guard. Do not use
these services for client connections.

Note:

You can explicitly manage only the services that you create. If a feature of the
database creates an internal service, you cannot manage it using the information in
this chapter.

Chapter 5
Service Deployment Options

5-33

Restricted Service Registration
This feature allows listener registration only from local IP addresses, by default, and
provides the ability to configure and dynamically update a set of IP addresses or
subnets from which registration requests are allowed by the listener.

Security is a high priority to all enterprises, and network security and controlling
access to the database is a critical component of overall security endeavours.
Database Instance registration with a listener succeeds only when the request
originates from a valid node. The network administrator can specify a list of valid
nodes, excluded nodes, or disable valid node checking. The list of valid nodes
explicitly lists the nodes and subnets that can register with the database. The list of
excluded nodes explicitly lists the nodes that cannot register with the database. The
control of dynamic registration results in increased manageability and security of
Oracle RAC deployments.

By default, valid node checking for registration (VNCR) is enabled. In the default
configuration, the listener accepts registration requests only from the nodes that are in
the subnet of the SCAN listener and have access to the private network. Non-SCAN
listeners only accept registration from instances on the local node. You must manually
include remote nodes or nodes outside the subnet of the SCAN listener on the list of
valid nodes by using the registration_invited_nodes_alias parameter in the
listener.ora file or by modifying the SCAN listener using SRVCTL, as follows:

$ srvctl modify scan_listener -invitednodes node_list -invitedsubnets
subnet_list

Note:

Starting with Oracle Grid Infrastructure 12c, for a SCAN listener, if the
VALID_NODE_CHECKING_REGISTRATION_listener_name and
REGISTRATION_INVITED_NODES_listener_name parameters are set in the
listener.ora file, then the listener agent overwrites these parameters.

If you use the SRVCTL utility to set the invitednodes and invitedsubnets values,
then the listener agent automatically sets
VALID_NODE_CHECKING_REGISTRATION_listener_name to SUBNET and sets
REGISTRATION_INVITED_NODES_listener_name to the specified list in the listener.ora
file.

For other listeners managed by CRS, the listener agent sets
VALID_NODE_CHECKING_REGISTRATION_listener_name in the listener.ora file only if it
is not already set in the listener.ora file. The SRVCTL utility does not support setting
the invitednodes and invitedsubnets values for a non-SCAN listener. The listener
agent does not update REGISTRATION_INVITED_NODES_listener_name in the
listener.ora file for a non SCAN listener.

Related Topics

• Oracle Database Net Services Administrator's Guide

Chapter 5
Service Deployment Options

5-34

Administering Services
You can create and administer services with Oracle Enterprise Manager and the SRVCTL
utility. The following sections describe how to perform service-related tasks using these tools:

This section includes the following topics:

• Overview of Service Administration

• Administering Services with Oracle Enterprise Manager

• Administering Services with SRVCTL

Note:

You can also use the DBMS_SERVICE package to create or modify services and
service attributes, but SRVCTL will override any settings made using this package.
The DBMS_SERVICE package is not recommended for use with services used by
an Oracle RAC database, nor when Oracle Restart is used, nor when Oracle
Clusterware is managing a single-instance database.

Overview of Service Administration
When you create and administer services, you are dividing the work that your database
performs into manageable units.

The goal of using services is to achieve optimal utilization of your database infrastructure.
You can create and deploy services based on business requirements. Oracle Database can
measure the performance for each service. Using the DBMS_MONITOR package, you can define
both the application modules within a service and the individual actions for a module and
monitor thresholds for these actions, enabling you to manage workloads to deliver capacity
on demand.

When you create new services for your database, you should define the automatic workload
management characteristics for each service, as described in "Service Characteristics".

See Also:

Oracle Database Quality of Service Management User's Guide if you are using
Oracle Database QoS Management with your Oracle cluster for details on how to
configure the database services

In addition to creating services, you can:

• Delete a service. You can delete services that you created. However, you cannot delete
or modify the properties of the default database service that Oracle Database created.

• Check the status of a service. A service can be assigned different roles among the
available instances. In a complex database with many services, you may not remember
the details of every service. Therefore, you may have to check the status on an instance
or service basis. For example, you may have to know the status of a service for a

Chapter 5
Administering Services

5-35

particular instance before you make modifications to that instance or to the Oracle
home from which it runs.

• Start or stop a service for a database or an instance. A service must be started
before it can be used for client connections to that instance. If you shut down your
database, for example, by running the SRVCTL command srvctl stop database
-db db_unique_name where db_unique_name is the name of the database you want
to stop, then Oracle Database stops all services for that database. Depending on
the service management policy, you may have to manually restart the services
when you start the database. Both the srvctl stop database and srvctl stop
service commands accept the -force option to forcibly disconnect connections.
To drain sessions for planned outages do not use the -force option.

Note:

If Oracle Database QoS Management is enabled for the Oracle RAC
database, then the services are automatically restarted after they are
stopped.

• Map a service to a consumer group. You can map services to Resource
Manager Consumer groups to limit the amount of resources that services can use
in an instance. You must create the consumer group and then map the service to
the consumer group.

• Enable or disable a service for a database or an instance. By default, Oracle
Clusterware attempts to restart a service automatically after failures. You can
prevent this behavior by disabling a service. Disabling a service is useful when you
must perform database or instance maintenance, such as when you are
performing an upgrade and you want to prevent connection requests from
succeeding.

• Relocate a service to a different instance. You can move a service from one
instance to another instance to re-balance workloads, for example, after adding or
deleting cluster nodes.

Note:

• When you use services, do not set a value for the SERVICE_NAMES
parameter; Oracle Database controls the setting for this parameter for
the services that you create and for the default database service. The
service features that this chapter describes are not directly related to the
features that Oracle Database provides when you set SERVICE_NAMES. In
addition, setting a value for this parameter may override some benefits of
using services.

• Service status information must be obtained from SRVCTL or from the
service-related database views, such as dba_services.

• If you specify a service using the DISPATCHERS initialization parameter, it
overrides any service in the SERVICE_NAMES parameter, and cannot be
managed. (For example, stopping the service with a SRVCTL command
does not stop users connecting with the service.)

Chapter 5
Administering Services

5-36

Related Topics

• Enabling Clients for Oracle RAC

• Oracle Database PL/SQL Packages and Types Reference

Administering Services with Oracle Enterprise Manager
The Cluster Managed Database Services page is the master page for beginning all tasks
related to services.

Access this page, as follows:

1. In Oracle Enterprise Manager, go to the Cluster Database Home page.

See Also:

Oracle Database 2 Day DBA for details on logging in to Oracle Enterprise
Manager.

2. From the Availability menu, select Cluster Managed Database Services to display the
Cluster Managed Database Services page.

3. Enter or confirm the credentials for the Oracle RAC database and host operating system
and click Continue to display the Cluster Managed Database Services page.

From the Cluster Managed Database Services page you can drill down to perform the
following tasks:

• View a list of services for the cluster

• View the instances on which each service is currently running

• View the server pool and nodes offering the service in a policy-managed environment

• View the status for each service

• Create or edit a service

• Start or stop a service

• Enable or disable a service

• Perform instance-level tasks for a service

• Delete a service

Note:

You must have SYSDBA credentials to access a cluster database. Cluster Managed
Database Services does not permit you to connect as anything other than SYSDBA.

Related Topics

• Oracle Database 2 Day DBA

Chapter 5
Administering Services

5-37

See Also:

Oracle Enterprise Manager online help for more information about
administering services with Oracle Enterprise Manager

Administering Services with SRVCTL
When you create a service using SRVCTL, you must start the service with a separate
SRVCTL command.

However, you may later have to manually stop or restart the service. You may also
have to disable the service to prevent automatic restarts, to manually relocate the
service, or obtain status information about the service. The following sections explain
how to use SRVCTL to perform the following administrative tasks:

• Creating Services with SRVCTL

• Creating Services for Application Continuity and Transaction Guard

• Starting and Stopping Services with SRVCTL

• Enabling and Disabling Services with SRVCTL

• Relocating Services with SRVCTL

• Obtaining the Status of Services with SRVCTL

• Obtaining the Configuration of Services with SRVCTL

Creating Services with SRVCTL
To create a service with SRVCTL, use the srvctl add service command on the
command line.

Related Topics

• srvctl add service
Adds services to a database and assigns them to instances.

Creating Services for Application Continuity and Transaction Guard
To configure services for Application Continuity, when you create a service using
SRVCTL, set the -failovertype parameter to TRANSACTION and -commit_outcome to
TRUE.

When using Application Continuity and Transaction Guard with your applications, you
must configure a service. This section describes how to configure these application
services depending on the functionality you plan to implement.

Creating Services for Application Continuity

Additionally, you can set values for these other service parameters for Application
Continuity and load balancing:

• -replay_init_time: Specifies how long, in seconds, you allow replay to start.
Oracle recommends that you choose a value based on how long you will allow
replay to be initiated. The default value is 300 seconds.

Chapter 5
Administering Services

5-38

• -retention: Specifies the time (in seconds) that the commit outcome information is
stored in the database. The default value is 86400 (1 day).

• -session_state: After a COMMIT has executed, if the state was changed in that
transaction, then it is not possible to replay the transaction to reestablish that state if the
session is lost. When configuring Application Continuity, the applications are categorized
depending on whether the session state after the initial setup is dynamic or static, and
then whether it is correct to continue past a COMMIT operation within a request.

– Dynamic: (default) A session has a dynamic state if the session state changes are
not fully encapsulated by the initialization, and cannot be fully captured in a callback
at failover. Once the first transaction in a request commits, failover is internally
disabled until the next request begins. This is the default mode that almost all
applications should use for requests.

– Static: (special—on request) A session has a static state if all session state changes,
such as NLS settings and PL/SQL package state, can be repeated in an initialization
callback. This setting is used only for database diagnostic applications that do not
change session state. Do not specify STATIC if there are any non-transactional state
changes in the request that cannot be reestablished by a callback. If you are unsure
what state to specify, use DYNAMIC.

• -failoverretry: Number of connection retries for each connection attempt;
recommended value is 30.

• -failoverdelay: Delay in seconds between each connection attempt; recommended
value is 10.

• -notification: FAN is highly recommended—set this value to TRUE to enable FAN for
OCI and ODP.Net clients.

• -clbgoal: For connection load balancing, use SHORT when using run-time load balancing.

• -rlbgoal: For run-time load balancing, set to SERVICE_TIME.

To create a service for Application Continuity for a policy-managed Oracle RAC database,
use a command similar to the following, where racdb is the name of your Oracle RAC
database, app2 is the name of the service you are modifying, and Svrpool1 is the name of
the server pool in which the service is offered:

$ srvctl add service -db racdb -service app2 -serverpool Srvpool1
 -failovertype TRANSACTION -commit_outcome TRUE -replay_init_time 1800
 -retention 86400 -notification TRUE -rlbgoal SERVICE_TIME -clbgoal SHORT
 -failoverretry 30 -failoverdelay 10

You can use SRVCTL to modify an existing service for Application Continuity, similar to the
following command, where racdb is the name of your Oracle RAC database, and app1 is the
name of the service you are modifying:

$ srvctl modify service -db racdb -service app1 -clbgoal SHORT
 -rlbgoal SERVICE_TIME -failoverretry 30 -failoverdelay 10
 -failovertype TRANSACTION -commit_outcome TRUE -replay_init_time 1800
 -retention 86400 -notification TRUE

Creating Services for Transaction Guard

To enable Transaction Guard, but not Application Continuity, create the service using
SRVCTL and set only -commit_outcome TRUE.

Chapter 5
Administering Services

5-39

You can use SRVCTL to modify an existing service to enable Transaction Guard,
similar to the following command, where racdb is the name of your Oracle RAC
database, and app2 is the name of the service you are modifying:

$ srvctl modify service -db racdb -service app2 -commit_outcome TRUE
 -retention 86400 -notification TRUE

In the preceding example, the -retention parameter specifies how long, in seconds,
to maintain the history. Additionally the –notification parameter is set to TRUE,
enabling FAN events.

To use Transaction Guard, a DBA must grant permission, as follows:

GRANT EXECUTE ON DBMS_APP_CONT;

Related Topics

• Oracle Database Development Guide

Starting and Stopping Services with SRVCTL
For applications to connect using a server, the service must be started. If you stop a
service, then it is temporarily unavailable, but is still subject to automatic restart and
failover.

Enter the following SRVCTL syntax at the command line to start or stop a service:

$ srvctl start service -db db_unique_name [-service service_name_list]
 [-instance inst_name] [-startoption start_options]

$ srvctl stop service -db db_unique_name -service service_name_list
 [-instance inst_name] [-startoption start_options]

Enabling and Disabling Services with SRVCTL
If you disable a service, then Oracle Clusterware does not consider the service for
automatic startup, failover, or restart. You might disable a service when performing
application maintenance, to ensure the service is not accidentally restarted by Oracle
Clusterware until your maintenance operations are complete. To make the service
available for normal operation again, you enable the service.

Use the following SRVCTL syntax from the command line to enable and disable
services:

$ srvctl enable service -db db_unique_name -service service_name_list
 [-instance inst_name]

$ srvctl disable service -db db_unique_name -service service_name_list
 [-instance inst_name]

Relocating Services with SRVCTL
Run the srvctl relocate service command from the command line to relocate a
service. You might use this command when a service has failed over to an available

Chapter 5
Administering Services

5-40

instance, but you want to move it back to the preferred instance after that instance is
restarted.

The following command relocates the crm service from instance apps1 to instance apps3:

$ srvctl relocate service -db apps -service crm -oldinst apps1 -newinst apps3

The following command relocates the crm service from node1 to node3 using node syntax:

$ srvctl relocate service -db apps -service crm -currentnode node1
 -targetnode node3

Obtaining the Status of Services with SRVCTL
Run the srvctl status service command from the command line to obtain the status of a
service. For example, the following command returns the status of the services that are
running on the apps database:

$ srvctl status service -db apps

Service erp is running on nodes: apps02,apps03
Service hr is running on nodes: apps02,apps03
Service sales is running on nodes: apps01,apps04

Obtaining the Configuration of Services with SRVCTL
Run the srvctl config service command from the command line to obtain the high
availability configuration of a service. For example, the following command returns the
configuration of the erp service that is running on the apps database:

$ srvctl config service -db apps -service erp

Service name: erp
Service is enabled
Server pool: pool1
Cardinality: 1
Disconnect: false
Service role: PRIMARY
Management policy: AUTOMATIC
DTP transaction: false
AQ HA notifications: true
Global: false
Commit Outcome: true
Failover type: TRANSACTION
Failover method: NONE
TAF failover retries: 30
TAF failover delay: 10
Connection Load Balancing Goal: LONG
Runtime Load Balancing Goal: SERVICE_TIME
TAF policy specification: NONE
Edition:
Pluggable database name:
Maximum lag time: ANY
SQL Translation Profile:
Retention: 86400 seconds
Replay Initiation Time: 1800 seconds

Chapter 5
Administering Services

5-41

Session State Consistency: STATIC
Preferred instances: apps
Available instances:

Global Services
Oracle RAC supports database services and enables service-level workload
management across instances in a single cluster.

Global services provide dynamic load balancing, failover, and centralized service
management for a set of replicated databases that offer common services. The set of
databases may include Oracle RAC and non-clustered Oracle databases
interconnected by Oracle Data Guard, Oracle GoldenGate, or any other replication
technology.

When you create and use global services, the following workload management
features are available:

• Ability to specify preferred and available databases for a global service

• Handling of replication lag

• Geographical affinity between clients and servers

• Connection load balancing

• Run-time load balancing

• Inter-database service failover

• Fast connection failover

• Connect-time failover

• Application Continuity

• Transaction Guard

• Backward compatibility with existing clients

Note:

You can manage instance placement of a global service within an Oracle
RAC database with SRVCTL but you can only manage other global service
attributes with GDSCTL.

Related Topics

• Oracle Database Global Data Services Concepts and Administration Guide

Service-Oriented Buffer Cache Access
Service-oriented buffer cache access improves performance by managing data with
the service to which the data belongs.

Access of an object, over time, through a service is mapped and persisted to the
database, and this information can be used to improve performance. Blocks that are

Chapter 5
Global Services

5-42

accessed through the service are cached in the instances where the services are running
and, more importantly, the information is not cached where the services are not running.

This information can also be used to pre-warm the cache prior to a service starting. The
service start-up can be triggered either by instance start-up or by service relocation. Service-
oriented buffer cache access provides consistent performance to any user of that service
because the blocks that the service user accesses are cached in the new relocated instance.

Connecting to a Service: An Example
The following example illustrates how to create a service and then gives several examples of
connecting to that service using different client methods.

In this example the service is enabled for run-time load balancing, as follows:

• Service Name: HR.example.com
– Running on database named CRM

– The system consists of 4 nodes

• Specifying SERVICE_TIME as the value for the -rlbgoal parameter

• SCAN address of the listener is rws3010104-scan.example.com
• Listener port is 1585

The service has a cardinality of two, but if needed, can be offered by any of the CRM
database instances. The service configuration is as follows:

• Preferred Instances: CRM1, CRM2

• Available Instances: CRM3, CRM4

• Specifying SHORT as the value for the -clbgoal parameter

The application using this service takes advantage of Application Continuity, so you must set
-failovertype and -commit_outcome. Use the default retention parameters, but set a 10
second delay between connection attempts, and up to 40 retries before failing to get a
connection.

Creating the HR Service Using SRVCTL

Create the HR service using SRVCTL, as follows:

$ srvctl add service –db CRM –service HR.example.com –preferred CRM1,CRM2
 –available CRM3,CRM4 –clbgoal SHORT –failovertype TRANSACTION
 –commit_outcome TRUE –failoverdelay 10 –failoverretry 40

Start the HR.example.com service, as follows:

$ srvctl start service –db CRM –service HR.example.com

The service is now be available on up to two instances, and CRM1 and CRM2 are the
preferred instances.

Chapter 5
Connecting to a Service: An Example

5-43

Connecting to the HR Service from a JDBC Application

The application that connects to the HR service, in this example, is a JDBC application
using the JDBC Universal Connection Pool with the JDBC thin driver.

In this example, a URL is constructed specifying the thin-style service name format for
the database specifier. Fast Connection Failover is enabled, and remote Oracle
Notification Service is configured, where the Oracle Notification Service daemon on
the cluster listens on port 6200.

//import packages and register the driver
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

//set the connection properties on the data source.
pds.setConnectionPoolName("FCFPool");
pds.setFastConnectionFailoverEnabled(true);
pds.setONSConfiguration("nodes=rws3010104-scan.example.com:6200");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//rws3010104-scan.example.com:1585/
HR.example.com");
pds.setUser("HR");
pds.setPassword("hr");

//Override any pool properties.
pds.setInitialPoolSize(5);

//Get a database connection from the datasource.

Connection conn = pds.getConnection();

// do some work

//return connection to pool
conn.close();
conn=null

Related Topics

• Oracle Universal Connection Pool Developer’s Guide

Chapter 5
Connecting to a Service: An Example

5-44

6
Ensuring Application Continuity

Application Continuity is a feature that enables the replay, in a non-disruptive and rapid
manner, of a request against the database after a recoverable error that makes the database
session unavailable so an outage appears to the user as no more than a delayed execution
of the request.

The request can contain transactional and non-transactional work. After a successful replay,
the application can continue where that database session left off, instead of having users left
in doubt, not knowing what happened to their funds transfers, flight bookings, and so on, and
avoiding the need to reboot mid-tier servers to recover from an overload of log ins when the
application comes back online. With Application Continuity, the end-user experience is
improved by masking many outages, planned and unplanned, without the application
developer needing to attempt to recover the request.

Without Application Continuity, it can be almost impossible for an application to mask outages
in a safe way, for reasons that include the following:

• The state at the client remains at present time, with entered data, returned data, and
variables cached.

• If a COMMIT has been issued, then the COMMIT failure message cannot be retrieved if it is
not received by the client or the application.

• Checking the status of an in-doubt tansaction at a point in time is no guarantee that it will
not COMMIT later.

• Non-transactional database session state that the application needs to operate is lost.

• If the request can continue, the database and the database session must be in the right
state.

With Application Continuity, however, Oracle Database, the Oracle drivers, and the Oracle
connection pools all collaborate to mask many outages in a safe and reliable way.

Application Continuity improves developer productivity by attempting to mask outages that
can be masked. However, applications still must include error handling for these cases:

• Nonrecoverable errors, such as invalid input data. (Application Continuity applies only to
recoverable errors.)

• Recoverable errors when replay has encountered a restriction, such as use of concrete
classes in the application, or when replay has not been able to restore the client-visible
state to that on which the client may have made decisions so far.

Introduced in Oracle Database 12c Release 1 (12.1.0.1), Application Continuity strengthens
the fault tolerance of systems and applications that use an Oracle database.

This chapter assumes that you are familiar with the major relevant concepts and techniques
of the technology or product environment in which you are using Application Continuity, such
as Oracle WebLogic Server, Oracle RAC, or Oracle Active Data Guard (Oracle ADG).

This chapter includes the following topics:

• Fast Application Notification

6-1

• Managing Unplanned Outages

• Managing Planned Maintenance

• About Application Continuity

• Application Continuity Operation and Usage

• Potential Side Effects of Application Continuity

• Restrictions and Other Considerations for Application Continuity

• Transaction Guard for Improving Client Failover

• Failing Over OCI Clients with Transparent Application Failover

Fast Application Notification
The Oracle RAC high availability framework monitors a database and its services and
sends event notifications using Fast Application Notification (FAN).

Oracle Database focuses on maintaining the highest possible service availability. In
Oracle RAC, services are designed to be continuously available with loads shared
across one or more instances. The Oracle RAC high-availability framework maintains
service availability by using Oracle Clusterware and resource profiles. Oracle
Clusterware recovers and balances services according to business rules and the
service attributes.

This section includes the following topics:

• Overview of Fast Application Notification

• Fast Application Notification High Availability Events

• Subscription to High Availability Events

• Using Fast Application Notification Callouts

Related Topics

• Enabling Clients for Oracle RAC

Overview of Fast Application Notification
FAN provides immediate interrupt of clients following outages related to the database,
nodes, and networks.

FAN is essential to break clients out of TCP/IP timeouts immediately following failures.
FAN notifies clients immediately when resources become available and initiates
draining of database sessions so clients experience no outages during planned
maintenance. FAN also includes notifying configuration- and service-level information
that includes changes in service status.

The Oracle client drivers and Oracle connection pools respond to FAN events and take
immediate action. FAN UP and DOWN events apply to services, databases, instances,
networks, and nodes.

Note:

FAN is supported starting with Oracle Database 10g release 2 (10.2).

Chapter 6
Fast Application Notification

6-2

Oracle connection pools, for example, use FAN to receive very fast notification of failures, to
balance connections following failures, and to balance connections again after the failed
components are repaired. So, when a service at an instance starts, the connection pool uses
the FAN event to route work to that resource, immediately. When a service at an instance or
node fails, the connection pool uses the FAN event to immediately interrupt applications to
recover. FAN is essential to prevent applications from hanging on TCP/IP timeouts.

Importance of FAN

Applications can waste time in many critical ways:

• Waiting for TCP/IP timeouts when a node fails without closing sockets, and for every
subsequent connection while that IP address is down.

• Attempting to connect when services are down.

• Not connecting when services resume.

• Processing the last result at the client when the server goes down.

• Attempting to execute work on sub-optimal nodes.

When a node fails without closing sockets, all sessions that are blocked in an I/O wait (read
or write) wait for tcp_keepalive. This wait status is the typical condition for an application
connected by a socket. Sessions processing the last result are even worse off, not receiving
an interrupt until the next data is requested. Using FAN events eliminates applications waiting
on TCP timeouts, time wasted processing the last result at the client after a failure has
occurred, and time wasted executing work on slow, hung, or dead nodes.

For cluster configuration changes, the Oracle RAC high availability framework publishes a
FAN event immediately when a state change occurs in the cluster. Instead of waiting for the
application to time out against the database and detect a problem, applications can receive
FAN events and react immediately. With FAN, in-flight transactions are immediately
terminated and the client notified when the instance fails.

FAN also publishes load balancing advisory events. Applications can take advantage of the
load balancing advisory FAN events to direct work requests to the instance in the cluster that
is currently providing the best service quality.

Oracle Database 12c release 2 (12.2) client drivers are FAN-aware, and FAN is enabled, by
default. This includes the JDBC Thin driver (12.2.0.1) and Oracle Data Provider for Net
(ODP.NET) drivers. A client driver can detect planned and unplanned FAN events and take
action beneath the application.

For planned maintenance and applications using OCI or Pro* (and not using the OCI session
pool or Tuxedo), an application must check OCI_ATTR_SERVER_STATUS. Add this check when
sessions are returned to your own connection pool, and for idle connections, regularly.

Following a FAN down event with planned maintenance, this attribute is set to
OCI_SERVER_NOT_CONNECTED. The application closes the connection after reading this
disconnected status. The session remains open for draining of active work until the
application closes, providing error-free failover.

You can take advantage of FAN events in the following ways:

• Applications can use FAN without programmatic changes if you use an integrated Oracle
client. The integrated clients for FAN events include Oracle JDBC Universal Connection
Pool, ODP.NET connection pool, OCI session pool, Oracle WebLogic Server Active
Gridlink for Oracle RAC, and OCI and ODP.NET clients. The integrated Oracle clients
must be Oracle Database 10g release 2 (10.2) or later to take advantage of the FAN

Chapter 6
Fast Application Notification

6-3

high-availability events. The pooled clients can also take advantage of the load
balancing advisory FAN events.

• You can configure third-party application containers, such as those provided by
Apache Tomcat and WebSphere, to use the built-in FAN support offered by using
the Universal Connection Pool in place of the default pool, which is certified as a
connection pool for third-party Java application servers including Apache Tomcat
and WebSphere.

• Use the FAN-aware capability of the Oracle drivers by using standard interfaces to
test connections on get or release from the third-party connection pools in use by
third-party application servers or custom applications.

– This solution applies to standard Java applications through the use of the
standard TNS connect string and ensures that the ons.jar and
simpleFAN.jar files are available on the application CLASSPATH.

– For the OCI/OCCI driver, the OCI_ATTR_SERVER_STATUS server context handle
attribute is sensitive to FAN events and will return OCI_SERVER_NOT_CONNECTED
if the connection has been affected by a FAN event.

• You can implement FAN with server-side callouts on your database tier.

• Applications can use FAN programmatically by using the JDBC and Oracle RAC
FAN application programming interface (API) or by using callbacks with OCI and
ODP.NET to subscribe to FAN events and to run event handling actions upon the
receipt of an event.

If you use one of the integrated clients listed in the first item of the preceding list, then,
for DOWN events, the disruption to the application is minimized because the FAN-
aware client terminates the connections to the failed instance or node before they are
reused. Active work can be allowed to complete and, if there is a surviving instance,
then continuous service can be maintained for ongoing work. Any sessions active
when the instance or service stops are terminated and the application user is
immediately notified. Incomplete transactions can be protected by Application
Continuity, if it is enabled. Application users who request connections are directed to
available instances, only.

For UP events, when services and instances are started, new connections are created
so that the application can immediately take advantage of the extra hardware
resources or additional capacity.

To take advantage of FAN-aware capabilities in the drivers, as mentioned in the
previous list, the following is required:

• For the thin Java driver, beginning with release 12.2, FAN is automatically enabled
by placing the ons.jar and simpleFAN.jar files on the CLASSPATH, and by using
the recommended TNS format (as shown in Example 6-1). Using the
recommended TNS format automatically configures ONS. Also with the Java thin
driver, FAN is supported for both planned and unplanned events. For unplanned
outages, the FAN interrupt is immediate. For planned maintenance, configure the
Java application servers or custom pools using standard interfaces to test
connections on get or release from third-party connection pools. For example,
TestConnectionsOnReserve, TestOnBorrow, or PreTest connections, depending
on the application server.

With this approach, when a FAN event is received during planned maintenance,
Fast Connection Failover closes sessions when they are tested, because the
application does not have a connection to the database at this time, and can retry
for a new connection. The connection tests may use isValid, isClosed,

Chapter 6
Fast Application Notification

6-4

isUsable, PingDatabase, or a SQL statement that is preceded by the hint /*+
CLIENT_CONNECTION_VALIDATION */.

• For a SQL test, the SQL syntax must begin with the hint /*+
CLIENT_CONNECTION_VALIDATION */. At the time the SQL command runs, the driver will
drain the connection, if it is affected by the upcoming planned maintenance. Connection
pools, data sources, and, in the programmatic case, customer applications, must all be
ready to manage the recoverable error that occurs when the SQL command runs, which
usually closes the physical connection.

Note:

The SQL hint must be placed as the first non-comment token within the SQL
string to avoid changing current, driver-based SQL parsing. For example:

/*+ CLIENT_CONNECTION_VALIDATION */ SELECT 1 FROM DUAL;

• Third-party Java application servers and Java applications can use the
PooledConnection standard interface when developing connection pools.

• Beginning with the 11.2.0.3 release of the OCI/OCCI driver, when the
OCI_ATTR_SERVER_STATUS server context handle attribute returns
OCI_SERVER_NOT_CONNECTED, the application must terminate the connection. Work will be
drained for planned maintenance. The 12.2 release of the driver can also detect
OCISessionRelease and OCIRequestEnd when it receives a planned DOWN event.

FAN callouts are server-side scripts or executables that run whenever a FAN event is
generated. You can design and build callouts to do many things. For example:

• Log status information

• Page DBAs or to open support tickets when resources fail to start

• Automatically start dependent external applications that must be co-located with a service

• Change resource plans or shut down services when the number of available instances for
a policy-managed database decreases, for example, if nodes fail

• Automate the fail back of a service to preferred instances for administrator-managed
databases, if needed

FAN events are published using Oracle Notification Service and Advanced Queuing, the latter
being continued for backward compatibility to previous Oracle Database releases. The
publication mechanisms are automatically configured as part of your Oracle RAC installation.
If you are using thin Java JDBC connections, then the client can be automatically configured
for Oracle Notification Service, by obtaining the database-server Oracle Notification Service
configuration from the database connection. It is not necessary to configure Oracle
Notification Service on the client.

Oracle Net Services listeners and Global Data Services (GDS) are integrated with FAN
events, enabling the listener and GDS to immediately de-register services provided by the
failed instance and to avoid erroneously sending connection requests to failed instances.

If you specify the connection load balancing goal CLB_GOAL_SHORT for the service, then the
listener uses the load balancing advisory when the listener balances the connection loads.
When load balancing advisory is enabled, the metrics used for the listener are finer grained.

Chapter 6
Fast Application Notification

6-5

Related Topics

• Server Draining Ahead of Planned Maintenance
Before planned maintenance, drain or fail over database sessions at the database
instance so application work is not interrupted. Beginning with Oracle Database
18c, the database itself drains the sessions.

Fast Application Notification High Availability Events
This section describes the information delivered in the FAN event to a callout program.

FAN event types are listed following the example, and Table 6-1 describes name-value
pairs for the event parameters. The event type is always the first entry when you
receive FAN information through a callout, as in the following example:

SERVICEMEMBER VERSION=1.0
 service=test.company.com database=ractest
 instance=ractest11 host=ractest1_host0343_1 status=up reason=FAILURE
 timestamp=2018-05-08 22:06:02 timezone=-07:00 db_domain=company.com

Note that the preceding example displays as one line.

FAN event types include:

DATABASE
INSTANCE
NODE
SERVICE
SERVICEMEMBER
SERVICEMETRICS

The DATABASE and INSTANCE types list the default database service as
DB_UNIQUE_NAME.

All events except for NODE events include a db_domain field.

Events of SERVICEMETRICS type are load balancing advisory events.

See Also: Table 5-1 for more information about load balancing events

Table 6-1 Event Parameter Name-Value Pairs and Descriptions

Parameter Description

VERSION Version of the event record. Used to identify release changes.

database The unique name of the database supporting the service; matches
the initialization parameter value for DB_UNIQUE_NAME, which
defaults to the value of the DB_NAME initialization parameter.

instance The name of the instance that supports the service; matches the
ORACLE_SID value.

host The name of the node that supports the service or the node that
has stopped; matches the node name known to Cluster
Synchronization Services (CSS).

Chapter 6
Fast Application Notification

6-6

Table 6-1 (Cont.) Event Parameter Name-Value Pairs and Descriptions

Parameter Description

service The service name; matches the name of the service as listed in
DBA_SERVICES and is domain-qualified as appropriate. Refer to the
following examples:

SERVICEMEMBER VERSION=1.0 service=swingbench
 database=orcl instance=orcl_2 host=rwsbj13
status=up
 reason=USER card=1 timestamp=2018-05-29 17:26:37
 timezone=-07:00 db_domain=

SERVICEMEMBER VERSION=1.0
service=swingbench.example.com
 database=orcl instance=orcl1 host=rwsbj09
status=up
 reason=USER card=2 timestamp=2018-05-03 17:29:28
 timezone=-07:00 db_domain=example.com

SERVICEMEMBER VERSION=1.0
service=swingbench.example.com
 database=orcl instance=orcl2 host=rwsbj10
status=up
 reason=USER card=1 timestamp=2018-07-03 17:29:18
 timezone=-07:00 db_domain=example.com

status Values are UP, DOWN, NODEDOWN (this only applies to the NODE event
type), NOT_RESTARTING, and UNKNOWN.

Notes:
• When the node is down, the status is NODEDOWN, as opposed

to DOWN for other event types.

• When STATUS=NODEDOWN and REASON=MEMBER_LEAVE, a
node has failed and is no longer part of the cluster, or a user
has stopped a node.

• When STATUS=NODEDOWN and REASON=PUBLIC_NW_DOWN, the
node is up but it is unreachable because the public network is
down because of either a failure or a user action.

• Multiple public networks are supported by Oracle Clusterware.
The FAN event reflects this fact.

Chapter 6
Fast Application Notification

6-7

Table 6-1 (Cont.) Event Parameter Name-Value Pairs and Descriptions

Parameter Description

reason AUTOSTART, BOOT, DEPENDENCY, FAILURE, MEMBER_LEAVE,
PUBLIC_NW_DOWN, USER.

Notes:
• For DATABASE and SERVICE event types, REASON=AUTOSTART

if, when the node started, the AUTO_START resource attribute
was set to restore, and the resource was offline before the
node started.

• For DATABASE and SERVICE event types, REASON=BOOT if,
when the node started, the resource started because it was
online before the node started.

• For SRVCTL and Oracle Enterprise Manager operations,
REASON=USER describes planned actions for such operations
as draining work.

cardinality The number of service members that are currently active; included
in all SERVICEMEMBER UP events.

Following is an example of SERVICEMEMBER UP event:

SERVICEMEMBER VERSION=1.0
service=swingbench.example.com
database=orcl instance=orcl_2 host=mjkbj09
status=up
reason=USER card=1 timestamp=2018-07-12 14:46:46
timezone=-07:00 db_domain=example.com

incarnation For NODEDOWN events; the new cluster incarnation. This value
changes each time a member joins or leaves the cluster.

Following is an example of a NODEDOWN event:

NODE VERSION=1.0 host=stru09 incarn=175615351
status=down
reason=member_leave timestamp=27-Jul-2018
14:49:32 timezone=-07:00

timestamp The time according to Oracle Clusterware that an event occurs.

timezone The time zone of Oracle Clusterware where the event occurred,
given as GMT +/-hh:mm.

Some of the FAN event record parameters have values that correspond to values
returned by the SYS_CONTEXT function using the default namespace USERENV, as shown
in Table 6-2.

Table 6-2 FAN Parameters and Matching Session Information

FAN Parameter Matching Session Information

SERVICE sys_context('userenv', 'service_name')
DATABASE_UNIQUE_NAME sys_context('userenv', 'db_unique_name')

Chapter 6
Fast Application Notification

6-8

Table 6-2 (Cont.) FAN Parameters and Matching Session Information

FAN Parameter Matching Session Information

INSTANCE sys_context('userenv', 'instance_name')
CLUSTER_NODE_NAME sys_context('userenv', 'server_host')

Subscription to High Availability Events
Oracle RAC uses FAN to notify applications about configuration changes and the current
service level that is provided by each instance where the service is enabled. If you are using
an OCI client or an ODP.NET client to receive FAN events, then you must enable the service
used by that client to access the alert notification queue by using SRVCTL with the -
notification parameter.

Using Fast Application Notification Callouts
Fast Application Notification (FAN) callouts are server-side program files that Oracle RAC
runs immediately when high availability events occur.

You can use FAN callouts to automate activities when events occur in a cluster configuration,
such as:

• Opening fault tracking tickets

• Sending messages to pagers

• Sending e-mail

• Starting and stopping server-side applications

• Maintaining an up-time log by logging each event as it occurs

• Relocating low-priority services when high priority services come online

To use FAN callouts, place a program file in the Grid_home/racg/usrco directory on every
node that runs Oracle Clusterware. The program file must be able to run standalone when
called, with optional arguments, from another program. The following is an example of a shell
script, named callout.sh, which is placed in the Grid_home/racg/usrco directory:

#! /bin/bash
FAN_LOGFILE= [your_path_name]/admin/log/'hostname'_uptime'.log
echo $* "reported="'date' >> $FAN_LOGFILE &

The previous example adds entries similar to the following in the log file, indicated
by $FAN_LOGFILE in the shell script, each time a FAN event is generated:

NODE VERSION=2.0 host=my-exa status=nodedown reason=public_nw_down
incarn=0 timestamp=2019-10-24 09:02:35 timezone=+00:00 vip_ips=10.1.1.94

The contents of a FAN event record matches the current session of the user logged on to the
database. The user environment (USERENV) information is also available using Oracle Call
Interface (OCI) connection handle and descriptor attributes (using OCIAttrGet()). Use this
information to take actions on sessions that match the FAN event data.

Chapter 6
Fast Application Notification

6-9

In general, events are only posted to user callouts on the node from which the event
originated. For example, if the database on node1 goes down, then the callout is
posted to node1, only. The only exceptions to this are node down and VIP down events
—these events are posted to all nodes, regardless of from where they originated.

Related Topics

• Fast Application Notification High Availability Events
This section describes the information delivered in the FAN event to a callout
program.

• Oracle Call Interface Programmer's Guide

Managing Unplanned Outages
You can assign services to one or more instances in an administrator-managed Oracle
RAC database or to server pools in a policy-managed database.

If Oracle RAC detects an outage, then Oracle Clusterware isolates the failed
component and recovers the dependent components. For services, if the failed
component is an instance, then Oracle Clusterware attempts to maintain the
cardinality of the service. If the service definition allows for failover and that is
necessary to maintain cardinality, then failover occurs.

FAN events can occur at various levels within the Oracle Database architecture and
are published through Oracle Notification Service and Advanced Queuing for
backward compatibility with previous OCI clients. FAN callouts can also be written to
execute on the database server in response to FAN events.

Note:

Oracle Database does not run Oracle RAC callouts with guaranteed
ordering. Callouts are run asynchronously and they are subject to scheduling
variability.

FAN is published from a surviving node when the failed node is out of service. The
location and number of instances in an Oracle RAC environment that provide a service
are transparent to applications. Restart and recovery are automatic, including the
restarting of the subsystems, such as the listener and the Oracle Automatic Storage
Management (Oracle ASM) processes, not just the database. You can use FAN
callouts to report faults to your fault management system and to initiate repair jobs.

It is a complex task for application developers to mask outages of a database session
(instance, node, storage or network, or any other related component) and, as a result,
errors and timeouts are often exposed to the end users leading to user frustration, lost
productivity, and lost opportunities. Together, FAN and Application Continuity mask
outages from users and applications by recovering the in-flight work for impacted
database sessions following outages. Application Continuity performs this recovery
beneath the application so that the outage appears to the application as a slightly
delayed execution of the request.

Chapter 6
Managing Unplanned Outages

6-10

Related Topics

• About Application Continuity
The Application Continuity feature offered with Oracle Database increases fault tolerance
for systems and applications using the database.

• Oracle Database Net Services Administrator's Guide

Managing Planned Maintenance
To minimize service disruption to application users, Oracle Real Application Clusters (Oracle
RAC) provides interfaces that relocate, disable, and enable services.

Managing Planned Maintenance Without User Interruption
Oracle recommends that you drain database sessions from the instance over a controlled
time period from FAN-enabled Oracle or non-Oracle connection pools, or, beginning with
Oracle Database 18c at the database, itself.

Draining database sessions is the safest way to migrate work without interrupting
applications. When draining occurs at connection tests and outside of request boundaries, it
is 100% correct. Applications continue with no interruption as existing work completes and
new work acquires a session for the same service functioning at another instance, resulting in
no errors returned to applications and no risk of incorrect database session states. For
connection tests, the caller expects to receive a good or bad return code and is ready to
handle the result, making inspecting connection tests a widely applicable and very powerful
solution.

The service attributes -drain_timeout and -stopoption control the drain time period, and
then how the service manages sessions that have not completed once this time period
expires. Requests that complete and then check back in to the pool or close, can be directed
to a new location that is not affected by the planned maintenance.

Application Continuity provides additional cover, giving continuous service for those requests
that do not complete within the allotted drain time. Using any FAN-aware pool allows
sessions to drain at request boundaries after receipt of the FAN planned DOWN event.

Because not every application uses an Oracle connection pool and not every application is
FAN-aware, beginning with Oracle Database 18c, the database inspects sessions during
planned maintenance seeking safe places to stop a session so that the application is not
disrupted. After stopping the service, the database looks for safe places where the
connection can be closed. When the connection is closed, the database cleans up the
session.

Stopping a session at a safe place enables the application to open a new connection with the
states that it needs. Draining sessions may take a period of work to flow through each
session. There is no requirement that closing a session is immediate, rather the close must
occur at a safe place that exposes no errors to the application, and, preferably, before the
drain timeout period has expired.

Requests are far more important than transactions because they enable the issued work to
complete. For draining requests, the Oracle Universal Connection Pool uses the drain
timeout to gradually drain, which prevents an overload of logins on the instances drained, by
slowly releasing the original sessions across the time period rather than all at once. Gradual
draining has the benefit of not disturbing the other work ongoing at the target instances.

Chapter 6
Managing Planned Maintenance

6-11

Both DRAIN_TIMEOUT and STOP_OPTION are service attributes that you can define when
you add the service or modify it after creation. You can also specify these attributes
using SRVCTL, which will take precedence over what is defined on the service. You
can specify the -drain_timeout and -stopoption parameters when using the
following SRVCTL commands:

• srvctl add service
• srvctl modify service
• srvctl relocate service
• srvctl stop service
• srvctl stop database
• srvctl stop instance
To manage planned maintenance without user interruption:

1. Use SRVCTL to relocate a singleton service or a service not running on all nodes.
Use the -force flag with the previously listed SRVCTL commands, except add and
modify. You must use the -force flag if you specify the -stopoption parameter on
the command line when you run either srvctl relocate service or srvctl stop
service. For example:

$ srvctl relocate service –db mycdb01 –service myservice –
drain_timeout 120
 –stopoption IMMEDIATE –oldinst mycdb01_01 -force

The preceding command relocates the service named myservice01 from the
instance named mycdb01_01 to any instance on which it is configured to run.
Oracle Clusterware chooses this instance if you do not specify a target on the
command line, and waits two minutes (in this example) for any active sessions to
drain, after which any sessions remaining on mycdb01_01 are forcibly
disconnected. The connection pool automatically releases a connection at a
request boundary.

Note:

If the service you want to relocate is a uniform service that is currently
running on all nodes, then the preceding command returns an error,
unless the service is not up on all instances, in which case the preceding
command example would succeed for a uniform service.

2. The FAN planned DOWN event clears idle sessions from the connection pool
immediately and marks active sessions to be released at the next check-in. These
FAN actions drain the sessions from the instance without disrupting the users.

Existing connections on other instances remain usable, and new connections can
be opened to these instances if needed. The database also marks the sessions to
drain. The database looks for connection tests and, in Oracle Database 19c and
later, for safe places to failover. An implicit connection boundary with Transparent
Application Continuity is such a place.

3. Not all sessions, in all cases, will check their connections into the pool. Oracle
recommends, as a best practice, to have a timeout period (by setting the -

Chapter 6
Managing Planned Maintenance

6-12

drain_timeout parameter), after which the instance is forcibly shut down or the service
stopped, evicting any remaining client connections.

After the drain interval expires, the -stopoption parameter is implemented, which you
can define against a service or a database, as follows:

• When stopping a service (srvctl stop service), you can specify one of the
following stop options using the -stopoption parameter: TRANSACTIONAL or
IMMEDIATE

• When stopping a database (srvctl stop database), you can specify one of the
following stop options using the -stopoption parameter: NORMAL,
TRANSACTIONAL, IMMEDIATE, or ABORT

The database stop options correlate to the service stop options, as follows:

NORMAL=NONE
TRANSACTIONAL/TRANSACTIONAL LOCAL=TRANSACTIONAL
IMMEDIATE/ABORT=IMMEDIATE

For those services that are configured to use Application Continuity, an attempt is made
to recover these remaining sessions, after they are terminated, masking the outage from
users and applications.

4. Once maintenance is complete, restart the instance and the services on the original
node.

5. The FAN UP event for the service informs the connection pool that a new instance is
available for use, allowing sessions to be created on this instance at next request
boundaries.

Related Topics

• About Application Continuity

• Server Draining Ahead of Planned Maintenance
Before planned maintenance, drain or fail over database sessions at the database
instance so application work is not interrupted. Beginning with Oracle Database 18c, the
database itself drains the sessions.

Managing a Group of Services for Maintenance
Many enterprises run a large number of services, whether it be many services offered by a
single database or instance, or many databases offering a few services running on the same
node.

You no longer need to run SRVCTL commands for each individual service but need only
specify the node name, database name, pluggable database name, or the instance name for
all affected services.

• For example, if you want to stop all of the services running on a given node, then you
could use the following command:

$ srvctl stop service –node racnode01 –drain_timeout 60 –stopoption
IMMEDIATE

The command stops all services running on racnode01, allowing a drain interval of 60
seconds. After 60 seconds any remaining sessions are stopped immediately. The 60-
second drain timeout interval overrides any attribute setting on any of the services.

Chapter 6
Managing Planned Maintenance

6-13

The command could also be qualified to stop the databases on a node, as in the
following example:

$ srvctl stop instance -node racnode01 -drain_timeout 60 –
stopoption TRANSACTIONAL
 LOCAL -failover –force

When you specify the -failover parameter:

– All services are relocated, if possible, respecting the drain timeout interval and
the stop option specified.

– Any services that cannot be failed over are stopped, using the stop option
specified.

– Wait for the length of the drain timeout interval or until all sessions for targeted
services are removed, whichever is sooner.

– All instances stop according to the stop option specified.

When you specify the –stopoption TRANSACTIONAL LOCAL parameter:

– Remaining services stop according to the drain timeout interval and stop
option specified.

– Wait for the length of the drain timeout interval or until all sessions for targeted
services are removed, whichever is sooner.

– The instance stops using the TRANSACTIONAL LOCAL stop option.

This section includes the following topics:

• Starting Services

• Pluggable Database-Level Operations

• Relocating Services

• Stopping Services

Starting Services
You can use the srvctl start service command to start all services on a node, all
services offered by a database, all services offered by a pluggable database, or all
services offered on an instance or within a given server pool.

You can also supply a list of services (a subset of all services) to the srvctl start
service command that you want to start. Additionally, you can provide a node
restriction, used in conjunction with the database option, for all services that can be
started on a particular node. You can restrict the srvctl start service command to
start only the parallel query service by specifying the -pq parameter.

The following examples illustrate how you can start services:

• To start all of the services offered by a single pluggable database:

$ srvctl start service –db myRACCDB01 –pdb myPDB01 –startoption OPEN

Chapter 6
Managing Planned Maintenance

6-14

To start all services on a given database and any of its pluggable databases:

$ srvctl start service –db myRACDB

To start a list of services on a given database, regardless of any pluggable database with
which they are associated:

$ srvctl start service –db myRACDB –service
"myFirstService,mySecondService,myThirdService"

To start all services for a database that can run on a given node:

$ srvctl start service –d myRACDB –node racnode01

Pluggable Database-Level Operations
You can use SRVCTL to manage services on pluggable databases.

• To start all services for a pluggable database, for all instances or a single instance:

$ srvctl start service -db db_name -pdb pdb_name [-instance instance_name]

• To stop all services for a pluggable database, for all instances or a single instance:

$ srvctl stop service -db db_name -pdb pdb_name [-node node_name | -
instance
 inst_name | -serverpool pool_name] [-stopoption stop_option] [-
drain_timeout timeout]
 [-force [-noreplay]]

Note:

The -pdb pdb_name parameter is optional. If you omit the pluggable database
name, then the operation occurs for the entire container database (all pluggable
databases within this container).

Relocating Services
You can use the srvctl relocate service command to relocate services to a target
destination, which can be an instance, a node, or a database.

In the following command examples, all services are relocated from the named database,
Pluggable Database, instance, or node. The services will only relocate if the target can
support that service, as defined by the service configuration. Any services that cannot be
relocated remain at the original location. A placement error is recorded against any services
that could not be relocated, or were already running at the new target. Services that fail to
relocate remain running at their original location, and any sessions remain active.

$ srvctl relocate service –db myRACCDB –oldinst RACCDB_01 –newinst RACCDB_03
 -drain_timeout 30 -stopoption immediate

Chapter 6
Managing Planned Maintenance

6-15

or

$ srvctl relocate service –db myRACCDB –pdb myPDB01 –currentnode
racnode01
 –targetnode racnode02 -drain_timeout 30 -stopoption immediate

The relocate operation starts the service in the new location before stopping the
service in its existing location.

If you do not specify a target destination, then Oracle Clusterware relocates all
services or specific services from the specified database, Pluggable Database,
instance, or node, as in the following examples:

$ srvctl relocate service –db myRACCDB –service
"myService01,myService02"
 -drain_timeout 30 -stopoption immediate

or

$ srvctl relocate service –db myRACCDB –pdb myPDB01 -drain_timeout 30
 -stopoption transactional

If there is no valid target available, then the service remains at the original location and
the sessions remain active. You must examine the services and stop them if that is
what you want to do.

When you relocate a service, it starts at the new location before it stops at the original
location. Oracle Clusterware can start that new instance or Pluggable Database as a
dependency. When specified, the -drain_timeout and -stopoption parameters
override the service attributes.

Stopping Services
You can use the srvctl stop service command to stop all services on a node, all
services offered by a database, all services offered by a pluggable database, or all
services offered on an instance or within a given server pool.

You can also supply a list of services (a subset of all services) that you want to stop to
the srvctl stop service command, and you can also restrict the srvctl stop
service command to stop only the parallel query service by specifying the -pq
parameter.

The following examples illustrate how you can stop services:

• To stop all of the services offered by a single pluggable database:

$ srvctl stop service –db myRACCDB01 –pdb myPDB01 –drain_timeout 15
–stopoption TRANSACTIONAL

To stop all services on a given database and any of its pluggable databases:

$ srvctl stop service –db myRACDB –drain_timeout 15 –stopoption
IMMEDIATE

Chapter 6
Managing Planned Maintenance

6-16

To stop only a subset of the services offered by a database:

$ srvctl stop service –db myRACDB –service
"myFirstService,mySecondService,
 myThirdService" –drain_timeout 60 –stopoption IMMEDIATE

Note:

If you use the –wait YES SRVCTL command line parameter, then the –
stopoption parameter is not enforced until the entire drain timeout interval has
expired, even if all of the sessions have exited prior to this interval completing.

Server Draining Ahead of Planned Maintenance
Before planned maintenance, drain or fail over database sessions at the database instance
so application work is not interrupted. Beginning with Oracle Database 18c, the database
itself drains the sessions.

When you prepare for planned maintenance, you must stop or relocate the services that are
using the server infrastructure. Relocating services is done over a period of time prior to the
planned outage and is based on the nature of work associated with each service.

The procedure for rolling planned maintenance moves services in advance of maintenance to
another database instance, and notifies the client-side drivers, connections pools, the
database instance itself, and other subscribers that maintenance is pending, and what needs
to be drained (either connections or sessions using this service). Once notified of draining, a
Fast Application Notification (FAN) event is sent and the client pools behave as described
elsewhere, in addition, the database begins to search for safe places to release connections
and, if needed, to migrate the connections.

Moving or stopping a service triggers a FAN notification that is received by the subscribing
Oracle drivers and Oracle connection pools. Starting with Oracle Database 18c, the FAN
notification also triggers session draining at the server. Immediately, new work to that service
is directed to another functioning instance of that service. Existing sessions are marked for
release after their work completes. As work completes and the connections are returned to
the connection pool, either the Oracle driver or the connection pool terminates these
sessions.

Draining Sessions at the Database

For OLTP applications, application servers, and custom applications, which all have their own
connection pools that borrow and return database sessions, it is safe to drain a database
session when it is no longer borrowed. The optimal point for the Oracle server infrastructure
to close a session is when the application server tests the validity of that connection. No error
is returned to the application when the connection pool manager tests the validity of
connections when borrowing and releasing, and also finds that the connection is no longer
valid.

A safe place is a point where an application is not disturbed. In the case of connection pools,
that means connections that are not borrowed (checked-in), and, in the case of applications,
the same applies at the point of borrowing or returning a connection. At this time, all work is
either complete or not started. The database can also fail over connections when all states
can be restored transparent to the application.

Chapter 6
Managing Planned Maintenance

6-17

Starting with Oracle Database 18c, the database uses an extensible set of rules and
heuristics to detect when to take the database session away. When draining starts, the
database session persists at the database until a rule is satisfied. The rules include the
following:

• Standard application server tests for validity

• Custom SQL tests for validity

• Request boundaries are in effect and no request is active

• Request boundaries are in effect and the current request has ended

• The session has one or more session states that are recoverable, and can be
recreated at failover

Note:

To drain connections beginning with Oracle Database 18c, see "Adding,
Disabling, Enabling, and Removing Connection Tests for Draining at the
Server".

In the case of connection tests, for example, it is standard practice for application
servers, pooled applications, job schedulers, and others, to test connections when
borrowed from connection pools, when returned to the pool, and at batch commits.
When draining, the database intercepts the connection test, closes the connection and
returns a failed status for the test. The application layer issuing the connection test is
ready to handle a failed return status and, typically, issues a further request, to obtain
a different connection. The application is not disturbed.

Not all sessions can be drained, such as when a connection is not returned to the pool
or when FAN is not in use. If Transparent Application Continuity or Application
Continuity is enabled, then the server detects request boundaries where Application
Continuity can recover the session fast. The server can interrupt the session, which
Application Continuity recovers elsewhere (such as, to another server in the Oracle
RAC cluster) with no interruption.

For database sessions that do not drain, the database must find a break point when
the session can be replaced. At a break point, a connection can be failed over
transparently when states are known and recoverable. Break points can be transaction
boundaries, a request starting (beginRequest), before calls are processed in that
request, and patterns, such as an audit call that signals that a request is starting or
ending. Break points apply only when states are known to be restorable.

Failing over connections requires that you enable Application Continuity, Transparent
Application Continuity, or transparent application failover (TAF), depending on your
application.

Note:

Oracle recommends that you use Oracle connection pools such as UCP or
OCI Session Pool because these offer significant advantages in providing
continuous availability, load balancing, and so on.

Chapter 6
Managing Planned Maintenance

6-18

Adding, Disabling, Enabling, and Removing Connection Tests for Draining at the
Server

You can add a SQL connection test to a service, a Pluggable Database, or non-container
database.

There are four SQL connection tests added for every database service and Pluggable
Database service, by default, so, if an application uses these following SQL connection tests
on the connection, then you do not to need to add them:

SELECT 1 FROM DUAL;
SELECT COUNT(*) FROM DUAL;
SELECT 1;
BEGIN NULL;END;

• To add a server-side SQL connection test for a service, use a SQL statement similar to
the following:

SQL> execute dbms_app_cont_admin.add_sql_connection_test('select dummy
from dual','sw_orcl');

To add a server-side SQL connection test for a Pluggable Database or non-container
database, log on to the non-container database and use a SQL statement similar to the
following:

SQL> execute dbms_app_cont_admin.add_sql_connection_test('begin
null;end;');

After you add the SQL connection test, it will be enabled by default.

• You can disable a SQL connection test if you do not need it or it is not in use by logging
on to a Pluggable Database or non-container database and using a SQL statement
similar to the following:

SQL> execute
dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin.sql_test,'
select dummy from dual');

By default, the ping test and end request test are disabled but, if you want to disable
them after enabling them, then you can use either of the following SQL statements:

If you want to disable the ping test, then use a SQL statement similar to the following:

SQL> execute
dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin.ping_test)
;

Chapter 6
Managing Planned Maintenance

6-19

If you want to disable the end request test, then use a SQL statement similar to
the following:

SQL> execute
dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin.endr
equest_test);

• You can enable a SQL connection test after you disable it by logging on to the
Pluggable Database or non-container database and using a SQL statement similar
to the following:

SQL> execute
dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admin.sql_t
est,'select dummy from dual');

You can also enable the ping test and end request test if they are disabled by
using either of the following SQL statements:

If you want to run any test that uses ping such as isValid, isUsable, OCIping, or
connection.status, then use a SQL statement similar to the following:

SQL> execute
dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admin.ping_
test);

If you want to enable draining at the end of a request, then use a SQL statement
similar to the following:

SQL> execute
dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admin.endre
quest_test);

If you want to disable draining on the end of a request, then use a SQL statement
similar to the following:

SQL> execute
dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin.endr
equest_test);

• You can remove a SQL connection test if it is not needed by logging on to the
Pluggable Database or non-container database and running SQL statements
similar to the following:

SQL> execute dbms_app_cont_admin.delete_sql_connection_test('select
dummy from dual','sw_orcl');
SQL> execute dbms_app_cont_admin.delete_sql_connection_test('begin
null;end;');

Every application server has a feature to test the validity of the connections in their
respective connection pools, which is set either by a configuration property or at the
administrative console. The purpose of the test is to prevent vending an unusable
connection to an application, and when an unusable connection is detected, to remove
it when released to the pool.

Chapter 6
Managing Planned Maintenance

6-20

Across the various application servers, the tests have similar names. The tests offered use
various approaches, the most common being a SQL statement. Oracle recommends that
Java application servers use the standard Java call connection.isValid. Beginning with
Oracle Database 18c, these tests are used to drain the database. Also beginning with Oracle
Database 18c, the database drains sessions without using FAN by inspecting sessions for
safe draining points.

The following table describes the standard connection tests available for several of the more
common application servers:

Table 6-3 Standard Connection Tests for Some Common Application Servers

Application
Server

Connection Test to Database

Oracle WebLogic
Server

The tests offered include:
• dbms_app_cont_admin.enable_connection_test(dbms_app_cont_

admin.sql_test,'select 1 from dual');
• TestConnectionsonReserve:

isUsable, isValid, or PingDatabase
• TestConnectionsOnCreate (SQL syntax) for server draining:

Select 1 from dual;

Oracle WebLogic
Server Active
Gridlink

The test is embedded:

isUsable

IBM WebSphere
dbms_app_cont_admin.enable_connection_test(dbms_app_cont.sql
_test,'select 1 from dual');

Pretest connections (SQL syntax) for server draining:

Select 1 from dual;

RedHat JBoss check-valid-connection-sql (SQL syntax):

dbms_app_cont_admin.enable_connection_test(dbms_app_cont_adm
in.sql_test,'select 1 from
 dual');

Chapter 6
Managing Planned Maintenance

6-21

Table 6-3 (Cont.) Standard Connection Tests for Some Common Application Servers

Application
Server

Connection Test to Database

Apache Tomcat There are two tests available—testOnBorrow and testOnReturn—and they
both use SQL syntax to test the connection to the database:

dbms_app_cont.enable_connection_test(dbms_app_cont.sql_test,
'select 1 from dual');

Application server uses:

Select 1 from dual;

Oracle recommends that you use the following format for supporting automatic
configuration of Oracle Notification Services (ONS), so that you can receive FAN
events (over ONS):

Example 6-1 Automatic Configuration of FAN

alias =(DESCRIPTION =
 (CONNECT_TIMEOUT=90)(RETRY_COUNT=20)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=3)
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=primary-scan)(PORT=1521)))
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=secondary-scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME = gold-cloud)))

Related Topics

• Managing Planned Maintenance Without User Interruption
Oracle recommends that you drain database sessions from the instance over a
controlled time period from FAN-enabled Oracle or non-Oracle connection pools,
or, beginning with Oracle Database 18c at the database, itself.

Related Topics

• Transparent Application Continuity
Applications achieve continuous availability when planned maintenance and
unplanned outages of the database are transparent.

About Application Continuity
The Application Continuity feature offered with Oracle Database increases fault
tolerance for systems and applications using the database.

Client requests can contain transactional and non-transactional work. After a
successful replay on Oracle Database, the application can continue where that
database session left off, instead of having users left in doubt, not knowing what

Chapter 6
About Application Continuity

6-22

happened to their funds transfers, flight bookings, and so on. Recovering these client
requests also helps to avoid the need to reboot mid-tier servers to recover from an overload
of logins when the application comes back online. With Application Continuity, the end-user
experience is improved by masking many outages, planned and unplanned, without the
application developer needing to attempt to recover the request.

Application Continuity masks many recoverable Oracle Database outages (when replay is
successful) from applications and users by restoring the database session: the full session,
including all states, cursors, variables, and the last transaction if there is one. Application
Continuity addresses the problem that arises when an application is trying to access the
database and the database instance becomes unavailable due to an unplanned outage or
planned maintenance (timeout, network outage, instance failure, repair, configuration change,
patch apply, and so on). Without Application Continuity in place, database recovery does not
mask outages to applications and end users. In such scenarios, developers and users must
handle the exception conditions, and users can be left not knowing what happened to their
funds transfers, time sheets, orders, bill payments, and so on. Users might lose screens of
uncommitted data, and must log in again and reenter that data. In the worst cases, the
administrator might be forced to restart the middle tier to recover from an overwhelming
number of logins.

With Application Continuity, if the database instance becomes unavailable, then Application
Continuity attempts to rebuild the session and any open transactions using the correct states;
and if the transaction committed and need not be resubmitted, then the successful return
status is returned to the application. If replay is successful, then the request can continue
safely without risk of duplication. If replay cannot restore data that the application has already
processed and potentially made decisions on, then the database rejects the replay and the
application receives the original error.

Application Continuity performs the recovery of in-flight transactions and database session
state, while ensuring the transaction idempotence provided by Transaction Guard. Each
database session is tagged with a logical transaction ID (LTXID), so the database recognizes
whether each replay committed any transactions, and if it did commit any transactions,
whether the work also ran to completion. While Application Continuity attempts to replay, the
replay appears to the application as a delayed processing, or the application receives the
commit response for the original transaction (if the last transaction had completed before the
outage).

Application Continuity is supported for Oracle RAC and Oracle Active Data Guard. It is
supported for Oracle Database using the multitenant architecture (with failover at the
Pluggable Database level). It is not currently supported for Oracle GoldenGate, Logical
Standby, third-party replication solutions, or DML redirection if using Oracle Active Data
Guard.

Related Topics

• Application Continuity Operation and Usage
This section explains how Application Continuity works, and how you can use it in
applications.

Key Concepts for Application Continuity
This section describes several terms and concepts that you must understand to use
Application Continuity.

The following terms are used throughout this chapter:

Chapter 6
About Application Continuity

6-23

Database request

A database request is a unit of work submitted to the database from the application,
such as a transaction. A request typically corresponds to the SQL and PL/SQL, and
other database calls, of a single web request on a single database connection, and it
is generally demarcated by the calls made to check-out and check-in the database
connection from a connection pool.

Recoverable error

A recoverable error is an error that arises due to an external system failure,
independent of the application session logic that is executing, such as a lost or invalid
connection. Recoverable errors occur following planned and unplanned outages of
foregrounds, networks, nodes, storage, and databases. The application receives an
error code that can leave the application not knowing the status of the last operation
submitted. Application Continuity reestablishes database sessions and resubmits the
pending work for the class of recoverable errors.

Application Continuity does not resubmit work following call failures due to
nonrecoverable errors. An example of a nonrecoverable error that would not be
replayed is submission of invalid data values.

Commit outcome

A transaction is committed by updating its entry in the transaction table. Oracle
Database generates a redo-log record corresponding to this update and writes out this
redo-log record. Once this redo-log record is written out to the redo log on disk, the
transaction is considered committed at the database. From the client perspective, the
transaction is considered committed when an Oracle message (called the commit
outcome), generated after that redo is written, is received by the client. However, if a
COMMIT has been issued, then the COMMIT failure message cannot be retrieved if it is
not received by the client or the application.

Mutable functions

Mutable functions are non-deterministic functions that can obtain a new value every
time they are called, and thus their results can change frequently. Mutable functions
cause a problem for replay because the results can change at replay. Consider
sequence.NEXTVAL and SYSDATE, often used in key values. If a primary key is built with
values from these function calls, and is used in later foreign keys or other binds, at
replay the same function result must be returned.

Application Continuity provides mutable object value replacement at replay for granted
Oracle function calls to provide opaque bind-variable consistency. If the call uses
database functions that are mutable, including sequence.NEXTVAL, SYSDATE,
SYSTIMESTAMP, and SYSGUID, the original values returned from the function execution
are saved and are reapplied at replay.

Session state consistency

After a COMMIT statement has executed, if state was changed in that transaction, it is
not possible to replay the transaction to reestablish that state if the session is lost.
When configuring Application Continuity, the applications are categorized depending
on whether the session state after the initial setup is static or dynamic (or use AUTO so
the decision is automatic), and thus whether it is correct to continue past a COMMIT
operation within a request.

Chapter 6
About Application Continuity

6-24

• A session has dynamic state if the session state changes are not fully encapsulated by
the initialization, and cannot be fully captured by FAILOVER_RESTORE or in a callback
at failover. After the first transaction completes, failover is internally disabled until the next
request begins. Session state may change during the course of the request.

• A session has a static state if all session state changes (for example, NLS settings and
PL/SQL package state) occur as part of initialization, and can be encapsulated by
FAILOVER_RESTORE or in a callback at failover. Static applications are those that were able
to use Transparent Application Failover (TAF) before Application Continuity. Session
state does not change during the course of the request. (Choose setting session state
consistency to AUTO over STATIC mode, when possible, because auto mode purges and
cleans more efficiently than the pre-Application Continuity TAF mode.)

• With Transparent Application Continuity, the state is managed for you by setting session
state consistency to AUTO (this is a mandatory setting for Transparent Application
Continuity). These session states are tracked and verified at failover. You can add further
states if outside the preset states.

Transparent Application Continuity
Applications achieve continuous availability when planned maintenance and unplanned
outages of the database are transparent.

• About Transparent Application Continuity

• Transparent Application Continuity for Various Applications

About Transparent Application Continuity
Transparent Application Continuity is a functional mode of Application Continuity introduced
with Oracle Real Application Clusters (Oracle RAC) in Oracle Database release 18c that
transparently tracks and records session and transactional state so that a database session
can be recovered following recoverable outages.

Recovery of the user database session is done safely and with no need for a DBA to have
any knowledge of the application or make application code changes. Transparency is
achieved by using a state-tracking infrastructure that categorizes session state usage as an
application issues user calls.

Transparent Application Continuity is enabled when FAILOVER_TYPE=AUTO.

You can enable Transparent Application Continuity to protect applications during planned
maintenance and when unplanned outages occur. For planned maintenance, database
sessions that reach a safe place (such as a connection test or a known recoverable point) are
drained at the database. For database sessions that do not drain, the database determines
where to fail the database session over and invokes Application Continuity to do so.
Application Continuity hides unplanned outages for Java-based applications, OCI and
ODP.NET applications including SQL*Plus, all Oracle connection pools, Tuxedo, WebLogic
Server, and third-party application servers using Universal Connection Pool.

For unplanned outages, Transparent Application Continuity is invoked for outages that result
in recoverable errors, typically related to underlying software, foreground, hardware,
communications, network, or storage layers, hiding most failures from applications and users.

With Transparent Application Continuity, DBAs no longer need to have knowledge of an
application to:

Chapter 6
About Application Continuity

6-25

• Restore preset states—At run time, Transparent Application Continuity records the
initial preset session states, monitors further states, and records session
signatures sufficient to detect deviation in the state of a session at failover for
monitored states. At failover, Transparent Application Continuity restores the
preset session states before replay starts, and verifies that these session states
fully match the original before replay starts. This also allows for session state that
has been restored using both Application Continuity and other mechanisms, such
as log-on triggers, labels, and connection call backs. You will continue to add log-
on triggers, call backs, or labels if the state is outside the preset states.

• Recognize and disable application-level side effects when recovering a session—
During normal run-time, Transparent Application Continuity detects side effects.
The type of side effect is distinguished between those that relate to an
application’s logic and those that are internal, relating to database housekeeping.
For applications that use statements that have side effects, capture is disabled
when the statement is running. Once a new request starts, capture is re-enabled
automatically.

• Keep mutable values for owned functions—Mutable functions are functions that
can return a new value each time they are run. Oracle provides support for
keeping the original results of mutable functions SYSDATE, SYSTIMESTAMP,
SYS_GUID, and sequence.NEXTVAL. If the original values are not kept and if different
values are returned to the application at replay, then Transparent Application
Continuity rejects replay. Use grants to keep your sequences, dates, and times.
When an application is using its own schema, you can assign the grants for
keeping to a role and then grant this role to users.

• Know about request boundaries—Request Boundaries demarcate where
applications and application servers borrow and return connections from their
connection pools. For applications using Application Continuity with JDBC thin
driver (beginning with Oracle Database 18c) and OCI and ODP.NET Unmanaged
Provider (beginning with Oracle Database 19c release 19.3), DBAs do not need to
know about request boundaries, but, when they are in use, Transparent
Application Continuity takes advantage of them. It is best practice that you use
request boundaries because it is not always possible to identify a checkpoint
where a request boundary can be inserted.

Prior to Oracle RAC release 18c, without request boundaries, the lower layers,
(such as the database and drivers) have no insight as to how the applications and
application servers are managing their connections. Almost every application
server and enterprise application, and custom development using good practices,
caches their connections in their layer for best performance. The lower layers
cannot see how the connections are being handled and balanced. The lower layer
could only see user calls to the database.

Using Transparent Application Continuity, the server and the drivers are tracking
transaction and session state usage. This allows the driver to detect and inject
possible request boundaries (also referred to as implicit boundaries). At a possible
request boundary, no objects are open, cursors are returned to the driver
statement cache, no transactions are open, and the session state is known to be
restorable. The driver either closes the current capture and starts new, or enables
capture if there had been a disabling event. On the next call to the server, the
server verifies and, if applicable, creates a request boundary where there was
previously no explicit boundary.

When you use Transparent Application Continuity with Java (beginning with Oracle
Database 18c) and OCI and ODP.NET Unmanaged Provider (beginning with Oracle
Database 19c release 19.3), your applications will experience lower resource usage

Chapter 6
About Application Continuity

6-26

and faster recovery because statements that do not contribute to the state are not recorded,
or they are purged when no longer needed, and request boundaries are advanced
automatically.

Transparent Application Continuity for Various Applications
Transparent Application Continuity covers applications that belong to three different groups,
automatically tracked by the state tracking system.

The various applications are of the following types:

• Request boundaries: Applications that use containers with request boundaries allow
Application Continuity to manage replay between explicit boundaries.

• Database agnostic: Applications set a state at connection establishment and do not
change non-transactional session states again, or change it rarely. For these
applications, Application Continuity identifies implicit boundaries.

• Black Box: Applications that are using either Oracle proprietary states, changing states,
or both, at run time. This category is further divided:

– Applications with short user calls, such as OLTP with no visible boundaries

– Applications with long user calls, such as DSS, reports, and warehouses

Request Boundaries

A request boundary is a tag that marks the beginning and end of a database request.
Beginning with Oracle Database 12c release 2 (12.2.0.1), connection pools that embed
request boundaries include Oracle Universal Connection Pool, all WebLogic server data
sources, Tuxedo, Oracle Call Interface, ODP.NET Unmanaged Provider, and standard third-
party application servers and standalone Java pools that use the Oracle Database 12c JDBC
drivers’ PooledConnection interface, in addition to SQL*PLUS.

When an Oracle database is aware of request boundaries:

• The database can process web requests effectively and with no performance overhead,
including when to attach and release connections, so it can multiplex, drain, rebalance,
shed, and allow complex states inside requests. Without request boundaries, the lower
layers of the database are not aware of web requests. Subsequently, the database relies
on Oracle client actions, advisory methods and heuristics, such as fast connection
failover, connection validation, and state advice.

• The length of replay is limited to the initial state followed by the user calls in that request
less those that are purged by Application Continuity. Request boundaries are an
important hint to control the length of replay, and also where to drain for planned
maintenance (at the end of the request), and to where to fail over for planned
maintenance (at the beginning of the request).

• When using Transparent Application Continuity for Java, only the first request boundary
is required (only for Oracle Database 18c).

• When using Application Continuity for Java, the replay driver detects safe places to move
the request boundaries forward automatically. This feature is only available with AUTO.

• Applications deployed using middle-tier containers that set request boundaries have
access to the full set of transparency features that the database server provides. The
database detects when a client sets request boundaries and uses the boundaries to mark
safe points for draining, failover, concentration, and throughput measures.

Chapter 6
About Application Continuity

6-27

Request boundaries enable an application to use all complex, non-transactional
session states within a request. The request boundary specification requires that these
states are not dependent across boundaries.

Database-agnostic Applications

Database-agnostic applications (applications with no request boundaries) set simple,
non-transactional states and use none of the Oracle proprietary features or
sequences. These applications often set state once when a connection is created and
then do not change state again or change the state infrequently. This category of
applications includes those applications that use anonymous PL/SQL that do not
create server-side session state.

When using Transparent Application Continuity for JDBC applications, the state
classification is used to find a point at which to enable and start recording for
Application Continuity after authentication, and to re-enable recording after capture
has been disabled by a disabling event. Only the first request boundary is required,
and, when request boundaries are there, they are used. Request boundaries are not
required for SQL*Plus, and they are embedded for ODP.NET, OCI session pool,
Tuxedo, and Oracle Universal Connection Pool.

Application Continuity Protection Check
The Application Continuity Protection Check (ACCHK) feature generates Application
Continuity coverage reports and views that describe the protection of your application
by Application Continuity.

• About Application Continuity Protection Check

• Creating ACCHK Views and Role for Oracle Database 19c

• Enabling and Disabling Application Continuity Protection Check

• Running Application Continuity Protection Check

About Application Continuity Protection Check
The Application Continuity Protection Check (ACCHK) utility provides protection
guidance for applications that use Application Continuity.

ACCHK provides guidance on the level of protection for each application that uses
Application Continuity and helps guide you to increase protection, if required. ACCHK
uses Application Continuity traces to collect coverage for a workload and provides
detailed information as per your request. You must enable Application Continuity
tracing to collect coverage before you run a database workload. ACCHK also provides
diagnostics for an unsuccessful failover.

Database views and PL/SQL-based reports show you the level of protection for your
applications for failover. If an application is not fully protected, then ACCHK identifies
that application, finds out the reason why the application is not fully protected, and
guides you how to increase the protection.

For the protected applications, ACCHK also reports which operations of an application
are protected, and which operations of an application are not protected. If any
operation or configuration of an application is not protected by the Application
Continuity, then you can make configuration changes to increase the protection
coverage. ACCHK generates a report with coverage statement and percentage value

Chapter 6
Application Continuity Protection Check

6-28

for the workload. The ACCHK report also shows how many operations were performed, how
many operations were fully protected, and how many operations were not fully protected.

Related Topics

• Understanding Application Continuity

• Transparent Application Continuity
Applications achieve continuous availability when planned maintenance and unplanned
outages of the database are transparent.

Creating ACCHK Views and Role for Oracle Database 19c
Before using Application Continuity Protection Check (ACCHK) for the first time for Oracle
Database 19c, you need to manually create ACCHK views and role in your PDB.

1. Connect to your Oracle Pluggable Database (PDB) using SQL*Plus.

2. Create Application Continuity Protection Check views and role for your PDB using the
dbms_app_cont_admin.acchk_views procedure:

SQL> execute dbms_app_cont_admin.acchk_views;

The above procedure creates views and a role that ACCHK uses. You can safely repeat
this procedure even if the views and role already exist.

Note:

Set the COMPATIBLE parameter to 12.2.0 or greater. If the COMPATIBLE parameter
was previously set to a lower value, then the acchk_views procedure creates
the ACCHK views and roles when you run the procedure for the first time after
updating the COMPATIBLE parameter.

Related Topics

• Running Application Continuity Protection Check
Generate the Application Continuity Protection Check (ACCHK) report to get guidance for
the level of protection, reason for incomplete protection, and methods to increase the
protection level.

Enabling and Disabling Application Continuity Protection Check
You can manually enable or disable the Application Continuity Protection Check (ACCHK)
feature for applications that use Application Continuity.

Application Continuity Protection Check is not enabled by default. Follow this procedure to
enable or disable ACCHK and generate reports to check protection level for the applications.

1. Grant read access to the users, who will run the Application Continuity Protection Check
report and views, using the ACCHK_READ role:

GRANT ACCHK_READ TO USER;

Chapter 6
Application Continuity Protection Check

6-29

2. Enable Application Continuity tracing for your applications using the
dbms_app_cont_admin.acchk_set(true) procedure:

SQL> execute dbms_app_cont_admin.acchk_set(true);

By default, ACCHK is disabled automatically after 600 seconds. You can specify a
lower number to reduce the auto disable time. For example, use the
dbms_app_cont_admin.acchk_set(true,300) procedure to disable ACCHK after
300 seconds.

The dbms_app_cont_admin.acchk_set(true) procedure enables Application
Continuity tracing at the database level to which you are connected. If you are
connected at the CDB level, then tracing is enabled for the CDB, and if you are
connected at the PDB level, then tracing is enabled for the PDB.

Note:

Set the COMPATIBLE parameter to 12.2.0 or greater. If the COMPATIBLE
parameter was previously set to a lower value, then the acchk_set
procedure creates the ACCHK views and roles when you run the
procedure for the first time after updating the COMPATIBLE parameter.

3. Use the dbms_app_cont_admin.acchk_set(false) procedure to disable
Application Continuity tracing for new sessions in your applications:

SQL> execute dbms_app_cont_admin.acchk_set(false);

Note:

• The tracing will be disabled for the current sessions after the time
expires.

• The tracing is enabled by default for the entire Oracle Real
Application (Oracle RAC) Cluster.

Related Topics

• ACCHK_SET Procedure

• Running Application Continuity Protection Check
Generate the Application Continuity Protection Check (ACCHK) report to get
guidance for the level of protection, reason for incomplete protection, and methods
to increase the protection level.

Chapter 6
Application Continuity Protection Check

6-30

Running Application Continuity Protection Check
Generate the Application Continuity Protection Check (ACCHK) report to get guidance for the
level of protection, reason for incomplete protection, and methods to increase the protection
level.

The ACCHK utility is a post-processing tool that uses pre-generated database traces to
report Application Continuity coverage. Enable the Application Continuity tracing and
Application Continuity Protection Check before running a workload and generating the report.

1. Run a set of database options after enabling ACCHK and tracing for your applications.

ACCHK generates reports only for the Application Continuity sessions.

2. Generate the Application Continuity Protection Check report using the
dbms_app_cont_report.acchk_report procedure:

SQL> SET SERVEROUTPUT ON FORMAT WRAPPED;
SQL> execute dbms_app_cont_report.acchk_report;

You can specify the type of the report from FULL, WARNING, or SUMMARY. For example:

SQL> SET SERVEROUTPUT ON FORMAT WRAPPED;
SQL> execute dbms_app_cont_report.acchk_report(dbms_app_cont_report.FULL);
SQL> execute
dbms_app_cont_report.acchk_report(dbms_app_cont_report.WARNING);
SQL> execute
dbms_app_cont_report.acchk_report(dbms_app_cont_report.SUMMARY);

The default report type is SUMMARY.

