Oracle® Database
SQL Tuning Guide

ORACLE"



Oracle Database SQL Tuning Guide, 19c

E96095-19

Copyright © 2013, 2025, Oracle and/or its affiliates.

Primary Author: Lance Ashdown

Contributing Authors: Nigel Bayliss, Maria Colgan, Tom Kyte

Contributors: Hermann Baer, Bjorn Bolltoft, Ali Cakmak, Sunil Chakkappen, Immanuel Chan, Deba Chatterjee, Chris
Chiappa, Dinesh Das, Kurt Engeleiter, Leonidas Galanis, William Endress, Marcus Fallen, Bruce Golbus, Katsumi
Inoue, Praveen Kumar Tupati Jaganath, Mark Jefferys, Shantanu Joshi, Adam Kociubes, Keith Laker, Allison Lee, Sue
Lee, Cheng Li, David McDermid, Colin McGregor, Ajit Mylavarapu, Ted Persky, Lei Sheng, Ekrem Soylemez, Hong Su,
Murali Thiyagarajah, Randy Urbano, Sahil Vazirani, Bharath Venkatakrishnan, Hailing Yu, John Zimmerman, Frederick
Kush

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

Preface
Audience XXV
Documentation Accessibility XXiV
Related Documents XXiV
Conventions XXV
Changes in This Release for Oracle Database SQL Tuning Guide
Changes in Oracle Database Release 19c, Version 19.10 XXVi
Changes in Oracle Database Release 19c, Version 19.6 XXVi
Changes in Oracle Database Release 19c, Version 19.1 XXVi
Changes in Oracle Database Release 18c, Version 18.1 XXVili
Part | SQL Performance Fundamentals
1 Introduction to SQL Tuning
About SQL Tuning 1-1
Purpose of SQL Tuning 1-1
Prerequisites for SQL Tuning 1-1
Tasks and Tools for SQL Tuning 1-2
SQL Tuning Tasks 1-2
SQL Tuning Tools 1-4
Automated SQL Tuning Tools 1-4
Manual SQL Tuning Tools 1-10
User Interfaces to SQL Tuning Tools 1-12
2 SQL Performance Methodology
Guidelines for Designing Your Application 2-1
Guideline for Data Modeling 2-1
Guideline for Writing Efficient Applications 2-1
Guidelines for Deploying Your Application 2-3

ORACLE"



Guideline for Deploying in a Test Environment 2-3
Guidelines for Application Rollout 2-4
Part Il Query Optimizer Fundamentals
3 SQL Processing
About SQL Processing 3-1
SQL Parsing 3-2
Syntax Check 3-2
Semantic Check 3-2
Shared Pool Check 3-3
SQL Optimization 3-5
SQL Row Source Generation 3-5
SQL Execution 3-6
How Oracle Database Processes DML 3-8
How Row Sets Are Fetched 3-8
Read Consistency 3-8
Data Changes 3-9
How Oracle Database Processes DDL 3-9
4 Query Optimizer Concepts
Introduction to the Query Optimizer 4-1
Purpose of the Query Optimizer 4-1
Cost-Based Optimization 4-1
Execution Plans 4-2
Query Blocks 4-2
Query Subplans 4-3
Analogy for the Optimizer 4-3
About Optimizer Components 4-4
Query Transformer 4-4
Estimator 4-5
Selectivity 4-6
Cardinality 4-7
Cost 4-8
Plan Generator 4-8
About Automatic Tuning Optimizer 4-10
About Adaptive Query Optimization 4-11
Adaptive Query Plans 4-11
About Adaptive Query Plans 4-12
Purpose of Adaptive Query Plans 4-12

ORACLE"



How Adaptive Query Plans Work 4-13

When Adaptive Query Plans Are Enabled 4-20
Adaptive Statistics 4-20
Dynamic Statistics 4-20
Automatic Reoptimization 4-21

SQL Plan Directives 4-23

When Adaptive Statistics Are Enabled 4-24

About Approximate Query Processing 4-24
Approximate Query Initialization Parameters 4-25
Approximate Query SQL Functions 4-26
About SQL Plan Management 4-28
About Quarantined SQL Plans 4-28
About the Expression Statistics Store (ESS) 4-29

5 Query Transformations

OR Expansion 5-1
View Merging 5-3
Query Blocks in View Merging 5-3
Simple View Merging 5-4
Complex View Merging 5-6
Predicate Pushing 5-9
Subquery Unnesting 5-10
Query Rewrite with Materialized Views 5-11
About Query Rewrite and the Optimizer 5-11
About Initialization Parameters for Query Rewrite 5-11
About the Accuracy of Query Rewrite 5-12
Example of Query Rewrite 5-13
Star Transformation 5-14
About Star Schemas 5-14
Purpose of Star Transformations 5-15
How Star Transformation Works 5-15
Controls for Star Transformation 5-15
Star Transformation: Scenario 5-16
Temporary Table Transformation: Scenario 5-19
In-Memory Aggregation (VECTOR GROUP BY) 5-21
Cursor-Duration Temporary Tables 5-21
Purpose of Cursor-Duration Temporary Tables 5-21
How Cursor-Duration Temporary Tables Work 5-21
Cursor-Duration Temporary Tables: Example 5-22
Table Expansion 5-23
Purpose of Table Expansion 5-23

ORACLE



How Table Expansion Works 5-23
Table Expansion: Scenario 5-24
Table Expansion and Star Transformation: Scenario 5-27
Join Factorization 5-28
Purpose of Join Factorization 5-29
How Join Factorization Works 5-29
Factorization and Join Orders: Scenario 5-30
Factorization of Outer Joins: Scenario 5-31
Part Il Query Execution Plans
6 Explaining and Displaying Execution Plans

Introduction to Execution Plans 6-1
Contents of an Execution Plan 6-1
Why Execution Plans Change 6-2
Different Schemas 6-2
Different Costs 6-2
Generating Plan Output Using the EXPLAIN PLAN Statement 6-3
About the EXPLAIN PLAN Statement 6-3
About PLAN_TABLE 6-3
EXPLAIN PLAN Restrictions 6-4
Explaining a SQL Statement: Basic Steps 6-4
Specifying a Statement ID in EXPLAIN PLAN: Example 6-7
Specifying a Different Location for EXPLAIN PLAN Output: Example 6-7
EXPLAIN PLAN Output for a CONTAINERS Query: Example 6-8
Displaying Execution Plans 6-9
About the Display of PLAN_TABLE Output 6-9
DBMS_XPLAN Display Functions 6-10
Plan-Related Views 6-12
Displaying Execution Plans: Basic Steps 6-13
Displaying Adaptive Query Plans: Tutorial 6-15
Display Execution Plans: Examples 6-19
Customizing PLAN_TABLE Output 6-19
Displaying Parallel Execution Plans: Example 6-20
Displaying Bitmap Index Plans: Example 6-22
Displaying Result Cache Plans: Example 6-23
Displaying Plans for Partitioned Objects: Example 6-23
Comparing Execution Plans 6-31
Purpose of Plan Comparison 6-31
User Interface for Plan Comparison 6-32

ORACLE

Vi



Comparing Execution Plans: Tutorial

6-36

Comparing Execution Plans: Examples 6-39
7 PLAN_TABLE Reference
PLAN_TABLE Columns 7-1
OPERATION and OPTION Columns of PLAN_TABLE 7-4
DISTRIBUTION Column of PLAN_TABLE 7-9
Part IV SQL Operators: Access Paths and Joins
8 Optimizer Access Paths
Introduction to Access Paths 8-1
Table Access Paths 8-2
About Heap-Organized Table Access 8-2
Row Storage in Data Blocks and Segments: A Primer 8-2
Importance of Rowids for Row Access 8-3
Direct Path Reads 8-3
Full Table Scans 8-4
When the Optimizer Considers a Full Table Scan 8-4
How a Full Table Scan Works 8-6
Full Table Scan: Example 8-7
Table Access by Rowid 8-7
When the Optimizer Chooses Table Access by Rowid 8-8
How Table Access by Rowid Works 8-8
Table Access by Rowid: Example 8-8
Sample Table Scans 8-9
When the Optimizer Chooses a Sample Table Scan 8-9
Sample Table Scans: Example 8-9
In-Memory Table Scans 8-10
When the Optimizer Chooses an In-Memory Table Scan 8-10
In-Memory Query Controls 8-10
In-Memory Table Scans: Example 8-11
B-Tree Index Access Paths 8-12
About B-Tree Index Access 8-12
B-Tree Index Structure 8-12
How Index Storage Affects Index Scans 8-13
Unique and Nonunique Indexes 8-14
B-Tree Indexes and Nulls 8-14
Index Unique Scans 8-16
When the Optimizer Considers Index Unique Scans 8-16

ORACLE"

Vii



How Index Unique Scans Work
Index Unique Scans: Example

Index Range Scans
When the Optimizer Considers Index Range Scans
How Index Range Scans Work
Index Range Scan: Example
Index Range Scan Descending: Example

Index Full Scans
When the Optimizer Considers Index Full Scans
How Index Full Scans Work
Index Full Scans: Example

Index Fast Full Scans
When the Optimizer Considers Index Fast Full Scans
How Index Fast Full Scans Work
Index Fast Full Scans: Example

Index Skip Scans
When the Optimizer Considers Index Skip Scans
How Index Skip Scans Work
Index Skip Scans: Example

Index Join Scans
When the Optimizer Considers Index Join Scans
How Index Join Scans Work
Index Join Scans: Example

Bitmap Index Access Paths

About Bitmap Index Access
Differences Between Bitmap and B-Tree Indexes
Purpose of Bitmap Indexes
Bitmaps and Rowids
Bitmap Join Indexes
Bitmap Storage

Bitmap Conversion to Rowid
When the Optimizer Chooses Bitmap Conversion to Rowid
How Bitmap Conversion to Rowid Works
Bitmap Conversion to Rowid: Example

Bitmap Index Single Value
When the Optimizer Considers Bitmap Index Single Value
How Bitmap Index Single Value Works
Bitmap Index Single Value: Example

Bitmap Index Range Scans
When the Optimizer Considers Bitmap Index Range Scans
How Bitmap Index Range Scans Work
Bitmap Index Range Scans: Example

ORACLE

8-17
8-18
8-19
8-19
8-20
8-21
8-22
8-23
8-23
8-23
8-24
8-25
8-25
8-25
8-25
8-26
8-26
8-26
8-26
8-28
8-28
8-29
8-29
8-30
8-30
8-30
8-31
8-32
8-33
8-35
8-35
8-35
8-35
8-35
8-36
8-36
8-36
8-36
8-37
8-37
8-37
8-38

viii



Bitmap Merge 8-39
When the Optimizer Considers Bitmap Merge 8-39

How Bitmap Merge Works 8-39

Bitmap Merge: Example 8-39

Table Cluster Access Paths 8-40
Cluster Scans 8-40
When the Optimizer Considers Cluster Scans 8-40

How a Cluster Scan Works 8-40

Cluster Scans: Example 8-41

Hash Scans 8-42
When the Optimizer Considers a Hash Scan 8-42

How a Hash Scan Works 8-42

Hash Scans: Example 8-42

o Joins

About Joins 9-1
Join Trees 9-1
How the Optimizer Executes Join Statements 9-3
How the Optimizer Chooses Execution Plans for Joins 9-4
Join Methods 9-5
Nested Loops Joins 9-5
When the Optimizer Considers Nested Loops Joins 9-6

How Nested Loops Joins Work 9-6

Nested Nested Loops 9-7
Current Implementation for Nested Loops Joins 9-10
Original Implementation for Nested Loops Joins 9-12

Nested Loops Controls 9-14

Hash Joins 9-15
When the Optimizer Considers Hash Joins 9-16

How Hash Joins Work 9-16

How Hash Joins Work When the Hash Table Does Not Fit in the PGA 9-18

Hash Join Controls 9-19

Sort Merge Joins 9-19
When the Optimizer Considers Sort Merge Joins 9-20

How Sort Merge Joins Work 9-20

Sort Merge Join Controls 9-24

Join Types 9-24
Inner Joins 9-24
Equijoins 9-24
Nonequijoins 9-25

Band Joins 9-26

ORACLE



Outer Joins 9-29
Nested Loops Outer Joins 9-30

Hash Join Outer Joins 9-30

Sort Merge Outer Joins 9-32

Full Outer Joins 9-32

Multiple Tables on the Left of an Outer Join 9-33
Semijoins 9-34
When the Optimizer Considers Semijoins 9-34

How Semijoins Work 9-34
Antijoins 9-36
When the Optimizer Considers Antijoins 9-36

How Antijoins Work 9-37

How Antijoins Handle Nulls 9-38
Cartesian Joins 9-41
When the Optimizer Considers Cartesian Joins 9-41

How Cartesian Joins Work 9-42
Cartesian Join Controls 9-42

Join Optimizations 9-43
Bloom Filters 9-43
Purpose of Bloom Filters 9-43

How Bloom Filters Work 9-44

Bloom Filter Controls 9-45

Bloom Filter Metadata 9-45

Bloom Filters: Scenario 9-45
Partition-Wise Joins 9-47
Purpose of Partition-Wise Joins 9-47

How Partition-Wise Joins Work 9-47
In-Memory Join Groups 9-50

Part V. Optimizer Statistics
10  Optimizer Statistics Concepts

Introduction to Optimizer Statistics 10-1
About Optimizer Statistics Types 10-2
Table Statistics 10-2
Permanent Table Statistics 10-2
Temporary Table Statistics 10-3
Column Statistics 10-6
Index Statistics 10-7
Types of Index Statistics 10-7

ORACLE"



11

Index Clustering Factor 10-8
Effect of Index Clustering Factor on Cost: Example 10-12
System Statistics 10-12
User-Defined Optimizer Statistics 10-13
How the Database Gathers Optimizer Statistics 10-13
DBMS_STATS Package 10-13
Supplemental Dynamic Statistics 10-14
Online Statistics Gathering 10-15
Online Statistics Gathering for Bulk Loads 10-15
Online Statistics Gathering for Partition Maintenance Operations 10-17
Real-Time Statistics 10-18
When the Database Gathers Optimizer Statistics 10-25
Sources for Optimizer Statistics 10-25
SQL Plan Directives 10-25
When the Database Creates SQL Plan Directives 10-26
How the Database Uses SQL Plan Directives 10-26
SQL Plan Directive Maintenance 10-27
How the Optimizer Uses SQL Plan Directives: Example 10-28
How the Optimizer Uses Extensions and SQL Plan Directives: Example 10-32
When the Database Samples Data 10-36
How the Database Samples Data 10-38
Histograms
Purpose of Histograms 11-1
When Oracle Database Creates Histograms 11-1
How Oracle Database Chooses the Histogram Type 11-3
Cardinality Algorithms When Using Histograms 11-4
Endpoint Numbers and Values 11-4
Popular and Nonpopular Values 11-4
Bucket Compression 11-5
Frequency Histograms 11-5
Criteria For Frequency Histograms 11-6
Generating a Frequency Histogram 11-6
Top Frequency Histograms 11-9
Criteria For Top Frequency Histograms 11-9
Generating a Top Frequency Histogram 11-10
Height-Balanced Histograms (Legacy) 11-13
Criteria for Height-Balanced Histograms 11-13
Generating a Height-Balanced Histogram 11-14
Hybrid Histograms 11-17
How Endpoint Repeat Counts Work 11-17

ORACLE

Xi



Criteria for Hybrid Histograms 11-19
Generating a Hybrid Histogram 11-20
12  Configuring Options for Optimizer Statistics Gathering

About Optimizer Statistics Collection 12-1
Purpose of Optimizer Statistics Collection 12-1
User Interfaces for Optimizer Statistics Management 12-1
Graphical Interface for Optimizer Statistics Management 12-1
Command-Line Interface for Optimizer Statistics Management 12-2

Setting Optimizer Statistics Preferences 12-2
About Optimizer Statistics Preferences 12-2
Purpose of Optimizer Statistics Preferences 12-2
Examples of Statistics Preferences 12-3
DBMS_STATS Procedures for Setting Statistics Preferences 12-4
Statistics Preference Overrides 12-5

Setting Statistics Preferences: Example 12-7

Setting Global Optimizer Statistics Preferences Using Cloud Control 12-9
Setting Object-Level Optimizer Statistics Preferences Using Cloud Control 12-9
Setting Optimizer Statistics Preferences from the Command Line 12-10
Configuring Options for Dynamic Statistics 12-11
About Dynamic Statistics Levels 12-11
Setting Dynamic Statistics Levels Manually 12-13
Disabling Dynamic Statistics 12-15
Managing SQL Plan Directives 12-15

13  Gathering Optimizer Statistics

Configuring Automatic Optimizer Statistics Collection 13-1
About Automatic Optimizer Statistics Collection 13-1
Configuring Automatic Optimizer Statistics Collection Using Cloud Control 13-2
Configuring Automatic Optimizer Statistics Collection from the Command Line 13-4
Configuring High-Frequency Automatic Optimizer Statistics Collection 13-5
About High-Frequency Automatic Optimizer Statistics Collection 13-6
Setting Preferences for High-Frequency Automatic Optimizer Statistics Collection 13-6
High-Frequency Automatic Optimizer Statistics Collection: Example 13-7
Gathering Optimizer Statistics Manually 13-10
About Manual Statistics Collection with DBMS_STATS 13-11
Guidelines for Gathering Optimizer Statistics Manually 13-11
Guideline for Setting the Sample Size 13-12
Guideline for Gathering Statistics in Parallel 13-13
Guideline for Partitioned Objects 13-13

ORACLE

Xii



Guideline for Frequently Changing Objects 13-14
Guideline for External Tables 13-14
Determining When Optimizer Statistics Are Stale 13-14
Gathering Schema and Table Statistics 13-15
Gathering Statistics for Fixed Objects 13-16
Gathering Statistics for Volatile Tables Using Dynamic Statistics 13-17
Gathering Optimizer Statistics Concurrently 13-19
About Concurrent Statistics Gathering 13-19
Enabling Concurrent Statistics Gathering 13-21
Monitoring Statistics Gathering Operations 13-24
Gathering Incremental Statistics on Partitioned Objects 13-25
Purpose of Incremental Statistics 13-25
How DBMS_STATS Derives Global Statistics for Partitioned tables 13-26
Gathering Statistics for a Partitioned Table: Basic Steps 13-29
Maintaining Incremental Statistics for Partition Maintenance Operations 13-32
Maintaining Incremental Statistics for Tables with Stale or Locked Partition Statistics 13-34
Gathering System Statistics Manually 13-36
About System Statistics 13-36
Guidelines for Gathering System Statistics 13-38
Gathering System Statistics with DBMS_STATS 13-38
About the GATHER_SYSTEM_STATS Procedure 13-38
Gathering Workload Statistics 13-40
Gathering Noworkload Statistics 13-44
Deleting System Statistics 13-45
Running Statistics Gathering Functions in Reporting Mode 13-46
14  Managing Extended Statistics
Managing Column Group Statistics 14-1
About Statistics on Column Groups 14-1
Why Column Group Statistics Are Needed: Example 14-2
Automatic and Manual Column Group Statistics 14-4
User Interface for Column Group Statistics 14-4
Detecting Useful Column Groups for a Specific Workload 14-5
Creating Column Groups Detected During Workload Monitoring 14-8
Creating and Gathering Statistics on Column Groups Manually 14-10
Displaying Column Group Information 14-11
Dropping a Column Group 14-12
Managing Expression Statistics 14-13
About Expression Statistics 14-13
When Expression Statistics Are Useful: Example 14-14
Creating Expression Statistics 14-14

ORACLE

Xiii



Displaying Expression Statistics 14-15
Dropping Expression Statistics 14-16

15  Controlling the Use of Optimizer Statistics

Locking and Unlocking Optimizer Statistics 15-1
Locking Statistics 15-1
Unlocking Statistics 15-2

Publishing Pending Optimizer Statistics 15-3
About Pending Optimizer Statistics 15-3
User Interfaces for Publishing Optimizer Statistics 15-5
Managing Published and Pending Statistics 15-6

Creating Artificial Optimizer Statistics for Testing 15-9
About Artificial Optimizer Statistics 15-9
Setting Artificial Optimizer Statistics for a Table 15-10
Setting Optimizer Statistics: Example 15-11

16  Managing Historical Optimizer Statistics

Restoring Optimizer Statistics 16-1
About Restore Operations for Optimizer Statistics 16-1
Guidelines for Restoring Optimizer Statistics 16-1
Restrictions for Restoring Optimizer Statistics 16-2
Restoring Optimizer Statistics Using DBMS_STATS 16-2

Managing Optimizer Statistics Retention 16-4
Obtaining Optimizer Statistics History 16-4
Changing the Optimizer Statistics Retention Period 16-5
Purging Optimizer Statistics 16-6

Reporting on Past Statistics Gathering Operations 16-7

17 Importing and Exporting Optimizer Statistics

About Transporting Optimizer Statistics 17-1
Purpose of Transporting Optimizer Statistics 17-1
How Transporting Optimizer Statistics Works 17-1
User Interface for Importing and Exporting Optimizer Statistics 17-2

Transporting Optimizer Statistics to a Test Database: Tutorial 17-3

18 Analyzing Statistics Using Optimizer Statistics Advisor

About Optimizer Statistics Advisor 18-1
Purpose of Optimizer Statistics Advisor 18-2
ORACLE

Xiv



ORACLE"

Problems with a Traditional Script-Based Approach 18-2
Advantages of Optimizer Statistics Advisor 18-3
Optimizer Statistics Advisor Concepts 18-3
Components of Optimizer Statistics Advisor 18-3
Operational Modes for Optimizer Statistics Advisor 18-7
Command-Line Interface to Optimizer Statistics Advisor 18-7
Basic Tasks for Optimizer Statistics Advisor 18-9
Creating an Optimizer Statistics Advisor Task 18-12
Listing Optimizer Statistics Advisor Tasks 18-13
Creating Filters for an Optimizer Advisor Task 18-13
About Filters for Optimizer Statistics Advisor 18-13
Creating an Object Filter for an Optimizer Advisor Task 18-14
Creating a Rule Filter for an Optimizer Advisor Task 18-17
Creating an Operation Filter for an Optimizer Advisor Task 18-19
Executing an Optimizer Statistics Advisor Task 18-23
Generating a Report for an Optimizer Statistics Advisor Task 18-24
Implementing Optimizer Statistics Advisor Recommendations 18-28
Implementing Actions Recommended by Optimizer Statistics Advisor 18-28
Generating a Script Using Optimizer Statistics Advisor 18-30
Part VI Optimizer Controls

Influencing the Optimizer
Techniques for Influencing the Optimizer 19-1
Influencing the Optimizer with Initialization Parameters 19-2
About Optimizer Initialization Parameters 19-2
Enabling Optimizer Features 19-7
Choosing an Optimizer Goal 19-8
Controlling Adaptive Optimization 19-9
Influencing the Optimizer with Hints 19-10
About Optimizer Hints 19-11
Purpose of Hints 19-11
Types of Hints 19-12
Scope of Hints 19-13
Guidelines for Join Order Hints 19-13
Reporting on Hints 19-14
Purpose of Hint Usage Reports 19-15
User Interface for Hint Usage Reports 19-15
Reporting on Hint Usage: Tutorial 19-17

XV



Hint Usage Reports: Examples 19-19
20 Improving Real-World Performance Through Cursor Sharing
Overview of Cursor Sharing 20-1
About Cursors 20-1
Private and Shared SQL Areas 20-1
Parent and Child Cursors 20-3
About Cursors and Parsing 20-7
About Literals and Bind Variables 20-10
Literals and Cursors 20-10
Bind Variables and Cursors 20-12
Bind Variable Peeking 20-13
About the Life Cycle of Shared Cursors 20-16
Cursor Marked Invalid 20-16
Cursors Marked Rolling Invalid 20-18
CURSOR_SHARING and Bind Variable Substitution 20-20
CURSOR_SHARING Initialization Parameter 20-20
Parsing Behavior When CURSOR_SHARING = FORCE 20-21
Adaptive Cursor Sharing 20-23
Purpose of Adaptive Cursor Sharing 20-23
How Adaptive Cursor Sharing Works: Example 20-23
Bind-Sensitive Cursors 20-25
Bind-Aware Cursors 20-29
Cursor Merging 20-32
Adaptive Cursor Sharing Views 20-33
Real-World Performance Guidelines for Cursor Sharing 20-33
Develop Applications with Bind Variables for Security and Performance 20-33
Do Not Use CURSOR_SHARING = FORCE as a Permanent Fix 20-35
Establish Coding Conventions to Increase Cursor Reuse 20-36
Minimize Session-Level Changes to the Optimizer Environment 20-37
Part VIl Monitoring and Tracing SQL
21 Monitoring Database Operations
About Monitoring Database Operations 21-1
About Database Operations 21-1
Purpose of Monitoring Database Operations 21-2
How Database Monitoring Works 21-3
User Interfaces for Database Operations Monitoring 21-4
Monitored SQL Executions Page in Cloud Control 21-4

ORACLE"

XVi



DBMS_SQL_MONITOR Package 21-5
Attributes of composite Database Operations 21-6
MONITOR and NO_MONITOR Hints 21-7
Views for Monitoring and Reporting on Database Operations 21-8
Basic Tasks in Database Operations Monitoring 21-10
Enabling and Disabling Monitoring of Database Operations 21-10
Enabling Monitoring of Database Operations at the System Level 21-10
Enabling and Disabling Monitoring of Database Operations at the Statement Level 21-11
Defining a Composite Database Operation 21-12
Generating and Accessing SQL Monitor Reports 21-15
Monitoring Database Operations: Scenarios 21-19
Reporting on a Simple Database Operation: Scenario 21-19
Reporting on Composite Database Operation: Scenario 21-22
22  Gathering Diagnostic Data with SQL Test Case Builder
Purpose of SQL Test Case Builder 22-1
Concepts for SQL Test Case Builder 22-1
SQL Incidents 22-1
What SQL Test Case Builder Captures 22-2
Output of SQL Test Case Builder 22-3
User Interfaces for SQL Test Case Builder 22-5
Graphical Interface for SQL Test Case Builder 22-5
Accessing the Incident Manager 22-5
Accessing the Support Workbench 22-6
Command-Line Interface for SQL Test Case Builder 22-6
Running SQL Test Case Builder 22-7
23  Performing Application Tracing
Overview of End-to-End Application Tracing 23-1
Purpose of End-to-End Application Tracing 23-1
End-to-End Application Tracing in a Multitenant Environment 23-2
Tools for End-to-End Application Tracing 23-2
Overview of the SQL Trace Facility 23-3
Overview of TKPROF 23-4
Enabling Statistics Gathering for End-to-End Tracing 23-4
Enabling Statistics Gathering for a Client ID 23-4
Enabling Statistics Gathering for Services, Modules, and Actions 23-5
Enabling End-to-End Application Tracing 23-6
Enabling Tracing for a Client Identifier 23-6
Enabling Tracing for a Service, Module, and Action 23-7
ORACLE

XVii



Enabling Tracing for a Session
Enabling Tracing for an Instance or Database
Generating Output Files Using SQL Trace and TKPROF

Step 1: Setting Initialization Parameters for Trace File Management

Step 2: Enabling the SQL Trace Facility
Step 3: Generating Output Files with TKPROF
Step 4: Storing SQL Trace Facility Statistics
Generating the TKPROF Output SQL Script
Editing the TKPROF Output SQL Script
Querying the Output Table
Guidelines for Interpreting TKPROF Output
Guideline for Interpreting the Resolution of Statistics
Guideline for Recursive SQL Statements
Guideline for Deciding Which Statements to Tune
Guidelines for Avoiding Traps in TKPROF Interpretation
Guideline for Avoiding the Argument Trap
Guideline for Avoiding the Read Consistency Trap
Guideline for Avoiding the Schema Trap
Guideline for Avoiding the Time Trap
Application Tracing Utilities
TRCSESS
Purpose
Guidelines
Syntax
Options
Examples
TKPROF
Purpose
Guidelines
Syntax
Options
Output
Examples
Views for Application Tracing
Views Relevant for Trace Statistics
Views Related to Enabling Tracing

Part VIl Automatic SQL Tuning

23-8

23-9
23-10
23-10
23-11
23-13
23-14
23-14
23-14
23-14
23-16
23-16
23-16
23-17
23-18
23-18
23-18
23-18
23-19
23-20
23-20
23-20
23-20
23-21
23-21
23-21
23-22
23-22
23-22
23-23
23-23
23-25
23-28
23-32
23-33
23-33

ORACLE

XVviil



24

Managing SQL Tuning Sets

About SQL Tuning Sets 24-1
Purpose of SQL Tuning Sets 24-1
Concepts for SQL Tuning Sets 24-2
User Interfaces for SQL Tuning Sets 24-3

Accessing the SQL Tuning Sets Page in Cloud Control 24-3
Command-Line Interface to SQL Tuning Sets 24-4
Basic Tasks for Managing SQL Tuning Sets 24-4

Creating a SQL Tuning Set Using CREATE_SQLSET 24-6

Loading a SQL Tuning Set Using LOAD_SQLSET 24-7

Querying a SQL Tuning Set 24-8

Modifying a SQL Tuning Set Using UPDATE_SQLSET 24-11

Transporting a SQL Tuning Set 24-12
About Transporting SQL Tuning Sets 24-12

Basic Steps for Transporting SQL Tuning Sets 24-12
Basic Steps for Transporting SQL Tuning Sets When the CON_DBID Values Differ 24-13
Transporting SQL Tuning Sets with DBMS_SQLTUNE 24-14
Dropping a SQL Tuning Set Using DROP_SQLSET 24-16
25  Analyzing SQL with SQL Tuning Advisor

About SQL Tuning Advisor 25-1
Purpose of SQL Tuning Advisor 25-1
SQL Tuning Advisor Architecture 25-2

Input to SQL Tuning Advisor 25-3
Output of SQL Tuning Advisor 25-4
Automatic Tuning Optimizer Analyses 25-5
SQL Tuning Advisor Operation 25-14
Automatic and On-Demand SQL Tuning 25-14
SQL Tuning on Active Data Guard Databases 25-15

Managing the Automatic SQL Tuning Task 25-20

About the Automatic SQL Tuning Task 25-20
Purpose of Automatic SQL Tuning 25-20
Automatic SQL Tuning Concepts 25-20
Command-Line Interface to SQL Tuning Advisor 25-21
Basic Tasks for Automatic SQL Tuning 25-21

Enabling and Disabling the Automatic SQL Tuning Task 25-22
Enabling and Disabling the Automatic SQL Tuning Task Using Cloud Control 25-22
Enabling and Disabling the Automatic SQL Tuning Task from the Command Line 25-24

Configuring the Automatic SQL Tuning Task 25-25
Configuring the Automatic SQL Tuning Task Using Cloud Control 25-25

ORACLE

XiX



Configuring the Automatic SQL Tuning Task Using the Command Line 25-26
Viewing Automatic SQL Tuning Reports 25-28
Viewing Automatic SQL Tuning Reports Using the Command Line 25-28

The Automatic SQL Tuning Set 25-31
Running SQL Tuning Advisor On Demand 25-32
About On-Demand SQL Tuning 25-32
Purpose of On-Demand SQL Tuning 25-32

User Interfaces for On-Demand SQL Tuning 25-33

Basic Tasks in On-Demand SQL Tuning 25-34
Creating a SQL Tuning Task 25-36
Configuring a SQL Tuning Task 25-38
Executing a SQL Tuning Task 25-40
Monitoring a SQL Tuning Task 25-41
Displaying the Results of a SQL Tuning Task 25-42

26  Optimizing Access Paths with SQL Access Advisor

About SQL Access Advisor 26-1
Purpose of SQL Access Advisor 26-1
SQL Access Advisor Architecture 26-2
Input to SQL Access Advisor 26-3

Filter Options for SQL Access Advisor 26-3

SQL Access Advisor Recommendations 26-4

SQL Access Advisor Actions 26-5

SQL Access Advisor Repository 26-6

User Interfaces for SQL Access Advisor 26-7
Accessing the SQL Access Advisor: Initial Options Page Using Cloud Control 26-7
Command-Line Interface to SQL Tuning Sets 26-8

Using SQL Access Advisor: Basic Tasks 26-8
Creating a SQL Tuning Set as Input for SQL Access Advisor 26-10
Populating a SQL Tuning Set with a User-Defined Workload 26-11
Creating and Configuring a SQL Access Advisor Task 26-13
Executing a SQL Access Advisor Task 26-15
Viewing SQL Access Advisor Task Results 26-16
Generating and Executing a Task Script 26-20
Performing a SQL Access Advisor Quick Tune 26-21
Using SQL Access Advisor: Advanced Tasks 26-22
Evaluating Existing Access Structures 26-22
Updating SQL Access Advisor Task Attributes 26-23
Creating and Using SQL Access Advisor Task Templates 26-24
Terminating SQL Access Advisor Task Execution 26-26
Interrupting SQL Access Advisor Tasks 26-26

ORACLE

XX



Canceling SQL Access Advisor Tasks 26-27
Deleting SQL Access Advisor Tasks 26-28
Marking SQL Access Advisor Recommendations 26-29
Modifying SQL Access Advisor Recommendations 26-30

SQL Access Advisor Examples 26-31
SQL Access Advisor Reference 26-31
Action Attributes in the DBA_ADVISOR_ACTIONS View 26-31
Categories for SQL Access Advisor Task Parameters 26-33
SQL Access Advisor Constants 26-33
Part IX SQL Management Objects
27 Managing SQL Profiles
About SQL Profiles 27-1
Purpose of SQL Profiles 27-1
Concepts for SQL Profiles 27-2

Statistics in SQL Profiles 27-2

SQL Profiles and Execution Plans 27-2

SQL Profile Recommendations 27-3

SQL Profiles and SQL Plan Baselines 27-5
User Interfaces for SQL Profiles 27-6
Basic Tasks for SQL Profiles 27-6

Implementing a SQL Profile 27-7
About SQL Profile Implementation 27-7
Implementing a SQL Profile 27-8

Listing SQL Profiles 27-9

Altering a SQL Profile 27-10

Dropping a SQL Profile 27-11

Transporting a SQL Profile 27-12

28 Overview of SQL Plan Management

About SQL Plan Baselines 28-1

Purpose of SQL Plan Management 28-1
Benefits of SQL Plan Management 28-1
Differences Between SQL Plan Baselines and SQL Profiles 28-2

Plan Capture 28-3
Automatic Initial Plan Capture 28-3

Eligibility for Automatic Initial Plan Capture 28-4

Plan Matching for Automatic Initial Plan Capture 28-5
Manual Plan Capture 28-5

ORACLE"

XXi



Plan Selection 28-7
Plan Evolution 28-8
Purpose of Plan Evolution 28-8
How Plan Evolution Works 28-8
PL/SQL Subprograms for Plan Evolution 28-9
Storage Architecture for SQL Plan Management 28-10
SQL Management Base 28-10
SQL Statement Log 28-11
SQL Plan History 28-12
Enabled Plans 28-13
Accepted Plans 28-13

Fixed Plans 28-13

29 Managing SQL Plan Baselines

About Managing SQL Plan Baselines 29-1
User Interfaces for SQL Plan Management 29-1
Accessing the SQL Plan Baseline Page in Cloud Control 29-1
DBMS_SPM Package 29-2

Basic Tasks in SQL Plan Management 29-3
Configuring SQL Plan Management 29-4
Configuring the Capture and Use of SQL Plan Baselines 29-4
Enabling Automatic Initial Plan Capture for SQL Plan Management 29-5
Configuring Filters for Automatic Plan Capture 29-6
Disabling All SQL Plan Baselines 29-8
Managing the SPM Evolve Advisor Task 29-8
Automatic SQL Plan Management 29-9
Enabling and Disabling the Automatic SPM Evolve Advisor Task 29-10
Configuring the Automatic SPM Evolve Advisor Task 29-11
Configuring the High-Frequency Automatic SPM Evolve Advisor Task 29-14
Displaying Plans in a SQL Plan Baseline 29-16
Loading SQL Plan Baselines 29-18
About Loading SQL Plan Baselines 29-18
Loading Plans from AWR 29-19
Loading Plans from the Shared SQL Area 29-21
Loading Plans from a SQL Tuning Set 29-23
Loading Plans from a Staging Table 29-26
Evolving SQL Plan Baselines Manually 29-28
About the DBMS_SPM Evolve Functions 29-28
Managing an Evolve Task 29-30
Dropping SQL Plan Baselines 29-38
Managing the SQL Management Base 29-40

ORACLE

XX



About Managing the SMB 29-40
Changing the Disk Space Limit for the SMB 29-41
Changing the Plan Retention Policy in the SMB 29-42

30 Migrating Stored Outlines to SQL Plan Baselines

About Stored Outline Migration 30-1
Purpose of Stored Outline Migration 30-1
How Stored Outline Migration Works 30-2

Stages of Stored Outline Migration 30-2
Outline Categories and Baseline Modules 30-3
User Interface for Stored Outline Migration 30-4
Basic Steps in Stored Outline Migration 30-6

Preparing for Stored Outline Migration 30-6

Migrating Outlines to Utilize SQL Plan Management Features 30-7

Migrating Outlines to Preserve Stored Outline Behavior 30-8

Performing Follow-Up Tasks After Stored Outline Migration 30-9

Glossary

Index

ORACLE

XXiil



Preface

Preface

Audience

This manual explains how to tune Oracle SQL.

This document is intended for database administrators and application developers who
perform the following tasks:

e Generating and interpreting SQL execution plans

e Managing optimizer statistics

e Influencing the optimizer through initialization parameters or SQL hints
e Controlling cursor sharing for SQL statements

e Monitoring SQL execution

e Performing application tracing

e Managing SQL tuning sets

e Using SQL Tuning Advisor or SQL Access Advisor

e Managing SQL profiles

e Managing SQL baselines

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

ORACLE

This manual assumes that you are familiar with Oracle Database Concepts. The following
books are frequently referenced:

e Oracle Database Data Warehousing Guide
e Oracle Database VLDB and Partitioning Guide
e Oracle Database SQL Language Reference

e Oracle Database Reference

XXiV


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Many examples in this book use the sample schemas, which are installed by default when you
select the Basic Installation option with an Oracle Database. See Oracle Database Sample
Schemas for information on how these schemas were created and how you can use them.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE -~y



Changes in This Release for Oracle Database SQL Tuning Guide

Changes in This Release for Oracle Database
SQL Tuning Guide

This preface describes the most important changes in Oracle Database SQL Tuning Guide.

Changes in Oracle Database Release 19c, Version 19.10

This section lists changes in Oracle Database Tuning Guide for Oracle Database release 19c,
version 19.10.

The following initialization parameter is new in Oracle Database release 19c, version 19.6:

* OPTIMIZER REAL TIME STATISTICS
See About Optimizer Initialization Parameters

Changes in Oracle Database Release 19c, Version 19.6

This section lists changes in Oracle Database Tuning Guide for Oracle Database release 19c,
version 19.6.

The following initialization parameter is new in Oracle Database release 19c, version 19.6:

* OPTIMIZER SESSION TYPE
See About Optimizer Initialization Parameters

Changes in Oracle Database Release 19c, Version 19.1

Oracle Database SQL Tuning Guide for Oracle Database release 19c, version 19.1 has the
following changes.

New Features

The following features are new in this release:

e Automatic resolution of SQL plan regressions

SQL plan management searches for SQL statements in Automatic Workload Repository
(AWR). Prioritizing by highest load, SPM Evolve Advisor looks for alternative plans in all
available sources, adding better performing plans to the SQL plan baseline automatically.
The automatic task runs in the maintenance window.

See "Automatic SQL Plan Management".
e High-frequency SPM Evolve Advisor task

You can configure the Automatic SPM Evolve Advisor task to run every hour, outside of the
maintenance window. Consequently, the optimizer has more frequent opportunities to find
and evolve better performing plans.

ORACLE XXVi



ORACLE

Changes in This Release for Oracle Database SQL Tuning Guide

See Configuring the High-Frequency Automatic SPM Evolve Advisor Task.
Reporting on hint usage

Oracle Database includes a hint usage reporting mechanism that reports whether hints
were used during plan generation. In some cases, the report explains why a hint was not
used, for example, a syntax error or conflict between hints. You can generate hint usage
reports with the standard DBMS XPLAN display functions.

See "Reporting on Hints".
Plan comparison function

The DBMS_XPLAN.COMPARE PLANS function takes a reference plan and a list of test plans and
highlights the differences between them. Users can triage plan reproducibility issues by
identifying the source of differences.

See "Comparing Execution Plans".
Real-time statistics

Oracle Database can automatically gather real-time statistics during conventional DML
operations. These statistics augment the standard statistics gathered by DBMS STATS jobs.

See "Real-Time Statistics".
High-frequency automatic optimizer statistics collection

This lightweight task periodically gathers statistics for stale objects. The default interval is
15 minutes. In contrast to the automated statistics collection job, the high-frequency task
does not perform actions such as purging statistics for non-existent objects or invoking
Optimizer Statistics Advisor.

See "Configuring High-Frequency Automatic Optimizer Statistics Collection”.
Statistics maintenance enhancements

Partition move, merge, and coalesce operations maintain both global and partition-level
statistics.

See "Online Statistics Gathering".
Real-time SQL monitoring for developers

Database users who do not have the SELECT CATALOG ROLE can generate and view SQL
Monitor reports for their own SQL statements, including execution plans and performance
metrics.

See "Generating and Accessing SQL Monitor Reports".
Quarantine for runaway SQL statements

Oracle Database automatically quarantines SQL statements terminated by Oracle
Database Resource Manager (Resource Manager) for breaking resource limits. By putting
plans on a “blacklist,” the database prevents resource-hogging statements from executing
again.

See "About Quarantined SQL Plans".
Automatic indexing

An automatic background task monitors system workloads, and then creates and
maintains indexes suitable for the statements in the workload. The database validates the
performance effects of the indexes and keeps or alters its decisions constantly to maximize
performance. For example, the database might create an index on columns used in a
statement predicate when the index improves query performance significantly.

See "Automatic Indexing".

XXVIi



Changes in This Release for Oracle Database SQL Tuning Guide

# See Also:

Oracle Database Licensing Information User Manual for details on which features are
supported for different editions and services

Other Changes

This topic describes additional changes in the release.

The chapter on SQL Test Case Builder is now merged with the diagnosability content in Oracle
Database Administrator’s Guide.

Changes in Oracle Database Release 18c, Version 18.1

Oracle Database SQL Tuning Guide for Oracle Database release 18c, version 18.1 has the
following changes.

New Features

ORACLE

The following features are new in this release:

Private temporary tables

Private temporary tables are temporary database objects that are automatically dropped at
the end of a transaction or a session. A private temporary table is stored in memory and is
visible only to the session that created it. A private temporary table confines the scope of a
temporary table to a session or a transaction, thus providing more flexibility in application
coding, leading to easier code maintenance and a better ready-to-use functionality.

See "Statistics for Global Temporary Tables".
Approximate Top-N Query Processing

To obtain “top n” query results much faster than traditional queries, use the APPROX SUM
and APPROX_COUNT SQL functions with APPROX_RANK .

See "About Approximate Query Processing".
SQL Tuning Advisor enhancements for Oracle Exadata Database Machine

SQL Tuning Advisor can recommend an Exadata-aware SQL profile. On Oracle Exadata
Database Machine, the cost of smart scans depends on the system statistics I/O seek time
(ioseektim), multiblock read count (mbrc), and I/O transfer speed (iotfrspeed). The
values of these statistics usually differ on Exadata and can thus influence the choice of
plan. If system statistics are stale, and if gathering them improves performance, then SQL
Tuning Advisor recommends accepting an Exadata-aware SQL profile.

See "Statistical Analysis" and "Statistics in SQL Profiles".
New package for managing SQL tuning sets

You can use DBMS SQLSET instead of DBMS_SQLTUNE to create, modify, drop, and perform all
other SQL tuning set operations.

See "Command-Line Interface to SQL Tuning Sets".

Scalable sequences

XXVIII



ORACLE

Changes in This Release for Oracle Database SQL Tuning Guide

Scalable sequences alleviate index leaf block contention when loading data into tables that
use sequence values as keys.

Decoupling OPTIMIZER ADAPTIVE STATISTICS from performance feedback

Unlike in previous releases, setting the OPTIMIZER ADAPTIVE STATISTICS initialization
parameter to TRUE or FALSE now has no effect on performance feedback.

XXiX



SQL Performance Fundamentals

SQL tuning is improving SQL statement performance to meet specific, measurable, and
achievable goals.

ORACLE



Introduction to SQL Tuning

SQL tuning is the attempt to diagnose and repair SQL statements that fail to meet a
performance standard.

About SQL Tuning

SQL tuning is the iterative process of improving SQL statement performance to meet specific,
measurable, and achievable goals.

SQL tuning implies fixing problems in deployed applications. In contrast, application design
sets the security and performance goals before deploying an application.

# See Also:

*  SQL Performance Methodology

* "Guidelines for Designing Your Application" to learn how to design for SQL
performance

Purpose of SQL Tuning

A SQL statement becomes a problem when it fails to perform according to a predetermined
and measurable standard.

After you have identified the problem, a typical tuning session has one of the following goals:

* Reduce user response time, which means decreasing the time between when a user
issues a statement and receives a response

* Improve throughput, which means using the least amount of resources necessary to
process all rows accessed by a statement

For a response time problem, consider an online book seller application that hangs for three
minutes after a customer updates the shopping cart. Contrast with a three-minute parallel
guery in a data warehouse that consumes all of the database host CPU, preventing other
gueries from running. In each case, the user response time is three minutes, but the cause of
the problem is different, and so is the tuning goal.

Prerequisites for SQL Tuning

ORACLE

SQL performance tuning requires a foundation of database knowledge.

If you are tuning SQL performance, then this manual assumes that you have the knowledge
and skills shown in the following table.

1-1



Table 1-1 Required Knowledge

Chapter 1
Tasks and Tools for SQL Tuning

Required Knowledge

Description

To Learn More

Database architecture

Database architecture is not the
domain of administrators alone. As a
developer, you want to develop
applications in the least amount of
time against an Oracle database,
which requires exploiting the
database architecture and features.
For example, not understanding
Oracle Database concurrency
controls and multiversioning read
consistency may make an application
corrupt the integrity of the data, run
slowly, and decrease scalability.

Oracle Database Concepts explains
the basic relational data structures,
transaction management, storage
structures, and instance architecture
of Oracle Database.

SQL and PL/SQL

Because of the existence of GUI-
based tools, it is possible to create
applications and administer a
database without knowing SQL.
However, it is impossible to tune
applications or a database without
knowing SQL.

Oracle Database Concepts includes
an introduction to Oracle SQL and
PL/SQL. You must also have a
working knowledge of Oracle
Database SQL Language Reference,
Oracle Database PL/SQL Packages
and Types Reference, and Oracle
Database PL/SQL Packages and
Types Reference.

SQL tuning tools

The database generates
performance statistics, and provides
SQL tuning tools that interpret these
statistics.

Oracle Database 2 Day +
Performance Tuning Guide provides
an introduction to the principal SQL
tuning tools.

Tasks and Tools for SQL Tuning

After you have identified the goal for a tuning session, for example, reducing user response
time from three minutes to less than a second, the problem becomes how to accomplish this

goal.

SQL Tuning Tasks

The specifics of a tuning session depend on many factors, including whether you tune

ORACLE

proactively or reactively.

In proactive SQL tuning, you regularly use SQL Tuning Advisor to determine whether you can
make SQL statements perform better. In reactive SQL tuning, you correct a SQL-related
problem that a user has experienced.

Whether you tune proactively or reactively, a typical SQL tuning session involves all or most of

the following tasks:

1. ldentifying high-load SQL statements

Review past execution history to find the statements responsible for a large share of the
application workload and system resources.

2. Gathering performance-related data

The optimizer statistics are crucial to SQL tuning. If these statistics do not exist or are no
longer accurate, then the optimizer cannot generate the best plan. Other data relevant to

1-2



Chapter 1
Tasks and Tools for SQL Tuning

SQL performance include the structure of tables and views that the statement accessed,
and definitions of any indexes available to the statement.

3. Determining the causes of the problem
Typically, causes of SQL performance problems include:
» Inefficiently designed SQL statements

If a SQL statement is written so that it performs unnecessary work, then the optimizer
cannot do much to improve its performance. Examples of inefficient design include

— Neglecting to add a join condition, which leads to a Cartesian join
— Using hints to specify a large table as the driving table in a join
— Specifying UNION instead of UNION ALL
— Making a subquery execute for every row in an outer query
*  Suboptimal execution plans

The query optimizer (also called the optimizer) is internal software that determines
which execution plan is most efficient. Sometimes the optimizer chooses a plan with a
suboptimal access path, which is the means by which the database retrieves data from
the database. For example, the plan for a query predicate with low selectivity may use
a full table scan on a large table instead of an index.

You can compare the execution plan of an optimally performing SQL statement to the
plan of the statement when it performs suboptimally. This comparison, along with
information such as changes in data volumes, can help identify causes of performance
degradation.

e Missing SQL access structures

Absence of SQL access structures, such as indexes and materialized views, is a
typical reason for suboptimal SQL performance. The optimal set of access structures
can improve SQL performance by orders of magnitude.

e Stale optimizer statistics

Statistics gathered by DBMS STATS can become stale when the statistics maintenance
operations, either automatic or manual, cannot keep up with the changes to the table
data caused by DML. Because stale statistics on a table do not accurately reflect the
table data, the optimizer can make decisions based on faulty information and generate
suboptimal execution plans.

e Hardware problems
Suboptimal performance might be connected with memory, 1/0, and CPU problems.
4. Defining the scope of the problem

The scope of the solution must match the scope of the problem. Consider a problem at the
database level and a problem at the statement level. For example, the shared pool is too
small, which causes cursors to age out quickly, which in turn causes many hard parses.
Using an initialization parameter to increase the shared pool size fixes the problem at the
database level and improves performance for all sessions. However, if a single SQL
statement is not using a helpful index, then changing the optimizer initialization parameters
for the entire database could harm overall performance. If a single SQL statement has a
problem, then an appropriately scoped solution addresses just this problem with this
statement.

5. Implementing corrective actions for suboptimally performing SQL statements

ORACLE 13



Chapter 1
Tasks and Tools for SQL Tuning

These actions vary depending on circumstances. For example, you might rewrite a SQL
statement to be more efficient, avoiding unnecessary hard parsing by rewriting the
statement to use bind variables. You might also use equijoins, remove functions from
WHERE clauses, and break a complex SQL statement into multiple simple statements.

In some cases, you improve SQL performance not by rewriting the statement, but by
restructuring schema objects. For example, you might index a new access path, or reorder
columns in a concatenated index. You might also partition a table, introduce derived
values, or even change the database design.

6. Preventing SQL performance regressions

To ensure optimal SQL performance, verify that execution plans continue to provide
optimal performance, and choose better plans if they come available. You can achieve
these goals using optimizer statistics, SQL profiles, and SQL plan baselines.

¢ See Also:

e "Shared Pool Check"

* Oracle Database Concepts to learn more about the shared pool

SQL Tuning Tools

SQL tuning tools are either automated or manual.

In this context, a tool is automated if the database itself can provide diagnosis, advice, or
corrective actions. A manual tool requires you to perform all of these operations.

All tuning tools depend on the basic tools of the dynamic performance views, statistics, and
metrics that the database instance collects. The database itself contains the data and
metadata required to tune SQL statements.

Automated SQL Tuning Tools

Oracle Database provides several advisors relevant for SQL tuning.

Additionally, SQL plan management is a mechanism that can prevent performance regressions
and also help you to improve SQL performance.

All of the automated SQL tuning tools can use SQL tuning sets as input. A SQL tuning set
(STS) is a database object that includes one or more SQL statements along with their
execution statistics and execution context.

¢ See Also:

e "About SQL Tuning Sets"

»  Oracle Database 2 Day + Performance Tuning Guide to learn more about
managing SQL tuning sets

ORACLE 4



Chapter 1
Tasks and Tools for SQL Tuning

Automatic Database Diagnostic Monitor (ADDM)

ADDM is self-diagnostic software built into Oracle Database.

ADDM can automatically locate the root causes of performance problems, provide
recommendations for correction, and quantify the expected benefits. ADDM also identifies
areas where no action is necessatry.

ADDM and other advisors use Automatic Workload Repository (AWR), which is an
infrastructure that provides services to database components to collect, maintain, and use
statistics. ADDM examines and analyzes statistics in AWR to determine possible performance
problems, including high-load SQL.

For example, you can configure ADDM to run nightly. In the morning, you can examine the
latest ADDM report to see what might have caused a problem and if there is a recommended
fix. The report might show that a particular SELECT statement consumed a huge amount of
CPU, and recommend that you run SQL Tuning Advisor.

¢ See Also:

e Oracle Database 2 Day + Performance Tuning Guide

e Oracle Database Performance Tuning Guide

SQL Tuning Advisor

ORACLE

SQL Tuning Advisor is internal diagnostic software that identifies problematic SQL statements
and recommends how to improve statement performance.

When run during database maintenance windows as an automated maintenance task, SQL
Tuning Advisor is known as Automatic SQL Tuning Advisor.

SQL Tuning Advisor takes one or more SQL statements as an input and invokes the Automatic
Tuning Optimizer to perform SQL tuning on the statements. The advisor performs the following
types of analysis:

e Checks for missing or stale statistics
e Builds SQL profiles

A SQL profile is a set of auxiliary information specific to a SQL statement. A SQL profile
contains corrections for suboptimal optimizer estimates discovered during Automatic SQL
Tuning. This information can improve optimizer estimates for cardinality, which is the
number of rows that is estimated to be or actually is returned by an operation in an
execution plan, and selectivity. These improved estimates lead the optimizer to select
better plans.

» Explores whether a different access path can significantly improve performance
* Identifies SQL statements that lend themselves to suboptimal plans

The output is in the form of advice or recommendations, along with a rationale for each
recommendation and its expected benefit. The recommendation relates to a collection of
statistics on objects, creation of new indexes, restructuring of the SQL statement, or creation of
a SQL profile. You can choose to accept the recommendations to complete the tuning of the
SQL statements.

1-5



Chapter 1
Tasks and Tools for SQL Tuning

# See Also:

e "Analyzing SQL with SQL Tuning Advisor"

e Oracle Database 2 Day + Performance Tuning Guide

SQL Access Advisor

SQL Access Advisor is internal diagnostic software that recommends which materialized
views, indexes, and materialized view logs to create, drop, or retain.

SQL Access Advisor takes an actual workload as input, or the advisor can derive a
hypothetical workload from the schema. SQL Access Advisor considers the trade-offs between
space usage and query performance, and recommends the most cost-effective configuration of
new and existing materialized views and indexes. The advisor also makes recommendations
about partitioning.

¢ See Also:

e "About SQL Access Advisor"
e Oracle Database 2 Day + Performance Tuning Guide
e Oracle Database Administrator’s Guide to learn more about automated indexing

e Oracle Database Licensing Information User Manual for details on whether
automated indexing is supported for different editions and services

Automatic Indexing

Oracle Database can constantly monitor the application workload, creating and managing
indexes automatically.

# Note:

See Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services.

Creating indexes manually requires deep knowledge of the data model, application, and data
distribution. Often DBAs make choices about which indexes to create, and then never revise
their choices. As a result, opportunities for improvement are lost, and unnecessary indexes can
become a performance liability. Automatic index management solves this problem.

How Automatic Indexing Works
The automatic indexing process runs in the background every 15 minutes and performs the
following operations:

1. Automatic index candidates are identified based on the usage of table columns in SQL
statements. Ensure that table statistics are up to date. Tables without statistics are not

ORACLE 6



ORACLE

Chapter 1
Tasks and Tools for SQL Tuning

considered for automatic indexing. Tables with stale statistics are not considered for
automatic indexing.

Index candidates are initially created invisible and unusable. They are not visible to the
application workload. Invisible automatic indexes cannot be used by SQL statements in the
application workload.

Automatic indexes can be single-column or multi-column. They are considered for the
following:

e Table columns (including virtual columns)
« Partitioned and non-partitioned tables
e Selected expressions (for example, JSON expressions)

A sample of workload SQL statements is tested against the candidate indexes. During this
verification phase, some or all candidate indexes will be built and made valid so that the
performance effect on SQL statements can be measured. All candidate indexes remain
invisible during the verification step.

If the performance of SQL statements is not improved by using the candidate indexes, they
remain invisible.

Candidate valid indexes found to improve SQL performance will be made visible and
available to the application workload. Candidate indexes that do not improve SQL
performance will revert to invisible and be unusable after a short delay.

During the verification stage, if an index is found to be beneficial, but an individual SQL
statement suffers a performance regression, a SQL plan baseline is created to prevent the
regression when the index is made visible.

Unusable and unused valid indexes are deleted by the automatic indexing process.

The automatic indexing process runs in the background every 15 minutes and performs
the following operations:

a. Automatic index candidates are identified based on the usage of table columns in SQL
statements. Ensure that table statistics are up to date. Tables without statistics are not
considered for automatic indexing. Tables with stale statistics are not considered for
automatic indexing.

b. Index candidates are initially created invisible and unusable. They are not visible to the
application workload. Invisible automatic indexes cannot be used by SQL statements
in the application workload.

Automatic indexes can be single-column or multi-column. They are considered for the
following:

e Table columns (including virtual columns)
« Partitioned and non-partitioned tables
e Selected expressions (for example, JSON expressions)

c. A sample of workload SQL statements is tested against the candidate indexes. During
this verification phase, some or all candidate indexes will be built and made valid so
that the performance effect on SQL statements can be measured. All candidate
indexes remain invisible during the verification step.

