
Oracle® Database
SQL Tuning Guide

19c
E96095-19
April 2025

Oracle Database SQL Tuning Guide, 19c

E96095-19

Copyright © 2013, 2025, Oracle and/or its affiliates.

Primary Author: Lance Ashdown

Contributing Authors: Nigel Bayliss, Maria Colgan, Tom Kyte

Contributors: Hermann Baer, Bjorn Bolltoft, Ali Cakmak, Sunil Chakkappen, Immanuel Chan, Deba Chatterjee, Chris
Chiappa, Dinesh Das, Kurt Engeleiter, Leonidas Galanis, William Endress, Marcus Fallen, Bruce Golbus, Katsumi
Inoue, Praveen Kumar Tupati Jaganath, Mark Jefferys, Shantanu Joshi, Adam Kociubes, Keith Laker, Allison Lee, Sue
Lee, Cheng Li, David McDermid, Colin McGregor, Ajit Mylavarapu, Ted Persky, Lei Sheng, Ekrem Soylemez, Hong Su,
Murali Thiyagarajah, Randy Urbano, Sahil Vazirani, Bharath Venkatakrishnan, Hailing Yu, John Zimmerman, Frederick
Kush

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxiv

Documentation Accessibility xxiv

Related Documents xxiv

Conventions xxv

 Changes in This Release for Oracle Database SQL Tuning Guide

Changes in Oracle Database Release 19c, Version 19.10 xxvi

Changes in Oracle Database Release 19c, Version 19.6 xxvi

Changes in Oracle Database Release 19c, Version 19.1 xxvi

Changes in Oracle Database Release 18c, Version 18.1 xxviii

Part I SQL Performance Fundamentals

1 Introduction to SQL Tuning

About SQL Tuning 1-1

Purpose of SQL Tuning 1-1

Prerequisites for SQL Tuning 1-1

Tasks and Tools for SQL Tuning 1-2

SQL Tuning Tasks 1-2

SQL Tuning Tools 1-4

Automated SQL Tuning Tools 1-4

Manual SQL Tuning Tools 1-10

User Interfaces to SQL Tuning Tools 1-12

2 SQL Performance Methodology

Guidelines for Designing Your Application 2-1

Guideline for Data Modeling 2-1

Guideline for Writing Efficient Applications 2-1

Guidelines for Deploying Your Application 2-3

iii

Guideline for Deploying in a Test Environment 2-3

Guidelines for Application Rollout 2-4

Part II Query Optimizer Fundamentals

3 SQL Processing

About SQL Processing 3-1

SQL Parsing 3-2

Syntax Check 3-2

Semantic Check 3-2

Shared Pool Check 3-3

SQL Optimization 3-5

SQL Row Source Generation 3-5

SQL Execution 3-6

How Oracle Database Processes DML 3-8

How Row Sets Are Fetched 3-8

Read Consistency 3-8

Data Changes 3-9

How Oracle Database Processes DDL 3-9

4 Query Optimizer Concepts

Introduction to the Query Optimizer 4-1

Purpose of the Query Optimizer 4-1

Cost-Based Optimization 4-1

Execution Plans 4-2

Query Blocks 4-2

Query Subplans 4-3

Analogy for the Optimizer 4-3

About Optimizer Components 4-4

Query Transformer 4-4

Estimator 4-5

Selectivity 4-6

Cardinality 4-7

Cost 4-8

Plan Generator 4-8

About Automatic Tuning Optimizer 4-10

About Adaptive Query Optimization 4-11

Adaptive Query Plans 4-11

About Adaptive Query Plans 4-12

Purpose of Adaptive Query Plans 4-12

iv

How Adaptive Query Plans Work 4-13

When Adaptive Query Plans Are Enabled 4-20

Adaptive Statistics 4-20

Dynamic Statistics 4-20

Automatic Reoptimization 4-21

SQL Plan Directives 4-23

When Adaptive Statistics Are Enabled 4-24

About Approximate Query Processing 4-24

Approximate Query Initialization Parameters 4-25

Approximate Query SQL Functions 4-26

About SQL Plan Management 4-28

About Quarantined SQL Plans 4-28

About the Expression Statistics Store (ESS) 4-29

5 Query Transformations

OR Expansion 5-1

View Merging 5-3

Query Blocks in View Merging 5-3

Simple View Merging 5-4

Complex View Merging 5-6

Predicate Pushing 5-9

Subquery Unnesting 5-10

Query Rewrite with Materialized Views 5-11

About Query Rewrite and the Optimizer 5-11

About Initialization Parameters for Query Rewrite 5-11

About the Accuracy of Query Rewrite 5-12

Example of Query Rewrite 5-13

Star Transformation 5-14

About Star Schemas 5-14

Purpose of Star Transformations 5-15

How Star Transformation Works 5-15

Controls for Star Transformation 5-15

Star Transformation: Scenario 5-16

Temporary Table Transformation: Scenario 5-19

In-Memory Aggregation (VECTOR GROUP BY) 5-21

Cursor-Duration Temporary Tables 5-21

Purpose of Cursor-Duration Temporary Tables 5-21

How Cursor-Duration Temporary Tables Work 5-21

Cursor-Duration Temporary Tables: Example 5-22

Table Expansion 5-23

Purpose of Table Expansion 5-23

v

How Table Expansion Works 5-23

Table Expansion: Scenario 5-24

Table Expansion and Star Transformation: Scenario 5-27

Join Factorization 5-28

Purpose of Join Factorization 5-29

How Join Factorization Works 5-29

Factorization and Join Orders: Scenario 5-30

Factorization of Outer Joins: Scenario 5-31

Part III Query Execution Plans

6 Explaining and Displaying Execution Plans

Introduction to Execution Plans 6-1

Contents of an Execution Plan 6-1

Why Execution Plans Change 6-2

Different Schemas 6-2

Different Costs 6-2

Generating Plan Output Using the EXPLAIN PLAN Statement 6-3

About the EXPLAIN PLAN Statement 6-3

About PLAN_TABLE 6-3

EXPLAIN PLAN Restrictions 6-4

Explaining a SQL Statement: Basic Steps 6-4

Specifying a Statement ID in EXPLAIN PLAN: Example 6-7

Specifying a Different Location for EXPLAIN PLAN Output: Example 6-7

EXPLAIN PLAN Output for a CONTAINERS Query: Example 6-8

Displaying Execution Plans 6-9

About the Display of PLAN_TABLE Output 6-9

DBMS_XPLAN Display Functions 6-10

Plan-Related Views 6-12

Displaying Execution Plans: Basic Steps 6-13

Displaying Adaptive Query Plans: Tutorial 6-15

Display Execution Plans: Examples 6-19

Customizing PLAN_TABLE Output 6-19

Displaying Parallel Execution Plans: Example 6-20

Displaying Bitmap Index Plans: Example 6-22

Displaying Result Cache Plans: Example 6-23

Displaying Plans for Partitioned Objects: Example 6-23

Comparing Execution Plans 6-31

Purpose of Plan Comparison 6-31

User Interface for Plan Comparison 6-32

vi

Comparing Execution Plans: Tutorial 6-36

Comparing Execution Plans: Examples 6-39

7 PLAN_TABLE Reference

PLAN_TABLE Columns 7-1

OPERATION and OPTION Columns of PLAN_TABLE 7-4

DISTRIBUTION Column of PLAN_TABLE 7-9

Part IV SQL Operators: Access Paths and Joins

8 Optimizer Access Paths

Introduction to Access Paths 8-1

Table Access Paths 8-2

About Heap-Organized Table Access 8-2

Row Storage in Data Blocks and Segments: A Primer 8-2

Importance of Rowids for Row Access 8-3

Direct Path Reads 8-3

Full Table Scans 8-4

When the Optimizer Considers a Full Table Scan 8-4

How a Full Table Scan Works 8-6

Full Table Scan: Example 8-7

Table Access by Rowid 8-7

When the Optimizer Chooses Table Access by Rowid 8-8

How Table Access by Rowid Works 8-8

Table Access by Rowid: Example 8-8

Sample Table Scans 8-9

When the Optimizer Chooses a Sample Table Scan 8-9

Sample Table Scans: Example 8-9

In-Memory Table Scans 8-10

When the Optimizer Chooses an In-Memory Table Scan 8-10

In-Memory Query Controls 8-10

In-Memory Table Scans: Example 8-11

B-Tree Index Access Paths 8-12

About B-Tree Index Access 8-12

B-Tree Index Structure 8-12

How Index Storage Affects Index Scans 8-13

Unique and Nonunique Indexes 8-14

B-Tree Indexes and Nulls 8-14

Index Unique Scans 8-16

When the Optimizer Considers Index Unique Scans 8-16

vii

How Index Unique Scans Work 8-17

Index Unique Scans: Example 8-18

Index Range Scans 8-19

When the Optimizer Considers Index Range Scans 8-19

How Index Range Scans Work 8-20

Index Range Scan: Example 8-21

Index Range Scan Descending: Example 8-22

Index Full Scans 8-23

When the Optimizer Considers Index Full Scans 8-23

How Index Full Scans Work 8-23

Index Full Scans: Example 8-24

Index Fast Full Scans 8-25

When the Optimizer Considers Index Fast Full Scans 8-25

How Index Fast Full Scans Work 8-25

Index Fast Full Scans: Example 8-25

Index Skip Scans 8-26

When the Optimizer Considers Index Skip Scans 8-26

How Index Skip Scans Work 8-26

Index Skip Scans: Example 8-26

Index Join Scans 8-28

When the Optimizer Considers Index Join Scans 8-28

How Index Join Scans Work 8-29

Index Join Scans: Example 8-29

Bitmap Index Access Paths 8-30

About Bitmap Index Access 8-30

Differences Between Bitmap and B-Tree Indexes 8-30

Purpose of Bitmap Indexes 8-31

Bitmaps and Rowids 8-32

Bitmap Join Indexes 8-33

Bitmap Storage 8-35

Bitmap Conversion to Rowid 8-35

When the Optimizer Chooses Bitmap Conversion to Rowid 8-35

How Bitmap Conversion to Rowid Works 8-35

Bitmap Conversion to Rowid: Example 8-35

Bitmap Index Single Value 8-36

When the Optimizer Considers Bitmap Index Single Value 8-36

How Bitmap Index Single Value Works 8-36

Bitmap Index Single Value: Example 8-36

Bitmap Index Range Scans 8-37

When the Optimizer Considers Bitmap Index Range Scans 8-37

How Bitmap Index Range Scans Work 8-37

Bitmap Index Range Scans: Example 8-38

viii

Bitmap Merge 8-39

When the Optimizer Considers Bitmap Merge 8-39

How Bitmap Merge Works 8-39

Bitmap Merge: Example 8-39

Table Cluster Access Paths 8-40

Cluster Scans 8-40

When the Optimizer Considers Cluster Scans 8-40

How a Cluster Scan Works 8-40

Cluster Scans: Example 8-41

Hash Scans 8-42

When the Optimizer Considers a Hash Scan 8-42

How a Hash Scan Works 8-42

Hash Scans: Example 8-42

9 Joins

About Joins 9-1

Join Trees 9-1

How the Optimizer Executes Join Statements 9-3

How the Optimizer Chooses Execution Plans for Joins 9-4

Join Methods 9-5

Nested Loops Joins 9-5

When the Optimizer Considers Nested Loops Joins 9-6

How Nested Loops Joins Work 9-6

Nested Nested Loops 9-7

Current Implementation for Nested Loops Joins 9-10

Original Implementation for Nested Loops Joins 9-12

Nested Loops Controls 9-14

Hash Joins 9-15

When the Optimizer Considers Hash Joins 9-16

How Hash Joins Work 9-16

How Hash Joins Work When the Hash Table Does Not Fit in the PGA 9-18

Hash Join Controls 9-19

Sort Merge Joins 9-19

When the Optimizer Considers Sort Merge Joins 9-20

How Sort Merge Joins Work 9-20

Sort Merge Join Controls 9-24

Join Types 9-24

Inner Joins 9-24

Equijoins 9-24

Nonequijoins 9-25

Band Joins 9-26

ix

Outer Joins 9-29

Nested Loops Outer Joins 9-30

Hash Join Outer Joins 9-30

Sort Merge Outer Joins 9-32

Full Outer Joins 9-32

Multiple Tables on the Left of an Outer Join 9-33

Semijoins 9-34

When the Optimizer Considers Semijoins 9-34

How Semijoins Work 9-34

Antijoins 9-36

When the Optimizer Considers Antijoins 9-36

How Antijoins Work 9-37

How Antijoins Handle Nulls 9-38

Cartesian Joins 9-41

When the Optimizer Considers Cartesian Joins 9-41

How Cartesian Joins Work 9-42

Cartesian Join Controls 9-42

Join Optimizations 9-43

Bloom Filters 9-43

Purpose of Bloom Filters 9-43

How Bloom Filters Work 9-44

Bloom Filter Controls 9-45

Bloom Filter Metadata 9-45

Bloom Filters: Scenario 9-45

Partition-Wise Joins 9-47

Purpose of Partition-Wise Joins 9-47

How Partition-Wise Joins Work 9-47

In-Memory Join Groups 9-50

Part V Optimizer Statistics

10

Optimizer Statistics Concepts

Introduction to Optimizer Statistics 10-1

About Optimizer Statistics Types 10-2

Table Statistics 10-2

Permanent Table Statistics 10-2

Temporary Table Statistics 10-3

Column Statistics 10-6

Index Statistics 10-7

Types of Index Statistics 10-7

x

Index Clustering Factor 10-8

Effect of Index Clustering Factor on Cost: Example 10-12

System Statistics 10-12

User-Defined Optimizer Statistics 10-13

How the Database Gathers Optimizer Statistics 10-13

DBMS_STATS Package 10-13

Supplemental Dynamic Statistics 10-14

Online Statistics Gathering 10-15

Online Statistics Gathering for Bulk Loads 10-15

Online Statistics Gathering for Partition Maintenance Operations 10-17

Real-Time Statistics 10-18

When the Database Gathers Optimizer Statistics 10-25

Sources for Optimizer Statistics 10-25

SQL Plan Directives 10-25

When the Database Creates SQL Plan Directives 10-26

How the Database Uses SQL Plan Directives 10-26

SQL Plan Directive Maintenance 10-27

How the Optimizer Uses SQL Plan Directives: Example 10-28

How the Optimizer Uses Extensions and SQL Plan Directives: Example 10-32

When the Database Samples Data 10-36

How the Database Samples Data 10-38

11

Histograms

Purpose of Histograms 11-1

When Oracle Database Creates Histograms 11-1

How Oracle Database Chooses the Histogram Type 11-3

Cardinality Algorithms When Using Histograms 11-4

Endpoint Numbers and Values 11-4

Popular and Nonpopular Values 11-4

Bucket Compression 11-5

Frequency Histograms 11-5

Criteria For Frequency Histograms 11-6

Generating a Frequency Histogram 11-6

Top Frequency Histograms 11-9

Criteria For Top Frequency Histograms 11-9

Generating a Top Frequency Histogram 11-10

Height-Balanced Histograms (Legacy) 11-13

Criteria for Height-Balanced Histograms 11-13

Generating a Height-Balanced Histogram 11-14

Hybrid Histograms 11-17

How Endpoint Repeat Counts Work 11-17

xi

Criteria for Hybrid Histograms 11-19

Generating a Hybrid Histogram 11-20

12

Configuring Options for Optimizer Statistics Gathering

About Optimizer Statistics Collection 12-1

Purpose of Optimizer Statistics Collection 12-1

User Interfaces for Optimizer Statistics Management 12-1

Graphical Interface for Optimizer Statistics Management 12-1

Command-Line Interface for Optimizer Statistics Management 12-2

Setting Optimizer Statistics Preferences 12-2

About Optimizer Statistics Preferences 12-2

Purpose of Optimizer Statistics Preferences 12-2

Examples of Statistics Preferences 12-3

DBMS_STATS Procedures for Setting Statistics Preferences 12-4

Statistics Preference Overrides 12-5

Setting Statistics Preferences: Example 12-7

Setting Global Optimizer Statistics Preferences Using Cloud Control 12-9

Setting Object-Level Optimizer Statistics Preferences Using Cloud Control 12-9

Setting Optimizer Statistics Preferences from the Command Line 12-10

Configuring Options for Dynamic Statistics 12-11

About Dynamic Statistics Levels 12-11

Setting Dynamic Statistics Levels Manually 12-13

Disabling Dynamic Statistics 12-15

Managing SQL Plan Directives 12-15

13

Gathering Optimizer Statistics

Configuring Automatic Optimizer Statistics Collection 13-1

About Automatic Optimizer Statistics Collection 13-1

Configuring Automatic Optimizer Statistics Collection Using Cloud Control 13-2

Configuring Automatic Optimizer Statistics Collection from the Command Line 13-4

Configuring High-Frequency Automatic Optimizer Statistics Collection 13-5

About High-Frequency Automatic Optimizer Statistics Collection 13-6

Setting Preferences for High-Frequency Automatic Optimizer Statistics Collection 13-6

High-Frequency Automatic Optimizer Statistics Collection: Example 13-7

Gathering Optimizer Statistics Manually 13-10

About Manual Statistics Collection with DBMS_STATS 13-11

Guidelines for Gathering Optimizer Statistics Manually 13-11

Guideline for Setting the Sample Size 13-12

Guideline for Gathering Statistics in Parallel 13-13

Guideline for Partitioned Objects 13-13

xii

Guideline for Frequently Changing Objects 13-14

Guideline for External Tables 13-14

Determining When Optimizer Statistics Are Stale 13-14

Gathering Schema and Table Statistics 13-15

Gathering Statistics for Fixed Objects 13-16

Gathering Statistics for Volatile Tables Using Dynamic Statistics 13-17

Gathering Optimizer Statistics Concurrently 13-19

About Concurrent Statistics Gathering 13-19

Enabling Concurrent Statistics Gathering 13-21

Monitoring Statistics Gathering Operations 13-24

Gathering Incremental Statistics on Partitioned Objects 13-25

Purpose of Incremental Statistics 13-25

How DBMS_STATS Derives Global Statistics for Partitioned tables 13-26

Gathering Statistics for a Partitioned Table: Basic Steps 13-29

Maintaining Incremental Statistics for Partition Maintenance Operations 13-32

Maintaining Incremental Statistics for Tables with Stale or Locked Partition Statistics 13-34

Gathering System Statistics Manually 13-36

About System Statistics 13-36

Guidelines for Gathering System Statistics 13-38

Gathering System Statistics with DBMS_STATS 13-38

About the GATHER_SYSTEM_STATS Procedure 13-38

Gathering Workload Statistics 13-40

Gathering Noworkload Statistics 13-44

Deleting System Statistics 13-45

Running Statistics Gathering Functions in Reporting Mode 13-46

14

Managing Extended Statistics

Managing Column Group Statistics 14-1

About Statistics on Column Groups 14-1

Why Column Group Statistics Are Needed: Example 14-2

Automatic and Manual Column Group Statistics 14-4

User Interface for Column Group Statistics 14-4

Detecting Useful Column Groups for a Specific Workload 14-5

Creating Column Groups Detected During Workload Monitoring 14-8

Creating and Gathering Statistics on Column Groups Manually 14-10

Displaying Column Group Information 14-11

Dropping a Column Group 14-12

Managing Expression Statistics 14-13

About Expression Statistics 14-13

When Expression Statistics Are Useful: Example 14-14

Creating Expression Statistics 14-14

xiii

Displaying Expression Statistics 14-15

Dropping Expression Statistics 14-16

15

Controlling the Use of Optimizer Statistics

Locking and Unlocking Optimizer Statistics 15-1

Locking Statistics 15-1

Unlocking Statistics 15-2

Publishing Pending Optimizer Statistics 15-3

About Pending Optimizer Statistics 15-3

User Interfaces for Publishing Optimizer Statistics 15-5

Managing Published and Pending Statistics 15-6

Creating Artificial Optimizer Statistics for Testing 15-9

About Artificial Optimizer Statistics 15-9

Setting Artificial Optimizer Statistics for a Table 15-10

Setting Optimizer Statistics: Example 15-11

16

Managing Historical Optimizer Statistics

Restoring Optimizer Statistics 16-1

About Restore Operations for Optimizer Statistics 16-1

Guidelines for Restoring Optimizer Statistics 16-1

Restrictions for Restoring Optimizer Statistics 16-2

Restoring Optimizer Statistics Using DBMS_STATS 16-2

Managing Optimizer Statistics Retention 16-4

Obtaining Optimizer Statistics History 16-4

Changing the Optimizer Statistics Retention Period 16-5

Purging Optimizer Statistics 16-6

Reporting on Past Statistics Gathering Operations 16-7

17

Importing and Exporting Optimizer Statistics

About Transporting Optimizer Statistics 17-1

Purpose of Transporting Optimizer Statistics 17-1

How Transporting Optimizer Statistics Works 17-1

User Interface for Importing and Exporting Optimizer Statistics 17-2

Transporting Optimizer Statistics to a Test Database: Tutorial 17-3

18

Analyzing Statistics Using Optimizer Statistics Advisor

About Optimizer Statistics Advisor 18-1

Purpose of Optimizer Statistics Advisor 18-2

xiv

Problems with a Traditional Script-Based Approach 18-2

Advantages of Optimizer Statistics Advisor 18-3

Optimizer Statistics Advisor Concepts 18-3

Components of Optimizer Statistics Advisor 18-3

Operational Modes for Optimizer Statistics Advisor 18-7

Command-Line Interface to Optimizer Statistics Advisor 18-7

Basic Tasks for Optimizer Statistics Advisor 18-9

Creating an Optimizer Statistics Advisor Task 18-12

Listing Optimizer Statistics Advisor Tasks 18-13

Creating Filters for an Optimizer Advisor Task 18-13

About Filters for Optimizer Statistics Advisor 18-13

Creating an Object Filter for an Optimizer Advisor Task 18-14

Creating a Rule Filter for an Optimizer Advisor Task 18-17

Creating an Operation Filter for an Optimizer Advisor Task 18-19

Executing an Optimizer Statistics Advisor Task 18-23

Generating a Report for an Optimizer Statistics Advisor Task 18-24

Implementing Optimizer Statistics Advisor Recommendations 18-28

Implementing Actions Recommended by Optimizer Statistics Advisor 18-28

Generating a Script Using Optimizer Statistics Advisor 18-30

Part VI Optimizer Controls

19

Influencing the Optimizer

Techniques for Influencing the Optimizer 19-1

Influencing the Optimizer with Initialization Parameters 19-2

About Optimizer Initialization Parameters 19-2

Enabling Optimizer Features 19-7

Choosing an Optimizer Goal 19-8

Controlling Adaptive Optimization 19-9

Influencing the Optimizer with Hints 19-10

About Optimizer Hints 19-11

Purpose of Hints 19-11

Types of Hints 19-12

Scope of Hints 19-13

Guidelines for Join Order Hints 19-13

Reporting on Hints 19-14

Purpose of Hint Usage Reports 19-15

User Interface for Hint Usage Reports 19-15

Reporting on Hint Usage: Tutorial 19-17

xv

Hint Usage Reports: Examples 19-19

20

Improving Real-World Performance Through Cursor Sharing

Overview of Cursor Sharing 20-1

About Cursors 20-1

Private and Shared SQL Areas 20-1

Parent and Child Cursors 20-3

About Cursors and Parsing 20-7

About Literals and Bind Variables 20-10

Literals and Cursors 20-10

Bind Variables and Cursors 20-12

Bind Variable Peeking 20-13

About the Life Cycle of Shared Cursors 20-16

Cursor Marked Invalid 20-16

Cursors Marked Rolling Invalid 20-18

CURSOR_SHARING and Bind Variable Substitution 20-20

CURSOR_SHARING Initialization Parameter 20-20

Parsing Behavior When CURSOR_SHARING = FORCE 20-21

Adaptive Cursor Sharing 20-23

Purpose of Adaptive Cursor Sharing 20-23

How Adaptive Cursor Sharing Works: Example 20-23

Bind-Sensitive Cursors 20-25

Bind-Aware Cursors 20-29

Cursor Merging 20-32

Adaptive Cursor Sharing Views 20-33

Real-World Performance Guidelines for Cursor Sharing 20-33

Develop Applications with Bind Variables for Security and Performance 20-33

Do Not Use CURSOR_SHARING = FORCE as a Permanent Fix 20-35

Establish Coding Conventions to Increase Cursor Reuse 20-36

Minimize Session-Level Changes to the Optimizer Environment 20-37

Part VII Monitoring and Tracing SQL

21

Monitoring Database Operations

About Monitoring Database Operations 21-1

About Database Operations 21-1

Purpose of Monitoring Database Operations 21-2

How Database Monitoring Works 21-3

User Interfaces for Database Operations Monitoring 21-4

Monitored SQL Executions Page in Cloud Control 21-4

xvi

DBMS_SQL_MONITOR Package 21-5

Attributes of composite Database Operations 21-6

MONITOR and NO_MONITOR Hints 21-7

Views for Monitoring and Reporting on Database Operations 21-8

Basic Tasks in Database Operations Monitoring 21-10

Enabling and Disabling Monitoring of Database Operations 21-10

Enabling Monitoring of Database Operations at the System Level 21-10

Enabling and Disabling Monitoring of Database Operations at the Statement Level 21-11

Defining a Composite Database Operation 21-12

Generating and Accessing SQL Monitor Reports 21-15

Monitoring Database Operations: Scenarios 21-19

Reporting on a Simple Database Operation: Scenario 21-19

Reporting on Composite Database Operation: Scenario 21-22

22

Gathering Diagnostic Data with SQL Test Case Builder

Purpose of SQL Test Case Builder 22-1

Concepts for SQL Test Case Builder 22-1

SQL Incidents 22-1

What SQL Test Case Builder Captures 22-2

Output of SQL Test Case Builder 22-3

User Interfaces for SQL Test Case Builder 22-5

Graphical Interface for SQL Test Case Builder 22-5

Accessing the Incident Manager 22-5

Accessing the Support Workbench 22-6

Command-Line Interface for SQL Test Case Builder 22-6

Running SQL Test Case Builder 22-7

23

Performing Application Tracing

Overview of End-to-End Application Tracing 23-1

Purpose of End-to-End Application Tracing 23-1

End-to-End Application Tracing in a Multitenant Environment 23-2

Tools for End-to-End Application Tracing 23-2

Overview of the SQL Trace Facility 23-3

Overview of TKPROF 23-4

Enabling Statistics Gathering for End-to-End Tracing 23-4

Enabling Statistics Gathering for a Client ID 23-4

Enabling Statistics Gathering for Services, Modules, and Actions 23-5

Enabling End-to-End Application Tracing 23-6

Enabling Tracing for a Client Identifier 23-6

Enabling Tracing for a Service, Module, and Action 23-7

xvii

Enabling Tracing for a Session 23-8

Enabling Tracing for an Instance or Database 23-9

Generating Output Files Using SQL Trace and TKPROF 23-10

Step 1: Setting Initialization Parameters for Trace File Management 23-10

Step 2: Enabling the SQL Trace Facility 23-11

Step 3: Generating Output Files with TKPROF 23-13

Step 4: Storing SQL Trace Facility Statistics 23-14

Generating the TKPROF Output SQL Script 23-14

Editing the TKPROF Output SQL Script 23-14

Querying the Output Table 23-14

Guidelines for Interpreting TKPROF Output 23-16

Guideline for Interpreting the Resolution of Statistics 23-16

Guideline for Recursive SQL Statements 23-16

Guideline for Deciding Which Statements to Tune 23-17

Guidelines for Avoiding Traps in TKPROF Interpretation 23-18

Guideline for Avoiding the Argument Trap 23-18

Guideline for Avoiding the Read Consistency Trap 23-18

Guideline for Avoiding the Schema Trap 23-18

Guideline for Avoiding the Time Trap 23-19

Application Tracing Utilities 23-20

TRCSESS 23-20

Purpose 23-20

Guidelines 23-20

Syntax 23-21

Options 23-21

Examples 23-21

TKPROF 23-22

Purpose 23-22

Guidelines 23-22

Syntax 23-23

Options 23-23

Output 23-25

Examples 23-28

Views for Application Tracing 23-32

Views Relevant for Trace Statistics 23-33

Views Related to Enabling Tracing 23-33

Part VIII Automatic SQL Tuning

xviii

24

Managing SQL Tuning Sets

About SQL Tuning Sets 24-1

Purpose of SQL Tuning Sets 24-1

Concepts for SQL Tuning Sets 24-2

User Interfaces for SQL Tuning Sets 24-3

Accessing the SQL Tuning Sets Page in Cloud Control 24-3

Command-Line Interface to SQL Tuning Sets 24-4

Basic Tasks for Managing SQL Tuning Sets 24-4

Creating a SQL Tuning Set Using CREATE_SQLSET 24-6

Loading a SQL Tuning Set Using LOAD_SQLSET 24-7

Querying a SQL Tuning Set 24-8

Modifying a SQL Tuning Set Using UPDATE_SQLSET 24-11

Transporting a SQL Tuning Set 24-12

About Transporting SQL Tuning Sets 24-12

Basic Steps for Transporting SQL Tuning Sets 24-12

Basic Steps for Transporting SQL Tuning Sets When the CON_DBID Values Differ 24-13

Transporting SQL Tuning Sets with DBMS_SQLTUNE 24-14

Dropping a SQL Tuning Set Using DROP_SQLSET 24-16

25

Analyzing SQL with SQL Tuning Advisor

About SQL Tuning Advisor 25-1

Purpose of SQL Tuning Advisor 25-1

SQL Tuning Advisor Architecture 25-2

Input to SQL Tuning Advisor 25-3

Output of SQL Tuning Advisor 25-4

Automatic Tuning Optimizer Analyses 25-5

SQL Tuning Advisor Operation 25-14

Automatic and On-Demand SQL Tuning 25-14

SQL Tuning on Active Data Guard Databases 25-15

Managing the Automatic SQL Tuning Task 25-20

About the Automatic SQL Tuning Task 25-20

Purpose of Automatic SQL Tuning 25-20

Automatic SQL Tuning Concepts 25-20

Command-Line Interface to SQL Tuning Advisor 25-21

Basic Tasks for Automatic SQL Tuning 25-21

Enabling and Disabling the Automatic SQL Tuning Task 25-22

Enabling and Disabling the Automatic SQL Tuning Task Using Cloud Control 25-22

Enabling and Disabling the Automatic SQL Tuning Task from the Command Line 25-24

Configuring the Automatic SQL Tuning Task 25-25

Configuring the Automatic SQL Tuning Task Using Cloud Control 25-25

xix

Configuring the Automatic SQL Tuning Task Using the Command Line 25-26

Viewing Automatic SQL Tuning Reports 25-28

Viewing Automatic SQL Tuning Reports Using the Command Line 25-28

The Automatic SQL Tuning Set 25-31

Running SQL Tuning Advisor On Demand 25-32

About On-Demand SQL Tuning 25-32

Purpose of On-Demand SQL Tuning 25-32

User Interfaces for On-Demand SQL Tuning 25-33

Basic Tasks in On-Demand SQL Tuning 25-34

Creating a SQL Tuning Task 25-36

Configuring a SQL Tuning Task 25-38

Executing a SQL Tuning Task 25-40

Monitoring a SQL Tuning Task 25-41

Displaying the Results of a SQL Tuning Task 25-42

26

Optimizing Access Paths with SQL Access Advisor

About SQL Access Advisor 26-1

Purpose of SQL Access Advisor 26-1

SQL Access Advisor Architecture 26-2

Input to SQL Access Advisor 26-3

Filter Options for SQL Access Advisor 26-3

SQL Access Advisor Recommendations 26-4

SQL Access Advisor Actions 26-5

SQL Access Advisor Repository 26-6

User Interfaces for SQL Access Advisor 26-7

Accessing the SQL Access Advisor: Initial Options Page Using Cloud Control 26-7

Command-Line Interface to SQL Tuning Sets 26-8

Using SQL Access Advisor: Basic Tasks 26-8

Creating a SQL Tuning Set as Input for SQL Access Advisor 26-10

Populating a SQL Tuning Set with a User-Defined Workload 26-11

Creating and Configuring a SQL Access Advisor Task 26-13

Executing a SQL Access Advisor Task 26-15

Viewing SQL Access Advisor Task Results 26-16

Generating and Executing a Task Script 26-20

Performing a SQL Access Advisor Quick Tune 26-21

Using SQL Access Advisor: Advanced Tasks 26-22

Evaluating Existing Access Structures 26-22

Updating SQL Access Advisor Task Attributes 26-23

Creating and Using SQL Access Advisor Task Templates 26-24

Terminating SQL Access Advisor Task Execution 26-26

Interrupting SQL Access Advisor Tasks 26-26

xx

Canceling SQL Access Advisor Tasks 26-27

Deleting SQL Access Advisor Tasks 26-28

Marking SQL Access Advisor Recommendations 26-29

Modifying SQL Access Advisor Recommendations 26-30

SQL Access Advisor Examples 26-31

SQL Access Advisor Reference 26-31

Action Attributes in the DBA_ADVISOR_ACTIONS View 26-31

Categories for SQL Access Advisor Task Parameters 26-33

SQL Access Advisor Constants 26-33

Part IX SQL Management Objects

27

Managing SQL Profiles

About SQL Profiles 27-1

Purpose of SQL Profiles 27-1

Concepts for SQL Profiles 27-2

Statistics in SQL Profiles 27-2

SQL Profiles and Execution Plans 27-2

SQL Profile Recommendations 27-3

SQL Profiles and SQL Plan Baselines 27-5

User Interfaces for SQL Profiles 27-6

Basic Tasks for SQL Profiles 27-6

Implementing a SQL Profile 27-7

About SQL Profile Implementation 27-7

Implementing a SQL Profile 27-8

Listing SQL Profiles 27-9

Altering a SQL Profile 27-10

Dropping a SQL Profile 27-11

Transporting a SQL Profile 27-12

28

Overview of SQL Plan Management

About SQL Plan Baselines 28-1

Purpose of SQL Plan Management 28-1

Benefits of SQL Plan Management 28-1

Differences Between SQL Plan Baselines and SQL Profiles 28-2

Plan Capture 28-3

Automatic Initial Plan Capture 28-3

Eligibility for Automatic Initial Plan Capture 28-4

Plan Matching for Automatic Initial Plan Capture 28-5

Manual Plan Capture 28-5

xxi

Plan Selection 28-7

Plan Evolution 28-8

Purpose of Plan Evolution 28-8

How Plan Evolution Works 28-8

PL/SQL Subprograms for Plan Evolution 28-9

Storage Architecture for SQL Plan Management 28-10

SQL Management Base 28-10

SQL Statement Log 28-11

SQL Plan History 28-12

Enabled Plans 28-13

Accepted Plans 28-13

Fixed Plans 28-13

29

Managing SQL Plan Baselines

About Managing SQL Plan Baselines 29-1

User Interfaces for SQL Plan Management 29-1

Accessing the SQL Plan Baseline Page in Cloud Control 29-1

DBMS_SPM Package 29-2

Basic Tasks in SQL Plan Management 29-3

Configuring SQL Plan Management 29-4

Configuring the Capture and Use of SQL Plan Baselines 29-4

Enabling Automatic Initial Plan Capture for SQL Plan Management 29-5

Configuring Filters for Automatic Plan Capture 29-6

Disabling All SQL Plan Baselines 29-8

Managing the SPM Evolve Advisor Task 29-8

Automatic SQL Plan Management 29-9

Enabling and Disabling the Automatic SPM Evolve Advisor Task 29-10

Configuring the Automatic SPM Evolve Advisor Task 29-11

Configuring the High-Frequency Automatic SPM Evolve Advisor Task 29-14

Displaying Plans in a SQL Plan Baseline 29-16

Loading SQL Plan Baselines 29-18

About Loading SQL Plan Baselines 29-18

Loading Plans from AWR 29-19

Loading Plans from the Shared SQL Area 29-21

Loading Plans from a SQL Tuning Set 29-23

Loading Plans from a Staging Table 29-26

Evolving SQL Plan Baselines Manually 29-28

About the DBMS_SPM Evolve Functions 29-28

Managing an Evolve Task 29-30

Dropping SQL Plan Baselines 29-38

Managing the SQL Management Base 29-40

xxii

About Managing the SMB 29-40

Changing the Disk Space Limit for the SMB 29-41

Changing the Plan Retention Policy in the SMB 29-42

30

Migrating Stored Outlines to SQL Plan Baselines

About Stored Outline Migration 30-1

Purpose of Stored Outline Migration 30-1

How Stored Outline Migration Works 30-2

Stages of Stored Outline Migration 30-2

Outline Categories and Baseline Modules 30-3

User Interface for Stored Outline Migration 30-4

Basic Steps in Stored Outline Migration 30-6

Preparing for Stored Outline Migration 30-6

Migrating Outlines to Utilize SQL Plan Management Features 30-7

Migrating Outlines to Preserve Stored Outline Behavior 30-8

Performing Follow-Up Tasks After Stored Outline Migration 30-9

Glossary

Index

xxiii

Preface

This manual explains how to tune Oracle SQL.

Audience
This document is intended for database administrators and application developers who
perform the following tasks:

• Generating and interpreting SQL execution plans

• Managing optimizer statistics

• Influencing the optimizer through initialization parameters or SQL hints

• Controlling cursor sharing for SQL statements

• Monitoring SQL execution

• Performing application tracing

• Managing SQL tuning sets

• Using SQL Tuning Advisor or SQL Access Advisor

• Managing SQL profiles

• Managing SQL baselines

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
This manual assumes that you are familiar with Oracle Database Concepts. The following
books are frequently referenced:

• Oracle Database Data Warehousing Guide

• Oracle Database VLDB and Partitioning Guide

• Oracle Database SQL Language Reference

• Oracle Database Reference

Preface

xxiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Many examples in this book use the sample schemas, which are installed by default when you
select the Basic Installation option with an Oracle Database. See Oracle Database Sample
Schemas for information on how these schemas were created and how you can use them.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxv

Changes in This Release for Oracle Database
SQL Tuning Guide

This preface describes the most important changes in Oracle Database SQL Tuning Guide.

Changes in Oracle Database Release 19c, Version 19.10
This section lists changes in Oracle Database Tuning Guide for Oracle Database release 19c,
version 19.10.

The following initialization parameter is new in Oracle Database release 19c, version 19.6:

• OPTIMIZER_REAL_TIME_STATISTICS
See About Optimizer Initialization Parameters

Changes in Oracle Database Release 19c, Version 19.6
This section lists changes in Oracle Database Tuning Guide for Oracle Database release 19c,
version 19.6.

The following initialization parameter is new in Oracle Database release 19c, version 19.6:

• OPTIMIZER_SESSION _TYPE
See About Optimizer Initialization Parameters

Changes in Oracle Database Release 19c, Version 19.1
Oracle Database SQL Tuning Guide for Oracle Database release 19c, version 19.1 has the
following changes.

New Features
The following features are new in this release:

• Automatic resolution of SQL plan regressions

SQL plan management searches for SQL statements in Automatic Workload Repository
(AWR). Prioritizing by highest load, SPM Evolve Advisor looks for alternative plans in all
available sources, adding better performing plans to the SQL plan baseline automatically.
The automatic task runs in the maintenance window.

See "Automatic SQL Plan Management".

• High-frequency SPM Evolve Advisor task

You can configure the Automatic SPM Evolve Advisor task to run every hour, outside of the
maintenance window. Consequently, the optimizer has more frequent opportunities to find
and evolve better performing plans.

Changes in This Release for Oracle Database SQL Tuning Guide

xxvi

See Configuring the High-Frequency Automatic SPM Evolve Advisor Task.

• Reporting on hint usage

Oracle Database includes a hint usage reporting mechanism that reports whether hints
were used during plan generation. In some cases, the report explains why a hint was not
used, for example, a syntax error or conflict between hints. You can generate hint usage
reports with the standard DBMS_XPLAN display functions.

See "Reporting on Hints".

• Plan comparison function

The DBMS_XPLAN.COMPARE_PLANS function takes a reference plan and a list of test plans and
highlights the differences between them. Users can triage plan reproducibility issues by
identifying the source of differences.

See "Comparing Execution Plans".

• Real-time statistics

Oracle Database can automatically gather real-time statistics during conventional DML
operations. These statistics augment the standard statistics gathered by DBMS_STATS jobs.

See "Real-Time Statistics".

• High-frequency automatic optimizer statistics collection

This lightweight task periodically gathers statistics for stale objects. The default interval is
15 minutes. In contrast to the automated statistics collection job, the high-frequency task
does not perform actions such as purging statistics for non-existent objects or invoking
Optimizer Statistics Advisor.

See "Configuring High-Frequency Automatic Optimizer Statistics Collection".

• Statistics maintenance enhancements

Partition move, merge, and coalesce operations maintain both global and partition-level
statistics.

See "Online Statistics Gathering".

• Real-time SQL monitoring for developers

Database users who do not have the SELECT_CATALOG_ROLE can generate and view SQL
Monitor reports for their own SQL statements, including execution plans and performance
metrics.

See "Generating and Accessing SQL Monitor Reports".

• Quarantine for runaway SQL statements

Oracle Database automatically quarantines SQL statements terminated by Oracle
Database Resource Manager (Resource Manager) for breaking resource limits. By putting
plans on a “blacklist,” the database prevents resource-hogging statements from executing
again.

See "About Quarantined SQL Plans".

• Automatic indexing

An automatic background task monitors system workloads, and then creates and
maintains indexes suitable for the statements in the workload. The database validates the
performance effects of the indexes and keeps or alters its decisions constantly to maximize
performance. For example, the database might create an index on columns used in a
statement predicate when the index improves query performance significantly.

See "Automatic Indexing".

Changes in This Release for Oracle Database SQL Tuning Guide

xxvii

See Also:

Oracle Database Licensing Information User Manual for details on which features are
supported for different editions and services

Other Changes
This topic describes additional changes in the release.

The chapter on SQL Test Case Builder is now merged with the diagnosability content in Oracle
Database Administrator’s Guide.

Changes in Oracle Database Release 18c, Version 18.1
Oracle Database SQL Tuning Guide for Oracle Database release 18c, version 18.1 has the
following changes.

New Features
The following features are new in this release:

• Private temporary tables

Private temporary tables are temporary database objects that are automatically dropped at
the end of a transaction or a session. A private temporary table is stored in memory and is
visible only to the session that created it. A private temporary table confines the scope of a
temporary table to a session or a transaction, thus providing more flexibility in application
coding, leading to easier code maintenance and a better ready-to-use functionality.

See "Statistics for Global Temporary Tables".

• Approximate Top-N Query Processing

To obtain “top n” query results much faster than traditional queries, use the APPROX_SUM
and APPROX_COUNT SQL functions with APPROX_RANK .

See "About Approximate Query Processing".

• SQL Tuning Advisor enhancements for Oracle Exadata Database Machine

SQL Tuning Advisor can recommend an Exadata-aware SQL profile. On Oracle Exadata
Database Machine, the cost of smart scans depends on the system statistics I/O seek time
(ioseektim), multiblock read count (mbrc), and I/O transfer speed (iotfrspeed). The
values of these statistics usually differ on Exadata and can thus influence the choice of
plan. If system statistics are stale, and if gathering them improves performance, then SQL
Tuning Advisor recommends accepting an Exadata-aware SQL profile.

See "Statistical Analysis" and "Statistics in SQL Profiles".

• New package for managing SQL tuning sets

You can use DBMS_SQLSET instead of DBMS_SQLTUNE to create, modify, drop, and perform all
other SQL tuning set operations.

See "Command-Line Interface to SQL Tuning Sets".

• Scalable sequences

Changes in This Release for Oracle Database SQL Tuning Guide

xxviii

Scalable sequences alleviate index leaf block contention when loading data into tables that
use sequence values as keys.

• Decoupling OPTIMIZER_ADAPTIVE_STATISTICS from performance feedback

Unlike in previous releases, setting the OPTIMIZER_ADAPTIVE_STATISTICS initialization
parameter to TRUE or FALSE now has no effect on performance feedback.

Changes in This Release for Oracle Database SQL Tuning Guide

xxix

Part I
SQL Performance Fundamentals

SQL tuning is improving SQL statement performance to meet specific, measurable, and
achievable goals.

1
Introduction to SQL Tuning

SQL tuning is the attempt to diagnose and repair SQL statements that fail to meet a
performance standard.

About SQL Tuning
SQL tuning is the iterative process of improving SQL statement performance to meet specific,
measurable, and achievable goals.

SQL tuning implies fixing problems in deployed applications. In contrast, application design
sets the security and performance goals before deploying an application.

See Also:

• SQL Performance Methodology

• "Guidelines for Designing Your Application" to learn how to design for SQL
performance

Purpose of SQL Tuning
A SQL statement becomes a problem when it fails to perform according to a predetermined
and measurable standard.

After you have identified the problem, a typical tuning session has one of the following goals:

• Reduce user response time, which means decreasing the time between when a user
issues a statement and receives a response

• Improve throughput, which means using the least amount of resources necessary to
process all rows accessed by a statement

For a response time problem, consider an online book seller application that hangs for three
minutes after a customer updates the shopping cart. Contrast with a three-minute parallel
query in a data warehouse that consumes all of the database host CPU, preventing other
queries from running. In each case, the user response time is three minutes, but the cause of
the problem is different, and so is the tuning goal.

Prerequisites for SQL Tuning
SQL performance tuning requires a foundation of database knowledge.

If you are tuning SQL performance, then this manual assumes that you have the knowledge
and skills shown in the following table.

1-1

Table 1-1 Required Knowledge

Required Knowledge Description To Learn More

Database architecture Database architecture is not the
domain of administrators alone. As a
developer, you want to develop
applications in the least amount of
time against an Oracle database,
which requires exploiting the
database architecture and features.
For example, not understanding
Oracle Database concurrency
controls and multiversioning read
consistency may make an application
corrupt the integrity of the data, run
slowly, and decrease scalability.

Oracle Database Concepts explains
the basic relational data structures,
transaction management, storage
structures, and instance architecture
of Oracle Database.

SQL and PL/SQL Because of the existence of GUI-
based tools, it is possible to create
applications and administer a
database without knowing SQL.
However, it is impossible to tune
applications or a database without
knowing SQL.

Oracle Database Concepts includes
an introduction to Oracle SQL and
PL/SQL. You must also have a
working knowledge of Oracle
Database SQL Language Reference,
Oracle Database PL/SQL Packages
and Types Reference, and Oracle
Database PL/SQL Packages and
Types Reference.

SQL tuning tools The database generates
performance statistics, and provides
SQL tuning tools that interpret these
statistics.

Oracle Database 2 Day +
Performance Tuning Guide provides
an introduction to the principal SQL
tuning tools.

Tasks and Tools for SQL Tuning
After you have identified the goal for a tuning session, for example, reducing user response
time from three minutes to less than a second, the problem becomes how to accomplish this
goal.

SQL Tuning Tasks
The specifics of a tuning session depend on many factors, including whether you tune
proactively or reactively.

In proactive SQL tuning, you regularly use SQL Tuning Advisor to determine whether you can
make SQL statements perform better. In reactive SQL tuning, you correct a SQL-related
problem that a user has experienced.

Whether you tune proactively or reactively, a typical SQL tuning session involves all or most of
the following tasks:

1. Identifying high-load SQL statements

Review past execution history to find the statements responsible for a large share of the
application workload and system resources.

2. Gathering performance-related data

The optimizer statistics are crucial to SQL tuning. If these statistics do not exist or are no
longer accurate, then the optimizer cannot generate the best plan. Other data relevant to

Chapter 1
Tasks and Tools for SQL Tuning

1-2

SQL performance include the structure of tables and views that the statement accessed,
and definitions of any indexes available to the statement.

3. Determining the causes of the problem

Typically, causes of SQL performance problems include:

• Inefficiently designed SQL statements

If a SQL statement is written so that it performs unnecessary work, then the optimizer
cannot do much to improve its performance. Examples of inefficient design include

– Neglecting to add a join condition, which leads to a Cartesian join

– Using hints to specify a large table as the driving table in a join

– Specifying UNION instead of UNION ALL
– Making a subquery execute for every row in an outer query

• Suboptimal execution plans

The query optimizer (also called the optimizer) is internal software that determines
which execution plan is most efficient. Sometimes the optimizer chooses a plan with a
suboptimal access path, which is the means by which the database retrieves data from
the database. For example, the plan for a query predicate with low selectivity may use
a full table scan on a large table instead of an index.

You can compare the execution plan of an optimally performing SQL statement to the
plan of the statement when it performs suboptimally. This comparison, along with
information such as changes in data volumes, can help identify causes of performance
degradation.

• Missing SQL access structures

Absence of SQL access structures, such as indexes and materialized views, is a
typical reason for suboptimal SQL performance. The optimal set of access structures
can improve SQL performance by orders of magnitude.

• Stale optimizer statistics

Statistics gathered by DBMS_STATS can become stale when the statistics maintenance
operations, either automatic or manual, cannot keep up with the changes to the table
data caused by DML. Because stale statistics on a table do not accurately reflect the
table data, the optimizer can make decisions based on faulty information and generate
suboptimal execution plans.

• Hardware problems

Suboptimal performance might be connected with memory, I/O, and CPU problems.

4. Defining the scope of the problem

The scope of the solution must match the scope of the problem. Consider a problem at the
database level and a problem at the statement level. For example, the shared pool is too
small, which causes cursors to age out quickly, which in turn causes many hard parses.
Using an initialization parameter to increase the shared pool size fixes the problem at the
database level and improves performance for all sessions. However, if a single SQL
statement is not using a helpful index, then changing the optimizer initialization parameters
for the entire database could harm overall performance. If a single SQL statement has a
problem, then an appropriately scoped solution addresses just this problem with this
statement.

5. Implementing corrective actions for suboptimally performing SQL statements

Chapter 1
Tasks and Tools for SQL Tuning

1-3

These actions vary depending on circumstances. For example, you might rewrite a SQL
statement to be more efficient, avoiding unnecessary hard parsing by rewriting the
statement to use bind variables. You might also use equijoins, remove functions from
WHERE clauses, and break a complex SQL statement into multiple simple statements.

In some cases, you improve SQL performance not by rewriting the statement, but by
restructuring schema objects. For example, you might index a new access path, or reorder
columns in a concatenated index. You might also partition a table, introduce derived
values, or even change the database design.

6. Preventing SQL performance regressions

To ensure optimal SQL performance, verify that execution plans continue to provide
optimal performance, and choose better plans if they come available. You can achieve
these goals using optimizer statistics, SQL profiles, and SQL plan baselines.

See Also:

• "Shared Pool Check"

• Oracle Database Concepts to learn more about the shared pool

SQL Tuning Tools
SQL tuning tools are either automated or manual.

In this context, a tool is automated if the database itself can provide diagnosis, advice, or
corrective actions. A manual tool requires you to perform all of these operations.

All tuning tools depend on the basic tools of the dynamic performance views, statistics, and
metrics that the database instance collects. The database itself contains the data and
metadata required to tune SQL statements.

Automated SQL Tuning Tools
Oracle Database provides several advisors relevant for SQL tuning.

Additionally, SQL plan management is a mechanism that can prevent performance regressions
and also help you to improve SQL performance.

All of the automated SQL tuning tools can use SQL tuning sets as input. A SQL tuning set
(STS) is a database object that includes one or more SQL statements along with their
execution statistics and execution context.

See Also:

• "About SQL Tuning Sets"

• Oracle Database 2 Day + Performance Tuning Guide to learn more about
managing SQL tuning sets

Chapter 1
Tasks and Tools for SQL Tuning

1-4

Automatic Database Diagnostic Monitor (ADDM)
ADDM is self-diagnostic software built into Oracle Database.

ADDM can automatically locate the root causes of performance problems, provide
recommendations for correction, and quantify the expected benefits. ADDM also identifies
areas where no action is necessary.

ADDM and other advisors use Automatic Workload Repository (AWR), which is an
infrastructure that provides services to database components to collect, maintain, and use
statistics. ADDM examines and analyzes statistics in AWR to determine possible performance
problems, including high-load SQL.

For example, you can configure ADDM to run nightly. In the morning, you can examine the
latest ADDM report to see what might have caused a problem and if there is a recommended
fix. The report might show that a particular SELECT statement consumed a huge amount of
CPU, and recommend that you run SQL Tuning Advisor.

See Also:

• Oracle Database 2 Day + Performance Tuning Guide

• Oracle Database Performance Tuning Guide

SQL Tuning Advisor
SQL Tuning Advisor is internal diagnostic software that identifies problematic SQL statements
and recommends how to improve statement performance.

When run during database maintenance windows as an automated maintenance task, SQL
Tuning Advisor is known as Automatic SQL Tuning Advisor.

SQL Tuning Advisor takes one or more SQL statements as an input and invokes the Automatic
Tuning Optimizer to perform SQL tuning on the statements. The advisor performs the following
types of analysis:

• Checks for missing or stale statistics

• Builds SQL profiles

A SQL profile is a set of auxiliary information specific to a SQL statement. A SQL profile
contains corrections for suboptimal optimizer estimates discovered during Automatic SQL
Tuning. This information can improve optimizer estimates for cardinality, which is the
number of rows that is estimated to be or actually is returned by an operation in an
execution plan, and selectivity. These improved estimates lead the optimizer to select
better plans.

• Explores whether a different access path can significantly improve performance

• Identifies SQL statements that lend themselves to suboptimal plans

The output is in the form of advice or recommendations, along with a rationale for each
recommendation and its expected benefit. The recommendation relates to a collection of
statistics on objects, creation of new indexes, restructuring of the SQL statement, or creation of
a SQL profile. You can choose to accept the recommendations to complete the tuning of the
SQL statements.

Chapter 1
Tasks and Tools for SQL Tuning

1-5

See Also:

• "Analyzing SQL with SQL Tuning Advisor"

• Oracle Database 2 Day + Performance Tuning Guide

SQL Access Advisor
SQL Access Advisor is internal diagnostic software that recommends which materialized
views, indexes, and materialized view logs to create, drop, or retain.

SQL Access Advisor takes an actual workload as input, or the advisor can derive a
hypothetical workload from the schema. SQL Access Advisor considers the trade-offs between
space usage and query performance, and recommends the most cost-effective configuration of
new and existing materialized views and indexes. The advisor also makes recommendations
about partitioning.

See Also:

• "About SQL Access Advisor"

• Oracle Database 2 Day + Performance Tuning Guide

• Oracle Database Administrator’s Guide to learn more about automated indexing

• Oracle Database Licensing Information User Manual for details on whether
automated indexing is supported for different editions and services

Automatic Indexing
Oracle Database can constantly monitor the application workload, creating and managing
indexes automatically.

Note:

See Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services.

Creating indexes manually requires deep knowledge of the data model, application, and data
distribution. Often DBAs make choices about which indexes to create, and then never revise
their choices. As a result, opportunities for improvement are lost, and unnecessary indexes can
become a performance liability. Automatic index management solves this problem.

How Automatic Indexing Works

The automatic indexing process runs in the background every 15 minutes and performs the
following operations:

1. Automatic index candidates are identified based on the usage of table columns in SQL
statements. Ensure that table statistics are up to date. Tables without statistics are not

Chapter 1
Tasks and Tools for SQL Tuning

1-6

considered for automatic indexing. Tables with stale statistics are not considered for
automatic indexing.

2. Index candidates are initially created invisible and unusable. They are not visible to the
application workload. Invisible automatic indexes cannot be used by SQL statements in the
application workload.

Automatic indexes can be single-column or multi-column. They are considered for the
following:

• Table columns (including virtual columns)

• Partitioned and non-partitioned tables

• Selected expressions (for example, JSON expressions)

3. A sample of workload SQL statements is tested against the candidate indexes. During this
verification phase, some or all candidate indexes will be built and made valid so that the
performance effect on SQL statements can be measured. All candidate indexes remain
invisible during the verification step.

If the performance of SQL statements is not improved by using the candidate indexes, they
remain invisible.

4. Candidate valid indexes found to improve SQL performance will be made visible and
available to the application workload. Candidate indexes that do not improve SQL
performance will revert to invisible and be unusable after a short delay.

During the verification stage, if an index is found to be beneficial, but an individual SQL
statement suffers a performance regression, a SQL plan baseline is created to prevent the
regression when the index is made visible.

5. Unusable and unused valid indexes are deleted by the automatic indexing process.

The automatic indexing process runs in the background every 15 minutes and performs
the following operations:

a. Automatic index candidates are identified based on the usage of table columns in SQL
statements. Ensure that table statistics are up to date. Tables without statistics are not
considered for automatic indexing. Tables with stale statistics are not considered for
automatic indexing.

b. Index candidates are initially created invisible and unusable. They are not visible to the
application workload. Invisible automatic indexes cannot be used by SQL statements
in the application workload.

Automatic indexes can be single-column or multi-column. They are considered for the
following:

• Table columns (including virtual columns)

• Partitioned and non-partitioned tables

• Selected expressions (for example, JSON expressions)

c. A sample of workload SQL statements is tested against the candidate indexes. During
this verification phase, some or all candidate indexes will be built and made valid so
that the performance effect on SQL statements can be measured. All candidate
indexes remain invisible during the verification step.

If the performance of SQL statements is not improved by using the candidate indexes,
they remain invisible.

d. Candidate valid indexes found to improve SQL performance will be made visible and
available to the application workload. Candidate indexes that do not improve SQL
performance will revert to invisible and be unusable after a short delay.

Chapter 1
Tasks and Tools for SQL Tuning

1-7

During the verification stage, if an index is found to be beneficial, but an individual SQL
statement suffers a performance regression, a SQL plan baseline is created to prevent
the regression when the index is made visible.

e. Unusable and unused valid indexes are deleted by the automatic indexing process.

Note:

By default, the unused automatic indexes are deleted after 373 days. The
period for retaining the unused automatic indexes in a database can be
configured using the DBMS_AUTO_INDEX.CONFIGURE procedure.

See Also:

Configuring Automatic Indexing in Oracle Database

Enabling and Managing Automatic Indexing

The DBMS_AUTO_INDEX package provides options for configuring, dropping, monitoring, and
reporting on automatic indexing.

You can use the DBMS_AUTO_INDEX package to do the following:

• Enable automatic indexing.
EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_MODE','IMPLEMENT')

• Configure additional settings, such as how long to retain unused auto indexes
EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_RETENTION_FOR_AUTO','180')

• Drop an automatic index. Carefully note the use of single and double quotation marks in
the first example.
Drop a single index owned by a schema and allow recreate.

EXEC DBMS_AUTO_INDEX.DROP_AUTO_INDEXES('SH','"SYS_AI_612UD3J5NGF0C"',TRUE)

Drop all indexes owned by a schema and allow recreate.

EXEC DBMS_AUTO_INDEX.DROP_AUTO_INDEXES('SH',NULL,TRUE)

Drop all indexes owned by a schema and disallow recreate. Then, change the recreation
status back to allow.

EXEC DBMS_AUTO_INDEX.DROP_AUTO_INDEXES('HR',NULL)
EXEC DBMS_AUTO_INDEX.DROP_AUTO_INDEXES('HR',NULL,TRUE)

• Report on the automatic indexing task and configuration settings.

Additional Controls

By setting the OPTIMIZER_SESSION_TYPE initialization parameter to ADHOC in a session, you can
suspend automatic indexing for queries in this session. The automatic indexing process does

Chapter 1
Tasks and Tools for SQL Tuning

1-8

not identify index candidates, or create and verify indexes. This control may be useful for ad
hoc queries or testing new functionality.

You can use SQL to view the current setting of this parameter, which is ON by default:

select parameter_name,parameter_value
from DBA_AUTO_INDEX_CONFIG
where parameter_name = 'AUTO_INDEX_INCLUDE_DML_COST';

See Also:

• Oracle Database Administrator’s Guide to learn more about automatic indexing

• Oracle Database PL/SQL Packages and Types Reference to learn about the
procedures and functions available in the DBMS_AUTO_INDEX package

• Oracle Database Reference to learn more about OPTIMIZER_SESSION_TYPE.

SQL Plan Management
SQL plan management is a preventative mechanism that enables the optimizer to
automatically manage execution plans, ensuring that the database uses only known or verified
plans.

This mechanism can build a SQL plan baseline, which contains one or more accepted plans
for each SQL statement. By using baselines, SQL plan management can prevent plan
regressions from environmental changes, while permitting the optimizer to discover and use
better plans.

See Also:

• "Overview of SQL Plan Management"

• Oracle Database PL/SQL Packages and Types Reference

to learn about the DBMS_SPM package

SQL Performance Analyzer
SQL Performance Analyzer determines the effect of a change on a SQL workload by
identifying performance divergence for each SQL statement.

System changes such as upgrading a database or adding an index may cause changes to
execution plans, affecting SQL performance. By using SQL Performance Analyzer, you can
accurately forecast the effect of system changes on SQL performance. Using this information,
you can tune the database when SQL performance regresses, or validate and measure the
gain when SQL performance improves.

Chapter 1
Tasks and Tools for SQL Tuning

1-9

See Also:

Oracle Database Testing Guide

Manual SQL Tuning Tools
In some situations, you may want to run manual tools in addition to the automated tools.
Alternatively, you may not have access to the automated tools.

Execution Plans
Execution plans are the principal diagnostic tool in manual SQL tuning. For example, you can
view plans to determine whether the optimizer selects the plan you expect, or identify the effect
of creating an index on a table.

You can display execution plans in multiple ways. The following tools are the most commonly
used:

• DBMS_XPLAN
You can use the DBMS_XPLAN package methods to display the execution plan generated by
the EXPLAIN PLAN command and query of V$SQL_PLAN.

• EXPLAIN PLAN
This SQL statement enables you to view the execution plan that the optimizer would use to
execute a SQL statement without actually executing the statement. See Oracle Database
SQL Language Reference.

• V$SQL_PLAN and related views

These views contain information about executed SQL statements, and their execution
plans, that are still in the shared pool. See Oracle Database Reference.

• AUTOTRACE
The AUTOTRACE command in SQL*Plus generates the execution plan and statistics about
the performance of a query. This command provides statistics such as disk reads and
memory reads. See SQL*Plus User's Guide and Reference.

Real-Time SQL Monitoring and Real-Time Database Operations
The Real-Time SQL Monitoring feature of Oracle Database enables you to monitor the
performance of SQL statements while they are executing. By default, SQL monitoring starts
automatically when a statement runs in parallel, or when it has consumed at least 5 seconds of
CPU or I/O time in a single execution.

A database operation is a set of database tasks defined by end users or application code, for
example, a batch job or Extraction, Transformation, and Loading (ETL) processing. You can
define, monitor, and report on database operations. Real-Time Database Operations provides
the ability to monitor composite operations automatically. The database automatically monitors
parallel queries, DML, and DDL statements as soon as execution begins.

Oracle Enterprise Manager Cloud Control (Cloud Control) provides easy-to-use SQL
monitoring pages. Alternatively, you can monitor SQL-related statistics using the
V$SQL_MONITOR and V$SQL_PLAN_MONITOR views. You can use these views with the following
views to get more information about executions that you are monitoring:

Chapter 1
Tasks and Tools for SQL Tuning

1-10

• V$ACTIVE_SESSION_HISTORY
• V$SESSION
• V$SESSION_LONGOPS
• V$SQL
• V$SQL_PLAN

See Also:

• "About Monitoring Database Operations"

• Oracle Database Reference to learn about the V$ views

Application Tracing
A SQL trace file provides performance information on individual SQL statements: parse
counts, physical and logical reads, misses on the library cache, and so on.

Trace files are sometimes useful for diagnosing SQL performance problems. You can enable
and disable SQL tracing for a specific session using the DBMS_MONITOR or DBMS_SESSION
packages. Oracle Database implements tracing by generating a trace file for each server
process when you enable the tracing mechanism.

Oracle Database provides the following command-line tools for analyzing trace files:

• TKPROF
This utility accepts as input a trace file produced by the SQL Trace facility, and then
produces a formatted output file.

• trcsess
This utility consolidates trace output from multiple trace files based on criteria such as
session ID, client ID, and service ID. After trcsess merges the trace information into a
single output file, you can format the output file with TKPROF. trcsess is useful for
consolidating the tracing of a particular session for performance or debugging purposes.

End-to-End Application Tracing simplifies the process of diagnosing performance problems in
multitier environments. In these environments, the middle tier routes a request from an end
client to different database sessions, making it difficult to track a client across database
sessions. End-to-End application tracing uses a client ID to uniquely trace a specific end-client
through all tiers to the database.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_MONITOR and DBMS_SESSION

Optimizer Hints
A hint is an instruction passed to the optimizer through comments in a SQL statement.

Chapter 1
Tasks and Tools for SQL Tuning

1-11

Hints enable you to make decisions normally made automatically by the optimizer. In a test or
development environment, hints are useful for testing the performance of a specific access
path. For example, you may know that a specific index is more selective for certain queries. In
this case, you may use hints to instruct the optimizer to use a better execution plan, as in the
following example:

SELECT /*+ INDEX (employees emp_department_ix) */
 employee_id, department_id
FROM employees
WHERE department_id > 50;

Sometimes the database may not use a hint because of typos, invalid arguments, conflicting
hints, and hints that are made invalid by transformations. Starting in Oracle Database 19c, you
can generate a report about which hints were used or not used during plan generation.

See Also:

• "Influencing the Optimizer with Hints"

• Oracle Database SQL Language Reference to learn more about hints

User Interfaces to SQL Tuning Tools
Cloud Control is a system management tool that provides centralized management of a
database environment. Cloud Control provides access to most tuning tools.

By combining a graphical console, Oracle Management Servers, Oracle Intelligent Agents,
common services, and administrative tools, Cloud Control provides a comprehensive system
management platform.

You can access all SQL tuning tools using a command-line interface. For example, the
DBMS_SQLTUNE package is the command-line interface for SQL Tuning Advisor.

Oracle recommends Cloud Control as the best interface for database administration and
tuning. In cases where the command-line interface better illustrates a particular concept or
task, this manual uses command-line examples. However, in these cases the tuning tasks
include a reference to the principal Cloud Control page associated with the task.

Chapter 1
Tasks and Tools for SQL Tuning

1-12

2
SQL Performance Methodology

This chapter describes the recommended methodology for SQL tuning.

Note:

This book assumes that you have learned the Oracle Database performance
methodology described in Oracle Database 2 Day + Performance Tuning Guide.

Guidelines for Designing Your Application
The key to obtaining good SQL performance is to design your application with performance in
mind.

Guideline for Data Modeling
Data modeling is important to successful application design.

You must perform data modeling in a way that represents the business practices. Heated
debates may occur about the correct data model. The important thing is to apply greatest
modeling efforts to those entities affected by the most frequent business transactions.

In the modeling phase, there is a great temptation to spend too much time modeling the non-
core data elements, which results in increased development lead times. Use of modeling tools
can then rapidly generate schema definitions and can be useful when a fast prototype is
required.

Guideline for Writing Efficient Applications
During the design and architecture phase of system development, ensure that the application
developers understand SQL execution efficiency.

To achieve this goal, the development environment must support the following characteristics:

• Good database connection management

Connecting to the database is an expensive operation that is not scalable. Therefore, a
best practice is to minimize the number of concurrent connections to the database. A
simple system, where a user connects at application initialization, is ideal. However, in a
web-based or multitiered application in which application servers multiplex database
connections to users, this approach can be difficult. With these types of applications,
design them to pool database connections, and not reestablish connections for each user
request.

• Good cursor usage and management

Maintaining user connections is equally important to minimizing the parsing activity on the
system. Parsing is the process of interpreting a SQL statement and creating an execution

2-1

plan for it. This process has many phases, including syntax checking, security checking,
execution plan generation, and loading shared structures into the shared pool. There are
two types of parse operations:

– Hard parsing

A SQL statement is submitted for the first time, and no match is found in the shared
pool. Hard parses are the most resource-intensive and unscalable, because they
perform all the operations involved in a parse.

– Soft parsing

A SQL statement is submitted for the first time, and a match is found in the shared
pool. The match can be the result of previous execution by another user. The SQL
statement is shared, which is optimal for performance. However, soft parses are not
ideal, because they still require syntax and security checking, which consume system
resources.

Because parsing should be minimized as much as possible, application developers should
design their applications to parse SQL statements once and execute them many times.
This is done through cursors. Experienced SQL programmers should be familiar with the
concept of opening and re-executing cursors.

• Effective use of bind variables

Application developers must also ensure that SQL statements are shared within the shared
pool. To achieve this goal, use bind variables to represent the parts of the query that
change from execution to execution. If this is not done, then the SQL statement is likely to
be parsed once and never re-used by other users. To ensure that SQL is shared, use bind
variables and do not use string literals with SQL statements. For example:

Statement with string literals:

SELECT *
FROM employees
WHERE last_name LIKE 'KING';

Statement with bind variables:

SELECT *
FROM employees
WHERE last_name LIKE :1;

The following example shows the results of some tests on a simple OLTP application:

Test #Users Supported
No Parsing all statements 270
Soft Parsing all statements 150
Hard Parsing all statements 60
Re-Connecting for each Transaction 30

These tests were performed on a four-CPU computer. The differences increase as the
number of CPUs on the system increase.

Chapter 2
Guidelines for Designing Your Application

2-2

Guidelines for Deploying Your Application
To achieve optimal performance, deploy your application with the same care that you put into
designing it.

Guideline for Deploying in a Test Environment
The testing process mainly consists of functional and stability testing. At some point in the
process, you must perform performance testing.

The following list describes simple rules for performance testing an application. If correctly
documented, then this list provides important information for the production application and the
capacity planning process after the application has gone live.

• Use the Automatic Database Diagnostic Monitor (ADDM) and SQL Tuning Advisor for
design validation.

• Test with realistic data volumes and distributions.

All testing must be done with fully populated tables. The test database should contain data
representative of the production system in terms of data volume and cardinality between
tables. All the production indexes should be built and the schema statistics should be
populated correctly.

• Use the correct optimizer mode.

Perform all testing with the optimizer mode that you plan to use in production.

• Test a single user performance.

Test a single user on an idle or lightly-used database for acceptable performance. If a
single user cannot achieve acceptable performance under ideal conditions, then multiple
users cannot achieve acceptable performance under real conditions.

• Obtain and document plans for all SQL statements.

Obtain an execution plan for each SQL statement. Use this process to verify that the
optimizer is obtaining an optimal execution plan, and that the relative cost of the SQL
statement is understood in terms of CPU time and physical I/Os. This process assists in
identifying the heavy use transactions that require the most tuning and performance work
in the future.

• Attempt multiuser testing.

This process is difficult to perform accurately, because user workload and profiles might
not be fully quantified. However, transactions performing DML statements should be tested
to ensure that there are no locking conflicts or serialization problems.

• Test with the correct hardware configuration.

Test with a configuration as close to the production system as possible. Using a realistic
system is particularly important for network latencies, I/O subsystem bandwidth, and
processor type and speed. Failing to use this approach may result in an incorrect analysis
of potential performance problems.

• Measure steady state performance.

When benchmarking, it is important to measure the performance under steady state
conditions. Each benchmark run should have a ramp-up phase, where users are
connected to the application and gradually start performing work on the application. This
process allows for frequently cached data to be initialized into the cache and single

Chapter 2
Guidelines for Deploying Your Application

2-3

execution operations—such as parsing—to be completed before the steady state
condition. Likewise, after a benchmark run, a ramp-down period is useful so that the
system frees resources, and users cease work and disconnect.

Guidelines for Application Rollout
When new applications are rolled out, two strategies are commonly adopted: the Big Bang
approach, in which all users migrate to the new system at once, and the trickle approach, in
which users slowly migrate from existing systems to the new one.

Both approaches have merits and disadvantages. The Big Bang approach relies on reliable
testing of the application at the required scale, but has the advantage of minimal data
conversion and synchronization with the old system, because it is simply switched off. The
Trickle approach allows debugging of scalability issues as the workload increases, but might
mean that data must be migrated to and from legacy systems as the transition takes place.

It is difficult to recommend one approach over the other, because each technique has
associated risks that could lead to system outages as the transition takes place. Certainly, the
Trickle approach allows profiling of real users as they are introduced to the new application,
and allows the system to be reconfigured while only affecting the migrated users. This
approach affects the work of the early adopters, but limits the load on support services. Thus,
unscheduled outages only affect a small percentage of the user population.

The decision on how to roll out a new application is specific to each business. Any adopted
approach has its own unique pressures and stresses. The more testing and knowledge that
you derive from the testing process, the more you realize what is best for the rollout.

Chapter 2
Guidelines for Deploying Your Application

2-4

Part II
Query Optimizer Fundamentals

To tune Oracle SQL, you must understand the query optimizer. The optimizer is built-in
software that determines the most efficient method for a statement to access data.

3
SQL Processing

This chapter explains how database processes DDL statements to create objects, DML to
modify data, and queries to retrieve data.