3. Analyze the report and increase the protection level for the applications that are not fully
protected. For example, a summary report looks like the following:

------------ ACCHK Report ------------

CON_ID SERVICE FAILOVER PROTECTED_ PROTECTED_ REQUESTS AVG_CALLS/
PROTECTED_ AVG_TIME/ PROTECTED_TIME/ EVENT_ ERROR_ PROGRAM
MODULE ACTION SQL_ CALL TOTAL
 CALLS % TIME % REQUEST
CALLS/REQUEST REQUEST MS REQUEST MS TYPE
CODE ID
------ ------------- -------- ---------- ---------- -------- ----------
------------- ---------- --------------- ------- ------ ---------
----------------- –-------- ---- --------- –-----
3 srv_tacr_pdb1 AUTO 98.734 98.432 117 9.453
9.333 2279.751 2244.014 DISABLE 41409 JDBC Thin
AddCustNewOrder Action-20 COMMIT 1

Client
3 srv_tacr_pdb1 AUTO 98.734 98.432 117 9.453
9.333 2279.751 2244.014 REPLAY_ 41412 JDBC Thin

Chapter 6
Application Continuity Protection Check

6-31

InsertNewChecksum Action-1 SQL/PLSQL 1

 FAILED
Client Execu
End of report.

The following examples show how to query detailed information from an ACCHK
report using the ACCHK views.

Example 6-2 Using the DBA_ACCHK_EVENTS View

In this example, the last row indicates that the application that is using the
srv_tacr_pdb1 service has an event that caused Application Continuity to fail.

SQL> SELECT * FROM DBA_ACCHK_EVENTS ORDER BY TIMESTAMP;
INST_ID CON_ID TIMESTAMP SESSION_ID SERIAL# SERVICE_NAME
PROGRAM MODULE ACTION SQL_ID CALL_NAME EVENT_TYPE
ERROR_CODE
------- ------ ---------------- ---------- ------- -------------
------- ----------------- --------- ------ --------- ----------

2 3 21-SEP-20 9598 1644 srv_tacr_pdb1
JDBC AddCustNewOrder Action-36 COMMIT DISABLE 41409
 06.54.18.191 PM
Thin
 -07:00
Client
2 3 21-SEP-20 1703 61265 srv_tacr_pdb1
JDBC InsertNewChecksum Action-1 SQL/PLSQL REPLAY_ 41412
 06.51.07.624 PM
Thin Execution FAILED
 -07:00
Client

Example 6-3 Using the DBA_ACCHK_EVENTS_SUMMARY View

In this example, the last row indicates that the application that is using the
srv_tacr_pdb1 service has an event that caused Application Continuity to fail.

SQL> SELECT * FROM DBA_ACCHK_EVENTS_SUMMARY ORDER BY SERVICE_NAME;
INST_ID CON_ID SERVICE_NAME FAILOVER_TYPE FAILOVER_RESTORE
RESET_STATE PROGRAM MODULE ACTION SQL_ID CALL_NAME
EVENT_TYPE ERROR_CODE FREQUENCY
------- ------ ------------- ------------- ----------------
----------- ------- ----------------- --------- ------ ---------
---------- ---------- ----------
2 3 srv_tacr_pdb1 AUTO AUTO
LEVEL1 JDBC AddCustNewOrder Action-20 COMMIT
DISABLE 41409 1

 Thin Execution

 Client
2 3 srv_tacr_pdb1 AUTO AUTO
LEVEL1 JDBC InsertNewChecksum Action-1 SQL/PLSQL

Chapter 6
Application Continuity Protection Check

6-32

REPLAY_ 41412 1

Thin Execution FAILED

Client

Example 6-4 Using the DBA_ACCHK_STATISTICS View

In this example, the first row indicates that the application that is using the srv_tacr_pdb1
service has 11 implicit requests from JDBC and 31 calls in the application. 30 calls in these
requests are protected.

SQL> SELECT * FROM DBA_ACCHK_STATISTICS ORDER BY TIMESTAMP;
INST_ID CON_ID TIMESTAMP SESSION_ID SERIAL# STAT_TYPE SERVICE_NAME
FAILOVER_ FAILOVER_ RESET_ PROGRAM BEGIN_ END_ USER_CALLS_
PROTECTED_CALLS_ TIME_IN_ TIME_PROTECTED_

TYPE RESTORE STATE REQUESTS REQUESTS IN_REQUESTS
IN_REQUESTS REQUESTS IN_REQUEST
------- ------ ---------------- ---------- ------- ---------- -------------
--------- --------- ------ ------- -------- -------- -----------
---------------- -------- ---------------
2 3 21-SEP-20 5653 54237 SESSION_ srv_tacr_pdb1
AUTO AUTO LEVEL1 JDBC 11 11 31
30 13316750 12415247
 06.54.25.321 PM
STATISTICS
Thin

-07:00
 Client
2 3 21-SEP-20 11291 26560 SESSION_ srv_tacr_pdb1
AUTO AUTO LEVEL1 JDBC 3 3 50
49 13094072 13068259
 06.54.24.915 PM
STATISTICS Thin

-07:00
 Client

Example 6-5 Using the DBA_ACCHK_STATISTICS_SUMMARY View

In this example, the application that is using the srv_tacr_pdb1 service has 144 implicit
requests, 99.5688328 percent calls in these requests are protected by Application Continuity
or Transparent Application Continuity.

SQL> SELECT * FROM DBA_ACCHK_STATISTICS_SUMMARY ORDER BY SERVICE_NAME;
INST_ID CON_ID SERVICE_NAME FAILOVER_ FAILOVER_ RESET_ TOTAL_
PROTECTED_CALLS_ PROTECTED_TIME_ AVG_USER_CALLS_ AVG_PROTECTED_
AVG_TIME_ AVG_TIME_
 TYPE RESTORE STATE REQUESTS
PERCENT PERCENT IN_REQUESTS CALLS_IN_REQUESTS
IN_REQUESTS PROTECTED_IN_REQUESTS
------- ------ ------------- --------- --------- ------ --------

Chapter 6
Application Continuity Protection Check

6-33

---------------- --------------- --------------- -----------------
----------- –--------------------
2 3 srv_tacr_pdb1 AUTO AUTO LEVEL1 144
99.5688328 99.0130288 22.5486111 22.4513889
3078654.35 3048268.92

You can also use the following statistics to monitor protection for your applications:

• cumulative begin requests
• cumulative end requests
• cumulative time in requests
• cumulative user calls in requests
• cumulative user calls protected by Application Continuity
• cumulative DB time in requests
• cumulative DB time protected in requests
Related Topics

• ACCHK_REPORT Procedure

• Enabling Application Continuity Protection Check
You can manually enable or disable the Application Continuity Protection Check
(ACCHK) feature for applications that use Application Continuity.

Application Continuity Operation and Usage
This section explains how Application Continuity works, and how you can use it in
applications.

This section includes the following topics:

• How Application Continuity Works for Applications

• Actions for Using Application Continuity

• Mutable Functions and Application Continuity

• Administering Mutable Values

• Protection-Level Statistics

• Session State Consistency

How Application Continuity Works for Applications
If a recoverable error occurs and if you enabled replay, then Application Continuity
attempts recovery of the database session.

The following figure is a graphical representation of how Application Continuity works.

Chapter 6
Application Continuity Operation and Usage

6-34

Figure 6-1 Application Continuity

To attempt to recover a database session following a recoverable error, Application Continuity
performs the following steps:

Note:

The steps to recover a database session apply for both unplanned and planned
outages, although specific steps vary depending on the type of outage.

1. The client application makes a request, which is passed to a middle tier (such as the
Universal Connection Pool (UCP), ODP.NET, WebLogic Server, OCI session pool,
Tuxedo, or third-party pool using UCP) and forwarded to the database. The application
could also make a request directly to the database using the JDBC replay driver or OCI
driver.

2. The middle tier, or the JDBC replay driver or OCI driver, issues each call in the request.

3. A planned or unplanned DOWN Fast Application Notification (FAN) event or recoverable
error occurs. FAN or Fast Connection Failover (FCF) aborts the dead physical session.

4. Application Continuity begins the replay and does the following:

a. Replaces the dead physical session with a new clean session.

Chapter 6
Application Continuity Operation and Usage

6-35

b. Prepares for replay by using Transaction Guard to determine the outcome of
the in-flight transaction, if one was open.

c. If FAILOVER_RESTORE=LEVEL1 or FAILOVER_TYPE=AUTO, then Application
Continuity restores the common initial session state. Application Continuity
uses a label callback or initial callback if an application also sets session
states that are not provided by FAILOVER_RESTORE in the callback

d. Rebuilds the database session, recovering the transactional and non-
transactional states, and validating at each step that the data and messages
seen by the client driver are the same as those that the client may have seen
and used to make a decision.

e. Ends the replay and returns to run-time mode.

f. Submits the last queued call.

This is the last call made when the outage was discovered. During replay, only
this call can execute a COMMIT. A COMMIT midway through rebuilding the
session aborts replay (excluding autonomous transactions).

5. The response is returned to the application.

If replay succeeded, then the application can continue with the problem masked. If
not, then the application must handle the original error.

The behavior of Application Continuity after a communication failure depends on the
Oracle products and technologies involved. For example:

• If you use Oracle RAC or an Oracle Active Data Guard farm, then, after the
connection is reestablished on another running instance, Application Continuity
attempts to rebuild the session and replay the last transaction if there is one in
flight.

• If you use Oracle Active Data Guard and fail over to a standby site, then
Application Continuity connects to the failover instance and attempts to rebuild the
session and replay the last transaction there, if a transaction was in-flight.
(Application Continuity does not replay if the Oracle Active Data Guard switchover
or failover has lost data, and if this is not an Oracle Active Data Guard reader farm
with approved lags.)

• If you are using Oracle RAC or Oracle RAC One Node and not using Oracle Active
Data Guard, and if an outage causes a break in all public networks or causes the
database or database session to shut down briefly, then Application Continuity
attempts to rebuild the session and replay the last transaction (if a transaction was
in flight) against the database after connectivity is restored.

• You no longer need to run SRVCTL commands for each individual service but
need only specify the node name, database name, pluggable database name, or
the instance name for all affected services.

Related Topics

• Using Application Continuity for Planned Maintenance
For planned maintenance, the recommended approach is to drain requests from
Oracle connection pools in combination with Application Continuity for those
requests that do not complete. Instances do need to be stopped to switch over to
the patched software.

Chapter 6
Application Continuity Operation and Usage

6-36

Actions for Using Application Continuity
Application Continuity masks outages with few or no application changes when you use the
Oracle integrated stack.

Support for Oracle Application Continuity and Transparent Application Continuity
Support for Application Continuity is integrated into many Oracle applications.

Application Continuity is available for general use with the following Oracle technologies:

• ODP.NET, Unmanaged Driver 12.2 or later

• OCI Session Pool 12.2 and later

• Universal Connection Pool 12.1 or later

• Oracle WebLogic Server 12c

• JDBC Thin Oracle replay driver 12.1 or later

• Java connection pools or standalone Java applications using Oracle JDBC -Replay
Driver 12c or later with Request Boundaries

• SQL*Plus 19.3 or later

• Third-party JDBC application servers with Universal Connection Pool

Transparent Application Continuity is available for general use with the following Oracle
technologies:

• Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI)

• ODP.NET, Unmanaged Driver 12.2 or later

• Oracle Tuxedo 19.3 or later

• OCI Session Pool 12.2 and later

• SQL*Plus 19.3 or later

• Oracle JDBC OCI driver (thick driver is not recommended in genera

Application Continuity for Java is embedded in the Universal Connection Pool, WebLogic
data sources, including non-XA and XA data sources, and is available with the thin JDBC
replay driver, standalone (which is a JDBC replay driver without Oracle connection pools,
such as Apache Tomcat or a custom Java connection pool). Application Continuity for OCI is
embedded in SQL*Plus, OCI Session Pool 12.2 or later, and ODP.NET, Unmanaged Provider.
With Transparent Application Continuity, JDBC applications auto enable starting with Oracle
Database 18c, and OCI applications starting with Oracle Database 19c (19.3).

If a connection pool or container does not use an Oracle connection pool, then many third-
party Java applications fully support replacing the connection pool with the Universal
Connection Pool. This includes IBM WebSphere and Apache Tomcat. Alternatively—for Java
applications, only—an application can add its own request boundaries.

Request Boundaries

Request boundaries are embedded in Oracle connection pools starting with Oracle Database
release 12.1. Request boundaries are also embedded for third party Java Application Servers
that are standard with JDK9 or later. When you use the Oracle connection pools, request
boundaries are implicitly marked at check-out and check-in, delimiting the size of each replay.

Chapter 6
Application Continuity Operation and Usage

6-37

When using third-party connection pools, use UCP if Java, or use Transparent
Application Continuity, or add request boundaries, or use third party Java Application
Servers that are standard with JDK9 or later. Request boundaries are discovered
using state tracking when using Transparent Application Continuity. This functionality
is available starting with the Oracle Database 18c Java replay driver, and the Oracle
Database 19c OCI driver, which includes open source and ODBC.

Note:

For Oracle Database 18c ONLY: Java requires an initial beginRequest. This
is not needed when using later versions of the Java replay driver.

Related Topics

• Introducing Oracle Data Provider for .NET

• Introducing JDBC

Overview of Application Continuity Configuration Tasks
The Application Continuity features in various Oracle applications are used
automatically if you set the required service attributes.

Support for Application Continuity is integrated into many Oracle applications, so the
features in such applications are used automatically if you set the Application
Continuity-related service attributes.

The main actions for ensuring transparent replay for an application are the following:

1. Only if using Java, determine whether the application uses Oracle JDBC concrete
classes. For Application Continuity to be used, the deprecated concrete classes
must be replaced.

Use the -acchk parameter with the ORAchk utility to verify whether an application
has any concrete classes. Use a connection without Application Continuity if there
is anything that should not be replayed. (Most applications will be replayable.)

See Also:

Oracle Autonomous Health Framework User's Guide for more
information about ORAchk

2. Ensure that you have the necessary CPU and memory resources.

• CPU: Application Continuity is managed on the client and server sides and
requires minimal CPU overhead to operate.

At the client, CPU is used to build proxy objects and for garbage collection
(GC).

At the server, CPU is used for validation. CPU overhead is reduced for
platforms with current Intel and SPARC chips where validation is assisted in
the hardware.

• Memory: When using Application Continuity, the replay driver requires more
memory than the base driver because the calls are retained until the end of a

Chapter 6
Application Continuity Operation and Usage

6-38

request. At the end of the request, the calls are released to the garbage collector.
This action differs from the base driver that releases closed calls.

The memory consumption of the replay driver depends on the number of calls per
request. If this number is small, then the memory consumption of the replay driver is
less, and comparable to the base driver.

To obtain the best performance, you must set the same value for both the -Xmx and -
Xms parameters on the client. For example, if there is sufficient memory, then allocate
4 to 8 GB (or more) of memory for the Virtual Machine (VM), for example, by setting -
Xms4g for 4 GB. If the -Xms parameter has a lower value, then the VM also uses a
lower value from the operating system, and performance might suffer and garbage
collection operations increase.

3. Determine whether the application borrows and returns connections from the connection
pool, for example WebLogic Server Pool, Universal Connection Pool, OCI Session Pool,
Oracle Tuxedo request, or ODP.NET connection pool, for each request, or whether to add
beginRequest and endRequest APIs to the application's own connection pool to identify
request boundaries for Java, only.

Important:

Do not use the beginRequest and endRequest Java API calls anywhere other
than at request boundaries (borrow and return connections from your
connection pool). endRequest indicates that the request is complete, and that it
is now stateless. Replay starts from the next beginRequest. If there is prior
state, it must be reestablished using FAILOVER_RESTORE or callback.

4. Application Continuity replays all states in a request. If the application sets states before
vending connections, FAILOVER_RESTORE or a callback is needed. When using Oracle
WebLogic Server or the Universal Connection Pool, use FAILOVER_RESTORE, connection
labeling, or triggers. When using OCI session pool, Oracle Tuxedo or ODP.NET with
Oracle Database 18c, or later clients, use FAILOVER_RESTORE, and only add the TAF
callback if it is needed. The labeling is used for both runtime and replay.

5. Determine whether the application requires, and therefore needs to configure keeping
original values for, SYSDATE, SYSTIMESTAMP, and SYS_GUID and sequences during failover.

6. Assess the application style for the session_state_consistency value, and set the
appropriate value on the service:

• If session_state_consistency is set to AUTO, then Transparent Application
Continuity monitors the session state and decides what to do. If you are unsure about
state usage or know that states can change in the future, then use Transparent
Application Continuity. See the list of preset session states because you may need to
restore additional preset states.

• If session_state_consistency is set to DYNAMIC, then the application changes the
environment or settings during the request. Replay is disabled after the first COMMIT
until the beginning of the next request. DYNAMIC is the default mode, appropriate for
most applications.

• If session_state_consistency is set to STATIC, then the application never changes
the session state after initial setup. This mode is typical for database agnostic
applications that do not use PL/SQL state and do not use ALTER part-way through
transactions. Use Transparent Application Continuity with

Chapter 6
Application Continuity Operation and Usage

6-39

session_state_consistency set to AUTO instead of STATIC. The AUTO setting
verifies that the session state is static.

7. Determine if any requests in the application should not be replayed.

For example, replay may need to be disabled for requests using external PL/SQL
actions.

8. Follow these configuration guidelines:

• Use Oracle Database 12c release 1 (12.1.0.1), or later, for Java. Use Oracle
Database 12c release 2 (12.2), or later, for OCI-based applications.

• For .NET applications, use ODP.NET, Unmanaged Driver 12.2, or later,
connecting to an Oracle Database 12c Release 2 (12.2) or later. By default,
Application Continuity is enabled for ODP.NET applications in this
configuration. When using OCI-based applications that do not use the OCI
Session Pool, including SQL*Plus, use Transparent Application Continuity that
adds boundaries for you.

• For Java-based applications, use Universal Connection Pool 12.1 (or later) or
WebLogic Server 12.1.2 (or later) configured with the JDBC Replay data
source; or for third party applications, including third party JDBC pools, use
JDBC replay driver. For IBM WebSphere, Apache Tomcat, RedHat Spring, and
custom Java solutions, the most effective solution is to use UCP as the pooled
data source.

Custom Java pools and standalone Java applications can also use the JDBC
Replay data source directly. When using custom Java pools and standalone
applications, Oracle recommends that you use Transparent Application
Continuity which adds boundaries for you. You can also add beginRequest
and endRequest Java API's to your application.

• If the application does not borrow and return from the Oracle connection pools,
explicitly mark request boundaries. For example, if using custom JDBC pools,
or other pools, Oracle recommends that you use Transparent Application
Continuity which adds boundaries for you. You can also add beginRequest
and endRequest Java API's to your application. These APIs can also be used
for standalone JDBC applications without a connection pool.

• Enable FAN for fast interrupt on errors. This is essential to eliminate a TCP
hang occurring before the failover can start. In 12.2 FAN is built into the JDBC
and OCI drivers and is on by default for Java.

• Use a database service to connect; never use a SID or an instance name, or
the administration service that is the DB_NAME or DB_UNIQUE_NAME.

• Use a connection string that sets retries for new incoming connections and a
delay between these retries.

• For the service, set FAILOVER_TYPE to TRANSACTION for the manual mode of
Application Continuity or set FAILOVER_TYPE to AUTO for Transparent
Application Continuity. Set COMMIT_OUTCOME to TRUE and, for OCI FAN, set
NOTIFICATION to TRUE. Optionally to find the best connections to use, set GOAL
to SERVICE_TIME and CLB_GOAL to LONG.

• Use the statistics for request boundaries and protection level to monitor the
level of coverage. If you need more details, then use Application Continuity
Check Coverage (with the ORAchk utility) to report the percentage of requests
that are fully protected by Application Continuity, and the location of those
requests that are not fully protected. Use this coverage check before

Chapter 6
Application Continuity Operation and Usage

6-40

deployment and after application changes. Developers and management will know
how well protected an application release is from failures of the underlying
infrastructure. If there is a problem, then it can be fixed before the application is
released, or waived knowing the level of coverage.

Configuring Connections for High Availability and Application Continuity
These are general recommendations for configuring the connections used by applications for
high availability.

If you are using Java, then you must use the oracle.jdbc.replay.OracleDataSourceImpl,
oracle.jdbc.replay.OracleConnectionPoolDataSourceImpl, or
oracle.jdbc.replay.driver.OracleXADataSourceImpl data source to obtain JDBC
connections. These data sources support all the properties and configuration parameters of
all the Oracle JDBC data sources, for example, the oracle.jdbc.pool.OracleDataSource.

For OCI based applications including SQL*Plus and ODP.NET, the OCI driver 12.2, and later,
supports Application Continuity.

You must remember the following points while using the connection URL:

• If the REMOTE_LISTENER setting for the database does not match the addresses in the
ADDRESS_LIST at the client, then it does not connect, showing services cannot be
found. So, the REMOTE_LISTENER setting for the database must match the addresses in
the ADDRESS_LIST at the client:

– If the connect string uses the SCAN Name, then REMOTE_LISTENER must be set to the
SCAN name.

– If the connect string uses an ADDRESS_LIST of host VIPs, then REMOTE_LISTENER must
be set to an address list that includes all SCAN VIPs and all host VIPs

Note:

Use SCAN for location independence, to avoid having to reconfigure the client
when you add or delete nodes, or when databases change to running on
different nodes.

• Set RETRY_COUNT, RETRY_DELAY, CONNECT_TIMEOUT, and TRANSPORT_CONNECT_TIMEOUT
parameters in the connection string. These settings improve acquiring new connections
at runtime, at replay, and during work drains for planned outages.

The CONNECT_TIMEOUT parameter is equivalent to the SQLNET.OUTBOUND_CONNECT_TIMEOUT
parameter in the sqlnet.ora file and applies to the full connection. The
TRANSPORT_CONNECT_TIMEOUT parameter applies per address.

• Set CONNECT_TIMEOUT to a high value to prevent an overabundance of log ins. Low values
can result in log in storms to the application or server pool canceling and retrying. Do not
set (RETRY_COUNT+1)*RETRY_DELAY or CONNECT_TIMEOUT larger than your response time
SLA. The application must either connect or receive an error within the response time
SLA.

Chapter 6
Application Continuity Operation and Usage

6-41

• Starting with Oracle Database release 19c you can use Easy Connect syntax, as it
has high availability capabilities. For example:

primary-vip,secondary-vip:1521/sales.example.com?
connect_timeout=90&transport_connect_timeout
=3&retry_count=30&retry_delay=3

Example 6-6 Example TNS Entry for ONS

The following is an example of a Transparent Network Substrate (TNS entry). This is
the required TNS format for Oracle Notification Service (ONS) to be auto configured.
ONS is the transport system used for Fast Application Notification (FAN). Oracle
recommends using FAN with Application Continuity to provide fast outage detection.

myAlias=(DESCRIPTION=
 (CONNECT_TIMEOUT=90)(RETRY_COUNT=30)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=3)
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (ADDRESS=(PROTOCOL=TCP)(HOST=RAC-scan)(PORT=1521)))
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (ADDRESS=(PROTOCOL=TCP)(HOST=DG-Scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=service_name))

Related Topics

• Local Naming Parameters in the tnsnames.ora File

• Installing and Configuring Oracle Data Provider for .NET

Configuring Oracle Database for Application Continuity
Your Oracle Database configuration must include the following to use Application
Continuity:

• If you are using Oracle Real Application Clusters (Oracle RAC) or Oracle RAC
One Node, Oracle Data Guard, or Oracle Active Data Guard, then ensure that
FAN is configured with Oracle Notification Service (ONS) to communicate with
Oracle Database 12c pools and drivers.

• Set the service attributes on the service for replay and load balancing. For
example, set:

– FAILOVER_TYPE = AUTO | TRANSACTION: Use FAILOVER_TYPE=AUTO for
Transparent Application Continuity or FAILOVER_TYPE=TRANSACTION for manual
Application Continuity. This attribute enables the replay functionality for the
replay drivers and Application Continuity. Oracle drivers keep track of all
replayable statements issued during a database session. If all of the
statements are replayable, and any in-flight transactions did not commit or the
session is in conversation, then Oracle replays the uncommitted work
following a planned or unplanned database outage. This mode re-establishes
transactional and non-transaction states automatically with no additional
application steps.

Chapter 6
Application Continuity Operation and Usage

6-42

– REPLAY_INITIATION_TIMEOUT = n: For setting the duration, in seconds, to allow
replay to start (where the value of n can be, for example, 60, 300, 900, or 1800,
depending on your needs)

– FAILOVER_RETRIES = 30: For specifying the number of connection retries for each
replay

– FAILOVER_DELAY = 10: For specifying the delay in seconds between connection
retries

– GOAL = SERVICE_TIME: If you are using Oracle RAC or Oracle Global Data Services,
then this is a recommended setting

– CLB_GOAL = SHORT: If you are using Oracle RAC or Oracle Global Data Services,
then this is a recommended setting

– COMMIT_OUTCOME = TRUE: For using Transaction Guard

– FAILOVER_RESTORE = AUTO | LEVEL1: Use FAILOVER_RESTORE=AUTO for Transparent
Application Continuity and FAILOVER_RESTORE=LEVEL1 for manual Application
Continuity. To automatically restore client states that are preset on the connection
pool before replay begins—including AUTOCOMMIT state (for Java and SQL*Plus),
NLS states, and TAGS (MODULE, ACTION, ECID, CLIENT_ID, CLIENT_INFO)
states.

• Grant permission on the Application Continuity package, DBMS_APP_CONT, to the database
users that fail over using Application Continuity, as follows:

GRANT EXECUTE ON DBMS_APP_CONT TO user_name;

• Do not use the default database service corresponding to the DB_NAME or
DB_UNIQUE_NAME. Also, do not use the default database service for high availability,
because this service cannot be enabled or disabled, and cannot be relocated on Oracle
RAC or switched over to Oracle Data Guard. This service is reserved for Oracle
Enterprise Manager Cloud Control (Cloud Control) and for DBAs.

Establishing the Initial State Before Application Continuity Replays
Some applications set an initial state for the connection before allowing applications to use
the connection.

Application Continuity must establish this initial state before replay starts. For these
applications, FAILOVER_RESTORE restores common states listed here. If the states that the
application presets are not listed here, and the application needs initial states, then you must
add an additional callback.

See Also:

Oracle Database Release Notes for your platform because more parameters are
restored in each release

Examples of states that can be preset include:

• PL/SQL package state

• NLS Setting

Chapter 6
Application Continuity Operation and Usage

6-43

• Optimizer setting

During a request, Application Continuity reestablishes the entire state for the request.
This prerequisite is for the initial state before Application Continuity starts replaying.

A callback is not required if FAILOVER_RESTORE restores all required states, which is the
case for most applications.

The topics in this section apply to applications that set state only at the beginning of a
request, or for stateful applications that gain performance benefits from using
connections with a preset state.

• FAILOVER_RESTORE

• States Restored with FAILOVER_RESTORE

• FAILOVER_RESTORE Extended

• Configuring a Keystore for FAILOVER_RESTORE

• Configuring a Wallet and SQLNET.ORA for FAILOVER_RESTORE

• FAILOVER_RESTORE = NONE and No Callback

• Connection Labeling

• Connection Initialization Callback

FAILOVER_RESTORE
Setting FAILOVER_RESTORE to LEVEL1 (for manual Application Continuity) or AUTO (for
Transparent Application Continuity) automatically restores common state initial
settings before replaying the request.

FAILOVER_RESTORE is a setting on your service. Available with Oracle Database 12.2
and later, FAILOVER_RESTORE automatically restores all session states available for
your application at the client-side.

Oracle recommends setting FAILOVER_RESTORE to LEVEL1 or AUTO for all applications.

Refer to States Restored with FAILOVER_RESTORE for the client-side session states
that are restored.

States Restored with FAILOVER_RESTORE
This topic lists the session states that are restored and those not supported when
FAILOVER_RESTORE is set to LEVEL1 or AUTO.

Session States That Are Restored

• NLS_CALENDAR

• NLS_CURRENCY

• NLS_DATE_FORMAT

• NLS_DATE_LANGUAGE

• NLS_DUAL_CURRENCY

• NLS_ISO_CURRENCY

• NLS_LANGUAGE

Chapter 6
Application Continuity Operation and Usage

6-44

• NLS_LENGTH_SEMANTICS

• NLS_NCHAR_CONV_EXCP

• NLS_NUMERIC_CHARACTER

• NLS_SORT

• NLS_TERRITORY

• NLS_TIME_FORMAT

• NLS_TIME_TZ_FORMAT

• TIME_ZONE

• NLS_TIMESTAMP_FORMAT

• NLS_TIMESTAMP_TZ_FORMAT

• CURRENT_SCHEMA

• MODULE

• ACTION

• CLIENT_ID

• AUTOCOMMIT states (for Java and SQL*Plus)

• CONTAINER (PDB) and SERVICE

• ROLES (excludes secure roles, which continue to require a call back)

• ROW_ARCHIVAL

• EDITION

• ERROR_ON_OVERLAP_TIME

• SQL_TRANSLATION_PROFILE

• CLIENT_INFO. (JDBC)

Session States That Are Not Restored with FAILOVER_RESTORE=AUTO

The following are not supported by the THIN driver, so are excluded from the auto-restoration
option:

• NLS_COMP

• CALL_COLLECT_TIME

• CLIENT_INFO

FAILOVER_RESTORE Extended
Starting with Oracle Database 19.5 and Oracle client drivers 19.5, if your application uses a
session state outside of the common client-side session states, FAILOVER_RESTORE restores
all sessions parameters set with the ALTER SESSION prior to the request being replayed.

At failover, the extended FAILOVER_RESTORE restores session parameters that were altered in
your session. Examples of session parameters restored include
optimizer_capture_sql_plan_baselines and create_stored_outlines that were set in the
session.

If you are already using a logon trigger, connection label, or callback to restore session
parameters, you can continue to use them. Labels and callbacks are fully supported with and

Chapter 6
Application Continuity Operation and Usage

6-45

without extended FAILOVER_RESTORE. Using extended FAILOVER_RESTORE has the
advantage that you do not need to update it as the application changes.

To use this feature, you must set FAILOVER_RESTORE to LEVEL1 or AUTO and ensure that
the dictionary credentials are encrypted on your system.

There are two methods of adding the wallet or keystore for dictionary credentials
encryption:

• Recommended: Use the WALLET_ROOT database instance initialization parameter
to specify the wallet location. Using an initialization parameter for the wallet
location ensures consistency across Oracle Real Application Clusters (Oracle
RAC) and Oracle Data Guard. This method requires a rolling restart of the
database.

• Modify the sqlnet.ora file in your TNS_ADMIN directory on the database server to
point to the wallet location. This method does not require a database restart,unless
your database runs on the Microsoft Windows operating system. You are
responsible for ensuring that the sqlnet.ora files are consistent in all
ORACLE_HOME directories. Also, the sqlnet.ora might require additional
maintenance when performing database upgrades.

Related Topics

• Recommendations for Oracle Net Services When Upgrading Oracle Database

• Using Application Contexts to Retrieve User Information

• Connection Initialization Callback

Configuring a Keystore for FAILOVER_RESTORE
Use these steps to configure encryption of dictionary credentials by using a software
keystore (wallet) and Transparent Data Encryption (TDE) for use with
FAILOVER_RESTORE.

1. If you are using Oracle Autonomous Database, you do not need to perform these
steps.

For Oracle Autonomous Database, a software keystore already exists and
dictionary credentials are encrypted

2. If you are not using Oracle Autonomous Database, then check if your system is
already configured to enforce dictionary credential encryption.

a. Verify a wallet (a Keystore) exists using the following SQL query:

SELECT con_id, wrl_type, status , wallet_type FROM
V$ENCRYPTION_WALLET
ORDER BY con_id;
 CON_ID WRL_TYPE STATUS WALLET_TYPE
---------- ------------ -------- -----------
 0 FILE OPEN PASSWORD

If no rows are returned by this SQL query, then a wallet, or keystore, does not
exist.

Chapter 6
Application Continuity Operation and Usage

6-46

b. Verify that dictionary credentials are encrypted using the following SQL query:

SQL> SELECT enforcement FROM DICTIONARY_CREDENTIALS_ENCRYPT;
ENFORCEMENT

ENABLED

If this SQL query returns DISABLED, then the dictionary is not encrypted.

If you have a wallet and dictionary credentials encrypted, you can use extended
FAILOVER_RESTORE by setting the attribute on your service. You do not need to complete
any more of the steps in this procedure.

If you do not have an existing wallet, or if you need to enable dictionary credentials
encryption, then continue with the following steps.

3. Configure the database to use a software keystore.

The following steps should be run by an operator user with SYSKM privileges. Grant the
role SYSKM to the operator user.

a. If necessary, create a directory to store the wallet.

The location selected needs to be shared across Oracle RAC nodes and replicated to
Oracle Data Guard sites. For Oracle RAC, the directory must be on shared storage.

b. Change the static initialization parameter WALLET_ROOT.

The parameter value should be the directory where the wallet is stored.

ALTER SYSTEM SET WALLET_ROOT='/myOracleBase/admin/wallet/'
SCOPE=spfile;

c. Change the initialization parameter TDE_CONFIGURATION to specify a software
keystore.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE"
SCOPE=BOTH SID='*'

d. Perform a rolling restart of the database instances to activate the new initialization
parameters.

For example, for a two node clustered database named orcl, where the instances
are named orcl1 and orcl2, you would use the following commands to stop and
restart each instance individually to avoid a complete outage of your database.

$ srvctl stop instance -db orcl -instance orcl1 -drain_timeout 600 -
stopoption IMMEDIATE
$ srvctl start instance -db orcl -instance orcl1

srvctl stop instance -db orcl -instance orcl2 -drain_timeout 600 -
stopoption IMMEDIATE
srvctl start instance -db orcl -instance orcl2

Chapter 6
Application Continuity Operation and Usage

6-47

Note:

Fleet Patching and Provisioning, if used, automates this process and
can be used instead if you are modifying the parameters during a
patch upgrade.

e. Verify that the parameters are set to the correct values after restarting the
instances.

SQL> SHOW PARAMETER WALLET_ROOT;

SQL> SHOW PARAMETER TDE_CONFIGURATION;

4. Create a keystore with a password, if one does not already exist.

In the following example password is the password for the keystore. The password
is case sensitive. Keystore passwords adhere to the same rules as database user
passwords.

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY "password";

5. Open a keystore and set an encryption key.

If your database is configured as an Oracle Multitenant database, then a keystore
and encryption key must be set for each PDB using the CONTAINER=all clause. In
the following example password is the password for the keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
"password" CONTAINER=all;
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY
"password"
WITH BACKUP CONTAINER=all;

If your database is not configured as an Oracle Multitenant database, then use the
following SQL commands, where password is the password for the keystore:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
"password";
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY
"password"
WITH BACKUP;

6. Encrypt the database dictionary credentials.

Use an operator with the SYSKM role to run the following SQL command from
within the Container Database (CDB) root and each PDB.

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;

Encryption and decryption of the information occurs automatically at the server during
failover restoration.

Chapter 6
Application Continuity Operation and Usage

6-48

WARNING:

It is recommended to backup the software keystore and the wallet location. Do not
lose your TDE software keystore or WALLET_ROOT location. If you do, for Application
Continuity or Transparent Application Continuity, a new keystore can be created but
encrypted dictionary credentials will need to be re-instantiated. Failover will not
succeed while there is a mismatch in the wallet keys.

Related Topics

• Configuring a Software Keystore

• Managing the Keystore and the Master Encryption Key

• Permitted Features, Options, and Management Packs by Oracle Database Offering

Configuring a Wallet and SQLNET.ORA for FAILOVER_RESTORE
Use these steps to configure encryption of dictionary credentials by using SQLNET.ORA to point
to the wallet location for use with FAILOVER_RESTORE.

This method does not require a database restart, unless your database runs on the Microsoft
Windows operating system. You are responsible for ensuring that the sqlnet.ora files are
consistent in all ORACLE_HOME directories.

1. If you are using Oracle Autonomous Database, you do not need to perform these steps.

For Oracle Autonomous Database, a software keystore already exists and dictionary
credentials are encrypted

2. If you are not using Oracle Autonomous Database, then check if your system is already
configured to enforce dictionary credential encryption.

a. Verify a wallet exists using the following SQL query:

SELECT con_id, wrl_type, status , wallet_type FROM V$ENCRYPTION_WALLET
ORDER BY con_id;
 CON_ID WRL_TYPE STATUS WALLET_TYPE
---------- ------------ -------- -----------
 0 FILE OPEN PASSWORD

If no rows are returned by this SQL query, then a wallet, or keystore, does not exist.

b. Verify that dictionary credentials are encrypted using the following SQL query:

SQL> SELECT enforcement FROM DICTIONARY_CREDENTIALS_ENCRYPT;
ENFORCEMENT

ENABLED

If this SQL query returns DISABLED, then the dictionary is not encrypted.

If you have a wallet and dictionary credentials encrypted, you can use extended
FAILOVER_RESTORE by setting the attribute on your service. You do not need to complete
any more of the steps in this procedure.

Chapter 6
Application Continuity Operation and Usage

6-49

If you do not have an existing wallet, or if you need to enable dictionary credentials
encryption, then continue with the following steps.

3. Configure the database to use a wallet.

a. View the TNS_ADMIN environment variable to find the location of the network
configuration files used by your database.

• On Linux and UNIX systems, as the Oracle Home software owner, view
the current setting of the TNS_ADMIN environment variable.

$ env | grep TNS_ADMIN

• On Microsoft Windows systems, check the value set for TNS_ADMIN as both
an environment variable and in the registry in the path
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\KEY_HOME_N
AME.

If the TNS_ADMIN variable is not set, then the default location
of $ORACLE_HOME\network\admin is used for the Oracle Net configuration
files.

b. If necessary, create a directory to store the wallet.

The location selected needs to be shared across Oracle RAC nodes and
replicated to Oracle Data Guard sites. For Oracle RAC, the directory must be
on shared storage.

c. Locate and edit the SQLNET.ORA file.

Using the location retrieved in the previous substep, edit the sqlnet.ora file
and add the following entry, where /myOracleWalletLoc is the full path
name of the directory created to store the wallet:

ENCRYPTION_WALLET_LOCATION =
 (SOURCE=
 (METHOD=FILE)
 (METHOD_DATA=
 (DIRECTORY=/myOracleWalletLoc)))

d. Change the initialization parameter TDE_CONFIGURATION to specify a software
keystore.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE"
SCOPE=BOTH SID='*'

4. Create a keystore with a password, if one does not already exist.

In the following example myOracleWalletLoc is the full path name of the directory
created to store the wallet (or keystore) and password is the password for the
keystore. The password is case sensitive. Keystore passwords adhere to the
same rules as database user passwords.

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/myOracleWalletLoc'
IDENTIFIED BY "password";

5. Open a keystore and set an encryption key.

Chapter 6
Application Continuity Operation and Usage

6-50

If your database is configured as an Oracle Multitenant database, then a keystore and
encryption key must be set for each PDB using the CONTAINER=all clause. In the
following example password is the password for the keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password"
CONTAINER=all;
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password"
WITH BACKUP CONTAINER=all;

If your database is not configured as an Oracle Multitenant database, then use the
following SQL commands, where password is the password for the keystore:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password";
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password"
WITH BACKUP;

6. Encrypt the database dictionary credentials.

Use an operator with the SYSKM role to execute the following SQL command from within
the container database (CDB) root and each PDB.

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;

Encryption and decryption of the information occurs automatically at the server during failover
restoration.

WARNING:

It is recommended to backup the wallet location. Do not lose your wallet or location.
If you do, for Application Continuity or Transparent Application Continuity, a new
wallet can be created but encrypted dictionary credentials will need to be re-
instantiated. Failover will not succeed while there is a mismatch in the wallet keys.

Related Topics

• Locating Oracle Net Services Configuration Files

• Using sqlnet.ora to Configure Transparent Data Encryption Keystores

• Permitted Features, Options, and Management Packs by Oracle Database Offering

FAILOVER_RESTORE = NONE and No Callback
In this scenario, which is applicable to databases and clients prior to Oracle Database 18c,
the application does not assume any state when borrowing a connection from a pool, or uses
UCP or WebLogic labels to reestablish the initial state.

Beginning with Oracle Database 18c databases and clients, or later, Oracle recommends
setting FAILOVER_RESTORE to LEVEL1 or AUTO for all applications.

Chapter 6
Application Continuity Operation and Usage

6-51

Connection Labeling
Oracle recommends using Connection Labeling, a generic pool feature, as a best
practice. When Connection Labeling is present, Application Continuity uses it. Since
the Connection Labeling is recreating the state, FAILOVER_RESTORE can be set to NONE.

This scenario is applicable to Universal Connection Pool (UCP) and Oracle WebLogic
server. The application can be modified to take advantage of the preset state on
connections. Connection Labeling APIs determine how well a connection matches,
and use a callback to populate the gap when a connection is borrowed.

Related Topics

• Oracle Universal Connection Pool Developer’s Guide

Connection Initialization Callback
In this scenario, the replaying driver (JDBC or OCI) uses an application callback to set
the initial state of the session during runtime and replay. The JDBC replay driver
provides a connection initialization callback interface and methods to register and
unregister connection initialization callbacks in the
oracle.jdbc.replay.OracleDataSource interface. For OCI and ODP.NET, register the
TAF callback.

When registered, the initialization callback is executed every time a connection is
borrowed from the pool and at each successful reconnection following a recoverable
error. (This is true for the JDBC/UCP initialization callback and should be the same for
TAF.) Using the same callback during both runtime and replay ensures that the same
initialization is established at replay, as it was when the session was first established.
An application is responsible for ensuring that the initialization actions are the same as
that on the original connection before failover. If the callback invocation fails, then
replay is disabled on that connection. Use the connection initialization callback only
when the application has not implemented UCP and WebLogic Connection Labeling
and the state cannot be restored automatically by setting either
FAILOVER_RESTORE=AUTO for Transparent Application Continuity or
FAILOVER_RESTORE=LEVEL1 for manual Application Continuity.

Delaying the Reconnection in Application Continuity
By default, when Application Continuity initiates a failover, the driver attempts to
recover the in-flight work at an instance where the service is available.

For recovering the work, the driver must establish a good connection with the instance.
This reconnection can take some time if the database or the instance must be
restarted before the service is relocated and published. So, the failover must be
delayed until the service is available from another instance or database.

You must use the FAILOVER_RETRIES and FAILOVER_DELAY parameters to manage
connecting and reconnecting. These parameters can work well in conjunction with a
planned outage, for example, an outage that may make a service unavailable for
several minutes. While setting the FAILOVER_DELAY and FAILOVER_RETRIES
parameters, check the value of the REPLAY_INITIAITION_TIMEOUT parameter first. The
default value for this parameter is 900 seconds. A high value for the FAILOVER_DELAY
parameter can cause replay to be canceled.

Chapter 6
Application Continuity Operation and Usage

6-52

Parameter Name Possible Value Default Value

FAILOVER_RETRIES Positive integer zero or above 30

FAILOVER_DELAY Time in seconds 10

The following examples show various failover scenarios:

• Creating Services on Oracle RAC with Application Continuity

• Modifying Services on Single-instance Databases to use Application Continuity

Creating Services on Oracle RAC with Application Continuity
You can create services on Oracle RAC that utilize Transparent Application Continuity or
manual Application Continuity.

You can create services that use Transparent Application Continuity, as follows:

For policy-managed databases:

$ srvctl add service -db mydb -service TACSERVICE -serverpool ora.Srvpool -
clbgoal SHORT
 -rlbgoal SERVICE_TIME -failovertype AUTO -failover_restore AUTO -
commit_outcome TRUE --replay_init_time 600
 -retention 86400 -notification TRUE -drain_timeout 300 -stopoption
IMMEDIATE

For administrator-managed databases:

$ srvctl add service -db mydb -service TACSERVICE -pdb mypdb -preferred
inst1 -available inst2
 -failovertype AUTO -failover_restore AUTO -commit_outcome TRUE --
replay_init_time 600 -retention 86400
 -notification TRUE -drain_timeout 300 -stopoption IMMEDIATE -role PRIMARY

You can create services that use manual Application Continuity, as follows::

For policy-managed databases:

$ srvctl add service -db mydb -service ACSERVICE -serverpool ora.Srvpool -
failovertype TRANSACTION
 -failover_restore LEVEL1 -commit_outcome TRUE -session_state dynamic -
replay_init_time 600 -retention 86400
 -notification TRUE -drain_timeout 300 -stopoption IMMEDIATE

For administrator-managed databases:

$ srvctl add service -db mydb -service ACSERVICE -pdb mypdb -preferred inst1
-available inst2
 -failovertype TRANSACTION -failover_restore LEVEL1 -commit_outcome TRUE -
session_state dynamic -replay_init_time 600
 -retention 86400 -notification TRUE -drain_timeout 300 -stopoption
IMMEDIATE -role PRIMARY

Chapter 6
Application Continuity Operation and Usage

6-53

Modifying Services on Single-instance Databases to use Application Continuity
If you are using a single-instance database, then use the DBMS_SERVICE package to
modify services.

For manual Application Continuity:

DECLARE
params dbms_service.svc_parameter_array;
BEGIN
params('FAILOVER_TYPE'):='TRANSACTION';
params('REPLAY_INITIATION_TIMEOUT'):=1800;
params('RETENTION_TIMEOUT'):=86400;
params('FAILOVER_DELAY'):=10;
params('FAILOVER_RETRIES'):=30;
params('FAILOVER_RESTORE'):='LEVEL1';
params('commit_outcome'):='true';
params('aq_ha_notifications'):='true';
dbms_service.modify_service('[your service]',params);
END;
/

For Transparent Application Continuity:

DECLARE
params dbms_service.svc_parameter_array;
BEGIN
params('FAILOVER_TYPE'):='AUTO';
params('REPLAY_INITIATION_TIMEOUT'):=1800;
params('RETENTION_TIMEOUT'):=86400;
params('FAILOVER_DELAY'):=10;
params('FAILOVER_RETRIES'):=30;
params('FAILOVER_RESTORE'):='AUTO';
params('commit_outcome'):='true';
params('aq_ha_notifications'):='true';
dbms_service.modify_service('[your service]',params);
END;
/

Using Application Continuity for Planned Maintenance
For planned maintenance, the recommended approach is to drain requests from
Oracle connection pools in combination with Application Continuity for those requests
that do not complete. Instances do need to be stopped to switch over to the patched
software.

This has the least impact when there is minimal recovery to complete.

To use Application Continuity for planned maintenance:

1. Use any FAN-aware pool, such as OCI, UCP, WebLogic Server, or ODP.NET
Managed and Unmanaged Drivers.

The FAN planned event drains at request boundaries.

Chapter 6
Application Continuity Operation and Usage

6-54

Note:

ODP.NET Managed Driver does not support Application Continuity.

2. Use the srvctl relocate service command to relocate the service from the instance
without disrupting the sessions or, for a uniform service, use the srvctl stop service
command on the instance (do not use the -force parameter).

The FAN planned event clears the idle sessions immediately and marks the active
sessions to be released at check-in (end of request). This drains the sessions from the
instance without disrupting work.

3. If not all sessions have checked in and the time to stop the instance has been reached,
then stop the instance (abort).

For Application Continuity-enabled pools (UCP, WebLogic, Tuxedo, ODP.NET, and OCI),
and any Java pool that adds beginRequest/endRequest , Application Continuity attempts
to recover those remaining sessions.

4. Restart the instance and service.

Runtime load balancing, when enabled, balances the sessions back to the restored
instance at the next request boundaries.

Running Without Application Continuity
Sometimes Application Continuity is not in effect because a disabling call has been issued.

Application Continuity is not in effect when it has not been started or when it has been
disabled. If it has been disabled, it remains so through to the endRequest call.

Application Continuity is not started when the service property FAILOVER_TYPE does not have
the value set to TRANSACTION or AUTO. For planned maintenance, set the FAILOVER_TYPE value
to TRANSACTION or AUTO, beforehand; the setting applies to new connections, and existing
connections retain their original service value.

Application Continuity is disabled for the current request when any of the following occurs:

• The application runs a statement that is restricted for Application Continuity (for example,
ALTER SYSTEM).

• Application Continuity is explicitly disabled using disableReplay.

• A COMMIT statement is issued when the service parameter session_state_consistency
is set to Dynamic (the default, when not using Transparent Application Continuity).

• An endRequest statement is issued until the next beginRequest is issued.

• The session is terminated or disconnected and the NOREPLAY keyword is specified.

Related Topics

• Transparent Application Continuity

• Disabling Replay in Application Continuity

• Terminating or Disconnecting a Session Without Replay

Chapter 6
Application Continuity Operation and Usage

6-55

Disabling Replay in Application Continuity
Replay occurs following a recoverable error but you can disable replay.

If an application has requests that the application does not want repeated, then the
application can take a connection to a service that does not have Application
Continuity enabled, or can explicitly call an API to disable replay for those requests. If
you use Transparent Application Continuity, then side effects are detected and
disabled automatically. You do not need to understand the application or to disable
requests with side effects.

When using manual Application Continuity all calls are replayed. If an application uses
UTL_SMTP, for example, and does not want messages repeated, then the application
could use a connection to a different service, or use the disableReplay API on Java,
or OCIRequestDisableReplay API for OCI. All other requests continue to be replayed.

For applications with external actions (for example, autonomous transactions or using
UTL_HTTP to issue an SOA call), Application Continuity remains transparent if the
application's correctness is preserved when these external actions are replayed after a
failure.

The following rules are generic. They apply to all applications that replay work,
including Application Continuity, and TAF (release 12.2 and after).

• Application Calls Autonomous Transactions, External PL/SQL, or Java Actions that
Should Not Be Repeated

• Application Synchronizes Independent Sessions

• Application Uses Time at the Middle Tier in the Execution Logic

• Application Assumes that ROWIds Do Not Change

• Application Assumes that Location Values Do Not Change

Related Topics

• Transparent Application Continuity

• Potential Side Effects of Application Continuity

• Restrictions and Other Considerations for Application Continuity

Application Calls Autonomous Transactions, External PL/SQL, or Java Actions that Should
Not Be Repeated

Autonomous transactions, external PL/SQL calls, and Java callouts can have side
effects that are separate from the main transaction, and these side effects are
replayed unless you specify otherwise.

Examples of side effects separate from the main transaction include writing to an
external table, sending email, forking sessions out of PL/SQL (including calls to
UTL_HTTP, UTL_URL, UTL_FILE, UTL_FILE_TRANSFER, UTL_SMPT, UTL_TCP,
UTL_MAIL, DBMS_PIPE, or DBMS_ALERT) or Java (including executing a shell script
in the form Process proc = rt.exec(command);), transferring files, and accessing
external URLs. Actions such as these leave persistent side effects. PL/SQL messaging
and Java callouts can leave persistent results behind. For example, if a user walks
away part way through some work without committing and the session times out or the
user issues Ctrl+C, the foreground or a component fails; the main transaction rolls

Chapter 6
Application Continuity Operation and Usage

6-56

back while the side effects may have been applied. (For more information about side effects,
see Potential Side Effects of Application Continuity.)

Application developers decide whether to allow replay for external actions. Examples include
using UTL_HTTP to issue an SOA call, or UTL_SMTP to send a message, or UTL_URL to access a
website. If such external actions must not be replayed, use a connection without AC, or use
one of the disable Replay APIs.

Application Synchronizes Independent Sessions
You must not configure an application for replay if the application synchronizes independent
sessions using volatile entities that are held until COMMIT, ROLLBACK, or session loss. For
example, the application might synchronize multiple sessions connected to several data
sources that are otherwise inter-dependent using resources such as a database lock. This
synchronization may be acceptable if the application is only serializing these sessions and
understands that any session may fail. However, if the application assumes that a lock or any
other volatile resource held by one data source implies exclusive access to data on the same
or a separate data source from other connections, then this assumption may be invalidated
when replaying.

During replay, the client driver is not aware that the sessions are dependent on one session
holding a lock or other volatile resource. You can also use pipes, buffered queues, stored
procedures taking a resource (such as a semaphore, device, or socket) to implement the
synchronization that are lost by failures.

Application Uses Time at the Middle Tier in the Execution Logic
You must not configure an application for replay if the application uses the wall clock at the
middle tier as part of the execution logic. The client driver does not repeat the middle-tier time
logic, but uses the database calls that execute as part of this logic. For example, an
application using middle-tier time might assume that a statement executed at Time T1 is not
reexecuted at Time T2, unless the application explicitly does so.

Application Assumes that ROWIds Do Not Change
If an application caches ROWIDs, then access to these ROWIDs might be invalidated due to
database changes. Although a ROWID uniquely identifies a row in a table, a ROWID might
change its value in the following situations:

• The underlying table is reorganized.

• An index is created on the table.

• The underlying table is partitioned.

• The underlying table is migrated.

• The underlying table is exported and imported using EXP/IMP/DUL.

• The underlying table is rebuilt using Golden Gate or Logical Standby or other replication
technology.

• The database of the underlying table is flashed back or restored.

Oracle does not recommend, in general, that an application store ROWIDs for later use
because the corresponding row might either not exist or contain completely different data.
Note that ROWIDs do not prevent using Application Continuity. Replays can be rejected.

Chapter 6
Application Continuity Operation and Usage

6-57

Application Assumes that Location Values Do Not Change
SYSCONTEXT options comprise a location-independent set such as National Language
Support (NLS) settings, ISDBA, CLIENT_IDENTIFIER, MODULE, and ACTION, and a
location-dependent set that uses physical locators. Typically, an application does not
use the physical identifiers, except in testing environments. If physical locators are
used in mainline code, then the replay finds the mismatch and rejects it. However, it is
acceptable to use physical locators between requests (before beginRequest) or in
callbacks. A common issue is for QA to modify test applications to select V$INSTANCE.
As V$INSTANCE can change, only put this check in the callback or select the instance
locally at the client and not from the database.

Example

select
 sys_context('USERENV','DB_NAME')
 ,sys_context('USERENV','HOST')
 ,sys_context('USERENV','INSTANCE')
 ,sys_context('USERENV','IP_ADDRESS')
 ,sys_context('USERENV','ISDBA')
 ,sys_context('USERENV','SESSIONID')
 ,sys_context('USERENV','TERMINAL')
 ,sys_context('USERENV','SID')
from dual;

Terminating or Disconnecting a Session Without Replay
If Application Continuity is configured and if a DBA terminates or disconnects a
session by using the ALTER SYSTEM KILL SESSION or ALTER SYSTEM DISCONNECT
SESSION statement, then Application Continuity, by default attempts, to recover the
session. However, if you do not want the session to be replayed, then use the
NOREPLAY keyword, as follows:

alter system kill session 'sid, serial#, @inst' noreplay;

alter system disconnect session 'sid, serial#, @inst' noreplay

$ srvctl stop service -db orcl -instance orcl2 –drain_timeout 60 -
stopoption immediate -force -noreplay

$ srvctl stop service -db orcl -node myode3 –noreplay -drain_timeout
60 -stopoption immediate -force

$ srvctl stop instance -node mynode3 -drain_timeout 60 -stopoption
immediate -force –noreplay

To terminate all sessions running on the local instance (rather that only one session)
and not have the sessions replayed, you can also use the
DBMS_SERVICE.DISCONNECT_SESSION PL/SQL procedure and specify NOREPLAY for the
disconnect_option parameter.

Related Topics

• ALTER SYSTEM

Chapter 6
Application Continuity Operation and Usage

6-58

• DBMS_SERVICE.DISCONNECT_SESSION

Mutable Functions and Application Continuity
When a request is replayed, the default and desired treatment of mutable objects can vary.

By default, for SQL the original value received is replayed for sequences. This is the value
that the application owns. For PL/SQL, DATE and TIME, and SYSGUID mutables, the KEEP
clause must be granted as a part of the schema.

Support for keeping mutable function values is currently provided for SYSDATE, SYSTIMESTAMP,
LOCAL_TIMESTAMP, CURRENT_TIMESTAMP, SYS_GUID, and sequence.NEXTVAL. If the original
values are not kept and if different values for these mutable objects are returned to the client,
then replay is rejected because the client observes different results. If the application can use
original values, then configure mutable functions using the KEEP clause for owned sequences
and GRANT KEEP for other users. (Most applications need sequence values to be kept at
replay, for bind variable consistency.)

Note:

Keeping SYS_GUID values is supported only for serial processing plans. When
parallel query is used, Application Continuity is not able to restore original values for
SYS_GUID.

The following table shows examples of the treatment of mutable functions by products during
replay. (Actual implementation depends on specific products and releases.)

Table 6-4 Example Treatment of Mutable Objects by Products During Replay

Mutable Function Product 1 Product 2 Product 3

SYSDATE, SYSTIMESTAMP Original Original Current

Sequence NEXTVAL and CURRVAL Original Original (Not applicable)

SYS_GUID Original (Not applicable) (Not applicable)

To allow Application Continuity to keep and use original function results at replay:

• The database user running the application might have the KEEP DATE TIME and KEEP
SYSGUID privileges granted, and the KEEP SEQUENCE object privilege on each sequence
whose value is to be kept. For example:

GRANT KEEP DATE TIME TO user2;
GRANT KEEP SYSGUID TO user2;
GRANT KEEP SEQUENCE ON sales.seq1 TO user2;

Chapter 6
Application Continuity Operation and Usage

6-59

Notes:

– Starting with Oracle Database 19c, grants are not required for
keeping mutables for SQL for sequences.

– GRANT ALL ON object does not include (that is, does not grant the
access provided by) the KEEP DATE TIME and KEEP SYSGUID
privileges, and the KEEP SEQUENCE object privilege.

– Grant privileges related to mutable function support only to
application users, and to each application user grant only the
necessary privileges.

– Do not grant DBA privileges to database users running applications
for which you want replay to be enabled.

• Sequences in the application can use the KEEP attribute, which keeps the original
values of sequence.NEXTVAL for the sequence owner, so that the keys match
during replay. Most applications need sequence values to be kept at replay. The
following example sets the KEEP attribute for a sequence (in this case, one owned
by the user running the statement; for others, use GRANT KEEP SEQUENCE):

SQL> CREATE SEQUENCE my_seq KEEP;
SQL> -- Or, if the sequence already exists but without KEEP:
SQL> ALTER SEQUENCE my_seq KEEP;

Note:

Specifying ALTER SEQUENCE ... KEEP/NOKEEP applies to the owner of
the sequence. It does not affect other users (not the owner) that have the
KEEP SEQUENCE object privileges. If you want NOKEEP for all users, then be
sure not to grant the KEEP SEQUENCE object privilege to these users (or to
revoke it from each user if the privilege has been granted).

• To keep function results (for named functions) at replay, the DBA must grant KEEP
privileges to the user invoking the function. This security restriction ensures that it
is valid for replay to save and restore function results for code that is not owned by
that user.

For identity sequences, keeping mutables is supported for owned sequences. Keeping
mutables at SQL level is automatic for identity sequences. To keep mutables in
PL/SQL for identity sequences use the KEEP clause. The definition of procedure and
table are as follows:

create table tab_identity_mine(id NUMBER GENERATED ALWAYS AS IDENTITY
keep, content varchar2(50));

Use the following statement to create or replace a procedure:

insert_identity(cnt in varchar2,newid out number as
begin

Chapter 6
Application Continuity Operation and Usage

6-60

insert into tab_identity_mine(content) values(cnt) returning id into newid;
end insert_identity;

Related Topics

• Rules for Grants on Mutables
These considerations apply to granting and revoking privileges on mutable functions.

• ALTER SEQUENCE

• GRANT

Administering Mutable Values
To manage mutable values you need to grant certain privileges.

Granting and Revoking Keep Permissions for Mutables
To keep function results at replay, you must grant KEEP privileges to the user invoking the
function.

• To grant permission to keep mutables for SYSDATE and SYSTIMESTAMP, or SYSGUID:

GRANT [KEEP DATE TIME | KEEP SYSGUID]...[to USER]

For example, for possible Oracle E-Business Suite usage with original dates:

GRANT KEEP DATE TIME, KEEP SYSGUID to [custom user];
GRANT KEEP DATE TIME, KEEP SYSGUID to [apps user];

• To revoke permission to keep mutables for SYSDATE and SYSTIMESTAMP, or SYSGUID:

REVOKE [KEEP DATE TIME | KEEP SYSGUID]...[from USER]

Granting Permission to Keep Mutables for Oracle Sequences
To keep the original values of sequence.nextval for replaying so that keys match, you must
grant permissions on the sequence.

• To grant permission as the owner of the sequence:

CREATE SEQUENCE [sequence object] [KEEP|NOKEEP];
ALTER SEQUENCE [sequence object] [KEEP|NOKEEP];

• To grant and revoke permission for others using the sequence:

GRANT KEEP SEQUENCE on sequence.object to [myUser|role];
REVOKE KEEP SEQUENCE on sequence.object from [myUser|role];

Chapter 6
Application Continuity Operation and Usage

6-61

For example, for possible Oracle E-Business Suite usage with original sequence
values:

GRANT KEEP SEQUENCE on sequence.object to apps-user;
REVOKE KEEP SEQUENCE on sequence.object from my-user ;

For example, for identity sequences, use the KEEP clause on the table create or
alter statements:

CREATE TABLE tab_identity_mine(id NUMBER GENERATED ALWAYS AS
IDENTITY keep,
content varchar2(50));

Rules for Grants on Mutables
These considerations apply to granting and revoking privileges on mutable functions.

• If you grant all on an object for a user, then mutables are excluded. Mutables
require explicit grants. Oracle does not support granting mutables to the users
supplied or created by Oracle Database, such as SYS, AUDSYS, GSMUSER, and
SYSTEM.

• The DBA role includes mutable permission.

• If a user has mutables granted, then the objects inherit mutable access when the
mutable functions are called (in SYS_GUID, SYSDATE and SYSTIMESTAMP).

• If keeping mutables on a sequence object is revoked, then SQL or PL/SQL
commands using that object does not allow mutable collection or application for
that sequence.

• If grants are revoked between run time and failover, then the mutables that were
collected are not applied.

• If grants are granted between run time and failover, then mutables are not
collected and so none are applied.

Protection-Level Statistics
Use the statistics for request boundaries and protection level to monitor the level of
coverage.

Application Continuity collects statistics from the system, the session, and the service,
enabling you to monitor your protection levels. The statistics are available in
V$SESSTAT, V$SYSSTAT, and, when service statistics are enabled, in V$SERVICE_STATS.
For example, if you query V$SESSTAT and join with V$STATNAME, you can view output
like the following:

NAME VALUE
--

cumulative begin
requests 731
cumulative end
requests 739
cumulative user calls in requests

Chapter 6
Application Continuity Operation and Usage

6-62

7285
cumulative user calls protected by Application Continuity 7228
cumulative time in requests 2665167909

These statistics are saved in the Automatic Workload Repository (AWR) and are available in
AWR reports. Statistics include:

• Requests completed per second

• User calls in a request

• Protected user calls

The AWR report output is similar to the following:

Statistic Total per Second per Trans
-- -------- ------------- ---------
cumulative requests 177,406 49.2 5.0
cumulative user calls in request 493,329 136.8 13.8
cumulative user calls protected 493,329 136.8 13.8

To enable protection-level statistics, use (_request_boundaries = 3).

Session State Consistency
Session state consistency describes how non-transactional state is changed during a
request.

Oracle recommends that you set session_state_consistency to AUTO available with
Transparent Application Continuity, which tracks and manages session states. If you choose
to use Transparent Application Continuity, then you do not have to do anything else to ensure
session state consistency.

You can set session_state_consistency to DYNAMIC or STATIC for manual Application
Continuity. Set session_state_consistency to DYNAMIC or STATIC if you fully understand the
application, and the application is not expected to change from the value set.

Examples of session state are NLS settings, optimizer preferences, event settings, PL/SQL
global variables, temporary tables, advanced queues, LOBs, and result cache. If non-
transactional values change in committed transactions, then use the default value, DYNAMIC
(session_state_consistency is a service level attribute, the default value of which is
DYNAMIC).

Using DYNAMIC mode, after a COMMIT has executed, if the state was changed in that
transaction, then it is not possible to replay the transaction to reestablish that state if the
session is lost. Applications can be categorized depending on whether the session state after
the initial setup is static or dynamic, and hence whether it is correct to continue past a COMMIT
operation.

DYNAMIC mode is appropriate for almost all applications. If you are unsure, then use DYNAMIC
mode. If your customers or users can modify your application, then you must use DYNAMIC
mode.

Chapter 6
Application Continuity Operation and Usage

6-63

Note:

Set session_state_consistency to AUTO or STATIC for long-running,
stateless applications. Do not set session_state_consistency to STATIC for
applications that are not stateless. Unless you require manual Application
Continuity, Oracle recommends setting session_state_consistency to AUTO.

This section includes the following topics:

• Auto Session State Consistency

• Dynamic Session State Consistency

• Static Session State Consistency

Auto Session State Consistency
When you set session_state_consistency to AUTO, Transparent Application
Continuity tracks and records session and transactional states so the database
session can be recovered following recoverable outages. Setting
session_state_consistency to AUTO is the only value permitted for Transparent
Application Continuity.

When set to AUTO, a state-tracking infrastructure categorizes session state usage as
the application issues user calls. Tracked session states are monitored and verified.

Dynamic Session State Consistency
A session has dynamic state if the session state values are not fully restored by
FAILOVER_RESTORE, or by adding the initialization callback.

Once the first transaction completes, failover is internally disabled until the next
request starts. In Dynamic session state consistency mode, state changes occur during
the request and replay is enabled at the beginning of the next request.

Set the session state consistency mode to Dynamic if the nontransactional session
state changes while transactions are running. Examples of nontransactional session
state that can change at runtime are ALTER SESSION, PL/SQL global variables,
SYS_CONTEXT, and temporary table contents. If the application changes
nontransactional state inside transactions and commits, this state cannot be replayed
and the state setting must be Dynamic. When using Dynamic mode for Application
Continuity, replay is disabled at COMMIT until the next request begins. Dynamic is the
default value.

The nontransactional session state (NTSS) changes during a request when the
session state consistency mode is Dynamic.

Replay (that is, Application Continuity) is enabled at the beginRequest call, and is
disabled on a COMMIT , an endRequest call, or a restricted call. Following is the step
logic for three application scenarios:

• No transaction

• A transaction with COMMIT as the last statement

• A transaction with an embedded COMMIT statement

Chapter 6
Application Continuity Operation and Usage

6-64

For the request with no transaction, the logical steps are as follows:

1. Check out.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. Other actions.

5. Check in.

6. End request and disable replay.

For the request with a transaction with COMMIT as the last statement, the logical steps
are as follows:

1. Check out.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. The transaction begins.

5. Other actions.

6. Commit (which disables replay).

7. Check in.

8. End request.

For the request with a transaction with an embedded COMMIT statement, the logical
steps are as follows:

1. Check out.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. The transaction begins.

5. Other actions.

6. Commit (which disables replay).

7. Other actions, during which Application Continuity is not covering the application.

8. Check in.

9. End request.

Static Session State Consistency
Static mode is used for long running stateless applications. Do not use Static mode for
applications that are not stateless.

Set the session state consistency mode to Static, only if all non-transactional state changes,
such as NLS settings, SYS_CONTEXT, PL/SQL variables, and optimizer preferences, are set as
part of the initialization once per request, and if this session state does not change during
transactions. The settings can be established once per connection at connection
establishment when using FAILOVER_RESTORE=LEVEL1, a callback, or labels, for example, or at
each checkout from a pool.

Chapter 6
Application Continuity Operation and Usage

6-65

When using Static mode for Application Continuity, transactional failover continues
beyond the first transaction of a request. This is useful for applications that set
beginRequest once and run long processing operations such as batch jobs, and long
reports.

Static mode is not supported for applications that use calls that change non-
transactional state in transactions. Specific examples of such calls include:

• PL/SQL subprograms

• SYS_CONTEXT
• ALTER SESSION
Specify static mode with caution. Use static mode only when the application does not
change the non-transactional session state inside transactions. Declaring the session
state consistency mode as Static indicates that it is safe to continue beyond the first
COMMIT in a request. Dynamic mode is appropriate for most applications. Do not use
static mode if users or customers can modify or customize the application.

The non-transactional session state remaining constant (that is, not changing) during a
request when the session state consistency mode is Static.

Replay (that is, Application Continuity) is enabled at the beginRequest call, and is
disabled on a restricted call, on a disableReplay or OCIRequestDisableReplay call, or
on an endRequest call.

Following is the step logic for three application scenarios:

• No transaction

• One or more transactions each ending with COMMIT as the last statement

• A transaction with a COMMIT statement followed by a transaction with a restricted
call that disables Application Continuity

For the request with no transaction, the logical steps are as follows:

1. Check out.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. Other actions.

5. Check in.

6. End request and disable replay.

Replay is disabled at endRequest, at a restricted call, and for an explicit
disableReplay or OCIRequestDisableReplay call.

For the request with one or more transactions (each with COMMIT as the last
statement), the logical steps are as follows:

1. Check out.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. The transaction begins.

5. The transaction commits.

Chapter 6
Application Continuity Operation and Usage

6-66

6. The transaction is purged.

(For each additional transaction, steps 4 through 6 occur.)

7. Other actions.

8. Check in.

9. End request.

Replay is disabled at endRequest, at a restricted call, and for an explicit disableReplay or
OCIRequestDisableReplay call.

For the request with a transaction with a COMMIT followed by a transaction with a
restricted call, the logical steps are as follows:

1. Check out.

2. Begin request and enable replay.

3. Issue one or more SELECT statements and perhaps other PL/SQL statements.

4. The transaction begins.

5. The transaction commits.

6. The transaction is purged.

7. The second transaction begins.

8. The transaction makes a restricted call, which causes Application Continuity to be
disabled.

9. The transaction is purged.

10. Other actions

11. Check in.

12. End request.

Replay is disabled at endRequest, at a restricted call, and for an explicit disableReplay or
OCIRequestDisableReplay call.

Related Topics

• FAILOVER_RESTORE
Setting FAILOVER_RESTORE to LEVEL1 (for manual Application Continuity) or AUTO (for
Transparent Application Continuity) automatically restores common state initial settings
before replaying the request.

Potential Side Effects of Application Continuity
When you use Application Continuity with FAILOVER_TYPE set to TRANSACTION, statements
that leave side effects are replayed.

Note:

As an application owner you can elect to disable replay for requests that contain
side effects that you do not want to repeat. The simplest way to disable side effects
is to use Transparent Application Continuity (set FAILOVER_TYPE to AUTO, which
disables side effects for you.

Chapter 6
Potential Side Effects of Application Continuity

6-67

Application Continuity replays PL/SQL chronologically to restore database state. This
serves to rebuild the session as if the user submission was delayed. Most applications
want the full state rebuilt as if the submission was repeated, such as writing a report or
completing some auditing. However, the actions that are replayed to build the state
might include some for which you want to take action to accommodate or mitigate the
effects of the replay. Some applications elect to disable replay for requests that contain
calls that they do not want to repeat.

Examples of actions that create side effects include the following:

• DBMS_ALERT calls (email or other notifications)

• DBMS_FILE_TRANSFER calls (copying files)

• DBMS_PIPE and RPC calls (to external sources)

• UTL_FILE calls (writing text files)

• UTL_HTTP calls (making HTTP callouts)

• UTL_MAIL calls (sending email)

• UTL_SMTP calls (sending SMTP messages)

• UTL_TCP calls (sending TCP messages)

• UTL_URL calls (accessing URLs)

For applications with external actions (such as autonomous transactions or using
UTL_HTTP to issue a service-oriented application (SOA) call), Application Continuity is
transparent when the application is satisfied with replaying external actions, such as
resending email, auditing, and transferring a file.

Related Topics

• Disabling Replay in Application Continuity
Replay occurs following a recoverable error but you can disable replay.

Restrictions and Other Considerations for Application
Continuity

Be aware of these restrictions and considerations when using Application Continuity.

Application Continuity excludes:

• JDBC OCI driver (type 2)

• ODP.NET, Managed Driver

• OLE DB

• ODBC

• OCCI

• Pro* precompilers including Proc*C, Pro*COBOL, and Pro*FORTRAN

Chapter 6
Restrictions and Other Considerations for Application Continuity

6-68

Note:

If these resources are required for a planned maintainence, then consider draining
using either connection tests when using XA, or TAF Plus.

For OCI and ODP.NET, in Oracle Database 12c release 2 (12.2.0.1), Application Continuity
on the OCI driver excludes ADTs, advance queues, and some LOB APIs. These exclusions
do not apply to Java.

For applications using JDBC, there is no support for oracle.sql deprecated concrete
classes: OPAQUE, ANYDATA, or STRUCT.

If a statement cache at the application server level is enabled (for example, the WebLogic or
third-party application server statement cache), this cache must be disabled when replay is
used. Instead, configure the JDBC statement cache, which supports Application Continuity
and is optimized for JDBC and Oracle Database
(oracle.jdbc.implicitstatementcachesize=nnn).

Note the following restrictions related to when replay of transactions can occur:

• Starting with Oracle Database 12 release 2 (12.2), replay is supported for the XA data
source for Java and ODP.NET, Unmanaged Driver. Replay supports local transactions.
Replay is silently disabled when two-phase commit is used. This enables Application
Continuity to support promotable XA and applications using the XA data source and
mostly not using XA.

If the request uses two-phase commit XA, then starting with Oracle Database 12c release
2 (12.2), Application Continuity is supported for promotable XA and using XA data
sources, while XA is not in use.

• Replay is disabled if a request issues an ALTER SYSTEM or ALTER DATABASE statement.

• Replay is disabled at a request level for ALTER SESSION statements that are deemed
unsafe to rebuild the session. These include statements for setting support-level events,
and disabling and enabling COMMIT IN PROCEDURE and GUARD.

However, ALTER SESSION statements at an application level are supported for replay.
These include statements for globalization support (NLS) settings, stored and private
outlines, setting the container (CDB/PDB), SQL trace, and PL/SQL warnings.

• The replay target database must be in the same database cluster (Oracle RAC, Oracle
Data Guard, Oracle Active Data Guard, or Oracle Multitenant) as the source database. To
protect the integrity of business transactions, Application Continuity does not replay if the
target is a different database. Application Continuity also does not replay if the target
database is the same as the source database (or Pluggable Database) but with data loss,
such as one flashed back, recovered incompletely by media recovery, or opened by
Oracle Data Guard to an earlier point in time.

• For streams arguments, replay is on a "best effort" basis. For example, if the application
is using physical addresses, the address has gone with the outage and cannot be
repositioned. JDBC stream setters (such as setBinaryStream), for example, cause
replay to be disabled.

• Replay is not supported if you are using Oracle Active Data Guard with read/write
database links back to the primary database. This is a security restriction from
Transaction Guard.

Chapter 6
Restrictions and Other Considerations for Application Continuity

6-69

• Replay is not initiated for failure of a parallel query call when this is a statement-
level failure. For example, replay would not occur after an ORA-12805:parallel
query server died unexpectedly error for a call failure encountered during an
instance or node failure or memory issue.

• Replay does not support DRCP for Java. Dedicated and Shared Servers are
supported.

• Replay does not support ISOLATION_LEVEL=SERIALIZABLE.

Note:

If you are creating clones of databases by splitting disk images (for example,
BCVs) or by cloning so it is a "different" database for the purpose of making
a logical standby or logical copy that is not a physical or Oracle Active Data
Guard database, then the nid utility must be used to change the DBID to
differentiate the databases.

Related Topics

• When Application Continuity in OCI Can Fail Over

• How to Change the DBID, DBNAME Using NID Utility (My Oracle Support Doc ID
863800.1)

Transaction Guard for Improving Client Failover
Transaction Guard prevents a transaction being replayed by Application Continuity
from being applied more than once.

Failing to recognize that the last submission has committed, or that it shall commit
sometime soon, or that the last submission has not run to completion, is a problem for
applications. It can cause users who resubmit or applications that use their own replay
to issue duplicate requests, repeating changes that are already committed to the
database, and other forms of logical corruption. Transaction Guard can be used to
solve this problem.

Application Continuity automatically enables and uses Transaction Guard, but you can
also enable Transaction Guard independently. If the application has implemented an
application-level replay, then it requires the application to be integrated with
Transaction Guard to provide idempotence.

In Oracle Database 12c, Transaction Guard provides a new, fully integrated tool for
applications to use to achieve idempotence automatically and transparently, and in a
manner that scales. Transaction Guard uses Logical Transaction ID (LTXID) to avoid
submitting duplicate transactions. This is referred to as transaction idempotence. The
LTXID persists on commit and is reused following a rollback. During normal runtime, a
LTXID is automatically held in the session at both the client and server for each
database transaction. At commit, the LTXID is persisted as part of committing the
transaction and the next LTXID to use is returned to the client.

Transaction Guard for XA Transactions

Transaction Guard also supports XA-based transactions, which are transactions that
are an option for transaction managers, such as Oracle WebLogic Server, Oracle

Chapter 6
Transaction Guard for Improving Client Failover

6-70

https://support.oracle.com/rs?type=doc&id=863800.1
https://support.oracle.com/rs?type=doc&id=863800.1

Tuxedo, and MicroSoft Transaction Server (exposed to Oracle Database through Oracle
ODP.NET).

Transaction Guard support for XA transactions provides safe replay following recoverable
outages for XA transactions on Oracle WebLogic Server. With the addition of XA support,
Oracle WebLogic Server can provide replay with idempotence enforced using Transaction
Guard.

This section includes the following topics:

• Transaction Guard Configuration Checklist

• Configuring Services for Transaction Guard

• Failing Over OCI Clients with Transparent Application Failover

Related Topics

• Oracle Database Development Guide

• Oracle Database Development Guide

• Oracle Database JDBC Developer’s Guide

Transaction Guard Configuration Checklist
Before configuring services for Transaction Guard, use the following configuration checklist:

• Grant permission to the application user who will call GET_LTXID_OUTCOME, as follows:

GRANT EXECUTE ON DBMS_APP_CONT to user_name;

Note:

Do not run this statement if you use Application Continuity.

• Locate and define the transaction history table for optimal performance.

The transaction history table (LTXID_HIST) is created, by default, in the SYSAUX
tablespace when you create or upgrade an Oracle Database. New partitions are added
when you add instances, using the storage of the last partition. If the location of
transaction history table is not optimal for performance, then you can move it to another
tablespace and create partitions there. For example, the following statement moves the
transaction history table to a tablespace named FastPace:

ALTER TABLE LTXID_TRANS move partition LTXID_TRANS_1 tablespace FastPace
 storage (initial 10G next 10G minextents 1 maxextents 121);

• Set values for the -commit_outcome and -retention service parameters.

• If you are using Oracle RAC, Oracle Data Guard, or Oracle Active Data Guard, then
Oracle recommends that you use FAN for fast notification of an outage.

Configuring Services for Transaction Guard
To configure services to use Transaction Guard, set the following service parameters:

• -commit_outcome: Set the -commit_outcome service parameter to TRUE. This service
parameter determines whether the transaction commit outcome is accessible after the
COMMIT has executed and an outage has occurred. While Oracle Database has always

Chapter 6
Transaction Guard for Improving Client Failover

6-71

made COMMIT durable, Transaction Guard makes the outcome of the COMMIT
durable, and is used by applications to enforce the status of the last transaction
executed before an outage.