If the performance of SQL statements is not improved by using the candidate indexes,
they remain invisible.

d. Candidate valid indexes found to improve SQL performance will be made visible and
available to the application workload. Candidate indexes that do not improve SQL
performance will revert to invisible and be unusable after a short delay.

1-7



Chapter 1
Tasks and Tools for SQL Tuning

During the verification stage, if an index is found to be beneficial, but an individual SQL
statement suffers a performance regression, a SQL plan baseline is created to prevent
the regression when the index is made visible.

e. Unusable and unused valid indexes are deleted by the automatic indexing process.

# Note:

By default, the unused automatic indexes are deleted after 373 days. The
period for retaining the unused automatic indexes in a database can be
configured using the DBMS AUTO INDEX.CONFIGURE procedure.

" See Also:

Configuring Automatic Indexing in Oracle Database

Enabling and Managing Automatic Indexing

ORACLE

The DBMS_AUTO_INDEX package provides options for configuring, dropping, monitoring, and
reporting on automatic indexing.

You can use the DBMS_AUTO_INDEX package to do the following:

e Enable automatic indexing.
EXEC DBMS AUTO INDEX.CONFIGURE ('AUTO INDEX MODE', 'IMPLEMENT')

e Configure additional settings, such as how long to retain unused auto indexes
EXEC DBMS AUTO INDEX.CONFIGURE ('AUTO INDEX RETENTION FOR AUTO','180')

e Drop an automatic index. Carefully note the use of single and double quotation marks in
the first example.
Drop a single index owned by a schema and allow recreate.

EXEC DBMS AUTO INDEX.DROP AUTO INDEXES ('SH','"SYS AI 612UD3J5NGFOC"', TRUE)

Drop all indexes owned by a schema and allow recreate.

EXEC DBMS AUTO INDEX.DROP AUTO INDEXES ('SH',NULL,TRUE)

Drop all indexes owned by a schema and disallow recreate. Then, change the recreation
status back to allow.

EXEC DBMS AUTO INDEX.DROP AUTO INDEXES ('HR',NULL)
EXEC DBMS AUTO INDEX.DROP AUTO INDEXES ('HR',NULL,TRUE)

« Report on the automatic indexing task and configuration settings.

Additional Controls

By setting the OPTIMIZER SESSION TYPE initialization parameter to ADHOC in a session, you can
suspend automatic indexing for queries in this session. The automatic indexing process does

1-8



Chapter 1
Tasks and Tools for SQL Tuning

not identify index candidates, or create and verify indexes. This control may be useful for ad
hoc queries or testing new functionality.

You can use SQL to view the current setting of this parameter, which is ON by default:
select parameter name,parameter value

from DBA AUTO INDEX CONFIG
where parameter name = 'AUTO INDEX INCLUDE DML COST';

# See Also:

*  Oracle Database Administrator’s Guide to learn more about automatic indexing

e Oracle Database PL/SQL Packages and Types Reference to learn about the
procedures and functions available in the DBMS AUTO INDEX package

* Oracle Database Reference to learn more about OPTIMIZER SESSION TYPE.

SQL Plan Management

SQL plan management is a preventative mechanism that enables the optimizer to
automatically manage execution plans, ensuring that the database uses only known or verified
plans.

This mechanism can build a SQL plan baseline, which contains one or more accepted plans
for each SQL statement. By using baselines, SQL plan management can prevent plan
regressions from environmental changes, while permitting the optimizer to discover and use
better plans.

¢ See Also:

*  "Overview of SQL Plan Management"
*  Oracle Database PL/SQL Packages and Types Reference

to learn about the DBMS SPM package

SQL Performance Analyzer

SQL Performance Analyzer determines the effect of a change on a SQL workload by
identifying performance divergence for each SQL statement.

System changes such as upgrading a database or adding an index may cause changes to
execution plans, affecting SQL performance. By using SQL Performance Analyzer, you can
accurately forecast the effect of system changes on SQL performance. Using this information,
you can tune the database when SQL performance regresses, or validate and measure the
gain when SQL performance improves.

ORACLE 19



Chapter 1
Tasks and Tools for SQL Tuning

# See Also:

Oracle Database Testing Guide

Manual SQL Tuning Tools

In some situations, you may want to run manual tools in addition to the automated tools.
Alternatively, you may not have access to the automated tools.

Execution Plans

Execution plans are the principal diagnostic tool in manual SQL tuning. For example, you can
view plans to determine whether the optimizer selects the plan you expect, or identify the effect
of creating an index on a table.

You can display execution plans in multiple ways. The following tools are the most commonly
used:

° DBMS XPLAN

You can use the DBMS_XPLAN package methods to display the execution plan generated by
the EXPLAIN PLAN command and query of V$SQL PLAN.

e EXPLAIN PLAN

This SQL statement enables you to view the execution plan that the optimizer would use to
execute a SQL statement without actually executing the statement. See Oracle Database
SQL Language Reference.

*  V$SQL PLAN and related views

These views contain information about executed SQL statements, and their execution
plans, that are still in the shared pool. See Oracle Database Reference.

e AUTOTRACE

The AUTOTRACE command in SQL*Plus generates the execution plan and statistics about
the performance of a query. This command provides statistics such as disk reads and
memory reads. See SQL*Plus User's Guide and Reference.

Real-Time SQL Monitoring and Real-Time Database Operations

ORACLE

The Real-Time SQL Monitoring feature of Oracle Database enables you to monitor the
performance of SQL statements while they are executing. By default, SQL monitoring starts
automatically when a statement runs in parallel, or when it has consumed at least 5 seconds of
CPU or I/O time in a single execution.

A database operation is a set of database tasks defined by end users or application code, for
example, a batch job or Extraction, Transformation, and Loading (ETL) processing. You can
define, monitor, and report on database operations. Real-Time Database Operations provides
the ability to monitor composite operations automatically. The database automatically monitors
parallel queries, DML, and DDL statements as soon as execution begins.

Oracle Enterprise Manager Cloud Control (Cloud Control) provides easy-to-use SQL
monitoring pages. Alternatively, you can monitor SQL-related statistics using the

V$SQL _MONITOR and V$SQL PLAN MONITOR views. You can use these views with the following
views to get more information about executions that you are monitoring:

1-10



Chapter 1
Tasks and Tools for SQL Tuning

* VSACTIVE SESSION HISTORY
°* VSSESSION

* V$SSESSION LONGOPS

e V$SQL

° V$SQL PLAN

# See Also:

e "About Monitoring Database Operations"

e Oracle Database Reference to learn about the v$ views

Application Tracing

A SQL trace file provides performance information on individual SQL statements: parse
counts, physical and logical reads, misses on the library cache, and so on.

Trace files are sometimes useful for diagnosing SQL performance problems. You can enable
and disable SQL tracing for a specific session using the DBMS MONITOR or DBMS SESSION
packages. Oracle Database implements tracing by generating a trace file for each server
process when you enable the tracing mechanism.

Oracle Database provides the following command-line tools for analyzing trace files:

e TKPROF

This utility accepts as input a trace file produced by the SQL Trace facility, and then
produces a formatted output file.

. trcsess

This utility consolidates trace output from multiple trace files based on criteria such as
session ID, client ID, and service ID. After trcsess merges the trace information into a
single output file, you can format the output file with TKPROF. trcsess is useful for
consolidating the tracing of a particular session for performance or debugging purposes.

End-to-End Application Tracing simplifies the process of diagnosing performance problems in
multitier environments. In these environments, the middle tier routes a request from an end
client to different database sessions, making it difficult to track a client across database
sessions. End-to-End application tracing uses a client ID to uniquely trace a specific end-client
through all tiers to the database.

# See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_MONITOR and DBMS SESSION

Optimizer Hints

A hint is an instruction passed to the optimizer through comments in a SQL statement.

ORACLE L1



Chapter 1
Tasks and Tools for SQL Tuning

Hints enable you to make decisions normally made automatically by the optimizer. In a test or
development environment, hints are useful for testing the performance of a specific access
path. For example, you may know that a specific index is more selective for certain queries. In
this case, you may use hints to instruct the optimizer to use a better execution plan, as in the
following example:

SELECT /*+ INDEX (employees emp department ix) */
employee id, department id

FROM employees

WHERE department id > 50;

Sometimes the database may not use a hint because of typos, invalid arguments, conflicting
hints, and hints that are made invalid by transformations. Starting in Oracle Database 19c, you
can generate a report about which hints were used or not used during plan generation.

¢ See Also:

» "Influencing the Optimizer with Hints"

*  Oracle Database SQL Language Reference to learn more about hints

User Interfaces to SQL Tuning Tools

ORACLE

Cloud Control is a system management tool that provides centralized management of a
database environment. Cloud Control provides access to most tuning tools.

By combining a graphical console, Oracle Management Servers, Oracle Intelligent Agents,
common services, and administrative tools, Cloud Control provides a comprehensive system
management platform.

You can access all SQL tuning tools using a command-line interface. For example, the
DBMS SQLTUNE package is the command-line interface for SQL Tuning Advisor.

Oracle recommends Cloud Control as the best interface for database administration and
tuning. In cases where the command-line interface better illustrates a particular concept or
task, this manual uses command-line examples. However, in these cases the tuning tasks
include a reference to the principal Cloud Control page associated with the task.

1-12



SQL Performance Methodology

This chapter describes the recommended methodology for SQL tuning.

# Note:

This book assumes that you have learned the Oracle Database performance
methodology described in Oracle Database 2 Day + Performance Tuning Guide.

Guidelines for Designing Your Application

The key to obtaining good SQL performance is to design your application with performance in

mind.

Guideline for Data Modeling

Data modeling is important to successful application design.

You must perform data modeling in a way that represents the business practices. Heated
debates may occur about the correct data model. The important thing is to apply greatest
modeling efforts to those entities affected by the most frequent business transactions.

In the modeling phase, there is a great temptation to spend too much time modeling the non-
core data elements, which results in increased development lead times. Use of modeling tools
can then rapidly generate schema definitions and can be useful when a fast prototype is
required.

Guideline for Writing Efficient Applications

ORACLE

During the design and architecture phase of system development, ensure that the application
developers understand SQL execution efficiency.

To achieve this goal, the development environment must support the following characteristics:

* Good database connection management

Connecting to the database is an expensive operation that is not scalable. Therefore, a
best practice is to minimize the number of concurrent connections to the database. A
simple system, where a user connects at application initialization, is ideal. However, in a
web-based or multitiered application in which application servers multiplex database
connections to users, this approach can be difficult. With these types of applications,
design them to pool database connections, and not reestablish connections for each user
request.

e Good cursor usage and management

Maintaining user connections is equally important to minimizing the parsing activity on the
system. Parsing is the process of interpreting a SQL statement and creating an execution

2-1



Chapter 2
Guidelines for Designing Your Application

plan for it. This process has many phases, including syntax checking, security checking,
execution plan generation, and loading shared structures into the shared pool. There are
two types of parse operations:

— Hard parsing

A SQL statement is submitted for the first time, and no match is found in the shared
pool. Hard parses are the most resource-intensive and unscalable, because they
perform all the operations involved in a parse.

—  Soft parsing

A SQL statement is submitted for the first time, and a match is found in the shared
pool. The match can be the result of previous execution by another user. The SQL
statement is shared, which is optimal for performance. However, soft parses are not
ideal, because they still require syntax and security checking, which consume system
resources.

Because parsing should be minimized as much as possible, application developers should
design their applications to parse SQL statements once and execute them many times.
This is done through cursors. Experienced SQL programmers should be familiar with the
concept of opening and re-executing cursors.

» Effective use of bind variables

Application developers must also ensure that SQL statements are shared within the shared
pool. To achieve this goal, use bind variables to represent the parts of the query that
change from execution to execution. If this is not done, then the SQL statement is likely to
be parsed once and never re-used by other users. To ensure that SQL is shared, use bind
variables and do not use string literals with SQL statements. For example:

Statement with string literals:
SELECT *

FROM employees
WHERE last name LIKE 'KING';

Statement with bind variables:
SELECT *

FROM employees
WHERE last name LIKE :1;

The following example shows the results of some tests on a simple OLTP application:

Test #Users Supported
No Parsing all statements 270
Soft Parsing all statements 150
Hard Parsing all statements 60

Re-Connecting for each Transaction 30

These tests were performed on a four-CPU computer. The differences increase as the
number of CPUs on the system increase.

ORACLE "0



Chapter 2
Guidelines for Deploying Your Application

Guidelines for Deploying Your Application

To achieve optimal performance, deploy your application with the same care that you put into
designing it.

Guideline for Deploying in a Test Environment

ORACLE

The testing process mainly consists of functional and stability testing. At some point in the
process, you must perform performance testing.

The following list describes simple rules for performance testing an application. If correctly
documented, then this list provides important information for the production application and the
capacity planning process after the application has gone live.

*  Use the Automatic Database Diagnostic Monitor (ADDM) and SQL Tuning Advisor for
design validation.

»  Test with realistic data volumes and distributions.

All testing must be done with fully populated tables. The test database should contain data
representative of the production system in terms of data volume and cardinality between
tables. All the production indexes should be built and the schema statistics should be
populated correctly.

« Use the correct optimizer mode.
Perform all testing with the optimizer mode that you plan to use in production.
» Test a single user performance.

Test a single user on an idle or lightly-used database for acceptable performance. If a
single user cannot achieve acceptable performance under ideal conditions, then multiple
users cannot achieve acceptable performance under real conditions.

e Obtain and document plans for all SQL statements.

Obtain an execution plan for each SQL statement. Use this process to verify that the
optimizer is obtaining an optimal execution plan, and that the relative cost of the SQL
statement is understood in terms of CPU time and physical 1/0Os. This process assists in
identifying the heavy use transactions that require the most tuning and performance work
in the future.

*  Attempt multiuser testing.

This process is difficult to perform accurately, because user workload and profiles might
not be fully quantified. However, transactions performing DML statements should be tested
to ensure that there are no locking conflicts or serialization problems.

» Test with the correct hardware configuration.

Test with a configuration as close to the production system as possible. Using a realistic
system is particularly important for network latencies, 1/0 subsystem bandwidth, and
processor type and speed. Failing to use this approach may result in an incorrect analysis
of potential performance problems.

* Measure steady state performance.

When benchmarking, it is important to measure the performance under steady state
conditions. Each benchmark run should have a ramp-up phase, where users are
connected to the application and gradually start performing work on the application. This
process allows for frequently cached data to be initialized into the cache and single

2-3



Chapter 2
Guidelines for Deploying Your Application

execution operations—such as parsing—to be completed before the steady state
condition. Likewise, after a benchmark run, a ramp-down period is useful so that the
system frees resources, and users cease work and disconnect.

Guidelines for Application Rollout

ORACLE

When new applications are rolled out, two strategies are commonly adopted: the Big Bang
approach, in which all users migrate to the new system at once, and the trickle approach, in
which users slowly migrate from existing systems to the new one.

Both approaches have merits and disadvantages. The Big Bang approach relies on reliable
testing of the application at the required scale, but has the advantage of minimal data
conversion and synchronization with the old system, because it is simply switched off. The
Trickle approach allows debugging of scalability issues as the workload increases, but might
mean that data must be migrated to and from legacy systems as the transition takes place.

It is difficult to recommend one approach over the other, because each technique has
associated risks that could lead to system outages as the transition takes place. Certainly, the
Trickle approach allows profiling of real users as they are introduced to the new application,
and allows the system to be reconfigured while only affecting the migrated users. This
approach affects the work of the early adopters, but limits the load on support services. Thus,
unscheduled outages only affect a small percentage of the user population.

The decision on how to roll out a new application is specific to each business. Any adopted
approach has its own unique pressures and stresses. The more testing and knowledge that
you derive from the testing process, the more you realize what is best for the rollout.

2-4



Query Optimizer Fundamentals

To tune Oracle SQL, you must understand the query optimizer. The optimizer is built-in
software that determines the most efficient method for a statement to access data.

ORACLE



SQL Processing

This chapter explains how database processes DDL statements to create objects, DML to
modify data, and queries to retrieve data.

About SQL Processing

SQL processing is the parsing, optimization, row source generation, and execution of a SQL
statement.

The following figure depicts the general stages of SQL processing. Depending on the
statement, the database may omit some of these stages.

Figure 3-1 Stages of SQL Processing

SQL Statement

FETSTTTSTR] T == 1

| Parsing

Syntax
Check

v

1
|
|
1
|
|
1
|
|
Semantic |
|
|
1
|
|
|
|
|
1

Check

v

Shared Pool
Check

Soft Parse

Hard Parse

Generation of L
multiple Optimization

execution plans

ORACLE

Generation of

_ v

query plan

Row Source
Generation

v

Execution

3-1



Chapter 3
About SQL Processing

SQL Parsing

The first stage of SQL processing is parsing.

The parsing stage involves separating the pieces of a SQL statement into a data structure that
other routines can process. The database parses a statement when instructed by the
application, which means that only the application, and not the database itself, can reduce the
number of parses.

When an application issues a SQL statement, the application makes a parse call to the
database to prepare the statement for execution. The parse call opens or creates a cursor,
which is a handle for the session-specific private SQL area that holds a parsed SQL statement
and other processing information. The cursor and private SQL area are in the program global
area (PGA).

During the parse call, the database performs checks that identify the errors that can be found
before statement execution. Some errors cannot be caught by parsing. For example, the
database can encounter deadlocks or errors in data conversion only during statement
execution.

¢ See Also:

Oracle Database Concepts to learn about deadlocks

Syntax Check

Oracle Database must check each SQL statement for syntactic validity.

A statement that breaks a rule for well-formed SQL syntax fails the check. For example, the
following statement fails because the keyword FROM is misspelled as FORM:

SQL> SELECT * FORM employees;
SELECT * FORM employees
*
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

Semantic Check

ORACLE

The semantics of a statement are its meaning. A semantic check determines whether a
statement is meaningful, for example, whether the objects and columns in the statement exist.

A syntactically correct statement can fail a semantic check, as shown in the following example
of a query of a nonexistent table:

SQL> SELECT * FROM nonexistent table;
SELECT * FROM nonexistent table
*
ERROR at line 1:
ORA-00942: table or view does not exist

3-2



Chapter 3
About SQL Processing

Shared Pool Check

During the parse, the database performs a shared pool check to determine whether it can skip
resource-intensive steps of statement processing.

To this end, the database uses a hashing algorithm to generate a hash value for every SQL
statement. The statement hash value is the SQL ID shown in v$SQL.SQL ID. This hash value is
deterministic within a version of Oracle Database, so the same statement in a single instance
or in different instances has the same SQL ID.

When a user submits a SQL statement, the database searches the shared SQL area to see if
an existing parsed statement has the same hash value. The hash value of a SQL statement is
distinct from the following values:

*  Memory address for the statement

Oracle Database uses the SQL ID to perform a keyed read in a lookup table. In this way,
the database obtains possible memory addresses of the statement.

e Hash value of an execution plan for the statement

A SQL statement can have multiple plans in the shared pool. Typically, each plan has a
different hash value. If the same SQL ID has multiple plan hash values, then the database
knows that multiple plans exist for this SQL ID.

Parse operations fall into the following categories, depending on the type of statement
submitted and the result of the hash check:

e Hard parse

If Oracle Database cannot reuse existing code, then it must build a new executable version
of the application code. This operation is known as a hard parse, or a library cache miss.

# Note:

The database always performs a hard parse of DDL.

During the hard parse, the database accesses the library cache and data dictionary cache
numerous times to check the data dictionary. When the database accesses these areas, it
uses a serialization device called a latch on required objects so that their definition does
not change. Latch contention increases statement execution time and decreases
concurrency.

e Soft parse

A soft parse is any parse that is not a hard parse. If the submitted statement is the same
as a reusable SQL statement in the shared pool, then Oracle Database reuses the existing
code. This reuse of code is also called a library cache hit.

Soft parses can vary in how much work they perform. For example, configuring the session
shared SQL area can sometimes reduce the amount of latching in the soft parses, making
them "softer."

In general, a soft parse is preferable to a hard parse because the database skips the
optimization and row source generation steps, proceeding straight to execution.

The following graphic is a simplified representation of a shared pool check of an UPDATE
statement in a dedicated server architecture.

ORACLE 23



Figure 3-2 Shared Pool Check

Update ...

Shared Pool

System Global Area (SGA)

Library Cache

Shared SQL Area
3667723989
> 3967354608
2190280494

Private
SQL Area

Data Server | | Other
Dictionary | |Result
Cache Cache

Reserved
Pool

Comparison of hash values

PGA

® . _
\'—"ﬁji' —| pSlent

User

ORACLE

Server
Process

S:OL Work Are:as

T
Session Memory | |39673|54608

Private SQL Area

Chapter 3
About SQL Processing

If a check determines that a statement in the shared pool has the same hash value, then the
database performs semantic and environment checks to determine whether the statements
have the same meaning. Identical syntax is not sufficient. For example, suppose two different
users log in to the database and issue the following SQL statements:

CREATE TABLE my table ( some col INTEGER );
SELECT * FROM my table;

The SELECT statements for the two users are syntactically identical, but two separate schema
objects are named my table. This semantic difference means that the second statement
cannot reuse the code for the first statement.

Even if two statements are semantically identical, an environmental difference can force a hard
parse. In this context, the optimizer environment is the totality of session settings that can
affect execution plan generation, such as the work area size or optimizer settings (for example,
the optimizer mode). Consider the following series of SQL statements executed by a single

user:

ALTER SESSION SET OPTIMIZER MODE=ALL ROWS;

ALTER SYSTEM FLUSH SHARED POOL;

SELECT * FROM sh.sales;

ALTER SESSION SET OPTIMIZER MODE=FIRST ROWS;

SELECT * FROM sh.sales;

ALTER SESSION SET SQL TRACE=true;

SELECT * FROM sh.sales;

# optimizer environment 1

# optimizer environment 2

# optimizer environment 3

3-4



Chapter 3
About SQL Processing

In the preceding example, the same SELECT statement is executed in three different optimizer
environments. Consequently, the database creates three separate shared SQL areas for these
statements and forces a hard parse of each statement.

¢ See Also:

*  Oracle Database Concepts to learn about private SQL areas and shared SQL
areas

*  Oracle Database Performance Tuning Guide to learn how to configure the shared
pool

*  Oracle Database Concepts to learn about latches

SQL Optimization

During optimization, Oracle Database must perform a hard parse at least once for every
unigue DML statement and performs the optimization during this parse.

The database does not optimize DDL. The only exception is when the DDL includes a DML
component such as a subquery that requires optimization.

SQL Row Source Generation

ORACLE

The row source generator is software that receives the optimal execution plan from the
optimizer and produces an iterative execution plan that is usable by the rest of the database.

The iterative plan is a binary program that, when executed by the SQL engine, produces the
result set. The plan takes the form of a combination of steps. Each step returns a row set. The
next step either uses the rows in this set, or the last step returns the rows to the application
issuing the SQL statement.

A row source is a row set returned by a step in the execution plan along with a control structure
that can iteratively process the rows. The row source can be a table, view, or result of a join or
grouping operation.

The row source generator produces a row source tree, which is a collection of row sources.
The row source tree shows the following information:

e An ordering of the tables referenced by the statement

*  An access method for each table mentioned in the statement

* Ajoin method for tables affected by join operations in the statement
» Data operations such as filter, sort, or aggregation

Example 3-1 Execution Plan

This example shows the execution plan of a SELECT statement when AUTOTRACE is enabled.
The statement selects the last name, job title, and department name for all employees whose
last names begin with the letter A. The execution plan for this statement is the output of the row
source generator.

SELECT e.last name, j.job title, d.department name
FROM  hr.employees e, hr.departments d, hr.jobs j
WHERE e.department id = d.department id

3-5



Chapter 3

About SQL Processing
AND e.job id = j.job id
AND e.last name LIKE 'A%';
Execution Plan
Plan hash value: 975837011
| Id| Operation | Name |Rows |Bytes|Cost ($CPU) | Time |
| 0] SELECT STATEMENT | | 3 1189 |7(15)100:00:01 |
[*1] HASH JOIN | | 3 1189 |7(15)]00:00:01 |
[*2] HASH JOIN | | 3 1141 |5(20)00:00:01 |
[ 3] TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 31 60 |2 (0)]00:00:01 |
[ *4] INDEX RANGE SCAN | EMP NAME IX | 3 [1 (0)]00:00:01
| 5] TABLE ACCESS FULL | JOBS [19 |513 |2 (0)]00:00:01 |
| 6] TABLE ACCESS FULL | DEPARTMENTS |27 (432 |2 (0)|00:00:01 |

Predicate Information (identified by operation id):

access ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")
access ("E"."JOB_ID"="J"."JOB ID")
access ("E"."LAST NAME" LIKE 'A%')
filter("E"."LAST_NAME" LIKE 'A%'")

I R
I

SQL Execution

ORACLE

During execution, the SQL engine executes each row source in the tree produced by the row
source generator. This step is the only mandatory step in DML processing.

Figure 3-3 is an execution tree, also called a parse tree, that shows the flow of row sources
from one step to another in the plan in Example 3-1. In general, the order of the steps in
execution is the reverse of the order in the plan, so you read the plan from the bottom up.

Each step in an execution plan has an ID number. The numbers in Figure 3-3 correspond to
the Id column in the plan shown in Example 3-1. Initial spaces in the Operation column of the
plan indicate hierarchical relationships. For example, if the name of an operation is preceded
by two spaces, then this operation is a child of an operation preceded by one space.
Operations preceded by one space are children of the SELECT statement itself.

3-6



ORACLE

Chapter 3
About SQL Processing

Figure 3-3 Row Source Tree

1

HASH JOIN

2 6

HASH JOIN TABLE ACCESS
FULL
departments

TABLE ACCESS TABLE ACCESS
BY INDEX ROWID FULL
employees jobs

INDEX RANGE

SCAN

emp_name_ix

In Figure 3-3, each node of the tree acts as a row source, which means that each step of the
execution plan in Example 3-1 either retrieves rows from the database or accepts rows from
one or more row sources as input. The SQL engine executes each row source as follows:

e Steps indicated by the black boxes physically retrieve data from an object in the database.
These steps are the access paths, or techniques for retrieving data from the database.

Step 6 uses a full table scan to retrieve all rows from the departments table.
Step 5 uses a full table scan to retrieve all rows from the jobs table.

Step 4 scans the emp_name_ix index in order, looking for each key that begins with the
letter & and retrieving the corresponding rowid. For example, the rowid corresponding
to Atkinson iS AAAPZRAAFAAAABSARe.

Step 3 retrieves from the employees table the rows whose rowids were returned by
Step 4. For example, the database uses rowid AARAPzRAAFARAABSAAe to retrieve the row
for Atkinson.

*  Steps indicated by the clear boxes operate on row sources.

Step 2 performs a hash join, accepting row sources from Steps 3 and 5, joining each
row from the Step 5 row source to its corresponding row in Step 3, and returning the
resulting rows to Step 1.

3-7



Chapter 3
How Oracle Database Processes DML

For example, the row for employee Atkinson is associated with the job name Stock
Clerk.

— Step 1 performs another hash join, accepting row sources from Steps 2 and 6, joining
each row from the Step 6 source to its corresponding row in Step 2, and returning the
result to the client.

For example, the row for employee Atkinson is associated with the department named
Shipping.

In some execution plans the steps are iterative and in others sequential. The hash join shown
in Example 3-1 is sequential. The database completes the steps in their entirety based on the
join order. The database starts with the index range scan of emp name ix. Using the rowids
that it retrieves from the index, the database reads the matching rows in the employees table,
and then scans the jobs table. After it retrieves the rows from the jobs table, the database
performs the hash join.

During execution, the database reads the data from disk into memory if the data is not in
memory. The database also takes out any locks and latches necessary to ensure data integrity
and logs any changes made during the SQL execution. The final stage of processing a SQL
statement is closing the cursor.

How Oracle Database Processes DML

Most DML statements have a query component. In a query, execution of a cursor places the
results of the query into a set of rows called the result set.

How Row Sets Are Fetched

Result set rows can be fetched either a row at a time or in groups.

In the fetch stage, the database selects rows and, if requested by the query, orders the rows.
Each successive fetch retrieves another row of the result until the last row has been fetched.

In general, the database cannot determine for certain the number of rows to be retrieved by a
query until the last row is fetched. Oracle Database retrieves the data in response to fetch
calls, so that the more rows the database reads, the more work it performs. For some queries
the database returns the first row as quickly as possible, whereas for others it creates the
entire result set before returning the first row.

Read Consistency

ORACLE

In general, a query retrieves data by using the Oracle Database read consistency mechanism,
which guarantees that all data blocks read by a query are consistent to a single point in time.

Read consistency uses undo data to show past versions of data. For an example, suppose a
query must read 100 data blocks in a full table scan. The query processes the first 10 blocks
while DML in a different session modifies block 75. When the first session reaches block 75, it
realizes the change and uses undo data to retrieve the old, unmodified version of the data and
construct a noncurrent version of block 75 in memory.

# See Also:

Oracle Database Concepts to learn about multiversion read consistency

3-8



Chapter 3
How Oracle Database Processes DDL

Data Changes

DML statements that must change data use read consistency to retrieve only the data that
matched the search criteria when the modification began.

Afterward, these statements retrieve the data blocks as they exist in their current state and
make the required modifications. The database must perform other actions related to the
modification of the data such as generating redo and undo data.

How Oracle Database Processes DDL

ORACLE

Oracle Database processes DDL differently from DML.

For example, when you create a table, the database does not optimize the CREATE TABLE
statement. Instead, Oracle Database parses the DDL statement and carries out the command.

The database processes DDL differently because it is a means of defining an object in the data
dictionary. Typically, Oracle Database must parse and execute many recursive SQL statements
to execute a DDL statement. Suppose you create a table as follows:

CREATE TABLE mytable (mycolumn INTEGER) ;

Typically, the database would run dozens of recursive statements to execute the preceding
statement. The recursive SQL would perform actions such as the following:

* Issue a COMMIT before executing the CREATE TABLE Statement
»  Verify that user privileges are sufficient to create the table

* Determine which tablespace the table should reside in

* Ensure that the tablespace quota has not been exceeded

« Ensure that no object in the schema has the same name

* Insert rows that define the table into the data dictionary

e Issue a cOMMIT if the DDL statement succeeded or a ROLLBACK if it did not

¢ See Also:

Oracle Database Development Guide to learn about processing DDL, transaction
control, and other types of statements

3-9



Query Optimizer Concepts

This chapter describes the most important concepts relating to the query optimizer, including
its principal components.

Introduction to the Query Optimizer

The query optimizer (called simply the optimizer) is built-in database software that
determines the most efficient method for a SQL statement to access requested data.

Purpose of the Query Optimizer

The optimizer attempts to generate the most optimal execution plan for a SQL statement.

The optimizer choose the plan with the lowest cost among all considered candidate plans. The
optimizer uses available statistics to calculate cost. For a specific query in a given
environment, the cost computation accounts for factors of query execution such as I/0, CPU,
and communication.

For example, a query might request information about employees who are managers. If the
optimizer statistics indicate that 80% of employees are managers, then the optimizer may
decide that a full table scan is most efficient. However, if statistics indicate that very few
employees are managers, then reading an index followed by a table access by rowid may be
more efficient than a full table scan.

Because the database has many internal statistics and tools at its disposal, the optimizer is
usually in a better position than the user to determine the optimal method of statement
execution. For this reason, all SQL statements use the optimizer.

Cost-Based Optimization

ORACLE

Query optimization is the process of choosing the most efficient means of executing a SQL
statement.

SQL is a nonprocedural language, so the optimizer is free to merge, reorganize, and process
in any order. The database optimizes each SQL statement based on statistics collected about
the accessed data. The optimizer determines the optimal plan for a SQL statement by
examining multiple access methods, such as full table scan or index scans, different join
methods such as nested loops and hash joins, different join orders, and possible
transformations.

For a given query and environment, the optimizer assigns a relative numerical cost to each
step of a possible plan, and then factors these values together to generate an overall cost
estimate for the plan. After calculating the costs of alternative plans, the optimizer chooses the
plan with the lowest cost estimate. For this reason, the optimizer is sometimes called the cost-
based optimizer (CBO) to contrast it with the legacy rule-based optimizer (RBO).

4-1



Chapter 4
Introduction to the Query Optimizer

# Note:

The optimizer may not make the same decisions from one version of Oracle
Database to the next. In recent versions, the optimizer might make different decision
because better information is available and more optimizer transformations are
possible.

Execution Plans

An execution plan describes a recommended method of execution for a SQL statement.

The plan shows the combination of the steps Oracle Database uses to execute a SQL
statement. Each step either retrieves rows of data physically from the database or prepares
them for the user issuing the statement.

An execution plan displays the cost of the entire plan, indicated on line 0, and each separate
operation. The cost is an internal unit that the execution plan only displays to allow for plan
comparisons. Thus, you cannot tune or change the cost value.

In the following graphic, the optimizer generates two possible execution plans for an input SQL
statement, uses statistics to estimate their costs, compares their costs, and then chooses the
plan with the lowest cost.

Figure 4-1 Execution Plans

i i
(GB Plan | (GB Plan
A1 A2
NL = HJ =
ST |
[ |
Generates Multiple
Plans and
Compares Them
Parsed Representation Final Plan with
of SQL Statement Lowest Cost
"‘L,‘ Optimizer

Statistics

101100100

Query Blocks

The input to the optimizer is a parsed representation of a SQL statement.

Each SELECT block in the original SQL statement is represented internally by a query block. A
query block can be a top-level statement, subquery, or unmerged view.

ORACLE 4o



Chapter 4
Introduction to the Query Optimizer

Example 4-1 Query Blocks

The following SQL statement consists of two query blocks. The subquery in parentheses is the
inner query block. The outer query block, which is the rest of the SQL statement, retrieves
names of employees in the departments whose IDs were supplied by the subquery. The query
form determines how query blocks are interrelated.

SELECT first name, last name

FROM  hr.employees

WHERE department id

IN (SELECT department id
FROM  hr.departments
WHERE location id = 1800);

# See Also:

*  "View Merging"

» Oracle Database Concepts for an overview of SQL processing

Query Subplans

For each query block, the optimizer generates a query subplan.

The database optimizes query blocks separately from the bottom up. Thus, the database
optimizes the innermost query block first and generates a subplan for it, and then generates
the outer query block representing the entire query.

The number of possible plans for a query block is proportional to the number of objects in the
FROM clause. This number rises exponentially with the number of objects. For example, the
possible plans for a join of five tables are significantly higher than the possible plans for a join
of two tables.

Analogy for the Optimizer

ORACLE

One analogy for the optimizer is an online trip advisor.

A cyclist wants to know the most efficient bicycle route from point A to point B. A query is like
the directive "I need the most efficient route from point A to point B" or "I need the most
efficient route from point A to point B by way of point C." The trip advisor uses an internal
algorithm, which relies on factors such as speed and difficulty, to determine the most efficient
route. The cyclist can influence the trip advisor's decision by using directives such as "l want to
arrive as fast as possible" or "l want the easiest ride possible.”

In this analogy, an execution plan is a possible route generated by the trip advisor. Internally,
the advisor may divide the overall route into several subroutes (subplans), and calculate the
efficiency for each subroute separately. For example, the trip advisor may estimate one
subroute at 15 minutes with medium difficulty, an alternative subroute at 22 minutes with
minimal difficulty, and so on.

The advisor picks the most efficient (lowest cost) overall route based on user-specified goals
and the available statistics about roads and traffic conditions. The more accurate the statistics,
the better the advice. For example, if the advisor is not frequently notified of traffic jams, road

4-3



Chapter 4

About Optimizer Components

closures, and poor road conditions, then the recommended route may turn out to be inefficient
(high cost).

About Optimizer Components

The optimizer contains three components: the transformer, estimator, and plan generator.

The following graphic illustrates the components.

Figure 4-2 Optimizer Components

----*

Parsed Query
(from Parser)

Query
Transformer

lTransformed query

> Estimator

=

Data
Dictionary

statistics

Lheece

2
o
:

A A

:
9!
:

lQuery + estimates

Plan
Generator

Query Plan
(to Row Source Generator)

A set of query blocks represents a parsed query, which is the input to the optimizer. The
following table describes the optimizer operations.

Table 4-1 Optimizer Operations

Phase |Operation Description To Learn More

1 Query Transformer | The optimizer determines whether it is helpful to | "Query
change the form of the query so that the optimizer | Transformer"
can generate a better execution plan.

2 Estimator The optimizer estimates the cost of each plan "Estimator"
based on statistics in the data dictionary.

3 Plan Generator The optimizer compares the costs of plans and "Plan Generator"
chooses the lowest-cost plan, known as the
execution plan, to pass to the row source
generator.

Query Transformer

For some statements, the query transformer determines whether it is advantageous to rewrite
the original SQL statement into a semantically equivalent SQL statement with a lower cost.

ORACLE

4-4



Estimator

ORACLE

Chapter 4
About Optimizer Components

When a viable alternative exists, the database calculates the cost of the alternatives separately
and chooses the lowest-cost alternative. The following graphic shows the query transformer
rewriting an input query that uses OR into an output query that uses UNION ALL.

Figure 4-3 Query Transformer

SELECT *

FROM sales

WHERE promo_id=33
OR prod_id=136;

¥

Query Transformer

SELECT *

FROM sales

WHERE prod_id=136

UNION ALL

SELECT *

FROM sales

WHERE promo_id=33

AND LNNVL (prod_id=136) ;

The estimator is the component of the optimizer that determines the overall cost of a given
execution plan.

The estimator uses three different measures to determine cost:

Selectivity

The percentage of rows in the row set that the query selects, with 0 meaning no rows and
1 meaning all rows. Selectivity is tied to a query predicate, such as WHERE last name LIKE
'A%, or a combination of predicates. A predicate becomes more selective as the
selectivity value approaches 0 and less selective (or more unselective) as the value
approaches 1.

< Note:

Selectivity is an internal calculation that is not visible in the execution plans.

Cardinality

The cardinality is the number of rows returned by each operation in an execution plan. This
input, which is crucial to obtaining an optimal plan, is common to all cost functions. The
estimator can derive cardinality from the table statistics collected by DBMS STATS, or derive
it after accounting for effects from predicates (filter, join, and so on), DISTINCT or GROUP BY
operations, and so on. The Rows column in an execution plan shows the estimated
cardinality.

4-5



Selectivity

ORACLE

Chapter 4
About Optimizer Components

e Cost

This measure represents units of work or resource used. The query optimizer uses disk
I/0, CPU usage, and memory usage as units of work.

As shown in the following graphic, if statistics are available, then the estimator uses them to
compute the measures. The statistics improve the degree of accuracy of the measures.

Figure 4-4 Estimator

Cardinality
Selectivity Cost
A
(GB  Plan :3
A —»‘ Estimator — >
@Y\@ I Total Cost
10100 — Statistics
00011
01101

For the query shown in Example 4-1, the estimator uses selectivity, estimated cardinality (a
total return of 10 rows), and cost measures to produce its total cost estimate of 3:

|Id| Operation |Name |Rows |Bytes|Cost %CPU|Time|
| O] SELECT STATEMENT | [10125013 (0)]00:00:01]
| 1| NESTED LOOPS | | | | |
| 2] NESTED LOOPS | [10125013 (0)100:00:01]
| *3] TABLE ACCESS FULL | DEPARTMENTS | 11 712 (0)]00:00:01]
[ *4| INDEX RANGE SCAN |EMP_DEPARTMENT IX|10| [0 (0)100:00:01]
| 5] TABLE ACCESS BY INDEX ROWID|EMPLOYEES [10]1180|1 (0)|00:00:01]

The selectivity represents a fraction of rows from a row set.

The row set can be a base table, a view, or the result of a join. The selectivity is tied to a query
predicate, such as last name = 'Smith', or a combination of predicates, such as last name =
'Smith' AND job id = 'SH CLERK'.

# Note:

Selectivity is an internal calculation that is not visible in execution plans.

A predicate filters a specific number of rows from a row set. Thus, the selectivity of a predicate
indicates how many rows pass the predicate test. Selectivity ranges from 0.0 to 1.0. A
selectivity of 0.0 means that no rows are selected from a row set, whereas a selectivity of 1.0

4-6



Cardinality

ORACLE

Chapter 4
About Optimizer Components

means that all rows are selected. A predicate becomes more selective as the value
approaches 0.0 and less selective (or more unselective) as the value approaches 1.0.

The optimizer estimates selectivity depending on whether statistics are available:

e Statistics not available

Depending on the value of the OPTIMIZER DYNAMIC SAMPLING initialization parameter, the
optimizer either uses dynamic statistics or an internal default value. The database uses
different internal defaults depending on the predicate type. For example, the internal
default for an equality predicate (last name = 'Smith') is lower than for a range predicate
(last name > 'Smith') because an equality predicate is expected to return a smaller
fraction of rows.

e Statistics available

When statistics are available, the estimator uses them to estimate selectivity. Assume
there are 150 distinct employee last names. For an equality predicate last name =
'Smith', selectivity is the reciprocal of the number n of distinct values of last name, which
in this example is .006 because the query selects rows that contain 1 out of 150 distinct
values.

If a histogram exists on the last name column, then the estimator uses the histogram
instead of the number of distinct values. The histogram captures the distribution of different
values in a column, so it yields better selectivity estimates, especially for columns that
have data skew.

# See Also:

e "Histograms "

» Oracle Database Reference to learn more about OPTIMIZER DYNAMIC SAMPLING

The cardinality is the number of rows returned by each operation in an execution plan.

For example, if the optimizer estimate for the number of rows returned by a full table scan is
100, then the cardinality estimate for this operation is 100. The cardinality estimate appears in
the Rows column of the execution plan.

The optimizer determines the cardinality for each operation based on a complex set of
formulas that use both table and column level statistics, or dynamic statistics, as input. The
optimizer uses one of the simplest formulas when a single equality predicate appears in a
single-table query, with no histogram. In this case, the optimizer assumes a uniform distribution
and calculates the cardinality for the query by dividing the total number of rows in the table by
the number of distinct values in the column used in the WHERE clause predicate.

For example, user hr queries the employees table as follows:

SELECT first name, last name
FROM employees
WHERE salary='10200"';

4-7



Cost

Chapter 4
About Optimizer Components

The employees table contains 107 rows. The current database statistics indicate that the
number of distinct values in the salary column is 58. Therefore, the optimizer estimates the
cardinality of the result set as 2, using the formula 107/58=1. 84.

Cardinality estimates must be as accurate as possible because they influence all aspects of
the execution plan. Cardinality is important when the optimizer determines the cost of a join.
For example, in a nested loops join of the employees and departments tables, the number of
rows in employees determines how often the database must probe the departments table.
Cardinality is also important for determining the cost of sorts.

The optimizer cost model accounts for the machine resources that a query is predicted to
use.

The cost is an internal numeric measure that represents the estimated resource usage for a
plan. The cost is specific to a query in an optimizer environment. To estimate cost, the
optimizer considers factors such as the following:

e System resources, which includes estimated I/O, CPU, and memory
« Estimated number of rows returned (cardinality)

*  Size of the initial data sets

»  Distribution of the data

° Access structures

# Note:

The cost is an internal measure that the optimizer uses to compare different plans for
the same query. You cannot tune or change cost.

The execution time is a function of the cost, but cost does not equate directly to time. For
example, if the plan for query A has a lower cost than the plan for query B, then the following
outcomes are possible:

* A executes faster than B.
* A executes slower than B.
e A executes in the same amount of time as B.

Therefore, you cannot compare the costs of different queries with one another. Also, you
cannot compare the costs of semantically equivalent queries that use different optimizer
modes.

Plan Generator

ORACLE

The plan generator explores various plans for a query block by trying out different access
paths, join methods, and join orders.

Many plans are possible because of the various combinations that the database can use to
produce the same result. The optimizer picks the plan with the lowest cost.

The following graphic shows the optimizer testing different plans for an input query.

4-8



ORACLE

Chapter 4
About Optimizer Components

Figure 4-5 Plan Generator

SELECT e.last_name, d.department_name
FROM hr.employees e, hr.departments d
WHERE e.department_id = d.department_id;

Optimizer

Transformer

Join Method Join Order

Hash, Nested —>| departments 0 employees 1
Loop, Sort Merge employees 0 departments 1

Access Path
|

Index
Full Table Scan

lLowestCosthn

Hash Join
departments 0, employees 1

The following snippet from an optimizer trace file shows some computations that the optimizer
performs:

GENERAL PLANS

R R R R R I R I I I I I S I b 3 4
Considering cardinality-based initial join order.
Permutations for Starting Table :0

Join order[1]: DEPARTMENTS[D]#0 EMPLOYEES[E]#1

*hkkkkkkkkkkkxx*k

Now joining: EMPLOYEES[E]#1
kkkkkkkkkkkkkkx
NL Join
Outer table: Card: 27.00 Cost: 2.01 Resp: 2.01 Degree: 1 Bytes: 16
Access path analysis for EMPLOYEES

Best NL cost: 13.17
SM Join
SM cost: 6.08
resc: 6.08 resc io: 4.00 resc cpu: 2501688
resp: 6.08 resp io: 4.00 resp cpu: 2501688

SM Join (with index on outer)
Access Path: index (FullScan)

HA Join
HA cost: 4.57

4-9



Chapter 4
About Automatic Tuning Optimizer

resc: 4.57 resc io: 4.00 resc cpu: 678154
resp: 4.57 resp io: 4.00 resp cpu: 678154
Best:: JoinMethod: Hash
Cost: 4.57 Degree: 1 Resp: 4.57 Card: 106.00 Bytes: 27

khkkhkhkkkhkhkkkrkhkkhxkhkhkxkkkkx

Join order[2]: EMPLOYEES[E]#1 DEPARTMENTS[D]#0

*kkkkkkkkkxkkkkx

Now joining: DEPARTMENTS[D]#0

*kkkkkkkkkxkkkkx

HA Join
HA cost: 4.58
resc: 4.58 resc io: 4.00 resc cpu: 690054
resp: 4.58 resp io: 4.00 resp cpu: 690054

Join order aborted: cost > best plan cost
kkhkkkkkhkkkkhkrkkhkkhkrxkkkhkkrkkkkx*k

The trace file shows the optimizer first trying the departments table as the outer table in the
join. The optimizer calculates the cost for three different join methods: nested loops join (NL),
sort merge (SM), and hash join (HA). The optimizer picks the hash join as the most efficient
method:

Best:: JoinMethod: Hash
Cost: 4.57 Degree: 1 Resp: 4.57 Card: 106.00 Bytes: 27

The optimizer then tries a different join order, using employees as the outer table. This join
order costs more than the previous join order, so it is abandoned.

The optimizer uses an internal cutoff to reduce the number of plans it tries when finding the
lowest-cost plan. The cutoff is based on the cost of the current best plan. If the current best
cost is large, then the optimizer explores alternative plans to find a lower cost plan. If the
current best cost is small, then the optimizer ends the search swiftly because further cost
improvement is not significant.

About Automatic Tuning Optimizer

ORACLE

The optimizer performs different operations depending on how it is invoked.
The database provides the following types of optimization:

*  Normal optimization

The optimizer compiles the SQL and generates an execution plan. The normal mode
generates a reasonable plan for most SQL statements. Under normal mode, the optimizer
operates with strict time constraints, usually a fraction of a second, during which it must
find an optimal plan.

e SQL Tuning Advisor optimization

When SQL Tuning Advisor invokes the optimizer, the optimizer is known as Automatic
Tuning Optimizer. In this case, the optimizer performs additional analysis to further improve
the plan produced in normal mode. The optimizer output is not an execution plan, but a

4-10



Chapter 4
About Adaptive Query Optimization

series of actions, along with their rationale and expected benefit for producing a
significantly better plan.

¢ See Also:
e "Analyzing SQL with SQL Tuning Advisor"

e Oracle Database 2 Day + Performance Tuning Guide to learn more about SQL
Tuning Advisor

About Adaptive Query Optimization

In Oracle Database, adaptive query optimization enables the optimizer to make run-time
adjustments to execution plans and discover additional information that can lead to better
statistics.

Adaptive optimization is helpful when existing statistics are not sufficient to generate an optimal
plan. The following graphic shows the feature set for adaptive query optimization.

Figure 4-6 Adaptive Query Optimization

l

loir Paralle Bitmay [ Altomatic
Methods -I.N.;L."‘.my!mr (G SR ) A i S
lethods

Adaptive Query Plans

ORACLE

An adaptive query plan enables the optimizer to make a plan decision for a statement during
execution.

Adaptive query plans enable the optimizer to fix some classes of problems at run time.
Adaptive plans are enabled by default.

4-11



About Adaptive Query Plans

Chapter 4
About Adaptive Query Optimization

An adaptive query plan contains multiple predetermined subplans, and an optimizer statistics
collector. Based on the statistics collected during execution, the dynamic plan coordinator
chooses the best plan at run time.

Dynamic Plans

To change plans at runtime, adaptive query plans use a dynamic plan, which is represented as
a set of subplan groups. A subplan group is a set of subplans. A subplan is a portion of a plan
that the optimizer can switch to as an alternative at run time. For example, a nested loops join
could switch to a hash join during execution.

The optimizer decides which subplan to use at run time. When notified of a new statistic value
relevant to a subplan group, the coordinator dispatches it to the handler function for this
subgroup.

Figure 4-7 Dynamic Plan Coordinator

Dynamic Plan
Subplan Group Subplan Group
Dynamic Plan A A
Coordinator )
B \e:)
A Subplan Subplan
NL NL
ST T
H . A A
’ GB. GB.
‘ &( Subplan 5 Subplan
(HJ = HJ =
By By

Optimizer Statistics Collector

An optimizer statistics collector is a row source inserted into a plan at key points to collect run-
time statistics relating to cardinality and histograms. These statistics help the optimizer make a
final decision between multiple subplans. The collector also supports optional buffering up to
an internal threshold.

For parallel buffering statistics collectors, each parallel execution server collects the statistics,
which the parallel query coordinator aggregates and then sends to the clients. In this context, a
client is a consumer of the collected statistics, such as a dynamic plan. Each client specifies a
callback function to be executed on each parallel server or on the query coordinator.

Purpose of Adaptive Query Plans

ORACLE

The ability of the optimizer to adapt a plan, based on statistics obtained during execution, can
greatly improve query performance.

Adaptive query plans are useful because the optimizer occasionally picks a suboptimal default
plan because of a cardinality misestimate. The ability of the optimizer to pick the best plan at
run time based on actual execution statistics results in a more optimal final plan. After choosing

4-12



Chapter 4
About Adaptive Query Optimization

the final plan, the optimizer uses it for subsequent executions, thus ensuring that the
suboptimal plan is not reused.

How Adaptive Query Plans Work

For the first execution of a statement, the optimizer uses the default plan, and then stores an
adaptive plan. The database uses the adaptive plan for subsequent executions unless specific
conditions are met.

During the first execution of a statement, the database performs the following steps:

1. The database begins executing the statement using the default plan.

2. The statistics collector gathers information about the in-progress execution, and buffers
some rows received by the subplan.

For parallel buffering statistics collectors, each slave process collects the statistics, which
the query coordinator aggregates before sending to the clients.

3. Based on the statistics gathered by the collector, the optimizer chooses a subplan.

The dynamic plan coordinator decides which subplan to use at runtime for all such subplan
groups. When notified of a new statistic value relevant to a subplan group, the coordinator
dispatches it to the handler function for this subgroup.

4. The collector stops collecting statistics and buffering rows, permitting rows to pass through
instead.

5. The database stores the adaptive plan in the child cursor, so that the next execution of the
statement can use it.

On subsequent executions of the child cursor, the optimizer continues to use the same
adaptive plan unless one of the following conditions is true, in which case it picks a new plan
for the current execution:

e The current plan ages out of the shared pool.

« Adifferent optimizer feature (for example, adaptive cursor sharing or statistics feedback)
invalidates the current plan.

Adaptive Query Plans: Join Method Example

This example shows how the optimizer can choose a different plan based on information
collected at runtime.

The following query shows a join of the order items and prod info tables.

SELECT product name

FROM  order items o, prod info p
WHERE o.unit price = 15

AND quantity > 1

AND p.product id = o.product id

An adaptive query plan for this statement shows two possible plans, one with a nested loops
join and the other with a hash join:

SELECT * FROM TABLE (DBMS XPLAN.display cursor (FORMAT => 'ADAPTIVE'));

SQL 1D Thj8dwwy6gm7p, child number 0

ORACLE 413



SELECT product name FROM

Chapter 4
About Adaptive Query Optimization

order items o, prod info p WHERE

o.unit price = 15 AND quantity > 1 AND p.product id = o.product id
Plan hash value: 1553478007

| Id | Operation | Name |Rows |Bytes|Cost (%CPU) |Time|
| 0| SELECT STATEMENT \ | [7(100) |

| * 1| HASH JOIN \ [4] 128 | 7 (0)]00:00:01|
- 2| NESTED LOOPS \ [4] 128 | 7 (0)]00:00:01|
[- 3 NESTED LOOPS \ [4] 128 | 7 (0)]00:00:01|
|- 4] STATISTICS COLLECTOR \ [ ] \ |

| * 5] TABLE ACCESS FULL | ORDER ITEMS |4| 48 | 3 (0)[00:00:01}]
[=* 6] INDEX UNIQUE SCAN | PROD _INFO PK |[1| | 0 (0)|

[= 7] TABLE ACCESS BY INDEX ROWID| PROD_INFO [1] 20 | 1 (0)|00:00:01]
| 81 TABLE ACCESS FULL | PROD INFO [1] 20 | 1 (0)|00:00:01]

Predicate Information

(identified by operation id):

1 - access("P"."PRODUCT ID"="O"."PRODUCT ID")
5 - filter (("O"."UNIT PRICE"=15 AND "QUANTITY">1))
6 - access("P"."PRODUCT ID"="O"."PRODUCT ID")

- this is an adaptive plan

ORACLE

(rows marked '-' are inactive)

A nested loops join is preferable if the database can avoid scanning a significant portion of
prod_info because its rows are filtered by the join predicate. If few rows are filtered, however,
then scanning the right table in a hash join is preferable.

The following graphic shows the adaptive process. For the query in the preceding example, the
adaptive portion of the default plan contains two subplans, each of which uses a different join
method. The optimizer automatically determines when each join method is optimal, depending
on the cardinality of the left side of the join.

The statistics collector buffers enough rows coming from the order items table to determine
which join method to use. If the row count is below the threshold determined by the optimizer,
then the optimizer chooses the nested loops join; otherwise, the optimizer chooses the hash
join. In this case, the row count coming from the order items table is above the threshold, so
the optimizer chooses a hash join for the final plan, and disables buffering.

4-14



Chapter 4
About Adaptive Query Optimization

Figure 4-8 Adaptive Join Methods

Default plan is a nested loops join

Nested
Loops

/\

Statistics

Collector
Table scan Index scan
order_items prod_info_pk

The optimizer buffers rows coming from the order_items table
up to a point. If the row count is less than the threshold,

then use a nested loops join. Otherwise,

switch to a hash join.

Threshold exceeded,
so subplan switches

The optimizer disables the statistics collector after making the decision,
and lets the rows pass through.

Final plan is a hash join
Hash
Join
<«
Table scan Table scan
order_items prod_info

The Note section of the execution plan indicates whether the plan is adaptive, and which rows
in the plan are inactive.

¢ See Also:

*  "Controlling Adaptive Optimization”

» "Displaying Adaptive Query Plans: Tutorial" for an extended example showing an
adaptive query plan

ORACLE o



Chapter 4
About Adaptive Query Optimization

Adaptive Query Plans: Parallel Distribution Methods

ORACLE

Typically, parallel execution requires data redistribution to perform operations such as parallel
sorts, aggregations, and joins.

Oracle Database can use many different data distributions methods. The database chooses
the method based on the number of rows to be distributed and the number of parallel server
processes in the operation.

For example, consider the following alternative cases:

*  Many parallel server processes distribute few rows.

The database may choose the broadcast distribution method. In this case, each parallel
server process receives each row in the result set.

* Few parallel server processes distribute many rows.

If a data skew is encountered during the data redistribution, then it could adversely affect
the performance of the statement. The database is more likely to pick a hash distribution to
ensure that each parallel server process receives an equal number of rows.

The hybrid hash distribution technique is an adaptive parallel data distribution that does not
decide the final data distribution method until execution time. The optimizer inserts statistic
collectors in front of the parallel server processes on the producer side of the operation. If the
number of rows is less than a threshold, defined as twice the degree of parallelism (DOP), then
the data distribution method switches from hash to broadcast. Otherwise, the distribution
method is a hash.

Broadcast Distribution

The following graphic depicts a hybrid hash join between the departments and employees
tables, with a query coordinator directing 8 parallel server processes: P5-P8 are producers,
whereas P1-P4 are consumers. Each producer has its own consumer.

4-16



Chapter 4
About Adaptive Query Optimization

Figure 4-9 Adaptive Query with DOP of 4

Query
Coordinator

Statistics collector The number of rows
threshold is 2X >| returned is below
the DOP threshold, so optimizer
chooses broadcast
method.
‘ P2 ‘ P3 ‘ Pa
1] | |
<1 >
~ N
S ~
P5 T~ S
N 2 ~
N > ~
= N
—| . N N —|
P6 S 3\ -
N
N N ~
N ~
P7 S =
~ /
P8

The database inserts a statistics collector in front of each producer process scanning the
departments table. The query coordinator aggregates the collected statistics. The distribution
method is based on the run-time statistics. In Figure 4-9, the number of rows is below the
threshold (8), which is twice the DOP (4), so the optimizer chooses a broadcast technique for
the departments table.