About SQL Processing
SQL processing is the parsing, optimization, row source generation, and execution of a SQL
statement.

The following figure depicts the general stages of SQL processing. Depending on the
statement, the database may omit some of these stages.

Figure 3-1 Stages of SQL Processing

Generation of

multiple

execution plans

Generation of

query plan

Parsing

Optimization

Row Source

Generation

Execution

Hard Parse

Soft Parse

Semantic

Check

Syntax

Check

Shared Pool

Check

SQL Statement

3-1

SQL Parsing
The first stage of SQL processing is parsing.

The parsing stage involves separating the pieces of a SQL statement into a data structure that
other routines can process. The database parses a statement when instructed by the
application, which means that only the application, and not the database itself, can reduce the
number of parses.

When an application issues a SQL statement, the application makes a parse call to the
database to prepare the statement for execution. The parse call opens or creates a cursor,
which is a handle for the session-specific private SQL area that holds a parsed SQL statement
and other processing information. The cursor and private SQL area are in the program global
area (PGA).

During the parse call, the database performs checks that identify the errors that can be found
before statement execution. Some errors cannot be caught by parsing. For example, the
database can encounter deadlocks or errors in data conversion only during statement
execution.

See Also:

Oracle Database Concepts to learn about deadlocks

Syntax Check
Oracle Database must check each SQL statement for syntactic validity.

A statement that breaks a rule for well-formed SQL syntax fails the check. For example, the
following statement fails because the keyword FROM is misspelled as FORM:

SQL> SELECT * FORM employees;
SELECT * FORM employees
 *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

Semantic Check
The semantics of a statement are its meaning. A semantic check determines whether a
statement is meaningful, for example, whether the objects and columns in the statement exist.

A syntactically correct statement can fail a semantic check, as shown in the following example
of a query of a nonexistent table:

SQL> SELECT * FROM nonexistent_table;
SELECT * FROM nonexistent_table
 *
ERROR at line 1:
ORA-00942: table or view does not exist

Chapter 3
About SQL Processing

3-2

Shared Pool Check
During the parse, the database performs a shared pool check to determine whether it can skip
resource-intensive steps of statement processing.

To this end, the database uses a hashing algorithm to generate a hash value for every SQL
statement. The statement hash value is the SQL ID shown in V$SQL.SQL_ID. This hash value is
deterministic within a version of Oracle Database, so the same statement in a single instance
or in different instances has the same SQL ID.

When a user submits a SQL statement, the database searches the shared SQL area to see if
an existing parsed statement has the same hash value. The hash value of a SQL statement is
distinct from the following values:

• Memory address for the statement

Oracle Database uses the SQL ID to perform a keyed read in a lookup table. In this way,
the database obtains possible memory addresses of the statement.

• Hash value of an execution plan for the statement

A SQL statement can have multiple plans in the shared pool. Typically, each plan has a
different hash value. If the same SQL ID has multiple plan hash values, then the database
knows that multiple plans exist for this SQL ID.

Parse operations fall into the following categories, depending on the type of statement
submitted and the result of the hash check:

• Hard parse

If Oracle Database cannot reuse existing code, then it must build a new executable version
of the application code. This operation is known as a hard parse, or a library cache miss.

Note:

The database always performs a hard parse of DDL.

During the hard parse, the database accesses the library cache and data dictionary cache
numerous times to check the data dictionary. When the database accesses these areas, it
uses a serialization device called a latch on required objects so that their definition does
not change. Latch contention increases statement execution time and decreases
concurrency.

• Soft parse

A soft parse is any parse that is not a hard parse. If the submitted statement is the same
as a reusable SQL statement in the shared pool, then Oracle Database reuses the existing
code. This reuse of code is also called a library cache hit.

Soft parses can vary in how much work they perform. For example, configuring the session
shared SQL area can sometimes reduce the amount of latching in the soft parses, making
them "softer."

In general, a soft parse is preferable to a hard parse because the database skips the
optimization and row source generation steps, proceeding straight to execution.

The following graphic is a simplified representation of a shared pool check of an UPDATE
statement in a dedicated server architecture.

Chapter 3
About SQL Processing

3-3

Figure 3-2 Shared Pool Check

Comparison of hash values

User

Server

Process

Client

Process

Private SQL Area
User

Update ...

PGA

SQL Work Areas

Session Memory 3967354608

System Global Area (SGA)

Shared Pool

Private

SQL Area

Shared SQL Area�
3667723989

3967354608

2190280494

Library Cache

Data

Dictionary

Cache

Server

Result

Cache

Other Reserved

Pool

If a check determines that a statement in the shared pool has the same hash value, then the
database performs semantic and environment checks to determine whether the statements
have the same meaning. Identical syntax is not sufficient. For example, suppose two different
users log in to the database and issue the following SQL statements:

CREATE TABLE my_table (some_col INTEGER);
SELECT * FROM my_table;

The SELECT statements for the two users are syntactically identical, but two separate schema
objects are named my_table. This semantic difference means that the second statement
cannot reuse the code for the first statement.

Even if two statements are semantically identical, an environmental difference can force a hard
parse. In this context, the optimizer environment is the totality of session settings that can
affect execution plan generation, such as the work area size or optimizer settings (for example,
the optimizer mode). Consider the following series of SQL statements executed by a single
user:

ALTER SESSION SET OPTIMIZER_MODE=ALL_ROWS;
ALTER SYSTEM FLUSH SHARED_POOL; # optimizer environment 1
SELECT * FROM sh.sales;

ALTER SESSION SET OPTIMIZER_MODE=FIRST_ROWS; # optimizer environment 2
SELECT * FROM sh.sales;

ALTER SESSION SET SQL_TRACE=true; # optimizer environment 3
SELECT * FROM sh.sales;

Chapter 3
About SQL Processing

3-4

In the preceding example, the same SELECT statement is executed in three different optimizer
environments. Consequently, the database creates three separate shared SQL areas for these
statements and forces a hard parse of each statement.

See Also:

• Oracle Database Concepts to learn about private SQL areas and shared SQL
areas

• Oracle Database Performance Tuning Guide to learn how to configure the shared
pool

• Oracle Database Concepts to learn about latches

SQL Optimization
During optimization, Oracle Database must perform a hard parse at least once for every
unique DML statement and performs the optimization during this parse.

The database does not optimize DDL. The only exception is when the DDL includes a DML
component such as a subquery that requires optimization.

SQL Row Source Generation
The row source generator is software that receives the optimal execution plan from the
optimizer and produces an iterative execution plan that is usable by the rest of the database.

The iterative plan is a binary program that, when executed by the SQL engine, produces the
result set. The plan takes the form of a combination of steps. Each step returns a row set. The
next step either uses the rows in this set, or the last step returns the rows to the application
issuing the SQL statement.

A row source is a row set returned by a step in the execution plan along with a control structure
that can iteratively process the rows. The row source can be a table, view, or result of a join or
grouping operation.

The row source generator produces a row source tree, which is a collection of row sources.
The row source tree shows the following information:

• An ordering of the tables referenced by the statement

• An access method for each table mentioned in the statement

• A join method for tables affected by join operations in the statement

• Data operations such as filter, sort, or aggregation

Example 3-1 Execution Plan

This example shows the execution plan of a SELECT statement when AUTOTRACE is enabled.
The statement selects the last name, job title, and department name for all employees whose
last names begin with the letter A. The execution plan for this statement is the output of the row
source generator.

SELECT e.last_name, j.job_title, d.department_name
FROM hr.employees e, hr.departments d, hr.jobs j
WHERE e.department_id = d.department_id

Chapter 3
About SQL Processing

3-5

AND e.job_id = j.job_id
AND e.last_name LIKE 'A%';

Execution Plan
--
Plan hash value: 975837011

| Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time|

0	SELECT STATEMENT		3	189	7(15)	00:00:01
*1	HASH JOIN		3	189	7(15)	00:00:01
*2	HASH JOIN		3	141	5(20)	00:00:01
3	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	3	60	2 (0)	00:00:01
*4	INDEX RANGE SCAN	EMP_NAME_IX	3		1 (0)	00:00:01
5	TABLE ACCESS FULL	JOBS	19	513	2 (0)	00:00:01
6	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01

Predicate Information (identified by operation id):

 1 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 2 - access("E"."JOB_ID"="J"."JOB_ID")
 4 - access("E"."LAST_NAME" LIKE 'A%')
 filter("E"."LAST_NAME" LIKE 'A%')

SQL Execution
During execution, the SQL engine executes each row source in the tree produced by the row
source generator. This step is the only mandatory step in DML processing.

Figure 3-3 is an execution tree, also called a parse tree, that shows the flow of row sources
from one step to another in the plan in Example 3-1. In general, the order of the steps in
execution is the reverse of the order in the plan, so you read the plan from the bottom up.

Each step in an execution plan has an ID number. The numbers in Figure 3-3 correspond to
the Id column in the plan shown in Example 3-1. Initial spaces in the Operation column of the
plan indicate hierarchical relationships. For example, if the name of an operation is preceded
by two spaces, then this operation is a child of an operation preceded by one space.
Operations preceded by one space are children of the SELECT statement itself.

Chapter 3
About SQL Processing

3-6

Figure 3-3 Row Source Tree

TABLE ACCESS
FULL

jobs

53

TABLE ACCESS

BY INDEX ROWID

employees

4

INDEX RANGE
SCAN

emp_name_ix

6

TABLE ACCESS
FULL

departments

1

HASH JOIN

2

HASH JOIN

In Figure 3-3, each node of the tree acts as a row source, which means that each step of the
execution plan in Example 3-1 either retrieves rows from the database or accepts rows from
one or more row sources as input. The SQL engine executes each row source as follows:

• Steps indicated by the black boxes physically retrieve data from an object in the database.
These steps are the access paths, or techniques for retrieving data from the database.

– Step 6 uses a full table scan to retrieve all rows from the departments table.

– Step 5 uses a full table scan to retrieve all rows from the jobs table.

– Step 4 scans the emp_name_ix index in order, looking for each key that begins with the
letter A and retrieving the corresponding rowid. For example, the rowid corresponding
to Atkinson is AAAPzRAAFAAAABSAAe.

– Step 3 retrieves from the employees table the rows whose rowids were returned by
Step 4. For example, the database uses rowid AAAPzRAAFAAAABSAAe to retrieve the row
for Atkinson.

• Steps indicated by the clear boxes operate on row sources.

– Step 2 performs a hash join, accepting row sources from Steps 3 and 5, joining each
row from the Step 5 row source to its corresponding row in Step 3, and returning the
resulting rows to Step 1.

Chapter 3
About SQL Processing

3-7

For example, the row for employee Atkinson is associated with the job name Stock
Clerk.

– Step 1 performs another hash join, accepting row sources from Steps 2 and 6, joining
each row from the Step 6 source to its corresponding row in Step 2, and returning the
result to the client.

For example, the row for employee Atkinson is associated with the department named
Shipping.

In some execution plans the steps are iterative and in others sequential. The hash join shown
in Example 3-1 is sequential. The database completes the steps in their entirety based on the
join order. The database starts with the index range scan of emp_name_ix. Using the rowids
that it retrieves from the index, the database reads the matching rows in the employees table,
and then scans the jobs table. After it retrieves the rows from the jobs table, the database
performs the hash join.

During execution, the database reads the data from disk into memory if the data is not in
memory. The database also takes out any locks and latches necessary to ensure data integrity
and logs any changes made during the SQL execution. The final stage of processing a SQL
statement is closing the cursor.

How Oracle Database Processes DML
Most DML statements have a query component. In a query, execution of a cursor places the
results of the query into a set of rows called the result set.

How Row Sets Are Fetched
Result set rows can be fetched either a row at a time or in groups.

In the fetch stage, the database selects rows and, if requested by the query, orders the rows.
Each successive fetch retrieves another row of the result until the last row has been fetched.

In general, the database cannot determine for certain the number of rows to be retrieved by a
query until the last row is fetched. Oracle Database retrieves the data in response to fetch
calls, so that the more rows the database reads, the more work it performs. For some queries
the database returns the first row as quickly as possible, whereas for others it creates the
entire result set before returning the first row.

Read Consistency
In general, a query retrieves data by using the Oracle Database read consistency mechanism,
which guarantees that all data blocks read by a query are consistent to a single point in time.

Read consistency uses undo data to show past versions of data. For an example, suppose a
query must read 100 data blocks in a full table scan. The query processes the first 10 blocks
while DML in a different session modifies block 75. When the first session reaches block 75, it
realizes the change and uses undo data to retrieve the old, unmodified version of the data and
construct a noncurrent version of block 75 in memory.

See Also:

Oracle Database Concepts to learn about multiversion read consistency

Chapter 3
How Oracle Database Processes DML

3-8

Data Changes
DML statements that must change data use read consistency to retrieve only the data that
matched the search criteria when the modification began.

Afterward, these statements retrieve the data blocks as they exist in their current state and
make the required modifications. The database must perform other actions related to the
modification of the data such as generating redo and undo data.

How Oracle Database Processes DDL
Oracle Database processes DDL differently from DML.

For example, when you create a table, the database does not optimize the CREATE TABLE
statement. Instead, Oracle Database parses the DDL statement and carries out the command.

The database processes DDL differently because it is a means of defining an object in the data
dictionary. Typically, Oracle Database must parse and execute many recursive SQL statements
to execute a DDL statement. Suppose you create a table as follows:

CREATE TABLE mytable (mycolumn INTEGER);

Typically, the database would run dozens of recursive statements to execute the preceding
statement. The recursive SQL would perform actions such as the following:

• Issue a COMMIT before executing the CREATE TABLE statement

• Verify that user privileges are sufficient to create the table

• Determine which tablespace the table should reside in

• Ensure that the tablespace quota has not been exceeded

• Ensure that no object in the schema has the same name

• Insert rows that define the table into the data dictionary

• Issue a COMMIT if the DDL statement succeeded or a ROLLBACK if it did not

See Also:

Oracle Database Development Guide to learn about processing DDL, transaction
control, and other types of statements

Chapter 3
How Oracle Database Processes DDL

3-9

4
Query Optimizer Concepts

This chapter describes the most important concepts relating to the query optimizer, including
its principal components.

Introduction to the Query Optimizer
The query optimizer (called simply the optimizer) is built-in database software that
determines the most efficient method for a SQL statement to access requested data.

Purpose of the Query Optimizer
The optimizer attempts to generate the most optimal execution plan for a SQL statement.

The optimizer choose the plan with the lowest cost among all considered candidate plans. The
optimizer uses available statistics to calculate cost. For a specific query in a given
environment, the cost computation accounts for factors of query execution such as I/O, CPU,
and communication.

For example, a query might request information about employees who are managers. If the
optimizer statistics indicate that 80% of employees are managers, then the optimizer may
decide that a full table scan is most efficient. However, if statistics indicate that very few
employees are managers, then reading an index followed by a table access by rowid may be
more efficient than a full table scan.

Because the database has many internal statistics and tools at its disposal, the optimizer is
usually in a better position than the user to determine the optimal method of statement
execution. For this reason, all SQL statements use the optimizer.

Cost-Based Optimization
Query optimization is the process of choosing the most efficient means of executing a SQL
statement.

SQL is a nonprocedural language, so the optimizer is free to merge, reorganize, and process
in any order. The database optimizes each SQL statement based on statistics collected about
the accessed data. The optimizer determines the optimal plan for a SQL statement by
examining multiple access methods, such as full table scan or index scans, different join
methods such as nested loops and hash joins, different join orders, and possible
transformations.

For a given query and environment, the optimizer assigns a relative numerical cost to each
step of a possible plan, and then factors these values together to generate an overall cost
estimate for the plan. After calculating the costs of alternative plans, the optimizer chooses the
plan with the lowest cost estimate. For this reason, the optimizer is sometimes called the cost-
based optimizer (CBO) to contrast it with the legacy rule-based optimizer (RBO).

4-1

Note:

The optimizer may not make the same decisions from one version of Oracle
Database to the next. In recent versions, the optimizer might make different decision
because better information is available and more optimizer transformations are
possible.

Execution Plans
An execution plan describes a recommended method of execution for a SQL statement.

The plan shows the combination of the steps Oracle Database uses to execute a SQL
statement. Each step either retrieves rows of data physically from the database or prepares
them for the user issuing the statement.

An execution plan displays the cost of the entire plan, indicated on line 0, and each separate
operation. The cost is an internal unit that the execution plan only displays to allow for plan
comparisons. Thus, you cannot tune or change the cost value.

In the following graphic, the optimizer generates two possible execution plans for an input SQL
statement, uses statistics to estimate their costs, compares their costs, and then chooses the
plan with the lowest cost.

Figure 4-1 Execution Plans

Parsed Representation
of SQL Statement

Input Output

Final Plan with
Lowest Cost

GB

HJ
HJ

Optimizer

1 0 1 1 0 0 1 0 0
Statistics

Generates Multiple
Plans and
Compares Them

Plan
1

GB

NL
NL

Plan
2

GB

HJ
HJ

Plan
2

Query Blocks
The input to the optimizer is a parsed representation of a SQL statement.

Each SELECT block in the original SQL statement is represented internally by a query block. A
query block can be a top-level statement, subquery, or unmerged view.

Chapter 4
Introduction to the Query Optimizer

4-2

Example 4-1 Query Blocks

The following SQL statement consists of two query blocks. The subquery in parentheses is the
inner query block. The outer query block, which is the rest of the SQL statement, retrieves
names of employees in the departments whose IDs were supplied by the subquery. The query
form determines how query blocks are interrelated.

SELECT first_name, last_name
FROM hr.employees
WHERE department_id
IN (SELECT department_id
 FROM hr.departments
 WHERE location_id = 1800);

See Also:

• "View Merging"

• Oracle Database Concepts for an overview of SQL processing

Query Subplans
For each query block, the optimizer generates a query subplan.

The database optimizes query blocks separately from the bottom up. Thus, the database
optimizes the innermost query block first and generates a subplan for it, and then generates
the outer query block representing the entire query.

The number of possible plans for a query block is proportional to the number of objects in the
FROM clause. This number rises exponentially with the number of objects. For example, the
possible plans for a join of five tables are significantly higher than the possible plans for a join
of two tables.

Analogy for the Optimizer
One analogy for the optimizer is an online trip advisor.

A cyclist wants to know the most efficient bicycle route from point A to point B. A query is like
the directive "I need the most efficient route from point A to point B" or "I need the most
efficient route from point A to point B by way of point C." The trip advisor uses an internal
algorithm, which relies on factors such as speed and difficulty, to determine the most efficient
route. The cyclist can influence the trip advisor's decision by using directives such as "I want to
arrive as fast as possible" or "I want the easiest ride possible."

In this analogy, an execution plan is a possible route generated by the trip advisor. Internally,
the advisor may divide the overall route into several subroutes (subplans), and calculate the
efficiency for each subroute separately. For example, the trip advisor may estimate one
subroute at 15 minutes with medium difficulty, an alternative subroute at 22 minutes with
minimal difficulty, and so on.

The advisor picks the most efficient (lowest cost) overall route based on user-specified goals
and the available statistics about roads and traffic conditions. The more accurate the statistics,
the better the advice. For example, if the advisor is not frequently notified of traffic jams, road

Chapter 4
Introduction to the Query Optimizer

4-3

closures, and poor road conditions, then the recommended route may turn out to be inefficient
(high cost).

About Optimizer Components
The optimizer contains three components: the transformer, estimator, and plan generator.

The following graphic illustrates the components.

Figure 4-2 Optimizer Components

Query

Transformer

Estimator

Plan

Generator

Parsed Query

(from Parser)

Query Plan

(to Row Source Generator)

Transformed query

Query + estimates

Data�
Dictionary

statistics

A set of query blocks represents a parsed query, which is the input to the optimizer. The
following table describes the optimizer operations.

Table 4-1 Optimizer Operations

Phase Operation Description To Learn More

1 Query Transformer The optimizer determines whether it is helpful to
change the form of the query so that the optimizer
can generate a better execution plan.

"Query
Transformer"

2 Estimator The optimizer estimates the cost of each plan
based on statistics in the data dictionary.

"Estimator"

3 Plan Generator The optimizer compares the costs of plans and
chooses the lowest-cost plan, known as the
execution plan, to pass to the row source
generator.

"Plan Generator"

Query Transformer
For some statements, the query transformer determines whether it is advantageous to rewrite
the original SQL statement into a semantically equivalent SQL statement with a lower cost.

Chapter 4
About Optimizer Components

4-4

When a viable alternative exists, the database calculates the cost of the alternatives separately
and chooses the lowest-cost alternative. The following graphic shows the query transformer
rewriting an input query that uses OR into an output query that uses UNION ALL.

Figure 4-3 Query Transformer

Query Transformer

SELECT *

FROM sales

WHERE prod_id=136

UNION ALL

SELECT *

FROM sales

WHERE promo_id=33

AND LNNVL(prod_id=136);

SELECT *

FROM sales

WHERE promo_id=33

OR prod_id=136;

Estimator
The estimator is the component of the optimizer that determines the overall cost of a given
execution plan.

The estimator uses three different measures to determine cost:

• Selectivity

The percentage of rows in the row set that the query selects, with 0 meaning no rows and
1 meaning all rows. Selectivity is tied to a query predicate, such as WHERE last_name LIKE
'A%', or a combination of predicates. A predicate becomes more selective as the
selectivity value approaches 0 and less selective (or more unselective) as the value
approaches 1.

Note:

Selectivity is an internal calculation that is not visible in the execution plans.

• Cardinality

The cardinality is the number of rows returned by each operation in an execution plan. This
input, which is crucial to obtaining an optimal plan, is common to all cost functions. The
estimator can derive cardinality from the table statistics collected by DBMS_STATS, or derive
it after accounting for effects from predicates (filter, join, and so on), DISTINCT or GROUP BY
operations, and so on. The Rows column in an execution plan shows the estimated
cardinality.

Chapter 4
About Optimizer Components

4-5

• Cost

This measure represents units of work or resource used. The query optimizer uses disk
I/O, CPU usage, and memory usage as units of work.

As shown in the following graphic, if statistics are available, then the estimator uses them to
compute the measures. The statistics improve the degree of accuracy of the measures.

Figure 4-4 Estimator

Estimator

1 0 1 0 0

0 0 0 1 1

0 1 1 0 1

Statistics

PlanGB

HJ
HJ Total Cost

Cardinality

Selectivity Cost

For the query shown in Example 4-1, the estimator uses selectivity, estimated cardinality (a
total return of 10 rows), and cost measures to produce its total cost estimate of 3:

|Id| Operation |Name |Rows|Bytes|Cost %CPU|Time|

0	SELECT STATEMENT		10	250	3 (0)	00:00:01
1	NESTED LOOPS					
2	NESTED LOOPS		10	250	3 (0)	00:00:01
*3	TABLE ACCESS FULL	DEPARTMENTS	1	7	2 (0)	00:00:01
*4	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	10		0 (0)	00:00:01
5	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	10	180	1 (0)	00:00:01

Selectivity
The selectivity represents a fraction of rows from a row set.

The row set can be a base table, a view, or the result of a join. The selectivity is tied to a query
predicate, such as last_name = 'Smith', or a combination of predicates, such as last_name =
'Smith' AND job_id = 'SH_CLERK'.

Note:

Selectivity is an internal calculation that is not visible in execution plans.

A predicate filters a specific number of rows from a row set. Thus, the selectivity of a predicate
indicates how many rows pass the predicate test. Selectivity ranges from 0.0 to 1.0. A
selectivity of 0.0 means that no rows are selected from a row set, whereas a selectivity of 1.0

Chapter 4
About Optimizer Components

4-6

means that all rows are selected. A predicate becomes more selective as the value
approaches 0.0 and less selective (or more unselective) as the value approaches 1.0.

The optimizer estimates selectivity depending on whether statistics are available:

• Statistics not available

Depending on the value of the OPTIMIZER_DYNAMIC_SAMPLING initialization parameter, the
optimizer either uses dynamic statistics or an internal default value. The database uses
different internal defaults depending on the predicate type. For example, the internal
default for an equality predicate (last_name = 'Smith') is lower than for a range predicate
(last_name > 'Smith') because an equality predicate is expected to return a smaller
fraction of rows.

• Statistics available

When statistics are available, the estimator uses them to estimate selectivity. Assume
there are 150 distinct employee last names. For an equality predicate last_name =
'Smith', selectivity is the reciprocal of the number n of distinct values of last_name, which
in this example is .006 because the query selects rows that contain 1 out of 150 distinct
values.

If a histogram exists on the last_name column, then the estimator uses the histogram
instead of the number of distinct values. The histogram captures the distribution of different
values in a column, so it yields better selectivity estimates, especially for columns that
have data skew.

See Also:

• "Histograms "

• Oracle Database Reference to learn more about OPTIMIZER_DYNAMIC_SAMPLING

Cardinality
The cardinality is the number of rows returned by each operation in an execution plan.

For example, if the optimizer estimate for the number of rows returned by a full table scan is
100, then the cardinality estimate for this operation is 100. The cardinality estimate appears in
the Rows column of the execution plan.

The optimizer determines the cardinality for each operation based on a complex set of
formulas that use both table and column level statistics, or dynamic statistics, as input. The
optimizer uses one of the simplest formulas when a single equality predicate appears in a
single-table query, with no histogram. In this case, the optimizer assumes a uniform distribution
and calculates the cardinality for the query by dividing the total number of rows in the table by
the number of distinct values in the column used in the WHERE clause predicate.

For example, user hr queries the employees table as follows:

SELECT first_name, last_name
FROM employees
WHERE salary='10200';

Chapter 4
About Optimizer Components

4-7

The employees table contains 107 rows. The current database statistics indicate that the
number of distinct values in the salary column is 58. Therefore, the optimizer estimates the
cardinality of the result set as 2, using the formula 107/58=1.84.

Cardinality estimates must be as accurate as possible because they influence all aspects of
the execution plan. Cardinality is important when the optimizer determines the cost of a join.
For example, in a nested loops join of the employees and departments tables, the number of
rows in employees determines how often the database must probe the departments table.
Cardinality is also important for determining the cost of sorts.

Cost
The optimizer cost model accounts for the machine resources that a query is predicted to
use.

The cost is an internal numeric measure that represents the estimated resource usage for a
plan. The cost is specific to a query in an optimizer environment. To estimate cost, the
optimizer considers factors such as the following:

• System resources, which includes estimated I/O, CPU, and memory

• Estimated number of rows returned (cardinality)

• Size of the initial data sets

• Distribution of the data

• Access structures

Note:

The cost is an internal measure that the optimizer uses to compare different plans for
the same query. You cannot tune or change cost.

The execution time is a function of the cost, but cost does not equate directly to time. For
example, if the plan for query A has a lower cost than the plan for query B, then the following
outcomes are possible:

• A executes faster than B.

• A executes slower than B.

• A executes in the same amount of time as B.

Therefore, you cannot compare the costs of different queries with one another. Also, you
cannot compare the costs of semantically equivalent queries that use different optimizer
modes.

Plan Generator
The plan generator explores various plans for a query block by trying out different access
paths, join methods, and join orders.

Many plans are possible because of the various combinations that the database can use to
produce the same result. The optimizer picks the plan with the lowest cost.

The following graphic shows the optimizer testing different plans for an input query.

Chapter 4
About Optimizer Components

4-8

Figure 4-5 Plan Generator

Optimizer

Hash Join
departments 0, employees 1

SELECT e.last_name, d.department_name

FROM hr.employees e, hr.departments d

WHERE e.department_id = d.department_id;

Transformer

Lowest Cost Plan

Join Method

Hash, Nested
Loop, Sort Merge

Access Path

Index
Full Table Scan

Join Order

departments 0 employees 1
employees 0 departments 1

The following snippet from an optimizer trace file shows some computations that the optimizer
performs:

GENERAL PLANS

Considering cardinality-based initial join order.
Permutations for Starting Table :0
Join order[1]: DEPARTMENTS[D]#0 EMPLOYEES[E]#1

Now joining: EMPLOYEES[E]#1

NL Join
 Outer table: Card: 27.00 Cost: 2.01 Resp: 2.01 Degree: 1 Bytes: 16
Access path analysis for EMPLOYEES
. . .
 Best NL cost: 13.17
. . .
SM Join
 SM cost: 6.08
 resc: 6.08 resc_io: 4.00 resc_cpu: 2501688
 resp: 6.08 resp_io: 4.00 resp_cpu: 2501688
. . .
SM Join (with index on outer)
 Access Path: index (FullScan)
. . .
HA Join
 HA cost: 4.57

Chapter 4
About Optimizer Components

4-9

 resc: 4.57 resc_io: 4.00 resc_cpu: 678154
 resp: 4.57 resp_io: 4.00 resp_cpu: 678154
Best:: JoinMethod: Hash
 Cost: 4.57 Degree: 1 Resp: 4.57 Card: 106.00 Bytes: 27
. . .

Join order[2]: EMPLOYEES[E]#1 DEPARTMENTS[D]#0
. . .

Now joining: DEPARTMENTS[D]#0

. . .
HA Join
 HA cost: 4.58
 resc: 4.58 resc_io: 4.00 resc_cpu: 690054
 resp: 4.58 resp_io: 4.00 resp_cpu: 690054
Join order aborted: cost > best plan cost

The trace file shows the optimizer first trying the departments table as the outer table in the
join. The optimizer calculates the cost for three different join methods: nested loops join (NL),
sort merge (SM), and hash join (HA). The optimizer picks the hash join as the most efficient
method:

Best:: JoinMethod: Hash
 Cost: 4.57 Degree: 1 Resp: 4.57 Card: 106.00 Bytes: 27

The optimizer then tries a different join order, using employees as the outer table. This join
order costs more than the previous join order, so it is abandoned.

The optimizer uses an internal cutoff to reduce the number of plans it tries when finding the
lowest-cost plan. The cutoff is based on the cost of the current best plan. If the current best
cost is large, then the optimizer explores alternative plans to find a lower cost plan. If the
current best cost is small, then the optimizer ends the search swiftly because further cost
improvement is not significant.

About Automatic Tuning Optimizer
The optimizer performs different operations depending on how it is invoked.

The database provides the following types of optimization:

• Normal optimization

The optimizer compiles the SQL and generates an execution plan. The normal mode
generates a reasonable plan for most SQL statements. Under normal mode, the optimizer
operates with strict time constraints, usually a fraction of a second, during which it must
find an optimal plan.

• SQL Tuning Advisor optimization

When SQL Tuning Advisor invokes the optimizer, the optimizer is known as Automatic
Tuning Optimizer. In this case, the optimizer performs additional analysis to further improve
the plan produced in normal mode. The optimizer output is not an execution plan, but a

Chapter 4
About Automatic Tuning Optimizer

4-10

series of actions, along with their rationale and expected benefit for producing a
significantly better plan.

See Also:

• "Analyzing SQL with SQL Tuning Advisor"

• Oracle Database 2 Day + Performance Tuning Guide to learn more about SQL
Tuning Advisor

About Adaptive Query Optimization
In Oracle Database, adaptive query optimization enables the optimizer to make run-time
adjustments to execution plans and discover additional information that can lead to better
statistics.

Adaptive optimization is helpful when existing statistics are not sufficient to generate an optimal
plan. The following graphic shows the feature set for adaptive query optimization.

Figure 4-6 Adaptive Query Optimization

Adaptive
Statistics

SQL Plan
Directives

Dynamic
Statistics

Automatic
Reoptimization

Bitmap
Index Pruning

Join
Methods

Parallel
Distribution

Methods

Adaptive
Plans

Adaptive Query
Optimization

Adaptive Query Plans
An adaptive query plan enables the optimizer to make a plan decision for a statement during
execution.

Adaptive query plans enable the optimizer to fix some classes of problems at run time.
Adaptive plans are enabled by default.

Chapter 4
About Adaptive Query Optimization

4-11

About Adaptive Query Plans
An adaptive query plan contains multiple predetermined subplans, and an optimizer statistics
collector. Based on the statistics collected during execution, the dynamic plan coordinator
chooses the best plan at run time.

Dynamic Plans

To change plans at runtime, adaptive query plans use a dynamic plan, which is represented as
a set of subplan groups. A subplan group is a set of subplans. A subplan is a portion of a plan
that the optimizer can switch to as an alternative at run time. For example, a nested loops join
could switch to a hash join during execution.

The optimizer decides which subplan to use at run time. When notified of a new statistic value
relevant to a subplan group, the coordinator dispatches it to the handler function for this
subgroup.

Figure 4-7 Dynamic Plan Coordinator

Dynamic Plan

Subplan Group

Subplan

Subplan
GB

HJ
HJ

GB

NL
NL

Subplan Group

Subplan

Subplan
GB

HJ
HJ

GB

NL
NL

Dynamic Plan
Coordinator

Optimizer Statistics Collector

An optimizer statistics collector is a row source inserted into a plan at key points to collect run-
time statistics relating to cardinality and histograms. These statistics help the optimizer make a
final decision between multiple subplans. The collector also supports optional buffering up to
an internal threshold.

For parallel buffering statistics collectors, each parallel execution server collects the statistics,
which the parallel query coordinator aggregates and then sends to the clients. In this context, a
client is a consumer of the collected statistics, such as a dynamic plan. Each client specifies a
callback function to be executed on each parallel server or on the query coordinator.

Purpose of Adaptive Query Plans
The ability of the optimizer to adapt a plan, based on statistics obtained during execution, can
greatly improve query performance.

Adaptive query plans are useful because the optimizer occasionally picks a suboptimal default
plan because of a cardinality misestimate. The ability of the optimizer to pick the best plan at
run time based on actual execution statistics results in a more optimal final plan. After choosing

Chapter 4
About Adaptive Query Optimization

4-12

the final plan, the optimizer uses it for subsequent executions, thus ensuring that the
suboptimal plan is not reused.

How Adaptive Query Plans Work
For the first execution of a statement, the optimizer uses the default plan, and then stores an
adaptive plan. The database uses the adaptive plan for subsequent executions unless specific
conditions are met.

During the first execution of a statement, the database performs the following steps:

1. The database begins executing the statement using the default plan.

2. The statistics collector gathers information about the in-progress execution, and buffers
some rows received by the subplan.

For parallel buffering statistics collectors, each slave process collects the statistics, which
the query coordinator aggregates before sending to the clients.

3. Based on the statistics gathered by the collector, the optimizer chooses a subplan.

The dynamic plan coordinator decides which subplan to use at runtime for all such subplan
groups. When notified of a new statistic value relevant to a subplan group, the coordinator
dispatches it to the handler function for this subgroup.

4. The collector stops collecting statistics and buffering rows, permitting rows to pass through
instead.

5. The database stores the adaptive plan in the child cursor, so that the next execution of the
statement can use it.

On subsequent executions of the child cursor, the optimizer continues to use the same
adaptive plan unless one of the following conditions is true, in which case it picks a new plan
for the current execution:

• The current plan ages out of the shared pool.

• A different optimizer feature (for example, adaptive cursor sharing or statistics feedback)
invalidates the current plan.

Adaptive Query Plans: Join Method Example
This example shows how the optimizer can choose a different plan based on information
collected at runtime.

The following query shows a join of the order_items and prod_info tables.

SELECT product_name
FROM order_items o, prod_info p
WHERE o.unit_price = 15
AND quantity > 1
AND p.product_id = o.product_id

An adaptive query plan for this statement shows two possible plans, one with a nested loops
join and the other with a hash join:

SELECT * FROM TABLE(DBMS_XPLAN.display_cursor(FORMAT => 'ADAPTIVE'));

SQL_ID 7hj8dwwy6gm7p, child number 0

Chapter 4
About Adaptive Query Optimization

4-13

SELECT product_name FROM order_items o, prod_info p WHERE
o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id

Plan hash value: 1553478007

| Id | Operation | Name |Rows|Bytes|Cost (%CPU)|Time|

0	SELECT STATEMENT				7(100)	
* 1	HASH JOIN		4	128	7 (0)	00:00:01
- 2	NESTED LOOPS		4	128	7 (0)	00:00:01
- 3	NESTED LOOPS		4	128	7 (0)	00:00:01
- 4	STATISTICS COLLECTOR					
* 5	TABLE ACCESS FULL	ORDER_ITEMS	4	48	3 (0)	00:00:01
-* 6	INDEX UNIQUE SCAN	PROD_INFO_PK	1		0 (0)	
- 7	TABLE ACCESS BY INDEX ROWID	PROD_INFO	1	20	1 (0)	00:00:01
8	TABLE ACCESS FULL	PROD_INFO	1	20	1 (0)	00:00:01

Predicate Information (identified by operation id):

 1 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")
 5 - filter(("O"."UNIT_PRICE"=15 AND "QUANTITY">1))
 6 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")

Note

 - this is an adaptive plan (rows marked '-' are inactive)

A nested loops join is preferable if the database can avoid scanning a significant portion of
prod_info because its rows are filtered by the join predicate. If few rows are filtered, however,
then scanning the right table in a hash join is preferable.

The following graphic shows the adaptive process. For the query in the preceding example, the
adaptive portion of the default plan contains two subplans, each of which uses a different join
method. The optimizer automatically determines when each join method is optimal, depending
on the cardinality of the left side of the join.

The statistics collector buffers enough rows coming from the order_items table to determine
which join method to use. If the row count is below the threshold determined by the optimizer,
then the optimizer chooses the nested loops join; otherwise, the optimizer chooses the hash
join. In this case, the row count coming from the order_items table is above the threshold, so
the optimizer chooses a hash join for the final plan, and disables buffering.

Chapter 4
About Adaptive Query Optimization

4-14

Figure 4-8 Adaptive Join Methods

Nested
Loops

Statistics
Collector

Table scan
order_items

Index scan
prod_info_pk

Hash
Join

Table scan
prod_info

Default plan is a nested loops join

The optimizer buffers rows coming from the order_items table
up to a point. If the row count is less than the threshold,
then use a nested loops join. Otherwise,
switch to a hash join.

Nested
Loops

Statistics
Collector

Table scan
order_items

Index scan
prod_info_pk

Hash
Join

Table scan
prod_info

Final plan is a hash join

The optimizer disables the statistics collector after making the decision,
and lets the rows pass through.

Threshold exceeded,
so subplan switches

The Note section of the execution plan indicates whether the plan is adaptive, and which rows
in the plan are inactive.

See Also:

• "Controlling Adaptive Optimization"

• "Displaying Adaptive Query Plans: Tutorial" for an extended example showing an
adaptive query plan

Chapter 4
About Adaptive Query Optimization

4-15

Adaptive Query Plans: Parallel Distribution Methods
Typically, parallel execution requires data redistribution to perform operations such as parallel
sorts, aggregations, and joins.

Oracle Database can use many different data distributions methods. The database chooses
the method based on the number of rows to be distributed and the number of parallel server
processes in the operation.

For example, consider the following alternative cases:

• Many parallel server processes distribute few rows.

The database may choose the broadcast distribution method. In this case, each parallel
server process receives each row in the result set.

• Few parallel server processes distribute many rows.

If a data skew is encountered during the data redistribution, then it could adversely affect
the performance of the statement. The database is more likely to pick a hash distribution to
ensure that each parallel server process receives an equal number of rows.

The hybrid hash distribution technique is an adaptive parallel data distribution that does not
decide the final data distribution method until execution time. The optimizer inserts statistic
collectors in front of the parallel server processes on the producer side of the operation. If the
number of rows is less than a threshold, defined as twice the degree of parallelism (DOP), then
the data distribution method switches from hash to broadcast. Otherwise, the distribution
method is a hash.

Broadcast Distribution

The following graphic depicts a hybrid hash join between the departments and employees
tables, with a query coordinator directing 8 parallel server processes: P5-P8 are producers,
whereas P1-P4 are consumers. Each producer has its own consumer.

Chapter 4
About Adaptive Query Optimization

4-16

Figure 4-9 Adaptive Query with DOP of 4

departments employees

P1 P2 P3 P4

P5

P6

P7

P8

Statistics collector
threshold is 2X
the DOP

The number of rows
returned is below
threshold, so optimizer
chooses broadcast
method.

Query
Coordinator

1

2

3

4

The database inserts a statistics collector in front of each producer process scanning the
departments table. The query coordinator aggregates the collected statistics. The distribution
method is based on the run-time statistics. In Figure 4-9, the number of rows is below the
threshold (8), which is twice the DOP (4), so the optimizer chooses a broadcast technique for
the departments table.

Hybrid Hash Distribution

Consider an example that returns a greater number of rows. In the following plan, the threshold
is 8, or twice the specified DOP of 4. However, because the statistics collector (Step 10)
discovers that the number of rows (27) is greater than the threshold (8), the optimizer chooses
a hybrid hash distribution rather than a broadcast distribution.

Note:

The values for Name and Time are truncated in the following plan so that the lines can
fit on the page.

EXPLAIN PLAN FOR
 SELECT /*+ parallel(4) full(e) full(d) */ department_name, sum(salary)
 FROM employees e, departments d
 WHERE d.department_id=e.department_id
 GROUP BY department_name;

Chapter 4
About Adaptive Query Optimization

4-17

Plan hash value: 2940813933

|Id|Operation |Name |Rows|Bytes|Cost|Time| TQ |IN-OUT|PQ Distrib|

0	SELECT STATEMENT	DEPARTME	27	621	6(34)	:01			
1	PX COORDINATOR								
2	PX SEND QC (RANDOM)	:TQ10003	27	621	6(34)	:01	Q1,03	P->S	QC (RAND)
3	HASH GROUP BY		27	621	6(34)	:01	Q1,03	PCWP	
4	PX RECEIVE		27	621	6(34)	:01	Q1,03	PCWP	
5	PX SEND HASH	:TQ10002	27	621	6(34)	:01	Q1,02	P->P	HASH
6	HASH GROUP BY		27	621	6(34)	:01	Q1,02	PCWP	
*7	HASH JOIN		106	2438	5(20)	:01	Q1,02	PCWP	
8	PX RECEIVE		27	432	2 (0)	:01	Q1,02	PCWP	
9	PX SEND HYBRID HASH	:TQ10000	27	432	2 (0)	:01	Q1,00	P->P	HYBRID HASH
10	STATISTICS COLLECTOR						Q1,00	PCWC	
11	PX BLOCK ITERATOR		27	432	2 (0)	:01	Q1,00	PCWC	
12	TABLE ACCESS FULL	DEPARTME	27	432	2 (0)	:01	Q1,00	PCWP	
13	PX RECEIVE		107	749	2 (0)	:01	Q1,02	PCWP	
14	PX SEND HYBRID HASH (SKEW)	:TQ10001	107	749	2 (0)	:01	Q1,01	P->P	HYBRID HASH
15	PX BLOCK ITERATOR		107	749	2 (0)	:01	Q1,01	PCWC	
16	TABLE ACCESS FULL	EMPLOYEE	107	749	2 (0)	:01	Q1,01	PCWP	

Predicate Information (identified by operation id):

 7 - access("D"."DEPARTMENT_ID"="E"."DEPARTMENT_ID")

Note

 - Degree of Parallelism is 4 because of hint

32 rows selected.

See Also:

Oracle Database VLDB and Partitioning Guide to learn more about parallel data
redistribution techniques

Adaptive Query Plans: Bitmap Index Pruning
Adaptive plans prune indexes that do not significantly reduce the number of matched rows.

When the optimizer generates a star transformation plan, it must choose the right combination
of bitmap indexes to reduce the relevant set of rowids as efficiently as possible. If many
indexes exist, some indexes might not reduce the rowid set substantially, but nevertheless
introduce significant processing cost during query execution. Adaptive plans can solve this
problem by not using indexes that degrade performance.

Chapter 4
About Adaptive Query Optimization

4-18

Example 4-2 Bitmap Index Pruning

In this example, you issue the following star query, which joins the cars fact table with multiple
dimension tables (sample output included):

SELECT /*+ star_transformation(r) */ l.color_name, k.make_name,
 h.filter_col, count(*)
FROM cars r, colors l, makes k, models d, hcc_tab h
WHERE r.make_id = k.make_id
AND r.color_id = l.color_id
AND r.model_id = d.model_id
AND r.high_card_col = h.high_card_col
AND d.model_name = 'RAV4'
AND k.make_name = 'Toyota'
AND l.color_name = 'Burgundy'
AND h.filter_col = 100
GROUP BY l.color_name, k.make_name, h.filter_col;

COLOR_NA MAKE_N FILTER_COL COUNT(*)
-------- ------ ---------- ----------
Burgundy Toyota 100 15000

The following sample execution plan shows that the query generated no rows for the bitmap
node in Step 12 and Step 17. The adaptive optimizer determined that filtering rows by using
the CAR_MODEL_IDX and CAR_MAKE_IDX indexes was inefficient. The query did not use the steps
in the plan that begin with a dash (-).

| Id | Operation | Name |

0	SELECT STATEMENT	
1	SORT GROUP BY NOSORT	
2	HASH JOIN	
3	VIEW	VW_ST_5497B905
4	NESTED LOOPS	
5	BITMAP CONVERSION TO ROWIDS	
6	BITMAP AND	
7	BITMAP MERGE	
8	BITMAP KEY ITERATION	
9	TABLE ACCESS FULL	COLORS
10	BITMAP INDEX RANGE SCAN	CAR_COLOR_IDX
- 11	STATISTICS COLLECTOR	
- 12	BITMAP MERGE	
- 13	BITMAP KEY ITERATION	
- 14	TABLE ACCESS FULL	MODELS
- 15	BITMAP INDEX RANGE SCAN	CAR_MODEL_IDX
- 16	STATISTICS COLLECTOR	
- 17	BITMAP MERGE	
- 18	BITMAP KEY ITERATION	
- 19	TABLE ACCESS FULL	MAKES
- 20	BITMAP INDEX RANGE SCAN	CAR_MAKE_IDX
21	TABLE ACCESS BY USER ROWID	CARS
22	MERGE JOIN CARTESIAN	
23	MERGE JOIN CARTESIAN	

Chapter 4
About Adaptive Query Optimization

4-19

24	MERGE JOIN CARTESIAN	
25	TABLE ACCESS FULL	MAKES
26	BUFFER SORT	
27	TABLE ACCESS FULL	MODELS
28	BUFFER SORT	
29	TABLE ACCESS FULL	COLORS
30	BUFFER SORT	
31	TABLE ACCESS FULL	HCC_TAB

Note

 - dynamic statistics used: dynamic sampling (level=2)
 - star transformation used for this statement
 - this is an adaptive plan (rows marked '-' are inactive)

When Adaptive Query Plans Are Enabled
Adaptive query plans are enabled by default.

Adaptive plans are enabled when the following initialization parameters are set:

• OPTIMIZER_ADAPTIVE_PLANS is TRUE (default)

• OPTIMIZER_FEATURES_ENABLE is 12.1.0.1 or later

• OPTIMIZER_ADAPTIVE_REPORTING_ONLY is FALSE (default)

Adaptive plans control the following optimizations:

• Nested loops and hash join selection

• Star transformation bitmap pruning

• Adaptive parallel distribution method

See Also:

• "Controlling Adaptive Optimization"

• Oracle Database Reference to learn more about OPTIMIZER_ADAPTIVE_PLANS

Adaptive Statistics
The optimizer can use adaptive statistics when query predicates are too complex to rely on
base table statistics alone. By default, adaptive statistics are disabled
(OPTIMIZER_ADAPTIVE_STATISTICS is false).

Dynamic Statistics
Dynamic statistics are an optimization technique in which the database executes a recursive
SQL statement to scan a small random sample of a table's blocks to estimate predicate
cardinalities.

During SQL compilation, the optimizer decides whether to use dynamic statistics by
considering whether available statistics are sufficient to generate an optimal plan. If the

Chapter 4
About Adaptive Query Optimization

4-20

available statistics are insufficient, then the optimizer uses dynamic statistics to augment the
statistics. To improve the quality of optimizer decisions, the optimizer can use dynamic
statistics for table scans, index access, joins, and GROUP BY operations.

Automatic Reoptimization
In automatic reoptimization, the optimizer changes a plan on subsequent executions after
the initial execution.

Adaptive query plans are not feasible for all kinds of plan changes. For example, a query with
an inefficient join order might perform suboptimally, but adaptive query plans do not support
adapting the join order during execution. At the end of the first execution of a SQL statement,
the optimizer uses the information gathered during execution to determine whether automatic
reoptimization has a cost benefit. If execution information differs significantly from optimizer
estimates, then the optimizer looks for a replacement plan on the next execution.

The optimizer uses the information gathered during the previous execution to help determine
an alternative plan. The optimizer can reoptimize a query several times, each time gathering
additional data and further improving the plan.

Reoptimization: Statistics Feedback
A form of reoptimization known as statistics feedback (formerly known as cardinality
feedback) automatically improves plans for repeated queries that have cardinality
misestimates.

The optimizer can estimate cardinalities incorrectly for many reasons, such as missing
statistics, inaccurate statistics, or complex predicates. The basic process of reoptimization
using statistics feedback is as follows:

1. During the first execution of a SQL statement, the optimizer generates an execution plan.

The optimizer may enable monitoring for statistics feedback for the shared SQL area in the
following cases:

• Tables with no statistics

• Multiple conjunctive or disjunctive filter predicates on a table

• Predicates containing complex operators for which the optimizer cannot accurately
compute selectivity estimates

2. At the end of the first execution, the optimizer compares its initial cardinality estimates to
the actual number of rows returned by each operation in the plan during execution.

If estimates differ significantly from actual cardinalities, then the optimizer stores the
correct estimates for subsequent use. The optimizer also creates a SQL plan directive so
that other SQL statements can benefit from the information obtained during this initial
execution.

3. If the query executes again, then the optimizer uses the corrected cardinality estimates
instead of its usual estimates.

The OPTIMIZER_ADAPTIVE_STATISTICS initialization parameter does not control all features of
automatic reoptimization. Specifically, this parameter controls statistics feedback for join
cardinality only in the context of automatic reoptimization. For example, setting
OPTIMIZER_ADAPTIVE_STATISTICS to FALSE disables statistics feedback for join cardinality
misestimates, but it does not disable statistics feedback for single-table cardinality
misestimates.

Chapter 4
About Adaptive Query Optimization

4-21

Example 4-3 Statistics Feedback

This example shows how the database uses statistics feedback to adjust incorrect estimates.

1. The user oe runs the following query of the orders, order_items, and
product_information tables:

SELECT o.order_id, v.product_name
FROM orders o,
 (SELECT order_id, product_name
 FROM order_items o, product_information p
 WHERE p.product_id = o.product_id
 AND list_price < 50
 AND min_price < 40) v
WHERE o.order_id = v.order_id

2. Querying the plan in the cursor shows that the estimated rows (E-Rows) is far fewer than
the actual rows (A-Rows).

--
| Id | Operation | Name |Starts|E-Rows|A-Rows|A-Time|Buffers|OMem|1Mem|O/1/M|
--
0	SELECT STATEMENT		1		269	00:00:00.14	1338			
1	NESTED LOOPS		1	1	269	00:00:00.14	1338			
2	MERGE JOIN CARTESIAN		1	4	9135	00:00:00.05	33			
*3	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	1	87	00:00:00.01	32			
4	BUFFER SORT		87	105	9135	00:00:00.02	1	4096	4096	1/0/0
5	INDEX FULL SCAN	ORDER_PK	1	105	105	00:00:00.01	1			
*6	INDEX UNIQUE SCAN	ORDER_ITEMS_UK	9135	1	269	00:00:00.04	1305			
--

Predicate Information (identified by operation id):

 3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))
 6 - access("O"."ORDER_ID"="ORDER_ID" AND "P"."PRODUCT_ID"="O"."PRODUCT_ID")

3. The user oe reruns the query in Step 1.

4. Querying the plan in the cursor shows that the optimizer used statistics feedback (shown in
the Note) for the second execution, and also chose a different plan.

--
|Id | Operation | Name | Starts |E-Rows|A-Rows|A-Time|Buffers|Reads|OMem|1Mem|O/1/M|
--
0	SELECT STATEMENT		1		269	00:00:00.05	60	1			
1	NESTED LOOPS		1	269	269	00:00:00.05	60	1			
*2	HASH JOIN		1	313	269	00:00:00.05	39	1	1398K	1398K	1/0/0
*3	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	87	87	00:00:00.01	15	0			
4	INDEX FAST FULL SCAN	ORDER_ITEMS_UK	1	665	665	00:00:00.01	24	1			
*5	INDEX UNIQUE SCAN	ORDER_PK	269	1	269	00:00:00.01	21	0			
--

Predicate Information (identified by operation id):

 2 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")
 3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))
 5 - access("O"."ORDER_ID"="ORDER_ID")

Note

 - statistics feedback used for this statement

Chapter 4
About Adaptive Query Optimization

4-22

In the preceding output, the estimated number of rows (269) in Step 1 matches the actual
number of rows.

Reoptimization: Performance Feedback
Another form of reoptimization is performance feedback. This reoptimization helps improve the
degree of parallelism automatically chosen for repeated SQL statements when
PARALLEL_DEGREE_POLICY is set to ADAPTIVE.

The basic process of reoptimization using performance feedback is as follows:

1. During the first execution of a SQL statement, when PARALLEL_DEGREE_POLICY is set to
ADAPTIVE, the optimizer determines whether to execute the statement in parallel, and if so,
which degree of parallelism to use.

The optimizer chooses the degree of parallelism based on the estimated performance of
the statement. Additional performance monitoring is enabled for all statements.

2. At the end of the initial execution, the optimizer compares the following:

• The degree of parallelism chosen by the optimizer

• The degree of parallelism computed based on the performance statistics (for example,
the CPU time) gathered during the actual execution of the statement

If the two values vary significantly, then the database marks the statement for reparsing,
and stores the initial execution statistics as feedback. This feedback helps better compute
the degree of parallelism for subsequent executions.

3. If the query executes again, then the optimizer uses the performance statistics gathered
during the initial execution to better determine a degree of parallelism for the statement.

Note:

Even if PARALLEL_DEGREE_POLICY is not set to ADAPTIVE, statistics feedback may
influence the degree of parallelism chosen for a statement.

SQL Plan Directives
A SQL plan directive is additional information that the optimizer uses to generate a more
optimal plan.

The directive is a “note to self” by the optimizer that it is misestimating cardinalities of certain
types of predicates, and also a reminder to DBMS_STATS to gather statistics needed to correct
the misestimates in the future.

For example, during query optimization, when deciding whether the table is a candidate for
dynamic statistics, the database queries the statistics repository for directives on a table. If the
query joins two tables that have a data skew in their join columns, then a SQL plan directive
can direct the optimizer to use dynamic statistics to obtain an accurate cardinality estimate.

The optimizer collects SQL plan directives on query expressions rather than at the statement
level so that it can apply directives to multiple SQL statements. The optimizer not only corrects
itself, but also records information about the mistake, so that the database can continue to
correct its estimates even after a query—and any similar query—is flushed from the shared
pool.

Chapter 4
About Adaptive Query Optimization

4-23

The database automatically creates directives, and stores them in the SYSAUX tablespace. You
can alter, save to disk, and transport directives using the PL/SQL package DBMS_SPD.

See Also:

• "SQL Plan Directives"

• "Managing SQL Plan Directives"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPD package

When Adaptive Statistics Are Enabled
Adaptive statistics are disabled by default.

Adaptive statistics are enabled when the following initialization parameters are set:

• OPTIMIZER_ADAPTIVE_STATISTICS is TRUE (the default is FALSE)

• OPTIMIZER_FEATURES_ENABLE is 12.1.0.1 or later

Setting OPTIMIZER_ADAPTIVE_STATISTICS to TRUE enables the following features:

• SQL plan directives

• Statistics feedback for join cardinality

• Adaptive dynamic sampling

Note:

Setting OPTIMIZER_ADAPTIVE_STATISTICS to FALSE preserves statistics feedback for
single-table cardinality misestimates.

See Also:

• "Controlling Adaptive Optimization"

• Oracle Database Reference to learn more about
OPTIMIZER_ADAPTIVE_STATISTICS

About Approximate Query Processing
Approximate query processing is a set of optimization techniques that speed analytic
queries by calculating results within an acceptable range of error.

Business intelligence (BI) queries heavily rely on sorts that involve aggregate functions such as
COUNT DISTINCT, SUM, RANK, and MEDIAN. For example, an application generates reports
showing how many distinct customers are logged on, or which products were most popular last
week. It is not uncommon for BI applications to have the following requirements:

Chapter 4
About Approximate Query Processing

4-24

• Queries must be able to process data sets that are orders of magnitude larger than in
traditional data warehouses.

For example, the daily volumes of web logs of a popular website can reach tens or
hundreds of terabytes a day.

• Queries must provide near real-time response.

For example, a company requires quick detection and response to credit card fraud.

• Explorative queries of large data sets must be fast.

For example, a user might want to find out a list of departments whose sales have
approximately reached a specific threshold. A user would form targeted queries on these
departments to find more detailed information, such as the exact sales number, the
locations of these departments, and so on.

For large data sets, exact aggregation queries consume extensive memory, often spilling to
temp space, and can be unacceptably slow. Applications are often more interested in a general
pattern than exact results, so customers are willing to sacrifice exactitude for speed. For
example, if the goal is to show a bar chart depicting the most popular products, then whether a
product sold 1 million units or .999 million units is statistically insignificant.

Oracle Database implements its solution through approximate query processing. Typically, the
accuracy of the approximate aggregation is over 97% (with 95% confidence), but the
processing time is orders of magnitude faster. The database uses less CPU, and avoids the
I/O cost of writing to temp files.

See Also:

"NDV Algorithms: Adaptive Sampling and HyperLogLog"

Approximate Query Initialization Parameters
You can implement approximate query processing without changing existing code by using the
APPROX_FOR_* initialization parameters.

Set these parameters at the database or session level. The following table describes
initialization parameters and SQL functions relevant to approximation techniques.

Table 4-2 Approximate Query Initialization Parameters

Initialization Parameter Default Description See Also

APPROX_FOR_AGGREGATION FALSE Enables (TRUE) or disables (FALSE)
approximate query processing. This
parameter acts as an umbrella parameter for
enabling the use of functions that return
approximate results.

Oracle
Database
Reference

APPROX_FOR_COUNT_DISTINCT FALSE Converts COUNT(DISTINCT) to
APPROX_COUNT_DISTINCT.

Oracle
Database
Reference

APPROX_FOR_PERCENTILE none Converts eligible exact percentile functions to
their APPROX_PERCENTILE_* counterparts.

Oracle
Database
Reference

Chapter 4
About Approximate Query Processing

4-25

See Also:

• "About Optimizer Initialization Parameters"

• Oracle Database Data Warehousing Guide to learn more about approximate
query processing

Approximate Query SQL Functions
Approximate query processing uses SQL functions to provide real-time responses to
explorative queries where approximations are acceptable.

The following table describes SQL functions that return approximate results.

Table 4-3 Approximate Query User Interface

SQL Function Description See Also

APPROX_COUNT Calculates the approximate top n most common values
when used with the APPROX_RANK function.

Returns the approximate count of an expression. If you
supply MAX_ERROR as the second argument, then the
function returns the maximum error between the actual and
approximate count.

You must use this function with a corresponding
APPROX_RANK function in the HAVING clause. If a query
uses APPROX_COUNT, APPROX_SUM, or APPROX_RANK, then
the query must not use any other non-approximate
aggregation functions.

The following query returns the 10 most common jobs
within every department:

SELECT department_id, job_id,
 APPROX_COUNT(*)
FROM employees
GROUP BY department_id, job_id
HAVING
 APPROX_RANK (
 PARTITION BY department_id
 ORDER BY APPROX_COUNT(*)
 DESC) <= 10;

Oracle Database SQL
Language Reference

APPROX_COUNT_DISTINCT Returns the approximate number of rows that contain
distinct values of an expression.

Oracle Database SQL
Language Reference

APPROX_COUNT_DISTINCT_AGG Aggregates the precomputed approximate count distinct
synopses to a higher level.

Oracle Database SQL
Language Reference

APPROX_COUNT_DISTINCT_DETAIL Returns the synopses of the APPROX_COUNT_DISTINCT
function as a BLOB.

The database can persist the returned result to disk for
further aggregation.

Oracle Database SQL
Language Reference

Chapter 4
About Approximate Query Processing

4-26

Table 4-3 (Cont.) Approximate Query User Interface

SQL Function Description See Also

APPROX_MEDIAN Accepts a numeric or date-time value, and returns an
approximate middle or approximate interpolated value that
would be the middle value when the values are sorted.

This function provides an alternative to the MEDIAN
function.

Oracle Database SQL
Language Reference

APPROX_PERCENTILE Accepts a percentile value and a sort specification, and
returns an approximate interpolated value that falls into
that percentile value with respect to the sort specification.

This function provides an alternative to the
PERCENTILE_CONT function.

Oracle Database SQL
Language Reference

APPROX_RANK Returns the approximate value in a group of values.

This function takes an optional PARTITION BY clause
followed by a mandatory ORDER BY ... DESC clause.
The PARTITION BY key must be a subset of the GROUP
BY key. The ORDER BY clause must include either
APPROX_COUNT or APPROX_SUM.

Oracle Database SQL
Language Reference

APPROX_SUM Calculates the approximate top n accumulated values
when used with the APPROX_RANK function.

If you supply MAX_ERROR as the second argument, then
the function returns the maximum error between the actual
and approximate sum.

You must use this function with a corresponding
APPROX_RANK function in the HAVING clause. If a query
uses APPROX_COUNT, APPROX_SUM, or APPROX_RANK, then
the query must not use any other non-approximate
aggregation functions.

The following query returns the 10 job types within every
department that have the highest aggregate salary:

SELECT department_id, job_id,
 APPROX_SUM(salary)
FROM employees
GROUP BY department_id, job_id
HAVING
 APPROX_RANK (
 PARTITION BY department_id
 ORDER BY APPROX_SUM(salary)
 DESC) <= 10;

Note that APPROX_SUM returns an error when the input is a
negative number.

Oracle Database SQL
Language Reference

See Also:

Oracle Database Data Warehousing Guide to learn more about approximate query
processing

Chapter 4
About Approximate Query Processing

4-27

About SQL Plan Management
SQL plan management enables the optimizer to automatically manage execution plans,
ensuring that the database uses only known or verified plans.

SQL plan management can build a SQL plan baseline, which contains one or more accepted
plans for each SQL statement. The optimizer can access and manage the plan history and
SQL plan baselines of SQL statements. The main objectives are as follows:

• Identify repeatable SQL statements

• Maintain plan history, and possibly SQL plan baselines, for a set of SQL statements

• Detect plans that are not in the plan history

• Detect potentially better plans that are not in the SQL plan baseline

The optimizer uses the normal cost-based search method.

See Also:

• "Managing SQL Plan Baselines"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM package

About Quarantined SQL Plans
Oracle Database automatically quarantines the plans for SQL statements terminated by Oracle
Database Resource Manager (the Resource Manager) for exceeding resource limits.

The Resource Manager can set a maximum estimated execution time for a SQL statement, for
example, 20 minutes. If a statement execution exceeds this limit, then the Resource Manager
terminates the statement. However, the statement may run repeatedly before being terminated,
wasting 20 minutes of resources each time it is executed.

Starting in Oracle Database 19c, if a statement exceeds the specified resource limit, then the
Resource Manager terminates the execution and “quarantines” the plan. To quarantine the
plan means to put it on a blacklist of plans that the database will not execute. Note that the
plan is quarantined, not the statement itself.

The query in our example runs for 20 minutes only once, and then never again—unless the
resource limit increases or the plan changes. If the limit is increased to 25 minutes, then the
Resource Manager permits the statement to run again with the quarantined plan. If the
statement runs for 23 minutes, which is below the new threshold, then the Resource Manager
removes the plan from quarantine. If the statement runs for 26 minutes, which is above the
new threshold, the plan remains in quarantine unless the limit is increased.

The V$SQL.SQL_QUARANTINE column indicates whether a plan was quarantined for a statement
after the Resource Manager canceled execution. The AVOIDED_EXECUTIONS column indicates
how often Oracle Database prevented the statement from running with the quarantined plan.

The DBMS_SQLQ PL/SQL package has program units that enable you to immediately save the
quarantine information to disk, set configuration options for a quarantined plan (or force a plan
to be quarantined), and also drop configuration options. For example, for an individual SQL

Chapter 4
About SQL Plan Management

4-28

statement, you can specify that either a single plan or all plans are quarantined. You can
configure specific thresholds for a quarantined plan, for example, enable a threshold of 10
seconds for CPU time or drop the threshold for I/O requests.

See Also:

• Oracle Database Administrator’s Guide to learn about how the Resource
Manager quarantines plans

• Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_SQLQ

• Oracle Database Reference to learn about V$SQL
• Oracle Database Licensing Information User Manual for details on which features

are supported for different editions and services

About the Expression Statistics Store (ESS)
The Expression Statistics Store (ESS) is a repository maintained by the optimizer to store
statistics about expression evaluation.

When an IM column store is enabled, the database leverages the ESS for its In-Memory
Expressions (IM expressions) feature. However, the ESS is independent of the IM column
store. The ESS is a permanent component of the database and cannot be disabled.

The database uses the ESS to determine whether an expression is “hot” (frequently
accessed), and thus a candidate for an IM expression. During a hard parse of a query, the ESS
looks for active expressions in the SELECT list, WHERE clause, GROUP BY clause, and so on.

For each segment, the ESS maintains expression statistics such as the following:

• Frequency of execution

• Cost of evaluation

• Timestamp evaluation

The optimizer assigns each expression a weighted score based on cost and the number of
times it was evaluated. The values are approximate rather than exact. More active expressions
have higher scores. The ESS maintains an internal list of the most frequently accessed
expressions.

The ESS resides in the SGA and also persists on disk. The database saves the statistics to
disk every 15 minutes, or immediately using the
DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO procedure. The ESS statistics are visible in
the DBA_EXPRESSION_STATISTICS view.

See Also:

• Oracle Database In-Memory Guide to learn more about the ESS

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO

Chapter 4
About the Expression Statistics Store (ESS)

4-29

5
Query Transformations

This chapter describes the most important optimizer techniques for transforming queries.

The optimizer decides whether to use an available transformation based on cost.
Transformations may not be available to the optimizer for a variety of reasons, including hints
or lack of constraints. For example, transformations such as subquery unnesting are not
available for hybrid partitioned tables, which contain external partitions that do not support
constraints.

OR Expansion
In OR expansion, the optimizer transforms a query block containing top-level disjunctions into
the form of a UNION ALL query that contains two or more branches.

The optimizer achieves this goal by splitting the disjunction into its components, and then
associating each component with a branch of a UNION ALL query. The optimizer can choose OR
expansion for various reasons. For example, it may enable more efficient access paths or
alternative join methods that avoid Cartesian products. As always, the optimizer performs the
expansion only if the cost of the transformed statement is lower than the cost of the original
statement.

In previous releases, the optimizer used the CONCATENATION operator to perform the OR
expansion. Starting in Oracle Database 12c Release 2 (12.2), the optimizer uses the UNION-
ALL operator instead. The framework provides the following enhancements:

• Enables interaction among various transformations

• Avoids sharing query structures

• Enables the exploration of various search strategies

• Provides the reuse of cost annotation

• Supports the standard SQL syntax

Example 5-1 Transformed Query: UNION ALL Condition

To prepare for this example, log in to the database as an administrator, execute the following
statements to add a unique constraint to the hr.departments.department_name column, and
then add 100,000 rows to the hr.employees table:

ALTER TABLE hr.departments ADD CONSTRAINT department_name_uk UNIQUE
(department_name);
DELETE FROM hr.employees WHERE employee_id > 999;
DECLARE
v_counter NUMBER(7) := 1000;
BEGIN
 FOR i IN 1..100000 LOOP
 INSERT INTO hr.employees
 VALUES (v_counter,null,'Doe','Doe' || v_counter ||
'@example.com',null,'07-JUN-02','AC_ACCOUNT',null,null,null,50);
 v_counter := v_counter + 1;

5-1

 END LOOP;
END;
/
COMMIT;
EXEC DBMS_STATS.GATHER_TABLE_STATS (ownname => 'hr', tabname => 'employees');

You then connect as the user hr, and execute the following query, which joins the employees
and departments tables:

SELECT *
FROM employees e, departments d
WHERE (e.email='SSTILES' OR d.department_name='Treasury')
AND e.department_id = d.department_id;

Without OR expansion, the optimizer treats e.email='SSTILES' OR
d.department_name='Treasury' as a single unit. Consequently, the optimizer cannot use the
index on either the e.email or d.department_name column, and so performs a full table scan of
employees and departments.

With OR expansion, the optimizer breaks the disjunctive predicate into two independent
predicates, as shown in the following example:

SELECT *
FROM employees e, departments d
WHERE e.email = 'SSTILES'
AND e.department_id = d.department_id
UNION ALL
SELECT *
FROM employees e, departments d
WHERE d.department_name = 'Treasury'
AND e.department_id = d.department_id;

This transformation enables the e.email and d.department_name columns to serve as index
keys. Performance improves because the database filters data using two unique indexes
instead of two full table scans, as shown in the following execution plan:

Plan hash value: 2512933241

| Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time |

0	SELECT STATEMENT				122(100)	
1	VIEW	VW_ORE_19FF4E3E	9102	1679K	122 (5)	00:00:01
2	UNION-ALL					
3	NESTED LOOPS		1	78	4 (0)	00:00:01
4	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	57	3 (0)	00:00:01
*5	INDEX UNIQUE SCAN	EMP_EMAIL_UK	1		2 (0)	00:00:01
6	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1	21	1 (0)	00:00:01
*7	INDEX UNIQUE SCAN	DEPT_ID_PK	1		0 (0)	
8	NESTED LOOPS		9101	693K	118 (5)	00:00:01
9	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1	21	1 (0)	00:00:01
*10	INDEX UNIQUE SCAN	DEPARTMENT_NAME_UK	1		0 (0)	
*11	TABLE ACCESS BY INDEX ROWID BATCH	EMPLOYEES	9101	506K	117 (5)	00:00:01
*12	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	9101		35 (6)	00:00:01

Chapter 5
OR Expansion

5-2

Predicate Information (identified by operation id):

 5 - access("E"."EMAIL"='SSTILES')
 7 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 10 - access("D"."DEPARTMENT_NAME"='Treasury')
 11 - filter(LNNVL("E"."EMAIL"='SSTILES'))
 12 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

35 rows selected.

View Merging
In view merging, the optimizer merges the query block representing a view into the query
block that contains it.

View merging can improve plans by enabling the optimizer to consider additional join orders,
access methods, and other transformations. For example, after a view has been merged and
several tables reside in one query block, a table inside a view may permit the optimizer to use
join elimination to remove a table outside the view.

For certain simple views in which merging always leads to a better plan, the optimizer
automatically merges the view without considering cost. Otherwise, the optimizer uses cost to
make the determination. The optimizer may choose not to merge a view for many reasons,
including cost or validity restrictions.

If OPTIMIZER_SECURE_VIEW_MERGING is true (default), then Oracle Database performs checks
to ensure that view merging and predicate pushing do not violate the security intentions of the
view creator. To disable these additional security checks for a specific view, you can grant the
MERGE VIEW privilege to a user for this view. To disable additional security checks for all views
for a specific user, you can grant the MERGE ANY VIEW privilege to that user.

Note:

You can use hints to override view merging rejected because of cost or heuristics, but
not validity.

See Also:

• Oracle Database SQL Language Reference for more information about the MERGE
ANY VIEW and MERGE VIEW privileges

• Oracle Database Reference for more information about the
OPTIMIZER_SECURE_VIEW_MERGING initialization parameter

Query Blocks in View Merging
The optimizer represents each nested subquery or unmerged view by a separate query block.

Chapter 5
View Merging

5-3

The database optimizes query blocks separately from the bottom up. Thus, the database
optimizes the innermost query block first, generates the part of the plan for it, and then
generates the plan for the outer query block, representing the entire query.

The parser expands each view referenced in a query into a separate query block. The block
essentially represents the view definition, and thus the result of a view. One option for the
optimizer is to analyze the view query block separately, generate a view subplan, and then
process the rest of the query by using the view subplan to generate an overall execution plan.
However, this technique may lead to a suboptimal execution plan because the view is
optimized separately.

View merging can sometimes improve performance. As shown in "Example 5-2", view merging
merges the tables from the view into the outer query block, removing the inner query block.
Thus, separate optimization of the view is not necessary.

Simple View Merging
In simple view merging, the optimizer merges select-project-join views.

For example, a query of the employees table contains a subquery that joins the departments
and locations tables.

Simple view merging frequently results in a more optimal plan because of the additional join
orders and access paths available after the merge. A view may not be valid for simple view
merging because:

• The view contains constructs not included in select-project-join views, including:

– GROUP BY
– DISTINCT
– Outer join

– MODEL
– CONNECT BY
– Set operators

– Aggregation

• The view appears on the right side of a semijoin or antijoin.