• -retention: Use the -retention service parameter with -commit_outcome. This
service parameter determines the amount of time, in seconds, that the COMMIT
outcome is retained. Oracle recommends that most installations use the default
value.

The following SRVCTL command configures a policy-managed service named sales
for Transaction Guard:

$ srvctl add service -db crm -service sales -serverpool spool_1
 -commit_outcome TRUE -retention 86400 -notification TRUE

The following SRVCTL command configures an administrator-managed service named
sales for Transaction Guard:

$ srvctl add service -db crm -service sales -preferred crm_1,crm_2
 -available crm_3,crm_4 -commit_outcome TRUE -retention 86400
 -notification TRUE

You can also modify an existing service to configure it for Transaction Guard by using
the srvctl modify service command.

Note:

Do not use the default database service, the service which has the name set
to the value of db_name or db_unique_name. The default service is used for
administrative purposes and does not have the same properties as user-
created services.

Related Topics

• srvctl add service
Adds services to a database and assigns them to instances.

• srvctl modify service
Modifies service configurations.

• About Application Continuity
The Application Continuity feature offered with Oracle Database increases fault
tolerance for systems and applications using the database.

• Oracle Database JDBC Developer’s Guide

• Oracle Call Interface Programmer's Guide

Chapter 6
Transaction Guard for Improving Client Failover

6-72

Failing Over OCI Clients with Transparent Application Failover
When Oracle Net Services establishes a connection to an instance, the connection remains
open until the Oracle Call Interface (OCI) client closes the connection, the instance is
shutdown, or a failure occurs.

If you configure transparent application failover (TAF) for the connection, then Oracle
Database replays the session at a remaining instance when an outage occurs.

TAF can restart a query after failover has completed but for other types of transactions, such
as INSERT, UPDATE, or DELETE, the application must rollback the failed transaction and
resubmit the transaction. You must also reexecute any session customizations, in other
words, ALTER SESSION statements, after failover has occurred if you did not set
FAILOVER_RESTORE to LEVEL1 or AUTO. However, with TAF, a connection is not moved during
normal processing, even if the workload changes over time.

Services simplify the deployment of TAF. You can define a TAF policy for a service, and all
connections using this service will automatically have TAF enabled. This does not require any
client-side changes. The TAF setting on a service overrides any TAF setting in the client
connection definition.

You can define a TAF policy for all users of a service by defining the -failovermethod and -
failovertype parameters. You can further define the TAF policy by setting the number of
times that a failed session attempts to reconnect to the service and how long it should wait
between reconnection attempts using the -failoverretry and -failoverdelay parameters,
respectively.

To define a TAF policy for a service, use SRVCTL as in the following example, where the
service name is tafconn.example.com and the database name is crm:

$ srvctl modify service -db crm -service tafconn.example.com -failovermethod
BASIC
 -failovertype SELECT -failoverretry 10 -failoverdelay 30

OCI applications with TAF enabled should use FAN high availability events for fast connection
failover.

TAF Supports Transaction Guard and FAILOVER_RESTORE

When you are using Transaction Guard, TAF manages the errors for the developers. When
you use both TAF and Transaction Guard, developers can use the TAF errors to roll back and
safely resubmit or return uncommitted transactions (for TAF error codes ORA-25402,
ORA-25408, ORA-25405).

When you are using FAILOVER_RESTORE, TAF automatically restores common states, which
avoids the need for a callback for most applications.

Related Topics

• FAILOVER_RESTORE
Setting FAILOVER_RESTORE to LEVEL1 (for manual Application Continuity) or AUTO (for
Transparent Application Continuity) automatically restores common state initial settings
before replaying the request.

• Understanding Transaction Guard

Chapter 6
Failing Over OCI Clients with Transparent Application Failover

6-73

7
Configuring Recovery Manager and Archiving

This chapter explains how to configure Recovery Manager (RMAN) for use in Oracle Real
Application Clusters (Oracle RAC) environments. This chapter also provides procedures for
using for archiving in Oracle RAC environments and discusses online redo log and archived
redo log considerations.

The topics in this chapter include:

• Overview of Configuring RMAN for Oracle RAC

• Archiving Mode in Oracle RAC

• Configuring the RMAN Snapshot Control File Location

• Configuring RMAN to Automatically Backup the Control File and SPFILE

• Crosschecking on Multiple Oracle RAC Nodes

• Configuring Channels for RMAN in Oracle RAC

• Managing Archived Redo Logs Using RMAN in Oracle RAC

• Archived Redo Log File Conventions in Oracle RAC

• RMAN Archiving Configuration Scenarios

• Monitoring the Archiver Processes

Overview of Configuring RMAN for Oracle RAC
RMAN enables you to back up, restore, and recover data files, control files, server parameter
files (SPFILEs) and archived redo log files. RMAN is included with Oracle Database and does
not require separate installation. You can run RMAN from the command line or use RMAN in
the Backup Manager in Oracle Enterprise Manager.

Archiving Mode in Oracle RAC
In order for redo log files to be archived, the Oracle RAC database must be in ARCHIVELOG
mode.

You can run the ALTER DATABASE SQL statement to change the archiving mode in Oracle
RAC, because the database is mounted by the local instance but not open in any instances.
You do not need to modify parameter settings to run this statement.

7-1

Note:

• The ARCHIVELOG mode is set at the database level, not the instance level.
Either all instances archive or none do.

• You can also change the archive log mode by using the Recovery
Settings page in the Maintenance tab of the Oracle Enterprise Manager
Oracle RAC Database Home Page.

Related Topics

• Oracle Database Administrator’s Guide

Configuring the RMAN Snapshot Control File Location
The snapshot control file is a copy of a database control file created in an operating
system-specific location by RMAN.

RMAN creates the snapshot control file so that it has a consistent version of a control
file to use when either resynchronizing the recovery catalog or backing up the control
file.

You can specify a cluster file system or a raw device destination for the location of your
snapshot control file. This file is shared across all nodes in the cluster and must be
accessible by all nodes in the cluster. Run the following RMAN command to determine
the configured location of the snapshot control file:

SHOW SNAPSHOT CONTROLFILE NAME;

You can change the configured location of the snapshot control file. For example, on
Linux and UNIX systems you can specify the snapshot control file location
as $ORACLE_HOME/dbs/scf/snap_prod.cf by entering the following at the RMAN
prompt:

CONFIGURE SNAPSHOT CONTROLFILE NAME TO '$ORACLE_HOME/dbs/scf/
snap_prod.cf';

This command sets the configuration for the location of the snapshot control file for
every instance of your cluster database. Therefore, ensure that
the $ORACLE_HOME/dbs/scf directory is shared by all nodes that perform backups.

The CONFIGURE command creates persistent settings across RMAN sessions.
Therefore, you do not need to run this command again unless you want to change the
location of the snapshot control file.

To delete a snapshot control file you must first change the snapshot control file
location, then delete the file at the older location, as follows:

CONFIGURE SNAPSHOT CONTROLFILE NAME TO 'new_name';
DELETE COPY OF CONTROLFILE;

Chapter 7
Configuring the RMAN Snapshot Control File Location

7-2

Related Topics

• Oracle Database Backup and Recovery Reference

Configuring RMAN to Automatically Backup the Control File and
SPFILE

If you set CONFIGURE CONTROLFILE AUTOBACKUP to ON, then RMAN automatically creates a
control file and an SPFILE backup after you run the BACKUP or COPY commands.

RMAN can also automatically restore an SPFILE, if this is required to start an instance to
perform recovery, because the default location for the SPFILE must be available to all nodes
in your Oracle RAC database.

Note:

If you back up the control file using the SQL*Plus ALTER DATABASE command, then
you must also create the control file backup on a device shared by all nodes.

These features are important in disaster recovery because RMAN can restore the control file
even without a recovery catalog. RMAN can restore an autobackup of the control file even
after the loss of both the recovery catalog and the current control file. You can change the
default name that RMAN gives to this file with the CONFIGURE CONTROLFILE AUTOBACKUP
FORMAT command. Note that if you specify an absolute path name in this command, then this
path must exist identically on all nodes that participate in backups.

RMAN performs the control file autobackup on the first allocated channel. Therefore, when
you allocate multiple channels with different parameters, especially when you allocate a
channel with the CONNECT command, determine which channel will perform the control file
autobackup. Always allocate the channel for this node first.

Besides using the RMAN control file, you can also use Oracle Enterprise Manager to use the
RMAN features.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Crosschecking on Multiple Oracle RAC Nodes
When crosschecking on multiple nodes (and when operating RMAN in general), configure the
cluster so that all backups can be accessed by every node, regardless of which node created
the backup.

When the cluster is configured this way, you can allocate channels to any node in the cluster
during restore or crosscheck operations.

If you cannot configure the cluster so that each node can access all backups, then during
restore and crosscheck operations, you must allocate channels on multiple nodes by
providing the CONNECT option to the CONFIGURE CHANNEL command, so that every backup can
be accessed by at least one node. If some backups are not accessible during crosscheck

Chapter 7
Configuring RMAN to Automatically Backup the Control File and SPFILE

7-3

because no channel was configured on the node that can access those backups, then
those backups are marked EXPIRED in the RMAN repository after the crosscheck.

For example, you can use CONFIGURE CHANNEL ... CONNECT in an Oracle RAC
configuration in which tape backups are created on various nodes in the cluster and
each backup is only accessible on the node on which it is created.

Related Topics

• Configuring Channels to Use a Specific Node

• Oracle Database Backup and Recovery User’s Guide

Configuring Channels for RMAN in Oracle RAC
This section describes how to configure channels for RMAN. You can configure
channels to use automatic load balancing or you can specify specific channels for
specific instances as described in the following topics:

• Configuring Channels to Use Automatic Load Balancing

• Configuring Channels to Use a Specific Node

Configuring Channels to Use Automatic Load Balancing
To configure channels to use automatic load balancing, use the following syntax:

CONFIGURE DEVICE TYPE [disk | sbt] PARALLELISM number_of_channels;
...

Where number_of_channels is the number of channels that you want to use for the
operation. After you complete this one-time configuration, you can issue BACKUP or
RESTORE commands.

Configuring Channels to Use a Specific Node
To configure one RMAN channel for each policy-managed Oracle RAC database
instance, use the following syntax:

CONFIGURE CHANNEL DEVICE TYPE sbt CONNECT '@racinst_1'
CONFIGURE CHANNEL DEVICE TYPE sbt CONNECT '@racinst_2'
...

After this one-time configuration step, you can issue the BACKUP or RESTORE
commands.

Managing Archived Redo Logs Using RMAN in Oracle RAC
When a node generates an archived redo log, Oracle Database always records the file
name of the log in the control file of the target database. If you are using a recovery
catalog, then RMAN also records the archived redo log filenames in the recovery
catalog when a resynchronization occurs.

The archived redo log naming scheme that you use is important because when a node
writes to a log with a specific file name on its file system, the file must be readable by
any node that must access this archived redo log. For example, if node1 archives a log

Chapter 7
Configuring Channels for RMAN in Oracle RAC

7-4

to /oracle/arc_dest/log_1_100_23452345.arc, then node2 can back up this archived redo
log only if it can read /oracle/arc_dest/log_1_100_23452345.arc on its own file system.

The backup and recovery strategy that you choose depends on how you configure the
archiving destinations for each node. Whether only one node or all nodes perform archived
redo log backups, you must ensure that all archived redo logs are backed up. If you use
RMAN parallelism during recovery, then the node that performs recovery must have read
access to all archived redo logs in your cluster.

Multiple nodes can restore archived logs in parallel. However, during recovery, only one node
applies the archived logs. Therefore, the node that is performing the recovery must be able to
access all of the archived logs that are needed for the recovery operation. By default, the
database determines the optimum number of parallel threads to use during the recovery
operation. You can use the PARALLEL clause in the RECOVER command to change the number
of parallel threads.

Guidelines and Considerations for Archived Redo Logs

The primary consideration is to ensure that all archived redo logs can be read from every
node during recovery, and, if possible, during backups. During recovery, if the archived log
destinations are visible from the node that performs the recovery, then Oracle Database can
successfully recover the archived log data.

Archived Redo Log File Conventions in Oracle RAC
For any archived redo log configuration, uniquely identify the archived redo logs with the
LOG_ARCHIVE_FORMAT parameter.

The format of this parameter is operating system-specific and it can include text strings, one
or more variables, and a file name extension.

Table 7-1 Archived Redo Log File Name Format Parameters

Parameter Description Example

%r Resetlogs identifier, not padded log_1_62_23452345
%R Resetlogs identifier, left-zero-padded log_1_62_0023452345
%s Log sequence number, not padded log_251
%S Log sequence number, left-zero-padded log_0000000251
%t Thread number, not padded log_1
%T Thread number, left-zero-padded log_0001

All of the file name format parameters for the archive redo logs, in either upper or lowercase,
are mandatory for Oracle RAC. These parameters enable Oracle Database to create unique
names for archive logs across the incarnation. This requirement is in effect when the
COMPATIBLE parameter is set to 10.0 or greater.

Use the %R or %r parameters to include the resetlogs identifier to avoid overwriting the logs
from a previous incarnation. If you do not specify a log format, then the default is operating
system-specific and includes %t, %s, and %r.

Chapter 7
Archived Redo Log File Conventions in Oracle RAC

7-5

As an example, if the instance associated with redo thread number 1 sets
LOG_ARCHIVE_FORMAT to log_%t_%s_%r.arc, then its archived redo log files are named:

log_1_1000_23435343.arc
log_1_1001_23452345.arc
log_1_1002_23452345.arc
...

Related Topics

• Oracle Database Administrator’s Guide

RMAN Archiving Configuration Scenarios
This section describes the archiving scenarios for an Oracle RAC database. The two
configuration scenarios in this chapter describe a three-node UNIX cluster for an
Oracle RAC database. For both scenarios, the LOG_ARCHIVE_FORMAT that you specify
for the instance performing recovery must be the same as the format that you
specified for the instances that archived the redo log files.

This section includes the following topics:

• Oracle Automatic Storage Management and Cluster File System Archiving
Scheme

• Noncluster File System Local Archiving Scheme

Oracle Automatic Storage Management and Cluster File System
Archiving Scheme

The preferred configuration for Oracle RAC is to use Oracle Automatic Storage
Management (Oracle ASM) for a recovery area using a disk group for your recovery
set that is different from the disk group used for your data files.

When you use Oracle ASM, it uses an Oracle Managed Files naming format.
Alternatively, you can use a cluster file system archiving scheme. If you use a cluster
file system, then each node writes to a single location on the cluster file system when
archiving the redo log files. Each node can read the archived redo log files of the other
nodes. For example, as shown in Figure 7-1, if Node 1 archives a redo log file to /
arc_dest/log_1_100_23452345.arc on the cluster file system, then any other node in
the cluster can also read this file.

Chapter 7
RMAN Archiving Configuration Scenarios

7-6

Figure 7-1 Cluster File System Archiving Scheme

Note:

The archive log naming format in this example is only for a cluster file system
example.

If you do not use a cluster file system, then the archived redo log files cannot be on raw
devices. This is because raw devices do not enable sequential writing of consecutive archive
log files.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Advantages of the Cluster File System Archiving Scheme
The advantage of this scheme is that none of the nodes uses the network to archive logs.
Because the file name written by a node can be read by any node in the cluster, RMAN can
back up all logs from any node in the cluster. Backup and restore scripts are simplified
because each node has access to all archived redo logs.

Initialization Parameter Settings for the Cluster File System Archiving Scheme
In the cluster file system scheme, each node archives to a directory that is identified with the
same name on all instances within the cluster database (/arc_dest, in the following
example). To configure this directory, set values for the LOG_ARCH_DEST_1 parameter, as
shown in the following example:

*.LOG_ARCHIVE_DEST_1="LOCATION=/arc_dest"

The following list shows archived redo log entry examples that would appear in the RMAN
catalog or in the control file based on the previous example. Note that any node can archive
logs using any of the threads:

Chapter 7
RMAN Archiving Configuration Scenarios

7-7

/arc_dest/log_1_999_23452345.arc
/arc_dest/log_1_1000_23435343.arc
/arc_dest/log_1_1001_23452345.arc <- thread 1 archived in node3
/arc_dest/log_3_1563_23452345.arc <- thread 3 archived in node2
/arc_dest/log_2_753_23452345.arc <- thread 2 archived in node1
/arc_dest/log_2_754_23452345.arc
/arc_dest/log_3_1564_23452345.arc

Location of Archived Logs for the Cluster File System Archiving Scheme
Any node can read the archive logs, regarless of which node created the logs.

Because the file system is shared and because each node is writing its archived redo
logs to the /arc_dest directory in the cluster file system, each node can read the logs
written by itself and any other node.

Noncluster File System Local Archiving Scheme
When archiving locally to a noncluster file system, each node archives to a uniquely
named local directory. If recovery is required, then you can configure the recovery
node so that it can access directories on the other nodes remotely. For example, use
NFS on Linux and UNIX computers, or mapped drives on Windows systems.
Therefore, each node writes only to a local destination, but each node can also read
archived redo log files in remote directories on the other nodes.

Considerations for Using Noncluster File System Local Archiving
If you use noncluster file system local archiving for media recovery, then you must
configure the node that is performing recovery for remote access to the other nodes so
that the node can read the archived redo log files in the archive directories on the
other nodes.

In addition, if you are performing recovery and you do not have all of the available
archive logs, then you must perform an incomplete recovery up to the first missing
archived redo log sequence number. You do not have to use a specific configuration
for this scheme. However, to distribute the backup processing onto multiple nodes, the
easiest method is to configure channels as described in the backup scenarios in
"Managing Backup and Recovery".

Note:

Because different file systems are used in a noncluster case, the archive log
directories must be unique on each node. For example, /arc_dest_1 is only
available on node1, /arc_dest_2 is only directly mounted on node2, and so
on.

Then node1 mounts /arc_dest_2 from node2 and /arc_dest_3 from node3
through NFS.

Related Topics

• Managing Backup and Recovery

Chapter 7
RMAN Archiving Configuration Scenarios

7-8

Initialization Parameter Settings for Noncluster File System Local Archiving
You can set the archiving destination values as follows in the initialization parameter file for
either policy-managed or administrator-managed databases.

Set the SID.LOG_ARCH_DEST parameter for each instance using the SID designator, as shown
in the following example:

sid1.LOG_ARCHIVE_DEST_1="LOCATION=/arc_dest_1"
sid2.LOG_ARCHIVE_DEST_1="LOCATION=/arc_dest_2"
sid3.LOG_ARCHIVE_DEST_1="LOCATION=/arc_dest_3"

For policy-managed databases, manually create a node and instance binding to ensure that
sid1 always runs on the same node, as follows:

$ srvctl modify database -d mydb -n node1 -i sid1
$ srvctl modify database -d mydb -n node2 -i sid2
$ srvctl modify database -d mydb -n node3 -i sid3

The following list shows the possible archived redo log entries in the database control file.
Note that any node can read archived redo logs from any of the threads, which must happen
in order for the database to recover after a failure.

/arc_dest_1/log_1_1000_23435343.arc
/arc_dest_2/log_1_1001_23452345.arc <- thread 1 archived in node2
/arc_dest_2/log_3_1563_23452345.arc <- thread 3 archived in node2
/arc_dest_1/log_2_753_23452345.arc <- thread 2 archived in node1
/arc_dest_2/log_2_754_23452345.arc
/arc_dest_3/log_3_1564_23452345.arc

Location of Archived Logs for Noncluster File System Local Archiving
As illustrated in Table 7-2, each of three nodes has a directory containing the locally archived
redo logs. Additionally, if you mount directories on the other nodes remotely through NFS or
mapped drives, then each node has two remote directories through which RMAN can read
the archived redo log files that are archived by the remaining nodes.

Note:

The archive log destinations, similar to those shown in Table 7-2, must be different
on each node so that if you mount the NFS directory on a different node, then it
does not conflict with an existing archive log directory

Table 7-2 UNIX/NFS Location Log Examples, Noncluster File System Local Archiving

Node Reads the archived redo log
files in the directory

For logs archived by node

1 /arc_dest_1 1

1 /arc_dest_2 2 (through NFS)

1 /arc_dest_3 3 (through NFS)

2 /arc_dest_1 1 (through NFS)

Chapter 7
RMAN Archiving Configuration Scenarios

7-9

Table 7-2 (Cont.) UNIX/NFS Location Log Examples, Noncluster File System Local
Archiving

Node Reads the archived redo log
files in the directory

For logs archived by node

2 /arc_dest_2 2

2 /arc_dest_3 3 (through NFS)

3 /arc_dest_1 1 (through NFS)

3 /arc_dest_2 2 (through NFS)

3 /arc_dest_3 3

File System Configuration for Noncluster File System Local Archiving
If you are performing recovery and a surviving instance must read all of the logs that
are on disk but not yet backed up, then you should configure NFS as shown in
Table 7-3.

Table 7-3 UNIX/NFS Configuration for Shared Read Local Archiving Examples

Node Directory... Is configured... And mounted on... On node...

1 /arc_dest_1 Local read/write n/a n/a

1 /arc_dest_2 NFS read /arc_dest_2 2

1 /arc_dest_3 NFS read /arc_dest_3 3

2 /arc_dest_1 NFS read /arc_dest_1 1

2 /arc_dest_2 Local read/write n/a n/a

2 /arc_dest_3 NFS read /arc_dest_3 3

3 /arc_dest_1 NFS read /arc_dest_1 1

3 /arc_dest_2 NFS read /arc_dest_2 2

3 /arc_dest_3 Local read/write n/a n/a

Note:

Windows users can achieve the same results depicted in the examples in
this section by using mapped drives.

Monitoring the Archiver Processes
After your RMAN configuration is operative in your Oracle RAC environment, use the
GV$ARCHIVE_PROCESSES and V$ARCHIVE_PROCESSES views to determine the status of the
archiver processes. Depending on whether you query the global or local views, these
views display information for all database instances, or for only the instance to which
you are connected.

Chapter 7
Monitoring the Archiver Processes

7-10

Note:

If you use the kill command to stop the archiver process, then the database
instance will fail.

Related Topics

• Oracle Database Administrator’s Guide

• Oracle Database Reference

Chapter 7
Monitoring the Archiver Processes

7-11

8
Managing Backup and Recovery

This chapter explains instance recovery and how to use Recovery Manager (RMAN) to back
up and restore Oracle Real Application Clusters (Oracle RAC) databases. This chapter also
describes Oracle RAC instance recovery, parallel backup, recovery with SQL*Plus, and using
the Fast Recovery Area in Oracle RAC. The topics in this chapter include:

• RMAN Backup Scenario for Noncluster File System Backups

• RMAN Restore Scenarios for Oracle RAC

• Instance Recovery in Oracle RAC

• Media Recovery in Oracle RAC

• Parallel Recovery in Oracle RAC

• Using a Fast Recovery Area in Oracle RAC

Note:

For restore and recovery in Oracle RAC environments, you do not have to configure
the instance that performs the recovery to also be the sole instance that restores all
of the data files. In Oracle RAC, data files are accessible from every node in the
cluster, so any node can restore archived redo log files.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

See Also:

Oracle Clusterware Administration and Deployment Guide for information about
backing up and restoring the Oracle Clusterware components such as the Oracle
Cluster Registry (OCR) and the voting disk

RMAN Backup Scenario for Noncluster File System Backups
In a noncluster file system environment, each node can back up only to a locally mounted
noncluster file system directory. For example, node1 cannot access the archived redo log files
on node2 or node3 unless you configure the network file system for remote access. If you
configure a network file system file for backups, then each node backs up its archived redo
logs to a local directory.

8-1

RMAN Restore Scenarios for Oracle RAC
This section describes the following common RMAN restore scenarios:

• Restoring Backups from a Cluster File System

• Restoring Backups from a Noncluster File System

• Using RMAN or Oracle Enterprise Manager to Restore the Server Parameter File
(SPFILE)

Note:

The restore and recovery procedures in a cluster file system scheme do
not differ substantially from Oracle noncluster scenarios.

Restoring Backups from a Cluster File System
The scheme that this section describes assumes that you are using the "Oracle
Automatic Storage Management and Cluster File System Archiving Scheme". In this
scheme, assume that node3 performed the backups to a cluster file system. If node3 is
available for the restore and recovery operation, and if all of the archived logs have
been backed up or are on disk, then run the following commands to perform complete
recovery:

RESTORE DATABASE;
RECOVER DATABASE;

If node3 performed the backups but is unavailable, then configure a media
management device for one of the remaining nodes and make the backup media from
node3 available to this node.

Note:

If you configured RMAN as described in "Configuring Channels to Use
Automatic Load Balancing", then, to load balance the channels across
nodes, note that channels cannot be load balanced before at least one
instance has successfully opened the database. This means that the
channels will not be load balanced across the nodes during a full database
restore. To achieve load balancing of channels for RESTORE and RECOVER
commands, you can temporarily reallocate channels by running commands
similar to the following:

run {
ALLOCATE CHANNEL DEVICE TYPE sbt C1 CONNECT '@racinst_1'
ALLOCATE CHANNEL DEVICE TYPE sbt C2 CONNECT '@racinst_2'
...
}

Chapter 8
RMAN Restore Scenarios for Oracle RAC

8-2

Related Topics

• Oracle Automatic Storage Management and Cluster File System Archiving Scheme
The preferred configuration for Oracle RAC is to use Oracle Automatic Storage
Management (Oracle ASM) for a recovery area using a disk group for your recovery set
that is different from the disk group used for your data files.

• Configuring Channels to Use Automatic Load Balancing

Restoring Backups from a Noncluster File System
The scheme that this section describes assumes that you are using the "Noncluster File
System Local Archiving Scheme". In this scheme, each node archives locally to a different
directory. For example, node1 archives to /arc_dest_1, node2 archives to /arc_dest_2, and
node3 archives to /arc_dest_3. You must configure a network file system file so that the
recovery node can read the archiving directories on the remaining nodes.

If all nodes are available and if all archived redo logs have been backed up, then you can
perform a complete restore and recovery by mounting the database and running the following
commands from any node:

RESTORE DATABASE;
RECOVER DATABASE;

Because the network file system configuration enables each node read access to the redo
log files on other nodes, then the recovery node can read and apply the archived redo logs
located on the local and remote disks. No manual transfer of archived redo logs is required.

Related Topics

• Noncluster File System Local Archiving Scheme

Using RMAN or Oracle Enterprise Manager to Restore the Server
Parameter File (SPFILE)

RMAN can restore the server parameter file either to the default location or to a location that
you specify.

You can also use Oracle Enterprise Manager to restore the SPFILE. From the Backup/
Recovery section of the Maintenance tab, click Perform Recovery. The Perform Recovery
link is context-sensitive and navigates you to the SPFILE restore only when the database is
closed.

Instance Recovery in Oracle RAC
Learn about instance recovery in Oracle RAC.

Instance failure occurs when software or hardware problems disable an instance. After
instance failure, Oracle Database automatically uses the online redo logs to perform recovery
as described in this section.

Chapter 8
Instance Recovery in Oracle RAC

8-3

Single Node Failure in Oracle RAC
Instance recovery in Oracle RAC does not include the recovery of applications that
were running on the failed instance. Oracle Clusterware restarts the instance
automatically.

Applications that were running on a node before it failed continue running by using
failure recognition and recovery. This provides consistent and uninterrupted service if
hardware or software fails. When one instance performs recovery for another instance,
the surviving instance reads online redo logs generated by the failed instance and
uses that information to ensure that committed transactions are recorded in the
database. Thus, data from committed transactions is not lost. The instance performing
recovery rolls back transactions that were active at the time of the failure and releases
resources used by those transactions.

Note:

All online redo logs must be accessible for instance recovery. Therefore,
Oracle recommends that you mirror your online redo logs.

Multiple-Node Failures in Oracle RAC
When multiple node failures occur, if one instance survives, then Oracle RAC performs
instance recovery for any other instances that fail. If all instances of an Oracle RAC
database fail, then Oracle Database automatically recovers the instances the next time
one instance opens the database. The instance performing recovery can mount the
database in either cluster database or exclusive mode from any node of an Oracle
RAC database. This recovery procedure is the same for Oracle Database running in
shared mode as it is for Oracle Database running in exclusive mode, except that one
instance performs instance recovery for all of the failed instances.

Using RMAN to Create Backups in Oracle RAC
Oracle Database provides RMAN for backing up and restoring the database.

RMAN enables you to back up, restore, and recover data files, control files, SPFILEs,
and archived redo logs. RMAN is included with the Oracle Database server and it is
installed by default. You can run RMAN from the command line or you can use it from
the Backup Manager in Oracle Enterprise Manager. In addition, RMAN is the
recommended backup and recovery tool if you are using Oracle Automatic Storage
Management (Oracle ASM). The procedures for using RMAN in Oracle RAC
environments do not differ substantially from those for Oracle noncluster
environments.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Chapter 8
Instance Recovery in Oracle RAC

8-4

Channel Connections to Cluster Instances with RMAN
Channel connections to the instances are determined using the connect string defined by
channel configurations. For example, in the following configuration, three channels are
allocated using dbauser/pwd@service_name. If you configure the SQL Net service name with
load balancing turned on, then the channels are allocated at a node as decided by the load
balancing algorithm.

CONFIGURE DEVICE TYPE sbt PARALLELISM 3;
CONFIGURE DEFAULT DEVICE TYPE TO sbt;
CONFIGURE CHANNEL DEVICE TYPE SBT CONNECT 'dbauser/pwd@service_name'

However, if the service name used in the connect string is not for load balancing, then you
can control at which instance the channels are allocated using separate connect strings for
each channel configuration, as follows:

CONFIGURE DEVICE TYPE sbt PARALLELISM 3;
CONFIGURE CHANNEL 1.. CONNECT 'dbauser/pwd@mydb_1';
CONFIGURE CHANNEL 2.. CONNECT 'dbauser/pwd@mydb_2';
CONFIGURE CHANNEL 3.. CONNECT 'dbauser/pwd@mydb_3';

In the previous example, it is assumed that mydb_1, mydb_2 and mydb_3 are SQL*Net service
names that connect to pre-defined nodes in your Oracle RAC environment. Alternatively, you
can also use manually allocated channels to backup your database files. For example, the
following command backs up the SPFILE, control file, data files and archived redo logs:

RUN
{
 ALLOCATE CHANNEL CH1 CONNECT 'dbauser/pwd@mydb_1';
 ALLOCATE CHANNEL CH2 CONNECT 'dbauser/pwd@mydb_2';
 ALLOCATE CHANNEL CH3 CONNECT 'dbauser/pwd@mydb_3';
 BACKUP DATABASE PLUS ARCHIVED LOG;
}

During a backup operation, if at least one channel allocated has access to the archived log,
then RMAN automatically schedules the backup of the specific log on that channel. Because
the control file, SPFILE, and data files are accessible by any channel, the backup operation
of these files is distributed across the allocated channels.

For a local archiving scheme, there must be at least one channel allocated to all of the nodes
that write to their local archived logs. For a cluster file system archiving scheme, if every node
writes the archived logs in the same cluster file system, then the backup operation of the
archived logs is distributed across the allocated channels.

During a backup, the instances to which the channels connect must be either all mounted or
all open. For example, if the instance on node1 has the database mounted while the
instances on node2 and node3 have the database open, then the backup fails.

Related Topics

• Oracle Database Backup and Recovery Reference

Chapter 8
Instance Recovery in Oracle RAC

8-5

See Also:

Oracle Database Backup and Recovery Reference for more information
about the CONNECT clause of the CONFIGURE CHANNEL statement

Node Affinity Awareness of Fast Connections
In some cluster database configurations, some nodes of the cluster have faster access
to certain data files than to other data files. RMAN automatically detects this situation,
which is known as node affinity awareness. When deciding which channel to use to
back up a particular data file, RMAN gives preference to the nodes with faster access
to the data files that you want to back up. For example, if you have a three-node
cluster, and if node1 has faster read/write access to data files 7, 8, and 9 than the other
nodes, then node1 has greater node affinity to those files than node2 and node3.

Deleting Archived Redo Logs after a Successful Backup
If you have configured the automatic channels as defined in section "Channel
Connections to Cluster Instances with RMAN", then you can use the following example
to delete the archived logs that you backed up n times. The device type can be DISK or
SBT:

DELETE ARCHIVELOG ALL BACKED UP n TIMES TO DEVICE TYPE device_type;

During a delete operation, if at least one channel allocated has access to the archived
log, then RMAN automatically schedules the deletion of the specific log on that
channel. For a local archiving scheme, there must be at least one channel allocated
that can delete an archived log. For a cluster file system archiving scheme, if every
node writes to the archived logs on the same cluster file system, then the archived log
can be deleted by any allocated channel.

If you have not configured automatic channels, then you can manually allocate the
maintenance channels as follows and delete the archived logs.

ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE DISK CONNECT 'SYS/
oracle@node1';
ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE DISK CONNECT 'SYS/
oracle@node2';
ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE DISK CONNECT 'SYS/
oracle@node3';
DELETE ARCHIVELOG ALL BACKED UP n TIMES TO DEVICE TYPE device_type;

Related Topics

• Channel Connections to Cluster Instances with RMAN

Autolocation for Backup and Restore Commands
RMAN automatically performs autolocation of all files that it must back up or restore. If
you use the noncluster file system local archiving scheme, then a node can only read

Chapter 8
Instance Recovery in Oracle RAC

8-6

the archived redo logs that were generated by an instance on that node. RMAN never
attempts to back up archived redo logs on a channel it cannot read.

During a restore operation, RMAN automatically performs the autolocation of backups. A
channel connected to a specific node only attempts to restore files that were backed up to the
node. For example, assume that log sequence 1001 is backed up to the drive attached to
node1, while log 1002 is backed up to the drive attached to node2. If you then allocate
channels that connect to each node, then the channel connected to node1 can restore log
1001 (but not 1002), and the channel connected to node2 can restore log 1002 (but not
1001).

Media Recovery in Oracle RAC
Media recovery must be user-initiated through a client application, whereas instance recovery
is automatically performed by the database. In these situations, use RMAN to restore
backups of the data files and then recover the database. The procedures for RMAN media
recovery in Oracle RAC environments do not differ substantially from the media recovery
procedures for noncluster environments.

The node that performs the recovery must be able to restore all of the required data files.
That node must also be able to either read all of the required archived redo logs on disk or be
able to restore them from backups.

When recovering a database with encrypted tablespaces (for example after a SHUTDOWN
ABORT or a catastrophic error that brings down the database instance), you must open the
Oracle Wallet after database mount and before you open the database, so the recovery
process can decrypt data blocks and redo.

Parallel Recovery in Oracle RAC
Oracle Database automatically selects the optimum degree of parallelism for instance, crash,
and media recovery.

Oracle Database applies archived redo logs using an optimal number of parallel processes
based on the availability of CPUs. You can use parallel instance recovery and parallel media
recovery in Oracle RAC databases as described under the following topics:

• Parallel Recovery with RMAN

• Disabling Parallel Recovery

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Parallel Recovery with RMAN
With RMAN's RESTORE and RECOVER commands, Oracle Database automatically makes
parallel the following three stages of recovery:

Restoring Data Files

When restoring data files, the number of channels you allocate in the RMAN recover script
effectively sets the parallelism that RMAN uses. For example, if you allocate five channels,
you can have up to five parallel streams restoring data files.

Chapter 8
Media Recovery in Oracle RAC

8-7

Applying Incremental Backups

Similarly, when you are applying incremental backups, the number of channels you
allocate determines the potential parallelism.

Applying Archived Redo Logs

With RMAN, the application of archived redo logs is performed in parallel. Oracle
Database automatically selects the optimum degree of parallelism based on available
CPU resources.

Disabling Parallel Recovery
You can override parallel recovery using the procedures under the following topics:

• Disabling Instance and Crash Recovery Parallelism

• Disabling Media Recovery Parallelism

Disabling Instance and Crash Recovery Parallelism
To disable parallel instance and crash recovery on a system with multiple CPUs, set
the RECOVERY_PARALLELISM parameter in the database initialization parameter file,
SPFILE, to 0 or 1.

Disabling Media Recovery Parallelism
Use the NOPARALLEL clause of the RMAN RECOVER command or the ALTER DATABASE
RECOVER statement to force Oracle Database to use non-parallel media recovery.

Using a Fast Recovery Area in Oracle RAC
To use a fast recovery area in Oracle RAC, you must place it on an Oracle ASM disk
group, on a Cluster File System, or on a shared directory that is configured through a
network file system file for each Oracle RAC instance.

In other words, the fast recovery area must be shared among all of the instances of an
Oracle RAC database. In addition, set the parameter DB_RECOVERY_FILE_DEST to the
same value on all instances.

Oracle Enterprise Manager enables you to set up a fast recovery area. To use this
feature:

1. From the Cluster Database home page, click the Maintenance tab.

2. Under the Backup/Recovery options list, click Configure Recovery Settings.

3. Specify your requirements in the Fast Recovery Area section of the page.

4. Click Help on this page for more information.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

Chapter 8
Using a Fast Recovery Area in Oracle RAC

8-8

9
Cloning Oracle RAC to Nodes in a New
Cluster

This chapter describes how to clone Oracle Real Application Clusters (Oracle RAC) database
homes on Linux and UNIX systems to nodes in a new cluster.

This chapter describes a noninteractive cloning technique that you implement with scripts.
The cloning techniques described in this chapter are best suited for performing multiple
simultaneous cluster installations. Creating the scripts is a manual process and can be error
prone. If you only have one cluster to install, then you should use the traditional automated
and interactive installation methods, such as Oracle Universal Installer, or the Provisioning
Pack feature of Oracle Enterprise Manager.

Note:

Cloning is not a replacement for Oracle Enterprise Manager cloning that is a part of
the Provisioning Pack. During Oracle Enterprise Manager cloning, the provisioning
process interactively asks you the details about the Oracle home (such as the
location to which you want to deploy the clone, the name of the Oracle Database
home, a list of the nodes in the cluster, and so on).

The Provisioning Pack feature of Oracle Enterprise Manager Cloud Control
provides a framework to make it easy for you to automate the provisioning of new
nodes and clusters. For data centers with many Oracle RAC clusters, the
investment in creating a cloning procedure to easily provision new clusters and new
nodes to existing clusters is worth the effort.

This chapter includes the following topics:

• Introduction to Cloning Oracle RAC

• Preparing to Clone Oracle RAC

• Deploying Oracle RAC Clone to Nodes in a Cluster

• Locating and Viewing Log Files Generated During Cloning

Related Topics

• Using Cloning to Extend Oracle RAC to Nodes in the Same Cluster

Introduction to Cloning Oracle RAC
Cloning is the process of copying an existing Oracle RAC installation to a different location
and updating the copied bits to work in the new environment. The changes made by one-off
patches applied on the source Oracle home, would also be present after the clone operation.
The source and the destination path (host to be cloned) need not be the same.

Some situations in which cloning is useful are:

9-1

• Cloning provides a way to prepare an Oracle home once and deploy it to many
hosts simultaneously. You can complete the installation silently, as a noninteractive
process. You do not need to use a graphical user interface (GUI) console and you
can perform cloning from a Secure Shell (SSH) terminal session, if required.

• Cloning enables you to create an installation (copy of a production, test, or
development installation) with all patches applied to it in a single step. Once you
have performed the base installation and applied all patch sets and patches on the
source system, the clone performs all of these individual steps as a single
procedure. This is in contrast to going through the installation process to perform
the separate steps to install, configure, and patch the installation on each node in
the cluster.

• Installing Oracle RAC by cloning is a very quick process. For example, cloning an
Oracle home to a new cluster of more than two nodes requires a few minutes to
install the Oracle base software, plus a few minutes more for each node
(approximately the amount of time it takes to run the root.sh script).

The cloned installation behaves the same as the source installation. For example, the
cloned Oracle home can be removed using Oracle Universal Installer or patched using
OPatch. You can also use the cloned Oracle home as the source for another cloning
operation. You can create a cloned copy of a test, development, or production
installation by using the command-line cloning scripts. The default cloning procedure is
adequate for most usage cases. However, you can also customize various aspects of
cloning, for example, to specify custom port assignments, or to preserve custom
settings.

The cloning process works by copying all of the files from the source Oracle home to
the destination Oracle home. Thus, any files used by the source instance that are
located outside the source Oracle home's directory structure are not copied to the
destination location.

The size of the binaries at the source and the destination may differ because these are
relinked as part of the clone operation and the operating system patch levels may also
differ between these two locations. Additionally, the number of files in the cloned home
would increase because several files copied from the source, specifically those being
instantiated, are backed up as part of the clone operation.

Preparing to Clone Oracle RAC
Use this overview to understand the procedures you use to clone Oracle RAC.

In the preparation phase, you create a copy of an Oracle home that you then use to
perform the cloning procedure on one or more nodes. You also install Oracle
Clusterware.

Install Oracle RAC

Use the detailed instructions in Oracle Real Application Clusters Installation Guide for
your platform for your platform to install the Oracle RAC software and patches:

1. Install Oracle RAC and choose the Software only installation option.

2. Patch the release to the required level (for example, 12.1.0.n).

3. Apply one-off patches, if necessary.

Chapter 9
Preparing to Clone Oracle RAC

9-2

Create a backup of the source home

Create a copy of the Oracle RAC home. Use this file to copy the Oracle RAC home to each
node in the cluster.

When creating the backup (tar) file, the best practice is to include the release number in the
name of the file. For example:

cd /opt/oracle/product/12c/db_1
tar –zcvf /pathname/db1120.tgz .

Install and start Oracle Clusterware

Before you can use cloning to create an Oracle RAC home, you must first install and start
Oracle Clusterware on the node or nodes to which you want to copy a cloned Oracle RAC
home. In other words, you configure an Oracle RAC home that you cloned from a source
cluster onto the nodes in a target cluster in the same order that you installed the Oracle
Clusterware and Oracle RAC software components on the original nodes.

Related Topics

• Oracle Real Application Clusters Installation Guide

• Deploying Oracle RAC Clone to Nodes in a Cluster

• Oracle Clusterware Administration and Deployment Guide

Deploying Oracle RAC Clone to Nodes in a Cluster
After you complete the prerequisite tasks described in "Preparing to Clone Oracle RAC", you
can deploy cloned Oracle homes.

Deploy the Oracle RAC database home to a cluster, as follows:

1. Perform any Oracle RAC preinstallation tasks, as described in your platform-specific
Oracle RAC installation guide, to prepare the new cluster nodes, such things as:

• Specify the kernel parameters.

• Ensure Oracle Clusterware is active.

• Ensure that Oracle ASM is active and that at least one Oracle ASM disk group exists
and is mounted.

2. Deploy the Oracle RAC database software, as follows:

a. Copy the clone of the Oracle home to all nodes. For example:

[root@node1 root]# mkdir -p /opt/oracle/product/12c/db
[root@node1 root]# cd /opt/oracle/product/12c/db
[root@node1 db]# tar –zxvf /path_name/db1120.tgz

When providing the home location and path_name, the home location can be in the
same directory path or in a different directory path from the source home that you
used to create the tar.

Chapter 9
Deploying Oracle RAC Clone to Nodes in a Cluster

9-3

b. If either the oracle user or the oinstall group, or both is different between
the source and destination nodes, then change the ownership of the Oracle
Inventory files, as follows:

[root@node1]# chown -R oracle:oinstall /opt/oracle/product/12c/db

When you run the preceding command on the Oracle RAC home, it clears
setuid and setgid information from the Oracle binary.

Note:

You can perform this step at the same time you perform Step 3 and
Step 4 to run the clone.pl and $ORACLE_HOME/root.sh scripts on
each cluster node.

3. Run the clone.pl script on each node, which performs the main Oracle RAC
cloning tasks, as follows:

a. Supply the environment variables and cloning parameters in the start.sh
script, as described in Table 9-2 and Table 9-3. Because the clone.pl script is
sensitive to the parameters being passed to it, you must be accurate in your
use of brackets, single quotation marks, and double quotation marks.

b. Run the script as oracle or the user that owns the Oracle RAC software.

The following table lists and describes the clone.pl script parameters:

Table 9-1 clone.pl Script Parameters

Parameter Description

ORACLE_HOME=Oracle_
home

The complete path to the Oracle home you want to clone. If you
specify an invalid path, then the script exits. This parameter is
required.

ORACLE_BASE=ORACLE_
BASE

The complete path to the Oracle base you want to clone. If you
specify an invalid path, then the script exits. This parameter is
required.

ORACLE_HOME_NAME=
Oracle_home_name |
-defaultHomeName

The Oracle home name of the home you want to clone.
Optionally, you can specify the -defaultHomeName flag. This
parameter is optional.

ORACLE_HOME_USER=Or
acle_home_user

The OracleHomeUser for Windows services. This parameter is
applicable to Windows only and is optional.

OSDBA_GROUP=group_n
ame

Specify the operating system group you want to use as the
OSDBA privileged group. This parameter is optional.

OSOPER_GROUP=group_
name

Specify the operating system group you want to use as the
OSOPER privileged group. This parameter is optional.

OSASM_GROUP=group_n
ame

Specify the operating system group you want to use as the
OSASM privileged group. This parameter is optional.

OSBACKUPDBA_GROUP=g
roup_name

Specify the operating system group you want to use as the
OSBACKUPDBA privileged group. This parameter is optional.

Chapter 9
Deploying Oracle RAC Clone to Nodes in a Cluster

9-4

Table 9-1 (Cont.) clone.pl Script Parameters

Parameter Description

OSDGDBA_GROUP=group
_name

Specify the operating system group you want to use as the
OSDGDBA privileged group. This parameter is optional.

OSKMDBA_GROUP=group
_name

Specify the operating system group you want to use as the
OSKMDBA privileged group. This parameter is optional.

-debug Specify this option to run the clone.pl script in debug mode

-help Specify this option to obtain help for the clone.pl script.

The following example shows an excerpt from the start.sh script that calls the clone.pl
script:

ORACLE_BASE=/opt/oracle
ORACLE_HOME=/opt/oracle/product/12c/db
cd $ORACLE_HOME/clone
THISNODE='host_name'

E01=ORACLE_HOME=/opt/oracle/product/12c/db
E02=ORACLE_HOME_NAME=OraDBRAC
E03=ORACLE_BASE=/opt/oracle
C01="-O CLUSTER_NODES={node1,node2}"
C02="-O LOCAL_NODE=$THISNODE"

perl $ORACLE_HOME/clone/bin/clone.pl $E01 $E02 $E03 $C01 $C02

The following table lists and describes the environment variables E01, E02, and E03 that
are shown in bold typeface in the preceding example:

Table 9-2 Environment Variables Passed to the clone.pl Script

Symbol Variable Description

E01 ORACLE_HOME The location of the Oracle RAC database home. This directory
location must exist and must be owned by the Oracle operating
system group: oinstall.

E02 ORACLE_HOME_NAM
E

The name of the Oracle home for the Oracle RAC database. This
is stored in the Oracle Inventory.

E03 ORACLE_BASE The location of the Oracle Base directory.

The following table lists and describes the cloning parameters C01 and C02, that are
shown in bold typeface in the preceding example:

Table 9-3 Cloning Parameters Passed to the clone.pl Script.

Variable Name Parameter Description

C01 Cluster Nodes CLUSTER_NODES Lists the nodes in the cluster.

C02 Local Node LOCAL_NODE The name of the local node.

Chapter 9
Deploying Oracle RAC Clone to Nodes in a Cluster

9-5

The following example shows an excerpt from the start.bat script that the user
must create that calls the clone.pl script:

set ORACLE_home=C:\oracle\product\12c\db1
cd %ORACLE_home%\clone\bin
set THISNODE=%hostname%
set E01=ORACLE_HOME=%ORACLE_home%
set E02=ORACLE_HOME_NAME=OraDBRAC
set E03=ORACLE_BASE=Oracle_Base
set C01="CLUSTER_NODES={node1,node2}"
set C02="-O LOCAL_NODE=%THISNODE%"
perl clone.pl %E01% %E02% %E03% %C01% %C02%

4. Note:

This step applies to Linux and UNIX installations, only.

Run the $ORACLE_HOME/root.sh as the root operating system user as soon as the
clone.pl procedure completes on the node.

[root@node1 root]# /opt/oracle/product/12c/db/root.sh -silent

Note that you can run the script on each node simultaneously:

[root@node2 root]# /opt/oracle/product/12c/db/root.sh -silent

Ensure the script has completed on each node before proceeding to the next step.

5. Note:

You need only run DBCA on one node in the cluster to create Oracle
RAC instances on all nodes.

This step shows how to run DBCA in silent mode and provide response file input
to create the Oracle RAC instances.

The following example creates an Oracle RAC database named ERI on each
node, creates database instances on each node, registers the instances in OCR,
creates the database files in the Oracle ASM disk group called DATA, and creates
sample schemas. It also sets the SYS, SYSTEM, SYSMAN and DBSNMP passwords to
password, which is the password for each account:

[oracle@node1 oracle]$ export ORACLE_HOME=/opt/oracle/product/12c/db
[oracle@node1 oracle]$ cd $ORACLE_HOME/bin/
[oracle@node1 bin]$./dbca -silent -createDatabase -templateName
General_Purpose.dbc \
-gdbName ERI -sid ERI \
-sysPassword password -systemPassword password \
-sysmanPassword password -dbsnmpPassword password \

Chapter 9
Deploying Oracle RAC Clone to Nodes in a Cluster

9-6

-emConfiguration LOCAL \
-storageType ASM -diskGroupName DATA \
-datafileJarLocation $ORACLE_HOME/assistants/dbca/templates \
-nodelist node1,node2 -characterset WE8ISO8859P1 \
-obfuscatedPasswords false -sampleSchema true

Related Topics

• Preparing to Clone Oracle RAC
Use this overview to understand the procedures you use to clone Oracle RAC.

• Oracle Real Application Clusters Installation Guide

• Oracle Database 2 Day DBA

Locating and Viewing Log Files Generated During Cloning
The cloning script runs multiple tools, each of which may generate its own log files.

After the clone.pl script finishes running, you can view log files to obtain more information
about the cloning process.

The following log files that are generated during cloning are the key log files of interest for
diagnostic purposes:

• Central_Inventory/logs/cloneActionstimestamp.log
Contains a detailed log of the actions that occur during the Oracle Universal Installer part
of the cloning.

• Central_Inventory/logs/oraInstalltimestamp.err
Contains information about errors that occur when Oracle Universal Installer is running.

• Central_Inventory/logs/oraInstalltimestamp.out
Contains other miscellaneous messages generated by Oracle Universal Installer.

• $ORACLE_HOME/clone/logs/clonetimestamp.log
Contains a detailed log of the actions that occur before cloning and during the cloning
operations.

• $ORACLE_HOME/clone/logs/errortimestamp.log
Contains information about errors that occur before cloning and during cloning
operations.

Table 9-4 describes how to find the location of the Oracle inventory directory.

Table 9-4 Finding the Location of the Oracle Inventory Directory

Type of System... Location of the Oracle Inventory Directory

All UNIX computers except
Linux and IBM AIX

/var/opt/oracle/oraInst.loc

IBM AIX and Linux /etc/oraInst.loc file.

Windows C:\Program Files\Oracle\Inventory

Chapter 9
Locating and Viewing Log Files Generated During Cloning

9-7

10
Using Cloning to Extend Oracle RAC to
Nodes in the Same Cluster

This chapter provides information about using cloning to extend Oracle Real Application
Clusters (Oracle RAC) to nodes in an existing cluster.

To add Oracle RAC to nodes in a new cluster, see Cloning Oracle RAC to Nodes in a New
Cluster.

This chapter contains the following topics:

• About Adding Nodes Using Cloning in Oracle RAC Environments

• Cloning Local Oracle Homes on Linux and UNIX Systems

• Cloning Shared Oracle Homes on Linux and UNIX Systems

• Cloning Oracle Homes on Windows Systems

Related Topics

• Cloning Oracle RAC to Nodes in a New Cluster
This chapter describes how to clone Oracle Real Application Clusters (Oracle RAC)
database homes on Linux and UNIX systems to nodes in a new cluster.

• Introduction to Cloning Oracle RAC

• Oracle Clusterware Administration and Deployment Guide

About Adding Nodes Using Cloning in Oracle RAC
Environments

The cloning procedures assume that you have successfully installed and configured an
Oracle RAC environment to which you want to add nodes and instances. To add nodes to an
Oracle RAC environment using cloning, first extend the Oracle Clusterware configuration,
then extend the Oracle Database software with Oracle RAC, and then add the listeners and
instances by running the Oracle assistants

The cloning script runs multiple tools, each of which may generate its own log files. After the
clone.pl script finishes running, you can view log files to obtain more information about the
cloning process. See "Locating and Viewing Log Files Generated During Cloning" for more
information.

Cloning Local Oracle Homes on Linux and UNIX Systems
Add nodes to Oracle RAC environments by cloning a local, non-shared Oracle home in Linux
and UNIX environments.

Complete the following steps to clone Oracle Database with Oracle RAC:

10-1

1. Follow the steps in the topic "Preparing to Clone Oracle RAC" to create a copy of
an Oracle home that you then use to perform the cloning procedure on one or
more nodes.

2. Use the tar utility to create an archive of the Oracle home on the existing node
and copy it to the new node. If the location of the Oracle home on the source node
is $ORACLE_HOME, then you must use this same directory as the destination location
on the new node.

3. On the new node, configure the environment variables ORACLE_HOME and
ORACLE_BASE. Then go to the Grid_home/clone/bin directory on the new node and
run the following command, where existing_node is the name of the node that
you are cloning, new_node2 and new_node3 are the names of the new nodes, and
Oracle_home_name is the name of the Oracle home:

perl clone.pl ORACLE_HOME=$ORACLE_HOME
ORACLE_HOME_NAME=Oracle_home_name
 ORACLE_BASE=$ORACLE_BASE
"'CLUSTER_NODES={existing_node,new_node2,new_node3}'"
 "'LOCAL_NODE=new_node2'" CRS=TRUE INVENTORY_LOCATION=/u01/app/
oraInventory

4. Run the following command to run the configuration assistants to configure Oracle
RAC on the new nodes:

$ORACLE_HOME/cfgtoollogs/configToolFailedCommands

This script contains all commands that failed, were skipped, or were canceled
during the installation. You can use this script to run the database configuration
assistants outside of Oracle Universal Installer. Note that before you run the script
you should check the script to see if any passwords within it need to be updated.

5. Run the following command on the existing node from the $ORACLE_HOME/oui/bin
directory to update the inventory in the Oracle Database home with Oracle RAC,
specified by Oracle_home, where existing_node is the name of the original node
that you are cloning and new_node2 and new_node3 are the names of the new
nodes:

./runInstaller -updateNodeList ORACLE_HOME=$ORACLE_HOME -O
"CLUSTER_NODES=
{existing_node,new_node2,new_node3}"

6. On each new node, go to the $ORACLE_HOME directory and run the following
command:

./root.sh

7. From the node that you cloned, run Oracle Database Configuration Assistant
(Oracle DBCA) to add Oracle RAC database instances on the new nodes.

Related Topics

• Preparing to Clone Oracle RAC
Use this overview to understand the procedures you use to clone Oracle RAC.

Chapter 10
Cloning Local Oracle Homes on Linux and UNIX Systems

10-2

Cloning Shared Oracle Homes on Linux and UNIX Systems
Add nodes to existing Oracle RAC environments by cloning a shared Oracle home in Linux
and UNIX system environments.

Complete the following steps to clone Oracle Database with Oracle RAC software:

1. Follow the steps in the "Preparing to Clone Oracle RAC" to create a copy of an Oracle
home that you then use to perform the cloning procedure on one or more nodes.

2. On the new node, configure the environment variables ORACLE_HOME and ORACLE_BASE.
Then go to the $ORACLE_HOME/clone/bin directory and run the following command,
where existing_node is the name of the node that you are cloning, new_node2, and
new_node3 are the names of the new nodes, Oracle_home_name is the name of the Oracle
home, and the -cfs option indicates the Oracle home is shared:

perl clone.pl -O 'CLUSTER_NODES={existing_node,new_node2,new_node3}'
-O LOCAL_NODE=new_node2 ORACLE_BASE=$ORACLE_BASE ORACLE_HOME=$ORACLE_HOME
 ORACLE_HOME_NAME=Oracle_home_name [-cfs]

Note:

In the preceding command:

• Use the -cfs option for a shared Oracle Database home with Oracle RAC.

• The value for the ORACLE_HOME_NAME parameter must be that of the node
you are cloning.

3. Run the following command on the existing node from the $ORACLE_HOME/oui/bin
directory to update the inventory in the Oracle Database home with Oracle RAC,
specified by Oracle_home, where existing_node is the name of the original node that you
are cloning and new_node2 and new_node3 are the names of the new nodes:

./runInstaller -updateNodeList ORACLE_HOME=$ORACLE_HOME "CLUSTER_NODES=
{existing_node,new_node2,new_node3}"

4. On each new node, go to the $ORACLE_HOME directory and run the following command:

./root.sh

5. From the node that you cloned, run Database Configuration Assistant (DBCA) to add
Oracle RAC database instances to the new nodes.

Related Topics

• Preparing to Clone Oracle RAC
Use this overview to understand the procedures you use to clone Oracle RAC.

Chapter 10
Cloning Shared Oracle Homes on Linux and UNIX Systems

10-3

Cloning Oracle Homes on Windows Systems
Add nodes to existing Oracle RAC environments by cloning a shared or local Oracle
home in Windows system environments.

Complete the following steps to clone Oracle Database with Oracle RAC software:

1. If you have a local Oracle home, then use the ZIP utility to create an archive of the
Oracle Database home with Oracle RAC on the existing node and copy it to the
new node. Otherwise, proceed to the next step.

Extract the Oracle Database with Oracle RAC home files from the ZIP file on the
new node in the same directory in which the Oracle Database home with Oracle
RAC resided on the existing node. For example, assume that the location of the
destination Oracle RAC home on the new node is %ORACLE_HOME%.

2. On the new node, go to the %ORACLE_HOME%\clone\bin directory and run the
following command, where Oracle_Home is the Oracle Database home,
Oracle_Home_Name is the name of the Oracle Database home, Oracle_Base is the
Oracle base directory, user_name is the name of the Oracle home user (a non-
Administrator user) for the Oracle home being cloned, existing_node is the name
of the existing node, and new_node is the name of the new node:

perl clone.pl ORACLE_HOME=Oracle_Home ORACLE_BASE=Oracle_Base
ORACLE_HOME_NAME=Oracle_Home_Name ORACLE_HOME_USER=user_name
-O 'CLUSTER_NODES={existing_node,new_node}'
-O LOCAL_NODE=new_node

If you have a shared Oracle Database home with Oracle RAC, then append the -
cfs option to the command to indicate that the Oracle home is shared, as shown
in the following example:

perl clone.pl ORACLE_HOME=Oracle_Home ORACLE_BASE=Oracle_Base
ORACLE_HOME_NAME=Oracle_Home_Name ORACLE_HOME_USER=user_name
-O 'CLUSTER_NODES={existing_node,new_node}' -O LOCAL_NODE=new_node
[-cfs -noConfig]

Note:

• The ORACLE_HOME_USER is required only if you are cloning a secured
Oracle home.

• Use the -cfs and -noConfig options for a shared Oracle Database
home with Oracle RAC.

• The value for the ORACLE_HOME_NAME parameter must be that of the
node you are cloning. To obtain the ORACLE_HOME_NAME, look in the
registry on the node you cloning for the ORACLE_HOME_NAME
parameter key under
HKEY_LOCAL_MACHINE\SOFTWARE\oracle\KEY_OraCRs12c_home1.

Chapter 10
Cloning Oracle Homes on Windows Systems

10-4

3. On the existing node, from the %ORACLE_HOME%\oui\bin directory run the following
command to update the inventory in the Oracle Database home with Oracle RAC,
specified by Oracle_home, where existing_node is the name of the existing node, and
new_node is the name of the new node:

setup.exe -updateNodeList ORACLE_HOME=Oracle_home "CLUSTER_NODES=
{existing_node,new_node}" LOCAL_NODE=existing_node

4. From the node that you cloned, run DBCA to add Oracle RAC database instances to the
new nodes.

Chapter 10
Cloning Oracle Homes on Windows Systems

10-5

11
Adding and Deleting Oracle RAC from Nodes
on Linux and UNIX Systems

Extend an existing Oracle Real Application Clusters (Oracle RAC) home to other nodes and
instances in the cluster, and delete Oracle RAC from nodes and instances in the cluster.

If your goal is to clone an existing Oracle RAC home to create multiple new Oracle RAC
installations across the cluster, then use the cloning procedures that are described in
"Cloning Oracle RAC to Nodes in a New Cluster".

The topics in this chapter include the following:

• Adding Oracle RAC to Nodes with Oracle Clusterware Installed

• Deleting Oracle RAC from a Cluster Node

Note:

• Ensure that you have a current backup of Oracle Cluster Registry (OCR) before
adding or deleting Oracle RAC by running the ocrconfig -showbackup
command.

• The phrase "target node" as used in this chapter refers to the node to which
you plan to extend the Oracle RAC environment.

Related Topics

• Cloning Oracle RAC to Nodes in a New Cluster
This chapter describes how to clone Oracle Real Application Clusters (Oracle RAC)
database homes on Linux and UNIX systems to nodes in a new cluster.

• Adding and Deleting Oracle RAC from Nodes on Windows Systems

Adding Oracle RAC to Nodes with Oracle Clusterware Installed
Before beginning this procedure, ensure that your existing nodes have the correct path to the
Grid_home and that the $ORACLE_HOME environment variable is set to the Oracle RAC home.

• If you are using a local (non-shared) Oracle home, then you must extend the Oracle RAC
database home that is on an existing node (node1 in this procedure) to a target node
(node3 in this procedure).

1. Navigate to the Oracle_home/addnode directory on node1 and run the addnode.sh
script.

11-1

2. If you want to perform a silent installation, run the addnode.sh script using the
following syntax:

$./addnode.sh -silent "CLUSTER_NEW_NODES={node3}"

3. Run the Oracle_home/root.sh script on node3 as root.

4. Open the pluggable databases (PDBs) on the newly added node using the
following commands in your SQL*Plus session:

SQL> CONNECT / AS SYSDBA
SQL> ALTER PLUGGABLE DATABASE pdb_name OPEN;

• If you have a shared Oracle home that is shared using Oracle Automatic Storage
Management Cluster File System (Oracle ACFS), then do the following to extend
the Oracle database home to node3:

1. Start the Oracle ACFS resource on the new node by running the following
command as root from the Grid_home/bin directory:

srvctl start filesystem -device volume_device [-node node_name]

Note:

Make sure the Oracle ACFS resources, including Oracle ACFS
registry resource and Oracle ACFS file system resource where the
Oracle home is located, are online on the newly added node.

2. Run the following command as the user that installed Oracle RAC from the
Oracle_home/oui/bin directory on the node you are adding to add the Oracle
RAC database home:

$./runInstaller -attachHome ORACLE_HOME="ORACLE_HOME"
"CLUSTER_NODES={node3}"
 LOCAL_NODE="node3" ORACLE_HOME_NAME="home_name" -cfs

3. Navigate to the Oracle_home/addnode directory on node1 and run the
addnode.sh script as the user that installed Oracle RAC using the following
syntax:

$./addnode.sh -noCopy "CLUSTER_NEW_NODES={node3}"

Note:

Use the -noCopy option because the Oracle home on the destination
node is already fully populated with software.

• If you have a shared Oracle home on a shared file system that is not Oracle
ACFS, then you must first create a mount point for the Oracle RAC database
home on the target node, mount and attach the Oracle RAC database home, and
update the Oracle Inventory, as follows:

Chapter 11
Adding Oracle RAC to Nodes with Oracle Clusterware Installed

11-2

1. Run the srvctl config database -db db_name command on an existing node in the
cluster to obtain the mount point information.

2. Run the following command as root on node3 to create the mount point:

mkdir -p mount_point_path

3. Mount the file system that hosts the Oracle RAC database home.

4. Run the following command as the user that installed Oracle RAC from the
Oracle_home/oui/bin directory on the node you are adding to add the Oracle RAC
database home:

$./runInstaller -attachHome ORACLE_HOME="ORACLE_HOME" "CLUSTER_NODES=
 {local_node_name}" LOCAL_NODE="node_name"
ORACLE_HOME_NAME="home_name"

5. Update the Oracle Inventory as the user that installed Oracle RAC, as follows:

$./runInstaller -updateNodeList ORACLE_HOME=mount_point_path
"CLUSTER_NODES=
 {node_list}"

In the preceding command, node_list refers to a list of all nodes where the Oracle
RAC database home is installed, including the node you are adding.

Run the Oracle_home/root.sh script on node3 as root.

Note:

Oracle recommends that you back up the OCR after you complete the node
addition process.

You can now add an Oracle RAC database instance to the target node using either of the
procedures in the following sections.

• Adding Policy-Managed Oracle RAC Database Instances to Target Nodes

• Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Adding Policy-Managed Oracle RAC Database Instances to Target Nodes
You must manually add undo and redo logs, unless you store your policy-managed database
on Oracle Automatic Storage Management (Oracle ASM) and Oracle Managed Files is
enabled.

If there is space in a server pool to add a node and the database has been started at least
once, then Oracle Clusterware adds the Oracle RAC database instance to the newly added
node and no further action is necessary.

Chapter 11
Adding Oracle RAC to Nodes with Oracle Clusterware Installed

11-3

Note:

The database must have been started at least once before you can add the
database instance to the newly added node.

If there is no space in any server pool, then the newly added node moves into the Free
server pool. Use the srvctl modify srvpool command to increase the cardinality of a
server pool to accommodate the newly added node, after which the node moves out of
the Free server pool and into the modified server pool, and Oracle Clusterware adds
the Oracle RAC database instance to the node.

Adding Administrator-Managed Oracle RAC Database Instances to
Target Nodes

Note:

The procedures in this section only apply to administrator-managed
databases. Policy-managed databases use nodes when the nodes are
available in the database’s server pool.

You can use either Oracle Enterprise Manager or DBCA to add Oracle RAC database
instances to the target nodes.

This section describes using DBCA to add Oracle RAC database instances.

These tools guide you through the following tasks:

• Creating a new database instance on each target node

• Creating and configuring high availability components

• Creating the Oracle Net configuration for a non-default listener from the Oracle
home

• Starting the new instance

• Creating and starting services if you entered services information on the Services
Configuration page

After adding the instances to the target nodes, you should perform any necessary
service configuration procedures, as described in "Workload Management with
Dynamic Database Services".

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and
services.

Chapter 11
Adding Oracle RAC to Nodes with Oracle Clusterware Installed

11-4

Using DBCA in Interactive Mode to Add Database Instances to Target Nodes
To add a database instance to a target node with DBCA in interactive mode, perform the
following steps:

1. Ensure that your existing nodes have the $ORACLE_HOME environment variable set to the
Oracle RAC home.

2. Start DBCA by entering dbca at the system prompt from the Oracle_home/bin directory.

DBCA performs certain CVU checks while running. However, you can also run CVU from
the command line to perform various verifications.

DBCA displays the Welcome page for Oracle RAC. Click Help on any DBCA page for
additional information.

3. Select Instance Management, click Next, and DBCA displays the Instance Management
page.

4. Select Add Instance and click Next. DBCA displays the List of Cluster Databases page
that shows the databases and their current status, such as ACTIVE or INACTIVE.

5. From the List of Cluster Databases page, select the active Oracle RAC database to
which you want to add an instance. Click Next and DBCA displays the List of Cluster
Database Instances page showing the names of the existing instances for the Oracle
RAC database that you selected.

6. Click Next to add a new instance and DBCA displays the Adding an Instance page.

7. On the Adding an Instance page, enter the instance name in the field at the top of this
page if the instance name that DBCA provides does not match your existing instance
naming scheme.

8. Review the information on the Summary dialog and click OK or click Cancel to end the
instance addition operation. DBCA displays a progress dialog showing DBCA performing
the instance addition operation.

9. After you terminate your DBCA session, run the following command to verify the
administrative privileges on the target node and obtain detailed information about these
privileges where node_list consists of the names of the nodes on which you added
database instances:

cluvfy comp admprv -o db_config -d Oracle_home -n node_list [-verbose]

10. Perform any necessary service configuration procedures, as described in "Workload
Management with Dynamic Database Services".

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

Using DBCA in Silent Mode to Add Database Instances to Target Nodes
You can use DBCA in silent mode to add instances to nodes on which you have extended an
Oracle Clusterware home and an Oracle Database home.

Chapter 11
Adding Oracle RAC to Nodes with Oracle Clusterware Installed

11-5

Before you run the dbca command, ensure that you have set the ORACLE_HOME
environment variable correctly on the existing nodes. Run DBCA, supplying values for
the variables using the following syntax:

dbca -silent -addInstance -nodeName node_name -gdbName gdb_name
 [-instanceName instance_name -sysDBAUserName sysdba -sysDBAPassword
 password]

The following table describes the values that you need to supply for each variable.

Table 11-1 Variables in the DBCA Silent Mode Syntax

Variable Description

node_name The node on which you want to add (or delete) the instance.

gdb_name Global database name.

instance_name Name of the instance. Provide an instance name only if you want to
override the Oracle naming convention for Oracle RAC instance
names.

sysdba Name of the Oracle user with SYSDBA privileges.

password Password for the SYSDBA user.

Perform any necessary service configuration procedures, as described in "Workload
Management with Dynamic Database Services".

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and
services.

Deleting Oracle RAC from a Cluster Node
To remove Oracle RAC from a cluster node, you must delete the database instance
and the Oracle RAC software before removing the node from the cluster.

Note:

If there are no database instances on the node you want to delete, then
proceed to "Removing Oracle RAC".

This section includes the following procedures to delete nodes from clusters in an
Oracle RAC environment:

• Deleting Instances from Oracle RAC Databases

• Removing Oracle RAC

• Deleting Nodes from the Cluster

Chapter 11
Deleting Oracle RAC from a Cluster Node

11-6

Related Topics

• Removing Oracle RAC
This procedure removes Oracle RAC software from the node you are deleting from the
cluster and updates inventories on the remaining nodes.

Deleting Instances from Oracle RAC Databases
The procedures for deleting database instances are different for policy-managed and
administrator-managed databases.

Deleting a policy-managed database instance involves reducing the number of servers in the
server pool in which the database instance resides. Deleting an administrator-managed
database instance involves using DBCA to delete the database instance.

Deleting Policy-Managed Databases

To delete a policy-managed database, reduce the number of servers in the server pool in
which a database instance resides by relocating the server on which the database instance
resides to another server pool. This effectively removes the instance without having to
remove the Oracle RAC software from the node or the node from the cluster.

For example, you can delete a policy-managed database by running the following commands
on any node in the cluster:

$ srvctl stop instance -db db_unique_name -node node_name
$ srvctl relocate server -servers "server_name_list" -serverpool Free

The first command stops the database instance on a particular node and the second
command moves the node out of its current server pool and into the Free server pool.

Deleting Instances from Administrator-Managed Databases

Note:

Before deleting an instance from an Oracle RAC database using SRVCTL to do the
following:

• If you have services configured, then relocate the services

• Modify the services so that each service can run on one of the remaining
instances

• Ensure that the instance to be removed from an administrator-managed
database is neither a preferred nor an available instance of any service

Related Topics

• Removing Oracle RAC
This procedure removes Oracle RAC software from the node you are deleting from the
cluster and updates inventories on the remaining nodes.

• Administering Services with SRVCTL
When you create a service using SRVCTL, you must start the service with a separate
SRVCTL command.

Chapter 11
Deleting Oracle RAC from a Cluster Node

11-7

• Using DBCA in Interactive Mode to Delete Instances from Nodes
The procedure in this section explains how to use DBCA in interactive mode to
delete an instance from an Oracle RAC database.

Using DBCA in Interactive Mode to Delete Instances from Nodes
The procedure in this section explains how to use DBCA in interactive mode to delete
an instance from an Oracle RAC database.

To delete an instance using DBCA in interactive mode, perform the following steps:

1. Start DBCA.

Start DBCA on a node other than the node that hosts the instance that you want to
delete. The database and the instance that you plan to delete should be running
during this step.

2. On the DBCA Operations page, select Instance Management and click Next.
DBCA displays the Instance Management page.

3. On the DBCA Instance Management page, select the instance to be deleted,
select Delete Instance, and click Next.

4. On the List of Cluster Databases page, select the Oracle RAC database from
which to delete the instance, as follows:

a. On the List of Cluster Database Instances page, DBCA displays the instances
that are associated with the Oracle RAC database that you selected and the
status of each instance. Select the cluster database from which you will delete
the instance.

b. Click OK on the Confirmation dialog to proceed to delete the instance.

DBCA displays a progress dialog showing that DBCA is deleting the instance.
During this operation, DBCA removes the instance and the instance's Oracle
Net configuration.

Click No and exit DBCA or click Yes to perform another operation. If you click
Yes, then DBCA displays the Operations page.

5. Verify that the dropped instance's redo thread has been removed by using
SQL*Plus on an existing node to query the GV$LOG view. If the redo thread is not
disabled, then disable the thread. For example:

SQL> ALTER DATABASE DISABLE THREAD 2;

6. Verify that the instance has been removed from OCR by running the following
command, where db_unique_name is the database unique name for your Oracle
RAC database:

$ srvctl config database -db db_unique_name

7. If you are deleting more than one node, then repeat these steps to delete the
instances from all the nodes that you are going to delete.

Using DBCA in Silent Mode to Delete Instances from Nodes
You can use DBCA in silent mode to delete a database instance from a node.

Chapter 11
Deleting Oracle RAC from a Cluster Node

11-8

Run the following command, where the variables are the same as those shown in Table 11-1
for the DBCA command to add an instance. Provide a node name only if you are deleting an
instance from a node other than the one on where DBCA is running as shown in the following
example where password is the password:

dbca -silent -deleteInstance [-nodeList node_name] -gdbName gdb_name
-instanceName instance_name [-sysDBAUserName sysdba -sysDBAPassword password]

At this point, you have accomplished the following:

• Deregistered the selected instance from its associated Oracle Net Services listeners

• Deleted the selected database instance from the instance's configured node

• Removed the Oracle Net configuration

• Deleted the Oracle Flexible Architecture directory structure from the instance's configured
node.

Removing Oracle RAC
This procedure removes Oracle RAC software from the node you are deleting from the
cluster and updates inventories on the remaining nodes.

1. If there is a listener in the Oracle RAC home on the node you are deleting, then you must
disable and stop it before deleting the Oracle RAC software. Run the following
commands on any node in the cluster, specifying the name of the listener and the name
of the node you are deleting:

$ srvctl disable listener -l listener_name -n name_of_node_to_delete
$ srvctl stop listener -l listener_name -n name_of_node_to_delete

2. Deinstall the Oracle home—only if the Oracle home is not shared—from the node that
you are deleting by running the following command from the Oracle_home\deinstall
directory:

deinstall -local

Caution:

If the Oracle home is shared, then do not run this command because it will
remove the shared software. Proceed to the next step, instead.

Deleting Nodes from the Cluster
After you delete the database instance and the Oracle RAC software, you can begin the
process of deleting the node from the cluster. You accomplish this by running scripts on the
node you want to delete to remove the Oracle Clusterware installation and then you run
scripts on the remaining nodes to update the node list.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Chapter 11
Deleting Oracle RAC from a Cluster Node

11-9

12
Adding and Deleting Oracle RAC from Nodes
on Windows Systems

This chapter describes how to extend an existing Oracle Real Application Clusters (Oracle
RAC) home to other nodes and instances in the cluster, and delete Oracle RAC from nodes
and instances in the cluster. This chapter provides instructions for Windows systems.

Note:

In this chapter, the entries for Grid_home refer to the full path name for the Oracle
Grid Infrastructure home, and the entries for Oracle_home refer to substitutes for
environment variables for the Oracle home with Oracle RAC.

If your goal is to clone an existing Oracle RAC home to create multiple new Oracle RAC
installations across the cluster, then use the cloning procedures that are described in
"Cloning Oracle RAC to Nodes in a New Cluster".

This chapter includes the following topics:

• Adding Oracle RAC to Nodes with Oracle Clusterware Installed

• Deleting Oracle RAC from a Cluster Node

Note:

• Ensure that you have a current backup of Oracle Cluster Registry (OCR) before
adding or deleting Oracle RAC by running the ocrconfig -showbackup
command.

• For all of the add node and delete node procedures, temporary directories such
as %TEMP% or C:\Temp should not be shared directories. If your temporary
directories are shared, then set your temporary environment variable, such as
%TEMP%, to a location on a local node. In addition, use a directory path that
exists on all of the nodes.

Related Topics

• Cloning Oracle RAC to Nodes in a New Cluster
This chapter describes how to clone Oracle Real Application Clusters (Oracle RAC)
database homes on Linux and UNIX systems to nodes in a new cluster.

12-1

Adding Oracle RAC to Nodes with Oracle Clusterware
Installed

Before beginning this procedure, ensure that your existing nodes have the correct path
to the Grid_home and that the Oracle_home environment variables are set correctly.

To add Oracle RAC database instances to nodes that already have Oracle
Clusterware installed, you must extend the Oracle RAC home that is on an existing
node (node1 in this procedure) of the cluster to the target nodes.

1. Navigate to the Oracle_home\addnode directory on node1 and run the addnode.bat
script using the following syntax, where node2 is the name of the node you are
adding:

addnode.bat "CLUSTER_NEW_NODES={node2}"

To run this command in silent mode:

addNode.bat -silent "CLUSTER_NEW_NODES={node2}"

For the Oracle home directory you use, if an Oracle home user was specified
when the Oracle Database software was installed, then OUI requires the password
for the Oracle home user. OUI checks the wallet (stored in the OCR) for the user
and extracts the password from there. If the user information is not contained in
the wallet, then the addnode.bat script generates an error unless you specify the -
promptPasswd flag on the command line.

2. If you store your policy-managed database on Oracle Automatic Storage
Management (Oracle ASM), Oracle Managed Files is enabled, and if there is
space in a server pool for node2, then crsd adds the Oracle RAC database
instance to node2 and no further action is necessary. If Oracle Managed Files is
not enabled, then you must manually add undo and redo logs.

If there is no space in a server pool, then node2 moves into the Free server pool.
Use the srvctl modify srvpool command to increase the cardinality of the
server pool to accommodate node2, after which time node2 moves out of the Free
server pool and into the modified server pool, and crsd adds the Oracle RAC
database instance to node2.

3. If you have an administrator-managed database, then add a new instance on
node2

If you have a shared Oracle home that is shared using Oracle Automatic Storage
Management Cluster File System (Oracle ACFS), then do the following to extend the
Oracle database home to node2:

1. Start the Oracle ACFS resource on the new node by running the following
command as root from the Grid_home\bin directory:

$ srvctl start filesystem -device volume_device_name [-node
node_name]

Chapter 12
Adding Oracle RAC to Nodes with Oracle Clusterware Installed

12-2

Note:

Make sure the Oracle ACFS resources, including Oracle ACFS registry
resource and Oracle ACFS file system resource where the Oracle home is
located, are online on the newly added node.

2. Run the following command as the user that installed Oracle RAC from the
Oracle_home\oui\bin directory on the node you are adding to add the Oracle RAC
database home:

setup.exe -attachHome ORACLE_HOME="ORACLE_HOME" LOCAL_NODE="node2"
 ORACLE_HOME_NAME="home_name" -cfs

3. Navigate to the Oracle_home\addnode directory on node1 and run the addnode.bat script
as the user that installed Oracle RAC using the following syntax:

addnode.bat -noCopy "CLUSTER_NEW_NODES={node2}"

Note:

Use the -noCopy option because the Oracle home on the destination node is
already fully populated with software.