Hybrid Hash Distribution

Consider an example that returns a greater number of rows. In the following plan, the threshold
is 8, or twice the specified DOP of 4. However, because the statistics collector (Step 10)
discovers that the number of rows (27) is greater than the threshold (8), the optimizer chooses
a hybrid hash distribution rather than a broadcast distribution.

# Note:

The values for Name and Time are truncated in the following plan so that the lines can
fit on the page.

EXPLAIN PLAN FOR
SELECT /*+ parallel(4) full(e) full(d) */ department name, sum(salary)
FROM employees e, departments d
WHERE d.department id=e.department id
GROUP BY department name;

ORACLE 4-17



Plan hash value: 2940813933

Predicate Information

(identified by operation id):

- Degree of Parallelism is 4 because of hint

32 rows selected.

¢ See Also:

Adaptive Query Plans: Bitmap Index Pruning

:01101,03|P->S| QC
:01101,03|PCWP|
:01101,03|PCWP|
:01101,02|P->P|
:01/Q1,02|PCWP|

:01/Q1,02|PCWP|
:01/0Q1,00|P->P|HYBRID HASH

Chapter 4
About Adaptive Query Optimization

01] | \

| | \
(RAND)

HASH

01/Q01,02|PCWP|

[Q1, 00| PCWC| |

:0110Q1, 00 |PCWC| |
:01]Q1, 00| PCWP| |
:01]Q1, 02| PCWP| |
:01/Q1,01|P->P|HYBRID HASH|
101101, 01| PCWC| |
:01]Q1,01|PCWP| |

Oracle Database VLDB and Partitioning Guide to learn more about parallel data
redistribution techniques

|Rows |Bytes|Cost|Time| TQ |IN-OUT|PQ Distrib|

|Id|Operation | Name

| 0|SELECT STATEMENT |DEPARTME| 271621 |6(34) |:
| 1| PX COORDINATOR | | \ |

| 2] PX SEND QC (RANDOM) [ :TQ10003| 271621 |6(34) |
[ 3] HASH GROUP BY | | 271621 |6(34) |
| 4] PX RECEIVE | | 271621 |6(34) |
| 5] PX SEND HASH [ :TQ10002] 27]621 |6(34) |
| 6] HASH GROUP BY | | 271621 |6(34) |
[*7] HASH JOIN | [1061243815(20) | :
| 8] PX RECEIVE | | 271432 |2 (0) |
[ 9] PX SEND HYBRID HASH [ :TQL0000| 271432 2 (0) |
[10] STATISTICS COLLECTOR \ | | |

[11] PX BLOCK ITERATOR | | 271432 |2 (0) |
[12] TABLE ACCESS FULL |DEPARTME | 271432 |2 (0) |
[13] PX RECEIVE | [107]749 |2 (0) |
[14] PX SEND HYBRID HASH (SKEW) |:TQ10001|107(749 |2 (0)|
[15] PX BLOCK ITERATOR | [1071749 |2 (0) |
[16] TABLE ACCESS FULL |EMPLOYEE |107]749 2 (0) |

Adaptive plans prune indexes that do not significantly reduce the number of matched rows.

When the optimizer generates a star transformation plan, it must choose the right combination
of bitmap indexes to reduce the relevant set of rowids as efficiently as possible. If many

indexes exist, some indexes might not reduce the rowid set substantially, but nevertheless
introduce significant processing cost during query execution. Adaptive plans can solve this
problem by not using indexes that degrade performance.

ORACLE

4-18



Chapter 4
About Adaptive Query Optimization

Example 4-2 Bitmap Index Pruning

In this example, you issue the following star query, which joins the cars fact table with multiple
dimension tables (sample output included):

SELECT /*+ star transformation(r) */ l.color name, k.make name,
h.filter col, count(*)
FROM cars r, colors 1, makes k, models d, hcc tab h

WHERE r.make id = k.make id

AND r.color id = l.color id

AND r.model id = d.model id

AND r.high card col = h.high card col
AND d.model name = 'RAV4'

AND k.make name = 'Toyota'

AND l.color name = 'Burgundy'

AND h.filter col = 100

GROUP BY l.color name, k.make name, h.filter col;

COLOR NA MAKE N FILTER COL COUNT (*)

Burgundy Toyota 100 15000

The following sample execution plan shows that the query generated no rows for the bitmap
node in Step 12 and Step 17. The adaptive optimizer determined that filtering rows by using
the CAR_MODEL IDX and CAR MAKE IDX indexes was inefficient. The query did not use the steps
in the plan that begin with a dash (-).

| Id | Operation | Name |
| 0 | SELECT STATEMENT | |
| 1 | SORT GROUP BY NOSORT | |
| 2 | HASH JOIN | |
| 3| VIEW | VW ST 5497B905 |
| 4 | NESTED LOOPS | |
| 5 | BITMAP CONVERSION TO ROWIDS | |
| 6 | BITMAP AND | |
| 7 | BITMAP MERGE |

| 8 | BITMAP KEY ITERATION | |
| 9 | TABLE ACCESS FULL | COLORS |
| 10 | BITMAP INDEX RANGE SCAN | CAR COLOR IDX

[- 11 | STATISTICS COLLECTOR | |
[- 12 | BITMAP MERGE | |
[- 13 | BITMAP KEY ITERATION | |
|- 14 | TABLE ACCESS FULL | MODELS |
[- 15 | BITMAP INDEX RANGE SCAN | CAR MODEL IDX

[- 16 | STATISTICS COLLECTOR | |
=17 | BITMAP MERGE | |
|- 18 | BITMAP KEY ITERATION | |
[- 19 | TABLE ACCESS FULL | MAKES |
[- 20 | BITMAP INDEX RANGE SCAN | CAR MAKE IDX

| 21 | TABLE ACCESS BY USER ROWID | CARS |
| 22 ] MERGE JOIN CARTESIAN | |
| 23 ] MERGE JOIN CARTESIAN | |

ORACLE 419



Chapter 4
About Adaptive Query Optimization

| 24 | MERGE JOIN CARTESIAN | |
| 25 | TABLE ACCESS FULL | MAKES

| 26 | BUFFER SORT | |
| 27 | TABLE ACCESS FULL | MODELS

| 28 | BUFFER SORT | |
| 29 | TABLE ACCESS FULL | COLORS |
| 30 | BUFFER SORT | |
| 31 | TABLE ACCESS FULL | HCC_TAB

Note

- dynamic statistics used: dynamic sampling (level=2)
- star transformation used for this statement
- this is an adaptive plan (rows marked '-' are inactive)

When Adaptive Query Plans Are Enabled

Adaptive query plans are enabled by default.

Adaptive plans are enabled when the following initialization parameters are set:
* OPTIMIZER ADAPTIVE PLANS iS TRUE (default)

* OPTIMIZER FEATURES ENABLE (S 12.1.0.1 or later

* OPTIMIZER ADAPTIVE REPORTING ONLY is FALSE (default)

Adaptive plans control the following optimizations:

* Nested loops and hash join selection

e Star transformation bitmap pruning

e Adaptive parallel distribution method

# See Also:

*  "Controlling Adaptive Optimization"

» Oracle Database Reference to learn more about OPTIMIZER ADAPTIVE PLANS

Adaptive Statistics

The optimizer can use adaptive statistics when query predicates are too complex to rely on
base table statistics alone. By default, adaptive statistics are disabled
(OPTIMIZER ADAPTIVE STATISTICS is false).

Dynamic Statistics

ORACLE

Dynamic statistics are an optimization technique in which the database executes a recursive
SQL statement to scan a small random sample of a table's blocks to estimate predicate
cardinalities.

During SQL compilation, the optimizer decides whether to use dynamic statistics by
considering whether available statistics are sufficient to generate an optimal plan. If the

4-20



Chapter 4
About Adaptive Query Optimization

available statistics are insufficient, then the optimizer uses dynamic statistics to augment the
statistics. To improve the quality of optimizer decisions, the optimizer can use dynamic
statistics for table scans, index access, joins, and GROUP BY operations.

Automatic Reoptimization

In automatic reoptimization, the optimizer changes a plan on subsequent executions after
the initial execution.

Adaptive query plans are not feasible for all kinds of plan changes. For example, a query with
an inefficient join order might perform suboptimally, but adaptive query plans do not support
adapting the join order during execution. At the end of the first execution of a SQL statement,
the optimizer uses the information gathered during execution to determine whether automatic
reoptimization has a cost benefit. If execution information differs significantly from optimizer
estimates, then the optimizer looks for a replacement plan on the next execution.

The optimizer uses the information gathered during the previous execution to help determine
an alternative plan. The optimizer can reoptimize a query several times, each time gathering
additional data and further improving the plan.

Reoptimization: Statistics Feedback

ORACLE

A form of reoptimization known as statistics feedback (formerly known as cardinality
feedback) automatically improves plans for repeated queries that have cardinality
misestimates.

The optimizer can estimate cardinalities incorrectly for many reasons, such as missing
statistics, inaccurate statistics, or complex predicates. The basic process of reoptimization
using statistics feedback is as follows:

1. During the first execution of a SQL statement, the optimizer generates an execution plan.

The optimizer may enable monitoring for statistics feedback for the shared SQL area in the
following cases:

e Tables with no statistics
e Multiple conjunctive or disjunctive filter predicates on a table

e Predicates containing complex operators for which the optimizer cannot accurately
compute selectivity estimates

2. Atthe end of the first execution, the optimizer compares its initial cardinality estimates to
the actual number of rows returned by each operation in the plan during execution.

If estimates differ significantly from actual cardinalities, then the optimizer stores the
correct estimates for subsequent use. The optimizer also creates a SQL plan directive so
that other SQL statements can benefit from the information obtained during this initial
execution.

3. If the query executes again, then the optimizer uses the corrected cardinality estimates
instead of its usual estimates.

The OPTIMIZER ADAPTIVE STATISTICS initialization parameter does not control all features of
automatic reoptimization. Specifically, this parameter controls statistics feedback for join
cardinality only in the context of automatic reoptimization. For example, setting

OPTIMIZER ADAPTIVE STATISTICS to FALSE disables statistics feedback for join cardinality

misestimates, but it does not disable statistics feedback for single-table cardinality
misestimates.

4-21



Example 4-3 Statistics Feedback

Chapter 4

About Adaptive Query Optimization

This example shows how the database uses statistics feedback to adjust incorrect estimates.

1. The user oe runs the following query of the orders, order items, and

product information tables:

SELECT o.order id, v.product name

FROM orders o,

( SELECT order id, product name
FROM order items o, product information p
WHERE p.product id = o.product id

AND list price < 50

AND min price < 40 ) v

WHERE o.order id = v.orde

r id

2. Querying the plan in the cursor shows that the estimated rows (E-Rows) is far fewer than

the actual rows (A-Rows).

| Id | Operation | Name

| 0| SELECT STATEMENT | |

| 1| NESTED LOOPS | |

| 2] MERGE JOIN CARTESIAN| |

| *3] TABLE ACCESS FULL |PRODUCT_INFORMATION|

| 4] BUFFER SORT | | 8
| 5] INDEX FULL SCAN |ORDER_PK |

| %6 INDEX UNIQUE SCAN |ORDER_ITEMS UK 1913

3 - filter (("MIN_PRICE"<40 AND "LIST PRICE"<50))

1]

1] 1
1] 4
1] 1
71 105
1] 105
51 1

| 269
| 269
19135
|87
19135
| 105
| 269

[00:
[00:
[00:
[00:
[00:
[00:
[00:

:00.1411338] | \ \
:00.1411338] | \ \
:00.05] 33| | \

:00.011 32| | \ \
:00.02] 11409614096|1/0/0]
:00.01] 1] | \ \
:00.04]1305] | \ \

6 - access("O"."ORDER_ID"="ORDER ID" AND "P"."PRODUCT ID"="O"."PRODUCT ID"

3. The user oe reruns the query in Step 1.

4. Querying the plan in the cursor shows that the optimizer used statistics feedback (shown in
the Note) for the second execution, and also chose a different plan.

|Id | Operation | Name | Starts |E-Rows|A-Rows|A-Time|Buffers|Reads|OMem|1Mem|O/1/M]|
| 0| SELECT STATEMENT | [ 1] | 269 [00:00:00.05[60]1] | | |
| 1| NESTED LOOPS | [ 11269] 269 [00:00:00.05/60]1] | | |
[*2] HASH JOIN | | 1[313] 269 |00:00:00.05/39]1]1398K|1398K|1/0/0]
[ *3] TABLE ACCESS FULL | PRODUCT_INFORMATION| 1| 87| 87 [00:00:00.01115]0] | | |
| 4] INDEX FAST FULL SCAN|ORDER_ITEMS UK | 11665 665 [00:00:00.01/24]1]

[ *5] INDEX UNIQUE SCAN |ORDER_PK [269] 1| 269 [00:00:00.01/2110] | | |

2 - access ("P"."PRODUCT ID"="O"."PRODUCT ID"
3 - filter (("MIN_PRICE"<40 AND "LIST PRICE"<50))
5 - access("0"."ORDER ID"="ORDER_ ID"

- statistics feedback used for this statement

ORACLE

4-22



Chapter 4
About Adaptive Query Optimization

In the preceding output, the estimated number of rows (269) in Step 1 matches the actual
number of rows.

Reoptimization: Performance Feedback

Another form of reoptimization is performance feedback. This reoptimization helps improve the
degree of parallelism automatically chosen for repeated SQL statements when
PARALLEL DEGREE POLICY iS set to ADAPTIVE.

The basic process of reoptimization using performance feedback is as follows:

1. During the first execution of a SQL statement, when PARALLEL DEGREE POLICY is set to
ADAPTIVE, the optimizer determines whether to execute the statement in parallel, and if so,
which degree of parallelism to use.

The optimizer chooses the degree of parallelism based on the estimated performance of
the statement. Additional performance monitoring is enabled for all statements.

2. Atthe end of the initial execution, the optimizer compares the following:
e The degree of parallelism chosen by the optimizer

e The degree of parallelism computed based on the performance statistics (for example,
the CPU time) gathered during the actual execution of the statement

If the two values vary significantly, then the database marks the statement for reparsing,
and stores the initial execution statistics as feedback. This feedback helps better compute
the degree of parallelism for subsequent executions.

3. If the query executes again, then the optimizer uses the performance statistics gathered
during the initial execution to better determine a degree of parallelism for the statement.

# Note:

Even if PARALLEL DEGREE POLICY is not set to ADAPTIVE, statistics feedback may
influence the degree of parallelism chosen for a statement.

SQL Plan Directives

ORACLE

A SQL plan directive is additional information that the optimizer uses to generate a more
optimal plan.

The directive is a “note to self” by the optimizer that it is misestimating cardinalities of certain
types of predicates, and also a reminder to DBMS_STATS to gather statistics needed to correct
the misestimates in the future.

For example, during query optimization, when deciding whether the table is a candidate for
dynamic statistics, the database queries the statistics repository for directives on a table. If the
guery joins two tables that have a data skew in their join columns, then a SQL plan directive
can direct the optimizer to use dynamic statistics to obtain an accurate cardinality estimate.

The optimizer collects SQL plan directives on query expressions rather than at the statement
level so that it can apply directives to multiple SQL statements. The optimizer not only corrects
itself, but also records information about the mistake, so that the database can continue to
correct its estimates even after a query—and any similar query—is flushed from the shared
pool.

4-23



Chapter 4
About Approximate Query Processing

The database automatically creates directives, and stores them in the SYSAUX tablespace. You
can alter, save to disk, and transport directives using the PL/SQL package DBMS SPD.

¢ See Also:

e "SQL Plan Directives"
* "Managing SQL Plan Directives"

*  Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPD package

When Adaptive Statistics Are Enabled

Adaptive statistics are disabled by default.

Adaptive statistics are enabled when the following initialization parameters are set:
* OPTIMIZER ADAPTIVE STATISTICS is TRUE (the default is FALSE)

* OPTIMIZER FEATURES ENABLE (S 12.1.0.1 or later

Setting OPTIMIZER ADAPTIVE STATISTICS to TRUE enables the following features:

e SQL plan directives

»  Statistics feedback for join cardinality

e Adaptive dynamic sampling

# Note:

Setting OPTIMIZER ADAPTIVE STATISTICS to FALSE preserves statistics feedback for
single-table cardinality misestimates.

¢ See Also:

e "Controlling Adaptive Optimization"

¢ QOracle Database Reference to learn more about
OPTIMIZER ADAPTIVE STATISTICS

About Approximate Query Processing

ORACLE

Approximate query processing is a set of optimization techniques that speed analytic
queries by calculating results within an acceptable range of error.

Business intelligence (BIl) queries heavily rely on sorts that involve aggregate functions such as
COUNT DISTINCT, SUM, RANK, and MEDIAN. For example, an application generates reports
showing how many distinct customers are logged on, or which products were most popular last
week. It is not uncommon for Bl applications to have the following requirements:

4-24



Chapter 4
About Approximate Query Processing

*  Queries must be able to process data sets that are orders of magnitude larger than in
traditional data warehouses.

For example, the daily volumes of web logs of a popular website can reach tens or
hundreds of terabytes a day.

*  Queries must provide near real-time response.
For example, a company requires quick detection and response to credit card fraud.
*  Explorative queries of large data sets must be fast.

For example, a user might want to find out a list of departments whose sales have
approximately reached a specific threshold. A user would form targeted queries on these
departments to find more detailed information, such as the exact sales number, the
locations of these departments, and so on.

For large data sets, exact aggregation queries consume extensive memory, often spilling to
temp space, and can be unacceptably slow. Applications are often more interested in a general
pattern than exact results, so customers are willing to sacrifice exactitude for speed. For
example, if the goal is to show a bar chart depicting the most popular products, then whether a
product sold 1 million units or .999 million units is statistically insignificant.

Oracle Database implements its solution through approximate query processing. Typically, the
accuracy of the approximate aggregation is over 97% (with 95% confidence), but the
processing time is orders of magnitude faster. The database uses less CPU, and avoids the
I/0O cost of writing to temp files.

¢ See Also:

"NDV Algorithms: Adaptive Sampling and HyperLogLog"

Approximate Query Initialization Parameters

You can implement approximate query processing without changing existing code by using the
APPROX_FOR_* initialization parameters.

Set these parameters at the database or session level. The following table describes
initialization parameters and SQL functions relevant to approximation techniques.

Table 4-2 Approximate Query Initialization Parameters

Initialization Parameter Default Description See Also
APPROX FOR AGGREGATION FALSE Enables (TRUE) or disables (FALSE) Oracle
approximate query processing. This Database

parameter acts as an umbrella parameter for | Reference
enabling the use of functions that return
approximate results.

APPROX FOR COUNT DISTINCT FALSE Converts COUNT (DISTINCT) to Oracle
APPROX COUNT DISTINCT. Database
Reference

APPROX FOR PERCENTILE none Converts eligible exact percentile functions to | Oracle

their APPROX PERCENTILE * counterparts. | Database
Reference

ORACLE

4-25



Chapter 4

About Approximate Query Processing

# See Also:

*  "About Optimizer Initialization Parameters"

Approximate Query SQL Functions

Approximate query processing uses SQL functions to provide real-time responses to
explorative queries where approximations are acceptable.

e Oracle Database Data Warehousing Guide to learn more about approximate
guery processing

The following table describes SQL functions that return approximate results.

Table 4-3 Approximate Query User Interface

SQL Function

Description

See Also

APPROX COUNT

Calculates the approximate top n most common values
when used with the APPROX RANK function.

Returns the approximate count of an expression. If you
supply MAX ERROR as the second argument, then the
function returns the maximum error between the actual and
approximate count.

You must use this function with a corresponding
APPROX_RANK function in the HAVING clause. If a query
useSAPPROX_COUNT,APPROX_SUM,OrAPPROX_RANKJhen
the query must not use any other non-approximate
aggregation functions.

The following query returns the 10 most common jobs
within every department:

SELECT department id, job_ id,
APPROX_ COUNT (*)
FROM employees
GROUP BY department id, job id
HAVING
APPROX RANK (
PARTITION BY department id
ORDER BY APPROX COUNT (*)
DESC ) <= 10;

Oracle Database SQL
Language Reference

APPROX COUNT DISTINCT

Returns the approximate number of rows that contain
distinct values of an expression.

Oracle Database SQL
Language Reference

APPROX COUNT DISTINCT AGG

Aggregates the precomputed approximate count distinct
synopses to a higher level.

Oracle Database SQL
Language Reference

APPROX COUNT DISTINCT DETAIL

Returns the synopses of the APPROX COUNT DISTINCT
function as a BLOB.

The database can persist the returned result to disk for
further aggregation.

Oracle Database SQL
Language Reference

ORACLE

4-26



Table 4-3 (Cont.) Approximate Query User Interface

SQL Function

Description

Chapter 4
About Approximate Query Processing

See Also

APPROX MEDIAN

Accepts a numeric or date-time value, and returns an
approximate middle or approximate interpolated value that
would be the middle value when the values are sorted.
This function provides an alternative to the MEDIAN
function.

Oracle Database SQL
Language Reference

APPROX PERCENTILE

Accepts a percentile value and a sort specification, and
returns an approximate interpolated value that falls into
that percentile value with respect to the sort specification.

This function provides an alternative to the
PERCENTILE CONT function.

Oracle Database SQL
Language Reference

APPROX RANK

Returns the approximate value in a group of values.

This function takes an optional PARTITION BY clause
followed by a mandatory ORDER BY ... DESC clause.
The PARTITION BY key must be a subset of the GROUP
BY key. The ORDER BY clause must include either
APPROX COUNT or APPROX SUM.

Oracle Database SQL
Language Reference

APPROX_SUM

Calculates the approximate top n accumulated values
when used with the APPROX_RANK function.

If you supply MAX ERRCR as the second argument, then
the function returns the maximum error between the actual
and approximate sum.

You must use this function with a corresponding
APPROX_RANK function in the HAVING clause. If a query
uses APPROX COUNT, APPROX SUM, or APPROX RANK, then
the query must not use any other non-approximate
aggregation functions.

The following query returns the 10 job types within every
department that have the highest aggregate salary:

SELECT department id, job_ id,
APPROX_ SUM (salary)
FROM  employees
GROUP BY department id, job id
HAVING
APPROX RANK (
PARTITION BY department id
ORDER BY APPROX SUM(salary)
DESC ) <= 10;

Note that APPROX SUM returns an error when the input is a
negative number.

Oracle Database SQL
Language Reference

ORACLE

# See Also:

Oracle Database Data Warehousing Guide to learn more about approximate query

processing

4-27




Chapter 4
About SQL Plan Management

About SQL Plan Management

SQL plan management enables the optimizer to automatically manage execution plans,
ensuring that the database uses only known or verified plans.

SQL plan management can build a SQL plan baseline, which contains one or more accepted
plans for each SQL statement. The optimizer can access and manage the plan history and
SQL plan baselines of SQL statements. The main objectives are as follows:

* ldentify repeatable SQL statements

* Maintain plan history, and possibly SQL plan baselines, for a set of SQL statements
* Detect plans that are not in the plan history

* Detect potentially better plans that are not in the SQL plan baseline

The optimizer uses the normal cost-based search method.

# See Also:

* "Managing SQL Plan Baselines"

e Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS SPM package

About Quarantined SQL Plans

ORACLE

Oracle Database automatically quarantines the plans for SQL statements terminated by Oracle
Database Resource Manager (the Resource Manager) for exceeding resource limits.

The Resource Manager can set a maximum estimated execution time for a SQL statement, for
example, 20 minutes. If a statement execution exceeds this limit, then the Resource Manager
terminates the statement. However, the statement may run repeatedly before being terminated,
wasting 20 minutes of resources each time it is executed.

Starting in Oracle Database 19c, if a statement exceeds the specified resource limit, then the
Resource Manager terminates the execution and “quarantines” the plan. To quarantine the
plan means to put it on a blacklist of plans that the database will not execute. Note that the
plan is quarantined, not the statement itself.

The query in our example runs for 20 minutes only once, and then never again—unless the
resource limit increases or the plan changes. If the limit is increased to 25 minutes, then the
Resource Manager permits the statement to run again with the quarantined plan. If the
statement runs for 23 minutes, which is below the new threshold, then the Resource Manager
removes the plan from quarantine. If the statement runs for 26 minutes, which is above the
new threshold, the plan remains in quarantine unless the limit is increased.

The V$SQL.SQL QUARANTINE column indicates whether a plan was quarantined for a statement
after the Resource Manager canceled execution. The AVOIDED EXECUTIONS column indicates
how often Oracle Database prevented the statement from running with the quarantined plan.

The DBMS SQLQ PL/SQL package has program units that enable you to immediately save the
guarantine information to disk, set configuration options for a quarantined plan (or force a plan
to be quarantined), and also drop configuration options. For example, for an individual SQL

4-28



Chapter 4
About the Expression Statistics Store (ESS)

statement, you can specify that either a single plan or all plans are quarantined. You can
configure specific thresholds for a quarantined plan, for example, enable a threshold of 10
seconds for CPU time or drop the threshold for I/O requests.

¢ See Also:

e Oracle Database Administrator’s Guide to learn about how the Resource
Manager quarantines plans

e Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS SQLQ

e Oracle Database Reference to learn about VS$SQL

*  Oracle Database Licensing Information User Manual for details on which features
are supported for different editions and services

About the Expression Statistics Store (ESS)

The Expression Statistics Store (ESS) is a repository maintained by the optimizer to store
statistics about expression evaluation.

When an IM column store is enabled, the database leverages the ESS for its In-Memory
Expressions (IM expressions) feature. However, the ESS is independent of the IM column
store. The ESS is a permanent component of the database and cannot be disabled.

The database uses the ESS to determine whether an expression is “hot” (frequently
accessed), and thus a candidate for an IM expression. During a hard parse of a query, the ESS
looks for active expressions in the SELECT list, WHERE clause, GROUP BY clause, and so on.

For each segment, the ESS maintains expression statistics such as the following:

*  Frequency of execution
*  Cost of evaluation
e Timestamp evaluation

The optimizer assigns each expression a weighted score based on cost and the number of
times it was evaluated. The values are approximate rather than exact. More active expressions
have higher scores. The ESS maintains an internal list of the most frequently accessed
expressions.

The ESS resides in the SGA and also persists on disk. The database saves the statistics to
disk every 15 minutes, or immediately using the

DBMS STATS.FLUSH DATABASE MONITORING INFO procedure. The ESS statistics are visible in
the DBA EXPRESSION STATISTICS view.

¢ See Also:

*  Oracle Database In-Memory Guide to learn more about the ESS

*  Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS STATS.FLUSH DATABASE MONITORING INFO

ORACLE 459



Query Transformations

This chapter describes the most important optimizer techniques for transforming queries.

The optimizer decides whether to use an available transformation based on cost.
Transformations may not be available to the optimizer for a variety of reasons, including hints
or lack of constraints. For example, transformations such as subquery unnesting are not
available for hybrid partitioned tables, which contain external partitions that do not support
constraints.

OR Expansion

In OR expansion, the optimizer transforms a query block containing top-level disjunctions into
the form of a UNION ALL query that contains two or more branches.

The optimizer achieves this goal by splitting the disjunction into its components, and then
associating each component with a branch of a UNION ALL query. The optimizer can choose OR
expansion for various reasons. For example, it may enable more efficient access paths or
alternative join methods that avoid Cartesian products. As always, the optimizer performs the
expansion only if the cost of the transformed statement is lower than the cost of the original
statement.

In previous releases, the optimizer used the CONCATENATION operator to perform the OR
expansion. Starting in Oracle Database 12c Release 2 (12.2), the optimizer uses the UNION-
ALL operator instead. The framework provides the following enhancements:

e Enables interaction among various transformations
e Avoids sharing query structures

e Enables the exploration of various search strategies
*  Provides the reuse of cost annotation

e Supports the standard SQL syntax

Example 5-1 Transformed Query: UNION ALL Condition

ORACLE

To prepare for this example, log in to the database as an administrator, execute the following
statements to add a unique constraint to the hr.departments.department name column, and
then add 100,000 rows to the hr.employees table:

ALTER TABLE hr.departments ADD CONSTRAINT department name uk UNIQUE
(department name) ;

DELETE FROM hr.employees WHERE employee id > 999;

DECLARE
v_counter NUMBER(7) := 1000;
BEGIN

FOR i IN 1..100000 LOOP

INSERT INTO hr.employees

VALUES (v_counter,null, 'Doe', 'Doe' || v_counter ||

'@example.com',null, '07-JUN-02"', "AC_ACCOUNT',null,null,null,50);
v_counter := v _counter + 1;

5-1



Chapter 5
OR Expansion

END LOOP;

END;

/

COMMIT,;

EXEC DBMS STATS.GATHER TABLE STATS ( ownname => 'hr', tabname => 'employees');

You then connect as the user hr, and execute the following query, which joins the employees
and departments tables:

SELECT *

FROM employees e, departments d

WHERE (e.email='SSTILES' OR d.department name='Treasury')
AND e.department id = d.department id;

Without OR expansion, the optimizer treats e.email="'SSTILES' OR

d.department name='Treasury' as a single unit. Consequently, the optimizer cannot use the
index on either the e.email or d.department name column, and so performs a full table scan of
employees and departments.

With OR expansion, the optimizer breaks the disjunctive predicate into two independent
predicates, as shown in the following example:

SELECT *

FROM employees e, departments d

WHERE e.email = 'SSTILES'

AND e.department id = d.department id
UNION ALL

SELECT *

FROM employees e, departments d

WHERE d.department name = 'Treasury'

AND e.department id = d.department id;

This transformation enables the e.email and d.department name columns to serve as index
keys. Performance improves because the database filters data using two unique indexes
instead of two full table scans, as shown in the following execution plan:

Plan hash value: 2512933241

| Id| Operation | Name |Rows |Bytes|Cost ($CPU) | Time

| 0 |SELECT STATEMENT | \ | [122(100) |

| 1 | VIEW |[VW ORE_19FF4E3E [9102]1679K|122 (5) |00:00:01|
| 2 | UNION-ALL | \ | | |

| 3] NESTED LOOPS | | 1] 78 | 4 (0) [00:00:01]|
| 4 | TABLE ACCESS BY INDEX ROWID | EMPLOYEES | 1| 57 1] 3 (0) |00:00:01]
[*5 | INDEX UNIQUE SCAN | EMP EMATL UK [ 1 | | 2 (0) |00:00:01]
| 6 | TABLE ACCESS BY INDEX ROWID | DEPARTMENTS | 1| 21 ] 1 (0) |00:00:01]
[*7 | INDEX UNIQUE SCAN | DEPT ID PK [ 1 | |0 (0) |

| 8 | NESTED LOOPS | [9101] 693K|118 (5) [00:00:01|
|9 | TABLE ACCESS BY INDEX ROWID | DEPARTMENTS | 1| 21 ] 1 (0) |00:00:01]
[*10 | INDEX UNIQUE SCAN IDEPARTMENT_NAME_UK\ 1] |0 (0) |

[*11] TABLE ACCESS BY INDEX ROWID BATCH| EMPLOYEES [9101| 500K|117 (5) |00:00:01]
[*12 | INDEX RANGE SCAN IEMP_DEPARTMENT_IX [9101 | | 35 (6) [00:00:01]
ORACLE

5-2



Chapter 5
View Merging

Predicate Information (identified by operation id):

10
11
12

access ("E"."EMAIL"='SSTILES")

access ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")
access ("D"."DEPARTMENT NAME"='Treasury')

filter (LNNVL ("E" ."EMAIL"='SSTILES'"))

access ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

35 rows selected.

View Merging

In view merging, the optimizer merges the query block representing a view into the query
block that contains it.

View merging can improve plans by enabling the optimizer to consider additional join orders,
access methods, and other transformations. For example, after a view has been merged and
several tables reside in one query block, a table inside a view may permit the optimizer to use
join elimination to remove a table outside the view.

For certain simple views in which merging always leads to a better plan, the optimizer
automatically merges the view without considering cost. Otherwise, the optimizer uses cost to
make the determination. The optimizer may choose not to merge a view for many reasons,
including cost or validity restrictions.

If OPTIMIZER SECURE VIEW MERGING is true (default), then Oracle Database performs checks
to ensure that view merging and predicate pushing do not violate the security intentions of the
view creator. To disable these additional security checks for a specific view, you can grant the
MERGE VIEW privilege to a user for this view. To disable additional security checks for all views
for a specific user, you can grant the MERGE ANY VIEW privilege to that user.

< Note:

You can use hints to override view merging rejected because of cost or heuristics, but
not validity.

¢ See Also:

*  Oracle Database SQL Language Reference for more information about the MERGE
ANY VIEW and MERGE VIEW privileges

e Oracle Database Reference for more information about the
OPTIMIZER SECURE VIEW MERGING initialization parameter

Query Blocks in View Merging

The optimizer represents each nested subquery or unmerged view by a separate query block.

ORACLE -



Chapter 5
View Merging

The database optimizes query blocks separately from the bottom up. Thus, the database
optimizes the innermost query block first, generates the part of the plan for it, and then
generates the plan for the outer query block, representing the entire query.

The parser expands each view referenced in a query into a separate query block. The block
essentially represents the view definition, and thus the result of a view. One option for the
optimizer is to analyze the view query block separately, generate a view subplan, and then
process the rest of the query by using the view subplan to generate an overall execution plan.
However, this technique may lead to a suboptimal execution plan because the view is
optimized separately.

View merging can sometimes improve performance. As shown in "Example 5-2", view merging
merges the tables from the view into the outer query block, removing the inner query block.
Thus, separate optimization of the view is not necessary.

Simple View Merging

ORACLE

In simple view merging, the optimizer merges select-project-join views.

For example, a query of the employees table contains a subquery that joins the departments
and locations tables.

Simple view merging frequently results in a more optimal plan because of the additional join
orders and access paths available after the merge. A view may not be valid for simple view
merging because:

e The view contains constructs not included in select-project-join views, including:
— GROUP BY
— DISTINCT
— Outer join
— MODEL
— CONNECT BY
— Set operators
— Aggregation
* The view appears on the right side of a semijoin or antijoin.
e The view contains subqueries in the SELECT list.
e The outer query block contains PL/SQL functions.

* The view participates in an outer join, and does not meet one of the several additional
validity requirements that determine whether the view can be merged.

Example 5-2 Simple View Merging

The following query joins the hr.employees table with the dept locs v view, which returns the
street address for each department. dept locs v is a join of the departments and locations
tables.

SELECT e.first name, e.last name, dept locs v.street address,
dept locs v.postal code
FROM employees g,
( SELECT d.department id, d.department name,
l.street address, l.postal code
FROM departments d, locations 1

5-4



ORACLE

Chapter 5
View Merging

WHERE d.location id = l.location id ) dept locs v
WHERE dept locs v.department id = e.department id
AND e.last name = 'Smith';

The database can execute the preceding query by joining departments and locations to
generate the rows of the view, and then joining this result to employees. Because the query
contains the view dept locs v, and this view contains two tables, the optimizer must use one
of the following join orders:

* employees, dept locs v (departments, locations)
. employees,dept_locs_v(locations,departments)
. dept_locs_v(departments,locations),employees
. dept_locs_v(locations,departments),employees

Join methods are also constrained. The index-based nested loops join is not feasible for join
orders that begin with employees because no index exists on the column from this view.
Without view merging, the optimizer generates the following execution plan:

| Id | Operation | Name | Cost (%CPU) |
| 0 | SELECT STATEMENT | | 7 (15) |
[* 1 | HASH JOIN | | T (15)]
| 2 | TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 2 (0) |
[* 3 INDEX RANGE SCAN | EMP NAME IX | 1 (0) |
| 4 |  VIEW \ | 5 (20) ]
[* 5 | HASH JOIN | | 5 (20) ]
| 6 | TABLE ACCESS FULL | LOCATIONS | 2 (0) |
| T TABLE ACCESS FULL | DEPARTMENTS | 2 (0) |

Predicate Information (identified by operation id):

1 - access("DEPT LOCS V"."DEPARTMENT ID"="E"."DEPARTMENT ID")
3 - access("E"."LAST NAME"='Smith")
5 - access("D"."LOCATION ID"="L"."LOCATION ID")

View merging merges the tables from the view into the outer query block, removing the inner
query block. After view merging, the query is as follows:

SELECT e.first name, e.last name, l.street address, l.postal code
FROM employees e, departments d, locations 1

WHERE d.location id = l.location id

AND d.department id = e.department id

AND e.last name = 'Smith';

Because all three tables appear in one query block, the optimizer can choose from the
following six join orders:

* employees, departments, locations
* employees, locations, departments

* departments, employees, locations

5-5



Chapter 5

View Merging
* departments, locations, employees
e locations, employees, departments
e locations, departments, employees

The joins to employees and departments can now be index-based. After view merging, the
optimizer chooses the following more efficient plan, which uses nested loops:

| Id | Operation | Name | Cost (%CPU) |
| 0 | SELECT STATEMENT | | 4 (0) |
| 1 | NESTED LOOPS | \

| 2 | NESTED LOOPS | \ 4 (0) 1
| 3 | NESTED LOOPS | \ 3 (0) 1
| 4 | TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 2 (0) |
[* 5] INDEX RANGE SCAN | EMP NAME IX | 1 (0) |
| 6 | TABLE ACCESS BY INDEX ROWID| DEPARTMENTS | 1 (0) |
[* 7 INDEX UNIQUE SCAN | DEPT ID PK | 0 (0) |
[* 8 | INDEX UNIQUE SCAN | LOC ID PK | 0 (0) |
| 9 | TABLE ACCESS BY INDEX ROWID | LOCATIONS | 1 (0) |

Predicate Information (identified by operation id):

5 - access("E"."LAST NAME"='Smith")
7 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
8 - access("D"."LOCATION_ID"="L"."LOCATION_ID")

¢ See Also:

The Oracle Optimizer blog at https://blogs.oracle.com/optimizer/ to learn about
outer join view merging, which is a special case of simple view merging

Complex View Merging

ORACLE

In view merging, the optimizer merges views containing GROUP BY and DISTINCT views. Like
simple view merging, complex merging enables the optimizer to consider additional join orders
and access paths.

The optimizer can delay evaluation of GROUP BY or DISTINCT operations until after it has
evaluated the joins. Delaying these operations can improve or worsen performance depending
on the data characteristics. If the joins use filters, then delaying the operation until after joins
can reduce the data set on which the operation is to be performed. Evaluating the operation
early can reduce the amount of data to be processed by subsequent joins, or the joins could
increase the amount of data to be processed by the operation. The optimizer uses cost to
evaluate view merging and merges the view only when it is the lower cost option.

Aside from cost, the optimizer may be unable to perform complex view merging for the
following reasons:

* The outer query tables do not have a rowid or unique column.

* The view appears in a CONNECT BY query block.

5-6



ORACLE

Chapter 5
View Merging

e The view contains GROUPING SETS, ROLLUP, or PIVOT clauses.
e The view or outer query block contains the MODEL clause.
Example 5-3 Complex View Joins with GROUP BY

The following view uses a GROUP BY clause:

CREATE VIEW cust prod totals v AS

SELECT SUM(s.quantity sold) total, s.cust id, s.prod id
FROM sales s

GROUP BY s.cust id, s.prod id;

The following query finds all of the customers from the United States who have bought at least
100 fur-trimmed sweaters:

SELECT c.cust_id, c.cust first name, c.cust last name, c.cust email
FROM  customers c, products p, cust prod totals v

WHERE c.country id = 52790

AND c.cust_id = cust prod totals v.cust id

AND cust _prod totals v.total > 100

AND cust _prod totals v.prod id = p.prod id

AND p.prod name = 'T3 Faux Fur-Trimmed Sweater';

The cust_prod totals v view is eligible for complex view merging. After merging, the query is
as follows:

SELECT c.cust id, cust first name, cust last name, cust email
FROM customers c, products p, sales s
WHERE c.country id = 52790
AND c.cust_id = s.cust id
AND s.prod id = p.prod id
AND p.prod name = 'T3 Faux Fur-Trimmed Sweater'
GROUP BY s.cust id, s.prod id, p.rowid, c.rowid, c.cust email,
c.cust last name,
c.cust first name, c.cust id
HAVING SUM(s.quantity sold) > 100;

The transformed query is cheaper than the untransformed query, so the optimizer chooses to
merge the view. In the untransformed query, the GROUP BY operator applies to the entire sales
table in the view. In the transformed query, the joins to products and customers filter out a
large portion of the rows from the sales table, so the GROUP BY operation is lower cost. The join
is more expensive because the sales table has not been reduced, but it is not much more
expensive because the GROUP BY operation does not reduce the size of the row set very much
in the original query. If any of the preceding characteristics were to change, merging the view
might no longer be lower cost. The final plan, which does not include a view, is as follows:

| Id | Operation | Name | Cost (%CPU) |
| 0 | SELECT STATEMENT \ | 2101 (18) |
[* 1 | FILTER \ |

| 2 | HASH GROUP BY \ | 2101 (18) |
[* 3] HASH JOIN \ | 2099 18) |
[* 4 HASH JOIN \ | 1801 19) |

5-7



ORACLE

Chapter 5

View Merging
[* 5 | TABLE ACCESS FULL| PRODUCTS | 96 (5) |
| 6 | TABLE ACCESS FULL| SALES | 1620 (15) |
[* 7 | TABLE ACCESS FULL | CUSTOMERS | 296 (11) |

Predicate Information (identified by operation id):

1 - filter(SUM("QUANTITY_SOLD")>100)

3 - access("C"."CUST ID"="CUST ID")

4 - access("PROD ID"="P"."PROD ID")

5 - filter("P"."PROD NAME"='T3 Faux Fur-Trimmed Sweater')
7 - filter("C"."COUNTRY ID"='US')

Example 5-4 Complex View Joins with DISTINCT

The following query of the cust prod v view uses a DISTINCT operator:

SELECT c.cust _id, c.cust first name, c.cust last name, c.cust email
FROM customers c, products p,

( SELECT DISTINCT s.cust id, s.prod id

FROM sales s) cust prod v

WHERE c.country id = 52790
AND c.cust_id = cust prod v.cust id
AND cust_prod v.prod id = p.prod id
AND p.prod name = 'T3 Faux Fur-Trimmed Sweater';

After determining that view merging produces a lower-cost plan, the optimizer rewrites the
query into this equivalent query:

SELECT nwvw.cust id, nwvw.cust first name, nwvw.cust last name,
nwvw.cust email
FROM ( SELECT DISTINCT(c.rowid), p.rowid, s.prod id, s.cust id,
c.cust first name, c.cust last name, c.cust email
FROM customers ¢, products p, sales s
WHERE c.country id = 52790

AND c.cust _id = s.cust id
AND s.prod id = p.prod id
AND p.prod name = 'T3 Faux Fur-Trimmed Sweater' ) nwvw;

The plan for the preceding query is as follows:

| Id | Operation | Name

| 0 | SELECT STATEMENT \

| 1| VIEW | VM NWVW 1 |
| 2 | HASH UNIQUE \ |
[* 3] HASH JOIN \

[* 4 | HASH JOIN \

[* 5 | TABLE ACCESS FULL| PRODUCTS |
| 6 | TABLE ACCESS FULL| SALES |
[* 7 TABLE ACCESS FULL | CUSTOMERS |

Predicate Information (identified by operation id):

5-8



Chapter 5
Predicate Pushing

3 - access("C"."CUST_ID"="S8"."CUST ID")

4 - access("S"."PROD ID"="P"."PROD ID")

5 - filter ("P"."PROD NAME"='T3 Faux Fur-Trimmed Sweater')
7 - filter("C"."COUNTRY ID"='US')

The preceding plan contains a view named vm_nwvw_1, Known as a projection view, even after
view merging has occurred. Projection views appear in queries in which a DISTINCT view has
been merged, or a GROUP BY view is merged into an outer query block that also contains GROUP
BY, HAVING, or aggregates. In the latter case, the projection view contains the GROUP BY,
HAVING, and aggregates from the original outer query block.

In the preceding example of a projection view, when the optimizer merges the view, it moves
the DISTINCT operator to the outer query block, and then adds several additional columns to
maintain semantic equivalence with the original query. Afterward, the query can select only the
desired columns in the SELECT list of the outer query block. The optimization retains all of the
benefits of view merging: all tables are in one query block, the optimizer can permute them as
needed in the final join order, and the DISTINCT operation has been delayed until after all of the
joins complete.

Predicate Pushing

In predicate pushing, the optimizer "pushes" the relevant predicates from the containing
query block into the view query block.

For views that are not merged, this technique improves the subplan of the unmerged view. The
database can use the pushed-in predicates to access indexes or to use as filters.

For example, suppose you create a table hr.contract workers as follows:

DROP TABLE contract workers;

CREATE TABLE contract workers AS (SELECT * FROM employees where 1=2);

INSERT INTO contract workers VALUES (306, 'Bill', 'Jones', 'BJONES',
'555.555.2000', '07-JUN-02', 'AC ACCOUNT', 8300, 0,205, 110);

INSERT INTO contract workers VALUES (406, 'Jill', 'Ashworth', 'JASHWORTH',
'555.999.8181"', '09-JUN-05', 'AC ACCOUNT', 8300, 0,205, 50);

INSERT INTO contract workers VALUES (506, 'Marcie', 'Lunsford',
'"MLUNSFORD', '555.888.2233', '22-JUL-01', 'AC ACCOUNT', 8300,
0, 205, 110);

COMMIT;

CREATE INDEX contract workers index ON contract workers(department id);

You create a view that references employees and contract workers. The view is defined with
a query that uses the UNION set operator, as follows:

CREATE VIEW all employees vw AS
( SELECT employee id, last name, job id, commission pct, department id
FROM employees )
UNION
( SELECT employee id, last name, job id, commission pct, department id
FROM contract workers );

ORACLE -



Chapter 5
Subquery Unnesting

You then query the view as follows:

SELECT last name
FROM all employees vw
WHERE department id = 50;

Because the view is a UNION set query, the optimizer cannot merge the view's query into the
accessing query block. Instead, the optimizer can transform the accessing statement by
pushing its predicate, the WHERE clause condition department 1d=50, into the view's UNION set
guery. The equivalent transformed query is as follows:

SELECT last name

FROM ( SELECT employee id, last name, job id, commission pct, department id
FROM  employees
WHERE department id=50
UNION
SELECT employee id, last name, job id, commission pct, department id
FROM contract workers
WHERE department id=50 );

The transformed query can now consider index access in each of the query blocks.

Subquery Unnesting

ORACLE

In subquery unnesting, the optimizer transforms a nested query into an equivalent join
statement, and then optimizes the join.

This transformation enables the optimizer to consider the subquery tables during access path,
join method, and join order selection. The optimizer can perform this transformation only if the
resulting join statement is guaranteed to return the same rows as the original statement, and if
subqueries do not contain aggregate functions such as AvG.

For example, suppose you connect as user sh and execute the following query:

SELECT *

FROM sales

WHERE cust_id IN ( SELECT cust_id
FROM customers );

Because the customers.cust_id column is a primary key, the optimizer can transform the
complex query into the following join statement that is guaranteed to return the same data:

SELECT sales.*
FROM sales, customers
WHERE sales.cust id = customers.cust id;

If the optimizer cannot transform a complex statement into a join statement, it selects
execution plans for the parent statement and the subquery as though they were separate
statements. The optimizer then executes the subquery and uses the rows returned to execute
the parent query. To improve execution speed of the overall execution plan, the optimizer
orders the subplans efficiently.

5-10



Chapter 5
Query Rewrite with Materialized Views

Query Rewrite with Materialized Views

A materialized view is a query result stored in a table.

When the optimizer finds a user query compatible with the query associated with a
materialized view, the database can rewrite the query in terms of the materialized view. This
technique improves query execution because the database has precomputed most of the
query result.

The optimizer looks for materialized views that are compatible with the user query, and then
uses a cost-based algorithm to select materialized views to rewrite the query. The optimizer
does not rewrite the query when the plan generated unless the materialized views has a lower
cost than the plan generated with the materialized views.

# See Also:

Oracle Database Data Warehousing Guide to learn more about query rewrite

About Query Rewrite and the Optimizer

A query undergoes several checks to determine whether it is a candidate for query rewrite.

If the query fails any check, then the query is applied to the detail tables rather than the
materialized view. The inability to rewrite can be costly in terms of response time and
processing power.

The optimizer uses two different methods to determine when to rewrite a query in terms of a
materialized view. The first method matches the SQL text of the query to the SQL text of the
materialized view definition. If the first method fails, then the optimizer uses the more general
method in which it compares joins, selections, data columns, grouping columns, and aggregate
functions between the query and materialized views.

Query rewrite operates on queries and subqueries in the following types of SQL statements:
e  SELECT

e CREATE TABLE .. AS SELECT

e INSERT INTO .. SELECT

It also operates on subqueries in the set operators UNION, UNION ALL, INTERSECT, and MINUS,
and subqueries in DML statements such as INSERT, DELETE, and UPDATE.

Dimensions, constraints, and rewrite integrity levels affect whether a query is rewritten to use
materialized views. Additionally, query rewrite can be enabled or disabled by REWRITE and
NOREWRITE hints and the QUERY REWRITE ENABLED session parameter.

The DBMS_MVIEW.EXPLAIN REWRITE procedure advises whether query rewrite is possible on a
query and, if so, which materialized views are used. It also explains why a query cannot be
rewritten.

About Initialization Parameters for Query Rewrite

Query rewrite behavior is controlled by certain database initialization parameters.

ORACLE -



Chapter 5
Query Rewrite with Materialized Views

Table 5-1 Initialization Parameters that Control Query Rewrite Behavior

Initialization Parameter Name

Initialization Parameter
Value

Behavior of Query Rewrite

OPTIMIZER MODE

QUERY REWRITE ENABLED

QUERY REWRITE INTEGRITY

ALL_ROWS (default),
FIRST_ROWS, or
FIRST ROWS_n

TRUE (default), FALSE, or
FORCE

STALE TOLERATED, TRUSTED,
or ENFORCED (the default)

With OPTIMIZER MODE setto FIRST ROWS, the
optimizer uses a mix of costs and heuristics to find a
best plan for fast delivery of the first few rows. When set
to FIRST _ROWS_n, the optimizer uses a cost-based
approach and optimizes with a goal of best response
time to return the first n rows (where n = 1, 10, 100,
1000).

This option enables the query rewrite feature of the
optimizer, enabling the optimizer to utilize materialized
views to enhance performance. If set to FALSE, this
option disables the query rewrite feature of the optimizer
and directs the optimizer not to rewrite queries using
materialized views even when the estimated query cost
of the unrewritten query is lower.

If set to FORCE, this option enables the query rewrite
feature of the optimizer and directs the optimizer to
rewrite queries using materialized views even when the
estimated query cost of the unrewritten query is lower.

This parameter is optional. However, if it is set, the value
must be one of these specified in the Initialization
Parameter Value column.

By default, the integrity level is set to ENFORCED. In this
mode, all constraints must be validated. Therefore, if you
use ENABLE NOVALIDATE RELY, certain types of query
rewrite might not work. To enable query rewrite in this
environment (where constraints have not been
validated), you should set the integrity level to a lower
level of granularity such as TRUSTED or

STALE TOLERATED.

Related Topics

About the Accuracy of Query Rewrite
Query rewrite offers three levels of rewrite integrity that are controlled by the initialization
parameter QUERY REWRITE INTEGRITY.

About the Accuracy of Query Rewrite

Query rewrite offers three levels of rewrite integrity that are controlled by the initialization

ORACLE

parameter QUERY REWRITE INTEGRITY.

The values that you can set for the QUERY REWRITE INTEGRITY parameter are as follows:

This is the default mode. The optimizer only uses fresh data from the materialized views
and only use those relationships that are based on ENABLED VALIDATED primary, unique, or
foreign key constraints.

In TRUSTED mode, the optimizer trusts that the relationships declared in dimensions and
RELY constraints are correct. In this mode, the optimizer also uses prebuilt materialized

5-12



Chapter 5
Query Rewrite with Materialized Views

views or materialized views based on views, and it uses relationships that are not enforced
as well as those that are enforced. It also trusts declared but not ENABLED VALIDATED
primary or unique key constraints and data relationships specified using dimensions. This
mode offers greater query rewrite capabilities but also creates the risk of incorrect results if
any of the trusted relationships you have declared are incorrect.

° STALE TOLERATED

In STALE_TOLERATED mode, the optimizer uses materialized views that are valid but contain
stale data as well as those that contain fresh data. This mode offers the maximum rewrite
capability but creates the risk of generating inaccurate results.

If rewrite integrity is set to the safest level, ENFORCED, the optimizer uses only enforced primary
key constraints and referential integrity constraints to ensure that the results of the query are
the same as the results when accessing the detail tables directly.

If the rewrite integrity is set to levels other than ENFORCED, there are several situations where
the output with rewrite can be different from that without it:

e A materialized view can be out of synchronization with the master copy of the data. This
generally happens because the materialized view refresh procedure is pending following
bulk load or DML operations to one or more detail tables of a materialized view. At some
data warehouse sites, this situation is desirable because it is not uncommon for some
materialized views to be refreshed at certain time intervals.

e The relationships implied by the dimension objects are invalid. For example, values at a
certain level in a hierarchy do not roll up to exactly one parent value.

e The values stored in a prebuilt materialized view table might be incorrect.

e A wrong answer can occur because of bad data relationships defined by unenforced table
or view constraints.

You can set QUERY REWRITE INTEGRITY either in your initialization parameter file or using an
ALTER SYSTEM or ALTER SESSION Statement.

Example of Query Rewrite

This example illustrates the power of query rewrite with materialized views.

Consider the following materialized view, cal month sales mv, which provides an aggregation
of the dollar amount sold in every month:

CREATE MATERIALIZED VIEW cal month sales mv

ENABLE QUERY REWRITE AS

SELECT t.calendar month desc, SUM(s.amount sold) AS dollars
FROM sales s, times t WHERE s.time id = t.time id

GROUP BY t.calendar month desc;

Let us assume that, in a typical month, the number of sales in the store is around one million.
So this materialized aggregate view has the precomputed aggregates for the dollar amount
sold for each month.

Consider the following query, which asks for the sum of the amount sold at the store for each
calendar month:

SELECT t.calendar month desc, SUM(s.amount sold)
FROM sales s, times t WHERE s.time id = t.time id
GROUP BY t.calendar month desc;

ORACLE - 13



Chapter 5
Star Transformation

In the absence of the previous materialized view and query rewrite feature, Oracle Database
must access the sales table directly and compute the sum of the amount sold to return the
results. This involves reading many million rows from the sales table, which will invariably
increase the query response time due to the disk access. The join in the query will also further
slow down the query response as the join needs to be computed on many million rows.

In the presence of the materialized view cal month sales mv, query rewrite will transparently
rewrite the previous query into the following query:

SELECT calendar month, dollars
FROM cal month sales mv;

Because there are only a few dozen rows in the materialized view cal month sales mv and no
joins, Oracle Database returns the results instantly.

Star Transformation

Star transformation is an optimizer transformation that avoids full table scans of fact tables in a
star schema.

About Star Schemas

A star schema divides data into facts and dimensions.

Facts are the measurements of an event such as a sale and are typically numbers.
Dimensions are the categories that identify facts, such as date, location, and product.

A fact table has a composite key made up of the primary keys of the dimension tables of the
schema. Dimension tables act as lookup or reference tables that enable you to choose values
that constrain your queries.

Diagrams typically show a central fact table with lines joining it to the dimension tables, giving
the appearance of a star. The following graphic shows sales as the fact table and products,
times, customers, and channels as the dimension tables.

Figure 5-1 Star Schema

products times

sales
(amount_sold,
quantity_sold)

Fact Table
customers channels

Dimension Table Dimension Table

A snowflake schema is a star schema in which the dimension tables reference other tables. A
snowstorm schema is a combination of snowflake schemas.

ORACLE _—



Chapter 5
Star Transformation

# See Also:

Oracle Database Data Warehousing Guide to learn more about star schemas

Purpose of Star Transformations

In joins of fact and dimension tables, a star transformation can avoid a full scan of a fact table.

The star transformation improves performance by fetching only relevant fact rows that join to
the constraint dimension rows. In some cases, queries have restrictive filters on other columns
of the dimension tables. The combination of filters can dramatically reduce the data set that the
database processes from the fact table.

How Star Transformation Works

Star transformation adds subquery predicates, called bitmap semijoin predicates,
corresponding to the constraint dimensions.

The optimizer performs the transformation when indexes exist on the fact join columns. By
driving bitmap AND and OR operations of key values supplied by the subqueries, the database
only needs to retrieve relevant rows from the fact table. If the predicates on the dimension
tables filter out significant data, then the transformation can be more efficient than a full scan
on the fact table.

After the database has retrieved the relevant rows from the fact table, the database may need
to join these rows back to the dimension tables using the original predicates. The database can
eliminate the join back of the dimension table when the following conditions are met:

e All the predicates on dimension tables are part of the semijoin subquery predicate.
e The columns selected from the subquery are unique.

*  The dimension columns are not in the SELECT list, GROUP BY clause, and so on.

Controls for Star Transformation

ORACLE

The STAR TRANSFORMATION ENABLED initialization parameter controls star transformations.
This parameter takes the following values:

. true

The optimizer performs the star transformation by identifying the fact and constraint
dimension tables automatically. The optimizer performs the star transformation only if the
cost of the transformed plan is lower than the alternatives. Also, the optimizer attempts
temporary table transformation automatically whenever materialization improves
performance (see "Temporary Table Transformation: Scenario®).

e false (default)
The optimizer does not perform star transformations.
* TEMP DISABLE

This value is identical to true except that the optimizer does not attempt temporary table
transformation.