• The view contains subqueries in the SELECT list.

• The outer query block contains PL/SQL functions.

• The view participates in an outer join, and does not meet one of the several additional
validity requirements that determine whether the view can be merged.

Example 5-2 Simple View Merging

The following query joins the hr.employees table with the dept_locs_v view, which returns the
street address for each department. dept_locs_v is a join of the departments and locations
tables.

SELECT e.first_name, e.last_name, dept_locs_v.street_address,
 dept_locs_v.postal_code
FROM employees e,
 (SELECT d.department_id, d.department_name,
 l.street_address, l.postal_code
 FROM departments d, locations l

Chapter 5
View Merging

5-4

 WHERE d.location_id = l.location_id) dept_locs_v
WHERE dept_locs_v.department_id = e.department_id
AND e.last_name = 'Smith';

The database can execute the preceding query by joining departments and locations to
generate the rows of the view, and then joining this result to employees. Because the query
contains the view dept_locs_v, and this view contains two tables, the optimizer must use one
of the following join orders:

• employees, dept_locs_v (departments, locations)

• employees, dept_locs_v (locations, departments)

• dept_locs_v (departments, locations), employees
• dept_locs_v (locations, departments), employees
Join methods are also constrained. The index-based nested loops join is not feasible for join
orders that begin with employees because no index exists on the column from this view.
Without view merging, the optimizer generates the following execution plan:

| Id | Operation | Name | Cost (%CPU)|

0	SELECT STATEMENT		7 (15)
* 1	HASH JOIN		7 (15)
2	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	2 (0)
* 3	INDEX RANGE SCAN	EMP_NAME_IX	1 (0)
4	VIEW		5 (20)
* 5	HASH JOIN		5 (20)
6	TABLE ACCESS FULL	LOCATIONS	2 (0)
7	TABLE ACCESS FULL	DEPARTMENTS	2 (0)

Predicate Information (identified by operation id):

1 - access("DEPT_LOCS_V"."DEPARTMENT_ID"="E"."DEPARTMENT_ID")
3 - access("E"."LAST_NAME"='Smith')
5 - access("D"."LOCATION_ID"="L"."LOCATION_ID")

View merging merges the tables from the view into the outer query block, removing the inner
query block. After view merging, the query is as follows:

SELECT e.first_name, e.last_name, l.street_address, l.postal_code
FROM employees e, departments d, locations l
WHERE d.location_id = l.location_id
AND d.department_id = e.department_id
AND e.last_name = 'Smith';

Because all three tables appear in one query block, the optimizer can choose from the
following six join orders:

• employees, departments, locations
• employees, locations, departments
• departments, employees, locations

Chapter 5
View Merging

5-5

• departments, locations, employees
• locations, employees, departments
• locations, departments, employees
The joins to employees and departments can now be index-based. After view merging, the
optimizer chooses the following more efficient plan, which uses nested loops:

| Id | Operation | Name | Cost (%CPU)|

0	SELECT STATEMENT		4 (0)
1	NESTED LOOPS		
2	NESTED LOOPS		4 (0)
3	NESTED LOOPS		3 (0)
4	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	2 (0)
* 5	INDEX RANGE SCAN	EMP_NAME_IX	1 (0)
6	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1 (0)
* 7	INDEX UNIQUE SCAN	DEPT_ID_PK	0 (0)
* 8	INDEX UNIQUE SCAN	LOC_ID_PK	0 (0)
9	TABLE ACCESS BY INDEX ROWID	LOCATIONS	1 (0)

Predicate Information (identified by operation id):

 5 - access("E"."LAST_NAME"='Smith')
 7 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 8 - access("D"."LOCATION_ID"="L"."LOCATION_ID")

See Also:

The Oracle Optimizer blog at https://blogs.oracle.com/optimizer/ to learn about
outer join view merging, which is a special case of simple view merging

Complex View Merging
In view merging, the optimizer merges views containing GROUP BY and DISTINCT views. Like
simple view merging, complex merging enables the optimizer to consider additional join orders
and access paths.

The optimizer can delay evaluation of GROUP BY or DISTINCT operations until after it has
evaluated the joins. Delaying these operations can improve or worsen performance depending
on the data characteristics. If the joins use filters, then delaying the operation until after joins
can reduce the data set on which the operation is to be performed. Evaluating the operation
early can reduce the amount of data to be processed by subsequent joins, or the joins could
increase the amount of data to be processed by the operation. The optimizer uses cost to
evaluate view merging and merges the view only when it is the lower cost option.

Aside from cost, the optimizer may be unable to perform complex view merging for the
following reasons:

• The outer query tables do not have a rowid or unique column.

• The view appears in a CONNECT BY query block.

Chapter 5
View Merging

5-6

• The view contains GROUPING SETS, ROLLUP, or PIVOT clauses.

• The view or outer query block contains the MODEL clause.

Example 5-3 Complex View Joins with GROUP BY

The following view uses a GROUP BY clause:

CREATE VIEW cust_prod_totals_v AS
SELECT SUM(s.quantity_sold) total, s.cust_id, s.prod_id
FROM sales s
GROUP BY s.cust_id, s.prod_id;

The following query finds all of the customers from the United States who have bought at least
100 fur-trimmed sweaters:

SELECT c.cust_id, c.cust_first_name, c.cust_last_name, c.cust_email
FROM customers c, products p, cust_prod_totals_v
WHERE c.country_id = 52790
AND c.cust_id = cust_prod_totals_v.cust_id
AND cust_prod_totals_v.total > 100
AND cust_prod_totals_v.prod_id = p.prod_id
AND p.prod_name = 'T3 Faux Fur-Trimmed Sweater';

The cust_prod_totals_v view is eligible for complex view merging. After merging, the query is
as follows:

SELECT c.cust_id, cust_first_name, cust_last_name, cust_email
FROM customers c, products p, sales s
WHERE c.country_id = 52790
AND c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
AND p.prod_name = 'T3 Faux Fur-Trimmed Sweater'
GROUP BY s.cust_id, s.prod_id, p.rowid, c.rowid, c.cust_email,
c.cust_last_name,
 c.cust_first_name, c.cust_id
HAVING SUM(s.quantity_sold) > 100;

The transformed query is cheaper than the untransformed query, so the optimizer chooses to
merge the view. In the untransformed query, the GROUP BY operator applies to the entire sales
table in the view. In the transformed query, the joins to products and customers filter out a
large portion of the rows from the sales table, so the GROUP BY operation is lower cost. The join
is more expensive because the sales table has not been reduced, but it is not much more
expensive because the GROUP BY operation does not reduce the size of the row set very much
in the original query. If any of the preceding characteristics were to change, merging the view
might no longer be lower cost. The final plan, which does not include a view, is as follows:

--
| Id | Operation | Name | Cost (%CPU)|
--
0	SELECT STATEMENT		2101 (18)
* 1	FILTER		
2	HASH GROUP BY		2101 (18)
* 3	HASH JOIN		2099 (18)
* 4	HASH JOIN		1801 (19)

Chapter 5
View Merging

5-7

* 5	TABLE ACCESS FULL	PRODUCTS	96 (5)
6	TABLE ACCESS FULL	SALES	1620 (15)
* 7	TABLE ACCESS FULL	CUSTOMERS	296 (11)
--
Predicate Information (identified by operation id):

1 - filter(SUM("QUANTITY_SOLD")>100)
3 - access("C"."CUST_ID"="CUST_ID")
4 - access("PROD_ID"="P"."PROD_ID")
5 - filter("P"."PROD_NAME"='T3 Faux Fur-Trimmed Sweater')
7 - filter("C"."COUNTRY_ID"='US')

Example 5-4 Complex View Joins with DISTINCT

The following query of the cust_prod_v view uses a DISTINCT operator:

SELECT c.cust_id, c.cust_first_name, c.cust_last_name, c.cust_email
FROM customers c, products p,
 (SELECT DISTINCT s.cust_id, s.prod_id
 FROM sales s) cust_prod_v
WHERE c.country_id = 52790
AND c.cust_id = cust_prod_v.cust_id
AND cust_prod_v.prod_id = p.prod_id
AND p.prod_name = 'T3 Faux Fur-Trimmed Sweater';

After determining that view merging produces a lower-cost plan, the optimizer rewrites the
query into this equivalent query:

SELECT nwvw.cust_id, nwvw.cust_first_name, nwvw.cust_last_name,
nwvw.cust_email
FROM (SELECT DISTINCT(c.rowid), p.rowid, s.prod_id, s.cust_id,
 c.cust_first_name, c.cust_last_name, c.cust_email
 FROM customers c, products p, sales s
 WHERE c.country_id = 52790
 AND c.cust_id = s.cust_id
 AND s.prod_id = p.prod_id
 AND p.prod_name = 'T3 Faux Fur-Trimmed Sweater') nwvw;

The plan for the preceding query is as follows:

| Id | Operation | Name |

0	SELECT STATEMENT	
1	VIEW	VM_NWVW_1
2	HASH UNIQUE	
* 3	HASH JOIN	
* 4	HASH JOIN	
* 5	TABLE ACCESS FULL	PRODUCTS
6	TABLE ACCESS FULL	SALES
* 7	TABLE ACCESS FULL	CUSTOMERS

Predicate Information (identified by operation id):

Chapter 5
View Merging

5-8

 3 - access("C"."CUST_ID"="S"."CUST_ID")
 4 - access("S"."PROD_ID"="P"."PROD_ID")
 5 - filter("P"."PROD_NAME"='T3 Faux Fur-Trimmed Sweater')
 7 - filter("C"."COUNTRY_ID"='US')

The preceding plan contains a view named vm_nwvw_1, known as a projection view, even after
view merging has occurred. Projection views appear in queries in which a DISTINCT view has
been merged, or a GROUP BY view is merged into an outer query block that also contains GROUP
BY, HAVING, or aggregates. In the latter case, the projection view contains the GROUP BY,
HAVING, and aggregates from the original outer query block.

In the preceding example of a projection view, when the optimizer merges the view, it moves
the DISTINCT operator to the outer query block, and then adds several additional columns to
maintain semantic equivalence with the original query. Afterward, the query can select only the
desired columns in the SELECT list of the outer query block. The optimization retains all of the
benefits of view merging: all tables are in one query block, the optimizer can permute them as
needed in the final join order, and the DISTINCT operation has been delayed until after all of the
joins complete.

Predicate Pushing
In predicate pushing, the optimizer "pushes" the relevant predicates from the containing
query block into the view query block.

For views that are not merged, this technique improves the subplan of the unmerged view. The
database can use the pushed-in predicates to access indexes or to use as filters.

For example, suppose you create a table hr.contract_workers as follows:

DROP TABLE contract_workers;
CREATE TABLE contract_workers AS (SELECT * FROM employees where 1=2);
INSERT INTO contract_workers VALUES (306, 'Bill', 'Jones', 'BJONES',
 '555.555.2000', '07-JUN-02', 'AC_ACCOUNT', 8300, 0,205, 110);
INSERT INTO contract_workers VALUES (406, 'Jill', 'Ashworth', 'JASHWORTH',
 '555.999.8181', '09-JUN-05', 'AC_ACCOUNT', 8300, 0,205, 50);
INSERT INTO contract_workers VALUES (506, 'Marcie', 'Lunsford',
 'MLUNSFORD', '555.888.2233', '22-JUL-01', 'AC_ACCOUNT', 8300,
 0, 205, 110);
COMMIT;
CREATE INDEX contract_workers_index ON contract_workers(department_id);

You create a view that references employees and contract_workers. The view is defined with
a query that uses the UNION set operator, as follows:

CREATE VIEW all_employees_vw AS
 (SELECT employee_id, last_name, job_id, commission_pct, department_id
 FROM employees)
 UNION
 (SELECT employee_id, last_name, job_id, commission_pct, department_id
 FROM contract_workers);

Chapter 5
Predicate Pushing

5-9

You then query the view as follows:

SELECT last_name
FROM all_employees_vw
WHERE department_id = 50;

Because the view is a UNION set query, the optimizer cannot merge the view's query into the
accessing query block. Instead, the optimizer can transform the accessing statement by
pushing its predicate, the WHERE clause condition department_id=50, into the view's UNION set
query. The equivalent transformed query is as follows:

SELECT last_name
FROM (SELECT employee_id, last_name, job_id, commission_pct, department_id
 FROM employees
 WHERE department_id=50
 UNION
 SELECT employee_id, last_name, job_id, commission_pct, department_id
 FROM contract_workers
 WHERE department_id=50);

The transformed query can now consider index access in each of the query blocks.

Subquery Unnesting
In subquery unnesting, the optimizer transforms a nested query into an equivalent join
statement, and then optimizes the join.

This transformation enables the optimizer to consider the subquery tables during access path,
join method, and join order selection. The optimizer can perform this transformation only if the
resulting join statement is guaranteed to return the same rows as the original statement, and if
subqueries do not contain aggregate functions such as AVG.

For example, suppose you connect as user sh and execute the following query:

SELECT *
FROM sales
WHERE cust_id IN (SELECT cust_id
 FROM customers);

Because the customers.cust_id column is a primary key, the optimizer can transform the
complex query into the following join statement that is guaranteed to return the same data:

SELECT sales.*
FROM sales, customers
WHERE sales.cust_id = customers.cust_id;

If the optimizer cannot transform a complex statement into a join statement, it selects
execution plans for the parent statement and the subquery as though they were separate
statements. The optimizer then executes the subquery and uses the rows returned to execute
the parent query. To improve execution speed of the overall execution plan, the optimizer
orders the subplans efficiently.

Chapter 5
Subquery Unnesting

5-10

Query Rewrite with Materialized Views
A materialized view is a query result stored in a table.

When the optimizer finds a user query compatible with the query associated with a
materialized view, the database can rewrite the query in terms of the materialized view. This
technique improves query execution because the database has precomputed most of the
query result.

The optimizer looks for materialized views that are compatible with the user query, and then
uses a cost-based algorithm to select materialized views to rewrite the query. The optimizer
does not rewrite the query when the plan generated unless the materialized views has a lower
cost than the plan generated with the materialized views.

See Also:

Oracle Database Data Warehousing Guide to learn more about query rewrite

About Query Rewrite and the Optimizer
A query undergoes several checks to determine whether it is a candidate for query rewrite.

If the query fails any check, then the query is applied to the detail tables rather than the
materialized view. The inability to rewrite can be costly in terms of response time and
processing power.

The optimizer uses two different methods to determine when to rewrite a query in terms of a
materialized view. The first method matches the SQL text of the query to the SQL text of the
materialized view definition. If the first method fails, then the optimizer uses the more general
method in which it compares joins, selections, data columns, grouping columns, and aggregate
functions between the query and materialized views.

Query rewrite operates on queries and subqueries in the following types of SQL statements:

• SELECT
• CREATE TABLE … AS SELECT
• INSERT INTO … SELECT
It also operates on subqueries in the set operators UNION, UNION ALL , INTERSECT, and MINUS,
and subqueries in DML statements such as INSERT, DELETE, and UPDATE.

Dimensions, constraints, and rewrite integrity levels affect whether a query is rewritten to use
materialized views. Additionally, query rewrite can be enabled or disabled by REWRITE and
NOREWRITE hints and the QUERY_REWRITE_ENABLED session parameter.

The DBMS_MVIEW.EXPLAIN_REWRITE procedure advises whether query rewrite is possible on a
query and, if so, which materialized views are used. It also explains why a query cannot be
rewritten.

About Initialization Parameters for Query Rewrite
Query rewrite behavior is controlled by certain database initialization parameters.

Chapter 5
Query Rewrite with Materialized Views

5-11

Table 5-1 Initialization Parameters that Control Query Rewrite Behavior

Initialization Parameter Name Initialization Parameter
Value

Behavior of Query Rewrite

OPTIMIZER_MODE ALL_ROWS (default),
FIRST_ROWS, or
FIRST_ROWS_n

With OPTIMIZER_MODE set to FIRST_ROWS, the
optimizer uses a mix of costs and heuristics to find a
best plan for fast delivery of the first few rows. When set
to FIRST_ROWS_n, the optimizer uses a cost-based
approach and optimizes with a goal of best response
time to return the first n rows (where n = 1, 10, 100,
1000).

QUERY_REWRITE_ENABLED TRUE (default), FALSE, or
FORCE

This option enables the query rewrite feature of the
optimizer, enabling the optimizer to utilize materialized
views to enhance performance. If set to FALSE, this
option disables the query rewrite feature of the optimizer
and directs the optimizer not to rewrite queries using
materialized views even when the estimated query cost
of the unrewritten query is lower.

If set to FORCE, this option enables the query rewrite
feature of the optimizer and directs the optimizer to
rewrite queries using materialized views even when the
estimated query cost of the unrewritten query is lower.

QUERY_REWRITE_INTEGRITY STALE_TOLERATED, TRUSTED,
or ENFORCED (the default)

This parameter is optional. However, if it is set, the value
must be one of these specified in the Initialization
Parameter Value column.

By default, the integrity level is set to ENFORCED. In this
mode, all constraints must be validated. Therefore, if you
use ENABLE NOVALIDATE RELY , certain types of query
rewrite might not work. To enable query rewrite in this
environment (where constraints have not been
validated), you should set the integrity level to a lower
level of granularity such as TRUSTED or
STALE_TOLERATED.

Related Topics

• About the Accuracy of Query Rewrite
Query rewrite offers three levels of rewrite integrity that are controlled by the initialization
parameter QUERY_REWRITE_INTEGRITY.

About the Accuracy of Query Rewrite
Query rewrite offers three levels of rewrite integrity that are controlled by the initialization
parameter QUERY_REWRITE_INTEGRITY.

The values that you can set for the QUERY_REWRITE_INTEGRITY parameter are as follows:

• ENFORCED
This is the default mode. The optimizer only uses fresh data from the materialized views
and only use those relationships that are based on ENABLED VALIDATED primary, unique, or
foreign key constraints.

• TRUSTED
In TRUSTED mode, the optimizer trusts that the relationships declared in dimensions and
RELY constraints are correct. In this mode, the optimizer also uses prebuilt materialized

Chapter 5
Query Rewrite with Materialized Views

5-12

views or materialized views based on views, and it uses relationships that are not enforced
as well as those that are enforced. It also trusts declared but not ENABLED VALIDATED
primary or unique key constraints and data relationships specified using dimensions. This
mode offers greater query rewrite capabilities but also creates the risk of incorrect results if
any of the trusted relationships you have declared are incorrect.

• STALE_TOLERATED
In STALE_TOLERATED mode, the optimizer uses materialized views that are valid but contain
stale data as well as those that contain fresh data. This mode offers the maximum rewrite
capability but creates the risk of generating inaccurate results.

If rewrite integrity is set to the safest level, ENFORCED, the optimizer uses only enforced primary
key constraints and referential integrity constraints to ensure that the results of the query are
the same as the results when accessing the detail tables directly.

If the rewrite integrity is set to levels other than ENFORCED, there are several situations where
the output with rewrite can be different from that without it:

• A materialized view can be out of synchronization with the master copy of the data. This
generally happens because the materialized view refresh procedure is pending following
bulk load or DML operations to one or more detail tables of a materialized view. At some
data warehouse sites, this situation is desirable because it is not uncommon for some
materialized views to be refreshed at certain time intervals.

• The relationships implied by the dimension objects are invalid. For example, values at a
certain level in a hierarchy do not roll up to exactly one parent value.

• The values stored in a prebuilt materialized view table might be incorrect.

• A wrong answer can occur because of bad data relationships defined by unenforced table
or view constraints.

You can set QUERY_REWRITE_INTEGRITY either in your initialization parameter file or using an
ALTER SYSTEM or ALTER SESSION statement.

Example of Query Rewrite
This example illustrates the power of query rewrite with materialized views.

Consider the following materialized view, cal_month_sales_mv, which provides an aggregation
of the dollar amount sold in every month:

CREATE MATERIALIZED VIEW cal_month_sales_mv
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Let us assume that, in a typical month, the number of sales in the store is around one million.
So this materialized aggregate view has the precomputed aggregates for the dollar amount
sold for each month.

Consider the following query, which asks for the sum of the amount sold at the store for each
calendar month:

SELECT t.calendar_month_desc, SUM(s.amount_sold)
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Chapter 5
Query Rewrite with Materialized Views

5-13

In the absence of the previous materialized view and query rewrite feature, Oracle Database
must access the sales table directly and compute the sum of the amount sold to return the
results. This involves reading many million rows from the sales table, which will invariably
increase the query response time due to the disk access. The join in the query will also further
slow down the query response as the join needs to be computed on many million rows.

In the presence of the materialized view cal_month_sales_mv, query rewrite will transparently
rewrite the previous query into the following query:

SELECT calendar_month, dollars
FROM cal_month_sales_mv;

Because there are only a few dozen rows in the materialized view cal_month_sales_mv and no
joins, Oracle Database returns the results instantly.

Star Transformation
Star transformation is an optimizer transformation that avoids full table scans of fact tables in a
star schema.

About Star Schemas
A star schema divides data into facts and dimensions.

Facts are the measurements of an event such as a sale and are typically numbers.
Dimensions are the categories that identify facts, such as date, location, and product.

A fact table has a composite key made up of the primary keys of the dimension tables of the
schema. Dimension tables act as lookup or reference tables that enable you to choose values
that constrain your queries.

Diagrams typically show a central fact table with lines joining it to the dimension tables, giving
the appearance of a star. The following graphic shows sales as the fact table and products,
times, customers, and channels as the dimension tables.

Figure 5-1 Star Schema

customers

products

Dimension Table Dimension Table

channels

sales

(amount_sold,

quantity_sold)

times

Fact Table

A snowflake schema is a star schema in which the dimension tables reference other tables. A
snowstorm schema is a combination of snowflake schemas.

Chapter 5
Star Transformation

5-14

See Also:

Oracle Database Data Warehousing Guide to learn more about star schemas

Purpose of Star Transformations
In joins of fact and dimension tables, a star transformation can avoid a full scan of a fact table.

The star transformation improves performance by fetching only relevant fact rows that join to
the constraint dimension rows. In some cases, queries have restrictive filters on other columns
of the dimension tables. The combination of filters can dramatically reduce the data set that the
database processes from the fact table.

How Star Transformation Works
Star transformation adds subquery predicates, called bitmap semijoin predicates,
corresponding to the constraint dimensions.

The optimizer performs the transformation when indexes exist on the fact join columns. By
driving bitmap AND and OR operations of key values supplied by the subqueries, the database
only needs to retrieve relevant rows from the fact table. If the predicates on the dimension
tables filter out significant data, then the transformation can be more efficient than a full scan
on the fact table.

After the database has retrieved the relevant rows from the fact table, the database may need
to join these rows back to the dimension tables using the original predicates. The database can
eliminate the join back of the dimension table when the following conditions are met:

• All the predicates on dimension tables are part of the semijoin subquery predicate.

• The columns selected from the subquery are unique.

• The dimension columns are not in the SELECT list, GROUP BY clause, and so on.

Controls for Star Transformation
The STAR_TRANSFORMATION_ENABLED initialization parameter controls star transformations.

This parameter takes the following values:

• true
The optimizer performs the star transformation by identifying the fact and constraint
dimension tables automatically. The optimizer performs the star transformation only if the
cost of the transformed plan is lower than the alternatives. Also, the optimizer attempts
temporary table transformation automatically whenever materialization improves
performance (see "Temporary Table Transformation: Scenario").

• false (default)

The optimizer does not perform star transformations.

• TEMP_DISABLE
This value is identical to true except that the optimizer does not attempt temporary table
transformation.

Chapter 5
Star Transformation

5-15

See Also:

Oracle Database Reference to learn about the STAR_TRANSFORMATION_ENABLED
initialization parameter

Star Transformation: Scenario
This scenario demonstrates a star transformation of a star query.

Example 5-5 Star Query

The following query finds the total Internet sales amount in all cities in California for quarters
Q1 and Q2 of year 1999:

SELECT c.cust_city,
 t.calendar_quarter_desc,
 SUM(s.amount_sold) sales_amount
FROM sales s,
 times t,
 customers c,
 channels ch
WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id
AND s.channel_id = ch.channel_id
AND c.cust_state_province = 'CA'
AND ch.channel_desc = 'Internet'
AND t.calendar_quarter_desc IN ('1999-01','1999-02')
GROUP BY c.cust_city, t.calendar_quarter_desc;

Sample output is as follows:

CUST_CITY CALENDA SALES_AMOUNT
------------------------------ ------- ------------
Montara 1999-02 1618.01
Pala 1999-01 3263.93
Cloverdale 1999-01 52.64
Cloverdale 1999-02 266.28
. . .

In this example, sales is the fact table, and the other tables are dimension tables. The sales
table contains one row for every sale of a product, so it could conceivably contain billions of
sales records. However, only a few products are sold to customers in California through the
Internet for the specified quarters.

Example 5-6 Star Transformation

This example shows a star transformation of the query in Example 5-5. The transformation
avoids a full table scan of sales.

SELECT c.cust_city, t.calendar_quarter_desc, SUM(s.amount_sold) sales_amount
FROM sales s, times t, customers c
WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id

Chapter 5
Star Transformation

5-16

AND c.cust_state_province = 'CA'
AND t.calendar_quarter_desc IN ('1999-01','1999-02')
AND s.time_id IN (SELECT time_id
 FROM times
 WHERE calendar_quarter_desc IN('1999-01','1999-02'))
AND s.cust_id IN (SELECT cust_id
 FROM customers
 WHERE cust_state_province='CA')
AND s.channel_id IN (SELECT channel_id
 FROM channels
 WHERE channel_desc = 'Internet')
GROUP BY c.cust_city, t.calendar_quarter_desc;

Example 5-7 Partial Execution Plan for Star Transformation

This example shows an edited version of the execution plan for the star transformation in
Example 5-6.

Line 26 shows that the sales table has an index access path instead of a full table scan. For
each key value that results from the subqueries of channels (line 14), times (line 19), and
customers (line 24), the database retrieves a bitmap from the indexes on the sales fact table
(lines 15, 20, 25).

Each bit in the bitmap corresponds to a row in the fact table. The bit is set when the key value
from the subquery is same as the value in the row of the fact table. For example, in the bitmap
101000... (the ellipses indicates that the values for the remaining rows are 0), rows 1 and 3 of
the fact table have matching key values from the subquery.

The operations in lines 12, 17, and 22 iterate over the keys from the subqueries and retrieve
the corresponding bitmaps. In Example 5-6, the customers subquery seeks the IDs of
customers whose state or province is CA. Assume that the bitmap 101000... corresponds to
the customer ID key value 103515 from the customers table subquery. Also assume that the
customers subquery produces the key value 103516 with the bitmap 010000..., which means
that only row 2 in sales has a matching key value from the subquery.

The database merges (using the OR operator) the bitmaps for each subquery (lines 11, 16, 21).
In our customers example, the database produces a single bitmap 111000... for the
customers subquery after merging the two bitmaps:

101000... # bitmap corresponding to key 103515
010000... # bitmap corresponding to key 103516

111000... # result of OR operation

In line 10, the database applies the AND operator to the merged bitmaps. Assume that after the
database has performed all OR operations, the resulting bitmap for channels is 100000... If the
database performs an AND operation on this bitmap and the bitmap from customers subquery,
then the result is as follows:

100000... # channels bitmap after all OR operations performed
111000... # customers bitmap after all OR operations performed

100000... # bitmap result of AND operation for channels and customers

Chapter 5
Star Transformation

5-17

In line 9, the database generates the corresponding rowids of the final bitmap. The database
retrieves rows from the sales fact table using the rowids (line 26). In our example, the
database generate only one rowid, which corresponds to the first row, and thus fetches only a
single row instead of scanning the entire sales table.

| Id | Operation | Name

0	SELECT STATEMENT
1	HASH GROUP BY
* 2	HASH JOIN
* 3	TABLE ACCESS FULL
* 4	HASH JOIN
* 5	TABLE ACCESS FULL
6	VIEW
7	NESTED LOOPS
8	PARTITION RANGE SUBQUERY
9	BITMAP CONVERSION TO ROWIDS
10	BITMAP AND
11	BITMAP MERGE
12	BITMAP KEY ITERATION
13	BUFFER SORT
* 14	TABLE ACCESS FULL
* 15	BITMAP INDEX RANGE SCAN
16	BITMAP MERGE
17	BITMAP KEY ITERATION
18	BUFFER SORT
* 19	TABLE ACCESS FULL
* 20	BITMAP INDEX RANGE SCAN
21	BITMAP MERGE
22	BITMAP KEY ITERATION
23	BUFFER SORT
* 24	TABLE ACCESS FULL
* 25	BITMAP INDEX RANGE SCAN
26	TABLE ACCESS BY USER ROWID

Predicate Information (identified by operation id):

 2 - access("ITEM_1"="C"."CUST_ID")
 3 - filter("C"."CUST_STATE_PROVINCE"='CA')
 4 - access("ITEM_2"="T"."TIME_ID")
 5 - filter(("T"."CALENDAR_QUARTER_DESC"='1999-01'
 OR "T"."CALENDAR_QUARTER_DESC"='1999-02'))
 14 - filter("CH"."CHANNEL_DESC"='Internet')
 15 - access("S"."CHANNEL_ID"="CH"."CHANNEL_ID")
 19 - filter(("T"."CALENDAR_QUARTER_DESC"='1999-01'
 OR "T"."CALENDAR_QUARTER_DESC"='1999-02'))
 20 - access("S"."TIME_ID"="T"."TIME_ID")
 24 - filter("C"."CUST_STATE_PROVINCE"='CA')
 25 - access("S"."CUST_ID"="C"."CUST_ID")

Note

Chapter 5
Star Transformation

5-18

 - star transformation used for this statement

Temporary Table Transformation: Scenario
In the preceding scenario, the optimizer does not join back the table channels to the sales
table because it is not referenced outside and the channel_id is unique.

If the optimizer cannot eliminate the join back, however, then the database stores the subquery
results in a temporary table to avoid rescanning the dimension table for bitmap key generation
and join back. Also, if the query runs in parallel, then the database materializes the results so
that each parallel execution server can select the results from the temporary table instead of
executing the subquery again.

Example 5-8 Star Transformation Using Temporary Table

In this example, the database materializes the results of the subquery on customers into a
temporary table:

SELECT t1.c1 cust_city, t.calendar_quarter_desc calendar_quarter_desc,
 SUM(s.amount_sold) sales_amount
FROM sales s, sh.times t, sys_temp_0fd9d6621_e7e24 t1
WHERE s.time_id=t.time_id
AND s.cust_id=t1.c0
AND (t.calendar_quarter_desc='1999-q1' OR t.calendar_quarter_desc='1999-
q2')
AND s.cust_id IN (SELECT t1.c0
 FROM sys_temp_0fd9d6621_e7e24 t1)
AND s.channel_id IN (SELECT ch.channel_id
 FROM channels ch
 WHERE ch.channel_desc='internet')
AND s.time_id IN (SELECT t.time_id
 FROM times t
 WHERE t.calendar_quarter_desc='1999-q1'
 OR t.calendar_quarter_desc='1999-q2')
GROUP BY t1.c1, t.calendar_quarter_desc

The optimizer replaces customers with the temporary table sys_temp_0fd9d6621_e7e24, and
replaces references to columns cust_id and cust_city with the corresponding columns of the
temporary table. The database creates the temporary table with two columns: (c0 NUMBER, c1
VARCHAR2(30)). These columns correspond to cust_id and cust_city of the customers table.
The database populates the temporary table by executing the following query at the beginning
of the execution of the previous query:

SELECT c.cust_id, c.cust_city FROM customers WHERE c.cust_state_province =
'CA'

Example 5-9 Partial Execution Plan for Star Transformation Using Temporary Table

The following example shows an edited version of the execution plan for the query in
Example 5-8:

| Id | Operation | Name

Chapter 5
Star Transformation

5-19

0	SELECT STATEMENT
1	TEMP TABLE TRANSFORMATION
2	LOAD AS SELECT
* 3	TABLE ACCESS FULL
4	HASH GROUP BY
* 5	HASH JOIN
6	TABLE ACCESS FULL
* 7	HASH JOIN
* 8	TABLE ACCESS FULL
9	VIEW
10	NESTED LOOPS
11	PARTITION RANGE SUBQUERY
12	BITMAP CONVERSION TO ROWIDS
13	BITMAP AND
14	BITMAP MERGE
15	BITMAP KEY ITERATION
16	BUFFER SORT
* 17	TABLE ACCESS FULL
* 18	BITMAP INDEX RANGE SCAN
19	BITMAP MERGE
20	BITMAP KEY ITERATION
21	BUFFER SORT
* 22	TABLE ACCESS FULL
* 23	BITMAP INDEX RANGE SCAN
24	BITMAP MERGE
25	BITMAP KEY ITERATION
26	BUFFER SORT
27	TABLE ACCESS FULL
* 28	BITMAP INDEX RANGE SCAN
29	TABLE ACCESS BY USER ROWID

Predicate Information (identified by operation id):

 3 - filter("C"."CUST_STATE_PROVINCE"='CA')
 5 - access("ITEM_1"="C0")
 7 - access("ITEM_2"="T"."TIME_ID")
 8 - filter(("T"."CALENDAR_QUARTER_DESC"='1999-01' OR
 "T"."CALENDAR_QUARTER_DESC"='1999-02'))
 17 - filter("CH"."CHANNEL_DESC"='Internet')
 18 - access("S"."CHANNEL_ID"="CH"."CHANNEL_ID")
 22 - filter(("T"."CALENDAR_QUARTER_DESC"='1999-01' OR
 "T"."CALENDAR_QUARTER_DESC"='1999-02'))
 23 - access("S"."TIME_ID"="T"."TIME_ID")
 28 - access("S"."CUST_ID"="C0")

Lines 1, 2, and 3 of the plan materialize the customers subquery into the temporary table. In
line 6, the database scans the temporary table (instead of the subquery) to build the bitmap
from the fact table. Line 27 scans the temporary table for joining back instead of scanning
customers. The database does not need to apply the filter on customers on the temporary
table because the filter is applied while materializing the temporary table.

Chapter 5
Star Transformation

5-20

In-Memory Aggregation (VECTOR GROUP BY)
The key optimization of in-memory aggregation is to aggregate while scanning.

To optimize query blocks involving aggregation and joins from a single large table to multiple
small tables, such as in a typical star query, the transformation uses KEY VECTOR and VECTOR
GROUP BY operations. These operations use efficient in-memory arrays for joins and
aggregation, and are especially effective when the underlying tables are in-memory columnar
tables.

See Also:

Oracle Database In-Memory Guide to learn more about in-memory aggregation

Cursor-Duration Temporary Tables
To materialize the intermediate results of a query, Oracle Database may implicitly create a
cursor-duration temporary table in memory during query compilation.

Purpose of Cursor-Duration Temporary Tables
Complex queries sometimes process the same query block multiple times, which creates
unnecessary performance overhead.

To avoid this scenario, Oracle Database can automatically create temporary tables for the
query results and store them in memory for the duration of the cursor. For complex operations
such as WITH clause queries, star transformations, and grouping sets, this optimization
enhances the materialization of intermediate results from repetitively used subqueries. In this
way, cursor-duration temporary tables improve performance and optimize I/O.

How Cursor-Duration Temporary Tables Work
The definition of the cursor-definition temporary table resides in memory. The table definition is
associated with the cursor, and is only visible to the session executing the cursor.

When using cursor-duration temporary tables, the database performs the following steps:

1. Chooses a plan that uses a cursor-duration temporary table

2. Creates the temporary table using a unique name

3. Rewrites the query to refer to the temporary table

4. Loads data into memory until no memory remains, in which case it creates temporary
segments on disk

5. Executes the query, returning data from the temporary table

6. Truncates the table, releasing memory and any on-disk temporary segments

Chapter 5
In-Memory Aggregation (VECTOR GROUP BY)

5-21

Note:

The metadata for the cursor-duration temporary table stays in memory as long as the
cursor is in memory. The metadata is not stored in the data dictionary, which means it
is not visible through data dictionary views. You cannot drop the metadata explicitly.

The preceding scenario depends on the availability of memory. For serial queries, the
temporary tables use PGA memory.

The implementation of cursor-duration temporary tables is similar to sorts. If no more memory
is available, then the database writes data to temporary segments. For cursor-duration
temporary tables, the differences are as follows:

• The database releases memory and temporary segments at the end of the query rather
than when the row source is no longer active.

• Data in memory stays in memory, unlike in sorts where data can move between memory
and temporary segments.

When the database uses cursor-duration temporary tables, the keyword CURSOR DURATION
MEMORY appears in the execution plan.

Cursor-Duration Temporary Tables: Example
A WITH query that repeats the same subquery can sometimes benefit from a cursor-duration
temporary table.

The following query uses a WITH clause to create three subquery blocks:

WITH
 q1 AS (SELECT department_id, SUM(salary) sum_sal FROM hr.employees GROUP BY
department_id),
 q2 AS (SELECT * FROM q1),
 q3 AS (SELECT department_id, sum_sal FROM q1)
SELECT * FROM q1
UNION ALL
SELECT * FROM q2
UNION ALL
SELECT * FROM q3;

The following sample plan shows the transformation:

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'BASIC +ROWS +COST'));

PLAN_TABLE_OUTPUT

| Id | Operation | Name |Rows |Cost (%CPU)|

0	SELECT STATEMENT			6 (100)
1	TEMP TABLE TRANSFORMATION			
2	LOAD AS SELECT (CURSOR DURATION MEMORY)	SYS_TEMP_0FD9D6606_1AE004		
3	HASH GROUP BY		11	3 (34)
4	TABLE ACCESS FULL	EMPLOYEES	107	2 (0)
5	UNION-ALL			

Chapter 5
Cursor-Duration Temporary Tables

5-22

6	VIEW		11	2 (0)
7	TABLE ACCESS FULL	SYS_TEMP_0FD9D6606_1AE004	11	2 (0)
8	VIEW		11	2 (0)
9	TABLE ACCESS FULL	SYS_TEMP_0FD9D6606_1AE004	11	2 (0)
10	VIEW		11	2 (0)
11	TABLE ACCESS FULL	SYS_TEMP_0FD9D6606_1AE004	11	2 (0)

In the preceding plan, TEMP TABLE TRANSFORMATION in Step 1 indicates that the database used
cursor-duration temporary tables to execute the query. The CURSOR DURATION MEMORY keyword
in Step 2 indicates that the database used memory, if available, to store the results of
SYS_TEMP_0FD9D6606_1AE004. If memory was unavailable, then the database wrote the
temporary data to disk.

Table Expansion
In table expansion, the optimizer generates a plan that uses indexes on the read-mostly
portion of a partitioned table, but not on the active portion of the table.

Purpose of Table Expansion
Index-based plans can improve performance, but index maintenance creates overhead. In
many databases, DML affects only a small portion of the data.

Table expansion uses index-based plans for high-update tables. You can create an index only
on the read-mostly data, eliminating index overhead on the active data. In this way, table
expansion improves performance while avoiding index maintenance.

How Table Expansion Works
Table partitioning makes table expansion possible.

If a local index exists on a partitioned table, then the optimizer can mark the index as unusable
for specific partitions. In effect, some partitions are not indexed.

In table expansion, the optimizer transforms the query into a UNION ALL statement, with some
subqueries accessing indexed partitions and other subqueries accessing unindexed partitions.
The optimizer can choose the most efficient access method available for a partition, regardless
of whether it exists for all of the partitions accessed in the query.

The optimizer does not always choose table expansion:

• Table expansion is cost-based.

While the database accesses each partition of the expanded table only once across all
branches of the UNION ALL, any tables that the database joins to it are accessed in each
branch.

• Semantic issues may render expansion invalid.

For example, a table appearing on the right side of an outer join is not valid for table
expansion.

You can control table expansion with the hint EXPAND_TABLE hint. The hint overrides the cost-
based decision, but not the semantic checks.

Chapter 5
Table Expansion

5-23

See Also:

• "Influencing the Optimizer with Hints"

• Oracle Database SQL Language Reference to learn more about SQL hints

Table Expansion: Scenario
The optimizer keeps track of which partitions must be accessed from each table, based on
predicates that appear in the query. Partition pruning enables the optimizer to use table
expansion to generate more optimal plans.

Assumptions

This scenario assumes the following:

• You want to run a star query against the sh.sales table, which is range-partitioned on the
time_id column.

• You want to disable indexes on specific partitions to see the benefits of table expansion.

To use table expansion:

1. Log in to the database as the sh user.

2. Run the following query:

SELECT *
FROM sales
WHERE time_id >= TO_DATE('2000-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')
AND prod_id = 38;

3. Explain the plan by querying DBMS_XPLAN:

SET LINESIZE 150
SET PAGESIZE 0
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(format =>
'BASIC,PARTITION'));

As shown in the Pstart and Pstop columns in the following plan, the optimizer determines
from the filter that only 16 of the 28 partitions in the table must be accessed:

Plan hash value: 3087065703

--
|Id| Operation | Name |Pstart|Pstop|
--
0	SELECT STATEMENT			
1	PARTITION RANGE ITERATOR		13	28
2	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	SALES	13	28
3	BITMAP CONVERSION TO ROWIDS			
*4	BITMAP INDEX SINGLE VALUE	SALES_PROD_BIX	13	28
--

Chapter 5
Table Expansion

5-24

Predicate Information (identified by operation id):

 4 - access("PROD_ID"=38)

After the optimizer has determined the partitions to be accessed, it considers any index
that is usable on all of those partitions. In the preceding plan, the optimizer chose to use
the sales_prod_bix bitmap index.

4. Disable the index on the SALES_1995 partition of the sales table:

ALTER INDEX sales_prod_bix MODIFY PARTITION sales_1995 UNUSABLE;

The preceding DDL disables the index on partition 1, which contains all sales from before
1996.

Note:

You can obtain the partition information by querying the USER_IND_PARTITIONS
view.

5. Execute the query of sales again, and then query DBMS_XPLAN to obtain the plan.

The output shows that the plan did not change:

Plan hash value: 3087065703

--
|Id| Operation | Name |Pstart|Pstop
--
0	SELECT STATEMENT			
1	PARTITION RANGE ITERATOR		13	28
2	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	SALES	13	28
3	BITMAP CONVERSION TO ROWIDS			
*4	BITMAP INDEX SINGLE VALUE	SALES_PROD_BIX	13	28
--

Predicate Information (identified by operation id):

 4 - access("PROD_ID"=38)

The plan is the same because the disabled index partition is not relevant to the query. If all
partitions that the query accesses are indexed, then the database can answer the query
using the index. Because the query only accesses partitions 16 through 28, disabling the
index on partition 1 does not affect the plan.

6. Disable the indexes for partition 28 (SALES_Q4_2003), which is a partition that the query
needs to access:

ALTER INDEX sales_prod_bix MODIFY PARTITION sales_q4_2003 UNUSABLE;
ALTER INDEX sales_time_bix MODIFY PARTITION sales_q4_2003 UNUSABLE;

Chapter 5
Table Expansion

5-25

By disabling the indexes on a partition that the query does need to access, the query can
no longer use this index (without table expansion).

7. Query the plan using DBMS_XPLAN.

As shown in the following plan, the optimizer does not use the index:

Plan hash value: 3087065703

--
| Id| Operation | Name |Pstart|Pstop
--
0	SELECT STATEMENT			
1	PARTITION RANGE ITERATOR		13	28
*2	TABLE ACCESS FULL	SALES	13	28
--

Predicate Information (identified by operation id):

 2 - access("PROD_ID"=38)

In the preceding example, the query accesses 16 partitions. On 15 of these partitions, an
index is available, but no index is available for the final partition. Because the optimizer has
to choose one access path or the other, the optimizer cannot use the index on any of the
partitions.

8. With table expansion, the optimizer rewrites the original query as follows:

SELECT *
FROM sales
WHERE time_id >= TO_DATE('2000-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')
AND time_id < TO_DATE('2003-10-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')
AND prod_id = 38
UNION ALL
SELECT *
FROM sales
WHERE time_id >= TO_DATE('2003-10-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')
AND time_id < TO_DATE('2004-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')
AND prod_id = 38;

In the preceding query, the first query block in the UNION ALL accesses the partitions that
are indexed, while the second query block accesses the partition that is not. The two
subqueries enable the optimizer to choose to use the index in the first query block, if it is
more optimal than using a table scan of all of the partitions that are accessed.

9. Query the plan using DBMS_XPLAN.

The plan appears as follows:

Plan hash value: 2120767686

--
|Id| Operation |Name |Pstart|Pstop|
--
0	SELECT STATEMENT			
1	VIEW	VW_TE_2		
2	UNION-ALL			

Chapter 5
Table Expansion

5-26

3	PARTITION RANGE ITERATOR		13	27
4	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	SALES	13	27
5	BITMAP CONVERSION TO ROWIDS			
*6	BITMAP INDEX SINGLE VALUE	SALES_PROD_BIX	13	27
7	PARTITION RANGE SINGLE		28	28
*8	TABLE ACCESS FULL	SALES	28	28
--

Predicate Information (identified by operation id):

 6 - access("PROD_ID"=38)
 8 - filter("PROD_ID"=38)

As shown in the preceding plan, the optimizer uses a UNION ALL for two query blocks (Step
2). The optimizer chooses an index to access partitions 13 to 27 in the first query block
(Step 6). Because no index is available for partition 28, the optimizer chooses a full table
scan in the second query block (Step 8).

Table Expansion and Star Transformation: Scenario
Star transformation enables specific types of queries to avoid accessing large portions of big
fact tables.

Star transformation requires defining several indexes, which in an actively updated table can
have overhead. With table expansion, you can define indexes on only the inactive partitions so
that the optimizer can consider star transformation on only the indexed portions of the table.

Assumptions

This scenario assumes the following:

• You query the same schema used in "Star Transformation: Scenario".

• The last partition of sales is actively being updated, as is often the case with time-
partitioned tables.

• You want the optimizer to take advantage of table expansion.

To take advantage of table expansion in a star query:

1. Disable the indexes on the last partition as follows:

ALTER INDEX sales_channel_bix MODIFY PARTITION sales_q4_2003 UNUSABLE;
ALTER INDEX sales_cust_bix MODIFY PARTITION sales_q4_2003 UNUSABLE;

2. Execute the following star query:

SELECT t.calendar_quarter_desc, SUM(s.amount_sold) sales_amount
FROM sales s, times t, customers c, channels ch
WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id
AND s.channel_id = ch.channel_id
AND c.cust_state_province = 'CA'
AND ch.channel_desc = 'Internet'
AND t.calendar_quarter_desc IN ('1999-01','1999-02')
GROUP BY t.calendar_quarter_desc;

Chapter 5
Table Expansion

5-27

3. Query the cursor using DBMS_XPLAN, which shows the following plan:

|Id| Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
1	HASH GROUP BY			
2	VIEW	VW_TE_14		
3	UNION-ALL			
4	HASH JOIN			
5	TABLE ACCESS FULL	TIMES		
6	VIEW	VW_ST_1319B6D8		
7	NESTED LOOPS			
8	PARTITION RANGE SUBQUERY		KEY(SQ)	KEY(SQ)
9	BITMAP CONVERSION TO ROWIDS			
10	BITMAP AND			
11	BITMAP MERGE			
12	BITMAP KEY ITERATION			
13	BUFFER SORT			
14	TABLE ACCESS FULL	CHANNELS		
15	BITMAP INDEX RANGE SCAN	SALES_CHANNEL_BIX	KEY(SQ)	KEY(SQ)
16	BITMAP MERGE			
17	BITMAP KEY ITERATION			
18	BUFFER SORT			
19	TABLE ACCESS FULL	TIMES		
20	BITMAP INDEX RANGE SCAN	SALES_TIME_BIX	KEY(SQ)	KEY(SQ)
21	BITMAP MERGE			
22	BITMAP KEY ITERATION			
23	BUFFER SORT			
24	TABLE ACCESS FULL	CUSTOMERS		
25	BITMAP INDEX RANGE SCAN	SALES_CUST_BIX	KEY(SQ)	KEY(SQ)
26	TABLE ACCESS BY USER ROWID	SALES	ROWID	ROWID
27	NESTED LOOPS			
28	NESTED LOOPS			
29	NESTED LOOPS			
30	NESTED LOOPS			
31	PARTITION RANGE SINGLE		28	28
32	TABLE ACCESS FULL	SALES	28	28
33	TABLE ACCESS BY INDEX ROWID	CHANNELS		
34	INDEX UNIQUE SCAN	CHANNELS_PK		
35	TABLE ACCESS BY INDEX ROWID	CUSTOMERS		
36	INDEX UNIQUE SCAN	CUSTOMERS_PK		
37	INDEX UNIQUE SCAN	TIMES_PK		
38	TABLE ACCESS BY INDEX ROWID	TIMES		

The preceding plan uses table expansion. The UNION ALL branch that is accessing every
partition except the last partition uses star transformation. Because the indexes on partition
28 are disabled, the database accesses the final partition using a full table scan.

Join Factorization
In the cost-based transformation known as join factorization, the optimizer can factorize
common computations from branches of a UNION ALL query.

Chapter 5
Join Factorization

5-28

Purpose of Join Factorization
UNION ALL queries are common in database applications, especially in data integration
applications.

Often, branches in a UNION ALL query refer to the same base tables. Without join factorization,
the optimizer evaluates each branch of a UNION ALL query independently, which leads to
repetitive processing, including data access and joins. Join factorization transformation can
share common computations across the UNION ALL branches. Avoiding an extra scan of a
large base table can lead to a huge performance improvement.

How Join Factorization Works
Join factorization can factorize multiple tables and from more than two UNION ALL branches.

Join factorization is best explained through examples.

Example 5-10 UNION ALL Query

The following query shows a query of four tables (t1, t2, t3, and t4) and two UNION ALL
branches:

SELECT t1.c1, t2.c2
FROM t1, t2, t3
WHERE t1.c1 = t2.c1
AND t1.c1 > 1
AND t2.c2 = 2
AND t2.c2 = t3.c2
UNION ALL
SELECT t1.c1, t2.c2
FROM t1, t2, t4
WHERE t1.c1 = t2.c1
AND t1.c1 > 1
AND t2.c3 = t4.c3

In the preceding query, table t1 appears in both UNION ALL branches, as does the filter
predicate t1.c1 > 1 and the join predicate t1.c1 = t2.c1. Without any transformation, the
database must perform the scan and the filtering on table t1 twice, one time for each branch.

Example 5-11 Factorized Query

Example 5-10

SELECT t1.c1, VW_JF_1.item_2
FROM t1, (SELECT t2.c1 item_1, t2.c2 item_2
 FROM t2, t3
 WHERE t2.c2 = t3.c2
 AND t2.c2 = 2
 UNION ALL
 SELECT t2.c1 item_1, t2.c2 item_2
 FROM t2, t4
 WHERE t2.c3 = t4.c3) VW_JF_1
WHERE t1.c1 = VW_JF_1.item_1
AND t1.c1 > 1

Chapter 5
Join Factorization

5-29

In this case, because table t1 is factorized, the database performs the table scan and the
filtering on t1 only one time. If t1 is large, then this factorization avoids the huge performance
cost of scanning and filtering t1 twice.

Note:

If the branches in a UNION ALL query have clauses that use the DISTINCT function,
then join factorization is not valid.

Factorization and Join Orders: Scenario
Join factorization can create more possibilities for join orders

Example 5-12 Query Involving Five Tables

In the following query, view V is same as the query as in Example 5-10:

SELECT *
FROM t5, (SELECT t1.c1, t2.c2
 FROM t1, t2, t3
 WHERE t1.c1 = t2.c1
 AND t1.c1 > 1
 AND t2.c2 = 2
 AND t2.c2 = t3.c2
 UNION ALL
 SELECT t1.c1, t2.c2
 FROM t1, t2, t4
 WHERE t1.c1 = t2.c1
 AND t1.c1 > 1
 AND t2.c3 = t4.c3) V
WHERE t5.c1 = V.c1

t1t2t3t5
Example 5-13 Factorization of t1 from View V

If join factorization factorizes t1 from view V, as shown in the following query, then the
database can join t1 with t5.:

SELECT *
FROM t5, (SELECT t1.c1, VW_JF_1.item_2
 FROM t1, (SELECT t2.c1 item_1, t2.c2 item_2
 FROM t2, t3
 WHERE t2.c2 = t3.c2
 AND t2.c2 = 2
 UNION ALL
 SELECT t2.c1 item_1, t2.c2 item_2
 FROM t2, t4
 WHERE t2.c3 = t4.c3) VW_JF_1
 WHERE t1.c1 = VW_JF_1.item_1
 AND t1.c1 > 1)
WHERE t5.c1 = V.c1

Chapter 5
Join Factorization

5-30

The preceding query transformation opens up new join orders. However, join factorization
imposes specific join orders. For example, in the preceding query, tables t2 and t3 appear in
the first branch of the UNION ALL query in view VW_JF_1. The database must join t2 with t3
before it can join with t1, which is not defined within the VW_JF_1 view. The imposed join order
may not necessarily be the best join order. For this reason, the optimizer performs join
factorization using the cost-based transformation framework. The optimizer calculates the cost
of the plans with and without join factorization, and then chooses the cheapest plan.

Example 5-14 Factorization of t1 from View V with View Definition Removed

The following query is the same query in Example 5-13, but with the view definition removed
so that the factorization is easier to see:

SELECT *
FROM t5, (SELECT t1.c1, VW_JF_1.item_2
 FROM t1, VW_JF_1
 WHERE t1.c1 = VW_JF_1.item_1
 AND t1.c1 > 1)
WHERE t5.c1 = V.c1

Factorization of Outer Joins: Scenario
The database supports join factorization of outer joins, antijoins, and semijoins, but only for the
right tables in such joins.

For example, join factorization can transform the following UNION ALL query by factorizing t2:

SELECT t1.c2, t2.c2
FROM t1, t2
WHERE t1.c1 = t2.c1(+)
AND t1.c1 = 1
UNION ALL
SELECT t1.c2, t2.c2
FROM t1, t2
WHERE t1.c1 = t2.c1(+)
AND t1.c1 = 2

The following example shows the transformation. Table t2 now no longer appears in the UNION
ALL branches of the subquery.

SELECT VW_JF_1.item_2, t2.c2
FROM t2, (SELECT t1.c1 item_1, t1.c2 item_2
 FROM t1
 WHERE t1.c1 = 1
 UNION ALL
 SELECT t1.c1 item_1, t1.c2 item_2
 FROM t1
 WHERE t1.c1 = 2) VW_JF_1
WHERE VW_JF_1.item_1 = t2.c1(+)

Chapter 5
Join Factorization

5-31

Part III
Query Execution Plans

If a query has suboptimal performance, the execution plan is the key tool for understanding the
problem and supplying a solution.

6
Explaining and Displaying Execution Plans

Knowledge of how to explain a statement and display its plan is essential to SQL tuning.

Introduction to Execution Plans
An execution plan is the sequence of operations that the database performs to run a SQL
statement.

Contents of an Execution Plan
The execution plan operation alone cannot differentiate between well-tuned statements and
those that perform suboptimally.

The plan consists of a series of steps. Every step either retrieves rows of data physically from
the database or prepares them for the user issuing the statement. The following plan shows a
join of the employees and departments tables:

SQL_ID g9xaqjktdhbcd, child number 0

SELECT employee_id, last_name, first_name, department_name from
employees e, departments d WHERE e.department_id = d.department_id and
last_name like 'T%' ORDER BY last_name

Plan hash value: 1219589317

--
| Id | Operation | Name |Rows | Bytes |Cost (%CPU)| Time |
--
0	SELECT STATEMENT				5 (100)	
1	NESTED LOOPS		5	190	5 (0)	00:00:01
2	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	5	110	2 (0)	00:00:01
* 3	INDEX RANGE SCAN	EMP_NAME_IX	5		1 (0)	00:00:01
* 4	TABLE ACCESS FULL	DEPARTMENTS	1	16	1 (0)	00:00:01
--

Predicate Information (identified by operation id):

 3 - access("LAST_NAME" LIKE 'T%')
 filter("LAST_NAME" LIKE 'T%')
 4 - filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

The row source tree is the core of the execution plan. The tree shows the following information:

• The join order of the tables referenced by the statement

In the preceding plan, employees is the outer row source and departments is the inner row
source.

6-1

• An access path for each table mentioned in the statement

In the preceding plan, the optimizer chooses to access employees using an index scan and
departments using a full scan.

• A join method for tables affected by join operations in the statement

In the preceding plan, the optimizer chooses a nested loops join.

• Data operations like filter, sort, or aggregation

In the preceding plan, the optimizer filters on last names that begin with T and matches on
department_id.

In addition to the row source tree, the plan table contains information about the following:

• Optimization, such as the cost and cardinality of each operation

• Partitioning, such as the set of accessed partitions

• Parallel execution, such as the distribution method of join inputs

Why Execution Plans Change
Execution plans can and do change as the underlying optimizer inputs change.

Note:

To avoid possible SQL performance regression that may result from execution plan
changes, consider using SQL plan management.

See Also:

• "Overview of SQL Plan Management"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM package

Different Schemas
Schemas can differ for various reasons.

Principal reasons include the following:

• The execution and explain plan occur on different databases.

• The user explaining the statement is different from the user running the statement. Two
users might be pointing to different objects in the same database, resulting in different
execution plans.

• Schema changes (often changes in indexes) between the two operations.

Different Costs
Even if the schemas are the same, the optimizer can choose different execution plans when
the costs are different.

Chapter 6
Introduction to Execution Plans

6-2

Some factors that affect the costs include the following:

• Data volume and statistics

• Bind variable types and values

• Initialization parameters set globally or at session level

Generating Plan Output Using the EXPLAIN PLAN Statement
The EXPLAIN PLAN statement enables you to examine the execution plan that the optimizer
chose for a SQL statement.

About the EXPLAIN PLAN Statement
The EXPLAIN PLAN statement displays execution plans that the optimizer chooses for SELECT,
UPDATE, INSERT, and DELETE statements.

EXPLAIN PLAN output shows how the database would have run the SQL statement when the
statement was explained. Because of differences in the execution environment and explain
plan environment, the explained plan can differ from the actual plan used during statement
execution.

When the EXPLAIN PLAN statement is issued, the optimizer chooses an execution plan and
then inserts a row describing each step of the execution plan into a specified plan table. You
can also issue the EXPLAIN PLAN statement as part of the SQL trace facility.

The EXPLAIN PLAN statement is a DML statement rather than a DDL statement. Therefore,
Oracle Database does not implicitly commit the changes made by an EXPLAIN PLAN statement.

See Also:

• "SQL Row Source Generation"

• Oracle Database SQL Language Reference to learn about the EXPLAIN PLAN
statement

About PLAN_TABLE
PLAN_TABLE is the default sample output table into which the EXPLAIN PLAN statement inserts
rows describing execution plans.

Oracle Database automatically creates a global temporary table PLAN_TABLE$ in the SYS
schema, and creates PLAN_TABLE as a synonym. All necessary privileges to PLAN_TABLE are
granted to PUBLIC. Consequently, every session gets its own private copy of PLAN_TABLE in its
temporary tablespace.

You can use the SQL script catplan.sql to manually create the global temporary table and the
PLAN_TABLE synonym. The name and location of this script depends on your operating system.
On UNIX and Linux, the script is located in the $ORACLE_HOME/rdbms/admin directory. For

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

6-3

example, start a SQL*Plus session, connect with SYSDBA privileges, and run the script as
follows:

@$ORACLE_HOME/rdbms/admin/catplan.sql

The definition of a sample output table PLAN_TABLE is available in a SQL script on your
distribution media. Your output table must have the same column names and data types as this
table. The common name of this script is utlxplan.sql. The exact name and location depend
on your operating system.

See Also:

Oracle Database SQL Language Reference for a complete description of EXPLAIN
PLAN syntax.

EXPLAIN PLAN Restrictions
Oracle Database does not support EXPLAIN PLAN for statements performing implicit type
conversion of date bind variables.

With bind variables in general, the EXPLAIN PLAN output might not represent the real execution
plan.

From the text of a SQL statement, TKPROF cannot determine the types of the bind variables. It
assumes that the type is VARCHAR, and gives an error message otherwise. You can avoid this
limitation by putting appropriate type conversions in the SQL statement.

See Also:

• "Performing Application Tracing "

• "Guideline for Avoiding the Argument Trap"

• Oracle Database SQL Language Reference to learn more about SQL data types

Explaining a SQL Statement: Basic Steps
Use EXPLAIN PLAN to store the plan for a SQL statement in PLAN_TABLE.

Prerequisites

This task assumes that a sample output table named PLAN_TABLE exists in your schema. If this
table does not exist, then run the SQL script catplan.sql.

To execute EXPLAIN PLAN, you must have the following privileges:

• You must have the privileges necessary to insert rows into an existing output table that you
specify to hold the execution plan

• You must also have the privileges necessary to execute the SQL statement for which you
are determining the execution plan. If the SQL statement accesses a view, then you must

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

6-4

have privileges to access any tables and views on which the view is based. If the view is
based on another view that is based on a table, then you must have privileges to access
both the other view and its underlying table.

To examine the execution plan produced by an EXPLAIN PLAN statement, you must have the
privileges necessary to query the output table.

To explain a statement:

1. Start SQL*Plus or SQL Developer, and log in to the database as a user with the requisite
permissions.

2. Include the EXPLAIN PLAN FOR clause immediately before the SQL statement.

The following example explains the plan for a query of the employees table:

EXPLAIN PLAN FOR
 SELECT e.last_name, d.department_name, e.salary
 FROM employees e, departments d
 WHERE salary < 3000
 AND e.department_id = d.department_id
 ORDER BY salary DESC;

3. After issuing the EXPLAIN PLAN statement, use a script or package provided by Oracle
Database to display the most recent plan table output.

The following example uses the DBMS_XPLAN.DISPLAY function:

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'ALL'));

4. Review the plan output.

For example, the following plan shows a hash join:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'ALL'));
Plan hash value: 3556827125

--
| Id | Operation | Name |Rows | Bytes |Cost (%CPU)| Time |
--
0	SELECT STATEMENT		4	124	5 (20)	00:00:01
1	SORT ORDER BY		4	124	5 (20)	00:00:01
* 2	HASH JOIN		4	124	4 (0)	00:00:01
* 3	TABLE ACCESS FULL	EMPLOYEES	4	60	2 (0)	00:00:01
4	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
--

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$1
 3 - SEL$1 / E@SEL$1
 4 - SEL$1 / D@SEL$1

Predicate Information (identified by operation id):

 2 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

6-5

 3 - filter("SALARY"<3000)

Column Projection Information (identified by operation id):

 1 - (#keys=1) INTERNAL_FUNCTION("E"."SALARY")[22],
 "E"."LAST_NAME"[VARCHAR2,25], "D"."DEPARTMENT_NAME"[VARCHAR2,30]
 2 - (#keys=1) "E"."LAST_NAME"[VARCHAR2,25], "SALARY"[NUMBER,22],
 "D"."DEPARTMENT_NAME"[VARCHAR2,30], "D"."DEPARTMENT_NAME"[VARCHAR2,30]
 3 - "E"."LAST_NAME"[VARCHAR2,25], "SALARY"[NUMBER,22],
 "E"."DEPARTMENT_ID"[NUMBER,22]
 4 - "D"."DEPARTMENT_ID"[NUMBER,22], "D"."DEPARTMENT_NAME"[VARCHAR2,30]

Note

 - this is an adaptive plan

Plan operations request data from their children. The execution order in EXPLAIN PLAN output
is as follows:

1. Execution starts at the first operation with no children, which in the example above is the
full scan of EMPLOYEES (Id 3).

2. EMPLOYEES returns its data to the parent (Id 2).

3. Execution then proceeds to next child of the hash join and does a full scan of DEPARTMENTS
(Id 4).

4. DEPARTMENTS has no children and so returns data to the parent (Id 2).

5. The hash join combines the rows from the two tables and passes them up to the SORT
ORDER BY (Id 1)

6. Finally the SELECT returns the data to the client.

Note:

If this example included more operations such as additional joins, execution would
continue from Step 5 following the same pattern for each operation down to the end
of the plan, the final step where the SELECT returns data to the client.
The steps in the EXPLAIN PLAN output as described here may be different on some
of your databases. This is because the optimizer may choose a different
EXECUTION PLAN, depending on the database configuration.

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

6-6

See Also:

• "About PLAN_TABLE"

• "About the Display of PLAN_TABLE Output"

• Oracle Database SQL Language Reference for the syntax and semantics of
EXPLAIN PLAN

• How to Read an Execution Plan. This Oracle blog post describes how to read an
EXECUTION PLAN, but the same order of execution applies to an EXPLAIN
PLAN, so it may give you a better understanding of the process in both types of
plan.

Specifying a Statement ID in EXPLAIN PLAN: Example
With multiple statements, you can specify a statement identifier and use that to identify your
specific execution plan.

Before using SET STATEMENT ID, remove any existing rows for that statement ID. In the
following example, st1 is specified as the statement identifier.

Example 6-1 Using EXPLAIN PLAN with the STATEMENT ID Clause

EXPLAIN PLAN
 SET STATEMENT_ID = 'st1' FOR
 SELECT last_name FROM employees;

Specifying a Different Location for EXPLAIN PLAN Output: Example
The INTO clause of EXPLAIN PLAN specifies a different table in which to store the output.

If you do not want to use the name PLAN_TABLE, create a new synonym after running the
catplan.sql script. For example:

CREATE OR REPLACE PUBLIC SYNONYM my_plan_table for plan_table$

The following statement directs output to my_plan_table:

EXPLAIN PLAN
 INTO my_plan_table FOR
 SELECT last_name FROM employees;

You can specify a statement ID when using the INTO clause, as in the following statement:

EXPLAIN PLAN
 SET STATEMENT_ID = 'st1'
 INTO my_plan_table FOR
 SELECT last_name FROM employees;

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

6-7

https://blogs.oracle.com/connect/post/how-to-read-an-execution-plan

See Also:

• "PLAN_TABLE Columns" for a description of the columns in PLAN_TABLE
• Oracle Database SQL Language Reference to learn about CREATE SYNONYM

EXPLAIN PLAN Output for a CONTAINERS Query: Example
The CONTAINERS clause can be used to query both user-created and Oracle-supplied tables
and views. It enables you to query these tables and views across all containers.

The following example illustrates the output of an EXPLAIN PLAN for a query using the
CONTAINERS clause.

SQL> explain plan for select con_id, count(*) from containers(sys.dba_tables)
where con_id < 10 group by con_id order by con_id;

Explained.

SQL> @?/rdbms/admin/utlxpls

PLAN_TABLE_OUTPUT
--

Plan hash value: 891225627

--

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU)| Time | Pstart| Pstop |
--

| 0 | SELECT STATEMENT | | 234K| 2970K| 145
(100)| 00:00:01 | | |
| 1 | PX COORDINATOR | | |
| | | | |
| 2 | PX SEND QC (ORDER) | :TQ10001 | 234K| 2970K| 145
(100)| 00:00:01 | | |
| 3 | SORT GROUP BY | | 234K| 2970K| 145
(100)| 00:00:01 | | |
| 4 | PX RECEIVE | | 234K| 2970K| 145
(100)| 00:00:01 | | |
| 5 | PX SEND RANGE | :TQ10000 | 234K| 2970K| 145
(100)| 00:00:01 | | |
| 6 | HASH GROUP BY | | 234K| 2970K| 145
(100)| 00:00:01 | | |
| 7 | PX PARTITION LIST ITERATOR| | 234K| 2970K| 139
(100)| 00:00:01 | 1 | 9 |
| 8 | CONTAINERS FULL | DBA_TABLES | 234K| 2970K| 139
(100)| 00:00:01 | | |
--

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

6-8

15 rows selected.

At Row 8 of this plan, CONTAINERS is shown in the Operation column as the value CONTAINERS
FULL. The Name column in the same row shows the argument to CONTAINERS.

Default Partitioning

A query using the CONTAINERS clause is partitioned by default. At Row 7 in the plan, the PX
PARTITION LIST ITERATOR in the Operation column indicates that the query is partitioned.
Iteration over containers is implemented in this partition iterator. On the same row, the Pstart
and Pstop values 1 and 9 are derived from the con_id < 10 predicate in the query.

Default Parallelism

A query using the CONTAINERS clause uses parallel execution servers by default. In Row 1 of
the plan above, PX COORDINATOR in the Operation column indicates that parallel execution
servers will be used. Each container is assigned to a parallel execution process (P00*). When
the parallel execution process executes the part of the query EXECUTION PLAN that corresponds
to CONTAINERS FULL, then the process switches into the container it has been assigned to work
on. It retrieves rows from the base object by executing a recursive SQL statement.

Displaying Execution Plans
The easiest way to display execution plans is to use DBMS_XPLAN display functions or V$ views.

About the Display of PLAN_TABLE Output
To display the plan table output, you can use either SQL scripts or the DBMS_XPLAN package.

After you have explained the plan, use the following SQL scripts or PL/SQL package provided
by Oracle Database to display the most recent plan table output:

• DBMS_XPLAN.DISPLAY table function

This function accepts options for displaying the plan table output. You can specify:

– A plan table name if you are using a table different than PLAN_TABLE
– A statement ID if you have set a statement ID with the EXPLAIN PLAN
– A format option that determines the level of detail: BASIC, SERIAL, TYPICAL, and ALL
Examples of using DBMS_XPLAN to display PLAN_TABLE output are:

SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

SELECT PLAN_TABLE_OUTPUT
 FROM TABLE(DBMS_XPLAN.DISPLAY('MY_PLAN_TABLE', 'st1','TYPICAL'));

• utlxpls.sql
This script displays the plan table output for serial processing

• utlxplp.sql
This script displays the plan table output including parallel execution columns.

Chapter 6
Displaying Execution Plans

6-9

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_XPLAN package

DBMS_XPLAN Display Functions
You can use the DBMS_XPLAN display functions to show plans.

The display functions accept options for displaying the plan table output. You can specify:

• A plan table name if you are using a table different from PLAN_TABLE
• A statement ID if you have set a statement ID with the EXPLAIN PLAN
• A format option that determines the level of detail: BASIC, SERIAL, TYPICAL, ALL, and in

some cases ADAPTIVE

Table 6-1 DBMS_XPLAN Display Functions

Display Functions Notes

DISPLAY This table function displays the contents of the plan table.

In addition, you can use this table function to display any plan (with or without
statistics) stored in a table as long as the columns of this table are named the
same as columns of the plan table (or V$SQL_PLAN_STATISTICS_ALL if
statistics are included). You can apply a predicate on the specified table to
select rows of the plan to display.

The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, and ALL.

DISPLAY_AWR This table function displays the contents of an execution plan stored in AWR.

The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, and ALL.

DISPLAY_CURSOR This table function displays the explain plan of any cursor loaded in the cursor
cache. In addition to the explain plan, various plan statistics (such as. I/O,
memory and timing) can be reported (based on the
V$SQL_PLAN_STATISTICS_ALL VIEWS).

The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, ALL, and ADAPTIVE. When you specify ADAPTIVE,
the output includes:

• The final plan. If the execution has not completed, then the output shows
the current plan. This section also includes notes about run-time
optimizations that affect the plan.

• Recommended plan. In reporting mode, the output includes the plan that
would be chosen based on execution statistics.

• Dynamic plan. The output summarizes the portions of the plan that differ
from the default plan chosen by the optimizer.

• Reoptimization. The output displays the plan that would be chosen on a
subsequent execution because of reoptimization.

Chapter 6
Displaying Execution Plans

6-10

Table 6-1 (Cont.) DBMS_XPLAN Display Functions

Display Functions Notes

DISPLAY_PLAN This table function displays the contents of the plan table in a variety of
formats with CLOB output type.
The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, ALL, and ADAPTIVE. When you specify ADAPTIVE,
the output includes the default plan. For each dynamic subplan, the plan
shows a list of the row sources from the original that may be replaced, and
the row sources that would replace them.

If the format argument specifies the outline display, then the function
displays the hints for each option in the dynamic subplan. If the plan is not an
adaptive query plan, then the function displays the default plan. When you do
not specify ADAPTIVE, the plan is shown as-is, but with additional comments
in the Note section that show any row sources that are dynamic.

DISPLAY_SQL_PLAN_BA
SELINE

This table function displays one or more execution plans for the specified SQL
handle of a SQL plan baseline.

This function uses plan information stored in the plan baseline to explain and
display the plans. The plan_id stored in the SQL management base may not
match the plan_id of the generated plan. A mismatch between the stored
plan_id and generated plan_id means that it is a non-reproducible plan.
Such a plan is deemed invalid and is bypassed by the optimizer during SQL
compilation.

DISPLAY_SQLSET This table function displays the execution plan of a given statement stored in a
SQL tuning set.