If you have a shared Oracle home on a shared file system that is not Oracle ACFS, then you
must first create a mount point for the Oracle RAC database home on the target node, mount
and attach the Oracle RAC database home, and update the Oracle Inventory, as follows:

1. Run the srvctl config database -db db_name command on an existing node in the
cluster to obtain the mount point information.

2. Mount the file system that hosts the Oracle RAC database home.

3. Run the following command as the user that installed Oracle RAC from the
Oracle_home\oui\bin directory on the node you are adding to add the Oracle RAC
database home:

setup.exe -attachHome ORACLE_HOME="ORACLE_HOME" "CLUSTER_NODES=
 local_node_name}" LOCAL_NODE="node_name" ORACLE_HOME_NAME="home_name"

4. Update the Oracle Inventory as the user that installed Oracle RAC, as follows:

setup.exe -updateNodeList ORACLE_HOME=mount_point_path
"CLUSTER_NODES={node_list}"

In the preceding command, node_list refers to a list of all nodes where the Oracle RAC
database home is installed, including the node you are adding.

Chapter 12
Adding Oracle RAC to Nodes with Oracle Clusterware Installed

12-3

Note:

Oracle recommends that you back up your voting disk and Oracle Cluster
Registry (OCR) files after you complete the node addition process.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes
You can use either Oracle Enterprise Manager or DBCA to add Oracle RAC
database instances to the target nodes.

Adding Administrator-Managed Oracle RAC Database Instances to
Target Nodes

You can use either Oracle Enterprise Manager or DBCA to add Oracle RAC database
instances to the target nodes.

This section describes using DBCA to add Oracle RAC database instances.

These tools guide you through the following tasks:

• Creating a new database instance on each target node

• Creating and configuring high availability components

• Creating the Oracle Net configuration for a non-default listener from the Oracle
home

• Starting the new instance

• Creating and starting services if you entered services information on the Services
Configuration page

After adding the instances to the target nodes, you should perform any necessary
service configuration procedures.

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and
services.

Using DBCA in Interactive Mode to Add Database Instances to Target Nodes
To add a database instance to a target node using DBCA in interactive mode, perform
the following steps:

1. Ensure that your existing nodes have the Oracle home environment variable set
correctly.

2. Start DBCA by entering dbca at the system prompt from the Oracle_home\bin
directory on an existing node.

DBCA performs certain CVU checks while running. However, you can also run
CVU from the command line to perform various verifications.

Chapter 12
Adding Oracle RAC to Nodes with Oracle Clusterware Installed

12-4

3. On the Database Operations page, select Instance Management, click Next, and DBCA
displays the Instance Management page.

4. Select Add Instance and click Next. DBCA displays the List of Cluster Databases page
that shows the databases and their current status, such as ACTIVE or INACTIVE.

5. From the List of Cluster Databases page, select the active Oracle RAC database to
which you want to add an instance. Click Next and DBCA displays the List of Cluster
Database Instances page showing the names of the existing instances for the Oracle
RAC database that you selected.

6. Click Next to add a new instance and DBCA displays the Adding an Instance page.

7. On the Adding an Instance page, enter the instance name in the field at the top of this
page if the instance name that DBCA provides does not match your existing instance
naming scheme. Then select the new node name from the list.

Note:

If you installed the Oracle home with the Oracle Home User option, then DBCA
prompts you for that password on this page.

8. Review the information on the Summary Page and click Finish to initiate instance
addition operation. DBCA displays a progress dialog showing DBCA performing the
instance addition operation.

Creating the OraMTS Service for Microsoft Transaction Server

Oracle Services for Microsoft Transaction Server (OraMTS) permit Oracle databases to be
used as resource managers in Microsoft application-coordinated transactions. OraMTS acts
as a proxy for the Oracle database to the Microsoft Distributed Transaction Coordinator
(MSDTC). As a result, OraMTS provides client-side connection pooling and allows client
components that leverage Oracle to participate in promotable and distributed transactions. In
addition, OraMTS can operate with Oracle databases running on any operating system, given
that the services themselves are run on Windows.

On releases earlier than Oracle Database 12c, the OraMTS service was created as part of a
software-only installation. Starting with Oracle Database 12c, you must use a configuration
tool to create this service.

Create the OraMTS service after adding a node or performing a software-only installation for
Oracle RAC, as follows:

1. Open a command window.

2. Change directories to %ORACLE_HOME%\bin.

3. Run the OraMTSCtl utility to create the OraMTS Service, where host_name is a list of
nodes on which the service should be created:

C:\..bin> oramtsctl.exe -new -host host_name

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Oracle Services for Microsoft Transaction Server Developer's Guide for Microsoft
Windows

Chapter 12
Adding Oracle RAC to Nodes with Oracle Clusterware Installed

12-5

Using DBCA in Silent Mode to Add Database Instances to Target Nodes
Add instances to nodes on which you have extended an Oracle Clusterware home and
an Oracle Database home.

Use DBCA in silent mode with the following syntax:

dbca -silent -addInstance -nodeName node_name -gdbName gdb_name
[-instanceName instance_name -sysDBAUserName sysdba -sysDBAPassword
password]

Perform any necessary service configuration procedures.

Related Topics

• Service Management Policy
When you use Oracle Clusterware to manage your database, you can configure
startup options for each individual database service when you add the service
using the srvctl add service command with the -policy parameter.

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and
services.

Deleting Oracle RAC from a Cluster Node
To remove Oracle RAC from a cluster node, you must delete the database instance
and the Oracle RAC software before removing the node from the cluster.

Note:

If there are no database instances on the node you want to delete, then
remove Oracle RAC.

This section includes the following procedures to delete nodes from clusters in an
Oracle RAC environment:

• Deleting Instances from Oracle RAC Databases

• Removing Oracle RAC

• Deleting Nodes from the Cluster

Related Topics

• Removing Oracle RAC
This procedure removes the Oracle RAC software from the node you are deleting
from the cluster and updates inventories on the remaining nodes.

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-6

Deleting Instances from Oracle RAC Databases
The procedures for deleting instances are different for policy-managed and administrator-
managed databases.

Deleting a policy-managed database instance involves reducing the size of the server pool in
which the database instance resides. Deleting an administrator-managed database instance
involves using DBCA to delete the database instance.

Deleting Policy-Managed Databases

To delete a policy-managed database, decrease the size of the server pool in which a
database instance resides. This effectively removes the instance without having to remove
the Oracle RAC software from the node or the node from the cluster.

For example, you can delete a policy-managed database by running the following commands
on any node in the cluster:

$ srvctl stop instance -db db_unique_name -node node_name
$ srvctl relocate server -servers "server_name_list" -serverpool Free

The first command stops on the instance on a particular node and the second command
moves the list of servers out of their current server pool and into the Free server pool.

Deleting Instances from Administrator-Managed Databases

Note:

Before deleting an instance from an Oracle RAC database using SRVCTL, do the
following:

• If you have services configured, then relocate the services

• Modify the services so that each service can run on one of the remaining
instances

• Ensure that the instance to be removed from an administrator-managed
database is neither a preferred nor an available instance of any service

Related Topics

• Removing Oracle RAC
This procedure removes the Oracle RAC software from the node you are deleting from
the cluster and updates inventories on the remaining nodes.

• Administering Services with SRVCTL
When you create a service using SRVCTL, you must start the service with a separate
SRVCTL command.

Using DBCA in Interactive Mode to Delete Instances from Nodes
To delete an instance using DBCA in interactive mode, perform the following steps:

1. Verify there is a current backup of OCR.

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-7

Run the ocrconfig -showbackup command to ensure there is a valid backup.

2. Start DBCA.

Start DBCA on a node other than the node that hosts the instance that you want to
delete. The database and the instance that you plan to delete should continue to
be started and running during this step.

3. On the DBCA Operations page, select Instance Management, click Next, and
DBCA displays the Instance Management page.

4. On the Instance Management page, select Delete Instance, click Next, and
DBCA displays the List of Cluster Databases page.

5. Select an Oracle RAC database from which to delete an instance. Click Next and
DBCA displays the List of Cluster Database Instances page. The List of Cluster
Database Instances page shows the instances that are associated with the Oracle
RAC database that you selected and the status of each instance.

6. On the List of Cluster Databases page, select the Oracle RAC database from
which to delete the instance, as follows:

a. On the List of Cluster Database Instances page, DBCA displays the instances
that are associated with the Oracle RAC database that you selected and the
status of each instance. Select the cluster database from which you will delete
the instance. Click Finish.

b. Click OK on the Confirmation dialog to proceed to delete the instance.

c. Click OK on the next Confirmation dialog to delete the instance and related
Optimal Flexible Architecture (OFA) directory structure.

DBCA displays a progress dialog showing that DBCA is deleting the instance.
During this operation, DBCA removes the instance and the instance's Oracle
Net configuration.

Click No and exit DBCA or click Yes to perform another operation. If you click
Yes, then DBCA displays the Operations page.

7. Verify that the dropped instance's redo thread has been removed using SQL*Plus
to query the V$LOG view from an existing instance. If the redo thread is not
disabled, then disable the thread. For example:

SQL> ALTER DATABASE DISABLE THREAD 2;
8. Verify that the instance has been removed from OCR by running the following

command, where db_unique_name is the name of the database:

srvctl config database -db db_unique_name
9. If you are deleting more than one node, then repeat these steps to delete the

instances from all the nodes that you are going to delete.

Using DBCA in Silent Mode to Delete Instances from Nodes
You can use DBCA in silent mode to delete a database instance from a node.

To remove an instance, use the following command syntax. Provide a node name only
if you are deleting an instance from a node other than the one on where DBCA is
running as shown in the following example where password is the SYSDBA password:

dbca -silent -deleteInstance [-nodeName node_name] -gdbName gdb_name
-instanceName instance_name [-sysDBAUserName sysdba] [-sysDBAPassword password]

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-8

The following table describes the values that you need to supply for each variable.

Table 12-1 Variables in the DBCA Silent Mode Syntax

Variable Description

node_name The node on which you want to add (or delete) the instance.

gdb_name Global database name.

instance_name Name of the instance. Provide an instance name only if you want to
override the Oracle naming convention for Oracle RAC instance names.

sysdba Name of the Oracle user with SYSDBA privileges.

password Password for the SYSDBA user.

At this point, you have accomplished the following:

• Deregistered the selected instance from its associated Oracle Net Services listeners

• Deleted the selected database instance from the instance's configured node

• Removed the Oracle Net configuration

• Deleted the Oracle Flexible Architecture directory structure from the instance's configured
node.

Removing Oracle RAC
This procedure removes the Oracle RAC software from the node you are deleting from the
cluster and updates inventories on the remaining nodes.

1. If there is a listener in the Oracle RAC home on the node you are deleting, then you must
disable and stop it before deleting the Oracle RAC software. Run the following
commands on any node in the cluster, specifying the name of the listener and the name
of the node you are deleting:

C:\srvctl disable listener -listener listener_name -node
name_of_node_to_delete
C:\srvctl stop listener -listener listener_name -node
name_of_node_to_delete

2. Deinstall the Oracle home from the node that you are deleting by running the following
command from the Oracle_home\deinstall directory:

deinstall -local

If you have a shared Oracle RAC home, then append the -cfs option to the command
example in this step and provide a complete path location for the cluster file system.

Deleting Nodes from the Cluster
After you delete the instance, you can begin the process of deleting the node from the cluster.
You accomplish this by running scripts on the node you want to delete to remove the Oracle
Clusterware installation and you run scripts on the remaining nodes to update the node list.

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-9

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Chapter 12
Deleting Oracle RAC from a Cluster Node

12-10

13
Design and Deployment Techniques

This chapter briefly describes database design and deployment techniques for Oracle Real
Application Clusters (Oracle RAC) environments. It also describes considerations for high
availability and provides general guidelines for various Oracle RAC deployments.

This chapter includes the following topics:

• Deploying Oracle RAC for High Availability

• General Design Considerations for Oracle RAC

• General Database Deployment Topics for Oracle RAC

Deploying Oracle RAC for High Availability
Many customers implement Oracle RAC to provide high availability for their Oracle Database
applications. For true high availability, you must make the entire infrastructure of the
application highly available. This requires detailed planning to ensure there are no single
points of failure throughout the infrastructure. Even though Oracle RAC makes your database
highly available, if a critical application becomes unavailable, then your business can be
negatively affected. For example, if you choose to use the Lightweight Directory Access
Protocol (LDAP) for authentication, then you must make the LDAP server highly available. If
the database is up but the users cannot connect to the database because the LDAP server is
not accessible, then the entire system appears to be down to your users.

This section includes the following topics:

• About Designing a High Availability System

• Best Practices for Deploying Oracle RAC in a High Availability Environment

• Consolidating Multiple Applications in a Database or Multiple Databases in a Cluster

• Scalability of Oracle RAC

About Designing a High Availability System
For mission critical systems, you must be able to perform failover and recovery, and your
environment must be resilient to all types of failures.

For mission critical systems, you must be able to perform failover and recovery, and your
environment must be resilient to all types of failures. To reach these goals, start by defining
service level requirements for your business. The requirements should include definitions of
maximum transaction response time and recovery expectations for failures within the data
center (such as for node failure) or for disaster recovery (if the entire data center fails).
Typically, the service level objective is a target response time for work, regardless of failures.
Determine the recovery time for each redundant component. Even though you may have
hardware components that are running in an active/active mode, do not assume that if one
component fails the other hardware components can remain operational while the faulty
components are being repaired. Also, when components are running in active/passive mode,
perform regular tests to validate the failover time. For example, recovery times for storage

13-1

channels can take minutes. Ensure that the outage times are within your business'
service level agreements, and where they are not, work with the hardware vendor to
tune the configuration and settings.

When deploying mission critical systems, the testing should include functional testing,
destructive testing, and performance testing. Destructive testing includes the injection
of various faults in the system to test the recovery and to make sure it satisfies the
service level requirements. Destructive testing also allows the creation of operational
procedures for the production system.

To help you design and implement a mission critical or highly available system, Oracle
provides a range of solutions for every organization regardless of size. Small work
groups and global enterprises alike are able to extend the reach of their critical
business applications. With Oracle and the Internet, applications and their data are
now reliably accessible everywhere, at any time. The Oracle Maximum Availability
Architecture (MAA) is the Oracle best practices blueprint that is based on proven
Oracle high availability technologies and recommendations. The goal of the MAA is to
remove the complexity in designing an optimal high availability architecture.

Related Topics

• Oracle Maximum Availability Architecture (MAA)

Best Practices for Deploying Oracle RAC in a High Availability
Environment

Applications can take advantage of many Oracle Database, Oracle Clusterware, and
Oracle RAC features and capabilities to minimize or mask any failure in the Oracle
RAC environment. For example, you can:

• Remove TCP/IP timeout waits by using the VIP address to connect to the
database.

• Create detailed operational procedures and ensure you have the appropriate
support contracts in place to match defined service levels for all components in the
infrastructure.

• Take advantage of the Oracle RAC Automatic Workload Management features
such as connect time failover, Fast Connection Failover, Fast Application
Notification, and the Load Balancing Advisory.

• Place voting disks on separate volume groups to mitigate outages due to slow I/O
throughput. To survive the failure of x voting devices, configure 2x + 1 mirrors.

• Use Oracle Database Quality of Service Management (Oracle Database QoS
Management) to monitor your system and detect performance bottlenecks.

• Place OCR with I/O service times in the order of 2 milliseconds (ms) or less.

• Tune database recovery using the FAST_START_MTTR_TARGET initialization
parameter.

• Use Oracle Automatic Storage Management (Oracle ASM) to manage database
storage.

• Ensure that strong change control procedures are in place.

• Check the surrounding infrastructure for high availability and resiliency, such as
LDAP, NIS, and DNS. These entities affect the availability of your Oracle RAC
database. If possible, perform a local backup procedure routinely.

Chapter 13
Deploying Oracle RAC for High Availability

13-2

http://www.oracle.com/au/products/database/maa-096107.html

• Use Oracle Enterprise Manager to administer your entire Oracle RAC environment, not
just the Oracle RAC database. Use Oracle Enterprise Manager to create and modify
services, and to start and stop the cluster database instances and the cluster database.

• Use Recovery Manager (RMAN) to back up, restore, and recover data files, control files,
server parameter files (SPFILEs) and archived redo log files. You can use RMAN with a
media manager to back up files to external storage. You can also configure parallelism
when backing up or recovering Oracle RAC databases. In Oracle RAC, RMAN channels
can be dynamically allocated across all of the Oracle RAC instances. Channel failover
enables failed operations on one node to continue on another node. You can start RMAN
from Oracle Enterprise Manager Backup Manager or from the command line.

• If you use sequence numbers, then always use CACHE with the NOORDER option for optimal
performance in sequence number generation. With the CACHE option, however, you may
have gaps in the sequence numbers. If your environment cannot tolerate sequence
number gaps, then use the NOCACHE option or consider pre-generating the sequence
numbers. If your application requires sequence number ordering but can tolerate gaps,
then use CACHE and ORDER to cache and order sequence numbers in Oracle RAC. If your
application requires ordered sequence numbers without gaps, then use NOCACHE and
ORDER. The NOCACHE and ORDER combination has the most negative effect on performance
compared to other caching and ordering combinations.

Note:

If your environment cannot tolerate sequence number gaps, then consider pre-
generating the sequence numbers or use the ORDER and CACHE options.

Starting with Oracle Database 18c, you can use scalable sequences to provide better
data load scalability instead of configuring a very large sequence cache. Scalable
sequences improve the performance of concurrent data load operations, especially when
the sequence values are used for populating primary key columns of tables.

• If you use indexes, then consider alternatives, such as reverse key indexes to optimize
index performance. Reverse key indexes are especially helpful if you have frequent
inserts to one side of an index, such as indexes that are based on insert date.

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and services.

• Configuring Recovery Manager and Archiving

• Making a Sequence Scalable

Consolidating Multiple Applications in a Database or Multiple Databases in
a Cluster

Many people want to consolidate multiple applications in a single database or consolidate
multiple databases in a single cluster. Oracle Clusterware and Oracle RAC support both
types of consolidation.

Chapter 13
Deploying Oracle RAC for High Availability

13-3

Creating a cluster with a single pool of storage managed by Oracle ASM provides the
infrastructure to manage multiple databases whether they are single instance
databases or Oracle RAC databases.

Managing Capacity During Consolidation
With Oracle RAC databases, you can adjust the number of instances and which nodes
run instances for a given database, based on workload requirements. Features such
as cluster-managed services allow you to manage multiple workloads on a single
database or across multiple databases.

It is important to properly manage the capacity in the cluster when adding work. The
processes that manage the cluster—including processes both from Oracle
Clusterware and the database—must be able to obtain CPU resources in a timely
fashion and must be given higher priority in the system. Oracle Database Quality of
Service Management (Oracle Database QoS Management) can assist consolidating
multiple applications in a cluster or database by dynamically allocating CPU resources
to meet performance objectives. You can also use cluster configuration policies to
manage resources at the cluster level.

Related Topics

• Oracle Database Quality of Service Management User's Guide

Managing the Global Cache Service Processes During Consolidation
Oracle recommends that the number of real time Global Cache Service Processes
(LMSn) on a server is less than or equal to the number of processors. (Note that this is
the number of recognized CPUs that includes cores. For example, a dual-core CPU is
considered to be two CPUs.) It is important that you load test your system when
adding instances on a node to ensure that you have enough capacity to support the
workload.

If you are consolidating many small databases into a cluster, you may want to reduce
the number of LMSn created by the Oracle RAC instance. By default, Oracle Database
calculates the number of processes based on the number of CPUs it finds on the
server. This calculation may result in more LMSn processes than is needed for the
Oracle RAC instance. One LMS process may be sufficient for up to 4 CPUs.To reduce
the number of LMSn processes, set the GC_SERVER_PROCESSES initialization parameter
minimally to a value of 1. Add a process for every four CPUs needed by the
application. In general, it is better to have few busy LMSn processes. Oracle Database
calculates the number of processes when the instance is started, and you must restart
the instance to change the value.

Using a Database Cloud for Consolidation
A database cloud is a set of databases integrated by the Global Data Services
framework into a single virtual server that offers one or more global services, while
ensuring high performance, availability and optimal utilization of resources.

Global Data Services manages these virtualized resources with minimum
administration overhead, and allows the database cloud to quickly scale to handle
additional client requests. The databases that constitute a cloud can be globally
distributed, and clients can connect to the database cloud by simply specifying a
service name, without needing to know anything about the components and topology
of the cloud.

Chapter 13
Deploying Oracle RAC for High Availability

13-4

A database cloud can be comprised of multiple database pools. A database pool is a set of
databases within a database cloud that provide a unique set of global services and belong to
a certain administrative domain. Partitioning of cloud databases into multiple pools simplifies
service management and provides higher security by allowing each pool to be administered
by a different administrator. A database cloud can span multiple geographic regions. A region
is a logical boundary that contains database clients and servers that are considered to be
close to each other. Usually a region corresponds to a data center, but multiple data centers
can be in the same region if the network latencies between them satisfy the service-level
agreements of the applications accessing these data centers.

Global services enable you to integrate locally and globally distributed, loosely coupled,
heterogeneous databases into a scalable and highly available private database cloud. This
database cloud can be shared by clients around the globe. Using a private database cloud
provides optimal utilization of available resources and simplifies the provisioning of database
services.

Related Topics

• Oracle Database Global Data Services Concepts and Administration Guide

Scalability of Oracle RAC
Oracle RAC provides concurrent, transactionally consistent access to a single copy of the
data from multiple systems. It provides scalability beyond the capacity of a single server. If
your application scales transparently on symmetric multiprocessing (SMP) servers, then it is
realistic to expect the application to scale well on Oracle RAC, without the need to make
changes to the application code.

Traditionally, when a database server runs out of capacity, it is replaced with a new larger
server. As servers grow in capacity, they become more expensive. However, for Oracle RAC
databases, you have alternatives for increasing the capacity:

• You can migrate applications that traditionally run on large SMP servers to run on clusters
of small servers.

• You can maintain the investment in the current hardware and add a new server to the
cluster (or create or add a new cluster) to increase the capacity.

Adding servers to a cluster with Oracle Clusterware and Oracle RAC does not require an
outage. As soon as the new instance is started, the application can take advantage of the
extra capacity.

All servers in the cluster must run the same operating system and same version of Oracle
Database but the servers do not have to have the same capacity. With Oracle RAC, you can
build a cluster that fits your needs, whether the cluster is made up of servers where each
server is a two-CPU commodity server or clusters where the servers have 32 or 64 CPUs in
each server. The Oracle parallel execution feature allows a single SQL statement to be
divided up into multiple processes, where each process completes a subset of work. In an
Oracle RAC environment, you can define the parallel processes to run only on the instance
where the user is connected or to run across multiple instances in the cluster.

Related Topics

• Cloning Oracle RAC to Nodes in a New Cluster
This chapter describes how to clone Oracle Real Application Clusters (Oracle RAC)
database homes on Linux and UNIX systems to nodes in a new cluster.

• Using Cloning to Extend Oracle RAC to Nodes in the Same Cluster

Chapter 13
Deploying Oracle RAC for High Availability

13-5

• Adding and Deleting Oracle RAC from Nodes on Linux and UNIX Systems
Extend an existing Oracle Real Application Clusters (Oracle RAC) home to other
nodes and instances in the cluster, and delete Oracle RAC from nodes and
instances in the cluster.

• Adding and Deleting Oracle RAC from Nodes on Windows Systems

General Design Considerations for Oracle RAC
This section briefly describes database design and deployment techniques for Oracle
RAC environments. It also describes considerations for high availability and provides
general guidelines for various Oracle RAC deployments.

Consider performing the following steps during the design and development of
applications that you are deploying on an Oracle RAC database:

1. Tune the design and the application

2. Tune the memory and I/O

3. Tune contention

4. Tune the operating system

Note:

If an application does not scale on an SMP system, then moving the
application to an Oracle RAC database cannot improve performance.

Consider using hash partitioning for insert-intensive online transaction processing
(OLTP) applications. Hash partitioning:

• Reduces contention on concurrent inserts into a single database structure

• Affects sequence-based indexes when indexes are locally partitioned with a table
and tables are partitioned on sequence-based keys

• Is transparent to the application

If you use hash partitioning for tables and indexes for OLTP environments, then you
can greatly improve performance in your Oracle RAC database. Note that you cannot
use index range scans on an index with hash partitioning.

General Database Deployment Topics for Oracle RAC
This section describes considerations when deploying Oracle RAC databases. Oracle
RAC database performance is not compromised if you do not employ these
techniques. If you have an effective noncluster design, then your application will run
well on an Oracle RAC database.

This section includes the following topics:

• Tablespace Use in Oracle RAC

• Object Creation and Performance in Oracle RAC

• Node Addition and Deletion and the SYSAUX Tablespace in Oracle RAC

Chapter 13
General Design Considerations for Oracle RAC

13-6

• Distributed Transactions and Oracle RAC

• Deploying OLTP Applications in Oracle RAC

• Flexible Implementation with Cache Fusion

• Deploying Data Warehouse Applications with Oracle RAC

• Data Security Considerations in Oracle RAC

Tablespace Use in Oracle RAC
In addition to using locally managed tablespaces, you can further simplify space
administration by using automatic segment space management (ASSM) and automatic undo
management.

ASSM distributes instance workloads among each instance's subset of blocks for inserts.
This improves Oracle RAC performance because it minimizes block transfers. To deploy
automatic undo management in an Oracle RAC environment, each instance must have its
own undo tablespace.

Object Creation and Performance in Oracle RAC
As a general rule, only use DDL statements for maintenance tasks and avoid executing DDL
statements during peak system operation periods. In most systems, the amount of new object
creation and other DDL statements should be limited. Just as in noncluster Oracle databases,
excessive object creation and deletion can increase performance overhead.

Node Addition and Deletion and the SYSAUX Tablespace in Oracle RAC
If you add nodes to your Oracle RAC database environment, then you may need to increase
the size of the SYSAUX tablespace. Conversely, if you remove nodes from your cluster
database, then you may be able to reduce the size of your SYSAUX tablespace.

See Also:

Your platform-specific Oracle RAC installation guide for guidelines about sizing the
SYSAUX tablespace for multiple instances

Distributed Transactions and Oracle RAC
If you are running XA Transactions in an Oracle RAC environment and the performance is
poor, then direct all branches of a tightly coupled distributed transaction to the same instance
by creating multiple Oracle Distributed Transaction Processing (DTP) services, with one or
more on each Oracle RAC instance.

Each DTP service is a singleton service that is available on one and only one Oracle RAC
instance. All access to the database server for distributed transaction processing must be
done by way of the DTP services. Ensure that all of the branches of a single global
distributed transaction use the same DTP service. In other words, a network connection
descriptor, such as a TNS name, a JDBC URL, and so on, must use a DTP service to support
distributed transaction processing.

Chapter 13
General Database Deployment Topics for Oracle RAC

13-7

Related Topics

• Distributed Transaction Processing in Oracle RAC

• Oracle Database Development Guide

Deploying OLTP Applications in Oracle RAC
Cache Fusion makes Oracle RAC databases the optimal deployment servers for
online transaction processing (OLTP) applications. This is because these types of
applications require:

• High availability if there are failures

• Scalability to accommodate increased system demands

• Load balancing according to demand fluctuations

The high availability features of Oracle Database and Oracle RAC can re-distribute
and load balance workloads to surviving instances without interrupting processing.
Oracle RAC also provides excellent scalability so that if you add or replace a node,
then Oracle Database re-masters resources and re-distributes processing loads.

Flexible Implementation with Cache Fusion
To accommodate the frequently changing workloads of online transaction processing
systems, Oracle RAC remains flexible and dynamic despite changes in system load
and system availability. Oracle RAC addresses a wide range of service levels that, for
example, fluctuate due to:

• Varying user demands

• Peak scalability issues like trading storms (bursts of high volumes of transactions)

• Varying availability of system resources

Deploying Data Warehouse Applications with Oracle RAC
This section discusses how to deploy data warehouse systems in Oracle RAC
environments by briefly describing the data warehouse features available in shared
disk architectures.

This section includes the following topics:

• Speed-Up for Data Warehouse Applications on Oracle RAC

• Parallel Execution in Data Warehouse Systems and Oracle RAC

Speed-Up for Data Warehouse Applications on Oracle RAC
Oracle RAC is ideal for data warehouse applications because it augments the
noncluster benefits of Oracle Database. Oracle RAC does this by maximizing the
processing available on all of the nodes that belong to an Oracle RAC database to
provide speed-up for data warehouse systems.

The query optimizer considers parallel execution when determining the optimal
execution plans. The default cost model for the query optimizer is CPU+I/O and the
cost unit is time. In Oracle RAC, the query optimizer dynamically computes intelligent
defaults for parallelism based on the number of processors in the nodes of the cluster.

Chapter 13
General Database Deployment Topics for Oracle RAC

13-8

An evaluation of the costs of alternative access paths, table scans versus indexed access, for
example, takes into account the degree of parallelism available for the operation. This results
in Oracle Database selecting the execution plans that are optimized for your Oracle RAC
configuration.

Parallel Execution in Data Warehouse Systems and Oracle RAC
Parallel execution uses multiple processes to run SQL statements on one or more CPUs and
is available on both noncluster Oracle databases and Oracle RAC databases.

Oracle RAC takes full advantage of parallel execution by distributing parallel processing
across all available instances. The number of processes that can participate in parallel
operations depends on the degree of parallelism assigned to each table or index.

Related Topics

• Oracle Database Performance Tuning Guide

• Oracle Database Concepts

Data Security Considerations in Oracle RAC
This section describes the following two Oracle RAC security considerations:

• Transparent Data Encryption and Keystores

• Windows Firewall Considerations

Transparent Data Encryption and Keystores
Oracle Database enables Oracle RAC nodes to share the keystore (wallet). This eliminates
the need to manually copy and synchronize the keystore across all nodes. Oracle
recommends that you create the keystore on a shared file system. This allows all instances to
access the same shared keystore.

Oracle RAC uses keystores in the following ways:

1. Any keystore operation, like opening or closing the keystore, performed on any one
Oracle RAC instance is applicable for all other Oracle RAC instances. This means that
when you open and close the keystore for one instance, then it opens and closes the
keystore for all Oracle RAC instances.

2. When using a shared file system, ensure that the ENCRYPTION_WALLET_LOCATION
parameter for all Oracle RAC instances points to the same shared keystore location. The
security administrator must also ensure security of the shared keystore by assigning
appropriate directory permissions.

Chapter 13
General Database Deployment Topics for Oracle RAC

13-9

Note:

If Oracle Automatic Storage Management Cluster File System (Oracle
ACFS) is available for your operating system, then Oracle recommends
that you store the keystore in Oracle ACFS. If you do not have Oracle
ACFS in Oracle ASM, then use the Oracle ASM Configuration Assistant
(ASMCA) to create it. You must add the mount point to the sqlnet.ora
file in each instance, as follows:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE = (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /opt/oracle/acfsmounts/data_keystore)))

This file system is mounted automatically when the instances start.
Opening and closing the keystore, and commands to set or rekey and
rotate the TDE master encryption key, are synchronized between all
nodes.

3. A master key rekey performed on one instance is applicable for all instances.
When a new Oracle RAC node comes up, it is aware of the current keystore open
or close status.

4. Do not issue any keystore ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN or
CLOSE SQL statements while setting up or changing the master key.

Oracle does not support the use of individual TDE wallets for each Oracle RAC node.
Instead, use shared wallets for TDE in the Oracle RAC environment. This enables all
of the instances to access the same shared software keystore.

Related Topics

• Oracle Database Advanced Security Guide

Windows Firewall Considerations
By default, all installations of Windows Server 2003 Service Pack 1 and higher enable
the Windows Firewall to block virtually all TCP network ports to incoming connections.
As a result, any Oracle products that listen for incoming connections on a TCP port will
not receive any of those connection requests, and the clients making those
connections will report errors.

Depending upon which Oracle products you install and how they are used, you may
need to perform additional Windows post-installation configuration tasks so that the
Firewall products are functional on Windows Server 2003.

Securely Run ONS Clients Using Wallets
You can configure and use SSL certificates to set up authentication between the ONS
server in the database tier and the notification client in the middle tier.

JDBC or Oracle Universal Connection Pools, and other Oracle RAC features, such as
Fast Connection Failover, subscribe to notifications from the Oracle Notification
Service (ONS) running on Oracle RAC nodes. These connections are not usually
authenticated.

Chapter 13
General Database Deployment Topics for Oracle RAC

13-10

1. Starting with Oracle Database 18c, a default wallet is created during the installation of
Oracle Grid Infrastructure.

2. If you are running a client-side ONS daemon on the middle tier, then there are two
possible configurations:

• ONS started from OPMN (as in OracleAS 10.1.3.x), which uses opmn.xml for its
configuration.

• ONS started standalone (as when using ONSCTL), which uses ons.config for its
configuration.

For the first configuration, refer to the OPMN Administrator's Guide for the Oracle
Application Server release. This involves modifying the opmn.xml file to specify the wallet
location.

For the second configuration, the client-side ONS daemon can, potentially, run on
different servers. Copy the wallet from step 1 to those client-side servers and specify the
path on that client-side server in either the ons.config file or in the opmn.xml file.

3. If you are running a remote ONS configuration without a client-side ONS daemon, then
configure the client-side server.

a. Export the ONS resource to the client cluster.

Use a command similar to the following, where cluster_name is the name of the
remote cluster, and filename is the name of the file to which the credentials data will
be written.

$ srvctl export ons -clientcluster cluster_name -clientdata filename

b. Specify the path on the client-side server.

Modify either the ons.config file or the opmn.xml file to point to the location of the
copied file.

Related Topics

• Configuration of Client-Side ONS Daemon

Related Topics

• Remote Configuration of ONS

Introduction to Hang Manager
Hang Manager is an Oracle Real Application Clusters (Oracle RAC) environment feature that
autonomously resolves hangs and keeps the resources available.

Enabled by default, Hang Manager:

• Reliably detects database hangs and deadlocks

• Autonomously resolves database hangs and deadlocks

• Supports Oracle Database QoS Performance Classes, Ranks, and Policies to maintain
SLAs

• Logs all detections and resolutions

• Provides SQL interface to configure sensitivity (Normal/High) and trace file sizes

Chapter 13
Introduction to Hang Manager

13-11

A database hangs when a session blocks a chain of one or more sessions. The
blocking session holds a resource such as a lock or latch that prevents the blocked
sessions from progressing. The chain of sessions has a root or a final blocker session,
which blocks all the other sessions in the chain. Hang Manager resolves these issues
autonomously by detecting and resolving the hangs.

Hang Manager Architecture
Hang Manager autonomously runs as a DIA0 task within the database.

Hang Manager works in the following three phases:

• Detect: In this phase, Hang Manager collects the data on all the nodes and
detects the sessions that are waiting for the resources held by another session.

• Analyze: In this phase, Hang Manager analyzes the sessions detected in the
Detect phase to determine if the sessions are part of a potential delay. If the
sessions are suspected as delayed, Hang Manager then waits for a certain
threshold time period to ensure that the sessions are delayed.

• Verify: In this phase, after the threshold time period is up, Hang Manager verifies
that the sessions are delayed and selects a session that's causing the delay.

After selecting the session that's causing the delay, Hang Manager applies resolution
methods on that session. If the chain of sessions or the delay resolves automatically,
then Hang Manager does not apply delay resolution methods. However, if the delay
does not resolve by itself, then Hang Manager resolves the delay by terminating the
session that's causing the delay. If terminating the session fails, then Hang Manager
terminates the process of the session. This entire process is autonomous and does
not block resources for a long period and does not affect the performance.

For example, if a high rank session is included in the chain of delayed sessions, then
Hang Manager expedites the termination of the session that's causing the delay.
Termination of the session that's causing the delay prevents the high rank session
from waiting too long and helps to maintain performance objective of the high rank
session.

Optional Configuration for Hang Manager
You can adjust the sensitivity, and control the size and number of the log files used by
Hang Manager.

Sensitivity

If Hang Manager detects a delay, then Hang Manager waits for a certain threshold
time period to ensure that the sessions are delayed. Change threshold time period by
using DBMS_HANG_MANAGER to set the sensitivity parameter to either Normal or High.
If the sensitivity parameter is set to Normal, then Hang Manager waits for the
default time period. However, if the sensitivity is set to High, then the time period is
reduced by 50%.

By default, the sensitivity parameter is set to Normal. To set Hang Manager
sensitivity, run the following commands in SQL*Plus as SYS user:

Chapter 13
Introduction to Hang Manager

13-12

• To set the sensitivity parameter to Normal:

exec dbms_hang_manager.set(dbms_hang_manager.sensitivity,
dbms_hang_manager.sensitivity_normal);

• To set the sensitivity parameter to High:

exec dbms_hang_manager.set(dbms_hang_manager.sensitivity,
dbms_hang_manager.sensitivity_high);

Size of the Trace Log File

The Hang Manager logs detailed diagnostics of the delays in the trace files with _base_ in the
file name. Change the size of the trace files in bytes with the base_file_size_limit
parameter. Run the following command in SQL*Plus, for example, to set the trace file size
limit to 100 MB:

exec dbms_hang_manager.set(dbms_hang_manager.base_file_size_limit,
104857600);

Number of Trace Log Files

The base Hang Manager trace files are part of a trace file set. Change the number of trace
files in trace file set with the base_file_set_count parameter. Run the following command in
SQL*Plus, for example, to set the number of trace files in trace file set to 6:

exec dbms_hang_manager.set(dbms_hang_manager.base_file_set_count,6);

By default, base_file_set_count parameter is set to 5.

Hang Manager Diagnostics and Logging
Hang Manager autonomously resolves delays and continuously logs the resolutions in the
database alert logs and the diagnostics in the trace files.

Hang Manager logs the resolutions in the database alert logs as Automatic Diagnostic
Repository (ADR) incidents with incident code ORA–32701.

You also get detailed diagnostics about the delay detection in the trace files. Trace files and
alert logs have file names starting with database instance_dia0_.

• The trace files are stored in the $ ADR_BASE/diag/rdbms/database name/
database instance/incident/incdir_xxxxxx directory

• The alert logs are stored in the $ ADR_BASE/diag/rdbms/database name/
database instance/trace directory

Example 13-1 Hang Manager Trace File for a Local Instance

This example shows an example of the output you see for Hang Manager for the local
database instance

Trace Log File .../oracle/log/diag/rdbms/hm1/hm11/incident/incdir_111/
hm11_dia0_11111_i111.trc

Chapter 13
Introduction to Hang Manager

13-13

Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production
...
*** 2016-07-16T12:39:02.715475-07:00
HM: Hang Statistics - only statistics with non-zero values are listed

 current number of active sessions 3
 current number of hung sessions 1
 instance health (in terms of hung sessions) 66.67%
 number of cluster-wide active sessions 9
 number of cluster-wide hung sessions 5
 cluster health (in terms of hung sessions) 44.45%

*** 2016-07-16T12:39:02.715681-07:00
Resolvable Hangs in the System
 Root Chain Total Hang
 Hang Hang Inst Root #hung #hung Hang Hang Resolution
 ID Type Status Num Sess Sess Sess Conf Span Action
 ----- ---- -------- ---- ----- ----- ----- ------ ------

 1 HANG RSLNPEND 3 44 3 5 HIGH GLOBAL Terminate
Process
 Hang Resolution Reason: Although hangs of this root type are
typically
 self-resolving, the previously ignored hang was automatically
resolved.

Example 13-2 Error Message in the Alert Log Indicating a Hung Session

This example shows an example of a Hang Manager alert log on the primary instance

2016-07-16T12:39:02.616573-07:00
Errors in file .../oracle/log/diag/rdbms/hm1/hm1/trace/
hm1_dia0_i1111.trc (incident=1111):
ORA-32701: Possible hangs up to hang ID=1 detected
Incident details in: .../oracle/log/diag/rdbms/hm1/hm1/incident/
incdir_1111/hm1_dia0_11111_i1111.trc
2016-07-16T12:39:02.674061-07:00
DIA0 requesting termination of session sid:44 with serial # 23456
(ospid:34569) on instance 3
 due to a GLOBAL, HIGH confidence hang with ID=1.
 Hang Resolution Reason: Although hangs of this root type are
typically
 self-resolving, the previously ignored hang was automatically
resolved.
DIA0: Examine the alert log on instance 3 for session termination
status of hang with ID=1.

Chapter 13
Introduction to Hang Manager

13-14

Example 13-3 Error Message in the Alert Log Showing a Session Delay Resolved by
Hang Manager

This example shows an example of a Hang Manager alert log on the local instance for
resolved delays

2016-07-16T12:39:02.707822-07:00
Errors in file .../oracle/log/diag/rdbms/hm1/hm11/trace/hm11_dia0_11111.trc
(incident=169):
ORA-32701: Possible hangs up to hang ID=1 detected
Incident details in: .../oracle/log/diag/rdbms/hm1/hm11/incident/incdir_169/
hm11_dia0_30676_i169.trc
2016-07-16T12:39:05.086593-07:00
DIA0 terminating blocker (ospid: 30872 sid: 44 ser#: 23456) of hang with ID
= 1
 requested by master DIA0 process on instance 1
 Hang Resolution Reason: Although hangs of this root type are typically
 self-resolving, the previously ignored hang was automatically resolved.
 by terminating session sid:44 with serial # 23456 (ospid:34569)
...
DIA0 successfully terminated session sid:44 with serial # 23456
(ospid:34569) with status 0.

Chapter 13
Introduction to Hang Manager

13-15

14
Monitoring Performance

This chapter describes how to monitor and tune Oracle Real Application Clusters (Oracle
RAC) performance.

This chapter includes the following topics:

• Overview of Monitoring and Tuning Oracle RAC Databases

• Verifying the Interconnect Settings for Oracle RAC

• Influencing Interconnect Processing

• Performance Views in Oracle RAC

• Creating Oracle RAC Data Dictionary Views with CATCLUST.SQL

• Oracle RAC Performance Statistics

• Automatic Workload Repository in Oracle RAC Environments

• Active Session History Reports for Oracle RAC

• Monitoring Oracle RAC Statistics and Wait Events

Overview of Monitoring and Tuning Oracle RAC Databases
This section includes the following topics:

• Monitoring Oracle RAC and Oracle Clusterware

• Tuning Oracle RAC Databases

• Database Reliability Framework

Related Topics

• Oracle Database 2 Day DBA

• Oracle Database 2 Day + Performance Tuning Guide

• Oracle Clusterware Administration and Deployment Guide

Monitoring Oracle RAC and Oracle Clusterware
Using Oracle Enterprise Manager is the preferred method for monitoring Oracle RAC and
Oracle Clusterware. Oracle Enterprise Manager is an Oracle Web-based integrated
management solution for monitoring and administering your computing environment. From
any location where you can access a web browser, you can manage Oracle RAC databases,
application servers, host computers, and Web applications, in addition to related hardware
and software. For example, you can monitor your Oracle RAC database performance from
your office, home, or a remote site, if you have access to a Web browser.

Oracle Enterprise Manager Cloud Control is cluster-aware and provides a central console to
manage your cluster database. From the Cluster Database Home page, you can do all of the
following:

14-1

• View the overall system status, such as the number of nodes in the cluster and
their current status. This high-level view capability means that you do not have to
access each individual database instance for details if you just want to see
inclusive, aggregated information.

• View alert messages aggregated across all the instances with lists for the source
of each alert message. An alert message is an indicator that signifies that a
particular metric condition has been encountered. A metric is a unit of
measurement used to report the system's conditions.

• Review issues that are affecting the entire cluster and those issues that are
affecting individual instances.

• Monitor cluster cache coherency statistics to help you identify processing trends
and optimize performance for your Oracle RAC environment. Cache coherency
statistics measure how well the data in caches on multiple instances is
synchronized. If the data caches are completely synchronized with each other,
then reading a memory location from the cache on any instance will return the
most recent data written to that location from any cache on any instance.

Oracle Enterprise Manager accumulates data over specified periods of time, called
collection-based data. Oracle Enterprise Manager also provides current data, called
real-time data.

The Cluster Database Home Page
You can use Oracle Enterprise Manager with a client browser to monitor the status of
both Oracle Clusterware and the Oracle RAC environments. Monitoring can include
such things as:

• Notification if there are any VIP relocations

• Status of the Oracle Clusterware on each node of the cluster using information
obtained through the Cluster Verification Utility (cluvfy)

• Notification if node applications (nodeapps) start or stop

• Notification of issues in the Oracle Clusterware alert log for OCR, voting disk
issues (if any), and node evictions

The Cluster Database Home page is similar to a noncluster Database Home page.
However, on the Cluster Database Home page, Oracle Enterprise Manager displays
the system state and availability. This includes a summary about alert messages and
job activity, and links to all the database and Oracle Automatic Storage Management
(Oracle ASM) instances. For example, you can track problems with services on the
cluster including when a service is not running on all of the preferred instances or
when a service response time threshold is not being met.

The Interconnects Page
You can use the Oracle Enterprise Manager Interconnects page to monitor the Oracle
Clusterware environment. The Interconnects page shows the public and private
interfaces on the cluster and the load contributed by database instances on the
interconnect, including:

• Overall throughput across the private interconnect

• Notification if a database instance is using public interface due to misconfiguration

• Throughput and errors (if any) on the interconnect

Chapter 14
Overview of Monitoring and Tuning Oracle RAC Databases

14-2

• Throughput contributed by individual instances on the interconnect

All of this information is also available as collections that have a historic view, which is useful
with cluster cache coherency, such as when diagnosing problems related to cluster wait
events. You can access the Interconnects page by clicking the Interconnect tab on the
Cluster Database home page or clicking the Interconnect Alerts link under Diagnostic
Findings on the Oracle RAC database home page.

The Cluster Database Performance Page
The Oracle Enterprise Manager Cluster Database Performance page provides a quick
glimpse of the performance statistics for a database.

Statistics are rolled up across all the instances in the cluster database in charts. Using the
links next to the charts, you can get more specific information and perform any of the
following tasks:

• Identify the causes of performance issues.

• Decide whether resources need to be added or redistributed.

• Tune your SQL plan and schema for better optimization.

• Resolve performance issues

The charts on the Cluster Database Performance page include the following:

• Chart for Cluster Host Load Average: The Cluster Host Load Average chart in the
Cluster Database Performance page shows potential problems that are outside the
database. The chart shows maximum, average, and minimum load values for available
nodes in the cluster for the previous hour.

• Chart for Global Cache Block Access Latency: Each cluster database instance has its
own buffer cache in its System Global Area (SGA). Using Cache Fusion, Oracle RAC
environments logically combine each instance's buffer cache to enable the database
instances to process data as if the data resided on a logically combined, single cache.

• Chart for Average Active Sessions: The Average Active Sessions chart in the Cluster
Database Performance page shows potential problems inside the database. Categories,
called wait classes, show how much of the database is using a resource, such as CPU or
disk I/O. Comparing CPU time to wait time helps to determine how much of the response
time is consumed with useful work rather than waiting for resources that are potentially
held by other processes.

• Chart for Database Throughput: The Database Throughput charts summarize any
resource contention that appears in the Average Active Sessions chart, and also show
how much work the database is performing on behalf of the users or applications. The
Per Second view shows the number of transactions compared to the number of logons,
and the amount of physical reads compared to the redo size per second. The Per
Transaction view shows the amount of physical reads compared to the redo size per
transaction. Logons is the number of users that are logged on to the database.

In addition, the Top Activity drill down menu on the Cluster Database Performance page
enables you to see the activity by wait events, services, and instances. Plus, you can see the
details about SQL/sessions by going to a prior point in time by moving the slider on the chart.

The Cluster Database Performance page provides a quick glimpse of the performance
statistics for an Oracle RAC database. Statistics are rolled up across all of the instances in
the cluster database so that users can identify performance issues without going through all
the instances. To help triage the performance issues related to services, Oracle Enterprise
Manager aggregates the activity data at the following levels:

Chapter 14
Overview of Monitoring and Tuning Oracle RAC Databases

14-3

• Aggregate by waits

All the activity data is presented in 12 categories: CPU, Scheduler, User I/O,
System I/O, Concurrency, Application, Commit, Configuration, Administrative,
Network, Cluster and Other. The data presented is rolled up from all of the running
instances.

• Aggregate by services

All the activity data is rolled up for each service. When the activity data is
presented in this way, it is easy to identify which service is most active, and needs
more analysis.

• Aggregate by instances

As a similar effort, the activity data is rolled up for each instance, if services are
not the interested ones.

The aggregates are provided on the pages where the activity data is presented
including: Database Performance Page, Top Activity Page, Wait Details Page and
Service Details Page.

Tuning Oracle RAC Databases
All noncluster tuning practices for Oracle Database apply to Oracle RAC databases.

Related Topics

• Oracle Database 2 Day + Performance Tuning Guide

• Oracle Database Performance Tuning Guide

Database Reliability Framework
The Database Reliability Framework (DRF) is a proactive and automatic monitoring
and correction framework.

The Database Reliability Framework monitors various metrics across different layers of
the database continuously for the purpose of detecting problems before any disruption
of service occurs. DRF improves database availability by monitoring critical events in
the database and taking corrective actions when these critical events hit certain
thresholds.

After a problem is identified, an action is implemented automatically. Actions include
resizing internal memory structures or changing the priority of Oracle RAC processes,
depending on the identified problem. For example, consider a system which has high
redo waits with no I/O contention based on the metrics collected over time. If there is
enough CPU resource available, then a possible action plan for reducing the redo
waits is to move the LGWR process to higher priority to ensure it gets enough CPU.
DRF would take this action after carefully considering all the metrics. This results in
problem resolution with minimal service disruption before the problem multiplies over
time and affects database availability.

Verifying the Interconnect Settings for Oracle RAC
Use SQL statements to verify the interconnect settings for Oracle RAC.

The interconnect and internode communication protocols can affect Cache Fusion
performance. In addition, the interconnect bandwidth, its latency, and the efficiency of

Chapter 14
Verifying the Interconnect Settings for Oracle RAC

14-4

the IPC protocol determine the speed with which Cache Fusion processes block transfers.

To verify the interconnect settings of the Oracle RAC database instance to which you are
connected, query the V$CLUSTER_INTERCONNECTS and V$CONFIGURED_INTERCONNECTS views.
For example:

Example 14-1 Verify Interconnect Settings with V$CLUSTER_INTERCONNECTS

SQL> SELECT * FROM V$CLUSTER_INTERCONNECTS;

NAME IP_ADDRESS IS_PUBLIC SOURCE
--------------- -------------- --- -------------------------------
eth2 10.137.20.181 NO Oracle Cluster Repository

Note:

You can query the GV$CLUSTER_INTERCONNECTS view to display the entries for all of
the instances in the cluster.

Example 14-2 Verify Interconnect Settings with V$CONFIGURED_INTERCONNECTS

SQL> SELECT * FROM V$CONFIGURED_INTERCONNECTS;

NAME IP_ADDRESS IS_PUBLIC SOURCE
--------------- --------------- --- -------------------------------
eth2 10.137.20.181 NO Oracle Cluster Repository
eth0 10.137.8.225 YES Oracle Cluster Repository

Influencing Interconnect Processing
After your interconnect is operative, you cannot significantly influence its performance.
However, you can influence an interconnect protocol's efficiency by adjusting the interprocess
communication (IPC) buffer sizes.

In Oracle Clusterware, the Oracle Cluster Registry (OCR) stores your system's interconnect
information. To identify the interconnect for your cluster, use the Oracle Interface
Configuration (OIFCFG) command-line utility oifcfg getif command, or the OCRDUMP utility.
You can then change the interconnect that you are using by running an OIFCFG command.

Although you rarely need to set the CLUSTER_INTERCONNECTS parameter, you can use it to
assign a private network IP address, or a network interface card (NIC). For example:

CLUSTER_INTERCONNECTS=10.0.0.1

If you are using an operating system-specific vendor IPC protocol, then the trace information
may not reveal the IP address.

Chapter 14
Influencing Interconnect Processing

14-5

Notes:

• You can also use OIFCFG command to assign private network or private
IP addresses.

• With Oracle Clusterware releases after Oracle Clusterware 12c release 2
(12.2), you can assign either IPv4 or IPv6 addresses to multiple private
networks. However, you must choose one or the other protocol, and you
must and use that protocol for all of the private networks in the cluster.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

• Oracle Clusterware Administration and Deployment Guide

• Oracle Database Reference

Performance Views in Oracle RAC
To obtain performance information about your Oracle Real Application Clusters
(Oracle RAC) database, you can query either instance-specific views, or dynamic
performance views for the entire cluster.

Each instance in an Oracle Real Application Clusters (Oracle RAC) database has a
set of instance-specific views, which are prefixed with V$.You can also query global
dynamic performance views to retrieve performance information from all of the
qualified instances. Global dynamic performance view names are prefixed with GV$.

Querying a GV$ view retrieves the V$ view information from all qualified instances. In
addition to the V$ information, each GV$ view contains an extra column named INST_ID
of data type NUMBER. The INST_ID column displays the instance number from which the
associated V$ view information was obtained.

You can use the INST_ID column as a filter to retrieve V$ information from a subset of
available instances. For example, the following query retrieves the information from
the V$LOCK view for instances 2 and 5:

SQL> SELECT * FROM GV$LOCK WHERE INST_ID = 2 OR INST_ID = 5;

Related Topics

• Oracle Database Reference

Creating Oracle RAC Data Dictionary Views with
CATCLUST.SQL

If you did not create your Oracle RAC database with Oracle DBCA, then you must run
the CATCLUST.SQL script to create views and tables related to Oracle RAC.

If you did not create your Oracle Real Application Clusters (Oracle RAC) database by
using Oracle Database Configuration Assistant (Oracle DBCA), then the data

Chapter 14
Performance Views in Oracle RAC

14-6

dictionary setup for Oracle RAC is incomplete. To create the views and tables related to
Oracle RAC, you must run the CATCLUST.SQL script. To run the CATCLUST.SQL script, the user
account you use must be granted SYSDBA privileges.

Oracle RAC Performance Statistics
Oracle Real Application Clusters (Oracle RAC) statistics appear either as message request
counters, or as timed statistics.

Message request counters include statistics showing the number of certain types of block
mode conversions. Timed statistics reveal the total or average time waited for read and write
I/O for particular types of operations.

Automatic Workload Repository in Oracle RAC Environments
You can use Automatic Workload Repository to monitor performance statistics related to
Oracle RAC databases.

Automatic Workload Repository (AWR) automatically generates snapshots of the
performance data once every hour and collects the statistics in the workload repository. In
Oracle RAC environments, each AWR snapshot captures data from all active instances in the
cluster. The data for each snapshot set is captured from the same point in time. AWR stores
the snapshot data for all instances in the same table and the data is identified by an instance
qualifier. For example, the BUFFER_BUSY_WAIT statistic shows the number of buffer waits on
each instance. AWR does not store data that is aggregated from across the entire cluster. In
other words, the data is stored for each individual instance.

Using the Automatic Database Diagnostic Monitor (ADDM), you can analyze the information
collected by AWR for possible performance problems with Oracle Database. ADDM presents
performance data from a cluster-wide perspective, thus enabling you to analyze performance
on a global basis. In an Oracle RAC environment, ADDM can analyze performance using
data collected from all instances and present it at different levels of granularity, including:

• Analysis for the entire cluster

• Analysis for a specific database instance

• Analysis for a subset of database instances

To perform these analyses, you can run the ADDM Advisor in ADDM for Oracle RAC mode to
perform an analysis of the entire cluster; in Local ADDM mode to analyze the performance of
an individual instance; or in Partial ADDM mode to analyze a subset of instances. Activate
ADDM analysis using the advisor framework through Advisor Central in Oracle Enterprise
Manager, or through the DBMS_ADVISOR and DBMS_ADDM PL/SQL packages.

Related Topics

• Oracle Database Performance Tuning Guide

• Oracle Database PL/SQL Packages and Types Reference

Active Session History Reports for Oracle RAC
This section describes Active Session History (ASH) reports for Oracle RAC under the
following topics:

• Overview of ASH Reports for Oracle RAC

Chapter 14
Oracle RAC Performance Statistics

14-7

• ASH Report for Oracle RAC: Top Cluster Events

• ASH Report for Oracle RAC: Top Remote Instance

Related Topics

• Oracle Database Performance Tuning Guide

Overview of ASH Reports for Oracle RAC
ASH is an integral part of the Oracle Database self-management framework and is
useful for diagnosing performance problems in Oracle RAC environments. ASH report
statistics provide details about Oracle Database session activity. Oracle Database
records information about active sessions for all active Oracle RAC instances and
stores this data in the System Global Area (SGA). Any session that is connected to the
database and using CPU is considered an active session. The exception to this is
sessions that are waiting for an event that belongs to the idle wait class.

ASH reports present a manageable set of data by capturing only information about
active sessions. The amount of the data is directly related to the work being
performed, rather than the number of sessions allowed on the system.

ASH statistics that are gathered over a specified duration can be put into ASH reports.
Each ASH report is divided into multiple sections to help you identify short-lived
performance problems that do not appear in the ADDM analysis. Two ASH report
sections that are specific to Oracle RAC are Top Cluster Events and Top Remote
Instance as described in the next two sections.

ASH Report for Oracle RAC: Top Cluster Events
The ASH report Top Cluster Events section is part of the Top Events report that is
specific to Oracle RAC. The Top Cluster Events report lists events that account for the
highest percentage of session activity in the cluster wait class event along with the
instance number of the affected instances. You can use this information to identify
which events and instances caused a high percentage of cluster wait events.

ASH Report for Oracle RAC: Top Remote Instance
The ASH report Top Remote Instance section is part of the Top Load Profile report that
is specific to Oracle RAC. The Top Remote Instance report shows cluster wait events
along with the instance numbers of the instances that accounted for the highest
percentages of session activity. You can use this information to identify the instance
that caused the extended cluster wait period.

Monitoring Oracle RAC Statistics and Wait Events
This section explains wait events and statistics specific to Oracle RAC and how to
interpret them when assessing performance data generated by the Automatic
Workload Repository (AWR), Statspack, or by ad-hoc queries of the dynamic
performance views.

This section includes the following topics:

• Oracle RAC Statistics and Events in AWR and Statspack Reports

• Oracle RAC Wait Events

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-8

• Monitoring Performance by Analyzing GCS and GES Statistics

• Analyzing Cache Fusion Transfer Impact Using GCS Statistics

• Analyzing Response Times Based on Wait Events

Related Topics

• Oracle Database Performance Tuning Guide

Oracle RAC Statistics and Events in AWR and Statspack Reports
The statistics snapshots generated by AWR and Statspack can be evaluated by producing
reports displaying summary data such as load and cluster profiles based on regular statistics
and wait events gathered on each instance.

Most of the relevant data is summarized on the Oracle RAC Statistics Page. This information
includes:

• Global cache load profile

• Global cache efficiency percentages—workload characteristics

• Global cache and Enqueue Service (GES)—messaging statistics

Additional Oracle RAC sections appear later in the report:

• Global enqueue statistics

• Global CR statistics

• Global CURRENT served statistics

• Global cache transfer statistics.

Oracle RAC Wait Events
Analyzing and interpreting what causes sessions to wait is an important method to determine
where time is spent.

In Oracle RAC, the wait time is attributed to an event which reflects the exact outcome of a
request. For example, when a session on an instance is looking for a block in the global
cache, it does not know whether it will receive the data cached by another instance or
whether it will receive a message to read from disk. The wait events for the global cache
convey precise information and waiting for global cache blocks or messages is:

• Summarized in a broader category called Cluster Wait Class

• Temporarily represented by a placeholder event which is active while waiting for a block,
for example:

– gc current block request
– gc cr block request

• Attributed to precise events when the outcome of the request is known, for example:

– gc current block 3-way
– gc current block busy
– gc cr block grant 2-way

• Multi-block read request events when all disk reads are preferred, for example:

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-9

– gc cr multi block grant
– gc cr multi block mixed

In summary, the wait events for Oracle RAC convey information valuable for
performance analysis. They are used in Automatic Database Diagnostic Monitor
(ADDM) to enable precise diagnostics of the effect of cache fusion.

Monitoring Performance by Analyzing GCS and GES Statistics
To determine the amount of work and cost related to inter-instance messaging and
contention, examine block transfer rates, remote requests made by each transaction,
the number and time waited for global cache events as described under the following
headings:

• Analyzing the Effect of Cache Fusion in Oracle RAC

• Analyzing Performance Using GCS and GES Statistics

Analyzing the Effect of Cache Fusion in Oracle RAC
The effect of accessing blocks in the global cache and maintaining coherency is
represented by:

• The Global Cache Service (GCS) statistics for current and cr blocks, for
example, gc current blocks received, gc cr blocks received, and so on

• The GCS wait events, for gc current block 3-way, gc cr grant 2-way, and so
on

The response time for cache fusion transfers is determined by the messaging and
processing times imposed by the physical interconnect components, the IPC protocol
and the GCS protocol. It is not affected by disk I/O factors other than occasional log
writes. The cache fusion protocol does not require I/O to data files to guarantee cache
coherency and Oracle RAC inherently does not cause any more I/O to disk than a
nonclustered instance.

Analyzing Performance Using GCS and GES Statistics
You can monitor GCS performance by identifying data blocks and objects which are
frequently used (hot) by all instances.

High concurrency on certain blocks may be identified by GCS wait events and times.

The gc current block busy wait event indicates that the access to cached data
blocks was delayed because they were busy either in the remote or the local cache.
This could be caused by any of the following:

• The blocks were pinned

• The blocks were held up by sessions

• The blocks were delayed by a log write on a remote instance

• A session on the same instance was already accessing a block which was in
transition between instances and the current session needed to wait behind it (for
example, gc current block busy)

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-10

Use the V$SESSION_WAIT view to identify objects and data blocks with contention. The GCS
wait events contain the file and block number for a block request in p1 and p2, respectively.

An additional segment statistic, gc buffer busy, has been added to quickly determine the
busy objects without having to query the V$SESSION_WAIT view mentioned earlier.

The AWR infrastructure provides a view of active session history which can also be used to
trace recent wait events and their arguments. It is therefore useful for hot block analysis.
Most of the reporting facilities used by AWR and Statspack contain the object statistics and
cluster wait class category, so that sampling of the views mentioned earlier is largely
unnecessary.

Note:

Oracle recommends using ADDM and AWR. However, Statspack is available for
backward compatibility. Statspack provides reporting only. You must run Statspack
at level 7 to collect statistics related to block contention and segment block waits.

It is advisable to run ADDM on the snapshot data collected by the AWR infrastructure to
obtain an overall evaluation of the impact of the global cache. The advisory will also identify
the busy objects and SQL highest cluster wait time.

Analyzing Cache Fusion Transfer Impact Using GCS Statistics
Describes how to monitor GCS performance by identifying objects read and modified
frequently and the service times imposed by the remote access.

Waiting for blocks to arrive may constitute a significant portion of the response time, in the
same way that reading from disk could increase the block access delays, only that cache
fusion transfers are usually faster than disk access latencies.

The following wait events indicate that the remotely cached blocks were shipped to the local
instance without having been busy, pinned or requiring a log flush:

• gc current block 2-way
• gc current block 3-way
• gc cr block 2-way
• gc cr block 3-way
The object statistics for gc current blocks received and gc cr blocks received enable
quick identification of the indexes and tables which are shared by the active instances. As
mentioned earlier, creating an ADDM analysis will usually point you to the SQL statements
and database objects that could be impacted by inter-instance contention.

Any increases in the average wait times for the events mentioned in the preceding list could
be caused by the following occurrences:

• High load: CPU shortages, long run queues, scheduling delays

• Misconfiguration: using public instead of private interconnect for message and block
traffic

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-11

If the average wait times are acceptable and no interconnect or load issues can be
diagnosed, then the accumulated time waited can usually be attributed to a few SQL
statements which need to be tuned to minimize the number of blocks accessed.

The column CLUSTER_WAIT_TIME in V$SQLAREA represents the wait time incurred by
individual SQL statements for global cache events and will identify the SQL which may
need to be tuned.

Analyzing Response Times Based on Wait Events
Most global cache wait events that show a high total time as reported in the AWR and
Statspack reports or in the dynamic performance views are normal and may present
themselves as the top database time consumers without actually indicating a problem.

This section describes frequent wait events that you should be aware of when
interpreting performance data.

If user response times increase and a high proportion of time waited is for global
cache, then you should determine the cause. Most reports include a breakdown of
events sorted by percentage of the total time.

It is useful to start with an ADDM report, which analyzes the routinely collected
performance statistics with respect to their impact, and points to the objects and SQL
contributing most to the time waited, and then moves on to the more detailed reports
produced by AWR and Statspack.

Wait events for Oracle RAC include the following categories:

• Block-Related Wait Events

• Message-Related Wait Events

• Contention-Related Wait Events

• Load-Related Wait Events

Block-Related Wait Events
The main wait events for block-related waits are:

• gc current block 2-way
• gc current block 3-way
• gc cr block 2-way
• gc cr block 3-way
The block-related wait event statistics indicate that a block was received as either the
result of a 2-way or a 3-way message, that is, the block was sent from either the
resource master requiring 1 message and 1 transfer, or was forwarded to a third node
from which it was sent, requiring 2 messages and 1 block transfer.

Message-Related Wait Events
The main wait events for message-related waits are:

• gc current grant 2-way
• gc cr grant 2-way

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-12

The message-related wait event statistics indicate that no block was received because it was
not cached in any instance. Instead a global grant was given, enabling the requesting
instance to read the block from disk or modify it.

If the time consumed by these events is high, then it may be assumed that the frequently
used SQL causes a lot of disk I/O (in the event of the cr grant) or that the workload inserts a
lot of data and needs to find and format new blocks frequently (in the event of the current
grant).

Contention-Related Wait Events
The main wait events for contention-related waits are:

• gc current block busy
• gc cr block busy
• gc buffer busy acquire/release
The contention-related wait event statistics indicate that a block was received which was
pinned by a session on another node, was deferred because a change had not yet been
flushed to disk or because of high concurrency, and therefore could not be shipped
immediately. A buffer may also be busy locally when a session has already initiated a cache
fusion operation and is waiting for its completion when another session on the same node is
trying to read or modify the same data. High service times for blocks exchanged in the global
cache may exacerbate the contention, which can be caused by frequent concurrent read and
write accesses to the same data.

The gc current block busy and gc cr block busy wait events indicate that the local
instance that is making the request did not immediately receive a current or consistent read
block. The term busy in these events' names indicates that the sending of the block was
delayed on a remote instance. For example, a block cannot be shipped immediately if Oracle
Database has not yet written the redo for the block's changes to a log file.

In comparison to block busy wait events, a gc buffer busy event indicates that Oracle
Database cannot immediately grant access to data that is stored in the local buffer cache.
This is because a global operation on the buffer is pending and the operation has not yet
completed. In other words, the buffer is busy and all other processes that are attempting to
access the local buffer must wait to complete.

The existence of gc buffer busy events also means that there is block contention that is
resulting in multiple requests for access to the local block. Oracle Database must queue
these requests. The length of time that Oracle Database needs to process the queue
depends on the remaining service time for the block. The service time is affected by the
processing time that any network latency adds, the processing time on the remote and local
instances, and the length of the wait queue.

The average wait time and the total wait time should be considered when being alerted to
performance issues where these particular waits have a high impact. Usually, either
interconnect or load issues or SQL execution against a large shared working set can be
found to be the root cause.

Load-Related Wait Events
The main wait events for load-related waits are:

• gc current block congested

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-13

• gc cr block congested
The load-related wait events indicate that a delay in processing has occurred in the
GCS, which is usually caused by high load, CPU saturation and would have to be
solved by additional CPUs, load-balancing, off loading processing to different times or
a new cluster node.For the events mentioned, the wait time encompasses the entire
round trip from the time a session starts to wait after initiating a block request until the
block arrives.

Chapter 14
Monitoring Oracle RAC Statistics and Wait Events

14-14

15
Converting Single-Instance Oracle Databases
to Oracle RAC and Oracle RAC One Node

Procedures for converting from Oracle Database single-instance databases to Oracle Real
Application Clusters (Oracle RAC) and Oracle RAC One Node databases.

The procedures in this chapter assume that your original single-instance database and the
target Oracle RAC database are using the same release and running on the same platform. If
you are upgrading from an earlier version of Oracle RAC to Oracle RAC 12c, then use Oracle
Database Upgrade Assistant (DBUA).

This chapter includes the following topics:

• Administrative Issues for Converting Databases to Oracle RAC

• Converting to Oracle RAC and Oracle RAC One Node Using DBCA

• Preparing to Convert with rconfig and Oracle Enterprise Manager

• Converting Databases to Oracle RAC Using rconfig

• Example of rconfig XML Input Files for ConvertToRAC

• Postconversion Steps

Note:

You must use clustered Oracle Automatic Storage Management (Oracle ASM)
instances for Oracle RAC databases.

Related Topics

• Oracle Database Options and Their Permitted Features

Administrative Issues for Converting Databases to Oracle RAC
You must address administrative considerations before converting single-instance databases
to Oracle RAC.

• Backup procedures should be available before converting from a single-instance Oracle
Database to Oracle RAC. This includes taking a backup of your existing database before
converting to Oracle RAC and being prepared to backup your Oracle RAC database
immediately following the conversion.

• For archiving with Oracle RAC environments, the archive file format requires a thread
number.

• The archived logs from all instances of an Oracle RAC database are required for media
recovery. Because of this requirement, if you archive to a file and you do not use a cluster
file system, or some other means to provide shared file systems, then you require a

15-1

method of accessing the archive logs from all nodes on which the cluster database
has instances.

• By default, all database files are migrated to Oracle Managed Files. This feature
simplifies tablespace creation, ensures data file location consistency and
compliance with Oracle Flexible Architecture rules, and reduces human error with
data file management.

Converting to Oracle RAC and Oracle RAC One Node Using
DBCA

You can use Database Configuration Assistant (DBCA) to convert from single-instance
Oracle databases to Oracle RAC or Oracle RAC One Node databases.

DBCA automates the configuration of the control file attributes, creates the undo
tablespaces and the redo logs, and creates the initialization parameter file entries for
cluster-enabled environments. DBCA also configures Oracle Net Services, Oracle
Clusterware resources, and the configuration for Oracle RAC database management
using Oracle Enterprise Manager or the Server Control utility (SRVCTL).

Before you use DBCA to convert a single-instance database to an Oracle RAC or an
Oracle RAC One Node database, ensure that your system meets the following
conditions:

• Your system uses supported hardware and operating system software. Your
system is configured properly to support an Oracle RAC database.

• The nodes have access to shared storage; for example, either Oracle Cluster File
System or Oracle ASM is available and accessible from all nodes. On Linux on
POWER systems, ensure that GPFS is available and accessible from all nodes.

• Your applications have no design characteristics that preclude their use with
cluster database processing.

If your platform supports a cluster file system, then you can use it for Oracle RAC. You
can also convert to Oracle RAC and use a non-shared file system. In either case,
Oracle strongly recommends that you use Oracle Universal Installer to install Oracle
Database 12c, which sets up the Oracle home and inventory in an identical location on
each of the selected nodes in your cluster.

This section includes the following topics:

• Converting Oracle Database Installations to Oracle RAC Using DBCA

• Converting Single Instance on a Cluster to Oracle RAC One Node Using DBCA

• Converting Single Instance on a Cluster to Oracle RAC Using DBCA

Related Topics

• Converting Databases

Converting Oracle Database Installations to Oracle RAC Using DBCA
To convert from a single-instance Oracle Database that is on a non-clustered
computer to Oracle RAC, perform the procedures described in the following sections,
and in the order shown:

• Use DBCA to Create an Image of the Single-Instance Database

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using DBCA

15-2

• Complete the Oracle Clusterware Installation

• Validate the Cluster

• Copy the Preconfigured Database Image

• Install Oracle Database 12c Software with Oracle RAC

Use DBCA to Create an Image of the Single-Instance Database
Use DBCA to create a preconfigured image of your single-instance database by using the
following procedure:

1. Navigate to the bin directory in $ORACLE_HOME, and start DBCA.

2. At the Welcome page, click Next.

3. On the Operations page, select Manage Templates, and click Next.

4. On the Template Management page, select Create a database template and From an
existing database (structure as well as data), then click Next.

5. On the Source Database page, select the database name in the Database instance list,
and click Next.

6. Use SQL to ensure that all pluggable databases (PDBs) are open, as follows:

SQL> SELECT name, open_mode FROM v$pdbs;

If any of the PDBs are in a state other than OPEN, then open them using SQL.

7. On the Template Properties page, enter a name for your template in the Name field.
Oracle recommends that you use the database name.

By default, the template files are generated in the directory $ORACLE_HOME/assistants/
dbca/templates. You can enter a description of the file in the Description field, and
change the template file location in the Template data file field.

When you have completed the entries, click Next.

8. On the Location of Database Related Files page, select Maintain the file locations, so
that you can restore the database to the current directory structure, and click Finish.

DBCA generates two files: a database structure file (template_name.dbc), and a database
preconfigured image file (template_name.dfb).

Complete the Oracle Clusterware Installation
Complete the installation of Oracle Clusterware.

Related Topics

• Oracle Grid Infrastructure Installation and Upgrade Guide

Validate the Cluster
Validate the cluster configuration using Cluster Verification Utility (CVU).

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using DBCA

15-3

Copy the Preconfigured Database Image
Copy the preconfigured database image. This includes copying the database structure
*.dbc file and the database preconfigured image *.dfb file (that you used DBCA to
create in a previous section) to a temporary location on the node in the cluster from
which you plan to run DBCA.

Related Topics

• Use DBCA to Create an Image of the Single-Instance Database
Use DBCA to create a preconfigured image of your single-instance database by
using the following procedure:

Install Oracle Database 12c Software with Oracle RAC
1. Run Oracle Universal Installer to install an Oracle Database with Oracle RAC.

2. Select Cluster Installation Mode on the Specify Hardware Cluster Installation
page of Oracle Universal Installer, and select the nodes to include in your Oracle
RAC database.

3. On the Oracle Universal Installer Database Configuration Types page, select the
Advanced installation type.

After installing the Oracle Database software, Oracle Universal Installer runs
postinstallation configuration tools, such as Net Configuration Assistant (NETCA),
DBCA, and so on.

4. On the DBCA Template Selection page, use the template that you copied to a
temporary location in the previous section. Use the browse option to select the
template location.

Select the option that you want to deploy. Your choices are the following: Oracle
RAC database; Oracle RAC One Node database; or Oracle single-instance
database.

5. After creating the Oracle RAC database, DBCA displays the Password
Management page on which you must change the passwords for database users
who have SYSDBA and SYSOPER privileges. When DBCA exits, the conversion
process is complete.

Converting Single Instance on a Cluster to Oracle RAC One Node
Using DBCA

Use DBCA to convert a single-instance Oracle Database to Oracle RAC One Node by
using the following procedure:

1. Change directory to $ORACLE_HOME/bin.

2. Start DBCA:

$ dbca

3. From the Welcome window, select Oracle RAC One Node database.

4. Use the template that you selected to deploy in the previous section.

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using DBCA

15-4

Converting Single Instance on a Cluster to Oracle RAC Using DBCA
There are three scenarios in which a single-instance database can exist on a cluster node:

• Scenario 1: The Oracle home for the single-instance database was installed on a cluster
node and has Oracle RAC enabled.

• Scenario 2: The Oracle home for the single-instance database was installed on a cluster
node, but the Oracle RAC feature is disabled for this Oracle home.

• Scenario 3: The Oracle home for the single-instance database was installed on only the
local node in a cluster. This happens when you select the Local Installation option on the
Oracle Universal Installer Specify Hardware Cluster Installation page during the Oracle
Database 12c installation.

Related Topics

• Single-Instance Database on a Cluster Running from an Oracle RAC-Enabled Home

• Single-Instance Database on a Cluster Running from an Oracle RAC-Disabled Home

• Converting Oracle Database Installations to Oracle RAC Using DBCA

• Install Oracle Database 12c Software with Oracle RAC

Single-Instance Database on a Cluster Running from an Oracle RAC-Enabled Home
Perform the following procedures to convert a single-instance database on a cluster node
running from an Oracle home that has the Oracle RAC option enabled.

1. Use DBCA to create a preconfigured image of your single-instance database. To perform
the conversion manually, shut down the single-instance database.

2. Add nodes to your cluster. Ensure that all nodes can access the shared storage used by
Oracle Clusterware and Oracle RAC.

3. From the existing Oracle home, extend this home to the new nodes.

4. From a newly added node, configure the listeners on the additional nodes using NETCA.
Choose the same port number and protocol that you used on the existing node. If NETCA
displays the existing node in the node list page, then do not select this node, because the
listener is already configured on it.

5. Convert the database using one of the following procedures:

• Automated Conversion Procedure Using DBCA

• Manual Conversion Procedure

Related Topics

• Use DBCA to Create an Image of the Single-Instance Database
Use DBCA to create a preconfigured image of your single-instance database by using the
following procedure:

• Oracle Clusterware Administration and Deployment Guide

• Adding Oracle RAC to Nodes with Oracle Clusterware Installed

Automated Conversion Procedure Using DBCA

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using DBCA

15-5

If you used DBCA to create a preconfigured image of your single-instance database as
described in a previous section, then perform the following steps to complete the
conversion to an Oracle RAC database:

1. Start DBCA from the initial node. Select the names of the nodes to include as part
of your cluster database. On the Template Selection page, select the
preconfigured template that you created. Enter the database name and respond to
the remaining DBCA prompts.

2. Specify the shared storage location for the Oracle Database data files.

After creating the Oracle RAC database, DBCA displays the Password Management
page on which you must change the passwords for the database users who have
SYSDBA and SYSOPER privileges. When DBCA exits, the conversion process is
complete.

Related Topics

• Use DBCA to Create an Image of the Single-Instance Database
Use DBCA to create a preconfigured image of your single-instance database by
using the following procedure:

• Manual Conversion Procedure

Manual Conversion Procedure
If you did not use DBCA to create a preconfigured image of your single-instance
database as described in a previous section, then perform the following steps to
complete the conversion:

1. Create the Optimal Flexible Architecture directory structure on each of the nodes
that you have added.

2. Re-create the control files by running the CREATE CONTROLFILE SQL statement with
the REUSE keyword and specify MAXINSTANCES and MAXLOGFILES, and so on, as
needed for your Oracle RAC configuration. The MAXINSTANCES recommended
default is 32.

3. Shut down the database instance.

4. If your single-instance database was using an SPFILE, then create a temporary
parameter file (PFILE) from the SPFILE using the following SQL statement:

CREATE PFILE='pfile_name' from spfile='spfile_name'

5. Set the CLUSTER_DATABASE parameter to TRUE, and set the INSTANCE_NUMBER
parameter to a unique value for each instance, using the sid.parameter=value
syntax.

If you optimized memory usage on your single-instance database, then adjust the
size of the system global area (SGA) to avoid swapping and paging when you
convert to Oracle RAC. You should make this adjustment because Oracle RAC
requires about 350 bytes for each buffer to accommodate the Global Cache
Service (GCS). For example, if you have 10,000 buffers, then Oracle RAC
requires approximately 350 multiplied by 10,000 bytes more memory. Therefore,
adjust the size of the SGA by changing the DB_CACHE_SIZE and DB_nK_CACHE_SIZE
parameters accordingly.

6. Start the database instance using the PFILE created in Step 4.

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using DBCA

15-6

7. If your single-instance database was using automatic undo management, then create an
undo tablespace for each additional instance using the CREATE UNDO TABLESPACE SQL
statement.

8. Create redo threads that have at least two redo logs for each additional instance. Enable
the new redo threads by using an ALTER DATABASE SQL statement. Then, shut down the
database instance.

9. Copy the Oracle password file from the initial node, or from the node on which you are
working, to the corresponding location on the additional nodes on which the cluster
database will have an instance. Replace the ORACLE_SID name in each password file
appropriately for each additional instance.