5-15



Chapter 5
Star Transformation

# See Also:

Oracle Database Reference to learn about the STAR_ TRANSFORMATION ENABLED
initialization parameter

Star Transformation: Scenario

ORACLE

This scenario demonstrates a star transformation of a star query.
Example 5-5 Star Query

The following query finds the total Internet sales amount in all cities in California for quarters
Q1 and Q2 of year 1999:

SELECT c.cust city,
t.calendar quarter desc,
SUM(s.amount sold) sales amount
FROM sales s,
times t,
customers c,
channels ch
WHERE s.time id = t.time id
AND s.cust_id = c.cust_id
AND s.channel id = ch.channel id
AND c.cust state province = 'CA'
AND ch.channel desc = 'Internet'
AND t.calendar quarter desc IN ('1999-01','1999-02")
GROUP BY c.cust city, t.calendar quarter desc;

Sample output is as follows:

CUST_CITY CALENDA SALES_AMOUNT
Montara 1999-02 1618.01
Pala 1999-01 3263.93
Cloverdale 1999-01 52.64
Cloverdale 1999-02 266.28

In this example, sales is the fact table, and the other tables are dimension tables. The sales
table contains one row for every sale of a product, so it could conceivably contain billions of
sales records. However, only a few products are sold to customers in California through the
Internet for the specified quarters.

Example 5-6 Star Transformation

This example shows a star transformation of the query in Example 5-5. The transformation
avoids a full table scan of sales.

SELECT c.cust city, t.calendar quarter desc, SUM(s.amount sold) sales amount
FROM sales s, times t, customers c

WHERE s.time id = t.time id

AND s.cust_id = c.cust_id

5-16



Chapter 5
Star Transformation

AND c.cust state province = 'CA'
AND t.calendar quarter desc IN ('1999-01','1999-02")
AND S.time id IN ( SELECT time id
FROM  times
WHERE calendar quarter desc IN('1999-01','1999-02'") )
AND s.cust_id IN ( SELECT cust id
FROM customers
WHERE cust state province='CA' )
AND s.channel id IN ( SELECT channel id
FROM  channels
WHERE channel desc = 'Internet' )
GROUP BY c.cust city, t.calendar quarter desc;

Example 5-7 Partial Execution Plan for Star Transformation

This example shows an edited version of the execution plan for the star transformation in
Example 5-6.

Line 26 shows that the sales table has an index access path instead of a full table scan. For
each key value that results from the subqueries of channels (line 14), times (line 19), and
customers (line 24), the database retrieves a bitmap from the indexes on the sales fact table
(lines 15, 20, 25).

Each bit in the bitmap corresponds to a row in the fact table. The bit is set when the key value
from the subquery is same as the value in the row of the fact table. For example, in the bitmap
101000... (the ellipses indicates that the values for the remaining rows are 0), rows 1 and 3 of
the fact table have matching key values from the subquery.

The operations in lines 12, 17, and 22 iterate over the keys from the subqueries and retrieve
the corresponding bitmaps. In Example 5-6, the customers subquery seeks the IDs of
customers whose state or province is CA. Assume that the bitmap 101000... corresponds to
the customer ID key value 103515 from the customers table subquery. Also assume that the
customers subquery produces the key value 103516 with the bitmap 010000. . ., which means
that only row 2 in sales has a matching key value from the subquery.

The database merges (using the OR operator) the bitmaps for each subquery (lines 11, 16, 21).
In our customers example, the database produces a single bitmap 111000. .. for the
customers subquery after merging the two bitmaps:

101000... # bitmap corresponding to key 103515
010000... # bitmap corresponding to key 103516
111000... # result of OR operation

In line 10, the database applies the AND operator to the merged bitmaps. Assume that after the
database has performed all 0rR operations, the resulting bitmap for channels is 100000. .. If the
database performs an AND operation on this bitmap and the bitmap from customers subquery,
then the result is as follows:

100000... # channels bitmap after all OR operations performed
111000... # customers bitmap after all OR operations performed
100000... # bitmap result of AND operation for channels and customers

ORACLE 5-17



Chapter 5
Star Transformation

In line 9, the database generates the corresponding rowids of the final bitmap. The database
retrieves rows from the sales fact table using the rowids (line 26). In our example, the
database generate only one rowid, which corresponds to the first row, and thus fetches only a
single row instead of scanning the entire sales table.

SELECT STATEMENT
HASH GROUP BY

| * HASH JOIN
| * TABLE ACCESS FULL CUSTOMERS
HASH JOIN
| * TABLE ACCESS FULL TIMES
| VIEW VW_ST_B1772830

NESTED LOOPS
PARTITION RANGE SUBQUERY

9 BITMAP CONVERSION TO ROWIDS
10 BITMAP AND
11 BITMAP MERGE
12 BITMAP KEY ITERATION

\
\
\
\
\
\
\
\
\
\
\
\
\
13 | BUFFER SORT
\
\
\
\
\
\
\
\
\
\
\
\
\

|

|

|

|

|

|

|

[ * 14 TABLE ACCESS FULL CHANNELS

[* 15 BITMAP INDEX RANGE SCAN| SALES CHANNEL BIX
| 16 BITMAP MERGE |

|17 BITMAP KEY ITERATION |

| 18 BUFFER SORT

[* 19 TABLE ACCESS FULL | TIMES

[* 20 BITMAP INDEX RANGE SCAN| SALES TIME BIX
| 21 BITMAP MERGE

| 22 BITMAP KEY ITERATION |

| 23 BUFFER SORT

| * 24 TABLE ACCESS FULL | CUSTOMERS

[* 25 BITMAP INDEX RANGE SCAN| SALES CUST BIX
| 26 TABLE ACCESS BY USER ROWID | SALES

- access ("ITEM 1"="C"."CUST ID")
- filter("C"."CUST_STATE_PROVINCE"='CA')
- access ("ITEM 2"="T"."TIME ID")
- filter(("T"."CALENDAR_QUARTER_DESC"='1999—01'

OR "T"."CALENDAR QUARTER DESC"='1999-02'))
14 - filter("CH"."CHANNEL_DESC"='Internet')
15 - access("S"."CHANNEL ID"="CH"."CHANNEL ID")
19 - filter(("T"."CALENDAR_QUARTER_DESC"='1999—01'

OR "T"."CALENDAR QUARTER DESC"='1999-02'))

20 - access("S"."TIME ID"="T"."TIME ID")
24 - filter("C"."CUST_STATE_PROVINCE"='CA')
25 - access("S"."CUST ID"="C"."CUST ID")

g w N

Note

ORACLE - 18



Chapter 5
Star Transformation

- star transformation used for this statement

Temporary Table Transformation: Scenario

ORACLE

In the preceding scenario, the optimizer does not join back the table channels to the sales
table because it is not referenced outside and the channel id is unique.

If the optimizer cannot eliminate the join back, however, then the database stores the subquery
results in a temporary table to avoid rescanning the dimension table for bitmap key generation
and join back. Also, if the query runs in parallel, then the database materializes the results so
that each parallel execution server can select the results from the temporary table instead of
executing the subquery again.

Example 5-8 Star Transformation Using Temporary Table

In this example, the database materializes the results of the subquery on customers into a
temporary table:

SELECT tl.cl cust city, t.calendar quarter desc calendar quarter desc,
SUM (s.amount sold) sales amount

FROM sales s, sh.times t, sys temp 0£d9d6621 e7e24 tl

WHERE s.time id=t.time id

AND s.cust _id=tl.c0

AND (t.calendar quarter desc='1999-gl' OR t.calendar quarter desc='1999-
q2')
AND s.cust_id IN ( SELECT tl1.c0

FROM sys _temp 0£d9d6621 e7e24 tl1 )
AND s.channel id IN ( SELECT ch.channel id
FROM channels ch
WHERE ch.channel desc='internet' )
AND s.time_id IN ( SELECT t.time_id
FROM times t
WHERE t.calendar quarter desc='1999-ql'
OR t.calendar quarter desc='1999-q2' )
GROUP BY tl.cl, t.calendar quarter desc

The optimizer replaces customers with the temporary table sys temp 0£d9d6621 e7e24, and
replaces references to columns cust_id and cust_city with the corresponding columns of the
temporary table. The database creates the temporary table with two columns: (c0 NUMBER, cl
VARCHAR? (30) ). These columns correspond to cust id and cust_city of the customers table.
The database populates the temporary table by executing the following query at the beginning
of the execution of the previous query:

SELECT c.cust id, c.cust city FROM customers WHERE c.cust state province =
1 CAV
Example 5-9 Partial Execution Plan for Star Transformation Using Temporary Table

The following example shows an edited version of the execution plan for the query in
Example 5-8:

| Id | Operation | Name

5-19



Chapter 5
Star Transformation

SELECT STATEMENT
TEMP TABLE TRANSFORMATION
LOAD AS SELECT
TABLE ACCESS FULL
HASH GROUP BY
HASH JOIN
TABLE ACCESS FULL
HASH JOIN
TABLE ACCESS FULL TIMES

|

|

|

| CUSTOMERS

|
|
|
|
|

VIEW | VW _ST A3F94988

|
|
|
|
|
|
|
|
|

SYS_TEMP 0FD9D6613 C716F

NESTED LOOPS
PARTITION RANGE SUBQUERY
BITMAP CONVERSION TO ROWIDS
BITMAP AND
BITMAP MERGE
BITMAP KEY ITERATION
BUFFER SORT
TABLE ACCESS FULL
BITMAP INDEX RANGE SCAN
BITMAP MERGE |
BITMAP KEY ITERATION |
BUFFER SORT |
TABLE ACCESS FULL | TIMES
BITMAP INDEX RANGE SCAN| SALES TIME BIX
BITMAP MERGE |
BITMAP KEY ITERATION |
BUFFER SORT |
TABLE ACCESS FULL | SYS TEMP 0FDSD6613 C716F
BITMAP INDEX RANGE SCAN| SALES CUST BIX
TABLE ACCESS BY USER ROWID | SALES

CHANNELS
SALES CHANNEL BIX

Predicate Information (identified by operation id):

o J U1 W

17
18
22

23
28

filter("C"."CUST_STATE_PROVINCE"='CA’)

access ("ITEM 1"="CO0")

access ("ITEM 2"="T"."TIME ID")

filter(("T"."CALENDAR_QUARTER_DESC"=’1999—01’ OR
"T"."CALENDAR_QUARTER_DESC"=’1999-02’))

filter ("CH"."CHANNEL DESC"='Internet')

access ("S"."CHANNEL ID"="CH"."CHANNEL ID")

filter(("T"."CALENDAR_QUARTER_DESC"=’1999—01’ OR
"T"."CALENDAR_QUARTER_DESC"=’1999-02’))

access ("S"."TIME ID"="T"."TIME ID")

access ("S"."CUST ID"="CO")

Lines 1, 2, and 3 of the plan materialize the customers subquery into the temporary table. In
line 6, the database scans the temporary table (instead of the subquery) to build the bitmap
from the fact table. Line 27 scans the temporary table for joining back instead of scanning
customers. The database does not need to apply the filter on customers on the temporary
table because the filter is applied while materializing the temporary table.

ORACLE

5-20



Chapter 5
In-Memory Aggregation (VECTOR GROUP BY)

In-Memory Aggregation (VECTOR GROUP BY)

The key optimization of in-memory aggregation is to aggregate while scanning.

To optimize query blocks involving aggregation and joins from a single large table to multiple
small tables, such as in a typical star query, the transformation uses KEY VECTOR and VECTOR
GROUP BY operations. These operations use efficient in-memory arrays for joins and

aggregation, and are especially effective when the underlying tables are in-memory columnar
tables.

# See Also:

Oracle Database In-Memory Guide to learn more about in-memory aggregation

Cursor-Duration Temporary Tables

To materialize the intermediate results of a query, Oracle Database may implicitly create a
cursor-duration temporary table in memory during query compilation.

Purpose of Cursor-Duration Temporary Tables

Complex queries sometimes process the same query block multiple times, which creates
unnecessary performance overhead.

To avoid this scenario, Oracle Database can automatically create temporary tables for the
query results and store them in memory for the duration of the cursor. For complex operations
such as WITH clause queries, star transformations, and grouping sets, this optimization
enhances the materialization of intermediate results from repetitively used subqueries. In this
way, cursor-duration temporary tables improve performance and optimize /0.

How Cursor-Duration Temporary Tables Work

The definition of the cursor-definition temporary table resides in memory. The table definition is
associated with the cursor, and is only visible to the session executing the cursor.

When using cursor-duration temporary tables, the database performs the following steps:
1. Chooses a plan that uses a cursor-duration temporary table

2. Creates the temporary table using a unique name

3. Rewrites the query to refer to the temporary table
4

Loads data into memory until no memory remains, in which case it creates temporary
segments on disk

a

Executes the query, returning data from the temporary table

6. Truncates the table, releasing memory and any on-disk temporary segments

ORACLE -



Chapter 5
Cursor-Duration Temporary Tables

# Note:

The metadata for the cursor-duration temporary table stays in memory as long as the
cursor is in memory. The metadata is not stored in the data dictionary, which means it
is not visible through data dictionary views. You cannot drop the metadata explicitly.

The preceding scenario depends on the availability of memory. For serial queries, the
temporary tables use PGA memory.

The implementation of cursor-duration temporary tables is similar to sorts. If no more memory
is available, then the database writes data to temporary segments. For cursor-duration
temporary tables, the differences are as follows:

e The database releases memory and temporary segments at the end of the query rather
than when the row source is no longer active.

e Data in memory stays in memory, unlike in sorts where data can move between memory
and temporary segments.

When the database uses cursor-duration temporary tables, the keyword CURSOR DURATION
MEMORY appears in the execution plan.

Cursor-Duration Temporary Tables: Example

A WITH query that repeats the same subquery can sometimes benefit from a cursor-duration
temporary table.

The following query uses a WITH clause to create three subquery blocks:

WITH
gl AS (SELECT department id, SUM(salary) sum sal FROM hr.employees GROUP BY
department id),
g2 AS (SELECT * FROM ql),
g3 AS (SELECT department id, sum sal FROM gl)
SELECT * FROM gl
UNION ALL
SELECT * FROM g2
UNION ALL
SELECT * FROM g3;

The following sample plan shows the transformation:

SELECT * FROM TABLE (DBMS XPLAN.DISPLAY CURSOR (FORMAT=>'BASIC +ROWS +COST'));

PLAN TABLE OUTPUT

| Operation | Name |Rows |Cost (%CPU) |

SELECT STATEMENT | \ [6 (100) |
TEMP TABLE TRANSFORMATION | | |
LOAD AS SELECT (CURSOR DURATION MEMORY) | SYS TEMP OFD9D6606 1AE004 | |

HASH GROUP BY | [ 11 | 3 (34)]

TABLE ACCESS FULL | EMPLOYEES [107 | 2 (0) |

| \ | |

ORACLE

UNION-ALL

5-22



| 6 | VIEW | | 11 | 2 (0) |
|7 TABLE ACCESS FULL | SYS TEMP 0FD9D6606 1AE004 | 11 | 2 (0) |
| 8 | VIEW | [ 11 | 2 (0) |
|9 | TABLE ACCESS FULL | SYS TEMP 0FD9D6606 1AE004 | 11 | 2 (0) |
| 10 | VIEW | | 11 | 2 (0) |
| 11 | TABLE ACCESS FULL | SYS TEMP 0FD9D6606 1AE004 | 11 | 2 (0) |

Chapter 5
Table Expansion

In the preceding plan, TEMP TABLE TRANSFORMATION in Step 1 indicates that the database used
cursor-duration temporary tables to execute the query. The CURSOR DURATION MEMORY keyword
in Step 2 indicates that the database used memory, if available, to store the results of

SYS TEMP 0FD9D6606 1AE004. If memory was unavailable, then the database wrote the
temporary data to disk.

Table Expansion

In table expansion, the optimizer generates a plan that uses indexes on the read-mostly
portion of a partitioned table, but not on the active portion of the table.

Purpose of Table Expansion

Index-based plans can improve performance, but index maintenance creates overhead. In
many databases, DML affects only a small portion of the data.

Table expansion uses index-based plans for high-update tables. You can create an index only
on the read-mostly data, eliminating index overhead on the active data. In this way, table
expansion improves performance while avoiding index maintenance.

How Table Expansion Works

ORACLE

Table partitioning makes table expansion possible.

If a local index exists on a partitioned table, then the optimizer can mark the index as unusable
for specific partitions. In effect, some partitions are not indexed.

In table expansion, the optimizer transforms the query into a UNION ALL statement, with some
subqueries accessing indexed partitions and other subqueries accessing unindexed partitions.
The optimizer can choose the most efficient access method available for a partition, regardless
of whether it exists for all of the partitions accessed in the query.

The optimizer does not always choose table expansion:

e Table expansion is cost-based.

While the database accesses each partition of the expanded table only once across all
branches of the UNION ALL, any tables that the database joins to it are accessed in each
branch.

e Semantic issues may render expansion invalid.

For example, a table appearing on the right side of an outer join is not valid for table
expansion.

You can control table expansion with the hint EXPAND TABLE hint. The hint overrides the cost-
based decision, but not the semantic checks.

5-23



Chapter 5
Table Expansion

# See Also:

» "Influencing the Optimizer with Hints"

e Oracle Database SQL Language Reference to learn more about SQL hints

Table Expansion: Scenario

ORACLE

The optimizer keeps track of which partitions must be accessed from each table, based on
predicates that appear in the query. Partition pruning enables the optimizer to use table
expansion to generate more optimal plans.

Assumptions
This scenario assumes the following:

* You want to run a star query against the sh.sales table, which is range-partitioned on the
time id column.

* You want to disable indexes on specific partitions to see the benefits of table expansion.

To use table expansion:
1. Log in to the database as the sh user.

2. Run the following query:
SELECT *
FROM sales

WHERE time id >= TO DATE('2000-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')
AND prod id = 38;

3. Explain the plan by querying DBMS XPLAN:

SET LINESIZE 150

SET PAGESIZE 0

SELECT * FROM TABLE (DBMS XPLAN.DISPLAY CURSOR(format =>
'BASIC, PARTITION'")) ;

As shown in the Pstart and Pstop columns in the following plan, the optimizer determines
from the filter that only 16 of the 28 partitions in the table must be accessed:

Plan hash value: 3087065703

0| SELECT STATEMENT | |

| |
| 1] PARTITION RANGE ITERATOR | [13] 28 |
| 2] TABLE ACCESS BY LOCAL INDEX ROWID BATCHED| SALES [13] 28 |
[ 3] BITMAP CONVERSION TO ROWIDS | [ |
[*4] BITMAP INDEX SINGLE VALUE |SALES PROD BIX|[13| 28 |

5-24



ORACLE

Chapter 5
Table Expansion

Predicate Information (identified by operation id):

4 - access("PROD ID"=38)

After the optimizer has determined the partitions to be accessed, it considers any index
that is usable on all of those partitions. In the preceding plan, the optimizer chose to use
the sales prod bix bitmap index.

Disable the index on the SALES 1995 partition of the sales table:

ALTER INDEX sales prod bix MODIFY PARTITION sales 1995 UNUSABLE;

The preceding DDL disables the index on partition 1, which contains all sales from before
1996.

< Note:

You can obtain the partition information by querying the USER IND PARTITIONS
view.

Execute the query of sales again, and then query DBMS XPLAN to obtain the plan.

The output shows that the plan did not change:

Plan hash value: 3087065703

0| SELECT STATEMENT | [

| |
| 1| PARTITION RANGE ITERATOR | [13128 |
| 2] TABLE ACCESS BY LOCAL INDEX ROWID BATCHED| SALES [13128 |
| 3 BITMAP CONVERSION TO ROWIDS | [ |
| *4 | BITMAP INDEX SINGLE VALUE | SALES PROD BIX|13]28 |

4 - access("PROD ID"=38)

The plan is the same because the disabled index patrtition is not relevant to the query. If all
partitions that the query accesses are indexed, then the database can answer the query
using the index. Because the query only accesses partitions 16 through 28, disabling the
index on partition 1 does not affect the plan.

Disable the indexes for partition 28 (SALES 04 2003), which is a partition that the query
needs to access:

ALTER INDEX sales prod bix MODIFY PARTITION sales g4 2003 UNUSABLE;
ALTER INDEX sales time bix MODIFY PARTITION sales g4 2003 UNUSABLE;

5-25



ORACLE

Chapter 5
Table Expansion

By disabling the indexes on a patrtition that the query does need to access, the query can
no longer use this index (without table expansion).

Query the plan using DBMS_XPLAN.

As shown in the following plan, the optimizer does not use the index:

Plan hash value: 3087065703

| Id| Operation | Name |Pstart|Pstop
| 0 | SELECT STATEMENT \ \ | |
|1 | PARTITION RANGE ITERATOR | [13 | 28 |
[*2 | TABLE ACCESS FULL | SALES [13 | 28 |

Predicate Information (identified by operation id):

2 - access ("PROD ID"=38)

In the preceding example, the query accesses 16 partitions. On 15 of these partitions, an
index is available, but no index is available for the final partition. Because the optimizer has
to choose one access path or the other, the optimizer cannot use the index on any of the
partitions.

With table expansion, the optimizer rewrites the original query as follows:

SELECT *

FROM sales

WHERE timeiid >= TO DATE('2000-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')
AND timeiid < TO DATE('2003-10-01 00:00:00", 'SYYYY-MM-DD HH24:MI:SS')
AND prod id = 38

UNION ALL

SELECT *

FROM sales

WHERE timeiid >= TO DATE('2003-10-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')
AND timeiid < TO DATE('2004-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')
AND prod id = 38;

In the preceding query, the first query block in the UNION ALL accesses the partitions that
are indexed, while the second query block accesses the partition that is not. The two
subgueries enable the optimizer to choose to use the index in the first query block, if it is
more optimal than using a table scan of all of the partitions that are accessed.

Query the plan using DBMS_XPLAN.

The plan appears as follows:

Plan hash value: 2120767686

| 0|SELECT STATEMENT | [ |
| 1| VIEW |VW_TE 2 [ |
| 2] UNION-ALL | [ |

5-26



Chapter 5
Table Expansion

[ 3] PARTITION RANGE ITERATOR | [13] 27|
| 4] TABLE ACCESS BY LOCAL INDEX ROWID BATCHED|SALES [13] 27|
| 5] BITMAP CONVERSION TO ROWIDS | [ |
[*6] BITMAP INDEX SINGLE VALUE |SALES PROD BIX|13]| 27|
[ 7] PARTITION RANGE SINGLE | [28] 28]
[*8] TABLE ACCESS FULL | SALES [28] 28]

Predicate Information (identified by operation id):

6 - access("PROD ID"=38)
8 - filter ("PROD ID"=38)

As shown in the preceding plan, the optimizer uses a UNION ALL for two query blocks (Step
2). The optimizer chooses an index to access partitions 13 to 27 in the first query block
(Step 6). Because no index is available for partition 28, the optimizer chooses a full table
scan in the second query block (Step 8).

Table Expansion and Star Transformation: Scenario

Star transformation enables specific types of queries to avoid accessing large portions of big
fact tables.

ORACLE

Star transformation requires defining several indexes, which in an actively updated table can
have overhead. With table expansion, you can define indexes on only the inactive partitions so
that the optimizer can consider star transformation on only the indexed portions of the table.

Assumptions

This scenario assumes the following:

You query the same schema used in "Star Transformation: Scenario".

The last partition of sales is actively being updated, as is often the case with time-
partitioned tables.

You want the optimizer to take advantage of table expansion.

To take advantage of table expansion in a star query:

1.

Disable the indexes on the last partition as follows:

ALTER INDEX sales channel bix MODIFY PARTITION sales_g4 2003 UNUSABLE;
ALTER INDEX sales cust bix MODIFY PARTITION sales g4 2003 UNUSABLE;

Execute the following star query:

SELECT t.calendar quarter desc, SUM(s.amount sold) sales amount
FROM sales s, times t, customers c, channels ch

WHERE s.time id = t.time id

AND s.cust_id = c.cust_id

AND s.channel id = ch.channel id

AND c.cust_state province = 'CA'

AND ch.channel desc = 'Internet'

AND t.calendar quarter desc IN ('1999-01','1999-02")

GROUP BY t.calendar quarter desc;

5-27



3. Query the cursor using DBMS_XPLAN, which shows the following plan:

|Id| Operation | Name | Pstart| Pstop |

0] SELECT STATEMENT |
1| HASH GROUP BY |

| | | |
| | | |
| 2|  VIEW |VW TE 14 | |
| 3] UNION-ALL | | |
| 4] HASH JOIN | | |
| 5] TABLE ACCESS FULL | TIMES | |
| 6] VIEW |VW_ST 1319B6D8 | |
| 7] NESTED LOOPS | | |
| 8] PARTITION RANGE SUBQUERY | |KEY (SQ) |KEY (SQ) |
| 9] BITMAP CONVERSION TO ROWIDS | | |
[10] BITMAP AND | | | |
[11] BITMAP MERGE | | | |
[12] BITMAP KEY ITERATION | | | |
[13] BUFFER SORT | | |
[14] TABLE ACCESS FULL | CHANNELS | | |
[15] BITMAP INDEX RANGE SCAN|SALES CHANNEL BIX|KEY (SQ) |KEY(SQ) |
[16] BITMAP MERGE | | |
[17] BITMAP KEY ITERATION | | | |
18] BUFFER SORT | | |
[19] TABLE ACCESS FULL | TIMES | |
[20] BITMAP INDEX RANGE SCAN|SALES TIME BIX  |KEY(SQ) |KEY(SQ) |
[21] BITMAP MERGE | | | |
[22] BITMAP KEY ITERATION | | | |
[23] BUFFER SORT | | |
[24] TABLE ACCESS FULL | CUSTOMERS | | |
[25] BITMAP INDEX RANGE SCAN|SALES CUST BIX  |KEY(SQ) |KEY(SQ) |
[26] TABLE ACCESS BY USER ROWID |SALES | ROWID | ROWID |
[27] NESTED LOOPS | | |
28] NESTED LOOPS | | |
[29] NESTED LOOPS | | |
[30] NESTED LOOPS | | |
[31] PARTITION RANGE SINGLE | | 28 | 28 |
[32] TABLE ACCESS FULL | SALES | 28 | 28 |
[33] TABLE ACCESS BY INDEX ROWID|CHANNELS | | |
|34 INDEX UNIQUE SCAN | CHANNELS PK | | |
|35] TABLE ACCESS BY INDEX ROWID |CUSTOMERS | |
|36] INDEX UNIQUE SCAN | CUSTOMERS PK | |
[37] INDEX UNIQUE SCAN |TIMES PK | | |
|38 TABLE ACCESS BY INDEX ROWID  |TIMES | |

Chapter 5
Join Factorization

The preceding plan uses table expansion. The UNION ALL branch that is accessing every
partition except the last partition uses star transformation. Because the indexes on partition
28 are disabled, the database accesses the final partition using a full table scan.

Join Factorization

In the cost-based transformation known as join factorization, the optimizer can factorize
common computations from branches of a UNION ALL query.

ORACLE

5-28



Chapter 5
Join Factorization

Purpose of Join Factorization

UNION ALL queries are common in database applications, especially in data integration
applications.

Often, branches in a UNION ALL query refer to the same base tables. Without join factorization,
the optimizer evaluates each branch of a UNION ALL query independently, which leads to
repetitive processing, including data access and joins. Join factorization transformation can
share common computations across the UNION ALL branches. Avoiding an extra scan of a
large base table can lead to a huge performance improvement.

How Join Factorization Works

ORACLE

Join factorization can factorize multiple tables and from more than two UNION ALL branches.
Join factorization is best explained through examples.
Example 5-10 UNION ALL Query

The following query shows a query of four tables (t1, t2, t3, and t4) and two UNION ALL
branches:

SELECT tl.cl, t2.c2
FROM t1, t2, t3

WHERE tl.cl = t2.cl
AND tl.cl > 1
AND t2.c2 =2

AND t2.c2 = t3.c2
UNION ALL
SELECT tl.cl, t2.c2

FROM  t1, t2, t4
WHERE tl.cl = t2.cl
AND tl.cl > 1
AND t2.c3 = td.c3

In the preceding query, table t1 appears in both UNION ALL branches, as does the filter
predicate t1.cl > 1 and the join predicate t1.cl = t2.cl. Without any transformation, the
database must perform the scan and the filtering on table t1 twice, one time for each branch.

Example 5-11 Factorized Query
Example 5-10

SELECT tl.cl, VW JF l.item 2

FROM tl, (SELECT t2.cl item_l, t2.c2 item_Z
FROM t2, t3
WHERE t2.c2
AND t2.c2
UNION ALL
SELECT t2.cl item 1, t2.c2 item 2
FROM t2, t4
WHERE t2.c3 = td4.c3) VW JF 1

WHERE tl.cl = VW JF l.item 1

AND tl.cl > 1

t3.c2
2

5-29



Chapter 5
Join Factorization

In this case, because table t1 is factorized, the database performs the table scan and the
filtering on t1 only one time. If t1 is large, then this factorization avoids the huge performance
cost of scanning and filtering t1 twice.

< Note:

If the branches in a UNION ALL query have clauses that use the DISTINCT function,
then join factorization is not valid.

Factorization and Join Orders: Scenario

Join factorization can create more possibilities for join orders
Example 5-12 Query Involving Five Tables

In the following query, view Vv is same as the query as in Example 5-10:

SELECT *
FROM t5, (SELECT tl.cl, t2.c2
FROM tl, t2, t3
WHERE tl.cl = t2.cl
AND tl.cl > 1
AND t2.c2 =2
AND t2.c2 = t3.c2
UNION ALL
SELECT tl.cl, t2.c2
FROM tl, t2, t4
WHERE tl.cl t2.cl
AND tl.cl > 1
AND t2.c3 td.c3) V
WHERE tb5.cl = V.cl

t1t2t3t5
Example 5-13 Factorization of t1 from View V

If join factorization factorizes t1 from view v, as shown in the following query, then the
database can join t1 with t5.:

SELECT *
FROM 5, ( SELECT tl.cl, VW JF l.item 2
FROM tl, (SELECT t2.cl item_l, t2.c2 item_2
FROM t2, t3
WHERE t2.c2 t3.c2
AND t2.c2 = 2
UNION ALL
SELECT t2.cl item 1, t2.c2 item 2
FROM t2, t4
WHERE t2.c3 = t4.c3) VW JF 1
WHERE tl.cl = VW JF l.item 1
AND tl.cl > 1)
WHERE tb5.cl = V.cl

ORACLE = 30



Chapter 5
Join Factorization

The preceding query transformation opens up new join orders. However, join factorization
imposes specific join orders. For example, in the preceding query, tables t2 and t3 appear in
the first branch of the UNION ALL query in view Vii_JF_1. The database must join t2 with t3
before it can join with t1, which is not defined within the viv_JF 1 view. The imposed join order
may not necessarily be the best join order. For this reason, the optimizer performs join
factorization using the cost-based transformation framework. The optimizer calculates the cost
of the plans with and without join factorization, and then chooses the cheapest plan.

Example 5-14 Factorization of t1 from View V with View Definition Removed

The following query is the same query in Example 5-13, but with the view definition removed
so that the factorization is easier to see:

SELECT *

FROM  t5, (SELECT tl.cl, VW JF l.item 2
FROM t1, VW JF 1
WHERE tl.cl = VW _JF l.item 1
AND  tl.cl > 1)

WHERE t5.cl = V.cl

Factorization of Outer Joins: Scenario

ORACLE

The database supports join factorization of outer joins, antijoins, and semijoins, but only for the
right tables in such joins.

For example, join factorization can transform the following UNION ALL query by factorizing t2:

SELECT tl.c2, t2.c2
FROM  t1, t2

WHERE tl.cl = t2.cl(+)
AND tl.cl =1

UNION ALL

SELECT tl.c2, t2.c2
FROM  t1, t2

WHERE tl.cl = t2.cl(+)
AND tl.cl = 2

The following example shows the transformation. Table t2 now no longer appears in the UNION
ALL branches of the subquery.

SELECT VWi JF l.item 2, t2.c2
FROM t2, (SELECT tl.cl item 1, tl.c2 item 2

FROM tl

WHERE tl.cl =1

UNION ALL

SELECT tl.cl item 1, tl.c2 item 2
FROM tl

WHERE tl.cl = 2) VW JF 1
WHERE VW JF l.item 1 = t2.cl(+)

5-31



Query Execution Plans

If a query has suboptimal performance, the execution plan is the key tool for understanding the
problem and supplying a solution.

ORACLE



Explaining and Displaying Execution Plans

Knowledge of how to explain a statement and display its plan is essential to SQL tuning.

Introduction to Execution Plans

An execution plan is the sequence of operations that the database performs to run a SQL
statement.

Contents of an Execution Plan

The execution plan operation alone cannot differentiate between well-tuned statements and
those that perform suboptimally.

The plan consists of a series of steps. Every step either retrieves rows of data physically from
the database or prepares them for the user issuing the statement. The following plan shows a
join of the employees and departments tables:

SQL ID g9xaqgjktdhbcd, child number 0

SELECT employee id, last name, first name, department name from
employees e, departments d WHERE e.department id = d.department id and
last name like 'T%' ORDER BY last name

Plan hash value: 1219589317

| Id | Operation | Name |[Rows | Bytes |[Cost (%CPU)| Time

| 0 | SELECT STATEMENT \ | | | 5 (100) |

| 1 | NESTED LOOPS \ | 5| 190 | 5 (0)| 00:00:01 |
|2 TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 5 | 110 | 2 (0)] 00:00:01 |
[* 3 | INDEX RANGE SCAN | EMP NAME IX | 5 | | 1 (0)] 00:00:01
[* 4 | TABLE ACCESS FULL | DEPARTMENTS | 1] 16 | 1 (0)] 00:00:01 |

Predicate Information (identified by operation id):

3 - access("LAST NAME" LIKE 'T%')
filter("LAST_NAME" LIKE 'T%')
4 - filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

The row source tree is the core of the execution plan. The tree shows the following information:

e The join order of the tables referenced by the statement

In the preceding plan, employees is the outer row source and departments is the inner row
source.

ORACLE 61



Chapter 6
Introduction to Execution Plans

* An access path for each table mentioned in the statement

In the preceding plan, the optimizer chooses to access employees using an index scan and
departments using a full scan.

< Ajoin method for tables affected by join operations in the statement
In the preceding plan, the optimizer chooses a nested loops join.
- Data operations like filter, sort, or aggregation

In the preceding plan, the optimizer filters on last names that begin with T and matches on
department id.

In addition to the row source tree, the plan table contains information about the following:

e Optimization, such as the cost and cardinality of each operation
e Partitioning, such as the set of accessed partitions

» Parallel execution, such as the distribution method of join inputs

Why Execution Plans Change

Execution plans can and do change as the underlying optimizer inputs change.

# Note:

To avoid possible SQL performance regression that may result from execution plan
changes, consider using SQL plan management.

# See Also:

*  "Overview of SQL Plan Management"

e Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS SPM package

Different Schemas

Schemas can differ for various reasons.
Principal reasons include the following:

e The execution and explain plan occur on different databases.

*  The user explaining the statement is different from the user running the statement. Two
users might be pointing to different objects in the same database, resulting in different
execution plans.

* Schema changes (often changes in indexes) between the two operations.

Different Costs

Even if the schemas are the same, the optimizer can choose different execution plans when
the costs are different.

ORACLE 60



Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

Some factors that affect the costs include the following:

e Data volume and statistics
e Bind variable types and values

e Initialization parameters set globally or at session level

Generating Plan Output Using the EXPLAIN PLAN Statement

The EXPLAIN PLAN statement enables you to examine the execution plan that the optimizer
chose for a SQL statement.

About the EXPLAIN PLAN Statement

The EXPLAIN PLAN statement displays execution plans that the optimizer chooses for SELECT,
UPDATE, INSERT, and DELETE Statements.

EXPLAIN PLAN output shows how the database would have run the SQL statement when the
statement was explained. Because of differences in the execution environment and explain
plan environment, the explained plan can differ from the actual plan used during statement
execution.

When the EXPLAIN PLAN statement is issued, the optimizer chooses an execution plan and
then inserts a row describing each step of the execution plan into a specified plan table. You
can also issue the EXPLAIN PLAN statement as part of the SQL trace facility.

The EXPLAIN PLAN statement is a DML statement rather than a DDL statement. Therefore,
Oracle Database does not implicitly commit the changes made by an EXPLAIN PLAN statement.

# See Also:

e "SQL Row Source Generation"

e Oracle Database SQL Language Reference to learn about the EXPLAIN PLAN
statement

About PLAN_TABLE

PLAN TABLE is the default sample output table into which the EXPLAIN PLAN statement inserts
rows describing execution plans.

Oracle Database automatically creates a global temporary table PLAN TABLES in the SYS
schema, and creates PLAN TABLE as a synonym. All necessary privileges to PLAN TABLE are
granted to PUBLIC. Consequently, every session gets its own private copy of PLAN TABLE in its
temporary tablespace.

You can use the SQL script catplan.sql to manually create the global temporary table and the
PLAN TABLE synonym. The name and location of this script depends on your operating system.
On UNIX and Linux, the script is located in the SORACLE HOME/rdbms/admin directory. For

ORACLE 6.3



Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

example, start a SQL*Plus session, connect with SYSDBA privileges, and run the script as
follows:

@SORACLE HOME/rdbms/admin/catplan.sql

The definition of a sample output table PLAN TABLE is available in a SQL script on your
distribution media. Your output table must have the same column names and data types as this
table. The common name of this script is utlxplan.sql. The exact name and location depend
on your operating system.

¢ See Also:

Oracle Database SQL Language Reference for a complete description of EXPLAIN
PLAN syntax.

EXPLAIN PLAN Restrictions

Oracle Database does not support EXPLAIN PLAN for statements performing implicit type
conversion of date bind variables.

With bind variables in general, the EXPLAIN PLAN output might not represent the real execution
plan.

From the text of a SQL statement, TKPROF cannot determine the types of the bind variables. It
assumes that the type is VARCHAR, and gives an error message otherwise. You can avoid this
limitation by putting appropriate type conversions in the SQL statement.

# See Also:

»  "Performing Application Tracing "
e "Guideline for Avoiding the Argument Trap"

e Oracle Database SQL Language Reference to learn more about SQL data types

Explaining a SQL Statement: Basic Steps

ORACLE

Use EXPLAIN PLAN to store the plan for a SQL statement in PLAN TABLE.

Prerequisites

This task assumes that a sample output table named PLAN TABLE exists in your schema. If this
table does not exist, then run the SQL script catplan.sql.

To execute EXPLAIN PLAN, you must have the following privileges:

* You must have the privileges necessary to insert rows into an existing output table that you
specify to hold the execution plan

* You must also have the privileges necessary to execute the SQL statement for which you
are determining the execution plan. If the SQL statement accesses a view, then you must

6-4



Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

have privileges to access any tables and views on which the view is based. If the view is
based on another view that is based on a table, then you must have privileges to access
both the other view and its underlying table.

To examine the execution plan produced by an EXPLAIN PLAN statement, you must have the
privileges necessary to query the output table.

To explain a statement:

1. Start SQL*Plus or SQL Developer, and log in to the database as a user with the requisite
permissions.

2. Include the EXPLAIN PLAN FOR clause immediately before the SQL statement.

The following example explains the plan for a query of the employees table:

EXPLAIN PLAN FOR
SELECT e.last name, d.department name, e.salary
FROM employees e, departments d
WHERE salary < 3000
AND e.department id = d.department id
ORDER BY salary DESC;

3. After issuing the EXPLAIN PLAN Sstatement, use a script or package provided by Oracle
Database to display the most recent plan table output.

The following example uses the DBMS XPLAN.DISPLAY function:

SELECT * FROM TABLE (DBMS XPLAN.DISPLAY (format => 'ALL'"));

4. Review the plan output.

For example, the following plan shows a hash join:

SQL> SELECT * FROM TABLE(DBM87XPLAN.DISPLAY(format => 'ALL'"));
Plan hash value: 3556827125

| Id | Operation | Name |[Rows | Bytes |Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 4 | 124 | 5 (20)] 00:00:01 |
| 1 | SORT ORDER BY | | 4 | 124 | 5 (20)] 00:00:01 |
[* 2 | HASH JOIN | | 4 | 124 | 4 (0)| 00:00:01 |
[* 3 | TABLE ACCESS FULL| EMPLOYEES | 4 | 60 | 2 (0)] 00:00:01 |
|4 | TABLE ACCESS FULL| DEPARTMENTS | 27 | 432 | 2 (0)] 00:00:01 |

1 - SELS$1
3 - SEL$1 / E@SELS1
4 - SEL$1 / D@SELS1

Predicate Information (identified by operation id):

2 - access ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

ORACLE g



Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

3 - filter ("SALARY"<3000)

Column Projection Information (identified by operation id):

1 - (#keys=1) INTERNAL FUNCTION("E"."SALARY")[22],

"LAST NAME" [VARCHARZ,25], "D"."DEPARTMENT NAME"[VARCHARZ,30]

2 - (#keys=1) "E"."LAST NAME"[VARCHARZ2,25], "SALARY"[NUMBER,22],

nEn,
npn,
3 - "gw,
nEn,
4 - mpm,

"DEPARTMENT NAME"[VARCHARZ,30], "D"."DEPARTMENT NAME" [VARCHARZ,30]
"LAST NAME" [VARCHARZ,25], "SALARY"[NUMBER,22],
"DEPARTMENT ID" [NUMBER,22]

"DEPARTMENT ID" [NUMBER,22], "D"."DEPARTMENT NAME" [VARCHARZ, 30]

- this is an adaptive plan

ORACLE

Plan operations request data from their children. The execution order in EXPLAIN PLAN output
is as follows:

1. Execution starts at the first operation with no children, which in the example above is the
full scan of EMPLOYEES (Id 3).

2. EMPLOYEES returns its data to the parent (Id 2).

3. Execution then proceeds to next child of the hash join and does a full scan of DEPARTMENTS
(Id 4).

4. DEPARTMENTS has no children and so returns data to the parent (I1d 2).

5. The hash join combines the rows from the two tables and passes them up to the SORT
ORDER BY (Id 1)

6. Finally the SELECT returns the data to the client.

# Note:

If this example included more operations such as additional joins, execution would
continue from Step 5 following the same pattern for each operation down to the end
of the plan, the final step where the SELECT returns data to the client.

The steps in the EXPLAIN PLAN output as described here may be different on some
of your databases. This is because the optimizer may choose a different
EXECUTION PLAN, depending on the database configuration.

6-6



Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

# See Also:

"About PLAN_TABLE"
e "About the Display of PLAN_TABLE Output"

e Oracle Database SQL Language Reference for the syntax and semantics of
EXPLAIN PLAN

e How to Read an Execution Plan. This Oracle blog post describes how to read an
EXECUTION PLAN, but the same order of execution applies to an EXPLAIN
PLAN, so it may give you a better understanding of the process in both types of
plan.

Specifying a Statement ID in EXPLAIN PLAN: Example

With multiple statements, you can specify a statement identifier and use that to identify your
specific execution plan.

Before using SET STATEMENT ID, remove any existing rows for that statement ID. In the
following example, st1 is specified as the statement identifier.

Example 6-1 Using EXPLAIN PLAN with the STATEMENT ID Clause

EXPLAIN PLAN
SET STATEMENT ID = 'stl' FOR
SELECT last name FROM employees;

Specifying a Different Location for EXPLAIN PLAN Output: Example

The INTO clause of EXPLAIN PLAN specifies a different table in which to store the output.

If you do not want to use the name PLAN TABLE, create a new synonym after running the
catplan.sqgl script. For example:

CREATE OR REPLACE PUBLIC SYNONYM my plan table for plan table$

The following statement directs output to my plan table:

EXPLAIN PLAN
INTO my plan table FOR
SELECT last name FROM employees;

You can specify a statement ID when using the INTO clause, as in the following statement:

EXPLAIN PLAN
SET STATEMENT ID = 'stl'
INTO my plan table FOR
SELECT last name FROM employees;

ORACLE .


https://blogs.oracle.com/connect/post/how-to-read-an-execution-plan

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

# See Also:

*  "PLAN_TABLE Columns" for a description of the columns in PLAN TABLE

e Oracle Database SQL Language Reference to learn about CREATE SYNONYM

EXPLAIN PLAN Output for a CONTAINERS Query: Example

ORACLE

The CONTAINERS clause can be used to query both user-created and Oracle-supplied tables
and views. It enables you to query these tables and views across all containers.

The following example illustrates the output of an EXPLAIN PLAN for a query using the
CONTAINERS clause.

SQL> explain plan for select con id, count(*) from containers(sys.dba tables)
where con_id < 10 group by con _id order by con_id;

Explained.
SQL> @?/rdbms/admin/utlxpls

PLAN TABLE OUTPUT

Plan hash value: 891225627

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU) | Time | Pstart| Pstop |

0 | SELECT STATEMENT | \ 234K| 2970K| 145
(100) | 00:00:01 | |
| 1 | PX COORDINATOR | \
| \ | | |
|

2 | PX SEND QC (ORDER) | :TQ10001 |  234K| 2970K| 145
(100) | 00:00:01 | |
| 3 SORT GROUP BY | | 234K| 2970K| 145
(100) | 00:00:01 | |
| 4 PX RECEIVE | | 234K| 2970K| 145
(100) | 00:00:01 | |
| 5 | PX SEND RANGE | :TQ10000 |  234K| 2970K| 145
(100) | 00:00:01 | |
| 6 | HASH GROUP BY | | 234K| 2970K| 145
(100) | 00:00:01 | |
|7 PX PARTITION LIST ITERATOR] | 234K| 2970K| 139
(100) | 00:00:01 | 1 | 9 |
| 8 | CONTAINERS FULL | DBA TABLES |  234K| 2970K| 139
(100) | 00:00:01 | |

6-8



Chapter 6
Displaying Execution Plans

15 rows selected.

At Row 8 of this plan, CONTAINERS is shown in the Operation column as the value CONTAINERS
FULL. The Name column in the same row shows the argument to CONTAINERS.

Default Partitioning

A query using the CONTAINERS clause is partitioned by default. At Row 7 in the plan, the px
PARTITION LIST ITERATOR in the Operation column indicates that the query is partitioned.
Iteration over containers is implemented in this partition iterator. On the same row, the Pstart
and Pstop values 1 and 9 are derived from the con_id < 10 predicate in the query.

Default Parallelism

A query using the CONTAINERS clause uses parallel execution servers by default. In Row 1 of
the plan above, PX COORDINATOR in the Operation column indicates that parallel execution
servers will be used. Each container is assigned to a parallel execution process (P00*). When
the parallel execution process executes the part of the query EXECUTION PLAN that corresponds
to CONTAINERS FULL, then the process switches into the container it has been assigned to work
on. It retrieves rows from the base object by executing a recursive SQL statement.

Displaying Execution Plans

The easiest way to display execution plans is to use DBMS XPLAN display functions or v$ views.

About the Display of PLAN_TABLE Output

ORACLE

To display the plan table output, you can use either SQL scripts or the DBMS XPLAN package.

After you have explained the plan, use the following SQL scripts or PL/SQL package provided
by Oracle Database to display the most recent plan table output:

e DBMS XPLAN.DISPLAY table function
This function accepts options for displaying the plan table output. You can specify:
— Aplan table name if you are using a table different than PLAN TABLE
— A statement ID if you have set a statement ID with the EXPLAIN PLAN
— A format option that determines the level of detail: BASIC, SERIAL, TYPICAL, and ALL

Examples of using DBMS XPLAN to display PLAN TABLE output are:

SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY ());

SELECT PLAN TABLE OUTPUT
FROM TABLE (DBMS XPLAN.DISPLAY ('MY PLAN TABLE', 'stl', 'TYPICAL'));
e utlxpls.sql
This script displays the plan table output for serial processing
e utlxplp.sql

This script displays the plan table output including parallel execution columns.

6-9



Chapter 6
Displaying Execution Plans

# See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS XPLAN package

DBMS_XPLAN Display Functions

You can use the DBMS_XPLAN display functions to show plans.

The display functions accept options for displaying the plan table output. You can specify:
* Aplan table name if you are using a table different from PLAN TABLE

e A statement ID if you have set a statement ID with the EXPLAIN PLAN

« A format option that determines the level of detail: BASIC, SERIAL, TYPICAL, ALL, and in
some cases ADAPTIVE

Table 6-1 DBMS_XPLAN Display Functions

|
Display Functions Notes

DISPLAY This table function displays the contents of the plan table.
In addition, you can use this table function to display any plan (with or without
statistics) stored in a table as long as the columns of this table are named the
same as columns of the plan table (or VSSQL PLAN STATISTICS ALL if
statistics are included). You can apply a predicate on the specified table to
select rows of the plan to display.
The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, and ALL.

DISPLAY AWR This table function displays the contents of an execution plan stored in AWR.

The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, and ALL.

DISPLAY CURSOR This table function displays the explain plan of any cursor loaded in the cursor
cache. In addition to the explain plan, various plan statistics (such as. 1/0,
memory and timing) can be reported (based on the
V$SQL PLAN STATISTICS ALL VIEWS).

The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, ALL, and ADAPTIVE. When you specify ADAPTIVE,
the output includes:

»  The final plan. If the execution has not completed, then the output shows
the current plan. This section also includes notes about run-time
optimizations that affect the plan.

«  Recommended plan. In reporting mode, the output includes the plan that
would be chosen based on execution statistics.

e Dynamic plan. The output summarizes the portions of the plan that differ
from the default plan chosen by the optimizer.

*  Reoptimization. The output displays the plan that would be chosen on a
subsequent execution because of reoptimization.

ORACLE 510



ORACLE

Chapter 6
Displaying Execution Plans

Table 6-1 (Cont.) DBMS_XPLAN Display Functions

. __________________________________________________________________________________|
Display Functions Notes

DISPLAY PLAN This table function displays the contents of the plan table in a variety of
B formats with CLOB output type.

The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, ALL, and ADAPTIVE. When you specify ADAPTIVE,
the output includes the default plan. For each dynamic subplan, the plan
shows a list of the row sources from the original that may be replaced, and
the row sources that would replace them.
If the format argument specifies the outline display, then the function
displays the hints for each option in the dynamic subplan. If the plan is not an
adaptive query plan, then the function displays the default plan. When you do
not specify ADAPTIVE, the plan is shown as-is, but with additional comments
in the Note section that show any row sources that are dynamic.

DISPLAY SQL PLAN BA This table function displays one or more execution plans for the specified SQL

SELINE  handle of a SQL plan baseline.
This function uses plan information stored in the plan baseline to explain and
display the plans. The plan_id stored in the SQL management base may not
match the plan_id of the generated plan. A mismatch between the stored
plan idand generated plan_id means that it is a non-reproducible plan.
Such a plan is deemed invalid and is bypassed by the optimizer during SQL
compilation.

DISPLAY SQLSET This table function displays the execution plan of a given statement stored in a
SQL tuning set.
The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, and ALL.

# See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_ XPLAN display functions

6-11



Plan-Related Views

Chapter 6
Displaying Execution Plans

You can obtain information about execution plans by querying dynamic performance and data

dictionary views.

Table 6-2 Execution Plan Views

View

Description

V$SQL

V$SQL_SHARED CURSOR

V$SQL PLAN

V$SQL_PLAN STATISTICS

VSSQL PLAN STATISTICS ALL

Lists statistics for cursors and contains one row for each
child of the original SQL text entered.

Starting in Oracle Database 19c, V$SQL.QUARANTINED
indicates whether a statement has been terminated by the
Resource Manager because the statement consumed too
many resources. Oracle Database records and marks the
guarantined plans and prevents the execution of statements
using these plans from executing. The

AVOIDED EXECUTIONS column indicates the number of
executions attempted but prevented because of the
guarantined statement.

Explains why a particular child cursor is not shared with
existing child cursors. Each column identifies a specific
reason why the cursor cannot be shared.

The USE_FEEDBACK STATS column shows whether a child
cursor fails to match because of reoptimization.

Contains the plan for every statement stored in the shared
SQL area.

The view definition is similar to PLAN TABLE. The view
includes a superset of all rows appearing in all final plans.
PLAN LINE ID is consecutively numbered, but for a single
final plan, the IDs may not be consecutive.

As an alternative to EXPLAIN PLAN, you can display the plan
by querying V$SQL PLAN. The advantage of V$SQL PLAN
over EXPLAIN PLAN is that you do not need to know the
compilation environment that was used to execute a
particular statement. For EXPLAIN PLAN, you would need to
set up an identical environment to get the same plan when
executing the statement.

Provides the actual execution statistics for every operation in
the plan, such as the number of output rows and elapsed
time. All statistics, except the number of output rows, are
cumulative. For example, the statistics for a join operation
also includes the statistics for its two inputs. The statistics in
V$SQL PLAN STATISTICS are available for cursors that
have been compiled with the STATISTICS LEVEL
initialization parameter set to ALL.

Contains memory usage statistics for row sources that use
SQL memory (sort or hash join). This view concatenates
information in V$SQL PLAN with execution statistics from
V$SQL_PLAN_STATISTICS and V$SQL_WORKAREA.

V$SQL PLAN STATISTICS ALL enables side-by-side
comparisons of the estimates that the optimizer provides for
the number of rows and elapsed time. This view combines
both V$SQL_PLAN and V$SQL_PLAN_STATISTICS
information for every cursor.

ORACLE

6-12



Chapter 6
Displaying Execution Plans

# See Also:

¢ "PLAN_TABLE Columns"

*  "Monitoring Database Operations " for information about the
V$SQL PLAN MONITOR View

*  Oracle Database Reference for more information about V$SQL PLAN views

*  Oracle Database Reference for information about the STATISTICS LEVEL
initialization parameter

Displaying Execution Plans: Basic Steps

The DBMS_XPLAN.DISPLAY function is a simple way to display an explained plan.

By default, the DISPLAY function uses the format setting of TYPICAL. In this case, the plan the
most relevant information in the plan: operation id, name and option, rows, bytes and optimizer
cost. Pruning, parallel and predicate information are only displayed when applicable.

To display an execution plan:

1. Start SQL*Plus or SQL Developer and log in to the session in which you explained the
plan.

2. Explain a plan.
3. Query PLAN TABLE using DBMS XPLAN.DISPLAY.

Specify the query as follows:

SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY);

Alternatively, specify the statement ID using the statement id parameter:

SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY (statement id =>
'statement id));

Example 6-2 EXPLAIN PLAN for Statement ID ex_planl

This example explains a query of employees that uses the statement ID ex_planl, and then
queries PLAN TABLE:

EXPLAIN PLAN
SET statement id = 'ex planl' FOR
SELECT phone number
FROM  employees
WHERE phone number LIKE '650%';

SELECT PLAN TABLE OUTPUT
FROM TABLE (DBMS XPLAN.DISPLAY (statement id => 'ex planl'));

ORACLE 613



Chapter 6
Displaying Execution Plans

Sample output appears below:

Plan hash value: 1445457117

|Id | Operation | Name |[Rows | Bytes | Cost (%CPU)| Time
| 0| SELECT STATEMENT | | 1] 15 | 2 (0)| 00:00:01 |
| * 1] TABLE ACCESS FULL| EMPLOYEES | 1] 15 | 2 (0)| 00:00:01 |

1 - filter ("PHONE NUMBER" LIKE '650%")

Example 6-3 EXPLAIN PLAN for Statement ID ex_plan2

This example explains a query of employees that uses the statement ID ex plan2, and then
displays the plan using the BASIC format:

EXPLAIN PLAN
SET statement id = 'ex plan2' FOR
SELECT last name
FROM employees
WHERE last name LIKE 'Pe%';

SELECT PLAN TABLE OUTPUT
FROM TABLE (DBMS XPLAN.DISPLAY (NULL, 'ex plan2', 'BASIC'));

Sample output appears below:

| 0 | SELECT STATEMENT |
1 | INDEX RANGE SCAN| EMP NAME IX |

# See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_ XPLAN package

ORACLE 614



Chapter 6
Displaying Execution Plans

Displaying Adaptive Query Plans: Tutorial

The adaptive optimizer is a feature of the optimizer that enables it to adapt plans based on
run-time statistics. All adaptive mechanisms can execute a final plan for a statement that differs
from the default plan.

An adaptive query plan chooses among subplans during the current statement execution. In
contrast, automatic reoptimization changes a plan only on executions that occur after the
current statement execution.

You can determine whether the database used adaptive query optimization for a SQL
statement based on the comments in the Notes section of plan. The comments indicate
whether row sources are dynamic, or whether automatic reoptimization adapted a plan.

Assumptions
This tutorial assumes the following:
* The STATISTICS LEVEL initialization parameter is set to ALL.

e The database uses the default settings for adaptive execution.

e As user oe, you want to issue the following separate queries:

SELECT o.order id, v.product name
FROM  orders o,
( SELECT order id, product name
FROM order items o, product information p
WHERE p.product id = o.product id
AND list price < 50
AND min price < 40 ) v
WHERE o.order id = v.order id

SELECT product name

FROM  order items o, product information p
WHERE o.unit price = 15

AND quantity > 1

AND p.product id = o.product id

» Before executing each query, you want to query DBMS XPLAN.DISPLAY PLAN to see the
default plan, that is, the plan that the optimizer chose before applying its adaptive
mechanism.