The format parameter controls the level of the plan. It accepts the values
BASIC, TYPICAL, SERIAL, and ALL.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_XPLAN display functions

Chapter 6
Displaying Execution Plans

6-11

Plan-Related Views
You can obtain information about execution plans by querying dynamic performance and data
dictionary views.

Table 6-2 Execution Plan Views

View Description

V$SQL Lists statistics for cursors and contains one row for each
child of the original SQL text entered.

Starting in Oracle Database 19c, V$SQL.QUARANTINED
indicates whether a statement has been terminated by the
Resource Manager because the statement consumed too
many resources. Oracle Database records and marks the
quarantined plans and prevents the execution of statements
using these plans from executing. The
AVOIDED_EXECUTIONS column indicates the number of
executions attempted but prevented because of the
quarantined statement.

V$SQL_SHARED_CURSOR Explains why a particular child cursor is not shared with
existing child cursors. Each column identifies a specific
reason why the cursor cannot be shared.

The USE_FEEDBACK_STATS column shows whether a child
cursor fails to match because of reoptimization.

V$SQL_PLAN Contains the plan for every statement stored in the shared
SQL area.

The view definition is similar to PLAN_TABLE. The view
includes a superset of all rows appearing in all final plans.
PLAN_LINE_ID is consecutively numbered, but for a single
final plan, the IDs may not be consecutive.

As an alternative to EXPLAIN PLAN, you can display the plan
by querying V$SQL_PLAN. The advantage of V$SQL_PLAN
over EXPLAIN PLAN is that you do not need to know the
compilation environment that was used to execute a
particular statement. For EXPLAIN PLAN, you would need to
set up an identical environment to get the same plan when
executing the statement.

V$SQL_PLAN_STATISTICS Provides the actual execution statistics for every operation in
the plan, such as the number of output rows and elapsed
time. All statistics, except the number of output rows, are
cumulative. For example, the statistics for a join operation
also includes the statistics for its two inputs. The statistics in
V$SQL_PLAN_STATISTICS are available for cursors that
have been compiled with the STATISTICS_LEVEL
initialization parameter set to ALL.

V$SQL_PLAN_STATISTICS_ALL Contains memory usage statistics for row sources that use
SQL memory (sort or hash join). This view concatenates
information in V$SQL_PLAN with execution statistics from
V$SQL_PLAN_STATISTICS and V$SQL_WORKAREA.

V$SQL_PLAN_STATISTICS_ALL enables side-by-side
comparisons of the estimates that the optimizer provides for
the number of rows and elapsed time. This view combines
both V$SQL_PLAN and V$SQL_PLAN_STATISTICS
information for every cursor.

Chapter 6
Displaying Execution Plans

6-12

See Also:

• "PLAN_TABLE Columns"

• "Monitoring Database Operations " for information about the
V$SQL_PLAN_MONITOR view

• Oracle Database Reference for more information about V$SQL_PLAN views

• Oracle Database Reference for information about the STATISTICS_LEVEL
initialization parameter

Displaying Execution Plans: Basic Steps
The DBMS_XPLAN.DISPLAY function is a simple way to display an explained plan.

By default, the DISPLAY function uses the format setting of TYPICAL. In this case, the plan the
most relevant information in the plan: operation id, name and option, rows, bytes and optimizer
cost. Pruning, parallel and predicate information are only displayed when applicable.

To display an execution plan:

1. Start SQL*Plus or SQL Developer and log in to the session in which you explained the
plan.

2. Explain a plan.

3. Query PLAN_TABLE using DBMS_XPLAN.DISPLAY.

Specify the query as follows:

SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY);

Alternatively, specify the statement ID using the statement_id parameter:

SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY(statement_id =>
'statement_id));

Example 6-2 EXPLAIN PLAN for Statement ID ex_plan1

This example explains a query of employees that uses the statement ID ex_plan1, and then
queries PLAN_TABLE:

EXPLAIN PLAN
 SET statement_id = 'ex_plan1' FOR
 SELECT phone_number
 FROM employees
 WHERE phone_number LIKE '650%';

SELECT PLAN_TABLE_OUTPUT
 FROM TABLE(DBMS_XPLAN.DISPLAY(statement_id => 'ex_plan1'));

Chapter 6
Displaying Execution Plans

6-13

Sample output appears below:

Plan hash value: 1445457117

|Id | Operation | Name |Rows | Bytes | Cost (%CPU)| Time |

| 0| SELECT STATEMENT | | 1 | 15 | 2 (0)| 00:00:01 |
|* 1| TABLE ACCESS FULL| EMPLOYEES | 1 | 15 | 2 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 1 - filter("PHONE_NUMBER" LIKE '650%')

Example 6-3 EXPLAIN PLAN for Statement ID ex_plan2

This example explains a query of employees that uses the statement ID ex_plan2, and then
displays the plan using the BASIC format:

EXPLAIN PLAN
 SET statement_id = 'ex_plan2' FOR
 SELECT last_name
 FROM employees
 WHERE last_name LIKE 'Pe%';

SELECT PLAN_TABLE_OUTPUT
 FROM TABLE(DBMS_XPLAN.DISPLAY(NULL, 'ex_plan2','BASIC'));

Sample output appears below:

--
| Id | Operation | Name |
--
| 0 | SELECT STATEMENT | |
| 1 | INDEX RANGE SCAN| EMP_NAME_IX |
--

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_XPLAN package

Chapter 6
Displaying Execution Plans

6-14

Displaying Adaptive Query Plans: Tutorial
The adaptive optimizer is a feature of the optimizer that enables it to adapt plans based on
run-time statistics. All adaptive mechanisms can execute a final plan for a statement that differs
from the default plan.

An adaptive query plan chooses among subplans during the current statement execution. In
contrast, automatic reoptimization changes a plan only on executions that occur after the
current statement execution.

You can determine whether the database used adaptive query optimization for a SQL
statement based on the comments in the Notes section of plan. The comments indicate
whether row sources are dynamic, or whether automatic reoptimization adapted a plan.

Assumptions

This tutorial assumes the following:

• The STATISTICS_LEVEL initialization parameter is set to ALL.

• The database uses the default settings for adaptive execution.

• As user oe, you want to issue the following separate queries:

SELECT o.order_id, v.product_name
FROM orders o,
 (SELECT order_id, product_name
 FROM order_items o, product_information p
 WHERE p.product_id = o.product_id
 AND list_price < 50
 AND min_price < 40) v
WHERE o.order_id = v.order_id

SELECT product_name
FROM order_items o, product_information p
WHERE o.unit_price = 15
AND quantity > 1
AND p.product_id = o.product_id

• Before executing each query, you want to query DBMS_XPLAN.DISPLAY_PLAN to see the
default plan, that is, the plan that the optimizer chose before applying its adaptive
mechanism.

• After executing each query, you want to query DBMS_XPLAN.DISPLAY_CURSOR to see the final
plan and adaptive query plan.

• SYS has granted oe the following privileges:

– GRANT SELECT ON V_$SESSION TO oe
– GRANT SELECT ON V_$SQL TO oe
– GRANT SELECT ON V_$SQL_PLAN TO oe
– GRANT SELECT ON V_$SQL_PLAN_STATISTICS_ALL TO oe

To see the results of adaptive optimization:

1. Start SQL*Plus, and then connect to the database as user oe.

Chapter 6
Displaying Execution Plans

6-15

2. Query orders.

For example, use the following statement:

SELECT o.order_id, v.product_name
FROM orders o,
 (SELECT order_id, product_name
 FROM order_items o, product_information p
 WHERE p.product_id = o.product_id
 AND list_price < 50
 AND min_price < 40) v
WHERE o.order_id = v.order_id;

3. View the plan in the cursor.

For example, run the following commands:

SET LINESIZE 165
SET PAGESIZE 0
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'+ALLSTATS'));

The following sample output has been reformatted to fit on the page. In this plan, the
optimizer chooses a nested loops join. The original optimizer estimates are shown in the
E-Rows column, whereas the actual statistics gathered during execution are shown in the
A-Rows column. In the MERGE JOIN operation, the difference between the estimated and
actual number of rows is significant.

--
|Id| Operation | Name |Start|E-Rows|A-Rows|A-Time|Buff|OMem|1Mem|O/1/M|
--
0	SELECT STATEMENT		1		269	00:00:00.09	1338			
1	NESTED LOOPS		1	1	269	00:00:00.09	1338			
2	MERGE JOIN CARTESIAN		1	4	9135	00:00:00.03	33			
*3	TABLE ACCESS FULL	PRODUCT_INFORMAT	1	1	87	00:00:00.01	32			
4	BUFFER SORT		87	105	9135	00:00:00.01	1	4096	4096	1/0/0
5	INDEX FULL SCAN	ORDER_PK	1	105	105	00:00:00.01	1			
*6	INDEX UNIQUE SCAN	ORDER_ITEMS_UK	9135	1	269	00:00:00.03	1305			
--

Predicate Information (identified by operation id):

 3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))
 6 - access("O"."ORDER_ID"="ORDER_ID" AND "P"."PRODUCT_ID"="O"."PRODUCT_ID")

4. Run the same query of orders that you ran in Step 2.

5. View the execution plan in the cursor by using the same SELECT statement that you ran in
Step 3.

The following example shows that the optimizer has chosen a different plan, using a hash
join. The Note section shows that the optimizer used statistics feedback to adjust its cost
estimates for the second execution of the query, thus illustrating automatic reoptimization.

--
|Id| Operation |Name |Start|E-Rows|A-Rows|A-Time|Buff|Reads|OMem|1Mem|O/1/M|
--
0	SELECT STATEMENT		1		269	00:00:00.02	60	1			
1	NESTED LOOPS		1	269	269	00:00:00.02	60	1			
*2	HASH JOIN		1	313	269	00:00:00.02	39	1	1000K	1000K	1/0/0
*3	TABLE ACCESS FULL	PRODUCT_INFORMA	1	87	87	00:00:00.01	15	0			
4	INDEX FAST FULL SCAN	ORDER_ITEMS_UK	1	665	665	00:00:00.01	24	1			

Chapter 6
Displaying Execution Plans

6-16

|*5| INDEX UNIQUE SCAN |ORDER_PK |269| 1|269|00:00:00.01|21|0| | | |
--

Predicate Information (identified by operation id):

 2 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")
 3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))
 5 - access("O"."ORDER_ID"="ORDER_ID")

Note

 - statistics feedback used for this statement

6. Query V$SQL to verify the performance improvement.

The following query shows the performance of the two statements (sample output
included).

SELECT CHILD_NUMBER, CPU_TIME, ELAPSED_TIME, BUFFER_GETS
FROM V$SQL
WHERE SQL_ID = 'gm2npz344xqn8';

CHILD_NUMBER CPU_TIME ELAPSED_TIME BUFFER_GETS
------------ ---------- ------------ -----------
 0 92006 131485 1831
 1 12000 24156 60

The second statement executed, which is child number 1, used statistics feedback. CPU
time, elapsed time, and buffer gets are all significantly lower.

7. Explain the plan for the query of order_items.

For example, use the following statement:

EXPLAIN PLAN FOR
 SELECT product_name
 FROM order_items o, product_information p
 WHERE o.unit_price = 15
 AND quantity > 1
 AND p.product_id = o.product_id

8. View the plan in the plan table.

For example, run the following statement:

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

Sample output appears below:

|Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time|

0	SELECT STATEMENT		4	128	7 (0)	00:00:01
1	NESTED LOOPS					
2	NESTED LOOPS		4	128	7 (0)	00:00:01
*3	TABLE ACCESS FULL	ORDER_ITEMS	4	48	3 (0)	00:00:01
*4	INDEX UNIQUE SCAN	PRODUCT_INFORMATION_PK	1		0 (0)	00:00:01
5	TABLE ACCESS BY INDEX ROWID	PRODUCT_INFORMATION	1	20	1 (0)	00:00:01

Chapter 6
Displaying Execution Plans

6-17

Predicate Information (identified by operation id):

 3 - filter("O"."UNIT_PRICE"=15 AND "QUANTITY">1)
 4 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")

In this plan, the optimizer chooses a nested loops join.

9. Run the query that you previously explained.

For example, use the following statement:

SELECT product_name
FROM order_items o, product_information p
WHERE o.unit_price = 15
AND quantity > 1
AND p.product_id = o.product_id

10. View the plan in the cursor.

For example, run the following commands:

SET LINESIZE 165
SET PAGESIZE 0
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(FORMAT=>'+ADAPTIVE'));

Sample output appears below. Based on statistics collected at run time (Step 4), the
optimizer chose a hash join rather than the nested loops join. The dashes (-) indicate the
steps in the nested loops plan that the optimizer considered but do not ultimately choose.
The switch illustrates the adaptive query plan feature.

|Id | Operation | Name |Rows|Bytes|Cost(%CPU)|Time |

0	SELECT STATEMENT		4	128	7(0)	00:00:01
*1	HASH JOIN		4	128	7(0)	00:00:01
- 2	NESTED LOOPS					
- 3	NESTED LOOPS			128	7(0)	00:00:01
- 4	STATISTICS COLLECTOR					
*5	TABLE ACCESS FULL	ORDER_ITEMS	4	48	3(0)	00:00:01
-*6	INDEX UNIQUE SCAN	PRODUCT_INFORMATI_PK	1		0(0)	00:00:01
- 7	TABLE ACCESS BY INDEX ROWID	PRODUCT_INFORMATION	1	20	1(0)	00:00:01
8	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	20	1(0)	00:00:01

Predicate Information (identified by operation id):

 1 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")
 5 - filter("O"."UNIT_PRICE"=15 AND "QUANTITY">1)
 6 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")

Note

Chapter 6
Displaying Execution Plans

6-18

 - this is an adaptive plan (rows marked '-' are inactive)

See Also:

• "Adaptive Query Plans"

• "Table 6-1"

• "Controlling Adaptive Optimization"

• Oracle Database Reference to learn about the STATISTICS_LEVEL initialization
parameter

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_XPLAN

Display Execution Plans: Examples
These examples show different ways of displaying execution plans.

Customizing PLAN_TABLE Output
If you have specified a statement identifier, then you can write your own script to query the
PLAN_TABLE.

For example:

• Start with ID = 0 and given STATEMENT_ID.

• Use the CONNECT BY clause to walk the tree from parent to child, the join keys being
STATEMENT_ID = PRIOR STATMENT_ID and PARENT_ID = PRIOR ID.

• Use the pseudo-column LEVEL (associated with CONNECT BY) to indent the children.

SELECT cardinality "Rows", lpad(' ',level-1) || operation
 ||' '||options||' '||object_name "Plan"
FROM PLAN_TABLE
CONNECT BY prior id = parent_id
 AND prior statement_id = statement_id
 START WITH id = 0
 AND statement_id = 'st1'
 ORDER BY id;

 Rows Plan
------- --
 SELECT STATEMENT
 TABLE ACCESS FULL EMPLOYEES

The NULL in the Rows column indicates that the optimizer does not have any statistics on
the table. Analyzing the table shows the following:

 Rows Plan
------- --

Chapter 6
Displaying Execution Plans

6-19

 16957 SELECT STATEMENT
 16957 TABLE ACCESS FULL EMPLOYEES

You can also select the COST. This is useful for comparing execution plans or for
understanding why the optimizer chooses one execution plan over another.

Note:

These simplified examples are not valid for recursive SQL.

Displaying Parallel Execution Plans: Example
Plans for parallel queries differ in important ways from plans for serial queries.

About EXPLAIN PLAN and Parallel Queries
Tuning a parallel query begins much like a non-parallel query tuning exercise by choosing the
driving table. However, the rules governing the choice are different.

In the serial case, the best driving table produces the fewest numbers of rows after applying
limiting conditions. The database joins a small number of rows to larger tables using non-
unique indexes.

For example, consider a table hierarchy consisting of customer, account, and transaction.

Figure 6-1 A Table Hierarchy

CUSTOMER

ACCOUNT

TRANSACTION

In this example, customer is the smallest table, whereas transaction is the largest table. A
typical OLTP query retrieves transaction information about a specific customer account. The
query drives from the customer table. The goal is to minimize logical I/O, which typically
minimizes other critical resources including physical I/O and CPU time.

For parallel queries, the driving table is usually the largest table. It would not be efficient to use
parallel query in this case because only a few rows from each table are accessed. However,
what if it were necessary to identify all customers who had transactions of a certain type last
month? It would be more efficient to drive from the transaction table because no limiting
conditions exist on the customer table. The database would join rows from the transaction
table to the account table, and then finally join the result set to the customer table. In this case,
the used on the account and customer table are probably highly selective primary key or
unique indexes rather than the non-unique indexes used in the first query. Because the
transaction table is large and the column is not selective, it would be beneficial to use parallel
query driving from the transaction table.

Parallel operations include the following:

Chapter 6
Displaying Execution Plans

6-20

• PARALLEL_TO_PARALLEL
• PARALLEL_TO_SERIAL

A PARALLEL_TO_SERIAL operation is always the step that occurs when the query
coordinator consumes rows from a parallel operation. Another type of operation that does
not occur in this query is a SERIAL operation. If these types of operations occur, then
consider making them parallel operations to improve performance because they too are
potential bottlenecks.

• PARALLEL_FROM_SERIAL
• PARALLEL_TO_PARALLEL

If the workloads in each step are relatively equivalent, then the PARALLEL_TO_PARALLEL
operations generally produce the best performance.

• PARALLEL_COMBINED_WITH_CHILD
• PARALLEL_COMBINED_WITH_PARENT

A PARALLEL_COMBINED_WITH_PARENT operation occurs when the database performs the
step simultaneously with the parent step.

If a parallel step produces many rows, then the QC may not be able to consume the rows as
fast as they are produced. Little can be done to improve this situation.

See Also:

The OTHER_TAG column in "PLAN_TABLE Columns"

Viewing Parallel Queries with EXPLAIN PLAN: Example
When using EXPLAIN PLAN with parallel queries, the database compiles and executes one
parallel plan. This plan is derived from the serial plan by allocating row sources specific to the
parallel support in the QC plan.

The table queue row sources (PX Send and PX Receive), the granule iterator, and buffer sorts,
required by the two parallel execution server set PQ model, are directly inserted into the
parallel plan. This plan is the same plan for all parallel execution servers when executed in
parallel or for the QC when executed serially.

Example 6-4 Parallel Query Explain Plan

The following simple example illustrates an EXPLAIN PLAN for a parallel query:

CREATE TABLE emp2 AS SELECT * FROM employees;

ALTER TABLE emp2 PARALLEL 2;

EXPLAIN PLAN FOR
 SELECT SUM(salary)
 FROM emp2
 GROUP BY department_id;

SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

Chapter 6
Displaying Execution Plans

6-21

|Id | Operation | Name |Rows| Bytes |Cost %CPU| TQ |IN-OUT|PQ Distrib|

0	SELECT STATEMENT		107	2782	3 (34)			
1	PX COORDINATOR							
2	PX SEND QC (RANDOM)	:TQ10001	107	2782	3 (34)	Q1,01	P->S	QC (RAND)
3	HASH GROUP BY		107	2782	3 (34)	Q1,01	PCWP	
4	PX RECEIVE		107	2782	3 (34)	Q1,01	PCWP	
5	PX SEND HASH	:TQ10000	107	2782	3 (34)	Q1,00	P->P	HASH
6	HASH GROUP BY		107	2782	3 (34)	Q1,00	PCWP	
7	PX BLOCK ITERATOR		107	2782	2 (0)	Q1,00	PCWP	
8	TABLE ACCESS FULL	EMP2	107	2782	2 (0)	Q1,00	PCWP	

One set of parallel execution servers scans EMP2 in parallel, while the second set performs the
aggregation for the GROUP BY operation. The PX BLOCK ITERATOR row source represents the
splitting up of the table EMP2 into pieces to divide the scan workload between the parallel
execution servers. The PX SEND and PX RECEIVE row sources represent the pipe that connects
the two sets of parallel execution servers as rows flow up from the parallel scan, get
repartitioned through the HASH table queue, and then read by and aggregated on the top set.
The PX SEND QC row source represents the aggregated values being sent to the QC in random
(RAND) order. The PX COORDINATOR row source represents the QC or Query Coordinator which
controls and schedules the parallel plan appearing below it in the plan tree.

Displaying Bitmap Index Plans: Example
Index row sources using bitmap indexes appear in the EXPLAIN PLAN output with the word
BITMAP indicating the type of the index.

Example 6-5 EXPLAIN PLAN with Bitmap Indexes

In this example, the predicate c1=2 yields a bitmap from which a subtraction can take place.
From this bitmap, the bits in the bitmap for c2=6 are subtracted. Also, the bits in the bitmap for
c2 IS NULL are subtracted, explaining why there are two MINUS row sources in the plan. The
NULL subtraction is necessary for semantic correctness unless the column has a NOT NULL
constraint. The TO ROWIDS option generates the rowids necessary for the table access.

Note:

Queries using bitmap join index indicate the bitmap join index access path. The
operation for bitmap join index is the same as bitmap index.

EXPLAIN PLAN FOR SELECT *
 FROM t
 WHERE c1 = 2
 AND c2 <> 6
 OR c3 BETWEEN 10 AND 20;

SELECT STATEMENT
 TABLE ACCESS T BY INDEX ROWID
 BITMAP CONVERSION TO ROWID
 BITMAP OR
 BITMAP MINUS

Chapter 6
Displaying Execution Plans

6-22

 BITMAP MINUS
 BITMAP INDEX C1_IND SINGLE VALUE
 BITMAP INDEX C2_IND SINGLE VALUE
 BITMAP INDEX C2_IND SINGLE VALUE
 BITMAP MERGE
 BITMAP INDEX C3_IND RANGE SCAN

Displaying Result Cache Plans: Example
When your query contains the result_cache hint, the ResultCache operator is inserted into the
execution plan.

For example, consider the following query:

SELECT /*+ result_cache */ deptno, avg(sal)
FROM emp
GROUP BY deptno;

To view the EXPLAIN PLAN for this query, use the following command:

EXPLAIN PLAN FOR
 SELECT /*+ result_cache */ deptno, avg(sal)
 FROM emp
 GROUP BY deptno;

SELECT PLAN_TABLE_OUTPUT FROM TABLE (DBMS_XPLAN.DISPLAY());

The EXPLAIN PLAN output for this query should look similar to the following:

--
|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time |
--
0	SELECT STATEMENT		11	77	4 (25)	00:00:01
1	RESULT CACHE	b06ppfz9pxzstbttpbqyqnfbmy				
2	HASH GROUP BY		11	77	4 (25)	00:00:01
3	TABLE ACCESS FULL	EMP	107	749	3 (0)	00:00:01
--

In this EXPLAIN PLAN, the ResultCache operator is identified by its CacheId, which is
b06ppfz9pxzstbttpbqyqnfbmy. You can now run a query on the V$RESULT_CACHE_OBJECTS view
by using this CacheId.

Displaying Plans for Partitioned Objects: Example
Use EXPLAIN PLAN to determine how Oracle Database accesses partitioned objects for specific
queries.

Partitions accessed after pruning are shown in the PARTITION START and PARTITION STOP
columns. The row source name for the range partition is PARTITION RANGE. For hash partitions,
the row source name is PARTITION HASH.

Chapter 6
Displaying Execution Plans

6-23

A join is implemented using partial partition-wise join if the DISTRIBUTION column of the plan
table of one of the joined tables contains PARTITION(KEY). Partial partition-wise join is possible
if one of the joined tables is partitioned on its join column and the table is parallelized.

A join is implemented using full partition-wise join if the partition row source appears before the
join row source in the EXPLAIN PLAN output. Full partition-wise joins are possible only if both
joined tables are equipartitioned on their respective join columns. Examples of execution plans
for several types of partitioning follow.

Displaying Range and Hash Partitioning with EXPLAIN PLAN: Examples
This example illustrates pruning by using the emp_range table, which partitioned by range on
hire_date.

Assume that the tables employees and departments from the Oracle Database sample schema
exist.

CREATE TABLE emp_range
PARTITION BY RANGE(hire_date)
(
 PARTITION emp_p1 VALUES LESS THAN (TO_DATE('1-JAN-1992','DD-MON-YYYY')),
 PARTITION emp_p2 VALUES LESS THAN (TO_DATE('1-JAN-1994','DD-MON-YYYY')),
 PARTITION emp_p3 VALUES LESS THAN (TO_DATE('1-JAN-1996','DD-MON-YYYY')),
 PARTITION emp_p4 VALUES LESS THAN (TO_DATE('1-JAN-1998','DD-MON-YYYY')),
 PARTITION emp_p5 VALUES LESS THAN (TO_DATE('1-JAN-2001','DD-MON-YYYY'))
)
AS SELECT * FROM employees;

For the first example, consider the following statement:

EXPLAIN PLAN FOR
 SELECT * FROM emp_range;

Oracle Database displays something similar to the following:

--
|Id| Operation | Name |Rows| Bytes|Cost|Pstart|Pstop|
--
0	SELECT STATEMENT		105	13965	2		
1	PARTITION RANGE ALL		105	13965	2	1	5
2	TABLE ACCESS FULL	EMP_RANGE	105	13965	2	1	5
--

The database creates a partition row source on top of the table access row source. It iterates
over the set of partitions to be accessed. In this example, the partition iterator covers all
partitions (option ALL), because a predicate was not used for pruning. The PARTITION_START
and PARTITION_STOP columns of the PLAN_TABLE show access to all partitions from 1 to 5.

For the next example, consider the following statement:

EXPLAIN PLAN FOR
 SELECT *
 FROM emp_range
 WHERE hire_date >= TO_DATE('1-JAN-1996','DD-MON-YYYY');

Chapter 6
Displaying Execution Plans

6-24

| Id | Operation | Name |Rows|Bytes|Cost|Pstart|Pstop|

0	SELECT STATEMENT		3	399	2		
1	PARTITION RANGE ITERATOR		3	399	2	4	5
*2	TABLE ACCESS FULL	EMP_RANGE	3	399	2	4	5

In the previous example, the partition row source iterates from partition 4 to 5 because the
database prunes the other partitions using a predicate on hire_date.

Finally, consider the following statement:

EXPLAIN PLAN FOR
 SELECT *
 FROM emp_range
 WHERE hire_date < TO_DATE('1-JAN-1992','DD-MON-YYYY');

| Id | Operation | Name |Rows|Bytes|Cost|Pstart|Pstop|

0	SELECT STATEMENT		1	133	2		
1	PARTITION RANGE SINGLE		1	133	2	1	1
* 2	TABLE ACCESS FULL	EMP_RANGE	1	133	2	1	1

In the previous example, only partition 1 is accessed and known at compile time; thus, there is
no need for a partition row source.

Note:

Oracle Database displays the same information for hash partitioned objects, except
the partition row source name is PARTITION HASH instead of PARTITION RANGE. Also,
with hash partitioning, pruning is only possible using equality or IN-list predicates.

Pruning Information with Composite Partitioned Objects: Examples
To illustrate how Oracle Database displays pruning information for composite partitioned
objects, consider the table emp_comp. It is range-partitioned on hiredate and subpartitioned by
hash on deptno.

CREATE TABLE emp_comp PARTITION BY RANGE(hire_date)
 SUBPARTITION BY HASH(department_id) SUBPARTITIONS 3
(
PARTITION emp_p1 VALUES LESS THAN (TO_DATE('1-JAN-1992','DD-MON-YYYY')),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE('1-JAN-1994','DD-MON-YYYY')),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE('1-JAN-1996','DD-MON-YYYY')),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE('1-JAN-1998','DD-MON-YYYY')),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE('1-JAN-2001','DD-MON-YYYY'))
)
AS SELECT * FROM employees;

Chapter 6
Displaying Execution Plans

6-25

For the first example, consider the following statement:

EXPLAIN PLAN FOR
 SELECT * FROM emp_comp;

|Id| Operation | Name | Rows | Bytes |Cost|Pstart|Pstop|

0	SELECT STATEMENT		10120	1314K	78		
1	PARTITION RANGE ALL		10120	1314K	78	1	5
2	PARTITION HASH ALL		10120	1314K	78	1	3
3	TABLE ACCESS FULL	EMP_COMP	10120	1314K	78	1	15

This example shows the plan when Oracle Database accesses all subpartitions of all partitions
of a composite object. The database uses two partition row sources for this purpose: a range
partition row source to iterate over the partitions, and a hash partition row source to iterate over
the subpartitions of each accessed partition.

In the following example, the range partition row source iterates from partition 1 to 5, because
the database performs no pruning. Within each partition, the hash partition row source iterates
over subpartitions 1 to 3 of the current partition. As a result, the table access row source
accesses subpartitions 1 to 15. In other words, the database accesses all subpartitions of the
composite object.

EXPLAIN PLAN FOR
 SELECT *
 FROM emp_comp
 WHERE hire_date = TO_DATE('15-FEB-1998', 'DD-MON-YYYY');

| Id | Operation | Name |Rows|Bytes |Cost|Pstart|Pstop|

0	SELECT STATEMENT		20	2660	17		
1	PARTITION RANGE SINGLE		20	2660	17	5	5
2	PARTITION HASH ALL		20	2660	17	1	3
* 3	TABLE ACCESS FULL	EMP_COMP	20	2660	17	13	15

In the previous example, only the last partition, partition 5, is accessed. This partition is known
at compile time, so the database does not need to show it in the plan. The hash partition row
source shows accessing of all subpartitions within that partition; that is, subpartitions 1 to 3,
which translates into subpartitions 13 to 15 of the emp_comp table.

Now consider the following statement:

EXPLAIN PLAN FOR
 SELECT *
 FROM emp_comp
 WHERE department_id = 20;

--
| Id | Operation |Name |Rows | Bytes |Cost|Pstart|Pstop|
--
| 0 | SELECT STATEMENT | | 101 | 13433 | 78 | | |

Chapter 6
Displaying Execution Plans

6-26

1	PARTITION RANGE ALL		101	13433	78	1	5
2	PARTITION HASH SINGLE		101	13433	78	3	3
* 3	TABLE ACCESS FULL	EMP_COMP	101	13433	78		
--

In the previous example, the predicate deptno=20 enables pruning on the hash dimension
within each partition. Therefore, Oracle Database only needs to access a single subpartition.
The number of this subpartition is known at compile time, so the hash partition row source is
not needed.

Finally, consider the following statement:

VARIABLE dno NUMBER;
EXPLAIN PLAN FOR
 SELECT *
 FROM emp_comp
 WHERE department_id = :dno;

| Id| Operation | Name |Rows| Bytes |Cost|Pstart|Pstop|

0	SELECT STATEMENT		101	13433	78		
1	PARTITION RANGE ALL		101	13433	78	1	5
2	PARTITION HASH SINGLE		101	13433	78	KEY	KEY
*3	TABLE ACCESS FULL	EMP_COMP	101	13433	78		

The last two examples are the same, except that department_id = :dno replaces deptno=20. In
this last case, the subpartition number is unknown at compile time, and a hash partition row
source is allocated. The option is SINGLE for this row source because Oracle Database
accesses only one subpartition within each partition. In Step 2, both PARTITION_START and
PARTITION_STOP are set to KEY. This value means that Oracle Database determines the
number of subpartitions at run time.

Examples of Partial Partition-Wise Joins
In these examples, the PQ_DISTRIBUTE hint explicitly forces a partial partition-wise join because
the query optimizer could have chosen a different plan based on cost in this query.

Example 6-6 Partial Partition-Wise Join with Range Partition

In the following example, the database joins emp_range_did on the partitioning column
department_id and parallelizes it. The database can use a partial partition-wise join because
the dept2 table is not partitioned. Oracle Database dynamically partitions the dept2 table
before the join.

CREATE TABLE dept2 AS SELECT * FROM departments;
ALTER TABLE dept2 PARALLEL 2;

CREATE TABLE emp_range_did PARTITION BY RANGE(department_id)
 (PARTITION emp_p1 VALUES LESS THAN (150),
 PARTITION emp_p5 VALUES LESS THAN (MAXVALUE))
 AS SELECT * FROM employees;

ALTER TABLE emp_range_did PARALLEL 2;

Chapter 6
Displaying Execution Plans

6-27

EXPLAIN PLAN FOR
 SELECT /*+ PQ_DISTRIBUTE(d NONE PARTITION) ORDERED */ e.last_name,
 d.department_name
 FROM emp_range_did e, dept2 d
 WHERE e.department_id = d.department_id;

|Id| Operation |Name |Row|Byte|Cost|Pstart|Pstop|TQ|IN-OUT|PQ Distrib|

0	SELECT STATEMENT		284	16188	6					
1	PX COORDINATOR									
2	PX SEND QC (RANDOM)	:TQ10001	284	16188	6			Q1,01	P->S	QC (RAND)
*3	HASH JOIN		284	16188	6			Q1,01	PCWP	
4	PX PARTITION RANGE ALL		284	7668	2	1	2	Q1,01	PCWC	
5	TABLE ACCESS FULL	EMP_RANGE_DID	284	7668	2	1	2	Q1,01	PCWP	
6	BUFFER SORT							Q1,01	PCWC	
7	PX RECEIVE		21	630	2			Q1,01	PCWP	
8	PX SEND PARTITION (KEY)	:TQ10000	21	630	2				S->P	PART (KEY)
9	TABLE ACCESS FULL	DEPT2	21	630	2					

The execution plan shows that the table dept2 is scanned serially and all rows with the same
partitioning column value of emp_range_did (department_id) are sent through a PART (KEY),
or partition key, table queue to the same parallel execution server doing the partial partition-
wise join.

Example 6-7 Partial Partition-Wise Join with Composite Partition

In the following example, emp_comp is joined on the partitioning column and is parallelized,
enabling use of a partial partition-wise join because dept2 is not partitioned. The database
dynamically partitions dept2 before the join.

ALTER TABLE emp_comp PARALLEL 2;

EXPLAIN PLAN FOR
 SELECT /*+ PQ_DISTRIBUTE(d NONE PARTITION) ORDERED */ e.last_name,
 d.department_name
 FROM emp_comp e, dept2 d
 WHERE e.department_id = d.department_id;

SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

| Id| Operation | Name |Rows |Bytes |Cost|Pstart|Pstop|TQ |IN-OUT|PQ Distrib|

0	SELECT STATEMENT		445	17800	5					
1	PX COORDINATOR									
2	PX SEND QC (RANDOM)	:TQ10001	445	17800	5			Q1,01	P->S	QC (RAND)
*3	HASH JOIN		445	17800	5			Q1,01	PCWP	
4	PX PARTITION RANGE ALL		107	1070	3	1	5	Q1,01	PCWC	
5	PX PARTITION HASH ALL		107	1070	3	1	3	Q1,01	PCWC	
6	TABLE ACCESS FULL	EMP_COMP	107	1070	3	1	15	Q1,01	PCWP	
7	PX RECEIVE		21	630	1			Q1,01	PCWP	
8	PX SEND PARTITION (KEY)	:TQ10000	21	630	1			Q1,00	P->P	PART (KEY)
9	PX BLOCK ITERATOR		21	630	1			Q1,00	PCWC	

Chapter 6
Displaying Execution Plans

6-28

|10 | TABLE ACCESS FULL |DEPT2 | 21 | 630| 1 | | | Q1,00 |PCWP| |

The plan shows that the optimizer selects partial partition-wise join from one of two columns.
The PX SEND node type is PARTITION (KEY) and the PQ Distrib column contains the text PART
(KEY), or partition key. This implies that the table dept2 is re-partitioned based on the join
column department_id to be sent to the parallel execution servers executing the scan of
EMP_COMP and the join.

Example of Full Partition-Wise Join
In this example, emp_comp and dept_hash are joined on their hash partitioning columns,
enabling use of a full partition-wise join.

The PARTITION HASH row source appears on top of the join row source in the plan table output.

CREATE TABLE dept_hash
 PARTITION BY HASH(department_id)
 PARTITIONS 3
 PARALLEL 2
 AS SELECT * FROM departments;

EXPLAIN PLAN FOR
 SELECT /*+ PQ_DISTRIBUTE(e NONE NONE) ORDERED */ e.last_name,
 d.department_name
 FROM emp_comp e, dept_hash d
 WHERE e.department_id = d.department_id;

|Id| Operation | Name |Rows|Bytes|Cost|Pstart|Pstop|TQ |IN-OUT|PQ Distrib|

0	SELECT STATEMENT		106	2544	8					
1	PX COORDINATOR									
2	PX SEND QC (RANDOM)	:TQ10000	106	2544	8			Q1,00	P->S	QC (RAND)
3	PX PARTITION HASH ALL		106	2544	8	1	3	Q1,00	PCWC	
*4	HASH JOIN		106	2544	8			Q1,00	PCWP	
5	PX PARTITION RANGE ALL		107	1070	3	1	5	Q1,00	PCWC	
6	TABLE ACCESS FULL	EMP_COMP	107	1070	3	1	15	Q1,00	PCWP	
7	TABLE ACCESS FULL	DEPT_HASH	27	378	4	1	3	Q1,00	PCWP	

The PX PARTITION HASH row source appears on top of the join row source in the plan table
output while the PX PARTITION RANGE row source appears over the scan of emp_comp. Each
parallel execution server performs the join of an entire hash partition of emp_comp with an entire
partition of dept_hash.

Examples of INLIST ITERATOR and EXPLAIN PLAN
An INLIST ITERATOR operation appears in the EXPLAIN PLAN output if an index implements an
IN-list predicate.

Consider the following statement:

SELECT * FROM emp WHERE empno IN (7876, 7900, 7902);

Chapter 6
Displaying Execution Plans

6-29

The EXPLAIN PLAN output appears as follows:

OPERATION OPTIONS OBJECT_NAME
---------------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
TABLE ACCESS BY ROWID EMP
INDEX RANGE SCAN EMP_EMPNO

The INLIST ITERATOR operation iterates over the next operation in the plan for each value in
the IN-list predicate. The following sections describe the three possible types of IN-list columns
for partitioned tables and indexes.

When the IN-List Column is an Index Column: Example

If the IN-list column empno is an index column but not a partition column, then the IN-list
operator appears before the table operation but after the partition operation in the plan.

OPERATION OPTIONS OBJECT_NAME PARTIT_START PARTITI_STOP
---------------- ------------ ----------- ------------ ------------
SELECT STATEMENT
PARTITION RANGE ALL KEY(INLIST) KEY(INLIST)
INLIST ITERATOR
TABLE ACCESS BY LOCAL INDEX ROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

The KEY(INLIST) designation for the partition start and stop keys specifies that an IN-list
predicate appears on the index start and stop keys.

When the IN-List Column is an Index and a Partition Column: Example

If empno is an indexed and a partition column, then the plan contains an INLIST ITERATOR
operation before the partition operation.

OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
PARTITION RANGE ITERATOR KEY(INLIST) KEY(INLIST)
TABLE ACCESS BY LOCAL INDEX ROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

When the IN-List Column is a Partition Column: Example

If empno is a partition column and no indexes exist, then no INLIST ITERATOR operation is
allocated.

OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
PARTITION RANGE INLIST KEY(INLIST) KEY(INLIST)
TABLE ACCESS FULL EMP KEY(INLIST) KEY(INLIST)

Chapter 6
Displaying Execution Plans

6-30

If emp_empno is a bitmap index, then the plan is as follows:

OPERATION OPTIONS OBJECT_NAME
---------------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
TABLE ACCESS BY INDEX ROWID EMP
BITMAP CONVERSION TO ROWIDS
BITMAP INDEX SINGLE VALUE EMP_EMPNO

Example of Domain Indexes and EXPLAIN PLAN
You can use EXPLAIN PLAN to derive user-defined CPU and I/O costs for domain indexes.

EXPLAIN PLAN displays domain index statistics in the OTHER column of PLAN_TABLE. For
example, assume table emp has user-defined operator CONTAINS with a domain index
emp_resume on the resume column, and the index type of emp_resume supports the operator
CONTAINS. You explain the plan for the following query:

SELECT * FROM emp WHERE CONTAINS(resume, 'Oracle') = 1

The database could display the following plan:

OPERATION OPTIONS OBJECT_NAME OTHER
----------------- ----------- ------------ ----------------
SELECT STATEMENT
TABLE ACCESS BY ROWID EMP
DOMAIN INDEX EMP_RESUME CPU: 300, I/O: 4

Comparing Execution Plans
The plan comparison tool takes a reference plan and an arbitrary list of test plans and
highlights the differences between them. The plan comparison is logical rather than line by line.

Purpose of Plan Comparison
The plan comparison report identifies the source of differences, which helps users triage plan
reproducibility issues.

The plan comparison report is particularly useful in the following scenarios:

• You want to compare the current plan of a query whose performance is regressing with an
old plan captured in AWR.

• A SQL plan baseline fails to reproduce the originally intended plan, and you want to
determine the difference between the new plan and the intended plan.

• You want to determine how adding a hint, changing a parameter, or creating an index will
affect a plan.

• You want to determine how a plan generated based on a SQL profile or by SQL
Performance Analyzer differs from the original plan.

Chapter 6
Comparing Execution Plans

6-31

User Interface for Plan Comparison
You can use DBMS_XPLAN.COMPARE_PLANS to generate a report in text, XML, or HTML format.

Compare Plans Report Format

The report begins with a summary. The COMPARE PLANS REPORT section includes information
such as the user who ran the report and the number of plans compared, as shown in the
following example:

COMPARE PLANS REPORT

 Current user : SH
 Total number of plans : 2
 Number of findings : 1

The COMPARISON DETAILS section of the report contains the following information:

• Plan information

The information includes the plan number, the plan source, plan attributes (which differ
depending on the source), parsing schema, and SQL text.

• Plans

This section displays the plan rows, including the predicates and notes.

• Comparison results

This section summarizes the comparison findings, highlighting logical differences such as
join order, join methods, access paths, and parallel distribution method. The findings start
at number 1. For findings that relate to a particular query block, the text starts with the
name of the block. For findings that relate to a particular object alias, the text starts with
the name of the query block and the object alias. The following

Comparison Results (1):

 1. Query block SEL$1, Alias PRODUCTS@SEL$1: Some columns (OPERATION,
 OPTIONS, OBJECT_NAME) do not match between the reference
 plan (id: 2) and the current plan (id: 2).

DBMS_XPLAN.PLAN_OBJECT_LIST Table Type

The plan_object_list type allows for a list of generic objects as input to the
DBMS_XPLAN.COMPARE_PLANS function. The syntax is as follows:

TYPE plan_object_list IS TABLE OF generic_plan_object;

The generic object abstracts the common attributes of plans from all plan sources. Every plan
source is a subclass of the plan_object_list superclass. The following table summarizes the
different plan sources. Note that when an optional parameter is null, it can correspond to
multiple objects. For example, if you do not specify a child number for cursor_cache_object,
then it matches all cursor cache statements with the specified SQL ID.

Chapter 6
Comparing Execution Plans

6-32

Table 6-3 Plan Sources for PLAN_OBJECT_LIST

Plan Source Specification Description

Plan table
plan_table_object(owner,
plan_table_name, statement_id,
plan_id)

The parameters are as follows:

• owner—The owner of the plan table

• plan_table_name—The name of the
plan table

• statement_id—The ID of the
statement (optional)

• plan_id—The ID of the plan
(optional)

Cursor cache
cursor_cache_object(sql_id,
child_number)

The parameters are as follows:

• sql_id—The SQL ID of the plan

• child_number—The child number of
the plan in the cursor cache (optional)

AWR
awr_object(sql_id, dbid,
con_dbid, plan_hash_value)

The parameters are as follows:

• sql_id—The SQL ID of the plan

• dbid—The database ID (optional)

• con_dbid—The CDB ID (optional)

• plan_hash_value—The hash value
of the plan (optional)

SQL tuning set
sqlset_object (sqlset_owner,
sqlset_name, sql_id,
plan_hash_value)

The parameters are as follows:

• sqlset_owner—The owner of the
SQL tuning set

• sqlset_name—The name of the SQL
tuning set

• sql_id—The SQL ID of the plan

• plan_hash_value—The hash value
of the plan (optional)

SQL plan
management spm_object (sql_handle,

plan_name)

The parameters are as follows:

• sql_handle—The SQL handle of
plans protected by SQL plan
management

• plan_name—The name of the SQL
plan baseline (optional)

SQL profile
sql_profile_object
(profile_name)

The profile_name parameter specifies
the name of the SQL profile.

Advisor
advisor_object (task_name,
execution_name, sql_id,
plan_id)

The parameters are as follows:

• task_name—The name of the advisor
task

• execution_name—The name of the
task execution

• sql_id—The SQL ID of the plan

• plan_id—The advisor plan ID
(optional)

Chapter 6
Comparing Execution Plans

6-33

DBMS_XPLAN.COMPARE_PLANS Function

The interface for the compare plan tools is the following function:

DBMS_XPLAN.COMPARE_PLANS(
 reference_plan IN generic_plan_object,
 compare_plan_list IN plan_object_list,
 type IN VARCHAR2 := 'TEXT',
 level IN VARCHAR2 := 'TYPICAL',
 section IN VARCHAR2 := 'ALL')
RETURN CLOB;

The following table describes the parameters that specify that plans to be compared.

Table 6-4 Parameters for the COMPARE_PLANS Function

Parameter Description

reference_plan Specifies a single plan of type
generic_plan_object.

compare_plan_list Specifies a list of plan objects. An object might
correspond to one or more plans.

Example 6-8 Comparing Plans from Child Cursors

This example compares the plan of child cursor number 2 for the SQL ID 8mkxm7ur07za0 with
the plan for child cursor number 4 for the same SQL ID.

VAR v_report CLOB;

BEGIN
 :v_report := DBMS_XPLAN.COMPARE_PLANS(
 reference_plan => CURSOR_CACHE_OBJECT('8mkxm7ur07za0', 2),
 compare_plan_list =>
PLAN_OBJECT_LIST(CURSOR_CACHE_OBJECT('8mkxm7ur07za0', 4)));
END;
/

PRINT v_report

Example 6-9 Comparing Plan from Child Cursor with Plan from SQL Plan Baseline

This example compares the plan of child cursor number 2 for the SQL ID 8mkxm7ur07za0 with
the plan from the SQL plan baseline. The baseline query has a SQL handle of
SQL_024d0f7d21351f5d and a plan name of SQL_PLAN_sdfjkd.

VAR v_report CLOB;
BEGIN
 :v_report := DBMS_XPLAN.COMPARE_PLANS(-
 reference_plan => CURSOR_CACHE_OBJECT('8mkxm7ur07za0', 2),
 compare_plan_list => PLAN_OBJECT_LIST(SPM_OBJECT('SQL_024d0f7d21351f5d',
'SQL_PLAN_sdfjkd')));
END;

Chapter 6
Comparing Execution Plans

6-34

PRINT v_report

Example 6-10 Comparing a Plan with Plans from Multiple Sources

This example prints the summary section only. The program compares the plan of child cursor
number 2 for the SQL ID 8mkxm7ur07za0 with every plan in the following list:

• All plans in the shared SQL area that are generated for the SQL ID 8mkxm7ur07za0
• All plans generated in the SQL tuning set SH. SQLT_WORKLOAD for the SQL ID

6vfqvav0rgyad
• All plans in AWR that are captured for database ID 5 and SQL ID 6vfqvav0rgyad
• The plan baseline for the query with handle SQL_024d0f7d21351f5d with name

SQL_PLAN_sdfjkd
• The plan stored in sh.plan_table identified by plan_id=38
• The plan identified by the SQL profile name pe3r3ejsfd
• All plans stored in SQL advisor identified by task name TASK_1228, execution name

EXEC_1928, and SQL ID 8mkxm7ur07za0

VAR v_report CLOB
BEGIN
 :v_report := DBMS_XPLAN.COMPARE_PLANS(
 reference_plan => CURSOR_CACHE_OBJECT('8mkxm7ur07za0', 2),
 compare_plan_list => plan_object_list(
 cursor_cache_object('8mkxm7ur07za0'),
 sqlset_object('SH', 'SQLT_WORKLOAD', '6vfqvav0rgyad'),
 awr_object('6vfqvav0rgyad', 5),
 spm_object('SQL_024d0f7d21351f5d', 'SQL_PLAN_sdfjkd'),
 plan_table_object('SH', 'plan_table', 38),
 sql_profile_object('pe3r3ejsfd'),
 advisor_object('TASK_1228', 'EXEC_1928', '8mkxm7ur07za0')),
 type => 'XML',
 level => 'ALL',
 section => 'SUMMARY');
END;
/

PRINT v_report

Note:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_XPLAN package

Chapter 6
Comparing Execution Plans

6-35

Comparing Execution Plans: Tutorial
To compare plans, use the DBMS_XPLAN.COMPARE_PLANS function.

In this tutorial, you compare two distinct queries. The compare plans report shows that the
optimizer was able to use a join elimination transformation in one query but not the other.

Assumptions

This tutorial assumes that user sh issued the following queries:

select count(*)
from products p, sales s
where p.prod_id = s.prod_id
and p.prod_min_price > 200;

select count(*)
from products p, sales s
where p.prod_id = s.prod_id
and s.quantity_sold = 43;

To compare execution plans:

1. Start SQL*Plus, and log in to the database with administrative privileges.

2. Query V$SQL to determine the SQL IDs of the two queries.

The following query queries V$SQL for queries that contain the string products:

SET LINESIZE 120
COL SQL_ID FORMAT a20
COL SQL_TEXT FORMAT a60

SELECT SQL_ID, SQL_TEXT
FROM V$SQL
WHERE SQL_TEXT LIKE '%products%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%'
ORDER BY SQL_ID;

SQL_ID SQL_TEXT
----------------- --
0hxmvnfkasg6q select count(*) from products p, sales s where
 p.prod_id = s.prod_id and s.quantity_sold = 43

10dqxjph6bwum select count(*) from products p, sales s where
 p.prod_id = s.prod_id and p.prod_min_price > 200

3. Log in to the database as user sh.

4. Execute the DBMS_XPLAN.COMPARE_PLANS function, specifying the SQL IDs obtained in the
previous step.

For example, execute the following program:

VARIABLE v_rep CLOB

Chapter 6
Comparing Execution Plans

6-36

BEGIN
 :v_rep := DBMS_XPLAN.COMPARE_PLANS(
 reference_plan => cursor_cache_object('0hxmvnfkasg6q', NULL),
 compare_plan_list =>
plan_object_list(cursor_cache_object('10dqxjph6bwum', NULL)),
 type => 'TEXT',
 level => 'TYPICAL',
 section => 'ALL');
END;
/

5. Print the report.

For example, run the following query:

SET PAGESIZE 50000
SET LONG 100000
SET LINESIZE 210
COLUMN report FORMAT a200
SELECT :v_rep REPORT FROM DUAL;

The Comparison Results section of the following sample report shows that only the first
query used a join elimination transformation:

REPORT

COMPARE PLANS REPORT

 Current user : SH
 Total number of plans : 2
 Number of findings : 1

COMPARISON DETAILS

 Plan Number : 1 (Reference Plan)
 Plan Found : Yes
 Plan Source : Cursor Cache
 SQL ID : 0hxmvnfkasg6q
 Child Number : 0
 Plan Database Version : 19.0.0.0
 Parsing Schema : "SH"
 SQL Text : select count(*) from products p, sales s where
 p.prod_id = s.prod_id and s.quantity_sold = 43

Plan

 Plan Hash Value : 3519235612

| Id | Operation | Name | Rows | Bytes | Cost | Time |

| 0 | SELECT STATEMENT | | | | 469 | |
| 1 | SORT AGGREGATE | | 1 | 3 | | |

Chapter 6
Comparing Execution Plans

6-37

| 2 | PARTITION RANGE ALL | | 1 | 3 | 469 | 00:00:01 |
| * 3 | TABLE ACCESS FULL | SALES | 1 | 3 | 469 | 00:00:01 |

Predicate Information (identified by operation id):
--
* 3 - filter("S"."QUANTITY_SOLD"=43)

 Plan Number : 2
 Plan Found : Yes
 Plan Source : Cursor Cache
 SQL ID : 10dqxjph6bwum
 Child Number : 0
 Plan Database Version : 19.0.0.0
 Parsing Schema : "SH"
 SQL Text : select count(*) from products p, sales s where
 p.prod_id = s.prod_id and p.prod_min_price > 200

Plan

 Plan Hash Value : 3037679890

|Id| Operation | Name | Rows | Bytes |Cost |Time |

0	SELECT STATEMENT				34	
1	SORT AGGREGATE		1	13		
*2	HASH JOIN		781685	10161905	34	00:00:01
*3	TABLE ACCESS FULL	PRODUCTS	61	549	2	00:00:01
4	PARTITION RANGE ALL		918843	3675372	29	00:00:01
5	BITMAP CONVERSION TO ROWIDS		918843	3675372	29	00:00:01
6	BITMAP INDEX FAST FULL SCAN	SALES_PROD_BIX				

Predicate Information (identified by operation id):
--
* 2 - access("P"."PROD_ID"="S"."PROD_ID")
* 3 - filter("P"."PROD_MIN_PRICE">200)

Notes

- This is an adaptive plan

Comparison Results (1):

 1. Query block SEL$1: Transformation JOIN REMOVED FROM QUERY BLOCK occurred
 only in the reference plan (result query block: SEL$A43D1678).

Chapter 6
Comparing Execution Plans

6-38

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_XPLAN package

Comparing Execution Plans: Examples
These examples demonstrate how to generate compare plans reports for queries of tables in
the sh schema.

Example 6-11 Comparing an Explained Plan with a Plan in a Cursor

This example explains a plan for a query of tables in the sh schema, and then executes the
query:

EXPLAIN PLAN
 SET STATEMENT_ID='TEST' FOR
 SELECT c.cust_city, SUM(s.quantity_sold)
 FROM customers c, sales s, products p
 WHERE c.cust_id=s.cust_id
 AND p.prod_id=s.prod_id
 AND prod_min_price>100
 GROUP BY c.cust_city;

SELECT c.cust_city, SUM(s.quantity_sold)
FROM customers c, sales s, products p
WHERE c.cust_id=s.cust_id
AND p.prod_id=s.prod_id
AND prod_min_price>100
GROUP BY c.cust_city;

Assume that the SQL ID of the executed query is 9mp7z6qq83k5y. The following PL/SQL
program compares the plan in PLAN_TABLE and the plan in the shared SQL area:

BEGIN
 :v_rep := DBMS_XPLAN.COMPARE_PLANS(
 reference_plan => plan_table_object('SH', 'PLAN_TABLE', 'TEST', NULL),
 compare_plan_list =>
plan_object_list(cursor_cache_object('9mp7z6qq83k5y')),
 type => 'TEXT',
 level => 'TYPICAL',
 section => 'ALL');
END;
/

PRINT v_rep

The following sample report shows that the plans are the same:

COMPARE PLANS REPORT

 Current user : SH

Chapter 6
Comparing Execution Plans

6-39

 Total number of plans : 2
 Number of findings : 1

COMPARISON DETAILS

 Plan Number : 1 (Reference Plan)
 Plan Found : Yes
 Plan Source : Plan Table
 Plan Table Owner : SH
 Plan Table Name : PLAN_TABLE
 Statement ID : TEST
 Plan ID : 52
 Plan Database Version : 19.0.0.0
 Parsing Schema : "SH"
 SQL Text : No SQL Text

Plan

 Plan Hash Value : 3473931970

--
| Id| Operation | Name | Rows | Bytes |Cost| Time |
--
0	SELECT STATEMENT		620	22320	1213	00:00:01
1	HASH GROUP BY		620	22320	1213	00:00:01
* 2	HASH JOIN		160348	5772528	1209	00:00:01
3	TABLE ACCESS FULL	CUSTOMERS	55500	832500	414	00:00:01
* 4	HASH JOIN		160348	3367308	472	00:00:01
* 5	TABLE ACCESS FULL	PRODUCTS	13	117	2	00:00:01
6	PARTITION RANGE ALL		918843	11026116	467	00:00:01
7	TABLE ACCESS FULL	SALES	918843	11026116	467	00:00:01
--

Predicate Information (identified by operation id):
--
* 2 - access("C"."CUST_ID"="S"."CUST_ID")
* 4 - access("P"."PROD_ID"="S"."PROD_ID")
* 5 - filter("PROD_MIN_PRICE">100)

Notes

- This is an adaptive plan

--
 Plan Number : 2
 Plan Found : Yes
 Plan Source : Cursor Cache
 SQL ID : 9mp7z6qq83k5y
 Child Number : 0
 Plan Database Version : 19.0.0.0
 Parsing Schema : "SH"
 SQL Text : select c.cust_city, sum(s.quantity_sold) from
 customers c, sales s, products p where
 c.cust_id=s.cust_id and p.prod_id=s.prod_id and
 prod_min_price>100 group by c.cust_city

Chapter 6
Comparing Execution Plans

6-40

Plan

 Plan Hash Value : 3473931970

| Id | Operation | Name | Rows | Bytes | Cost|Time |

0	SELECT STATEMENT				1213	
1	HASH GROUP BY		620	22320	1213	00:00:01
* 2	HASH JOIN		160348	5772528	1209	00:00:01
3	TABLE ACCESS FULL	CUSTOMERS	55500	832500	414	00:00:01
* 4	HASH JOIN		160348	3367308	472	00:00:01
* 5	TABLE ACCESS FULL	PRODUCTS	13	117	2	00:00:01
6	PARTITION RANGE ALL		918843	11026116	467	00:00:01
7	TABLE ACCESS FULL	SALES	918843	11026116	467	00:00:01

Predicate Information (identified by operation id):
--
* 2 - access("C"."CUST_ID"="S"."CUST_ID")
* 4 - access("P"."PROD_ID"="S"."PROD_ID")
* 5 - filter("PROD_MIN_PRICE">100)

Notes

- This is an adaptive plan

Comparison Results (1):

 1. The plans are the same.

Example 6-12 Comparing Plans in a Baseline and SQL Tuning Set

Assume that you want to compare the plans for the following queries, which differ only in the
NO_MERGE hint contained in the subquery:

SELECT c.cust_city, SUM(s.quantity_sold)
FROM customers c, sales s,
 (SELECT prod_id FROM products WHERE prod_min_price>100) p
WHERE c.cust_id=s.cust_id
AND p.prod_id=s.prod_id
GROUP BY c.cust_city;

SELECT c.cust_city, SUM(s.quantity_sold)
FROM customers c, sales s,
 (SELECT /*+ NO_MERGE */ prod_id FROM products WHERE
prod_min_price>100)
WHERE c.cust_id=s.cust_id
AND p.prod_id=s.prod_id
GROUP BY c.cust_city;

The plan for the first query is captured in a SQL plan management baseline with SQL handle
SQL_c522f5888cc4613e. The plan for the second query is stored in a SQL tuning set named

Chapter 6
Comparing Execution Plans

6-41

MYSTS1 and has a SQL ID of d07p7qmrm13nc. You run the following PL/SQL program to
compare the plans:

VAR v_rep CLOB

BEGIN
 v_rep := DBMS_XPLAN.COMPARE_PLANS(
 reference_plan => spm_object('SQL_c522f5888cc4613e'),
 compare_plan_list => plan_object_list(sqlset_object('SH', 'MYSTS1',
'd07p7qmrm13nc', null)),
 type => 'TEXT',
 level => 'TYPICAL',
 section => 'ALL');
END;
/

PRINT v_rep

The following output shows that the only the reference plan, which corresponds to the query
without the hint, used a view merge:

COMPARE PLANS REPORT

Current user : SH
Total number of plans : 2
Number of findings : 1

COMPARISON DETAILS

Plan Number : 1 (Reference Plan)
Plan Found : Yes
Plan Source : SQL Plan Baseline
SQL Handle : SQL_c522f5888cc4613e
Plan Name : SQL_PLAN_ca8rpj26c8s9y7c2279c4
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select c.cust_city, sum(s.quantity_sold) from
 customers c, sales s, (select prod_id from
 products where prod_min_price>100) p where
 c.cust_id=s.cust_id and p.prod id=s.prod_id
 group by c.cust_city

Plan

Plan Hash Value : 2082634180

| Id | Operation | Name |Rows |Bytes |Cost | Time |

0	SELECT STATEMENT				22	
1	HASH GROUP BY		300	11400	22	00:00:01
2	HASH JOIN		718	27284	21	00:00:01

Chapter 6
Comparing Execution Plans

6-42

3	TABLE ACCESS FULL	CUSTOMERS	630	9450	5	00:00:01
4	HASH JOIN		718	16514	15	00:00:01
5	TABLE ACCESS FULL	PRODUCTS	573	5730	9	00:00:01
6	PARTITION RANGE ALL		960	12480	5	00:00:01
7	TABLE ACCESS FULL	SALES	960	12480	5	00:00:01

Plan Number : 2
Plan Found : Yes
Plan Source : SQL Tuning Set
SQL Tuning Set Owner : SH
SQL Tuning Set Name : MYSTS1
SQL ID : d07p7qmrm13nc
Plan Hash Value : 655891922
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select c.cust_city, sum(s.quantity_sold) from
 customers c, sales s, (select /*+ NO_MERGE */
 prod_id from products where prod_min_price>100)
 p where c.cust_id=s.cust_id and
 p.prod_id=s.prod_id group by c.cust_city

Plan

Plan Hash Value : 655891922

|Id | Operation | Name |Rows | Bytes |Cost| Time |

0	SELECT STATEMENT				23	
1	HASH GROUP BY		300	9900	23	00:00:01
2	HASH JOIN		718	23694	21	00:00:01
3	HASH JOIN		718	12924	15	00:00:01
4	VIEW		573	2865	9	00:00:01
5	TABLE ACCESS FULL	PRODUCTS	573	5730	9	00:00:01
6	PARTITION RANGE ALL		960	12480	5	00:00:01
7	TABLE ACCESS FULL	SALES	960	12480	5	00:00:01
8	TABLE ACCESS FULL	CUSTOMERS	630	9450	5	00:00:01

Notes

- This is an adaptive plan

Comparison Results (1):

1. Query block SEL$1: Transformation VIEW MERGE occurred only in the
reference plan (result query block: SEL$F5BB74E1).

Example 6-13 Comparing Plans Before and After Adding an Index

In this example, you test the effect of an index on a query plan:

EXPLAIN PLAN
 SET STATEMENT_ID='TST1' FOR

Chapter 6
Comparing Execution Plans

6-43

 SELECT COUNT(*) FROM products WHERE prod_min_price>100;

CREATE INDEX newprodidx ON products(prod_min_price);

EXPLAIN PLAN
 SET STATEMENT_ID='TST2' FOR
 SELECT COUNT(*) FROM products WHERE prod_min_price>100;

You execute the following PL/SQL program to generate the report:

VAR v_rep CLOB

BEGIN
 :v_rep := DBMS_XPLAN.COMPARE_PLANS(
 reference_plan => plan_table_object('SH','PLAN_TABLE','TST1',NULL),
 compare_plan_list => plan_object_list(plan_table_object('SH','PLAN_TABLE','TST2',NULL)),
 TYPE => 'TEXT',
 level => 'TYPICAL',
 section => 'ALL');
END;
/

PRINT v_rep

The following report indicates that the operations in the two plans are different:

COMPARE PLANS REPORT
--
 Current user : SH
 Total number of plans : 2
 Number of findings : 1
--

COMPARISON DETAILS
--
 Plan Number : 1 (Reference Plan)
 Plan Found : Yes
 Plan Source : Plan Table
 Plan Table Owner : SH
 Plan Table Name : PLAN_TABLE
 Statement ID : TST1
 Plan ID : 56
 Plan Database Version : 19.0.0.0
 Parsing Schema : "SH"
 SQL Text : No SQL Text

Plan

 Plan Hash Value : 3421487369

--
| Id | Operation | Name | Rows | Bytes | Cost | Time |
--
| 0 | SELECT STATEMENT | | 1 | 5 | 2 | 00:00:01 |
| 1 | SORT AGGREGATE | | 1 | 5 | | |

Chapter 6
Comparing Execution Plans

6-44

| * 2 | TABLE ACCESS FULL | PRODUCTS | 13 | 65 | 2 | 00:00:01 |
--

Predicate Information (identified by operation id):
--
* 2 - filter("PROD_MIN_PRICE">100)

--
 Plan Number : 2
 Plan Found : Yes
 Plan Source : Plan Table
 Plan Table Owner : SH
 Plan Table Name : PLAN_TABLE
 Statement ID : TST2
 Plan ID : 57
 Plan Database Version : 19.0.0.0
 Parsing Schema : "SH"
 SQL Text : No SQL Text

Plan

 Plan Hash Value : 2694011010

| Id | Operation | Name | Rows | Bytes | Cost | Time |

0	SELECT STATEMENT		1	5	1	00:00:01
1	SORT AGGREGATE		1	5		
* 2	INDEX RANGE SCAN	NEWPRODIDX	13	65	1	00:00:01

Predicate Information (identified by operation id):
--
* 2 - access("PROD_MIN_PRICE">100)

Comparison Results (1):

 1. Query block SEL$1, Alias PRODUCTS@SEL$1: Some columns (OPERATION,
 OPTIONS, OBJECT_NAME) do not match between the reference plan
 (id: 2) and the current plan (id: 2).

Example 6-14 Comparing Plans with Visible and Invisible Indexes

In this example, an application executes the following query:

select count(*)
 from products p, sales s
 where p.prod_id = s.prod_id
 and p.prod_status = 'obsolete';

The plan for this query uses two indexes: sales_prod_bix and products_prod_status_bix.
The database generates four plans, using all combinations of visible and invisible for both
indexes. Assume that SQL plan management accepts the following plans in the baseline for
the query:

Chapter 6
Comparing Execution Plans

6-45

• sales_prod_bix visible and products_prod_status_bix visible

• sales_prod_bix visible and products_prod_status_bix invisible

• sales_prod_bix invisible and products_prod_status_bix visible

You make both indexes invisible, and then execute the query again. The optimizer, unable to
use the invisible indexes, generates a new plan. The three baseline plans, all of which rely on
at least one index being visible, fail to reproduce. Therefore, the optimizer uses the new plan
and adds it to the SQL plan baseline for the query. To compare the plan currently in the shared
SQL area, which is the reference plan, with all four plans in the baseline, you execute the
following PL/SQL code:

VAR v_rep CLOB

BEGIN
 :v_rep := DBMS_XPLAN.COMPARE_PLANS(
 reference_plan => cursor_cache_object('45ns3tzutg0ds'),
 compare_plan_list => plan_object_list(spm_object('SQL_aec814b0d452da8a')),
 TYPE => 'TEXT',
 level => 'TYPICAL',
 section => 'ALL');
END;
/

PRINT v_rep

The following report compares all five plans:

COMPARE PLANS REPORT

Current user : SH
Total number of plans : 5
Number of findings : 19

COMPARISON DETAILS

Plan Number : 1 (Reference Plan)
Plan Found : Yes
Plan Source : Cursor Cache
SQL ID : 45ns3tzutg0ds
Child Number : 0
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id
 = s.prod_id and p.prod_status = 'obsolete'

Plan

Plan Hash Value : 1136711713
--
| Id | Operation | Name | Rows | Bytes | Cost | Time |
--
| 0 | SELECT STATEMENT | | | | 15 | |

Chapter 6
Comparing Execution Plans

6-46

1	SORT AGGREGATE		1	30		
* 2	HASH JOIN		320	9600	15	00:00:01
3	JOIN FILTER CREATE	:BF0000	255	6375	9	00:00:01
* 4	TABLE ACCESS FULL	PRODUCTS	255	6375	9	00:00:01
5	JOIN FILTER USE	:BF0000	960	4800	5	00:00:01
6	PARTITION RANGE ALL		960	4800	5	00:00:01
* 7	TABLE ACCESS FULL	SALES	960	4800	5	00:00:01
--
Predicate Information (identified by operation id):
--
* 2 - access("P"."PROD_ID"="S"."PROD_ID")
* 4 - filter("P"."PROD_STATUS"='obsolete')
* 7 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."PROD_ID"))

Notes

- baseline_repro_fail = yes

Plan Number : 2
Plan Found : Yes
Plan Source : SQL Plan Baseline
SQL Handle : SQL_aec814b0d452da8a
Plan Name : SQL_PLAN_axk0nq3a55qna6e039463
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id =
 s.prod_id and p.prod_status = 'obsolete'

Plan

Plan Hash Value : 1845728355

| Id| Operation | Name |Rows|Bytes|Cost| Time |

0	SELECT STATEMENT		1	30	11	00:00:01
1	SORT AGGREGATE		1	30		
*2	HASH JOIN		320	9600	11	00:00:01
3	JOIN FILTER CREATE	:BF0000	255	6375	5	00:00:01
*4	VIEW	index$_join$_001	255	6375	5	00:00:01
*5	HASH JOIN					
6	BITMAP CONVERSION TO ROWIDS		255	6375	1	00:00:01
*7	BITMAP INDEX SINGLE VALUE	PRODUCTS_PROD_STATUS_BIX				
8	INDEX FAST FULL SCAN	PRODUCTS_PK	255	6375	4	00:00:01
9	JOIN FILTER USE	:BF0000	960	4800	5	00:00:01
10	PARTITION RANGE ALL		960	4800	5	00:00:01
*11	TABLE ACCESS FULL	SALES	960	4800	5	00:00:01

Predicate Information (identified by operation id):
--
* 2 - access("P"."PROD_ID"="S"."PROD_ID")
* 4 - filter("P"."PROD_STATUS"='obsolete')
* 5 - access(ROWID=ROWID)
* 7 - access("P"."PROD_STATUS"='obsolete')

Chapter 6
Comparing Execution Plans

6-47

* 11 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."PROD_ID"))

Comparison Results (4):

1. Query block SEL$1, Alias P@SEL$1: Some lines (id: 4) in the reference plan are missing
in the current plan.
2. Query block SEL$1, Alias S@SEL$1: Some columns (ID) do not match between the reference
plan (id: 5) and the current plan (id: 9).
3. Query block SEL$1, Alias S@SEL$1: Some columns (ID, PARENT_ID, PARTITION_ID) do not
match between the reference plan (id: 6) and the current plan (id: 10).
4. Query block SEL$1, Alias S@SEL$1: Some columns (ID, PARENT_ID, PARTITION_ID) do not
match between the reference plan (id: 7) and the current plan (id: 11).

Plan Number : 3
Plan Found : Yes
Plan Source : SQL Plan Baseline
SQL Handle : SQL_aec814b0d452da8a
Plan Name : SQL_PLAN_axk0nq3a55qna43c0d821
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id =
s.prod_id and
 p.prod_status = 'obsolete'

Plan

Plan Hash Value : 1136711713

--
| Id | Operation | Name | Rows | Bytes | Cost | Time |
--
0	SELECT STATEMENT		1	30	15	00:00:01
1	SORT AGGREGATE		1	30		
* 2	HASH JOIN		320	9600	15	00:00:01
3	JOIN FILTER CREATE	:BF0000	255	6375	9	00:00:01
* 4	TABLE ACCESS FULL	PRODUCTS	255	6375	9	00:00:01
5	JOIN FILTER USE	:BF0000	960	4800	5	00:00:01
6	PARTITION RANGE ALL		960	4800	5	00:00:01
* 7	TABLE ACCESS FULL	SALES	960	4800	5	00:00:01
--

Predicate Information (identified by operation id):
--
* 2 - access("P"."PROD_ID"="S"."PROD_ID")
* 4 - filter("P"."PROD_STATUS"='obsolete')
* 7 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."PROD_ID"))

Comparison Results (1):

1. The plans are the same.

--
Plan Number : 4
Plan Found : Yes
Plan Source : SQL Plan Baseline

Chapter 6
Comparing Execution Plans

6-48

SQL Handle : SQL_aec814b0d452da8a
Plan Name : SQL_PLAN_axk0nq3a55qna1b7aea6c
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id =
s.prod_id and
 p.prod_status = 'obsolete'

Plan

Plan Hash Value : 461040236

| Id | Operation | Name |Rows|Bytes | Cost | Time |
--- ---------------------------
0	SELECT STATEMENT		1	30	10	00:00:01
1	SORT AGGREGATE		1	30		
2	NESTED LOOPS		320	9600	10	00:00:01
* 3	TABLE ACCESS FULL	PRODUCTS	255	6375	9	00:00:01
4	PARTITION RANGE ALL		1	5	10	00:00:01
5	BITMAP CONVERSION COUNT		1	5	10	00:00:01
* 6	BITMAP INDEX SINGLE VALUE	SALES_PROD_BIX				

Predicate Information (identified by operation id):
--
* 3 - filter("P"."PROD_STATUS"='obsolete')
* 6 - access("P"."PROD_ID"="S"."PROD_ID")

Comparison Results (7):

1. Query block SEL$1, Alias P@SEL$1: Some lines (id: 3) in the reference plan are missing
in the current plan.
2. Query block SEL$1, Alias S@SEL$1: Some lines (id: 5) in the reference plan are missing
in the current plan.
3. Query block SEL$1, Alias S@SEL$1: Some lines (id: 7) in the reference plan are missing
in the current plan.
4. Query block SEL$1, Alias S@SEL$1: Some lines (id: 5,6) in the current plan are missing
in the reference plan.
5. Query block SEL$1, Alias P@SEL$1: Some columns (OPERATION) do not match between the
reference plan (id: 2) and the current plan (id: 2).
6. Query block SEL$1, Alias P@SEL$1: Some columns (ID, PARENT_ID, DEPTH) do not match
between the reference plan (id: 4) and the current plan (id: 3).
7. Query block SEL$1, Alias S@SEL$1: Some columns (ID, PARENT_ID, DEPTH, POSITION,
PARTITION_ID) do not match between the reference plan (id: 6) and the current plan (id: 4).