10. Set the REMOTE_LISTENER parameter to the single client access name (SCAN) and port.

11. Configure the net service entries for the database and instances, and address entries for
the LOCAL_LISTENER for each instance and for the REMOTE_LISTENER in the tnsnames.ora
file, and copy the tnsnames.ora file to all nodes.

12. Create the SPFILE from the PFILE.

13. Create the $ORACLE_HOME/dbs/initsid.ora file that contains the following entry, where
spfile_path_name is the complete path name of the SPFILE:

spfile='spfile_path_name'

14. On the local node, use SQL*Plus to run catclust.sql. This script creates the dictionary
views needed for Oracle RAC databases. For example:

SQL> start ?/rdbms/admin/catclust.sql

15. Add the configuration for the Oracle RAC or Oracle RAC One Node database and its
instance-to-node mapping using SRVCTL.

a. To add the configuration of an Oracle RAC database, use the following commands:

$ srvctl add database -dbname db_name -oraclehome Oracle_home -spfile
spfile_path_name
$ srvctl add instance -dbname db_name -instance inst1_name -node
node1_name
$ srvctl add instance -dbname db_name -instance inst2_name -node
node2_name
...

b. To add the configuration of an Oracle RAC One Node database, use the following
command:

$ srvctl add database -dbname db_name -dbtype RACONENODE -oraclehome
Oracle_home
 -spfile spfile_path_name

16. Start the Oracle RAC or Oracle RAC One Node database using SRVCTL:

srvctl start database -d db_name

Chapter 15
Converting to Oracle RAC and Oracle RAC One Node Using DBCA

15-7

After starting the database with SRVCTL, your conversion process is complete. You
can run the following SQL statement to see the status of all the instances in your
Oracle RAC database:

SQL> SELECT * FROM v$active_instances;

Related Topics

• Use DBCA to Create an Image of the Single-Instance Database
Use DBCA to create a preconfigured image of your single-instance database by
using the following procedure:

• Oracle Real Application Clusters Installation Guide

Single-Instance Database on a Cluster Running from an Oracle RAC-Disabled
Home

You can create a single-instance database on a cluster running from an Oracle home
with the Oracle RAC option disabled. To create an Oracle home on a cluster with
Oracle RAC disabled, you can select local and non-cluster on the Node Selection
Page of Oracle Universal Installer when installing the Oracle Database software. You
can also performed a one-node cluster (with Oracle RAC) installation, but later disable
the Oracle RAC option.

Perform the following procedures to convert this type of single-instance database to an
Oracle RAC or Oracle RAC One Node database:

1. Use DBCA to create a preconfigured image of your single-instance database as
described in a previous section. To perform the conversion manually, shut down
the single-instance database.

2. Change the directory to the lib subdirectory in the rdbms directory under the
Oracle home.

3. Relink the oracle binary by running the following commands:

make -f ins_rdbms.mk rac_on
make -f ins_rdbms.mk ioracle

4. Add nodes to your cluster. Ensure that all nodes can access the shared storage
used by Oracle Clusterware and Oracle RAC.

Related Topics

• Use DBCA to Create an Image of the Single-Instance Database
Use DBCA to create a preconfigured image of your single-instance database by
using the following procedure:

• Oracle Clusterware Administration and Deployment Guide

Preparing to Convert with rconfig and Oracle Enterprise
Manager

You can use rconfig or Oracle Enterprise Manager to assist with converting a single-
instance database installation to an Oracle RAC database.

Chapter 15
Preparing to Convert with rconfig and Oracle Enterprise Manager

15-8

The first of these, rconfig, is a command-line utility. Oracle Enterprise Manager Cloud
Control database administration option, Convert to Cluster Database, provides a GUI-based
conversion tool. The following sections describe how to use these conversion tools:

• Prerequisites for Converting to Oracle RAC Databases

• Configuration Changes During Oracle RAC Conversion Using rconfig

• Converting Databases to Oracle RAC Using rconfig or Oracle Enterprise Manager

• Converting Databases to Oracle RAC Using Oracle Enterprise Manager

Note:

Before you start the conversion, back up your existing database; you should take a
backup of your database before starting any major change.

Prerequisites for Converting to Oracle RAC Databases
Your Oracle Real Application Clusters (Oracle RAC) environment must meet these
prerequisites before you can convert your database.

Before you convert a single-instance database to an Oracle RAC database, ensure that the
following conditions are met for each cluster node that you intend to make an Oracle RAC
database node:

• Oracle Clusterware 19c is installed, configured, and running.

• Oracle RAC 19c software is installed.

• The Oracle software has the Oracle RAC option enabled.

• Shared storage, either Oracle Cluster File System or Oracle ASM, is available and
accessible from all nodes.

• User equivalence exists for the oracle account, or the user account used to install the
Oracle software.

• If you intend to use Oracle Enterprise Manager, then the Oracle Management Agent on
each node is configured and running, and is configured with cluster and host information.

• You have backed up your existing database.

Note:

You must use clustered Oracle ASM instances for Oracle RAC databases.

Configuration Changes During Oracle RAC Conversion Using rconfig
These changes occur when you convert a single-instance database to Oracle RAC using the
rconfig utility.

Chapter 15
Preparing to Convert with rconfig and Oracle Enterprise Manager

15-9

• During the conversion, rconfig places the target Oracle RAC database into
archive log mode, and enables archiving for the database. If you do not plan to
use archive log space, then you can disable archive logging after the conversion
has completed.

• For the Shared Storage Type value, if you enter CFS, and you use a cluster file
system for your single-instance database storage, then rconfig converts the
environment to use Oracle Managed Files for database storage, and places the
data files in a subdirectory located under the shared storage location.

• During the conversion, rconfig moves database files to a specified shared
location, and configures them using Oracle Managed Files.

To avoid using Oracle Managed Files with your converted database, the single-
instance database files must be located in a shared file system, and you must
indicate that rconfig should not move the files.

Converting Databases to Oracle RAC Using rconfig or Oracle
Enterprise Manager

This list describes scenarios for converting a single-instance Oracle database to an
Oracle RAC database.

• Converting a single-instance Oracle Database 19c database to an Oracle RAC
19c database, running out of the same Oracle home and using the same data files
as the single-instance database.

In this scenario, run the rconfig utility from the Oracle RAC database home, or
use the Convert to RAC option on the single-instance database target of Oracle
Enterprise Manager Cloud Control.

• Converting a single-instance database that uses a release of Oracle Database
earlier than Oracle Database 19c to an Oracle RAC 19c database, running out of
the same Oracle home and using the same data files as the single-instance
database

In this scenario, use Oracle Universal Installer and Database Upgrade Assistant
(DBUA) to update the single-instance database to Oracle Database 19c. Then use
rconfig or the Oracle Enterprise Manager Convert to RAC option, as described
in the preceding scenario.

• Converting a single-instance Oracle Database 19c to an Oracle RAC 19c
database, running out of a different Oracle home and using the same data files as
the single-instance database.

In this scenario, run the rconfig utility in the target database home, or use the
Convert to RAC option in the single-instance database target of Oracle Enterprise
Manager Cloud Control. Provide the file storage location when prompted.

Note:

If you specify Oracle home users for both the target database home and
the source database home, then the Oracle home user for the target
database home must be the same as the Oracle home user for the
source database home.

Chapter 15
Preparing to Convert with rconfig and Oracle Enterprise Manager

15-10

• Converting a single-instance Oracle Database 19c to an Oracle RAC 19c database,
running out of a different Oracle home, and where the host on which the single-instance
database runs is not a node used by the Oracle RAC database.

In this scenario, create a clone image of the single-instance database, and move the
clone image to a host that is one of the nodes used by the Oracle RAC database. Then
use rconfig or the Oracle Enterprise Manager Convert to RAC option, as described in
the preceding scenario.

Converting Databases to Oracle RAC Using Oracle Enterprise Manager
You can use Oracle Enterprise Manager Cloud Control to convert a single-instance database
to an Oracle RAC database.

To use this feature, complete the following steps:

1. Log in to Oracle Enterprise Manager Cloud Control. From the Home page, click the
Targets tab.

2. On the Targets page, click the Databases secondary tab, and click the link in the Names
column of the database to convert to Oracle RAC.

3. On the Database home page, from the Availability menu, select Convert to Cluster
Database.

4. Log in as the database user SYS with SYSDBA privileges to the database you want to
convert, and click Next.

5. On the Convert to Cluster Database: Cluster Credentials page, provide a user name and
password for the oracle user and password of the target database to convert. If the
target database is using Oracle ASM, then also provide the SYSASM user and password,
and then click Next.

6. On the Hosts page, select the host nodes in the cluster to be cluster members in the
installed Oracle RAC database. When you have completed your selection, click Next.

7. On the Convert to Database: Options page, select whether you want to use the existing
listener and port number, or specify a new listener and port number for the cluster. Also
provide a prefix for cluster database instances on the cluster.

When you have finished entering information, click Next, or click Help if you need
assistance in deciding how to enter information.

8. On the Convert to Cluster Database: Shared Storage page, either select the option to use
your existing shared storage area, or select the option to have your database files copied
to a new shared storage location. Also, decide if you want to use your existing fast
recovery area or copy your recovery files to a new fast recovery area using files managed
by Oracle Database.

If you use Oracle ASM, then Oracle recommends that you place the data files and the
recovery files in separate failure groups. A failure group is defined by shared hardware,
such as a controller shared between two disks, or two disks that are on the same spindle.
If two disks share hardware that could fail, making both disks unavailable, then theses
disks are said to be in the same failure group. If you do not use Oracle ASM, then Oracle
recommends that the data files and the recovery files are stored in separate locations, for
example, separate Oracle ASM failure groups, so that a hardware failure does not affect
availability.

When you have finished entering information, click Next, or click Help if you need
assistance in deciding how to enter information.

Chapter 15
Preparing to Convert with rconfig and Oracle Enterprise Manager

15-11

9. On the Convert to Cluster Database: Review page, review the options you have
selected. Click Submit Job to proceed with the conversion. To change any options
you have selected, click Back. To cancel the conversion, click Cancel.

10. On the Confirmation page, click View Job to check the status of the conversion.

Related Topics

• Oracle Database Upgrade Guide

Converting Databases to Oracle RAC Using rconfig
You can use the command-line utility rconfig to convert a single-instance database to
an Oracle RAC database, or to convert it to an Oracle RAC One Node database,
depending on the values you provide in the ConvertToRAC.xml file. To use this feature,
complete the following steps:

1. As the oracle user, navigate to the directory $ORACLE_HOME/assistants/rconfig/
sampleXMLs, and open the file ConvertToRAC.xml using a text editor, such as vi.

2. Review the ConvertToRAC.xml file, and modify the parameters as required for your
system. The XML sample file contains comments that provide instructions for how
to configure the file. Do NOT put passwords in the XML file. Instead, let the
rconfig utility prompt you to enter the passwords.

Caution:

Set the convert option Convert verify="ONLY" to perform a test
conversion to ensure that a conversion can be completed successfully.

When you have finished modifying parameters, save the file with a name of the
format file_name.xml. Make a note of the name you select.

3. Navigate to the directory $ORACLE_HOME/bin, and use the following command to
run the command rconfig, where input.xml is the name of the XML input file you
configured in Step 2:

rconfig input.xml

For example, if you create an input XML file called convert.xml, then you would
use the following command

$./rconfig convert.xml

The rconfig utility will prompt you for the necessary passwords.

Chapter 15
Converting Databases to Oracle RAC Using rconfig

15-12

Note:

The Convert verify option in the ConvertToRAC.xml file has three options:

• Convert verify="YES": rconfig performs checks to ensure that the
prerequisites for single-instance to Oracle RAC conversion have been met
before it starts conversion

• Convert verify="NO": rconfig does not perform prerequisite checks, and starts
conversion

• Convert verify="ONLY" rconfig only performs prerequisite checks; it does not
start conversion after completing prerequisite checks

If performing the conversion fails, then use the following procedure to recover and reattempt
the conversion:

1. Attempt to delete the database using the DBCA delete database option.

2. Restore the source database.

3. Review the conversion log, and fix any problems reported by rconfig that may have
caused the conversion failure. The rconfig log files are under the rconfig directory
in $ORACLE_BASE/cfgtoollogs.

4. Reattempt the conversion.

Related Topics

• Oracle Database Upgrade Guide

Example of rconfig XML Input Files for ConvertToRAC
Review these two examples of an XML ConvertToRAC input file for the rconfig utility.

Note:

Do not include passwords in the XML file. Instead, let the rconfig utility prompt you
for the passwords.

Example 15-1 Example rconfig ConvertToRAC XML File for Policy-Managed
Databases

This example shows an XML input file to convert a single-instance database with Oracle ASM
to a policy-managed Oracle RAC database (using server pools) on Oracle ASM storage.

<?xml version="1.0" encoding="UTF-8"?>
<n:RConfig xmlns:n="http://www.example.com/rconfig"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/rconfig">
 <n:ConvertToRAC>
<!-- Verify does a precheck to ensure all pre-requisites are met, before the
 conversion is attempted. Allowable values are: YES|NO|ONLY -->
 <n:Convert verify="YES">

Chapter 15
Example of rconfig XML Input Files for ConvertToRAC

15-13

<!--Specify current OracleHome of non-rac database for SourceDBHome -->
 <n:SourceDBHome>/oracle/product/12.1.0/db_1</n:SourceDBHome>
<!--Specify OracleHome where the rac database should be configured. It
can be same
 as SourceDBHome -->
 <n:TargetDBHome>/oracle/product/12.1.0/db_1</n:TargetDBHome>
<!--Specify SID of non-rac database and credential. User with sysdba
role is
 required to perform conversion -->
 <n:SourceDBInfo SID="sales">
 <n:Credentials>
 <n:User>sys</n:User>
 <n:Role>sysdba</n:Role>
 </n:Credentials>
 </n:SourceDBInfo>
<!--Specify the list of existing or new server pools which are used by
the
 Policy Managed Cluster Database. -->
 <n:ServerPoolList>
 <n:ExistingServerPool name="custom"/>
 <n:NewServerPool name="newpool" cardinality="2"/>
 </n:ServerPoolList>
<!--Specify RacOneNode along with servicename to convert database to
RACOne
Node -->
 <!--n:RacOneNode servicename="salesrac1service"/-->
<!--InstancePrefix is not required for Policy Managed database. If
specified, it
 will be ignored. Instance names are generated automatically based on
db_unique_
name for Policy Managed dababase.-->
<!-- Listener details are no longer needed starting 11.2. Database is
registered
 with default listener and SCAN listener running from Oracle Grid
Infrastructure
 home. -->
<!--Specify the type of storage to be used by rac database. Allowable
values are
 CFS|ASM. The non-rac database should have same storage type. ASM
credentials are
 no needed for conversion. -->
 <n:SharedStorage type="ASM">
<!--Specify Database Area Location to be configured for rac
database.If this field
 is left empty, current storage will be used for rac database. For
CFS, this field
 will have directory path. -->
 <n:TargetDatabaseArea>+ASMDG</n:TargetDatabaseArea>
<!--Specify Fast Recovery Area to be configured for rac database. If
this field is
 left empty, current recovery area of non-rac database will be
configured for rac
 database. If current database is not using recovery Area, the
resulting rac
 database will not have a recovery area. -->

Chapter 15
Example of rconfig XML Input Files for ConvertToRAC

15-14

 <n:TargetFlashRecoveryArea>+ASMDG</n:TargetFlashRecoveryArea>
 </n:SharedStorage>
 </n:Convert>
 </n:ConvertToRAC>
</n:RConfig>

Example 15-2 Example rconfig ConvertToRAC XML File for Administrator-Managed
Databases

This example shows an XML input file to convert a single-instance database with Oracle ASM
to an administrator-managed Oracle RAC database.

<?xml version="1.0" encoding="UTF-8"?>
<n:RConfig xmlns:n="http://www.example.com/rconfig"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/rconfig rconfig.xsd">
 <n:ConvertToRAC>
<!-- Verify does a precheck to ensure all pre-requisites are met, before the
 conversion is attempted. Allowable values are: YES|NO|ONLY -->
 <n:Convert verify="YES">
<!--Specify current OracleHome of non-rac database for SourceDBHome -->
 <n:SourceDBHome>/oracle/product/12.1.0/db_1</n:SourceDBHome>
<!--Specify OracleHome where the rac database should be configured. It can
be same
 as SourceDBHome -->
 <n:TargetDBHome>/oracle/product/12.1.0/db_1</n:TargetDBHome>
<!--Specify SID of non-rac database and credential. User with sysdba role is
 required to perform conversion -->
 <n:SourceDBInfo SID="sales">
 <n:Credentials>
 <n:User>sys</n:User>
 <n:Role>sysdba</n:Role>
 </n:Credentials>
 </n:SourceDBInfo>
<!--Specify the list of nodes that should have rac instances running for the
Admin
 Managed Cluster Database. LocalNode should be the first node in this
nodelist.
 -->
 <n:NodeList>
 <n:Node name="node1"/>
 <n:Node name="node2"/>
 </n:NodeList>
<!--Specify RacOneNode along with servicename to convert database to RACOne
Node -->
<!--n:RacOneNode servicename="salesrac1service"/-->
<!--Instance Prefix tag is optional starting with 11.2. If left empty, it is
 derived from db_unique_name.-->
 <n:InstancePrefix>sales</n:InstancePrefix>
<!-- Listener details are no longer needed starting 11.2. Database is
registered
 with default listener and SCAN listener running from Oracle Grid
Infrastructure
 home. -->
<!--Specify the type of storage to be used by rac database. Allowable values

Chapter 15
Example of rconfig XML Input Files for ConvertToRAC

15-15

are
 CFS|ASM. The non-rac database should have same storage type. ASM
credentials
are not needed for conversion. -->
 <n:SharedStorage type="ASM">
<!--Specify Database Area Location to be configured for rac
database.If this field
 is left empty, current storage will be used for rac database. For
CFS, this
field will have directory path. -->
 <n:TargetDatabaseArea>+ASMDG</n:TargetDatabaseArea>
<!--Specify Fast Recovery Area to be configured for rac database. If
this field is
 left empty, current recovery area of non-rac database will be
configured for rac
 database. If current database is not using recovery Area, the
resulting rac
 database will not have a recovery area. -->
 <n:TargetFlashRecoveryArea>+ASMDG</
n:TargetFlashRecoveryArea>
 </n:SharedStorage>
 </n:Convert>
 </n:ConvertToRAC>
</n:RConfig>

Postconversion Steps
After completing the conversion, follow the recommendations for configuring Oracle
RAC environments.

• Follow the recommendations for using load balancing and transparent application
failover as described in a previous chapter.

• Use locally managed tablespaces instead of dictionary managed tablespaces to
reduce contention and manage sequences in Oracle RAC as described in Oracle
Database Administrator’s Guide

• Follow the guidelines for using automatic segment space management as
described in Oracle Database Administrator’s Guide

The buffer cache and shared pool capacity requirements in Oracle RAC are slightly
greater than the requirements for single-instance Oracle databases. Therefore, you
should increase the size of the buffer cache by about 10%, and the size of the shared
pool by about 15%.

Related Topics

• Workload Management with Dynamic Database Services
Workload management includes load balancing, enabling clients for Oracle Real
Application Clusters (Oracle RAC), distributed transaction processing, and
services.

• About Locally Managed Tablespaces

• Specifying Segment Space Management in Locally Managed Tablespaces

Chapter 15
Postconversion Steps

15-16

A
Server Control Utility Reference

Use the Server Control Utility (SRVCTL) to manage Oracle Real Application Clusters (Oracle
RAC) configuration information.

Note:

SRVCTL commands specific to Oracle Grid Infrastructure administration operations
are documented in Oracle Clusterware Administration and Deployment Guide

This appendix includes the following topics:

• SRVCTL Usage Information

• Specifying Command Parameters as Keywords Instead of Single Letters

• Character Set and Case Sensitivity of SRVCTL Object Values

• Summary of Tasks for Which SRVCTL Is Used

• Using SRVCTL Help

• SRVCTL Privileges and Security

• Additional SRVCTL Topics

• Deprecated SRVCTL Subprograms or Commands

• SRVCTL Command Reference

SRVCTL Usage Information
SRVCTL is installed on each node in a cluster by default. To use SRVCTL, log in to the
operating system of a node and enter the SRVCTL command and its parameters in case-
sensitive syntax.

• Use the version of SRVCTL that is provided with the current Oracle Database release
from the Oracle home of the database that you are managing. The version of SRVCTL
must be the same as the version of the object (listeners, Oracle ASM instances, Oracle
Database, Oracle Database instances, and Oracle Database services) being managed.

• SRVCTL does not support concurrent executions of commands on the same object.
Therefore, run only one SRVCTL command at a time for each database, service, or other
object.

• When specifying a comma-delimited list as part of a SRVCTL command, there should not
be any spaces between the items in the list. For example:

srvctl add database -serverpool "serverpool1,serverpool3"

A-1

When you specify a comma-delimited list in a Windows environment, you must
enclose the list in double quotation marks (""). You can enclose a comma-
delimited list in double quotation marks in a Linux or UNIX environment but they
will be ignored.

• If you are entering a SRVCTL command, and you want to continue the input on a
new line, then you can use the operating system continuation character. In Linux,
this is the backslash (\) symbol.

• A SRVCTL command that produces no output is a successful command. Not all
SRVCTL commands return a message when it completes, successfully. However,
if a SRVCTL command fails, then it always returns an error message.

• SRVCTL returns 0 on success, 1 on failure, and 2 on warnings. Some commands,
such as start, stop, enable, and disable, can return 2 for a warning when the
request would not change anything. In other words, the object of the command is
already started, already stopped, already disabled, and so on. In warning cases,
SRVCTL also prints a message about what was already done.

• You can use the -eval parameter with several SRVCTL commands. This
parameter, when you use it, enables you to simulate running a command without
making any changes to the system. SRVCTL returns output that informs you what
will happen if you run a particular command. For example, to know what might
happen if you relocate a server:

$ srvctl relocate server –servers "rac1" –eval –serverpool pool2

Database db1
 will stop on node rac1
 will start on node rac7
 Service mySrv1
 will stop on node rac1, it will not run on any node
 Service myServ2
 will stop on node rac1
 will start on node rac6
Server rac1
 will be moved from pool myPoolX to pool pool2

The -eval parameter is available with the following commands:

– srvctl add database
– srvctl add service
– srvctl add srvpool
– srvctl modify database
– srvctl modify service
– srvctl modify srvpool
– srvctl relocate server
– srvctl relocate service
– srvctl remove srvpool
– srvctl start database
– srvctl start service

Appendix A
SRVCTL Usage Information

A-2

– srvctl stop database
– srvctl stop service

Specifying Command Parameters as Keywords Instead of
Single Letters

Before Oracle Database 12c, the SRVCTL command-line interface used single letter
parameters. However, this imposes a limit on the number of unique parameters available for
use with SRVCTL commands. SRVCTL command parameters introduced in Oracle Database
12c are full words instead of single letters, such as -multicastport and -subdomain.

To support backward compatibility, you can use a mix of single-letter parameters and new
keyword parameters. New parameters introduced with keywords can be used with single
letter parameters.

Note:

Starting with Oracle Database 12c, the single letter parameters are deprecated in
favor of the keyword parameters to avoid using the same letter to implement
different functionality depending on the command.

You can obtain the single-letter equivalents, where applicable, by adding the -
compatible parameter after the -help parameter.

Character Set and Case Sensitivity of SRVCTL Object Values
SRVCTL interacts with many different types of objects. The character set and name length
limitations, and whether the object name is case sensitive, can vary between object types.

Table A-1 String Restrictions for SRVCTL Object Names

Object Type Character Set Limitations Case Sensitive? Maximum Length

db_domain Alpha-numeric characters,
underscore (_), and number sign (#)

128 characters

db_unique_name Alpha-numeric characters,
underscore (_), number sign (#),
and dollar sign ($); the first 8
characters must be unique because
those characters are used to form
instance names for policy-managed
databases

No 30 characters but the first
8 characters must be
unique relative to any
other database in the
same cluster

diskgroup_name Naming disk groups have the same
limitations as naming other
database objects.

See Also: Oracle Database SQL
Language Reference for more
information about database object
naming rules

No (all names
are converted to
uppercase)

Appendix A
Specifying Command Parameters as Keywords Instead of Single Letters

A-3

Table A-1 (Cont.) String Restrictions for SRVCTL Object Names

Object Type Character Set Limitations Case Sensitive? Maximum Length

instance_name Alpha-numeric characters Depends on the
platform

15 characters

listener_name

node_name No

scan_name The first character must be an
alphabetic character

No

server_pool Alpha-numeric characters,
underscore (_), number sign (#),
period (.), and dollar sign ($); the
name cannot begin with a period,
contain single quotation marks (''),
nor can the name be "Generic" or
"Free" because those two names
are reserved for the built-in server
pools

250 characters

service_name 250 characters

volume_name Alphanumeric characters; dashes (-)
are not allowed and the first
character must be an alphabetic
character.

No 11 characters

Summary of Tasks for Which SRVCTL Is Used
Use SRVCTL to manage databases, instances, cluster databases, cluster database
instances, Oracle ASM instances and disk groups, services, listeners, or other
clusterware resources.

• Database Configuration Tasks

Tasks Commands

Add, modify, and delete
database configuration
information

srvctl add database
srvctl modify database
srvctl remove database

Add an instance to or
delete an instance from
the configuration of an
Oracle RAC database

srvctl add instance
srvctl remove instance

Add a service to or
delete a service from the
configuration of a
database

srvctl add service
srvctl remove service

Appendix A
Summary of Tasks for Which SRVCTL Is Used

A-4

Tasks Commands

Move instances and
services in a database
configuration and modify
service configurations

srvctl relocate database
srvctl relocate service
srvctl modify instance
srvctl modify service

Set and unset the
environment for an
instance or service in a
database configuration

srvctl modify instance
srvctl modify service

Set and unset the
environment for an
entire cluster database
in a database
configuration

srvctl setenv database
srvctl unsetenv database

• General Database Administration Tasks

Tasks Commands

Start and stop databases srvctl start database
srvctl stop database

Start and stop database
instances

srvctl start instance
srvctl stop instance

Start, stop, and relocate
database services

srvctl start service
srvctl stop service
srvctl relocate service

Obtain statuses of
databases, database
instances, or database
services

srvctl status database
srvctl status instance
srvctl status service

• Node-Level Tasks

Tasks Commands

Administering VIPs srvctl add vip
srvctl config vip
srvctl disable vip
srvctl enable vip
srvctl getenv vip
srvctl modify vip
srvctl relocate vip
srvctl remove vip
srvctl setenv vip
srvctl start vip
srvctl status vip
srvctl stop vip
srvctl unsetenv vip

Appendix A
Summary of Tasks for Which SRVCTL Is Used

A-5

Tasks Commands

Administering node
applications

srvctl add nodeapps
srvctl disable nodeapps
srvctl enable nodeapps
srvctl getenv nodeapps
srvctl modify nodeapps
srvctl remove nodeapps
srvctl setenv nodeapps
srvctl unsetenv nodeapps

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Using SRVCTL Help
This section includes information about using context sensitive help with SRVCTL.

To see help for all SRVCTL commands, from the command line enter:

srvctl -help

To see the command syntax and a list of parameters for each SRVCTL command,
from the command line enter:

srvctl command (or verb) object (or noun) -help

When you request online help for a command using -help, SRVCTL prints the full
words for each parameter. You can obtain the single-letter equivalents, where
applicable, by adding the -compatible parameter after the -help parameter. For
example:

$ srvctl config database -help -compatible

The preceding command prints usage information for the srvctl config database
command, listing all parameters as full words followed by their single-letter equivalents
in parentheses, where applicable.

To see the SRVCTL version number enter:

$ srvctl -version

SRVCTL Privileges and Security
To use SRVCTL to change your database configuration, log in to the operating system
as the software owner of the home that you want to manage.

For example, if different users installed Oracle Database and the Oracle Grid
Infrastructure, then log in as the database software owner (for example, ora_db) to

Appendix A
Using SRVCTL Help

A-6

manage databases and log in as the Oracle Grid Infrastructure software owner (for example,
ora_asm) to manage the Oracle ASM instances.

Users who are members of the OSDBA operating system group can start and stop the
database. To stop and start an Oracle ASM instance, you must be a member of the OSASM
operating system group.

To create or register objects such as listeners, Oracle Notification Services, and services, you
must be logged in to the operating system as the software owner of the Oracle home. The
objects you create or register for that Oracle home will run under the user account of the
owner of the Oracle home. Databases run as the database installation owner of the home
from which they run.

To perform srvctl add operations on any object, you must be logged in as the Oracle
account owner of the home on which the object runs.

For some SRVCTL commands, on Linux and UNIX systems, you must be logged in as root,
and on Windows systems, you must be logged in as a user with Administrator privileges to
run them. In this appendix, those commands are preceded by the root prompt (#) in the
command examples.

Additional SRVCTL Topics
• Use SRVCTL to manage Oracle-supplied resources such as listener, instances, disk

groups, and networks, and CRSCTL for managing Oracle Clusterware and its resources.

Note:

Oracle strongly discourages directly manipulating Oracle-supplied resources
(resources whose names begin with ora) using CRSCTL. This could adversely
impact the cluster configuration.

• Although you may be able to cancel running SRVCTL commands by pressing the
Control-C keys, you may corrupt your configuration data by doing this.

You are strongly advised not to attempt to terminate SRVCTL in this manner.

Deprecated SRVCTL Subprograms or Commands
A number of SRVCTL commands and parameters have been deprecated in this release.

Single Character Parameters for all SRVCTL Commands
Single-character parameters have been deprecated in Oracle Database 12c.

Use the full keyword for each parameter instead. To support older tools and scripts that still
use single-character parameters, the current version of SRVCTL supports both single-
character parameters and full keyword parameters.

The command reference in this appendix shows the keywords for each SRVCTL command.
Table A-2 lists the deprecated single-character parameters.

Appendix A
Additional SRVCTL Topics

A-7

Table A-2 Deprecated Single-Character Parameters for SRVCTL Commands

Single
Letter

Long Form Values Description Related Commands

A address {VIP_name |
IP}/netmask/
[if1[|if2...]]

VIP address
specification for node
applications

Node applications, VIP,
network, Listener,
SCAN VIP, and SCAN
listener commands

a all All resources of that
kind

srvctl config
database
Common

a diskgroup diskgroup_list Comma-delimited list
of Oracle ASM disk
groups

Database, instance,
Oracle ASM, disk
group, and file system
commands

a detail Print detailed
configuration
information

Common

a available available_list A comma-delimited list
of available instances

Service and server pool
commands

a abort Stop failed online
relocation

Relocate database

a viponly Display VIP
configuration

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

B rlbgoal {NONE|
SERVICE_TIME|
THROUGHPUT}

The runtime load
balancing goal of a
service

Service and server pool
commands

c currentnod
e

current_node Node name from
which to relocate the
service

Service and server pool
commands

c cardinalit
y

{UNIFORM|
SINGLETON}

Whether the service
should run on every
active server in the
server pool
(UNIFORM) or only
one server
(SINGLETON)

Service and server pool
commands

c dbtype type Type of database:
Oracle RAC One
Node, Oracle RAC, or
single instance

Database, instance,
Oracle ASM, disk
group, and file system
commands

d db or
database

db_unique_name Database unique
name

Common

d device volume_device Volume device path Database, instance,
Oracle ASM, disk
group, and file system
commands

d domain Display subdomain
served by GNS

OC4J, home, CVU, and
GNS commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-8

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL
Commands

Single
Letter

Long Form Values Description Related Commands

e emport em_port_number Local listen port for
Oracle Enterprise
Manager

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

e failoverty
pe

{NONE|SESSION
BASIC|
TRANSACTION}

The failover type for a
service

Service and server pool
commands

e server server_list Candidate server list
for Oracle RAC One
Node database

Database, instance,
Oracle ASM, disk
group, and file system
commands

f force Force remove Common

g diskgroup diskgroup_name Disk group name File system, Diskgroup
commands

g gsdonly Display GSD
configuration

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

g serverpool server_pool_nam
e
server_pool_lis
t

A server pool name

Comma-delimited list
of database server
pool names

Service and server pool
commands

Database, instance,
Oracle ASM, disk
group, and file system
commands

h help Common

i importance number A number that
represents the
importance of the
server pool

Service and server pool
commands

i instance instance_name
instance_list

Instance name prefix
for administrator-
managed Oracle RAC
One Node database

A comma-delimited list
of instance names

Database, instance,
Oracle ASM, disk
group, and file system
commands

I ip ip_address VIP address on which
GNS is to listen

OC4J, home, CVU, and
GNS commands

i oldinst instance_name The old instance
name

Service and server pool
commands

i scannumber scan_ordinal
_number

Ordinal number of the
IP address for the
SCAN

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-9

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL
Commands

Single
Letter

Long Form Values Description Related Commands

i vip vip_name or
"vip_name_list"

VIP names Node applications,
GNS, VIP, network,
listener, SCAN VIP, and
SCAN listener
commands

j acfspath acfs_path_list Comma-delimited list
of Oracle ACFS paths
where the
dependency on the
database will be set

Database, instance,
Oracle ASM, disk
group, and file system
commands

j clbgoal {SHORT|LONG} The connection load
balancing goal for a
service

Service and server pool
commands

k netnum network_number The network number Service and server pool
commands

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

OC4J, home, CVU, and
GNS commands

l list List all records in GNS OC4J, home, CVU, and
GNS commands

l listener listener_name The name of a listener ASM commands

l loglevel log_level Specify the level (0-6)
of logging that GNS
should run with

OC4J, home, CVU, and
GNS commands

l min number The minimum size of
the server pool

Service and server pool
commands

l onslocalpo
rt

port_number Oracle Notification
Service listening port
for local client
connections

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

l role service_role Comma-delimited list
of server roles within
double quotation
marks (""), where
each role is one of
PRIMARY,
PHYSICAL_STANDBY,
LOGICAL_STANDBY, or
SNAPSHOT_STANDBY

Service and server pool
commands

m domain domain_name The domain for the
database

Database, instance,
Oracle ASM, disk
group, and file system
commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-10

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL
Commands

Single
Letter

Long Form Values Description Related Commands

m failoverme
thod

{NONE|BASIC} The failover method of
a service

Service and server pool
commands

m multicastp
ost

 The port on which the
GNS daemon is
listening for multicast
requests

OC4J, home, CVU, and
GNS commands

m path mountpoint_path Mountpoint path Database, instance,
Oracle ASM, disk
group, and file system
commands

n name Advertise a name
through GNS using
the given address

OC4J, home, CVU, and
GNS commands

n node node_name The name of a specific
node

Common

n nodes node_list A comma-delimited list
of node names

File system commands

n dbname database_name The database name
(DB_NAME), if
different from the
unique name specified
by the -db parameter

Database, instance,
Oracle ASM, disk
group, and file system
commands

n scanname scan_name Fully-qualified SCAN
name (includes the
domain)

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

n servers server_list A comma-delimited list
of candidate server
names

Service and server pool
commands

n targetnode node_name Node name to which
to relocate the service

Service and server pool
commands

o oraclehome oracle_home $ORACLE_HOME path Database commands

p endpoints [TCP:]port
_number[/IPC:
key][/NMP:pipe
_name][/TCPS:
s_port][/SDP:
port]

SCAN listener
endpoints

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

p port The port which the
GNS daemon uses to
communicate with the
DNS server

OC4J, home, CVU, and
GNS commands

p rmiport port_number OC4J RMI port
number

OC4J, home, CVU, and
GNS commands

P tafpolicy {NONE|BASIC} TAF policy
specification

Service and server pool
commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-11

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL
Commands

Single
Letter

Long Form Values Description Related Commands

p spfile spfile_location Server parameter file
path

Database, instance,
Oracle ASM, disk
group, and file system
commands

q notificati
on

{TRUE|FALSE} Whether FAN is
enabled for OCI
connections

Service commands

q query Query GNS for the
records belonging to a
name

OC4J, home, CVU, and
GNS commands

r preferred preferred_list A comma-delimited list
of preferred instances

Service and server pool
commands

r onsremotep
ort

port_number Oracle Notification
Service listening port
for connections from
remote hosts

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

r relocate Relocate the VIP Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

r revert Remove target node
of failed online
relocation request
from the candidate
server list of
administrator-
managed Oracle RAC
One Node database

Relocate database

r role role_type Role of the standby
database: PRIMARY,
PHYSICAL_STANDBY,
LOGICAL_STANDBY, or
SNAPSHOT_STANDBY

Database, instance,
Oracle ASM, disk
group, and file system
commands

s onsonly Display Oracle
Notification Service
daemon configuration

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

s skip Skip checking the
ports

Listener, SCAN, and
SCAN listener.

s statfile file_name The file path of the
state_file created
by a previously run
srvctl stop home
command

OC4J, home, CVU, and
GNS commands

s status Display the status of
GNS

OC4J, home, CVU, and
GNS commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-12

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL
Commands

Single
Letter

Long Form Values Description Related Commands

S subnet subnet/net
_mask/[if1[|
if2...]]

Network address
specification for a
network

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

s service service_name
service_name_li
st

The name of a service

A comma-delimited list
of service names

Service and server pool
commands

s startoptio
n

start_options Startup options for the
database (mount,
open, read only)

Database, instance,
Oracle ASM, disk
group, and file system
commands

t checkinter
val

time_interval Interval in minutes
between checks

OC4J, home, CVU, and
GNS commands

t edition edition_name The initial session
edition of a service

Service and server pool
commands

t envs "name_list" A list of environment
variables

Common

t namevals "name=
value,..."

Names and values of
environment variables

Common

T nameval "name=value" Name and value of a
single environment
variable

Common

t update instance_name The new instance
name

Service and server pool
commands

t remoteserv
ers

host_name[:
port_number]
[,host_name[:
port_number]...
]

List of remote host
name and port
number pairs for
Oracle Notification
Service daemons
outside this cluster

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

t stopoption stop_options Stop options for the
database (NORMAL,
TRANSACTIONAL,
IMMEDITATE, or
ABORT)

Database, instance,
Oracle ASM, disk
group, and file system
commands

t toversion target_version Version to which you
are downgrading

Database, instance,
Oracle ASM, disk
group, and file system
commands

u max number Maximum size of the
server pool

Service and server pool
commands

u nettype network_type The network server
type, which can be
STATIC, DHCP, or
MIXED

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-13

Table A-2 (Cont.) Deprecated Single-Character Parameters for SRVCTL
Commands

Single
Letter

Long Form Values Description Related Commands

u newinst Add a new instance to
the service
configuration

Service commands

u update Update SCAN
listeners to match the
number of SCAN VIPs

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

u user oracle_user Oracle user or other
authorized user to
mount and unmount
file systems

Database, instance,
Oracle ASM, disk
group, and file system
commands

v verbose Verbose output Common

v volume volume_name Name of a volume Database, instance,
Oracle ASM, disk
group, and file system
commands

V versions Common

w failoverde
lay

number Failover delay Service and server pool
commands

w nettype network_type The network server
type, which can be
STATIC, DHCP, or
MIXED

Node applications, VIP,
network, listener, SCAN
VIP, and SCAN listener
commands

w timeout timeout Online relocation
timeout in minutes

Database, instance,
Oracle ASM, disk
group, and file system
commands

x dtp {TRUE | FALSE} Whether to enable
distributed transaction
processing

Service and server pool
commands

x node node_name Node name (use this
parameter only with
noncluster databases)

Common

y noprompt Suppress the
confirmation prompt

Common

y policy {AUTOMATIC |
MANUAL}

Management policy for
the resource

Database, instance,
Oracle ASM, disk
group, file system,
service and server pool
commands

z failoverre
try

number Number of failover
retries

Service and server pool
commands

z rmdepondis
k

 To remove a
database's
dependency upon disk
groups

Database, instance,
Oracle ASM, disk
group, and file system
commands

Appendix A
Deprecated SRVCTL Subprograms or Commands

A-14

Miscellaneous SRVCTL Commands and Parameters
The following command parameters have been deprecated in this release:

Table A-3 Deprecated Commands and Parameters for SRVCTL

Command Deprecated Parameters

srvctl modify asm -node node_name

srvctl modify
instance

-z
Instead, use the -node option with the value set to ""

srvctl modify gns [-ip ip_address] [-advertise host_name -address address]
[-delete host_name -address address] [-createalias name
-alias alias] [-deletealias alias]
Use the srvctl update gns command instead.

srvctl * oc4j The oc4j noun has been deprecated and replaced with qosmserver.
SRVCTL still accepts the oc4j noun until it is desupported.

srvctl add service The PRECONNECToption with the -tafpolicy parameter is deprecated.

srvctl modify service The -failovermethod {NONE | BASIC} is deprecated.

The PRECONNECToption with the -tafpolicy parameter is deprecated.

SRVCTL Command Reference
A comprehensive list of SRVCTL commands to use in Oracle RAC environments.

SRVCTL commands, object names, and parameters are case sensitive. Database, instance,
listener, and service names are case insensitive and case preserving. You cannot create
listener names that differ only in case, such as LISTENER and listener. SRVCTL uses the
following command syntax:

srvctl command object [parameters]

In SRVCTL syntax:

• command is a verb such as start, stop, or remove
• object (also known as a noun) is the target or object on which SRVCTL performs the

command, such as database or instance. You can also use object abbreviations.

• parameters extend the use of a preceding command combination to include additional
parameters for the command. For example, the -instances parameter indicates that a
comma-delimited list of preferred instance names follows; the -instance parameter only
permits one value and not a list of names. Do not use spaces between the items in a
comma-delimited list.

Note:

If specifying a comma-delimited list in Windows, then you must enclose the list
within double quotation marks ("").

Appendix A
SRVCTL Command Reference

A-15

Table A-4 lists the keywords that can be used for the object portion of SRVCTL
commands. You can use either the full name or the abbreviation for each object
keyword. The Purpose column describes the object and the actions that can be
performed on that object.

Table A-4 Object Keywords and Abbreviations

Object Keyword Purpose

Database database To add, modify, manage environment variables for,
list the configuration of, enable, disable, start,
stop, and obtain the status of databases, and also
to upgrade, downgrade, and remove database
configuration information about databases.

Instance
instance

inst

To add, modify, enable, disable, start, stop, obtain
the status of, and remove database instances.

Listener
listener

lsnr

To add, modify, manage environment variables for,
list the configuration of, enable, disable, start,
stop, obtain the status of, and remove listeners

Network network To add, modify, list the configuration of, and
remove a non-default Network

Note: The node applications object, and the
config and modify commands also manage the
default network.

Node applications nodeapps To add, modify, manage environment variables for,
list the configuration of, enable, disable, start,
stop, obtain the status of, and remove node
applications

Oracle Notification
Service

ons To add, configure, enable, start, obtain the status
of, stop, disable, and remove Oracle Notification
Service instances only for Oracle Restart

Single client access
name (SCAN)

scan To add, list the configuration of, modify, enable,
disable, start, stop, relocate, obtain the status of,
and remove SCAN VIPs

SCAN listener scan_listener To add, list the configuration of, modify, enable,
disable, start, stop, relocate, obtain the status of,
and remove SCAN listeners

Service
service

To add, modify, list the configuration of, enable,
disable, start, stop, obtain the status of, relocate,
and remove services

Virtual IP
vip

To add, manage environment variables for, list the
configuration of, enable, disable, start, stop, obtain
the status of, and remove a VIP

Appendix A
SRVCTL Command Reference

A-16

Note:

SRVCTL commands specific to Oracle Grid Infrastructure administration operations
are documented in CWADD SRVCTL Command Reference

srvctl add database
Adds a database configuration to Oracle Clusterware.

Syntax

srvctl add database -db db_unique_name [-eval]
 -oraclehome oracle_home [-node node_list] [-domain domain_name]
 [-spfile spfile] [-pwfile password_file_path]
 [-dbtype {RACONENODE | RAC | SINGLE} [-server "server_list"]]
 [-instance instance_name] [-timeout timeout]]
 [-role {PRIMARY | PHYSICAL_STANDBY | LOGICAL_STANDBY |
SNAPSHOT_STANDBY"]
 [-startoption start_options] [-stopoption stop_options] [-dbname
db_name]
 [-acfspath "acfs_path_list"] [-policy {AUTOMATIC | MANUAL | NORESTART}]
 [-serverpool "server_pool_list" [-pqpool "pq_pool_list"]]
 [-diskgroup "disk_group_list"] [-css_critical {yes | no}] [-cpucount
cpu_count]
 [-memorytarget memory_target] [-maxmemory max_memory] [-cpucap cpu_cap]
[-defaultnetnum network_number] [-verbose]

Parameters

Table A-5 srvctl add database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database.

-eval Use this parameter to hypothetically evaluate the impact of the command
on the system.

Note: You can only use this parameter with a policy-managed database.

-oraclehome
oracle_home

Specify the path for the Oracle database home directory.

-node node_list Specify a single node name or a comma-delimited list of node names on
which you want to register a noncluster, or single instance, Oracle
database. Starting with Oracle Database 19c Release Update (19.7),
you can register a Standard Edition High Availability database on
multiple cluster nodes.

Note: While creating a policy-managed single instance database, this
parameter can be used only with Oracle Clusterware and can be used
with the -serverpool parameter.

-domain db_domain Specify the domain for the database.

Note: You must use this parameter if you set the DB_DOMAIN initialization
parameter for the database.

Appendix A
SRVCTL Command Reference

A-17

Table A-5 (Cont.) srvctl add database Command Parameters

Parameter Description

-spfile spfile Specify the path name of the database server parameter file.

-pwfile
password_file_path

Enter the full path to the location of the password file.

-dbtype {RACONENODE |
RAC | SINGLE}

Specify the type of database you are adding: Oracle RAC One Node,
Oracle RAC, or single instance. The default is RAC unless you specify the
-node node_name parameter, and the -type parameter defaults to
SINGLE.

-server server_list List candidate servers for Oracle RAC One Node databases.

Note: You can use this parameter only with administrator-managed
Oracle RAC One Node databases. If your Oracle RAC One Node
database is policy managed, then you cannot use this parameter.

-instance
instance_name

Specify the instance name prefix for Oracle RAC One Node databases.
The default value for this parameter is the first 12 characters of the global
unique name of the database.

Note: You can use this parameter only with administrator-managed
Oracle RAC One Node databases. If your Oracle RAC One Node
database is policy managed, then you cannot use this parameter.

-timeout timeout Specify the online database relocation timeout, in minutes, for Oracle
RAC One Node databases. The default is 30.

-role {PRIMARY |
PHYSICAL_STANDBY |
LOGICAL_STANDBY |
SNAPSHOT_STANDBY}

Specify the role of the database in an Oracle Data Guard configuration.
The default is PRIMARY.

-startoption
start_options

Startup options for the database, such as OPEN, MOUNT, and NOMOUNT.
The default value is OPEN.

Notes:
• For multi-word startup options, such as read only and read

write, separate the words with a space and enclose in double
quotation marks (""). For example, "read only".

• When performing a switchover in an Oracle Data Guard
configuration, the -startoption for a standby database that
becomes a primary database is always set to OPEN after the
switchover.

-stoption
stop_options

Specify stop options for the database, such as NORMAL,
TRANSACTIONAL, IMMEDIATE, and ABORT.

-dbname db_name Specify the name of the database, if it is different from the unique name
given by the -db parameter.

-acfspath
"acfs_path_list"

A single Oracle ACFS path or a comma-delimited list of Oracle ACFS
paths enclosed in double quotation marks ("") where the database's
dependency is set.

Use this parameter to create dependencies on Oracle ACFS file systems
other than ORACLE_HOME, such as for when the database uses
ORACLE_BASE on a file system that is different from the ORACLE_HOME
file system.

Appendix A
SRVCTL Command Reference

A-18

Table A-5 (Cont.) srvctl add database Command Parameters

Parameter Description

-policy {AUTOMATIC |
MANUAL | NORESTART}

Specify the management policy for the database.
• AUTOMATIC (default): The database is automatically restored to its

previous running condition (started or stopped) upon restart of the
database host computer.

• MANUAL: The database is never automatically restarted upon restart
of the database host computer. A MANUAL setting does not prevent
Oracle Clusterware from monitoring the database while it is running
and restarting it if a failure occurs.

• NORESTART: Similar to the MANUAL setting, the database is never
automatically restarted upon restart of the database host computer.
A NORESTART setting, however, never restarts the database even if a
failure occurs.

-serverpool
"server_pool_name" [-
pqpool
"pq_pool_name"]

Specify the name of a server pool used to control database placement. If
you do not specify this parameter, then it defaults to the Generic server
pool.

You can optionally also specify the name of a parallel query server pool
to be used by the database.

Notes:
• This parameter can only be used with Oracle Clusterware. You can

use this parameter with the -node parameter but the server pool
must have MAX_SIZE=1 and exactly one configured server (the one
you specify in -node).

• After you add server pools, you can assign services to them using
the srvctl add service command.

-diskgroup
"disk_group_list"

Specify a comma-delimited list of Oracle ASM disk groups if database
uses Oracle ASM storage.

-css_critical {YES |
NO}

You can add weight to a service by setting this parameter to YES. In the
event of a node failure within the cluster, Oracle Clusterware will evict the
node with the least amount of weight, ensuring that critical services
remain available.

Note: You can use this parameter only on an administrator-managed
node. Should the node become policy managed, at some point, this
parameter will no longer apply.

-cpucount cpu_count Specify the number of CPUs. The default value is 0.

-memorytarget
memory_target

Specify the target memory, in MB, to be allocated for the database. The
default is 0.

-maxmemory max_memory Specify the maximum memory, in MB, to be allocated for the resource. If
you specify -memorytarget but not -maxmemory, then -maxmemory will
be the default value of 0. Both -maxmemory and -memorytarget are
validated as long as -memorytarget is less than or equal to -
maxmemory.

-cpucap cpu_cap Specify a percentage from 1 to 100 that is the maximum utilization of the
workload CPUs the database requires. The default is 0.

-defaultnetnum
network_number

Specify a network number (an integer) to which services will default in
the event you do not specify a network number when you add the
service. The number must match the value of the -netnum parameter
you specified when you added the network.

Appendix A
SRVCTL Command Reference

A-19

Examples

An example of this command to add a policy-managed Oracle RAC database is:

$ srvctl add database -db crm -oraclehome /u01/oracle/product/12c/mydb
 -domain example.com -spfile +diskgroup1/crm/spfilecrm.ora
 -role PHYSICAL_STANDBY -startoption MOUNT -dbtype RAC -dbname
crm_psd
 -policy MANUAL -serverpool "svrpool1,svrpool2" -diskgroup
"dgrp1,dgrp2"

An example of this command to add an administrator-managed database is:

$ srvctl add database -db crm -oraclehome /u01/oracle/product/12c/mydb
-domain example.com

srvctl config database
Displays the configuration for an Oracle RAC database or lists all configured
databases that are registered with Oracle Clusterware.

Syntax

srvctl config database [-db db_unique_name] [-all] [-verbose]

Parameters

Table A-6 srvctl config database Command Parameters

Parameter Description

-db db_unique_name
Unique name for the database. If you do not specify this parameter,
then the utility displays the configuration of all database resources.

-all
Print detailed configuration information.

-verbose
Display verbose output.

Example

This command returns output similar to the following:

$ srvctl config database -d main4

Database unique name: main
Database name:
Oracle home: /ade/mjkeenan_main4/oracle

Appendix A
SRVCTL Command Reference

A-20

Oracle user: mjkeenan
Spfile:
Password file:
Domain:
Start options: open
Stop options: immediate
Database role: PRIMARY
Management policy: AUTOMATIC
Server pools:
Disk Groups:
Mount point paths:
Services: test
Type: RAC
Start concurrency:
Stop concurrency:
OSDBA group: dba
OSOPER group: oper
Database instances: main41,main42
Configured nodes: mjkeenan_main4_0,mjkeenan_main4_1
CSS critical: no
CPU count: 0
Memory target : 0
Maximum memory: 0
CPU cap: 0
Database is administrator managed

srvctl convert database
Converts a database either to or from an Oracle RAC One Node database.

Syntax

Use this command with one of the following syntax models:

srvctl convert database -db db_unique_name -dbtype RACONENODE
 [-instance instance_name] [-timeout timeout]

srvctl convert database -db db_unique_name -dbtype RAC [-node node_name]

Parameters

Table A-7 srvctl convert database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name for the database.

Note: If you specify a noncluster database, then command returns an
error instructing you to use rconfig to convert the noncluster database
to Oracle RAC or Oracle RAC One Node.

Appendix A
SRVCTL Command Reference

A-21

Table A-7 (Cont.) srvctl convert database Command Parameters

Parameter Description

-dbtype RACONENODE |
RAC

Specify the type of database to which you are converting, either Oracle
RAC One Node or Oracle RAC.

Note: If there is an ongoing or failed online database relocation, then the
command returns an error instructing you to first complete or abort the
online database relocation and then rerun the command.

-instance
instance_name

Optionally, you can specify an instance name prefix for Oracle RAC One
Node databases. The default value for this parameter is the first 12
characters of the global unique name of the database.

Notes:
• You can use this parameter only when converting from an Oracle

RAC database to an Oracle RAC One Node database.
• In order for the converted instance to come online, you must restart

the database using the srvctl stop/start database
commands.

-timeout timeout Optionally, you can specify online database relocation timeout, in
minutes, for Oracle RAC One Node databases. The default is 30.

-node node_name Optionally, you can specify the name of the node for an administrator-
managed Oracle RAC database. The default is the first candidate.

Note: If you do not specify a node name or you specify a node name
where the database is not running, then the command returns an error
instructing you specify the correct node.

Example

An example of this command is:

$ srvctl convert database -db myDB -dbtype RACONENODE -instance myDB3

srvctl disable database
Disables a running database.
If the database is a cluster database, then its instances are also disabled.

Syntax

srvctl disable database -db db_unique_name [-node node_name]

Parameters

Table A-8 srvctl disable database Command Parameters

Parameter Description

-db db_unique_name Specify the name of the database you want to disable.

Appendix A
SRVCTL Command Reference

A-22

Table A-8 (Cont.) srvctl disable database Command Parameters

Parameter Description

-node node_name Optionally, you can specify a node on which you want to disable the
database.

Note: You can only use this parameter only with Oracle
Clusterware.

Example

The following example disables the database mydb1:

$ srvctl disable database -db mydb1

srvctl downgrade database
Downgrades the configuration of a database and its services from its current version to a
specific lower version.

Syntax

srvctl downgrade database -db db_unique_name -oraclehome Oracle_home
 -targetversion to_version

Parameters

Table A-9 srvctl downgrade database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to downgrade.

-oraclehome
Oracle_home

Specify the path to the Oracle home.

-targetversion
to_version

Specify the database version to which you want to downgrade.

srvctl enable database
Enables a cluster database and its instances.

Syntax

srvctl enable database -db db_unique_name [-node node_name]

Appendix A
SRVCTL Command Reference

A-23

Parameters

Table A-10 srvctl enable database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to enable.

-node node_name Optionally, you can specify the name of the node on which the
database resource resides that you want to enable.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following example enables a database named mydb1:

$ srvctl enable database -db mydb1

srvctl getenv database
Displays the values for environment variables associated with a database.

Syntax

srvctl getenv database -db db_unique_name [-envs "name_list"]

Parameters

Table A-11 srvctl getenv database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database for which you want to
display the environment variable values.

-envs "name_list" Optionally, you can specify a comma-delimited list of the names of
specific environment variables enclosed in double quotation marks
("") for which you want to display the values.

If you do not use this parameter, then SRVCTL displays the values
of all environment variables associated with the database.

Example

The following example displays the environment configuration for a database named
crm:

$ srvctl getenv database -db crm

srvctl modify database
Modifies the configuration for a database.

Appendix A
SRVCTL Command Reference

A-24

Syntax

srvctl modify database -db db_unique_name [-dbname db_name]
 [-instance instance_name] [-oraclehome oracle_home] [-user user_name]
 [-server "server_list"] [-timeout timeout] [-domain db_domain]
 [-spfile spfile] [-pwfile password_file_path]
 [-role {PRIMARY|PHYSICAL_STANDBY|LOGICAL_STANDBY|SNAPSHOT_STANDBY}]
 [-startoption start_options] [-stopoption stop_options]
 [-startconcurrency start_concurrency] [-stopconcurrency
stop_concurrency]
 [-policy {AUTOMATIC | MANUAL | NORESTART | USERONLY}]
 [-serverpool "server_pool_name"] [-node node_list]
 [-pqpool pq_server_pool] [{-diskgroup "diskgroup_list" | -nodiskgroup}]
 [-acfspath "acfs_path_list"] [-css_critical {yes | no}]
 [-cpucount cpu_count [-overridepools overridepool_list]]
 [-memorytarget memory_target] [-maxmemory max_memory]
 [-defaultnetnum network_number] [-disabledreason {DECOMMISSIONED}]
 [-force] [-eval] [-verbose]

Parameters

Table A-12 srvctl modify database Command Parameters

Parameter Description

-db db_unique_name Unique name for the database.

-dbname db_name The name of the database, if it is different from the unique name given
by the -db parameter.

-instance
instance_name

Instance name prefix; this parameter is required for administrator-
managed Oracle RAC One Node databases.

-oraclehome
oracle_home

The path for the Oracle database home directory.

-user user_name The name of the user that owns the Oracle home directory.

Note: If you specify the -userparameter, then you must run this
command in privileged mode.

-server server_list List candidate servers for Oracle RAC One Node databases.

Note: You can use this parameter only with administrator-managed
Oracle RAC One Node databases. If your Oracle RAC One Node
database is policy managed, you cannot use this parameter.

-timeout timeout Online database relocation timeout, in minutes, for Oracle RAC One
Node databases. The default is 30.

-domain db_domain The domain for the database.

Note: You must use this parameter if you set the DB_DOMAIN initialization
parameter for the database.

-spfile spfile The path name of the database server parameter file.

-pwfile
password_file_path

Enter the full path to the location of the password file.

Appendix A
SRVCTL Command Reference

A-25

Table A-12 (Cont.) srvctl modify database Command Parameters

Parameter Description

-role {PRIMARY |
PHYSICAL_STANDBY |
LOGICAL_STANDBY |
SNAPSHOT_STANDBY}

The role of the database in an Oracle Data Guard configuration. The
default is PRIMARY.

-startoption
start_options

Startup options for the database, such as OPEN, MOUNT, and NOMOUNT.
The default value is OPEN.

Notes:
• For multi-word startup options, such as read only and read

write, separate the words with a space and enclose in double
quotation marks (""). For example, "read only".

• When performing a switch-over in an Oracle Data Guard
configuration, the -startoption for a standby database that
becomes a primary database is always set to OPEN after the
switchover.

-stopoption
stop_options

Stop options for the database, such as NORMAL, TRANSACTIONAL,
IMMEDIATE, and ABORT.

-startconcurrency
start_concurrency

Number of instances to be started simultaneously, or 0 to disable this
option.

-stopconcurrency
stop_concurrency

Number of instances to be stopped simultaneously, or 0 to disable this
option.

-policy {AUTOMATIC |
MANUAL | NORESTART |
USERONLY}

Management policy for the database.
• AUTOMATIC (default): The database is automatically restored to its

previous running condition (started or stopped) upon restart of the
database host computer.

• MANUAL: The database is never automatically restarted upon restart
of the database host computer. A MANUAL setting does not prevent
Oracle Clusterware from monitoring the database while it is running
and restarting it if a failure occurs.

• NORESTART: Similar to the MANUAL setting, the database is never
automatically restarted upon restart of the database host computer.
A NORESTART setting, however, never restarts the database even if a
failure occurs.

• USERONLY: The database can only be restarted by user command,
not as a result of any other reason (auto-start, start by dependency,
node failure, and so on.)

-serverpool
"server_pool_name"

Specify the name of a server pool used to control database placement. If
you do not specify this parameter, then it defaults to the Generic server
pool.

Notes:
• This parameter can only be used with Oracle Clusterware. You can

use this parameter with the -node parameter but the server pool
must have MAX_SIZE=1 and exactly one configured server (the one
you specify in -node).

• After you add server pools, you can assign services to them using
the srvctl add service command.

Appendix A
SRVCTL Command Reference

A-26

Table A-12 (Cont.) srvctl modify database Command Parameters

Parameter Description

-node node_list Specify a single node name or a comma-delimited list of node names on
which you want to modify configuration of a noncluster, or single
instance, Oracle database. Starting with Oracle Database 19c Release
Update (19.7), you can modify a Standard Edition High Availability
database configuration on multiple cluster nodes.

Note: While modifying an Oracle RAC One Node database, this
parameter can be used only with the -serverpool parameter.

-pqpool
"pq_pool_list"

Comma separated list of parallel query server pool names

Note: This parameter can be used only with Oracle Clusterware and with
the policy-managed databases.

-diskgroup
"disk_group_list"

Comma-delimited list of Oracle ASM disk groups if database uses Oracle
ASM storage.

-acfspath
"acfs_path_list"

A single Oracle ACFS path or a comma-delimited list of Oracle ACFS
paths enclosed in double quotation marks ("") where the database's
dependency is set.

Use this parameter to create dependencies on Oracle ACFS file systems
other than ORACLE_HOME, such as for when the database uses
ORACLE_BASE on a file system that is different from the ORACLE_HOME
file system.

-css_critical {YES |
NO}

You can add weight to a service by setting this parameter to YES. In the
event of a node failure within the cluster, Oracle Clusterware will evict the
node with the least amount of weight, ensuring that critical services
remain available.

Note: You can use this parameter only on an administrator-managed
node. Should the node become policy managed, at some point, this
parameter will no longer apply.

-cpucount cpu_count
[-overridepools
overridepool_list]

Specify the number of CPUs. The default value is 0. Use the -
overridepools option to specify the CPU count for specific server
pools.

-memorytarget
memory_target

Specify the target memory, in MB, to be allocated for the database. The
default is 0.

-maxmemory max_memory Specify the maximum memory, in MB, to be allocated for the resource. If
you specify -memorytarget but not -maxmemory, then -maxmemory will
be the default value of 0. Both -maxmemory and -memorytarget are
validated as long as -memorytarget is less than or equal to -
maxmemory.

-defaultnetnum
network_number

Specify a network number to which services will default in the event you
do not specify a network number when you add a service.

-disabledreason
{DECOMMISSIONED}

Marks the database as being decommissioned, which means it cannot
be started again and is not being used. This is intended for databases
that will be deleted at a future date.

-eval Use this parameter to hypothetically evaluate the impact of the command
on the system.

Note: You can only use this parameter with a policy-managed database.

Appendix A
SRVCTL Command Reference

A-27

Usage Notes

• The srvctl modify database command can convert administrator-managed
databases to policy-managed databases. For a running administrator-managed
database, if the server list is supplied, then the node where the database is
running must be on that list. The instance name prefix cannot be modified after
running the srvctl add database command.

• You cannot change the management policy from AUTOMATIC (using the -policy
parameter) for Oracle RAC One Node databases. Any attempt to do so results in
an error message. The same is true for the -node parameter, which is used to
change the node on which a non-cluster database runs.

• For policy-managed Oracle RAC One Node databases, you can use the -
serverpool parameter to move an Oracle RAC One Node database between
server pools but you can only specify one server pool. Specifying a list of server
pools returns an error.

Examples

The following example changes the role of a database to a logical standby:

$ srvctl modify database -db crm -role logical_standby

The following example directs the racTest database to use the SYSFILES, LOGS, and
OLTP Oracle ASM disk groups:

$ srvctl modify database -db racTest -diskgroup "SYSFILES,LOGS,OLTP"

Related Topics

• Oracle Data Guard Configurations

• Database Startup

• Database Shutdown

srvctl predict database
Predicts the consequences of the failure of a specific database.

Syntax

srvctl predict database -db db_unique_name [-verbose]

Usage Notes

• Specify the unique name of the database you want to check.

• Optionally, you can use the –verbose parameter to display detailed output.

Appendix A
SRVCTL Command Reference

A-28

srvctl relocate database
Initiates the relocation of an Oracle RAC One Node database from one node to another node.
This command also cleans up after a failed relocation, and you can only use it for relocating
Oracle RAC One Node databases.

Syntax

Use this command with one of the following syntax models:

To initiate the online relocation of an Oracle RAC One Node database:

srvctl relocate database -db db_unique_name [-node target_node] [-timeout
timeout]
 [-stopoption NORMAL] [-drain_timeout drain_timeout] [-verbose]

To abort the failed online relocation of an Oracle RAC One Node database:

srvctl relocate database -db db_unique_name -abort [-revert]
 [-drain_timeout drain_timeout] [-verbose]

Parameters

Table A-13 srvctl relocate database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to relocate.

-node target_node Optionally, you can specify a target node to which to relocate the Oracle
RAC One Node database.

Note: You must use this parameter if you are relocating an administrator-
managed Oracle RAC One Node database.

-timeout timeout Optionally, you can specify an online database relocation timeout, in
minutes, for Oracle RAC One Node databases. The default is 30.

-stopoption NORMAL Use this parameter to override the default shutdown option for a running
instance, such as the default of SHUTDOWN TRANSACTIONAL LOCAL for
a primary database or SHUTDOWN IMMEDIATE for a standby database.
The only value accepted for -stopoption is NORMAL.

–abort Use this parameter to abort a failed online database relocation.

–revert Use this parameter to remove the target node of a failed online relocation
request from the candidate server list of an administrator-managed
Oracle RAC One Node database.

-drain_timeout
timeout

Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

–verbose Use this parameter to display verbose output.

Appendix A
SRVCTL Command Reference

A-29

Usage Notes

• If the Oracle RAC One Node database you want to relocate is not running, then
the command returns an error.

• If another online database relocation is active for this Oracle RAC One Node
database, then the command returns an error.

• If an online database relocation for this Oracle RAC One Node database has failed
and the target nodes are not the same for either relocation, then the command
returns an error instructing you to abort the failed online database relocation and
then initiate a new one.

• If an online database relocation for this Oracle RAC One Node database has failed
and the target nodes are the same (or you do not specify the target), then the
command attempts to relocate the database.

Example

The following example relocates an administrator-managed Oracle RAC One Node
database named rac1 to a server called node7.

$ srvctl relocate database -db rac1 -node node7

srvctl remove database
Removes database configurations.

After running this command, ensure that the password file is in the default location if
you want to connect to the database as the SYS user with the SYS user's password.

Syntax

srvctl remove database -db db_unique_name [-force] [-noprompt] [-
verbose]

Parameters

Table A-14 srvctl remove database Command Parameters

Parameter Description

-database
db_unique_name

Unique name for the database.

-force Forcibly remove the database and ignore any dependencies.

-noprompt Suppress prompts.

-verbose Display verbose output.

Example

To remove a database named crm:

$ srvctl remove database -db crm

Appendix A
SRVCTL Command Reference

A-30

srvctl setenv database
Administers cluster database environment configurations.

Syntax

Use this command with one of the following syntax models:

srvctl setenv database -db db_unique_name -envs "name=val[,...]"

srvctl setenv database -db db_unique_name -env "name=val"

Parameters

Table A-15 srvctl setenv database Command Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database for which you want to set
environment variables.

-envs
"name=val[,...]"

Specify a comma-delimited list of name-value pairs of environment
variables enclosed in double quotation marks ("") that you want to set.

-env "name=val" Specify a single environment variable that you want to set to a value that
contains commas or other special characters enclosed in double
quotation marks ("").

Usage Notes

Add additional information about the command here.

Example

The following example sets the language environment variable for a cluster database:

$ srvctl setenv database -db crm -env LANG=en

srvctl start database
Starts a database and its enabled instances, and all listeners on nodes with database
instances.
You can disable listeners that you do not want to start.

Syntax

srvctl start database -db db_unique_name [-eval] [-startoption start_options]
 [-startconcurrency number_of_instances] [-node node_name]

Appendix A
SRVCTL Command Reference

A-31

Parameters

Table A-16 srvctl start database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to start.

–eval Optionally, use this parameter to hypothetically evaluate the impact
of the command on the system.

-startoption
start_options

Optionally, you can set options for the startup command (for
example: OPEN, MOUNT, or NOMOUNT).

Notes:
• This command parameter supports all database startup

options.
• For multi-word startup options, such as read only and read

write, separate the words with a space and enclose in double
quotation marks (""). For example, "read only".

See Also: SQL*Plus User's Guide and Reference for more
information about startup options

-startconcurrency
number_of_instances

Optionally, you can specify a number of database instances to start
simultaneously, or specify 0 for an empty start concurrency value.
When you use this parameter with the srvctl start database
command, it overrides any -startconcurrency value configured
using the srvctl add | modify database commands.

Note:

If the value for the -
startconcurrency parameter is
greater than the number of total
instances, then this parameter does
not have any effect, same as 0.

Appendix A
SRVCTL Command Reference

A-32

Table A-16 (Cont.) srvctl start database Command Parameters

Parameter Description

-node node_name Optionally, you can specify the name of a node on which you want
to start the database.

Notes:
• This command only applies to Oracle RAC One Node and

Standard Edition High Availability databases.
• The node you specify must be in the candidate list for an

administrator-managed Oracle RAC One Node or Standard
Edition High Availability database. The node must be in the
server pool for a policy-managed Oracle RAC One Node
database.

• If the database is already running on a node than the one you
specify, then the command returns an error.

• If you do not specify a node, then Oracle Clusterware chooses
which node on which to start the Oracle RAC One Node or
Standard Edition High Availability database according to its
policies, such as dispersion, number of resources, and order of
candidate nodes.

• If there is an active online database relocation for the Oracle
RAC One Node database you are attempting to start, then
both instances will already be running and the command
returns an error message. Only during an online database
relocation are two instances of an Oracle RAC One Node
database in existence.

If the online database relocation failed for the Oracle RAC One
Node database and you do not specify a node, then the
command attempts to start both database instances.

If the online database relocation failed for the Oracle RAC One
Node database and you specify a node, then the command
attempts to stop the failed relocation and start the instance on
that node.

Examples

The following example starts the crm database and sets the startup option to read only:

$ srvctl start database -db crm -startoption "read only"

srvctl status database
This command displays the current state of the of the database.

Syntax

srvctl status database {-db db_unique_name {[-serverpool serverpool_name]
 | [-sid] [-home]} | -serverpool serverpool_name | -thisversion | -
thishome}
 [-force] [-detail] [-verbose]

Appendix A
SRVCTL Command Reference

A-33

Parameters

Table A-17 srvctl status database Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database.

-serverpool
serverpool_name

Optionally, you can specify a server pool that SRVCTL will display
information on nodes contained within.

–sid Use this parameter to display the SID of the Oracle instance
running on this node.

–home Use this parameter to display the Oracle home of the specified
database.

-thisversion Use this parameter to display the status of databases that are of
the same Oracle product version as SRVCTL.

-thishome Use this parameter to display the status of databases that are
configured in this Oracle home.

-force Include disabled applications

–detail Use this parameter to display detailed database status information.

-verbose Displays STATE_DETAILS and INTERNAL_STATE attributes, which
include STABLE, STARTING, STOPPING, and CLEANING.

If the INTERNAL_STATE is STABLE, then SRVCTL displays no
additional information. If the INTERNAL_STATE is STARTING, then
SRVCTL displays:

Instance instance_name is being started

If the INTERNAL_STATE is CLEANING, then SRVCTL displays:

Instance instance_name is being cleaned up

If the INTERNAL_STATE is STOPPING, then SRVCTL displays:

Instance instance_name is being stopped

Usage Notes

The output of this command includes information on the Oracle ASM or Oracle ASM
IOServer instance for each running instance of the database.

Examples

This command displays output similar to the following:

$ srvctl status database -db db00 -detail

Instance db00_1 is connected to ASM instance +ASM3
Instance db00_2 is connected to ASM I/O server instance +IOS1

Appendix A
SRVCTL Command Reference

A-34

srvctl stop database
Stops a database, its instances, and its services.

Syntax

srvctl stop database -db db_unique_name [-stopoption stop_options]
 [-stopconcurrency number_of_instances] [-drain_timeout timeout] [-eval]
 [-force] [-verbose]

Parameters

Table A-18 srvctl stop database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name for the database that you want to stop.

-stopoption
stop_options

Optionally, you can specify options for the shutdown command, such as
NORMAL, TRANSACTIONAL LOCAL, IMMEDIATE, or ABORT.

-stopconcurrency
number_of_instances

Optionally, you can specify a number of database instances to stop
simultaneously, or specify 0 for an empty stop concurrency value. When
you use this parameter with the srvctl stop database command, it
overrides any -stopconcurrency value configured using the srvctl
add | modify database commands.

Note:

If the value for the -stopconcurrency
parameter is greater than the number of
total instances, then this parameter does
not have any effect, same as 0.

-drain_timeout
timeout

Optionally, you can specify the time, in seconds, allowed to complete the
resource draining action. By default, this parameter is not set. You can
specify 0 or any positive integer. An empty string unsets the parameter. If
you specify zero, then the agent will perform the actions related to
service draining, immediately.

Drain timeout is the maximum time the service waits before exiting (in
case of srvctl stop service or srvctl stop instance) or
proceeding to stop database (srvctl stop database), until the
draining of sessions is completed. If session draining completes in 10
seconds and the drain timeout value (on CLI or resource attribute) is 100
seconds, then SRVCTL moves on after 10 seconds. It does not wait for
the remaining 90 seconds.

-eval Optionally, you can use this parameter to hypothetically evaluate the
impact of the command on the system.

-force Optionally, you can use this parameter to stop the database, its
instances, its services, and any resources that depend on those
services.

—verbose Optionally, you can use this parameter to display detailed output.

Appendix A
SRVCTL Command Reference

A-35

Example

The following command example stops a database and includes detailed output:

$ srvctl stop database -db db1 -drain_timeout 50 -verbose
Draining in progress on services svc1,svc2.
Drain complete on services svc1.
Draining in progress on services svc2.
Draining in progress on services svc2.
Drain complete on services svc2.

srvctl unsetenv database
Unsets the cluster database environment configurations.

Syntax

srvctl unsetenv database -db db_unique_name -envs "name_list"

Parameters

Table A-19 srvctl unsetenv database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database for which you want to
unset environment variables.

-envs "name_list" Specify a comma-delimited list of environment variable names
enclosed in double quotation marks ("").

Example

The following example unsets two cluster database environment variables:

$ srvctl unsetenv database -db crm -envs "CLASSPATH,LANG"

srvctl update database
Updates the specified database to use the new listener endpoints.

Syntax

srvctl update database -db db_unique_name

Usage Notes

• You can only use this command with Oracle Clusterware.

• Specify the unique name of the database you want to update.

Appendix A
SRVCTL Command Reference

A-36

srvctl upgrade database
Upgrades the configuration of a database and all of its services to the version of the database
home from where this command is run.

Syntax

srvctl upgrade database -db db_unique_name -oraclehome Oracle_home

Parameters

Table A-20 srvctl upgrade database Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database you want to upgrade.

-oraclehome
Oracle_home

Specify the path to the upgraded ORACLE_HOME.

srvctl disable diskgroup
Disables a specific disk group on a number of specified nodes.

Syntax

srvctl disable diskgroup -diskgroup diskgroup_name [-node "node_list"]

Parameters

Table A-21 srvctl disable diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group you want to disable.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") on which to disable the disk
group.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following example disables the Oracle ASM disk group, dgroup1, on two nodes in a
cluster, mynode1 and mynode2:

$ srvctl disable diskgroup -diskgroup dgroup1 -node "mynode1,mynode2"

srvctl enable diskgroup
Enables a specific disk group on a number of specified nodes.

Appendix A
SRVCTL Command Reference

A-37

Syntax

srvctl enable diskgroup -diskgroup diskgroup_name [-node "node_list"]

Parameters

Table A-22 srvctl enable diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group you want to
enable.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") on which to enable the
disk group.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following example enables the diskgroup1 Oracle ASM disk group on nodes
mynode1 and mynode2:

$ srvctl enable diskgroup -diskgroup diskgroup1 -node "mynode1,mynode2"

srvctl predict diskgroup
Predicts the consequences of an Oracle ASM disk group failure.

Syntax

srvctl predict diskgroup -diskgroup diskgroup_name [-verbose]

Usage Notes

Specify the name of the Oracle ASM disk group for which you want to evaluate a
failure. Optionally, you can use the –verbose parameter top print detailed output.

srvctl remove diskgroup
Removes a specific Oracle ASM disk group resource from Oracle Clusterware or
Oracle Restart.

Syntax

srvctl remove diskgroup -diskgroup diskgroup_name [-force]

Usage Notes

Specify the name of the Oracle ASM disk group you want to remove. Optionally, you
can use the –force parameter to ignore any dependencies and forcibly remove the
disk group.

Appendix A
SRVCTL Command Reference

A-38

Example

The following example forcibly removes the DG1 Oracle ASM disk group:

$ srvctl remove diskgroup -diskgroup DG1 -force

srvctl start diskgroup
Starts a specific Oracle ASM disk group resource on a number of specified nodes.

Syntax

srvctl start diskgroup -diskgroup diskgroup_name [-node "node_list"]

Parameters

Table A-23 srvctl start diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group you want to start.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") on which to start the disk group
resource.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following example starts the diskgroup1 Oracle ASM disk group on the nodes mynode1
and mynode2:

$ srvctl start diskgroup -diskgroup diskgroup1 -node "mynode1,mynode2"

srvctl status diskgroup
Displays the status of a specific disk group on a number of specified nodes.

Syntax

srvctl status diskgroup -diskgroup diskgroup_name [-node "node_list"]
 [-detail] [-verbose]

Appendix A
SRVCTL Command Reference

A-39

Parameters

Table A-24 srvctl status diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group for which you want
to display the status.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
on which to check status of an Oracle ASM disk group.

Note: You can only use this parameter with Oracle Clusterware.

-detail Optionally, you can use this parameter to display detailed status
information for the Oracle ASM disk group.

-verbose Optionally, you can use this parameter to display verbose output.

Examples

The following example displays the status of the dgrp1 Oracle ASM disk group:

$ srvctl status diskgroup -diskgroup dgrp1 -node "mynode1,mynode2" -
detail

srvctl stop diskgroup
Stops a specific Oracle ASM disk group resource on a number of specified nodes.

Syntax

srvctl stop diskgroup -diskgroup diskgroup_name [-node "node_list"] [-
force]

Parameters

Table A-25 srvctl stop diskgroup Command Parameters

Parameter Description

-diskgroup
diskgroup_name

Specify the name of the Oracle ASM disk group you want to stop.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") on which to stop the
Oracle ASM disk group resource.

Note: You can only use this parameter with Oracle Clusterware.

-force Optionally, you can use this parameter to perform a forceful
dismount. While this parameter does not stop the databases that
depend on the disk group you are stopping, it still may cause those
databases to fail.

Appendix A
SRVCTL Command Reference

A-40

Example

The following command stops the diskgroup1 Oracle ASM disk group on the two nodes
mynode1 and mynode2:

$ srvctl stop diskgroup -diskgroup diskgroup1 -node "mynode1,mynode2" -force

srvctl start home
Starts all the Oracle Restart-managed or Oracle Clusterware-managed resources on the
specified Oracle home.

Syntax

srvctl start home -oraclehome Oracle_home -statefile state_file -node
node_name

Parameters

Table A-26 srvctl start home Command Parameters

Parameter Description

-oraclehome
Oracle_home

Specify the path to the Oracle home for which you want to start the
Oracle Restart or Oracle Clusterware-managed resources.

-statefile state_file Specify the path to the directory where you want SRVCTL to write the
state file.

-node node_name Specify the name of the node on which the Oracle home resides.

Note: You can only use this parameter with Oracle Clusterware.