»  After executing each query, you want to query DBMS XPLAN.DISPLAY CURSOR to see the final
plan and adaptive query plan.

e 35Ys has granted oe the following privileges:
— GRANT SELECT ON V_S$SESSION TO oe
— GRANT SELECT ON V_$SQL TO oe
— GRANT SELECT ON V_$SQL PLAN TO oe

— GRANT SELECT ON V_$SQL PLAN STATISTICS ALL TO oe

To see the results of adaptive optimization:

1. Start SQL*Plus, and then connect to the database as user oe.

ORACLE e



Chapter 6
Displaying Execution Plans

2. Query orders.

For example, use the following statement:

SELECT o.order id, v.product name
FROM orders o,
( SELECT order id, product name
FROM order items o, product information p
WHERE p.product id = o.product id
AND list price < 50
AND min price < 40 ) v
WHERE o.order id = v.order id;

3. View the plan in the cursor.

For example, run the following commands:

SET LINESIZE 165
SET PAGESIZE 0
SELECT * FROM TABLE (DBMS XPLAN.DISPLAY CURSOR (FORMAT=>'+ALLSTATS'));

The following sample output has been reformatted to fit on the page. In this plan, the
optimizer chooses a nested loops join. The original optimizer estimates are shown in the
E-Rows column, whereas the actual statistics gathered during execution are shown in the
A-Rows column. In the MERGE JOIN operation, the difference between the estimated and
actual number of rows is significant.

|Id| Operation | Name |Start |E-Rows |A-Rows |A-Time |Buff |OMem|1Mem|O/1/M]|
| 0| SELECT STATEMENT | | 1] | 269100:00:00.09]1338] | |
| 1| NESTED LOOPS | | 11 1] 269/00:00:00.0911338] | | |
| 2] MERGE JOIN CARTESIAN| | 1] 419135/00:00:00.03] 33| | |
| *3] TABLE ACCESS FULL |PRODUCT INFORMAT | 1] 1] 87/00:00:00.01] 32] | | |
| 4 BUFFER SORT | | 871105[19135/00:00:00.01] 11409614096(1/0/0]
| 5] INDEX FULL SCAN | ORDER PK | 11105] 105/00:00:00.01] 1] | |
| *6| INDEX UNIQUE SCAN | ORDER ITEMS UK [9135] 1] 269]00:00:00.03[1305] | |

Predicate Information (identified by operation id):

3 - filter (("MIN PRICE"<40 AND "LIST PRICE"<50)
6 - access("O"."ORDER ID"="ORDER ID" AND "P"."PRODUCT ID"="O"."PRODUCT ID"

4. Run the same query of orders that you ran in Step 2.

5. View the execution plan in the cursor by using the same SELECT statement that you ran in
Step 3.

The following example shows that the optimizer has chosen a different plan, using a hash
join. The Note section shows that the optimizer used statistics feedback to adjust its cost
estimates for the second execution of the query, thus illustrating automatic reoptimization.

|Id| Operation | Name |Start |E-Rows |A-Rows |A-Time |Buff |Reads|OMem|1Mem|O/1 /M|
| 0| SELECT STATEMENT | | 1] [269]100:00:00.02]60]1] | | |
| 1| NESTED LOOPS | | 1 12691269]00:00:00.02(60]1] | | |
[ *2] HASH JOIN | | 1 1313/269]00:00:00.02(139]1|1000K|1000K|1/0/0
| *3] TABLE ACCESS FULL |PRODUCT INFORMA| 1 | 87| 87100:00:00.01115/0] | | |
| 4] INDEX FAST FULL SCAN|ORDER ITEMS UK | 1 |665]1665[00:00:00.0112411] | | |

ORACLE 616



Chapter 6

Displaying Execution Plans

[*5] INDEX UNIQUE SCAN |ORDER_PK [269] 11269(00:00:00.01(211]0]

2 - access("P"."PRODUCT ID"="O"."PRODUCT ID")
3 - filter (("MIN PRICE"<40 AND "LIST PRICE"<50))
5 - access("0"."ORDER_ID"="ORDER_ID")

- statistics feedback used for this statement

6. Query v$sQL to verify the performance improvement.

The following query shows the performance of the two statements (sample output

included).

SELECT CHILD NUMBER, CPU TIME, ELAPSED TIME, BUFFER GETS
FROM VS$SQL
WHERE SQL ID = 'gm2npz344xgn8’';

CHILD NUMBER CPU_TIME ELAPSED TIME BUFFER GETS

0 92006 131485 1831
1 12000 24156 60

The second statement executed, which is child number 1, used statistics feedback. CPU

time, elapsed time, and buffer gets are all significantly lower.
7. Explain the plan for the query of order items.
For example, use the following statement:
EXPLAIN PLAN FOR
SELECT product name
FROM order items o, product information p
WHERE o.unit price = 15
AND quantity > 1
AND p.product id = o.product id
8. View the plan in the plan table.

For example, run the following statement:

SELECT * FROM TABLE (DBMS XPLAN.DISPLAY);

Sample output appears below:

|Id| Operation | Name |[Rows |Bytes|Cost (%CPU) |Time|
| 0] SELECT STATEMENT | [41128]7 (0)]00:00:01]
| 1| NESTED LOOPS | | | |

[ 2] NESTED LOOPS | [41128]7 (0)]00:00:01]
[*3] TABLE ACCESS FULL | ORDER ITEMS [4148 |3 (0)100:00:01]
[ *4 | INDEX UNIQUE SCAN | PRODUCT INFORMATION PK|1| [0 (0)100:00:01]
| 51 TABLE ACCESS BY INDEX ROWID|PRODUCT INFORMATION [1120 |1 (0)100:00:01]

ORACLE

6-17



Chapter 6
Displaying Execution Plans

Predicate Information (identified by operation id):

3 - filter("O"."UNIT PRICE"=15 AND "QUANTITY">I)
4 - access ("P"."PRODUCT ID"="O"."PRODUCT ID")

In this plan, the optimizer chooses a nested loops join.

9. Run the query that you previously explained.
For example, use the following statement:
SELECT product name
FROM order items o, product information p
WHERE o.unit price = 15
AND quantity > 1
AND p.product id = o.product id
10. View the plan in the cursor.
For example, run the following commands:
SET LINESIZE 165
SET PAGESIZE 0
SELECT * FROM TABLE (DBMS XPLAN.DISPLAY (FORMAT=>'+ADAPTIVE'));
Sample output appears below. Based on statistics collected at run time (Step 4), the
optimizer chose a hash join rather than the nested loops join. The dashes (-) indicate the
steps in the nested loops plan that the optimizer considered but do not ultimately choose.
The switch illustrates the adaptive query plan feature.
|Id | Operation | Name |Rows |Bytes|Cost (%CPU) | Time \
| 0| SELECT STATEMENT \ [4]1128]7(0)00:00:01 |
| *1| HASH JOIN | [41128]7(0)100:00:01]
|- 2]  NESTED LOOPS \ [ | \
|- 3] NESTED LOOPS | | 1128]7(0)100:00:01]
|- 4] STATISTICS COLLECTOR | I | \ \
| *5] TABLE ACCESS FULL | ORDER ITEMS [4] 4813(0)(00:00:01|
|-*6 | INDEX UNIQUE SCAN | PRODUCT INFORMATI PK|1| [0(0)100:00:01|
|- 71 TABLE ACCESS BY INDEX ROWID| PRODUCT INFORMATION |[1| 20]1(0)[00:00:01]
| 8| TABLE ACCESS FULL | PRODUCT INFORMATION |1| 20[1(0)[00:00:01]

Predicate Information (identified by operation id):

1 - access ("P"."PRODUCT ID"="O"."PRODUCT ID")
5 - filter ("O"."UNIT PRICE"=15 AND "QUANTITY">I)
6 - access("P"."PRODUCT ID"="O"."PRODUCT ID")

Note

ORACLE

6-18



Chapter 6
Displaying Execution Plans

- this is an adaptive plan (rows marked '-' are inactive)

¢ See Also:

"Adaptive Query Plans"
e "Table 6-1"
e "Controlling Adaptive Optimization"

*  Oracle Database Reference to learn about the STATISTICS LEVEL initialization
parameter

*  Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS XPLAN

Display Execution Plans: Examples

These examples show different ways of displaying execution plans.

Customizing PLAN_TABLE Output

If you have specified a statement identifier, then you can write your own script to query the
PLAN TABLE.

ORACLE

For example:

Start with ID = 0 and given STATEMENT ID.

Use the CONNECT BY clause to walk the tree from parent to child, the join keys being
STATEMENT ID = PRIOR STATMENT ID and PARENT ID = PRIOR ID.

Use the pseudo-column LEVEL (associated with CONNECT BY) to indent the children.

SELECT cardinality "Rows", lpad(' ',level-1) || operation
[1'" "|loptions||' '||object name "Plan"
FROM PLAN TABLE
CONNECT BY prior id = parent id
AND prior statement id = statement id
START WITH id = 0
AND statement id = 'stl'
ORDER BY id;

SELECT STATEMENT
TABLE ACCESS FULL EMPLOYEES

The NULL in the Rows column indicates that the optimizer does not have any statistics on
the table. Analyzing the table shows the following:

Rows Plan

6-19



Chapter 6
Displaying Execution Plans

16957 SELECT STATEMENT
16957 TABLE ACCESS FULL EMPLOYEES

You can also select the cosT. This is useful for comparing execution plans or for
understanding why the optimizer chooses one execution plan over another.

# Note:

These simplified examples are not valid for recursive SQL.

Displaying Parallel Execution Plans: Example

Plans for parallel queries differ in important ways from plans for serial queries.

About EXPLAIN PLAN and Parallel Queries

ORACLE

Tuning a parallel query begins much like a non-parallel query tuning exercise by choosing the
driving table. However, the rules governing the choice are different.

In the serial case, the best driving table produces the fewest numbers of rows after applying
limiting conditions. The database joins a small number of rows to larger tables using non-
unique indexes.

For example, consider a table hierarchy consisting of customer, account, and transaction.

Figure 6-1 A Table Hierarchy

TRANSACTION

ACCOUNT

CUSTOMER

AN
AN

In this example, customer is the smallest table, whereas transaction is the largest table. A
typical OLTP query retrieves transaction information about a specific customer account. The
query drives from the customer table. The goal is to minimize logical 1/0, which typically
minimizes other critical resources including physical I/O and CPU time.

For parallel queries, the driving table is usually the largest table. It would not be efficient to use
parallel query in this case because only a few rows from each table are accessed. However,
what if it were necessary to identify all customers who had transactions of a certain type last
month? It would be more efficient to drive from the transaction table because no limiting
conditions exist on the customer table. The database would join rows from the transaction
table to the account table, and then finally join the result set to the customer table. In this case,
the used on the account and customer table are probably highly selective primary key or
unigue indexes rather than the non-unique indexes used in the first query. Because the
transaction table is large and the column is not selective, it would be beneficial to use parallel
query driving from the transaction table.

Parallel operations include the following:

6-20



Chapter 6
Displaying Execution Plans

° PARALLEL TO PARALLEL
. PARALLEL TO_ SERIAL

A PARALLEL TO SERIAL operation is always the step that occurs when the query
coordinator consumes rows from a parallel operation. Another type of operation that does
not occur in this query is a SERIAL operation. If these types of operations occur, then
consider making them parallel operations to improve performance because they too are
potential bottlenecks.

° PARALLEL FROM SERIAL
° PARALLEL TO PARALLEL

If the workloads in each step are relatively equivalent, then the PARALLEL TO PARALLEL
operations generally produce the best performance.

° PARALLEL COMBINED WITH CHILD
° PARALLEL COMBINED WITH PARENT

A PARALLEL COMBINED WITH PARENT operation occurs when the database performs the
step simultaneously with the parent step.

If a parallel step produces many rows, then the QC may not be able to consume the rows as
fast as they are produced. Little can be done to improve this situation.

# See Also:

The OTHER TAG column in "PLAN_TABLE Columns"

Viewing Parallel Queries with EXPLAIN PLAN: Example

When using EXPLAIN PLAN with parallel queries, the database compiles and executes one
parallel plan. This plan is derived from the serial plan by allocating row sources specific to the
parallel support in the QC plan.

The table queue row sources (PX Send and PX Receive), the granule iterator, and buffer sorts,
required by the two parallel execution server set PQ model, are directly inserted into the
parallel plan. This plan is the same plan for all parallel execution servers when executed in
parallel or for the QC when executed serially.

Example 6-4 Parallel Query Explain Plan

The following simple example illustrates an EXPLAIN PLAN for a parallel query:

CREATE TABLE emp2 AS SELECT * FROM employees;
ALTER TABLE emp2 PARALLEL 2;
EXPLAIN PLAN FOR

SELECT SUM(salary)

FROM  emp?2

GROUP BY department id;

SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY ());

ORACLE 601



|Id | Operation

Chapter 6
Displaying Execution Plans

| Name |[Rows| Bytes |Cost $CPU| TQ |IN-OUT|PQ Distrib]

|0] SELECT STATEMENT \ |107| 2782 | 3 (34) | | |

[1] PX COORDINATOR \ | | | | | |

2] PX SEND QC (RANDOM) | :TQ100011107] 2782 | 3 (34) | Q1,01 | P->S |QC (RAND) |
3] HASH GROUP BY \ |107] 2782 | 3 (34) | Q1,01 | PCWP |

|4 PX RECEIVE \ |107] 2782 | 3 (34) | Q1,01 | PCWP |

5] PX SEND HASH | :TQ10000]107] 2782 | 3 (34) | Q1,00 | P->P |HASH

16| HASH GROUP BY \ |107] 2782 | 3 (34) | Q1,00 | PCWP |

|71 PX BLOCK ITERATOR | |107] 2782 | 2 (0) | Q1,00 | PCWP |

|8 ] TABLE ACCESS FULL|EMP2 |107] 2782 | 2 (0) | Q1,00 | PCWP |

One set of parallel execution servers scans EMP2 in parallel, while the second set performs the
aggregation for the GROUP BY operation. The Px BLOCK ITERATOR row source represents the
splitting up of the table EMP2 into pieces to divide the scan workload between the parallel
execution servers. The px SEND and PxX RECEIVE row sources represent the pipe that connects
the two sets of parallel execution servers as rows flow up from the parallel scan, get
repartitioned through the HASH table queue, and then read by and aggregated on the top set.
The PX SEND QC row source represents the aggregated values being sent to the QC in random
(RAND) order. The PX COORDINATOR row source represents the QC or Query Coordinator which
controls and schedules the parallel plan appearing below it in the plan tree.

Displaying Bitmap Index Plans: Example

ORACLE

Index row sources using bitmap indexes appear in the EXPLAIN PLAN output with the word
BITMAP indicating the type of the index.

Example 6-5 EXPLAIN PLAN with Bitmap Indexes

In this example, the predicate c1=2 yields a bitmap from which a subtraction can take place.
From this bitmap, the bits in the bitmap for c2=6 are subtracted. Also, the bits in the bitmap for
c2 IS NULL are subtracted, explaining why there are two MINUS row sources in the plan. The
NULL subtraction is necessary for semantic correctness unless the column has a NOT NULL
constraint. The To ROWIDS option generates the rowids necessary for the table access.

# Note:

Queries using bitmap join index indicate the bitmap join index access path. The
operation for bitmap join index is the same as bitmap index.

EXPLAIN PLAN FOR SELECT *
FROM t
WHERE cl = 2
AND c2 <> 6
OR c3 BETWEEN 10 AND 20;

SELECT STATEMENT
TABLE ACCESS T BY INDEX ROWID
BITMAP CONVERSION TO ROWID
BITMAP OR
BITMAP MINUS

6-22



Chapter 6
Displaying Execution Plans

BITMAP MINUS
BITMAP INDEX Cl IND SINGLE VALUE
BITMAP INDEX C2 IND SINGLE VALUE
BITMAP INDEX C2 IND SINGLE VALUE
BITMAP MERGE
BITMAP INDEX C3 IND RANGE SCAN

Displaying Result Cache Plans: Example

When your query contains the result cache hint, the ResultCache operator is inserted into the
execution plan.

For example, consider the following query:
SELECT /*+ result cache */ deptno, avg(sal)

FROM emp
GROUP BY deptno;

To view the EXPLAIN PLAN for this query, use the following command:

EXPLAIN PLAN FOR
SELECT /*+ result cache */ deptno, avg(sal)
FROM emp
GROUP BY deptno;

SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY());

The EXPLAIN PLAN output for this query should look similar to the following:

|Id| Operation | Name |Rows | Bytes|Cost (%CPU) |Time |
|0 SELECT STATEMENT | [ 11 | 77 | 4 (25)] 00:00:01]
|1] RESULT CACHE |b06ppfz9pxzstbttpbgygnfbmy | | | | |
[2] HASH GROUP BY | [ 11 | 77 | 4 (25)] 00:00:01]
3] TABLE ACCESS FULL| EMP [107 | 749] 3 (0) | 00:00:01]|

In this EXPLAIN PLAN, the ResultCache operator is identified by its CacheId, which is
b06ppfzIpxzstbttpbgyqntbmy. YOu can now run a query on the VSRESULT CACHE OBJECTS view
by using this CacheId.

Displaying Plans for Partitioned Objects: Example

ORACLE

Use EXPLAIN PLAN to determine how Oracle Database accesses partitioned objects for specific
queries.

Partitions accessed after pruning are shown in the PARTITION START and PARTITION STOP
columns. The row source name for the range partition is PARTITION RANGE. For hash partitions,
the row source name is PARTITION HASH.

6-23



Chapter 6
Displaying Execution Plans

A join is implemented using partial partition-wise join if the DISTRIBUTION column of the plan
table of one of the joined tables contains PARTITION (KEY). Partial partition-wise join is possible
if one of the joined tables is partitioned on its join column and the table is parallelized.

A join is implemented using full partition-wise join if the partition row source appears before the
join row source in the EXPLAIN PLAN output. Full partition-wise joins are possible only if both
joined tables are equipartitioned on their respective join columns. Examples of execution plans
for several types of partitioning follow.

Displaying Range and Hash Partitioning with EXPLAIN PLAN: Examples

ORACLE

This example illustrates pruning by using the emp _range table, which partitioned by range on
hire date.

Assume that the tables employees and departments from the Oracle Database sample schema
exist.

CREATE TABLE emp range

PARTITION BY RANGE (hire date)

(
PARTITION emp pl VALUES LESS THAN (TO DATE('l-JAN-1992','DD-MON-YYYY')),
PARTITION emp p2 VALUES LESS THAN (TO DATE('l-JAN-1994', 'DD-MON-YYYY')),
PARTITION emp p3 VALUES LESS THAN (TO DATE('l-JAN-1996', 'DD-MON-YYYY')),
PARTITION emp p4 VALUES LESS THAN (TO DATE('l-JAN-1998', 'DD-MON-YYYY'))
PARTITION emp p5 VALUES LESS THAN (TO DATE ('l-JAN-2001', 'DD-MON-YYYY'))

)

AS SELECT * FROM employees;

4

For the first example, consider the following statement:

EXPLAIN PLAN FOR
SELECT * FROM emp range;

Oracle Database displays something similar to the following:

|Id| Operation | Name |[Rows| Bytes|Cost|Pstart|Pstop]
| 0] SELECT STATEMENT | | 105] 13965 | 2 | | |
| 1| PARTITION RANGE ALL] | 105] 13965 | 2 | 1 | 5 |
| 2] TABLE ACCESS FULL | EMP RANGE | 105] 13965 | 2 | 1 | 5 |

The database creates a partition row source on top of the table access row source. It iterates
over the set of partitions to be accessed. In this example, the partition iterator covers all
partitions (option ALL), because a predicate was not used for pruning. The PARTITION START
and PARTITION STOP columns of the PLAN TABLE show access to all partitions from 1 to 5.

For the next example, consider the following statement:

EXPLAIN PLAN FOR
SELECT *
FROM emp range
WHERE hire date >= TO DATE('l1-JAN-1996','DD-MON-YYYY');

6-24



Chapter 6
Displaying Execution Plans

| Id | Operation | Name |Rows |Bytes|Cost|Pstart|Pstop]
| 0 | SELECT STATEMENT | | 3 1 399 | 2 |

| 1 | PARTITION RANGE ITERATOR| | 3 | 399 | 2 4 | 5

| *2 | TABLE ACCESS FULL |[EMP RANGE| 3 | 399 | 2 | 4 | 5 |

In the previous example, the partition row source iterates from partition 4 to 5 because the
database prunes the other partitions using a predicate on hire date.

Finally, consider the following statement:

EXPLAIN PLAN FOR
SELECT *
FROM emp range
WHERE hire date < TO DATE('l1-JAN-1992', 'DD-MON-YYYY');

| Id | Operation | Name |Rows |Bytes|Cost|Pstart|Pstop]
| 0 | SELECT STATEMENT | | 1| 133 | 2 | | \
| 1 | PARTITION RANGE SINGLE | | 1 | 133 12 |1 | 1|
[* 2 | TABLE ACCESS FULL | EMP RANGE | 1 | 133 12 |1 | 1|

In the previous example, only partition 1 is accessed and known at compile time; thus, there is
no need for a partition row source.

# Note:

Oracle Database displays the same information for hash partitioned objects, except
the partition row source name is PARTITION HASH instead of PARTITION RANGE. Also,
with hash partitioning, pruning is only possible using equality or IN-list predicates.

Pruning Information with Composite Partitioned Objects: Examples

ORACLE

To illustrate how Oracle Database displays pruning information for composite partitioned
objects, consider the table emp comp. It is range-partitioned on hiredate and subpartitioned by
hash on deptno.

CREATE TABLE emp comp PARTITION BY RANGE (hire date)

SUBPARTITION BY HASH(department id) SUBPARTITIONS 3
(
PARTITION emp pl VALUES LESS THAN (TO DATE('l-JAN-1992','DD-MON-YYYY')),
PARTITION emp p2 VALUES LESS THAN (TO DATE('l-JAN-1994','DD-MON-YYYY')),
PARTITION emp p3 VALUES LESS THAN (TO DATE('l-JAN-1996','DD-MON-YYYY')),
PARTITION emp p4 VALUES LESS THAN (TO DATE('l-JAN-1998','DD-MON-YYYY'))
PARTITION emp p5 VALUES LESS THAN (TO DATE('l-JAN-2001', 'DD-MON-YYYY'))
)
AS SELECT * FROM employees;

’

6-25



ORACLE

Chapter 6
Displaying Execution Plans

For the first example, consider the following statement:

EXPLAIN PLAN FOR
SELECT * FROM emp comp;

|Id| Operation | Name | Rows | Bytes |Cost|Pstart|Pstop]|
| O] SELECT STATEMENT | | 10120 | 1314K| 78 | \

| 1| PARTITION RANGE ALL| | 10120 | 1314K| 78 | 1 | 5

| 2] PARTITION HASH ALL| | 10120 | 1314K| 78 | 1 | 3

| 3] TABLE ACCESS FULL| EMP_COMP | 10120 | 1314K| 78 | 1 | 15 |

This example shows the plan when Oracle Database accesses all subpartitions of all partitions
of a composite object. The database uses two partition row sources for this purpose: a range
partition row source to iterate over the partitions, and a hash partition row source to iterate over
the subpartitions of each accessed partition.

In the following example, the range partition row source iterates from partition 1 to 5, because
the database performs no pruning. Within each partition, the hash partition row source iterates
over subpartitions 1 to 3 of the current partition. As a result, the table access row source
accesses subpartitions 1 to 15. In other words, the database accesses all subpartitions of the
composite object.

EXPLAIN PLAN FOR
SELECT *
FROM emp_comp
WHERE hire date = TO DATE('l15-FEB-1998', 'DD-MON-YYYY');

| Id | Operation | Name |Rows |Bytes |Cost|Pstart|Pstop]|
| 0 | SELECT STATEMENT \ | 20 | 2660 | 17 | |

| 1 | PARTITION RANGE SINGLE | | 20 | 2660 | 17 | 5 | 5 |
[ 2 PARTITION HASH ALL \ | 20 | 2660 | 17 | 1| 3
[* 3 | TABLE ACCESS FULL | EMP COMP | 20 | 2660 | 17 | 13 | 15 |

In the previous example, only the last partition, partition 5, is accessed. This partition is known
at compile time, so the database does not need to show it in the plan. The hash partition row
source shows accessing of all subpartitions within that partition; that is, subpartitions 1 to 3,
which translates into subpartitions 13 to 15 of the emp comp table.

Now consider the following statement:

EXPLAIN PLAN FOR
SELECT *
FROM emp_comp
WHERE department id = 20;

| 0 | SELECT STATEMENT \ | 101 | 13433 | 78 | | |

6-26



Chapter 6
Displaying Execution Plans

| 1 | PARTITION RANGE ALL \ | 101 | 13433 | 78 | 1 | 5 |
[ 2 | PARTITION HASH SINGLE | | 101 | 13433 | 78 | 3 | 3
[* 3 | TABLE ACCESS FULL | EMP COMP | 101 | 13433 | 78 | | |

In the previous example, the predicate deptno=20 enables pruning on the hash dimension
within each partition. Therefore, Oracle Database only needs to access a single subpartition.
The number of this subpartition is known at compile time, so the hash partition row source is
not needed.

Finally, consider the following statement:

VARIABLE dno NUMBER;
EXPLAIN PLAN FOR
SELECT *
FROM emp_comp
WHERE department id = :dno;

| Id| Operation | Name |[Rows| Bytes |Cost|Pstart|Pstop]|
| 0 | SELECT STATEMENT | | 101| 13433 | 78 | | \
| 1 | PARTITION RANGE ALL | | 101| 13433 | 78 | 1 5 |
|2 | PARTITION HASH SINGLE | | 101] 13433 | 78 | KEY | KEY |
[*3 ] TABLE ACCESS FULL | EMP COMP | 101| 13433 | 78 | | \

The last two examples are the same, except that department id = :dno replaces deptno=20. In
this last case, the subpartition number is unknown at compile time, and a hash partition row
source is allocated. The option is SINGLE for this row source because Oracle Database
accesses only one subpartition within each partition. In Step 2, both PARTITION_ START and
PARTITION_STOP are set to KEY. This value means that Oracle Database determines the
number of subpartitions at run time.

Examples of Partial Partition-Wise Joins

In these examples, the PQ DISTRIBUTE hint explicitly forces a partial partition-wise join because
the query optimizer could have chosen a different plan based on cost in this query.

Example 6-6 Partial Partition-Wise Join with Range Partition

In the following example, the database joins emp range did on the partitioning column
department id and parallelizes it. The database can use a partial partition-wise join because
the dept2 table is not partitioned. Oracle Database dynamically partitions the dept?2 table
before the join.

CREATE TABLE dept2 AS SELECT * FROM departments;
ALTER TABLE dept2 PARALLEL 2;

CREATE TABLE emp range did PARTITION BY RANGE (department id)
(PARTITION emp pl VALUES LESS THAN (150),
PARTITION emp p5 VALUES LESS THAN (MAXVALUE) )
AS SELECT * FROM employees;

ALTER TABLE emp range did PARALLEL 2;

ORACLE 6-27



Chapter 6
Displaying Execution Plans

EXPLAIN PLAN FOR
SELECT /*+ PQ DISTRIBUTE (d NONE PARTITION) ORDERED */ e.last name,
d.department name
FROM emp range did e, dept2 d
WHERE e.department id = d.department id;

|Id| Operation | Name |Row |Byte|Cost|Pstart|Pstop|TQ|IN-OUT|PQ Distrib]
| 0] SELECT STATEMENT | [284 116188]|6] [ ] | |

| 1| PX COORDINATOR | | \ [ [ ] | |

| 2] PX SEND QC (RANDOM) | :TQ10001 |284 116188]|6] | | Q1,01 |P->S|QC (RAND)
[*3] HASH JOIN | [284 |1618816] | | Q1,01 |PCWP|

| 4] PX PARTITION RANGE ALL | [284 17668 2|1 |2] Q1,01 |PCWC|

| 5] TABLE ACCESS FULL |EMP_RANGE DID|284 [7668 [2]1 [2] Q1,01 [PCWP|

| 6] BUFFER SORT | | \ [ | | Q1,01 |PCWC|

[ 7] PX RECEIVE | | 21 | 630 |2] | | Q1,01 |PCWP|

| 8] PX SEND PARTITION (KEY)|:TQ10000 | 21 | 630 [2] [ ] |S->P|PART (KEY) |
[ 9] TABLE ACCESS FULL | DEPT2 | 21 | 630 |2] [ ] | | |

The execution plan shows that the table dept?2 is scanned serially and all rows with the same
partitioning column value of emp range did (department id) are sentthrough a PART (KEY),
or partition key, table queue to the same parallel execution server doing the partial partition-
wise join.

Example 6-7 Partial Partition-Wise Join with Composite Partition

In the following example, emp comp is joined on the partitioning column and is parallelized,
enabling use of a partial partition-wise join because dept?2 is not partitioned. The database
dynamically partitions dept2 before the join.

ALTER TABLE emp comp PARALLEL 2;

EXPLAIN PLAN FOR
SELECT /*+ PQ DISTRIBUTE (d NONE PARTITION) ORDERED */ e.last name,
d.department name
FROM emp comp e, dept2 d
WHERE e.department id = d.department id;

SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY());

| Id| Operation | Name |Rows |Bytes |Cost|Pstart|Pstop|TQ |IN-OUT|PQ Distrib]
| 0 | SELECT STATEMENT | | 445 17800 5 | | | | |
| 1 | PX COORDINATOR | | | | [ | | |
|2 | PX SEND QC (RANDOM) | :TQ10001| 445 117800 5 | | | Q1,01 |P->S| QC (RAND) |
[*3 | HASH JOIN | | 445 17800 5 | | | Q1,01 |PCWP|
| 4 | PX PARTITION RANGE ALL | | 107 | 10701 3 |1 | 5 | Q1,01 |PCWC|
|5 | PX PARTITION HASH ALL | | 107 | 10701 3 |1 | 3 | Q1,01 |PCWC|
| 6 | TABLE ACCESS FULL |[EMP_CcOMP| 107 | 10701 3 |1 | 15] Q1,01 [PCWP| |
|7 | PX RECEIVE | | 21 | 6301 1 | | | Q1,01 |PCWP|
| 8 | PX SEND PARTITION (KEY)|:TQ10000| 21 | 630 1 | | | Q1,00 |P->P|PART (KEY) |
[ 9 | PX BLOCK ITERATOR | | 21 | 6301 1 | | | Q1,00 |PCWC| |

ORACLE 608



Chapter 6
Displaying Execution Plans

[10 | TABLE ACCESS FULL | DEPT2 [ 21 | 630] 1 | | | 01,00 |PCWP|

The plan shows that the optimizer selects partial partition-wise join from one of two columns.
The Px SEND node type is PARTITION (KEY) andthe PQ Distrib column contains the text PART
(KEY), or partition key. This implies that the table dept2 is re-partitioned based on the join
column department id to be sent to the parallel execution servers executing the scan of
EMP_coMP and the join.

Example of Full Partition-Wise Join

In this example, emp comp and dept hash are joined on their hash partitioning columns,
enabling use of a full partition-wise join.

The PARTITION HASH row source appears on top of the join row source in the plan table output.

CREATE TABLE dept hash
PARTITION BY HASH (department id)
PARTITIONS 3
PARALLEL 2
AS SELECT * FROM departments;

EXPLAIN PLAN FOR
SELECT /*+ PQ DISTRIBUTE (e NONE NONE) ORDERED */ e.last name,
d.department name
FROM emp comp e, dept hash d
WHERE e.department id = d.department id;

|Id| Operation | Name |Rows|Bytes|Cost|Pstart|Pstop|TQ |IN-OUT|PQ Distrib]
| 0] SELECT STATEMENT | | 106 | 2544 [8] | | | |
| 1| PX COORDINATOR | | | [ | | |
| 2] PX SEND QC (RANDOM) [:TQ10000 | 106 | 2544 |8 | | Q1,00 | P->S |QC (RAND) |
| 3] PX PARTITION HASH ALL | | 106 | 2544 |8]1 | 3 | Q1,00 | PCWC |
[ *4] HASH JOIN | | 106 | 2544 [8] | | Q1,00 | PCWP |
| 5] PX PARTITION RANGE ALL| | 107 | 1070 [3]1 | 5 | Q1,00 | PCWC |
| 6] TABLE ACCESS FULL [EMP_COMP | 107 | 1070 |3]1 |15 | Q1,00 | PCWP | |
| 7] TABLE ACCESS FULL [DEPT HASH | 27 | 378 |41 | 3 | Q1,00 | PCWP |

The PX PARTITION HASH row source appears on top of the join row source in the plan table
output while the PX PARTITION RANGE row source appears over the scan of emp_comp. Each
parallel execution server performs the join of an entire hash partition of emp_comp with an entire
partition of dept_hash.

Examples of INLIST ITERATOR and EXPLAIN PLAN

An INLIST ITERATOR operation appears in the EXPLAIN PLAN output if an index implements an
IN-list predicate.

Consider the following statement:

SELECT * FROM emp WHERE empno IN (7876, 7900, 7902);

ORACLE 699



Chapter 6
Displaying Execution Plans

The EXPLAIN PLAN output appears as follows:

OPERATION OPTIONS OBJECT NAME

SELECT STATEMENT

INLIST ITERATOR

TABLE ACCESS BY ROWID EMP

INDEX RANGE SCAN EMP_EMPNO

The INLIST ITERATOR operation iterates over the next operation in the plan for each value in
the 1N-list predicate. The following sections describe the three possible types of In-list columns
for partitioned tables and indexes.

When the IN-List Column is an Index Column: Example

If the IN-list column empno is an index column but not a partition column, then the InN-list
operator appears before the table operation but after the partition operation in the plan.

OPERATION OPTIONS OBJECT NAME PARTIT START PARTITI STOP

SELECT STATEMENT

PARTITION RANGE ALL KEY (INLIST) KEY (INLIST)
INLIST ITERATOR

TABLE ACCESS BY LOCAL INDEX ROWID EMP KEY (INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY (INLIST) KEY(INLIST)

The KEY (INLIST) designation for the partition start and stop keys specifies that an IN-list
predicate appears on the index start and stop keys.

When the IN-List Column is an Index and a Partition Column: Example

If empno is an indexed and a partition column, then the plan contains an INLIST ITERATOR
operation before the partition operation.

OPERATION OPTIONS OBJECT NAME PARTITION START PARTITION STOP

SELECT STATEMENT
INLIST ITERATOR

PARTITION RANGE ITERATOR KEY (INLIST) KEY (INLIST)
TABLE ACCESS BY LOCAL INDEX ROWID EMP KEY (INLIST) KEY (INLIST)
INDEX RANGE SCAN EMP EMPNO KEY (INLIST) KEY (INLIST)

When the IN-List Column is a Partition Column: Example

If empno is a partition column and no indexes exist, then no INLIST ITERATOR operation is
allocated.

OPERATION OPTIONS OBJECT NAME PARTITION START PARTITION STOP

SELECT STATEMENT

PARTITION RANGE  INLIST KEY (INLIST) KEY (INLIST)
TABLE ACCESS FULL EMP KEY (INLIST) KEY (INLIST)
ORACLE

6-30



Chapter 6
Comparing Execution Plans

If emp_empno is a bitmap index, then the plan is as follows:

OPERATION OPTIONS OBJECT NAME

SELECT STATEMENT
INLIST ITERATOR

TABLE ACCESS BY INDEX ROWID EMP
BITMAP CONVERSION TO ROWIDS
BITMAP INDEX SINGLE VALUE EMP_EMPNO

Example of Domain Indexes and EXPLAIN PLAN

You can use EXPLAIN PLAN to derive user-defined CPU and I/O costs for domain indexes.

EXPLAIN PLAN displays domain index statistics in the OTHER column of PLAN TABLE. For
example, assume table emp has user-defined operator CONTAINS with a domain index

emp resume ON the resume column, and the index type of emp resume supports the operator
CONTAINS. You explain the plan for the following query:

SELECT * FROM emp WHERE CONTAINS (resume, 'Oracle') =1

The database could display the following plan:

OPERATION OPTIONS OBJECT NAME OTHER

SELECT STATEMENT

TABLE ACCESS BY ROWID EMP

DOMAIN INDEX EMP RESUME CPU: 300, I/O: 4

Comparing Execution Plans

The plan comparison tool takes a reference plan and an arbitrary list of test plans and
highlights the differences between them. The plan comparison is logical rather than line by line.

Purpose of Plan Comparison

ORACLE

The plan comparison report identifies the source of differences, which helps users triage plan
reproducibility issues.

The plan comparison report is particularly useful in the following scenarios:

*  You want to compare the current plan of a query whose performance is regressing with an
old plan captured in AWR.

A SQL plan baseline fails to reproduce the originally intended plan, and you want to
determine the difference between the new plan and the intended plan.

*  You want to determine how adding a hint, changing a parameter, or creating an index will
affect a plan.

¢ You want to determine how a plan generated based on a SQL profile or by SQL
Performance Analyzer differs from the original plan.

6-31



Chapter 6
Comparing Execution Plans

User Interface for Plan Comparison

ORACLE

You can use DBMS XPLAN.COMPARE PLANS to generate a report in text, XML, or HTML format.

Compare Plans Report Format

The report begins with a summary. The COMPARE PLANS REPORT section includes information
such as the user who ran the report and the number of plans compared, as shown in the
following example:

COMPARE PLANS REPORT

Current user : SH
Total number of plans : 2
Number of findings 1

The COMPARISON DETAILS section of the report contains the following information:

e Plan information

The information includes the plan number, the plan source, plan attributes (which differ
depending on the source), parsing schema, and SQL text.

* Plans
This section displays the plan rows, including the predicates and notes.
e Comparison results

This section summarizes the comparison findings, highlighting logical differences such as
join order, join methods, access paths, and parallel distribution method. The findings start
at number 1. For findings that relate to a particular query block, the text starts with the
name of the block. For findings that relate to a particular object alias, the text starts with
the name of the query block and the object alias. The following

Comparison Results (1):

1. Query block SELS$1, Alias PRODUCTSQ@SELS$1: Some columns (OPERATION,
OPTIONS, OBJECT NAME) do not match between the reference
plan (id: 2) and the current plan (id: 2).

DBMS_XPLAN.PLAN_OBJECT _LIST Table Type

The plan object list type allows for a list of generic objects as input to the
DBMS XPLAN.COMPARE PLANS function. The syntax is as follows:

TYPE plan object list IS TABLE OF generic plan object;

The generic object abstracts the common attributes of plans from all plan sources. Every plan
source is a subclass of the plan object list superclass. The following table summarizes the
different plan sources. Note that when an optional parameter is null, it can correspond to
multiple objects. For example, if you do not specify a child number for cursor cache object,
then it matches all cursor cache statements with the specified SQL ID.

6-32



ORACLE

Table 6-3 Plan Sources for PLAN_OBJECT_LIST

Chapter 6
Comparing Execution Plans

Plan Source

Specification

Description

Plan table

Cursor cache

AWR

SQL tuning set

SQL plan
management

SQL profile

Advisor

plan table object (owner,
plan table name, statement id,
plan_id)

cursor cache object(sql id,
child number)

awr object (sql id, dbid,
con dbid, plan hash value)

sqlset object (sglset owner,
sqlset name, sqgl id,
plan hash value)

spm _object (sgl handle,
plan name)

sql profile object
(profile name)

advisor object (task name,
execution name, sqgl id,
plan id)

The parameters are as follows:

e owner—The owner of the plan table

¢ plan table name—The name of the
plan table

¢ statement id—The ID of the
statement (aptional)

* plan id—The ID of the plan
(optional)

The parameters are as follows:

* sql id—The SQL ID of the plan

¢ child number—The child number of
the pla?l in the cursor cache (optional)

The parameters are as follows:

e sqgl id—The SQL ID of the plan

e dbid—The database ID (optional)

e con_dbid—The CDB ID (optional)

* plan hash value—The hash value
of the plan (optional)

The parameters are as follows:

* sqglset owner—The owner of the
SQL tuning set

¢ sglset name—The name of the SQL
tuning set

* sql id—The SQL ID of the plan

* plan hash value—The hash value
of the plan (optional)

The parameters are as follows:

e sqgl handle—The SQL handle of
plans protected by SQL plan
management

¢ plan name—The name of the SQL
plan baseline (optional)

The profile name parameter specifies

the name of the SQL profile.

The parameters are as follows:

* task name—The name of the advisor
task

e execution name—The name of the
task execution

* sql _id—The SQL ID of the plan
e plan id—The advisor plan ID
(optional)

6-33



ORACLE

Chapter 6
Comparing Execution Plans

DBMS_XPLAN.COMPARE_PLANS Function

The interface for the compare plan tools is the following function:

DBMS XPLAN.COMPARE PLANS (

reference plan IN generic_plan object,
compare plan list IN plan object list,

type IN VARCHAR2 := 'TEXT',
level IN VARCHAR2 := 'TYPICAL',
section IN VARCHAR2 := 'ALL')

RETURN CLOB;

The following table describes the parameters that specify that plans to be compared.

Table 6-4 Parameters for the COMPARE_PLANS Function

________________________________________________________________________________|]
Parameter Description

reference plan Specifies a single plan of type
generic plan object

compare plan list Specifies a list of plan objects. An object might
correspond to one or more plans.

Example 6-8 Comparing Plans from Child Cursors

This example compares the plan of child cursor number 2 for the SQL ID 8mkxm7ur07za0 with
the plan for child cursor number 4 for the same SQL ID.

VAR v_report CLOB;

BEGIN
:v_report := DBMS XPLAN.COMPARE PLANS (
reference plan => CURSOR_CACHE OBJECT ('8mkxm7ur07za0', 2),
compare plan list =>
PLAN_OBJECT_LIST(CURSOR_CACHE_OBJECT('8mkxm7ur07za0', 4)));
END;
/

PRINT v_report

Example 6-9 Comparing Plan from Child Cursor with Plan from SQL Plan Baseline

This example compares the plan of child cursor number 2 for the SQL ID 8mkxm7ur07za0 with
the plan from the SQL plan baseline. The baseline query has a SQL handle of
SQL 024d0£7d21351£5d and a plan name of SQL_PLAN sdfjkd.

VAR v_report CLOB;
BEGIN
:v_report := DBMS XPLAN.COMPARE PLANS( -
reference plan => CURSOR_CACHE OBJECT ('8mkxm7ur07zal', 2),
compare plan list => PLAN OBJECT LIST(SPM OBJECT ('SQL 024d0£7d21351£5d',
'SQL PLAN sdfjkd')));
END;

6-34



Chapter 6
Comparing Execution Plans

PRINT v_report

Example 6-10 Comparing a Plan with Plans from Multiple Sources

This example prints the summary section only. The program compares the plan of child cursor
number 2 for the SQL ID 8mkxm7ur07za0 with every plan in the following list:

All plans in the shared SQL area that are generated for the SQL ID 8mkxm7ur07za0

All plans generated in the SQL tuning set SH. SQLT WORKLOAD for the SQL ID
o6viqgvavOrgyad

All plans in AWR that are captured for database ID 5 and SQL ID 6vfqvav0Orgyad

The plan baseline for the query with handle SQL_024d0£7d21351£5d with name
SQL PLAN sdfjkd

The plan stored in sh.plan table identified by plan id=38
The plan identified by the SQL profile name pe3r3ejsfd

All plans stored in SQL advisor identified by task name TASK 1228, execution name
EXEC 1928, and SQL ID 8mkxm7ur07za0

VAR v_report CLOB
BEGIN

:v_report := DBMS XPLAN.COMPARE PLANS (

reference plan => CURSOR_CACHE OBJECT ('8mkxm7ur07zal', 2),
compare _plan list => plan object list(
cursor_cache object ('8mkxm7ur07zal'),
sqlset object('SH', 'SQLT WORKLOAD', '6vigvavOrgyad'),
awr_object ('6vigvavOrgyad', 5),
spm_object ('SQL 024d0£7d21351£5d', 'SQL PLAN sdfjkd'),
plan table object('SH', 'plan table', 38),
sql profile object('pe3r3ejsfd'),
advisor object ('TASK 1228', 'EXEC 1928', '8mkxm7ur07zal')),

type => 'XML',
level => 'ALL',
section => 'SUMMARY');

END;

/

PRINT v_report

ORACLE

¢ Note:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_XPLAN package

6-35



Chapter 6
Comparing Execution Plans

Comparing Execution Plans: Tutorial

ORACLE

To compare plans, use the DBMS XPLAN.COMPARE PLANS function.

In this tutorial, you compare two distinct queries. The compare plans report shows that the
optimizer was able to use a join elimination transformation in one query but not the other.

Assumptions

This tutorial assumes that user sh issued the following queries:

select count (*)

from products p, sales s
where p.prod id = s.prod id
and p.prod min price > 200;

select count (*)

from products p, sales s
where p.prod id = s.prod id
and s.quantity sold = 43;

To compare execution plans:

1. Start SQL*Plus, and log in to the database with administrative privileges.
2. Query V$SOL to determine the SQL IDs of the two queries.

The following query queries V$SQL for queries that contain the string products:

SET LINESIZE 120
COL SQL ID FORMAT a20
COL SQL TEXT FORMAT a60

SELECT SQL ID, SQL TEXT

FROM VS$SQL

WHERE SQL TEXT LIKE '$products%'

AND SQL TEXT NOT LIKE '%SQL TEXT%'
ORDER BY SQL ID;

SQL ID SQL TEXT

Ohxmvnfkasg6qg select count (*) from products p, sales s where
p.prod id = s.prod id and s.quantity sold = 43

10dgxjph6bwum select count (*) from products p, sales s where
p.prod id = s.prod id and p.prod min price > 200

3. Log in to the database as user sh.

4. Execute the DBMS_XPLAN.COMPARE PLANS function, specifying the SQL IDs obtained in the
previous step.

For example, execute the following program:

VARIABLE v _rep CLOB

6-36



Chapter 6
Comparing Execution Plans

BEGIN
:v_rep := DBMS XPLAN.COMPARE PLANS (
reference plan => cursor_cache object ('Ohxmvnfkasg6qg', NULL),
compare plan list =>
plan object list(cursor cache object ('10dgxjph6bwum', NULL)),

type => 'TEXT',

level => 'TYPICAL',

section => 'ALL');
END;

/

5. Print the report.

For example, run the following query:

SET PAGESIZE 50000

SET LONG 100000

SET LINESIZE 210

COLUMN report FORMAT a200
SELECT :v_rep REPORT FROM DUAL;

The Comparison Results section of the following sample report shows that only the first
query used a join elimination transformation:

REPORT

Current user ¢ SH
Total number of plans : 2
Number of findings 1

Plan Number : 1 (Reference Plan)

Plan Found : Yes

Plan Source : Cursor Cache

SQL ID : Ohxmvnfkasg6q

Child Number : 0

Plan Database Version : 19.0.0.0

Parsing Schema ¢ "SH"

SQL Text : select count(*) from products p, sales s where

p.prod id = s.prod id and s.quantity sold = 43

Plan Hash Value : 3519235612

| Id | Operation | Name | Rows | Bytes | Cost | Time
| 0 | SELECT STATEMENT | | \ | 469 |
| 1| SORT AGGREGATE | | 1| 3| \ |

ORACLE 6-37



Chapter 6
Comparing Execution Plans

| 2 | PARTITION RANGE ALL | | 1 | 3 | 469 | 00:00:01 |
[ * 3] TABLE ACCESS FULL | SALES | 1 | 3 | 469 | 00:00:01 |
Predicate Information (identified by operation id):

* 3 - filter("S"."QUANTITY_SOLD"=43)

Plan Number H

Plan Found : Yes

Plan Source : Cursor Cache

SQL ID : 10dgxjph6bwum

Child Number : 0

Plan Database Version : 19.0.0.0

Parsing Schema ;o "sH"

SQL Text : select count(*) from products p, sales s where

p.prod id = s.prod id and p.prod min price > 200

Plan Hash Value : 3037679890

|Id| Operation | Name | Rows | Bytes [Cost |Time |
| 0| SELECT STATEMENT | | | |34 |
| 1] SORT AGGREGATE | | 1| 13 | \
[*2] HASH JOIN | | 781685 10161905 [34]100:00:01
[ *3] TABLE ACCESS FULL | PRODUCTS | 6l | 549 | 2100:00:01]
| 4] PARTITION RANGE ALL | 1918843 | 3675372 129]100:00:01
| 5] BITMAP CONVERSION TO ROWIDS | 1918843 | 3675372 [29]100:00:01|
| 6l BITMAP INDEX FAST FULL SCAN | SALES PROD BIX | | | \

Predicate Information (identified by operation id):

* 2 - access("P"."PROD ID"="S"."PROD ID")
* 3 - filter("P"."PROD_MIN_PRICE">ZOO)

- This is an adaptive plan

Comparison Results (1):

1. Query block SEL$1l: Transformation JOIN REMOVED FROM QUERY BLOCK occurred
only in the reference plan (result query block: SEL$A43D1678).

ORACLE 638



Chapter 6
Comparing Execution Plans

# See Also:

the DBMS XPLAN package

Comparing Execution Plans: Examples

ORACLE

These examples demonstrate how to generate compare plans reports for queries of tables
the sh schema.

Example 6-11 Comparing an Explained Plan with a Plan in a Cursor

This example explains a plan for a query of tables in the sh schema, and then executes the
query:

EXPLAIN PLAN
SET STATEMENT ID='TEST' FOR
SELECT c.cust city, SUM(s.quantity sold)
FROM customers c, sales s, products p
WHERE c.cust id=s.cust id
AND p.prod id=s.prod id
AND prod min price>100
GROUP BY c.cust city;

SELECT c.cust city, SUM(s.quantity sold)
FROM customers c, sales s, products p
WHERE c.cust id=s.cust id

AND p.prod id=s.prod id

AND prod min price>100

GROUP BY c.cust city;

Assume that the SQL ID of the executed query is 9mp7z6qq83k5y. The following PL/SQL
program compares the plan in PLAN TABLE and the plan in the shared SQL area:

BEGIN
:v_rep := DBMS XPLAN.COMPARE PLANS (

Oracle Database PL/SQL Packages and Types Reference for more information about

in

reference plan => plan table object('SH', 'PLAN TABLE', 'TEST', NULL),

compare plan list =>
plan object list(cursor cache object ('9mp7z6gq83kdy')),

type => '"TEXT',
level => '"TYPICAL',
section => 'ALL');

END;

/

PRINT v_rep

The following sample report shows that the plans are the same:

COMPARE PLANS REPORT

Current user : SH

6-39



ORACLE

Total number of plans
Number of findings

Chapter 6
Comparing Execution Plans

Plan Number

1 (Reference Plan)

Plan Found : Yes

Plan Source : Plan Table

Plan Table Owner : SH

Plan Table Name : PLAN TABLE

Statement ID ¢ TEST

Plan ID : 52

Plan Database Version 19.0.0.0

Parsing Schema ;o "sH"

SQL Text : No SQL Text

Plan

Plan Hash Value : 3473931970

| Id| Operation | Name

| 0] SELECT STATEMENT |

| 1] HASH GROUP BY |

I* 2| HASH JOIN |

| 3] TABLE ACCESS FULL | CUSTOMERS | 55500 |
|* 4] HASH JOIN | 1160348 |
[* 5] TABLE ACCESS FULL | PRODUCTS |

| 6] PARTITION RANGE ALL |

I TABLE ACCESS FULL |SALES

[160348 ]|

1918843111026116] 467] 00:00:01
1918843111026116] 467] 00:00:01

223200112131 00:00:01
223200112131 00:00:01
577252811209| 00:00:01
832500] 414| 00:00:01
3367308 472] 00:00:01
117] 2| 00:00:01

Predicate Information (identified by operation id):

* 2 - access("C"."CUST ID"="S"."CUST ID")
* 4 - access("P"."PROD ID"="S"."PROD ID")
* 5 - filter("PROD_MIN_PRICE">100)

Plan Number

Plan Found

Plan Source

SQL ID

Child Number

Plan Database Version
Parsing Schema

SQL Text

: Yes
: Cursor Cache

9mp7z6qg83kby
0

19.0.0.0

IISH"

select c.cust city, sum(s.quantity sold) from

customers c, sales s, products p where

c.cust id=s.cust id and p.prod id=s.prod id and
prod min price>100 group by c.cust city

6-40



ORACLE

Chapter 6
Comparing Execution Plans

Plan Hash Value : 3473931970

| Id | Operation | Name | Rows | Bytes | Cost|Time

| 0] SELECT STATEMENT | | | [1213 |

| 1] HASH GROUP BY | | 620 | 2232011213 100:00:01 |
[* 2] HASH JOIN | [160348| 577252811209 [00:00:01 |
| 3] TABLE ACCESS FULL |CUSTOMERS | 55500] 832500| 414 |00:00:01 |
[* 4] HASH JOIN | |160348| 3367308 472 [00:00:01 |
[* 5] TABLE ACCESS FULL | PRODUCTS | 13| 117] 2 100:00:01 |
| 6] PARTITION RANGE ALL | [918843|11026116| 467 [00:00:01 |
| 7] TABLE ACCESS FULL |SALES [918843|11026116| 467 [00:00:01 |

Predicate Information (identified by operation id):
* 2 - access("C"."CUST ID"="S"."CUST ID")

* 4 - access("P"."PROD ID"="S"."PROD ID")

* 5 - filter("PROD_MIN_PRICE">100)

- This is an adaptive plan

Comparison Results (1):

1. The plans are the same.

Example 6-12 Comparing Plans in a Baseline and SQL Tuning Set

Assume that you want to compare the plans for the following queries, which differ only in the
NO_MERGE hint contained in the subquery:

SELECT c.cust city, SUM(s.quantity sold)
FROM customers c, sales s,
(SELECT prod id FROM products WHERE prod min price>100) p
WHERE c.cust id=s.cust id
AND p.prod id=s.prod id
GROUP BY c.cust city;

SELECT c.cust city, SUM(s.quantity sold)
FROM customers c, sales s,
(SELECT /*+ NO_MERGE */ prod id FROM products WHERE
prod min price>100)
WHERE c.cust id=s.cust id
AND p.prod id=s.prod id
GROUP BY c.cust city;

The plan for the first query is captured in a SQL plan management baseline with SQL handle
SQL ¢522£5888cc4613e. The plan for the second query is stored in a SQL tuning set named

6-41



Chapter 6
Comparing Execution Plans

MYSTS1 and has a SQL ID of d07p7gmrm13nc. You run the following PL/SQL program to
compare the plans:

VAR v_rep CLOB

BEGIN
v_rep := DBMS XPLAN.COMPARE PLANS (
reference plan => spm_object ('SQL c522£5888cc46l3e"),

compare plan list => plan object list(sglset object('SH', 'MYSTS1l',
'd07p7gmrml3nc', null)),

type => '"TEXT',
level => 'TYPICAL',
section => 'ALL');

END;

/

PRINT v_rep

The following output shows that the only the reference plan, which corresponds to the query
without the hint, used a view merge:

Current user : SH
Total number of plans : 2
Number of findings : 1

Plan Number : 1 (Reference Plan)

Plan Found : Yes

Plan Source : SQL Plan Baseline

SQL Handle : SQL c522£5888cc46l3e

Plan Name : SQL PLAN ca8rpj26c8s9y7c2279c4

Plan Database Version : 19.0.0.0

Parsing Schema : "SH"

SQL Text : select c.cust city, sum(s.quantity sold) from

customers c, sales s, (select prod id from

products where prod min price>100) p where

c.cust _id=s.cust id and p.prod id=s.prod id
group by c.cust city

Plan Hash Value : 2082634180

| Id | Operation | Name |[Rows |Bytes |Cost | Time

| 0 | SELECT STATEMENT | \ | | 22 |

|1 | HASH GROUP BY | | 300 |11400 | 22 | 00:00:01 |
|2 | HASH JOIN | | 718 27284 | 21 | 00:00:01 |

ORACLE 640



HASH JOIN

Plan Number

Plan Found

Plan Source

SQL Tuning Set Owner
SQL Tuning Set Name
SQL ID

Plan Hash Value

Plan Database Version
Parsing Schema

SQL Text

Plan Hash Value

| 0 | SELECT STATEMENT
[ 1 | HASH GROUP BY
| 2 | HASH JOIN

| 3 | HASH JOIN

| 4 | VIEW

[ 5]

| 6

[ 7

| 8 | TABLE ACCESS
Notes

TABLE ACCESS FULL
PARTITION RANGE ALL
TABLE ACCESS FULL

TABLE ACCESS FULL

PARTITION RANGE ALL
TABLE ACCESS FULL

|
|
TABLE ACCESS FULL |
|
|

: Yes

: SQL Tuni
: SH

: MYSTS1

ng Set

: d07p7gmrml3nc

65589192
19.0.0.0
"SH"

2

630
718
573
960

| 9450
|16514
| 5730
112480
112480

00:
00:
00:

00:
00:
00:

select c.cust city, sum(s.quantity sold) from
(select /*+ NO MERGE */
prod id from products where prod min price>100)
p where c.cust id=s.cust id and
p.prod id=s.prod id group by c.cust city

customers

©55891922

FULL

- This is an adaptive plan

Comparison Results (1):

c, sales s,

PRODUCTS

SALES
CUSTOMERS

1. Query block SEL$1l: Transformation VIEW MERGE occurred only in the

reference plan (result query block: SEL$F5BB74El).