Plan Number : 5
Plan Found : Yes
Plan Source : SQL Plan Baseline
SQL Handle : SQL_aec814b0d452da8a
Plan Name : SQL_PLAN_axk0nq3a55qna0628afbd
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id =
s.prod_id and

Chapter 6
Comparing Execution Plans

6-49

 p.prod_status = 'obsolete'

Plan

Plan Hash Value : 103329725

|Id| Operation | Name | Rows|Bytes|Cost|Time |

0	SELECT STATEMENT				5	
1	SORT AGGREGATE		1	30		
2	NESTED LOOPS		320	9600	5	00:00:01
3	VIEW	index$_join$_001	255	6375	5	00:00:01
4	HASH JOIN					
5	BITMAP CONVERSION TO ROWIDS		255	6375	1	00:00:01
6	BITMAP INDEX SINGLE VALUE	PRODUCTS_PROD_STATUS_BIX				
7	INDEX FAST FULL SCAN	PRODUCTS_PK	255	6375	4	00:00:01
8	PARTITION RANGE ALL		1	5	5	00:00:01
9	BITMAP CONVERSION TO ROWIDS		1	5	5	00:00:01
10	BITMAP INDEX SINGLE VALUE	SALES_PROD_BIX				

Comparison Results (7):

1. Query block SEL$1, Alias P@SEL$1: Some lines (id: 3) in the reference plan are missing
in the current plan.
2. Query block SEL$1, Alias P@SEL$1: Some lines (id: 4) in the reference plan are missing
in the current plan.
3. Query block SEL$1, Alias S@SEL$1: Some lines (id: 5) in the reference plan are missing
in the current plan.
4. Query block SEL$1, Alias S@SEL$1: Some lines (id: 7) in the reference plan are missing
in the current plan.
5. Query block SEL$1, Alias S@SEL$1: Some lines (id: 9,10) in the current plan are missing
in the reference plan.
6. Query block SEL$1, Alias P@SEL$1: Some columns (OPERATION) do not match between the
reference plan (id: 2) and the current plan (id: 2).
7. Query block SEL$1, Alias S@SEL$1: Some columns (ID, PARENT_ID, DEPTH, POSITION,
PARTITION_ID) do not match between the reference plan (id: 6) and the current plan (id: 8).

The preceding report shows the following:

• Plan 1 is the reference plan from the shared SQL area. The plan does not use the indexes,
which are both invisible, and does not reproduce a baseline plan.

• Plan 2 is in the baseline and assumes sales_prod_bix is invisible and
products_prod_status_bix is visible.

• Plan 3 is in the baseline and assumes both indexes are invisible. Plan 1 and Plan 3 are the
same.

• Plan 4 is in the baseline and assumes sales_prod_bix is visible and
products_prod_status_bix is invisible.

• Plan 5 is in the baseline and assumes that both indexes are visible.

The comparison report shows that Plan 1 could not reproduce a plan from that baseline. The
reason is that the plan in the cursor (Plan 1) was added to the baseline because no baseline
plan was available at the time of execution, so the database performed a soft parse of the

Chapter 6
Comparing Execution Plans

6-50

statement and generated the no-index plan. If the current cursor were to be invalidated, and if
the query were to be executed again, then a comparison report would show that the cursor
plan did reproduce a baseline plan.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_XPLAN package

Example 6-15 Comparing a Baseline That Fails to Reproduce

One use case is to compare a cost-based plan with a SQL plan baseline. In this example, you
create a unique index. The database captures a plan baseline that uses this index. You then
make the index invisible and execute the query again. The baseline plan fails to reproduce
because the index is not visible, forcing the optimizer to choose a different plan. A compare
plans report between the baseline plan and the cost-based plan shows the difference in the
access path between the two plans.

1. Log in to the database as user hr, and then create a plan table:

CREATE TABLE PLAN_TABLE (
 STATEMENT_ID VARCHAR2(30),
 PLAN_ID NUMBER,
 TIMESTAMP DATE,
 REMARKS VARCHAR2(4000),
 OPERATION VARCHAR2(30),
 OPTIONS VARCHAR2(255),
 OBJECT_NODE VARCHAR2(128),
 OBJECT_OWNER VARCHAR2(30),
 OBJECT_NAME VARCHAR2(30),
 OBJECT_ALIAS VARCHAR2(65),
 OBJECT_INSTANCE NUMBER(38),
 OBJECT_TYPE VARCHAR2(30),
 OPTIMIZER VARCHAR2(255),
 SEARCH_COLUMNS NUMBER,
 ID NUMBER(38),
 PARENT_ID NUMBER(38),
 DEPTH NUMBER(38),
 POSITION NUMBER(38),
 COST NUMBER(38),
 CARDINALITY NUMBER(38),
 BYTES NUMBER(38),
 OTHER_TAG VARCHAR2(255),
 PARTITION_START VARCHAR2(255),
 PARTITION_STOP VARCHAR2(255),
 PARTITION_ID NUMBER(38),
 OTHER LONG,
 DISTRIBUTION VARCHAR2(30),
 CPU_COST NUMBER(38),
 IO_COST NUMBER(38),
 TEMP_SPACE NUMBER(38),
 ACCESS_PREDICATES VARCHAR2(4000),
 FILTER_PREDICATES VARCHAR2(4000),
 PROJECTION VARCHAR2(4000),

Chapter 6
Comparing Execution Plans

6-51

 TIME NUMBER(38),
 QBLOCK_NAME VARCHAR2(30),
 OTHER_XML CLOB);

2. Execute the following DDL statements, which create a table named staff and an index on
the staff.employee_id column:

CREATE TABLE staff AS (SELECT * FROM employees);
CREATE UNIQUE INDEX staff_employee_id ON staff (employee_id);

3. Execute the following statements to place a query of staff under the protection of SQL
Plan Management, and then make the index invisible:

ALTER SESSION SET optimizer_capture_sql_plan_baselines = TRUE;
SELECT COUNT(*) FROM staff WHERE employee_id = 20;
-- execute query a second time to create a baseline
SELECT COUNT(*) FROM staff WHERE employee_id = 20;
ALTER SESSION SET optimizer_capture_sql_plan_baselines = FALSE;
ALTER INDEX staff_employee_id INVISIBLE;

4. Explain the plan, and then query the plan table (sample output included):

EXPLAIN PLAN SET STATEMENT_ID='STAFF' FOR SELECT COUNT(*) FROM staff
 WHERE employee_id = 20;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(FORMAT=>'TYPICAL'));

PLAN_TABLE_OUTPUT
--
Plan hash value: 1778552452

--
| Id | Operation | Name |Rows |Bytes |Cost (%CPU)|Time |
--
0	SELECT STATEMENT		1	4	2 (0)	00:00:01
1	SORT AGGREGATE		1	4		
* 2	TABLE ACCESS FULL	STAFF	1	4	2 (0)	00:00:01
--

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT
--

 2 - filter("EMPLOYEE_ID"=20)

Note

 - dynamic statistics used: dynamic sampling (level=2)
 - Failed to use SQL plan baseline for this statement

As the preceding output shows, the optimizer chooses a full table scan because the index
is invisible. Because the SQL plan baseline uses an index, the optimizer cannot reproduce
the plan.

Chapter 6
Comparing Execution Plans

6-52

5. In a separate session, log in as SYS and query the handle and plan name of the SQL plan
baseline (sample output included):

SET LINESIZE 120
COL SQL_HANDLE FORMAT a25
COL PLAN_NAME FORMAT a35

SELECT DISTINCT SQL_HANDLE,PLAN_NAME,ACCEPTED
FROM DBA_SQL_PLAN_BASELINES
WHERE PARSING_SCHEMA_NAME = 'HR';

SQL_HANDLE PLAN_NAME ACC
------------------------- ----------------------------------- ---
SQL_3fa3b23c5ba1bf60 SQL_PLAN_3z8xk7jdu3gv0b7aa092a YES

6. Compare the plans, specifying the SQL handle and plan baseline name obtained from the
previous step:

VAR v_report CLOB

BEGIN
 :v_report := DBMS_XPLAN.COMPARE_PLANS(
 reference_plan => plan_table_object('HR', 'PLAN_TABLE', 'STAFF'),
 compare_plan_list => plan_object_list
(SPM_OBJECT('SQL_3fa3b23c5ba1bf60','SQL_PLAN_3z8xk7jdu3gv0b7aa092a')),
 type => 'TEXT',
 level => 'ALL',
 section => 'ALL');
END;
/

7. Query the compare plans report (sample output included):

SET LONG 1000000
SET PAGESIZE 50000
SET LINESIZE 200
SELECT :v_report rep FROM DUAL;

REP
--

COMPARE PLANS REPORT
--
 Current user : SYS
 Total number of plans : 2
 Number of findings : 1
--

COMPARISON DETAILS
--
 Plan Number : 1 (Reference Plan)
 Plan Found : Yes
 Plan Source : Plan Table
 Plan Table Owner : HR
 Plan Table Name : PLAN_TABLE

Chapter 6
Comparing Execution Plans

6-53

 Statement ID : STAFF
 Plan ID : 72
 Plan Database Version : 19.0.0.0
 Parsing Schema : "HR"
 SQL Text : No SQL Text

Plan

 Plan Hash Value : 1766070819

--
| Id | Operation | Name |Rows| Bytes | Cost | Time |
--
0	SELECT STATEMENT		1	13	2	00:00:01
1	SORT AGGREGATE		1	13		
* 2	TABLE ACCESS FULL	STAFF	1	13	2	00:00:01
--

Predicate Information (identified by operation id):
--
* 2 - filter("EMPLOYEE_ID"=20)

Notes

- Dynamic sampling used for this statement (level = 2)
- baseline_repro_fail = yes

--
 Plan Number : 2
 Plan Found : Yes
 Plan Source : SQL Plan Baseline
 SQL Handle : SQL_3fa3b23c5ba1bf60
 Plan Name : SQL_PLAN_3z8xk7jdu3gv0b7aa092a
 Plan Database Version : 19.0.0.0
 Parsing Schema : "HR"
 SQL Text : SELECT COUNT(*) FROM staff WHERE employee_id = 20

Plan

 Plan Hash Value : 3081373994

--
|Id| Operation | Name |Rows|Bytes |Cost |Time |
--
0	SELECT STATEMENT		1	13	0	00:00:01
1	SORT AGGREGATE		1	13		
*2	INDEX UNIQUE SCAN	STAFF_EMPLOYEE_ID	1	13	0	00:00:01
--

Predicate Information (identified by operation id):
--
* 2 - access("EMPLOYEE_ID"=20)

Comparison Results (1):

Chapter 6
Comparing Execution Plans

6-54

 1. Query block SEL$1, Alias "STAFF"@"SEL$1": Some columns (OPERATION,
OPTIONS, OBJECT_NAME) do not match between the reference plan (id: 2)
and the current plan (id: 2)
--

Chapter 6
Comparing Execution Plans

6-55

7
PLAN_TABLE Reference

This chapter describes PLAN_TABLE columns.

PLAN_TABLE Columns
PLAN_TABLE is populated by the EXPLAIN PLAN statement.

The following table describes the columns in PLAN_TABLE.

Table 7-1 PLAN_TABLE Columns

Column Type Description

STATEMENT_ID VARCHAR2(30) Value of the optional STATEMENT_ID parameter specified in the
EXPLAIN PLAN statement.

PLAN_ID NUMBER Unique identifier of a plan in the database.

TIMESTAMP DATE Date and time when the EXPLAIN PLAN statement was
generated.

REMARKS VARCHAR2(80) Any comment (of up to 80 bytes) you want to associate with
each step of the explained plan. This column indicates whether
the database used an outline or SQL profile for the query.

If you need to add or change a remark on any row of the
PLAN_TABLE, then use the UPDATE statement to modify the
rows of the PLAN_TABLE.

OPERATION VARCHAR2(30) Name of the internal operation performed in this step. In the first
row generated for a statement, the column contains one of the
following values:

• DELETE STATEMENT
• INSERT STATEMENT
• SELECT STATEMENT
• UPDATE STATEMENT
See "OPERATION and OPTION Columns of PLAN_TABLE" for
more information about values for this column.

OPTIONS VARCHAR2(225) A variation on the operation that the OPERATION column
describes.

See "OPERATION and OPTION Columns of PLAN_TABLE" for
more information about values for this column.

OBJECT_NODE VARCHAR2(128) Name of the database link used to reference the object (a table
name or view name). For local queries using parallel execution,
this column describes the order in which the database
consumes output from operations.

OBJECT_OWNER VARCHAR2(30) Name of the user who owns the schema containing the table or
index.

OBJECT_NAME VARCHAR2(30) Name of the table or index.

OBJECT_ALIAS VARCHAR2(65) Unique alias of a table or view in a SQL statement. For indexes,
it is the object alias of the underlying table.

7-1

Table 7-1 (Cont.) PLAN_TABLE Columns

Column Type Description

OBJECT_INSTANCE NUMERIC Number corresponding to the ordinal position of the object as it
appears in the original statement. The numbering proceeds
from left to right, outer to inner for the original statement text.
View expansion results in unpredictable numbers.

OBJECT_TYPE VARCHAR2(30) Modifier that provides descriptive information about the object;
for example, NONUNIQUE for indexes.

OPTIMIZER VARCHAR2(255) Current mode of the optimizer.

SEARCH_COLUMNS NUMBERIC Not currently used.

ID NUMERIC A number assigned to each step in the execution plan.

PARENT_ID NUMERIC The ID of the next execution step that operates on the output of
the ID step.

DEPTH NUMERIC Depth of the operation in the row source tree that the plan
represents. You can use this value to indent the rows in a plan
table report.

POSITION NUMERIC For the first row of output, this indicates the estimated cost of
executing the statement. For the other rows, it indicates the
position relative to the other children of the same parent.

COST NUMERIC Cost of the operation as estimated by the optimizer. Cost is not
determined for table access operations. The value of this
column does not have any particular unit of measurement; it is a
weighted value used to compare costs of execution plans. The
value of this column is a function of the CPU_COST and IO_COST
columns.

CARDINALITY NUMERIC Estimate by the query optimization approach of the number of
rows that the operation accessed.

BYTES NUMERIC Estimate by the query optimization approach of the number of
bytes that the operation accessed.

OTHER_TAG VARCHAR2(255) Describes the contents of the OTHER column. Values are:

• SERIAL (blank): Serial execution. Currently, SQL is not
loaded in the OTHER column for this case.

• SERIAL_FROM_REMOTE (S -> R): Serial execution at a
remote site.

• PARALLEL_FROM_SERIAL (S -> P): Serial execution.
Output of step is partitioned or broadcast to parallel
execution servers.

• PARALLEL_TO_SERIAL (P -> S): Parallel execution.
Output of step is returned to serial QC process.

• PARALLEL_TO_PARALLEL (P -> P): Parallel execution.
Output of step is repartitioned to second set of parallel
execution servers.

• PARALLEL_COMBINED_WITH_PARENT (PWP): Parallel
execution; Output of step goes to next step in same parallel
process. No interprocess communication to parent.

• PARALLEL_COMBINED_WITH_CHILD (PWC): Parallel
execution. Input of step comes from prior step in same
parallel process. No interprocess communication from
child.

Chapter 7
PLAN_TABLE Columns

7-2

Table 7-1 (Cont.) PLAN_TABLE Columns

Column Type Description

PARTITION_START VARCHAR2(255) Start partition of a range of accessed partitions. It can take one
of the following values:

n indicates that the start partition has been identified by the
SQL compiler, and its partition number is given by n.

KEY indicates that the start partition is identified at run time from
partitioning key values.

ROW LOCATION indicates that the database computes the start
partition (same as the stop partition) at run time from the
location of each retrieved record. The record location is
obtained by a user-specified ROWID or from a global index.

INVALID indicates that the range of accessed partitions is
empty.

PARTITION_STOP VARCHAR2(255) Stop partition of a range of accessed partitions. It can take one
of the following values:

n indicates that the stop partition has been identified by the
SQL compiler, and its partition number is given by n.

KEY indicates that the stop partition is identified at run time from
partitioning key values.

ROW LOCATION indicates that the database computes the stop
partition (same as the start partition) at run time from the
location of each retrieved record. The record location is
obtained by a user or from a global index.

INVALID indicates that the range of accessed partitions is
empty.

PARTITION_ID NUMERIC Step that has computed the pair of values of the
PARTITION_START and PARTITION_STOP columns.

OTHER LONG Other information that is specific to the execution step that a
user might find useful. See the OTHER_TAG column.

DISTRIBUTION VARCHAR2(30) Method used to distribute rows from producer query servers to
consumer query servers.

See "DISTRIBUTION Column of PLAN_TABLE" for more
information about the possible values for this column. For more
information about consumer and producer query servers, see
Oracle Database VLDB and Partitioning Guide.

CPU_COST NUMERIC CPU cost of the operation as estimated by the optimizer. The
value of this column is proportional to the number of machine
cycles required for the operation. For statements that use the
rule-based approach, this column is null.

IO_COST NUMERIC I/O cost of the operation as estimated by the optimizer. The
value of this column is proportional to the number of data blocks
read by the operation. For statements that use the rule-based
approach, this column is null.

TEMP_SPACE NUMERIC Temporary space, in bytes, used by the operation as estimated
by the optimizer. For statements that use the rule-based
approach, or for operations that do not use any temporary
space, this column is null.

ACCESS_PREDICATES VARCHAR2(4000) Predicates used to locate rows in an access structure. For
example, start or stop predicates for an index range scan.

FILTER_PREDICATES VARCHAR2(4000) Predicates used to filter rows before producing them.

Chapter 7
PLAN_TABLE Columns

7-3

Table 7-1 (Cont.) PLAN_TABLE Columns

Column Type Description

PROJECTION VARCHAR2(4000) Expressions produced by the operation.

TIME NUMBER(20,2) Elapsed time in seconds of the operation as estimated by query
optimization. For statements that use the rule-based approach,
this column is null.

QBLOCK_NAME VARCHAR2(30) Name of the query block, either system-generated or defined by
the user with the QB_NAME hint.

"OPERATION and OPTION Columns of PLAN_TABLE" lists each combination of OPERATION
and OPTIONS produced by the EXPLAIN PLAN statement and its meaning within an execution
plan.

See Also:

Oracle Database Reference for more information about PLAN_TABLE

OPERATION and OPTION Columns of PLAN_TABLE
This table lists each combination of the OPERATION and OPTIONS columns of the
PLAN_TABLE and their meaning within an execution plan.

Table 7-2 OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description

AND-EQUAL Operation accepting multiple sets of rowids, returning the intersection of
the sets, eliminating duplicates. Used for the single-column indexes
access path.

BITMAP CONVERSION TO ROWIDS converts bitmap representations to actual rowids that you can
use to access the table.

FROM ROWIDS converts the rowids to a bitmap representation.

COUNT returns the number of rowids if the actual values are not needed.

BITMAP INDEX SINGLE VALUE looks up the bitmap for a single key value in the index.

RANGE SCAN retrieves bitmaps for a key value range.

FULL SCAN performs a full scan of a bitmap index if there is no start or
stop key.

BITMAP MERGE Merges several bitmaps resulting from a range scan into one bitmap.

BITMAP MINUS Subtracts bits of one bitmap from another. Row source is used for
negated predicates. This option is usable only if there are non-negated
predicates yielding a bitmap from which the subtraction can take place.

BITMAP OR Computes the bitwise OR of two bitmaps.

BITMAP AND Computes the bitwise AND of two bitmaps.

BITMAP KEY ITERATION Takes each row from a table row source and finds the corresponding
bitmap from a bitmap index. This set of bitmaps are then merged into one
bitmap in a following BITMAP MERGE operation.

Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

7-4

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description

CONNECT BY Retrieves rows in hierarchical order for a query containing a CONNECT BY
clause.

CONCATENATION Operation accepting multiple sets of rows returning the union-all of the
sets.

COUNT Operation counting the number of rows selected from a table.

COUNT STOPKEY Count operation where the number of rows returned is limited by the
ROWNUM expression in the WHERE clause.

CUBE JOIN Joins a table or view on the left and a cube on the right.

See Oracle Database SQL Language Reference to learn about the
NO_USE_CUBE and USE_CUBE hints.

CUBE JOIN ANTI Uses an antijoin for a table or view on the left and a cube on the right.

CUBE JOIN ANTI SNA Uses an antijoin (single-sided null aware) for a table or view on the left
and a cube on the right. The join column on the right (cube side) is NOT
NULL.

CUBE JOIN OUTER Uses an outer join for a table or view on the left and a cube on the right.

CUBE JOIN RIGHT SEMI Uses a right semijoin for a table or view on the left and a cube on the
right.

CUBE SCAN Uses inner joins for all cube access.

CUBE SCAN PARTIAL OUTER Uses an outer join for at least one dimension, and inner joins for the other
dimensions.

CUBE SCAN OUTER Uses outer joins for all cube access.

DOMAIN INDEX Retrieval of one or more rowids from a domain index. The options column
contain information supplied by a user-defined domain index cost function,
if any.

FILTER Operation accepting a set of rows, eliminates some of them, and returns
the rest.

FIRST ROW Retrieval of only the first row selected by a query.

FOR UPDATE Operation retrieving and locking the rows selected by a query containing a
FOR UPDATE clause.

HASH GROUP BY Operation hashing a set of rows into groups for a query with a GROUP BY
clause.

HASH GROUP BY PIVOT Operation hashing a set of rows into groups for a query with a GROUP BY
clause. The PIVOT option indicates a pivot-specific optimization for the
HASH GROUP BY operator.

HASH JOIN
(These are join
operations.)

Operation joining two sets of rows and returning the result. This join
method is useful for joining large data sets of data (DSS, Batch). The join
condition is an efficient way of accessing the second table.

Query optimizer uses the smaller of the two tables/data sources to build a
hash table on the join key in memory. Then it scans the larger table,
probing the hash table to find the joined rows.

HASH JOIN ANTI Hash (left) antijoin

HASH JOIN SEMI Hash (left) semijoin

HASH JOIN RIGHT ANTI Hash right antijoin

HASH JOIN RIGHT SEMI Hash right semijoin

Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

7-5

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description

HASH JOIN OUTER Hash (left) outer join

HASH JOIN RIGHT OUTER Hash right outer join

INDEX
(These are access
methods.)

UNIQUE SCAN Retrieval of a single rowid from an index.

INDEX RANGE SCAN Retrieval of one or more rowids from an index. Indexed values are
scanned in ascending order.

INDEX RANGE SCAN
DESCENDING

Retrieval of one or more rowids from an index. Indexed values are
scanned in descending order.

INDEX FULL SCAN Retrieval of all rowids from an index when there is no start or stop key.
Indexed values are scanned in ascending order.

INDEX FULL SCAN
DESCENDING

Retrieval of all rowids from an index when there is no start or stop key.
Indexed values are scanned in descending order.

INDEX FAST FULL SCAN Retrieval of all rowids (and column values) using multiblock reads. No
sorting order can be defined. Compares to a full table scan on only the
indexed columns. Only available with the cost based optimizer.

INDEX SKIP SCAN Retrieval of rowids from a concatenated index without using the leading
column(s) in the index. Only available with the cost based optimizer.

INLIST ITERATOR Iterates over the next operation in the plan for each value in the IN-list
predicate.

INTERSECTION Operation accepting two sets of rows and returning the intersection of the
sets, eliminating duplicates.

MERGE JOIN
(These are join
operations.)

Operation accepting two sets of rows, each sorted by a value, combining
each row from one set with the matching rows from the other, and
returning the result.

MERGE JOIN OUTER Merge join operation to perform an outer join statement.

MERGE JOIN ANTI Merge antijoin.

MERGE JOIN SEMI Merge semijoin.

MERGE JOIN CARTESIAN Can result from 1 or more of the tables not having any join conditions to
any other tables in the statement. Can occur even with a join and it may
not be flagged as CARTESIAN in the plan.

CONNECT BY Retrieval of rows in hierarchical order for a query containing a CONNECT
BY clause.

MAT_VIEW REWRITE
ACCESS
(These are access
methods.)

FULL Retrieval of all rows from a materialized view.

MAT_VIEW REWRITE
ACCESS

SAMPLE Retrieval of sampled rows from a materialized view.

MAT_VIEW REWRITE
ACCESS

CLUSTER Retrieval of rows from a materialized view based on a value of an indexed
cluster key.

MAT_VIEW REWRITE
ACCESS

HASH Retrieval of rows from materialized view based on hash cluster key value.

Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

7-6

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description

MAT_VIEW REWRITE
ACCESS

BY ROWID RANGE Retrieval of rows from a materialized view based on a rowid range.

MAT_VIEW REWRITE
ACCESS

SAMPLE BY ROWID
RANGE

Retrieval of sampled rows from a materialized view based on a rowid
range.

MAT_VIEW REWRITE
ACCESS

BY USER ROWID If the materialized view rows are located using user-supplied rowids.

MAT_VIEW REWRITE
ACCESS

BY INDEX ROWID If the materialized view is nonpartitioned and rows are located using
indexes.

MAT_VIEW REWRITE
ACCESS

BY GLOBAL INDEX
ROWID

If the materialized view is partitioned and rows are located using only
global indexes.

MAT_VIEW REWRITE
ACCESS

BY LOCAL INDEX
ROWID

If the materialized view is partitioned and rows are located using one or
more local indexes and possibly some global indexes.

Partition Boundaries:

The partition boundaries might have been computed by:

A previous PARTITION step, in which case the PARTITION_START and
PARTITION_STOP column values replicate the values present in the
PARTITION step, and the PARTITION_ID contains the ID of the
PARTITION step. Possible values for PARTITION_START and
PARTITION_STOP are NUMBER(n), KEY, and INVALID.

The MAT_VIEW REWRITE ACCESS or INDEX step itself, in which case the
PARTITION_ID contains the ID of the step. Possible values for
PARTITION_START and PARTITION_STOP are NUMBER(n), KEY, ROW
REMOVE_LOCATION (MAT_VIEW REWRITE ACCESS only), and INVALID.

MINUS Operation accepting two sets of rows and returning rows appearing in the
first set but not in the second, eliminating duplicates.

NESTED LOOPS
(These are join
operations.)

Operation accepting two sets of rows, an outer set and an inner set.
Oracle Database compares each row of the outer set with each row of the
inner set, returning rows that satisfy a condition. This join method is useful
for joining small subsets of data (OLTP). The join condition is an efficient
way of accessing the second table.

NESTED LOOPS OUTER Nested loops operation to perform an outer join statement.

PARTITION Iterates over the next operation in the plan for each partition in the range
given by the PARTITION_START and PARTITION_STOP columns.
PARTITION describes partition boundaries applicable to a single
partitioned object (table or index) or to a set of equipartitioned objects (a
partitioned table and its local indexes). The partition boundaries are
provided by the values of PARTITION_START and PARTITION_STOP of
the PARTITION. Refer to Table 6-2 for valid values of partition start and
stop.

PARTITION SINGLE Access one partition.

PARTITION ITERATOR Access many partitions (a subset).

PARTITION ALL Access all partitions.

PARTITION INLIST Similar to iterator, but based on an IN-list predicate.

PARTITION INVALID Indicates that the partition set to be accessed is empty.

POLYMORPHIC TABLE
FUNCTION

Indicates the row source for a polymorphic table function, which is a table
function whose return type is determined by its arguments.

Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

7-7

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description

PX ITERATOR BLOCK, CHUNK Implements the division of an object into block or chunk ranges among a
set of parallel execution servers.

PX COORDINATOR Implements the Query Coordinator which controls, schedules, and
executes the parallel plan below it using parallel execution servers. It also
represents a serialization point, as the end of the part of the plan
executed in parallel and always has a PX SEND QC operation below it.

PX PARTITION Same semantics as the regular PARTITION operation except that it
appears in a parallel plan.

PX RECEIVE Shows the consumer/receiver parallel execution node reading
repartitioned data from a send/producer (QC or parallel execution server)
executing on a PX SEND node. This information was formerly displayed
into the DISTRIBUTION column. See Table 7-1.

PX SEND QC (RANDOM), HASH,
RANGE

Implements the distribution method taking place between two sets of
parallel execution servers. Shows the boundary between two sets and
how data is repartitioned on the send/producer side (QC or side. This
information was formerly displayed into the DISTRIBUTION column. See
Table 7-1.

REMOTE Retrieval of data from a remote database.

SEQUENCE Operation involving accessing values of a sequence.

SORT AGGREGATE Retrieval of a single row after applying a group function to a set of
selected rows. In this case, the database “sorts” a single row.

SORT UNIQUE Operation sorting a set of rows to eliminate duplicates.

SORT GROUP BY Operation sorting a set of rows into groups for a query with a GROUP BY
clause.

SORT GROUP BY PIVOT Operation sorting a set of rows into groups for a query with a GROUP BY
clause. The PIVOT option indicates a pivot-specific optimization for the
SORT GROUP BY operator.

SORT JOIN Operation sorting a set of rows before a merge-join.

SORT ORDER BY Operation sorting a set of rows for a query with an ORDER BY clause.

TABLE ACCESS
(These are access
methods.)

FULL Retrieval of all rows from a table.

TABLE ACCESS SAMPLE Retrieval of sampled rows from a table.

TABLE ACCESS CLUSTER Retrieval of rows from a table based on a value of an indexed cluster key.

TABLE ACCESS HASH Retrieval of rows from table based on hash cluster key value.

TABLE ACCESS BY ROWID RANGE Retrieval of rows from a table based on a rowid range.

TABLE ACCESS SAMPLE BY ROWID
RANGE

Retrieval of sampled rows from a table based on a rowid range.

TABLE ACCESS BY USER ROWID If the table rows are located using user-supplied rowids.

TABLE ACCESS BY INDEX ROWID If the table is nonpartitioned and rows are located using index(es).

TABLE ACCESS BY GLOBAL INDEX
ROWID

If the table is partitioned and rows are located using only global indexes.

Chapter 7
OPERATION and OPTION Columns of PLAN_TABLE

7-8

Table 7-2 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description

TABLE ACCESS BY LOCAL INDEX
ROWID

If the table is partitioned and rows are located using one or more local
indexes and possibly some global indexes.

Partition Boundaries:

The partition boundaries might have been computed by:

A previous PARTITION step, in which case the PARTITION_START and
PARTITION_STOP column values replicate the values present in the
PARTITION step, and the PARTITION_ID contains the ID of the
PARTITION step. Possible values for PARTITION_START and
PARTITION_STOP are NUMBER(n), KEY, and INVALID.

The TABLE ACCESS or INDEX step itself, in which case the PARTITION_ID
contains the ID of the step. Possible values for PARTITION_START and
PARTITION_STOP are NUMBER(n), KEY, ROW REMOVE_LOCATION (TABLE
ACCESS only), and INVALID.

TRANSPOSE Operation evaluating a PIVOT operation by transposing the results of
GROUP BY to produce the final pivoted data.

UNION Operation accepting two sets of rows and returns the union of the sets,
eliminating duplicates.

UNPIVOT Operation that rotates data from columns into rows.

VIEW Operation performing a view's query and then returning the resulting rows
to another operation.

DISTRIBUTION Column of PLAN_TABLE
The DISTRIBUTION column indicates the method used to distribute rows from producer query
servers to consumer query servers.

Table 7-3 Values of DISTRIBUTION Column of the PLAN_TABLE

DISTRIBUTION Text Description

PARTITION (ROWID) Maps rows to query servers based on the partitioning of a table or index using the rowid
of the row to UPDATE/DELETE.

PARTITION (KEY) Maps rows to query servers based on the partitioning of a table or index using a set of
columns. Used for partial partition-wise join, PARALLEL INSERT, CREATE TABLE AS
SELECT of a partitioned table, and CREATE PARTITIONED GLOBAL INDEX.

HASH Maps rows to query servers using a hash function on the join key. Used for PARALLEL
JOIN or PARALLEL GROUP BY.

RANGE Maps rows to query servers using ranges of the sort key. Used when the statement
contains an ORDER BY clause.

ROUND-ROBIN Randomly maps rows to query servers.

BROADCAST Broadcasts the rows of the entire table to each query server. Used for a parallel join
when one table is very small compared to the other.

QC (ORDER) The QC consumes the input in order, from the first to the last query server. Used when
the statement contains an ORDER BY clause.

QC (RANDOM) The QC consumes the input randomly. Used when the statement does not have an
ORDER BY clause.

Chapter 7
DISTRIBUTION Column of PLAN_TABLE

7-9

Part IV
SQL Operators: Access Paths and Joins

A row source is a set of rows returned by a step in the execution plan. A SQL operator acts
on a row source.

A unary operator acts on one input, as with access paths. A binary operator acts on two
outputs, as with joins.

8
Optimizer Access Paths

An access path is a technique used by a query to retrieve rows from a row source.

Introduction to Access Paths
A row source is a set of rows returned by a step in an execution plan. A row source can be a
table, view, or result of a join or grouping operation.

A unary operation such as an access path, which is a technique used by a query to retrieve
rows from a row source, accepts a single row source as input. For example, a full table scan is
the retrieval of rows of a single row source. In contrast, a join is binary and receives inputs
from exactly two row sources

The database uses different access paths for different relational data structures. The following
table summarizes common access paths for the major data structures.

Table 8-1 Data Structures and Access Paths

Access Path Heap-Organized
Tables

B-Tree Indexes and
IOTs

Bitmap Indexes Table Clusters

Full Table Scans x

Table Access by Rowid x

Sample Table Scans x

Index Unique Scans x

Index Range Scans x

Index Full Scans x

Index Fast Full Scans x

Index Skip Scans x

Index Join Scans x

Bitmap Index Single Value x

Bitmap Index Range Scans x

Bitmap Merge x

Bitmap Index Range Scans x

Cluster Scans x

Hash Scans x

The optimizer considers different possible execution plans, and then assigns each plan a cost.
The optimizer chooses the plan with the lowest cost. In general, index access paths are more
efficient for statements that retrieve a small subset of table rows, whereas full table scans are
more efficient when accessing a large portion of a table.

8-1

See Also:

• "Joins"

• "Cost-Based Optimization"

• Oracle Database Concepts for an overview of these structures

Table Access Paths
A table is the basic unit of data organization in an Oracle database.

Relational tables are the most common table type. Relational tables have with the following
organizational characteristics:

• A heap-organized table does not store rows in any particular order.

• An index-organized table orders rows according to the primary key values.

• An external table is a read-only table whose metadata is stored in the database but whose
data is stored outside the database.

See Also:

• Oracle Database Concepts for an overview of tables

• Oracle Database Administrator’s Guide to learn how to manage tables

About Heap-Organized Table Access
By default, a table is organized as a heap, which means that the database places rows where
they fit best rather than in a user-specified order.

As users add rows, the database places the rows in the first available free space in the data
segment. Rows are not guaranteed to be retrieved in the order in which they were inserted.

Row Storage in Data Blocks and Segments: A Primer
The database stores rows in data blocks. In tables, the database can write a row anywhere in
the bottom part of the block. Oracle Database uses the block overhead, which contains the row
directory and table directory, to manage the block itself.

An extent is made up of logically contiguous data blocks. The blocks may not be physically
contiguous on disk. A segment is a set of extents that contains all the data for a logical storage
structure within a tablespace. For example, Oracle Database allocates one or more extents to
form the data segment for a table. The database also allocates one or more extents to form the
index segment for a table.

By default, the database uses automatic segment space management (ASSM) for permanent,
locally managed tablespaces. When a session first inserts data into a table, the database
formats a bitmap block. The bitmap tracks the blocks in the segment. The database uses the
bitmap to find free blocks and then formats each block before writing to it. ASSM spread out
inserts among blocks to avoid concurrency issues.

Chapter 8
Table Access Paths

8-2

The high water mark (HWM) is the point in a segment beyond which data blocks are
unformatted and have never been used. Below the HWM, a block may be formatted and
written to, formatted and empty, or unformatted. The low high water mark (low HWM) marks
the point below which all blocks are known to be formatted because they either contain data or
formerly contained data.

During a full table scan, the database reads all blocks up to the low HWM, which are known to
be formatted, and then reads the segment bitmap to determine which blocks between the
HWM and low HWM are formatted and safe to read. The database knows not to read past the
HWM because these blocks are unformatted.

See Also:

Oracle Database Concepts to learn about data block storage

Importance of Rowids for Row Access
Every row in a heap-organized table has a rowid unique to this table that corresponds to the
physical address of a row piece. A rowid is a 10-byte physical address of a row.

The rowid points to a specific file, block, and row number. For example, in the rowid
AAAPecAAFAAAABSAAA, the final AAA represents the row number. The row number is an index
into a row directory entry. The row directory entry contains a pointer to the location of the row
on the block.

The database can sometimes move a row in the bottom part of the block. For example, if row
movement is enabled, then the row can move because of partition key updates, Flashback
Table operations, shrink table operations, and so on. If the database moves a row within a
block, then the database updates the row directory entry to modify the pointer. The rowid stays
constant.

Oracle Database uses rowids internally for the construction of indexes. For example, each key
in a B-tree index is associated with a rowid that points to the address of the associated row.
Physical rowids provide the fastest possible access to a table row, enabling the database to
retrieve a row in as little as a single I/O.

See Also:

Oracle Database Concepts to learn about rowids

Direct Path Reads
In a direct path read, the database reads buffers from disk directly into the PGA, bypassing
the SGA entirely.

The following figure shows the difference between scattered and sequential reads, which store
buffers in the SGA, and direct path reads.

Chapter 8
Table Access Paths

8-3

Figure 8-1 Direct Path Reads

DB File
Sequential Read

DB File
Scattered Read

Direct path
read

Direct Path
Read

Database Buffer
Cache

SGA Buffer Cache

Database Buffer
Cache

SGA Buffer Cache
Sort Area Hash Area

Process PGA

Bitmap Merge
Area

Session
Memory

Runtime
Area

Persistent
Area

Situations in which Oracle Database may perform direct path reads include:

• Execution of a CREATE TABLE AS SELECT statement

• Execution of an ALTER REBUILD or ALTER MOVE statement

• Reads from a temporary tablespace

• Parallel queries

• Reads from a LOB segment

See Also:

Oracle Database Performance Tuning Guide to learn about wait events for direct path
reads

Full Table Scans
A full table scan reads all rows from a table, and then filters out those rows that do not meet
the selection criteria.

When the Optimizer Considers a Full Table Scan
In general, the optimizer chooses a full table scan when it cannot use a different access path,
or another usable access path is higher cost.

The following table shows typical reasons for choosing a full table scan.

Chapter 8
Table Access Paths

8-4

Table 8-2 Typical Reasons for a Full Table Scan

Reason Explanation To Learn More

No index exists. If no index exists, then the optimizer uses
a full table scan.

Oracle Database Concepts

The query predicate applies a
function to the indexed
column.

Unless the index is a function-based
index, the database indexes the values of
the column, not the values of the column
with the function applied. A typical
application-level mistake is to index a
character column, such as char_col,
and then query the column using syntax
such as WHERE char_col=1. The
database implicitly applies a TO_NUMBER
function to the constant number 1, which
prevents use of the index.

Oracle Database
Development Guide

A SELECT COUNT(*) query
is issued, and an index exists,
but the indexed column
contains nulls.

The optimizer cannot use the index to
count the number of table rows because
the index cannot contain null entries.

"B-Tree Indexes and Nulls"

The query predicate does not
use the leading edge of a B-
tree index.

For example, an index might exist on
employees(first_name,last_name).
If a user issues a query with the predicate
WHERE last_name='KING', then the
optimizer may not choose an index
because column first_name is not in
the predicate. However, in this situation
the optimizer may choose to use an index
skip scan.

"Index Skip Scans"

The query is unselective. If the optimizer determines that the query
requires most of the blocks in the table,
then it uses a full table scan, even though
indexes are available. Full table scans
can use larger I/O calls. Making fewer
large I/O calls is cheaper than making
many smaller calls.

"Selectivity"

The table statistics are stale. For example, a table was small, but now
has grown large. If the table statistics are
stale and do not reflect the current size of
the table, then the optimizer does not
know that an index is now most efficient
than a full table scan.

"Introduction to Optimizer
Statistics"

The table is small. If a table contains fewer than n blocks
under the high water mark, where n
equals the setting for the
DB_FILE_MULTIBLOCK_READ_COUNT
initialization parameter, then a full table
scan may be cheaper than an index
range scan. The scan may be less
expensive regardless of the fraction of
tables being accessed or indexes
present.

Oracle Database Reference

Chapter 8
Table Access Paths

8-5

Table 8-2 (Cont.) Typical Reasons for a Full Table Scan

Reason Explanation To Learn More

The table has a high degree
of parallelism.

A high degree of parallelism for a table
skews the optimizer toward full table
scans over range scans. Query the value
in the ALL_TABLES.DEGREE column to
determine the degree of parallelism.

Oracle Database Reference

The query uses a full table
scan hint.

The hint FULL(table alias) instructs
the optimizer to use a full table scan.

Oracle Database SQL
Language Reference

How a Full Table Scan Works
In a full table scan, the database sequentially reads every formatted block under the high water
mark. The database reads each block only once.

The following graphic depicts a scan of a table segment, showing how the scan skips
unformatted blocks below the high water mark.

Figure 8-2 High Water Mark

Low HWM HWM

Never Used,
Unformatted

Used

Sequential
Read

Because the blocks are adjacent, the database can speed up the scan by making I/O calls
larger than a single block, known as a multiblock read. The size of a read call ranges from one
block to the number of blocks specified by the DB_FILE_MULTIBLOCK_READ_COUNT initialization
parameter. For example, setting this parameter to 4 instructs the database to read up to 4
blocks in a single call.

The algorithms for caching blocks during full table scans are complex. For example, the
database caches blocks differently depending on whether tables are small or large.

Chapter 8
Table Access Paths

8-6

See Also:

• "Table 19-2"

• Oracle Database Concepts for an overview of the default caching mode

• Oracle Database Reference to learn about the DB_FILE_MULTIBLOCK_READ_COUNT
initialization parameter

Full Table Scan: Example
This example scans the hr.employees table.

The following statement queries monthly salaries over $4000:

SELECT salary
FROM hr.employees
WHERE salary > 4000;

Example 8-1 Full Table Scan

The following plan was retrieved using the DBMS_XPLAN.DISPLAY_CURSOR function. Because no
index exists on the salary column, the optimizer cannot use an index range scan, and so uses
a full table scan.

SQL_ID 54c20f3udfnws, child number 0

select salary from hr.employees where salary > 4000

Plan hash value: 3476115102

| Id| Operation | Name | Rows | Bytes |Cost (%CPU)| Time |

| 0| SELECT STATEMENT | | | | 3 (100)| |
|* 1| TABLE ACCESS FULL| EMPLOYEES | 98 | 6762 | 3 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 1 - filter("SALARY">4000)

Table Access by Rowid
A rowid is an internal representation of the storage location of data.

The rowid of a row specifies the data file and data block containing the row and the location of
the row in that block. Locating a row by specifying its rowid is the fastest way to retrieve a
single row because it specifies the exact location of the row in the database.

Chapter 8
Table Access Paths

8-7

Note:

Rowids can change between versions. Accessing data based on position is not
recommended because rows can move.

See Also:

Oracle Database Development Guide to learn more about rowids

When the Optimizer Chooses Table Access by Rowid
In most cases, the database accesses a table by rowid after a scan of one or more indexes.

However, table access by rowid need not follow every index scan. If the index contains all
needed columns, then access by rowid might not occur.

How Table Access by Rowid Works
To access a table by rowid, the database performs multiple steps.

The database does the following:

1. Obtains the rowids of the selected rows, either from the statement WHERE clause or through
an index scan of one or more indexes

Table access may be needed for columns in the statement not present in the index.

2. Locates each selected row in the table based on its rowid

Table Access by Rowid: Example
This example demonstrates rowid access of the hr.employees table.

Assume that you run the following query:

SELECT *
FROM employees
WHERE employee_id > 190;

Step 2 of the following plan shows a range scan of the emp_emp_id_pk index on the
hr.employees table. The database uses the rowids obtained from the index to find the
corresponding rows from the employees table, and then retrieve them. The BATCHED access
shown in Step 1 means that the database retrieves a few rowids from the index, and then
attempts to access rows in block order to improve the clustering and reduce the number of
times that the database must access a block.

--
|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time|
--
0	SELECT STATEMENT				2(100)	
1	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	16	1104	2 (0)	00:00:01
*2	INDEX RANGE SCAN	EMP_EMP_ID_PK	16		1 (0)	00:00:01

Chapter 8
Table Access Paths

8-8

--

Predicate Information (identified by operation id):

 2 - access("EMPLOYEE_ID">190)

Sample Table Scans
A sample table scan retrieves a random sample of data from a simple table or a complex
SELECT statement, such as a statement involving joins and views.

When the Optimizer Chooses a Sample Table Scan
The database uses a sample table scan when a statement FROM clause includes the SAMPLE
keyword.

The SAMPLE clause has the following forms:

• SAMPLE (sample_percent)
The database reads a specified percentage of rows in the table to perform a sample table
scan.

• SAMPLE BLOCK (sample_percent)
The database reads a specified percentage of table blocks to perform a sample table scan.

The sample_percent specifies the percentage of the total row or block count to include in the
sample. The value must be in the range .000001 up to, but not including, 100. This percentage
indicates the probability of each row, or each cluster of rows in block sampling, being selected
for the sample. It does not mean that the database retrieves exactly sample_percent of the
rows.

Note:

Block sampling is possible only during full table scans or index fast full scans. If a
more efficient execution path exists, then the database does not sample blocks. To
guarantee block sampling for a specific table or index, use the FULL or INDEX_FFS
hint.

See Also:

• "Influencing the Optimizer with Hints"

• Oracle Database SQL Language Reference to learn about the SAMPLE clause

Sample Table Scans: Example
This example uses a sample table scan to access 1% of the employees table, sampling by
blocks instead of rows.

Chapter 8
Table Access Paths

8-9

Example 8-2 Sample Table Scan

SELECT * FROM hr.employees SAMPLE BLOCK (1);

The EXPLAIN PLAN output for this statement might look as follows:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 1 | 68 | 3 (34)|
| 1 | TABLE ACCESS SAMPLE | EMPLOYEES | 1 | 68 | 3 (34)|

In-Memory Table Scans
An In-Memory scan retrieves rows from the In-Memory Column Store (IM column store).

The IM column store is an optional SGA area that stores copies of tables and partitions in a
special columnar format optimized for rapid scans.

See Also:

Oracle Database In-Memory Guide for an introduction to the IM column store

When the Optimizer Chooses an In-Memory Table Scan
The optimizer cost model is aware of the content of the IM column store.

When a user executes a query that references a table in the IM column store, the optimizer
calculates the cost of all possible access methods—including the In-Memory table scan—and
selects the access method with the lowest cost.

In-Memory Query Controls
You can control In-Memory queries using initialization parameters.

The following database initialization parameters affect the In-Memory features:

• INMEMORY_QUERY
This parameter enables or disables In-Memory queries for the database at the session or
system level. This parameter is helpful when you want to test workloads with and without
the use of the IM column store.

• OPTIMIZER_INMEMORY_AWARE
This parameter enables (TRUE) or disables (FALSE) all of the In-Memory enhancements
made to the optimizer cost model, table expansion, bloom filters, and so on. Setting the
parameter to FALSE causes the optimizer to ignore the In-Memory property of tables during
the optimization of SQL statements.

• OPTIMIZER_FEATURES_ENABLE

Chapter 8
Table Access Paths

8-10

When set to values lower than 12.1.0.2, this parameter has the same effect as setting
OPTIMIZER_INMEMORY_AWARE to FALSE.

To enable or disable In-Memory queries, you can specify the INMEMORY or NO_INMEMORY hints,
which are the per-query equivalent of the INMEMORY_QUERY initialization parameter. If a SQL
statement uses the INMEMORY hint, but the object it references is not already loaded in the IM
column store, then the database does not wait for the object to be populated in the IM column
store before executing the statement. However, initial access of the object triggers the object
population in the IM column store.

See Also:

• Oracle Database Reference to learn more about the INMEMORY_QUERY,
OPTIMIZER_INMEMORY_AWARE, and OPTIMIZER_FEATURES_ENABLE initialization
parameters

• Oracle Database SQL Language Reference to learn more about the INMEMORY
hints

In-Memory Table Scans: Example
This example shows an execution plan that includes the TABLE ACCESS INMEMORY operation.

The following example shows a query of the oe.product_information table, which has been
altered with the INMEMORY HIGH option.

Example 8-3 In-Memory Table Scan

SELECT *
FROM oe.product_information
WHERE list_price > 10
ORDER BY product_id

The plan for this statement might look as follows, with the INMEMORY keyword in Step 2
indicating that some or all of the object was accessed from the IM column store:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

SQL_ID 2mb4h57x8pabw, child number 0

select * from oe.product_information where list_price > 10 order byproduct_id

Plan hash value: 2256295385

|Id| Operation | Name |Rows|Bytes|TempSpc|Cost(%CPU)|Time|

0	SELECT STATEMENT					21 (100)	
1	SORT ORDER BY		285	62415	82000	21 (5)	00:00:01
*2	TABLE ACCESS INMEMORY FULL	PRODUCT_INFORMATION	285	62415		5 (0)	00:00:01

Predicate Information (identified by operation id):

Chapter 8
Table Access Paths

8-11

 2 - inmemory("LIST_PRICE">10)
 filter("LIST_PRICE">10)

B-Tree Index Access Paths
An index is an optional structure, associated with a table or table cluster, that can sometimes
speed data access.

By creating an index on one or more columns of a table, you gain the ability in some cases to
retrieve a small set of randomly distributed rows from the table. Indexes are one of many
means of reducing disk I/O.

See Also:

• Oracle Database Concepts for an overview of indexes

• Oracle Database Administrator’s Guide to learn more about automatic and
manual index creation

About B-Tree Index Access
B-trees, short for balanced trees, are the most common type of database index.

A B-tree index is an ordered list of values divided into ranges. By associating a key with a row
or range of rows, B-trees provide excellent retrieval performance for a wide range of queries,
including exact match and range searches.

B-Tree Index Structure
A B-tree index has two types of blocks: branch blocks for searching and leaf blocks that store
values.

The following graphic illustrates the logical structure of a B-tree index. Branch blocks store the
minimum key prefix needed to make a branching decision between two keys. The leaf blocks
contain every indexed data value and a corresponding rowid used to locate the actual row.
Each index entry is sorted by (key, rowid). The leaf blocks are doubly linked.

Chapter 8
B-Tree Index Access Paths

8-12

Figure 8-3 B-Tree Index Structure

. . .

41..48

49..53

54..65

....

78..80

11,rowid

11,rowid

12,rowid

....

19,rowid

221,rowid

222,rowid

223,rowid

....

228,rowid

246,rowid

248,rowid

248,rowid

....

250,rowid

0,rowid

0,rowid

....

10,rowid

0..40

41..80

81..120

....

200..250

.

0..10

11..19�

20..25

....

32..40

200..209

210..220

221..228

....

246..250

Branch Blocks

Leaf Blocks

How Index Storage Affects Index Scans
Bitmap index blocks can appear anywhere in the index segment.

Figure 8-3 shows the leaf blocks as adjacent to each other. For example, the 1-10 block is next
to and before the 11-19 block. This sequencing illustrates the linked lists that connect the index
entries. However, index blocks need not be stored in order within an index segment. For
example, the 246-250 block could appear anywhere in the segment, including directly before
the 1-10 block. For this reason, ordered index scans must perform single-block I/O. The
database must read an index block to determine which index block it must read next.

The index block body stores the index entries in a heap, just like table rows. For example, if the
value 10 is inserted first into a table, then the index entry with key 10 might be inserted at the
bottom of the index block. If 0 is inserted next into the table, then the index entry for key 0
might be inserted on top of the entry for 10. Thus, the index entries in the block body are not
stored in key order. However, within the index block, the row header stores records in key
order. For example, the first record in the header points to the index entry with key 0, and so on
sequentially up to the record that points to the index entry with key 10. Thus, index scans can
read the row header to determine where to begin and end range scans, avoiding the necessity
of reading every entry in the block.

Chapter 8
B-Tree Index Access Paths

8-13

See Also:

Oracle Database Concepts to learn about index blocks

Unique and Nonunique Indexes
In a nonunique index, the database stores the rowid by appending it to the key as an extra
column. The entry adds a length byte to make the key unique.

For example, the first index key in the nonunique index shown in Figure 8-3 is the pair 0,rowid
and not simply 0. The database sorts the data by index key values and then by rowid
ascending. For example, the entries are sorted as follows:

0,AAAPvCAAFAAAAFaAAa
0,AAAPvCAAFAAAAFaAAg
0,AAAPvCAAFAAAAFaAAl
2,AAAPvCAAFAAAAFaAAm

In a unique index, the index key does not include the rowid. The database sorts the data only
by the index key values, such as 0, 1, 2, and so on.

See Also:

Oracle Database Concepts for an overview of unique and nonunique indexes

B-Tree Indexes and Nulls
B-tree indexes never store completely null keys, which is important for how the optimizer
chooses access paths. A consequence of this rule is that single-column B-tree indexes never
store nulls.

An example helps illustrate. The hr.employees table has a primary key index on employee_id,
and a unique index on department_id. The department_id column can contain nulls, making it
a nullable column, but the employee_id column cannot.

SQL> SELECT COUNT(*) FROM employees WHERE department_id IS NULL;

 COUNT(*)

 1

SQL> SELECT COUNT(*) FROM employees WHERE employee_id IS NULL;

 COUNT(*)

 0

The following example shows that the optimizer chooses a full table scan for a query of all
department IDs in hr.employees. The optimizer cannot use the index on

Chapter 8
B-Tree Index Access Paths

8-14

employees.department_id because the index is not guaranteed to include entries for every
row in the table.

SQL> EXPLAIN PLAN FOR SELECT department_id FROM employees;

Explained.

SQL> SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

PLAN_TABLE_OUTPUT

Plan hash value: 3476115102

|Id | Operation | Name | Rows| Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 107 | 321 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| EMPLOYEES | 107 | 321 | 2 (0)| 00:00:01 |

The following example shows the optimizer can use the index on department_id for a query of
a specific department ID because all non-null rows are indexed.

SQL> EXPLAIN PLAN FOR SELECT department_id FROM employees WHERE
department_id=10;

Explained.

SQL> SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

PLAN_TABLE_OUTPUT

Plan hash value: 67425611

|Id| Operation | Name |Rows|Bytes|Cost (%CPU)| Time |

| 0| SELECT STATEMENT | | 1 | 3 | 1 (0)| 00:0 0:01|
|*1| INDEX RANGE SCAN| EMP_DEPARTMENT_IX | 1 | 3 | 1 (0)| 00:0 0:01|

Predicate Information (identified by operation id):
 1 - access("DEPARTMENT_ID"=10)

The following example shows that the optimizer chooses an index scan when the predicate
excludes null values:

SQL> EXPLAIN PLAN FOR SELECT department_id FROM employees
WHERE department_id IS NOT NULL;

Explained.

SQL> SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

Chapter 8
B-Tree Index Access Paths

8-15

PLAN_TABLE_OUTPUT

Plan hash value: 1590637672

| Id| Operation | Name |Rows|Bytes| Cost (%CPU)| Time |

| 0| SELECT STATEMENT | |106| 318 | 1 (0)| 00:0 0:01|
|*1| INDEX FULL SCAN | EMP_DEPARTMENT_IX |106| 318 | 1 (0)| 00:0 0:01|

Predicate Information (identified by operation id):
 1 - filter("DEPARTMENT_ID" IS NOT NULL)

Index Unique Scans
An index unique scan returns at most 1 rowid.

When the Optimizer Considers Index Unique Scans
An index unique scan requires an equality predicate.

Specifically, the database performs a unique scan only when a query predicate references all
columns in a unique index key using an equality operator, such as WHERE prod_id=10.

A unique or primary key constraint is insufficient by itself to produce an index unique scan
because a non-unique index on the column may already exist. Consider the following example,
which creates the t_table table and then creates a non-unique index on numcol:

SQL> CREATE TABLE t_table(numcol INT);
SQL> CREATE INDEX t_table_idx ON t_table(numcol);
SQL> SELECT UNIQUENESS FROM USER_INDEXES WHERE INDEX_NAME = 'T_TABLE_IDX';

UNIQUENES

NONUNIQUE

The following code creates a primary key constraint on a column with a non-unique index,
resulting in an index range scan rather than an index unique scan:

SQL> ALTER TABLE t_table ADD CONSTRAINT t_table_pk PRIMARY KEY(numcol);
SQL> SET AUTOTRACE TRACEONLY EXPLAIN
SQL> SELECT * FROM t_table WHERE numcol = 1;

Execution Plan
--
Plan hash value: 868081059

| Id | Operation | Name |Rows |Bytes |Cost (%CPU)|Time |

| 0 | SELECT STATEMENT | | 1 | 13 | 1 (0)|00:00:01 |
|* 1 | INDEX RANGE SCAN| T_TABLE_IDX | 1 | 13 | 1 (0)|00:00:01 |

Chapter 8
B-Tree Index Access Paths

8-16

Predicate Information (identified by operation id):

 1 - access("NUMCOL"=1)

You can use the INDEX(alias index_name) hint to specify the index to use, but not a specific
type of index access path.

See Also:

• Oracle Database Concepts for more details on index structures and for detailed
information on how a B-tree is searched

• Oracle Database SQL Language Reference to learn more about the INDEX hint

How Index Unique Scans Work
The scan searches the index in order for the specified key. An index unique scan stops
processing as soon as it finds the first record because no second record is possible. The
database obtains the rowid from the index entry, and then retrieves the row specified by the
rowid.

The following figure illustrates an index unique scan. The statement requests the record for
product ID 19 in the prod_id column, which has a primary key index.

Chapter 8
B-Tree Index Access Paths

8-17

Figure 8-4 Index Unique Scan

. . .

41..48

49..53

54..65

....

78..80

11,rowid

12,rowid

13,rowid

....

19,rowid

221,rowid

222,rowid

223,rowid

....

228,rowid

246,rowid

247,rowid

248,rowid

....

250,rowid

0,rowid

1,rowid

....

10,rowid

0..40

41..80

81..120

....

200..250

.

0..10

11..19

20..25

....

32..40

200..209

210..220

221..228

....

246..250

Branch Blocks

Leaf Blocks

Index Unique Scans: Example
This example uses a unique scan to retrieve a row from the products table.

The following statement queries the record for product 19 in the sh.products table:

SELECT *
FROM sh.products
WHERE prod_id = 19;

Because a primary key index exists on the products.prod_id column, and the WHERE clause
references all of the columns using an equality operator, the optimizer chooses a unique scan:

SQL_ID 3ptq5tsd5vb3d, child number 0

select * from sh.products where prod_id = 19

Plan hash value: 4047888317

| Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time |

| 0| SELECT STATEMENT | | | |1 (100)| |
| 1| TABLE ACCESS BY INDEX ROWID| PRODUCTS |1 | 173 |1 (0)|00:00:01|

Chapter 8
B-Tree Index Access Paths

8-18

|* 2| INDEX UNIQUE SCAN | PRODUCTS_PK |1 | |0 (0)| |

Predicate Information (identified by operation id):

 2 - access("PROD_ID"=19)

Index Range Scans
An index range scan is an ordered scan of values.

The range in the scan can be bounded on both sides, or unbounded on one or both sides. The
optimizer typically chooses a range scan for queries with high selectivity.

By default, the database stores indexes in ascending order, and scans them in the same order.
For example, a query with the predicate department_id >= 20 uses a range scan to return
rows sorted by index keys 20, 30, 40, and so on. If multiple index entries have identical keys,
then the database returns them in ascending order by rowid, so that 0,AAAPvCAAFAAAAFaAAa is
followed by 0,AAAPvCAAFAAAAFaAAg, and so on.

An index range scan descending is identical to an index range scan except that the database
returns rows in descending order. Usually, the database uses a descending scan when
ordering data in a descending order, or when seeking a value less than a specified value.

When the Optimizer Considers Index Range Scans
For an index range scan, multiple values must be possible for the index key.

Specifically, the optimizer considers index range scans in the following circumstances:

• One or more leading columns of an index are specified in conditions.

A condition specifies a combination of one or more expressions and logical (Boolean)
operators and returns a value of TRUE, FALSE, or UNKNOWN. Examples of conditions include:

– department_id = :id
– department_id < :id
– department_id > :id
– AND combination of the preceding conditions for leading columns in the index, such as

department_id > :low AND department_id < :hi.

Note:

For the optimizer to consider a range scan, wild-card searches of the form
col1 LIKE '%ASD' must not be in a leading position.

• 0, 1, or more values are possible for an index key.

Chapter 8
B-Tree Index Access Paths

8-19

Tip:

If you require sorted data, then use the ORDER BY clause, and do not rely on an index.
If an index can satisfy an ORDER BY clause, then the optimizer uses this option and
thereby avoids a sort.

The optimizer considers an index range scan descending when an index can satisfy an ORDER
BY DESCENDING clause.

If the optimizer chooses a full table scan or another index, then a hint may be required to force
this access path. The INDEX(tbl_alias ix_name) and INDEX_DESC(tbl_alias ix_name) hints
instruct the optimizer to use a specific index.

See Also:

Oracle Database SQL Language Reference to learn more about the INDEX and
INDEX_DESC hints

How Index Range Scans Work
During an index range scan, Oracle Database proceeds from root to branch.

In general, the scan algorithm is as follows:

1. Read the root block.

2. Read the branch block.

3. Alternate the following steps until all data is retrieved:

a. Read a leaf block to obtain a rowid.

b. Read a table block to retrieve a row.

Note:

In some cases, an index scan reads a set of index blocks, sorts the rowids, and
then reads a set of table blocks.

Thus, to scan the index, the database moves backward or forward through the leaf blocks. For
example, a scan for IDs between 20 and 40 locates the first leaf block that has the lowest key
value that is 20 or greater. The scan proceeds horizontally through the linked list of leaf nodes
until it finds a value greater than 40, and then stops.

The following figure illustrates an index range scan using ascending order. A statement
requests the employees records with the value 20 in the department_id column, which has a
nonunique index. In this example, 2 index entries for department 20 exist.

Chapter 8
B-Tree Index Access Paths

8-20

Figure 8-5 Index Range Scan

. . .

41..48

49..53

54..65

....

78..80

11,rowid

11,rowid

12,rowid

....

20,rowid
20, rowid

221,rowid

222,rowid

223,rowid

....

228,rowid

246,rowid

248,rowid

248,rowid

....

250,rowid

0,rowid

0,rowid

....

10,rowid

0..40

41..80

81..120

....

200..250

.

0..10

11..2

....

32..40

200..209

210..220

221..228

....

246..250

Branch Blocks

Leaf Blocks

Index Range Scan: Example
This example retrieves a set of values from the employees table using an index range scan.

The following statement queries the records for employees in department 20 with salaries
greater than 1000:

SELECT *
FROM employees
WHERE department_id = 20
AND salary > 1000;

The preceding query has low cardinality (returns few rows), so the query uses the index on the
department_id column. The database scans the index, fetches the records from the
employees table, and then applies the salary > 1000 filter to these fetched records to
generate the result.

SQL_ID brt5abvbxw9tq, child number 0

SELECT * FROM employees WHERE department_id = 20 AND salary > 1000

Plan hash value: 2799965532

Chapter 8
B-Tree Index Access Paths

8-21

|Id | Operation | Name |Rows|Bytes|Cost(%CPU)| Time |

0	SELECT STATEMENT				2 (100)	
*1	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	2	138	2 (0)	00:00:01
*2	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	2		1 (0)	00:00:01

Predicate Information (identified by operation id):

 1 - filter("SALARY">1000)
 2 - access("DEPARTMENT_ID"=20)

Index Range Scan Descending: Example
This example uses an index to retrieve rows from the employees table in sorted order.

The following statement queries the records for employees in department 20 in descending
order:

SELECT *
FROM employees
WHERE department_id < 20
ORDER BY department_id DESC;

This preceding query has low cardinality, so the query uses the index on the department_id
column.

SQL_ID 8182ndfj1ttj6, child number 0

SELECT * FROM employees WHERE department_id<20 ORDER BY department_id DESC

Plan hash value: 1681890450

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time |

0	SELECT STATEMENT				2(100)	
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	2	138	2 (0)	00:00:01
*2	INDEX RANGE SCAN DESCENDING	EMP_DEPARTMENT_IX	2		1 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("DEPARTMENT_ID"<20)

The database locates the first index leaf block that contains the highest key value that is 20 or
less. The scan then proceeds horizontally to the left through the linked list of leaf nodes. The
database obtains the rowid from each index entry, and then retrieves the row specified by the
rowid.

Chapter 8
B-Tree Index Access Paths

8-22

Index Full Scans
An index full scan reads the entire index in order. An index full scan can eliminate a separate
sorting operation because the data in the index is ordered by index key.

When the Optimizer Considers Index Full Scans
The optimizer considers an index full scan in a variety of situations.

The situations include the following:

• A predicate references a column in the index. This column need not be the leading column.

• No predicate is specified, but all of the following conditions are met:

– All columns in the table and in the query are in the index.

– At least one indexed column is not null.

• A query includes an ORDER BY on indexed non-nullable columns.

How Index Full Scans Work
The database reads the root block, and then navigates down the left hand side of the index (or
right if doing a descending full scan) until it reaches a leaf block.

Then the database reaches a leaf block, the scan proceeds across the bottom of the index,
one block at a time, in sorted order. The database uses single-block I/O rather than multiblock
I/O.

The following graphic illustrates an index full scan. A statement requests the departments
records ordered by department_id.

Chapter 8
B-Tree Index Access Paths

8-23

Figure 8-6 Index Full Scan

. . .

41..48

49..53

54..65

....

78..80

11,rowid

12,rowid

13,rowid

....

19,rowid

221,rowid

222,rowid

223,rowid

....

228,rowid

246,rowid

247,rowid

248,rowid

....

250,rowid

0,rowid

1,rowid

....

10,rowid

0..40

41..80

81..120

....

200..250

.

0..10

11..19

20..25

....

32..40

200..209

210..220

221..228

....

246..250

Branch Blocks

Leaf Blocks

Index Full Scans: Example
This example uses an index full scan to satisfy a query with an ORDER BY clause.

The following statement queries the ID and name for departments in order of department ID:

SELECT department_id, department_name
FROM departments
ORDER BY department_id;

The following plan shows that the optimizer chose an index full scan:

SQL_ID 94t4a20h8what, child number 0

select department_id, department_name from departments order by department_id

Plan hash value: 4179022242

--
|Id | Operation | Name |Rows|Bytes|Cost(%CPU)|Time |
--
|0| SELECT STATEMENT | | | |2 (100)| |
|1| TABLE ACCESS BY INDEX ROWID|DEPARTMENTS |27 |432|2 (0)|00:00:01 |

Chapter 8
B-Tree Index Access Paths

8-24

|2| INDEX FULL SCAN |DEPT_ID_PK |27 | |1 (0)|00:00:01 |
--

The database locates the first index leaf block, and then proceeds horizontally to the right
through the linked list of leaf nodes. For each index entry, the database obtains the rowid from
the entry, and then retrieves the table row specified by the rowid. Because the index is sorted
on department_id, the database avoids a separate operation to sort the retrieved rows.

Index Fast Full Scans
An index fast full scan reads the index blocks in unsorted order, as they exist on disk. This
scan does not use the index to probe the table, but reads the index instead of the table,
essentially using the index itself as a table.

When the Optimizer Considers Index Fast Full Scans
The optimizer considers this scan when a query only accesses attributes in the index.

Note:

Unlike a full scan, a fast full scan cannot eliminate a sort operation because it does
not read the index in order.

The INDEX_FFS(table_name index_name) hint forces a fast full index scan.

See Also:

Oracle Database SQL Language Reference to learn more about the INDEX hint

How Index Fast Full Scans Work
The database uses multiblock I/O to read the root block and all of the leaf and branch blocks.
The databases ignores the branch and root blocks and reads the index entries on the leaf
blocks.

Index Fast Full Scans: Example
This examples uses a fast full index scan as a result of an optimizer hint.

The following statement queries the ID and name for departments in order of department ID:

SELECT /*+ INDEX_FFS(departments dept_id_pk) */ COUNT(*)
FROM departments;

The following plan shows that the optimizer chose a fast full index scan:

SQL_ID fu0k5nvx7sftm, child number 0

Chapter 8
B-Tree Index Access Paths

8-25

select /*+ index_ffs(departments dept_id_pk) */ count(*) from departments

Plan hash value: 3940160378
--
| Id | Operation | Name | Rows |Cost (%CPU)| Time |
--
0	SELECT STATEMENT			2 (100)	
1	SORT AGGREGATE		1		
2	INDEX FAST FULL SCAN	DEPT_ID_PK	27	2 (0)	00:00:01
--

Index Skip Scans
An index skip scan occurs when the initial column of a composite index is "skipped" or not
specified in the query.

See Also:

Oracle Database Concepts

When the Optimizer Considers Index Skip Scans
Often, skip scanning index blocks is faster than scanning table blocks, and faster than
performing full index scans.

The optimizer considers a skip scan when the following criteria are met:

• The leading column of a composite index is not specified in the query predicate.

For example, the query predicate does not reference the cust_gender column, and the
composite index key is (cust_gender,cust_email).

• Many distinct values exist in the nonleading key of the index and relatively few distinct
values exist in the leading key.

For example, if the composite index key is (cust_gender,cust_email), then the
cust_gender column has only two distinct values, but cust_email has thousands.

How Index Skip Scans Work
An index skip scan logically splits a composite index into smaller subindexes.

The number of distinct values in the leading columns of the index determines the number of
logical subindexes. The lower the number, the fewer logical subindexes the optimizer must
create, and the more efficient the scan becomes. The scan reads each logical index
separately, and "skips" index blocks that do not meet the filter condition on the non-leading
column.

Index Skip Scans: Example
This example uses an index skip scan to satisfy a query of the sh.customers table.

Chapter 8
B-Tree Index Access Paths

8-26

The customers table contains a column cust_gender whose values are either M or F. While
logged in to the database as user sh, you create a composite index on the columns
(cust_gender, cust_email) as follows:

CREATE INDEX cust_gender_email_ix
 ON sh.customers (cust_gender, cust_email);

Conceptually, a portion of the index might look as follows, with the gender value of F or M as the
leading edge of the index.

F,Wolf@company.example.com,rowid
F,Wolsey@company.example.com,rowid
F,Wood@company.example.com,rowid
F,Woodman@company.example.com,rowid
F,Yang@company.example.com,rowid
F,Zimmerman@company.example.com,rowid
M,Abbassi@company.example.com,rowid
M,Abbey@company.example.com,rowid

You run the following query for a customer in the sh.customers table:

SELECT *
FROM sh.customers
WHERE cust_email = 'Abbey@company.example.com';

The database can use a skip scan of the customers_gender_email index even though
cust_gender is not specified in the WHERE clause. In the sample index, the leading column
cust_gender has two possible values: F and M. The database logically splits the index into two.
One subindex has the key F, with entries in the following form:

F,Wolf@company.example.com,rowid
F,Wolsey@company.example.com,rowid
F,Wood@company.example.com,rowid
F,Woodman@company.example.com,rowid
F,Yang@company.example.com,rowid
F,Zimmerman@company.example.com,rowid

The second subindex has the key M, with entries in the following form:

M,Abbassi@company.example.com,rowid
M,Abbey@company.example.com,rowid

When searching for the record for the customer whose email is Abbey@company.example.com,
the database searches the subindex with the leading value F first, and then searches the
subindex with the leading value M. Conceptually, the database processes the query as follows:

(SELECT *
 FROM sh.customers
 WHERE cust_gender = 'F'
 AND cust_email = 'Abbey@company.example.com')
UNION ALL
(SELECT *

Chapter 8
B-Tree Index Access Paths

8-27

 FROM sh.customers
 WHERE cust_gender = 'M'
 AND cust_email = 'Abbey@company.example.com')

The plan for the query is as follows:

SQL_ID d7a6xurcnx2dj, child number 0

SELECT * FROM sh.customers WHERE cust_email = 'Abbey@company.example.com'

Plan hash value: 797907791

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time|

0	SELECT STATEMENT				10(100)	
1	TABLE ACCESS BY INDEX ROWID BATCHED	CUSTOMERS	33	6237	10(0)	00:00:01
*2	INDEX SKIP SCAN	CUST_GENDER_EMAIL_IX	33		4(0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("CUST_EMAIL"='Abbey@company.example.com')
 filter("CUST_EMAIL"='Abbey@company.example.com')

See Also:

Oracle Database Concepts to learn more about skip scans

Index Join Scans
An index join scan is a hash join of multiple indexes that together return all columns requested
by a query. The database does not need to access the table because all data is retrieved from
the indexes.