Example

The following command starts an Oracle home:

$ srvctl start home -oraclehome /u01/app/oracle/product/12.2.0/db_1
 -statefile ~/state.txt -node node1

srvctl status home
Displays the status of all the Oracle Restart-managed or Oracle Clusterware-managed
resources for the specified Oracle home.

Syntax

srvctl status home -oraclehome Oracle_home -statefile state_file -node
node_name

Appendix A
SRVCTL Command Reference

A-41

Parameters

Table A-27 srvctl status home Command Parameters

Parameter Description

-oraclehome
Oracle_home

Specify the path to the Oracle home for which you want to start the
Oracle Restart or Oracle Clusterware-managed resources.

-statefile
state_file

Specify the path to the directory that contains the text file that holds
the state information generated by this command.

-node node_name Specify the name of the node on which the Oracle home resides.

Note: This parameter is required and you can only use it with
Oracle Clusterware.

Example

The following example obtains the status of a particular Oracle home:

$ srvctl status home -oraclehome /u01/app/oracle/product/12.1/dbhome_1
-statefile
 ~/state.txt -node stvm12

The preceding command returns output similar to the following:

Database cdb1 is running on node stvm12

srvctl stop home
Stops all the Oracle Restart-managed or Oracle Clusterware-managed resources that
run from the specified Oracle home.

Syntax

srvctl stop home -oraclehome Oracle_home -statefile state_file -node
node_name
 [-stopoption stop_options] [-force]

Parameters

Table A-28 srvctl stop home Command Parameters

Parameter Description

-oraclehome
Oracle_home

Specify the directory path to the Oracle home for which you want to
start the Oracle Restart or Oracle Clusterware-managed resources.

Note: The path to the Oracle home you specify must be the same
version as the Oracle home from which you invoke SRVCTL.

-statefile
state_file

Specify the path to the directory where you want SRVCTL to write
the state file.

Appendix A
SRVCTL Command Reference

A-42

Table A-28 (Cont.) srvctl stop home Command Parameters

Parameter Description

-node node_name Specify the name of the node on which the Oracle home resides.

Note: You can only use this parameter with Oracle Clusterware.

-stopoption
stop_options

Optionally, you can specify shutdown options for the database,
such as NORMAL, TRANSACTIONAL, IMMEDIATE, or ABORT
See Also: SQL*Plus User's Guide and Reference for more
information about shutdown options

-force Optionally, you can use this parameter to stop the resources even if
errors are reported.

Example

The following example stops the Oracle home:

$ srvctl stop home -oraclehome /u01/app/oracle/product/12.1.0/db_1 -statefile
 ~/state.txt

srvctl add instance
Adds a configuration for an instance to your cluster database configuration.

You can only use this command for administrator-managed databases. If you have a policy-
managed database, then use the srvctl modify srvpool command to add an instance to increase
either the maximum size, minimum size, or both, of the server pool used by the database.

Syntax

srvctl add instance -db db_unique_name -instance instance_name
 -node node_name [-force]

Parameters

Table A-29 srvctl add instance Command Parameters

Parameter Description

-db db_unique_name The unique name of the database you are adding the instance to

-instance
instance_name

The name of the instance you are adding

-node node_name The name of the node on which you are creating the instance

-force Optionally, you can force the add operation, even though some
resources will be stopped.

Usage Notes

• You can only use this command with Oracle Clusterware and Oracle RAC.

• This command increments the CARDINALITY resource attribute.

Appendix A
SRVCTL Command Reference

A-43

• If you attempt to use this command on an Oracle RAC One Node database, then
the command returns an error stating you must convert the database to Oracle
RAC.

Examples

Examples of this command are:

$ srvctl add instance -db crm -instance crm01 -node gm01
$ srvctl add instance -db crm -instance crm02 -node gm02
$ srvctl add instance -db crm -instance crm03 -node gm03

srvctl disable instance
Disables a database instance.
If the database instance that you disable with this command is the last enabled
database instance, then this operation also disables the database.

Note:

• This command is only available with Oracle Clusterware and Oracle
RAC.

• If you run this command on an Oracle RAC One Node database, then
the command returns an error instructing you to use the database noun,
instead.

Syntax

srvctl disable instance -db db_unique_name -instance
"instance_name_list"

Parameters

Table A-30 srvctl disable instance Command Parameters

Parameter Description

-db db_unique_name Specify the unique name for the database for which you want to
disable the instance.

-instance
"instance_name_list"

Specify an instance name or a comma-delimited list of instance
names enclosed in double quotation marks ("") you want to
disable.

Example

The following example disables two instances of the crm database, named crm1 and
crm2:

$ srvctl disable instance -db crm -instance "crm1,crm3"

Appendix A
SRVCTL Command Reference

A-44

srvctl enable instance
Enables an instance of an Oracle RAC database.
If you use this command to enable all instances, then the database is also enabled.

Note:

• You can only use this command with Oracle Clusterware and Oracle RAC.

• If you run this command on an Oracle RAC One Node database, then the
command returns an error instructing you to use the database noun, instead.

Syntax

srvctl enable instance -db db_unique_name -instance "instance_name_list"

Parameters

Table A-31 srvctl enable instance Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database for which you want to enable
instances.

-instance
"instance_name_list"

Specify a comma-delimited list of instance names enclosed in double
quotation marks ("") that you want to enable.

Example

The following example enables two instances of the crm database:

$ srvctl enable instance -db crm -instance "crm1,crm2"

srvctl modify instance
For an administrator-managed database, this command modifies the configuration for a
database instance from its current node to another node. For a policy-managed database,
this command defines an instance name to use when the database runs on the specified
node.

Syntax

srvctl modify instance -db db_unique_name -instance instance_name
 -node node_name

Appendix A
SRVCTL Command Reference

A-45

Parameters

Table A-32 srvctl modify instance Command Parameters

Parameter Description

-database
db_unique_name

Specify the unique name for the database.

-instance
instance_name

Specify the database instance name.

Notes:
• If you are modifying a policy-managed database instance, then

the instance name must contain an underscore (_), such as
pmdb1_1.

• If you specify an instance name that has never been started
before, and is not of the form prefix_number, then you may
have to assign an instance number, undo, and redo in the
SPFILE.

-node node_name Name of the node on which to run the instance. You can set the
value of this parameter to "" only for a policy-managed database.

Usage Notes

You cannot use this command to rename or relocate a running instance.

Examples

The following example to changes the configuration of an administrator-managed
database, amdb, so that the database instance, amdb1, runs on the specified node,
mynode:

$ srvctl modify instance -db amdb -instance amdb1 -node mynode

The following example causes the policy-managed database pmdb, when and if it runs
on mynode, to use the instance name pmdb1:

$ srvctl modify instance -db pmdb -instance pmdb1_1 -node mynode

The following example removes the directive established by the previous example:

$ srvctl modify instance -db pmdb -instance pmdb1_1 -node ""

srvctl remove instance
Removes the configurations for an instance of an administrator-managed database.
To remove the configurations of a policy-managed database, you must shrink the size
of the server pool with the srvctl modify srvpool command.

Syntax

srvctl remove instance -db db_unique_name -instance instance_name
 [-noprompt] [-force]

Appendix A
SRVCTL Command Reference

A-46

Parameters

Table A-33 srvctl remove instance Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the administrator-managed database.

-instance
instance_name

Specify the name of the Instance you want to remove.

-noprompt Use this parameter to suppress prompts.

–force Use this parameter to skip checking that the instance is not running, and
remove it even though it is running. This parameter also skips checking
that the instance has no running services using it, and causes those
services to stop before the instance is removed.

Usage Notes

• You can use this command only with Oracle Clusterware and Oracle RAC.

• If you use the -force parameter, then any services running on the instance stop. Oracle
recommends that you reconfigure services to not use the instance you want to removed
as a preferred or available instance before removing the instance.

• If you attempt to use this command on an Oracle RAC One Node database, then the
command returns an error stating that cannot remove the instance except by removing
the database.

Example

The following example removes the crm01 database instance from the crm database.

$ srvctl remove instance -db crm -instance crm01

srvctl start instance
Starts instances in the cluster database.

Use the srvctl start instance command to start database instances, and all listeners on
nodes with database instances

Syntax

Use the srvctl start instance command with one of these syntax models:

srvctl start instance -db db_unique_name -node node_name
 [-instance "instance_name"] [-startoption start_options]

srvctl start instance -db db_unique_name -instance "inst_name_list"
 [-startoption start_options]

Appendix A
SRVCTL Command Reference

A-47

Parameters

Table A-34 srvctl start instance Parameters

Parameter Description

-db db_unique_name Unique name for the database.

-node node_name The name of a single node.

Note: Use this parameter for policy-managed databases.

-instance
{ "instance_name" |
"inst_name_list" }

The name of a single instance or a comma-delimited list of instance
names

Note: Use this parameter for administrator-managed databases.

-startoption
start_options

Options for startup command, such as OPEN, MOUNT, or NOMOUNT)

Note: For multi-word startup options, such as read only and
read write, separate the words with a space and enclose in
double quotation marks (""). For example, "read only".

Usage Notes

• This command is only available with Oracle Clusterware and Oracle RAC.

• If you run this command on an Oracle RAC One Node database, then the
command returns an error instructing you to use the database noun, instead.

Related Topics

• SQL*Plus User's Guide and Reference

srvctl status instance
Displays the status of instances.

Note:

This command is only available with Oracle Clusterware and Oracle RAC.

srvctl stop instance
The srvctl stop instance command stops instances and stops any services running
on specified instances.

Syntax

Use this command with one of the following syntax models.

To stop all instances on one or more nodes:

srvctl stop instance -node "node_list" [-stopoption stop_options]
 [-drain_timeout timeout] [-force] [-failover] [-verbose]

Appendix A
SRVCTL Command Reference

A-48

To stop instances for a database that are running on specific nodes:

srvctl stop instance -db db_unique_name -node "node_list"
 [-stopoption stop_options] [-drain_timeout timeout] [-force] [-failover]
[-verbose]

To stop one or more instances by name for a database:

srvctl stop instance -db db_unique_name -instance "instance_name_list"
 [-stopoption stop_options] [-drain_timeout timeout] [-force] [-failover]
[-verbose]

Parameters

Table A-35 srvctl stop instance Command Parameters

Parameter Description

-db db_unique_name
-node "node_list"
-instance
"instance_name_list"
-stopoption
stop_options
-drain_timeout
timeout
-force
–failover
-verbose

Usage Notes

If you run this command on an Oracle RAC One Node database, then the command returns
an error instructing you to use the srvctl stop database command instead.

Example

The following command example stops the instance of the db1 database running on the node
server1, and includes verbose output:

$ srvctl stop instance -db db1 -node server1 -drain_timeout 50 -verbose
Draining in progress on services svc1
Draining in progress on services svc1
Drain complete on services svc1

Related Topics

• Database Shutdown

Appendix A
SRVCTL Command Reference

A-49

srvctl update instance
The srvctl update instance command changes the open mode or the target Oracle
ASM instance of the database instances.

Syntax

srvctl update instance -db db_unique_name [-instance
"instance_name_list"
 | -node "node_list"] [-startoption start_options] [-targetinstance
instance_name]

Parameters

Parameter Description

-db db_unique_name The unique name of the database

-instance
"instance_name_list"
| -node "node_list"

A comma-delimited list of instance names or node names that you
want to update. If you specify a list of node names, then SRVCTL
udpates the instances running on those specific nodes.

-startoption
start_options

The specify startup options for the database, such as OPEN, MOUNT,
or "READ ONLY"

-targetinstance
instance_name

The target Oracle ASM or Oracle ASM IOServer instance. Use
double quotation marks ("") with no space in-between to specify
the default target instance.

Examples

An example of this command is:

$ srvctl update instance -db db00 -instance db00_3 -targetinstance
+ASM2

srvctl add listener
Adds a listener to every node in a cluster.

Syntax

Use this command with one of the following syntax models.

To create an Oracle Database listener:

srvctl add listener [-listener listener_name] [-netnum network_number]
[-oraclehome Oracle_home]
 [-user user_name] [-endpoints "[TCP:]port_list[:FIREWALL={ON|OFF}][/
IPC:key][/NMP:pipe_name]
 [/{TCPS|SDP|EXADIRECT}port_list[:FIREWALL={ON|OFF}]]" [-group
group_name]] [-invitednodes "node_list"]
 [-invitedsubnets "subnet_list"] [-skip]

Appendix A
SRVCTL Command Reference

A-50

To create an Oracle ASM listener:

srvctl add listener [-listener listener_name] -asmlistener [-subnet subnet]
 [-endpoints "[TCP:]port_list[:FIREWALL={ON|OFF}][/IPC:key][/NMP:pipe_name]
 [/{TCPS|SDP|EXADIRECT}port_list[:FIREWALL={ON|OFF}]]" [-group group_name]]
[-invitednodes "node_list"]
 [-invitedsubnets "subnet_list"] [-skip]

To create a SCAN listener, use the srvctl add scan_listener command.

Parameters

Table A-36 srvctl add listener Command Parameters

Parameter Description

-listener
listener_name

Specify a listener name. This parameter is optional.

If you do not specify this parameter, then the name of the listener
defaults to LISTENER for a database listener or LISTENER_ASM for an
Oracle ASM listener.

-netnum
network_number

The optional network number from which VIPs are obtained. If not
specified, the VIPs are obtained from the same default network from
which the nodeapps VIP is obtained.

Note: Use this parameter when you add an Oracle Database listener.

-oraclehome
oracle_home

Specify an Oracle home for the cluster database. If you do not include
this parameter, then SRVCTL uses the Grid home by default.

Note: Use this parameter when you add an Oracle Database listener.

-user user_name Use this parameter to set the user that will run the listener to a less
privileged user. Oracle recommends using this parameter to increase
security.

Notes:
• You must be logged in as root to run this command and specify the

-user parameter.

• Use this parameter when you add an Oracle Database listener.
• When you use the -user parameter, ensure the following:

The listener log directory in the Oracle Base directory and the
Grid_home/network/admin/user_name directory must
both exist on each node before you can use this parameter.
Additionally, user_name must have read, write, and execute
permission in the directory.

The Oracle_Base/diag/tnslsnr/host_name/
lower_case_listener_name directory exists and
user_name has read, write, and execute permission on it.

• Before you can use LSNRCTL to manage a listener, you must set
TNS_ADMIN to Grid_home/network/admin/user_name.

-endpoints
"[TCP:]port_list[:FIR
EWALL={ON|OFF}][/
IPC:key] [/
NMP:pipe_name][/
{TCPS|SDP|
EXADIRECT}port_list[:
FIREWALL={ON|OFF}]]"]

Protocol specifications for the listener. Use port_list to specify a
comma-delimited list of TCP ports or listener endpoints.

If you do not specify the -endpoints parameter for an Oracle Database
listener, then SRVCTL searches for a free port between 1521 and 1540.

You can also specify endpoints for TCPS, SDP, and EXADIRECT ports.

Note: You can modify this attribute using Online Resource Attribute
Modification.

Appendix A
SRVCTL Command Reference

A-51

Table A-36 (Cont.) srvctl add listener Command Parameters

Parameter Description

-group group_name Optionally, you can use the -group parameter with -endpoints to
specify a group for the secure endpoint. This parameter is used for the
EXADIRECT protocol on Exadata and Exalogic systems.

-invitednodes
"node_list"

Specify a comma-delimited list of node names allowed to register with
the listener.

-invitedsubnets
"subnet_list"

Specify a comma-delimited list of subnets allowed to register with the
listener.

-skip Indicates you want to skip the checking of ports.

-asmlistener Specifies the listener type as an Oracle ASM listener. If you do not
specify the -listener parameter, then the name of the Oracle ASM
listener defaults to LISTENER_ASM.

Note: You can only use this parameter with Oracle Clusterware.

-subnet subnet Specifies the subnet to use for an Oracle ASM listener.

Note: You can only use this parameter with Oracle Clusterware.

Usage Notes

You must run this command as root user on Linux and UNIX platforms when you
specify the -user parameter.

Example

The following command adds a listener named listener112 that is listening on ports
1341, 1342, and 1345 and runs from the Oracle home directory on every node in the
cluster.

$ srvctl add listener -listener listener112 -endpoints
"1341,1342,1345"
-oraclehome /u01/app/oracle/product/12.2.0/db1

When a listener is configured in the Oracle RAC home instead of the Grid home, then
the listener.ora file is created under the location returned by
the $ORACLE_HOME/bin/orabasehome utility, in the subdirectory network/admin, for
example, /u02/racbase/homes/OraDB20Home1/network/admin.

srvctl config listener
Displays configuration information of a specific listener that is registered with Oracle
Clusterware.

Syntax

srvctl config listener [-listener listener_name | -asmlistener] [-all]

Appendix A
SRVCTL Command Reference

A-52

Parameters

Table A-37 srvctl config listener Command Parameters

Parameter Description

-listener listener_name | -
asmlistener

The name of a specific listener name or the type of listener (Oracle ASM).

If you do not specify this parameter, then SRVCTL displays the
configuration for the default database listener.

-all Print detailed configuration information.

Example

This command returns output similar to the following:

Name: LISTENER
Subnet: 10.100.200.195
Type: type
Owner: scott
Home: Grid_home
End points: TCP:1521

srvctl disable listener
Disables a listener resource.

Syntax

srvctl disable listener [-listener listener_name] [-node node_name]

Parameters

Table A-38 srvctl disable listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a particular listener resource. If
you do not specify this parameter, then the name of the listener defaults
to LISTENER.

-node node_name Optionally, you can specify the name of a cluster node on which the
listener resource you want to disable is running.

Note: This parameter is only available with Oracle Clusterware.

Example

The following example disables a listener resource named listener_crm on the node node5:

$ srvctl disable listener -listener listener_crm -node node5

Appendix A
SRVCTL Command Reference

A-53

srvctl enable listener
Enables a listener resource.

Syntax

srvctl enable listener [-listener listener_name] [-node node_name]

Parameters

Table A-39 srvctl enable listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a listener resource. If you
do not use this parameter, then the name of the listener defaults to
LISTENER.

-node node_name Optionally, you can specify the name of a cluster node on which to
enable the listener.

Note: You can only use this parameter with Oracle Clusterware.

Examples

The following example enables the listener named listener_crm on the node named
node5:

$ srvctl enable listener -listener listener_crm -node node5

srvctl getenv listener
Displays the environment variables for the specified listener.

Syntax

srvctl getenv listener [-listener listener_name] [-envs "name_list"]

Parameters

Table A-40 srvctl getenv listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify a listener name for which you want to
obtain the environment variables.

If you do not use this parameter, then the name of the listener
defaults to LISTENER.

-envs "name_list" Optionally, you can specify a comma-delimited list of the names of
environment variables enclosed in double quotation marks ("").

If you do not use this parameter, then SRVCTL displays the values
of all environment variables associated with the listener.

Appendix A
SRVCTL Command Reference

A-54

Example

The following example lists all environment variables specified for the default listener:

$ srvctl getenv listener

srvctl modify listener
Changes several aspects of the listener
Changes the Oracle home directory from which the listener runs, the name of the operating
system user who owns Oracle home directory from which the listener runs, the listener
endpoints, or the public subnet on which the listener listens, either for the default listener, or a
specific listener, that is registered with Oracle Restart or with Oracle Clusterware.

If you want to change the name of a listener, then use the srvctl remove listener and srvctl add
listener commands.

Syntax

srvctl modify listener [-listener listener_name] [-oraclehome oracle_home]
 [-endpoints "[TCP:]port_list[:FIREWALL={ON|OFF}][/IPC:key][/NMP:pipe_name]
 [/{TCPS|SDP|EXADIRECT}port_list[:FIREWALL={ON|OFF}]]"] [-group <group>]
 [-user user_name] [-netnum network_number]

Parameters

Table A-41 srvctl modify listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can enter the name of the listener you want to modify.

If you do not use this parameter, then SRVCTL uses the default name,
LISTENER.

-oraclehome
oracle_home

If you choose to use this parameter, then SRVCTL moves the listener to
run from the Oracle home you specify.

Note: When you use this parameter, run the command as a privileged
user to enable SRVCTL to update resource ownership corresponding to
the new ORACLE_HOME owner.

-endpoints
"[TCP:]port_list[:FIR
EWALL={ON|OFF}][/
IPC:key][/
NMP:pipe_name][/
{TCPS|SDP|
EXADIRECT}port_list[:
FIREWALL={ON|OFF}]]"

Optionally, you can use this parameter to modify protocol specifications
for the listener. You must enclose the string of protocols in double
quotation marks ("").

port_list is comma-delimited list of port numbers.

You can also modify endpoints for TCPS, SDP, and EXADIRECT ports.

Note: You can modify this attribute using Online Resource Attribute
Modification.

-group group_name Optionally, you can use the -group parameter with -endpoints to
specify a group for the secure endpoint. This parameter is used for the
EXADIRECT protocol on Exadata and Exalogic systems.

Appendix A
SRVCTL Command Reference

A-55

Table A-41 (Cont.) srvctl modify listener Command Parameters

Parameter Description

-user user_name Optionally, you can specify the name of the operating system user who
will own the specified Oracle listener

Notes:
• You can only use this parameter with Oracle Clusterware.
• You must be logged in as root to run this command and specify the

-user parameter.

• When you use the -user parameter, ensure the following:

The listener log directory in ORACLE_BASE and the Grid_home/
network/admin/user_name directory must both exist on each
node before you can use this parameter. Additionally, user_name
must have read, write, and execute permission in the directory.

The $ORACLE_BASE/diag/tnslsnr/host_name/
lower_case_listener_name directory exists and
user_name has read, write, and execute permission on it.

• Before you can use LSNRCTL to manage a listener, you must set
TNS_ADMIN to Grid_home/network/admin/user_name.

-netnum
network_number

Optionally, you can use this parameter to change the public subnet on
which the listener listens.

Note: Oracle recommends that you always have at least one listener on
the default network. Do not use this parameter to change the network of
the only listener that listens on the default network.

Example

The following example changes the TCP ports for the default listener:

$ srvctl modify listener -endpoints "TCP:1521,1522"

srvctl predict listener
Predicts the consequences of a listener failure.

Syntax

srvctl predict listener listener_name [-verbose]

Usage Notes

Specify the name of the listener for which you want to predict the consequences of a
failure. Optionally, you can use the –verbose parameter for detailed output.

srvctl remove listener
Removes the configuration of a specific listener, or all listeners, from Oracle
Clusterware or Oracle Restart.

Appendix A
SRVCTL Command Reference

A-56

Syntax

srvctl remove listener [-listener listener_name | -all] [-force]

Usage Notes

• Optionally, you can specify the name of a listener that you want to remove or use the –
all parameter to remove all listeners. If you do not specify a listener name, then the
listener name defaults to LISTENER for a database listener or LISTENER_ASM for an Oracle
ASM listener.

• Optionally, you can use the –force parameter to skip checking whether there are other
resources that depend on this listener, such as databases, and remove the listener
anyway.

Example

The following example removes the configuration for the listener named lsnr01:

$ srvctl remove listener -listener lsnr01

srvctl setenv listener
Administers listener environment configurations.

Syntax

Use this command with one of the following syntax models:

srvctl setenv listener [-listener listener_name] -envs "name=val[,...]"

srvctl setenv listener [-listener listener_name] -env "name=val"

Parameters

Table A-42 srvctl setenv listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a listener.

If you do not use this parameter, then the listener name defaults to
LISTENER.

-envs
"name=val[,...]"

Specify a comma-delimited list of name-value pairs of environment
variables enclosed in double quotation marks ("").

-env "name=val" Use this parameter to enable single environment variable to be set to a
value that contains commas or other special characters enclosed in
double quotation marks ("").

Appendix A
SRVCTL Command Reference

A-57

Examples

The following example sets the language environment configuration for the default
listener:

$ srvctl setenv listener -env "LANG=en"

srvctl start listener
Starts the default listener on specific node, or starts the specified listener on all nodes
that are registered with Oracle Clusterware or on the given node.

Syntax

srvctl start listener [-node node_name] [-listener listener_name]

Parameters

Table A-43 srvctl start listener Command Parameters

Parameter Description

-node node_name Specify a particular node name to start the listener on that node.

Note: You can only use this parameter with Oracle Clusterware.

-listener
listener_name

Specify a particular listener name. Use the srvctl config listener
command to obtain the name of a listener.

If you do not assign a value to this parameter, then SRVCTL starts
all known listeners in the cluster.

Examples

The following command starts all listeners managed by Oracle Clusterware on the
node named server3.

$ srvctl start listener -node server3

srvctl status listener
Displays the status of listener resources.

Syntax

srvctl status listener [-listener listener_name] [-node node_name] [-
verbose]

Appendix A
SRVCTL Command Reference

A-58

Parameters

Table A-44 srvctl status listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a listener.

If you do not use this parameter, then the listener name defaults to
LISTENER.

-node node_name Optionally, you can specify the name of a cluster node.

Note: You can only use this parameter with Oracle Clusterware.

–verbose Optionally, you can use this parameter to display verbose output.

Examples

The following example displays the status of the default listener on the node node2:

$ srvctl status listener -node node2

srvctl stop listener
Stops the default listener or a specific listener on all nodes or the specified node.
You can also use this command to stop a listener on a non-cluster database from the non-
cluster database home. However, SRVCTL does not accept the -node parameter when run
from a non-cluster database home.

Syntax

srvctl stop listener [-listener listener_name] [-node node_name] [-force]

Parameters

Table A-45 srvctl stop listener Command Parameters

Parameter Description

-listener
listener_name

Specify the name of the listener you want to stop.

If you do not assign a value to this parameter, then SRVCTL stops all
known listeners in the cluster.

-node node_name Optionally, you can specify the name of a single node on which a
particular listener runs.

Note: You can only use this parameter with Oracle Clusterware.

–force Forcibly stop the listener.

Examples

The following command stops all listeners on the node mynode1:

$ srvctl stop listener -node mynode1

Appendix A
SRVCTL Command Reference

A-59

srvctl unsetenv listener
Unsets the environment configuration for a listener.

Syntax

srvctl unsetenv listener [-listener listener_name] -envs "name_list"

Parameters

Table A-46 srvctl unsetenv listener Command Parameters

Parameter Description

-listener
listener_name

Optionally, you can specify the name of a listener for which you
want to unset the environment configuration.

If you do not use this parameter, then the name of the listener
defaults to LISTENER.

-envs "name_list" Specify a comma-delimited list of environment variable names
enclosed in double quotation marks ("") that you want to unset.

Examples

The following example unsets the environment variable TNS_ADMIN for the default
listener:

$ srvctl unsetenv listener -envs "TNS_ADMIN"

srvctl update listener
Updates the listener to listen on the new endpoints.

Syntax

srvctl update listener

Usage Notes

• This command does not accept any additional parameters, except for -help.

• You can only use this command with Oracle Clusterware.

srvctl add network
Adds a static or dynamic network.

If your server connects to more than one network, then you can use this command to
configure an additional network interface for Oracle RAC, allowing you to create VIPs
on multiple public networks.

Appendix A
SRVCTL Command Reference

A-60

Syntax

srvctl add network [-netnum net_number] -subnet subnet/netmask[/if1[|if2...]]
 [-nettype {STATIC | DHCP | AUTOCONFIG | MIXED}] [-pingtarget
"ping_target_list"]
 [-skip] [-verbose]

Parameters

Table A-47 srvctl add network Command Parameters

Parameter Description

-netnum net_number The network number. The default is 1.

-subnet subnet/netmask
[/if1[|if2|...]]

Defines a subnet. If you do not specify any interface names, then the network
uses any interface on the given subnet.

For IPv6, netmask is a prefix length, such as 64.

-nettype {STATIC|DHCP|
AUTOCONFIG|MIXED}

Specify the network type: STATIC, DHCP, AUTOCONFIG, or MIXED.

If you specify STATIC for the network type, then you must provide the virtual IP
address using the srvctl add vip command.

If you specify DHCP for the network type, then the VIP agent obtains the IP
address from a DHCP server.

If you specify AUTOCONFIG for the network type, then the VIP agent generates a
stateless IPv6 address for the network. You can only use AUTOCONFIG for IPv6
networks. If the subnet/netmask specification is not for an IPv6 address, then
SRVCTL returns an error.

If you specify MIXED for the network type, then the VIP resource uses both a
static IP address and an IP address obtained dynamically, either from a DHCP
server for IPv4 or using stateless auto-configuration for IPv6.

-pingtarget
"ping_target_list"

A comma-delimited list of IP addresses or host names to ping.

-skip Use this parameter to skip the checking of subnet.

-verbose Verbose output.

Usage Notes

• On Linux and UNIX systems, you must be logged in as the root user and on Windows,
you must be logged in as a user with Administrator privileges to run this command.

• This command is only available with Oracle Clusterware.

• Oracle only supports DHCP-assigned networks for the default network, not for
subsequent networks.

• You can also use the LISTENER_NETWORKS database initialization parameter to control
client redirects to the appropriate network.

Example

An example of this command is:

srvctl add network -netnum 3 -subnet 192.168.3.0/255.255.255.0

Appendix A
SRVCTL Command Reference

A-61

srvctl config network
Displays the network configuration for the cluster.

Syntax

srvctl config network [-netnum network_number]

Usage Notes

• Specify the network for which you want to display configuration information.

• This command is only available with Oracle Clusterware.

Example

An example of this command is:

$ srvctl config network -netnum 2

srvctl modify network
Modifies the subnet, network type, or IP address type for a network.

Syntax

srvctl modify network [-netnum network_number] [-subnet subnet/netmask
 [/if1[|if2|...]]] [-nettype network_type | -iptype {ipv4 | ipv6 |
both}]
 [-pingtarget "ping_target_list"] [-verbose]

Parameters

Table A-48 srvctl modify network Command Parameters

Parameter Description

-netnum
network_number

Optionally, you can specify a network number that you want to
modify. The default is 1.

-subnet subnet/
netmask [/if1[|
if2|...]]

Optionally, you can specify a subnet number for the public network.
The netmask and interfaces you specify, if any, change those of the
network you are modifying. If you specify an IPv6 subnet, then
enter a prefix length, such as 64, in place of netmask. If you do not
specify any interface names, then the VIPs use any interface on the
given subnet.

If you are changing the network type using the -nettype
parameter, then you must specify either an existing IPv4 or IPv6
network using the -subnet parameter. Additionally, the subnet and
netmask you specify in the -subnet parameter do not change
those of the network you are modifying.

-nettype
network_type

Optionally, you can modify the network type using this parameter, to
static, dhcp, autoconfig, or mixed.

Appendix A
SRVCTL Command Reference

A-62

Table A-48 (Cont.) srvctl modify network Command Parameters

Parameter Description

-iptype {ipv4 | ipv6
| both}

Alternative to modifying the network type, you can modify the type
of IP address to ipv4, ipv6, or both.

-pingtarget
"ping_target_list"

Optionally, you can specify a comma-delimited list of IP addresses
or host names to ping enclosed in double quotation marks ("").

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

• You can only use this command with Oracle Clusterware.

• On Linux and UNIX systems, you must be logged in as root and on Windows, you must
be logged in as a user with Administrator privileges to run this command.

• You can modify the IP address type for a network from IPv4 to IPv6, or from IPv6 to IPv4.

• If you specify static for the network type, then you must provide the virtual IP address
using the srvctl add vip command.

• If you specify dhcp for the network type, then the VIP agent obtains the IP address from a
DHCP server.

• If you specify autoconfig for the network type, then the VIP agent generates a stateless
IPv6 address for the network. You can only use this parameter for IPv6 networks. If the
subnet/netmask specification is not for an IPv6 address, then SRVCTL returns an error.

• If you change a network from static to mixed, then you must first configure GNS, so that
the dynamic addresses obtained can have names registered for them.

• If you specify mixed for the network type, then the VIP resource uses both a static IP
address and an IP address obtained dynamically, either DHCP or autoconfig.

• If you specify mixed_autoconfig for the network type, then the VIP resource retains the
static IP configuration and either obtains an IP address from a DHCP server for an IPv4
network specification or generates a stateless auto-configured IP address for an IPv6
network specification.

Examples

The following example changes the subnet number, netmask, and interface list:

srvctl modify network -subnet 192.168.2.0/255.255.255.0/eth0

The following example changes the second network to DHCP:

srvctl modify network -netnum 2 -nettype dhcp

The following example adds an IPv6 subnet and netmask to the default network:

srvctl modify network -subnet 2606:b400:400:18c0::/64

Appendix A
SRVCTL Command Reference

A-63

The following example removes the IPv4 configuration from a network:

srvctl modify network -iptype ipv6

Related Topics

• Oracle Clusterware Administration and Deployment Guide

srvctl predict network
Predicts the consequences of network failure.

Syntax

srvctl predict network [-netnum network_number] [-verbose]

Usage Notes

Optionally, you can specify a network for which you want to evaluate a failure. The
default value is 1. You can also use the –verbose parameter to print detailed output.

Example

The following example predicts the consequences of a failure on network number 2:

$ srvctl predict network -netnum 2

srvctl remove network
Removes the network configuration.

Syntax

srvctl remove network {-netnum network_number | -all} [-force] [-
verbose]

Parameters

Table A-49 srvctl remove network Command Parameters

Parameter Description

-netnum
network_number | -
all

Specify which network number you want to remove. Alternatively,
you can use the –all parameter to indicate that you want to
remove all networks.

-force Optionally, you can use this parameter to remove the specified
network regardless of any dependencies.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

• You can only use the command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-64

• You must have full administrative privileges to run this command. On Linux and UNIX
systems, you must be logged in as root and on Windows systems, you must be logged
in as a user with Administrator privileges.

Example

The following example removes a network:

srvctl remove network -netnum 3

srvctl add nodeapps
Adds a node application configuration to the specified node.

Syntax

Use this command with one the following syntax models, specifying either a specific node
and VIP or a specific subnet and netmask:

srvctl add nodeapps
 {-node node_name -address {vip_name | ip_address}/netmask[/if1[|if2|..]]
[-skip]}
 [-emport em_port] [-onslocalport ons_local_port]
 [-onsremoteport ons_remote_port] [-onshostport hostname_port_list]
 [-remoteservers hostname_port_list [-verbose]

srvctl add nodeapps -subnet subnet/netmask[/if1[|if2|...]] [-emport em_port]
 [-onslocalport ons_local_port] [-onsremoteport ons_remote_port]
 [-onshostport hostname_port_list] [-remoteservers hostname_port_list]
 [-verbose]

Parameters

Table A-50 srvctl add nodeapps Command Parameters

Parameter Description

-node node_name The name of the node on which you want to create the node application. Node
name is optional and unnecessary if you run the command on the local node.

-address {vip_name |
ip_address}/netmask[/
if1[|if2|..]]}

This specification creates a traditional VIP node application on the specified
node.

Note: You must use this parameter for upgrade configurations and new, non-
DHCP configurations.

-skip Specify this parameter to skip checking the reachability of the VIP address.

-subnet subnet/netmask
[/if1[|if2 |...]]

Creates a DHCP subnet. If you do not specify any interface names, then the VIPs
use any interface on the given subnet.

-emport em_port Local port on which Oracle Enterprise Manager listens. The default port is 2016.

-onslocalport
ons_local_port

The Oracle Notification Service daemon listener port on its node.

If you do not specify this value, the Oracle Notification Service daemon listener
port defaults to 6100.

Note: The local port and remote port must each be unique.

Appendix A
SRVCTL Command Reference

A-65

Table A-50 (Cont.) srvctl add nodeapps Command Parameters

Parameter Description

-onsremoteport
ons_remote_port

The port number for remote Oracle Notification Service daemon connections.

If you do not specify a port number, the default value of 6200 is used for the
Oracle Notification Service remote port.

Note: The local port and remote port must each be unique.

-onshostport
host_port_list

A list of host[:port] pairs of remote hosts that are part of the Oracle
Notification Service network but are not part of the Oracle Clusterware cluster

Note: If port is not specified for a remote host, then ons_remote_port is used.

-remoteservers
host_port_list

A list of host[:port] pairs for Oracle Notification Service daemons on servers
that are not in the cluster.

-verbose Verbose output

Usage Notes

• On Linux and UNIX systems, you must be logged in as root and on Windows, you
must be logged in as a user with Administrator privileges to run this command.

• This command is only available with Oracle Clusterware.

Example

An example of this command is:

srvctl add nodeapps -node crmnode1 -address 1.2.3.4/255.255.255.0

srvctl config nodeapps
Displays the VIP configuration for each node in the cluster.

Note:

This command is only available with Oracle Clusterware.

Syntax

srvctl config nodeapps [-viponly] [-onsonly]

Usage Notes

Use -viponly to display the VIP address configuration. Use -onsonly to display the
Oracle Notification Service configuration.

Appendix A
SRVCTL Command Reference

A-66

Example

An example of this command is:

$ srvctl config nodeapps -viponly -onsonly

srvctl disable nodeapps
Disables node applications on all nodes in the cluster.

Syntax

srvctl disable nodeapps [-gsdonly] [-adminhelper] [-verbose]

Parameters

Table A-51 srvctl disable nodeapps Command Parameters

Parameter Description

-gsdonly Optionally, you can use this parameter to disable only the global services
daemon (GSD).

-adminhelper Optionally, you can use this parameter to disable the Administrator
helper only.

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this parameter with Oracle Clusterware.

Example

The following example disables GSD:

$ srvctl disable nodeapps -gsdonly -verbose

srvctl enable nodeapps
Enables the node applications on all nodes in the cluster.

Syntax

srvctl enable nodeapps [-gsdonly] [-adminhelper] [-verbose]

Appendix A
SRVCTL Command Reference

A-67

Parameters

Table A-52 srvctl enable nodeapps Command Parameters

Parameter Description

-gsdonly Optionally, you can use this parameter to enable only the global
services daemon (GSD).

-adminhelper Optionally, you can use this parameter to enable the Administrator
helper only.

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example enables GSD:

$ srvctl enable nodeapps -gsdonly -verbose

srvctl getenv nodeapps
Displays the environment variables for the node application configurations.

Syntax

srvctl getenv nodeapps [-viponly] [-onsonly] [-envs "name_list"]

Parameters

Table A-53 srvctl getenv nodeapps Command Parameters

Parameter Description

-viponly Optionally, you can use this parameter to display the VIP address
configuration.

-onsonly Optionally, you can use this parameter to isplay the Oracle
Notification Service configuration.

-envs "name_list" Optionally, you can specify a comma-delimited list of the names of
environment variables enclosed in double quotation marks ("").

If you do not use this parameter, then SRVCTL displays the values
of all environment variables associated with the node applications.

Usage Notes

You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-68

Example

The following example lists all environment variables for the node applications:

$ srvctl getenv nodeapps -viponly

srvctl modify nodeapps
Modifies the configuration for a node application.

Syntax

Use this command with one of the following syntax models, specifying either a specific node
and VIP or a specific subnet and netmask:

srvctl modify nodeapps {[-node node_name -address {vip_name|vip_address}/
 netmask[/if1[|if2|...]] [-skip]} [-nettype network_type] [-emport em_port]
 [-onslocalport ons_local_port] [-onsremoteport ons_remote_port]
 [-remoteservers host:[port][,...]] [-verbose]
 [-clientdata file] [-pingtarget "ping_target_list"]

srvctl modify nodeapps [-subnet subnet/netmask[/if1[|if2|...]]]
 [-nettype network_type] [-emport em_port]
 [-onslocalport ons_local_port] [-onsremoteport ons_remote_port]
 [-remoteservers host:[port][,host:port,...]] [-verbose]
 [-clientdata file] [-pingtarget "ping_target_list"]

Parameters

Table A-54 srvctl modify nodeapps Command Parameters

Parameter Description

-node node_name Specify the name of the node on which the node application you want to
modify resides.

-address {vip_name|
vip_address}/
netmask[/if1[|
if2|...]]

Specify a node-level virtual IP name or address. The address specified
by name or IP must match the subnet number of the default network.

Note: You must use this parameter for upgrade configurations and new
non-DHCP configurations

–skip Optionally, you can use this parameter to skip checking the reachability
of the VIP address.

-subnet subnet/
netmask[/if1[|
if2|...]]

Alternative to specifying a node name and address, you can specify a
subnet number for the public network. The netmask and interfaces you
specify, if any, change those of the default network. Additionally, if you
specify a value for the netmask option, then you need only specify it for
the first node on each network.

-nettype network_type Optionally, you can change the network server type to static, dhcp, or
mixed.

Appendix A
SRVCTL Command Reference

A-69

Table A-54 (Cont.) srvctl modify nodeapps Command Parameters

Parameter Description

-emport em_port Optionally, you can change the local port on which Oracle Enterprise
Manager listens.

Note: You can also modify this attribute using Online Resource Attribute
Modification.

-onslocalport
ons_local_port

Optionally, you can change the port on which the Oracle Notification
Service daemon listens for local client connections.

Notes:
• The local port and remote port must each be unique.
• You can modify the local port while the resource remains online,

without restarting the resource.

-onsremoteport
ons_remote_port

Optionally, you can change the port on which the Oracle Notification
Service daemon listens for connections from remote hosts.

Notes:
• The local port and remote port must each be unique.
• You can modify the remote port while the resource remains online,

without restarting the resource.

-remoteservers host:
[port][,...]

Optionally, you can modify the comma-delimited list of host:[port pairs
of remote hosts that are part of the Oracle Notification Service network
but are not part of the cluster. If you do not specify a port for a remote
host, then the utility uses the value you specified for ons_remote_port.

-clientdata file Optionally, you can specify the file with a wallet to import, or an empty
string to delete a wallet used for SSL to secure Oracle Notification
Service communication.

-pingtarget
"ping_target_list"

Optionally, you can specify a comma-delimited list of IPs or host names
enclosed in double quotation marks ("") to ping.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example changes the nodeapps resource on mynode1 to use the
application VIP of 100.200.300.40 with a subnet mask of 255.255.255.0 on the
network interface eth0:

$ srvctl modify nodeapps -node mynode1 -addr
100.200.300.40/255.255.255.0/eth0

srvctl remove nodeapps
Removes the node application configuration.

Syntax

srvctl remove nodeapps [-force] [-noprompt] [-verbose]

Appendix A
SRVCTL Command Reference

A-70

Parameters

Table A-55 srvctl remove nodeapps Command Parameters

Parameter Description

-force Optionally, you can use this parameter to forcibly remove node
application configurations, regardless of any dependencies.

-noprompt Optionally, you can use this parameter to suppress prompts.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

• You can only use this command with Oracle Clusterware.

• You must have full administrative privileges to run this command. On Linux and UNIX
systems, you must be logged in as root and on Windows systems, you must be logged
in as a user with Administrator privileges.

srvctl setenv nodeapps
Sets the environment variables for the node application configurations.

Syntax

srvctl setenv nodeapps {-envs "name=val[,...]" | -env "name=val"}
 [-viponly] [-gsdonly] [-onsonly] [-verbose]

Parameters

Table A-56 srvctl setenv nodeapps Command Parameters

Parameter Description

-envs
"name=val[,...]"

Use this parameter to specify a comma-delimited list of name-value pairs
of environment variables enclosed in double quotation marks ("").

-env "name=val" Alternatively, you can use this parameter to enable a single environment
variable that is set to a value which contains commas or other special
characters, enclosed in double quotation marks ("").

-viponly Optionally, you can use this parameter to modify only the VIP
configuration.

-gsdonly Optionally, you can use this parameter to modify only the GSD
configuration.

-onsonly Optionally, you can use this parameter to modify only the ONS daemon
configuration.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-71

Example

The following example sets the CLASSPATH environment variable for all node
applications:

$ srvctl setenv nodeapps -env "CLASSPATH=/usr/local/jdk/jre/rt.jar" -
verbose

srvctl start nodeapps
Starts node-level applications on a node or all nodes in the cluster.

Syntax

srvctl start nodeapps [-node node_name] [-gsdonly] [-adminhelper] [-
verbose]

Parameters

Table A-57 srvctl start nodeapps Command Parameters

Parameter Description

-node node_name Optionally, you can specify a node on which to start node-level
applications.

If you do not use this parameter, then SRVCTL starts the node
applications on all active nodes in the cluster.

-gsdonly Optionally, you can use this parameter to start only GSD, instead of
all node applications.

-adminhelper Optionally, you can use this parameter to start only an
Administrator helper instead of all node applications.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

srvctl status nodeapps
Displays the status of node applications.

Syntax

srvctl status nodeapps [-node node_name]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can specify a node for which to display the status of the node
applications.

Appendix A
SRVCTL Command Reference

A-72

srvctl stop nodeapps
Stops node-level applications on a node in the cluster.

Syntax

srvctl stop nodeapps [-node node_name] [-gsdonly] [-adminhelper] [-force]
 [-relocate] [-verbose]

Parameters

Table A-58 srvctl stop nodeapps Command Parameters

Parameter Description

-node node_name Optionally, you can use this parameter to specify a node on which you
want to stop node applications.

If you do not use this parameter, then the utility stops the node
applications on all active nodes in the cluster.

-gsdonly Optionally, you can use this parameter to stop only the GSD, instead of
all node applications.

-adminhelper Optionally, you can use this parameter to stop only the Administrator
helper instead of all node applications.

-force Optionally, you can use this parameter to stop node applications
regardless of any dependencies.

-relocate Optionally, you can use this parameter to relocate the VIP and possibly-
dependent services.

Note: If you use this parameter, then you must also specify the -node
node_name parameter.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

srvctl unsetenv nodeapps
Unsets the environment configuration for the node applications.

Syntax

srvctl unsetenv nodeapps -envs "name_list" [-viponly] [-gsdonly] [-onsonly]
 [-verbose]

Appendix A
SRVCTL Command Reference

A-73

Parameters

Table A-59 srvctl unsetenv nodeapps Command Parameters

Parameter Description

-envs "name_list" Specify a comma-delimited list of the names of environment
variables enclosed in double quotation marks ("") that you want to
unset.

-viponly Optionally, you can use this parameter to unset only the VIP
configuration.

-gsdonly Optionally, you can use this parameter to unset only the GSD
configuration.

-onsonly Optionally, you can use this parameter to unset only the ONS
daemon configuration.

-verbose Optionally, you can use this parameter to display detailed output.

Example

The following example unsets the environment configuration for the specified node
applications:

$ srvctl unsetenv nodeapps -envs "test_var1,test_var2"

srvctl add ons
Adds an Oracle Notification Service daemon to an Oracle Restart configuration.

Syntax

srvctl add ons [-emport em_port] [-onslocalport ons_local_port] [-
onsremoteport ons_remote_port]
 [-remoteservers host[:port][,host[:port]...]]
 [-clientcluster cluster_name] [-clientdata filename]

Parameters

Table A-60 srvctl add ons Command Parameters

Parameter Description

-emport em_port Local listen port for Oracle Enterprise Manager. The default port number is 2016.

-onslocalport
ons_local_port

Optionally, you can specify the Oracle Notification Service daemon listening port
for local client connections.

Note: The local port and remote port must each be unique.

-onsremoteport
ons_remote_port

Optionally, you can specify the Oracle Notification Service daemon listening port
for connections from remote hosts.

Note: The local port and remote port must each be unique.

Appendix A
SRVCTL Command Reference

A-74

Table A-60 (Cont.) srvctl add ons Command Parameters

Parameter Description

-remoteservers
host[:port]
[host[:port]...]

Optionally, you can specify a comma-delimited list of host:port pairs of remote
hosts that are part of the Oracle Notification Service network but are not part of
the Oracle Clusterware cluster.

Note: If port is not specified for a remote host, then ons_remote_port is used.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

-clientdata filename Specify the path to the file to which credentials data will be written.

Usage Notes

You can only use this command with Oracle Restart.

Example

An example of this command is:

$ srvctl add ons -onslocalprt 6200

srvctl config ons
Displays configuration information for the Oracle Notification Service daemon.

Syntax

srvctl config ons [-all] [-clientcluster cluster_name]

Usage Notes

• You can only use this command with Oracle Restart.

• You can display the configuration for all ONS daemons, or those for a specific client
cluster.

srvctl disable ons
Disables the Oracle Notification Service (ONS) daemon for Oracle Restart installations.

Syntax

srvctl disable ons [-clientcluster cluster_name] [-verbose]

Usage Notes

• You can only use this command with Oracle Restart.

• You can disable all ONS daemons, or those for a specific client cluster.

• Optionally, you can use the -verbose parameter to display detailed output.

Appendix A
SRVCTL Command Reference

A-75

srvctl enable ons
Enables the Oracle Notification Service daemon.

Syntax

srvctl enable ons [-clientcluster cluster_name] [-verbose]

Usage Notes

• You can only use this command with Oracle Restart.

• You can enable all ONS daemons, or those for a specific client cluster.

• Optionally, you can use the -verbose parameter to display detailed output.

srvctl modify ons
Modifies the ports used by the Oracle Notification Service daemon that is registered
with Oracle Restart.

Syntax

srvctl modify ons [-emport em_port] [-onslocalprt ons_local_port] [-
onsremoteport ons_remote_port]
 [-remoteservers host[:port][,host[:port],...]]
 [-clientcluster cluster_name] [-verbose]

Parameters

Table A-61 srvctl modify ons Command Parameters

Parameter Description

-emport em_port Optionally, you can specify the local port on which Oracle
Enterprise Manager listens. The default port is 2016.

-onslocalprt
ons_local_port

Optionally, you can modify the Oracle Notification Service daemon
listening port for local client connections.

Note: The local port and remote port must each be unique.

-onsremoteport
ons_remote_port

Optionally, you can modify the Oracle Notification Service daemon
listening port for connections from remote hosts.

Note: The local port and remote port must each be unique.

-remoteservers
host[:port]
[,host[:port],...]

Optionally, you can specify a list of host:port pairs of remote
hosts that are part of the Oracle Notification Service network but
are not part of the Oracle Clusterware cluster.

Note: If you do not specify port for a remote host, then SRVCTL
uses the value for ons_remote_port.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

-verbose Optionally, you can use this parameter to display detailed output.

Appendix A
SRVCTL Command Reference

A-76

Usage Notes

You can only use this command with Oracle Restart.

Example

An example of this command is:

$ srvctl modify ons -onslocalprt 6203

srvctl remove ons
Removes Oracle Notification Service from the Oracle Grid Infrastructure home.

Syntax

srvctl remove ons [-clientcluster cluster_name] [-force] [-verbose]

Usage Notes

• You can only use this command with Oracle Restart.

• If using the shared SCAN feature, then use the -clientcluster parameter to specify the
name of the cluster that is running the shared SCAN listener.

• Optionally, you can use the –force parameter to remove Oracle Notification Service
regardless of dependencies.

• Optionally, you can use the –verbose parameter to display detailed output.

srvctl start ons
Starts the Oracle Notification Service daemon.

Syntax

srvctl start ons [-clientcluster cluster_name] [-verbose]

Usage Notes

• You can only use this command with Oracle Restart.

• You can enable all ONS daemons, or those for a specific client cluster.

• Optionally, you can use the -verbose parameter to display detailed output.

srvctl status ons
Displays the current state of the Oracle Notification Service daemon.

Syntax

srvctl status ons [-clientcluster cluster_name]

Appendix A
SRVCTL Command Reference

A-77

Usage Notes

• You can only use this command with Oracle Restart.

• You can display the status for all ONS daemons, or those for a specific client
cluster.

srvctl stop ons
Stops the Oracle Notification Service daemon.

Syntax

srvctl stop ons [-clientcluster cluster_name] [-force]

Usage Notes

• You can only use this command with Oracle Restart.

• You can stop all ONS daemons, or those for a specific client cluster.

• Optionally, you can use the –force parameter to stop the ONS daemons
regardless of any dependencies.

srvctl add scan
Adds Oracle Clusterware resources for the given SCAN.

Syntax

srvctl add scan -scanname scan_name [-netnum network_number]

Parameters

Table A-62 srvctl add scan Command Parameters

Parameter Description

-scanname scan_name A fully-qualified host name, which includes the domain name. If the network is
dynamic, then you do not have to use fully-qualified host name but, if you choose
to do so, then the domain must be the GNS subdomain.

Note: You can modify this attribute using Online Resource Attribute Modification.

-netnum network_number The optional network number from which SCAN VIPs are obtained. If you do not
specify this parameter, then the SCAN VIPs are obtained from the same default
network from which the nodeapps VIP is obtained.

Usage Notes

• This command creates the same number of SCAN VIP resources as the number
of IP addresses that SCAN resolves to, or 3 when network_number identifies a
dynamic network and Oracle GNS configuration.

• For static networks, the addresses to which the SCAN resolves in DNS must
match the address type of the subnet.

Appendix A
SRVCTL Command Reference

A-78

• For an IPv4 network, the SCAN must resolve to IPv4 addresses.

• This command is only available with Oracle Clusterware.

Example

An example of this command is:

srvctl add scan -scanname scan.mycluster.example.com

srvctl config scan
Displays the configuration information for all SCAN VIPs, by default, or a specific SCAN VIP
identified by ordinal_number.

Syntax

srvctl config scan [[-netnum network_number] [-scannumber ordinal_number] | -
all]

Parameters

Table A-63 srvctl config scan Command Parameters

Parameter Description

-netnum network_number Use this parameter to view the configuration of a specific SCAN
VIP.

-scannumber ordinal_number Use this parameter to specify any one of the three SCAN VIPs,
using values from 1 to 3, for which you want to view the
configuration.

-all Alternative to specifying network or ordinal numbers, you can use
this parameter to view the configuration for all of the SCAN VIPs.

Usage Notes

This command is only available with Oracle Clusterware.

Example

This command returns output similar to the following:

$ srvctl config scan -scannumber 1

SCAN name: mjk12700890090-r, Network: 1
Subnet IPv4: 198.51.100.1/203.0.113.46/eth0, static
Subnet IPv6:
SCAN 1 IPv4 VIP: 198.51.100.195
SCAN VIP is enabled.
SCAN VIP is individually enabled on nodes:
SCAN VIP is individually disabled on nodes:

Appendix A
SRVCTL Command Reference

A-79

srvctl disable scan
Disables all SCAN VIPs, by default, or a specific SCAN VIP identified by
ordinal_number.

Syntax

srvctl disable scan [-scannumber ordinal_number]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can use the -scannumber parameter to specify any one of the three
SCAN VIPs you want to disable. The parameter takes a range of values from 1 to
3.

Example

The following example disables the first SCAN VIP:

$ srvctl disable scan -scannumber 1

srvctl enable scan
Enables all SCAN VIPs, by default, or a specific SCAN VIP identified by its ordinal
number.

Syntax

srvctl enable scan [-scannumber ordinal_number]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can use the -scannumber parameter to specify any one of the three
SCAN VIPs you want to enable. The parameter takes a range of values from 1 to
3.

Example

The following example enables the first SCAN VIP:

$ srvctl enable scan -scannumber 1

Appendix A
SRVCTL Command Reference

A-80

srvctl modify scan
Modifies the number of SCAN VIPs to match the number of IP addresses returned by looking
up the scan_name you specify in DNS.
You use this command when DNS was modified to add, change, or remove IP addresses,
and now you must adjust the Oracle Clusterware resource configuration to match.

Syntax

srvctl modify scan -scanname scan_name [-netnum network_number]

Parameters

Table A-64 srvctl modify scan Command Parameters

Parameter Description

-scanname scan_name Identifies the SCAN name that resolves to the SCAN VIPs that you want
to modify.

Note: You can modify this attribute using Online Resource Attribute
Modification.

-netnum
network_number

The optional network number from which VIPs are obtained. If not
specified, the VIPs are obtained from the same default network from
which the nodeapps VIP is obtained.

Example

Assume your system currently has a SCAN named scan_name1, and it resolves to a single IP
address in DNS. If you modify the SCAN scan_name1 in DNS to resolve to three IP
addresses, then use the following command to create the additional SCAN VIP resources:

$ srvctl modify scan -scanname scan_name1

srvctl predict scan
Predicts the consequences of SCAN failure.

Syntax

srvctl predict scan -scannumber ordinal_number [-verbose]

Usage Notes

• Specify an ordinal number that identifies the SCAN VIP for which you want to simulate
failure. The range of values you can specify for this parameter is 1 to 3.

• Optionally, you can use the –verbose parameter to display detailed output.

Add additional information about the command here.

Appendix A
SRVCTL Command Reference

A-81

srvctl relocate scan
Relocates a specific SCAN VIP from its current hosting node to another node within
the cluster.

Syntax

srvctl relocate scan -scannumber ordinal_number [-node node_name]

Parameters

Table A-65 srvctl relocate scan Command Parameters

Parameter Description

-scannumber
ordinal_number

Specify an ordinal number that identifies which SCAN VIP you want
to relocate. The range of values you can specify for this parameter
is 1 to 3.

-node node_name Optionally, you can specify the name of a single node to which
SRVCTL relocates the SCAN VIP.

If you do not use this parameter, then SRVCTL chooses the node
to which the SCAN VIP is relocated.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example relocates the first SCAN VIP to node1:

$ srvctl relocate scan -scannumber 1 -node node1

srvctl remove scan
Removes Oracle Clusterware resources from all SCAN VIPs.

Syntax

srvctl remove scan [-netnum network_number] [-force] [-noprompt]

Parameters

Table A-66 srvctl remove scan Command Parameters

Parameter Description

-netnum
network_number

The optional network number from which VIPs are obtained. If not
specified, the VIPs are obtained from the same default network
from which the nodeapps VIP is obtained.

Appendix A
SRVCTL Command Reference

A-82

Table A-66 (Cont.) srvctl remove scan Command Parameters

Parameter Description

–force Removes the SCAN VIPs even though there are SCAN listeners
running that are dependent on the SCAN VIPs.

–noprompt Use this parameter to suppress all prompts.

Usage Notes

If you use the -force option, then SCAN VIPs that are running are not stopped before the
dependent resources are removed, which may require manual cleanup.

Examples

An example of this command is:

$ srvctl remove scan -force

srvctl start scan
Starts all SCAN VIPs, by default, or a specific SCAN VIP, on all nodes or a specific node in
the cluster.

Syntax

srvctl start scan [-scannumber ordinal_number] [-node node_name]

Parameters

Table A-67 srvctl start scan Command Parameters

Parameter Description

-scannumber
ordinal_number

Optionally, you can specify an ordinal number that identifies which SCAN
VIP you want to start. The range of values you can specify for this
parameter is 1 to 3.

If you do not use this parameter, then SRVCTL starts all the SCAN VIPs.

-node node_name Optionally, you can specify the name of a single node on which the
SCAN VIP resides that you want to start.

If you do not specify this parameter, then SRVCTL starts the SCAN VIPs
on all nodes in the cluster.

Usage Notes

You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-83

Example

The following example starts the SCAN VIP identified by the ordinal number 1 on the
crm1 node:

$ srvctl start scan -scannumber 1 -node crm1

srvctl status scan
Displays the status for all SCAN VIPs, by default, or a specific SCAN VIP.

Syntax

srvctl status scan [-scannumber ordinal_number] [-verbose]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can specify an ordinal number that identifies a specific SCAN VIP
for which you want to display the status. The range of values you can specify for
this parameter is 1 to 3. If you do not use this parameter, then SRVCTL displays
the status of all SCAN VIPs in the cluster.

• Optionally, you can use the –verbose parameter to display detailed output.

srvctl stop scan
Stops all SCAN VIPs, by default, that are running or in starting state, or stops a
specific SCAN VIP identified by an ordinal number.

Syntax

srvctl stop scan [-scannumber ordinal_number] [-force]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can specify an ordinal number that identifies which SCAN VIP you
want to stop. The range of values you can specify for this parameter is 1 to 3. If
you do not use this parameter, then SRVCTL stops all the SCAN VIPs.

• Optionally, you can use the –force parameter to stop the SCAN VIPs regardless
of any dependencies.

Example

The following example stops the SCAN VIP identified by the ordinal number 1:

$ srvctl stop scan -scannumber 1

Appendix A
SRVCTL Command Reference

A-84

srvctl add scan_listener
Adds Oracle Clusterware resources for the SCAN listeners.

Syntax

srvctl add scan_listener [-netnum network_number] [-listener
lsnr_name_prefix] [-skip]
 [-endpoints "[TCP:]port_list[/IPC:key][/NMP:pipe_name]
 [/{TCPS|SDP|EXADIRECT}port_list]"]
 [-invitednodes "node_list"] [-invitedsubnets "subnet_list"]
 [-clientcluster cluster_name] [-clientdata <filename>]

Parameters

Table A-68 srvctl add scan_listener Command Parameters

Parameter Description

-netnum network_number The optional network number from which SCAN VIPs are obtained. If you do not
specify this parameter, then the SCAN VIPs are obtained from the same default
network from which the nodeapps VIP is obtained.

-listener
lsnr_name_prefix

The SCAN listener name prefix.

-skip Skip checking of the ports.

-endpoints
"[TCP:]port_list[/
IPC:key] [/
NMP:pipe_name][/{TCPS|
SDP|
EXADIRECT}port_list]"

Protocol specifications for the SCAN listener. Use port_list to specify a
comma-delimited list of TCP ports or SCAN listener endpoints.

You can also specify endpoints for TCPS, SDP, and EXADIRECT ports.

Note: You can modify this attribute using Online Resource Attribute Modification.

-invitednodes
"node_list"

A comma-delimited list of host names from outside the cluster that are allowed to
register with the SCAN listener.

-invitedsubnets
"subnet_list"

A comma-delimited list of subnets from outside the cluster that are allowed to
register with the SCAN listener. You can specify the subnets using either CIDR
notation or wildcards (such as 192.168.*).

-clientcluster
cluster_name

The name of the cluster that is running the SCAN listener you want to share.

-clientdata file_name The name of the cluster that is running the shared SCAN listener.

Usage Notes

• The number of SCAN listener resources created is the same as the number of SCAN VIP
resources.

• This command is only available with Oracle Clusterware.

Example

An example of this command is:

srvctl add scan_listener -listener myscanlistener

Appendix A
SRVCTL Command Reference

A-85

srvctl config scan_listener
Displays the configuration information for all SCAN listeners, by default, or a specific
listener identified by network number or ordinal_number.

Syntax

srvctl config scan_listener [[-netnum network_number] [-scannumber
ordinal_number]
 [-clientcluster cluster_name] | -all]

Parameters

Table A-69 srvctl config scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to view the configuration of the listener
for a specific SCAN VIP.

-scannumber
ordinal_number

Use this parameter to specify any one of the three SCAN
VIPs, using values from 1 to 3, for which you want to view
the configuration of the listener.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN
listener.

–all Alternative to specifying network or ordinal numbers, you
can use this parameter to view the configuration of the
listeners for all of the SCAN VIPs.

Usage Notes

This command is only available with Oracle Clusterware.

Example

This command returns output similar to the following:

$ srvctl config scan_listener -scannumber 1

SCAN Listener LISTENER_SCAN1 exists. Port: TCP:1529
Registration invited nodes:
Registration invited subnets:
SCAN Listener is enabled.
SCAN Listener is individually enabled on nodes:
SCAN Listener is individually disabled on nodes:

srvctl disable scan_listener
Disables all SCAN listeners, by default, or a specific listener identified by an ordinal
number or client cluster.

Appendix A
SRVCTL Command Reference

A-86

Syntax

srvctl disable scan_listener [-netnum network_number] [-scannumber
ordinal_number]
 [-clientcluster cluster_name]

Parameters

Table A-70 srvctl disable scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to disable SCAN listeners for a specific
network number.

-scannumber ordinal_number Use this parameter to disable any one of the three SCAN VIPs,
using values from 1 to 3. If you do not use this parameter, then
SRVCTL disables all SCAN listeners.

-clientcluster cluster_name The name of the cluster that is running the shared SCAN listener.

Usage Notes

This command is only available with Oracle Clusterware.

Example

The following example disables the SCAN listener identified as 1:

$ srvctl disable scan_listener -scannumber 1

srvctl enable scan_listener
Enables all SCAN listeners, by default, or a specific listener identified by its ordinal number.

Syntax

srvctl enable scan_listener [-netnum network_number] [-scannumber
ordinal_number]
 [-clientcluster <cluster_name>]

Parameters

Table A-71 srvctl enable scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to enable the listener for a specific SCAN VIP.

-scannumber ordinal_number Use this parameter to enable any one of the three SCAN VIPs,
using values from 1 to 3. If you do not use this parameter, then
SRVCTL enables all SCAN listeners.

-clientcluster cluster_name The name of the cluster that is running the shared SCAN listener.

Appendix A
SRVCTL Command Reference

A-87

Usage Notes

This command is only available with Oracle Clusterware.

Example

The following example enables the SCAN listener identified as 1:

$ srvctl enable scan_listener -scannumber 1

srvctl modify scan_listener
Modifies the SCAN listener to match that of the SCAN VIP, or modifies the SCAN
listener endpoints or service registration restrictions.

Syntax

srvctl modify scan_listener {-update | -endpoints [TCP:]port_list[/
IPC:key]
 [/NMP:pipe_name][/{TCPS|SDP|EXADIRECT}port_list]"} [-invitednodes
"node_list"]
 [-invitedsubnets "subnet_list"] [-clientcluster cluster_name]

Parameters

Table A-72 srvctl modify scan_listener Command Parameters

Parameter Description

-update Use this parameter to update SCAN listener configuration to match
the current SCAN VIP configuration. This parameter adds new
resources or removes existing SCAN listener resources to match
the number of SCAN VIP resources.

-endpoints
"[TCP:]port_list[/
IPC:key] [/
NMP:pipe_name][/
{TCPS|SDP|
EXADIRECT}port_list]
"]

Protocol specifications for the SCAN listener. Use port_list to
specify a comma-delimited list of TCP ports or listener endpoints.

You can also specify endpoints for TCPS, SDP, and EXADIRECT
ports.

-invitednodes
"node_list"

Use this parameter to specify a comma-delimited list of host names
from outside the cluster that are allowed to register with the SCAN
listener.

-invitedsubnets
"subnet_list"

Use this parameter to specify a comma-delimited list of subnets
from outside the cluster that are allowed to register with the SCAN
listener. You can specify the subnets using either CIDR notation or
wildcards (such as 192.168.*).

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

Appendix A
SRVCTL Command Reference

A-88

Example

Assume your system currently has a SCAN named scan_name1, and you recently modified
the DNS entry to resolve to three IP addresses instead of one. After running the srvctl
modify scan command to create additional SCAN VIP resources, use the following command
to create Oracle Clusterware resources for the additional two SCAN listeners to go with the
two additional SCAN VIPs:

$ srvctl modify scan_listener -update

srvctl predict scan_listener
Predicts the consequences of SCAN listener failure.

Syntax

srvctl predict scan_listener -scannumber ordinal_number [-verbose]

Usage Notes

• Use the -scannumber parameter to specify any one of the three SCAN listeners for which
you want to predict the consequences of a failure. The range of values you can specify
for this parameter is 1 to 3.

• Optionally, you can use the –verbose parameter to display detailed output.

srvctl relocate scan_listener
Relocates a specific SCAN listener from its current hosting node to another node within the
cluster.

Syntax

srvctl relocate scan_listener -scannumber ordinal_number [-node node_name]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Specify an ordinal number that identifies which SCAN listener you want to relocate. The
range of values you can specify for this parameter is 1 to 3.

• Optionally, you can specify the name of a single node to which you want to relocate the
SCAN listener. If you do not specify this parameter, then SRVCTL chooses the node to
which the SCAN listener is relocated.

Example

The following example relocates the SCAN listener identified as 3 to node2 of the cluster:

$ srvctl relocate scan_listener -scannumber 3 -node node2

Appendix A
SRVCTL Command Reference

A-89

srvctl remove scan_listener
Removes Oracle Clusterware resources from all SCAN listeners.

Syntax

srvctl remove scan_listener [-netnum network_number] [-clientcluster
cluster_name]
 [-force] [-noprompt]

Parameters

Table A-73 srvctl remove scan_listener Command Parameters

Parameter Description

-netnum
network_number

The optional network number from which SCAN VIPs are obtained.
If you do not specify this parameter, then the SCAN VIPs are
obtained from the same default network from which the nodeapps
VIP is obtained.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

-force Removes the SCAN listener without stopping the SCAN listener if it
is running.

–noprompt Use this parameter to suppress all prompts.

Example

An example of this command is:

$ srvctl remove scan_listener -force

srvctl start scan_listener
Starts all SCAN listeners, by default, or a specific listener on all nodes or a specific
node in the cluster.

Syntax

srvctl start scan_listener [-netnum network_number] [-scannumber
ordinal_number]
 [-node node_name] [-clientcluster cluster_name]

Appendix A
SRVCTL Command Reference

A-90

Parameters

Table A-74 srvctl start scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to start SCAN listeners for a specific network
number.

-scannumber ordinal_number Use this parameter to start one of the three SCAN VIPs, using
values from 1 to 3. If you do not use this parameter, then
SRVCTL starts all SCAN listeners.

-node node_name Specify the name of a single node on which you want to start a
SCAN listener. If you do not use this parameter, then SRVCTL
starts the SCAN listeners on all nodes in the cluster.

-clientcluster cluster_name The name of the cluster that is running the shared SCAN listener.

Usage Notes

This command is only available with Oracle Clusterware.

Example

The following example starts the SCAN listener identified as 1:

$ srvctl start scan_listener -scannumber 1

srvctl status scan_listener
Displays the status for all SCAN listeners, by default, or a specific listener.

Syntax

srvctl status scan_listener [[-netnum network_number] [-scannumber
ordinal_number]
 | [-clientcluster cluster_name] | -all] [-verbose]

Parameters

Table A-75 srvctl status scan_listener Command Parameters

Parameter Description

-netnum network_number The network number. The default network number is 1.

-scannumber
ordinal_number

An ordinal number that identifies a specific SCAN listener. The range of values
you can specify for this parameter is 1 to 3. If you do not use this parameter, then
the utility displays the status of all SCAN listeners in the cluster.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN listener.

-all Display the status for SCAN listeners for all networks.

-verbose Display detailed information.

Appendix A
SRVCTL Command Reference

A-91

Usage Notes

This command is only available with Oracle Clusterware.

srvctl stop scan_listener
Stops all SCAN listeners, by default, that are in a running or starting state, or a specific
listener identified by an ordinal number.

Syntax

srvctl stop scan_listener [-netnum network_number] [-scannumber
ordinal_number]
 [-clientcluster cluster_name] [-force]

Parameters

Table A-76 srvctl stop scan_listener Command Parameters

Parameter Description

-netnum network_number Use this parameter to stop SCAN listeners for a specific
network number.

-scannumber
ordinal_number

Use this parameter to stop any one of the three SCAN VIPs,
using values from 1 to 3. If you do not use this parameter,
then SRVCTL stops all SCAN listeners.

-clientcluster
cluster_name

The name of the cluster that is running the shared SCAN
listener.

-force Stops the SCAN listener regardless of any dependencies.

Usage Notes

This command is only available with Oracle Clusterware.

Example

The following example stops the SCAN listener identified as 1:

$ srvctl stop scan_listener -scannumber 1

srvctl update scan_listener
Updates the SCAN listeners to listen on the new endpoints.

Syntax

srvctl update scan_listener

Usage Notes

• You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-92

• This command does not accept any additional parameters, except for -help.

srvctl relocate server
Relocates servers to a server pool in the cluster.

Syntax

srvctl relocate server -servers "server_name_list" -serverpool pool_name
 [-eval] [-force]

Parameters

Table A-77 srvctl relocate server Command Parameters

Parameter Description

-servers
"server_name_list"

Specify either a single server name or a comma-delimited list of server
names enclosed in double quotation marks ("") that you want to relocate
to a different server pool.

-serverpool pool_name Specify the name of the server pool to which you want to move servers.

–eval Optionally, you can use this parameter to hypothetically evaluate the
impact of the command on the system.

–force Optionally, you can use this parameter to force the relocation of servers
even if it means stopping some resources.

Example

The following example relocates two servers to a different server pool:

$ srvctl relocate server -servers "server1, server2" -serverpool sp3

srvctl status server
Displays the current state of specific servers.

Syntax

srvctl status server -server "server_name_list" [-detail]

Usage Notes

• Use the –server parameter to specify a single server name or a comma-delimited list of
server names enclosed in double quotation marks ("") for which you want to check the
status.

• Optionally, you can use the –detail parameter to print detailed status information.

srvctl add service
Adds services to a database and assigns them to instances.

Appendix A
SRVCTL Command Reference

A-93

Syntax

Use this command with one of the following syntax models.

To add a service to a policy-managed database:

srvctl add service -db db_unique_name -service service_name_list [-
eval]
 -serverpool server_pool [-pdb pluggable_database]
 [-cardinality {UNIFORM | SINGLETON}] [-edition edition_name]
 [-netnum network_number] [-role "[PRIMARY][,PHYSICAL_STANDBY]
[,LOGICAL_STANDBY][,SNAPSHOT_STANDBY]"]
 [-policy {AUTOMATIC | MANUAL}] [-notification {TRUE | FALSE}] [-
rfpool pool_name]
 [-clbgoal {SHORT | LONG}] [-failovertype {NONE|SESSION|SELECT|
TRANSACTION|AUTO}]
 [-rlbgoal {NONE | SERVICE_TIME | THROUGHPUT}] [-dtp {TRUE | FALSE}]
 [-failovermethod {NONE | BASIC}] [-failoverretry failover_retries]
 [-drain_timeout timeout] [-stopoption {NONE|IMMEDIATE|
TRANSACTIONAL}]
 [-failover_restore {NONE|LEVEL1|AUTO}] [-failoverdelay
failover_delay]
 [-gsmflags gsm_flags] [-sql_translation_profile
sql_translation_profile]
 [-global {TRUE | FALSE}] [-maxlag max_lag_time] [-commit_outcome
{TRUE|FALSE}]
 [-retention retention_time] [-replay_init_time
replay_initiation_time]
 [-session_state {STATIC | DYNAMIC | AUTO}] [-pqservice pq_service]
 [-pqpool pq_pool] [-css_critical {yes | no}] [-force]

To add a service to an administrator-managed database:

srvctl add service -database db_unique_name -service service_name_list
 [-pdb pluggable_database] [-eval]
 [-preferred preferred_list] [-available available_list] [-failback
{YES | NO}]
 [-netnum network_number] [-tafpolicy {BASIC | NONE}]
 [-edition edition_name]
 [-role "[PRIMARY][,PHYSICAL_STANDBY][,LOGICAL_STANDBY]
[,SNAPSHOT_STANDBY]"
 [-policy {AUTOMATIC | MANUAL}] [-notification {TRUE | FALSE}]
 [-clbgoal {SHORT | LONG}] [-failovertype {NONE|SESSION|SELECT|
TRANSACTION|AUTO}]
 [-rlbgoal {NONE | SERVICE_TIME | THROUGHPUT}] [-dtp {TRUE | FALSE}]
 [-failovermethod {NONE | BASIC}] [-failoverretry failover_retries]
 [-drain_timeout timeout] [-stopoption {NONE|IMMEDIATE|
TRANSACTIONAL}]
 [-failover_restore {NONE|LEVEL1|AUTO}] [-failoverdelay
failover_delay]
 [-sql_translation_profile sql_translation_profile]
 [-global {TRUE | FALSE}] [-maxlag max_lag_time] [-commit_outcome
{TRUE|FALSE}]
 [-retention retention_time] [-replay_init_time

Appendix A
SRVCTL Command Reference

A-94

replay_initiation_time]
 [-session_state {STATIC|DYNAMIC|AUTO}] [-force] [-verbose]

To update the preferred and available lists of an existing service:

srvctl add service -db db_unique_name -service service_name_list
 -update {-prefered preferred_list | -available available_list} [-force]
 [-verbose]

Parameters

The following table lists and describes all the srvctl add service parameters and whether
they can be used when adding a service to either an Oracle RAC database or non-cluster
database.

Table A-78 srvctl add service Command Parameters

Parameter Description

-db db_unique_name Unique name for the database.

-service
service_name_list

The service_name.service_domain should be unique within the
cluster unless you want to spread connections across multiple databases
that offer the same service. If you do not specify the service domain as
part of the service name (such as sales.example.com), then the
DB_DOMAIN database attribute is appended to the service name. You can
specify one service or several services in a comma-delimited list.

Note: The -service parameter has a 4 kilobyte (KB) limit for its value.
Therefore, the total length of the names of all services assigned to an
instance cannot exceed 4 KB.

-eval Use this parameter to hypothetically evaluate the impact of the command
on the system.

Note: You can only use this parameter with a policy-managed service.

-edition edition_name The initial session edition of the service.

When an edition is specified for a service, all subsequent connections
that specify the service use this edition as the initial session edition.
However, if a session connection specifies a different edition, then the
edition specified in the session connection is used for the initial session
edition.

SRVCTL does not validate the specified edition name. During
connection, the connect user must have USE privilege on the specified
edition. If the edition does not exist or if the connect user does not have
USE privilege on the specified edition, then an error is raised.

-
sql_translation_profi
le profile_name

Use this parameter to specify a SQL translation profile for a service that
you are adding after you have migrated applications from a non-Oracle
database to an Oracle database.

This parameter corresponds to the SQL translation profile parameter in
the DBMS_SERVICE service attribute.

Notes:
• Before using the SQL translation feature, you must migrate all

server-side application objects and data to the Oracle database.
• Use the srvctl config service command to display the SQL

translation profile.

Appendix A
SRVCTL Command Reference

A-95

Table A-78 (Cont.) srvctl add service Command Parameters

Parameter Description

-preferred
preferred_list

A list of preferred instances on which the service runs when the
database is administrator managed.

The list of preferred instances must be mutually exclusive with the list of
available instances.

Note: This parameter can be used only with Oracle RAC and only for
administrator-managed databases.

-available
available_list

A list of available instances to which the service fails over when the
database is administrator managed.

The list of available instances must be mutually exclusive with the list of
preferred instances.

Note: This parameter can be used only with Oracle RAC and only for
administrator-managed databases.

-failback {YES | NO} If a service fails over to an available instance after the list of preferred
instances was exhausted, then, if this parameter is set to YES, the
service automatically fails back to a preferred instance when one
becomes available.

-serverpool
server_pool

The name of a server pool used when the database is policy managed.

Note: This parameter can be used only with Oracle RAC and only for
policy-managed databases.

-cardinality {UNIFORM
| SINGLETON}

The cardinality of the service, either UNIFORM (offered on all instances in
the server pool) or SINGLETON (runs on only one instance at a time).

Notes:
• This parameter can be used only with Oracle RAC and only for

policy-managed databases.
• For policy-managed Oracle RAC One Node databases, all services

must be SINGLETON.

-netnum
network_number

Use this parameter to determine on which network this service is offered.
The service is configured to depend on VIPs from the specified network.

Notes:
• If you omit this parameter, then the default is taken from the

database configuration, which you specify using srvctl add
database or srvctl modify database, with the -
defaultnetwork parameter to specify the default network for that
database's services.

• This parameter can be used only with Oracle RAC and Oracle RAC
One Node database configurations.

-tafpolicy {BASIC |
NONE}

TAF policy specification (for administrator-managed databases only).

-role "[PRIMARY]
[,PHYSICAL_STANDBY]
[,LOGICAL_STANDBY]
[,SNAPSHOT_STANDBY]"

The service role. You can specify one or more roles in a comma-
delimited list.

Use this option to indicate that the service should only be automatically
started upon database open when the Oracle Data Guard database role
matches one of the specified service roles.

Using SRVCTL to manually start a service is not affected by the service
role.

Note: The -role parameter is only used at database startup and by the
Oracle Data Guard Broker. All manual service startup must specify the
name of the service to be started by the user.

Appendix A
SRVCTL Command Reference

A-96

Table A-78 (Cont.) srvctl add service Command Parameters

Parameter Description

-policy {AUTOMATIC |
MANUAL}

Service management policy.

If AUTOMATIC (the default), then the service is automatically started upon
restart of the database, either by a planned restart (with SRVCTL) or
after a failure. Automatic restart is also subject to the service role,
however (the -role parameter).