Example 6-13 Comparing Plans Before and After Adding an Index

ORACLE

In this example, you test the effect of an index on a query plan:

EXPLAIN PLAN

SET STATEMENT ID='TST1' FOR

01
01
01

Chapter 6
Comparing Execution Plans

6-43



Chapter 6
Comparing Execution Plans

SELECT COUNT (*) FROM products WHERE prod min price>100;
CREATE INDEX newprodidx ON products(prod min price);
EXPLAIN PLAN

SET STATEMENT ID='TST2' FOR
SELECT COUNT (*) FROM products WHERE prod min price>100;

You execute the following PL/SQL program to generate the report:

VAR v_rep CLOB

BEGIN
IV rep := DBMS_XPLAN.COMPARE_PLANS(
reference plan => plan_table object('SH','PLAN TABLE', 'TST1',6 NULL),
compare plan list => plan object list(plan table object('SH', 'PLAN TABLE',6 'TST2',NULL)),
TYPE => 'TEXT',
level => 'TYPICAL',
section => 'ALL");
END;
/

PRINT v_rep

The following report indicates that the operations in the two plans are different:

COMPARE PLANS REPORT

Current user : SH
Total number of plans : 2
Number of findings HE

Plan Number : 1 (Reference Plan)
Plan Found : Yes

Plan Source : Plan Table
Plan Table Owner : SH

Plan Table Name : PLAN TABLE
Statement ID : TST1

Plan ID : 56

Plan Database Version : 19.0.0.0
Parsing Schema : "SH"

SQL Text : No SQL Text
Plan

Plan Hash Value : 3421487369

| 0 | SELECT STATEMENT |
1| SORT AGGREGATE | |

ORACLE 6an



Chapter 6
Comparing Execution Plans

[ * 2 | TABLE ACCESS FULL | PRODUCTS | 13 | 65 | 2 | 00:00:01 |

Predicate Information (identified by operation id):

Plan Number 2

Plan Found : Yes

Plan Source : Plan Table
Plan Table Owner : SH

Plan Table Name : PLAN TABLE
Statement ID : TST2

Plan ID . 57

Plan Database Version : 19.0.0.0
Parsing Schema ¢ "SH"

SQL Text : No SQL Text
Plan

Plan Hash Value : 2694011010

| Id | Operation | Name | Rows | Bytes | Cost | Time

| 0 | SELECT STATEMENT \ | 1] 5 | 1 1 00:00:01 |
| 1 | SORT AGGREGATE \ | 1| 5 | |

[ * 2 | INDEX RANGE SCAN | NEWPRODIDX | 13 | 65 | 1 1 00:00:01 |

Predicate Information (identified by operation id):

* 2 - access("PROD MIN PRICE">100)

Comparison Results (1):
1. Query block SEL$1l, Alias PRODUCTS@SEL$1: Some columns (OPERATION,
OPTIONS, OBJECT NAME) do not match between the reference plan
(id: 2) and the current plan (id: 2).

Example 6-14 Comparing Plans with Visible and Invisible Indexes

In this example, an application executes the following query:

select count (*)
from products p, sales s
where p.prod id = s.prod id
and p.prod status = 'obsolete';

The plan for this query uses two indexes: sales prod bix and products prod status bix.
The database generates four plans, using all combinations of visible and invisible for both
indexes. Assume that SQL plan management accepts the following plans in the baseline for
the query:

ORACLE 65



Chapter 6

Comparing Execution Plans

* sales prod bix visible and products prod status bix visible
* sales prod bix visible and products prod status bix invisible

* sales prod bix invisible and products prod status bix visible

You make both indexes invisible, and then execute the query again. The optimizer, unable to
use the invisible indexes, generates a new plan. The three baseline plans, all of which rely on
at least one index being visible, fail to reproduce. Therefore, the optimizer uses the new plan
and adds it to the SQL plan baseline for the query. To compare the plan currently in the shared
SQL area, which is the reference plan, with all four plans in the baseline, you execute the

following PL/SQL code:

VAR v _rep CLOB

BEGIN
:v_rep := DBMS XPLAN.COMPARE PLANS (
reference plan => cursor_ cache object('45ns3tzutglds'),
compare plan list => plan object list (spm object('SQL aec814b0d452da8a')),
TYPE => 'TEXT',
level => 'TYPICAL',
section => 'ALL'");
END;
/
PRINT v _rep

The following report compares all five plans:

Current user : SH
Total number of plans : 5
Number of findings ;19

Plan Number : 1 (Reference Plan)

Plan Found : Yes

Plan Source : Cursor Cache

SQL ID : 45ns3tzutglds

Child Number : 0

Plan Database Version : 19.0.0.0

Parsing Schema ¢ "sH"

SQL Text : select count(*) from products p, sales s where p.prod id
= s.prod id and p.prod status = 'obsolete'

Plan

Plan Hash Value : 1136711713

| Id | Operation | Name | Rows | Bytes | Cost | Time
| 0 | SELECT STATEMENT | \ | | 15 |
ORACLE

6-46



Chapter 6
Comparing Execution Plans

| 1 | SORT AGGREGATE | | 1 | 30 | |

| * 2 | HASH JOIN | | 320 | 9600 | 15 ] 00:00:01 |

| 3 ] JOIN FILTER CREATE | :BFO0O00 | 255 | 6375 | 9 | 00:00:01

| * 4 | TABLE ACCESS FULL | PRODUCTS | 255 | 6375 | 9 1 00:00:01

| 5 | JOIN FILTER USE | :BFO0O00 | 960 | 4800 | 51 00:00:01

| 6 | PARTITION RANGE ALL | | 960 | 4800 | 5 1] 00:00:01 |

[ %7 TABLE ACCESS FULL | SALES | 960 | 4800 | 5 1] 00:00:01

Predicate Information (identified by operation id):

* 2 - access("P"."PROD ID"="S"."PROD ID")

* 4 - filter ("P"."PROD STATUS"='obsolete')

* 7 - filter(SYS_OP_BLOOM_FILTER(:BFOOOO,"S"."PROD_ID"))

Notes

- baseline repro fail = yes

Plan Number H

Plan Found : Yes

Plan Source : SQL Plan Baseline

SQL Handle : SQL aec814b0d452da8a

Plan Name : SQL PLAN axk0Ong3a55qna6e039463

Plan Database Version : 19.0.0.0

Parsing Schema ;o "sg"

SQL Text : select count(*) from products p, sales s where p.prod id =
s.prod id and p.prod status = 'obsolete'

Plan

Plan Hash Value : 1845728355

| Id| Operation | Name |Rows |Bytes|Cost| Time |

| 0| SELECT STATEMENT | | 1| 30 |11 |00:00:01]

[— SORT AGGREGATE | | 1] 30 | | |

| *2] HASH JOIN | [32019600 |11 |00:00:01]

| 3] JOIN FILTER CREATE | :BF0000 [25516375 | 5 |100:00:01]

| *4| VIEW | index$ join$ 001 [255]16375 | 5 |00:00:01]

| *5] HASH JOIN | | | \ |

| 6] BITMAP CONVERSION TO ROWIDS | [25516375 | 1 |00:00:01]

| *7] BITMAP INDEX SINGLE VALUE | PRODUCTS PROD STATUS BIX| | \ |

| 8] INDEX FAST FULL SCAN | PRODUCTS PK [25516375 | 4 100:00:01]

[ 9] JOIN FILTER USE | :BF0000 196014800 | 5 |100:00:01]

| 10| PARTITION RANGE ALL | 196014800 | 5 |00:00:01]

[*11| TABLE ACCESS FULL | SALES 196014800 | 5 |00:00:01]

Predicate Information (identified by operation id):

2 - access("P"."PROD ID"="S"."PROD ID")
* 4 - filter("P"."PROD_STATUS"='Obsolete')
* 5 - access (ROWID=ROWID)
* 7 - access("P"."PROD STATUS"='obsolete')
ORACLE

6-47



Chapter 6
Comparing Execution Plans

* 11 - filter(SYS OP BLOOM FILTER(:BF0000,"S"."PROD ID"))

Comparison Results (4):

1. Query block SEL$1, Alias P@SEL$1: Some lines (id: 4) in the reference plan are missing
in the current plan.

2. Query block SEL$1, Alias SQ@SEL$1l: Some columns (ID) do not match between the reference
plan (id: 5) and the current plan (id: 9).

3. Query block SEL$1, Alias S@SEL$1l: Some columns (ID, PARENT ID, PARTITION ID) do not
match between the reference plan (id: 6) and the current plan (id: 10).

4. Query block SEL$1, Alias S@SEL$1l: Some columns (ID, PARENT ID, PARTITION ID) do not
match between the reference plan (id: 7) and the current plan (id: 11).

Plan Number : 3

Plan Found : Yes

Plan Source : SQL Plan Baseline

SQL Handle : SQL aec814b0d452da8a

Plan Name : SQL PLAN axkOng3a55qna43c0d821

Plan Database Version : 19.0.0.0

Parsing Schema : "SH"

SQL Text : select count(*) from products p, sales s where p.prod id =

s.prod id and
p.prod status = 'obsolete'

Plan Hash Value : 1136711713

| Id | Operation | Name | Rows | Bytes | Cost | Time

| 0 | SELECT STATEMENT | | 1] 30 | 15 | 00:00:01 |
| 1| SORT AGGREGATE | | 1] 30 | |

| * 2 | HASH JOIN | | 320 | 9600 | 15 | 00:00:01 |
| 3| JOIN FILTER CREATE | :BFO0O0O | 255 | 6375 | 9 | 00:00:01

| * 4 | TABLE ACCESS FULL | PRODUCTS | 255 | 6375 | 9 | 00:00:01

| 5 | JOIN FILTER USE | :BFO0O0OO | 960 | 4800 | 5 1 00:00:01

| 6 | PARTITION RANGE ALL | [ 960 | 4800 | 51 00:00:01 |
x| TABLE ACCESS FULL | SALES [ 960 | 4800 | 51 00:00:01

Predicate Information (identified by operation id):

* 2 - access("P"."PROD ID"="S"."PROD ID")
* 4 - filter ("P"."PROD STATUS"='obsolete')
* 7 - filter(SYS_OP_BLOOM_FILTER(:BFOOOO,"S"."PROD_ID"))

Comparison Results (1):

Plan Number 4

Plan Found : Yes

Plan Source : SQL Plan Baseline
ORACLE

6-48



Chapter 6
Comparing Execution Plans

SQL Handle : SQL aec814b0d452da8a

Plan Name : SQL PLAN axkOng3a55gnalb7aeatc

Plan Database Version : 19.0.0.0

Parsing Schema : "SH"

SQL Text : select count(*) from products p, sales s where p.prod id =

s.prod id and
p.prod status = 'obsolete'

Plan Hash Value : 461040236

| 0 | SELECT STATEMENT | | 1 | \ |
|1 | SORT AGGREGATE | [ 1 | \ |
|2 NESTED LOOPS | 1320 | \ |
[* 3 ] TABLE ACCESS FULL | PRODUCTS [255 | 6375 | 9 | 00:00:01
| 4] PARTITION RANGE ALL | |1 \ |
|5 BITMAP CONVERSION COUNT | |1 | \ |
[* 6 | BITMAP INDEX SINGLE VALUE | SALES PROD BIX | \ \ |

Predicate Information (identified by operation id):
* 3 - filter ("P"."PROD STATUS"='obsolete')
* 6 - access("P"."PROD ID"="S"."PROD ID")

Comparison Results (7):

1. Query block SEL$1, Alias P@SEL$1: Some lines (id: 3) in the reference plan are missing
in the current plan.

2. Query block SEL$1, Alias S@SEL$1l: Some lines (id: 5) in the reference plan are missing
in the current plan.

3. Query block SEL$1, Alias S@SEL$1: Some lines (id: 7) in the reference plan are missing
in the current plan.

4. Query block SEL$1, Alias SQ@SELS$1: Some lines (id: 5,6) in the current plan are missing
in the reference plan.

5. Query block SEL$1l, Alias PQ@SEL$1l: Some columns (OPERATION) do not match between the
reference plan (id: 2) and the current plan (id: 2).

6. Query block SEL$1l, Alias PRSEL$l: Some columns (ID, PARENT ID, DEPTH) do not match
between the reference plan (id: 4) and the current plan (id: 3).

7. Query block SEL$1, Alias S@SEL$l: Some columns (ID, PARENT ID, DEPTH, POSITION,
PARTITION ID) do not match between the reference plan (id: 6) and the current plan (id: 4).

Plan Number : 5

Plan Found : Yes

Plan Source : SQL Plan Baseline

SQL Handle : SQL aec814b0d452da8a

Plan Name : SQL PLAN axkOng3a55qnal628afbd

Plan Database Version : 19.0.0.0

Parsing Schema : "SH"

SQL Text : select count(*) from products p, sales s where p.prod id =

s.prod id and

ORACLE 649



Chapter 6
Comparing Execution Plans

p.prod status = 'obsolete'

Plan Hash Value : 103329725

|Id| Operation | Name | Rows|Bytes|Cost|Time |
| O] SELECT STATEMENT | | | | 5 |

| 1] SORT AGGREGATE | [ 1 1 30 | | |
| 2] NESTED LOOPS | [320 19600 | 5 |00:00:01]
| 3] VIEW | index$ join$ 001 [255 16375 | 5 |00:00:01]
| 4 HASH JOIN | | | \ |

| 5] BITMAP CONVERSION TO ROWIDS | [255 16375 | 1 100:00:01]
| 6] BITMAP INDEX SINGLE VALUE | PRODUCTS_PROD_STATUS BIX | | \ | |
|7 INDEX FAST FULL SCAN | PRODUCTS_PK [255 16375 | 4 100:00:01]
| 8] PARTITION RANGE ALL | [ 1 | 51 5 100:00:01]
| 9 BITMAP CONVERSION TO ROWIDS | [ 1 | 51 5 100:00:01]
10| BITMAP INDEX SINGLE VALUE | SALES PROD BIX | | \ |

1. Query block SEL$1, Alias P@SEL$1: Some lines (id: 3) in the reference plan are missing
in the current plan.

2. Query block SEL$1, Alias P@SEL$1l: Some lines (id: 4) in the reference plan are missing
in the current plan.

3. Query block SEL$1, Alias S@SEL$1: Some lines (id: 5) in the reference plan are missing
in the current plan.

4. Query block SEL$1, Alias S@SEL$1: Some lines (id: 7) in the reference plan are missing
in the current plan.

5. Query block SEL$1, Alias S@SEL$1: Some lines (id: 9,10) in the current plan are missing
in the reference plan.

6. Query block SEL$1, Alias P@SEL$1l: Some columns (OPERATION) do not match between the
reference plan (id: 2) and the current plan (id: 2).

7. Query block SEL$1, Alias S@SEL$l: Some columns (ID, PARENT ID, DEPTH, POSITION,
PARTITION ID) do not match between the reference plan (id: 6) and the current plan (id: 8).

The preceding report shows the following:

e Plan 1 is the reference plan from the shared SQL area. The plan does not use the indexes,
which are both invisible, and does not reproduce a baseline plan.

* Plan 2 is in the baseline and assumes sales prod bix is invisible and
products prod_status bix is visible.

« Plan 3 is in the baseline and assumes both indexes are invisible. Plan 1 and Plan 3 are the
same.

* Plan 4 is in the baseline and assumes sales prod bix is visible and
products prod status bix is invisible.

« Plan 5 is in the baseline and assumes that both indexes are visible.

The comparison report shows that Plan 1 could not reproduce a plan from that baseline. The
reason is that the plan in the cursor (Plan 1) was added to the baseline because no baseline
plan was available at the time of execution, so the database performed a soft parse of the

ORACLE 650



ORACLE

Chapter 6
Comparing Execution Plans

statement and generated the no-index plan. If the current cursor were to be invalidated, and if
the query were to be executed again, then a comparison report would show that the cursor
plan did reproduce a baseline plan.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS XPLAN package

Example 6-15 Comparing a Baseline That Fails to Reproduce

One use case is to compare a cost-based plan with a SQL plan baseline. In this example, you
create a unique index. The database captures a plan baseline that uses this index. You then
make the index invisible and execute the query again. The baseline plan fails to reproduce
because the index is not visible, forcing the optimizer to choose a different plan. A compare
plans report between the baseline plan and the cost-based plan shows the difference in the
access path between the two plans.

1. Log in to the database as user hr, and then create a plan table:

CREATE TABLE PLAN TABLE (

STATEMENT ID

VARCHAR? (30),

PLAN_ID NUMBER,
TIMESTAMP DATE,

REMARKS VARCHAR2 (4000) ,
OPERATION VARCHAR2 (30) ,
OPTIONS VARCHAR2 (255) ,
OBJECT NODE VARCHAR2 (128) ,
OBJECT OWNER VARCHAR2 (30) ,
OBJECT NAME VARCHAR2 (30) ,
OBJECT ALIAS VARCHAR2 (65) ,
OBJECT INSTANCE NUMBER (38) ,
OBJECT TYPE VARCHAR2 (30) ,
OPTIMIZER VARCHAR2 (255) ,
SEARCH_COLUMNS NUMBER,

ID NUMBER (38) ,
PARENT ID NUMBER (38) ,
DEPTH NUMBER (38) ,
POSITION NUMBER (38) ,
COST NUMBER (38) ,
CARDINALITY NUMBER (38) ,
BYTES NUMBER (38) ,
OTHER_TAG VARCHAR2 (255) ,
PARTITION START VARCHAR2 (255) ,
PARTITION STOP VARCHAR2 (255) ,
PARTITION ID NUMBER (38) ,
OTHER LONG,
DISTRIBUTION VARCHAR2 (30) ,
CPU_COST NUMBER (38) ,

10 COST NUMBER (38) ,
TEMP_SPACE NUMBER (38) ,

ACCESS PREDICATES
FILTER PREDICATES
PROJECTION

VARCHAR? (4000) ,
VARCHAR? (4000) ,
VARCHAR? (4000) ,

6-51



ORACLE

Chapter 6
Comparing Execution Plans

TIME NUMBER (38) ,
OBLOCK_NAME VARCHARZ2 (30) ,
OTHER XML CLOB) ;

Execute the following DDL statements, which create a table named staff and an index on
the staff.employee id column:

CREATE TABLE staff AS (SELECT * FROM employees);
CREATE UNIQUE INDEX staff employee id ON staff (employee id);

Execute the following statements to place a query of staff under the protection of SQL
Plan Management, and then make the index invisible:

ALTER SESSION SET optimizer capture sgl plan baselines = TRUE;
SELECT COUNT (*) FROM staff WHERE employee id = 20;

-- execute query a second time to create a baseline
SELECT COUNT (*) FROM staff WHERE employee id = 20;
ALTER SESSION SET optimizer capture sgl plan baselines
ALTER INDEX staff employee id INVISIBLE;

FALSE;

Explain the plan, and then query the plan table (sample output included):

EXPLAIN PLAN SET STATEMENT ID='STAFF' FOR SELECT COUNT (*) FROM staff
WHERE employee id = 20;
SELECT * FROM TABLE (DBMS XPLAN.DISPLAY (FORMAT=>'TYPICAL'));

PLAN TABLE OUTPUT

Plan hash value: 1778552452

| Id | Operation | Name |Rows |Bytes |Cost (%CPU) |Time

0 | SELECT STATEMENT | | 1
| 1 | SORT AGGREGATE | | 1 | 4 | \ |
2 |  TABLE ACCESS FULL| STAFF | 1

Predicate Information (identified by operation id):

PLAN TABLE OUTPUT

- dynamic statistics used: dynamic sampling (level=2)
- Failed to use SQL plan baseline for this statement

As the preceding output shows, the optimizer chooses a full table scan because the index
is invisible. Because the SQL plan baseline uses an index, the optimizer cannot reproduce
the plan.

6-52



ORACLE

Chapter 6
Comparing Execution Plans

In a separate session, log in as sys and query the handle and plan name of the SQL plan
baseline (sample output included):

SET LINESIZE 120
COL SQL HANDLE FORMAT a25
COL PLAN NAME FORMAT a35

SELECT DISTINCT SQL HANDLE, PLAN NAME,ACCEPTED
FROM  DBA_SQL PLAN BASELINES
WHERE PARSING SCHEMA NAME = 'HR';

SQL HANDLE PLAN NAME ACC

SQL 3fa3b23c5balbf60 SQL PLAN 3z8xk7jdu3gv0Ob7aal92a YES

Compare the plans, specifying the SQL handle and plan baseline name obtained from the
previous step:

VAR v_report CLOB

BEGIN
:v_report := DBMS XPLAN.COMPARE PLANS (
reference plan => plan table object('HR', 'PLAN TABLE', 'STAFF'),

compare plan list => plan object list
(SPM_OBJECT ('SQL 3fa3b23c5balbf60', 'SQL PLAN 3z8xk7jdu3gv0b7aal92a')),

type => 'TEXT',

level => 'ALL',

section => 'ALL'");
END;

/

Query the compare plans report (sample output included):
SET LONG 1000000

SET PAGESIZE 50000

SET LINESIZE 200
SELECT :v_report rep FROM DUAL;

Current user ¢ SYS
Total number of plans : 2
Number of findings 1

Plan Number : 1 (Reference Plan)
Plan Found : Yes

Plan Source : Plan Table

Plan Table Owner : HR

Plan Table Name : PLAN TABLE

6-53



ORACLE

Statement ID . STAFF

Plan ID Y

Plan Database Version : 19.0.0.0
Parsing Schema ¢ "HR"

SQL Text : No SQL Text
Plan

Plan Hash Value : 1766070819

| Id | Operation | Name |Rows| Bytes | Cost | Time

| 0] SELECT STATEMENT | [ 1 | 13 | 2 | 00:00:01 |
| 1] SORT AGGREGATE | [ 1 | 13 | | |
| * 2] TABLE ACCESS FULL | STAFF | 1 | 13 | 2 | 00:00:01 |

Predicate Information (identified by operation id):

- Dynamic sampling used for this statement ( level = 2 )
- baseline repro fail = yes

Chapter 6
Comparing Execution Plans

Plan Number : 2

Plan Found : Yes

Plan Source : SQL Plan Baseline

SQL Handle : SQL 3fa3b23c5balbf60

Plan Name : SQL PLAN 3z8xk7jdu3gvOb7aal92a

Plan Database Version : 19.0.0.0

Parsing Schema ¢ "HR"

SQL Text : SELECT COUNT (*) FROM staff WHERE employee id = 20
Plan

Plan Hash Value : 3081373994

|Id| Operation | Name |Rows |Bytes |Cost |Time

| 0] SELECT STATEMENT | [ 1 | 13 | 0 100:00:01]
[ 1] SORT AGGREGATE | [ 1] 13 | \

[*2] INDEX UNIQUE SCAN | STAFF EMPLOYEE ID | 1 | 13 | 0 100:00:01]

Predicate Information (identified by operation id):

* 2 - access ("EMPLOYEE ID"=20)

Comparison Results (1):

6-54



Chapter 6
Comparing Execution Plans

1. Query block SEL$1l, Alias "STAFF"Q"SEL$1": Some columns (OPERATION,
OPTIONS, OBJECT NAME) do not match between the reference plan (id: 2)
and the current plan (id: 2)

ORACLE -



PLAN_ TABLE Reference

PLAN_TABLE Columns

Table 7-1 PLAN_TABLE Columns

This chapter describes PLAN TABLE columns.

PLAN TABLE is populated by the EXPLAIN PLAN statement.

The following table describes the columns in PLAN TABLE.

Column

Type

Description

STATEMENT ID

VARCHARZ (30)

Value of the optional STATEMENT 1D parameter specified in the
EXPLAIN PLAN statement.

PLAN_ID

NUMBER

Unique identifier of a plan in the database.

TIMESTAMP

DATE

Date and time when the EXPLAIN PLAN statement was
generated.

REMARKS

VARCHARZ (80)

Any comment (of up to 80 bytes) you want to associate with
each step of the explained plan. This column indicates whether
the database used an outline or SQL profile for the query.

If you need to add or change a remark on any row of the
PLAN TABLE, then use the UPDATE statement to modify the
rows of the PLAN TABLE.

OPERATION

VARCHAR?Z (30)

Name of the internal operation performed in this step. In the first
row generated for a statement, the column contains one of the
following values:

. DELETE STATEMENT
. INSERT STATEMENT
. SELECT STATEMENT
e UPDATE STATEMENT

See "OPERATION and OPTION Columns of PLAN_TABLE" for
more information about values for this column.

OPTIONS

VARCHARZ (225)

A variation on the operation that the OPERATION column
describes.

See "OPERATION and OPTION Columns of PLAN_TABLE" for
more information about values for this column.

OBJECT NODE

VARCHARZ (128)

Name of the database link used to reference the object (a table
name or view name). For local queries using parallel execution,
this column describes the order in which the database
consumes output from operations.

OBJECT OWNER

VARCHARZ (30)

Name of the user who owns the schema containing the table or
index.

OBJECT NAME

VARCHARZ (30)

Name of the table or index.

OBJECT ALIAS

VARCHARZ (65)

Unique alias of a table or view in a SQL statement. For indexes,
it is the object alias of the underlying table.

ORACLE

7-1



Chapter 7
PLAN_TABLE Columns

Table 7-1 (Cont.) PLAN_TABLE Columns

- ___________________________________________________________|]
Column Type Description

OBJECT INSTANCE NUMERIC Number corresponding to the ordinal position of the object as it
appears in the original statement. The numbering proceeds
from left to right, outer to inner for the original statement text.
View expansion results in unpredictable numbers.

OBJECT TYPE VARCHARZ2 (30) Modifier that provides descriptive information about the object;
for example, NONUNIQUE for indexes.

OPTIMIZER VARCHAR2 (255) Current mode of the optimizer.

SEARCH COLUMNS NUMBERIC Not currently used.

ID NUMERIC A number assigned to each step in the execution plan.

PARENT ID NUMERIC The ID of the next execution step that operates on the output of
the 1D step.

DEPTH NUMERIC Depth of the operation in the row source tree that the plan

represents. You can use this value to indent the rows in a plan
table report.

POSITION NUMERIC For the first row of output, this indicates the estimated cost of
executing the statement. For the other rows, it indicates the
position relative to the other children of the same parent.

COST NUMERIC Cost of the operation as estimated by the optimizer. Cost is not
determined for table access operations. The value of this
column does not have any particular unit of measurement; it is a
weighted value used to compare costs of execution plans. The
value of this column is a function of the CPU_COST and IO COST
columns.

CARDINALITY NUMERIC Estimate by the query optimization approach of the number of
rows that the operation accessed.

BYTES NUMERIC Estimate by the query optimization approach of the number of
bytes that the operation accessed.

OTHER_TAG VARCHAR2 (255) Describes the contents of the OTHER column. Values are:

*  SERIAL (blank): Serial execution. Currently, SQL is not
loaded in the OTHER column for this case.

. SERIAL FROM REMOTE (S -> R): Serial execution at a
remote site.

* PARALLEL FROM SERIAL (S -> P): Serial execution.
Output of step is partitioned or broadcast to parallel
execution servers.

e PARALLEL TO SERIAL (P -> S): Parallel execution.
Output of step is returned to serial QC process.

* PARALLEL TO PARALLEL (P -> P): Parallel execution.
Output of step is repartitioned to second set of parallel
execution servers.

. PARALLEL COMBINED WITH PARENT (PWP): Parallel
execution; Output of step goes to next step in same parallel
process. No interprocess communication to parent.

d PARALLEL COMBINED WITH CHILD (PWC): Parallel
execution. Input of step comes from prior step in same
parallel process. No interprocess communication from
child.

ORACLE .



Chapter 7
PLAN_TABLE Columns

Table 7-1 (Cont.) PLAN_TABLE Columns

- ___________________________________________________________|]
Column Type Description

PARTITION START VARCHARZ (255) Start partition of a range of accessed partitions. It can take one
of the following values:

n indicates that the start partition has been identified by the
SQL compiler, and its partition number is given by n.

KEY indicates that the start partition is identified at run time from
partitioning key values.

ROW LOCATION indicates that the database computes the start
partition (same as the stop partition) at run time from the
location of each retrieved record. The record location is
obtained by a user-specified ROWID or from a global index.
INVALID indicates that the range of accessed partitions is
empty.

PARTITION STOP VARCHAR2 (255) Stop partition of a range of accessed partitions. It can take one
of the following values:

n indicates that the stop partition has been identified by the
SQL compiler, and its partition number is given by n.

KEY indicates that the stop partition is identified at run time from
partitioning key values.

ROW LOCATION indicates that the database computes the stop
partition (same as the start partition) at run time from the
location of each retrieved record. The record location is
obtained by a user or from a global index.

INVALID indicates that the range of accessed partitions is
empty.

PARTITION ID NUMERIC Step that has computed the pair of values of the
PARTITION START and PARTITION STOP columns.

OTHER LONG Other information that is specific to the execution step that a
user might find useful. See the OTHER_TAG column.

DISTRIBUTION VARCHARZ (30) Method used to distribute rows from producer query servers to
consumer query servers.

See "DISTRIBUTION Column of PLAN_TABLE" for more
information about the possible values for this column. For more
information about consumer and producer query servers, see
Oracle Database VLDB and Partitioning Guide.

CPU_COST NUMERIC CPU cost of the operation as estimated by the optimizer. The
value of this column is proportional to the number of machine
cycles required for the operation. For statements that use the
rule-based approach, this column is null.

I0_COST NUMERIC 1/0 cost of the operation as estimated by the optimizer. The
value of this column is proportional to the number of data blocks
read by the operation. For statements that use the rule-based
approach, this column is null.

TEMP SPACE NUMERIC Temporary space, in bytes, used by the operation as estimated
by the optimizer. For statements that use the rule-based
approach, or for operations that do not use any temporary
space, this column is null.

ACCESS PREDICATES VARCHARZ2 (4000) Predicates used to locate rows in an access structure. For
example, start or stop predicates for an index range scan.
FILTER PREDICATES VARCHAR2Z (4000) Predicates used to filter rows before producing them.
ORACLE

7-3



Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

Table 7-1 (Cont.) PLAN_TABLE Columns
|

Column Type Description
PROJECTION VARCHARZ (4000) Expressions produced by the operation.
TIME NUMBER (20, 2) Elapsed time in seconds of the operation as estimated by query

optimization. For statements that use the rule-based approach,
this column is null.

OBLOCK_NAME VARCHAR2 (30) Name of the query block, either system-generated or defined by
the user with the QB NAME hint.

"OPERATION and OPTION Columns of PLAN_TABLE" lists each combination of OPERATION
and OPTIONS produced by the EXPLAIN PLAN Statement and its meaning within an execution
plan.

¢ See Also:

Oracle Database Reference for more information about PLAN TABLE

OPERATION and OPTION Columns of PLAN_TABLE

This table lists each combination of the OPERATION and OPTIONS columns of the
PLAN_TABLE and their meaning within an execution plan.

Table 7-2 OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description

AND-EQUAL Operation accepting multiple sets of rowids, returning the intersection of
the sets, eliminating duplicates. Used for the single-column indexes
access path.

BITMAP CONVERSION TO ROWIDS converts bitmap representations to actual rowids that you can
use to access the table.

FROM ROWIDS converts the rowids to a bitmap representation.

COUNT returns the number of rowids if the actual values are not needed.
BITMAP INDEX SINGLE VALUE looks up the bitmap for a single key value in the index.

RANGE SCAN retrieves bitmaps for a key value range.

FULL SCAN performs a full scan of a bitmap index if there is no start or

stop key.
BITMAP MERGE Merges several bitmaps resulting from a range scan into one bitmap.
BITMAP MINUS Subtracts bits of one bitmap from another. Row source is used for

negated predicates. This option is usable only if there are non-negated
predicates yielding a bitmap from which the subtraction can take place.

BITMAP OR Computes the bitwise OR of two bitmaps.
BITMAP AND Computes the bitwise AND of two bitmaps.
BITMAP KEY ITERATION Takes each row from a table row source and finds the corresponding

bitmap from a bitmap index. This set of bitmaps are then merged into one
bitmap in a following BITMAP MERGE operation.

ORACLE 7.4



Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description

CONNECT BY Retrieves rows in hierarchical order for a query containing a CONNECT BY
clause.

CONCATENATION Operation accepting multiple sets of rows returning the union-all of the
sets.

COUNT Operation counting the number of rows selected from a table.

COUNT STOPKEY Count operation where the number of rows returned is limited by the
ROWNUM expression in the WHERE clause.

CUBE JOIN Joins a table or view on the left and a cube on the right.

See Oracle Database SQL Language Reference to learn about the
NO USE_CUBE and USE_CUBE hints.

CUBE JOIN ANTI Uses an antijoin for a table or view on the left and a cube on the right.

CUBE JOIN ANTI SNA Uses an antijoin (single-sided null aware) for a table or view on the left
and a cube on the right. The join column on the right (cube side) is NOT
NULL.

CUBE JOIN OUTER Uses an outer join for a table or view on the left and a cube on the right.

CUBE JOIN RIGHT SEMI Uses a right semijoin for a table or view on the left and a cube on the
right.

CUBE SCAN Uses inner joins for all cube access.

CUBE SCAN PARTIAL OUTER Uses an outer join for at least one dimension, and inner joins for the other
dimensions.

CUBE SCAN OUTER Uses outer joins for all cube access.

DOMAIN INDEX Retrieval of one or more rowids from a domain index. The options column
contain information supplied by a user-defined domain index cost function,
if any.

FILTER Operation accepting a set of rows, eliminates some of them, and returns
the rest.

FIRST ROW Retrieval of only the first row selected by a query.

FOR UPDATE Operation retrieving and locking the rows selected by a query containing a
FOR UPDATE clause.

HASH GROUP BY Operation hashing a set of rows into groups for a query with a GROUP BY
clause.

HASH GROUP BY PIVOT Operation hashing a set of rows into groups for a query with a GROUP BY
clause. The PIVOT option indicates a pivot-specific optimization for the
HASH GROUP BY operator.

HASH JOIN Operation joining two sets of rows and returning the result. This join

(These are join
operations.)

HASH JOIN
HASH JOIN
HASH JOIN
HASH JOIN

ORACLE

ANTI
SEMI
RIGHT ANTI
RIGHT SEMI

method is useful for joining large data sets of data (DSS, Batch). The join
condition is an efficient way of accessing the second table.

Query optimizer uses the smaller of the two tables/data sources to build a
hash table on the join key in memory. Then it scans the larger table,
probing the hash table to find the joined rows.

Hash (left) antijoin
Hash (left) semijoin
Hash right antijoin

Hash right semijoin

7-5



Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
__________________________________________________________________________________________|

Operation Option Description

HASH JOIN OUTER Hash (left) outer join

HASH JOIN RIGHT OUTER Hash right outer join

INDEX UNIQUE SCAN Retrieval of a single rowid from an index.

(These are access

methods.)

INDEX RANGE SCAN Retrieval of one or more rowids from an index. Indexed values are
scanned in ascending order.

INDEX RANGE SCAN Retrieval of one or more rowids from an index. Indexed values are

DESCENDING scanned in descending order.

INDEX FULL SCAN Retrieval of all rowids from an index when there is no start or stop key.
Indexed values are scanned in ascending order.

INDEX FULL SCAN Retrieval of all rowids from an index when there is no start or stop key.

DESCENDING Indexed values are scanned in descending order.

INDEX FAST FULL SCAN Retrieval of all rowids (and column values) using multiblock reads. No
sorting order can be defined. Compares to a full table scan on only the
indexed columns. Only available with the cost based optimizer.

INDEX SKIP SCAN Retrieval of rowids from a concatenated index without using the leading
column(s) in the index. Only available with the cost based optimizer.

INLIST ITERATOR Iterates over the next operation in the plan for each value in the IN-list
predicate.

INTERSECTION Operation accepting two sets of rows and returning the intersection of the
sets, eliminating duplicates.

MERGE JOIN Operation accepting two sets of rows, each sorted by a value, combining

(These are join each r_ow from one set with the matching rows from the other, and

operations.) returning the result.

MERGE JOIN OUTER Merge join operation to perform an outer join statement.

MERGE JOIN ANTI Merge antijoin.

MERGE JOIN SEMI Merge semijoin.

MERGE JOIN CARTESIAN Can result from 1 or more of the tables not having any join conditions to
any other tables in the statement. Can occur even with a join and it may
not be flagged as CARTESIAN in the plan.

CONNECT BY Retrieval of rows in hierarchical order for a query containing a CONNECT
BY clause.

MAT VIEW REWRITE FULL Retrieval of all rows from a materialized view.

ACCESS

(These are access

methods.)

MAT VIEW REWRITE  SAMPLE Retrieval of sampled rows from a materialized view.

ACCESS

MAT VIEW REWRITE  CLUSTER Retrieval of rows from a materialized view based on a value of an indexed

ACCESS cluster key.

MAT VIEW REWRITE  HASH Retrieval of rows from materialized view based on hash cluster key value.

ACCESS

ORACLE

7-6



Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
__________________________________________________________________________________________|

Operation

Option

Description

MAT VIEW REWRITE
ACCESS

MAT VIEW REWRITE
ACCESS

MAT VIEW REWRITE
ACCESS

MAT VIEW REWRITE
ACCESS

MAT VIEW REWRITE
ACCESS

MAT VIEW REWRITE
ACCESS

MINUS

NESTED LOOPS

(These are join
operations.)

NESTED LOOPS
PARTITION

PARTITION
PARTITION
PARTITION
PARTITION
PARTITION

POLYMORPHIC TABLE
FUNCTION

ORACLE

BY ROWID RANGE

SAMPLE BY ROWID
RANGE

BY USER ROWID

BY INDEX ROWID

BY GLOBAL INDEX
ROWID

BY LOCAL INDEX
ROWID

OUTER

SINGLE
ITERATOR
ALL
INLIST
INVALID

Retrieval of rows from a materialized view based on a rowid range.

Retrieval of sampled rows from a materialized view based on a rowid
range.

If the materialized view rows are located using user-supplied rowids.

If the materialized view is nonpartitioned and rows are located using
indexes.

If the materialized view is partitioned and rows are located using only
global indexes.

If the materialized view is partitioned and rows are located using one or
more local indexes and possibly some global indexes.

Partition Boundaries:
The partition boundaries might have been computed by:

A previous PARTITION step, in which case the PARTITION START and
PARTITION STOP column values replicate the values present in the
PARTITION step, and the PARTITION ID contains the ID of the
PARTITION step. Possible values for PARTITION START and
PARTITION STOP are NUMBER(n), KEY, and INVALID.

The MAT VIEW REWRITE ACCESS or INDEX step itself, in which case the
PARTITION ID contains the ID of the step. Possible values for
PARTITION START and PARTITION STOP are NUMBER(n), KEY, ROW
REMOVE LOCATION (MAT VIEW REWRITE ACCESS only), and INVALID.

Operation accepting two sets of rows and returning rows appearing in the
first set but not in the second, eliminating duplicates.

Operation accepting two sets of rows, an outer set and an inner set.
Oracle Database compares each row of the outer set with each row of the
inner set, returning rows that satisfy a condition. This join method is useful
for joining small subsets of data (OLTP). The join condition is an efficient
way of accessing the second table.

Nested loops operation to perform an outer join statement.

Iterates over the next operation in the plan for each partition in the range
given by the PARTITION START and PARTITION STOP columns.
PARTITION describes partition boundaries applicable to a single
partitioned object (table or index) or to a set of equipartitioned objects (a
partitioned table and its local indexes). The partition boundaries are
provided by the values of PARTITION START and PARTITION STOP of
the PARTITION. Refer to Table 6-2 for valid values of partition start and
stop.

Access one partition.

Access many partitions (a subset).

Access all partitions.

Similar to iterator, but based on an IN-list predicate.
Indicates that the partition set to be accessed is empty.

Indicates the row source for a polymorphic table function, which is a table
function whose return type is determined by its arguments.

7-7



Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
__________________________________________________________________________________________|

Operation

Option

Description

PX ITERATOR

PX COORDINATOR

PX PARTITION

PX RECEIVE

PX SEND

REMOTE
SEQUENCE
SORT

SORT
SORT

SORT

SORT
SORT

TABLE ACCESS

(These are access
methods.)

TABLE ACCESS
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS
TABLE ACCESS

TABLE ACCESS
TABLE ACCESS
TABLE ACCESS

ORACLE

BLOCK, CHUNK

OC (RANDOM), HASH,
RANGE

AGGREGATE

UNIQUE
GROUP BY

GROUP BY PIVOT

JOIN
ORDER BY
FULL

SAMPLE

CLUSTER

HASH

BY ROWID RANGE

SAMPLE BY ROWID
RANGE

BY USER ROWID
BY INDEX ROWID

BY GLOBAL INDEX
ROWID

Implements the division of an object into block or chunk ranges among a
set of parallel execution servers.

Implements the Query Coordinator which controls, schedules, and
executes the parallel plan below it using parallel execution servers. It also
represents a serialization point, as the end of the part of the plan
executed in parallel and always has a PX SEND QC operation below it.

Same semantics as the regular PARTITION operation except that it
appears in a parallel plan.

Shows the consumer/receiver parallel execution node reading
repartitioned data from a send/producer (QC or parallel execution server)
executing on a PX SEND node. This information was formerly displayed
into the DISTRIBUTION column. See Table 7-1.

Implements the distribution method taking place between two sets of
parallel execution servers. Shows the boundary between two sets and
how data is repartitioned on the send/producer side (QC or side. This
information was formerly displayed into the DISTRIBUTION column. See
Table 7-1.

Retrieval of data from a remote database.
Operation involving accessing values of a sequence.

Retrieval of a single row after applying a group function to a set of
selected rows. In this case, the database “sorts” a single row.

Operation sorting a set of rows to eliminate duplicates.

Operation sorting a set of rows into groups for a query with a GROUP BY
clause.

Operation sorting a set of rows into groups for a query with a GROUP BY
clause. The PIVOT option indicates a pivot-specific optimization for the
SORT GROUP BY operator.

Operation sorting a set of rows before a merge-join.
Operation sorting a set of rows for a query with an ORDER BY clause.

Retrieval of all rows from a table.

Retrieval of sampled rows from a table.

Retrieval of rows from a table based on a value of an indexed cluster key.
Retrieval of rows from table based on hash cluster key value.

Retrieval of rows from a table based on a rowid range.

Retrieval of sampled rows from a table based on a rowid range.

If the table rows are located using user-supplied rowids.
If the table is nonpartitioned and rows are located using index(es).

If the table is partitioned and rows are located using only global indexes.

7-8



Chapter 7
DISTRIBUTION Column of PLAN_TABLE

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
__________________________________________________________________________________________|

Operation Option Description
TABLE ACCESS BY LOCAL INDEX If the table is partitioned and rows are located using one or more local
ROWID indexes and possibly some global indexes.

TRANSPOSE

UNION

UNPIVOT
VIEW

Partition Boundaries:
The partition boundaries might have been computed by:

A previous PARTITION step, in which case the PARTITION START and
PARTITION STOP column values replicate the values present in the
PARTITION step, and the PARTITION ID contains the ID of the
PARTITION step. Possible values for PARTITION START and
PARTITION STOP are NUMBER(n), KEY, and INVALID.

The TABLE ACCESS or INDEX step itself, in which case the PARTITION ID
contains the ID of the step. Possible values for PARTITION START and
PARTITION_STOPaﬁENUMBERUO,KEY,ROWREMOVE_LOCATION(TABLE
ACCESS only), and INVALID.

Operation evaluating a PIVOT operation by transposing the results of
GROUP BY to produce the final pivoted data.

Operation accepting two sets of rows and returns the union of the sets,
eliminating duplicates.

Operation that rotates data from columns into rows.

Operation performing a view's query and then returning the resulting rows
to another operation.

DISTRIBUTION Column of PLAN_TABLE

The DISTRIBUTION column indicates the method used to distribute rows from producer query
servers to consumer query servers.

Table 7-3 Values of DISTRIBUTION Column of the PLAN_TABLE

DISTRIBUTION Text

Description

PARTITION (ROWID)

Maps rows to query servers based on the partitioning of a table or index using the rowid
of the row to UPDATE/DELETE.

PARTITION (KEY)

Maps rows to query servers based on the partitioning of a table or index using a set of
columns. Used for partial partition-wise join, PARALLEL INSERT, CREATE TABLE AS
SELECT of a partitioned table, and CREATE PARTITIONED GLOBAL INDEX.

HASH Maps rows to query servers using a hash function on the join key. Used for PARALLEL
JOIN or PARALLEL GROUP BY.
RANGE Maps rows to query servers using ranges of the sort key. Used when the statement

contains an ORDER BY clause.

ROUND-ROBIN

Randomly maps rows to query servers.

BROADCAST Broadcasts the rows of the entire table to each query server. Used for a parallel join
when one table is very small compared to the other.

QC (ORDER) The QC consumes the input in order, from the first to the last query server. Used when
the statement contains an ORDER BY clause.

QC (RANDOM) The QC consumes the input randomly. Used when the statement does not have an
ORDER BY clause.

ORACLE

7-9



SQL Operators: Access Paths and Joins

A row source is a set of rows returned by a step in the execution plan. A SQL operator acts
on a row source.

A unary operator acts on one input, as with access paths. A binary operator acts on two
outputs, as with joins.

ORACLE



Optimizer Access Paths

An access path is a technique used by a query to retrieve rows from a row source.

Introduction to Access Paths

A row source is a set of rows returned by a step in an execution plan. A row source can be a
table, view, or result of a join or grouping operation.

A unary operation such as an access path, which is a technique used by a query to retrieve
rows from a row source, accepts a single row source as input. For example, a full table scan is
the retrieval of rows of a single row source. In contrast, a join is binary and receives inputs
from exactly two row sources

The database uses different access paths for different relational data structures. The following
table summarizes common access paths for the major data structures.

Table 8-1 Data Structures and Access Paths

Access Path

Heap-Organized B-Tree Indexes and Bitmap Indexes Table Clusters
Tables 10Ts

Full Table Scans

X

Table Access by Rowid X

Sample Table Scans X

Index Unique Scans

Index Range Scans

Index Full Scans

Index Fast Full Scans
Index Skip Scans

Index Join Scans

Bitmap Index Single Value
Bitmap Index Range Scans
Bitmap Merge

Bitmap Index Range Scans
Cluster Scans

Hash Scans

X X X X X

X X X X

ORACLE

The optimizer considers different possible execution plans, and then assigns each plan a cost.
The optimizer chooses the plan with the lowest cost. In general, index access paths are more
efficient for statements that retrieve a small subset of table rows, whereas full table scans are
more efficient when accessing a large portion of a table.

8-1



Chapter 8
Table Access Paths

# See Also:

e "Joins"
e "Cost-Based Optimization"

e Oracle Database Concepts for an overview of these structures

Table Access Paths

A table is the basic unit of data organization in an Oracle database.

Relational tables are the most common table type. Relational tables have with the following
organizational characteristics:

e A heap-organized table does not store rows in any particular order.
e Anindex-organized table orders rows according to the primary key values.

e An external table is a read-only table whose metadata is stored in the database but whose
data is stored outside the database.

# See Also:

*  Oracle Database Concepts for an overview of tables

*  Oracle Database Administrator’s Guide to learn how to manage tables

About Heap-Organized Table Access

By default, a table is organized as a heap, which means that the database places rows where
they fit best rather than in a user-specified order.

As users add rows, the database places the rows in the first available free space in the data
segment. Rows are not guaranteed to be retrieved in the order in which they were inserted.

Row Storage in Data Blocks and Segments: A Primer

ORACLE

The database stores rows in data blocks. In tables, the database can write a row anywhere in
the bottom part of the block. Oracle Database uses the block overhead, which contains the row
directory and table directory, to manage the block itself.

An extent is made up of logically contiguous data blocks. The blocks may not be physically
contiguous on disk. A segment is a set of extents that contains all the data for a logical storage
structure within a tablespace. For example, Oracle Database allocates one or more extents to
form the data segment for a table. The database also allocates one or more extents to form the
index segment for a table.

By default, the database uses automatic segment space management (ASSM) for permanent,
locally managed tablespaces. When a session first inserts data into a table, the database
formats a bitmap block. The bitmap tracks the blocks in the segment. The database uses the
bitmap to find free blocks and then formats each block before writing to it. ASSM spread out
inserts among blocks to avoid concurrency issues.

8-2



Chapter 8
Table Access Paths

The high water mark (HWM) is the point in a segment beyond which data blocks are
unformatted and have never been used. Below the HWM, a block may be formatted and
written to, formatted and empty, or unformatted. The low high water mark (low HWM) marks
the point below which all blocks are known to be formatted because they either contain data or
formerly contained data.

During a full table scan, the database reads all blocks up to the low HWM, which are known to
be formatted, and then reads the segment bitmap to determine which blocks between the
HWM and low HWM are formatted and safe to read. The database knows not to read past the
HWM because these blocks are unformatted.

¢ See Also:

Oracle Database Concepts to learn about data block storage

Importance of Rowids for Row Access

Every row in a heap-organized table has a rowid unique to this table that corresponds to the
physical address of a row piece. A rowid is a 10-byte physical address of a row.

The rowid points to a specific file, block, and row number. For example, in the rowid
AAAPecAAFAAAABSAAA, the final AAA represents the row number. The row number is an index
into a row directory entry. The row directory entry contains a pointer to the location of the row
on the block.

The database can sometimes move a row in the bottom part of the block. For example, if row
movement is enabled, then the row can move because of partition key updates, Flashback
Table operations, shrink table operations, and so on. If the database moves a row within a
block, then the database updates the row directory entry to modify the pointer. The rowid stays
constant.

Oracle Database uses rowids internally for the construction of indexes. For example, each key
in a B-tree index is associated with a rowid that points to the address of the associated row.
Physical rowids provide the fastest possible access to a table row, enabling the database to
retrieve a row in as little as a single 1/O.

# See Also:

Oracle Database Concepts to learn about rowids

Direct Path Reads

In a direct path read, the database reads buffers from disk directly into the PGA, bypassing
the SGA entirely.

The following figure shows the difference between scattered and sequential reads, which store
buffers in the SGA, and direct path reads.

ORACLE 8.3



Figure 8-1 Direct Path Reads

Database Buffer
Cache

N

—

DB File
Sequential Read

Database Buffer
Cache

Process PGA

SGA Buffer Cache SGA Buffer Cache Sort Area Hash Area BitmaAEer\gerge
g Session Persistent [ Runtime
I;‘ Memory |:| Area Area

DB File
Scattered Read

Direct path
read

Cam>

e

Direct Path
Read

Table Access Paths

Situations in which Oracle Database may perform direct path reads include:
e Execution of a CREATE TABLE AS SELECT Statement

e Execution of an ALTER REBUILD or ALTER MOVE statement

* Reads from a temporary tablespace

e Parallel queries

* Reads from a LOB segment

¢ See Also:

Oracle Database Performance Tuning Guide to learn about wait events for direct path
reads

Full Table Scans

A full table scan reads all rows from a table, and then filters out those rows that do not meet
the selection criteria.

When the Optimizer Considers a Full Table Scan

In general, the optimizer chooses a full table scan when it cannot use a different access path,
or another usable access path is higher cost.

The following table shows typical reasons for choosing a full table scan.

ORACLE o



ORACLE

Table 8-2 Typical Reasons for a Full Table Scan

Chapter 8
Table Access Paths

Reason

Explanation

To Learn More

No index exists.

If no index exists, then the optimizer uses
a full table scan.

Oracle Database Concepts

The query predicate applies a
function to the indexed
column.

Unless the index is a function-based
index, the database indexes the values of
the column, not the values of the column
with the function applied. A typical
application-level mistake is to index a
character column, such as char col,
and then query the column using syntax
such as WHERE char col=1.The
database implicitly applies a TO NUMBER
function to the constant number 1, which
prevents use of the index.

Oracle Database
Development Guide

A SELECT COUNT (*) query
is issued, and an index exists,
but the indexed column
contains nulls.

The optimizer cannot use the index to
count the number of table rows because
the index cannot contain null entries.

"B-Tree Indexes and Nulls"

The query predicate does not
use the leading edge of a B-
tree index.

For example, an index might exist on
employees (first name,last name).
If a user issues a query with the predicate
WHERE last name='KING', then the
optimizer may not choose an index
because column first name is notin
the predicate. However, in this situation
the optimizer may choose to use an index
skip scan.

"Index Skip Scans"

The query is unselective.

If the optimizer determines that the query
requires most of the blocks in the table,
then it uses a full table scan, even though
indexes are available. Full table scans
can use larger I/O calls. Making fewer
large 1/O calls is cheaper than making
many smaller calls.

"Selectivity"

The table statistics are stale.

For example, a table was small, but now
has grown large. If the table statistics are
stale and do not reflect the current size of
the table, then the optimizer does not
know that an index is now most efficient
than a full table scan.

"Introduction to Optimizer
Statistics"

The table is small.

If a table contains fewer than n blocks
under the high water mark, where n
equals the setting for the

DB_FILE MULTIBLOCK READ COUNT
initialization parameter, then a full table
scan may be cheaper than an index
range scan. The scan may be less
expensive regardless of the fraction of
tables being accessed or indexes
present.

Oracle Database Reference

8-5



Chapter 8
Table Access Paths

Table 8-2 (Cont.) Typical Reasons for a Full Table Scan
|

Reason Explanation To Learn More

The table has a high degree | A high degree of parallelism for a table Oracle Database Reference
of parallelism. skews the optimizer toward full table
scans over range scans. Query the value
in the ALL TABLES.DEGREE column to
determine the degree of parallelism.

The query uses a full table The hint FULL (table alias) instructs | Oracle Database SQL

scan hint. the optimizer to use a full table scan. Language Reference

How a Full Table Scan Works

ORACLE

In a full table scan, the database sequentially reads every formatted block under the high water
mark. The database reads each block only once.

The following graphic depicts a scan of a table segment, showing how the scan skips
unformatted blocks below the high water mark.

Figure 8-2 High Water Mark

Sequential Low HWM HWM

‘Read
W v

Used 1 Never Used,
Unformatted

Because the blocks are adjacent, the database can speed up the scan by making 1/O calls
larger than a single block, known as a multiblock read. The size of a read call ranges from one
block to the number of blocks specified by the DB_FILE MULTIBLOCK READ COUNT initialization
parameter. For example, setting this parameter to 4 instructs the database to read up to 4

blocks in a single call.

The algorithms for caching blocks during full table scans are complex. For example, the
database caches blocks differently depending on whether tables are small or large.

8-6



Chapter 8
Table Access Paths

# See Also:

e '"Table 19-2"
*  Oracle Database Concepts for an overview of the default caching mode

* Oracle Database Reference to learn about the DB FILE MULTIBLOCK READ COUNT
initialization parameter

Full Table Scan: Example

This example scans the hr.employees table.

The following statement queries monthly salaries over $4000:

SELECT salary
FROM  hr.employees
WHERE salary > 4000;

Example 8-1 Full Table Scan

The following plan was retrieved using the DBMS XPLAN.DISPLAY CURSOR function. Because no
index exists on the salary column, the optimizer cannot use an index range scan, and so uses
a full table scan.

SQL ID 54c20f3udfnws, child number 0

select salary from hr.employees where salary > 4000

Plan hash value: 3476115102

| Id| Operation | Name | Rows | Bytes [Cost (%CPU)| Time
| 0| SELECT STATEMENT | \ | | 3 (100) |
|* 1| TABLE ACCESS FULL| EMPLOYEES | 98 | 6762 | 3 (0)] 00:00:01 |

1 - filter ("SALARY">4000)

Table Access by Rowid

ORACLE

A rowid is an internal representation of the storage location of data.

The rowid of a row specifies the data file and data block containing the row and the location of
the row in that block. Locating a row by specifying its rowid is the fastest way to retrieve a
single row because it specifies the exact location of the row in the database.

8-7



# Note:

recommended because rows can move.

¢ See Also:

Oracle Database Development Guide to learn more about rowids

When the Optimizer Chooses Table Access by Rowid

Chapter 8
Table Access Paths

Rowids can change between versions. Accessing data based on position is not

In most cases, the database accesses a table by rowid after a scan of one or more indexes.

However, table access by rowid need not follow every index scan. If the index contains all

needed columns, then access by rowid might not occur.

How Table Access by Rowid Works

To access a table by rowid, the database performs multiple steps.

The database does the following:

1. Obtains the rowids of the selected rows, either from the statement WHERE clause or through

an index scan of one or more indexes

Table access may be needed for columns in the statement not present in the index.

2. Locates each selected row in the table based on its rowid

Table Access by Rowid: Example

This example demonstrates rowid access of the hr.employees table.

Assume that you run the following query:

SELECT *
FROM employees
WHERE employee id > 190;

Step 2 of the following plan shows a range scan of the emp emp id pk index on the
hr.employees table. The database uses the rowids obtained from the index to find the
corresponding rows from the employees table, and then retrieve them. The BATCHED access
shown in Step 1 means that the database retrieves a few rowids from the index, and then
attempts to access rows in block order to improve the clustering and reduce the number of

times that the database must access a block.

|Id| Operation | Name |Rows | Bytes |Cost (%CPU) | Time |
| 0| SELECT STATEMENT | [ [2(100) | |
| 1| TABLE ACCESS BY INDEX ROWID BATCHED |EMPLOYEES [16]110412 (0)]00:00:01]
[ *2 | INDEX RANGE SCAN |EMP_EMP_ID_PK|16| |1 (0)100:00:01]
ORACLE

8-8



Chapter 8
Table Access Paths

Predicate Information (identified by operation id):

2 - access ("EMPLOYEE ID">190)

Sample Table Scans

A sample table scan retrieves a random sample of data from a simple table or a complex
SELECT statement, such as a statement involving joins and views.

When the Optimizer Chooses a Sample Table Scan

The database uses a sample table scan when a statement FROM clause includes the SAMPLE
keyword.

The saMPLE clause has the following forms:

. SAMPLE (sample percent)

The database reads a specified percentage of rows in the table to perform a sample table
scan.

o SAMPLE BLOCK (sample percent)
The database reads a specified percentage of table blocks to perform a sample table scan.

The sample_percent specifies the percentage of the total row or block count to include in the
sample. The value must be in the range .000001 up to, but not including, 100. This percentage
indicates the probability of each row, or each cluster of rows in block sampling, being selected
for the sample. It does not mean that the database retrieves exactly sample_percent of the

rows.