When the Optimizer Considers Index Join Scans
In some cases, avoiding table access is the most cost efficient option.

The optimizer considers an index join in the following circumstances:

• A hash join of multiple indexes retrieves all data requested by the query, without requiring
table access.

• The cost of retrieving rows from the table is higher than reading the indexes without
retrieving rows from the table. An index join is often expensive. For example, when
scanning two indexes and joining them, it is often less costly to choose the most selective
index, and then probe the table.

You can specify an index join with the INDEX_JOIN(table_name) hint.

Chapter 8
B-Tree Index Access Paths

8-28

See Also:

Oracle Database SQL Language Reference

How Index Join Scans Work
An index join involves scanning multiple indexes, and then using a hash join on the rowids
obtained from these scans to return the rows.

In an index join scan, table access is always avoided. For example, the process for joining two
indexes on a single table is as follows:

1. Scan the first index to retrieve rowids.

2. Scan the second index to retrieve rowids.

3. Perform a hash join by rowid to obtain the rows.

Index Join Scans: Example
This example queries the last name and email for employees whose last name begins with A,
specifying an index join.

SELECT /*+ INDEX_JOIN(employees) */ last_name, email
FROM employees
WHERE last_name like 'A%';

Separate indexes exist on the (last_name,first_name) and email columns. Part of the
emp_name_ix index might look as follows:

Banda,Amit,AAAVgdAALAAAABSABD
Bates,Elizabeth,AAAVgdAALAAAABSABI
Bell,Sarah,AAAVgdAALAAAABSABc
Bernstein,David,AAAVgdAALAAAABSAAz
Bissot,Laura,AAAVgdAALAAAABSAAd
Bloom,Harrison,AAAVgdAALAAAABSABF
Bull,Alexis,AAAVgdAALAAAABSABV

The first part of the emp_email_uk index might look as follows:

ABANDA,AAAVgdAALAAAABSABD
ABULL,AAAVgdAALAAAABSABV
ACABRIO,AAAVgdAALAAAABSABX
AERRAZUR,AAAVgdAALAAAABSAAv
AFRIPP,AAAVgdAALAAAABSAAV
AHUNOLD,AAAVgdAALAAAABSAAD
AHUTTON,AAAVgdAALAAAABSABL

The following example retrieves the plan using the DBMS_XPLAN.DISPLAY_CURSOR function. The
database retrieves all rowids in the emp_email_uk index, and then retrieves rowids in
emp_name_ix for last names that begin with A. The database uses a hash join to search both

Chapter 8
B-Tree Index Access Paths

8-29

sets of rowids for matches. For example, rowid AAAVgdAALAAAABSABD occurs in both sets of
rowids, so the database probes the employees table for the record corresponding to this rowid.

Example 8-4 Index Join Scan

SQL_ID d2djchyc9hmrz, child number 0

SELECT /*+ INDEX_JOIN(employees) */ last_name, email FROM employees
WHERE last_name like 'A%'

Plan hash value: 3719800892

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT				3 (100)	
* 1	VIEW	index$_join$_001	3	48	3 (34)	00:00:01
* 2	HASH JOIN					
* 3	INDEX RANGE SCAN	EMP_NAME_IX	3	48	1 (0)	00:00:01
4	INDEX FAST FULL SCAN	EMP_EMAIL_UK	3	48	1 (0)	00:00:01

Predicate Information (identified by operation id):

 1 - filter("LAST_NAME" LIKE 'A%')
 2 - access(ROWID=ROWID)
 3 - access("LAST_NAME" LIKE 'A%')

Bitmap Index Access Paths
Bitmap indexes combine the indexed data with a rowid range.

About Bitmap Index Access
In a conventional B-tree index, one index entry points to a single row. In a bitmap index, the
key is the combination of the indexed data and the rowid range.

The database stores at least one bitmap for each index key. Each value in the bitmap, which is
a series of 1 and 0 values, points to a row within a rowid range. Thus, in a bitmap index, one
index entry points to a set of rows rather than a single row.

Differences Between Bitmap and B-Tree Indexes
A bitmap index uses a different key from a B-tree index, but is stored in a B-tree structure.

The following table shows the differences among types of index entries.

Chapter 8
Bitmap Index Access Paths

8-30

Table 8-3 Index Entries for B-Trees and Bitmaps

Index Entry Key Data Example

Unique B-tree Indexed data only Rowid In an entry of the index on the employees.employee_id
column, employee ID 101 is the key, and the rowid
AAAPvCAAFAAAAFaAAa is the data:

101,AAAPvCAAFAAAAFaAAa

Nonunique B-tree Indexed data combined
with rowid

None In an entry of the index on the employees.last_name
column, the name and rowid combination
Smith,AAAPvCAAFAAAAFaAAa is the key, and there is no data:

Smith,AAAPvCAAFAAAAFaAAa

Bitmap Indexed data combined
with rowid range

Bitmap In an entry of the index on the customers.cust_gender
column, the M,low-rowid,high-rowid part is the key, and
the series of 1 and 0 values is the data:

M,low-rowid,high-rowid,1000101010101010

The database stores a bitmap index in a B-tree structure. The database can search the B-tree
quickly on the first part of the key, which is the set of attributes on which the index is defined,
and then obtain the corresponding rowid range and bitmap.

See Also:

• "Bitmap Storage"

• Oracle Database Concepts for an overview of bitmap indexes

• Oracle Database Data Warehousing Guide for more information about bitmap
indexes

Purpose of Bitmap Indexes
Bitmap indexes are typically suitable for infrequently modified data with a low or medium
number of distinct values (NDV).

In general, B-tree indexes are suitable for columns with high NDV and frequent DML activity.
For example, the optimizer might choose a B-tree index for a query of a sales.amount column
that returns few rows. In contrast, the customers.state and customers.county columns are
candidates for bitmap indexes because they have few distinct values, are infrequently updated,
and can benefit from efficient AND and OR operations.

Bitmap indexes are a useful way to speed ad hoc queries in a data warehouse. They are
fundamental to star transformations. Specifically, bitmap indexes are useful in queries that
contain the following:

• Multiple conditions in the WHERE clause

Chapter 8
Bitmap Index Access Paths

8-31

Before the table itself is accessed, the database filters out rows that satisfy some, but not
all, conditions.

• AND, OR, and NOT operations on columns with low or medium NDV

Combining bitmap indexes makes these operations more efficient. The database can
merge bitmaps from bitmap indexes very quickly. For example, if bitmap indexes exist on
the customers.state and customers.county columns, then these indexes can enormously
improve the performance of the following query:

SELECT *
FROM customers
WHERE state = 'CA'
AND county = 'San Mateo'

The database can convert 1 values in the merged bitmap into rowids efficiently.

• The COUNT function

The database can scan the bitmap index without needing to scan the table.

• Predicates that select for null values

Unlike B-tree indexes, bitmap indexes can contain nulls. Queries that count the number of
nulls in a column can use the bitmap index without scanning the table.

• Columns that do not experience heavy DML

The reason is that one index key points to many rows. If a session modifies the indexed
data, then the database cannot lock a single bit in the bitmap: rather, the database locks
the entire index entry, which in practice locks the rows pointed to by the bitmap. For
example, if the county of residence for a specific customer changes from San Mateo to
Alameda, then the database must get exclusive access to the San Mateo index entry and
Alameda index entry in the bitmap. Rows containing these two values cannot be modified
until COMMIT.

See Also:

• "Star Transformation"

• Oracle Database SQL Language Reference to learn about the COUNT function

Bitmaps and Rowids
For a particular value in a bitmap, the value is 1 if the row values match the bitmap condition,
and 0 if it does not. Based on these values, the database uses an internal algorithm to map
bitmaps onto rowids.

The bitmap entry contains the indexed value, the rowid range (start and end rowids), and a
bitmap. Each 0 or 1 value in the bitmap is an offset into the rowid range, and maps to a
potential row in the table, even if the row does not exist. Because the number of possible rows
in a block is predetermined, the database can use the range endpoints to determine the rowid
of an arbitrary row in the range.

Chapter 8
Bitmap Index Access Paths

8-32

Note:

The Hakan factor is an optimization used by the bitmap index algorithms to limit the
number of rows that Oracle Database assumes can be stored in a single block. By
artificially limiting the number of rows, the database reduces the size of the bitmaps.

Table 8-4 shows part of a sample bitmap for the sh.customers.cust_marital_status column,
which is nullable. The actual index has 12 distinct values. Only 3 are shown in the sample: null,
married, and single.

Table 8-4 Bitmap Index Entries

Column
Value for
cust_marital_
status

Start Rowid
in Range

End Rowid
in Range

1st Row
in
Range

2nd
Row in
Range

3rd
Row in
Range

4th
Row in
Range

5th
Row in
Range

6th
Row in
Range

(null) AAA ... CCC ... 0 0 0 0 0 1

married AAA ... CCC ... 1 0 1 1 1 0

single AAA ... CCC ... 0 1 0 0 0 0

single DDD ... EEE ... 1 0 1 0 1 1

As shown in Table 8-4, bitmap indexes can include keys that consist entirely of null values,
unlike B-tree indexes. In Table 8-4, the null has a value of 1 for the 6th row in the range, which
means that the cust_marital_status value is null for the 6th row in the range. Indexing nulls
can be useful for some SQL statements, such as queries with the aggregate function COUNT.

See Also:

Oracle Database Concepts to learn about rowid formats

Bitmap Join Indexes
A bitmap join index is a bitmap index for the join of two or more tables.

The optimizer can use a bitmap join index to reduce or eliminate the volume of data that must
be joined during plan execution. Bitmap join indexes can be much more efficient in storage
than materialized join views.

The following example creates a bitmap index on the sh.sales and sh.customers tables:

CREATE BITMAP INDEX cust_sales_bji ON sales(c.cust_city)
 FROM sales s, customers c
 WHERE c.cust_id = s.cust_id LOCAL;

The FROM and WHERE clause in the preceding CREATE statement represent the join condition
between the tables. The customers.cust_city column is the index key.

Chapter 8
Bitmap Index Access Paths

8-33

Each key value in the index represents a possible city in the customers table. Conceptually,
key values for the index might look as follows, with one bitmap associated with each key value:

San Francisco 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 . . .
San Mateo 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 . . .
Smithville 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 . . .
.
.
.

Each bit in a bitmap corresponds to one row in the sales table. In the Smithville key, the
value 1 means that the first row in the sales table corresponds to a product sold to a Smithville
customer, whereas the value 0 means that the second row corresponds to a product not sold to
a Smithville customer.

Consider the following query of the number of separate sales to Smithville customers:

SELECT COUNT (*)
FROM sales s, customers c
WHERE c.cust_id = s.cust_id
AND c.cust_city = 'Smithville';

The following plan shows that the database reads the Smithville bitmap to derive the number
of Smithville sales (Step 4), thereby avoiding a join of the customers and sales tables.

SQL_ID 57s100mh142wy, child number 0

SELECT COUNT (*) FROM sales s, customers c WHERE c.cust_id = s.cust_id
AND c.cust_city = 'Smithville'

Plan hash value: 3663491772

--
|Id| Operation | Name |Rows|Bytes|Cost (%CPU)| Time|Pstart|Pstop|
--
0	SELECT STATEMENT				29 (100)			
1	SORT AGGREGATE		1	5				
2	PARTITION RANGE ALL		1708	8540	29 (0)	00:00:01	1	28
3	BITMAP CONVERSION COUNT		1708	8540	29 (0)	00:00:01		
*4	BITMAP INDEX SINGLE VALUE	CUST_SALES_BJI					1	28
--

Predicate Information (identified by operation id):

 4 - access("S"."SYS_NC00008$"='Smithville')

See Also:

Oracle Database Concepts to learn about the CREATE INDEX statement

Chapter 8
Bitmap Index Access Paths

8-34

Bitmap Storage
A bitmap index resides in a B-tree structure, using branch blocks and leaf blocks just as in a B-
tree.

For example, if the customers.cust_marital_status column has 12 distinct values, then one
branch block might point to the keys married,rowid-range and single,rowid-range, another
branch block might point to the widowed,rowid-range key, and so on. Alternatively, a single
branch block could point to a leaf block containing all 12 distinct keys.

Each indexed column value may have one or more bitmap pieces, each with its own rowid
range occupying a contiguous set of rows in one or more extents. The database can use a
bitmap piece to break up an index entry that is large relative to the size of a block. For
example, the database could break a single index entry into three pieces, with the first two
pieces in separate blocks in the same extent, and the last piece in a separate block in a
different extent.

To conserve space, Oracle Database can compression consecutive ranges of 0 values.

Bitmap Conversion to Rowid
A bitmap conversion translates between an entry in the bitmap and a row in a table. The
conversion can go from entry to row (TO ROWID), or from row to entry (FROM ROWID).

When the Optimizer Chooses Bitmap Conversion to Rowid
The optimizer uses a conversion whenever it retrieves a row from a table using a bitmap index
entry.

How Bitmap Conversion to Rowid Works
Conceptually, a bitmap can be represented as table.

For example, Table 8-4 represents the bitmap as a table with customers row numbers as
columns and cust_marital_status values as rows. Each field in Table 8-4 has the value 1 or
0, and represents a column value in a row. Conceptually, the bitmap conversion uses an
internal algorithm that says, "Field F in the bitmap corresponds to the Nth row of the Mth block
of the table," or "The Nth row of the Mth block in the table corresponds to field F in the bitmap."

Bitmap Conversion to Rowid: Example
In this example, the optimizer chooses a bitmap conversion operation to satisfy a query using a
range predicate.

A query of the sh.customers table selects the names of all customers born before 1918:

SELECT cust_last_name, cust_first_name
FROM customers
WHERE cust_year_of_birth < 1918;

Chapter 8
Bitmap Index Access Paths

8-35

The following plan shows that the database uses a range scan to find all key values less than
1918 (Step 3), converts the 1 values in the bitmap to rowids (Step 2), and then uses the rowids
to obtain the rows from the customers table (Step 1):

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)| Time |

0	SELECT STATEMENT				421 (100)	
1	TABLE ACCESS BY INDEX ROWID BATCHED	CUSTOMERS	3604	68476	421 (1)	00:00:01
2	BITMAP CONVERSION TO ROWIDS					
*3	BITMAP INDEX RANGE SCAN	CUSTOMERS_YOB_BIX				

Predicate Information (identified by operation id):

 3 - access("CUST_YEAR_OF_BIRTH"<1918)
 filter("CUST_YEAR_OF_BIRTH"<1918)

Bitmap Index Single Value
This type of access path uses a bitmap index to look up a single key value.

When the Optimizer Considers Bitmap Index Single Value
The optimizer considers this access path when the predicate contains an equality operator.

How Bitmap Index Single Value Works
The query scans a single bitmap for positions containing a 1 value. The database converts the
1 values into rowids, and then uses the rowids to find the rows.

The database only needs to process a single bitmap. For example, the following table
represents the bitmap index (in two bitmap pieces) for the value widowed in the
sh.customers.cust_marital_status column. To satisfy a query of customers with the status
widowed, the database can search for each 1 value in the widowed bitmap and find the rowid of
the corresponding row.

Table 8-5 Bitmap Index Entries

Column
Value

Start Rowid
in Range

End Rowid
in Range

1st Row
in
Range

2nd
Row in
Range

3rd
Row in
Range

4th Row
in
Range

5th Row
in
Range

6th Row
in
Range

widowed AAA ... CCC ... 0 1 0 0 0 0

widowed DDD ... EEE ... 1 0 1 0 1 1

Bitmap Index Single Value: Example
In this example, the optimizer chooses a bitmap index single value operation to satisfy a query
that uses an equality predicate.

Chapter 8
Bitmap Index Access Paths

8-36

A query of the sh.customers table selects all widowed customers:

SELECT *
FROM customers
WHERE cust_marital_status = 'Widowed';

The following plan shows that the database reads the entry with the Widowed key in the
customers bitmap index (Step 3), converts the 1 values in the bitmap to rowids (Step 2), and
then uses the rowids to obtain the rows from the customers table (Step 1):

SQL_ID ff5an2xsn086h, child number 0

SELECT * FROM customers WHERE cust_marital_status = 'Widowed'

Plan hash value: 2579015045

|Id| Operation | Name |Rows|Bytes|Cost (%CPU)| Time|

0	SELECT STATEMENT				412(100)	
1	TABLE ACCESS BY INDEX ROWID BATCHED	CUSTOMERS	3461	638K	412 (2)	00:00:01
2	BITMAP CONVERSION TO ROWIDS					
*3	BITMAP INDEX SINGLE VALUE	CUSTOMERS_MARITAL_BIX				

Predicate Information (identified by operation id):

 3 - access("CUST_MARITAL_STATUS"='Widowed')

Bitmap Index Range Scans
This type of access path uses a bitmap index to look up a range of values.

When the Optimizer Considers Bitmap Index Range Scans
The optimizer considers this access path when the predicate selects a range of values.

The range in the scan can be bounded on both sides, or unbounded on one or both sides. The
optimizer typically chooses a range scan for selective queries.

See Also:

"Index Range Scans"

How Bitmap Index Range Scans Work
This scan works similarly to a B-tree range scan.

For example, the following table represents three values in the bitmap index for the
sh.customers.cust_year_of_birth column. If a query requests all customers born before

Chapter 8
Bitmap Index Access Paths

8-37

1917, then the database can scan this index for values lower than 1917, and then obtain the
rowids for rows that have a 1.

Table 8-6 Bitmap Index Entries

Column
Value

Start Rowid
in Range

End Rowid
in Range

1st Row
in
Range

2nd
Row in
Range

3rd
Row in
Range

4th Row
in
Range

5th Row
in
Range

6th Row
in
Range

1913 AAA ... CCC ... 0 0 0 0 0 1

1917 AAA ... CCC ... 1 0 1 1 1 0

1918 AAA ... CCC ... 0 1 0 0 0 0

1918 DDD ... EEE ... 1 0 1 0 1 1

See Also:

"Index Range Scans"

Bitmap Index Range Scans: Example
This example uses a range scan to select customers born before a single year.

A query of the sh.customers table selects the names of customers born before 1918:

SELECT cust_last_name, cust_first_name
FROM customers
WHERE cust_year_of_birth < 1918

The following plan shows that the database obtains all bitmaps for cust_year_of_birth keys
lower than 1918 (Step 3), converts the bitmaps to rowids (Step 2), and then fetches the rows
(Step 1):

SQL_ID 672z2h9rawyjg, child number 0

SELECT cust_last_name, cust_first_name FROM customers WHERE
cust_year_of_birth < 1918

Plan hash value: 4198466611

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time |

0	SELECT STATEMENT				421 (100)	
1	TABLE ACCESS BY INDEX ROWID BATCHED	CUSTOMERS	3604	68476	421 (1)	00:00:01
2	BITMAP CONVERSION TO ROWIDS					
*3	BITMAP INDEX RANGE SCAN	CUSTOMERS_YOB_BIX				

Predicate Information (identified by operation id):

Chapter 8
Bitmap Index Access Paths

8-38

 3 - access("CUST_YEAR_OF_BIRTH"<1918)
 filter("CUST_YEAR_OF_BIRTH"<1918)

Bitmap Merge
This access path merges multiple bitmaps, and returns a single bitmap as a result.

A bitmap merge is indicated by the BITMAP MERGE operation in an execution plan.

When the Optimizer Considers Bitmap Merge
The optimizer typically uses a bitmap merge to combine bitmaps generated from a bitmap
index range scan.

How Bitmap Merge Works
A merge uses a Boolean OR operation between two bitmaps. The resulting bitmap selects all
rows from the first bitmap, plus all rows from every subsequent bitmap.

A query might select all customers born before 1918. The following example shows sample
bitmaps for three customers.cust_year_of_birth keys: 1917, 1916, and 1915. If any position
in any bitmap has a 1, then the merged bitmap has a 1 in the same position. Otherwise, the
merged bitmap has a 0.

1917 1 0 1 0 0 0 0 0 0 0 0 0 0 1
1916 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1915 0 0 0 0 0 0 0 0 1 0 0 0 0 0

merged: 1 1 1 0 0 0 0 0 1 0 0 0 0 1

The 1 values in resulting bitmap correspond to rows that contain the values 1915, 1916, or
1917.

Bitmap Merge: Example
This example shows how the database merges bitmaps to optimize a query using a range
predicate.

A query of the sh.customers table selects the names of female customers born before 1918:

SELECT cust_last_name, cust_first_name
FROM customers
WHERE cust_gender = 'F'
AND cust_year_of_birth < 1918

The following plan shows that the database obtains all bitmaps for cust_year_of_birth keys
lower than 1918 (Step 6), and then merges these bitmaps using OR logic to create a single
bitmap (Step 5). The database obtains a single bitmap for the cust_gender key of F (Step 4),
and then performs an AND operation on these two bitmaps. The result is a single bitmap that
contains 1 values for the requested rows (Step 3).

SQL_ID 1xf59h179zdg2, child number 0

Chapter 8
Bitmap Index Access Paths

8-39

select cust_last_name, cust_first_name from customers where cust_gender
= 'F' and cust_year_of_birth < 1918

Plan hash value: 49820847

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time |

0	SELECT STATEMENT				288(100)	
1	TABLE ACCESS BY INDEX ROWID BATCHED	CUSTOMERS	1802	37842	288 (1)	00:00:01
2	BITMAP CONVERSION TO ROWIDS					
3	BITMAP AND					
*4	BITMAP INDEX SINGLE VALUE	CUSTOMERS_GENDER_BIX				
5	BITMAP MERGE					
*6	BITMAP INDEX RANGE SCAN	CUSTOMERS_YOB_BIX				

Predicate Information (identified by operation id):

 4 - access("CUST_GENDER"='F')
 6 - access("CUST_YEAR_OF_BIRTH"<1918)
 filter("CUST_YEAR_OF_BIRTH"<1918)

Table Cluster Access Paths
A table cluster is a group of tables that share common columns and store related data in the
same blocks. When tables are clustered, a single data block can contain rows from multiple
tables.

See Also:

Oracle Database Concepts for an overview of table clusters

Cluster Scans
An index cluster is a table cluster that uses an index to locate data.

The cluster index is a B-tree index on the cluster key. A cluster scan retrieves all rows that
have the same cluster key value from a table stored in an indexed cluster.

When the Optimizer Considers Cluster Scans
The database considers a cluster scan when a query accesses a table in an indexed cluster.

How a Cluster Scan Works
In an indexed cluster, the database stores all rows with the same cluster key value in the same
data block.

For example, if the hr.employees2 and hr.departments2 tables are clustered in
emp_dept_cluster, and if the cluster key is department_id, then the database stores all
employees in department 10 in the same block, all employees in department 20 in the same
block, and so on.

Chapter 8
Table Cluster Access Paths

8-40

The B-tree cluster index associates the cluster key value with the database block address
(DBA) of the block containing the data. For example, the index entry for key 30 shows the
address of the block that contains rows for employees in department 30:

30,AADAAAA9d

When a user requests rows in the cluster, the database scans the index to obtain the DBAs of
the blocks containing the rows. Oracle Database then locates the rows based on these DBAs.

Cluster Scans: Example
This example clusters the employees and departments tables on the department_id column,
and then queries the cluster for a single department.

As user hr, you create a table cluster, cluster index, and tables in the cluster as follows:

CREATE CLUSTER employees_departments_cluster
 (department_id NUMBER(4)) SIZE 512;

CREATE INDEX idx_emp_dept_cluster
 ON CLUSTER employees_departments_cluster;

CREATE TABLE employees2
 CLUSTER employees_departments_cluster (department_id)
 AS SELECT * FROM employees;
 CREATE TABLE departments2
 CLUSTER employees_departments_cluster (department_id)
 AS SELECT * FROM departments;

You query the employees in department 30 as follows:

SELECT *
FROM employees2
WHERE department_id = 30;

To perform the scan, Oracle Database first obtains the rowid of the row describing department
30 by scanning the cluster index (Step 2). Oracle Database then locates the rows in
employees2 using this rowid (Step 1).

SQL_ID b7xk1jzuwdc6t, child number 0

SELECT * FROM employees2 WHERE department_id = 30

Plan hash value: 49826199

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time|

0	SELECT STATEMENT				2 (100)	
1	TABLE ACCESS CLUSTER	EMPLOYEES2	6	798	2 (0)	00:00:01
*2	INDEX UNIQUE SCAN	IDX_EMP_DEPT_CLUSTER	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

Chapter 8
Table Cluster Access Paths

8-41

 2 - access("DEPARTMENT_ID"=30)

See Also:

Oracle Database Concepts to learn about indexed clusters

Hash Scans
A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists.

In a hash cluster, the data is the index. The database uses a hash scan to locate rows in a
hash cluster based on a hash value.

When the Optimizer Considers a Hash Scan
The database considers a hash scan when a query accesses a table in a hash cluster.

How a Hash Scan Works
In a hash cluster, all rows with the same hash value are stored in the same data block.

To perform a hash scan of the cluster, Oracle Database first obtains the hash value by applying
a hash function to a cluster key value specified by the statement. Oracle Database then scans
the data blocks containing rows with this hash value.

Hash Scans: Example
This example hashes the employees and departments tables on the department_id column,
and then queries the cluster for a single department.

You create a hash cluster and tables in the cluster as follows:

CREATE CLUSTER employees_departments_cluster
 (department_id NUMBER(4)) SIZE 8192 HASHKEYS 100;

CREATE TABLE employees2
 CLUSTER employees_departments_cluster (department_id)
 AS SELECT * FROM employees;

CREATE TABLE departments2
 CLUSTER employees_departments_cluster (department_id)
 AS SELECT * FROM departments;

You query the employees in department 30 as follows:

SELECT *
FROM employees2
WHERE department_id = 30

Chapter 8
Table Cluster Access Paths

8-42

To perform a hash scan, Oracle Database first obtains the hash value by applying a hash
function to the key value 30, and then uses this hash value to scan the data blocks and retrieve
the rows (Step 1).

SQL_ID 919x7hyyxr6p4, child number 0

SELECT * FROM employees2 WHERE department_id = 30

Plan hash value: 2399378016

--
| Id | Operation | Name | Rows | Bytes | Cost |
--
| 0 | SELECT STATEMENT | | | | 1 |
|* 1 | TABLE ACCESS HASH| EMPLOYEES2 | 10 | 1330 | |
--

Predicate Information (identified by operation id):

 1 - access("DEPARTMENT_ID"=30)

See Also:

Oracle Database Concepts to learn about hash clusters

Chapter 8
Table Cluster Access Paths

8-43

9
Joins

Oracle Database provides several optimizations for joining row sets.

About Joins
A join combines the output from exactly two row sources, such as tables or views, and returns
one row source. The returned row source is the data set.

A join is characterized by multiple tables in the WHERE (non-ANSI) or FROM ... JOIN (ANSI)
clause of a SQL statement. Whenever multiple tables exist in the FROM clause, Oracle
Database performs a join.

A join condition compares two row sources using an expression. The join condition defines the
relationship between the tables. If the statement does not specify a join condition, then the
database performs a Cartesian join, matching every row in one table with every row in the
other table.

See Also:

• "Cartesian Joins"

• Oracle Database SQL Language Reference for a concise discussion of joins in
Oracle SQL

Join Trees
Typically, a join tree is represented as an upside-down tree structure.

As shown in the following graphic, table1 is the left table, and table2 is the right table. The
optimizer processes the join from left to right. For example, if this graphic depicted a nested
loops join, then table1 is the outer loop, and table2 is the inner loop.

Figure 9-1 Join Tree

result set

table1 table2

9-1

The input of a join can be the result set from a previous join. If the right child of every internal
node of a join tree is a table, then the tree is a left deep join tree, as shown in the following
example. Most join trees are left deep joins.

Figure 9-2 Left Deep Join Tree

result set

table4

table3

table2table1

If the left child of every internal node of a join tree is a table, then the tree is called a right deep
join tree, as shown in the following diagram.

Figure 9-3 Right Deep Join Tree

result set

table1

table2

table4table3

If the left or the right child of an internal node of a join tree can be a join node, then the tree is
called a bushy join tree. In the following example, table4 is a right child of a join node, table1
is the left child of a join node, and table2 is the left child of a join node.

Chapter 9
About Joins

9-2

Figure 9-4 Bushy Join Tree

result set

table4

table1

table3table2

In yet another variation, both inputs of a join are the results of a previous join.

How the Optimizer Executes Join Statements
The database joins pairs of row sources. When multiple tables exist in the FROM clause, the
optimizer must determine which join operation is most efficient for each pair.

The optimizer must make the interrelated decisions shown in the following table.

Table 9-1 Join Operations

Operation Explanation To Learn More

Access paths As for simple statements, the optimizer must
choose an access path to retrieve data from
each table in the join statement. For example,
the optimizer might choose between a full table
scan or an index scan..

"Optimizer Access Paths"

Join methods To join each pair of row sources, Oracle
Database must decide how to do it. The "how" is
the join method. The possible join methods are
nested loop, sort merge, and hash joins. A
Cartesian join requires one of the preceding join
methods. Each join method has specific
situations in which it is more suitable than the
others.

"Join Methods"

Join types The join condition determines the join type. For
example, an inner join retrieves only rows that
match the join condition. An outer join retrieves
rows that do not match the join condition.

"Join Types"

Join order To execute a statement that joins more than two
tables, Oracle Database joins two tables and
then joins the resulting row source to the next
table. This process continues until all tables are
joined into the result. For example, the database
joins two tables, and then joins the result to a
third table, and then joins this result to a fourth
table, and so on.

N/A

Chapter 9
About Joins

9-3

How the Optimizer Chooses Execution Plans for Joins
When determining the join order and method, the optimizer goal is to reduce the number of
rows early so it performs less work throughout the execution of the SQL statement.

The optimizer generates a set of execution plans, according to possible join orders, join
methods, and available access paths. The optimizer then estimates the cost of each plan and
chooses the one with the lowest cost. When choosing an execution plan, the optimizer
considers the following factors:

• The optimizer first determines whether joining two or more tables results in a row source
containing at most one row.

The optimizer recognizes such situations based on UNIQUE and PRIMARY KEY constraints on
the tables. If such a situation exists, then the optimizer places these tables first in the join
order. The optimizer then optimizes the join of the remaining set of tables.

• For join statements with outer join conditions, the table with the outer join operator typically
comes after the other table in the condition in the join order.

In general, the optimizer does not consider join orders that violate this guideline, although
the optimizer overrides this ordering condition in certain circumstances. Similarly, when a
subquery has been converted into an antijoin or semijoin, the tables from the subquery
must come after those tables in the outer query block to which they were connected or
correlated. However, hash antijoins and semijoins are able to override this ordering
condition in certain circumstances.

The optimizer estimates the cost of a query plan by computing the estimated I/Os and CPU.
These I/Os have specific costs associated with them: one cost for a single block I/O, and
another cost for multiblock I/Os. Also, different functions and expressions have CPU costs
associated with them. The optimizer determines the total cost of a query plan using these
metrics. These metrics may be influenced by many initialization parameter and session
settings at compile time, such as the DB_FILE_MULTI_BLOCK_READ_COUNT setting, system
statistics, and so on.

For example, the optimizer estimates costs in the following ways:

• The cost of a nested loops join depends on the cost of reading each selected row of the
outer table and each of its matching rows of the inner table into memory. The optimizer
estimates these costs using statistics in the data dictionary.

• The cost of a sort merge join depends largely on the cost of reading all the sources into
memory and sorting them.

• The cost of a hash join largely depends on the cost of building a hash table on one of the
input sides to the join and using the rows from the other side of the join to probe it.

Example 9-1 Estimating Costs for Join Order and Method

Conceptually, the optimizer constructs a matrix of join orders and methods and the cost
associated with each. For example, the optimizer must determine how best to join the
date_dim and lineorder tables in a query. The following table shows the possible variations of
methods and orders, and the cost for each. In this example, a nested loops join in the order
date_dim, lineorder has the lowest cost.

Chapter 9
About Joins

9-4

Table 9-2 Sample Costs for Join of date_dim and lineorder Tables

Join Method Cost of date_dim, lineorder Cost of lineorder, date_dim

Nested Loops 39,480 6,187,540

Hash Join 187,528 194,909

Sort Merge 217,129 217,129

See Also:

• "Introduction to Optimizer Statistics"

• "Influencing the Optimizer " for more information about optimizer hints

• Oracle Database Reference to learn about DB_FILE_MULTIBLOCK_READ_COUNT

Join Methods
A join method is the mechanism for joining two row sources.

Depending on the statistics, the optimizer chooses the method with the lowest estimated cost.
As shown in Figure 9-5, each join method has two children: the driving (also called outer) row
source and the driven-to (also called inner) row source.

Figure 9-5 Join Method

Join Method

(Nested Loops, Hash

Join, or Sort Merge)

Driving Row Source,

Outer row Source

Driven-To Row Source,

Inner Row Source

Nested Loops Joins
Nested loops join an outer data set to an inner data set.

For each row in the outer data set that matches the single-table predicates, the database
retrieves all rows in the inner data set that satisfy the join predicate. If an index is available,
then the database can use it to access the inner data set by rowid.

Chapter 9
Join Methods

9-5

When the Optimizer Considers Nested Loops Joins
Nested loops joins are useful when the database joins small subsets of data, the database
joins large sets of data with the optimizer mode set to FIRST_ROWS, or the join condition is an
efficient method of accessing the inner table.

Note:

The number of rows expected from the join is what drives the optimizer decision, not
the size of the underlying tables. For example, a query might join two tables of a
billion rows each, but because of the filters the optimizer expects data sets of 5 rows
each.

In general, nested loops joins work best on small tables with indexes on the join conditions. If a
row source has only one row, as with an equality lookup on a primary key value (for example,
WHERE employee_id=101), then the join is a simple lookup. The optimizer always tries to put the
smallest row source first, making it the driving table.

Various factors enter into the optimizer decision to use nested loops. For example, the
database may read several rows from the outer row source in a batch. Based on the number of
rows retrieved, the optimizer may choose either a nested loop or a hash join to the inner row
source. For example, if a query joins departments to driving table employees, and if the
predicate specifies a value in employees.last_name, then the database might read enough
entries in the index on last_name to determine whether an internal threshold is passed. If the
threshold is not passed, then the optimizer picks a nested loop join to departments, and if the
threshold is passed, then the database performs a hash join, which means reading the rest of
employees, hashing it into memory, and then joining to departments.

If the access path for the inner loop is not dependent on the outer loop, then the result can be
a Cartesian product: for every iteration of the outer loop, the inner loop produces the same set
of rows. To avoid this problem, use other join methods to join two independent row sources.

See Also:

• "Table 19-2"

• "Adaptive Query Plans"

How Nested Loops Joins Work
Conceptually, nested loops are equivalent to two nested for loops.

For example, if a query joins employees and departments, then a nested loop in pseudocode
might be:

FOR erow IN (select * from employees where X=Y) LOOP
 FOR drow IN (select * from departments where erow is matched) LOOP
 output values from erow and drow

Chapter 9
Join Methods

9-6

 END LOOP
END LOOP

The inner loop is executed for every row of the outer loop. The employees table is the "outer"
data set because it is in the exterior for loop. The outer table is sometimes called a driving
table. The departments table is the "inner" data set because it is in the interior for loop.

A nested loops join involves the following basic steps:

1. The optimizer determines the driving row source and designates it as the outer loop.

The outer loop produces a set of rows for driving the join condition. The row source can be
a table accessed using an index scan, a full table scan, or any other operation that
generates rows.

The number of iterations of the inner loop depends on the number of rows retrieved in the
outer loop. For example, if 10 rows are retrieved from the outer table, then the database
must perform 10 lookups in the inner table. If 10,000,000 rows are retrieved from the outer
table, then the database must perform 10,000,000 lookups in the inner table.

2. The optimizer designates the other row source as the inner loop.

The outer loop appears before the inner loop in the execution plan, as follows:

NESTED LOOPS
 outer_loop
 inner_loop

3. For every fetch request from the client, the basic process is as follows:

a. Fetch a row from the outer row source

b. Probe the inner row source to find rows that match the predicate criteria

c. Repeat the preceding steps until all rows are obtained by the fetch request

Sometimes the database sorts rowids to obtain a more efficient buffer access pattern.

Nested Nested Loops
The outer loop of a nested loop can itself be a row source generated by a different nested loop.

The database can nest two or more outer loops to join as many tables as needed. Each loop is
a data access method. The following template shows how the database iterates through three
nested loops:

SELECT STATEMENT
 NESTED LOOPS 3
 NESTED LOOPS 2 - Row source becomes OUTER LOOP 3.1
 NESTED LOOPS 1 - Row source becomes OUTER LOOP 2.1
 OUTER LOOP 1.1
 INNER LOOP 1.2
 INNER LOOP 2.2
 INNER LOOP 3.2

The database orders the loops as follows:

Chapter 9
Join Methods

9-7

1. The database iterates through NESTED LOOPS 1:

NESTED LOOPS 1
 OUTER LOOP 1.1
 INNER LOOP 1.2

The output of NESTED LOOP 1 is a row source.

2. The database iterates through NESTED LOOPS 2, using the row source generated by NESTED
LOOPS 1 as its outer loop:

NESTED LOOPS 2
 OUTER LOOP 2.1 - Row source generated by NESTED LOOPS 1
 INNER LOOP 2.2

The output of NESTED LOOPS 2 is another row source.

3. The database iterates through NESTED LOOPS 3, using the row source generated by NESTED
LOOPS 2 as its outer loop:

NESTED LOOPS 3
 OUTER LOOP 3.1 - Row source generated by NESTED LOOPS 2
 INNER LOOP 3.2

Example 9-2 Nested Nested Loops Join

Suppose you join the employees and departments tables as follows:

SELECT /*+ ORDERED USE_NL(d) */ e.last_name, e.first_name, d.department_name
FROM employees e, departments d
WHERE e.department_id=d.department_id
AND e.last_name like 'A%';

The plan reveals that the optimizer chose two nested loops (Step 1 and Step 2) to access the
data:

SQL_ID ahuavfcv4tnz4, child number 0

SELECT /*+ ORDERED USE_NL(d) */ e.last_name, d.department_name FROM
employees e, departments d WHERE e.department_id=d.department_id AND
 e.last_name like 'A%'

Plan hash value: 1667998133

--
|Id| Operation |Name |Rows|Bytes|Cost(%CPU)|Time|
--
0	SELECT STATEMENT				5 (100)	
1	NESTED LOOPS					
2	NESTED LOOPS		3	102	5 (0)	00:00:01
3	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	3	54	2 (0)	00:00:01
*4	INDEX RANGE SCAN	EMP_NAME_IX	3		1 (0)	00:00:01
*5	INDEX UNIQUE SCAN	DEPT_ID_PK	1		0 (0)	
6	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1	16	1 (0)	00:00:01
--

Chapter 9
Join Methods

9-8

Predicate Information (identified by operation id):

 4 - access("E"."LAST_NAME" LIKE 'A%')
 filter("E"."LAST_NAME" LIKE 'A%')
 5 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

In this example, the basic process is as follows:

1. The database begins iterating through the inner nested loop (Step 2) as follows:

a. The database searches the emp_name_ix for the rowids for all last names that begins
with A (Step 4).

For example:

Abel,employees_rowid
Ande,employees_rowid
Atkinson,employees_rowid
Austin,employees_rowid

b. Using the rowids from the previous step, the database retrieves a batch of rows from
the employees table (Step 3). For example:

Abel,Ellen,80
Abel,John,50

These rows become the outer row source for the innermost nested loop.

The batch step is typically part of adaptive execution plans. To determine whether a
nested loop is better than a hash join, the optimizer needs to determine many rows
come back from the row source. If too many rows are returned, then the optimizer
switches to a different join method.

c. For each row in the outer row source, the database scans the dept_id_pk index to
obtain the rowid in departments of the matching department ID (Step 5), and joins it to
the employees rows. For example:

Abel,Ellen,80,departments_rowid
Ande,Sundar,80,departments_rowid
Atkinson,Mozhe,50,departments_rowid
Austin,David,60,departments_rowid

These rows become the outer row source for the outer nested loop (Step 1).

2. The database iterates through the outer nested loop as follows:

a. The database reads the first row in outer row source.

For example:

Abel,Ellen,80,departments_rowid

b. The database uses the departments rowid to retrieve the corresponding row from
departments (Step 6), and then joins the result to obtain the requested values (Step
1).

Chapter 9
Join Methods

9-9

For example:

Abel,Ellen,80,Sales

c. The database reads the next row in the outer row source, uses the departments rowid
to retrieve the corresponding row from departments (Step 6), and iterates through the
loop until all rows are retrieved.

The result set has the following form:

Abel,Ellen,80,Sales
Ande,Sundar,80,Sales
Atkinson,Mozhe,50,Shipping
Austin,David,60,IT

Current Implementation for Nested Loops Joins
Oracle Database 11g introduced a new implementation for nested loops that reduces overall
latency for physical I/O.

When an index or a table block is not in the buffer cache and is needed to process the join, a
physical I/O is required. The database can batch multiple physical I/O requests and process
them using a vector I/O (array) instead of one at a time. The database sends an array of
rowids to the operating system, which performs the read.

As part of the new implementation, two NESTED LOOPS join row sources might appear in the
execution plan where only one would have appeared in prior releases. In such cases, Oracle
Database allocates one NESTED LOOPS join row source to join the values from the table on the
outer side of the join with the index on the inner side. A second row source is allocated to join
the result of the first join, which includes the rowids stored in the index, with the table on the
inner side of the join.

Consider the query in "Original Implementation for Nested Loops Joins". In the current
implementation, the execution plan for this query might be as follows:

| Id | Operation | Name |Rows|Bytes|Cost%CPU| Time |

0	SELECT STATEMENT		19	722	3 (0)	00:00:01
1	NESTED LOOPS					
2	NESTED LOOPS		19	722	3 (0)	00:00:01
* 3	TABLE ACCESS FULL	DEPARTMENTS	2	32	2 (0)	00:00:01
* 4	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	10		0 (0)	00:00:01
5	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	10	220	1 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - filter("D"."DEPARTMENT_NAME"='Marketing' OR "D"."DEPARTMENT_NAME"='Sales')
 4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

In this case, rows from the hr.departments table form the outer row source (Step 3) of the
inner nested loop (Step 2). The index emp_department_ix is the inner row source (Step 4) of
the inner nested loop. The results of the inner nested loop form the outer row source (Row 2)

Chapter 9
Join Methods

9-10

of the outer nested loop (Row 1). The hr.employees table is the outer row source (Row 5) of
the outer nested loop.

For each fetch request, the basic process is as follows:

1. The database iterates through the inner nested loop (Step 2) to obtain the rows requested
in the fetch:

a. The database reads the first row of departments to obtain the department IDs for
departments named Marketing or Sales (Step 3). For example:

Marketing,20

This row set is the outer loop. The database caches the data in the PGA.

b. The database scans emp_department_ix, which is an index on the employees table, to
find employees rowids that correspond to this department ID (Step 4), and then joins
the result (Step 2).

The result set has the following form:

Marketing,20,employees_rowid
Marketing,20,employees_rowid
Marketing,20,employees_rowid

c. The database reads the next row of departments, scans emp_department_ix to find
employees rowids that correspond to this department ID, and then iterates through the
loop until the client request is satisfied.

In this example, the database only iterates through the outer loop twice because only
two rows from departments satisfy the predicate filter. Conceptually, the result set has
the following form:

Marketing,20,employees_rowid
Marketing,20,employees_rowid
Marketing,20,employees_rowid
.
.
.
Sales,80,employees_rowid
Sales,80,employees_rowid
Sales,80,employees_rowid
.
.
.

These rows become the outer row source for the outer nested loop (Step 1). This row
set is cached in the PGA.

2. The database organizes the rowids obtained in the previous step so that it can more
efficiently access them in the cache.

3. The database begins iterating through the outer nested loop as follows:

a. The database retrieves the first row from the row set obtained in the previous step, as
in the following example:

Marketing,20,employees_rowid

Chapter 9
Join Methods

9-11

b. Using the rowid, the database retrieves a row from employees to obtain the requested
values (Step 1), as in the following example:

Michael,Hartstein,13000,Marketing

c. The database retrieves the next row from the row set, uses the rowid to probe
employees for the matching row, and iterates through the loop until all rows are
retrieved.

The result set has the following form:

Michael,Hartstein,13000,Marketing
Pat,Fay,6000,Marketing
John,Russell,14000,Sales
Karen,Partners,13500,Sales
Alberto,Errazuriz,12000,Sales
.
.
.

In some cases, a second join row source is not allocated, and the execution plan looks the
same as it did before Oracle Database 11g. The following list describes such cases:

• All of the columns needed from the inner side of the join are present in the index, and there
is no table access required. In this case, Oracle Database allocates only one join row
source.

• The order of the rows returned might be different from the order returned in releases earlier
than Oracle Database 12c. Thus, when Oracle Database tries to preserve a specific
ordering of the rows, for example to eliminate the need for an ORDER BY sort, Oracle
Database might use the original implementation for nested loops joins.

• The OPTIMIZER_FEATURES_ENABLE initialization parameter is set to a release before Oracle
Database 11g. In this case, Oracle Database uses the original implementation for nested
loops joins.

Original Implementation for Nested Loops Joins
In the current release, both the new and original implementation of nested loops are possible.

For an example of the original implementation, consider the following join of the hr.employees
and hr.departments tables:

SELECT e.first_name, e.last_name, e.salary, d.department_name
FROM hr.employees e, hr.departments d
WHERE d.department_name IN ('Marketing', 'Sales')
AND e.department_id = d.department_id;

In releases before Oracle Database 11g, the execution plan for this query might appear as
follows:

| Id | Operation | Name | Rows | Bytes |Cost (%CPU)|Time |

| 0 | SELECT STATEMENT | | 19 | 722 | 3 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 10 | 220 | 1 (0)| 00:00:01 |

Chapter 9
Join Methods

9-12

2	NESTED LOOPS		19	722	3 (0)	00:00:01
* 3	TABLE ACCESS FULL	DEPARTMENTS	2	32	2 (0)	00:00:01
* 4	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	10		0 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - filter("D"."DEPARTMENT_NAME"='Marketing' OR "D"."DEPARTMENT_NAME"='Sales')
 4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

For each fetch request, the basic process is as follows:

1. The database iterates through the loop to obtain the rows requested in the fetch:

a. The database reads the first row of departments to obtain the department IDs for
departments named Marketing or Sales (Step 3). For example:

Marketing,20

This row set is the outer loop. The database caches the row in the PGA.

b. The database scans emp_department_ix, which is an index on the
employees.department_id column, to find employees rowids that correspond to this
department ID (Step 4), and then joins the result (Step 2).

Conceptually, the result set has the following form:

Marketing,20,employees_rowid
Marketing,20,employees_rowid
Marketing,20,employees_rowid

c. The database reads the next row of departments, scans emp_department_ix to find
employees rowids that correspond to this department ID, and iterates through the loop
until the client request is satisfied.

In this example, the database only iterates through the outer loop twice because only
two rows from departments satisfy the predicate filter. Conceptually, the result set has
the following form:

Marketing,20,employees_rowid
Marketing,20,employees_rowid
Marketing,20,employees_rowid
.
.
.
Sales,80,employees_rowid
Sales,80,employees_rowid
Sales,80,employees_rowid
.
.
.

2. Depending on the circumstances, the database may organize the cached rowids obtained
in the previous step so that it can more efficiently access them.

3. For each employees rowid in the result set generated by the nested loop, the database
retrieves a row from employees to obtain the requested values (Step 1).

Chapter 9
Join Methods

9-13

Thus, the basic process is to read a rowid and retrieve the matching employees row, read
the next rowid and retrieve the matching employees row, and so on. Conceptually, the
result set has the following form:

Michael,Hartstein,13000,Marketing
Pat,Fay,6000,Marketing
John,Russell,14000,Sales
Karen,Partners,13500,Sales
Alberto,Errazuriz,12000,Sales
.
.
.

Nested Loops Controls
You can add the USE_NL hint to instruct the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

The related hint USE_NL_WITH_INDEX(table index) hint instructs the optimizer to join the
specified table to another row source with a nested loops join using the specified table as the
inner table. The index is optional. If no index is specified, then the nested loops join uses an
index with at least one join predicate as the index key.

Example 9-3 Nested Loops Hint

Assume that the optimizer chooses a hash join for the following query:

SELECT e.last_name, d.department_name
FROM employees e, departments d
WHERE e.department_id=d.department_id;

The plan looks as follows:

|Id | Operation | Name | Rows| Bytes |Cost(%CPU)| Time |

0	SELECT STATEMENT				5 (100)	
*1	HASH JOIN		106	2862	5 (20)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
3	TABLE ACCESS FULL	EMPLOYEES	107	1177	2 (0)	00:00:01

To force a nested loops join using departments as the inner table, add the USE_NL hint as in the
following query:

SELECT /*+ ORDERED USE_NL(d) */ e.last_name, d.department_name
FROM employees e, departments d
WHERE e.department_id=d.department_id;

The plan looks as follows:

| Id | Operation | Name | Rows |Bytes |Cost (%CPU)|Time |

Chapter 9
Join Methods

9-14

0	SELECT STATEMENT				34 (100)	
1	NESTED LOOPS		106	2862	34 (3)	00:00:01
2	TABLE ACCESS FULL	EMPLOYEES	107	1177	2 (0)	00:00:01
* 3	TABLE ACCESS FULL	DEPARTMENTS	1	16	0 (0)	

Predicate Information (identified by operation id):

 3 - filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

The database obtains the result set as follows:

1. In the nested loop, the database reads employees to obtain the last name and department
ID for an employee (Step 2). For example:

De Haan,90

2. For the row obtained in the previous step, the database scans departments to find the
department name that matches the employees department ID (Step 3), and joins the result
(Step 1). For example:

De Haan,Executive

3. The database retrieves the next row in employees, retrieves the matching row from
departments, and then repeats this process until all rows are retrieved.

The result set has the following form:

De Haan,Executive
Kochnar,Executive
Baer,Public Relations
King,Executive
.
.
.

See Also:

• "Guidelines for Join Order Hints" to learn more about the USE_NL hint

• Oracle Database SQL Language Reference to learn about the USE_NL hint

Hash Joins
The database uses a hash join to join larger data sets.

The optimizer uses the smaller of two data sets to build a hash table on the join key in memory,
using a deterministic hash function to specify the location in the hash table in which to store
each row. The database then scans the larger data set, probing the hash table to find the rows
that meet the join condition.

Chapter 9
Join Methods

9-15

When the Optimizer Considers Hash Joins
In general, the optimizer considers a hash join when a relatively large amount of data must be
joined (or a large percentage of a small table must be joined), and the join is an equijoin.

A hash join is most cost effective when the smaller data set fits in memory. In this case, the
cost is limited to a single read pass over the two data sets.

Because the hash table is in the PGA, Oracle Database can access rows without latching
them. This technique reduces logical I/O by avoiding the necessity of repeatedly latching and
reading blocks in the database buffer cache.

If the data sets do not fit in memory, then the database partitions the row sources, and the join
proceeds partition by partition. This can use a lot of sort area memory, and I/O to the temporary
tablespace. This method can still be the most cost effective, especially when the database
uses parallel query servers.

How Hash Joins Work
A hashing algorithm takes a set of inputs and applies a deterministic hash function to generate
a random hash value.

In a hash join, the input values are the join keys. The output values are indexes (slots) in an
array, which is the hash table.

Hash Tables
To illustrate a hash table, assume that the database hashes hr.departments in a join of
departments and employees. The join key column is department_id.

The first 5 rows of departments are as follows:

SQL> select * from departments where rownum < 6;

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID
------------- ------------------------------ ---------- -----------
 10 Administration 200 1700
 20 Marketing 201 1800
 30 Purchasing 114 1700
 40 Human Resources 203 2400
 50 Shipping 121 1500

The database applies the hash function to each department_id in the table, generating a hash
value for each. For this illustration, the hash table has 5 slots (it could have more or less).
Because n is 5, the possible hash values range from 1 to 5. The hash functions might generate
the following values for the department IDs:

f(10) = 4
f(20) = 1
f(30) = 4
f(40) = 2
f(50) = 5

Chapter 9
Join Methods

9-16

Note that the hash function happens to generate the same hash value of 4 for departments 10
and 30. This is known as a hash collision. In this case, the database puts the records for
departments 10 and 30 in the same slot, using a linked list. Conceptually, the hash table looks
as follows:

1 20,Marketing,201,1800
2 40,Human Resources,203,2400
3
4 10,Administration,200,1700 -> 30,Purchasing,114,1700
5 50,Shipping,121,1500

Hash Join: Basic Steps
The optimizer uses the smaller data source to build a hash table on the join key in memory,
and then scans the larger table to find the joined rows.

The basic steps are as follows:

1. The database performs a full scan of the smaller data set, called the build table, and then
applies a hash function to the join key in each row to build a hash table in the PGA.

In pseudocode, the algorithm might look as follows:

FOR small_table_row IN (SELECT * FROM small_table)
LOOP
 slot_number := HASH(small_table_row.join_key);
 INSERT_HASH_TABLE(slot_number,small_table_row);
END LOOP;

2. The database probes the second data set, called the probe table, using whichever access
mechanism has the lowest cost.

Typically, the database performs a full scan of both the smaller and larger data set. The
algorithm in pseudocode might look as follows:

FOR large_table_row IN (SELECT * FROM large_table)
LOOP
 slot_number := HASH(large_table_row.join_key);
 small_table_row =
LOOKUP_HASH_TABLE(slot_number,large_table_row.join_key);
 IF small_table_row FOUND
 THEN
 output small_table_row + large_table_row;
 END IF;
END LOOP;

For each row retrieved from the larger data set, the database does the following:

a. Applies the same hash function to the join column or columns to calculate the number
of the relevant slot in the hash table.

For example, to probe the hash table for department ID 30, the database applies the
hash function to 30, which generates the hash value 4.

b. Probes the hash table to determine whether rows exists in the slot.

If no rows exist, then the database processes the next row in the larger data set. If
rows exist, then the database proceeds to the next step.

Chapter 9
Join Methods

9-17

c. Checks the join column or columns for a match. If a match occurs, then the database
either reports the rows or passes them to the next step in the plan, and then processes
the next row in the larger data set.

If multiple rows exist in the hash table slot, the database walks through the linked list of
rows, checking each one. For example, if department 30 hashes to slot 4, then the
database checks each row until it finds 30.

Example 9-4 Hash Joins

An application queries the oe.orders and oe.order_items tables, joining on the order_id
column.

SELECT o.customer_id, l.unit_price * l.quantity
FROM orders o, order_items l
WHERE l.order_id = o.order_id;

The execution plan is as follows:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		665	13300	8 (25)
* 1	HASH JOIN		665	13300	8 (25)
2	TABLE ACCESS FULL	ORDERS	105	840	4 (25)
3	TABLE ACCESS FULL	ORDER_ITEMS	665	7980	4 (25)
--

Predicate Information (identified by operation id):

 1 - access("L"."ORDER_ID"="O"."ORDER_ID")

Because the orders table is small relative to the order_items table, which is 6 times larger, the
database hashes orders. In a hash join, the data set for the build table always appears first in
the list of operations (Step 2). In Step 3, the database performs a full scan of the larger
order_items later, probing the hash table for each row.

How Hash Joins Work When the Hash Table Does Not Fit in the PGA
The database must use a different technique when the hash table does not fit entirely in the
PGA. In this case, the database uses a temporary space to hold portions (called partitions) of
the hash table, and sometimes portions of the larger table that probes the hash table.

The basic process is as follows:

1. The database performs a full scan of the smaller data set, and then builds an array of hash
buckets in both the PGA and on disk.

When the PGA hash area fills up, the database finds the largest partition within the hash
table and writes it to temporary space on disk. The database stores any new row that
belongs to this on-disk partition on disk, and all other rows in the PGA. Thus, part of the
hash table is in memory and part of it on disk.

2. The database takes a first pass at reading the other data set.

For each row, the database does the following:

Chapter 9
Join Methods

9-18

a. Applies the same hash function to the join column or columns to calculate the number
of the relevant hash bucket.

b. Probes the hash table to determine whether rows exist in the bucket in memory.

If the hashed value points to a row in memory, then the database completes the join
and returns the row. If the value points to a hash partition on disk, however, then the
database stores this row in the temporary tablespace, using the same partitioning
scheme used for the original data set.

3. The database reads each on-disk temporary partition one by one

4. The database joins each partition row to the row in the corresponding on-disk temporary
partition.

Hash Join Controls
The USE_HASH hint instructs the optimizer to use a hash join when joining two tables together.

See Also:

• "Guidelines for Join Order Hints"

• Oracle Database SQL Language Reference to learn about USE_HASH

Sort Merge Joins
A sort merge join is a variation on a nested loops join.

If the two data sets in the join are not already sorted, then the database sorts them. These are
the SORT JOIN operations. For each row in the first data set, the database probes the second
data set for matching rows and joins them, basing its start position on the match made in the
previous iteration. This is the MERGE JOIN operation.

Figure 9-6 Sort Merge Join

MERGE JOIN

SORT JOIN SORT JOIN

First Row

Source

Second Row

Source

Chapter 9
Join Methods

9-19

When the Optimizer Considers Sort Merge Joins
A hash join requires one hash table and one probe of this table, whereas a sort merge join
requires two sorts.

The optimizer may choose a sort merge join over a hash join for joining large amounts of data
when any of the following conditions is true:

• The join condition between two tables is not an equijoin, that is, uses an inequality
condition such as <, <=, >, or >=.

In contrast to sort merges, hash joins require an equality condition.

• Because of sorts required by other operations, the optimizer finds it cheaper to use a sort
merge.

If an index exists, then the database can avoid sorting the first data set. However, the
database always sorts the second data set, regardless of indexes.

A sort merge has the same advantage over a nested loops join as the hash join: the database
accesses rows in the PGA rather than the SGA, reducing logical I/O by avoiding the necessity
of repeatedly latching and reading blocks in the database buffer cache. In general, hash joins
perform better than sort merge joins because sorting is expensive. However, sort merge joins
offer the following advantages over a hash join:

• After the initial sort, the merge phase is optimized, resulting in faster generation of output
rows.

• A sort merge can be more cost-effective than a hash join when the hash table does not fit
completely in memory.

A hash join with insufficient memory requires both the hash table and the other data set to
be copied to disk. In this case, the database may have to read from disk multiple times. In
a sort merge, if memory cannot hold the two data sets, then the database writes them both
to disk, but reads each data set no more than once.

How Sort Merge Joins Work
As in a nested loops join, a sort merge join reads two data sets, but sorts them when they are
not already sorted.

For each row in the first data set, the database finds a starting row in the second data set, and
then reads the second data set until it finds a nonmatching row. In pseudocode, the high-level
algorithm for sort merge might look as follows:

READ data_set_1 SORT BY JOIN KEY TO temp_ds1
READ data_set_2 SORT BY JOIN KEY TO temp_ds2

READ ds1_row FROM temp_ds1
READ ds2_row FROM temp_ds2

WHILE NOT eof ON temp_ds1,temp_ds2
LOOP
 IF (temp_ds1.key = temp_ds2.key) OUTPUT JOIN ds1_row,ds2_row
 ELSIF (temp_ds1.key <= temp_ds2.key) READ ds1_row FROM temp_ds1
 ELSIF (temp_ds1.key => temp_ds2.key) READ ds2_row FROM temp_ds2
END LOOP

Chapter 9
Join Methods

9-20

For example, the following table shows sorted values in two data sets: temp_ds1 and temp_ds2.

Table 9-3 Sorted Data Sets

temp_ds1 temp_ds2

10 20

20 20

30 40

40 40

50 40

60 40

70 40

. 60

. 70

. 70

As shown in the following table, the database begins by reading 10 in temp_ds1, and then
reads the first value in temp_ds2. Because 20 in temp_ds2 is higher than 10 in temp_ds1, the
database stops reading temp_ds2.

Table 9-4 Start at 10 in temp_ds1

temp_ds1 temp_ds2 Action

10 [start here] 20 [start here] [stop
here]

20 in temp_ds2 is higher than 10 in temp_ds1. Stop. Start
again with next row in temp_ds1.

20 20 N/A

30 40 N/A

40 40 N/A

50 40 N/A

60 40 N/A

70 40 N/A

. 60 N/A

. 70 N/A

. 70 N/A

The database proceeds to the next value in temp_ds1, which is 20. The database proceeds
through temp_ds2 as shown in the following table.

Table 9-5 Start at 20 in temp_ds1

temp_ds1 temp_ds2 Action

10 20 [start here] Match. Proceed to next value in temp_ds2.

20 [start here] 20 Match. Proceed to next value in temp_ds2.

30 40 [stop here] 40 in temp_ds2 is higher than 20 in temp_ds1. Stop. Start
again with next row in temp_ds1.

40 40 N/A

50 40 N/A

60 40 N/A

70 40 N/A

Chapter 9
Join Methods

9-21

Table 9-5 (Cont.) Start at 20 in temp_ds1

temp_ds1 temp_ds2 Action

. 60 N/A

. 70 N/A

. 70 N/A

The database proceeds to the next row in temp_ds1, which is 30. The database starts at the
number of its last match, which was 20, and then proceeds through temp_ds2 looking for a
match, as shown in the following table.

Table 9-6 Start at 30 in temp_ds1

temp_ds1 temp_ds2 Action

10 20 N/A

20 20 [start at last match] 20 in temp_ds2 is lower than 30 in temp_ds1. Proceed to
next value in temp_ds2.

30 [start here] 40 [stop here] 40 in temp_ds2 is higher than 30 in temp_ds1. Stop. Start
again with next row in temp_ds1.

40 40 N/A

50 40 N/A

60 40 N/A

70 40 N/A

. 60 N/A

. 70 N/A

. 70 N/A

The database proceeds to the next row in temp_ds1, which is 40. As shown in the following
table, the database starts at the number of its last match in temp_ds2, which was 20, and then
proceeds through temp_ds2 looking for a match.

Table 9-7 Start at 40 in temp_ds1

temp_ds1 temp_ds2 Action

10 20 N/A

20 20 [start at last match] 20 in temp_ds2 is lower than 40 in temp_ds1. Proceed to
next value in temp_ds2.

30 40 Match. Proceed to next value in temp_ds2.

40 [start here] 40 Match. Proceed to next value in temp_ds2.

50 40 Match. Proceed to next value in temp_ds2.

60 40 Match. Proceed to next value in temp_ds2.

70 40 Match. Proceed to next value in temp_ds2.

. 60 [stop here] 60 in temp_ds2 is higher than 40 in temp_ds1. Stop. Start
again with next row in temp_ds1.

. 70 N/A

. 70 N/A

Chapter 9
Join Methods

9-22

The database continues in this way until it has matched the final 70 in temp_ds2. This scenario
demonstrates that the database, as it reads through temp_ds1, does not need to read every
row in temp_ds2. This is an advantage over a nested loops join.

Example 9-5 Sort Merge Join Using Index

The following query joins the employees and departments tables on the department_id
column, ordering the rows on department_id as follows:

SELECT e.employee_id, e.last_name, e.first_name, e.department_id,
 d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id
ORDER BY department_id;

A query of DBMS_XPLAN.DISPLAY_CURSOR shows that the plan uses a sort merge join:

|Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time|

0	SELECT STATEMENT				5(100)	
1	MERGE JOIN		106	4028	5 (20)	00:00:01
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27	432	2 (0)	00:00:01
3	INDEX FULL SCAN	DEPT_ID_PK	27		1 (0)	00:00:01
*4	SORT JOIN		107	2354	3 (34)	00:00:01
5	TABLE ACCESS FULL	EMPLOYEES	107	2354	2 (0)	00:00:01

Predicate Information (identified by operation id):

 4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

The two data sets are the departments table and the employees table. Because an index
orders the departments table by department_id, the database can read this index and avoid a
sort (Step 3). The database only needs to sort the employees table (Step 4), which is the most
CPU-intensive operation.

Example 9-6 Sort Merge Join Without an Index

You join the employees and departments tables on the department_id column, ordering the
rows on department_id as follows. In this example, you specify NO_INDEX and USE_MERGE to
force the optimizer to choose a sort merge:

SELECT /*+ USE_MERGE(d e) NO_INDEX(d) */ e.employee_id, e.last_name,
e.first_name,
 e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id
ORDER BY department_id;

Chapter 9
Join Methods

9-23

A query of DBMS_XPLAN.DISPLAY_CURSOR shows that the plan uses a sort merge join:

| Id| Operation | Name | Rows| Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT				6 (100)	
1	MERGE JOIN		106	9540	6 (34)	00:00:01
2	SORT JOIN		27	567	3 (34)	00:00:01
3	TABLE ACCESS FULL	DEPARTMENTS	27	567	2 (0)	00:00:01
*4	SORT JOIN		107	7383	3 (34)	00:00:01
5	TABLE ACCESS FULL	EMPLOYEES	107	7383	2 (0)	00:00:01

Predicate Information (identified by operation id):

 4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

Because the departments.department_id index is ignored, the optimizer performs a sort,
which increases the combined cost of Step 2 and Step 3 by 67% (from 3 to 5).

Sort Merge Join Controls
The USE_MERGE hint instructs the optimizer to use a sort merge join.

In some situations it may make sense to override the optimizer with the USE_MERGE hint. For
example, the optimizer can choose a full scan on a table and avoid a sort operation in a query.
However, there is an increased cost because a large table is accessed through an index and
single block reads, as opposed to faster access through a full table scan.

See Also:

Oracle Database SQL Language Reference to learn about the USE_MERGE hint

Join Types
A join type is determined by the type of join condition.

Inner Joins
An inner join (sometimes called a simple join) is a join that returns only rows that satisfy the
join condition. Inner joins are either equijoins or nonequijoins.

Equijoins
An equijoin is an inner join whose join condition contains an equality operator.

Chapter 9
Join Types

9-24

The following example is an equijoin because the join condition contains only an equality
operator:

SELECT e.employee_id, e.last_name, d.department_name
FROM employees e, departments d
WHERE e.department_id=d.department_id;

In the preceding query, the join condition is e.department_id=d.department_id. If a row in the
employees table has a department ID that matches the value in a row in the departments table,
then the database returns the joined result; otherwise, the database does not return a result.

Nonequijoins
A nonequijoin is an inner join whose join condition contains an operator that is not an equality
operator.

The following query lists all employees whose hire date occurred when employee 176 (who is
listed in job_history because he changed jobs in 2007) was working at the company:

SELECT e.employee_id, e.first_name, e.last_name, e.hire_date
FROM employees e, job_history h
WHERE h.employee_id = 176
AND e.hire_date BETWEEN h.start_date AND h.end_date;

In the preceding example, the condition joining employees and job_history does not contain
an equality operator, so it is a nonequijoin. Nonequijoins are relatively rare.

Note that a hash join requires at least a partial equijoin. The following SQL script contains an
equality join condition (e1.empno = e2.empno) and a nonequality condition:

SET AUTOTRACE TRACEONLY EXPLAIN
SELECT *
FROM scott.emp e1 JOIN scott.emp e2
ON (e1.empno = e2.empno
AND e1.hiredate BETWEEN e2.hiredate-1 AND e2.hiredate+1)

The optimizer chooses a hash join for the preceding query, as shown in the following plan:

Execution Plan
--
Plan hash value: 3638257876

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	174	5 (20)	00:00:01
* 1	HASH JOIN		1	174	5 (20)	00:00:01
2	TABLE ACCESS FULL	EMP	14	1218	2 (0)	00:00:01
3	TABLE ACCESS FULL	EMP	14	1218	2 (0)	00:00:01

Predicate Information (identified by operation id):

Chapter 9
Join Types

9-25

 1 - access("E1"."EMPNO"="E2"."EMPNO")
 filter("E1"."HIREDATE">=INTERNAL_FUNCTION("E2"."HIREDATE")-1 AND
 "E1"."HIREDATE"<=INTERNAL_FUNCTION("E2"."HIREDATE")+1)

Band Joins
A band join is a special type of nonequijoin in which key values in one data set must fall within
the specified range (“band”) of the second data set. The same table can serve as both the first
and second data sets.

Starting in Oracle Database 12c Release 2 (12.2), the database evaluates band joins more
efficiently. The optimization avoids the unnecessary scanning of rows that fall outside the
defined bands.

The optimizer uses a cost estimate to choose the join method (hash, nested loops, or sort
merge) and the parallel data distribution method. In most cases, optimized performance is
comparable to an equijoin.

This following examples query employees whose salaries are between $100 less and $100
more than the salary of each employee. Thus, the band has a width of $200. The examples
assume that it is permissible to compare the salary of every employee with itself. The following
query includes partial sample output:

SELECT e1.last_name ||
 ' has salary between 100 less and 100 more than ' ||
 e2.last_name AS "SALARY COMPARISON"
FROM employees e1,
 employees e2
WHERE e1.salary
BETWEEN e2.salary - 100
AND e2.salary + 100;

SALARY COMPARISON

King has salary between 100 less and 100 more than King
Kochhar has salary between 100 less and 100 more than Kochhar
Kochhar has salary between 100 less and 100 more than De Haan
De Haan has salary between 100 less and 100 more than Kochhar
De Haan has salary between 100 less and 100 more than De Haan
Russell has salary between 100 less and 100 more than Russell
Partners has salary between 100 less and 100 more than Partners
...

Example 9-7 Query Without Band Join Optimization

Without the band join optimization, the database uses the following query plan:

--
PLAN_TABLE_OUTPUT
--
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	MERGE JOIN	
2	SORT JOIN	

Chapter 9
Join Types

9-26

3	TABLE ACCESS FULL	EMPLOYEES
* 4	FILTER	
* 5	SORT JOIN	
6	TABLE ACCESS FULL	EMPLOYEES
--

Predicate Information (identified by operation id):

 4 - filter("E1"."SAL"<="E2"."SAL"+100)
 5 - access(INTERNAL_FUNCTION("E1"."SAL")>="E2"."SAL"-100)
 filter(INTERNAL_FUNCTION("E1"."SAL")>="E2"."SAL"-100)

In this plan, Step 2 sorts the e1 row source, and Step 5 sorts the e2 row source. The sorted
row sources are illustrated in the following table.

Table 9-8 Sorted row Sources

e1 Sorted (Step 2 of Plan) e2 Sorted (Step 5 of Plan)

24000 (King) 24000 (King)

17000 (Kochhar) 17000 (Kochhar)

17000 (De Haan) 17000 (De Haan)

14000 (Russell) 14000 (Russell)

13500 (Partners) 13500 (Partners)

The join begins by iterating through the sorted input (e1), which is the left branch of the join,
corresponding to Step 2 of the plan. The original query contains two predicates:

• e1.sal >= e2.sal–100, which is the Step 5 filter

• e1.sal >= e2.sal+100, which is the Step 4 filter

For each iteration of the sorted row source e1, the database iterates through row source e2,
checking every row against Step 5 filter e1.sal >= e2.sal–100. If the row passes the Step 5
filter, then the database sends it to the Step 4 filter, and then proceeds to test the next row in
e2 against the Step 5 filter. However, if a row fails the Step 5 filter, then the scan of e2 stops,
and the database proceeds through the next iteration of e1.

The following table shows the first iteration of e1, which begins with 24000 (King) in data set
e1. The database determines that the first row in e2, which is 24000 (King), passes the Step 5
filter. The database then sends the row to the Step 4 filter, e1.sal <= w2.sal+100, which also
passes. The database sends this row to the MERGE row source. Next, the database checks
17000 (Kochhar) against the Step 5 filter, which also passes. However, the row fails the Step 4
filter, and is discarded. The database proceeds to test 17000 (De Haan) against the Step 5
filter.

Table 9-9 First Iteration of e1: Separate SORT JOIN and FILTER

Scan e2 Step 5 Filter (e1.sal >= e2.sal–100) Step 4 Filter (e1.sal <= e2.sal+100)

24000 (King) Pass because 24000 >= 23900. Send to
Step 4 filter.

Pass because 24000 <= 24100. Return
row for merging.