If MANUAL, then the service is never automatically restarted upon
planned restart of the database (with SRVCTL). A MANUAL setting does
not prevent Oracle Clusterware from monitoring the service when it is
running and restarting it if a failure occurs.

Note: Using CRSCTL to stop and start the Oracle Clusterware restarts
the service in the same way that a failure does.

-notification {TRUE |
FALSE}

Enable Fast Application Notification (FAN) for OCI connections.

-rfpool pool_name Specify the name of the reader farm server pool.

-dtp {TRUE | FALSE} Indicates whether Distributed Transaction Processing should be enabled
for this service. This service will either be a singleton service in a policy-
managed database or a preferred service on a single node in an
administrator-managed database.

Note: This parameter can be used only with Oracle RAC.

-clbgoal {SHORT |
LONG}

Connection Load Balancing Goal. Use a value of SHORT for this
parameter for run-time load balancing, or if using an integrated
connection pool. Use a value of LONG for this parameter for long running
connections, such as batch jobs, that you want balanced by the number
of sessions per node for the service.

-rlbgoal {NONE |
SERVICE_TIME |
THROUGHPUT}

Runtime Load Balancing Goal (for the Load Balancing Advisory). Set this
parameter to SERVICE_TIME to balance connections by response time.
Set this parameter to THROUGHPUT to balance connections by
throughput.

-failovertype {NONE |
SESSION | SELECT |
TRANSACTION | AUTO}

Set the failover type.

To enable Application Continuity for Java, set this parameter to
TRANSACTION. To enable Transparent Application Continuity, set this
parameter to AUTO.

To enable TAF for OCI, set this parameter to SELECT or SESSION.

Note: If you set -failovertype to TRANSACTION, then you must set -
commit_outcome to TRUE.

-failovermethod {NONE
| BASIC}

TAF failover method (for backward compatibility only).

If the failover type (-failovertype) is set to a value other than NONE,
then you should choose BASIC for this parameter.

Note: This parameter can be used only with Oracle RAC.

-failoverretry
failover_retries

For Application Continuity and TAF, this parameter determines the
number of attempts to connect after an incident.

Appendix A
SRVCTL Command Reference

A-97

Table A-78 (Cont.) srvctl add service Command Parameters

Parameter Description

-drain_timeout
timeout

Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

-stopoption {NONE|
IMMEDIATE|
TRANSACTIONAL}

Specify the mode in which the service is stopped. When set on the
service, this value is used if you do not set the value on the command
line.

IMMEDIATE permits sessions to drain before the service is stopped.

TRANSACTIONAL permits sessions to drain for the amount of time
specified in the -drain_timeout parameter. The service is stopped
when the time limit is reached and any remaining sessions are
terminated.

If you specify NONE, then no sessions are terminated.

The default is taken from the service setting, when specified on the
service. Otherwise the default is NONE.

Note: You must use the -stopoption parameter with the -force
parameter.

-failover_restore
{NONE|LEVEL1|AUTO}

For Application Continuity, when you set the -failover_restore
parameter, session states are restored before replaying. Use LEVEL1 for
ODP.NET and Java with Application Continuity to restore the initial state.

Set this parameter to AUTO to enable Transparent Application Continuity
to restore session states.

For OCI applications using TAF or Application Continuity, setting -
failover_restore to LEVEL1 restores the current state. If the current
state differs from the initial state, then a TAF callback is required. This
restriction applies only to OCI.

-failoverdelay
failover_delay

For Application Continuity and TAF, this parameter specifies the time
delay (in seconds) between reconnect attempts per incident at failover.

-gsmflags gsm_flags Set locality and region failover values.

-pdb
pluggable_database

The name of the pluggable database (PDB).

Note: You can specify a PDB property when you create or modify a
service. The PDB property associates the service with the specified
PDB. You can view the PDB property for a service by querying the
ALL_SERVICES data dictionary view or, when using the SRVCTL utility,
by running the srvctl config service command.

When you create or modify a service with the specified PDB, SRVCTL
does not check if the PDB exists. Before running this command, you
must ensure that the PDB exists.

-global {TRUE |
FALSE}

Indicates whether this is a Global Data Services service.

Note: This parameter can only be used with Global Data Services.

-maxlag
maximum_lag_time

Maximum replication lag time in seconds. Must be a non-negative
integer. The default value is ANY.

Appendix A
SRVCTL Command Reference

A-98

Table A-78 (Cont.) srvctl add service Command Parameters

Parameter Description

-commit_outcome {TRUE
| FALSE}

Enable Transaction Guard; when set to TRUE, the commit outcome for a
transaction is accessible after the transaction's session fails due to a
recoverable outage.

-retention
retention_time

If -commit_outcome is set to TRUE, then this parameter determines the
amount of time (in seconds) that the commit outcome is retained in the
database.

-replay_init_time
replay_initialization
_time

For Application Continuity, this parameter specifies the difference
between the time, in seconds, of original execution of the first operation
of a request and the time that the replay is ready to start after a
successful reconnect. Application Continuity will not replay after the
specified amount of time has passed. This parameter is intended to
avoid the unintentional execution of a transaction when a system is
recovered after a long period. The default is 5 minutes (300). The
maximum value is 24 hours (86400). If the -failover_type parameter
is not set to TRANSACTION, then you cannot use this parameter.

-session_state
{STATIC | DYNAMIC |
AUTO}

For Application Continuity; this parameter describes how the non-
transactional session state is changed by the application within a
request. Examples of session state are NLS settings, optimizer
preferences, event settings, PL/SQL global variables, and temporary
tables. For Transparent Application Continuity session_state is always
set to AUTO. Session state is tracked automatically.

This parameter is considered only if -failovertype is set to
TRANSACTION for Application Continuity or AUTO for Transparent
Application Continuity.

• If failover_type is set to TRANSACTION, then Oracle
recommends a value of DYNAMIC for session_state.

• If failover_type is set to AUTO, then session_state defaults to
AUTO.

• If failover_type is set to any value other than TRANSACTION or
AUTO, then the value of session_state is not set.

If non-transactional values change after the request starts, then set this
parameter to either DYNAMIC or AUTO. Most applications should use
DYNAMIC or AUTO mode.

-pqservice pq_service Specify a parallel query service name.

-pqpool pq_pool Specify a parallel query server pool.

-update {-preferred
new_preferred_instanc
e | -available
new_available_instanc
e}

Add a new preferred or available instance to the service configuration. -
preferred specifies the name of the instance to add to the list of
preferred instances for the service. -available specifies the name of
the instance to add to the list of available instances for the service.

-css_critical {yes |
no}

You can add weight to a service by setting this parameter to YES. In the
event of a node failure within the cluster, Oracle Clusterware will evict the
node with the least amount of weight, ensuring that critical services
remain available.

Note: You can use this parameter only on an administrator-managed
node. Should the node become policy managed, at some point, this
parameter will no longer apply.

-verbose Display verbose output.

Appendix A
SRVCTL Command Reference

A-99

Table A-78 (Cont.) srvctl add service Command Parameters

Parameter Description

-force Force the add operation even though a listener is not configured for a
network.

Usage Notes

This command does not accept placement parameters for Oracle RAC One Node and
Standard Edition High Availability databases.

Examples

Use this example syntax to add the gl.example.com service to the my_rac database
with Fast Application Notification enabled for OCI connections, a failover method of
BASIC, a Connection Load Balancing Goal of LONG, a failover type of SELECT, and 180
failover retries with a failover delay of 5 seconds:

$ srvctl add service -db my_rac -service gl.example.com -notification
TRUE -failovermethod BASIC -failovertype SELECT -failoverretry 180 -
failoverdelay 5 -clbgoal LONG

Use this example syntax to add a named service to a database with preferred
instances and available instances and enabled for TAF:

$ srvctl add service -db crm -service sales -preferred crm01,crm02 -
available crm03 -tafpolicy BASIC

srvctl config service
Displays the configuration for a service.

Syntax

srvctl config service {-db db_unique_name [-service service_name]
 | -serverpool pool_name [-db db_unique_name]} [-verbose]

Parameters

Table A-79 srvctl config service Command Parameters

Parameter Description

-db db_unique_name Unique name for the database.

-service service_name Optionally, you can specify the name of a service.

If you do not use this parameter, then SRVCTL displays the configuration
information for all services configured for the database.

-serverpool pool_name Alternatively, you can use this parameter to specify the name of a server pool for
which you want to view the service configuration. Optionally, you can also specify
a particular database on which the server pool resides.

Appendix A
SRVCTL Command Reference

A-100

Table A-79 (Cont.) srvctl config service Command Parameters

Parameter Description

-verbose Displays verbose output.

Usage Notes

The srvctl config service command shows exactly the string value you specified for the
edition using the srvctl add | modify service commands. If you specified the edition in
upper case, then srvctl config service displays upper case. If it is surrounded by double
quotation marks (""), then the command displays the double quotation marks. Otherwise, the
command displays an empty string.

Examples

This command returns information similar to the following for a policy-managed database:

$ srvctl config service -db crm -service webapps

Service name: webapps
Service is enabled
Server pool: sales
Cardinality: SINGLETON
Disconnect: false
Service role: PRIMARY
Management policy: AUTOMATIC
DTP transaction: false
AQ HA notifications: false
Failover type: NONE
Failover method: NONE
TAF failover retries: 0
TAF failover delay: 0
Connection Load Balancing Goal: LONG
Runtime Load Balancing Goal: NONE
TAF policy specification: NONE
Service is enabled on nodes:
Service is disabled on nodes:
Edition: "my Edition"

This command returns information similar to the following for a administrator-managed
database:

$ srvctl config service -db crm -service webapps

Service name: webapps
Service is enabled
Server pool: sales
Cardinality: 1
Disconnect: false
Service role: PRIMARY
Management policy: AUTOMATIC
DTP transaction: false

Appendix A
SRVCTL Command Reference

A-101

AQ HA notifications: false
Failover type: NONE
Failover method: NONE
TAF failover retries: 0
TAF failover delay: 0
Connection Load Balancing Goal: LONG
Runtime Load Balancing Goal: NONE
TAF policy specification: NONE
Preferred instances: crm_1
Available instances:
Edition: "my Edition"

Service configuration for administrator-managed Oracle RAC One Node databases
displays the one instance as preferred.

srvctl disable service
Disables a service.
Disabling an entire service affects all of the instances, disabling each one. If the entire
service is already disabled, then running this command on the entire service returns
an error. This means that you cannot always use the entire set of service operations to
manipulate the service indicators for each instance.

Syntax

srvctl disable service -db db_unique_name -services "service_name_list"
 [-instance instance_name | -node node_name]

Parameters

Table A-80 srvctl disable service Command Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database for which you want to
disable the service.

-services
"service_name_list"

Specify a comma-delimited list of service names enclosed in
double quotation marks (""), or a single service name, that you
want to disable.

-instance
instance_name

Optionally, you can specify the name of the instance for which you
want to disable the service.

Notes:
• Use this parameter with administrator-managed databases.
• You can only use this parameter with Oracle Clusterware and

Oracle RAC.

-node node_name Alternative to using the –instance parameter, you can use this
parameter to specify the name of the node on which to disable the
service.

Notes:
• Use this parameter with policy-managed databases.
• You can only use this parameter with Oracle Clusterware and

Oracle RAC.

Appendix A
SRVCTL Command Reference

A-102

Examples

The following example globally disables two services for the CRM database:

$ srvctl disable service -db crm -service "crm,marketing"

The following example disables a service for the CRM database that is running on the CRM1
instance, resulting in the service still being available for the database, but on one less
instance:

$ srvctl disable service -db crm -service crm -instance crm1

srvctl enable service
Enables a service for Oracle Clusterware.
Enabling an entire service also affects the enabling of the service over all of the instances by
enabling the service on each one. If the entire service is already enabled, then running this
command does not affect all of the instances and enable them but, instead, returns an error.
Therefore, you cannot always use the entire set of service operations to manipulate the
service indicators for each instance.

Syntax

srvctl enable service -db db_unique_name -service "service_name_list"
 [-instance instance_name | -node node_name]

Parameters

Table A-81 srvctl enable service Command Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database for which you want to enable the
service.

-service
"service_name_list"

Specify a single service name or a comma-delimited list of service
names enclosed in double quotation marks ("") that you want to enable.

-instance
instance_name

Optionally, you can use this parameter to specify the name of the
database instance where you want the service to run.

Notes:
• Use this parameter for administrator-managed databases.
• You can only use this parameter with Oracle Clusterware and Oracle

RAC.

-node node_name Alternative to using the –instance parameter, you can use this
parameter to specify the name of the node on which to enable the
service.

Notes:
• Use this parameter with policy-managed databases.
• You can only use this parameter with Oracle Clusterware and Oracle

RAC.

Appendix A
SRVCTL Command Reference

A-103

Examples

The following example globally enables a service:

$ srvctl enable service -db crm -service crm

The following example enables a service to use a preferred instance:

$srvctl enable service -db crm -service crm -instance crm1

srvctl modify service
Modifies service configurations.

This command supports some online modifications to the service, such as:

• Moving a service member from one instance to another

• Performing online changes to service attributes from DBMS_SERVICE (for example,
failover delay, runtime load balancing goal, and so on)

• Adding a new preferred or available instance

• Removing preferred or available instances for a service

Caution:

Oracle recommends that you limit configuration changes to the minimum
requirement and that you not perform other service operations while the
online service modification is in progress.

Syntax and Parameters

Use one of the following forms of the srvctl modify service command, depending
on the task you want to perform, with the specified syntax:

To move a service from one instance to another:

srvctl modify service -db db_unique_name -service service_name
 -oldinst old_instance_name -newinst new_instance_name [-force]

Note:

This form of the command is only available with Oracle Clusterware.

Table A-82 srvctl modify service Parameters for Moving a Service

Parameter Description

-db db_unique_name Specify the unique name for the database.

Appendix A
SRVCTL Command Reference

A-104

Table A-82 (Cont.) srvctl modify service Parameters for Moving a Service

Parameter Description

-service
service_name

Specify a service name. If you do not specify a service name, then
SRVCTL moves all services.

-oldinst
old_instance_name

Specify the name of the instance from which you want to move the
service.

-newinst
new_instance_name

Specify the name of the instance to which you want to move the
service.

-force Force the modify operation, stopping the service on some nodes,
as necessary.

To change an available instance to a preferred instance for a service:

srvctl modify service -db db_unique_name -service service_name
 -available avail_inst_name [-failback {YES|NO}] -toprefer [-force]

Note:

This form of the command is only available with Oracle Clusterware and does not
accept placement parameters for Oracle RAC One Node databases. This command
also does not move or otherwise disconnect the service but only modifies the
service attributes.

Table A-83 srvctl modify service Parameters for Changing to a Preferred Instance

Parameter Description

-db db_unique_name Specify the unique name for the database.

-service service_name Specify the name of the service you want to modify.

-available
available_inst_name

Specify the name of the available instance you want to change.

-failback {YES|NO} If a service fails over to an available instance after the list of preferred
instances was exhausted, then, if this parameter is set to YES, then the
service automatically fails back to a preferred instance when one
becomes available.

-toprefer Specify this parameter to change the instance status to preferred.

-force Force the modify operation. For planned operations, it is best to use an
Oracle Connection Pool with FAN. The FAN planned event causes the
Oracle pool to drain the requests with no interruption to the users.
Sessions that are connected to an instance are not disconnected.

To change the available and preferred status for multiple instances:

srvctl modify service -db db_unique_name -service service_name
 -modifyconfig -preferred "preferred_list" [-available "available_list"]
 [-force]

Appendix A
SRVCTL Command Reference

A-105

Note:

This form of the command is only available with Oracle Clusterware and
does not accept placement parameters for Oracle RAC One Node
databases. This command also does not move or otherwise disconnect the
service but only modifies the service attributes. Sessions connected to
instances are not disconnected.

Table A-84 srvctl modify service Parameters for Changing the Statuses of
Multiple Instances

Parameter Description

-db db_unique_name Specify the unique name for the database.

-service
service_name

Specify the name of the service that you want to modify.

-modifyconfig This parameter directs SRVCTL to use only the instances named
for this service (unnamed instances already assigned to the service
are removed).

-preferred
"preferred_instance_
list"

Specify a comma-delimited list of preferred instances enclosed
within double quotation marks ("").

-available
"available_instance_
list"

Specify a comma-delimited list of available instances enclosed
within double quotation marks ("").

-force Force the modify operation. For planned operations, it is best to use
an Oracle Connection Pool with FAN. The FAN planned event
causes the connection pool to drain the requests with no
interruption to the users.

To modify other service attributes or to modify a service for Oracle Clusterware:

srvctl modify service -db db_unique_name -service service_name [-eval]
 [-serverpool pool_name] [-cardinality {UNIFORM|SINGLETON}]
 [-drain_timeout timeout] [-stopoption {NONE|IMMEDIATE|TRANSACTIONAL}]
 [-pqservice pqsvc_name] [-pqpool pq_pool_list]
 [-pdb pluggable_database] [-tafpolicy {BASIC|NONE}]
 [-edition edition_name] [-role "[PRIMARY][,PHYSICAL_STANDBY]
 [,LOGICAL_STANDBY][,SNAPSHOT_STANDBY]"] [-notification {TRUE|FALSE}]
 [-dtp {TRUE|FALSE}] [-clbgoal {SHORT|LONG}] [-rlbgoal {NONE|
SERVICE_TIME|THROUGHPUT}]
 [-failovertype {NONE|SESSION|SELECT|TRANSACTION|AUTO}] [-
failovermethod {NONE|BASIC}]
 [-failover_restore [NONE|LEVEL1|AUTO]] [-failoverretry
failover_retries]
 [-failoverdelay failover_delay] [-policy {AUTOMATIC|MANUAL}]
 [-sql_translation_profile profile_name] [-commit_outcome {TRUE|FALSE}]
 [-retention retention_time] [-replay_init_time replay_initiation_time]
 [-session_state {STATIC|DYNAMIC|AUTO}] [-global_override] [-verbose]
[-force]

Appendix A
SRVCTL Command Reference

A-106

Table A-85 srvctl modify service Parameters

Parameter Description

-db db_unique_name Specify the unique name for the database.

-service service_name Specify the name of the service you want to modify.

-eval Use this parameter to hypothetically evaluate the impact of the command
on the system.

Note: You can only use this parameter with a policy-managed service.

-serverpool pool_name The name of a server pool used when the database is policy managed.

Note: This parameter can be used only with Oracle RAC and only for
policy-managed databases.

-cardinality
{UNIFORM|SINGLETON}

Specify the cardinality of the service, either UNIFORM (offered on all
instances in the server pool) or SINGLETON (runs on only one instance at
a time).

Note: This parameter can be used only with Oracle Clusterware.

-drain_timeout
timeout

Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

-stopoption {NONE|
IMMEDIATE|
TRANSACTIONAL}

Specify the mode in which the service is stopped. If you set this
parameter on the service, then this value is used if you do not set the
value on the command line.

IMMEDIATE permits sessions to drain before the service is stopped.

TRANSACTIONAL permits sessions to drain for the amount of time
specified in the -drain_timeout parameter. The service is stopped
when the time limit is reached and any remaining sessions are
terminated.

If you specify NONE, then no sessions are terminated.

The default is taken from the service setting, when specified on the
service. Otherwise the default is NONE.

Note: You must use the -stopoption parameter with the -force
parameter.

-pqservice pqsvc_name Specify a comma-delimited list of parallel query service names.

-pqpool pq_pool_list Specify a comma-delimited list of parallel query server pool names.

-pdb
pluggable_database

Specify the name of a pluggable database (PDB).

Note: You can specify a PDB property when you create or modify a
service. The PDB property associates the service with the specified
PDB. You can view the PDB property for a service by querying the
ALL_SERVICES data dictionary view or, when using the SRVCTL utility,
by running the srvctl config service command.

When create or modify a service with the specified PDB, SRVCTL does
not check if the PDB exists. Before running this command, you must
ensure that the PDB exists.

-tafpolicy {BASIC|
NONE}

Specify the transaction failover (TAF) policy (for administrator-managed
databases only).

Appendix A
SRVCTL Command Reference

A-107

Table A-85 (Cont.) srvctl modify service Parameters

Parameter Description

-edition edition_name The initial session edition of the service.

When an edition is specified for a service, all subsequent connections
that specify the service use this edition as the initial session edition.
However, if a session connection specifies a different edition, then the
edition specified in the session connection is used for the initial session
edition.

SRVCTL does not validate the specified edition name. During
connection, the connect user must have USE privilege on the specified
edition. If the edition does not exist or if the connect user does not have
USE privilege on the specified edition, then an error is raised.

-role "[PRIMARY]
[,PHYSICAL_STANDBY]
[,LOGICAL_STANDBY]
[,SNAPSHOT_STANDBY]"

The database modes for which the service should be started
automatically. You can specify one or more roles in a comma-delimited
list.

Note: The -role parameter is only used at database startup and by the
Oracle Data Guard Broker. All manual service startup must specify the
name of the service to be started by the user.

-notification {TRUE|
FALSE}

Specify a value of TRUE to enable Fast Application Notification (FAN) for
Oracle Call Interface (OCI) connections.

-dtp {TRUE|FALSE} Specify TRUE to enable Distributed Transaction Processing for this
service. This ensures that the service is offered at exactly one instance
at a time for XA affinity.

-clbgoal {SHORT|LONG} Use this parameter to set a connection load balancing goal: set to SHORT
if using runtime load balancing, set to LONG for long running connections,
such as batch jobs or older SQL*Forms style.

-rlbgoal {NONE|
SERVICE_TIME|
THROUGHPUT}

Use this parameter to set a runtime load balancing goal. Set this
parameter to SERVICE_TIME to balance connections by response time.
Set this parameter to THROUGHPUT to balance connections by
throughput.

-failovertype {NONE|
SESSION|SELECT|
TRANSACTION|AUTO}

Use this parameter to set the failover type.

To enable Application Continuity, set this parameter to TRANSACTION. To
enable Transparent Application Continuity, set this parameter to AUTO.

To enable TAF, set this parameter to SELECT or SESSION.

-failovermethod
{NONE|BASIC}

Specify the TAF failover method (for backward compatibility only).

-failover_restore
[NONE|LEVEL1|AUTO]

For Application Continuity, when you set the -failover_restore
parameter, session states are restored before replaying. Use LEVEL1 for
ODP.NET and Java with Application Continuity to restore the initial state.

Set this parameter to AUTO to enable Transparent Application Continuity
to restore session states.

For OCI applications using TAF or Application Continuity, setting -
failover_restore to LEVEL1 restores the current state. If the current
state differs from the initial state, then a TAF callback is required. This
restriction applies only to OCI.

-failoverretry
failover_retries

For Application Continuity and TAF, specify the number of attempts to
connect after an incident.

-failoverdelay
failover_delay

For Application Continuity and TAF, specify the time delay (in seconds)
between reconnect attempts per incident at failover.

Appendix A
SRVCTL Command Reference

A-108

Table A-85 (Cont.) srvctl modify service Parameters

Parameter Description

-policy {AUTOMATIC|
MANUAL}

Specify the service management policy.

-
sql_translation_profi
le profile_name

Use this parameter to specify a SQL translation profile for a service that
you are modifying after you have migrated applications from a non-
Oracle database to an Oracle database.

If you want to set the SQL translation profile to a NULL value, then you
must enter an empty string after the -p flag.

Note: Before using the SQL translation feature, you must migrate all
server-side application objects and data to the Oracle database.

-commit_outcome
{TRUE|FALSE}

Enable Transaction Guard; when set to TRUE, the commit outcome for a
transaction is accessible after the transaction's session fails due to a
recoverable outage.

-retention
retention_time

For Transaction Guard (with the -commit_outcome parameter set to
TRUE); this parameter determines the amount of time (in seconds) that
the commit outcome is retained in the database.

-replay_init_time
replay_initiation_tim
e

For Application Continuity; this parameter specifies the time, in seconds,
from when the original request started. Application Continuity will not
replay after the specified amount of time has passed. This attribute
avoids the unintentional replay of a request when a system is recovered
after a long period. The default value is 300 (5 minutes).

-session_state
{STATIC|DYNAMIC|AUTO}

For Application Continuity; this parameter describes how the non-
transactional session state is changed by the application within a
request. Examples of session state are NLS settings, optimizer
preferences, event settings, PL/SQL global variables, and temporary
tables. For Transparent Application Continuity session_state is always
set to AUTO. Session state is tracked automatically.

This parameter is considered only if -failovertype is set to
TRANSACTION for Application Continuity or AUTO for Transparent
Application Continuity.

• If failover_type is set to TRANSACTION, then Oracle
recommends a value of DYNAMIC for session_state.

• If failover_type is set to AUTO, then session_state defaults to
AUTO.

• If failover_type is set to any value other than TRANSACTION or
AUTO, then the value of session_state is not set.

Oracle recommends a value of AUTO or DYNAMIC for most applications. If
you are unsure which value to use, or if you can customize the
application, then use DYNAMIC.

-global_override Override value to modify the global service attributes.

Use this parameter with the -role, -policy, -notification, -
failovertype, -failovermethod, -failoverdelay, -
failoverretry and -edition parameters.

–verbose Display verbose output.

-force Force the modify operation, stopping the service on some nodes as
necessary.

Appendix A
SRVCTL Command Reference

A-109

Usage Notes

• When performing online changes to service attributes (for example, failover delay,
Runtime Load Balancing Goal, and so on), the changes take effect only when the
service is next (re)started.

• When a service configuration is modified so that a new preferred or available
instance is added, the running state of the existing service is not affected.
However, the newly added instances will not automatically provide the service,
until a srvctl start service command is issued.

• When there are available instances for the service, and the service configuration is
modified so that a preferred or available instance is removed, the running state of
the service may change unpredictably:

– The service is stopped and then removed on some instances according to the
new service configuration.

– The service may be running on some instances that are being removed from
the service configuration.

– These services will be relocated to the next free instance in the new service
configuration.

Because of these considerations, when the online service is being modified, users
may experience a brief service outage on some instances even if the instances are not
being removed. Or users may experience a brief service outage on instances that are
being removed from the service.

Examples

An example of moving a service member from one instance to another is:

$ srvctl modify service -db crm -service crm -oldinst crm1 -newinst
crm2

An example of changing an available instance to a preferred instance is:

$ srvctl modify service -db crm -service crm -available crm1 -toprefer

The following command exchanges a preferred and available instance:

$ srvctl modify service -db crm -service crm -modifyconfig -preferred
"crm1" \
-available "crm2"

Related Topics

• Oracle Data Guard Broker

• Oracle Database SQL Translation and Migration Guide

srvctl predict service
Predicts the consequences of service failure.

Appendix A
SRVCTL Command Reference

A-110

Syntax

srvctl predict service -db db_unique_name -service service_name [-verbose]

Parameters

Table A-86 srvctl predict service Command Parameters

Parameter Description

-db db_unique_name Specify the unique name for the database on which the service operates
that you want to check.

-service service_name Specify a single service name or a comma-delimited list of service
names enclosed in double quotation marks ("") that you want to check.

–verbose Optionally, you can use this parameter to display detailed output.

srvctl relocate service
Temporarily relocates the specified service names from one specified instance to another
specified instance.

This command works on only one source instance and one target instance at a time,
relocating a service or all services from a single source instance to a single target instance.

Syntax

srvctl relocate service -db db_unique_name [-service service_name
 | -pdb pluggable_database] {-oldinst old_inst_name
 [-newinst new_inst_name] | -currentnode source_node [-targetnode
target_node]} [-drain_timeout timeout]
 [-wait YES | NO] [-pq] [-force [-noreplay]] [-eval] [-verbose]

Parameters

Table A-87 srvctl relocate service Command Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database on which the service operates
that you want to relocate.

-service service_name Specify the name of the service you want to relocate. If you do not
specify any services, then all services that can be relocated, are
relocated. Those that cannot be relocated remain in place.

-pdb
pluggable_database

Use this parameter to relocate services running on a specific pluggable
database.

-oldinst
old_inst_name

Specify the name of the instance from which you are relocating the
service.

Appendix A
SRVCTL Command Reference

A-111

Table A-87 (Cont.) srvctl relocate service Command Parameters

Parameter Description

-newinst
new_inst_name

Specify the name of the instance to which you are relocating the service.
This parameter is optional. If you do not specify an instance, then Oracle
Clusterware chooses a new one.

Note: If you are using an administrator-managed database, then you
must use the -oldinst and -newinst parameters and the target
instance must be on the preferred or available list for the service.

-currentnode
source_node

Name of the node where the service is currently running.

-targetnode
target_node

Name of node where the service is to be relocated. If you do not specify
a target node, then Oracle Clusterware chooses a new location.

Note: If you are using a policy-managed database, then you must use
the -currentnode and -targetnode parameters.

-drain_timeout
timeout

Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

-wait YES | NO Choose YES to wait until service draining is completed on the node from
which you are relocating the service.

-stopoption option Specify the mode in which the service is stopped. When set on the
service, this value is used if you do not set the value on the command
line.

IMMEDIATE permits sessions to drain before the service is stopped.

TRANSACTIONAL permits sessions to drain for the amount of time
specified in the -drain_timeout parameter. The service is stopped
when the time limit is reached and any remaining sessions are
terminated.

If you specify NONE, then no sessions are terminated.

The default is taken from the service setting, when specified on the
service. Otherwise the default is NONE.

Note: You must use the -stopoption parameter with the -force
parameter.

–pq Performs the action on a parallel query service.

–force [-noreplay] Disconnect all sessions during stop or relocate service operations.

Optionally, you can specify the -noreplay parameter if you do not want
Application Continuity to replay in-flight transactions after a session is
terminated during stop or relocate service operations.

The -noreplay parameter is not limited to use with -force but -force
does require -noreplay if you do not want to replay in-flight
transactions after you force the service to disconnect all sessions.

–eval Use this parameter to hypothetically evaluate the impact of the command
on the system.

–verbose Verbose output.

Appendix A
SRVCTL Command Reference

A-112

Example

To temporarily relocate a named service member for the crm service from the database
instance crm1 to the database instance crm3:

$ srvctl relocate service -db crm -service crm -oldinst crm1 -newinst crm3

Related Topics

• SQL*Plus User's Guide and Reference

srvctl remove service
Removes the configuration for a service.

Syntax

srvctl remove service -db db_unique_name -service service_name
 [-instance instance_name] [-global_override]

Parameters

Table A-88 srvctl remove service Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database on which the service that you
want to remove operates.

-service service_name Specify the name of the service you want to remove.

-instance
instance_name

Optionally, you can specify the instance name of an administrator-
managed database.

Note: You can only use this parameter with Oracle Clusterware.

-global_override Optionally, you can use this parameter to override value to operate on a
global service. SRVCTL ignores this parameter a non-global service.

Examples

This following example removes the sales service from all instances of the clustered
database named crm:

$ srvctl remove service -db crm -service sales

The following example removes the sales service from a specific instance of the crm
clustered database:

$ srvctl remove service -db crm -service sales -instance crm02

srvctl start service
Starts a service or multiple services on a database, pluggable database, or instance.

Appendix A
SRVCTL Command Reference

A-113

Syntax

srvctl start service [-db db_unique_name] [-service "services_list"
 [-pq] | -pdb pluggable_database | -serverpool pool_name]
 [-node node_name | -instance instance_name]
 [-global_override] [-startoption start_options] [-eval] [-verbose]

Parameters

Parameter Description

-db db_unique_name Specify a unique name for the database.

-service
"service_list"

Specify a service name or a comma-delimited list of service names
enclosed in double quotation marks ("").

If you do not include this parameter, then SRVCTL starts all of the
services for the specified database.

Note: All manual service startup must specify the name of the
service to be started by the user.

-pq Specify this parameter to restrict the start action to a parallel query
service.

-pdb
pluggable_database

Specify the name of a pluggable database. Optionally, you can
specify either the name of a node or the name of an instance to
restrict the starting of services to that particular object on the
pluggable database.

-serverpool
pool_name

Alternative to using the -pq parameter, you can specify the name
of a server pool that contains the services you want to start. Use
this parameter for policy-managed databases.

-node node_name Specify the name of a node where the services reside that you
want to start. Use this parameter for policy-managed databases.

-instance
instance_name

Specify the name of an instance where the services reside that you
want to start. Use this parameter for administrator-managed
databases.

-global_override Override value to operate on a global service. Use this parameter
only with global services; this parameter is ignored if specified for a
non-global service.

-startoption
start_options

Specify startup options used when service startup requires starting
a database instance. Options include OPEN, MOUNT, and NOMOUNT.

Note: For multi-word startup options, such as read only and
read write, separate the words with a space and enclose in
double quotation marks (""). For example, "read only".

–verbose Display verbose output.

Usage Notes

• The srvctl start service command will fail if you attempt to start a service that
is already running.

• The srvctl start service command will fail if you attempt to start a service on
an instance, if that service is already running on its maximum number of instances,
that is, its number of preferred instances.

Appendix A
SRVCTL Command Reference

A-114

• You can move a service or change the status of a service on an instance with the srvctl
modify service and srvctl relocate service commands.

Examples

The following example starts all services on a specific database:

$ srvctl start database -db myDB

The following examples start a list of services (optionally restricted to a parallel query
services in the latter example) regardless of the pluggable database on which they may
reside:

$ srvctl start database -db myDB -service "myServ01,myServ02"
$ srvctl start database -db myDB -service "myServ01,myServ02" -pq

The following example starts all services in a given server pool:

$ srvctl start database -db myDB -serverpool myServerPool

The following examples start all services on a given pluggable database, optionally restricted
to a single node or a single instance in the latter two examples, repectively:

$ srvctl start service -db myDB -pdb myPDB1
$ srvctl start service -db myDB -pdb myPDB1 -node myRACNode01
$ srvctl start service -db myDB -pdb myPDB1 -instance myDB01

The following example starts all services, for a given database, on a given instance (for all
pluggable databases):

$ srvctl start service -db myDB -instance myDB01

The following example start all services for a given database on a given node (for all
pluggable databases):

$ srvctl start service -db myDB -node myRACNode01

The following examples start a list of services on a given node or given instance:

$ srvctl start service -db myDB -service "myService01,myService02" -node
myRACNode01
$ srvctl start service -db myDB -service "myService01,myService02" -instance
myDB01

srvctl status service
Displays the status of a service.
For Oracle RAC One Node databases, if there is an online database relocation in process,
then this command displays the source and destination nodes and the status of the
relocation, whether it is active or failed.

Appendix A
SRVCTL Command Reference

A-115

Syntax

srvctl status service -db db_unique_name [-service "service_name_list"]
 [-force] [-verbose]

Parameters

Optionally, you can use this parameter to include disabled applications.

Table A-89 srvctl status service Command Parameters

Parameter Description

-db db_unique_name Specify the unique name of the database on which the service
operates for which you want to check the status.

-service
"service_name_list"

Optionally, you can specify a comma-delimited list of service names
for which you want to check status.

If you do not use this parameter, then SRVCTL lists the status of all
services for the specified database.

–force Optionally, you can use this parameter to include disabled
applications.

–verbose Optionally, you can use this parameter to display detailed output.

srvctl stop service
Stops one or more services globally across the cluster database, or on the specified
instance.

Syntax

To stop services for a particular node in the cluster:

srvctl stop service -node node_name [-stopoption IMMEDIATE|
TRANSACTIONAL|NONE]
 [-drain_timeout timeout] [-wait {YES | NO}] [-force] [-noreplay]
 [-global_override] [-verbose]

To stop services for a database:

srvctl stop service -db db_unique_name [-pq] [-rf] [-pdb
pluggable_database |
 -service "service_list" [-eval]] [-node node_name | -instance
instance_name |
 -serverpool pool_name] [-stopoption IMMEDIATE|TRANSACTIONAL|NONE]
 [-drain_timeout timeout] [-wait {YES | NO}] [-force [-noreplay]
 [-global_override] [-verbose]

Appendix A
SRVCTL Command Reference

A-116

Parameters

Note:

Starting with Oracle Grid Infrastructure 21c, policy-managed databases are
deprecated.

Table A-90 srvctl stop service Command Parameters

Parameter Description

-node node_name Optionally, you can specify the name of the node on which you want to
stop services. Use this parameter without the –db parameter to stop all
services on a specific node. If you use the –db parameter, then only the
services on the specified node for that database are stopped.

-db db_unique_name Specify a unique name for the database.

-pdb
pluggable_database

Alternatively, use this parameter to stop services running on a specific
pluggable database.

-service
"service_list"

Specify a particular service or a comma-delimited list of service names
enclosed in double quotation marks ("") you want to stop.

If you do not provide a service name list, then SRVCTL stops all services
on the database or on a specific instance.

-pq Specify this parameter to restrict the stop action to a parallel query
service.

-instance
instance_name

Optionally, you can specify the name of the instance for which you want
to stop services.

-serverpool pool_name Optionally, you can specify the name of the server pool that contains the
service you want to stop.

—eval Use this parameter to hypothetically evaluate the impact of the command
on the system.

-stopoption
IMMEDIATE|
TRANSACTIONAL|NONE

Specify the method of stopping the service. If this attribute was
previously set for the service, then that value is used as the default value
if you do not include the -stopoption parameter in your command.
Otherwise, the default is NONE.

• IMMEDIATE permits sessions to drain before the service is stopped.
Sessions that do not drain are terminated when the time limit
specified by -drain_timeout is reached.

• If you specify TRANSACTIONAL, then sessions are terminated as
soon as they commit. The service is stopped when the time limit
specified by -drain_timeout is reached and any remaining
sessions are terminated.

• If you specify NONE, then no sessions are terminated.

Note: You must use the -stopoption parameter with the -force
parameter.

Appendix A
SRVCTL Command Reference

A-117

Table A-90 (Cont.) srvctl stop service Command Parameters

Parameter Description

-drain_timeout
timeout

Specify the time, in seconds, allowed for resource draining to be
completed. Accepted values are an empty string (""), 0, or any positive
integer. The default value is an empty string, which means that this
parameter is not set. If it is set to 0, then draining occurs, immediately.

The draining period is intended for planned maintenance operations.
During the draining period, all current client requests are processed, but
new requests are not accepted. When set on the service this value is
used when the command line value is not set.

-wait {YES | NO} Choose YES to wait until service draining is completed on the node to
stop the service.

-force [-noreplay] Force SRVCTL to stop the service; this causes SRVCTL to disconnect all
of the sessions using the stop option you specify (IMMEDIATE or
TRANSACTIONAL), requiring the sessions using the service to reconnect
and then connect to another instance.

Notes:
• If you do not specify the -force parameter, then sessions already

connected to this service stay connected, but new sessions cannot
be established to the service.

• Optionally, you can specify the -noreplay parameter if you do not
want Application Continuity to replay in-flight transactions after a
session is terminated.

The -noreplay parameter is not limited to use with -force.
However, if you do not want to replay in-flight transactions after you
force the service to stop, then -force requires -noreplay.

-global_override Override value to operate on a global service. SRVCTL ignores this
parameter if the service is not a global service.

-verbose Use this parameter to display verbose output.

Examples

The following example command stops services running on the crmeast PDB in the
crm database on instance crm1 using the IMMEDIATE method, allowing 60 seconds for
services to transfer to another node:

$ srvctl stop service -db crm -pdb crmeast -instance crm1 -
drain_timeout 60 -force
- stopoption immediate -verbose

The following example command stops all services running on the node node1 that are
managed by Oracle Clusterware using the default stop option specified for each
service and waiting until all sessions have drained from that node.

$ srvctl stop service -node node1 -wait yes

Appendix A
SRVCTL Command Reference

A-118

srvctl add srvpool
Adds a server pool that is configured to host Oracle databases to a cluster.

Syntax

srvctl add srvpool -serverpool server_pool_name [-eval]
 [-importance importance] [-min min_size] [-max max_size]
 [-servers "node_list" | -category server_category] [-force] [-verbose]

Parameters

Table A-91 srvctl add srvpool Command Parameters

Parameter Description

-serverpool
server_pool_name

The name of the server pool.

-eval Use this parameter to hypothetically evaluate the impact of the command on the
system.

-importance importance The importance of the server pool (default value is 0).

-min min_size The minimum size of the server pool (default value is 0).

-max max_size The maximum size of the server pool. The default value is -1, which indicates
that the size is unlimited.

-servers "node_list" A comma-delimited list of candidate node names enclosed in double quotation
marks (""). The server pool will only include nodes on the candidate list, but not
all nodes on the candidate list will necessarily be in the server pool.

Note: In Oracle Database 12c, servers are assigned to server pools according to
the value of the -category parameter.

-category
server_category

The category of servers to use for the server pool, or "" for the empty category
value.

-force Add the server pool, even if it requires stopping resources in other server pools.

-verbose Display verbose output.

Usage Notes

• SRVCTL prepends “ora.” to the name of the server pool.

• This command is only available with Oracle Clusterware.

Example

The following command adds a server pool named SP1, with importance set to 1, the
minimum number of nodes in the server pool set to 3 and the maximum number of nodes in
the server pool set to 7:

srvctl add srvpool -serverpool SP1 -importance 1 -min 3 -max 7

Appendix A
SRVCTL Command Reference

A-119

srvctl config srvpool
Displays configuration information including name, minimum size, maximum size,
importance, and a list of server names, if applicable, for a specific server pool in a
cluster.

Syntax

srvctl config srvpool [-serverpool pool_name]

Parameters

The only parameter available for this command is -serverpool pool_name, which is
the name of the server pool for which you want to display the configuration
information.

Usage Notes

This command is only available with Oracle Clusterware.

Example

An example of this command is:

$ srvctl config srvpool -serverpool dbpool

srvctl modify srvpool
Modifies a server pool in a cluster.
If minimum size, maximum size, and importance are numerically increased, then the
CRS daemon may attempt to reassign servers to this server pool, if by resizing, other
server pools have comparatively lower minimum size and importance, to satisfy new
sizes of this server pool.

Syntax

srvctl modify srvpool -serverpool pool_name [-eval] [-importance
importance]
 [-min min_size] [-max max_size] [-servers "server_list"]
 [-category "server_category"] [-verbose] [-force]

Parameters

Table A-92 srvctl modify srvpool Command Parameters

Parameter Description

-serverpool
pool_name

Specify the name of the server pool you want to modify.

–eval Optionally, you can use this parameter to hypothetically evaluate
the impact of the command on the system.

Appendix A
SRVCTL Command Reference

A-120

Table A-92 (Cont.) srvctl modify srvpool Command Parameters

Parameter Description

-importance
importance

Optionally, you can modify the importance of the server pool.

-min min_size Optionally, you can modify the minimum size of the server pool.
The default value is 0.

-max max_size Optionally, you can modify the maximum size of the server pool. A
value of -1 sets the server pool maximum size to UNLIMITED.

-servers
"server_list"

Optionally, you can specify a comma-delimited list of candidate
server names enclosed in double quotation marks ("").

Note: In Oracle Database 12c, servers are assigned to server
pools according to the value of the -category parameter.

-category
"server_category"

Optionally, you can modify the server category enclosed in double
quotation marks ("") or "" for empty category value.

-verbose Optionally, you can use this parameter to display detailed output.

–force Optionally, you can use this parameter to force the operation even
though SRVCTL may stop some resources.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example changes the importance rank to 0, the minimum size to 2, and the
maximum size to 4 for the server pool srvpool1:

$ srvctl modify srvpool -serverpool srvpool1 -importance 0 -min 2 -max 4

srvctl remove srvpool
Removes a specific server pool.
If there are databases or services that depend upon this server pool, then those resources
are removed from the server pool first so that the remove server pool operation succeeds.

Syntax

srvctl remove srvpool -serverpool pool_name [-eval] [-verbose]

Parameters

Table A-93 srvctl remove srvpool Command Parameters

Parameter Description

-serverpool pool_name Specify the name of the server pool you want to remove.

-eval Optionally, you can use this parameter to evaluate the effects of
removing a server pool without making any changes to the system.

Appendix A
SRVCTL Command Reference

A-121

Table A-93 (Cont.) srvctl remove srvpool Command Parameters

Parameter Description

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

• You can only use this command with Oracle Clusterware.

• If you successfully remove the specified server pool, then the CRS daemon may
assign its servers to other server pools depending upon their minimum size,
maximum size, and importance. The CRS daemon may also return these servers
to its Free server pool.

Example

The following example removes a server pool from the system:

$ srvctl remove srvpool -serverpool srvpool1

srvctl status srvpool
Displays server pool names, number of servers in server pools, and, optionally, the
names of the servers in the server pools.

Syntax

srvctl status srvpool [-serverpool pool_name] [-detail]

Usage Notes

• You can only use this command with Oracle Clusterware.

• Optionally, you can specify the name of a server pool for which you want to check
the status. If you use this parameter, then the output includes the server pool
name and number of servers in the server pool (and, optionally, the server names)
for the specified server pool.

• If you choose to use the -detail parameter but do not specify a specific server
pool with the -serverpool parameter, then the output of this command includes
the names of servers that are currently assigned to each server pool.

srvctl add vip
Adds a virtual IP address (VIP) to a node.

Syntax

srvctl add vip -node node_name -address {VIP_name|ip}/netmask[/if1[|
if2|...]]
 -netnum network_number [-skip] [-verbose]

Appendix A
SRVCTL Command Reference

A-122

Parameters

Table A-94 srvctl add vip Command Parameters

Parameter Description

-node node_name The name of the node on which you are adding the VIP.

-address {VIP_name|ip}/
netmask [/if1[|if2|...]]

This specification creates a traditional VIP node application on the specified
node.

You can specify one VIP_name or address, along with an IPv4 netmask or IPv6
prefix length.

-netnum network_number The network number from which VIPs are obtained. The default network number
is 1.

-skip Specify this parameter to skip checking the reachability of the VIP address.

-verbose Verbose output

Note:

Usage Notes

• You cannot have multiple VIPs on the same net number (subnet or interface pair) on the
same node.

• This command is only available with Oracle Clusterware.

Example

An example of this command is:

srvctl add network -netnum 2 -subnet 192.168.16.0/255.255.255.0
srvctl add vip -node node7 -address 192.168.16.17/255.255.255.0 -netnum 2

The first command creates a network number, 2, and the second command adds a VIP to this
network. You can specify the network number after the -netnum parameter in other SRVCTL
commands.

srvctl config vip
Displays all VIPs on all networks in the cluster except for user VIPs.

Syntax

srvctl config vip {-node node_name | -vip vip_name}

Appendix A
SRVCTL Command Reference

A-123

Parameters

Table A-95 srvctl config vip Command Parameters

Parameter Description

-node node_name Specify the node name.

-vip vip_name Alternatively, you can specify the VIP name.

Usage Notes

This command is only available with Oracle Clusterware.

Example

This command returns output similar to the following:

$ srvctl config vip -node crmnode1

VIP exists: ipv4, ipv6, network number 1, hosting node adc2100252

srvctl disable vip
Disables a specific VIP.

Syntax

srvctl disable vip -vip vip_name [-verbose]

Usage Notes

• This command is only available with Oracle Clusterware.

• Specify the name of the VIP you want to disable.

• Optionally, you can use the –verbose parameter to display detailed output.

Example

The following command disables a VIP:

$ srvctl disable vip -vip vip1 -verbose

srvctl enable vip
Enables a specific VIP.

Syntax

srvctl enable vip -vip vip_name [-verbose]

Appendix A
SRVCTL Command Reference

A-124

Usage Notes

• You can only use this command with Oracle Clusterware.

• Specify the name of the VIP you want to enable.

• Optionally, you can use the –verbose parameter to display detailed output.

Example

The following example enables a VIP named crm1-vip:

$ srvctl enable vip -vip crm1-vip -verbose

srvctl getenv vip
Obtains the values of environment variables for a specific VIP.

Syntax

srvctl getenv vip -vip vip_name [-envs "name_list"] [-verbose]

Parameters

Table A-96 srvctl getenv vip Command Parameters

Parameter Description

-vip vip_name Specify the name of the VIP for which you want to obtain the values of
the environment variables.

-envs "name_list" Optionally, you can specify a comma-delimited list of the names of
specific environment variables. If you do not use this parameter, then
SRVCTL displays the values of all environment variables associated with
the VIP.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example lists all environment variables for the specified VIP:

$ srvctl getenv vip -vip node1-vip

srvctl modify vip
Modifies IP address type but you can also use it to modify only the IP address.

Appendix A
SRVCTL Command Reference

A-125

Syntax

srvctl modify vip -node node_name -address {VIP_name|ip}/netmask[/if1[|
if2|...]]
 [-netnum network_number] [-verbose]

Parameters

Table A-97 srvctl modify vip Command Parameters

Parameter Description

-node node_name Specify the name of the node on which you are changing the VIP.

-address {VIP_name|
ip}/netmask[/if1[|
if2|...]]

Use this parameter to change the configuration of an existing VIP. If
the VIP has an IPv4 address and the address you specify is IPv6,
and the IP address type is set to both and the network type is set
to static, then SRVCTL adds the IPv6 address to the existing
IPv4 address of that resource.

You can specify one VIP_name or IP address, along with an IPv4
netmask or IPv6 prefix length.

-netnum
network_number

Optionally, you can specify the network number from which VIPs
are obtained. If you do not use this parameter, then SRVCTL
obtains the VIPs from the same default network from which the
nodeapps VIP is obtained.

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

• You can only use this command with Oracle Clusterware.

• You cannot have multiple VIPs on the same net number (subnet or interface pair)
on the same node.

Example

The following example adds an IPv4 address to a VIP, if one does not already exist. If
the VIP has an IPv4 address, then it is replaced with the new network specification.

srvctl modify vip -node node7 -address 192.168.16.17/255.255.255.0 -
netnum 2

srvctl predict vip
Predicts the consequences of VIP failure.

Syntax

srvctl predict vip [-vip vip_name] [-verbose]

Appendix A
SRVCTL Command Reference

A-126

Usage Notes

• Optionally, you can specify the name of a VIP for which you want to evaluate the
consequences of failure.

• Optionally, you can use the –verbose parameter to display detailed output.

srvctl relocate vip
Relocates a specific VIP from its current hosting node to another node within the cluster.

Syntax

srvctl relocate vip -vip vip_name [-node node_name] [-force] [-verbose]

Parameters

Table A-98 srvctl relocate vip Command Parameters

Parameter Description

-vip vip_name Specify the name of the VIP you want to relocate.

-node node_name Optionally, you can specify the name of the target node where you want
to relocate the VIP.

–force Optionally, you can use this parameter to force the relocation of the VIP
regardless of any dependencies.

–verbose Optionally, you can use this parameter to display detailed output.

Example

The following example relocates a VIP to a different node in the cluster:

$ srvctl relocate vip -vip vip1 -node node3

srvctl remove vip
Removes specific VIPs.

Syntax

srvctl remove vip -vip "vip_name_list" [-force] [-noprompt] [-verbose]

Parameters

Table A-99 srvctl remove vip Command Parameters

Parameter Description

-vip "vip_name_list" Specify a comma-delimited list of VIP names that you want to remove
surrounded by double quotation marks ("").

Appendix A
SRVCTL Command Reference

A-127

Table A-99 (Cont.) srvctl remove vip Command Parameters

Parameter Description

–force Optionally, you can use this parameter to remove a VIP regardless of any
dependencies.

-noprompt Optionally, you can use this parameter to suppress prompts.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example removes several VIPs from the system:

$ srvctl remove vip -vip "vip1,vip2,vip3" -force -noprompt -verbose

srvctl setenv vip
Administers cluster VIP environment configurations.

Syntax

srvctl setenv vip -vip vip_name {-envs "name=val[,...]" | -env
"name=val"}
 [-verbose]

Parameters

Table A-100 srvctl setenv vip Command Parameters

Parameter Description

-vip vip_name Specify the name of the VIP for which you want to set environment
variables.

-envs
"name=val[,...]"

Specify a comma-delimited list of name-value pairs of environment
variables enclosed in double quotation marks ("") that you want to
set.

-env "name=val" Alternative to a list of environment variables, you can use this
parameter to set a single environment variable to a value that
contains commas or other special characters enclosed in double
quotation marks ("").

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-128

Example

The following example sets the language environment configuration for a cluster VIP:

$ srvctl setenv vip -vip crm1-vip -env "LANG=en"

srvctl start vip
Starts a specific VIP or a VIP on a specific node.

Syntax

srvctl start vip {-node node_name | -vip vip_name} [-verbose]

Parameters

Table A-101 srvctl start vip Command Parameters

Parameter Description

-node node_name Specify the name of the node on which the VIP resides that you want to
start.

-vip vip_name Alternative to specifying a node, you can specify a VIP that you want to
start.

-verbose Optionally, you can use this parameter to display detailed ouptut.

Usage Notes

You can only use this command with Oracle Clusterware.

Example

The following example starts a specific VIP:

$ srvctl start vip -vip crm1-vip -verbose

srvctl status vip
Displays status for a specific VIP or a VIP on a specific node.

Syntax

srvctl status vip {-node node_name | -vip vip_name} [-verbose]

Appendix A
SRVCTL Command Reference

A-129

Parameters

Table A-102 srvctl status vip Command Parameters

Parameter Description

-node node_name Specify the name of the node on which the VIP resides that you
want to check the status.

-vip vip_name Alternative to specifying a node, you can specify a VIP that you
want to check the status.

-verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

srvctl stop vip
Stops a specific VIP or all VIPs on a specific node, including any VIPs that were
relocated due to a failover.

Syntax

srvctl stop vip {-node node_name | -vip vip_name} [-force] [-relocate]
[-verbose]

Parameters

Table A-103 srvctl stop vip Command Parameters

Parameter Description

-node node_name Specify the name of a node on which a VIP resides that you want
to stop. If you use this parameter, then SRVCTL stops all VIPs on
the specific node, including failed-over VIPs.

-vip vip_name Alternative to specifying a node, you can specify a VIP that you
want to stop.

-force Optionally, you can use this parameter to stop the VIP regardless of
any dependencies.

-relocate Optionally, you can use this parameter to relocate the VIP.

Note: You must use the -node node_name parameter with the -
relocate parameter.

–verbose Optionally, you can use this parameter to display detailed output.

Usage Notes

You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-130

Example

The following example stops all the VIPs on mynode1, including any failed-over VIPs:

$ srvctl stop vip -node mynode1 -verbose

srvctl unsetenv vip
Unsets the environment configuration for the specified cluster VIP.

Syntax

srvctl unsetenv vip -vip "vip_name_list" -envs "name_list" [-verbose]

Parameters

Table A-104 srvctl unsetenv vip Command Parameters

Parameter Description

-vip "vip_name_list" Specify a comma-delimited list of VIP names enclosed in double
quotation marks ("").

-envs "name_list" Specify a comma-delimited list of environment variable names enclosed
in double quotation marks ("") that you want to unset.

–verbose Optionally, you can use this parameter to display detailed output.

Example

The following example unsets the CLASSPATH environment variable for a cluster VIP:

$ srvctl unsetenv vip -vip "crm2-vip" -envs "CLASSPATH"

srvctl config volume
Displays the configuration for a specific volume or all volumes.

Syntax

srvctl config volume [-volume volume_name] [-diskgroup disk_group_name]
 [-device volume_device]

Parameters

Table A-105 srvctl config volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume for which you want to view the configuration.

-diskgroup disk_group_name Specify the name of the disk group in which the volume resides for which you
want to display the configuration.

Appendix A
SRVCTL Command Reference

A-131

Table A-105 (Cont.) srvctl config volume Command Parameters

Parameter Description

-device volume_device Specify the path to the volume device for which you want to display the
configuration.

Usage Notes

• If you do not specify any of the optional parameters, then SRVCTL displays the
configuration information for all volumes.

• If you specify only the -volume parameter, then SRVCTL displays the configuration
for all volumes with that name, regardless of the diskgroup.

• If you specify only the -diskgroup parameter, then SRVCTL displays the
configuration information for the volumes that reside in the disk group that you
specify.

• If you specify only the -device parameter, then SRVCTL displays the configuration
information for the volume matching that device specifier.

• If you specify the -diskgroup and -device parameters, then SRVCTL displays the
configuration information for the volume device that resides in the disk group that
you specify.

• This command is only available with Oracle Clusterware.

Examples

This command returns information similar to the following:

$ srvctl config volume -device /dev/asm/volume1-123

Diskgroup Name: DG1
Volume Name : VOL1
Volume Device : /dev/asm/volume1-123
Volume is enabled.
Volume is enabled on nodes:
Volume is disabled on nodes:

If you do not specify any parameters, then SRVCTL returns configuration information
for all volumes, similar to the following:

$ srvctl config volume

Diskgroup name: DG1
Volume name: VOL1
Volume device: /dev/asm/volume1-123
Volume is enabled.
Volume is enabled on nodes:
Volume is disabled on nodes:
Diskgroup name: DG1
Volume name: VOL2
Volume device: /dev/asm/volume2-456
Volume is enabled.

Appendix A
SRVCTL Command Reference

A-132

Volume is enabled on nodes:
Volume is disabled on nodes:

srvctl disable volume
Disables Oracle Clusterware management for a specific volume or all volumes.
This command allows a volume device to be stopped by operating on the Oracle Clusterware
resource for the volume. This command does not stop volume device.

Syntax

srvctl disable volume {-volume volume_name -diskgroup disk_group_name |
 -device volume_device}

Parameters

Table A-106 srvctl disable volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume that you want to disable.

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume that you want to
disable resides.

-device volume_device Alternative to using the –diskgroup parameter, you can specify the path
to the volume device that you want to disable.

Usage Notes

• You can only use this command with Oracle Clusterware.

• You must specify a particular volume that you want to disable. You can specify a volume
that resides in either a particular disk group or on a particular volume device.

Example

The following example disables a volume named VOLUME1 that resides in a disk group named
DATA:

$ srvctl disable volume -volume VOLUME1 -diskgroup DATA

srvctl enable volume
Enables Oracle Clusterware management for a specific volume or all volumes.
This command allows a volume device to be started by operating on the Oracle Clusterware
resource for the volume. This command does not start the volume device, and is different
from the SQL command ALTER DISKGROUP ENABLE VOLUME or the ASMCMD command
volenable, because these two commands bring the volume device online, in a running state,
making the volume device accessible.

Appendix A
SRVCTL Command Reference

A-133

Syntax

srvctl enable volume {-volume volume_name -diskgroup disk_group_name |
 -device volume_device}

Parameters

Table A-107 srvctl enable volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume that you want to enable.

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume that you
want to enable resides.

-device
volume_device

Alternative to using the –diskgroup parameter, you can specify
the path to the volume device that you want to enable.

Usage Notes

• You can only use this command with Oracle Clusterware.

• You must specify a particular volume that you want to enable. You can specify a
volume that resides in either a particular disk group or on a particular volume
device.

Example

The following example enables a volume named VOLUME1 that resides in a disk group
named DATA:

$ srvctl enable volume -volume VOLUME1 -diskgroup DATA

srvctl remove volume
Removes a specific volume.

Syntax

Use this command with one of the following syntax models:

srvctl remove volume -volume volume_name -diskgroup disk_group_name [-
force]

srvctl remove volume -device volume_device [-force]

Parameters

Table A-108 srvctl remove volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume that you want to remove.

Appendix A
SRVCTL Command Reference

A-134

Table A-108 (Cont.) srvctl remove volume Command Parameters

Parameter Description

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume that you
want to remove resides.

-device
volume_device

Specify the path to the file system resource in which the volume
that you want to remove resides.

–force You can use this parameter to remove the volume even if it is
running.

Usage Notes

• You can only use this command with Oracle Clusterware.

• The volume gets created when you create volumes in Oracle ASM.

• You must specify a particular volume that you want to remove. You can specify a volume
that resides in either a particular disk group or on a particular volume device.

Example

The following example removes a volume named VOLUME1 that resides in a disk group named
DATA:

$ srvctl remove volume -volume VOLUME1 -diskgroup DATA

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

srvctl start volume
Starts a specific, enabled volume.

Syntax

srvctl start volume {-volume volume_name -diskgroup disk_group_name |
 -device volume_device} [-node node_list]

Parameters

Table A-109 srvctl start volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume that you want to start.

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume that you want to
start resides.

-device volume_device Alternative to using the –diskgroup parameter, you can specify the path
to the volume device that you want to start.

Appendix A
SRVCTL Command Reference

A-135

Table A-109 (Cont.) srvctl start volume Command Parameters

Parameter Description

-node node_list Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") where volumes that you want to
start reside.

Usage Notes

• You can only use this command with Oracle Clusterware.

• The srvctl start volume command does not create a volume service. Provided
that the volume already exists and the volume resource is enabled, SRVCTL
attempts to start it. If the volume exists but the resource is disabled, then srvctl
start volume returns an error.

Example

The following example starts a volume named VOLUME1 that resides in a disk group
named DATA:

$ srvctl start volume -volume VOLUME1 -diskgroup DATA

srvctl status volume
Displays the status of a specific volume or all volumes.

Syntax

srvctl status volume [-device volume_device] [-volume volume_name]
 [-diskgroup disk_group_name] [-node "node_list"]

Parameters

Table A-110 srvctl status volume Command Parameters

Parameter Description

-device
volume_device

Optionally, you can specify the path to the volume device for which
you want to display the status.

-volume volume_name Optionally, you can specify the name of the volume for which you
want to view the status.

-diskgroup
disk_group_name

Optionally, you can specify the name of the disk group in which the
volume resides for which you want to display the status.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") where volumes for which
you want to view the status reside.

Usage Notes

• You can only use this command with Oracle Clusterware.

Appendix A
SRVCTL Command Reference

A-136

• If you do not specify any of the optional parameters, then SRVCTL displays the status for
all volumes.

• If you specify only the -volume parameter, then SRVCTL displays the status for the
volume that you specify.

• If you specify only the -diskgroup parameter, then SRVCTL displays the status for the
volumes that reside in the disk group that you specify.

• If you specify only the -device parameter, then SRVCTL displays the status for the
volume device that you specify.

• If you specify the -diskgroup and -device parameters, then SRVCTL displays the status
for the volume device in the disk group that you specify.

• If you specify the -node parameter, then SRVCTL displays the status of the volumes that
reside on the nodes you list.

Examples

This command displays information similar to the following:

$ srvctl status volume –volume vol1
Volume vol1 of diskgroup diskgrp1 for device volume_device_path1 is enabled
Volume vol1 of diskgroup diskgrp1 for device volume_device_path1 is running

In the preceding example, SRVCTL performs a status query on all nodes because the -node
parameter is not specified.

$ srvctl status volume
Volume vol1 of diskgroup diskgrp for device volume_device_path1 is enabled
Volume vol1 of diskgroup diskgrp for device volume_device_path1 is running
Volume vol2 of diskgroup diskgrp for device volume_device_path2 is enabled
Volume vol2 of diskgroup diskgrp for device volume_device_path2 is running

In the preceding example, SRVCTL displays the status of all registered volumes because the
no parameter is specified.

srvctl stop volume
Stops a specific, running volume.

Syntax

srvctl stop volume {-volume volume_name -diskgroup disk_group_name |
 -device volume_device} [-node "node_list"]

Parameters

Table A-111 srvctl stop volume Command Parameters

Parameter Description

-volume volume_name Specify the name of the volume you want to stop.

Appendix A
SRVCTL Command Reference

A-137

Table A-111 (Cont.) srvctl stop volume Command Parameters

Parameter Description

-diskgroup
disk_group_name

Specify the name of the disk group in which the volume you want to stop
resides.

-device volume_device Alternative to using the –diskgroup parameter, you can specify the path
to the volume device that you want to stop.

-node "node_list" Optionally, you can specify a comma-delimited list of node names
enclosed in double quotation marks ("") where volumes that you want to
stop reside.

Usage Notes

• You can only use this command with Oracle Clusterware.

• The srvctl stop volume command attempts to stop (disable) the volume but it
does not disable the resource or remove the volume from Oracle ASM.

Example

The following example stops a volume named VOLUME1 that resides in a disk group
named DATA:

$ srvctl stop volume -volume VOLUME1 -diskgroup DATA

Appendix A
SRVCTL Command Reference

A-138

B
Troubleshooting Oracle RAC

This appendix explains how diagnose problems for Oracle Real Application Clusters (Oracle
RAC) components using trace and log files. This section includes the following topics:

• Where to Find Files for Analyzing Errors

• Managing Diagnostic Data in Oracle RAC

• Using Instance-Specific Alert Files in Oracle RAC

• Enabling Tracing for Java-Based Tools and Utilities in Oracle RAC

• Resolving Pending Shutdown Issues

• How to Determine If Oracle RAC Instances Are Using the Private Network

Note:

Trace and log files, similar to those generated for Oracle Database with Oracle
RAC, are also available for the Oracle Clusterware components. For Oracle
Clusterware, Oracle Database stores these under a unified directory log structure.

See the Oracle Clusterware Administration and Deployment Guide for more
information about troubleshooting Oracle Clusterware.

Where to Find Files for Analyzing Errors
Oracle Database records information about important events that occur in your Oracle RAC
environment in trace files.

The trace files for Oracle RAC are the same as those in noncluster Oracle databases. As a
best practice, monitor and back up trace files regularly for all instances to preserve their
content for future troubleshooting.

Information about ORA-600 errors appear in the alert_SID.log file for each instance where
SID is the instance identifier.

The alert log and all trace files for background and server processes are written to the
Automatic Diagnostic Repository, the location of which you can specify with the
DIAGNOSTIC_DEST initialization parameter. For example:

$ORACLE_BASE/diag/rdbms/$DBNAME/$SID_NAME/trace

Oracle Database creates a different trace file for each background thread. Oracle RAC
background threads use trace files to record database operations and database errors.
These trace logs help troubleshoot and also enable Oracle Support to more efficiently debug
cluster database configuration problems. The names of trace files are operating system
specific, but each file usually includes the name of the process writing the file (such as LGWR

B-1

and RECO). For Linux, UNIX, and Windows systems, trace files for the background
processes are named SID_process_name_process_identifier.trc.

Trace files are also created for user processes if you set the DIAGNOSTIC_DEST
initialization parameter. User process trace file names have the format
SID_ora_process_identifier/thread_identifier.trc, where process_identifier
is a 5-digit number indicating the process identifier (PID) on Linux and UNIX systems,
and thread_identifier is the thread identifier on Windows systems.

Related Topics

• Troubleshooting Oracle Clusterware

• Monitoring the Database

Managing Diagnostic Data in Oracle RAC
Problems that span Oracle RAC instances can be the most difficult types of problems
to diagnose.

For example, you may need to correlate the trace files from across multiple instances,
and merge the trace files. Oracle Database 12c release 2 (12.2) includes an advanced
fault diagnosability infrastructure for collecting and managing diagnostic data, and
uses the Automatic Diagnostic Repository (ADR) file-based repository for storing the
database diagnostic data. When you create the ADR base on a shared disk, you can
place ADR homes for all instances of the same Oracle RAC database under the same
ADR Base. With shared storage:

• You can use the ADRCI command-line tool to correlate diagnostics across all
instances.

ADRCI is a command-line tool that enables you to view diagnostic data in the ADR
and package incident and problem information into a zip file for transmission to
Oracle Support. The diagnostic data includes incident and problem descriptions,
trace files, dumps, health monitor reports, alert log entries, and so on.

• You can use the Data Recovery Advisor to help diagnose and repair corrupted
data blocks, corrupted or missing files, and other data failures.

The Data Recovery Advisor is an Oracle Database infrastructure that automatically
diagnoses persistent data failures, presents repair options, and repairs problems
at your request.

Related Topics

• ADRCI: ADR Command Interpreter

• Diagnosing and Resolving Problems

Using Instance-Specific Alert Files in Oracle RAC
Each instance in an Oracle RAC database has one alert file.

The alert file for each instance, alert_SID.log, contains important information about
error messages and exceptions that occur during database operations. Information is
appended to the alert file each time you start the instance. All process threads can
write to the alert file for the instance.

Appendix B
Managing Diagnostic Data in Oracle RAC

B-2

The alert_SID.log file is in the directory specified by the DIAGNOSTIC_DEST initialization
parameter.

Enabling Tracing for Java-Based Tools and Utilities in Oracle
RAC

All Java-based tools and utilities that are available in Oracle RAC are called by processing
scripts of the same name as the tool or utility.

This includes the Cluster Verification Utility (CVU), Oracle Database Configuration Assistant
(Oracle DBCA), the Net Configuration Assistant (NETCA), and the Server Control Utility
(SRVCTL). For example, to run Oracle DBCA, enter the command dbca.

By default, Oracle Database enables traces for Oracle DBCA and the Database Upgrade
Assistant (DBUA). For the CVU, and SRVCTL, you can set the SRVM_TRACE environment
variable to TRUE to make Oracle Database generate traces. Oracle Database writes traces to
log files. For example, Oracle Database writes traces to log files in Oracle_base/
cfgtoollogs/dbca and Oracle_base/cfgtoollogs/dbua for Oracle DBCA and Oracle DBUA,
respectively.

Resolving Pending Shutdown Issues
In some situations a SHUTDOWN IMMEDIATE may be pending and Oracle Database will not
quickly respond to repeated shutdown requests.

This is because Oracle Clusterware may be processing a current shutdown request. In such
cases, issue a SHUTDOWN ABORT using SQL*Plus for subsequent shutdown requests.

How to Determine If Oracle RAC Instances Are Using the
Private Network

This topic describes how to manually determine if Oracle RAC instances are using the private
network.

However, the best practice for this task is to use the Oracle Enterprise Manager Cloud
Control graphical user interface (GUI) to check the interconnect.

With most network protocols, you can issue the oradebug ipc command to see the
interconnects that the database is using. For example:

oradebug setmypid
oradebug ipc

These commands dump a trace file to the location specified by the DIAGNOSTIC_DEST
initialization parameter. The output may look similar to the following:

SSKGXPT 0x1a2932c flags SSKGXPT_READPENDING info for network 0
 socket no 10 IP 172.16.193.1 UDP 43749
 sflags SSKGXPT_WRITESSKGXPT_UP info for network 1
 socket no 0 IP 0.0.0.0 UDP 0...

Appendix B
Enabling Tracing for Java-Based Tools and Utilities in Oracle RAC

B-3

In the example, you can see the database is using IP 172.16.193.1 with a User
Datagram Protocol (UDP) protocol. Also, you can issue the oradebug tracefile_name
command to print the trace location where the output is written.

Additionally, you can query the V$CLUSTER_INTERCONNECTS view to see information
about the private interconnect. For example:

SQL> SELECT * FROM V$CLUSTER_INTERCONNECTS;

NAME IP_ADDRESS IS_ SOURCE
----- -------------------------- --- -------------------------------
eth0 138.2.236.114 NO Oracle Cluster Repository

Appendix B
How to Determine If Oracle RAC Instances Are Using the Private Network

B-4

Glossary

Automatic Workload Repository (AWR)
A built-in repository that exists in every Oracle database. At regular intervals, Oracle
Database makes a snapshot of all of its vital statistics and workload information and stores
them in the AWR.

administrator-managed database
A database that you specifically define on which servers it can run, and where services can
run within the database.

cache coherency
The synchronization of data in multiple caches so that reading a memory location through
any cache will return the most recent data written to that location through any other cache.
Sometimes called cache consistency.

Cache Fusion
A diskless cache coherency mechanism in Oracle RAC that provides copies of blocks directly
from a holding instance's memory cache to a requesting instance's memory cache.

cardinality
The number of database instances you want running during normal operations.

CDB
A multitenant container database (CDB) is an Oracle database that includes zero, one, or
many user-created pluggable databases (PDBs). Every Oracle database is either a CDB or a
non-CDB.

client cluster
A cluster that advertises its names with the server cluster.

Glossary-1

cluster
Multiple interconnected computers or servers that appear as if they are one server to
end users and applications.

cluster configuration policy
A document that contains exactly one definition for each server pool defined in the
system.

cluster configuration policy set
A document that defines the names of all server pools configured in the cluster and
contains one or more configuration policies.

cluster database
The generic term for a Oracle RAC database.

cluster file system
A distributed file system that is a cluster of servers that collaborate to provide high
performance service to their clients. Cluster file system software deals with distributing
requests to storage cluster components.

Cluster Ready Services Daemon (CRSD)
The primary Oracle Clusterware process that performs high availability recovery and
management operations, such as maintaining OCR. Also manages application
resources and runs as root user (or by a user in the admin group on Mac OS X-based
systems) and restarts automatically upon failure.

Cluster Synchronization Services (CSS)
An Oracle Clusterware component that discovers and tracks the membership state of
each node by providing a common view of membership across the cluster. CSS also
monitors process health, specifically the health of the database instance. The Global
Enqueue Service Monitor (LMON), a background process that monitors the health of
the cluster database environment and registers and de-registers from CSS. See also,
OCSSD.

Cluster Time Synchronization Service
A time synchronization mechanism that ensures that all internal clocks of all nodes in a
cluster are synchronized.

Glossary

Glossary-2

Cluster Verification Utility (CVU)
A tool that verifies a wide range of Oracle RAC components such as shared storage devices,
networking configurations, system requirements, Oracle Clusterware, groups, and users.

commit outcome
A message sent to the client from the Oracle database after a transaction has been
committed. These messages are not durable.

database pool
A set of databases within a database cloud that provide a unique set of global services and
belong to a certain administrative domain. Partitioning of cloud databases into multiple pools
simplifies service management and provides higher security because each pool can be
administered by a different administrator.

Distributed Transaction Processing (DTP)
The paradigm of distributed transactions, including both XA-type externally coordinated
transactions, and distributed-SQL-type (database links in Oracle) internally coordinated
transactions.

dynamic network
A network that uses DHCP for IPv4 or stateless autoconfiguration (autoconfig) for IPv6.

Event Manager (EVM)
The background process that publishes Oracle Clusterware events. EVM scans the
designated callout directory and runs all scripts in that directory when an event occurs.

Event Manager Daemon (EVMD)
A Linux or UNIX event manager daemon that starts the racgevt process to manage callouts.

failure group
A failure group is a subset of the disks in a disk group, which could fail at the same time
because they share hardware. Failure groups are used to store mirror copies of data.

Fast Application Notification (FAN)
Applications can use FAN to enable rapid failure detection, balancing of connection pools
after failures, and re-balancing of connection pools when failed components are repaired.
The FAN notification process uses system events that Oracle Database publishes when
cluster servers become unreachable or if network interfaces fail.

Glossary

Glossary-3

Fast Connection Failover
Fast Connection Failover provides high availability to FAN integrated clients, such as
clients that use JDBC, OCI, or ODP.NET. If you configure the client to use fast
connection failover, then the client automatically subscribes to FAN events and can
react to database UP and DOWN events. In response, Oracle Database gives the client a
connection to an active instance that provides the requested database service.

file system
A file system is a software component providing structured access to disks. File
systems present objects, such as files, to application programs. Access to files is
generally specified with standard API defining operating system calls such as Open/
Close and Read/Write that the application program uses for accessing files. File
systems are usually provided as a component of an operating system, but may be
provided as an independent software component.

forced disk write
In Oracle RAC, a particular data block can only be modified by one instance at a time.
If one instance modifies a data block that another instance needs, then whether a
forced disk write is required depends on the type of request submitted for the block.

General Parallel File System (GPFS)
General Parallel File System (GPFS) is a shared-disk IBM file system product that
provides data access from all of the nodes in a homogenous or heterogeneous cluster.

Global Cache Service (GCS)
Process that implements Cache Fusion. It maintains the block mode for blocks in the
global role. It is responsible for block transfers between instances. The Global Cache
Service employs various background processes such as the Global Cache Service
Processes (LMSn) and Global Enqueue Service Daemon (LMD).

Global Cache Service Processes (LMSn)
Processes that manage remote messages. Oracle RAC provides for up to 10 Global
Cache Service Processes.

Global Cache Service (GCS) resources
Global resources that coordinate access to data blocks in the buffer caches of multiple
Oracle RAC instances to provide cache coherency.

Glossary

Glossary-4

global database name
The full name of the database that uniquely identifies it from any other database. The global
database name is of the form database_name.database_domain—for example:
OP.EXAMPLE.COM

global dynamic performance views (GV$)
Dynamic performance views storing information about all open instances in an Oracle RAC
cluster. (Not only the local instance.) In contrast, standard dynamic performance views (V$)
only store information about the local instance.

Global Enqueue Service (GES)
A service that coordinates enqueues that are shared globally.

Global Enqueue Service Daemon (LMD)
The resource agent process that manages requests for resources to control access to blocks.
The LMD process also handles deadlock detection and remote resource requests. Remote
resource requests are requests originating from another instance.

Global Enqueue Service Monitor (LMON)
The background LMON process monitors the entire cluster to manage global resources.
LMON manages instance deaths and the associated recovery for any failed instance. In
particular, LMON handles the part of recovery associated with global resources. LMON-
provided services are also known as Cluster Group Services.

Global Services Daemon (GSD)
A component that receives requests from SRVCTL to execute administrative job tasks, such
as startup or shutdown. The command is executed locally on each node, and the results are
returned to SRVCTL. GSD is installed on the nodes by default.

Grid Plug and Play Daemon (GPNPD)
This process provides access to the Grid Plug and Play profile, and coordinates updates to
the profile among the nodes of the cluster to ensure that all of the nodes node have the most
recent profile.

High Availability Cluster Multi-Processing (HACMP)
High Availability Cluster Multi-Processing is an IBM AIX-based high availability cluster
software product. HACMP has two major components: high availability (HA) and cluster multi-
processing (CMP).

Glossary

Glossary-5

high availability
Systems with redundant components that provide consistent and uninterrupted
service, even if there are hardware or software failures. This involves some degree of
redundancy.

instance
For an Oracle RAC database, each node in a cluster usually has one instance of the
running Oracle software that references the database. When a database is started,
Oracle Database allocates a memory area called the System Global Area (SGA) and
starts one or more Oracle Database processes. This combination of the SGA and the
Oracle Database processes is called an instance. Each instance has unique Oracle
System Identifier (SID), instance name, rollback segments, and thread ID.

instance caging
A method that uses an initialization parameter to limit the number of CPUs that an
instance can use simultaneously for foreground processes.

instance membership recovery
The method used by Oracle RAC guaranteeing that all cluster members are functional
or active. instance membership recovery polls and arbitrates the membership. Any
members that do not show a heartbeat by way of the control file or who do not respond
to periodic activity inquiry messages are presumed terminated.

instance name
Represents the name of the instance and is used to uniquely identify a specific
instance when clusters share common services names. The instance name is
identified by the INSTANCE_NAME parameter in the instance initialization file,
initsid.ora. The instance name is the same as the Oracle System Identifier (SID).

instance number
A number that associates extents of data blocks with particular instances. The
instance number enables you to start an instance and ensure that it uses the extents
allocated to it for inserts and updates. This will ensure that it does not use space
allocated for other instances.

interconnect
The communication link between nodes.

Glossary

Glossary-6

keystore
A container that stores a Transparent Data Encryption key. In previous releases, this was
referred to as a wallet.

Logical Volume Manager (LVM)
A generic term that describes Linux or UNIX subsystems for online disk storage
management.

Interprocess Communication (IPC)
A high-speed operating system-dependent transport component. The IPC transfers
messages between instances on different nodes. Also referred to as the interconnect.

Master Boot Record (MBR)
A program that executes when a computer starts. Typically, the MBR resides on the first
sector of a local hard disk. The program begins the startup process by examining the partition
table to determine which partition to use for starting the system. The MBR program then
transfers control to the boot sector of the startup partition, which continues the startup
process.

memory pressure
A state indicating that there is a limited amount of available memory on a server.

metric
The rate of change in a cumulative statistic.

multitenant container database
See CDB.

mutables
Non-deterministic functions that can change their results each time they are called. Mutable
functions can cause replay to be rejected, if the function results change at replay. Consider
sequence.nextval and SYSDATE used in key values. If a primary key is built with values
from these function calls, and is used in later foreign keys or other binds, then, at replay the
same function result must be returned. Application Continuity provides mutable value
replacement at replay for granted Oracle function calls to provide opaque bind-variable
consistency.