# Note:
Block sampling is possible only during full table scans or index fast full scans. If a
more efficient execution path exists, then the database does not sample blocks. To
guarantee block sampling for a specific table or index, use the FULL or INDEX FFS
hint.

¢ See Also:
e "Influencing the Optimizer with Hints"
e Oracle Database SQL Language Reference to learn about the saMPLE clause

Sample Table Scans: Example

This example uses a sample table scan to access 1% of the employees table, sampling by
blocks instead of rows.

ORACLE 8.9



Chapter 8
Table Access Paths

Example 8-2 Sample Table Scan

SELECT * FROM hr.employees SAMPLE BLOCK (1);

The EXPLAIN PLAN output for this statement might look as follows:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) |
| 0 | SELECT STATEMENT | | 1 | 68 | 3 (34) ]
| 1 | TABLE ACCESS SAMPLE | EMPLOYEES | 1 | | 3 (34)]

In-Memory Table Scans

An In-Memory scan retrieves rows from the In-Memory Column Store (IM column store).

The IM column store is an optional SGA area that stores copies of tables and partitions in a
special columnar format optimized for rapid scans.

¢ See Also:

Oracle Database In-Memory Guide for an introduction to the IM column store

When the Optimizer Chooses an In-Memory Table Scan

The optimizer cost model is aware of the content of the IM column store.

When a user executes a query that references a table in the IM column store, the optimizer
calculates the cost of all possible access methods—including the In-Memory table scan—and
selects the access method with the lowest cost.

In-Memory Query Controls

ORACLE

You can control In-Memory queries using initialization parameters.
The following database initialization parameters affect the In-Memory features:
e INMEMORY QUERY

This parameter enables or disables In-Memory queries for the database at the session or
system level. This parameter is helpful when you want to test workloads with and without
the use of the IM column store.

° OPTIMIZER INMEMORY AWARE

This parameter enables (TRUE) or disables (FALSE) all of the In-Memory enhancements
made to the optimizer cost model, table expansion, bloom filters, and so on. Setting the
parameter to FALSE causes the optimizer to ignore the In-Memory property of tables during
the optimization of SQL statements.

° OPTIMIZER FEATURES ENABLE

8-10



Chapter 8
Table Access Paths

When set to values lower than 12.1.0.2, this parameter has the same effect as setting
OPTIMIZER INMEMORY AWARE tO FALSE.

To enable or disable In-Memory queries, you can specify the INMEMORY or NO INMEMORY hints,
which are the per-query equivalent of the INMEMORY QUERY initialization parameter. If a SQL
statement uses the INMEMORY hint, but the object it references is not already loaded in the IM
column store, then the database does not wait for the object to be populated in the IM column

store before executing the statement. However, initial access of the object triggers the object
population in the IM column store.

¢ See Also:

*  Oracle Database Reference to learn more about the INMEMORY QUERY,
OPTIMIZER INMEMORY AWARE, and OPTIMIZER FEATURES ENABLE initialization
parameters

*  Oracle Database SQL Language Reference to learn more about the INMEMORY
hints

In-Memory Table Scans: Example

This example shows an execution plan that includes the TABLE ACCESS INMEMORY operation.

The following example shows a query of the oe.product information table, which has been
altered with the INMEMORY HIGH option.

Example 8-3 In-Memory Table Scan

SELECT *

FROM  oe.product information
WHERE list price > 10

ORDER BY product id

The plan for this statement might look as follows, with the INMEMORY keyword in Step 2
indicating that some or all of the object was accessed from the IM column store:

SQL> SELECT * FROM TABLE (DBMS XPLAN.DISPLAY CURSOR) ;

SQL ID 2mb4h57x8pabw, child number 0

select * from oe.product information where list price > 10 order byproduct id

Plan hash value: 2256295385

|Id| Operation | Name |Rows | Bytes|TempSpc|Cost ($CPU) | Time |
| 0| SELECT STATEMENT | | | | [21 (100) | |
| 1| SORT ORDER BY | [285] 6241518200021 (5)100:00:01
[ *2 | TABLE ACCESS INMEMORY FULL| PRODUCT_INFORMATION |285] 62415] | 5 (0)100:00:01|

Predicate Information (identified by operation id):

ORACLE 811



Chapter 8
B-Tree Index Access Paths

2 - inmemory ("LIST PRICE">10)
filter ("LIST PRICE">10)

B-Tree Index Access Paths

An index is an optional structure, associated with a table or table cluster, that can sometimes
speed data access.

By creating an index on one or more columns of a table, you gain the ability in some cases to
retrieve a small set of randomly distributed rows from the table. Indexes are one of many
means of reducing disk 1/O.

# See Also:

e Oracle Database Concepts for an overview of indexes

e QOracle Database Administrator’s Guide to learn more about automatic and
manual index creation

About B-Tree Index Access

B-trees, short for balanced trees, are the most common type of database index.

A B-tree index is an ordered list of values divided into ranges. By associating a key with a row
or range of rows, B-trees provide excellent retrieval performance for a wide range of queries,
including exact match and range searches.

B-Tree Index Structure

ORACLE

A B-tree index has two types of blocks: branch blocks for searching and leaf blocks that store
values.

The following graphic illustrates the logical structure of a B-tree index. Branch blocks store the
minimum key prefix needed to make a branching decision between two keys. The leaf blocks
contain every indexed data value and a corresponding rowid used to locate the actual row.
Each index entry is sorted by (key, rowid). The leaf blocks are doubly linked.

8-12



Chapter 8
B-Tree Index Access Paths

Figure 8-3 B-Tree Index Structure

Branch Blocks

0..40
41..80
81..120
200..250
v
=1 0..10 41..48 200..209
11..19 = 49..53 210..220
20..25 54..65 221..228
32..40 78..80 246..250
Leaf Blocks
\ 4 v
0,rowid 11,rowid 221, rowid 246,rowid
0,rowid 11,rowid 222,rowid 248,rowid
12,rowid 223,rowid 248, rowid
10,rowid
19,rowid . 228,rowid . 250,rowid

A AU U

How Index Storage Affects Index Scans

ORACLE

Bitmap index blocks can appear anywhere in the index segment.

Figure 8-3 shows the leaf blocks as adjacent to each other. For example, the 1-10 block is next
to and before the 11-19 block. This sequencing illustrates the linked lists that connect the index
entries. However, index blocks need not be stored in order within an index segment. For
example, the 246-250 block could appear anywhere in the segment, including directly before
the 1-10 block. For this reason, ordered index scans must perform single-block 1/0. The
database must read an index block to determine which index block it must read next.

The index block body stores the index entries in a heap, just like table rows. For example, if the
value 10 is inserted first into a table, then the index entry with key 10 might be inserted at the
bottom of the index block. If 0 is inserted next into the table, then the index entry for key 0
might be inserted on top of the entry for 10. Thus, the index entries in the block body are not
stored in key order. However, within the index block, the row header stores records in key
order. For example, the first record in the header points to the index entry with key 0, and so on
sequentially up to the record that points to the index entry with key 10. Thus, index scans can
read the row header to determine where to begin and end range scans, avoiding the necessity
of reading every entry in the block.

8-13



Chapter 8
B-Tree Index Access Paths

# See Also:

Oracle Database Concepts to learn about index blocks

Unique and Nonunique Indexes

In a nonunique index, the database stores the rowid by appending it to the key as an extra
column. The entry adds a length byte to make the key unique.

For example, the first index key in the nonunique index shown in Figure 8-3 is the pair 0, rowid
and not simply 0. The database sorts the data by index key values and then by rowid
ascending. For example, the entries are sorted as follows:

0,AAAPvCAAFAAAAFaAAa
0,AAAPvCAAFAAAAFaAAg
0,AAAPvCAAFAAAAFaAAlL
2,AAAPvCAAFAAAAFaAAmM

In a unique index, the index key does not include the rowid. The database sorts the data only
by the index key values, such as 0, 1, 2, and so on.

¢ See Also:

Oracle Database Concepts for an overview of unique and nonunique indexes

B-Tree Indexes and Nulls

ORACLE

B-tree indexes never store completely null keys, which is important for how the optimizer
chooses access paths. A consequence of this rule is that single-column B-tree indexes never
store nulls.

An example helps illustrate. The hr.employees table has a primary key index on employee id,
and a unique index on department id. The department id column can contain nulls, making it
a nullable column, but the employee id column cannot.

SQL> SELECT COUNT (*) FROM employees WHERE department id IS NULL;

The following example shows that the optimizer chooses a full table scan for a query of all
department IDs in hr.employees. The optimizer cannot use the index on

8-14



ORACLE

Chapter 8
B-Tree Index Access Paths

employees.department id because the index is not guaranteed to include entries for every
row in the table.

SQL> EXPLAIN PLAN FOR SELECT department id FROM employees;
Explained.

SQL> SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY());
PLAN TABLE OUTPUT

Plan hash value: 3476115102

|Id | Operation | Name | Rows| Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 107 | 321 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| EMPLOYEES | 107 | 321 | 2 (0)| 00:00:01 |

The following example shows the optimizer can use the index on department id for a query of
a specific department ID because all non-null rows are indexed.

SQL> EXPLAIN PLAN FOR SELECT department id FROM employees WHERE
department 1id=10;

Explained.
SQL> SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY());
PLAN TABLE OUTPUT

Plan hash value: 67425611

|Id| Operation | Name |Rows |Bytes|Cost (%CPU) | Time
| 0| SELECT STATEMENT | | 1 | 3] 1 (0)| 00:0 0:01]
[*1| INDEX RANGE SCAN| EMP DEPARTMENT IX | 1 | 3 1 (0)| 00:0 0:01]

Predicate Information (identified by operation id):
1 - access ("DEPARTMENT ID"=10)

The following example shows that the optimizer chooses an index scan when the predicate
excludes null values:

SQL> EXPLAIN PLAN FOR SELECT department id FROM employees
WHERE department_id IS NOT NULL;

Explained.

SQL> SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY());

8-15



Chapter 8
B-Tree Index Access Paths

PLAN TABLE OUTPUT

Plan hash value: 1590637672

| Id| Operation | Name |[Rows |Bytes| Cost (%CPU) | Time |
| 0| SELECT STATEMENT | [106] 318 | 1 (0)| 00:0 0:01]
[*1| INDEX FULL SCAN | EMP DEPARTMENT IX |106| 318 | 1 (0)| 00:0 0:01]

Predicate Information (identified by operation id):
1 - filter ("DEPARTMENT ID" IS NOT NULL)

Index Unique Scans

An index unique scan returns at most 1 rowid.

When the Optimizer Considers Index Unique Scans

An index unique scan requires an equality predicate.

Specifically, the database performs a unique scan only when a query predicate references all
columns in a unique index key using an equality operator, such as WHERE prod id=10.

A unigue or primary key constraint is insufficient by itself to produce an index unique scan
because a non-unique index on the column may already exist. Consider the following example,
which creates the t_table table and then creates a non-unique index on numcol:

SQL> CREATE TABLE t_table(numcol INT) ;
SQL> CREATE INDEX t table idx ON t table (numcol);
SQL> SELECT UNIQUENESS FROM USER INDEXES WHERE INDEX NAME = 'T_TABLE_IDX';

UNIQUENES

NONUNIQUE

The following code creates a primary key constraint on a column with a non-unique index,
resulting in an index range scan rather than an index unique scan:

SQL> ALTER TABLE titable ADD CONSTRAINT titableipk PRIMARY KEY (numcol) ;
SQL> SET AUTOTRACE TRACEONLY EXPLAIN
SQL> SELECT * FROM t table WHERE numcol = 1;

Execution Plan

Plan hash value: 868081059

| Id | Operation | Name |[Rows |Bytes |Cost (%CPU) |Time
| 0 | SELECT STATEMENT | \ 1 | 13 | 1 (0)100:00:01 |
[* 1 | INDEX RANGE SCAN| T TABLE IDX | 1| 13 | 1 (0)100:00:01 |

ORACLE 816



Chapter 8
B-Tree Index Access Paths

Predicate Information (identified by operation id):

1 - access ("NUMCOL"=1)

You can use the INDEX (alias index name) hint to specify the index to use, but not a specific
type of index access path.

¢ See Also:

*  Oracle Database Concepts for more details on index structures and for detailed
information on how a B-tree is searched

»  Oracle Database SQL Language Reference to learn more about the INDEX hint

How Index Unique Scans Work

ORACLE

The scan searches the index in order for the specified key. An index unique scan stops
processing as soon as it finds the first record because no second record is possible. The
database obtains the rowid from the index entry, and then retrieves the row specified by the
rowid.

The following figure illustrates an index unique scan. The statement requests the record for
product ID 19 in the prod id column, which has a primary key index.

8-17



Chapter 8
B-Tree Index Access Paths

Figure 8-4 Index Unique Scan

Branch Blocks

0..40
41..80
81..120
200..250
Yy v
= 0..10 41.48 200..209
11..19 = 49..53 210..220
20..25 54..65 221..228
32..40 78..80 246..250
Leaf Blocks
v \ 4
0,rowid ?>1 1,rowid 221,rowid 246,rowid
1,rowid é =>12,rowid 222,rowid 247 rowid
. >13,rowid 223,rowid 248,rowid
10,rowid g>
- [19,rowid | e 228, rowid ] 250,rowid

S AU U YU

Index Unique Scans: Example

ORACLE

This example uses a unique scan to retrieve a row from the products table.

The following statement queries the record for product 19 in the sh.products table:

SELECT *
FROM sh.products
WHERE prod id = 19;

Because a primary key index exists on the products.prod id column, and the WHERE clause
references all of the columns using an equality operator, the optimizer chooses a unique scan:
SQL ID 3ptgbtsd5vb3d, child number 0

select * from sh.products where prod id = 19

Plan hash value: 4047888317

| Id| Operation | Name |Rows |Bytes|Cost (%CPU) |Time |
| 0| SELECT STATEMENT | | | |1 (100) | |
| 1| TABLE ACCESS BY INDEX ROWID| PRODUCTS [1 | 173 |1 (0)100:00:01|

8-18



Chapter 8
B-Tree Index Access Paths

[* 2] INDEX UNIQUE SCAN | PRODUCTS PK |1 | [0 (0) 1

Predicate Information (identified by operation id):

2 - access ("PROD ID"=19)

Index Range Scans

An index range scan is an ordered scan of values.

The range in the scan can be bounded on both sides, or unbounded on one or both sides. The
optimizer typically chooses a range scan for queries with high selectivity.

By default, the database stores indexes in ascending order, and scans them in the same order.
For example, a query with the predicate department id >= 20 uses a range scan to return
rows sorted by index keys 20, 30, 40, and so on. If multiple index entries have identical keys,
then the database returns them in ascending order by rowid, so that 0, AAAPvCAAFAAAAFaAAa iS
followed by 0, AAAPVCAAFAAAAFaAAg, and SO on.

An index range scan descending is identical to an index range scan except that the database
returns rows in descending order. Usually, the database uses a descending scan when
ordering data in a descending order, or when seeking a value less than a specified value.

When the Optimizer Considers Index Range Scans

For an index range scan, multiple values must be possible for the index key.
Specifically, the optimizer considers index range scans in the following circumstances:

e One or more leading columns of an index are specified in conditions.

A condition specifies a combination of one or more expressions and logical (Boolean)
operators and returns a value of TRUE, FALSE, or UNKNOWN. Examples of conditions include:

— department id = :id
— department id < :id
— department id > :id

— AND combination of the preceding conditions for leading columns in the index, such as
department id > :low AND department id < :hi.

¢ Note:

For the optimizer to consider a range scan, wild-card searches of the form
coll LIKE '$ASD' must not be in a leading position.

e 0,1, or more values are possible for an index key.

ORACLE 819



Chapter 8
B-Tree Index Access Paths

Tip:

If you require sorted data, then use the ORDER BY clause, and do not rely on an index.
If an index can satisfy an ORDER BY clause, then the optimizer uses this option and
thereby avoids a sort.

The optimizer considers an index range scan descending when an index can satisfy an ORDER
BY DESCENDING clause.

If the optimizer chooses a full table scan or another index, then a hint may be required to force
this access path. The INDEX (tbl alias ix name) and INDEX DESC (tbl alias ix name) hints
instruct the optimizer to use a specific index.

# See Also:

Oracle Database SQL Language Reference to learn more about the INDEX and
INDEX DESC hints

How Index Range Scans Work

During an index range scan, Oracle Database proceeds from root to branch.
In general, the scan algorithm is as follows:
1. Read the root block.
2. Read the branch block.
3. Alternate the following steps until all data is retrieved:
a. Read a leaf block to obtain a rowid.

b. Read a table block to retrieve a row.

# Note:

In some cases, an index scan reads a set of index blocks, sorts the rowids, and
then reads a set of table blocks.

Thus, to scan the index, the database moves backward or forward through the leaf blocks. For
example, a scan for IDs between 20 and 40 locates the first leaf block that has the lowest key
value that is 20 or greater. The scan proceeds horizontally through the linked list of leaf nodes
until it finds a value greater than 40, and then stops.

The following figure illustrates an index range scan using ascending order. A statement
requests the employees records with the value 20 in the department id column, which has a
nonunique index. In this example, 2 index entries for department 20 exist.

ORACLE 890



Figure 8-5

Branch Blocks

Index Range Scan

Chapter 8

B-Tree Index Access Paths

0..40
41..80
81..120
200..250
Vi \4
= 0..10 41..48 200..209
11..2 = 49..53 210..220
54..65 221..228
32..40 78..80 246..250
Leaf Blocks
v v
0,rowid 11,rowid 221,rowid 246,rowid
0,rowid 11,rowid 222, rowid 248,rowid
. 12,rowid 223,rowid 248,rowid
10,rowid ... .- s
20,rowid . 228,rowid . 250,rowid
20, rowid

R U U U

Index Range Scan: Example

This example retrieves a set of values from the employees table using an index range scan.

The following statement queries the records for employees in department 20 with salaries
greater than 1000:

SELECT *

FROM employees

WHERE department id = 20
AND salary > 1000;

The preceding query has low cardinality (returns few rows), so the query uses the index on the
department id column. The database scans the index, fetches the records from the
employees table, and then applies the salary > 1000 filter to these fetched records to
generate the result.

SQL ID brtbabvbxwdtq, child number 0

SELECT * FROM

employees WHERE department id = 20 AND salary > 1000

Plan hash value: 2799965532

ORACLE

8-21



Chapter 8
B-Tree Index Access Paths

|Id | Operation | Name |Rows |Bytes|Cost (5CPU) | Time |
| 0 | SELECT STATEMENT | \ | | 2 (100) |

|*1 | TABLE ACCESS BY INDEX ROWID BATCHED| EMPLOYEES | 2 | 138 | 2 (0)100:00:01]
[*2 | INDEX RANGE SCAN | EMP DEPARTMENT IX| 2 | |1 (0) 100:00:01

Predicate Information (identified by operation id):

1 - filter ("SALARY">1000)
2 - access ("DEPARTMENT ID"=20)

Index Range Scan Descending: Example

This example uses an index to retrieve rows from the employees table in sorted order.

The following statement queries the records for employees in department 20 in descending
order:

SELECT *

FROM employees

WHERE department id < 20
ORDER BY department id DESC;

This preceding query has low cardinality, so the query uses the index on the department id
column.

SQL ID 8182ndfjlttj6, child number 0

SELECT * FROM employees WHERE department id<20 ORDER BY department id DESC

Plan hash value: 1681890450

|Id| Operation | Name |Rows |Bytes|Cost ($CPU) | Time |
| 0] SELECT STATEMENT | | [2(100) |

| 1| TABLE ACCESS BY INDEX ROWID |EMPLOYEES [21138]2 (0)[00:00:01]
[*2] INDEX RANGE SCAN DESCENDING|EMP DEPARTMENT IX|2 | [1  (0)|00:00:01]

2 - access ("DEPARTMENT ID"<20)

The database locates the first index leaf block that contains the highest key value that is 20 or
less. The scan then proceeds horizontally to the left through the linked list of leaf nodes. The
database obtains the rowid from each index entry, and then retrieves the row specified by the
rowid.

ORACLE 899



Chapter 8
B-Tree Index Access Paths

Index Full Scans

An index full scan reads the entire index in order. An index full scan can eliminate a separate
sorting operation because the data in the index is ordered by index key.

When the Optimizer Considers Index Full Scans

The optimizer considers an index full scan in a variety of situations.
The situations include the following:

* A predicate references a column in the index. This column need not be the leading column.
* No predicate is specified, but all of the following conditions are met:

— All columns in the table and in the query are in the index.

— Atleast one indexed column is not null.

* Aqueryincludes an ORDER BY on indexed non-nullable columns.

How Index Full Scans Work

The database reads the root block, and then navigates down the left hand side of the index (or
right if doing a descending full scan) until it reaches a leaf block.

Then the database reaches a leaf block, the scan proceeds across the bottom of the index,
one block at a time, in sorted order. The database uses single-block 1/O rather than multiblock
I/0.

The following graphic illustrates an index full scan. A statement requests the departments
records ordered by department id.

ORACLE 893



Chapter 8
B-Tree Index Access Paths

Figure 8-6 Index Full Scan

Branch Blocks

0..40
41..80
81..120
200..250
A4
== 0..10 41..48 200..209
11..19 = 49..53 210..220
20..25 54..65 221..228
32..40 78..80 246..250
Leaf Blocks
v v
<;>0Jowm 11,rowid 221,rowid 246,rowid
<f>1xoww 12,rowid 222 rowid 247 rowid
<_>““ 13,rowid 223,rowid 248,rowid
—>10,rowid s .. .
19,rowid e 228,rowid . 250,rowid

Index Full Scans: Example

ORACLE

This example uses an index full scan to satisfy a query with an ORDER BY clause.

The following statement queries the ID and name for departments in order of department ID:

SELECT department id, department name
FROM departments
ORDER BY department id;

The following plan shows that the optimizer chose an index full scan:

SQL ID 94t4a20h8what, child number 0

select department id, department name from departments order by department id

Plan hash value: 4179022242

|0| SELECT STATEMENT | \ | [2 (100) | |
[1| TABLE ACCESS BY INDEX ROWID|DEPARTMENTS |27 [432]2 (0)100:00:01 |

8-24



Chapter 8
B-Tree Index Access Paths

[2] INDEX FULL SCAN [DEPT ID PK |27 | [1 (0)100:00:01

The database locates the first index leaf block, and then proceeds horizontally to the right
through the linked list of leaf nodes. For each index entry, the database obtains the rowid from
the entry, and then retrieves the table row specified by the rowid. Because the index is sorted
on department id, the database avoids a separate operation to sort the retrieved rows.

Index Fast Full Scans

An index fast full scan reads the index blocks in unsorted order, as they exist on disk. This
scan does not use the index to probe the table, but reads the index instead of the table,

essentially using the index itself as a table.

When the Optimizer Considers Index Fast Full Scans

The optimizer considers this scan when a query only accesses attributes in the index.

# Note:

Unlike a full scan, a fast full scan cannot eliminate a sort operation because it does
not read the index in order.

The INDEX FFS(table name index name) hint forces a fast full index scan.

# See Also:

Oracle Database SQL Language Reference to learn more about the INDEX hint

How Index Fast Full Scans Work

The database uses multiblock 1/0 to read the root block and all of the leaf and branch blocks.
The databases ignores the branch and root blocks and reads the index entries on the leaf

blocks.

Index Fast Full Scans: Example

This examples uses a fast full index scan as a result of an optimizer hint.

The following statement queries the ID and name for departments in order of department ID:

SELECT /*+ INDEX FFS(departments dept id pk) */ COUNT (*)
FROM departments;

The following plan shows that the optimizer chose a fast full index scan:

SQL ID fulOkSnvx7sftm, child number 0

ORACLE .



Chapter 8
B-Tree Index Access Paths

select /*+ index ffs(departments dept id pk) */ count(*) from departments

Plan hash value: 3940160378

| Id | Operation | Name | Rows |Cost (%CPU)| Time

| 0 | SELECT STATEMENT \ | | 2 (100) | |
| 1 | SORT AGGREGATE \ | 1 | | |
| 2 INDEX FAST FULL SCAN| DEPT ID PK | 27 | 2 (0)] 00:00:01 |

Index Skip Scans

An index skip scan occurs when the initial column of a composite index is "skipped" or not
specified in the query.

¢ See Also:

Oracle Database Concepts

When the Optimizer Considers Index Skip Scans

Often, skip scanning index blocks is faster than scanning table blocks, and faster than
performing full index scans.

The optimizer considers a skip scan when the following criteria are met:

e The leading column of a composite index is not specified in the query predicate.

For example, the query predicate does not reference the cust gender column, and the
composite index key is (cust_gender, cust email).

e Many distinct values exist in the nonleading key of the index and relatively few distinct
values exist in the leading key.

For example, if the composite index key is (cust gender, cust email), then the
cust_gender column has only two distinct values, but cust_email has thousands.

How Index Skip Scans Work

An index skip scan logically splits a composite index into smaller subindexes.

The number of distinct values in the leading columns of the index determines the number of
logical subindexes. The lower the number, the fewer logical subindexes the optimizer must
create, and the more efficient the scan becomes. The scan reads each logical index
separately, and "skips" index blocks that do not meet the filter condition on the non-leading
column.

Index Skip Scans: Example

This example uses an index skip scan to satisfy a query of the sh.customers table.

ORACLE 896



ORACLE

Chapter 8
B-Tree Index Access Paths

The customers table contains a column cust _gender whose values are either M or F. While
logged in to the database as user sh, you create a composite index on the columns
(cust _gender, cust email) as follows:

CREATE INDEX cust gender email ix
ON sh.customers (cust gender, cust email);

Conceptually, a portion of the index might look as follows, with the gender value of F or M as the
leading edge of the index.

F,Wolf@company.example.com, rowid
F,Wolsey@company.example.com, rowid
F,Wood@company.example.com, rowid
F,Woodman@company.example.com, rowid
F,Yang@company.example.com, rowid
F,Zimmerman@company.example.com, rowid
M, Abbassil@company.example.com, rowid
M, Abbey@company.example.com, rowid

You run the following query for a customer in the sh.customers table:

SELECT *
FROM sh.customers
WHERE cust email = 'Abbey@company.example.com';

The database can use a skip scan of the customers gender email index even though
cust_gender is not specified in the WHERE clause. In the sample index, the leading column
cust_gender has two possible values: F and M. The database logically splits the index into two.
One subindex has the key F, with entries in the following form:

F,Wolf@company.example.com, rowid
F,Wolsey@company.example.com, rowid
F,Wood@company.example.com, rowid
F,Woodman@company.example.com, rowid
F,Yang@company.example.com, rowid

F, Zimmerman@company.example.com, rowid

The second subindex has the key M, with entries in the following form:

M, Abbassil@company.example.com, rowid
M, Abbey@company.example.com, rowid

When searching for the record for the customer whose email is Abbey@company.example. com,
the database searches the subindex with the leading value F first, and then searches the
subindex with the leading value M. Conceptually, the database processes the query as follows:

( SELECT *

FROM sh.customers

WHERE cust gender = 'F'

AND cust email = 'Abbey@company.example.com' )
UNION ALL
( SELECT *

8-27



Chapter 8

B-Tree Index Access Paths

FROM sh.customers
WHERE cust gender = 'M'
AND cust email = 'Abbey(@company.example.com' )

The plan for the query is as follows:

SQL ID d7a6xurcnx2dj, child number 0

SELECT * FROM sh.customers WHERE cust email = 'Abbey€company.example.com'

Plan hash value: 797907791

|Id| Operation | Name |Rows | Bytes|Cost ($CPU) | Time |
| O|SELECT STATEMENT | | | [10(100) | |
| 1] TABLE ACCESS BY INDEX ROWID BATCHED| CUSTOMERS 3316237 10(0) 100:00:01 |
|*2| INDEX SKIP SCAN | CUST GENDER EMAIL IX |33 | 4(0)100:00:01]

2 - access ("CUST EMAIL"='Abbey@company.example.com")
filter ("CUST EMAIL"='Abbey@company.example.com')

¢ See Also:

Oracle Database Concepts to learn more about skip scans

Index Join Scans

An index join scan is a hash join of multiple indexes that together return all columns requ

ested

by a query. The database does not need to access the table because all data is retrieved from

the indexes.

When the Optimizer Considers Index Join Scans

In some cases, avoiding table access is the most cost efficient option.

The optimizer considers an index join in the following circumstances:

e A hash join of multiple indexes retrieves all data requested by the query, without requiring

table access.

e The cost of retrieving rows from the table is higher than reading the indexes without
retrieving rows from the table. An index join is often expensive. For example, when

scanning two indexes and joining them, it is often less costly to choose the most selective

index, and then probe the table.

You can specify an index join with the INDEX JOIN(table name) hint.

ORACLE

8-28



Chapter 8
B-Tree Index Access Paths

# See Also:

Oracle Database SQL Language Reference

How Index Join Scans Work

An index join involves scanning multiple indexes, and then using a hash join on the rowids
obtained from these scans to return the rows.

In an index join scan, table access is always avoided. For example, the process for joining two
indexes on a single table is as follows:

1. Scan the first index to retrieve rowids.
2. Scan the second index to retrieve rowids.

3. Perform a hash join by rowid to obtain the rows.

Index Join Scans: Example

ORACLE

This example queries the last name and email for employees whose last name begins with a,
specifying an index join.

SELECT /*+ INDEX JOIN (employees) */ last name, email
FROM employees
WHERE last name like 'A%';

Separate indexes exist on the (last name, first name) and email columns. Part of the
emp_name_ix index might look as follows:

Banda, Amit, AAAVgdAALAAAABRSABD
Bates,Elizabeth, AARAVgdAALARAABSARI
Bell, Sarah, AAAVGdAALAAAABSABC
Bernstein,David, ARAVgdAALARAABSAAzZ
Bissot, Laura, AAAVgdAALAAAABSAAd
Bloom, Harrison, AAAVgdAALAARABSABF
Bull,Alexis, AAAVgdAALAAAABSABV

The first part of the emp_email uk index might look as follows:

ABANDA, AAAVgdAALAAAABSABD
ABULL, AAAVgdAALAAAABSABV
ACABRIO, AAAVgdAALAAAABSABX
AERRAZUR, AAAVgdAALAAAABSAAV
AFRIPP, AAAVgdAALAAAABSAAV
AHUNOLD, AAAVgdAALAAAABSAAD
AHUTTON, AAAVgdAALAAAABSABL

The following example retrieves the plan using the DBMS XPLAN.DISPLAY CURSOR function. The
database retrieves all rowids in the emp email uk index, and then retrieves rowids in
emp_name_ix for last names that begin with A. The database uses a hash join to search both

8-29



Chapter 8
Bitmap Index Access Paths

sets of rowids for matches. For example, rowid AAAVgdAALAAAABSABD occurs in both sets of
rowids, so the database probes the employees table for the record corresponding to this rowid.

Example 8-4 Index Join Scan

SQL ID d2djchyc9hmrz, child number 0

SELECT /*+ INDEX JOIN (employees) */ last name, email FROM employees
WHERE last name like 'A%'

Plan hash value: 3719800892

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | | | 3 (100) |

[* 1 | VIEW | index$ join$ 001 | 3 48 | 3 (34)] 00:00:01 |
[* 2 HASH JOIN \ | | | \ |
[* 3| INDEX RANGE SCAN | EMP NAME IX | 3 48 | 1 (0)| 00:00:01

| 4 | INDEX FAST FULL SCAN| EMP EMAIL UK | 3 48 | 1 (0)] 00:00:01

Predicate Information (identified by operation id):

1 - filter("LASTiNAME" LIKE 'A%')
2 - access (ROWID=ROWID)
3 - access("LAST NAME" LIKE 'A%')

Bitmap Index Access Paths

Bitmap indexes combine the indexed data with a rowid range.

About Bitmap Index Access

In a conventional B-tree index, one index entry points to a single row. In a bitmap index, the
key is the combination of the indexed data and the rowid range.

The database stores at least one bitmap for each index key. Each value in the bitmap, which is
a series of 1 and 0 values, points to a row within a rowid range. Thus, in a bitmap index, one
index entry points to a set of rows rather than a single row.

Differences Between Bitmap and B-Tree Indexes

A bitmap index uses a different key from a B-tree index, but is stored in a B-tree structure.

The following table shows the differences among types of index entries.

ORACLE 830



Chapter 8
Bitmap Index Access Paths

Table 8-3 Index Entries for B-Trees and Bitmaps

- ____________________________________________________________________________________________|]
Index Entry Key Data Example

Unique B-tree Indexed data only Rowid In an entry of the index on the employees.employee id
column, employee ID 101 is the key, and the rowid
AAAPvCAAFAAAAFaAAa is the data:

101, AAAPvCAAFAAAAFaAAa

Nonunique B-tree  Indexed data combined None In an entry of the index on the employees.last name
with rowid column, the name and rowid combination
Smith, AAAPvCAAFAAAAFaAAa is the key, and there is no data:

Smith, AAAPVCAAFAAAAFaARa

Bitmap Indexed data combined  Bitmap In an entry of the index on the customers.cust gender
with rowid range column, the M, low-rowid, high-rowid part is the key, and
the series of 1 and 0 values is the data:

M, Iow-rowid, high-rowid,1000101010101010

The database stores a bitmap index in a B-tree structure. The database can search the B-tree
quickly on the first part of the key, which is the set of attributes on which the index is defined,
and then obtain the corresponding rowid range and bitmap.

¢ See Also:

* "Bitmap Storage"
*  Oracle Database Concepts for an overview of bitmap indexes

*  Oracle Database Data Warehousing Guide for more information about bitmap
indexes

Purpose of Bitmap Indexes

Bitmap indexes are typically suitable for infrequently modified data with a low or medium
number of distinct values (NDV).

In general, B-tree indexes are suitable for columns with high NDV and frequent DML activity.
For example, the optimizer might choose a B-tree index for a query of a sales.amount column
that returns few rows. In contrast, the customers.state and customers.county columns are
candidates for bitmap indexes because they have few distinct values, are infrequently updated,
and can benefit from efficient AND and OR operations.

Bitmap indexes are a useful way to speed ad hoc queries in a data warehouse. They are
fundamental to star transformations. Specifically, bitmap indexes are useful in queries that
contain the following:

e Multiple conditions in the WHERE clause

ORACLE 831



Chapter 8
Bitmap Index Access Paths

Before the table itself is accessed, the database filters out rows that satisfy some, but not
all, conditions.

e AND, OR, and NOT operations on columns with low or medium NDV

Combining bitmap indexes makes these operations more efficient. The database can
merge bitmaps from bitmap indexes very quickly. For example, if bitmap indexes exist on
the customers.state and customers.county columns, then these indexes can enormously
improve the performance of the following query:

SELECT *

FROM customers

WHERE state = 'CA'

AND county = 'San Mateo'

The database can convert 1 values in the merged bitmap into rowids efficiently.
e The COUNT function

The database can scan the bitmap index without needing to scan the table.
* Predicates that select for null values

Unlike B-tree indexes, bitmap indexes can contain nulls. Queries that count the number of
nulls in a column can use the bitmap index without scanning the table.

e Columns that do not experience heavy DML

The reason is that one index key points to many rows. If a session modifies the indexed
data, then the database cannot lock a single bit in the bitmap: rather, the database locks
the entire index entry, which in practice locks the rows pointed to by the bitmap. For
example, if the county of residence for a specific customer changes from San Mateo to
Alameda, then the database must get exclusive access to the San Mateo index entry and
Alameda index entry in the bitmap. Rows containing these two values cannot be modified
until COMMIT.

# See Also:

e "Star Transformation"

e Oracle Database SQL Language Reference to learn about the COUNT function

Bitmaps and Rowids

ORACLE

For a particular value in a bitmap, the value is 1 if the row values match the bitmap condition,
and 0 if it does not. Based on these values, the database uses an internal algorithm to map
bitmaps onto rowids.

The bitmap entry contains the indexed value, the rowid range (start and end rowids), and a
bitmap. Each 0 or 1 value in the bitmap is an offset into the rowid range, and maps to a
potential row in the table, even if the row does not exist. Because the number of possible rows
in a block is predetermined, the database can use the range endpoints to determine the rowid
of an arbitrary row in the range.

8-32



Chapter 8
Bitmap Index Access Paths

# Note:

The Hakan factor is an optimization used by the bitmap index algorithms to limit the
number of rows that Oracle Database assumes can be stored in a single block. By
artificially limiting the number of rows, the database reduces the size of the bitmaps.

Table 8-4 shows part of a sample bitmap for the sh.customers.cust marital status column,
which is nullable. The actual index has 12 distinct values. Only 3 are shown in the sample: null,
married, and single

Table 8-4 Bitmap Index Entries

Column Start Rowid End Rowid 1st Row 2nd 3rd 4th 5th 6th
Value for in Range in Range in Rowin Rowin Rowin Rowin Rowin
cust_marital_ Range Range Range Range Range Range
status

(null) AAA ... cce ... 0 0 0 0 0 1
married AAA ... ccc ... 1 0 1 1 1 0
single AAA ... CCcC ... 0 1 0 0 0 0
single DDD ... EEE ... 1 0 1 0 1 1

As shown in Table 8-4, bitmap indexes can include keys that consist entirely of null values,
unlike B-tree indexes. In Table 8-4, the null has a value of 1 for the 6th row in the range, which
means that the cust marital status value is null for the 6th row in the range. Indexing nulls
can be useful for some SQL statements, such as queries with the aggregate function COUNT.

# See Also:

Oracle Database Concepts to learn about rowid formats

Bitmap Join Indexes

ORACLE

A bitmap join index is a bitmap index for the join of two or more tables.

The optimizer can use a bitmap join index to reduce or eliminate the volume of data that must
be joined during plan execution. Bitmap join indexes can be much more efficient in storage
than materialized join views.

The following example creates a bitmap index on the sh.sales and sh.customers tables:

CREATE BITMAP INDEX cust sales bji ON sales(c.cust city)
FROM sales s, customers c
WHERE c.cust id = s.cust id LOCAL;

The FROM and WHERE clause in the preceding CREATE statement represent the join condition
between the tables. The customers.cust city column is the index key.

8-33



Chapter 8
Bitmap Index Access Paths

Each key value in the index represents a possible city in the customers table. Conceptually,
key values for the index might look as follows, with one bitmap associated with each key value:

San Francisco 000101000100000
San Mateo 010000001000O00O0T1
Smithville 100010010010100

Each bit in a bitmap corresponds to one row in the sales table. In the sSmithville key, the
value 1 means that the first row in the sales table corresponds to a product sold to a Smithville
customer, whereas the value 0 means that the second row corresponds to a product not sold to
a Smithville customer.

Consider the following query of the number of separate sales to Smithville customers:

SELECT COUNT (*)

FROM sales s, customers c

WHERE c.cust id = s.cust id

AND c.cust _city = 'Smithville';

The following plan shows that the database reads the smithville bitmap to derive the number
of Smithville sales (Step 4), thereby avoiding a join of the customers and sales tables.

SQL ID 57s100mhl42wy, child number 0
SELECT COUNT (*) FROM sales s, customers c WHERE c.cust id = s.cust id
AND c.cust city = 'Smithville'

Plan hash value: 3663491772

|Id| Operation | Name |Rows|Bytes|Cost (%CPU)| Time|Pstart|Pstop]
| 0| SELECT STATEMENT | | 29 (100) |

| 1| SORT AGGREGATE | 11 5] |

| 2] PARTITION RANGE ALL | 170818540129 (0)100:00:0111128]
| 3] BITMAP CONVERSION COUNT | 170818540129 (0)100:00:011 |

| *4 | BITMAP INDEX SINGLE VALUE|CUST SALES BJI | | \ 11128

4 - access("S"."SYS NC00008s"='Smithville')

¢ See Also:

Oracle Database Concepts to learn about the CREATE INDEX Statement

ORACLE -



Chapter 8
Bitmap Index Access Paths

Bitmap Storage

A bitmap index resides in a B-tree structure, using branch blocks and leaf blocks just as in a B-
tree.

For example, if the customers.cust marital status column has 12 distinct values, then one
branch block might point to the keys married, rowid-range and single, rowid-range, another
branch block might point to the widowed, rowid-range key, and so on. Alternatively, a single
branch block could point to a leaf block containing all 12 distinct keys.

Each indexed column value may have one or more bitmap pieces, each with its own rowid
range occupying a contiguous set of rows in one or more extents. The database can use a
bitmap piece to break up an index entry that is large relative to the size of a block. For
example, the database could break a single index entry into three pieces, with the first two
pieces in separate blocks in the same extent, and the last piece in a separate block in a
different extent.

To conserve space, Oracle Database can compression consecutive ranges of 0 values.

Bitmap Conversion to Rowid

A bitmap conversion translates between an entry in the bitmap and a row in a table. The
conversion can go from entry to row (TO ROWID), or from row to entry (FROM ROWID).

When the Optimizer Chooses Bitmap Conversion to Rowid

The optimizer uses a conversion whenever it retrieves a row from a table using a bitmap index
entry.

How Bitmap Conversion to Rowid Works

Conceptually, a bitmap can be represented as table.

For example, Table 8-4 represents the bitmap as a table with customers row numbers as
columns and cust marital status values as rows. Each field in Table 8-4 has the value 1 or
0, and represents a column value in a row. Conceptually, the bitmap conversion uses an
internal algorithm that says, "Field F in the bitmap corresponds to the Nth row of the Mth block
of the table," or "The Nth row of the Mth block in the table corresponds to field F in the bitmap."

Bitmap Conversion to Rowid: Example

In this example, the optimizer chooses a bitmap conversion operation to satisfy a query using a
range predicate.

A query of the sh.customers table selects the names of all customers born before 1918:

SELECT cust last name, cust first name
FROM  customers
WHERE cust year of birth < 1918;

ORACLE 835



Chapter 8
Bitmap Index Access Paths

The following plan shows that the database uses a range scan to find all key values less than
1918 (Step 3), converts the 1 values in the bitmap to rowids (Step 2), and then uses the rowids
to obtain the rows from the customers table (Step 1):

|Id| Operation | Name |Rows |Bytes|Cost (3CPU) | Time |
| 0| SELECT STATEMENT | \ | 1421 (100) | |
| 1| TABLE ACCESS BY INDEX ROWID BATCHED| CUSTOMERS |36041684761421 (1)100:00:01
| 2] BITMAP CONVERSION TO ROWIDS | | | | |
| *3] BITMAP INDEX RANGE SCAN | CUSTOMERS_YOB_BIX\ | | | |

3 - access("CUST YEAR OF BIRTH"<1918)
filter ("CUST YEAR OF BIRTH"<1918)

Bitmap Index Single Value

This type of access path uses a bitmap index to look up a single key value.

When the Optimizer Considers Bitmap Index Single Value

The optimizer considers this access path when the predicate contains an equality operator.

How Bitmap Index Single Value Works

The query scans a single bitmap for positions containing a 1 value. The database converts the
1 values into rowids, and then uses the rowids to find the rows.

The database only needs to process a single bitmap. For example, the following table
represents the bitmap index (in two bitmap pieces) for the value widowed in the

sh.customers.cust marital status column. To satisfy a query of customers with the status
widowed, the database can search for each 1 value in the widowed bitmap and find the rowid of
the corresponding row.

Table 8-5 Bitmap Index Entries
|

Column Start Rowid End Rowid 1st Row 2nd 3rd 4th Row 5th Row 6th Row
Value in Range in Range in Rowin Rowin in in in
Range Range Range Range Range Range
widowed AAA ... ccec ... 0 1 0 0 0 0
widowed DDD ... EEE ... 1 0 1 0 1 1

Bitmap Index Single Value: Example

In this example, the optimizer chooses a bitmap index single value operation to satisfy a query
that uses an equality predicate.

ORACLE 836



Chapter 8
Bitmap Index Access Paths

A query of the sh.customers table selects all widowed customers:

SELECT *
FROM  customers
WHERE cust marital status = 'Widowed';

The following plan shows that the database reads the entry with the Widowed key in the
customers bitmap index (Step 3), converts the 1 values in the bitmap to rowids (Step 2), and
then uses the rowids to obtain the rows from the customers table (Step 1):

SQL ID ff5an2xsn086h, child number 0

SELECT * FROM customers WHERE cust marital status = 'Widowed'

Plan hash value: 2579015045

|Id| Operation | Name |Rows |Bytes|Cost (%CPU) | Time]
| O|SELECT STATEMENT | | | 1412 (100) |

| 1| TABLE ACCESS BY INDEX ROWID BATCHED|CUSTOMERS |3461|638K|412 (2)100:00:01|
| 2| BITMAP CONVERSION TO ROWIDS | | | | | |
|*3|  BITMAP INDEX SINGLE VALUE | CUSTOMERS MARITAL BIX| | | | |

3 - access ("CUST MARITAL STATUS"='Widowed')

Bitmap Index Range Scans

This type of access path uses a bitmap index to look up a range of values.

When the Optimizer Considers Bitmap Index Range Scans

The optimizer considers this access path when the predicate selects a range of values.

The range in the scan can be bounded on both sides, or unbounded on one or both sides. The
optimizer typically chooses a range scan for selective queries.

¢ See Also:

"Index Range Scans"

How Bitmap Index Range Scans Work

This scan works similarly to a B-tree range scan.

For example, the following table represents three values in the bitmap index for the
sh.customers.cust year of birth column. If a query requests all customers born before

ORACLE 8-37



Chapter 8

Bitmap Index Access Paths

1917, then the database can scan this index for values lower than 1917, and then obtain the
rowids for rows that have a 1.

Table 8-6 Bitmap Index Entries

Bitmap Index Range Scans: Example

SQL ID 672z2h9rawyjg, child number 0

SELECT cust last name, cust first name FROM
cust _year of birth < 1918

Plan hash value:

This example uses a range scan to select customers born before a single year.

A query of the sh.customers table selects the names of customers born before 1918:

SELECT cust last name, cust first name
FROM customers
WHERE cust year of birth < 1918

Column Start Rowid End Rowid 1st Row 2nd 3rd 4th Row 5th Row 6th Row
Value in Range in Range in Rowin Rowin in in in
Range Range Range Range Range Range
1913 AAA ... ccc ... 0 0 0 0 0 1
1917 ARA ... cce ... 1 0 1 1 1 0
1918 AAA ... ccc ... 0 1 0 0 0 0
1918 DDD ... EEE ... 1 0 1 0 1 1
¢ See Also:
"Index Range Scans"

The following plan shows that the database obtains all bitmaps for cust _year of birth keys
lower than 1918 (Step 3), converts the bitmaps to rowids (Step 2), and then fetches the rows

(Step 1):

4198466611

customers WHERE

0| SELECT STATEMENT
1| TABLE ACCESS BY INDEX ROWID BATCHED|CUSTOMERS
2] BITMAP CONVERSION TO ROWIDS
*3| BITMAP INDEX RANGE SCAN

[421

[3604|684761421

|CUSTOMERS _YOB BIX |

ORACLE

(100)

(1)100:00:01]

8-38



Chapter 8
Bitmap Index Access Paths

3 - access ("CUST YEAR OF BIRTH"<1918)
filter ("CUST YEAR OF BIRTH"<1918)

Bitmap Merge
This access path merges multiple bitmaps, and returns a single bitmap as a result.

A bitmap merge is indicated by the BITMAP MERGE operation in an execution plan.

When the Optimizer Considers Bitmap Merge

The optimizer typically uses a bitmap merge to combine bitmaps generated from a bitmap
index range scan.

How Bitmap Merge Works

A merge uses a Boolean OR operation between two bitmaps. The resulting bitmap selects all
rows from the first bitmap, plus all rows from every subsequent bitmap.

A query might select all customers born before 1918. The following example shows sample
bitmaps for three customers.cust year of birth keys: 1917, 1916, and 1915. If any position
in any bitmap has a 1, then the merged bitmap has a 1 in the same position. Otherwise, the
merged bitmap has a 0.

1917 10100000000001
1916 01000000000000
1915 00000000100000

merged: 1 1100000100001

The 1 values in resulting bitmap correspond to rows that contain the values 1915, 1916, or
1917.

Bitmap Merge: Example

This example shows how the database merges bitmaps to optimize a query using a range
predicate.

A query of the sh.customers table selects the names of female customers born before 1918:

SELECT cust last name, cust first name
FROM customers

WHERE cust gender = 'F'

AND cust_year of birth < 1918

The following plan shows that the database obtains all bitmaps for cust _year of birth keys
lower than 1918 (Step 6), and then merges these bitmaps using ORr logic to create a single
bitmap (Step 5). The database obtains a single bitmap for the cust gender key of F (Step 4),
and then performs an AND operation on these two bitmaps. The result is a single bitmap that
contains 1 values for the requested rows (Step 3).

SQL ID 1x£59h179zdg2, child number 0

ORACLE 839



Chapter 8
Table Cluster Access Paths

select cust last name, cust first name from customers where cust gender
= 'F' and cust year of birth < 1918

Plan hash value: 49820847

|Id| Operation | Name |Rows |Bytes|Cost (%CPU) |Time |
0|SELECT STATEMENT | \ | 1288 (100) |
1| TABLE ACCESS BY INDEX ROWID BATCHED|CUSTOMERS [18021378421288 (1)(00:00:01]

|

|

| 2] BITMAP CONVERSION TO ROWIDS | | | |
| 3 BITMAP AND | \

| | |
[*4] BITMAP INDEX SINGLE VALUE | CUSTOMERS GENDER BIX| | |
| 5] BITMAP MERGE | l | |
[*6] BITMAP INDEX RANGE SCAN |CUSTOMERS YOB BIX \ | | |

Predicate Information (identified by operation id):

4 - access ("CUST GENDER"='F')
6 - access("CUST_YEAR OF BIRTH"<1918)
filter ("CUST YEAR OF BIRTH"<1918)

Table Cluster Access Paths

A table cluster is a group of tables that share common columns and store related data in the
same blocks. When tables are clustered, a single data block can contain rows from multiple
tables.

¢ See Also:

Oracle Database Concepts for an overview of table clusters

Cluster Scans

An index cluster is a table cluster that uses an index to locate data.

The cluster index is a B-tree index on the cluster key. A cluster scan retrieves all rows that
have the same cluster key value from a table stored in an indexed cluster.

When the Optimizer Considers Cluster Scans

The database considers a cluster scan when a query accesses a table in an indexed cluster.

How a Cluster Scan Works

In an indexed cluster, the database stores all rows with the same cluster key value in the same
data block.

For example, if the hr.employees2 and hr.departments?2 tables are clustered in

emp_dept cluster, and if the cluster key is department id, then the database stores all
employees in department 10 in the same block, all employees in department 20 in the same
block, and so on.

ORACLE 840



Chapter 8
Table Cluster Access Paths

The B-tree cluster index associates the cluster key value with the database block address
(DBA) of the block containing the data. For example, the index entry for key 30 shows the
address of the block that contains rows for employees in department 30:

30, AADAAAAYC

When a user requests rows in the cluster, the database scans the index to obtain the DBAs of
the blocks containing the rows. Oracle Database then locates the rows based on these DBAs.

Cluster Scans: Example

ORACLE

This example clusters the employees and departments tables on the department id column,
and then queries the cluster for a single department.

As user hr, you create a table cluster, cluster index, and tables in the cluster as follows:

CREATE CLUSTER employees departments cluster
(department id NUMBER(4)) SIZE 512;

CREATE INDEX idx emp dept cluster
ON CLUSTER employees departments cluster;

CREATE TABLE employees?2
CLUSTER employees departments cluster (department id)
AS SELECT * FROM employees;

CREATE TABLE departments2
CLUSTER employees departments cluster (department id)
AS SELECT * FROM departments;

You query the employees in department 30 as follows:

SELECT *
FROM  employees?
WHERE department id = 30;

To perform the scan, Oracle Database first obtains the rowid of the row describing department
30 by scanning the cluster index (Step 2). Oracle Database then locates the rows in
employees?2 using this rowid (Step 1).

SQL ID b7xkljzuwdcét, child number 0

SELECT * FROM employees2 WHERE department id = 30

Plan hash value: 49826199

| 0] SELECT STATEMENT | | | | 2
| 1| TABLE ACCESS CLUSTER| EMPLOYEES?2 | 6 1798 | 2 (0)100:00:01
[ %2 INDEX UNIQUE SCAN |IDX EMP DEPT CLUSTER| 1 | | 1 (0)100:00:01]

Predicate Information (identified by operation id):

8-41



Chapter 8
Table Cluster Access Paths

2 - access ("DEPARTMENT ID"=30)

¢ See Also:

Oracle Database Concepts to learn about indexed clusters

Hash Scans

A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists.

In a hash cluster, the data is the index. The database uses a hash scan to locate rows in a
hash cluster based on a hash value.

When the Optimizer Considers a Hash Scan

The database considers a hash scan when a query accesses a table in a hash cluster.

How a Hash Scan Works

Hash Scans;

ORACLE

In a hash cluster, all rows with the same hash value are stored in the same data block.

To perform a hash scan of the cluster, Oracle Database first obtains the hash value by applying
a hash function to a cluster key value specified by the statement. Oracle Database then scans
the data blocks containing rows with this hash value.

Example

This example hashes the employees and departments tables on the department id column,
and then queries the cluster for a single department.

You create a hash cluster and tables in the cluster as follows:

CREATE CLUSTER employees departments cluster
(department id NUMBER(4)) SIZE 8192 HASHKEYS 100;

CREATE TABLE employees2
CLUSTER employees departments cluster (department id)
AS SELECT * FROM employees;

CREATE TABLE departments2

CLUSTER employees departments cluster (department id)
AS SELECT * FROM departments;

You query the employees in department 30 as follows:

SELECT *
FROM employees?2
WHERE department id = 30

8-42



ORACLE

Chapter 8
Table Cluster Access Paths

To perform a hash scan, Oracle Database first obtains the hash value by applying a hash

function to the key value 30, and then uses this hash value to scan the data blocks and retrieve
the rows (Step 1).

SQL ID 919x7hyyxr6p4, child number 0

SELECT * FROM employees2 WHERE department id = 30

Plan hash value: 2399378016

| Id | Operation | Name | Rows | Bytes | Cost
| 0 | SELECT STATEMENT | | | | 1 |
|[* 1 | TABLE ACCESS HASH| EMPLOYEES2 | 10 | 1330 |

1 - access ("DEPARTMENT ID"=30)

# See Also:

Oracle Database Concepts to learn about hash clusters

8-43



Joins

Oracle Database provides several optimizations for joining row sets.

About Joins

A join combines the output from exactly two row sources, such as tables or views, and returns
one row source. The returned row source is the data set.

A join is characterized by multiple tables in the WHERE (non-ANSI) or FROM ... JOIN (ANSI)
clause of a SQL statement. Whenever multiple tables exist in the FROM clause, Oracle
Database performs a join.

A join condition compares two row sources using an expression. The join condition defines the
relationship between the tables. If the statement does not specify a join condition, then the
database performs a Cartesian join, matching every row in one table with every row in the
other table.

¢ See Also:

e "Cartesian Joins"

* Oracle Database SQL Language Reference for a concise discussion of joins in
Oracle SQL

Join Trees
Typically, a join tree is represented as an upside-down tree structure.
As shown in the following graphic, tablel is the left table, and table2 is the right table. The
optimizer processes the join from left to right. For example, if this graphic depicted a nested
loops join, then tablel is the outer loop, and table? is the inner loop.
Figure 9-1 Join Tree
result set
tablel table2
ORACLE

9-1



Chapter 9
About Joins

The input of a join can be the result set from a previous join. If the right child of every internal
node of a join tree is a table, then the tree is a left deep join tree, as shown in the following
example. Most join trees are left deep joins.

Figure 9-2 Left Deep Join Tree

result set

table4

table3

tablel table2

If the left child of every internal node of a join tree is a table, then the tree is called a right deep
join tree, as shown in the following diagram.

Figure 9-3 Right Deep Join Tree

result set

tablel

table2

table3 table4

If the left or the right child of an internal node of a join tree can be a join node, then the tree is
called a bushy join tree. In the following example, table4 is a right child of a join node, tablel
is the left child of a join node, and table? is the left child of a join node.

ORACLE 9.0



Figure 9-4 Bushy Join Tree

result set

table4

tablel

table2

table3

Chapter 9
About Joins

In yet another variation, both inputs of a join are the results of a previous join.

How the Optimizer Executes Join Statements

The database joins pairs of row sources. When multiple tables exist in the FROM clause, the

optimizer must determine which join operation is most efficient for each pair.

The optimizer must make the interrelated decisions shown in the following table.

Table 9-1 Join Operations

Operation

Explanation

To Learn More

Access paths

As for simple statements, the optimizer must
choose an access path to retrieve data from
each table in the join statement. For example,
the optimizer might choose between a full table
scan or an index scan..

"Optimizer Access Paths"

Join methods

To join each pair of row sources, Oracle
Database must decide how to do it. The "how" is
the join method. The possible join methods are
nested loop, sort merge, and hash joins. A
Cartesian join requires one of the preceding join
methods. Each join method has specific
situations in which it is more suitable than the
others.

"Join Methods"

tables, Oracle Database joins two tables and
then joins the resulting row source to the next
table. This process continues until all tables are
joined into the result. For example, the database
joins two tables, and then joins the result to a
third table, and then joins this result to a fourth
table, and so on.

Join types The join condition determines the join type. For | "Join Types"
example, an inner join retrieves only rows that
match the join condition. An outer join retrieves
rows that do not match the join condition.