17000 (Kochhar) Pass because 24000 >= 16900. Send to
Step 4 filter.

Fail because 24000 <=17100 is false.
Discard row. Scan next row in e2.

Chapter 9
Join Types

9-27

Table 9-9 (Cont.) First Iteration of e1: Separate SORT JOIN and FILTER

Scan e2 Step 5 Filter (e1.sal >= e2.sal–100) Step 4 Filter (e1.sal <= e2.sal+100)

17000 (De Haan) Pass because 24000 >= 16900. Send to
Step 4 filter.

Fail because 24000 <=17100 is false.
Discard row. Scan next row in e2.

14000 (Russell) Pass because 24000 >= 13900. Send to
Step 4 filter.

Fail because 24000 <=14100 is false.
Discard row. Scan next row in e2.

13500 (Partners) Pass because 24000 >= 13400. Send to
Step 4 filter.

Fail because 24000 <=13600 is false.
Discard row. Scan next row in e2.

As shown in the preceding table, every e2 row necessarily passes the Step 5 filter because the
e2 salaries are sorted in descending order. Thus, the Step 5 filter always sends the row to the
Step 4 filter. Because the e2 salaries are sorted in descending order, the Step 4 filter
necessarily fails every row starting with 17000 (Kochhar). The inefficiency occurs because the
database tests every subsequent row in e2 against the Step 5 filter, which necessarily passes,
and then against the Step 4 filter, which necessarily fails.

Example 9-8 Query With Band Join Optimization

Starting in Oracle Database 12c Release 2 (12.2), the database optimizes the band join by
using the following plan, which does not have a separate FILTER operation:

--
PLAN_TABLE_OUTPUT
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	MERGE JOIN	
2	SORT JOIN	
3	TABLE ACCESS FULL	EMPLOYEES
* 4	SORT JOIN	
5	TABLE ACCESS FULL	EMPLOYEES
--

Predicate Information (identified by operation id):

 4 - access(INTERNAL_FUNCTION("E1"."SALARY")>="E2"."SALARY"-100)
 filter(("E1"."SALARY"<="E2"."SALARY"+100 AND
 INTERNAL_FUNCTION("E1"."SALARY")>="E2"."SALARY"-100))

The difference is that Step 4 uses Boolean AND logic for the two predicates to create a single
filter. Instead of checking a row against one filter, and then sending it to a different row source
for checking against a second filter, the database performs one check against one filter. If the
check fails, then processing stops.

In this example, the query begins the first iteration of e1, which begins with 24000 (King). The
following figure represents the range. e2 values below 23900 and above 24100 fall outside the
range.

Chapter 9
Join Types

9-28

Figure 9-7 Band Join

The following table shows that the database tests the first row of e2, which is 24000 (King),
against the Step 4 filter. The row passes the test, so the database sends the row to be merged.
The next row in e2 is 17000 (Kochhar). This row falls outside of the range (band) and thus
does not satisfy the filter predicate, so the database stops testing e2 rows in this iteration. The
database stops testing because the descending sort of e2 ensures that all subsequent rows in
e2 fail the filter test. Thus, the database can proceed to the second iteration of e1.

Table 9-10 First Iteration of e1: Single SORT JOIN

Scan e2 Filter 4 (e1.sal >= e2.sal – 100) AND (e1.sal <= e2.sal + 100)

24000 (King) Passes test because it is true that (24000 >= 23900) AND (24000 <=
24100).

Send row to MERGE. Test next row.

17000 (Kochhar) Fails test because it is false that (24000 >= 16900) AND (24000 <=
17100).

Stop scanning e2. Begin next iteration of e1.

17000 (De Haan) n/a

14000 (Russell) n/a

13500 (Partners) n/a

In this way, the band join optimization eliminates unnecessary processing. Instead of scanning
every row in e2 as in the unoptimized case, the database scans only the minimum two rows.

Outer Joins
An outer join returns all rows that satisfy the join condition and also rows from one table for
which no rows from the other table satisfy the condition. Thus, the result set of an outer join is
the superset of an inner join.

In ANSI syntax, the OUTER JOIN clause specifies an outer join. In the FROM clause, the left table
appears to the left of the OUTER JOIN keywords, and the right table appears to the right of these
keywords. The left table is also called the outer table, and the right table is also called the inner
table. For example, in the following statement the employees table is the left or outer table:

SELECT employee_id, last_name, first_name
FROM employees LEFT OUTER JOIN departments
ON (employees.department_id=departments.departments_id);

Outer joins require the outer-joined table to be the driving table. In the preceding example,
employees is the driving table, and departments is the driven-to table.

Chapter 9
Join Types

9-29

Nested Loops Outer Joins
The database uses this operation to loop through an outer join between two tables. The outer
join returns the outer (preserved) table rows, even when no corresponding rows are in the
inner (optional) table.

In a standard nested loop, the optimizer chooses the order of tables—which is the driving table
and which the driven table—based on the cost. However, in a nested loop outer join, the join
condition determines the order of tables. The database uses the outer, row-preserved table to
drive to the inner table.

The optimizer uses nested loops joins to process an outer join in the following circumstances:

• It is possible to drive from the outer table to the inner table.

• Data volume is low enough to make the nested loop method efficient.

For an example of a nested loop outer join, you can add the USE_NL hint to Example 9-9 to
instruct the optimizer to use a nested loop. For example:

SELECT /*+ USE_NL(c o) */ cust_last_name,
 SUM(NVL2(o.customer_id,0,1)) "Count"
FROM customers c, orders o
WHERE c.credit_limit > 1000
AND c.customer_id = o.customer_id(+)
GROUP BY cust_last_name;

Hash Join Outer Joins
The optimizer uses hash joins for processing an outer join when either the data volume is large
enough to make a hash join efficient, or it is impossible to drive from the outer table to the inner
table.

The cost determines the order of tables. The outer table, including preserved rows, may be
used to build the hash table, or it may be used to probe the hash table.

Example 9-9 Hash Join Outer Joins

This example shows a typical hash join outer join query, and its execution plan. In this
example, all the customers with credit limits greater than 1000 are queried. An outer join is
needed so that the query captures customers who have no orders.

• The outer table is customers.

• The inner table is orders.

• The join preserves the customers rows, including those rows without a corresponding row
in orders.

You could use a NOT EXISTS subquery to return the rows. However, because you are querying
all the rows in the table, the hash join performs better (unless the NOT EXISTS subquery is not
nested).

SELECT cust_last_name, SUM(NVL2(o.customer_id,0,1)) "Count"
FROM customers c, orders o
WHERE c.credit_limit > 1000
AND c.customer_id = o.customer_id(+)
GROUP BY cust_last_name;

Chapter 9
Join Types

9-30

| Id | Operation | Name |Rows |Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT				7 (100)	
1	HASH GROUP BY		168	3192	7 (29)	00:00:01
* 2	HASH JOIN OUTER		318	6042	6 (17)	00:00:01
* 3	TABLE ACCESS FULL	CUSTOMERS	260	3900	3 (0)	00:00:01
* 4	TABLE ACCESS FULL	ORDERS	105	420	2 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("C"."CUSTOMER_ID"="O"."CUSTOMER_ID")

PLAN_TABLE_OUTPUT
--
 3 - filter("C"."CREDIT_LIMIT">1000)
 4 - filter("O"."CUSTOMER_ID">0)

The query looks for customers which satisfy various conditions. An outer join returns NULL for
the inner table columns along with the outer (preserved) table rows when it does not find any
corresponding rows in the inner table. This operation finds all the customers rows that do not
have any orders rows.

In this case, the outer join condition is the following:

customers.customer_id = orders.customer_id(+)

The components of this condition represent the following:

Example 9-10 Outer Join to a Multitable View

In this example, the outer join is to a multitable view. The optimizer cannot drive into the view
like in a normal join or push the predicates, so it builds the entire row set of the view.

SELECT c.cust_last_name, sum(revenue)
FROM customers c, v_orders o
WHERE c.credit_limit > 2000
AND o.customer_id(+) = c.customer_id
GROUP BY c.cust_last_name;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		144	4608	16 (32)
1	HASH GROUP BY		144	4608	16 (32)
* 2	HASH JOIN OUTER		663	21216	15 (27)
* 3	TABLE ACCESS FULL	CUSTOMERS	195	2925	6 (17)
4	VIEW	V_ORDERS	665	11305	
5	HASH GROUP BY		665	15960	9 (34)
* 6	HASH JOIN		665	15960	8 (25)
* 7	TABLE ACCESS FULL	ORDERS	105	840	4 (25)
8	TABLE ACCESS FULL	ORDER_ITEMS	665	10640	4 (25)

Chapter 9
Join Types

9-31

Predicate Information (identified by operation id):

 2 - access("O"."CUSTOMER_ID"(+)="C"."CUSTOMER_ID")
 3 - filter("C"."CREDIT_LIMIT">2000)
 6 - access("O"."ORDER_ID"="L"."ORDER_ID")
 7 - filter("O"."CUSTOMER_ID">0)

The view definition is as follows:

CREATE OR REPLACE view v_orders AS
SELECT l.product_id, SUM(l.quantity*unit_price) revenue,
 o.order_id, o.customer_id
FROM orders o, order_items l
WHERE o.order_id = l.order_id
GROUP BY l.product_id, o.order_id, o.customer_id;

Sort Merge Outer Joins
When an outer join cannot drive from the outer (preserved) table to the inner (optional) table, it
cannot use a hash join or nested loops joins.

In this case, it uses the sort merge outer join.

The optimizer uses sort merge for an outer join in the following cases:

• A nested loops join is inefficient. A nested loops join can be inefficient because of data
volumes.

• The optimizer finds it is cheaper to use a sort merge over a hash join because of sorts
required by other operations.

Full Outer Joins
A full outer join is a combination of the left and right outer joins.

In addition to the inner join, rows from both tables that have not been returned in the result of
the inner join are preserved and extended with nulls. In other words, full outer joins join tables
together, yet show rows with no corresponding rows in the joined tables.

Example 9-11 Full Outer Join

The following query retrieves all departments and all employees in each department, but also
includes:

• Any employees without departments

• Any departments without employees

SELECT d.department_id, e.employee_id
FROM employees e FULL OUTER JOIN departments d
ON e.department_id = d.department_id
ORDER BY d.department_id;

Chapter 9
Join Types

9-32

The statement produces the following output:

DEPARTMENT_ID EMPLOYEE_ID
------------- -----------
 10 200
 20 201
 20 202
 30 114
 30 115
 30 116
...
 270
 280
 178
 207

125 rows selected.

Example 9-12 Execution Plan for a Full Outer Join

Starting with Oracle Database 11g, Oracle Database automatically uses a native execution
method based on a hash join for executing full outer joins whenever possible. When the
database uses the new method to execute a full outer join, the execution plan for the query
contains HASH JOIN FULL OUTER. The query in Example 9-11 uses the following execution plan:

| Id| Operation | Name |Rows|Bytes |Cost (%CPU)|Time |

0	SELECT STATEMENT		122	4758	6 (34)	00:0 0:01
1	SORT ORDER BY		122	4758	6 (34)	00:0 0:01
2	VIEW	VW_FOJ_0	122	4758	5 (20)	00:0 0:01
*3	HASH JOIN FULL OUTER		122	1342	5 (20)	00:0 0:01
4	INDEX FAST FULL SCAN	DEPT_ID_PK	27	108	2 (0)	00:0 0:01
5	TABLE ACCESS FULL	EMPLOYEES	107	749	2 (0)	00:0 0:01

Predicate Information (identified by operation id):

 3 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

HASH JOIN FULL OUTER is included in the preceding plan (Step 3), indicating that the query
uses the hash full outer join execution method. Typically, when the full outer join condition
between two tables is an equijoin, the hash full outer join execution method is possible, and
Oracle Database uses it automatically.

To instruct the optimizer to consider using the hash full outer join execution method, apply the
NATIVE_FULL_OUTER_JOIN hint. To instruct the optimizer not to consider using the hash full
outer join execution method, apply the NO_NATIVE_FULL_OUTER_JOIN hint. The
NO_NATIVE_FULL_OUTER_JOIN hint instructs the optimizer to exclude the native execution
method when joining each specified table. Instead, the full outer join is executed as a union of
left outer join and an antijoin.

Multiple Tables on the Left of an Outer Join
In Oracle Database 12c, multiple tables may exist on the left side of an outer-joined table.

Chapter 9
Join Types

9-33

This enhancement enables Oracle Database to merge a view that contains multiple tables and
appears on the left of the outer join. In releases before Oracle Database 12c, a query such as
the following was invalid, and would trigger an ORA-01417 error message:

SELECT t1.d, t3.c
FROM t1, t2, t3
WHERE t1.z = t2.z
AND t1.x = t3.x (+)
AND t2.y = t3.y (+);

Starting in Oracle Database 12c, the preceding query is valid.

Semijoins
A semijoin is a join between two data sets that returns a row from the first set when a
matching row exists in the subquery data set.

The database stops processing the second data set at the first match. Thus, optimization does
not duplicate rows from the first data set when multiple rows in the second data set satisfy the
subquery criteria.

Note:

Semijoins and antijoins are considered join types even though the SQL constructs
that cause them are subqueries. They are internal algorithms that the optimizer uses
to flatten subquery constructs so that they can be resolved in a join-like way.

When the Optimizer Considers Semijoins
A semijoin avoids returning a huge number of rows when a query only needs to determine
whether a match exists.

With large data sets, this optimization can result in significant time savings over a nested loops
join that must loop through every record returned by the inner query for every row in the outer
query. The optimizer can apply the semijoin optimization to nested loops joins, hash joins, and
sort merge joins.

The optimizer may choose a semijoin in the following circumstances:

• The statement uses either an IN or EXISTS clause.

• The statement contains a subquery in the IN or EXISTS clause.

• The IN or EXISTS clause is not contained inside an OR branch.

How Semijoins Work
The semijoin optimization is implemented differently depending on what type of join is used.

The following pseudocode shows a semijoin for a nested loops join:

FOR ds1_row IN ds1 LOOP
 match := false;
 FOR ds2_row IN ds2_subquery LOOP

Chapter 9
Join Types

9-34

 IF (ds1_row matches ds2_row) THEN
 match := true;
 EXIT -- stop processing second data set when a match is found
 END IF
 END LOOP
 IF (match = true) THEN
 RETURN ds1_row
 END IF
END LOOP

In the preceding pseudocode, ds1 is the first data set, and ds2_subquery is the subquery data
set. The code obtains the first row from the first data set, and then loops through the subquery
data set looking for a match. The code exits the inner loop as soon as it finds a match, and
then begins processing the next row in the first data set.

Example 9-13 Semijoin Using WHERE EXISTS

The following query uses a WHERE EXISTS clause to list only the departments that contain
employees:

SELECT department_id, department_name
FROM departments
WHERE EXISTS (SELECT 1
 FROM employees
 WHERE employees.department_id = departments.department_id)

The execution plan reveals a NESTED LOOPS SEMI operation in Step 1:

| Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT				2 (100)	
1	NESTED LOOPS SEMI		11	209	2 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	44	132	0 (0)	

For each row in departments, which forms the outer loop, the database obtains the department
ID, and then probes the employees.department_id index for matching entries. Conceptually,
the index looks as follows:

10,rowid
10,rowid
10,rowid
10,rowid
30,rowid
30,rowid
30,rowid
...

If the first entry in the departments table is department 30, then the database performs a range
scan of the index until it finds the first 30 entry, at which point it stops reading the index and
returns the matching row from departments. If the next row in the outer loop is department 20,
then the database scans the index for a 20 entry, and not finding any matches, performs the

Chapter 9
Join Types

9-35

next iteration of the outer loop. The database proceeds in this way until all matching rows are
returned.

Example 9-14 Semijoin Using IN

The following query uses a IN clause to list only the departments that contain employees:

SELECT department_id, department_name
FROM departments
WHERE department_id IN
 (SELECT department_id
 FROM employees);

The execution plan reveals a NESTED LOOPS SEMI operation in Step 1:

| Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT				2 (100)	
1	NESTED LOOPS SEMI		11	209	2 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	44	132	0 (0)	

The plan is identical to the plan in Example 9-13.

Antijoins
An antijoin is a join between two data sets that returns a row from the first set when a
matching row does not exist in the subquery data set.

Like a semijoin, an antijoin stops processing the subquery data set when the first match is
found. Unlike a semijoin, the antijoin only returns a row when no match is found.

When the Optimizer Considers Antijoins
An antijoin avoids unnecessary processing when a query only needs to return a row when a
match does not exist.

With large data sets, this optimization can result in significant time savings over a nested loops
join. The latter join must loop through every record returned by the inner query for every row in
the outer query. The optimizer can apply the antijoin optimization to nested loops joins, hash
joins, and sort merge joins.

The optimizer may choose an antijoin in the following circumstances:

• The statement uses either the NOT IN or NOT EXISTS clause.

• The statement has a subquery in the NOT IN or NOT EXISTS clause.

• The NOT IN or NOT EXISTS clause is not contained inside an OR branch.

• The statement performs an outer join and applies an IS NULL condition to a join column, as
in the following example:

SET AUTOTRACE TRACEONLY EXPLAIN
SELECT emp.*

Chapter 9
Join Types

9-36

FROM emp, dept
WHERE emp.deptno = dept.deptno(+)
AND dept.deptno IS NULL

Execution Plan
--
Plan hash value: 1543991079

--
| Id | Operation | Name | Rows | Bytes |Cost (%CPU)|Time |
--
0	SELECT STATEMENT		14	1400	5 (20)	00:00:01
* 1	HASH JOIN ANTI		14	1400	5 (20)	00:00:01
2	TABLE ACCESS FULL	EMP	14	1218	2 (0)	00:00:01
3	TABLE ACCESS FULL	DEPT	4	52	2 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")

Note

 - dynamic statistics used: dynamic sampling (level=2)

How Antijoins Work
The antijoin optimization is implemented differently depending on what type of join is used.

The following pseudocode shows an antijoin for a nested loops join:

FOR ds1_row IN ds1 LOOP
 match := true;
 FOR ds2_row IN ds2 LOOP
 IF (ds1_row matches ds2_row) THEN
 match := false;
 EXIT -- stop processing second data set when a match is found
 END IF
 END LOOP
 IF (match = true) THEN
 RETURN ds1_row
 END IF
END LOOP

In the preceding pseudocode, ds1 is the first data set, and ds2 is the second data set. The
code obtains the first row from the first data set, and then loops through the second data set
looking for a match. The code exits the inner loop as soon as it finds a match, and begins
processing the next row in the first data set.

Chapter 9
Join Types

9-37

Example 9-15 Semijoin Using WHERE EXISTS

The following query uses a WHERE EXISTS clause to list only the departments that contain
employees:

SELECT department_id, department_name
FROM departments
WHERE EXISTS (SELECT 1
 FROM employees
 WHERE employees.department_id = departments.department_id)

The execution plan reveals a NESTED LOOPS SEMI operation in Step 1:

| Id| Operation | Name |Rows|Bytes |Cost(%CPU)|Time |

0	SELECT STATEMENT				2 (100)	
1	NESTED LOOPS SEMI		11	209	2 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	44	132	0 (0)	

For each row in departments, which forms the outer loop, the database obtains the department
ID, and then probes the employees.department_id index for matching entries. Conceptually,
the index looks as follows:

10,rowid
10,rowid
10,rowid
10,rowid
30,rowid
30,rowid
30,rowid
...

If the first record in the departments table is department 30, then the database performs a
range scan of the index until it finds the first 30 entry, at which point it stops reading the index
and returns the matching row from departments. If the next row in the outer loop is department
20, then the database scans the index for a 20 entry, and not finding any matches, performs
the next iteration of the outer loop. The database proceeds in this way until all matching rows
are returned.

How Antijoins Handle Nulls
For semijoins, IN and EXISTS are functionally equivalent. However, NOT IN and NOT EXISTS are
not functionally equivalent because of nulls.

If a null value is returned to a NOT IN operator, then the statement returns no records. To see
why, consider the following WHERE clause:

WHERE department_id NOT IN (null, 10, 20)

Chapter 9
Join Types

9-38

The database tests the preceding expression as follows:

WHERE (department_id != null)
AND (department_id != 10)
AND (department_id != 20)

For the entire expression to be true, each individual condition must be true. However, a null
value cannot be compared to another value, so the department_id !=null condition cannot
be true, and thus the whole expression is always false. The following techniques enable a
statement to return records even when nulls are returned to the NOT IN operator:

• Apply an NVL function to the columns returned by the subquery.

• Add an IS NOT NULL predicate to the subquery.

• Implement NOT NULL constraints.

In contrast to NOT IN, the NOT EXISTS clause only considers predicates that return the
existence of a match, and ignores any row that does not match or could not be determined
because of nulls. If at least one row in the subquery matches the row from the outer query,
then NOT EXISTS returns false. If no tuples match, then NOT EXISTS returns true. The
presence of nulls in the subquery does not affect the search for matching records.

In releases earlier than Oracle Database 11g, the optimizer could not use an antijoin
optimization when nulls could be returned by a subquery. However, starting in Oracle Database
11g, the ANTI NA (and ANTI SNA) optimizations described in the following sections enable the
optimizer to use an antijoin even when nulls are possible.

Example 9-16 Antijoin Using NOT IN

Suppose that a user issues the following query with a NOT IN clause to list the departments
that contain no employees:

SELECT department_id, department_name
FROM departments
WHERE department_id NOT IN
 (SELECT department_id
 FROM employees);

The preceding query returns no rows even though several departments contain no employees.
This result, which was not intended by the user, occurs because the
employees.department_id column is nullable.

The execution plan reveals a NESTED LOOPS ANTI SNA operation in Step 2:

| Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time|

0	SELECT STATEMENT				4(100)	
*1	FILTER					
2	NESTED LOOPS ANTI SNA		17	323	4 (50)	00:00:01
3	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*4	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	
*5	TABLE ACCESS FULL	EMPLOYEES	1	3	2 (0)	00:00:01

PLAN_TABLE_OUTPUT

Chapter 9
Join Types

9-39

Predicate Information (identified by operation id):

 1 - filter(IS NULL)
 4 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 5 - filter("DEPARTMENT_ID" IS NULL)

The ANTI SNA stands for "single null-aware antijoin." ANTI NA stands for "null-aware antijoin."
The null-aware operation enables the optimizer to use the antijoin optimization even on a
nullable column. In releases earlier than Oracle Database 11g, the database could not perform
antijoins on NOT IN queries when nulls were possible.

Suppose that the user rewrites the query by applying an IS NOT NULL condition to the
subquery:

SELECT department_id, department_name
FROM departments
WHERE department_id NOT IN
 (SELECT department_id
 FROM employees
 WHERE department_id IS NOT NULL);

The preceding query returns 16 rows, which is the expected result. Step 1 in the plan shows a
standard NESTED LOOPS ANTI join instead of an ANTI NA or ANTI SNA join because the
subquery cannot returns nulls:

|Id| Operation | Name |Rows|Bytes |Cost (%CPU)|Time |

0	SELECT STATEMENT				2 (100)	
1	NESTED LOOPS ANTI		17	323	2 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	

PLAN_TABLE_OUTPUT

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID" IS NOT NULL)

Example 9-17 Antijoin Using NOT EXISTS

Suppose that a user issues the following query with a NOT EXISTS clause to list the
departments that contain no employees:

SELECT department_id, department_name
FROM departments d
WHERE NOT EXISTS
 (SELECT null

Chapter 9
Join Types

9-40

 FROM employees e
 WHERE e.department_id = d.department_id)

The preceding query avoids the null problem for NOT IN clauses. Thus, even though
employees.department_id column is nullable, the statement returns the desired result.

Step 1 of the execution plan reveals a NESTED LOOPS ANTI operation, not the ANTI NA variant,
which was necessary for NOT IN when nulls were possible:

| Id| Operation | Name |Rows|Bytes| Cost (%CPU)|Time|

0	SELECT STATEMENT				2 (100)	
1	NESTED LOOPS ANTI		17	323	2 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	

PLAN_TABLE_OUTPUT

Predicate Information (identified by operation id):

 3 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

Cartesian Joins
The database uses a Cartesian join when one or more of the tables does not have any join
conditions to any other tables in the statement.

The optimizer joins every row from one data source with every row from the other data source,
creating the Cartesian product of the two sets. Therefore, the total number of rows resulting
from the join is calculated using the following formula, where rs1 is the number of rows in first
row set and rs2 is the number of rows in the second row set:

rs1 X rs2 = total rows in result set

When the Optimizer Considers Cartesian Joins
The optimizer uses a Cartesian join for two row sources only in specific circumstances.

Typically, the situation is one of the following:

• No join condition exists.

In some cases, the optimizer could pick up a common filter condition between the two
tables as a possible join condition.

Note:

If a Cartesian join appears in a query plan, it could be caused by an inadvertently
omitted join condition. In general, if a query joins n tables, then n-1 join
conditions are required to avoid a Cartesian join.

Chapter 9
Join Types

9-41

• A Cartesian join is an efficient method.

For example, the optimizer may decide to generate a Cartesian product of two very small
tables that are both joined to the same large table.

• The ORDERED hint specifies a table before its join table is specified.

How Cartesian Joins Work
A Cartesian join uses nested FOR loops.

At a high level, the algorithm for a Cartesian join looks as follows, where ds1 is typically the
smaller data set, and ds2 is the larger data set:

FOR ds1_row IN ds1 LOOP
 FOR ds2_row IN ds2 LOOP
 output ds1_row and ds2_row
 END LOOP
END LOOP

Example 9-18 Cartesian Join

In this example, a user intends to perform an inner join of the employees and departments
tables, but accidentally leaves off the join condition:

SELECT e.last_name, d.department_name
FROM employees e, departments d

The execution plan is as follows:

| Id| Operation | Name | Rows | Bytes |Cost (%CPU)|Time|

0	SELECT STATEMENT				11 (100)	
1	MERGE JOIN CARTESIAN		2889	57780	11 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	324	2 (0)	00:00:01
3	BUFFER SORT		107	856	9 (0)	00:00:01
4	INDEX FAST FULL SCAN	EMP_NAME_IX	107	856	0 (0)	

In Step 1 of the preceding plan, the CARTESIAN keyword indicates the presence of a Cartesian
join. The number of rows (2889) is the product of 27 and 107.

In Step 3, the BUFFER SORT operation indicates that the database is copying the data blocks
obtained by the scan of emp_name_ix from the SGA to the PGA. This strategy avoids multiple
scans of the same blocks in the database buffer cache, which would generate many logical
reads and permit resource contention.

Cartesian Join Controls
The ORDERED hint instructs the optimizer to join tables in the order in which they appear in the
FROM clause. By forcing a join between two row sources that have no direct connection, the
optimizer must perform a Cartesian join.

Chapter 9
Join Types

9-42

Example 9-19 ORDERED Hint

In the following example, the ORDERED hint instructs the optimizer to join employees and
locations, but no join condition connects these two row sources:

SELECT /*+ORDERED*/ e.last_name, d.department_name, l.country_id,
l.state_province
FROM employees e, locations l, departments d
WHERE e.department_id = d.department_id
AND d.location_id = l.location_id

The following execution plan shows a Cartesian product (Step 3) between locations (Step 6)
and employees (Step 4), which is then joined to the departments table (Step 2):

| Id| Operation | Name |Rows | Bytes |Cost (%CPU)|Time |

0	SELECT STATEMENT				37 (100)	
*1	HASH JOIN		106	4664	37 (6)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	513	2 (0)	00:00:01
3	MERGE JOIN CARTESIAN		2461	61525	34 (3)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	1177	2 (0)	00:00:01
5	BUFFER SORT		23	322	32 (4)	00:00:01
6	TABLE ACCESS FULL	LOCATIONS	23	322	0 (0)	

See Also:

Oracle Database SQL Language Reference to learn about the ORDERED hint

Join Optimizations
Join optimizations enable joins to be more efficient.

Bloom Filters
A Bloom filter, named after its creator Burton Bloom, is a low-memory data structure that tests
membership in a set.

A Bloom filter correctly indicates when an element is not in a set, but can incorrectly indicate
when an element is in a set. Thus, false negatives are impossible but false positives are
possible.

Purpose of Bloom Filters
A Bloom filter tests one set of values to determine whether they are members another set.

For example, one set is (10,20,30,40) and the second set is (10,30,60,70). A Bloom filter can
determine that 60 and 70 are guaranteed to be excluded from the first set, and that 10 and 30
are probably members. Bloom filters are especially useful when the amount of memory needed

Chapter 9
Join Optimizations

9-43

to store the filter is small relative to the amount of data in the data set, and when most data is
expected to fail the membership test.

Oracle Database uses Bloom filters to various specific goals, including the following:

• Reduce the amount of data transferred to slave processes in a parallel query, especially
when the database discards most rows because they do not fulfill a join condition

• Eliminate unneeded partitions when building a partition access list in a join, known as
partition pruning

• Test whether data exists in the server result cache, thereby avoiding a disk read

• Filter members in Exadata cells, especially when joining a large fact table and small
dimension tables in a star schema

Bloom filters can occur in both parallel and serial processing.

How Bloom Filters Work
A Bloom filter uses an array of bits to indicate inclusion in a set.

For example, 8 elements (an arbitrary number used for this example) in an array are initially
set to 0:

e1 e2 e3 e4 e5 e6 e7 e8
 0 0 0 0 0 0 0 0

This array represents a set. To represent an input value i in this array, three separate hash
functions (three is arbitrary) are applied to i, each generating a hash value between 1 and 8:

f1(i) = h1
f2(i) = h2
f3(i) = h3

For example, to store the value 17 in this array, the hash functions set i to 17, and then return
the following hash values:

f1(17) = 5
f2(17) = 3
f3(17) = 5

In the preceding example, two of the hash functions happened to return the same value of 5,
known as a hash collision. Because the distinct hash values are 5 and 3, the 5th and 3rd
elements in the array are set to 1:

e1 e2 e3 e4 e5 e6 e7 e8
 0 0 1 0 1 0 0 0

Testing the membership of 17 in the set reverses the process. To test whether the set excludes
the value 17, element 3 or element 5 must contain a 0. If a 0 is present in either element, then
the set cannot contain 17. No false negatives are possible.

To test whether the set includes 17, both element 3 and element 5 must contain 1 values.
However, if the test indicates a 1 for both elements, then it is still possible for the set not to

Chapter 9
Join Optimizations

9-44

include 17. False positives are possible. For example, the following array might represent the
value 22, which also has a 1 for both element 3 and element 5:

e1 e2 e3 e4 e5 e6 e7 e8
 1 0 1 0 1 0 0 0

Bloom Filter Controls
The optimizer automatically determines whether to use Bloom filters.

To override optimizer decisions, use the hints PX_JOIN_FILTER and NO_PX_JOIN_FILTER.

See Also:

Oracle Database SQL Language Reference to learn more about the bloom filter hints

Bloom Filter Metadata
V$ views contain metadata about Bloom filters.

You can query the following views:

• V$SQL_JOIN_FILTER
This view shows the number of rows filtered out (FILTERED column) and tested (PROBED
column) by an active Bloom filter.

• V$PQ_TQSTAT
This view displays the number of rows processed through each parallel execution server at
each stage of the execution tree. You can use it to monitor how much Bloom filters have
reduced data transfer among parallel processes.

In an execution plan, a Bloom filter is indicated by keywords JOIN FILTER in the Operation
column, and the prefix :BF in the Name column, as in the 9th step of the following plan snippet:

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

...
| 9 | JOIN FILTER CREATE | :BF0000 | Q1,03 | PCWP | |

In the Predicate Information section of the plan, filters that contain functions beginning with
the string SYS_OP_BLOOM_FILTER indicate use of a Bloom filter.

Bloom Filters: Scenario
In this example, a parallel query joins the sales fact table to the products and times
dimension tables, and filters on fiscal week 18.

SELECT /*+ parallel(s) */ p.prod_name, s.quantity_sold
FROM sh.sales s, sh.products p, sh.times t
WHERE s.prod_id = p.prod_id

Chapter 9
Join Optimizations

9-45

AND s.time_id = t.time_id
AND t.fiscal_week_number = 18;

Querying DBMS_XPLAN.DISPLAY_CURSOR provides the following output:

SELECT * FROM
 TABLE(DBMS_XPLAN.DISPLAY_CURSOR(format => 'BASIC,+PARALLEL,+PREDICATE'));

EXPLAINED SQL STATEMENT:

SELECT /*+ parallel(s) */ p.prod_name, s.quantity_sold FROM sh.sales s,
sh.products p, sh.times t WHERE s.prod_id = p.prod_id AND s.time_id =
t.time_id AND t.fiscal_week_number = 18

Plan hash value: 1183628457

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

0	SELECT STATEMENT				
1	PX COORDINATOR				
2	PX SEND QC (RANDOM)	:TQ10003	Q1,03	P->S	QC (RAND)
* 3	HASH JOIN BUFFERED		Q1,03	PCWP	
4	PX RECEIVE		Q1,03	PCWP	
5	PX SEND BROADCAST	:TQ10001	Q1,01	S->P	BROADCAST
6	PX SELECTOR		Q1,01	SCWC	
7	TABLE ACCESS FULL	PRODUCTS	Q1,01	SCWP	
* 8	HASH JOIN		Q1,03	PCWP	
9	JOIN FILTER CREATE	:BF0000	Q1,03	PCWP	
10	BUFFER SORT		Q1,03	PCWC	
11	PX RECEIVE		Q1,03	PCWP	
12	PX SEND HYBRID HASH	:TQ10000		S->P	HYBRID HASH
*13	TABLE ACCESS FULL	TIMES			
14	PX RECEIVE		Q1,03	PCWP	
15	PX SEND HYBRID HASH	:TQ10002	Q1,02	P->P	HYBRID HASH
16	JOIN FILTER USE	:BF0000	Q1,02	PCWP	
17	PX BLOCK ITERATOR		Q1,02	PCWC	
*18	TABLE ACCESS FULL	SALES	Q1,02	PCWP	

Predicate Information (identified by operation id):

 3 - access("S"."PROD_ID"="P"."PROD_ID")
 8 - access("S"."TIME_ID"="T"."TIME_ID")
 13 - filter("T"."FISCAL_WEEK_NUMBER"=18)
 18 - access(:Z>=:Z AND :Z<=:Z)
 filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."TIME_ID"))

A single server process scans the times table (Step 13), and then uses a hybrid hash
distribution method to send the rows to the parallel execution servers (Step 12). The processes
in set Q1,03 create a bloom filter (Step 9). The processes in set Q1,02 scan sales in parallel
(Step 18), and then use the Bloom filter to discard rows from sales (Step 16) before sending
them on to set Q1,03 using hybrid hash distribution (Step 15). The processes in set Q1,03 hash
join the times rows to the filtered sales rows (Step 8). The processes in set Q1,01 scan

Chapter 9
Join Optimizations

9-46

products (Step 7), and then send the rows to Q1,03 (Step 5). Finally, the processes in Q1,03
join the products rows to the rows generated by the previous hash join (Step 3).

The following figure illustrates the basic process.

Figure 9-8 Bloom Filter

Bloom filter

:BF0000

Q1, 03

Q1, 02Q1, 01

Create

Partition-Wise Joins
A partition-wise join is an optimization that divides a large join of two tables, one of which
must be partitioned on the join key, into several smaller joins.

Partition-wise joins are either of the following:

• Full partition-wise join

Both tables must be equipartitioned on their join keys, or use reference partitioning (that is,
be related by referential constraints). The database divides a large join into smaller joins
between two partitions from the two joined tables.

• Partial partition-wise joins

Only one table is partitioned on the join key. The other table may or may not be partitioned.

See Also:

Oracle Database VLDB and Partitioning Guide explains partition-wise joins in detail

Purpose of Partition-Wise Joins
Partition-wise joins reduce query response time by minimizing the amount of data exchanged
among parallel execution servers when joins execute in parallel.

This technique significantly reduces response time and improves the use of CPU and memory.
In Oracle Real Application Clusters (Oracle RAC) environments, partition-wise joins also avoid
or at least limit the data traffic over the interconnect, which is the key to achieving good
scalability for massive join operations.

How Partition-Wise Joins Work
When the database serially joins two partitioned tables without using a partition-wise join, a
single server process performs the join.

Chapter 9
Join Optimizations

9-47

In the following illustration, the join is not partition-wise because the server process joins every
partition of table t1 to every partition of table t2.

Figure 9-9 Join That Is Not Partition-Wise

Server

Process

t1 t2

How a Full Partition-Wise Join Works
The database performs a full partition-wise join either serially or in parallel.

The following graphic shows a full partition-wise join performed in parallel. In this case, the
granule of parallelism is a partition. Each parallel execution server joins the partitions in pairs.
For example, the first parallel execution server joins the first partition of t1 to the first partition
of t2. The parallel execution coordinator then assembles the result.

Chapter 9
Join Optimizations

9-48

Figure 9-10 Full Partition-Wise Join in Parallel

PE Server

PE Server

PE Server

PE Server

PE Coordinator

t1 t2

A full partition-wise join can also join partitions to subpartitions, which is useful when the tables
use different partitioning methods. For example, customers is partitioned by hash, but sales is
partitioned by range. If you subpartition sales by hash, then the database can perform a full
partition-wise join between the hash partitions of the customers and the hash subpartitions of
sales.

In the execution plan, the presence of a partition operation before the join signals the presence
of a full partition-wise join, as in the following snippet:

| 8 | PX PARTITION HASH ALL|
|* 9 | HASH JOIN |

See Also:

Oracle Database VLDB and Partitioning Guide explains full partition-wise joins in
detail, and includes several examples

How a Partial Partition-Wise Join Works
Partial partition-wise joins, unlike their full partition-wise counterpart, must execute in parallel.

The following graphic shows a partial partition-wise join between t1, which is partitioned, and
t2, which is not partitioned.

Chapter 9
Join Optimizations

9-49

Figure 9-11 Partial Partition-Wise Join

PE Coordinator

PE Server

PE Server

PE Server

PE Server

PE Server

PE Server

PE Server

PE Server

Dynamically created
partitions

t1 t2

t1 t2

Because t2 is not partitioned, a set of parallel execution servers must generate partitions from
t2 as needed. A different set of parallel execution servers then joins the t1 partitions to the
dynamically generated partitions. The parallel execution coordinator assembles the result.

In the execution plan, the operation PX SEND PARTITION (KEY) signals a partial partition-wise
join, as in the following snippet:

| 11 | PX SEND PARTITION (KEY) |

See Also:

Oracle Database VLDB and Partitioning Guide explains full partition-wise joins in
detail, and includes several examples

In-Memory Join Groups
A join group is a user-created object that lists two or more columns that can be meaningfully
joined.

In certain queries, join groups eliminate the performance overhead of decompressing and
hashing column values. Join groups require an In-Memory Column Store (IM column store).

Chapter 9
Join Optimizations

9-50

See Also:

Oracle Database In-Memory Guide to learn how to optimize In-Memory queries with
join groups

Chapter 9
Join Optimizations

9-51

Part V
Optimizer Statistics

The accuracy of an execution plan depends on the quality of the optimizer statistics.

10
Optimizer Statistics Concepts

Oracle Database optimizer statistics describe details about the database and its objects.

Introduction to Optimizer Statistics
The optimizer cost model relies on statistics collected about the objects involved in a query,
and the database and host where the query runs.

The optimizer uses statistics to get an estimate of the number of rows (and number of bytes)
retrieved from a table, partition, or index. The optimizer estimates the cost for the access,
determines the cost for possible plans, and then picks the execution plan with the lowest cost.

Optimizer statistics include the following:

• Table statistics

– Number of rows

– Number of blocks

– Average row length

• Column statistics

– Number of distinct values (NDV) in a column

– Number of nulls in a column

– Data distribution (histogram)

– Extended statistics

• Index statistics

– Number of leaf blocks

– Number of levels

– Index clustering factor

• System statistics

– I/O performance and utilization

– CPU performance and utilization

As shown in Figure 10-1, the database stores optimizer statistics for tables, columns, indexes,
and the system in the data dictionary. You can access these statistics using data dictionary
views.

Note:

The optimizer statistics are different from the performance statistics visible through V$
views.

10-1

Figure 10-1 Optimizer Statistics

Execution
Plan

GB

HJ
HJ

ID Name

100 Kumar
PERSON_ID_IX

Data Dictionary

Optimizer Statistics

Index Table Column System

CPU and I/O

Optimizer

Database

PERSON
Table

About Optimizer Statistics Types
The optimizer collects statistics on different types of database objects and characteristics of the
database environment.

Table Statistics
Table statistics contain metadata that the optimizer uses when developing an execution plan.

Permanent Table Statistics
In Oracle Database, table statistics include information about rows and blocks.

The optimizer uses these statistics to determine the cost of table scans and table joins. The
database tracks all relevant statistics about permanent tables. For example, table statistics
stored in DBA_TAB_STATISTICS track the following:

• Number of rows

The database uses the row count stored in DBA_TAB_STATISTICS when determining
cardinality.

Chapter 10
About Optimizer Statistics Types

10-2

• Average row length

• Number of data blocks

The optimizer uses the number of data blocks with the DB_FILE_MULTIBLOCK_READ_COUNT
initialization parameter to determine the base table access cost.

• Number of empty data blocks

DBMS_STATS.GATHER_TABLE_STATS commits before gathering statistics on permanent tables.

Example 10-1 Table Statistics

This example queries table statistics for the sh.customers table.

SELECT NUM_ROWS, AVG_ROW_LEN, BLOCKS,
 EMPTY_BLOCKS, LAST_ANALYZED
FROM DBA_TAB_STATISTICS
WHERE OWNER='SH'
AND TABLE_NAME='CUSTOMERS';

Sample output appears as follows:

 NUM_ROWS AVG_ROW_LEN BLOCKS EMPTY_BLOCKS LAST_ANAL
---------- ----------- ---------- ------------ ---------
 55500 189 1517 0 25-MAY-17

See Also:

• "About Optimizer Initialization Parameters"

• "Gathering Schema and Table Statistics"

• Oracle Database Reference for a description of the DBA_TAB_STATISTICS view
and the DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter

Temporary Table Statistics
DBMS_STATS can gather statistics for both permanent and global temporary tables, but
additional considerations apply to the latter.

Types of Temporary Tables
Temporary tables are classified as global, private, or cursor-duration.

In all types of temporary table, the data is only visible to the session that inserts it. The tables
differ as follows:

• A global temporary table is an explicitly created persistent object that stores intermediate
session-private data for a specific duration.

The table is global because the definition is visible to all sessions. The ON COMMIT clause of
CREATE GLOBAL TEMPORARY TABLE indicates whether the table is transaction-specific
(DELETE ROWS) or session-specific (PRESERVE ROWS). Optimizer statistics for global
temporary tables can be shared or session-specific.

Chapter 10
About Optimizer Statistics Types

10-3

• A private temporary table is an explicitly created object, defined by private memory-only
metadata, that stores intermediate session-private data for a specific duration.

The table is private because the definition is visible only to the session that created the
table. The ON COMMIT clause of CREATE PRIVATE TEMPORARY TABLE indicates whether the
table is transaction-specific (DROP DEFINITION) or session-specific (PRESERVE DEFINITION).

• A cursor-duration temporary table is an implicitly created memory-only object that is
associated with a cursor.

Unlike global and private temporary tables, DBMS_STATS cannot gather statistics for cursor-
duration temporary tables.

The tables differ in where they store data, how they are created and dropped, and in the
duration and visibility of metadata. Note that the database allocates storage space when a
session first inserts data into a global temporary table, not at table creation.

Table 10-1 Important Characteristics of Temporary Tables

Characteristic Global Temporary
Table

Private Temporary Table Cursor-Duration
Temporary Table

Visibility of Data Session inserting data Session inserting data Session inserting data

Storage of Data Persistent Memory or tempfiles, but only
for the duration of the session
or transaction

Only in memory

Visibility of
Metadata

All sessions Session that created table (in
USER_PRIVATE_TEMP_TABLE
S view, which is based on a V$
view)

Session executing cursor

Duration of
Metadata

Until table is explicitly
dropped

Until table is explicitly
dropped, or end of session
(PRESERVE DEFINITION) or
transaction (DROP
DEFINITION)

Until cursor ages out of
shared pool

Creation of Table CREATE GLOBAL
TEMPORARY TABLE
(supports AS SELECT)

CREATE PRIVATE
TEMPORARY TABLE (supports
AS SELECT)

Implicitly created when
optimizer considers it
useful

Effect of Creation
on Existing
Transactions

No implicit commit No implicit commit No implicit commit

Naming Rules Same as for permanent
tables

Must begin with ORA$PTT_ Internally generated
unique name

Dropping of Table DROP GLOBAL
TEMPORARY TABLE

DROP PRIVATE TEMPORARY
TABLE, or implicitly dropped at
end of session (PRESERVE
DEFINITION) or transaction
(DROP DEFINITION)

Implicitly dropped at end
of session

See Also:

• "Cursor-Duration Temporary Tables"

• Oracle Database Administrator’s Guide to learn how to manage temporary tables

Chapter 10
About Optimizer Statistics Types

10-4

Statistics for Global Temporary Tables
DBMS_STATS collects the same types of statistics for global temporary tables as for permanent
tables.

Note:

You cannot collect statistics for private temporary tables.

The following table shows how global temporary tables differ in how they gather and store
optimizer statistics, depending on whether the tables are scoped to a transaction or session.

Table 10-2 Optimizer Statistics for Global Temporary Tables

Characteristic Transaction-Specific Session-Specific

Effect of DBMS_STATS collection Does not commit Commits

Storage of statistics Memory only Dictionary tables

Histogram creation Not supported Supported

The following procedures do not commit for transaction-specific temporary tables, so that rows
in these tables are not deleted:

• GATHER_TABLE_STATS
• DELETE_obj_STATS, where obj is TABLE, COLUMN, or INDEX
• SET_obj_STATS, where obj is TABLE, COLUMN, or INDEX
• GET_obj_STATS, where obj is TABLE, COLUMN, or INDEX
The preceding program units observe the GLOBAL_TEMP_TABLE_STATS statistics preference. For
example, if the table preference is set to SESSION, then SET_TABLE_STATS sets the session
statistics, and GATHER_TABLE_STATS preserves all rows in a transaction-specific temporary
table. If the table preference is set to SHARED, however, then SET_TABLE_STATS sets the shared
statistics, and GATHER_TABLE_STATS deletes all rows from a transaction-specific temporary
table.

See Also:

• "Gathering Schema and Table Statistics"

• Oracle Database Concepts to learn about global temporary tables

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_TABLE_STATS procedure

Shared and Session-Specific Statistics for Global Temporary Tables
Starting in Oracle Database 12c, you can set the table-level preference
GLOBAL_TEMP_TABLE_STATS to make statistics on a global temporary table shared (SHARED) or
session-specific (SESSION).

Chapter 10
About Optimizer Statistics Types

10-5

When GLOBAL_TEMP_TABLE_STATS is SESSION, you can gather optimizer statistics for a global
temporary table in one session, and then use the statistics for this session only. Meanwhile,
users can continue to maintain a shared version of the statistics. During optimization, the
optimizer first checks whether a global temporary table has session-specific statistics. If yes,
then the optimizer uses them. Otherwise, the optimizer uses shared statistics if they exist.

Note:

In releases before Oracle Database 12c, the database did not maintain optimizer
statistics for global temporary tables and non-global temporary tables differently. The
database maintained one version of the statistics shared by all sessions, even though
data in different sessions could differ.

Session-specific optimizer statistics have the following characteristics:

• Dictionary views that track statistics show both the shared statistics and the session-
specific statistics in the current session.

The views are DBA_TAB_STATISTICS, DBA_IND_STATISTICS, DBA_TAB_HISTOGRAMS, and
DBA_TAB_COL_STATISTICS (each view has a corresponding USER_ and ALL_ version). The
SCOPE column shows whether statistics are session-specific or shared. Session-specific
statistics must be stored in the data dictionary so that multiple processes can access them
in Oracle RAC.

• CREATE ... AS SELECT automatically gathers optimizer statistics. When
GLOBAL_TEMP_TABLE_STATS is set to SHARED, however, you must gather statistics manually
using DBMS_STATS.

• Pending statistics are not supported.

• Other sessions do not share a cursor that uses the session-specific statistics.

Different sessions can share a cursor that uses shared statistics, as in releases earlier
than Oracle Database 12c. The same session can share a cursor that uses session-
specific statistics.

• By default, GATHER_TABLE_STATS for the temporary table immediately invalidates previous
cursors compiled in the same session. However, this procedure does not invalidate cursors
compiled in other sessions.

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
GLOBAL_TEMP_TABLE_STATS preference

• Oracle Database Reference for a description of the DBA_TAB_STATISTICS view

Column Statistics
Column statistics track information about column values and data distribution.

Chapter 10
About Optimizer Statistics Types

10-6

The optimizer uses column statistics to generate accurate cardinality estimates and make
better decisions about index usage, join orders, join methods, and so on. For example,
statistics in DBA_TAB_COL_STATISTICS track the following:

• Number of distinct values

• Number of nulls

• High and low values

• Histogram-related information

The optimizer can use extended statistics, which are a special type of column statistics. These
statistics are useful for informing the optimizer of logical relationships among columns.

See Also:

• "Histograms "

• "About Statistics on Column Groups"

• Oracle Database Reference for a description of the DBA_TAB_COL_STATISTICS
view

Index Statistics
The index statistics include information about the number of index levels, the number of index
blocks, and the relationship between the index and the data blocks. The optimizer uses these
statistics to determine the cost of index scans.

Types of Index Statistics
The DBA_IND_STATISTICS view tracks index statistics.

Statistics include the following:

• Levels

The BLEVEL column shows the number of blocks required to go from the root block to a leaf
block. A B-tree index has two types of blocks: branch blocks for searching and leaf blocks
that store values. See Oracle Database Concepts for a conceptual overview of B-tree
indexes.

• Distinct keys

This columns tracks the number of distinct indexed values. If a unique constraint is
defined, and if no NOT NULL constraint is defined, then this value equals the number of non-
null values.

• Average number of leaf blocks for each distinct indexed key

• Average number of data blocks pointed to by each distinct indexed key

See Also:

Oracle Database Reference for a description of the DBA_IND_STATISTICS view

Chapter 10
About Optimizer Statistics Types

10-7

Example 10-2 Index Statistics

This example queries some index statistics for the cust_lname_ix and customers_pk indexes
on the sh.customers table (sample output included):

SELECT INDEX_NAME, BLEVEL, LEAF_BLOCKS AS "LEAFBLK", DISTINCT_KEYS AS
"DIST_KEY",
 AVG_LEAF_BLOCKS_PER_KEY AS "LEAFBLK_PER_KEY",
 AVG_DATA_BLOCKS_PER_KEY AS "DATABLK_PER_KEY"
FROM DBA_IND_STATISTICS
WHERE OWNER = 'SH'
AND INDEX_NAME IN ('CUST_LNAME_IX','CUSTOMERS_PK');

INDEX_NAME BLEVEL LEAFBLK DIST_KEY LEAFBLK_PER_KEY DATABLK_PER_KEY
-------------- ------ ------- -------- --------------- ---------------
CUSTOMERS_PK 1 115 55500 1 1
CUST_LNAME_IX 1 141 908 1 10

Index Clustering Factor
For a B-tree index, the index clustering factor measures the physical grouping of rows in
relation to an index value, such as last name.

The index clustering factor helps the optimizer decide whether an index scan or full table scan
is more efficient for certain queries). A low clustering factor indicates an efficient index scan.

A clustering factor that is close to the number of blocks in a table indicates that the rows are
physically ordered in the table blocks by the index key. If the database performs a full table
scan, then the database tends to retrieve the rows as they are stored on disk sorted by the
index key. A clustering factor that is close to the number of rows indicates that the rows are
scattered randomly across the database blocks in relation to the index key. If the database
performs a full table scan, then the database would not retrieve rows in any sorted order by
this index key.

The clustering factor is a property of a specific index, not a table. If multiple indexes exist on a
table, then the clustering factor for one index might be small while the factor for another index
is large. An attempt to reorganize the table to improve the clustering factor for one index may
degrade the clustering factor of the other index.

Example 10-3 Index Clustering Factor

This example shows how the optimizer uses the index clustering factor to determine whether
using an index is more effective than a full table scan.

1. Start SQL*Plus and connect to a database as sh, and then query the number of rows and
blocks in the sh.customers table (sample output included):

SELECT table_name, num_rows, blocks
FROM user_tables
WHERE table_name='CUSTOMERS';

TABLE_NAME NUM_ROWS BLOCKS
------------------------------ ---------- ----------
CUSTOMERS 55500 1486

2. Create an index on the customers.cust_last_name column.

Chapter 10
About Optimizer Statistics Types

10-8

For example, execute the following statement:

CREATE INDEX CUSTOMERS_LAST_NAME_IDX ON customers(cust_last_name);

3. Query the index clustering factor of the newly created index.

The following query shows that the customers_last_name_idx index has a high clustering
factor because the clustering factor is significantly more than the number of blocks in the
table:

SELECT index_name, blevel, leaf_blocks, clustering_factor
FROM user_indexes
WHERE table_name='CUSTOMERS'
AND index_name= 'CUSTOMERS_LAST_NAME_IDX';

INDEX_NAME BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR
------------------------------ ---------- ----------- -----------------
CUSTOMERS_LAST_NAME_IDX 1 141 9859

4. Create a new copy of the customers table, with rows ordered by cust_last_name.

For example, execute the following statements:

DROP TABLE customers3 PURGE;
CREATE TABLE customers3 AS
 SELECT *
 FROM customers
 ORDER BY cust_last_name;

5. Gather statistics on the customers3 table.

For example, execute the GATHER_TABLE_STATS procedure as follows:

EXEC DBMS_STATS.GATHER_TABLE_STATS(null,'CUSTOMERS3');
6. Query the number of rows and blocks in the customers3 table .

For example, enter the following query (sample output included):

SELECT TABLE_NAME, NUM_ROWS, BLOCKS
FROM USER_TABLES
WHERE TABLE_NAME='CUSTOMERS3';

TABLE_NAME NUM_ROWS BLOCKS
------------------------------ ---------- ----------
CUSTOMERS3 55500 1485

7. Create an index on the cust_last_name column of customers3.

For example, execute the following statement:

CREATE INDEX CUSTOMERS3_LAST_NAME_IDX ON customers3(cust_last_name);

8. Query the index clustering factor of the customers3_last_name_idx index.

Chapter 10
About Optimizer Statistics Types

10-9

The following query shows that the customers3_last_name_idx index has a lower
clustering factor:

SELECT INDEX_NAME, BLEVEL, LEAF_BLOCKS, CLUSTERING_FACTOR
FROM USER_INDEXES
WHERE TABLE_NAME = 'CUSTOMERS3'
AND INDEX_NAME = 'CUSTOMERS3_LAST_NAME_IDX';

INDEX_NAME BLEVEL LEAF_BLOCKS CLUSTERING_FACTOR
------------------------------ ---------- ----------- -----------------
CUSTOMERS3_LAST_NAME_IDX 1 141 1455

The table customers3 has the same data as the original customers table, but the index on
customers3 has a much lower clustering factor because the data in the table is ordered by
the cust_last_name. The clustering factor is now about 10 times the number of blocks
instead of 70 times.

9. Query the customers table.

For example, execute the following query (sample output included):

SELECT cust_first_name, cust_last_name
FROM customers
WHERE cust_last_name BETWEEN 'Puleo' AND 'Quinn';

CUST_FIRST_NAME CUST_LAST_NAME
-------------------- --
Vida Puleo
Harriett Quinlan
Madeleine Quinn
Caresse Puleo

10. Display the cursor for the query.

For example, execute the following query (partial sample output included):

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());

| Id | Operation | Name | Rows |Bytes|Cost (%CPU)| Time |

| 0| SELECT STATEMENT | | | | 405 (100)| |
|* 1| TABLE ACCESS STORAGE FULL| CUSTOMERS | 2335|35025| 405 (1)|00:00:01|

The preceding plan shows that the optimizer did not use the index on the original
customers tables.

11. Query the customers3 table.

For example, execute the following query (sample output included):

SELECT cust_first_name, cust_last_name
FROM customers3
WHERE cust_last_name BETWEEN 'Puleo' AND 'Quinn';

Chapter 10
About Optimizer Statistics Types

10-10

CUST_FIRST_NAME CUST_LAST_NAME
-------------------- --
Vida Puleo
Harriett Quinlan
Madeleine Quinn
Caresse Puleo

12. Display the cursor for the query.

For example, execute the following query (partial sample output included):

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)| Time|

0	SELECT STATEMENT				69(100)	
1	TABLE ACCESS BY INDEX ROWID	CUSTOMERS3	2335	35025	69(0)	00:00:01
*2	INDEX RANGE SCAN	CUSTOMERS3_LAST_NAME_IDX	2335		7(0)	00:00:01

The result set is the same, but the optimizer chooses the index. The plan cost is much less
than the cost of the plan used on the original customers table.

13. Query customers with a hint that forces the optimizer to use the index.

For example, execute the following query (partial sample output included):

SELECT /*+ index (Customers CUSTOMERS_LAST_NAME_IDX) */ cust_first_name,
 cust_last_name
FROM customers
WHERE cust_last_name BETWEEN 'Puleo' and 'Quinn';

CUST_FIRST_NAME CUST_LAST_NAME
-------------------- --
Vida Puleo
Caresse Puleo
Harriett Quinlan
Madeleine Quinn

14. Display the cursor for the query.

For example, execute the following query (partial sample output included):

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());

| Id | Operation | Name |Rows|Bytes|Cost(%CPU)|Time |

0	SELECT STATEMENT				422(100)	
1	TABLE ACCESS BY INDEX ROWID	CUSTOMERS	335	35025	422(0)	00:00:01
*2	INDEX RANGE SCAN	CUSTOMERS_LAST_NAME_IDX	2335		7(0)	00:00:01

The preceding plan shows that the cost of using the index on customers is higher than the
cost of a full table scan. Thus, using an index does not necessarily improve performance.

Chapter 10
About Optimizer Statistics Types

10-11

The index clustering factor is a measure of whether an index scan is more effective than a
full table scan.

Effect of Index Clustering Factor on Cost: Example
This example illustrates how the index clustering factor can influence the cost of table access.

Consider the following scenario:

• A table contains 9 rows that are stored in 3 data blocks.

• The col1 column currently stores the values A, B, and C.

• A nonunique index named col1_idx exists on col1 for this table.

Example 10-4 Collocated Data

Assume that the rows are stored in the data blocks as follows:

Block 1 Block 2 Block 3
------- ------- -------
A A A B B B C C C

In this example, the index clustering factor for col1_idx is low. The rows that have the same
indexed column values for col1 are in the same data blocks in the table. Thus, the cost of
using an index range scan to return all rows with value A is low because only one block in the
table must be read.

Example 10-5 Scattered Data

Assume that the same rows are scattered across the data blocks as follows:

Block 1 Block 2 Block 3
------- ------- -------
A B C A C B B A C

In this example, the index clustering factor for col1_idx is higher. The database must read all
three blocks in the table to retrieve all rows with the value A in col1.

See Also:

Oracle Database Reference for a description of the DBA_INDEXES view

System Statistics
The system statistics describe hardware characteristics such as I/O and CPU performance
and utilization.

System statistics enable the query optimizer to more accurately estimate I/O and CPU costs
when choosing execution plans. The database does not invalidate previously parsed SQL
statements when updating system statistics. The database parses all new SQL statements
using new statistics.

Chapter 10
About Optimizer Statistics Types

10-12

See Also:

• "Gathering System Statistics Manually"

• Oracle Database Reference

User-Defined Optimizer Statistics
The extensible optimizer enables authors of user-defined functions and indexes to create
statistics collection, selectivity, and cost functions.

The optimizer cost model is extended to integrate information supplied by the user to assess
CPU and the I/O cost. Statistics types act as interfaces for user-defined functions that influence
the choice of execution plan. However, to use a statistics type, the optimizer requires a
mechanism to bind the type to a database object such as a column, standalone function, object
type, index, indextype, or package. The SQL statement ASSOCIATE STATISTICS allows this
binding to occur.

Functions for user-defined statistics are relevant for columns that use both standard SQL data
types and object types, and for domain indexes. When you associate a statistics type with a
column or domain index, the database calls the statistics collection method in the statistics
type whenever DBMS_STATS gathers statistics.

See Also:

"Gathering Schema and Table Statistics"

How the Database Gathers Optimizer Statistics
Oracle Database provides several mechanisms to gather statistics.

DBMS_STATS Package
The DBMS_STATS PL/SQL package collects and manages optimizer statistics.

This package enables you to control what and how statistics are collected, including the
degree of parallelism, sampling methods, and granularity of statistics collection in partitioned
tables.

Note:

Do not use the COMPUTE and ESTIMATE clauses of the ANALYZE statement to collect
optimizer statistics. These clauses have been deprecated. Instead, use DBMS_STATS.

Statistics gathered with the DBMS_STATS package are required for the creation of accurate
execution plans. For example, table statistics gathered by DBMS_STATS include the number of
rows, number of blocks, and average row length.

Chapter 10
How the Database Gathers Optimizer Statistics

10-13

By default, Oracle Database uses automatic optimizer statistics collection. In this case, the
database automatically runs DBMS_STATS to collect optimizer statistics for all schema objects for
which statistics are missing or stale. The process eliminates many manual tasks associated
with managing the optimizer, and significantly reduces the risks of generating suboptimal
execution plans because of missing or stale statistics. You can also update and manage
optimizer statistics by manually executing DBMS_STATS.

Oracle Database 19c introduces high-frequency automatic optimizer statistics collection. This
lightweight task periodically gathers statistics for stale objects. The default interval is 15
minutes. In contrast to the automated statistics collection job, the high-frequency task does not
perform actions such as purging statistics for non-existent objects or invoking Optimizer
Statistics Advisor. You can set preferences for the high-frequency task using the
DBMS_STATS.SET_GLOBAL_PREFS procedure, and view metadata using
DBA_AUTO_STAT_EXECUTIONS.

See Also:

• "Configuring Automatic Optimizer Statistics Collection"

• "Gathering Optimizer Statistics Manually"

• Oracle Database Administrator’s Guide to learn more about automated
maintenance tasks

• Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_STATS

Supplemental Dynamic Statistics
By default, when optimizer statistics are missing, stale, or insufficient, the database
automatically gathers dynamic statistics during a parse. The database uses recursive SQL
to scan a small random sample of table blocks.

Note:

Dynamic statistics augment statistics rather than providing an alternative to them.

Dynamic statistics supplement optimizer statistics such as table and index block counts, table
and join cardinalities (estimated number of rows), join column statistics, and GROUP BY
statistics. This information helps the optimizer improve plans by making better estimates for
predicate cardinality.

Dynamic statistics are beneficial in the following situations:

• An execution plan is suboptimal because of complex predicates.

• The sampling time is a small fraction of total execution time for the query.

• The query executes many times so that the sampling time is amortized.

Chapter 10
How the Database Gathers Optimizer Statistics

10-14

Online Statistics Gathering
In some circumstances, DDL and DML operations automatically trigger online statistics
gathering.

Online Statistics Gathering for Bulk Loads
The database can gather table statistics automatically during the following types of bulk loads:
INSERT INTO ... SELECT using a direct path insert, and CREATE TABLE AS SELECT.

By default, a parallel insert uses a direct path insert. You can force a direct path insert by using
the /*+APPEND*/ hint.

See Also:

Oracle Database Data Warehousing Guide to learn more about bulk loads

Purpose of Online Statistics Gathering for Bulk Loads
Data warehouse applications typically load large amounts of data into the database. For
example, a sales data warehouse might load data every day, week, or month.

In releases earlier than Oracle Database 12c, the best practice was to gather statistics
manually after a bulk load. However, many applications did not gather statistics after the load
because of negligence or because they waited for the maintenance window to initiate
collection. Missing statistics are the leading cause of suboptimal execution plans.

Automatic statistics gathering during bulk loads has the following benefits:

• Improved performance

Gathering statistics during the load avoids an additional table scan to gather table
statistics.

• Improved manageability

No user intervention is required to gather statistics after a bulk load.

Global Statistics During Inserts into Partitioned Tables
When inserting rows into a partitioned table, the database gathers global statistics during the
insert.

For example, if sales is a partitioned table, and if you run INSERT INTO sales SELECT, then
the database gathers global statistics. However, the database does not gather partition-level
statistics.

Assume a different case in which you use partition-extended syntax to insert rows into a
specific partition or subpartition. The database gathers statistics on the partition during the
insert. However, the database does not gather global statistics.

Assume that you run INSERT INTO sales PARTITION (sales_q4_2000) SELECT. The database
gathers statistics during the insert. If the INCREMENTAL preference is enabled for sales, then the
database also gathers a synopsis for sales_q4_2000. Statistics are immediately available after

Chapter 10
How the Database Gathers Optimizer Statistics

10-15

the insert. However, if you roll back the transaction, then the database automatically deletes
statistics gathered during the bulk load.

See Also:

• "Considerations for Incremental Statistics Maintenance"

• Oracle Database SQL Language Reference for INSERT syntax and semantics

Histogram Creation After Bulk Loads
After gathering online statistics, the database does not automatically create histograms.

If histograms are required, then after the bulk load Oracle recommends running
DBMS_STATS.GATHER_TABLE_STATS with options=>GATHER AUTO. For example, the following
program gathers statistics for the myt table:

EXEC DBMS_STATS.GATHER_TABLE_STATS(user, 'MYT', options=>'GATHER AUTO');

The preceding PL/SQL program only gathers missing or stale statistics. The database does not
gather table and basic column statistics collected during the bulk load.

Note:

You can set the table preference options to GATHER AUTO on the tables that you plan
to bulk load. In this way, you need not explicitly set the options parameter when
running GATHER_TABLE_STATS.

See Also:

• "Gathering Schema and Table Statistics"

• Oracle Database Data Warehousing Guide to learn more about bulk loads

Restrictions for Online Statistics Gathering for Bulk Loads
In certain cases, bulk loads do not automatically gather optimizer statistics.

Specifically, bulk loads do not gather statistics automatically when any of the following
conditions applies to the target table, partition, or subpartition:

• The object contains data. Bulk loads only gather online statistics automatically when the
object is empty.

• It is in an Oracle-owned schema such as SYS.

• It is one of the following types of tables: nested table, index-organized table (IOT), external
table, or global temporary table defined as ON COMMIT DELETE ROWS.

Chapter 10
How the Database Gathers Optimizer Statistics

10-16

Note:

The database does gather online statistics automatically for the internal partitions
of a hybrid partitioned table.

• It has a PUBLISH preference set to FALSE.

• Its statistics are locked.

• It is loaded using a multitable INSERT statement.

See Also:

• "Gathering Schema and Table Statistics"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.SET_TABLE_PREFS

User Interface for Online Statistics Gathering for Bulk Loads
By default, the database gathers statistics during bulk loads.

You can enable the feature at the statement level by using the GATHER_OPTIMIZER_STATISTICS
hint. You can disable the feature at the statement level by using the
NO_GATHER_OPTIMIZER_STATISTICS hint. For example, the following statement disables online
statistics gathering for bulk loads:

CREATE TABLE employees2 AS
 SELECT /*+NO_GATHER_OPTIMIZER_STATISTICS*/ * FROM employees

See Also:

Oracle Database SQL Language Reference to learn about the
GATHER_OPTIMIZER_STATISTICS and NO_GATHER_OPTIMIZER_STATISTICS hints

Online Statistics Gathering for Partition Maintenance Operations
Oracle Database provides analogous support for online statistics during specific partition
maintenance operations.

For MOVE, COALESCE, and MERGE, the database maintains global and partition-level statistics as
follows:

• If the partition uses either incremental or non-incremental statistics, then the database
makes a direct update to the BLOCKS value in the global table statistics. Note that this
update is not a statistics gathering operation.

• The database generates fresh statistics for the resulting partition. If incremental statistics
are enabled, then the database maintains partition synopses.

Chapter 10
How the Database Gathers Optimizer Statistics

10-17

For TRUNCATE or DROP PARTITION, the database updates the BLOCKS and NUM_ROWS values in the
global table statistics. The update does not require a gathering statistics operation. The
statistics update occurs when either incremental or non-incremental statistics are used.

Note:

The database does not maintain partition-level statistics for maintenance operations
that have multiple destination segments.

See Also:

Oracle Database VLDB and Partitioning Guide to learn more about partition
maintenance operations

Real-Time Statistics
Oracle Database can automatically gather real-time statistics during conventional DML
operations.

See Also:

Oracle Database Licensing Information User Manual for details on which features are
supported for different editions and services

Purpose of Real-Time Statistics
Online statistics, whether for bulk loads or conventional DML, aim to reduce the possibility of
the optimizer being misled by stale statistics.

Oracle Database 12c introduced online statistics gathering for CREATE TABLE AS SELECT
statements and direct-path inserts. Oracle Database 19c introduces real-time statistics, which
extend online support to conventional DML statements. Because statistics can go stale
between DBMS_STATS jobs, real-time statistics help the optimizer generate more optimal plans.

Whereas bulk load operations gather all necessary statistics, real-time statistics augment
rather than replace traditional statistics. For this reason, you must continue to gather statistics
regularly using DBMS_STATS, preferably using the AutoTask job.

How Real-Time Statistics Work
When a DML operation is currently modifying a table, Oracle Database dynamically computes
values for the most essential statistics.

Consider a scenario in which a transaction is currently adding tens of thousands of rows to the
oe.orders table. Real-time statistics keep track of the increasing row count as rows are being
inserted. If the optimizer performs a hard parse of a new query, then the optimizer can use the
real-time statistics to obtain a more accurate cost estimate.

Chapter 10
How the Database Gathers Optimizer Statistics

10-18

User Interface for Real-Time Statistics
You can use manage and access real-time statistics through PL/SQL packages, data dictionary
views, and hints.

OPTIMIZER_REAL_TIME_STATISTICS Initialization Parameter

When the OPTIMIZER_REAL_TIME_STATISTICS initialization parameter is set to TRUE, Oracle
Database automatically gathers real-time statistics during conventional DML operations. The
default setting is FALSE, which means real-time statistics are disabled.

DBMS_STATS

By default, DBMS_STATS subprograms include real-time statistics. You can also specify
parameters to include only these statistics.

Table 10-3 Subprograms for Real-Time Statistics

Subprogram Description

EXPORT_TABLE_STATS and
EXPORT_SCHEMA_STATS

These subprograms enable you to export statistics.
By default, the stat_category parameter
includes real-time statistics. The REALTIME_STATS
value specifies only real-time statistics.

IMPORT_TABLE_STATS and
IMPORT_SCHEMA_STATS

These subprograms enable you to import statistics.
By default, the stat_category parameter
includes real-time statistics. The REALTIME_STATS
value specifies only real-time statistics.

DELETE_TABLE_STATS and
DELETE_SCHEMA_STATS

These subprograms enable you to delete statistics.
By default, the stat_category parameter
includes real-time statistics. The REALTIME_STATS
value specifies only real-time statistics.

DIFF_TABLE_STATS_IN_STATTAB This function compares table statistics from two
sources. The statistics always include real-time
statistics.

DIFF_TABLE_STATS_IN_HISTORY This function compares statistics for a table as of
two specified timestamps. The statistics always
include real-time statistics.

Views

If real-time statistics are available, then you can access them using the views in the following
table. Note that partition-level statistics are not supported, so the only table-level views show
real-time statistics. The DBA_* views have ALL_* and USER_* versions.

Table 10-4 Views for Real-Time Statistics

View Description

DBA_TAB_COL_STATISTICS This view displays column statistics and histogram information
extracted from DBA_TAB_COLUMNS. Real-time statistics are
indicated by STATS_ON_CONVENTIONAL_DML in the NOTES
column and SHARED in the SCOPE column.

Chapter 10
How the Database Gathers Optimizer Statistics

10-19

Table 10-4 (Cont.) Views for Real-Time Statistics

View Description

DBA_TAB_STATISTICS This view displays optimizer statistics for the tables accessible
to the current user. Real-time statistics are indicated by
STATS_ON_CONVENTIONAL_DML in the NOTES column and
SHARED in the SCOPE column.

Hints

The NO_GATHER_OPTIMIZER_STATISTICS hint prevents the collection of real-time statistics.

See Also:

• "Importing and Exporting Optimizer Statistics"

• Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_STATS subprograms

• Oracle Database Reference to learn about the ALL_TAB_COL_STATISTICS view

• Oracle Database Licensing Information User Manual for details on whether the
real-time statistics feature is supported for different editions and services

Real-Time Statistics: Example
In this example, a conventional INSERT statement triggers the collection of real-time statistics.