Glossary

Glossary-7

Network Attached Storage (NAS)
Storage that is attached to a server by way of a network.

Network Time Protocol (NTP)
An Internet standard protocol, built on top of TCP/IP, that ensures the accurate
synchronization to the millisecond of the computer clock times in a network of
computers.

Network Interface Card (NIC)
A card that you insert into a computer to connect the computer to a network.

node
A node is a computer system on which Oracle RAC and Oracle Clusterware software
are installed.

Object Link Manager (OLM)
The Oracle interface that maps symbolic links to logical drives and displays them in
the OLM graphical user interface.

OCSSD
A Linux or UNIX process that manages the Cluster Synchronization Services (CSS)
daemon. Manages cluster node membership and runs as oracle user; failure of this
process results in cluster restart.

Oracle Cluster File Systems
Oracle offers two cluster file systems, OCFS2 for Linux and Oracle ASM Cluster File
System (Oracle ACFS). While Oracle ACFS is a proprietary file system, the source for
OCFS2 for Linux is available to all under GNUs' General Public License (GPL). The
two file systems are not compatible.

Oracle Cluster Registry (OCR)
The Oracle RAC configuration information repository that manages information about
the cluster node list and instance-to-node mapping information. OCR also manages
information about Oracle Clusterware resource profiles for customized applications.

Glossary

Glossary-8

Oracle Clusterware
This is clusterware that is provided by Oracle to manage cluster database processing
including node membership, group services, global resource management, and high
availability functions.

Oracle Extended Cluster
A cluster consist of nodes that are located in multiple locations called sites.

Oracle Flex Cluster
Large clusters that are made of up of Hub Nodes and other supported nodes, where the Hub
Nodes form a cluster using current membership algorithms and the other nodes connect for
membership to a single Hub Node.

Oracle Grid Infrastructure
The software that provides the infrastructure for an enterprise grid architecture. In a cluster
this software includes Oracle Clusterware and Oracle Automatic Storage Management
(Oracle ASM). For a standalone server, this software includes Oracle Restart and Oracle
ASM. Oracle Database combines these infrastructure products into one software installation
called the Oracle Grid Infrastructure home (Grid_home).

Oracle Grid Naming Service Daemon (GNSD)
The Oracle Grid Naming Service is a gateway between the cluster mDNS and external DNS
servers. The gnsd process performs name resolution within the cluster.

Oracle High Availability Services Daemon (OHASD)
This process anchors the lower part of the Oracle Clusterware stack, which consists of
processes that facilitate cluster operations.

Oracle Interface Configuration Tool (OIFCFG)
A command-line tool for both noncluster Oracle databases and Oracle RAC databases that
enables you to allocate and de-allocate network interfaces to components, direct components
to use specific network interfaces, and retrieve component configuration information. The
Oracle Universal Installer also uses OIFCFG to identify and display available interfaces.

Oracle Managed Files
A service that automates naming, location, creation, and deletion of database files such as
control files, redo log files, data files and others, based on a few initialization parameters. You
can use Oracle Managed Files on top of a traditional file system supported by the host

Glossary

Glossary-9

operating system, for example, VxFS or ODM. It can simplify many aspects of the
database administration by eliminating the need to devise your own policies for such
details.

Oracle Notification Service
A publish and subscribe service for communicating information about all FAN events.

Oracle Universal Installer
A tool to install Oracle Clusterware, the Oracle relational database software, and the
Oracle RAC software. You can also use the Oracle Universal Installer to launch the
Database Configuration Assistant (DBCA).

Oracle XA
An external interface that allows global transactions to be coordinated by a transaction
manager other than Oracle Database.

PDB
In a multitenant container database (CDB), a portable collection of schemas, schema
objects, and nonschema objects that appears to an Oracle Net client as a non-CDB.

pluggable database
See PDB.

policy-managed database
A database that you define as a cluster resource. Management of the database is
defined by how you configure the resource, including on which servers the database
can run and how many instances of the database are necessary to support the
expected workload.

raw device
A disk drive that does not yet have a file system set up. Raw devices are used for
Oracle RAC because they enable the sharing of disks. See also raw partition.

raw partition
A portion of a physical disk that is accessed at the lowest possible level. A raw
partition is created when an extended partition is created and logical partitions are
assigned to it without any formatting. Once formatting is complete, it is called a cooked
partition. See also raw device.

Glossary

Glossary-10

recoverable error
A class of errors that arise due to an external system failure, independent of the application
session logic that is executing. Recoverable errors occur following planned and unplanned
outages of foregrounds, networks, nodes, storage, and databases. The application receives
an error code that can leave the application not knowing the status of the last operation
submitted.

Recovery Manager (RMAN)
An Oracle tool that enables you to back up, copy, restore, and recover data files, control files,
and archived redo logs. It is included with the Oracle server and does not require separate
installation. You can run RMAN as a command line utility from the operating system (O/S)
prompt or use the GUI-based Oracle Enterprise Manager Backup Manager.

region
A logical boundary that contains database clients and servers that are considered to be close
to each other.

request
A unit of work submitted from the application. A request typically corresponds to the SQL and
PL/SQL, and other database calls of a single web request, on a single database connection,
and generally is demarcated by the calls made to check-out and check-in the database
connection from a connection pool.

request boundary
A request boundary marks where an application or application server borrows and returns
connections from their database connection pools.

result cache
A result cache is an area of memory, either in the SGA or client application memory, that
stores the result of a database query or query block for reuse. The cached rows are shared
across statements and sessions unless they become stale.

Runtime Connection Load Balancing
Enables Oracle Database to make intelligent service connection decisions based on the
connection pool that provides the optimal service for the requested application based on
current workloads. The JDBC, ODP.NET, and OCI clients are integrated with the load
balancing advisory; you can use any of these client environments to provide runtime
connection load balancing.

Glossary

Glossary-11

scalability
The ability to add additional nodes to Oracle RAC applications and achieve markedly
improved scale-up and speed-up.

Secure Shell (SSH)
A program for logging into a remote computer over a network. You can use SSH to
execute commands on a remote system and to move files from one system to another.
SSH uses strong authentication and secure communications over insecure channels.

Server Control Utility (SRVCTL)
Server Management (SRVM) comprises the components required to operate Oracle
Enterprise Manager in Oracle RAC. The SRVM components, such as the Intelligent
Agent, Global Services Daemon, and SRVCTL, enable you to manage cluster
databases running in heterogeneous environments through an open client/server
architecture using Oracle Enterprise Manager.

server
A computer system that has no Oracle software installed upon it.

server cluster
The cluster in which the shared GNS server is running.

server group
A logical partition of nodes in a cluster into a group that hosts applications, databases,
or both. Server groups can be members of other server groups.

service level
A measure of the performance of a system.

services
Entities that you can define in Oracle RAC databases that enable you to group
database workloads and route work to the optimal instances that are assigned to offer
the service.

session state consistency
After a COMMIT has executed, if the state was changed in that transaction, then it is
not possible to replay the transaction to reestablish that state if the session is lost.
When configuring Application Continuity, the applications are categorized depending
on whether the session state after the initial setup is dynamic or static, and then
whether it is correct to continue past a COMMIT operation within a request.

Glossary

Glossary-12

• Dynamic: (default) A session has dynamic state if the session state changes are not fully
encapsulated by the initialization, and cannot be fully captured in a callback at failover.
Once the first transaction in a request commits, failover is internally disabled until the
next request begins. This is the default mode that most applications should use for
requests.

• Static: (special—on request) A session has a static state if all session state changes,
such as NLS settings and PL/SQL package state, can be repeated in an initialization
callback. This setting is used only for database diagnostic applications that do not change
session state inside requests. Do not set STATIC mode if there are any non-transactional
state changes in the request that cannot be reestablished by a callback. If you are
unsure, use DYNAMIC mode.

shared everything
A database architecture in which all instances share access to all of the data.

single client access name (SCAN)
Oracle Database 11g database clients use SCAN to connect to the database. SCAN can
resolve to multiple IP addresses, reflecting multiple listeners in the cluster handling public
client connections.

singleton services
Services that run on only one instance at any one time. By defining the Distributed
Transaction Property (DTP) property of a service, you can force the service to be a singleton
service.

split brain syndrome
Where two or more instances attempt to control a cluster database. In a two-node
environment, for example, one instance attempts to manage updates simultaneously while
the other instance attempts to manage updates.

SQL translation profile
A SQL translation profile is a database schema object that directs how SQL statements in
non-Oracle databases are translated to Oracle, and how Oracle error codes and ANSI
SQLSTATES are translated into other vendors' equivalents.

system identifier (SID)
The Oracle system identifier (SID) identifies a specific instance of the running Oracle
software. For an Oracle RAC database, each node within the cluster has an instance
referencing the database.

Glossary

Glossary-13

transparent application failover (TAF)
A runtime failover for high-availability environments, such as Oracle RAC and Oracle
RAC Guard, TAF refers to the failover and re-establishment of application-to-service
connections. It enables client applications to automatically reconnect to the database if
the connection fails, and optionally resume a SELECT statement that was in progress.
This reconnect happens automatically from within the Oracle Call Interface library.

Virtual Internet Protocol (VIP)
An IP address assigned to multiple applications residing on a single server, multiple
domain names, or multiple servers, rather than being assigned to a specific single
server or network interface card (NIC).

volume manager
A volume manager is a software component that manages the mapping of the
collection of the pieces of the disks into a volume.

voting disk
A file that manages information about node membership.

Glossary

Glossary-14

Index

Symbols
$ORACLE_HOME/root.sh script, 9-3

A
ACCHK

Application Continuity Protection Check, 6-28
Active Session History

Oracle RAC, 14-8
Top Cluster Events, 14-8
Top Remote Instance, 14-8

active sessions, 14-8
ACTIVE_INSTANCE_COUNT initialization

parameter, 3-20
adding nodes to an existing cluster, 10-1
adding Oracle RAC to nodes on Linux and UNIX,

11-1
adding Oracle RAC to nodes on Windows, 12-2
ADDM

global monitoring, 14-7
see Automatic Database Diagnostic Monitor,

14-9
ADDM for Oracle Real Application Clusters

mode, 14-7
administering

services, 5-35
services with SRVCTL, 5-38

administering instances
with Server Management, 3-4

administering Oracle Enterprise Manager jobs,
3-35

administering services
Oracle Enterprise Manager, 5-35
SRVCTL, 5-35

administrative tools
overview and concepts, 1-36

administrator-managed database, 3-1
relocating services in, 5-21

administrator-managed database instances
adding, 12-4

administrator-managed databases, 1-25, 5-31
AVAILABLE instances for services, 5-31
converting to policy-managed, 3-26
PREFERRED instances for services, 5-31

ADRCI
ADR Command-Line Interpreter, B-2

Advanced Queuing
and FAN, 6-2

Advisor Central in Oracle Enterprise Manager,
14-7

affinity, 5-21
aggregates

by instances, 14-3
by services, 14-3
by waits, 14-3

alert administration
Oracle Enterprise Manager, 3-35

alert logs, B-2
managing, B-1

ALTER SYSTEM ARCHIVE LOG CURRENT
statement, 3-6

ALTER SYSTEM ARCHIVE LOG statement, 3-6
INSTANCE option, 3-6

ALTER SYSTEM CHECKPOINT statement
global versus local, 3-6
specifying an instance, 3-6

ALTER SYSTEM statement
CHECKPOINT clause, 3-6

ALTER SYSTEM SWITCH LOGFILE statement,
3-6

Application Continuity, 6-1, 6-22
auto session state consistency, 6-64
commit outcome, 6-23
concepts, 6-23
configuring connections, 6-41
configuring service attributes, 5-38
database request, 6-23
delaying reconnection, 6-52
described, 6-34
dynamic session state consistency, 6-64
establishing initial state, 6-43
introduction to, 1-22
mutable functions, 6-23
potential side effects, 6-67
protection-level statistics, 6-62
recoverable error, 6-23
restoring state settings, 6-44
restrictions, 6-68
running without, 6-55

Index-1

Application Continuity (continued)
session state consistency, 6-23
static session state consistency, 6-65
using for planned maintenance, 6-54

Application Continuity Protection Check, 6-28
applications

consolidating multiple in a single database,
13-3

highly available, 13-1
scalability, 13-5
spanning XA transactions across Oracle

RAC instances, 5-18
using pre-created database sessions, 5-15

ARCHIVE LOG command, 3-6
archive logs

destinations, converting to cluster database,
15-1

ARCHIVE_LAG_TARGET initialization
parameter, 3-25

archived redo log files
applying in parallel, 8-8
file format and destination, 7-5
log sequence number, 7-5

archiver process
monitor, 7-10

archiving mode
changing, 7-1

ASH reports, 14-8
ASM_PREFERRED_READ_FAILURE_GROUPS

initialization parameter, 2-7, 3-20
asmlistener, A-50, A-52
Automatic Database Diagnostic Monitor (ADDM),

1-37, 14-7, 14-9, 14-10, 14-12
analyzing AWR data, 14-7
DBMS_ADDM PL/SQL package, 14-7
DBMS_ADVISOR PL/SQL package, 14-7
Global ADDM mode, 14-7
Local ADDM mode, 14-7

Automatic Diagnostic Repository (ADR), 13-12,
13-13, B-2

ADRCI command-line interpreter, B-2
automatic load balancing

configuring RMAN channels for multiple
instances, 7-4

AUTOMATIC management policy, 3-8
Automatic Performance Diagnostics (AWR)

monitor performance statistics, 14-7
automatic segment space management (ASSM),

13-7
tablespace use in Oracle RAC, 13-7

automatic undo management
tablespace use in Oracle RAC, 13-7

automatic workload management, 1-22
concepts, 1-22, 5-27
manual rebalancing, 5-22

Automatic Workload Repository (AWR), 1-22,
5-22, 5-23, 14-7, 14-8, 14-10

monitoring performance, 5-28
snapshots, 14-7

AVAILABLE instances
for services, 5-31

Average Active Sessions chart
performance monitoring, 14-3

AWR
see Automatic Workload Repository (AWR),

14-10

B
background processes

SMON, 8-4
background thread trace files, B-1
backups

and converting to cluster database, 15-1
server parameter file, 3-20

bandwidth
interconnect, 14-4

best practices
deploying Oracle RAC for high availability,

13-2
block mode conversions

statistics for, 14-7
blocks

associated with instance, 8-4
buffer cache, 1-20

instance recovery, 8-4
buffer sizes

interprocess communication (IPC)
adjusting for Oracle RAC, 14-5

C
cache coherency, 14-10
Cache Fusion, 1-20, 13-8

and e-commerce applications, 13-8
performance, 14-4
transfers, 14-11

callouts
how they are run, 6-10

capacity
increasing, 13-5

cardinality, 3-1
catclustdb.sql script, 1-37
CDBs, 1-34, 3-13
changing the configuration of all services, 4-2
channels

configure one RMAN channel for each
Oracle RAC instance, 7-4

configuring during crosscheck or restore
operations, 7-3

Index

Index-2

channels (continued)
configuring for RMAN, 7-4

charts
Average Active Sessions, 14-3
Cluster Host Load Average, 14-3
Database Throughput, 14-3
Global Cache Block Access Latency, 14-3

checking the interconnect, B-3
client connections with SCAN, 3-1
client drivers

and FAN, 5-8
client-side load balancing, 5-1, 5-4
clients

application environments and FAN, 5-8
integrated for FAN events, 6-2
JDBC-thin driver, 5-9
JDBC/OCI, 5-10

clone.pl, 9-7
clone.pl script

cloning parameters, 9-3
environment variables, 9-3

cloning, 1-6, 9-1
deployment phase, 9-3
log files, 9-7
parameters passed to the clone.pl script, 9-3
preparation phase, 9-2
running $ORACLE_HOME/root.sh script, 9-3

cluster
definition of, 1-1

cluster administrator, 3-1
cluster cache coherency, 14-3
cluster configuration policy, 1-32
cluster configuration policy set, 1-32
Cluster Database Performance page

Top Activity drill down menu, 14-3
cluster databases

creating using DBCA, 15-5
cluster file system

archiving parameter settings, 7-7
archiving scenario, 7-6
restore, 8-2
storage in Oracle RAC, 2-2

Cluster Host Load Average page
cluster database performance, 14-3

cluster nodes name
in clone.pl script, 9-3

Cluster Verification Utility, 1-36
overview and concepts, 1-36

cluster_database, 13-12
CLUSTER_DATABASE initialization parameter,

3-20, 3-23
CLUSTER_DATABASE_INSTANCES

initialization parameter, 3-20, 3-25
CLUSTER_INTERCONNECTS

parameter, 14-5

CLUSTER_INTERCONNECTS initialization
parameter, 3-20, 3-30

clustered Oracle ASM
converting a noncluster Oracle ASM, 2-7

clusters
consolidating multiple databases in, 13-3
policy-managed, 1-32

clusterware management solution, 1-9
comma-delimited lists with SRVCTL, A-1
command-line interpreter

ADR Command-Line Interpreter (ADRCI),
B-2

committed data
instance failure, 8-4

communication protocols
verifying settings for, 14-4

compatibility
Oracle RAC and Oracle Database software,

1-4
COMPATIBLE initialization parameter, 3-23
configuring channels

during restore or crosscheck operations, 7-3
configuring preferred mirror read disks in

extended clusters, 2-7
CONNECT command, 3-6
connecting

to instances, 1-36
connection load balancing

introduction to, 1-22
long method, 5-2
short method, 5-2

connection pools
and FAN, 5-8

connection tests, 6-17
adding, 6-17
disabling, 6-17
enabling, 6-17
removing, 6-17

consistent blocks, 1-20
Container Databases

See CDBs
CONTROL_FILES initialization parameter, 3-23
convert to cluster database

from single-instance to Oracle Real
Application Clusters, 15-1

post-conversion, 15-16
to Oracle RAC from single-instance

databases, 15-1
convert to Oracle RAC database

from non-cluster system, 15-2
converting

from single-instance to Oracle Real
Application Clusters, 15-11

converting a database from Oracle RAC One
Node to Oracle RAC, 4-3

Index

Index-3

converting an Oracle RAC database with one
instance to Oracle RAC One Node, 4-2

corrupted data blocks, B-2
CREATE PFILE statement, 3-20
creating

services, 5-35
SPFILE backups, 3-20

crosscheck operations
configuring channels during, 7-3

crosschecking on multiple nodes
RMAN backups, 7-3

CRS resources
management of, 1-9

current blocks, 1-20
CVU

See Cluster Verification Utility

D
data dictionary

querying views, 14-6
Data Recovery Advisor, B-2
data warehouse

deploying applications for in Oracle RAC,
13-8

data warehouse systems, 13-8
data-dependent routing, 5-21
database

administrative privilege
SYSDBA, 3-1

draining, 6-17
services

singleton, 3-26
uniform, 3-26

SRVCTL object name, A-15
database alert logs, 13-13
database cloud, 13-4
Database Configuration Assistant (DBCA)

adding and deleting instances in interactive
mode

on Windows, 12-4
adding and deleting instances in silent mode

on Windows, 12-6
adding instances in interactive mode

on Linux and UNIX, 11-5
adding instances in silent mode

on Linux and UNIX, 11-5
cloning Oracle RAC instances, 9-3
Database Storage page, 11-5, 12-4
deleting instances in interactive mode

on Linux and UNIX, 11-8
on Windows, 12-7

deleting instances in silent mode
on Linux and UNIX, 11-8
on Windows, 12-8

Database Configuration Assistant (DBCA) (continued)
Instance Management page, 11-5, 12-4
List of Cluster Databases page, 11-5, 12-4
Welcome page, 11-5

Database Configuration Assistant (Oracle DBCA)
creating views for Oracle Real Application

Clusters, 14-6
running the catclustdb.sql script, 1-37

database deployment
administrator-managed, 1-25, 3-1
policy-managed, 1-25, 3-1

database instances
administrator managed

deleting, 11-7, 12-7
connecting to, 3-5

database pools, 13-4
database resource, 3-1
database role, 3-8
Database Storage page, 11-5, 12-4
Database Throughput page

performance monitoring, 14-3
databases

administrator managed, 5-31
consolidating multiple in a cluster, 13-3
controlling restarts, 3-32
creating

Oracle RAC One Node, 4-1
Oracle RAC One Node

services on, 4-1
policy managed, 3-1, 5-32
scalability, 13-5

databases sessions
pre-created, 5-15

DB_BLOCK_SIZE initialization parameter, 3-23
DB_DOMAIN initialization parameter, 3-23
DB_FILES initialization parameter, 3-23
DB_NAME initialization parameter, 3-20, 3-23
DB_RECOVERY_FILE_DEST initialization

parameter, 3-23, 8-8
DB_RECOVERY_FILE_DEST_SIZE initialization

parameter, 3-23
DB_UNIQUE_NAME initialization parameter,

3-23
DDL statements, 13-7
default database service, 1-5, 3-20, 5-35
degree of parallelism, 13-9
deleting administrator-managed database

instances, 11-7, 12-7
dependencies

and services, 5-27
deploying

Oracle Real Application Clusters
environments, 1-35, 13-1

deprecated features, xxv

Index

Index-4

design
Oracle Real Application Clusters

environments, 1-35, 13-1
diagnosing problems for Oracle RAC, B-1
diagnosing problems using ADR, B-2
diskgroup

SRVCTL object name, A-15
DISPATCHERS initialization parameter, 3-20

specifying a service with, 5-35
Distributed Transaction Processing (DTP), 5-18,

13-7
See also DTP

distributed transactions, 13-7
directing to a single instance in the cluster,

5-19
services in Oracle RAC, 5-18
XA transactions span instances, 5-18

DML_LOCKS initialization parameter, 3-23
draining database sessions, 6-17
DTP, 5-18
DTP services, 5-19

with Oracle RAC, 5-20
XA affinity, 5-19
XA transactions, 5-18

dynamic database services
description, 1-22

Dynamic Database Services
introduction to, 1-18

dynamic performance views, 14-8
creating, 14-6
GV$, 1-37
V$, 1-37

dynamic session state consistency, 6-63

E
e-commerce

applications in Oracle RAC, 13-8
edition

services attribute, 5-29
Enterprise Manager

overview, 1-9
environment variables

passed to the clone.pl script, 9-3
setting with SRVCTL, 3-4

evaluating block transfers, 14-7
event notification

enabling, 5-15
extended distance clusters, 2-7

configuring preferred mirror read disks, 2-7
Oracle ASM preferred mirror read, 2-7

extending Oracle database home
on shared storage

network-attached storage, 11-1, 12-2
Oracle ACFS, 11-1, 12-2

external transaction managers
OraMTS, 5-18

F
FAILOVER_RESTORE

recommended values, 6-44
restoring ALTER SESSION states, 6-45,

6-46, 6-49
session states restored, 6-44

failure
instance, 8-3
multiple node, 8-4
node, 8-4

failure groups, 2-7
FAN

See Fast Application Notification (FAN)
Fast Application Notification (FAN), 5-10, 6-2

and high availability events, 6-6
callouts

definition, 6-9
how to use, 6-9

events
enabling for JDBC, 5-10
enabling for JDBC-thin clients, 5-9
enabling for OCI, 5-14
enabling for ODP.NET, 5-16
enabling ODP.NET clients, 5-17

HA events, 5-8
how events are published, 6-2
introduction, 1-22
overview, 6-2
parameters and matching database

signatures, 6-6
uses, 6-2

Fast Connection Failover (FCF), 5-9
enabling JDBC-thin clients, 5-9
enabling with thin and thick clients, 5-10
introduction to, 1-22

Fast Recovery
and files managed by Oracle, 15-11

fault diagnosability, B-2
FCF

See Fast Connection Failover (FCF)
files

archived redo log files, 7-5
redo log, 7-5

G
GC_SERVER_PROCESSES initialization

parameter
specifying the number of LMSn processes,

13-4
GCS protocol, 14-10

Index

Index-5

GCS_SERVER_PROCESSES initialization
parameter, 3-20

Generic server pool, 3-1
GES

See global cache and enqueue service (GES)
global cache and enqueue service (GES), 14-9
Global Cache Block Access Latency chart

performance monitoring, 14-3
Global Cache Service (GCS), 1-20, 3-20
Global Cache Service Processes (LMSn)

reducing the number of, 13-4
specifying the number of, 13-4

Global Cache Service statistics, 14-9, 14-10
GLOBAL clause

forcing a checkpoint, 3-6
Global Enqueue Service (GES), 1-20
Global Enqueue Service statistics, 14-9
global performance data

with ADDM, 14-7
Global Resource Directory (GRD), 1-20
global service attributes

GDSCTL, 5-42
global services, 5-42, 13-4
GLOBAL_TXN_PROCESSES initialization

parameter, 5-18
goals

and the load balancing advisory, 5-5
for load balancing advisory, 5-6

GV$ view, 14-6
GV$ views, 1-37

H
Hang Manager, 1-33, 13-11
hash partitioning

with Oracle RAC, 13-6
high availability

best practices, 13-2
for Oracle RAC Databases, 13-1

high availability framework
introduction to, 1-22

home
SRVCTL object name, A-15

HOST command, 3-6

I
idempotence, 6-70
idle wait class, 14-8
IM column store

See In-Memory Column Store
In-Memory Column Store, 1-34

Oracle RAC, 1-34
overview, 1-34

In-Memory FastStart, 1-34

indexes
sequence-based, 13-6

initialization parameters
cluster database issues regarding, 3-20
CLUSTER_INTERCONNECTS, 3-30, 14-5

recommendations for using, 3-30
identical settings for on all instances, 3-25
RECOVERY_PARALLELISM, 8-8
settings for instances, 3-18
specific to Oracle RAC, 3-20
that must be identical on all instances, 3-23
that must be unique on all instances, 3-24

INST_ID column, 14-6
installations

performing multiple simultaneous cluster, 9-1
instance

SRVCTL object name, A-15
instance discovery

Oracle Enterprise Manager Cloud Control,
3-33

Instance Management page, 11-5, 12-4
INSTANCE NAME initialization parameter, 3-20
INSTANCE option, 3-6
INSTANCE_NAME initialization parameter, 3-24
INSTANCE_NUMBER initialization parameter,

3-24
INSTANCE_TYPE initialization parameter, 3-23
instances

aggregated for service performance, 14-3
cloning Oracle RAC, 9-3
effect of SQL*Plus commands on, 3-6
failure, 8-4
initialization parameter settings, 3-18
maximum number for Oracle RAC, 1-1
memory structures, 1-20
private interconnect usage, B-3
recovery, 8-4
recovery, multiple failures, 8-4
Server Management, 3-4
starting and stopping, 3-7
verifying, 3-14
verifying running, 3-15

instances failure
recovery from, 8-3

interconnect
and performance, 14-5
and the Oracle RAC architecture, 1-1
defined, 1-18
protocols for Oracle RAC, 14-4
verifying settings for, 14-4

interconnect bandwidth, 14-4
latency, 14-4

interconnect block transfer rates, 14-7
interconnect settings

verifying, 14-4

Index

Index-6

interconnects
alternatives to the private network, 3-29
private, B-3

Interconnects page
monitoring clusterware with Oracle

Enterprise Manager, 14-1
monitoring Oracle Clusterware, 14-2

interprocess communication (IPC)
buffer sizes

adjusting, 14-5
IPC protocol, 14-4, 14-10

J
Java Database Connectivity (JDBC) clients

enabling Fast Application Notification events
for, 5-10

Oracle Notification Service usage, 1-22
Java-based tools and utilities

CVU, B-3
DBCA, B-3
DBUA, B-3
enabling tools for tracing, B-3
GSD, B-3
NETCA, B-3
SRVCTL, B-3

JDBC-thin clients
enabling for Fast Connection Failover (FCF),

5-9
JDBC-thin driver, 5-9
JDBC/OCI, 5-10
job administration

Oracle Enterprise Manager, 3-35

K
keystore

create, 6-46

L
level thresholds

services, 5-25
LICENSE_MAX_USERS initialization parameter,

3-25
List of Cluster Databases page, 11-5, 12-4
listener

SRVCTL object name, A-15
listeners

command to add to a node, A-50
command to remove, A-56
Oracle Net, 1-9

LMS processes
reducing the number of, 13-4

LMSn processes
reducing the number of, 13-4

load balancing, 13-8
OCI runtime connection, 5-15
server-side, 5-1

load balancing advisory
and FAN events, 5-6
configuring your environment for using, 5-6
deployment, 5-6
description of, 5-5
events and FAN, 6-2
introduction to, 1-22

Load Balancing Advisory, 5-32
local archiving scenario

RMAN, 7-8
Local Area Network (LAN), 1-18
LOCAL clause

forcing a checkpoint, 3-6
local file system

archiving parameter settings, 7-9
restore, 8-3

local node name
in clone.pl script, 9-3

local temporary tablespace, 1-10
LOCAL_NODE parameter

in clone.pl script, 9-3
locally managed tablespaces, 13-7
log files

tracing, B-3
log sequence numbers, 7-5
LOG_ARCHIVE_FORMAT initialization

parameter, 3-25
LOG_ARCHIVE_FORMAT parameter, 7-5
logical transaction ID, 6-70
LXTID, 6-70

M
maintenance

planned, 6-11
mass deployment

cloning, 9-1, 9-2
media failures

recovery from, 8-7
Memory Guard, 3-28
memory pressure, 3-28
memory structures

in Oracle RAC, 1-20
message request counters, 14-7
migration

application, 13-5
from single-instance, 15-2

missing files, B-2
mission critical systems

considerations for Oracle RAC, 13-1

Index

Index-7

modified data
instance recovery, 8-4

monitoring
archiver process, 7-10
overview and concepts, 1-37
performance of global cache block access,

14-3
monitoring host load average, 14-3
mount all non-running instances of an Oracle

RAC database, 3-8
multiple cluster interconnects, 3-29
multiple databases in a cluster, 3-30
multiple node failures, 8-4
multiple public networks, 1-19
multiplexed redo log files, 2-3
multitenant container database

See CDBs
mutable functions, 6-59
mutables

rules for grants, 6-62

N
net service name, 3-5
network

restricting service registration, 1-20, 5-34
SRVCTL object name, A-15

Network Attached Storage (NAS), 1-18
network file system, 2-3

See also NFS
network resources, 1-19
NFS, 2-3

server, 2-3
node

failure and VIP addresses, 1-19
node affinity awareness, 8-6
node discovery

Oracle Enterprise Manager Cloud Control,
3-33

node evictions, 14-2
node VIPs, 1-19
nodeapps

SRVCTL object name, A-15
nodes

affinity awareness, 8-6
failure of, 8-4
virtual IP addresses, A-4

non-transactional session state, 6-65
noncluster Oracle ASM

converting to clustered Oracle ASM, 2-7
noreplay keyword (terminating or disconnecting

session), 6-58

O
object creation and deletion, 13-7
objects

creation of and effect on performance, 13-7
OCI, 5-15

runtime connection load balancing, 5-15
session pooling, 5-15
session pools

optimizing, 5-15
runtime connection load balancing, 5-15
service metrics, 5-15

OCRDUMP utility, 14-5
ODP.NET

and Fast Connection Failover, 5-16
load balancing advisory events, 5-17

OLTP environments, 13-6
online database relocation

relocation feature, 4-4
online recovery, 8-4
online transaction processing (OLTP)

applications in Oracle RAC, 13-8
ons

SRVCTL object name, A-15
ONS

See Oracle Notification Service
optimal execution plans, 13-8
Oracle ACFS, 1-17
Oracle ASM

disk group management, 2-6
listener, A-50, A-52
see Oracle Automatic Storage Management

(Oracle ASM), 2-2
Oracle Automatic Storage Management (Oracle

ASM), 2-1
archiving scenario, 7-6
converting noncluster Oracle ASM to

clustered Oracle ASM, 2-7
installation, 1-5
instances

administering with SRVCTL, 2-7
Oracle ASM preferred read failure groups,

2-7
preferred mirror read disks, 2-7
preferred read disks, 3-20
storage solution, 2-2

Oracle Call Interface
See OCI

Oracle Cluster Registry (OCR), 3-4, 14-5
Oracle Clusterware

cloning, 1-6
control policies

AUTOMATIC, 3-32
MANUAL, 3-32

Index

Index-8

Oracle Clusterware (continued)
control policies (continued)
using SRVCTL to display and change,

3-32
controlling database restarts, 3-32
described, 1-9
introduction, 1-9
introduction and concepts of, 1-1
managing Oracle processes, 1-9

Oracle Database
session activity, 14-8

Oracle Database QoS Management, 1-32
Oracle Database Quality of Service Management

See Oracle Database QoS Management
Oracle Database Upgrade Assistant, 15-1
Oracle Enterprise Manager

adding database instances to nodes
on Linux and UNIX, 11-4
on Windows, 12-4

alert administration, 3-35
Automatic Database Diagnostic Monitor

(ADDM), 14-7
Average Active Sessions chart, 14-3
Cluster Database Home page, 14-2
Cluster Database page, 14-1
Cluster Database Performance page

performance statistics for an Oracle RAC
database, 14-3

configuring to recognize changes in database
management, 3-26

Database Throughput charts, 14-3
deleting database instances from nodes,

11-7, 12-7
Global Cache Block Access Latency chart,

14-3
Interconnects page, 14-2
job administration, 3-35
monitoring load values for available nodes,

14-3
overview and concepts, 1-36
Top Activity drill down menu, 14-3
using the Interconnects page to monitor

Oracle Clusterware, 14-1
using to administer Oracle RAC, 3-5
using to administer services, 5-37
using to back up the server parameter file,

3-20
using to convert single-instance databases to

Oracle Real Application Clusters,
15-11

using to create DTP services, 5-20
using to monitor Oracle Clusterware, 14-1
using to monitor Oracle RAC, 14-1
using to monitor Oracle RAC environments,

1-37

Oracle Enterprise Manager (continued)
using to restore SPFILE, 8-3
using to schedule Automatic Workload

Repository actions, 5-25
using to set up a fast recovery area, 8-8
using to start or stop a database, 3-7
using with RMAN, 7-3

Oracle Enterprise Manager Cloud Control
instance discovery, 3-33
node discovery, 3-33

Oracle Flex Clusters, 1-10
Oracle GoldenGate, 5-28
Oracle Grid Infrastructure, 1-1
Oracle home

defined, 1-4
Oracle homes

cloning
on Linux and UNIX, 10-1

local
cloning on Windows, 10-4

shared
cloning on Linux and UNIX, 10-3
cloning on Windows, 10-4

Oracle Interface Configuration (OIFCFG), 14-5
Oracle Managed Files, 3-1
Oracle Maximum Availability Architecture (MAA),

13-1
Oracle Multitenant, 1-34
Oracle Net

listeners, 1-9
Oracle Net connection failover, 5-2
Oracle Net Services

and load balancing, 5-8
and services, 5-32

Oracle Notification Service, 1-9, 13-10
Java client

running in secure mode, 13-10
SRVCTL object name, A-15
used by FAN, 1-22

Oracle Notification Services
API, 6-2

Oracle processes
managed by Oracle Clusterware, 1-9

Oracle RAC, 1-1
adding administrator-managed database

instances, 11-5, 12-4
adding policy-managed database instances,

11-1, 12-2
adding to nodes in a cluster on Linux and

UNIX, 11-1
adding to nodes in a cluster on Windows,

12-2
administrative privilege

SYSRAC, 3-1
and e-commerce, 13-8

Index

Index-9

Oracle RAC (continued)
benefits of cloning, 9-1
cloning, 9-1

size of the binaries, 9-2
converting database from, 4-2
converting database to, 4-2
converting from non-cluster system, 15-2
converting single instance to Oracle RAC

One Node, 4-2
copying the Oracle RAC home, 9-2
databases

converting from single-instance Oracle
databases, 15-1

deploying clone, 9-3
diagnosing performance problems, 14-8
diagnosing problems for, B-1
IM column store, 1-34
installation overview, 1-3
overview of administration, 1-1
removing on Windows, 12-9
removing the software from Linux and UNIX,

11-9
security considerations, 13-9
software components, 1-20
storage options

IBM GPFS, 1-18
network file system (NFS), 1-18
Oracle Automatic Storage Management

(Oracle ASM), 1-17
Oracle Automatic Storage Management

Cluster File System (Oracle
ACFS), 1-17

Oracle OCFS2, 1-17
volume manager, 1-17

using a fast recovery area in, 8-8
Oracle RAC One Node, 4-1

converting database from, 4-2
converting database to, 4-2
converting to Oracle RAC, 4-3
creating databases, 4-1
database

services on, 4-1
online database relocation, 4-4
relocating to another node, 4-4

Oracle RAC One Node database, 13-12
Oracle RAC Sharding, 5-21
Oracle Real Application Clusters

See Oracle RAC
Oracle Real Application Clusters One Node

See Oracle RAC One Node
Oracle Resource Manager

and services, 5-27
Oracle Services

using, 5-35

Oracle Services for Microsoft Transaction Server,
12-4

creating the OraMTS service, 12-4
Oracle Universal Installer

database installation, 1-4
Oracle Real Application Clusters installation,

1-4
Oracle XA, 5-33
oradebug ipc command, B-3
OraMTS, 12-4

external transaction manager, 5-18
See also Oracle Services for Microsoft
Transaction Server

orapwd file, 3-26
outages

unplanned, 6-10

P
parallel execution, 13-9
parallel recovery, 8-8

disabling, 8-8
PARALLEL_EXECUTION_MESSAGE_SIZE

initialization parameter, 3-23
parallelism

in Oracle RAC, 13-9
parallel-aware query optimization, 13-8

parameter file
overview, 3-18

parameter file search order, 3-19
parameters

DB_RECOVERY_FILE_DEST, 8-8
that must be identical on all instances, 3-23
that must be unique on all instances, 3-24

password file-based authentication, 4-4
PDBs, 1-34, 3-13

managing, 3-13
managing services on, 6-15

performance, 14-3
aggregates by services, 14-3
comprehensive global data, 14-7
monitoring activity by wait events, services,

and instances, 14-3
monitoring database throughput, 14-3
monitoring global cache block access, 14-3
monitoring potential problems in the

database, 14-3
primary components affecting, 14-4
service aggregates by instances, 14-3
service aggregates by waits, 14-3
using ADDM, 1-37

performance evaluation
overview and concepts, 1-38

performance statistics, 14-12

Index

Index-10

PFILE
using with Oracle RAC, 3-18

phases
cloning deployment, 9-3
cloning preparation, 9-2

planned maintenance
draining database sessions, 6-17
managing, 6-11
using Application Continuity, 6-54

pluggable database
See PDBs

policy set, 1-32
policy-managed clusters, 1-32
policy-managed database, 3-1
policy-managed database instances

adding, 12-2
policy-managed databases, 1-25, 3-1, 5-32

deleting on Linux and UNIX, 11-7
deleting on Windows, 12-7
deploying, 1-29
managing, 1-30

PREFERRED instances
for services, 5-31

preferred read disks
Oracle ASM in an Oracle RAC extended

distance cluster, 2-7
private clouds, 13-4
private interconnect, B-3

determining usage, B-3
private network

alternative interconnect, 3-29
IP address, 14-5

processes
managed by Oracle Clusterware, 1-9

public and private interfaces
shown in Oracle Enterprise Manager, 14-2

public network
defined, 1-18

Q
query optimizer, 13-8

default cost model for, 13-8
queue tables, 5-28

R
reader nodes, 1-10
rebalancing

workloads, 5-22
RECOVER command, 3-6
recovery

from multiple node failure, 8-4
from single-node failure, 8-4
media failures, 8-7

recovery (continued)
online, 8-4
parallel, 8-8

RECOVERY_PARALLELISM parameter, 8-8
redo log files

instance recovery, 8-4
log sequence number, 7-5
using, 2-3

redo log groups, 2-3
redo logs

format and destination specifications, 7-5
redo thread, 3-1
reducing contention, 13-6
regions, 13-4
remote Oracle Notification Service subscription,

5-10
REMOTE_LOGIN_PASSWORDFILE initialization

parameter, 3-23
replicated databases

and global services, 5-42
request boundaries, 6-25, 6-27
resource contention, 14-3
resource manager, 5-22
resource profiles

and service creation, 5-27
resources

memory, 3-28
releasing, 8-4

restore scenarios
RMAN, 8-2

restore scheme
cluster file system, 8-2
local file system, 8-3

result cache, 3-20
disabling, 3-20
enabling, 3-20

RESULT_CACHE_MAX_SIZE initialization
parameter, 3-20, 3-23

RMAN
CONFIGURE command, 7-2
configuring channels, 7-3
configuring channels to use automatic load

balancing, 7-4
configuring one channel for each instance,

7-4
configuring snapshot control file locations,

7-2
crosschecking on multiple nodes, 7-3
local archiving scenario, 7-8
restore scenarios, 8-2
using to create SPFILE backups, 3-20

rolling back
instance recovery, 8-4

root.sh script
$ORACLE_HOME, 9-3

Index

Index-11

runtime connection load balancing
defined, 5-15
in OCI session pools, 5-15
introduction to, 1-22

Runtime Connection Load Balancing, 5-32

S
scalability, 13-8

Oracle RAC, 13-5
scalable sequences, 13-2
scan

SRVCTL object name, A-15
SCAN, 1-9
SCAN listener

and restricting service registration, 1-20, 5-34
scan_listener

SRVCTL object name, A-15
scripts

$ORACLE_HOME/root.sh, 9-3
sensitivity, 13-12
sequence-based indexes, 13-6
sequences

log sequence number, 7-5
Server Control Utility

See SRVCTL
server draining, 6-17
Server Management

administration of instances, 3-4
server parameter files

backing up, 3-20
creating, 3-18

server pool, 3-1
server pools, 1-25

creating for a policy-managed database, 3-26
Generic, 3-1
XML conversion files for, 15-13

servers
relocating from another server pool, 3-26
scalability, 13-5

service
SRVCTL object name, A-15

service level objective
defining for Oracle RAC, 13-1

service levels, 13-8
service metrics

OCI runtime connection load balancing, 5-15
runtime connection load balancing, 5-15

SERVICE TIME
load balancing advisory goal, 5-6

SERVICE_NAMES initialization parameter, 3-20
setting for services, 5-35

services, 3-20
activity levels aggregated by instances, 14-3
activity levels aggregated by services, 14-3

services (continued)
activity levels aggregated by waits, 14-3
administering, 5-35
administering with Oracle Enterprise

Manager, 5-35
administering with SRVCTL, 5-35, 5-38
attributes

edition, 5-29
basic concepts about, 5-27
buffer cache access, 5-42
co-location, 5-31
configuring automatic workload management

characteristics, 5-29
default, 5-33
defining database roles for, 5-30
dependencies, 5-27
enabling event notification, 5-15
global, 5-42
introduction to, 1-22
level thresholds, 5-25
management policy

automatic, 5-30
manual, 5-30

managing after planned maintenance, 6-11
managing groups of, 6-13
managing on PDBs, 6-15
performance monitored by AWR, 5-28
relocating, 5-21, 6-15
relocating after planned maintenance, 6-11
restricting registration with listeners, 1-20,

5-34
SERVICE_NAMES parameter, 3-20, 5-35
specifying a service, 5-35
starting, 6-14
starting after planned maintenance, 6-11
stopping, 6-16
stopping after planned maintenance, 6-11
using, 5-27

services for administrator-managed databases,
3-26

session restore after failover, 6-45
session state consistency, 6-63

auto, 6-64
dynamic, 6-64
static, 6-65

setting instances, 1-36, 3-5
shared everything, 1-17
shared server configuration, 3-20
SHOW INSTANCE command, 3-6
SHOW PARAMETER command, 3-6
SHOW SGA command, 3-6
SHUTDOWN ABORT, B-3
SHUTDOWN command, 3-6
SHUTDOWN IMMEDIATE, B-3
sidalrt.log file, B-2

Index

Index-12

single client access name
See SCAN

Single Client Access Name (SCAN)
SRVCTL object name, A-15

single system image, 1-20
single-instance database

convert to Oracle RAC database
administrative considerations, 15-1

single-instance databases
converting, 15-11
converting to Oracle RAC database, 15-1

SMON process
instance recovery, 8-4

snapshot control file, 7-2
configuring locations, 7-2

speed-up for data warehouse systems, 13-8
SPFILE

backing up, 3-20
backups

creating, 3-20
changing parameter settings, 3-18
corrupted, 3-18
default names, 3-19
location, 3-18
naming convention for, 3-19
recovering, 3-20
restore with Oracle Enterprise Manager, 8-3
restore with RMAN, 8-3
setting values in, 3-18

SPFILE initialization parameter, 3-20, 3-25
SQL statements

instance-specific, 3-6
SQL*Plus, 3-5

effect of commands on instances, 3-6
SRVCTL, 1-36

administering Oracle ASM instances, 2-7
administering services with, 5-38
cluster database configuration tasks, A-4
cluster database tasks, A-4
command feedback, A-1
command syntax, A-15
commands

-eval parameter, A-1
add database, A-17
add instance, A-43
add listener, A-50
add network, A-60
add nodeapps, A-65
add ons, A-74
add scan, A-78
add scan_listener, A-85
add service, A-93
add srvpool, A-119
add vip, A-122
config database, A-20

SRVCTL (continued)
commands (continued)
config network, A-62
config nodeapps, A-66
config ons, A-75
config scan, A-79
config scan_listener, A-86
config service, A-100
config srvpool, A-120
config vip, A-123
config volume, A-131
convert database, A-21
disable database, A-22
disable diskgroup, A-37
disable instance, A-44
disable listener, A-53
disable nodeapps, A-67
disable ons, A-75
disable scan, A-80
disable scan_listener, A-86
disable service, A-102
disable vip, A-124
disable volume, A-133
downgrade database, A-23
enable database, A-23
enable diskgroup, A-37
enable instance, A-45
enable listener, A-54
enable nodeapps, A-67
enable ons, A-76
enable scan, A-80
enable scan_listener, A-87
enable service, A-103
enable vip, A-124
enable volume, A-133
getenv database, A-24
getenv listener, A-54
getenv nodeapps, A-68, A-125
help, A-6
modify database, A-24
modify instance, A-45
modify listener, A-55
modify network, A-62
modify nodeapps, A-69
modify ons, A-76
modify scan, A-81
modify scan_listener, A-88
modify service, A-104
modify srvpool, A-120
modify vip, A-125
predict database, A-28
predict diskgroup, A-38
predict listener, A-56
predict network, A-64
predict scan, A-81

Index

Index-13

SRVCTL (continued)
commands (continued)
predict scan_listener, A-89
predict service, A-110
predict vip, A-126
relocate database, A-29
relocate scan, A-82
relocate scan_listener, A-89
relocate server, A-93
relocate service, A-111
relocate vip, A-127
remove database, A-30
remove diskgroup, A-38
remove instance, A-46
remove listener, A-56
remove network, A-64
remove nodeapps, A-70
remove ons, A-77
remove scan, A-82
remove scan_listener, A-90
remove service, A-113
remove srvpool, A-121
remove vip, A-127
remove volume, A-134
setenv database, A-31, A-128
setenv listener, A-57
setenv nodeapps, A-71
srvctl setenv, 3-4
start database, 3-8, A-31
start diskgroup, A-39
start home, A-41
start instance, 3-8, A-47
start listener, A-58
start nodeapps, A-72
start ons, A-77
start scan, A-83
start scan_listener, A-90
start service, A-113
start vip, A-129
start volume, A-135
status database, A-33
status diskgroup, A-39
status home, A-41
status listener, A-58
status nodeapps, A-72
status ons, A-77
status scan, A-84
status scan_listener, A-91
status server, A-93
status service, A-115
status srvpool, A-122
status vip, A-129
status volume, A-136
stop database, 3-8, A-35
stop diskgroup, A-40

SRVCTL (continued)
commands (continued)
stop home, A-42
stop instance, A-48
stop listener, A-59
stop nodeapps, A-73
stop ons, A-78
stop scan, A-84
stop scan_listener, A-92
stop service, A-116
stop vip, A-130
stop volume, A-137
unsetenv database, A-36,

A-131
unsetenv listener, A-60
unsetenv nodeapps, A-73
update database, A-36
update instance, A-50
update listener, A-60
update scan_listener, A-92
upgrade database, A-37

concurrent commands, A-1
deprecated commands and options, A-7
deprecated commands and parameters,

A-15
difference between SRVCTL and

CRSCTL, A-7
enabling event notification, 5-15
node-level tasks, A-4
object name

database, A-15
diskgroup, A-15
home, A-15
instance, A-15
listener, A-15
network, A-15
node applications (nodeapps), A-15
Oracle Notification Service, A-15
scan, A-15
scan_listener, A-15
service, A-15
srvpool, A-15
vip, A-15
volume, A-15

object names, A-15
overview, 3-4
overview and concepts, 1-36
single-character parameters, A-7
specifying a continuation of command

line entries, A-1
stop or start cluster database, 3-8
stopping active commands, A-7
using comma-delimited lists, A-1

SRVCTL commands
config listener, A-52

Index

Index-14

SRVM_TRACE environment variable, B-3
srvpool

SRVCTL object name, A-15
starting administrator-managed databases, 3-8
starting policy-managed databases, 3-8
STARTUP command, 3-6
static session state consistency, 6-63
statistics

contents of, 14-7
Statspack, 14-8, 14-9

alternatives, 1-37
usage, 1-37

stop database instances, 3-8
storage

administering in Oracle RAC, 2-1
cluster file system, 2-2
Oracle Automatic Storage Management

(Oracle ASM), 2-5
subnet

configuring for virtual IP address, A-4
subnets, 1-19
SYSASM privilege, 3-5
SYSAUX tablespace

increasing size when adding nodes, 13-7
reducing size when removing nodes, 13-7

SYSDBA, 3-5
SYSOPER, 3-5
SYSRAC connections to an Oracle ASM

instance, 3-5
system change, 7-5
System Global Area (SGA), 1-20, 14-8

size requirements, 1-20

T
tablespaces

automatic segment space management
(ASSM) in Oracle RAC, 13-7

automatic undo management in Oracle RAC,
13-7

locally managed, 13-7
use in Oracle RAC, 13-7

TCP network ports
Windows Firewall considerations, 13-10

TCP/IP, 1-18
THREAD initialization parameter, 3-20
threads

multiple application, 5-15
timed statistics, 14-7
tnsnames.ora file, 3-20
Top Activity drill down menu

on the Cluster Database Performance page,
14-3

Top Cluster Events, 14-8
Top Cluster Events, ASH report, 14-8

Top Remote Instance, 14-8
Top Remote Instance, ASH report, 14-8
trace files, B-1

for background processes, B-1
managing, B-1
sidalrt.log, B-2

trace logs, 13-13
TRACE_ENABLED initialization parameter, 3-25
tracing

enabling Java-based tools and utilities, B-3
SRVM_TRACE environment variable, B-3
writing to log files, B-3

transaction failover, 6-70
Transaction Guard, 6-70

configuring JDBC-thin clients, 5-12, 5-13
configuring OCI clients, 5-16
configuring service attributes, 5-38
configuring services for, 6-71
introduction to, 1-22
transaction history table, 6-71

transaction history table, 6-71
transaction idempotence, 6-70
transactional TAF, 5-16
transactions

distributed SQL, 5-18
DTP/XA, 5-18
instance failure, 8-4
rolling back, 8-4
waiting for recovery, 8-4

Transparent Application Continuity, 6-25
transparent application failover (TAF)

and services, 6-73
tuning

using ADDM, 1-37

U
undo tablespace, 3-1
UNDO_MANAGEMENT initialization parameter,

3-23
UNDO_RETENTION initialization parameter,

3-25
UNDO_TABLESPACE parameter, 3-24
upgrades

changing management policy for, 3-32
User Datagram Protocol (UDP), B-3
user process trace files, B-1

V
V$ view, 14-6
V$ views, 1-37
V$CLUSTER_INTERCONNECTS, 14-4, B-3
V$CONFIGURED_INTERCONNECTS, 14-4
valid node checking, 1-20, 5-34

Index

Index-15

vendor clusterware, 1-1
verification

data files, online files, 2-2
versions

compatibility for Oracle RAC and Oracle
Database software, 1-4

views
creating for Oracle Real Application Clusters,

14-6
dynamic performance

for performance monitoring, 14-6
GV$, 14-6

for performance monitoring, 14-6
instance-specific, 14-6

V$ views, 14-6
VIP

SRVCTL object name, A-15
VIPs

node, 1-19
Virtual Internet Protocol (VIP) address, 1-1
virtual IP address

requirements, A-4
VNCR

See valid node checking
volume

SRVCTL object name, A-15

W
wait events, 14-8, 14-9

aggregated for service performance, 14-3
block-related, 14-12
contention-related, 14-13
load-related, 14-13
message-related, 14-12

wallet
create, 6-49

Welcome page, 11-5
Windows Firewall, 13-10
workload management

See automatic workload management
workloads

and services, 5-27
See Also automatic workload management,

5-27

X
XA affinity, 5-19
XA transactions, 5-18

spanning Oracle RAC instances, 5-18
using services with, 5-20

XA Transactions, 13-7

Index

Index-16

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Real Application Clusters Administration and Deployment Guide
	Changes in Oracle Real Application Clusters Release 19c
	New Features
	Resupport of Direct File Placement for OCR and Voting Disks
	Deprecated Features in Oracle Real Application Clusters 19c
	Desupported Features in Oracle Real Application Clusters 19c

	Changes in Oracle Real Application Clusters Release 18c, Version 18.1
	Changes in Oracle Real Application Clusters 12c Release 2 (12.2)
	Changes in Oracle Real Application Clusters 12c Release 1 (12.1)
	Changes in Oracle Real Application Clusters 12c Release 1 (12.1.0.2)
	Changes in Oracle Real Application Clusters 12c Release 1 (12.1.0.1)
	Deprecated Features
	Desupported Features

	1 Introduction to Oracle RAC
	Overview of Oracle RAC
	Overview of Installing Oracle RAC
	Understanding Compatibility in Oracle RAC Environments
	Oracle RAC Database Management Styles and Database Installation
	Oracle RAC Database Management Styles and Database Creation
	Overview of Extending an Oracle RAC Cluster

	Overview of Oracle Real Application Clusters One Node
	Overview of Oracle Clusterware for Oracle RAC
	Overview of Oracle Flex Clusters
	Overview of Reader Nodes
	Overview of Local Temporary Tablespaces

	Overview of Oracle RAC Architecture and Processing
	Understanding Cluster-Aware Storage Solutions
	Oracle RAC and Network Connectivity
	Overview of Using Dynamic Database Services to Connect to Oracle Databases
	Overview of Virtual IP Addresses
	Restricted Service Registration in Oracle RAC
	About Oracle RAC Software Components
	About Oracle RAC Background Processes

	Overview of Automatic Workload Management with Dynamic Database Services
	Overview of Server Pools and Policy-Managed Databases
	Introduction to Server Pools
	Examples of Using Server Pools

	Deploying Policy-Managed Databases
	Managing Policy-Managed Databases
	Policy-Based Cluster Management

	Overview of Oracle Database Quality of Service Management
	Overview of Hang Manager
	Overview of Oracle Multitenant with Oracle RAC
	Overview of Database In-Memory and Oracle RAC
	Overview of Managing Oracle RAC Environments
	About Designing and Deploying Oracle RAC Environments
	About Administrative Tools for Oracle RAC Environments
	About Monitoring Oracle RAC Environments
	About Evaluating Performance in Oracle RAC Environments

	2 Administering Storage in Oracle RAC
	Overview of Storage Management for Oracle RAC
	Data File Access in Oracle RAC
	NFS Server for Storage
	Redo Log File Storage in Oracle RAC
	Automatic Undo Management in Oracle RAC
	Oracle Automatic Storage Management with Oracle RAC
	Storage Management in Oracle RAC
	Modifying Disk Group Configurations for Oracle ASM
	Oracle ASM Disk Group Management
	Configuring Preferred Mirror Read Disks in Extended Distance Clusters
	Converting Nonclustered Oracle ASM to Clustered Oracle ASM
	Administering Oracle ASM Instances with SRVCTL in Oracle RAC

	3 Administering Database Instances and Cluster Databases
	Overview of Oracle RAC Database Administration
	Tools for Administering Oracle RAC
	Administering Oracle RAC with SRVCTL
	Administering Oracle RAC with Oracle Enterprise Manager
	Administering Oracle RAC with SQL*Plus
	How SQL*Plus Commands Affect Instances

	Starting and Stopping Instances and Oracle RAC Databases
	Starting One or More Instances and Oracle RAC Databases Using SRVCTL
	Stopping One or More Instances and Oracle RAC Databases Using SRVCTL
	Stopping All Databases and Instances Using CRSCTL
	Starting and Stopping Individual Instances Using SQL*Plus

	Starting and Stopping PDBs in Oracle RAC
	Verifying That Instances are Running
	Using SRVCTL to Verify That Instances are Running
	Using SQL*Plus to Verify That Instances are Running

	Terminating Sessions On a Specific Cluster Instance
	Overview of Initialization Parameter Files in Oracle RAC
	Setting SPFILE Parameter Values for Oracle RAC
	Parameter File Search Order in Oracle RAC
	Backing Up the Server Parameter File

	Initialization Parameter Use in Oracle RAC
	Parameters That Must Have Identical Settings on All Instances
	Parameters That Have Unique Settings on All Instances
	Parameters That Should Have Identical Settings on All Instances

	Converting an Administrator-Managed Database to a Policy-Managed Database
	Managing Memory Pressure for Database Servers
	Quiescing Oracle RAC Databases
	Administering Multiple Cluster Interconnects on Linux and UNIX Platforms
	Use Cases for Setting the CLUSTER_INTERCONNECTS Parameter

	Customizing How Oracle Clusterware Manages Oracle RAC Databases
	Advanced Oracle Enterprise Manager Administration
	Using Oracle Enterprise Manager Cloud Control to Discover Nodes and Instances
	Other Oracle Enterprise Manager Capabilities
	Administering Jobs and Alerts in Oracle RAC
	Administering Jobs in Oracle RAC
	Administering Alerts in Oracle RAC with Oracle Enterprise Manager
	Using Defined Suspensions in Oracle Enterprise Manager

	4 Administering Oracle RAC One Node
	Creating an Oracle RAC One Node Database
	Converting Databases
	Converting a Database from Oracle RAC to Oracle RAC One Node
	Converting a Database from Oracle RAC One Node to Oracle RAC

	Online Database Relocation

	5 Workload Management with Dynamic Database Services
	Connection Load Balancing
	Server-Side Load Balancing
	Generic Database Clients
	Client-Side Connection Configuration for Older Clients
	JDBC-Thin Clients
	OCI Clients

	Client-Side Load Balancing

	Load Balancing Advisory
	Overview of the Load Balancing Advisory
	Configuring Your Environment to Use the Load Balancing Advisory
	Load Balancing Advisory FAN Events
	Monitoring Load Balancing Advisory FAN Events

	Enabling Clients for Oracle RAC
	Overview of Oracle Integrated Clients and FAN
	Enabling JDBC-Thin Clients for Fast Connection Failover
	Oracle Notification Service for JDBC-Thin Clients
	Configuring FCF for JDBC/OCI and JDBC-Thin Driver Clients

	Enabling JDBC Clients for Run-time Connection Load Balancing
	Configuring JDBC-Thin Clients for Application Continuity for Java
	Configuring JDBC-Thin Clients for Transaction Guard
	Enabling OCI Clients for Fast Connection Failover
	Enabling OCI Clients for Run-time Connection Load Balancing
	Configuring OCI Clients to use Transaction Guard
	Enabling ODP.NET Clients to Receive FAN High Availability Events
	Enabling ODP.NET Clients to Receive FAN Load Balancing Advisory Events
	Configuring ODP.NET Clients to use Transaction Guard

	Distributed Transaction Processing in Oracle RAC
	Overview of XA Transactions and Oracle RAC
	Using Global Transactions and XA Affinity for XA Transactions
	Using Services with XA Transactions on Oracle RAC
	Configuring Services for XA Applications
	Relocating Services in Administrator-Managed Databases

	Oracle RAC Sharding
	Automatic Workload Repository
	Measuring Performance by Service Using the Automatic Workload Repository
	Automatic Workload Repository Service Thresholds and Alerts
	Example of Services and Thresholds Alerts
	Enable Service, Module, and Action Monitoring

	Using Oracle Services
	Service Deployment Options
	Service Usage in an Oracle RAC Database
	Oracle Clusterware Resources for a Service
	Database Resource Manager Consumer Group Mappings for Services
	Performance Monitoring by Service with AWR
	Parallel Operations and Services
	Oracle GoldenGate and Oracle RAC

	Service Characteristics
	Service Name
	Service Edition
	Service Management Policy
	Database Role for a Service
	Instance Preference
	Service Co-location
	Server Pool Assignment
	Load Balancing Advisory Goal for Run-time Connection Load Balancing
	Connection Load Balancing Goal
	Distributed Transaction Processing

	Default Service Connections
	Restricted Service Registration

	Administering Services
	Overview of Service Administration
	Administering Services with Oracle Enterprise Manager
	Administering Services with SRVCTL
	Creating Services with SRVCTL
	Creating Services for Application Continuity and Transaction Guard
	Starting and Stopping Services with SRVCTL
	Enabling and Disabling Services with SRVCTL
	Relocating Services with SRVCTL
	Obtaining the Status of Services with SRVCTL
	Obtaining the Configuration of Services with SRVCTL

	Global Services
	Service-Oriented Buffer Cache Access
	Connecting to a Service: An Example

	6 Ensuring Application Continuity
	Fast Application Notification
	Overview of Fast Application Notification
	Fast Application Notification High Availability Events
	Subscription to High Availability Events
	Using Fast Application Notification Callouts

	Managing Unplanned Outages
	Managing Planned Maintenance
	Managing Planned Maintenance Without User Interruption
	Managing a Group of Services for Maintenance
	Starting Services
	Pluggable Database-Level Operations
	Relocating Services
	Stopping Services

	Server Draining Ahead of Planned Maintenance

	About Application Continuity
	Key Concepts for Application Continuity
	Transparent Application Continuity
	About Transparent Application Continuity
	Transparent Application Continuity for Various Applications

	Application Continuity Protection Check
	About Application Continuity Protection Check
	Creating ACCHK Views and Role for Oracle Database 19c
	Enabling and Disabling Application Continuity Protection Check
	Running Application Continuity Protection Check

	Application Continuity Operation and Usage
	How Application Continuity Works for Applications
	Actions for Using Application Continuity
	Support for Oracle Application Continuity and Transparent Application Continuity
	Overview of Application Continuity Configuration Tasks
	Configuring Connections for High Availability and Application Continuity
	Configuring Oracle Database for Application Continuity
	Establishing the Initial State Before Application Continuity Replays
	FAILOVER_RESTORE
	States Restored with FAILOVER_RESTORE
	FAILOVER_RESTORE Extended
	Configuring a Keystore for FAILOVER_RESTORE
	Configuring a Wallet and SQLNET.ORA for FAILOVER_RESTORE
	FAILOVER_RESTORE = NONE and No Callback
	Connection Labeling
	Connection Initialization Callback

	Delaying the Reconnection in Application Continuity
	Creating Services on Oracle RAC with Application Continuity
	Modifying Services on Single-instance Databases to use Application Continuity

	Using Application Continuity for Planned Maintenance
	Running Without Application Continuity
	Disabling Replay in Application Continuity
	Application Calls Autonomous Transactions, External PL/SQL, or Java Actions that Should Not Be Repeated
	Application Synchronizes Independent Sessions
	Application Uses Time at the Middle Tier in the Execution Logic
	Application Assumes that ROWIds Do Not Change
	Application Assumes that Location Values Do Not Change

	Terminating or Disconnecting a Session Without Replay

	Mutable Functions and Application Continuity
	Administering Mutable Values
	Granting and Revoking Keep Permissions for Mutables
	Granting Permission to Keep Mutables for Oracle Sequences
	Rules for Grants on Mutables

	Protection-Level Statistics
	Session State Consistency
	Auto Session State Consistency
	Dynamic Session State Consistency
	Static Session State Consistency

	Potential Side Effects of Application Continuity
	Restrictions and Other Considerations for Application Continuity
	Transaction Guard for Improving Client Failover
	Transaction Guard Configuration Checklist
	Configuring Services for Transaction Guard

	Failing Over OCI Clients with Transparent Application Failover

	7 Configuring Recovery Manager and Archiving
	Overview of Configuring RMAN for Oracle RAC
	Archiving Mode in Oracle RAC
	Configuring the RMAN Snapshot Control File Location
	Configuring RMAN to Automatically Backup the Control File and SPFILE
	Crosschecking on Multiple Oracle RAC Nodes
	Configuring Channels for RMAN in Oracle RAC
	Configuring Channels to Use Automatic Load Balancing
	Configuring Channels to Use a Specific Node

	Managing Archived Redo Logs Using RMAN in Oracle RAC
	Archived Redo Log File Conventions in Oracle RAC
	RMAN Archiving Configuration Scenarios
	Oracle Automatic Storage Management and Cluster File System Archiving Scheme
	Advantages of the Cluster File System Archiving Scheme
	Initialization Parameter Settings for the Cluster File System Archiving Scheme
	Location of Archived Logs for the Cluster File System Archiving Scheme

	Noncluster File System Local Archiving Scheme
	Considerations for Using Noncluster File System Local Archiving
	Initialization Parameter Settings for Noncluster File System Local Archiving
	Location of Archived Logs for Noncluster File System Local Archiving
	File System Configuration for Noncluster File System Local Archiving

	Monitoring the Archiver Processes

	8 Managing Backup and Recovery
	RMAN Backup Scenario for Noncluster File System Backups
	RMAN Restore Scenarios for Oracle RAC
	Restoring Backups from a Cluster File System
	Restoring Backups from a Noncluster File System
	Using RMAN or Oracle Enterprise Manager to Restore the Server Parameter File (SPFILE)

	Instance Recovery in Oracle RAC
	Single Node Failure in Oracle RAC
	Multiple-Node Failures in Oracle RAC
	Using RMAN to Create Backups in Oracle RAC
	Channel Connections to Cluster Instances with RMAN

	Node Affinity Awareness of Fast Connections
	Deleting Archived Redo Logs after a Successful Backup
	Autolocation for Backup and Restore Commands

	Media Recovery in Oracle RAC
	Parallel Recovery in Oracle RAC
	Parallel Recovery with RMAN
	Disabling Parallel Recovery
	Disabling Instance and Crash Recovery Parallelism
	Disabling Media Recovery Parallelism

	Using a Fast Recovery Area in Oracle RAC

	9 Cloning Oracle RAC to Nodes in a New Cluster
	Introduction to Cloning Oracle RAC
	Preparing to Clone Oracle RAC
	Deploying Oracle RAC Clone to Nodes in a Cluster
	Locating and Viewing Log Files Generated During Cloning

	10 Using Cloning to Extend Oracle RAC to Nodes in the Same Cluster
	About Adding Nodes Using Cloning in Oracle RAC Environments
	Cloning Local Oracle Homes on Linux and UNIX Systems
	Cloning Shared Oracle Homes on Linux and UNIX Systems
	Cloning Oracle Homes on Windows Systems

	11 Adding and Deleting Oracle RAC from Nodes on Linux and UNIX Systems
	Adding Oracle RAC to Nodes with Oracle Clusterware Installed
	Adding Policy-Managed Oracle RAC Database Instances to Target Nodes
	Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes
	Using DBCA in Interactive Mode to Add Database Instances to Target Nodes
	Using DBCA in Silent Mode to Add Database Instances to Target Nodes

	Deleting Oracle RAC from a Cluster Node
	Deleting Instances from Oracle RAC Databases
	Using DBCA in Interactive Mode to Delete Instances from Nodes
	Using DBCA in Silent Mode to Delete Instances from Nodes

	Removing Oracle RAC
	Deleting Nodes from the Cluster

	12 Adding and Deleting Oracle RAC from Nodes on Windows Systems
	Adding Oracle RAC to Nodes with Oracle Clusterware Installed
	Adding Administrator-Managed Oracle RAC Database Instances to Target Nodes
	Using DBCA in Interactive Mode to Add Database Instances to Target Nodes
	Using DBCA in Silent Mode to Add Database Instances to Target Nodes

	Deleting Oracle RAC from a Cluster Node
	Deleting Instances from Oracle RAC Databases
	Using DBCA in Interactive Mode to Delete Instances from Nodes
	Using DBCA in Silent Mode to Delete Instances from Nodes

	Removing Oracle RAC
	Deleting Nodes from the Cluster

	13 Design and Deployment Techniques
	Deploying Oracle RAC for High Availability
	About Designing a High Availability System
	Best Practices for Deploying Oracle RAC in a High Availability Environment
	Consolidating Multiple Applications in a Database or Multiple Databases in a Cluster
	Managing Capacity During Consolidation
	Managing the Global Cache Service Processes During Consolidation
	Using a Database Cloud for Consolidation

	Scalability of Oracle RAC

	General Design Considerations for Oracle RAC
	General Database Deployment Topics for Oracle RAC
	Tablespace Use in Oracle RAC
	Object Creation and Performance in Oracle RAC
	Node Addition and Deletion and the SYSAUX Tablespace in Oracle RAC
	Distributed Transactions and Oracle RAC
	Deploying OLTP Applications in Oracle RAC
	Flexible Implementation with Cache Fusion
	Deploying Data Warehouse Applications with Oracle RAC
	Speed-Up for Data Warehouse Applications on Oracle RAC
	Parallel Execution in Data Warehouse Systems and Oracle RAC

	Data Security Considerations in Oracle RAC
	Transparent Data Encryption and Keystores
	Windows Firewall Considerations
	Securely Run ONS Clients Using Wallets

	Introduction to Hang Manager
	Hang Manager Architecture
	Optional Configuration for Hang Manager
	Hang Manager Diagnostics and Logging

	14 Monitoring Performance
	Overview of Monitoring and Tuning Oracle RAC Databases
	Monitoring Oracle RAC and Oracle Clusterware
	The Cluster Database Home Page
	The Interconnects Page
	The Cluster Database Performance Page

	Tuning Oracle RAC Databases
	Database Reliability Framework

	Verifying the Interconnect Settings for Oracle RAC
	Influencing Interconnect Processing
	Performance Views in Oracle RAC
	Creating Oracle RAC Data Dictionary Views with CATCLUST.SQL
	Oracle RAC Performance Statistics
	Automatic Workload Repository in Oracle RAC Environments
	Active Session History Reports for Oracle RAC
	Overview of ASH Reports for Oracle RAC
	ASH Report for Oracle RAC: Top Cluster Events
	ASH Report for Oracle RAC: Top Remote Instance

	Monitoring Oracle RAC Statistics and Wait Events
	Oracle RAC Statistics and Events in AWR and Statspack Reports
	Oracle RAC Wait Events
	Monitoring Performance by Analyzing GCS and GES Statistics
	Analyzing the Effect of Cache Fusion in Oracle RAC
	Analyzing Performance Using GCS and GES Statistics

	Analyzing Cache Fusion Transfer Impact Using GCS Statistics
	Analyzing Response Times Based on Wait Events
	Block-Related Wait Events
	Message-Related Wait Events
	Contention-Related Wait Events
	Load-Related Wait Events

	15 Converting Single-Instance Oracle Databases to Oracle RAC and Oracle RAC One Node
	Administrative Issues for Converting Databases to Oracle RAC
	Converting to Oracle RAC and Oracle RAC One Node Using DBCA
	Converting Oracle Database Installations to Oracle RAC Using DBCA
	Use DBCA to Create an Image of the Single-Instance Database
	Complete the Oracle Clusterware Installation
	Validate the Cluster
	Copy the Preconfigured Database Image
	Install Oracle Database 12c Software with Oracle RAC

	Converting Single Instance on a Cluster to Oracle RAC One Node Using DBCA
	Converting Single Instance on a Cluster to Oracle RAC Using DBCA
	Single-Instance Database on a Cluster Running from an Oracle RAC-Enabled Home
	Automated Conversion Procedure Using DBCA
	Manual Conversion Procedure

	Single-Instance Database on a Cluster Running from an Oracle RAC-Disabled Home

	Preparing to Convert with rconfig and Oracle Enterprise Manager
	Prerequisites for Converting to Oracle RAC Databases
	Configuration Changes During Oracle RAC Conversion Using rconfig
	Converting Databases to Oracle RAC Using rconfig or Oracle Enterprise Manager
	Converting Databases to Oracle RAC Using Oracle Enterprise Manager

	Converting Databases to Oracle RAC Using rconfig
	Example of rconfig XML Input Files for ConvertToRAC
	Postconversion Steps

	A Server Control Utility Reference
	SRVCTL Usage Information
	Specifying Command Parameters as Keywords Instead of Single Letters
	Character Set and Case Sensitivity of SRVCTL Object Values
	Summary of Tasks for Which SRVCTL Is Used
	Using SRVCTL Help
	SRVCTL Privileges and Security
	Additional SRVCTL Topics
	Deprecated SRVCTL Subprograms or Commands
	Single Character Parameters for all SRVCTL Commands
	Miscellaneous SRVCTL Commands and Parameters

	SRVCTL Command Reference
	srvctl add database
	srvctl config database
	srvctl convert database
	srvctl disable database
	srvctl downgrade database
	srvctl enable database
	srvctl getenv database
	srvctl modify database
	srvctl predict database
	srvctl relocate database
	srvctl remove database
	srvctl setenv database
	srvctl start database
	srvctl status database
	srvctl stop database
	srvctl unsetenv database
	srvctl update database
	srvctl upgrade database
	srvctl disable diskgroup
	srvctl enable diskgroup
	srvctl predict diskgroup
	srvctl remove diskgroup
	srvctl start diskgroup
	srvctl status diskgroup
	srvctl stop diskgroup
	srvctl start home
	srvctl status home
	srvctl stop home
	srvctl add instance
	srvctl disable instance
	srvctl enable instance
	srvctl modify instance
	srvctl remove instance
	srvctl start instance
	srvctl status instance
	srvctl stop instance
	srvctl update instance
	srvctl add listener
	srvctl config listener
	srvctl disable listener
	srvctl enable listener
	srvctl getenv listener
	srvctl modify listener
	srvctl predict listener
	srvctl remove listener
	srvctl setenv listener
	srvctl start listener
	srvctl status listener
	srvctl stop listener
	srvctl unsetenv listener
	srvctl update listener
	srvctl add network
	srvctl config network
	srvctl modify network
	srvctl predict network
	srvctl remove network
	srvctl add nodeapps
	srvctl config nodeapps
	srvctl disable nodeapps
	srvctl enable nodeapps
	srvctl getenv nodeapps
	srvctl modify nodeapps
	srvctl remove nodeapps
	srvctl setenv nodeapps
	srvctl start nodeapps
	srvctl status nodeapps
	srvctl stop nodeapps
	srvctl unsetenv nodeapps
	srvctl add ons
	srvctl config ons
	srvctl disable ons
	srvctl enable ons
	srvctl modify ons
	srvctl remove ons
	srvctl start ons
	srvctl status ons
	srvctl stop ons
	srvctl add scan
	srvctl config scan
	srvctl disable scan
	srvctl enable scan
	srvctl modify scan
	srvctl predict scan
	srvctl relocate scan
	srvctl remove scan
	srvctl start scan
	srvctl status scan
	srvctl stop scan
	srvctl add scan_listener
	srvctl config scan_listener
	srvctl disable scan_listener
	srvctl enable scan_listener
	srvctl modify scan_listener
	srvctl predict scan_listener
	srvctl relocate scan_listener
	srvctl remove scan_listener
	srvctl start scan_listener
	srvctl status scan_listener
	srvctl stop scan_listener
	srvctl update scan_listener
	srvctl relocate server
	srvctl status server
	srvctl add service
	srvctl config service
	srvctl disable service
	srvctl enable service
	srvctl modify service
	srvctl predict service
	srvctl relocate service
	srvctl remove service
	srvctl start service
	srvctl status service
	srvctl stop service
	srvctl add srvpool
	srvctl config srvpool
	srvctl modify srvpool
	srvctl remove srvpool
	srvctl status srvpool
	srvctl add vip
	srvctl config vip
	srvctl disable vip
	srvctl enable vip
	srvctl getenv vip
	srvctl modify vip
	srvctl predict vip
	srvctl relocate vip
	srvctl remove vip
	srvctl setenv vip
	srvctl start vip
	srvctl status vip
	srvctl stop vip
	srvctl unsetenv vip
	srvctl config volume
	srvctl disable volume
	srvctl enable volume
	srvctl remove volume
	srvctl start volume
	srvctl status volume
	srvctl stop volume

	B Troubleshooting Oracle RAC
	Where to Find Files for Analyzing Errors
	Managing Diagnostic Data in Oracle RAC
	Using Instance-Specific Alert Files in Oracle RAC
	Enabling Tracing for Java-Based Tools and Utilities in Oracle RAC
	Resolving Pending Shutdown Issues
	How to Determine If Oracle RAC Instances Are Using the Private Network

	Glossary
	Automatic Workload Repository (AWR)
	administrator-managed database
	cache coherency
	Cache Fusion
	cardinality
	CDB
	client cluster
	cluster
	cluster configuration policy
	cluster configuration policy set
	cluster database
	cluster file system
	Cluster Ready Services Daemon (CRSD)
	Cluster Synchronization Services (CSS)
	Cluster Time Synchronization Service
	Cluster Verification Utility (CVU)
	commit outcome
	database pool
	Distributed Transaction Processing (DTP)
	dynamic network
	Event Manager (EVM)
	Event Manager Daemon (EVMD)
	failure group
	Fast Application Notification (FAN)
	Fast Connection Failover
	file system
	forced disk write
	General Parallel File System (GPFS)
	Global Cache Service (GCS)
	Global Cache Service Processes (LMSn)
	Global Cache Service (GCS) resources
	global database name
	global dynamic performance views (GV⁠$)
	Global Enqueue Service (GES)
	Global Enqueue Service Daemon (LMD)
	Global Enqueue Service Monitor (LMON)
	Global Services Daemon (GSD)
	Grid Plug and Play Daemon (GPNPD)
	High Availability Cluster Multi-Processing (HACMP)
	high availability
	instance
	instance caging
	instance membership recovery
	instance name
	instance number
	interconnect
	keystore
	Logical Volume Manager (LVM)
	Interprocess Communication (IPC)
	Master Boot Record (MBR)
	memory pressure
	metric
	multitenant container database
	mutables
	Network Attached Storage (NAS)
	Network Time Protocol (NTP)
	Network Interface Card (NIC)
	node
	Object Link Manager (OLM)
	OCSSD
	Oracle Cluster File Systems
	Oracle Cluster Registry (OCR)
	Oracle Clusterware
	Oracle Extended Cluster
	Oracle Flex Cluster
	Oracle Grid Infrastructure
	Oracle Grid Naming Service Daemon (GNSD)
	Oracle High Availability Services Daemon (OHASD)
	Oracle Interface Configuration Tool (OIFCFG)
	Oracle Managed Files
	Oracle Notification Service
	Oracle Universal Installer
	Oracle XA
	PDB
	pluggable database
	policy-managed database
	raw device
	raw partition
	recoverable error
	Recovery Manager (RMAN)
	region
	request
	request boundary
	result cache
	Runtime Connection Load Balancing
	scalability
	Secure Shell (SSH)
	Server Control Utility (SRVCTL)
	server
	server cluster
	server group
	service level
	services
	session state consistency
	shared everything
	single client access name (SCAN)
	singleton services
	split brain syndrome
	SQL translation profile
	system identifier (SID)
	transparent application failover (TAF)
	Virtual Internet Protocol (VIP)
	volume manager
	voting disk

	Index