Join order To execute a statement that joins more than two | N/A

ORACLE

9-3



Chapter 9
About Joins

How the Optimizer Chooses Execution Plans for Joins

When determining the join order and method, the optimizer goal is to reduce the number of
rows early so it performs less work throughout the execution of the SQL statement.

The optimizer generates a set of execution plans, according to possible join orders, join
methods, and available access paths. The optimizer then estimates the cost of each plan and
chooses the one with the lowest cost. When choosing an execution plan, the optimizer
considers the following factors:

*  The optimizer first determines whether joining two or more tables results in a row source
containing at most one row.

The optimizer recognizes such situations based on UNIQUE and PRIMARY KEY constraints on
the tables. If such a situation exists, then the optimizer places these tables first in the join
order. The optimizer then optimizes the join of the remaining set of tables.

* For join statements with outer join conditions, the table with the outer join operator typically
comes after the other table in the condition in the join order.

In general, the optimizer does not consider join orders that violate this guideline, although
the optimizer overrides this ordering condition in certain circumstances. Similarly, when a
subquery has been converted into an antijoin or semijoin, the tables from the subquery
must come after those tables in the outer query block to which they were connected or
correlated. However, hash antijoins and semijoins are able to override this ordering
condition in certain circumstances.

The optimizer estimates the cost of a query plan by computing the estimated 1/0s and CPU.
These 1/0s have specific costs associated with them: one cost for a single block 1/0O, and
another cost for multiblock I/Os. Also, different functions and expressions have CPU costs
associated with them. The optimizer determines the total cost of a query plan using these
metrics. These metrics may be influenced by many initialization parameter and session
settings at compile time, such as the DB FILE MULTI BLOCK READ COUNT setting, system
statistics, and so on.

For example, the optimizer estimates costs in the following ways:

e The cost of a nested loops join depends on the cost of reading each selected row of the
outer table and each of its matching rows of the inner table into memory. The optimizer
estimates these costs using statistics in the data dictionary.

e The cost of a sort merge join depends largely on the cost of reading all the sources into
memory and sorting them.

* The cost of a hash join largely depends on the cost of building a hash table on one of the
input sides to the join and using the rows from the other side of the join to probe it.

Example 9-1 Estimating Costs for Join Order and Method

Conceptually, the optimizer constructs a matrix of join orders and methods and the cost
associated with each. For example, the optimizer must determine how best to join the
date_dimand lineorder tables in a query. The following table shows the possible variations of
methods and orders, and the cost for each. In this example, a nested loops join in the order
date dim, lineorder has the lowest cost.

ORACLE 0.



Chapter 9
Join Methods

Table 9-2 Sample Costs for Join of date_dim and lineorder Tables

Join Method Cost of date_dim, lineorder Cost of lineorder, date_dim
Nested Loops 39,480 6,187,540

Hash Join 187,528 194,909

Sort Merge 217,129 217,129

Join Methods

A join method is the mechanism for joining two row sources.

# See Also:

e "Introduction to Optimizer Statistics"

e "Influencing the Optimizer " for more information about optimizer hints

*  Oracle Database Reference to learn about DB FILE MULTIBLOCK READ COUNT

Depending on the statistics, the optimizer chooses the method with the lowest estimated cost.
As shown in Figure 9-5, each join method has two children: the driving (also called outer) row
source and the driven-to (also called inner) row source.

Figure 9-5 Join Method

Driving Row Source,
Outer row Source

Nested Loops Joins

Driven-To Row Source,

B — e
Inner Row Source

Nested loops join an outer data set to an inner data set.

For each row in the outer data set that matches the single-table predicates, the database
retrieves all rows in the inner data set that satisfy the join predicate. If an index is available,
then the database can use it to access the inner data set by rowid.

ORACLE

9-5



Chapter 9
Join Methods

When the Optimizer Considers Nested Loops Joins

Nested loops joins are useful when the database joins small subsets of data, the database
joins large sets of data with the optimizer mode set to FIRST ROWS, or the join condition is an
efficient method of accessing the inner table.

# Note:

The number of rows expected from the join is what drives the optimizer decision, not
the size of the underlying tables. For example, a query might join two tables of a
billion rows each, but because of the filters the optimizer expects data sets of 5 rows
each.

In general, nested loops joins work best on small tables with indexes on the join conditions. If a
row source has only one row, as with an equality lookup on a primary key value (for example,
WHERE employee 1d=101), then the join is a simple lookup. The optimizer always tries to put the
smallest row source first, making it the driving table.

Various factors enter into the optimizer decision to use nested loops. For example, the
database may read several rows from the outer row source in a batch. Based on the number of
rows retrieved, the optimizer may choose either a nested loop or a hash join to the inner row
source. For example, if a query joins departments to driving table employees, and if the
predicate specifies a value in employees.last name, then the database might read enough
entries in the index on last name to determine whether an internal threshold is passed. If the
threshold is not passed, then the optimizer picks a nested loop join to departments, and if the
threshold is passed, then the database performs a hash join, which means reading the rest of
employees, hashing it into memory, and then joining to departments.

If the access path for the inner loop is not dependent on the outer loop, then the result can be
a Cartesian product: for every iteration of the outer loop, the inner loop produces the same set
of rows. To avoid this problem, use other join methods to join two independent row sources.

# See Also:

e '"Table 19-2"
e "Adaptive Query Plans"

How Nested Loops Joins Work

ORACLE

Conceptually, nested loops are equivalent to two nested for loops.

For example, if a query joins employees and departments, then a nested loop in pseudocode
might be:

FOR erow IN (select * from employees where X=Y) LOOP
FOR drow IN (select * from departments where erow is matched) LOOP
output values from erow and drow

9-6



Chapter 9
Join Methods

END LOOP
END LOOP

The inner loop is executed for every row of the outer loop. The employees table is the "outer”
data set because it is in the exterior for loop. The outer table is sometimes called a driving
table. The departments table is the "inner" data set because it is in the interior for loop.

A nested loops join involves the following basic steps:

1. The optimizer determines the driving row source and designates it as the outer loop.

The outer loop produces a set of rows for driving the join condition. The row source can be
a table accessed using an index scan, a full table scan, or any other operation that
generates rows.

The number of iterations of the inner loop depends on the number of rows retrieved in the
outer loop. For example, if 10 rows are retrieved from the outer table, then the database
must perform 10 lookups in the inner table. If 10,000,000 rows are retrieved from the outer
table, then the database must perform 10,000,000 lookups in the inner table.

2. The optimizer designates the other row source as the inner loop.
The outer loop appears before the inner loop in the execution plan, as follows:
NESTED LOOPS
outer loop
inner loop
3. For every fetch request from the client, the basic process is as follows:
a. Fetch a row from the outer row source
b. Probe the inner row source to find rows that match the predicate criteria
c. Repeat the preceding steps until all rows are obtained by the fetch request

Sometimes the database sorts rowids to obtain a more efficient buffer access pattern.

Nested Nested Loops

ORACLE

The outer loop of a nested loop can itself be a row source generated by a different nested loop.

The database can nest two or more outer loops to join as many tables as needed. Each loop is
a data access method. The following template shows how the database iterates through three
nested loops:

SELECT STATEMENT
NESTED LOOPS 3
NESTED LOOPS 2 - Row source becomes OUTER LOOP 3.1

NESTED LOOPS 1 - Row source becomes OUTER LOOP 2.1
OUTER LOOP 1.1
INNER LOOP 1.2

INNER LOOP 2.2

INNER LOOP 3.2

The database orders the loops as follows:

9-7



Chapter 9
Join Methods

1. The database iterates through NESTED LOOPS 1:

NESTED LOOPS 1
OUTER LOOP 1.1
INNER LOOP 1.2

The output of NESTED LOOP 1 is a row source.

2. The database iterates through NESTED LOOPS 2, using the row source generated by NESTED
LOOPS 1 as its outer loop:

NESTED LOOPS 2
OUTER LOOP 2.1 - Row source generated by NESTED LOOPS 1
INNER LOOP 2.2

The output of NESTED LOOPS 2 is another row source.

3. The database iterates through NESTED LOOPS 3, using the row source generated by NESTED
LOOPS 2 as its outer loop:

NESTED LOOPS 3
OUTER LOOP 3.1 - Row source generated by NESTED LOOPS 2
INNER LOOP 3.2

Example 9-2 Nested Nested Loops Join

Suppose you join the employees and departments tables as follows:

SELECT /*+ ORDERED USE NL(d) */ e.last name, e.first name, d.department name
FROM employees e, departments d

WHERE e.department id=d.department id

AND e.last name like 'A%';

The plan reveals that the optimizer chose two nested loops (Step 1 and Step 2) to access the
data:

SQL ID ahuavfcv4tnz4, child number 0

SELECT /*+ ORDERED USE_NL (d) x/ e.last name, d.department name FROM
employees e, departments d WHERE e.department id=d.department id AND
e.last name like 'A%’

Plan hash value: 1667998133

|Id| Operation |Name |Rows | Bytes|Cost ($CPU) | Time |
| 0| SELECT STATEMENT | | 5 (100) | |
| 1| NESTED LOOPS | [ | |

| 2] NESTED LOOPS | | 3110215 (0)100:00:01
| 3] TABLE ACCESS BY INDEX ROWID BATCHED| EMPLOYEES | 3] 5412 (0) 100:00:01
| *4 | INDEX RANGE SCAN | EMP NAME IX | 3] [1 (0) 100:00:01
| *5] INDEX UNIQUE SCAN | DEPT ID PK | 1] |0 (0) | |
| 6] TABLE ACCESS BY INDEX ROWID | DEPARTMENTS | 1] 16|1 (0) 100:00:01

ORACLE 0.8



Predicate Information

Chapter 9
Join Methods

(identified by operation id):

4 - access("E"."LAST NAME" LIKE 'A%'")
filter("E"."LZ—\ST_NAME" LIKE 'A%'")
5 - access("E"." DEPARTMENT_ID"="D" . "DEPARTMENT_ID")

ORACLE

In this example, the basic process is as follows:

1. The database begins iterating through the inner nested loop (Step 2) as follows:

a.

The database searches the emp name ix for the rowids for all last names that begins
with 2 (Step 4).

For example:

Abel,employees rowid
Ande, employees rowid
Atkinson,employees rowid
Austin,employees rowid

Using the rowids from the previous step, the database retrieves a batch of rows from
the employees table (Step 3). For example:

Abel,Ellen, 80
Abel, John, 50

These rows become the outer row source for the innermost nested loop.

The batch step is typically part of adaptive execution plans. To determine whether a
nested loop is better than a hash join, the optimizer needs to determine many rows
come back from the row source. If too many rows are returned, then the optimizer
switches to a different join method.

For each row in the outer row source, the database scans the dept _id pk index to
obtain the rowid in departments of the matching department ID (Step 5), and joins it to
the employees rows. For example:

Abel,Ellen, 80,departments_rowid
Ande, Sundar, 80, departments rowid
Atkinson,Mozhe, 50, departments rowid
Austin,David, 60,departments rowid

These rows become the outer row source for the outer nested loop (Step 1).

2. The database iterates through the outer nested loop as follows:

a.

The database reads the first row in outer row source.

For example:
Abel,Ellen, 80,departments_rowid
The database uses the departments rowid to retrieve the corresponding row from

departments (Step 6), and then joins the result to obtain the requested values (Step
1).

9-9



Chapter 9
Join Methods

For example:
Abel,Ellen, 80, Sales

c. The database reads the next row in the outer row source, uses the departments rowid
to retrieve the corresponding row from departments (Step 6), and iterates through the
loop until all rows are retrieved.

The result set has the following form:

Abel,Ellen, 80, Sales

Ande, Sundar, 80, Sales
Atkinson,Mozhe, 50, Shipping
Austin,David, 60,IT

Current Implementation for Nested Loops Joins

Oracle Database 11g introduced a new implementation for nested loops that reduces overall
latency for physical 1/O.

When an index or a table block is not in the buffer cache and is needed to process the join, a
physical I/O is required. The database can batch multiple physical I/0O requests and process
them using a vector I/O (array) instead of one at a time. The database sends an array of
rowids to the operating system, which performs the read.

As part of the new implementation, two NESTED LOOPS join row sources might appear in the
execution plan where only one would have appeared in prior releases. In such cases, Oracle
Database allocates one NESTED LOOPS join row source to join the values from the table on the
outer side of the join with the index on the inner side. A second row source is allocated to join
the result of the first join, which includes the rowids stored in the index, with the table on the
inner side of the join.

Consider the query in "Original Implementation for Nested Loops Joins". In the current
implementation, the execution plan for this query might be as follows:

| Id | Operation | Name |Rows |Bytes|Cost%CPU| Time |
| 0 | SELECT STATEMENT \ | 19 | 722 | 3 (0)100:00:01]
| 1 | NESTED LOOPS \ | \ | |

[ 2| NESTED LOOPS \ | 19 | 722 | 3 (0)100:00:01]
[* 3 | TABLE ACCESS FULL | DEPARTMENTS | 21 321 2 (0)]00:00:01]
[* 4 | INDEX RANGE SCAN \ EMP_DEPARTMENT IX | 10 | | 0 (0)]00:00:01]
[ 5 | TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 10 | 220 | 1 (0)|00:00:01]

3 - filter ("D"."DEPARTMENT NAME"='Marketing' OR "D"."DEPARTMENT NAME"='Sales')
4 - access("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

In this case, rows from the hr.departments table form the outer row source (Step 3) of the
inner nested loop (Step 2). The index emp department ix is the inner row source (Step 4) of
the inner nested loop. The results of the inner nested loop form the outer row source (Row 2)

ORACLE 510



ORACLE

Chapter 9
Join Methods

of the outer nested loop (Row 1). The hr.employees table is the outer row source (Row 5) of
the outer nested loop.

For each fetch request, the basic process is as follows:

1. The database iterates through the inner nested loop (Step 2) to obtain the rows requested
in the fetch:

a.

The database reads the first row of departments to obtain the department IDs for
departments named Marketing or Sales (Step 3). For example:

Marketing, 20

This row set is the outer loop. The database caches the data in the PGA.

The database scans emp_department ix, which is an index on the employees table, to
find employees rowids that correspond to this department ID (Step 4), and then joins
the result (Step 2).

The result set has the following form:

Marketing, 20, employees rowid
Marketing, 20, employees rowid
Marketing, 20, employees rowid

The database reads the next row of departments, scans emp department ix to find
employees rowids that correspond to this department ID, and then iterates through the
loop until the client request is satisfied.

In this example, the database only iterates through the outer loop twice because only
two rows from departments satisfy the predicate filter. Conceptually, the result set has
the following form:

Marketing, 20, employees rowid
Marketing, 20, employees rowid
Marketing, 20, employees rowid

Sales, 80,employees rowid
Sales, 80,employees rowid
Sales, 80,employees rowid

These rows become the outer row source for the outer nested loop (Step 1). This row
set is cached in the PGA.

2. The database organizes the rowids obtained in the previous step so that it can more
efficiently access them in the cache.

a.

The database begins iterating through the outer nested loop as follows:

The database retrieves the first row from the row set obtained in the previous step, as
in the following example:

Marketing, 20, employees rowid

9-11



Chapter 9
Join Methods

b. Using the rowid, the database retrieves a row from employees to obtain the requested
values (Step 1), as in the following example:

Michael,Hartstein, 13000,Marketing

c. The database retrieves the next row from the row set, uses the rowid to probe
employees for the matching row, and iterates through the loop until all rows are
retrieved.

The result set has the following form:

Michael,Hartstein, 13000,Marketing
Pat,Fay, 6000,Marketing
John,Russell, 14000, Sales

Karen, Partners, 13500, Sales
Alberto,Errazuriz, 12000, Sales

In some cases, a second join row source is not allocated, and the execution plan looks the
same as it did before Oracle Database 11g. The following list describes such cases:

e All of the columns needed from the inner side of the join are present in the index, and there
is no table access required. In this case, Oracle Database allocates only one join row
source.

e The order of the rows returned might be different from the order returned in releases earlier
than Oracle Database 12c. Thus, when Oracle Database tries to preserve a specific
ordering of the rows, for example to eliminate the need for an ORDER BY sort, Oracle
Database might use the original implementation for nested loops joins.

* The OPTIMIZER FEATURES ENABLE initialization parameter is set to a release before Oracle
Database 11g. In this case, Oracle Database uses the original implementation for nested
loops joins.

Original Implementation for Nested Loops Joins

In the current release, both the new and original implementation of nested loops are possible.

For an example of the original implementation, consider the following join of the hr.employees
and hr.departments tables:

SELECT e.first name, e.last name, e.salary, d.department name
FROM  hr.employees e, hr.departments d

WHERE d.department name IN ('Marketing', 'Sales')

AND e.department id = d.department id;

In releases before Oracle Database 11g, the execution plan for this query might appear as

follows:
| Id | Operation | Name | Rows | Bytes |[Cost (%CPU) |Time |
| 0 | SELECT STATEMENT | | 19 | 722 | 3 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 10 | 220 |1 (0)] 00:00:01 |

ORACLE o.12



\ NESTED LOOPS \
TABLE ACCESS FULL
\ INDEX RANGE SCAN

Chapter 9
Join Methods

| 19 | 722 1 3 (0)] 00:00:01 |
DEPARTMENTS | 2 | 32 | 2 (0)] 00:00:01 |
| EMP DEPARTMENT IX | 10 | [0 (0)] 00:00:01 |

Predicate Information

(identified by operation id):

3 - filter ("D"."DEPARTMENT NAME"='Marketing' OR "D"."DEPARTMENT NAME"='Sales')
4 - access("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

ORACLE

For each fetch request, the basic process is as follows:

1. The database iterates through the loop to obtain the rows requested in the fetch:

a.

The database reads the first row of departments to obtain the department IDs for
departments named Marketing or Sales (Step 3). For example:

Marketing, 20

This row set is the outer loop. The database caches the row in the PGA.

The database scans emp_department ix, which is an index on the
employees.department id column, to find employees rowids that correspond to this
department ID (Step 4), and then joins the result (Step 2).

Conceptually, the result set has the following form:

Marketing, 20, employees rowid
Marketing, 20, employees rowid
Marketing, 20, employees rowid

The database reads the next row of departments, scans emp department ix to find
employees rowids that correspond to this department ID, and iterates through the loop
until the client request is satisfied.

In this example, the database only iterates through the outer loop twice because only
two rows from departments satisfy the predicate filter. Conceptually, the result set has
the following form:

Marketing, 20, employees rowid
Marketing, 20, employees rowid
Marketing, 20, employees rowid

Sales, 80, employees rowid
Sales, 80, employees rowid
Sales, 80, employees rowid

2. Depending on the circumstances, the database may organize the cached rowids obtained
in the previous step so that it can more efficiently access them.

For each employees rowid in the result set generated by the nested loop, the database

retrieves a row from employees to obtain the requested values (Step 1).

9-13



Chapter 9
Join Methods

Thus, the basic process is to read a rowid and retrieve the matching employees row, read
the next rowid and retrieve the matching employees row, and so on. Conceptually, the
result set has the following form:

Michael,Hartstein,13000,Marketing
Pat,Fay, 6000,Marketing
John,Russell, 14000, Sales

Karen, Partners, 13500, Sales
Alberto,Errazuriz, 12000, Sales

Nested Loops Controls

ORACLE

You can add the USE_NL hint to instruct the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

The related hint USE_NL_WITH INDEX (table index) hintinstructs the optimizer to join the
specified table to another row source with a nested loops join using the specified table as the
inner table. The index is optional. If no index is specified, then the nested loops join uses an
index with at least one join predicate as the index key.

Example 9-3 Nested Loops Hint

Assume that the optimizer chooses a hash join for the following query:

SELECT e.last name, d.department name
FROM employees e, departments d
WHERE e.department id=d.department id;

The plan looks as follows:

|Id | Operation | Name | Rows| Bytes |Cost (%CPU) | Time

| 0 | SELECT STATEMENT | | | | 5 (100) |

|*1 | HASH JOIN | | 106 | 2862 | 5 (20)] 00:00:01 |
|2 TABLE ACCESS FULL| DEPARTMENTS | 27 | 432 | 2 (0)| 00:00:01 |
| 3 | TABLE ACCESS FULL| EMPLOYEES | 107 | 1177 | 2 (0)| 00:00:01 |

To force a nested loops join using departments as the inner table, add the USE_NL hint as in the
following query:

SELECT /*+ ORDERED USE_NL (d) x/ e.last name, d.department name
FROM employees e, departments d
WHERE e.department id=d.department id;

The plan looks as follows:

| Id | Operation | Name | Rows |Bytes |[Cost (%CPU) |Time

9-14



Hash Joins

ORACLE

Chapter 9
Join Methods

| 0 | SELECT STATEMENT | | \ | 34 (100) |
| 1 | NESTED LOOPS | | 106 | 2862 | 34 (3)1 00:00:01 |
[ 2 | TABLE ACCESS FULL| EMPLOYEES [ 107 | 1177 | 2 (0) 1 00:00:01 |
[* 3 | TABLE ACCESS FULL| DEPARTMENTS | 1| 16 | O (0) |

Predicate Information (identified by operation id):

3 - filter ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

The database obtains the result set as follows:
1. Inthe nested loop, the database reads employees to obtain the last name and department
ID for an employee (Step 2). For example:

De Haan, 90

2. For the row obtained in the previous step, the database scans departments to find the
department name that matches the employees department ID (Step 3), and joins the result
(Step 1). For example:

De Haan,Executive

3. The database retrieves the next row in employees, retrieves the matching row from
departments, and then repeats this process until all rows are retrieved.
The result set has the following form:
De Haan,Executive
Kochnar,Executive

Baer,Public Relations
King,Executive

¢ See Also:

¢ "Guidelines for Join Order Hints" to learn more about the USE_NL hint

* Oracle Database SQL Language Reference to learn about the USE NL hint

The database uses a hash join to join larger data sets.

The optimizer uses the smaller of two data sets to build a hash table on the join key in memory,
using a deterministic hash function to specify the location in the hash table in which to store
each row. The database then scans the larger data set, probing the hash table to find the rows
that meet the join condition.

9-15



Chapter 9
Join Methods

When the Optimizer Considers Hash Joins

In general, the optimizer considers a hash join when a relatively large amount of data must be
joined (or a large percentage of a small table must be joined), and the join is an equijoin.

A hash join is most cost effective when the smaller data set fits in memory. In this case, the
cost is limited to a single read pass over the two data sets.

Because the hash table is in the PGA, Oracle Database can access rows without latching
them. This technique reduces logical 1/O by avoiding the necessity of repeatedly latching and
reading blocks in the database buffer cache.

If the data sets do not fit in memory, then the database partitions the row sources, and the join
proceeds partition by partition. This can use a lot of sort area memory, and I/O to the temporary
tablespace. This method can still be the most cost effective, especially when the database
uses parallel query servers.

How Hash Joins Work

Hash Tables

ORACLE

A hashing algorithm takes a set of inputs and applies a deterministic hash function to generate
a random hash value.

In a hash join, the input values are the join keys. The output values are indexes (slots) in an
array, which is the hash table.

To illustrate a hash table, assume that the database hashes hr.departments in a join of
departments and employees. The join key column is department id.

The first 5 rows of departments are as follows:

SQL> select * from departments where rownum < 6;

DEPARTMENT ID DEPARTMENT NAME MANAGER ID LOCATION ID
10 Administration 200 1700
20 Marketing 201 1800
30 Purchasing 114 1700
40 Human Resources 203 2400
50 Shipping 121 1500

The database applies the hash function to each department id in the table, generating a hash
value for each. For this illustration, the hash table has 5 slots (it could have more or less).
Because n is 5, the possible hash values range from 1 to 5. The hash functions might generate
the following values for the department IDs:

Hh Hh Fh Fh Hh
g W N
o O O O O
Il
N s

9-16



Chapter 9
Join Methods

Note that the hash function happens to generate the same hash value of 4 for departments 10
and 30. This is known as a hash collision. In this case, the database puts the records for
departments 10 and 30 in the same slot, using a linked list. Conceptually, the hash table looks

as follows:

1 20,Marketing,201,1800

2 40, Human Resources,203,2400

3

4 10,Administration,200,1700 -> 30, Purchasing,114,1700
5 50, Shipping,121,1500

Hash Join: Basic Steps

ORACLE

The optimizer uses the smaller data source to build a hash table on the join key in memory,
and then scans the larger table to find the joined rows.

The basic steps are as follows:

1.

The database performs a full scan of the smaller data set, called the build table, and then
applies a hash function to the join key in each row to build a hash table in the PGA.

In pseudocode, the algorithm might look as follows:

FOR small table row IN (SELECT * FROM small table)
LOOP
slot number := HASH(small table row.join key);
INSERT HASH TABLE (slot number,small table row);
END LOOP;

The database probes the second data set, called the probe table, using whichever access
mechanism has the lowest cost.

Typically, the database performs a full scan of both the smaller and larger data set. The
algorithm in pseudocode might look as follows:

FOR large table row IN (SELECT * FROM large table)
LOoP
slot number := HASH(large table row.join key);
small table row
LOOKUP_HASH TABLE (slot number,large table row.join key);
IF small table row FOUND
THEN
output small table row + large table row;
END IF;
END LOOP;

For each row retrieved from the larger data set, the database does the following:

a. Applies the same hash function to the join column or columns to calculate the number
of the relevant slot in the hash table.

For example, to probe the hash table for department ID 30, the database applies the
hash function to 30, which generates the hash value 4.

b. Probes the hash table to determine whether rows exists in the slot.

If no rows exist, then the database processes the next row in the larger data set. If
rows exist, then the database proceeds to the next step.

9-17



Chapter 9
Join Methods

c. Checks the join column or columns for a match. If a match occurs, then the database
either reports the rows or passes them to the next step in the plan, and then processes
the next row in the larger data set.

If multiple rows exist in the hash table slot, the database walks through the linked list of
rows, checking each one. For example, if department 30 hashes to slot 4, then the
database checks each row until it finds 30.

Example 9-4 Hash Joins

An application queries the oe.orders and oe.order items tables, joining on the order id
column.

SELECT o.customer id, l.unit price * l.quantity
FROM orders o, order items 1
WHERE 1l.order id = o.order id;

The execution plan is as follows:

| Id | Operation |  Name | Rows | Bytes | Cost (%CPU) |
| 0 | SELECT STATEMENT | \ 665 | 13300 | 8 (25)]
[* 1 | HASH JOIN | \ 665 | 13300 | 8 (25)]
| 2 | TABLE ACCESS FULL | ORDERS \ 105 | 840 | 4 (25) |
| 3 TABLE ACCESS FULL | ORDER ITEMS \ 665 | 7980 | 4 (25) |

Predicate Information (identified by operation id):

1 - access("L"."ORDER ID"="O"."ORDER ID")

Because the orders table is small relative to the order items table, which is 6 times larger, the
database hashes orders. In a hash join, the data set for the build table always appears first in
the list of operations (Step 2). In Step 3, the database performs a full scan of the larger

order items later, probing the hash table for each row.

How Hash Joins Work When the Hash Table Does Not Fit in the PGA

ORACLE

The database must use a different technique when the hash table does not fit entirely in the
PGA. In this case, the database uses a temporary space to hold portions (called partitions) of
the hash table, and sometimes portions of the larger table that probes the hash table.

The basic process is as follows:

1. The database performs a full scan of the smaller data set, and then builds an array of hash
buckets in both the PGA and on disk.

When the PGA hash area fills up, the database finds the largest partition within the hash
table and writes it to temporary space on disk. The database stores any new row that
belongs to this on-disk partition on disk, and all other rows in the PGA. Thus, part of the
hash table is in memory and part of it on disk.

2. The database takes a first pass at reading the other data set.

For each row, the database does the following:

9-18



Chapter 9
Join Methods

a. Applies the same hash function to the join column or columns to calculate the number
of the relevant hash bucket.

b. Probes the hash table to determine whether rows exist in the bucket in memory.

If the hashed value points to a row in memory, then the database completes the join
and returns the row. If the value points to a hash partition on disk, however, then the
database stores this row in the temporary tablespace, using the same partitioning
scheme used for the original data set.

3. The database reads each on-disk temporary partition one by one

4. The database joins each partition row to the row in the corresponding on-disk temporary
partition.

Hash Join Controls

The USE_HASH hint instructs the optimizer to use a hash join when joining two tables together.

¢ See Also:

e "Guidelines for Join Order Hints"

* Oracle Database SQL Language Reference to learn about USE HASH

Sort Merge Joins

A sort merge join is a variation on a nested loops join.

If the two data sets in the join are not already sorted, then the database sorts them. These are
the SORT JOIN operations. For each row in the first data set, the database probes the second
data set for matching rows and joins them, basing its start position on the match made in the
previous iteration. This is the MERGE JOIN operation.

Figure 9-6 Sort Merge Join

MERGE JOIN

SORT JOIN SORT JOIN

ORACLE 019



Chapter 9
Join Methods

When the Optimizer Considers Sort Merge Joins

A hash join requires one hash table and one probe of this table, whereas a sort merge join
requires two sorts.

The optimizer may choose a sort merge join over a hash join for joining large amounts of data
when any of the following conditions is true:

* The join condition between two tables is not an equijoin, that is, uses an inequality
condition such as <, <=, >, or >=.

In contrast to sort merges, hash joins require an equality condition.

* Because of sorts required by other operations, the optimizer finds it cheaper to use a sort
merge.

If an index exists, then the database can avoid sorting the first data set. However, the
database always sorts the second data set, regardless of indexes.

A sort merge has the same advantage over a nested loops join as the hash join: the database
accesses rows in the PGA rather than the SGA, reducing logical I/0 by avoiding the necessity
of repeatedly latching and reading blocks in the database buffer cache. In general, hash joins
perform better than sort merge joins because sorting is expensive. However, sort merge joins
offer the following advantages over a hash join:

«  After the initial sort, the merge phase is optimized, resulting in faster generation of output
rows.

* A sort merge can be more cost-effective than a hash join when the hash table does not fit
completely in memory.

A hash join with insufficient memory requires both the hash table and the other data set to

be copied to disk. In this case, the database may have to read from disk multiple times. In

a sort merge, if memory cannot hold the two data sets, then the database writes them both
to disk, but reads each data set no more than once.

How Sort Merge Joins Work

ORACLE

As in a nested loops join, a sort merge join reads two data sets, but sorts them when they are
not already sorted.

For each row in the first data set, the database finds a starting row in the second data set, and
then reads the second data set until it finds a nonmatching row. In pseudocode, the high-level
algorithm for sort merge might look as follows:

READ data set 1 SORT BY JOIN KEY TO temp dsl
READ data set 2 SORT BY JOIN KEY TO temp ds2

READ dsl row FROM temp dsl
READ ds2 row FROM temp ds2

WHILE NOT eof ON temp dsl,temp ds2

LOOP
IF ( temp dsl.key = temp ds2.key ) OUTPUT JOIN dsl row,ds2 row
ELSIF ( temp dsl.key <= temp dsZ.key ) READ dsl row FROM temp dsl
ELSIF ( temp dsl.key => temp dsZ.key ) READ ds2 row FROM temp ds2

END LOOP

9-20



Chapter 9
Join Methods

For example, the following table shows sorted values in two data sets: temp dsl and temp ds2.

Table 9-3 Sorted Data Sets

temp_ds1 temp_ds2
10 20
20 20
30 40
40 40
50 40
60 40
70 40
60
70
70

As shown in the following table, the database begins by reading 10 in temp ds1, and then
reads the first value in temp ds2. Because 20 in temp_ds2 is higher than 10 in temp dsl, the
database stops reading temp_ds2.

Table 9-4 Start at 10 in temp_ds1

temp_dsl temp_ds2 Action
10 [start here] 20 [start here] [stop 20 in temp_ds2 is higher than 10 in temp_ds1. Stop. Start
here] again with next row in temp_ds1.
20 20 N/A
30 40 N/A
40 40 N/A
50 40 N/A
60 40 N/A
70 40 N/A
60 N/A
70 N/A
70 N/A

The database proceeds to the next value in temp_ds1, which is 20. The database proceeds
through temp ds2 as shown in the following table.

Table 9-5 Start at 20 in temp_ds1

temp_dsl temp_ds2 Action

10 20 [start here] Match. Proceed to next value in temp_ds2.

20 [start here] 20 Match. Proceed to next value in temp_ds2.

30 40 [stop here] 40 in temp_ds2 is higher than 20 in temp_ds1. Stop. Start
again with next row in temp_ds1.

40 40 N/A

50 40 N/A

60 40 N/A

70 40 N/A

ORACLE 991



ORACLE

Chapter 9
Join Methods

Table 9-5 (Cont.) Start at 20 in temp_ds1

temp_dsl temp_ds2 Action
60 N/A
70 N/A
70 N/A

The database proceeds to the next row in temp ds1, which is 30. The database starts at the
number of its last match, which was 20, and then proceeds through temp ds2 looking for a
match, as shown in the following table.

Table 9-6 Start at 30 in temp_ds1

temp_dsl temp_ds2 Action
10 20 N/A
20 20 [start at last match] 20 in temp_ds2 is lower than 30 in temp_ds1. Proceed to
next value in temp_ds2.
30 [start here] 40 [stop here] 40 in temp_ds?2 is higher than 30 in temp_ds1. Stop. Start
again with next row in temp_ds1.
40 40 N/A
50 40 N/A
60 40 N/A
70 40 N/A
60 N/A
70 N/A
70 N/A

The database proceeds to the next row in temp_ds1, which is 40. As shown in the following
table, the database starts at the number of its last match in temp ds2, which was 20, and then
proceeds through temp ds2 looking for a match.

Table 9-7 Start at 40 in temp_ds1

temp_dsl temp_ds2 Action
10 20 N/A
20 20 [start at last match] 20 in temp_ds2 is lower than 40 in temp_ds1. Proceed to
next value in temp_ds2.
30 40 Match. Proceed to next value in temp_ds2.
40 [start here] 40 Match. Proceed to next value in temp_ds2.
50 40 Match. Proceed to next value in temp_ds2.
60 40 Match. Proceed to next value in temp_ds2.
70 40 Match. Proceed to next value in temp_ds2.
60 [stop here] 60 in temp_ds2 is higher than 40 in temp_ds1. Stop. Start
again with next row in temp_ds1.
70 N/A
70 N/A

9-22



Chapter 9
Join Methods

The database continues in this way until it has matched the final 70 in temp ds2. This scenario
demonstrates that the database, as it reads through temp ds1, does not need to read every
row in temp ds2. This is an advantage over a nested loops join.

Example 9-5 Sort Merge Join Using Index
The following query joins the employees and departments tables on the department id

column, ordering the rows on department id as follows:

SELECT e.employee id, e.last name, e.first name, e.department id,
d.department name

FROM employees e, departments d

WHERE e.department id = d.department id

ORDER BY department id;

A query of DBMS XPLAN.DISPLAY CURSOR shows that the plan uses a sort merge join:

|Id| Operation | Name |Rows |Bytes|Cost (%CPU) |Time|
| O] SELECT STATEMENT | | [5(100) |

| 1| MERGE JOIN | [106 4028 |5 (20)100:00:01]
| 2] TABLE ACCESS BY INDEX ROWID|DEPARTMENTS | 27 | 432 |2 (0)]00:00:01]
| 3] INDEX FULL SCAN IDEPT_ID_PK | 27 | [1  (0)|00:00:01]
| *4 | SORT JOIN | [107 2354 |3 (34)]00:00:01]
| 5] TABLE ACCESS FULL |[EMPLOYEES [107 12354 |2 (0)]00:00:01]

4 - access("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")
filter ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

The two data sets are the departments table and the employees table. Because an index
orders the departments table by department id, the database can read this index and avoid a
sort (Step 3). The database only needs to sort the employees table (Step 4), which is the most
CPU-intensive operation.

Example 9-6 Sort Merge Join Without an Index

You join the employees and departments tables on the department id column, ordering the
rows on department id as follows. In this example, you specify NO INDEX and USE_MERGE to
force the optimizer to choose a sort merge:

SELECT /*+ USE MERGE (d e) NO INDEX(d) */ e.employee id, e.last name,
e.first name,
e.department id, d.department name
FROM employees e, departments d
WHERE e.department id = d.department id
ORDER BY department id;

ORACLE 9.93



Chapter 9

Join Types

A query of DBMS XPLAN.DISPLAY CURSOR shows that the plan uses a sort merge join:

| Id| Operation | Name | Rows| Bytes|Cost (%CPU) |Time

| 0 | SELECT STATEMENT | | | | 6 (100) | |
| 1 | MERGE JOIN | | 106 | 9540 | 6 (34)] 00:00:01]
|2 SORT JOIN | |27 | 567 | 3 (34)| 00:00:01]
| 3] TABLE ACCESS FULL| DEPARTMENTS | 27 | 567 | 2 (0)] 00:00:01]
| *4 | SORT JOIN | | 107 | 7383 | 3 (34)| 00:00:01]
| 5 | TABLE ACCESS FULL| EMPLOYEES | 107 | 7383 | 2 (0)] 00:00:01]

Predicate Information (identified by operation id):

4 - access("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")
filter ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

Because the departments.department id index is ignored, the optimizer performs a sort,
which increases the combined cost of Step 2 and Step 3 by 67% (from 3 to 5).

Sort Merge Join Controls

The USE_MERGE hint instructs the optimizer to use a sort merge join.

In some situations it may make sense to override the optimizer with the USE_MERGE hint. For
example, the optimizer can choose a full scan on a table and avoid a sort operation in a query.
However, there is an increased cost because a large table is accessed through an index and
single block reads, as opposed to faster access through a full table scan.

# See Also:

Oracle Database SQL Language Reference to learn about the USE_MERGE hint

Join Types

A join type is determined by the type of join condition.

Inner Joins

An inner join (sometimes called a simple join) is a join that returns only rows that satisfy the
join condition. Inner joins are either equijoins or nonequijoins.

Equijoins

An equijoin is an inner join whose join condition contains an equality operator.

ORACLE 904



Nonequijoins

ORACLE

Chapter 9
Join Types

The following example is an equijoin because the join condition contains only an equality
operator:

SELECT e.employee id, e.last name, d.department name
FROM employees e, departments d
WHERE e.department id=d.department id;

In the preceding query, the join condition is e.department id=d.department id. If a row inthe
employees table has a department ID that matches the value in a row in the departments table,
then the database returns the joined result; otherwise, the database does not return a result.

A nonequijoin is an inner join whose join condition contains an operator that is not an equality
operator.

The following query lists all employees whose hire date occurred when employee 176 (who is
listed in job_history because he changed jobs in 2007) was working at the company:

SELECT e.employee id, e.first name, e.last name, e.hire date
FROM employees e, job history h

WHERE h.employee id = 176

AND e.hire date BETWEEN h.start date AND h.end date;

In the preceding example, the condition joining employees and job_history does not contain
an equality operator, so it is a nonequijoin. Nonequijoins are relatively rare.

Note that a hash join requires at least a partial equijoin. The following SQL script contains an
equality join condition (el.empno = e2.empno) and a honequality condition:

SET AUTOTRACE TRACEONLY EXPLAIN

SELECT *

FROM scott.emp el JOIN scott.emp e2

ON ( el.empno = e2.empno

AND el.hiredate BETWEEN e2.hiredate-1 AND e2.hiredate+l )

The optimizer chooses a hash join for the preceding query, as shown in the following plan:

Execution Plan

Plan hash value: 3638257876

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 1] 174 | 5 (20)] 00:00:01 |
[* 1 | HASH JOIN | | 1] 174 | 5 (20)] 00:00:01 |
| 2 | TABLE ACCESS FULL| EMP | 14 | 1218 | 2 (0)| 00:00:01 |
| 3 | TABLE ACCESS FULL| EMP | 14 | 1218 | 2 (0)| 00:00:01 |

9-25



Band Joins

ORACLE

Chapter 9
Join Types

1 - access("E1"."EMPNO"="E2"."EMPNQO")
filter("El"."HIREDATE">=INTERNAL_FUNCTION("EZ"."HIREDATE")—I AND
"El"."HIREDATE"<=INTERNAL_FUNCTION("EZ"."HIREDATE")+1)

A band join is a special type of nonequijoin in which key values in one data set must fall within
the specified range (“band”) of the second data set. The same table can serve as both the first
and second data sets.

Starting in Oracle Database 12c Release 2 (12.2), the database evaluates band joins more
efficiently. The optimization avoids the unnecessary scanning of rows that fall outside the
defined bands.

The optimizer uses a cost estimate to choose the join method (hash, nested loops, or sort
merge) and the parallel data distribution method. In most cases, optimized performance is
comparable to an equijoin.

This following examples query employees whose salaries are between $100 less and $100
more than the salary of each employee. Thus, the band has a width of $200. The examples
assume that it is permissible to compare the salary of every employee with itself. The following
guery includes partial sample output:

SELECT el.last name ||
' has salary between 100 less and 100 more than ' ||
e2.last name AS "SALARY COMPARISON"

FROM employees el,
employees e2

WHERE el.salary

BETWEEN e2.salary - 100

AND e2.salary + 100;

SALARY COMPARISON

King has salary between 100 less and 100 more than King
Kochhar has salary between 100 less and 100 more than Kochhar
Kochhar has salary between 100 less and 100 more than De Haan
De Haan has salary between 100 less and 100 more than Kochhar
De Haan has salary between 100 less and 100 more than De Haan
Russell has salary between 100 less and 100 more than Russell
Partners has salary between 100 less and 100 more than Partners

Example 9-7 Query Without Band Join Optimization

Without the band join optimization, the database uses the following query plan:

0 | SELECT STATEMENT \ |
| 1 | MERGE JOIN \ |
2 | SORT JOIN \ |

9-26



ORACLE

Chapter 9
Join Types

TABLE ACCESS FULL | EMPLOYEES
FILTER \

SORT JOIN \

TABLE ACCESS FULL| EMPLOYEES

Predicate Information (identified by operation id):

4 - filter ("E1"."SAL"<="E2"."SAL"+100)
5 - access (INTERNAL FUNCTION("E1"."SAL")>="E2"."SAL"-100)
filter (INTERNAL FUNCTION("E1"."SAL")>="E2"."SAL"-100)

In this plan, Step 2 sorts the 1 row source, and Step 5 sorts the e2 row source. The sorted
row sources are illustrated in the following table.

Table 9-8 Sorted row Sources
]

el Sorted (Step 2 of Plan)

e2 Sorted (Step 5 of Plan)

24000 (King)

24000 (King)

17000 (Kochhar)

17000 (Kochhar)

17000 (De Haan)

17000 (De Haan)

14000 (Russell)

14000 (Russell)

13500 (Partners)

13500 (Partners)

The join begins by iterating through the sorted input (1), which is the left branch of the join,
corresponding to Step 2 of the plan. The original query contains two predicates:

e el.sal >= e2.sal-100, which is the Step 5 filter
e el.sal >= e2.sal+100, which is the Step 4 filter

For each iteration of the sorted row source e1, the database iterates through row source e2,
checking every row against Step 5 filter e1.sal >= e2.sal-100. If the row passes the Step 5
filter, then the database sends it to the Step 4 filter, and then proceeds to test the next row in
e2 against the Step 5 filter. However, if a row fails the Step 5 filter, then the scan of e2 stops,
and the database proceeds through the next iteration of el.

The following table shows the first iteration of e1, which begins with 24000 (King) in data set
el. The database determines that the first row in e2, which is 24000 (Xing), passes the Step 5
filter. The database then sends the row to the Step 4 filter, e1.sal <= w2.sal+100, which also
passes. The database sends this row to the MERGE row source. Next, the database checks
17000 (Kochhar) against the Step 5 filter, which also passes. However, the row fails the Step 4
filter, and is discarded. The database proceeds to test 17000 (De Haan) against the Step 5
filter.

Table 9-9 First Iteration of el: Separate SORT JOIN and FILTER
|

Scan e2

Step 5 Filter (el.sal >= e2.sal-100)

Step 4 Filter (el.sal <= e2.sal+100)

24000 (King)

Pass because 24000 >= 23900. Send to
Step 4 filter.

Pass because 24000 <= 24100. Return
row for merging.

17000 (Kochhar)

Pass because 24000 >= 16900. Send to
Step 4 filter.

Fail because 24000 <=17100 is false.
Discard row. Scan next row in e2.

9-27



Chapter 9
Join Types

Table 9-9 (Cont.) First Iteration of el: Separate SORT JOIN and FILTER

Scan e2 Step 5 Filter (el.sal >= e2.sal-100) Step 4 Filter (el.sal <= e2.sal+100)
17000 (De Haan) | Pass because 24000 >= 16900. Send to | Fail because 24000 <=17100 is false.
Step 4 filter. Discard row. Scan next row in e2.
14000 (Russell) | Pass because 24000 >= 13900. Send to | Fail because 24000 <=14100 is false
Step 4 filter. Discard row. Scan next row in e2.
13500 (Partners) | Pass because 24000 >= 13400. Send to | Fail because 24000 <=13600 is false.
Step 4 filter. Discard row. Scan next row in e2.

As shown in the preceding table, every e2 row necessarily passes the Step 5 filter because the
e2 salaries are sorted in descending order. Thus, the Step 5 filter always sends the row to the
Step 4 filter. Because the e2 salaries are sorted in descending order, the Step 4 filter
necessarily fails every row starting with 17000 (Kochhar). The inefficiency occurs because the
database tests every subsequent row in e2 against the Step 5 filter, which necessarily passes,
and then against the Step 4 filter, which necessarily fails.

Example 9-8 Query With Band Join Optimization

Starting in Oracle Database 12c Release 2 (12.2), the database optimizes the band join by
using the following plan, which does not have a separate FILTER operation:

SELECT STATEMENT
MERGE JOIN
SORT JOIN
TABLE ACCESS FULL | EMPLOYEES
SORT JOIN
TABLE ACCESS FULL | EMPLOYEES

Predicate Information (identified by operation id):

4 - access (INTERNAL FUNCTION("E1"."SALARY")>="E2"."SALARY"-100)
filter (("E1"."SALARY"<="E2"."SALARY"+100 AND
INTERNAL FUNCTION ("E1"."SALARY")>="E2"."SALARY"-100))

The difference is that Step 4 uses Boolean 2AND logic for the two predicates to create a single
filter. Instead of checking a row against one filter, and then sending it to a different row source
for checking against a second filter, the database performs one check against one filter. If the
check fails, then processing stops.

In this example, the query begins the first iteration of e1, which begins with 24000 (King). The
following figure represents the range. 2 values below 23900 and above 24100 fall outside the
range.

ORACLE 0.98



Outer Joins

ORACLE

Chapter 9
Join Types

Figure 9-7 Band Join
Salary = 24000

10000 20000 23900 24100 30000

The following table shows that the database tests the first row of €2, which is 24000 (King),
against the Step 4 filter. The row passes the test, so the database sends the row to be merged.
The next row in e2 is 17000 (Kochhar). This row falls outside of the range (band) and thus
does not satisfy the filter predicate, so the database stops testing e2 rows in this iteration. The
database stops testing because the descending sort of e2 ensures that all subsequent rows in
e2 fail the filter test. Thus, the database can proceed to the second iteration of el.

Table 9-10 First Iteration of el: Single SORT JOIN

Scan e2 Filter 4 (el.sal >= e2.sal - 100) AND (el.sal <= e2.sal + 100)
24000 (King) Passes test because it is true that (24000 >= 23900) AND (24000 <=
24100).

Send row to MERGE. Test next row.

17000 (Kochhar) Fails test because it is false that (24000 >= 16900) AND (24000 <=
17100).

Stop scanning e2. Begin next iteration of e1.

17000 (De Haan) n/a
14000 (Russell) n/a
13500 (Partners) n/a

In this way, the band join optimization eliminates unnecessary processing. Instead of scanning
every row in e2 as in the unoptimized case, the database scans only the minimum two rows.

An outer join returns all rows that satisfy the join condition and also rows from one table for
which no rows from the other table satisfy the condition. Thus, the result set of an outer join is
the superset of an inner join.

In ANSI syntax, the OUTER JOIN clause specifies an outer join. In the FROM clause, the left table
appears to the left of the OUTER JOIN keywords, and the right table appears to the right of these
keywords. The left table is also called the outer table, and the right table is also called the inner
table. For example, in the following statement the employees table is the left or outer table:

SELECT employee id, last name, first name
FROM employees LEFT OUTER JOIN departments
ON (employees.department id=departments.departments id);

Outer joins require the outer-joined table to be the driving table. In the preceding example,
employees is the driving table, and departments is the driven-to table.

9-29



Chapter 9
Join Types

Nested Loops Outer Joins

The database uses this operation to loop through an outer join between two tables. The outer
join returns the outer (preserved) table rows, even when no corresponding rows are in the
inner (optional) table.

In a standard nested loop, the optimizer chooses the order of tables—which is the driving table
and which the driven table—based on the cost. However, in a nested loop outer join, the join
condition determines the order of tables. The database uses the outer, row-preserved table to
drive to the inner table.

The optimizer uses nested loops joins to process an outer join in the following circumstances:

e Itis possible to drive from the outer table to the inner table.
o Data volume is low enough to make the nested loop method efficient.

For an example of a nested loop outer join, you can add the USE_NL hint to Example 9-9 to
instruct the optimizer to use a nested loop. For example:

SELECT /*+ USE NL(c o) */ cust last name,
SUM(NVL2 (o.customer id,0,1)) "Count"

FROM customers c, orders o

WHERE c.credit limit > 1000

AND c.customer id = o.customer id(+)

GROUP BY cust last name;

Hash Join Outer Joins

ORACLE

The optimizer uses hash joins for processing an outer join when either the data volume is large
enough to make a hash join efficient, or it is impossible to drive from the outer table to the inner
table.

The cost determines the order of tables. The outer table, including preserved rows, may be
used to build the hash table, or it may be used to probe the hash table.

Example 9-9 Hash Join Outer Joins

This example shows a typical hash join outer join query, and its execution plan. In this
example, all the customers with credit limits greater than 1000 are queried. An outer join is
needed so that the query captures customers who have no orders.

*  The outer table is customers.
e Theinner table is orders.

e The join preserves the customers rows, including those rows without a corresponding row
in orders.

You could use a NOT EXISTS subquery to return the rows. However, because you are querying
all the rows in the table, the hash join performs better (unless the NOT EXISTS subquery is not
nested).

SELECT cust last name, SUM(NVL2 (o.customer id,0,1)) "Count"
FROM customers c, orders o

WHERE c.credit limit > 1000

AND c.customer id = o.customer id(+)

GROUP BY cust last name;

9-30



ORACLE

| Id | Operation | Name | Rows
| 0 | SELECT STATEMENT |

| 1 | HASH GROUP BY | | 168
[* 2 | HASH JOIN OUTER | | 318
[* 3 | TABLE ACCESS FULL| CUSTOMERS | 260
|* 4 | TABLE ACCESS FULL| ORDERS | 105

Chapter 9
Join Types

|Bytes|Cost (%CPU) |Time |
[ 7 (100) | |

3192 | 7 (29)] 00:00:01 |
6042 | 6 (17)] 00:00:01 |
3900 | 3 (0) ] 00:00:01 |
420 | 2 (0)] 00:00:01 |

Predicate Information (identified by operation id):

2 - access("C"."CUSTOMER ID"="O"."CUSTOMER ID")

PLAN TABLE OUTPUT

3 - filter("C"."CREDIT LIMIT">1000)
4 - filter("O"."CUSTOMER ID">0)

The query looks for customers which satisfy various conditions. An outer join returns NULL for
the inner table columns along with the outer (preserved) table rows when it does not find any
corresponding rows in the inner table. This operation finds all the customers rows that do not

have any orders rows.

In this case, the outer join condition is the following:

customers.customer id = orders.customer id(+)

The components of this condition represent the following:

Example 9-10 Outer Join to a Multitable View

In this example, the outer join is to a multitable view. The optimizer cannot drive into the view
like in a normal join or push the predicates, so it builds the entire row set of the view.

SELECT c.cust last name, sum(revenue)
FROM customers ¢, v_orders o

WHERE c.credit limit > 2000

AND o.customer id(+) = c.customer id
GROUP BY c.cust last name;

| Id | Operation |  Name

| 0 | SELECT STATEMENT |

| 1 | HASH GROUP BY

[* 2 | HASH JOIN OUTER |

[* 3] TABLE ACCESS FULL | CUSTOMERS

| 4 | VIEW | V_ORDERS

| 5 | HASH GROUP BY |

[* 6 | HASH JOIN |

[* 7] TABLE ACCESS FULL| ORDERS

| 8 | TABLE ACCESS FULL| ORDER ITEMS

Cost (%CPU) |

16 (32)]
16 (32)]
15 (27) |
6 (17)|

|

9 (34)]

8 (25)]

4 (25)]

4 (25)]

9-31



Chapter 9
Join Types

Predicate Information (identified by operation id):

2 - access("O"."CUSTOMER ID" (+)="C"."CUSTOMER ID")
3 - filter("C"."CREDIT LIMIT">2000)

6 - access("O"."ORDER ID"="L"."ORDER ID")

7 - filter("O"."CUSTOMER ID">0)

The view definition is as follows:

CREATE OR REPLACE view V_orders AS

SELECT l.product id, SUM(l.quantity*unit price) revenue,
o.order id, o.customer id

FROM orders o, order items 1

WHERE o.order id = l.order id

GROUP BY l.product id, o.order id, o.customer id;

Sort Merge Outer Joins

When an outer join cannot drive from the outer (preserved) table to the inner (optional) table, it
cannot use a hash join or nested loops joins.

In this case, it uses the sort merge outer join.
The optimizer uses sort merge for an outer join in the following cases:

* Anested loops join is inefficient. A nested loops join can be inefficient because of data
volumes.

e The optimizer finds it is cheaper to use a sort merge over a hash join because of sorts
required by other operations.

Full Outer Joins

A full outer join is a combination of the left and right outer joins.

In addition to the inner join, rows from both tables that have not been returned in the result of
the inner join are preserved and extended with nulls. In other words, full outer joins join tables
together, yet show rows with no corresponding rows in the joined tables.

Example 9-11 Full Outer Join

The following query retrieves all departments and all employees in each department, but also
includes:

e Any employees without departments

e Any departments without employees

SELECT d.department id, e.employee id

FROM employees e FULL OUTER JOIN departments d
ON e.department id = d.department id

ORDER BY d.department id;

ORACLE 0.3



Chapter 9
Join Types

The statement produces the following output:

DEPARTMENT ID EMPLOYEE ID

10 200
20 201
20 202
30 114
30 115
30 116
270
280
178
207

125 rows selected.

Example 9-12 Execution Plan for a Full Outer Join

Starting with Oracle Database 11g, Oracle Database automatically uses a native execution
method based on a hash join for executing full outer joins whenever possible. When the
database uses the new method to execute a full outer join, the execution plan for the query
contains HASH JOIN FULL OUTER. The query in Example 9-11 uses the following execution plan:

| Id| Operation | Name |[Rows |Bytes |Cost (%CPU) |Time |
| 0 | SELECT STATEMENT \ [122 | 4758 | 6 (34)100:0 0:01]
| 1 | SORT ORDER BY \ [122 | 4758 | 6 (34)100:0 0:01]
| 2 | VIEW | Vil FOJ 0 [122 | 4758 | 5 (20)100:0 0:01]
[*3 | HASH JOIN FULL OUTER | [122 | 1342 | 5 (20)]100:0 0:01]
| 4 | INDEX FAST FULL SCAN| DEPT ID PK | 27 | 108 | 2 (0)100:0 0:01]
| 5 | TABLE ACCESS FULL | EMPLOYEES 107 | 749 | 2 (0)100:0 0:01]

Predicate Information (identified by operation id):

3 - access ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

HASH JOIN FULL OUTER is included in the preceding plan (Step 3), indicating that the query
uses the hash full outer join execution method. Typically, when the full outer join condition
between two tables is an equijoin, the hash full outer join execution method is possible, and
Oracle Database uses it automatically.

To instruct the optimizer to consider using the hash full outer join execution method, apply the
NATIVE FULL OUTER JOIN hint. To instruct the optimizer not to consider using the hash full
outer join execution method, apply the NO NATIVE FULL OUTER JOIN hint. The

NO NATIVE FULL OUTER JOIN hint instructs the optimizer to exclude the native execution
method when joining each specified table. Instead, the full outer join is executed as a union of
left outer join and an antijoin.

Multiple Tables on the Left of an Outer Join

ORACLE

In Oracle Database 12c, multiple tables may exist on the left side of an outer-joined table.

9-33



Chapter 9
Join Types

This enhancement enables Oracle Database to merge a view that contains multiple tables and
appears on the left of the outer join. In releases before Oracle Database 12c, a query such as
the following was invalid, and would trigger an ORA-01417 error message:

SELECT tl.d, t3.c

FROM  tl, t2, t3
WHERE tl.z = t2.z

AND tl.x = t3.x (+)
AND t2.y = t3.y (+);

Starting in Oracle Database 12c, the preceding query is valid.

Semijoins
A semijoin is a join between two data sets that returns a row from the first set when a
matching row exists in the subquery data set.

The database stops processing the second data set at the first match. Thus, optimization does
not duplicate rows from the first data set when multiple rows in the second data set satisfy the
subquery criteria.

# Note:

Semijoins and antijoins are considered join types even though the SQL constructs
that cause them are subqueries. They are internal algorithms that the optimizer uses
to flatten subquery constructs so that they can be resolved in a join-like way.

When the Optimizer Considers Semijoins

A semijoin avoids returning a huge number of rows when a query only needs to determine
whether a match exists.

With large data sets, this optimization can result in significant time savings over a nested loops
join that must loop through every record returned by the inner query for every row in the outer

query. The optimizer can apply the semijoin optimization to nested loops joins, hash joins, and
sort merge