This example assumes that the sh user has been granted the DBA role, and you have logged
in to the database as sh. You perform the following steps:

1. Gather statistics for the sales table:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('SH', 'SALES', METHOD_OPT=>'FOR ALL COLUMNS
SIZE 2');
END;
/

2. Query the column-level statistics for sales:

SET PAGESIZE 5000
SET LINESIZE 200
COL COLUMN_NAME FORMAT a13
COL LOW_VALUE FORMAT a14
COL HIGH_VALUE FORMAT a14
COL NOTES FORMAT a5
COL PARTITION_NAME FORMAT a13

SELECT COLUMN_NAME, LOW_VALUE, HIGH_VALUE, SAMPLE_SIZE, NOTES
FROM USER_TAB_COL_STATISTICS

Chapter 10
How the Database Gathers Optimizer Statistics

10-20

WHERE TABLE_NAME = 'SALES'
ORDER BY 1, 5;

The Notes fields are blank, meaning that real-time statistics have not been gathered:

COLUMN_NAME LOW_VALUE HIGH_VALUE SAMPLE_SIZE NOTES
------------- -------------- -------------- ----------- -----
AMOUNT_SOLD C10729 C2125349 5594
CHANNEL_ID C103 C10A 918843
CUST_ID C103 C30B0B 5595
PROD_ID C10E C20231 5593
PROMO_ID C122 C20A64 918843
QUANTITY_SOLD C102 C102 5593
TIME_ID 77C60101010101 78650C1F010101 5593

7 rows selected.

3. Query the table-level statistics for sales:

SELECT NVL(PARTITION_NAME, 'GLOBAL') PARTITION_NAME, NUM_ROWS, BLOCKS,
NOTES
FROM USER_TAB_STATISTICS
WHERE TABLE_NAME = 'SALES'
ORDER BY 1, 4;

The Notes fields are blank, meaning that real-time statistics have not been gathered:

PARTITION_NAM NUM_ROWS BLOCKS NOTES
------------- ---------- ---------- -----
GLOBAL 918843 3315
SALES_1995 0 0
SALES_1996 0 0
SALES_H1_1997 0 0
SALES_H2_1997 0 0
SALES_Q1_1998 43687 162
SALES_Q1_1999 64186 227
SALES_Q1_2000 62197 222
SALES_Q1_2001 60608 222
SALES_Q1_2002 0 0
SALES_Q1_2003 0 0
SALES_Q2_1998 35758 132
SALES_Q2_1999 54233 187
SALES_Q2_2000 55515 197
SALES_Q2_2001 63292 227
SALES_Q2_2002 0 0
SALES_Q2_2003 0 0
SALES_Q3_1998 50515 182
SALES_Q3_1999 67138 232
SALES_Q3_2000 58950 212
SALES_Q3_2001 65769 242
SALES_Q3_2002 0 0
SALES_Q3_2003 0 0
SALES_Q4_1998 48874 192
SALES_Q4_1999 62388 217

Chapter 10
How the Database Gathers Optimizer Statistics

10-21

SALES_Q4_2000 55984 202
SALES_Q4_2001 69749 260
SALES_Q4_2002 0 0
SALES_Q4_2003 0 0

29 rows selected.

4. Load 918,843 rows into sales by using a conventional INSERT statement:

INSERT INTO sales(prod_id, cust_id, time_id, channel_id, promo_id,
 quantity_sold, amount_sold)
 SELECT prod_id, cust_id, time_id, channel_id, promo_id,
 quantity_sold * 2, amount_sold * 2
 FROM sales;
COMMIT;

5. Obtain the execution plan from the cursor:

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(format=>'TYPICAL'));

The plan shows LOAD TABLE CONVENTIONAL in Step 1 and OPTIMIZER STATISTICS
GATHERING in Step 2, which means that the database gathered real-time statistics during
the conventional insert:

|Id| Operation | Name|Rows|Bytes|Cost (%CPU)|Time| Pstart|Pstop|

0	INSERT STATEMENT				910 (100)			
1	LOAD TABLE CONVENTIONAL	SALES						
2	OPTIMIZER STATISTICS GATHERING		918K	25M	910 (2)	00:00:01		
3	PARTITION RANGE ALL		918K	25M	910 (2)	00:00:01	1	28
4	TABLE ACCESS FULL	SALES	918K	25M	910 (2)	00:00:01	1	28

6. Query the column-level statistics for sales.

SET PAGESIZE 5000
SET LINESIZE 200
COL COLUMN_NAME FORMAT a13
COL LOW_VALUE FORMAT a14
COL HIGH_VALUE FORMAT a14
COL NOTES FORMAT a25
COL PARTITION_NAME FORMAT a13

SELECT COLUMN_NAME, LOW_VALUE, HIGH_VALUE, SAMPLE_SIZE, NOTES
FROM USER_TAB_COL_STATISTICS
WHERE TABLE_NAME = 'SALES'
ORDER BY 1, 5;

Chapter 10
How the Database Gathers Optimizer Statistics

10-22

Now the Notes fields show STATS_ON_CONVENTIONAL_DML, meaning that the database
gathered real-time statistics during the insert:

COLUMN_NAME LOW_VALUE HIGH_VALUE SAMPLE_SIZE NOTES
------------- -------------- -------------- ----------- -------------------------
AMOUNT_SOLD C10729 C224422D 9073 STATS_ON_CONVENTIONAL_DML
AMOUNT_SOLD C10729 C2125349 5702
CHANNEL_ID C103 C10A 9073 STATS_ON_CONVENTIONAL_DML
CHANNEL_ID C103 C10A 918843
CUST_ID C103 C30B0B 9073 STATS_ON_CONVENTIONAL_DML
CUST_ID C103 C30B0B 5702
PROD_ID C10E C20231 9073 STATS_ON_CONVENTIONAL_DML
PROD_ID C10E C20231 5701
PROMO_ID C122 C20A64 9073 STATS_ON_CONVENTIONAL_DML
PROMO_ID C122 C20A64 918843
QUANTITY_SOLD C102 C103 9073 STATS_ON_CONVENTIONAL_DML
QUANTITY_SOLD C102 C102 5701
TIME_ID 77C60101010101 78650C1F010101 9073 STATS_ON_CONVENTIONAL_DML
TIME_ID 77C60101010101 78650C1F010101 5701

The sample size is 9073, which is roughly 1% of the 918,843 rows inserted. In
QUANTITY_SOLD and AMOUNT_SOLD, the high and low values combine the manually gathered
statistics and the real-time statistics.

7. Force the database to write optimizer statistics to the data dictionary.

EXEC DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO;

8. Query the table-level statistics for sales.

SELECT NVL(PARTITION_NAME, 'GLOBAL') PARTITION_NAME, NUM_ROWS, BLOCKS,
NOTES
FROM USER_TAB_STATISTICS
WHERE TABLE_NAME = 'SALES'
ORDER BY 1, 4;

The Notes field shows that real-time statistics have been gathered at the global level,
showing the number of rows as 1,837,686:

PARTITION_NAM NUM_ROWS BLOCKS NOTES
------------- ---------- ---------- -------------------------
GLOBAL 1837686 3315 STATS_ON_CONVENTIONAL_DML
GLOBAL 918843 3315
SALES_1995 0 0
SALES_1996 0 0
SALES_H1_1997 0 0
SALES_H2_1997 0 0
SALES_Q1_1998 43687 162
SALES_Q1_1999 64186 227
SALES_Q1_2000 62197 222
SALES_Q1_2001 60608 222
SALES_Q1_2002 0 0
SALES_Q1_2003 0 0
SALES_Q2_1998 35758 132
SALES_Q2_1999 54233 187

Chapter 10
How the Database Gathers Optimizer Statistics

10-23

SALES_Q2_2000 55515 197
SALES_Q2_2001 63292 227
SALES_Q2_2002 0 0
SALES_Q2_2003 0 0
SALES_Q3_1998 50515 182
SALES_Q3_1999 67138 232
SALES_Q3_2000 58950 212
SALES_Q3_2001 65769 242
SALES_Q3_2002 0 0
SALES_Q3_2003 0 0
SALES_Q4_1998 48874 192
SALES_Q4_1999 62388 217
SALES_Q4_2000 55984 202
SALES_Q4_2001 69749 260
SALES_Q4_2002 0 0
SALES_Q4_2003 0 0

9. Query the quantity_sold column:

SELECT COUNT(*) FROM sales WHERE quantity_sold > 50;

10. Obtain the execution plan from the cursor:

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(format=>'TYPICAL'));

The Note field shows that the query used the real-time statistics.

Plan hash value: 3519235612

--
|Id| Operation |Name|Rows|Bytes|Cost (%CPU)|Time|Pstart|Pstop|
--
0	SELECT STATEMENT				921 (100)			
1	SORT AGGREGATE		1	3				
2	PARTITION RANGE ALL		1	3	921 (3)	00:00:01	1	28
*3	TABLE ACCESS FULL	SALES	1	3	921 (3)	00:00:01	1	28
--

Predicate Information (identified by operation id):

 3 - filter("QUANTITY_SOLD">50)

Note

 - dynamic statistics used: stats for conventional DML

See Also:

Oracle Database Reference to learn about USER_TAB_COL_STATISTICSand
USER_TAB_STATISTICS.

Chapter 10
How the Database Gathers Optimizer Statistics

10-24

When the Database Gathers Optimizer Statistics
The database collects optimizer statistics at various times and from various sources.

Sources for Optimizer Statistics
The optimizer uses several different sources for optimizer statistics.

The sources are as follows:

• DBMS_STATS execution, automatic or manual

This PL/SQL package is the primary means of gathering optimizer statistics.

• SQL compilation

During SQL compilation, the database can augment the statistics previously gathered by
DBMS_STATS. In this stage, the database runs additional queries to obtain more accurate
information on how many rows in the tables satisfy the WHERE clause predicates in the SQL
statement.

• SQL execution

During execution, the database can further augment previously gathered statistics. In this
stage, Oracle Database collects the number of rows produced by every row source during
the execution of a SQL statement. At the end of execution, the optimizer determines
whether the estimated number of rows is inaccurate enough to warrant reparsing at the
next statement execution. If the cursor is marked for reparsing, then the optimizer uses
actual row counts from the previous execution instead of estimates.

• SQL profiles

A SQL profile is a collection of auxiliary statistics on a query. The profile stores these
supplemental statistics in the data dictionary. The optimizer uses SQL profiles during
optimization to determine the most optimal plan.

The database stores optimizer statistics in the data dictionary and updates or replaces them as
needed. You can query statistics in data dictionary views.

See Also:

• "When the Database Samples Data"

• "About SQL Profiles"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_TABLE_STATS procedure

SQL Plan Directives
A SQL plan directive is additional information and instructions that the optimizer can use to
generate a more optimal plan.

The directive is a “note to self” by the optimizer that it is misestimating cardinalities of certain
types of predicates, and also a reminder to DBMS_STATS to gather statistics needed to correct
the misestimates in the future. For example, when joining two tables that have a data skew in

Chapter 10
When the Database Gathers Optimizer Statistics

10-25

their join columns, a SQL plan directive can direct the optimizer to use dynamic statistics to
obtain a more accurate join cardinality estimate.

When the Database Creates SQL Plan Directives
The database creates SQL plan directives automatically based on information learned during
automatic reoptimization. If a cardinality misestimate occurs during SQL execution, then the
database creates SQL plan directives.

For each new directive, the DBA_SQL_PLAN_DIRECTIVES.STATE column shows the value USABLE.
This value indicates that the database can use the directive to correct misestimates.

The optimizer defines a SQL plan directive on a query expression, for example, filter
predicates on two columns being used together. A directive is not tied to a specific SQL
statement or SQL ID. For this reason, the optimizer can use directives for statements that are
not identical. For example, directives can help the optimizer with queries that use similar
patterns, such as queries that are identical except for a select list item.

The Notes section of the execution plan indicates the number of SQL plan directives used for a
statement. Obtain more information about the directives by querying the
DBA_SQL_PLAN_DIRECTIVES and DBA_SQL_PLAN_DIR_OBJECTS views.

See Also:

Oracle Database Reference to learn more about DBA_SQL_PLAN_DIRECTIVES

How the Database Uses SQL Plan Directives
When compiling a SQL statement, if the optimizer sees a directive, then it obeys the directive
by gathering additional information.

The optimizer uses directives in the following ways:

• Dynamic statistics

The optimizer uses dynamic statistics whenever it does not have sufficient statistics
corresponding to the directive. For example, the cardinality estimates for a query whose
predicate contains a specific pair of columns may be significantly wrong. A SQL plan
directive indicates that the whenever a query that contains these columns is parsed, the
optimizer needs to use dynamic sampling to avoid a serious cardinality misestimate.

Dynamic statistics have some performance overhead. Every time the optimizer hard
parses a query to which a dynamic statistics directive applies, the database must perform
the extra sampling.

Starting in Oracle Database 12c Release 2 (12.2), the database writes statistics from
adaptive dynamic sampling to the SQL plan directives store, making them available to
other queries.

• Column groups

The optimizer examines the query corresponding to the directive. If there is a missing
column group, and if the DBMS_STATS preference AUTO_STAT_EXTENSIONS is set to ON (the
default is OFF) for the affected table, then the optimizer automatically creates this column
group the next time DBMS_STATS gathers statistics on the table. Otherwise, the optimizer
does not automatically create the column group.

Chapter 10
When the Database Gathers Optimizer Statistics

10-26

If a column group exists, then the next time this statement executes, the optimizer uses the
column group statistics in place of the SQL plan directive when possible (equality
predicates, GROUP BY, and so on). In subsequent executions, the optimizer may create
additional SQL plan directives to address other problems in the plan, such as join or GROUP
BY cardinality misestimates.

Note:

Currently, the optimizer monitors only column groups. The optimizer does not
create an extension on expressions.

When the problem that occasioned a directive is solved, either because a better directive
exists or because a histogram or extension exists, the DBA_SQL_PLAN_DIRECTIVES.STATE value
changes from USABLE to SUPERSEDED. More information about the directive state is exposed in
the DBA_SQL_PLAN_DIRECTIVES.NOTES column.

See Also:

• "Managing Extended Statistics"

• "About Statistics on Column Groups"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the AUTO_STAT_EXTENSIONS preference for DBMS_STATS.SET_TABLE_STATS

SQL Plan Directive Maintenance
The database automatically creates SQL plan directives. You cannot create them manually.

The database initially creates directives in the shared pool. The database periodically writes
the directives to the SYSAUX tablespace. The database automatically purges any SQL plan
directive that is not used after the specified number of weeks (SPD_RETENTION_WEEKS), which is
53 by default.

You can manage directives by using the DBMS_SPD package. For example, you can:

• Enable and disable SQL plan directives (ALTER_SQL_PLAN_DIRECTIVE)

• Change the retention period for SQL plan directives (SET_PREFS)

• Export a directive to a staging table (PACK_STGTAB_DIRECTIVE)

• Drop a directive (DROP_SQL_PLAN_DIRECTIVE)

• Force the database to write directives to disk (FLUSH_SQL_PLAN_DIRECTIVE)

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPD package

Chapter 10
When the Database Gathers Optimizer Statistics

10-27

How the Optimizer Uses SQL Plan Directives: Example
This example shows how the database automatically creates and uses SQL plan directives for
SQL statements.

Assumptions

You plan to run queries against the sh schema, and you have privileges on this schema and on
data dictionary and V$ views.

To see how the database uses a SQL plan directive:

1. Query the sh.customers table.

SELECT /*+gather_plan_statistics*/ *
FROM customers
WHERE cust_state_province='CA'
AND country_id='US';

The gather_plan_statistics hint shows the actual number of rows returned from each
operation in the plan. Thus, you can compare the optimizer estimates with the actual
number of rows returned.

2. Query the plan for the preceding query.

The following example shows the execution plan (sample output included):

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST'));

PLAN_TABLE_OUTPUT

SQL_ID b74nw722wjvy3, child number 0

select /*+gather_plan_statistics*/ * from customers where
CUST_STATE_PROVINCE='CA' and country_id='US'

Plan hash value: 1683234692

| Id| Operation | Name |Starts|E-Rows|A-Rows| Time | Buffers| Reads |

| 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 | 14 |
|*1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 8 | 29 |00:00:00.01 | 17 | 14 |

Predicate Information (identified by operation id):

 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US'))

The actual number of rows (A-Rows) returned by each operation in the plan varies greatly
from the estimates (E-Rows). This statement is a candidate for automatic reoptimization.

3. Check whether the customers query can be reoptimized.

Chapter 10
When the Database Gathers Optimizer Statistics

10-28

The following statement queries the V$SQL.IS_REOPTIMIZABLE value (sample output
included):

SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE
FROM V$SQL
WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%';

SQL_ID CHILD_NUMBER SQL_TEXT I
------------- ------------ ----------- -
b74nw722wjvy3 0 select /*+g Y
 ather_plan_
 statistics*
 / * from cu
 stomers whe
 re CUST_STA
 TE_PROVINCE
 ='CA' and c
 ountry_id='
 US'

The IS_REOPTIMIZABLE column is marked Y, so the database will perform a hard parse of
the customers query on the next execution. The optimizer uses the execution statistics
from this initial execution to determine the plan. The database persists the information
learned from reoptimization as a SQL plan directive.

4. Display the directives for the sh schema.

The following example uses DBMS_SPD to write the SQL plan directives to disk, and then
shows the directives for the sh schema only:

EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE;

SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER AS "OWN", o.OBJECT_NAME AS "OBJECT",
 o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON
FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o
WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID
AND o.OWNER IN ('SH')
ORDER BY 1,2,3,4,5;

DIR_ID OW OBJECT COL_NAME OBJECT TYPE STATE REASON
------------------- -- --------- ---------- ------ ------------- ------ ------------
1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPL USABLE SINGLE TABLE
 CARDINALITY
 MISESTIMATE
1484026771529551585 SH CUSTOMERS CUST_STATE COLUMN DYNAMIC_SAMPL USABLE SINGLE TABLE
 _PROVINCE CARDINALITY
 MISESTIMATE
1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPL USABLE SINGLE TABLE
 CARDINALITY
 MISESTIMATE

Initially, the database stores SQL plan directives in memory, and then writes them to disk
every 15 minutes. Thus, the preceding example calls
DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE to force the database to write the directives to the
SYSAUX tablespace.

Chapter 10
When the Database Gathers Optimizer Statistics

10-29

Monitor directives using the views DBA_SQL_PLAN_DIRECTIVES and
DBA_SQL_PLAN_DIR_OBJECTS. Three entries appear in the views, one for the customers
table itself, and one for each of the correlated columns. Because the customers query has
the IS_REOPTIMIZABLE value of Y, if you reexecute the statement, then the database will
hard parse it again, and then generate a plan based on the previous execution statistics.

5. Query the customers table again.

For example, enter the following statement:

SELECT /*+gather_plan_statistics*/ *
FROM customers
WHERE cust_state_province='CA'
AND country_id='US';

6. Query the plan in the cursor.

The following example shows the execution plan (sample output included):

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST'));

PLAN_TABLE_OUTPUT

SQL_ID b74nw722wjvy3, child number 1

select /*+gather_plan_statistics*/ * from customers where
CUST_STATE_PROVINCE='CA' and country_id='US'

Plan hash value: 1683234692
--
|Id| Operation |Name |Start|E-Rows|A-Rows| A-Time |Buffers|
--
| 0| SELECT STATEMENT | | 1| | 29|00:00:00.01| 17|
|*1| TABLE ACCESS FULL|CUSTOMERS| 1| 29| 29|00:00:00.01| 17|
--

Predicate Information (identified by operation id):

 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US'))

Note

 - cardinality feedback used for this statement

The Note section indicates that the database used reoptimization for this statement. The
estimated number of rows (E-Rows) is now correct. The SQL plan directive has not been
used yet.

7. Query the cursors for the customers query.

For example, run the following query (sample output included):

SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE
FROM V$SQL
WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%';

Chapter 10
When the Database Gathers Optimizer Statistics

10-30

SQL_ID CHILD_NUMBER SQL_TEXT I
------------- ------------ ----------- -
b74nw722wjvy3 0 select /*+g Y
 ather_plan_
 statistics*
 / * from cu
 stomers whe
 re CUST_STA
 TE_PROVINCE
 ='CA' and c
 ountry_id='
 US'

b74nw722wjvy3 1 select /*+g N
 ather_plan_
 statistics*
 / * from cu
 stomers whe
 re CUST_STA
 TE_PROVINCE
 ='CA' and c
 ountry_id='
 US'

A new plan exists for the customers query, and also a new child cursor.

8. Confirm that a SQL plan directive exists and is usable for other statements.

For example, run the following query, which is similar but not identical to the original
customers query (the state is MA instead of CA):

SELECT /*+gather_plan_statistics*/ CUST_EMAIL
FROM CUSTOMERS
WHERE CUST_STATE_PROVINCE='MA'
AND COUNTRY_ID='US';

9. Query the plan in the cursor.

The following statement queries the cursor (sample output included).:

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST'));

PLAN_TABLE_OUTPUT

SQL_ID 3tk6hj3nkcs2u, child number 0

Select /*+gather_plan_statistics*/ cust_email From customers Where
cust_state_province='MA' And country_id='US'

Plan hash value: 1683234692

--
|Id | Operation | Name |Starts|E-Rows|A-Rows|A-Time|Buffers|
--
| 0 | SELECT STATEMENT | | 1 | | 2 |00:00:00.01| 16 |
|*1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 2 | 2 |00:00:00.01| 16 |
--

Chapter 10
When the Database Gathers Optimizer Statistics

10-31

Predicate Information (identified by operation id):

 1 - filter(("CUST_STATE_PROVINCE"='MA' AND "COUNTRY_ID"='US'))

Note

 - dynamic sampling used for this statement (level=2)
 - 1 Sql Plan Directive used for this statement

The Note section of the plan shows that the optimizer used the SQL directive for this
statement, and also used dynamic statistics.

See Also:

• "Automatic Reoptimization"

• "Managing SQL Plan Directives"

• Oracle Database Reference to learn about DBA_SQL_PLAN_DIRECTIVES, V$SQL,
and other database views

• Oracle Database Reference to learn about DBMS_SPD

How the Optimizer Uses Extensions and SQL Plan Directives: Example
The example shows how the database uses a SQL plan directive until the optimizer verifies
that an extension exists and the statistics are applicable.

At this point, the directive changes its status to SUPERSEDED. Subsequent compilations use the
statistics instead of the directive.

Assumptions

This example assumes you have already followed the steps in "How the Optimizer Uses SQL
Plan Directives: Example".

To see how the optimizer uses an extension and SQL plan directive:

1. Gather statistics for the sh.customers table.

For example, execute the following PL/SQL program:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('SH','CUSTOMERS');
END;
/

2. Check whether an extension exists on the customers table.

For example, execute the following query (sample output included):

SELECT TABLE_NAME, EXTENSION_NAME, EXTENSION
FROM DBA_STAT_EXTENSIONS

Chapter 10
When the Database Gathers Optimizer Statistics

10-32

WHERE OWNER='SH'
AND TABLE_NAME='CUSTOMERS';

TABLE_NAM EXTENSION_NAME EXTENSION
--------- ------------------------------ -----------------------
CUSTOMERS SYS_STU#S#WF25Z#QAHIHE#MOFFMM_ ("CUST_STATE_PROVINCE",
 "COUNTRY_ID")

The preceding output indicates that a column group extension exists on the
cust_state_province and country_id columns.

3. Query the state of the SQL plan directive.

Example 10-6 queries the data dictionary for information about the directive.

Although column group statistics exist, the directive has a state of USABLE because the
database has not yet recompiled the statement. During the next compilation, the optimizer
verifies that the statistics are applicable. If they are applicable, then the status of the
directive changes to SUPERSEDED. Subsequent compilations use the statistics instead of the
directive.

4. Query the sh.customers table.

SELECT /*+gather_plan_statistics*/ *
FROM customers
WHERE cust_state_province='CA'
AND country_id='US';

5. Query the plan in the cursor.

Example 10-7 shows the execution plan (sample output included).

The Note section shows that the optimizer used the directive and not the extended
statistics. During the compilation, the database verified the extended statistics.

6. Query the state of the SQL plan directive.

Example 10-8 queries the data dictionary for information about the directive.

The state of the directive, which has changed to SUPERSEDED, indicates that the
corresponding column or groups have an extension or histogram, or that another SQL plan
directive exists that can be used for the directive.

7. Query the sh.customers table again, using a slightly different form of the statement.

For example, run the following query:

SELECT /*+gather_plan_statistics*/ /* force reparse */ *
FROM customers
WHERE cust_state_province='CA'
AND country_id='US';

If the cursor is in the shared SQL area, then the database typically shares the cursor. To
force a reparse, this step changes the SQL text slightly by adding a comment.

8. Query the plan in the cursor.

Example 10-9 shows the execution plan (sample output included).

Chapter 10
When the Database Gathers Optimizer Statistics

10-33

The absence of a Note shows that the optimizer used the extended statistics instead of the
SQL plan directive. If the directive is not used for 53 weeks, then the database
automatically purges it.

See Also:

• "Managing SQL Plan Directives"

• Oracle Database Reference to learn about DBA_SQL_PLAN_DIRECTIVES, V$SQL,
and other database views

• Oracle Database Reference to learn about DBMS_SPD

Example 10-6 Display Directives for sh Schema

EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE;

SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME,
 o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON
FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o
WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID
AND o.OWNER IN ('SH')
ORDER BY 1,2,3,4,5;

DIR_ID OWN OBJECT_NA COL_NAME OBJECT TYPE STATE REASON
------------------- --- --------- ---------- ------- ---------------- ------ ------------
1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPLING USABLE SINGLE TABLE
 CARDINALITY
 MISESTIMATE
1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_SAMPLING USABLE SINGLE TABLE
 PROVINCE CARDINALITY
 MISESTIMATE
1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPLING USABLE SINGLE TABLE
 CARDINALITY
 MISESTIMATE

Example 10-7 Execution Plan

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST'));

PLAN_TABLE_OUTPUT

SQL_ID b74nw722wjvy3, child number 0

select /*+gather_plan_statistics*/ * from customers where
CUST_STATE_PROVINCE='CA' and country_id='US'

Plan hash value: 1683234692

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 16 |

Chapter 10
When the Database Gathers Optimizer Statistics

10-34

|* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 29 | 29 |00:00:00.01 | 16 |

Predicate Information (identified by operation id):

 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US'))

Note

 - dynamic sampling used for this statement (level=2)
 - 1 Sql Plan Directive used for this statement

Example 10-8 Display Directives for sh Schema

EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE;

SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME,
 o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON
FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o
WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID
AND o.OWNER IN ('SH')
ORDER BY 1,2,3,4,5;

DIR_ID OWN OBJECT_NA COL_NAME OBJECT TYPE STATE REASON
------------------- --- --------- ---------- ------ -------- --------- ------------
1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_ SUPERSEDED SINGLE TABLE
 SAMPLING CARDINALITY
 MISESTIMATE
1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_ SUPERSEDED SINGLE TABLE
 PROVINCE SAMPLING CARDINALITY
 MISESTIMATE
1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_ SUPERSEDED SINGLE TABLE
 SAMPLING CARDINALITY
 MISESTIMATE

Example 10-9 Execution Plan

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST'));

PLAN_TABLE_OUTPUT

SQL_ID b74nw722wjvy3, child number 0

select /*+gather_plan_statistics*/ * from customers where
CUST_STATE_PROVINCE='CA' and country_id='US'

Plan hash value: 1683234692

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 |
|* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 29 | 29 |00:00:00.01 | 17 |

Chapter 10
When the Database Gathers Optimizer Statistics

10-35

Predicate Information (identified by operation id):

 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US'))

19 rows selected.

When the Database Samples Data
Starting in Oracle Database 12c, the optimizer automatically decides whether dynamic
statistics are useful and which sample size to use for all SQL statements.

Note:

In earlier releases, dynamic statistics were called dynamic sampling.

The primary factor in the decision to use dynamic statistics is whether available statistics are
sufficient to generate an optimal plan. If statistics are insufficient, then the optimizer uses
dynamic statistics.

Automatic dynamic statistics are enabled when the OPTIMIZER_DYNAMIC_SAMPLING initialization
parameter is not set to 0. By default, the dynamic statistics level is set to 2.

In general, the optimizer uses default statistics rather than dynamic statistics to compute
statistics needed during optimizations on tables, indexes, and columns. The optimizer decides
whether to use dynamic statistics based on several factors, including the following:

• The SQL statement uses parallel execution.

• A SQL plan directive exists.

The following diagram illustrates the process of gathering dynamic statistics.

Chapter 10
When the Database Gathers Optimizer Statistics

10-36

Figure 10-2 Dynamic Statistics

Statistics missing?
Statistics insufficient?
SQL directive exists?
Parallel execution?

No

Optimizer

Yes

Sales

Determine sampling
size

SELECT ...

WHERE ...

Recursive
SQL

Execution
Plan

GB

HJ
HJ

Pass results to
optimizer for
use in plan
generation

SELECT ...

FROM sales

WHERE ...

CLIENT
SQL

As shown in Figure 10-2, the optimizer automatically gathers dynamic statistics in the following
cases:

• Missing statistics

When tables in a query have no statistics, the optimizer gathers basic statistics on these
tables before optimization. Statistics can be missing because the application creates new
objects without a follow-up call to DBMS_STATS to gather statistics, or because statistics
were locked on an object before statistics were gathered.

In this case, the statistics are not as high-quality or as complete as the statistics gathered
using the DBMS_STATS package. This trade-off is made to limit the impact on the compile
time of the statement.

• Insufficient statistics

Statistics can be insufficient whenever the optimizer estimates the selectivity of predicates
(filter or join) or the GROUP BY clause without taking into account correlation between
columns, skew in the column data distribution, statistics on expressions, and so on.

Extended statistics help the optimizer obtain accurate quality cardinality estimates for
complex predicate expressions. The optimizer can use dynamic statistics to compensate
for the lack of extended statistics or when it cannot use extended statistics, for example,
for non-equality predicates.

Note:

The database does not use dynamic statistics for queries that contain the AS OF
clause.

Chapter 10
When the Database Gathers Optimizer Statistics

10-37

See Also:

• "Configuring Options for Dynamic Statistics"

• "About Statistics on Column Groups"

• Oracle Database Reference to learn about the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter

How the Database Samples Data
At the beginning of optimization, when deciding whether a table is a candidate for dynamic
statistics, the optimizer checks for the existence of persistent SQL plan directives on the table.

For each directive, the optimizer registers a statistics expression that the optimizer computes
when determining the cardinality of a predicate involving the table. In Figure 10-2, the
database issues a recursive SQL statement to scan a small random sample of the table
blocks. The database applies the relevant single-table predicates and joins to estimate
predicate cardinalities.

The database persists the results of dynamic statistics as sharable statistics. The database
can share the results during the SQL compilation of one query with recompilations of the same
query. The database can also reuse the results for queries that have the same patterns.

See Also:

• "Configuring Options for Dynamic Statistics" to learn how to set the dynamic
statistics level

• Oracle Database Reference for details about the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter

Chapter 10
When the Database Gathers Optimizer Statistics

10-38

11
Histograms

A histogram is a special type of column statistic that provides more detailed information about
the data distribution in a table column. A histogram sorts values into "buckets," as you might
sort coins into buckets.

Based on the NDV and the distribution of the data, the database chooses the type of histogram
to create. (In some cases, when creating a histogram, the database samples an internally
predetermined number of rows.) The types of histograms are as follows:

• Frequency histograms and top frequency histograms

• Height-Balanced histograms (legacy)

• Hybrid histograms

Purpose of Histograms
By default the optimizer assumes a uniform distribution of rows across the distinct values in a
column.

For columns that contain data skew (a nonuniform distribution of data within the column), a
histogram enables the optimizer to generate accurate cardinality estimates for filter and join
predicates that involve these columns.

For example, a California-based book store ships 95% of the books to California, 4% to
Oregon, and 1% to Nevada. The book orders table has 300,000 rows. A table column stores
the state to which orders are shipped. A user queries the number of books shipped to Oregon.
Without a histogram, the optimizer assumes an even distribution of 300000/3 (the NDV is 3),
estimating cardinality at 100,000 rows. With this estimate, the optimizer chooses a full table
scan. With a histogram, the optimizer calculates that 4% of the books are shipped to Oregon,
and chooses an index scan.

When Oracle Database Creates Histograms
If DBMS_STATS gathers statistics for a table, and if queries have referenced the columns in this
table, then Oracle Database creates histograms automatically as needed according to the
previous query workload.

The basic process is as follows:

1. You run DBMS_STATS for a table with the METHOD_OPT parameter set to the default SIZE
AUTO.

2. A user queries the table.

3. The database notes the predicates in the preceding query and updates the data dictionary
table SYS.COL_USAGE$.

4. You run DBMS_STATS again, causing DBMS_STATS to query SYS.COL_USAGE$ to determine
which columns require histograms based on the previous query workload.

Consequences of the AUTO feature include the following:

11-1

• As queries change over time, DBMS_STATS may change which statistics it gathers. For
example, even if the data in a table does not change, queries and DBMS_STATS operations
can cause the plans for queries that reference these tables to change.

• If you gather statistics for a table and do not query the table, then the database does not
create histograms for columns in this table. For the database to create the histograms
automatically, you must run one or more queries to populate the column usage information
in SYS.COL_USAGE$.

Example 11-1 Automatic Histogram Creation

Assume that sh.sh_ext is an external table that contains the same rows as the sh.sales table.
You create new table sales2 and perform a bulk load using sh_ext as a source, which
automatically creates statistics for sales2. You also create indexes as follows:

SQL> CREATE TABLE sales2 AS SELECT * FROM sh_ext;
SQL> CREATE INDEX sh_12c_idx1 ON sales2(prod_id);
SQL> CREATE INDEX sh_12c_idx2 ON sales2(cust_id,time_id);

You query the data dictionary to determine whether histograms exist for the sales2 columns.
Because sales2 has not yet been queried, the database has not yet created histograms:

SQL> SELECT COLUMN_NAME, NOTES, HISTOGRAM
 2 FROM USER_TAB_COL_STATISTICS
 3 WHERE TABLE_NAME = 'SALES2';

COLUMN_NAME NOTES HISTOGRAM
------------- -------------- ---------
AMOUNT_SOLD STATS_ON_LOAD NONE
QUANTITY_SOLD STATS_ON_LOAD NONE
PROMO_ID STATS_ON_LOAD NONE
CHANNEL_ID STATS_ON_LOAD NONE
TIME_ID STATS_ON_LOAD NONE
CUST_ID STATS_ON_LOAD NONE
PROD_ID STATS_ON_LOAD NONE

You query sales2 for the number of rows for product 42, and then gather table statistics using
the GATHER AUTO option:

SQL> SELECT COUNT(*) FROM sales2 WHERE prod_id = 42;

 COUNT(*)

 12116

SQL> EXEC DBMS_STATS.GATHER_TABLE_STATS(USER,'SALES2',OPTIONS=>'GATHER AUTO');

A query of the data dictionary now shows that the database created a histogram on the
prod_id column based on the information gather during the preceding query:

SQL> SELECT COLUMN_NAME, NOTES, HISTOGRAM
 2 FROM USER_TAB_COL_STATISTICS
 3 WHERE TABLE_NAME = 'SALES2';

COLUMN_NAME NOTES HISTOGRAM

Chapter 11
When Oracle Database Creates Histograms

11-2

------------- -------------- ---------
AMOUNT_SOLD STATS_ON_LOAD NONE
QUANTITY_SOLD STATS_ON_LOAD NONE
PROMO_ID STATS_ON_LOAD NONE
CHANNEL_ID STATS_ON_LOAD NONE
TIME_ID STATS_ON_LOAD NONE
CUST_ID STATS_ON_LOAD NONE
PROD_ID HISTOGRAM_ONLY FREQUENCY

How Oracle Database Chooses the Histogram Type
Oracle Database uses several criteria to determine which histogram to create: frequency, top
frequency, height-balanced, or hybrid.

The histogram formula uses the following variables:

• NDV

This represents the number of distinct values in a column. For example, if a column only
contains the values 100, 200, and 300, then the NDV for this column is 3.

• n

This variable represents the number of histogram buckets. The default is 254.

• p

This variable represents an internal percentage threshold that is equal to (1–(1/n)) * 100.
For example, if n = 254, then p is 99.6.

An additional criterion is whether the estimate_percent parameter in the DBMS_STATS statistics
gathering procedure is set to AUTO_SAMPLE_SIZE (default).

The following diagram shows the decision tree for histogram creation.

Figure 11-1 Decision Tree for Histogram Creation

NDV>n
Yes Yes Yes

Frequency
Histogram

?

No

ESTIMATE_PERCENT=

AUTO_SAMPLE_SIZE

Height-Balanced
Histogram

No

Percentage
of rows for top n

frequent values >= p

Hybrid
Histogram

No

Top n
Frequency
Histogram

NDV = Number of distinct values
n = Number of histogram buckets (default is 254)
p = (1-(1/n))*100

Chapter 11
How Oracle Database Chooses the Histogram Type

11-3

Cardinality Algorithms When Using Histograms
For histograms, the algorithm for cardinality depends on factors such as the endpoint numbers
and values, and whether column values are popular or nonpopular.

Endpoint Numbers and Values
An endpoint number is a number that uniquely identifies a bucket. In frequency and hybrid
histograms, the endpoint number is the cumulative frequency of all values included in the
current and previous buckets.

For example, a bucket with endpoint number 100 means the total frequency of values in the
current and all previous buckets is 100. In height-balanced histograms, the optimizer numbers
buckets sequentially, starting at 0 or 1. In all cases, the endpoint number is the bucket number.

An endpoint value is the highest value in the range of values in a bucket. For example, if a
bucket contains only the values 52794 and 52795, then the endpoint value is 52795.

Popular and Nonpopular Values
The popularity of a value in a histogram affects the cardinality estimate algorithm.

Specifically, the cardinality estimate is affected as follows:

• Popular values

A popular value occurs as an endpoint value of multiple buckets. The optimizer determines
whether a value is popular by first checking whether it is the endpoint value for a bucket. If
so, then for frequency histograms, the optimizer subtracts the endpoint number of the
previous bucket from the endpoint number of the current bucket. Hybrid histograms
already store this information for each endpoint individually. If this value is greater than 1,
then the value is popular.

The optimizer calculates its cardinality estimate for popular values using the following
formula:

cardinality of popular value =
 (num of rows in table) *
 (num of endpoints spanned by this value / total num of endpoints)

• Nonpopular values

Any value that is not popular is a nonpopular value. The optimizer calculates the cardinality
estimates for nonpopular values using the following formula:

cardinality of nonpopular value =
 (num of rows in table) * density

The optimizer calculates density using an internal algorithm based on factors such as the
number of buckets and the NDV. Density is expressed as a decimal number between 0
and 1. Values close to 1 indicate that the optimizer expects many rows to be returned by a
query referencing this column in its predicate list. Values close to 0 indicate that the
optimizer expects few rows to be returned.

Chapter 11
Cardinality Algorithms When Using Histograms

11-4

See Also:

Oracle Database Reference to learn about the DBA_TAB_COL_STATISTICS.DENSITY
column

Bucket Compression
In some cases, to reduce the total number of buckets, the optimizer compresses multiple
buckets into a single bucket.

For example, the following frequency histogram indicates that the first bucket number is 1 and
the last bucket number is 23:

ENDPOINT_NUMBER ENDPOINT_VALUE
--------------- --------------
 1 52792
 6 52793
 8 52794
 9 52795
 10 52796
 12 52797
 14 52798
 23 52799

Several buckets are "missing." Originally, buckets 2 through 6 each contained a single instance
of value 52793. The optimizer compressed all of these buckets into the bucket with the highest
endpoint number (bucket 6), which now contains 5 instances of value 52793. This value is
popular because the difference between the endpoint number of the current bucket (6) and the
previous bucket (1) is 5. Thus, before compression the value 52793 was the endpoint for 5
buckets.

The following annotations show which buckets are compressed, and which values are popular:

ENDPOINT_NUMBER ENDPOINT_VALUE
--------------- --------------
 1 52792 -> nonpopular
 6 52793 -> buckets 2-6 compressed into 6; popular
 8 52794 -> buckets 7-8 compressed into 8; popular
 9 52795 -> nonpopular
 10 52796 -> nonpopular
 12 52797 -> buckets 11-12 compressed into 12; popular
 14 52798 -> buckets 13-14 compressed into 14; popular
 23 52799 -> buckets 15-23 compressed into 23; popular

Frequency Histograms
In a frequency histogram, each distinct column value corresponds to a single bucket of the
histogram. Because each value has its own dedicated bucket, some buckets may have many
values, whereas others have few.

An analogy to a frequency histogram is sorting coins so that each individual coin initially gets
its own bucket. For example, the first penny is in bucket 1, the second penny is in bucket 2, the

Chapter 11
Frequency Histograms

11-5

first nickel is in bucket 3, and so on. You then consolidate all the pennies into a single penny
bucket, all the nickels into a single nickel bucket, and so on with the remainder of the coins.

Criteria For Frequency Histograms
Frequency histograms depend on the number of requested histogram buckets.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram Type", the
database creates a frequency histogram when the following criteria are met:

• NDV is less than or equal to n, where n is the number of histogram buckets (default 254).

For example, the sh.countries.country_subregion_id column has 8 distinct values,
ranging sequentially from 52792 to 52799. If n is the default of 254, then the optimizer
creates a frequency histogram because 8 <= 254.

• The estimate_percent parameter in the DBMS_STATS statistics gathering procedure is set
to either a user-specified value or to AUTO_SAMPLE_SIZE.

Starting in Oracle Database 12c, if the sampling size is the default of AUTO_SAMPLE_SIZE, then
the database creates frequency histograms from a full table scan. For all other sampling
percentage specifications, the database derives frequency histograms from a sample. In
releases earlier than Oracle Database 12c, the database gathered histograms based on a
small sample, which meant that low-frequency values often did not appear in the sample.
Using density in this case sometimes led the optimizer to overestimate selectivity.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about
AUTO_SAMPLE_SIZE

Generating a Frequency Histogram
This scenario shows how to generate a frequency histogram using the sample schemas.

Assumptions

This scenario assumes that you want to generate a frequency histogram on the
sh.countries.country_subregion_id column. This table has 23 rows.

The following query shows that the country_subregion_id column contains 8 distinct values
(sample output included) that are unevenly distributed:

SELECT country_subregion_id, count(*)
FROM sh.countries
GROUP BY country_subregion_id
ORDER BY 1;

COUNTRY_SUBREGION_ID COUNT(*)
-------------------- ----------
 52792 1
 52793 5
 52794 2
 52795 1
 52796 1

Chapter 11
Frequency Histograms

11-6

 52797 2
 52798 2
 52799 9

To generate a frequency histogram:

1. Gather statistics for sh.countries and the country_subregion_id column, letting the
number of buckets default to 254.

For example, execute the following PL/SQL anonymous block:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS (
 ownname => 'SH'
, tabname => 'COUNTRIES'
, method_opt => 'FOR COLUMNS COUNTRY_SUBREGION_ID'
);
END;

2. Query the histogram information for the country_subregion_id column.

For example, use the following query (sample output included):

SELECT TABLE_NAME, COLUMN_NAME, NUM_DISTINCT, HISTOGRAM
FROM USER_TAB_COL_STATISTICS
WHERE TABLE_NAME='COUNTRIES'
AND COLUMN_NAME='COUNTRY_SUBREGION_ID';

TABLE_NAME COLUMN_NAME NUM_DISTINCT HISTOGRAM
---------- -------------------- ------------ ---------------
COUNTRIES COUNTRY_SUBREGION_ID 8 FREQUENCY

The optimizer chooses a frequency histogram because n or fewer distinct values exist in
the column, where n defaults to 254.

3. Query the endpoint number and endpoint value for the country_subregion_id column.

For example, use the following query (sample output included):

SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE
FROM USER_HISTOGRAMS
WHERE TABLE_NAME='COUNTRIES'
AND COLUMN_NAME='COUNTRY_SUBREGION_ID';

ENDPOINT_NUMBER ENDPOINT_VALUE
--------------- --------------
 1 52792
 6 52793
 8 52794
 9 52795
 10 52796
 12 52797
 14 52798
 23 52799

Chapter 11
Frequency Histograms

11-7

Figure 11-2 is a graphical illustration of the 8 buckets in the histogram. Each value is
represented as a coin that is dropped into a bucket.

Figure 11-2 Frequency Histogram

52797

5279752797

Endpoint Value

Endpoint
Number: 12

52796

52796

Endpoint Value

Endpoint
Number: 10

52795

52795

Endpoint Value

Endpoint
Number: 9

52794

5279452794

Endpoint Value

Endpoint
Number: 8

52793

52793 5279352793

5279352793

Endpoint Value

Endpoint
Number: 6

52792

52792

Endpoint Value

Endpoint
Number: 1

52799

52799 5279952799

52799 5279952799

5279952799

52799

Endpoint Value

Endpoint
Number: 23

52798

5279852798

Endpoint Value

Endpoint
Number: 14

As shown in Figure 11-2, each distinct value has its own bucket. Because this is a
frequency histogram, the endpoint number is the cumulative frequency of endpoints. For
52793, the endpoint number 6 indicates that the value appears 5 times (6 - 1). For 52794,
the endpoint number 8 indicates that the value appears 2 times (8 - 6).

Chapter 11
Frequency Histograms

11-8

Every bucket whose endpoint is at least 2 greater than the previous endpoint contains a
popular value. Thus, buckets 6, 8, 12, 14, and 23 contain popular values. The optimizer
calculates their cardinality based on endpoint numbers. For example, the optimizer
calculates the cardinality (C) of value 52799 using the following formula, where the number
of rows in the table is 23:

C = 23 * (9 / 23)

Buckets 1, 9, and 10 contain nonpopular values. The optimizer estimates their cardinality
based on density.

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_TABLE_STATS procedure

• Oracle Database Reference to learn about the USER_TAB_COL_STATISTICS view

• Oracle Database Reference to learn about the USER_HISTOGRAMS view

Top Frequency Histograms
A top frequency histogram is a variation on a frequency histogram that ignores nonpopular
values that are statistically insignificant.

For example, if a pile of 1000 coins contains only a single penny, then you can ignore the
penny when sorting the coins into buckets. A top frequency histogram can produce a better
histogram for highly popular values.

Criteria For Top Frequency Histograms
If a small number of values occupies most of the rows, then creating a frequency histogram on
this small set of values is useful even when the NDV is greater than the number of requested
histogram buckets. To create a better quality histogram for popular values, the optimizer
ignores the nonpopular values and creates a top frequency histogram.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram Type", the
database creates a top frequency histogram when the following criteria are met:

• NDV is greater than n, where n is the number of histogram buckets (default 254).

• The percentage of rows occupied by the top n frequent values is equal to or greater than
threshold p, where p is (1-(1/n))*100.

• The estimate_percent parameter in the DBMS_STATS statistics gathering procedure is set
to AUTO_SAMPLE_SIZE.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about
AUTO_SAMPLE_SIZE

Chapter 11
Top Frequency Histograms

11-9

Generating a Top Frequency Histogram
This scenario shows how to generate a top frequency histogram using the sample schemas.

Assumptions

This scenario assumes that you want to generate a top frequency histogram on the
sh.countries.country_subregion_id column. This table has 23 rows.

The following query shows that the country_subregion_id column contains 8 distinct values
(sample output included) that are unevenly distributed:

SELECT country_subregion_id, count(*)
FROM sh.countries
GROUP BY country_subregion_id
ORDER BY 1;

COUNTRY_SUBREGION_ID COUNT(*)
-------------------- ----------
 52792 1
 52793 5
 52794 2
 52795 1
 52796 1
 52797 2
 52798 2
 52799 9

To generate a top frequency histogram:

1. Gather statistics for sh.countries and the country_subregion_id column, specifying
fewer buckets than distinct values.

For example, enter the following command to specify 7 buckets:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS (
 ownname => 'SH'
, tabname => 'COUNTRIES'
, method_opt => 'FOR COLUMNS COUNTRY_SUBREGION_ID SIZE 7'
);
END;

2. Query the histogram information for the country_subregion_id column.

For example, use the following query (sample output included):

SELECT TABLE_NAME, COLUMN_NAME, NUM_DISTINCT, HISTOGRAM
FROM USER_TAB_COL_STATISTICS
WHERE TABLE_NAME='COUNTRIES'
AND COLUMN_NAME='COUNTRY_SUBREGION_ID';

TABLE_NAME COLUMN_NAME NUM_DISTINCT HISTOGRAM
---------- -------------------- ------------ ---------------
COUNTRIES COUNTRY_SUBREGION_ID 7 TOP-FREQUENCY

Chapter 11
Top Frequency Histograms

11-10

The sh.countries.country_subregion_id column contains 8 distinct values, but the
histogram only contains 7 buckets, making n=7. In this case, the database can only create
a top frequency or hybrid histogram. In the country_subregion_id column, the top 7 most
frequent values occupy 95.6% of the rows, which exceeds the threshold of 85.7%,
generating a top frequency histogram.

3. Query the endpoint number and endpoint value for the column.

For example, use the following query (sample output included):

SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE
FROM USER_HISTOGRAMS
WHERE TABLE_NAME='COUNTRIES'
AND COLUMN_NAME='COUNTRY_SUBREGION_ID';

ENDPOINT_NUMBER ENDPOINT_VALUE
--------------- --------------
 1 52792
 6 52793
 8 52794
 9 52796
 11 52797
 13 52798
 22 52799

Figure 11-3 is a graphical illustration of the 7 buckets in the top frequency histogram. The
values are represented in the diagram as coins.

Chapter 11
Top Frequency Histograms

11-11

Figure 11-3 Top Frequency Histogram

52797

5279752797

Endpoint Value

Endpoint
Number: 11

52796

52796

Endpoint Value

Endpoint
Number: 9

52794

5279452794

Endpoint Value

Endpoint
Number: 8

52793

52793 5279352793

5279352793

Endpoint Value

Endpoint
Number: 6

52792

52792

Endpoint Value

Endpoint
Number: 1

52799

52799 5279952799

52799 5279952799

5279952799

52799

Endpoint Value

Endpoint
Number: 22

52798

5279852798

Endpoint Value

Endpoint
Number: 13

As shown in Figure 11-3, each distinct value has its own bucket except for 52795, which is
excluded from the histogram because it is nonpopular and statistically insignificant. As in a
standard frequency histogram, the endpoint number represents the cumulative frequency
of values.

Chapter 11
Top Frequency Histograms

11-12

See Also:

• "Criteria For Frequency Histograms"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_TABLE_STATS procedure

• Oracle Database Reference to learn about the USER_TAB_COL_STATISTICS view

• Oracle Database Reference to learn about the USER_HISTOGRAMS view

Height-Balanced Histograms (Legacy)
In a legacy height-balanced histogram, column values are divided into buckets so that each
bucket contains approximately the same number of rows.

For example, if you have 99 coins to distribute among 4 buckets, each bucket contains about
25 coins. The histogram shows where the endpoints fall in the range of values.

Criteria for Height-Balanced Histograms
Before Oracle Database 12c, the database created a height-balanced histogram when the
NDV was greater than n. This type of histogram was useful for range predicates, and equality
predicates on values that appear as endpoints in at least two buckets.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram Type", the
database creates a height-balanced histogram when the following criteria are met:

• NDV is greater than n, where n is the number of histogram buckets (default 254).

• The estimate_percent parameter in the DBMS_STATS statistics gathering procedure is not
set to AUTO_SAMPLE_SIZE.

It follows that if Oracle Database 12c creates new histograms, and if the sampling percentage
is AUTO_SAMPLE_SIZE, then the histograms are either top frequency or hybrid, but not height-
balanced.

If you upgrade Oracle Database 11g to Oracle Database 12c, then any height-based
histograms created before the upgrade remain in use. However, if you refresh statistics on the
table on which the histogram was created, then the database replaces existing height-
balanced histograms on this table. The type of replacement histogram depends on both the
NDV and the following criteria:

• If the sampling percentage is AUTO_SAMPLE_SIZE, then the database creates either hybrid
or frequency histograms.

• If the sampling percentage is not AUTO_SAMPLE_SIZE, then the database creates either
height-balanced or frequency histograms.

Chapter 11
Height-Balanced Histograms (Legacy)

11-13

Generating a Height-Balanced Histogram
This scenario shows how to generate a height-balanced histogram using the sample schemas.

Assumptions

This scenario assumes that you want to generate a height-balanced histogram on the
sh.countries.country_subregion_id column. This table has 23 rows.

The following query shows that the country_subregion_id column contains 8 distinct values
(sample output included) that are unevenly distributed:

SELECT country_subregion_id, count(*)
FROM sh.countries
GROUP BY country_subregion_id
ORDER BY 1;

COUNTRY_SUBREGION_ID COUNT(*)
-------------------- ----------
 52792 1
 52793 5
 52794 2
 52795 1
 52796 1
 52797 2
 52798 2
 52799 9

To generate a height-balanced histogram:

1. Gather statistics for sh.countries and the country_subregion_id column, specifying
fewer buckets than distinct values.

Note:

To simulate Oracle Database 11g behavior, which is necessary to create a
height-based histogram, set estimate_percent to a nondefault value. If you
specify a nondefault percentage, then the database creates frequency or height-
balanced histograms.

For example, enter the following command:

BEGIN DBMS_STATS.GATHER_TABLE_STATS (
 ownname => 'SH'
, tabname => 'COUNTRIES'
, method_opt => 'FOR COLUMNS COUNTRY_SUBREGION_ID SIZE 7'
, estimate_percent => 100
);
END;

2. Query the histogram information for the country_subregion_id column.

Chapter 11
Height-Balanced Histograms (Legacy)

11-14

For example, use the following query (sample output included):

SELECT TABLE_NAME, COLUMN_NAME, NUM_DISTINCT, HISTOGRAM
FROM USER_TAB_COL_STATISTICS
WHERE TABLE_NAME='COUNTRIES'
AND COLUMN_NAME='COUNTRY_SUBREGION_ID';

TABLE_NAME COLUMN_NAME NUM_DISTINCT HISTOGRAM
---------- -------------------- ------------ ---------------
COUNTRIES COUNTRY_SUBREGION_ID 8 HEIGHT BALANCED

The optimizer chooses a height-balanced histogram because the number of distinct values
(8) is greater than the number of buckets (7), and the estimate_percent value is
nondefault.

3. Query the number of rows occupied by each distinct value.

For example, use the following query (sample output included):

SELECT COUNT(country_subregion_id) AS NUM_OF_ROWS, country_subregion_id
FROM countries
GROUP BY country_subregion_id
ORDER BY 2;

NUM_OF_ROWS COUNTRY_SUBREGION_ID
----------- --------------------
 1 52792
 5 52793
 2 52794
 1 52795
 1 52796
 2 52797
 2 52798
 9 52799

4. Query the endpoint number and endpoint value for the country_subregion_id column.

For example, use the following query (sample output included):

SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE
FROM USER_HISTOGRAMS
WHERE TABLE_NAME='COUNTRIES'
AND COLUMN_NAME='COUNTRY_SUBREGION_ID';

ENDPOINT_NUMBER ENDPOINT_VALUE
--------------- --------------
 0 52792
 2 52793
 3 52795
 4 52798
 7 52799

The following illustration represents a height-balanced histogram. The values are
represented in the diagram as coins.

Chapter 11
Height-Balanced Histograms (Legacy)

11-15

Figure 11-4 Height-Balanced Histogram

52795

5279552794

52794

Endpoint Value

Endpoint
Number: 3

52793

52793 5279352793

5279352793

Endpoint Value

Endpoint
Number: 2

52792

52792

Endpoint Value

Endpoint
Number: 0

52799

52799 5279952799

52799 5279952799

5279952799

52799

Endpoint Value

Endpoint
Number: 7

52798

5279852798

5279752797

Endpoint Value

Endpoint
Number: 4

The bucket number is identical to the endpoint number. The optimizer records the value of
the last row in each bucket as the endpoint value, and then checks to ensure that the
minimum value is the endpoint value of the first bucket, and the maximum value is the
endpoint value of the last bucket. In this example, the optimizer adds bucket 0 so that the
minimum value 52792 is the endpoint of a bucket.

The optimizer must evenly distribute 23 rows into the 7 specified histogram buckets, so
each bucket contains approximately 3 rows. However, the optimizer compresses buckets
with the same endpoint. So, instead of bucket 1 containing 2 instances of value 52793, and
bucket 2 containing 3 instances of value 52793, the optimizer puts all 5 instances of value
52793 into bucket 2. Similarly, instead of having buckets 5, 6, and 7 contain 3 values each,
with the endpoint of each bucket as 52799, the optimizer puts all 9 instances of value 52799
into bucket 7.

In this example, buckets 3 and 4 contain nonpopular values because the difference
between the current endpoint number and previous endpoint number is 1. The optimizer
calculates cardinality for these values based on density. The remaining buckets contain
popular values. The optimizer calculates cardinality for these values based on endpoint
numbers.

Chapter 11
Height-Balanced Histograms (Legacy)

11-16

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_TABLE_STATS procedure

• Oracle Database Reference to learn about the USER_TAB_COL_STATISTICS and
USER_HISTOGRAMS views

Hybrid Histograms
A hybrid histogram combines characteristics of both height-based histograms and frequency
histograms. This "best of both worlds" approach enables the optimizer to obtain better
selectivity estimates in some situations.

The height-based histogram sometimes produces inaccurate estimates for values that are
almost popular. For example, a value that occurs as an endpoint value of only one bucket but
almost occupies two buckets is not considered popular.

To solve this problem, a hybrid histogram distributes values so that no value occupies more
than one bucket, and then stores the endpoint repeat count value, which is the number of
times the endpoint value is repeated, for each endpoint (bucket) in the histogram. By using the
repeat count, the optimizer can obtain accurate estimates for almost popular values.

How Endpoint Repeat Counts Work
The analogy of coins distributed among buckets illustrate show endpoint repeat counts work.

The following figure illustrates a coins column that sorts values from low to high.

Figure 11-5 Coins

1 1 1 5 5 5 10 10 25 25 25 25 50 100 100

You gather statistics for this table, setting the method_opt argument of
DBMS_STATS.GATHER_TABLE_STATS to FOR ALL COLUMNS SIZE 3. In this case, the optimizer
initially groups the values in the coins column into three buckets, as shown in the following
figure.

Chapter 11
Hybrid Histograms

11-17

Figure 11-6 Initial Distribution of Values

1 1 1

5 5

5

Endpoint Value

Bucket 1

5 10 10

25 25

25

Endpoint Value

Bucket 2

25 25 50

100 100

100

Endpoint Value

Bucket 3

If a bucket border splits a value so that some occurrences of the value are in one bucket and
some in another, then the optimizer shifts the bucket border (and all other following bucket
borders) forward to include all occurrences of the value. For example, the optimizer shifts value
5 so that it is now wholly in the first bucket, and the value 25 is now wholly in the second
bucket.

Figure 11-7 Redistribution of Values

1 1 1

5 5

5

5

Endpoint Value

Bucket 1

25 25

25 25

10 10

25

Endpoint Value

Bucket 2

50

100 100

100

Endpoint Value

Bucket 3

The endpoint repeat count measures the number of times that the corresponding bucket
endpoint, which is the value at the right bucket border, repeats itself. For example, in the first
bucket, the value 5 is repeated 3 times, so the endpoint repeat count is 3.

Chapter 11
Hybrid Histograms

11-18

Figure 11-8 Endpoint Repeat Count

1 1 1

5 5

5

5

Endpoint Value

Bucket 1

Repeat Count: 3

25 25

25 25

10 10

25

Endpoint Value

Bucket 2

Repeat Count: 4

50

100 100

100

Endpoint Value

Bucket 3

Repeat Count: 2

Height-balanced histograms do not store as much information as hybrid histograms. By using
repeat counts, the optimizer can determine exactly how many occurrences of an endpoint
value exist. For example, the optimizer knows that the value 5 appears 3 times, the value 25
appears 4 times, and the value 100 appears 2 times. This frequency information helps the
optimizer to generate better cardinality estimates.

Criteria for Hybrid Histograms
The only differentiating criterion for hybrid histograms as compared to top frequency
histograms is that the top n frequent values is less than internal threshold p.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram Type", the
database creates a hybrid histogram when the following criteria are met:

• NDV is greater than n, where n is the number of histogram buckets (default is 254).

• The criteria for top frequency histograms do not apply.

This is another way to stating that the percentage of rows occupied by the top n frequent
values is less than threshold p, where p is (1-(1/n))*100.

• The estimate_percent parameter in the DBMS_STATS statistics gathering procedure is set
to AUTO_SAMPLE_SIZE.

If users specify their own percentage, then the database creates frequency or height-
balanced histograms.

See Also:

• "Criteria For Top Frequency Histograms."

• "Height-Balanced Histograms (Legacy)"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the estimate_percent parameter

Chapter 11
Hybrid Histograms

11-19

Generating a Hybrid Histogram
This scenario shows how to generate a hybrid histogram using the sample schemas.

Assumptions

This scenario assumes that you want to generate a hybrid histogram on the
sh.products.prod_subcategory_id column. This table has 72 rows. The
prod_subcategory_id column contains 22 distinct values.

To generate a hybrid histogram:

1. Gather statistics for sh.products and the prod_subcategory_id column, specifying 10
buckets.

For example, enter the following command:

BEGIN DBMS_STATS.GATHER_TABLE_STATS (
 ownname => 'SH'
, tabname => 'PRODUCTS'
, method_opt => 'FOR COLUMNS PROD_SUBCATEGORY_ID SIZE 10'
);
END;

2. Query the number of rows occupied by each distinct value.

For example, use the following query (sample output included):

SELECT COUNT(prod_subcategory_id) AS NUM_OF_ROWS, prod_subcategory_id
FROM products
GROUP BY prod_subcategory_id
ORDER BY 1 DESC;

NUM_OF_ROWS PROD_SUBCATEGORY_ID
----------- -------------------
 8 2014
 7 2055
 6 2032
 6 2054
 5 2056
 5 2031
 5 2042
 5 2051
 4 2036
 3 2043
 2 2033
 2 2034
 2 2013
 2 2012
 2 2053
 2 2035
 1 2022
 1 2041
 1 2044
 1 2011
 1 2021

Chapter 11
Hybrid Histograms

11-20

 1 2052

22 rows selected.

The column contains 22 distinct values. Because the number of buckets (10) is less than
22, the optimizer cannot create a frequency histogram. The optimizer considers both
hybrid and top frequency histograms. To qualify for a top frequency histogram, the
percentage of rows occupied by the top 10 most frequent values must be equal to or
greater than threshold p, where p is (1-(1/10))*100, or 90%. However, in this case the top
10 most frequent values occupy 54 rows out of 72, which is only 75% of the total.
Therefore, the optimizer chooses a hybrid histogram because the criteria for a top
frequency histogram do not apply.

3. Query the histogram information for the country_subregion_id column.

For example, use the following query (sample output included):

SELECT TABLE_NAME, COLUMN_NAME, NUM_DISTINCT, HISTOGRAM
FROM USER_TAB_COL_STATISTICS
WHERE TABLE_NAME='PRODUCTS'
AND COLUMN_NAME='PROD_SUBCATEGORY_ID';

TABLE_NAME COLUMN_NAME NUM_DISTINCT HISTOGRAM
---------- ------------------- ------------ ---------
PRODUCTS PROD_SUBCATEGORY_ID 22 HYBRID

4. Query the endpoint number, endpoint value, and endpoint repeat count for the
country_subregion_id column.

For example, use the following query (sample output included):

SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE, ENDPOINT_REPEAT_COUNT
FROM USER_HISTOGRAMS
WHERE TABLE_NAME='PRODUCTS'
AND COLUMN_NAME='PROD_SUBCATEGORY_ID'
ORDER BY 1;

ENDPOINT_NUMBER ENDPOINT_VALUE ENDPOINT_REPEAT_COUNT
--------------- -------------- ---------------------
 1 2011 1
 13 2014 8
 26 2032 6
 36 2036 4
 45 2043 3
 51 2051 5
 52 2052 1
 54 2053 2
 60 2054 6
 72 2056 5

10 rows selected.

In a height-based histogram, the optimizer would evenly distribute 72 rows into the 10
specified histogram buckets, so that each bucket contains approximately 7 rows. Because
this is a hybrid histogram, the optimizer distributes the values so that no value occupies
more than one bucket. For example, the optimizer does not put some instances of value

Chapter 11
Hybrid Histograms

11-21

2036 into one bucket and some instances of this value into another bucket: all instances
are in bucket 36.

The endpoint repeat count shows the number of times the highest value in the bucket is
repeated. By using the endpoint number and repeat count for these values, the optimizer
can estimate cardinality. For example, bucket 36 contains instances of values 2033, 2034,
2035, and 2036. The endpoint value 2036 has an endpoint repeat count of 4, so the
optimizer knows that 4 instances of this value exist. For values such as 2033, which are not
endpoints, the optimizer estimates cardinality using density.

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_TABLE_STATS procedure

• Oracle Database Reference to learn about the USER_TAB_COL_STATISTICS view

• Oracle Database Reference to learn about the USER_HISTOGRAMS view

Chapter 11
Hybrid Histograms

11-22

12
Configuring Options for Optimizer Statistics
Gathering

This chapter explains what optimizer statistics collection is and how to set statistics
preferences.

About Optimizer Statistics Collection
In Oracle Database, optimizer statistics collection is the gathering of optimizer statistics for
database objects, including fixed objects.

The database can collect optimizer statistics automatically. You can also collect them manually
using the DBMS_STATS package.

Purpose of Optimizer Statistics Collection
The contents of tables and associated indexes change frequently, which can lead the optimizer
to choose suboptimal execution plan for queries. To avoid potential performance issues,
statistics must be kept current.

To minimize DBA involvement, Oracle Database automatically gathers optimizer statistics at
various times. Some automatic options are configurable, such enabling AutoTask to run
DBMS_STATS.

User Interfaces for Optimizer Statistics Management
You can manage optimizer statistics either through Oracle Enterprise Manager Cloud Control
(Cloud Control) or using PL/SQL on the command line.

Graphical Interface for Optimizer Statistics Management
The Manage Optimizer Statistics page in Cloud Control is a GUI that enables you to manage
optimizer statistics.

Accessing the Database Home Page in Cloud Control
Oracle Enterprise Manager Cloud Control enables you to manage multiple databases within a
single GUI-based framework.

To access a database home page using Cloud Control:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

12-1

See Also:

Cloud Control online help

Accessing the Optimizer Statistics Console
You can perform most necessary tasks relating to optimizer statistics through pages linked to
by the Optimizer Statistics Console page.

To manage optimizer statistics using Cloud Control:

1. In Cloud Control, access the Database Home page.

2. From the Performance menu, select SQL, then Optimizer Statistics.

The Optimizer Statistics Console appears.

See Also:

Online Help for Oracle Enterprise Manager Cloud Control

Command-Line Interface for Optimizer Statistics Management
The DBMS_STATS package performs most optimizer statistics tasks.

To enable and disable automatic statistics gathering, use the DBMS_AUTO_TASK_ADMIN PL/SQL
package.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn how to use
DBMS_STATS and DBMS_AUTO_TASK_ADMIN

Setting Optimizer Statistics Preferences
This topic explains how to set optimizer statistics defaults using DBMS_STATS.SET_*_PREFS
procedures.

About Optimizer Statistics Preferences
The optimizer statistics preferences set the default values of the parameters used by
automatic statistics collection and the DBMS_STATS statistics gathering procedures.

Purpose of Optimizer Statistics Preferences
Preferences enable you to maintain optimizer statistics automatically when some objects
require settings that differ from the default.

Chapter 12
Setting Optimizer Statistics Preferences

12-2

Preferences give you more granular control over how Oracle Database gathers statistics. You
can set optimizer statistics preferences at the following levels:

• Table

• Schema

• Database (all tables)

• Global (tables with no preferences and any tables created in the future)

The DBMS_STATS procedures for setting preferences have names of the form SET_*_PREFS.

Examples of Statistics Preferences
Set preferences using the pname parameter of the SET_*_PREFS procedures.

Preferences that you can set include, but are not limited to, the following:

• ESTIMATE_PERCENT
This preference determines the percentage of rows to estimate.

• CONCURRENT
This preference determines whether the database gathers statistics concurrently on
multiple objects, or serially, one object at a time.

• STALE_PERCENT
This preference determines the percentage of rows in a table that must change before the
database deems the statistics stale and in need of regathering.

• AUTO_STAT_EXTENSIONS
When set to the non-default value of ON, this preference enables a SQL plan directive to
trigger the creation of column group statistics based on usage of columns in the predicates
in the workload.

• INCREMENTAL
This preference determines whether the database maintains the global statistics of a
partitioned table without performing a full table scan. Possible values are TRUE and FALSE.

For example, by the default setting for INCREMENTAL is FALSE. You can set INCREMENTAL to
TRUE for a range-partitioned table when the last few partitions are updated. Also, when
performing a partition exchange operation on a nonpartitioned table, Oracle recommends
that you set INCREMENTAL to TRUE and INCREMENTAL_LEVEL to TABLE. With these settings,
DBMS_STATS gathers table-level synopses on this table.

• INCREMENTAL_LEVEL
This preference controls what synopses to collect when INCREMENTAL preference is set to
TRUE. It takes two values: TABLE or PARTITION.

• APPROXIMATE_NDV_ALGORITHM
This preference controls which algorithm to use when calculating the number of distinct
values for partitioned tables using incremental statistics.

• ROOT_TRIGGER_PDB
This preference controls whether to accept or reject the statistics gathering triggered from
an application root in a CDB.

Chapter 12
Setting Optimizer Statistics Preferences

12-3

By default, when gathering statistics for a metadata-linked table in the application root, if
the statistics the application PDB are stale, the database does not trigger statistics
gathering on the application PDB. When set to TRUE, ROOT_TRIGGER_PDB triggers statistics
gathering on the application PDB, and then derives the global statistics in the application
root.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS procedures for setting optimizer statistics preferences

DBMS_STATS Procedures for Setting Statistics Preferences
The DBMS_STATS.SET_*_PREFS procedures change the defaults of parameters used by the
DBMS_STATS.GATHER_*_STATS procedures. To query the current preferences, use the
DBMS_STATS.GET_PREFS function.

When setting statistics preferences, the order of precedence is:

1. Table preference (set for a specific table, all tables in a schema, or all tables in the
database)

2. Global preference

3. Default preference

The following table summarizes the relevant DBMS_STATS procedures.

Table 12-1 DBMS_STATS Procedures for Setting Optimizer Statistics Preferences

Procedure Scope

SET_TABLE_PREFS Specified table only.

SET_SCHEMA_PREFS All existing tables in the specified schema.

This procedure calls SET_TABLE_PREFS for each table in the specified
schema. Calling SET_SCHEMA_PREFS does not affect any new tables
created after it has been run. New tables use the GLOBAL_PREF values
for all parameters.

SET_DATABASE_PREFS All user-defined schemas in the database. You can include system-
owned schemas such as SYS and SYSTEM by setting the ADD_SYS
parameter to true.

This procedure calls SET_TABLE_PREFS for each table in the specified
schema. Calling SET_DATABASE_PREFS does not affect any new
objects created after it has been run. New objects use the
GLOBAL_PREF values for all parameters.

Chapter 12
Setting Optimizer Statistics Preferences

12-4

Table 12-1 (Cont.) DBMS_STATS Procedures for Setting Optimizer Statistics
Preferences

Procedure Scope

SET_GLOBAL_PREFS Any table that does not have an existing table preference.

All parameters default to the global setting unless a table preference is
set or the parameter is explicitly set in the
DBMS_STATS.GATHER_*_STATS statement. Changes made by
SET_GLOBAL_PREFS affect any new objects created after it runs. New
objects use the SET_GLOBAL_PREFS values for all parameters.

With SET_GLOBAL_PREFS, you can set a default value for the
parameter AUTOSTATS_TARGET. This additional parameter controls
which objects the automatic statistic gathering job running in the
nightly maintenance window affects. Possible values for
AUTOSTATS_TARGET are ALL, ORACLE, and AUTO (default).

You can only set the CONCURRENT preference at the global level. You
cannot set the preference INCREMENTAL_LEVEL using
SET_GLOBAL_PREFS.

See Also:

• "About Concurrent Statistics Gathering"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS procedures for setting optimizer statistics preferences

Statistics Preference Overrides
The preference_overrides_parameter statistics preference determines whether, when
gathering optimizer statistics, to override the input value of a parameter with the statistics
preference. In this way, you control when the database honors a parameter value passed to
the statistics gathering procedures.

When preference_overrides_parameter is set to FALSE (default), the input values for statistics
gathering procedures are honored. When set to TRUE, the input values are ignored.

Set the preference_overrides_parameter preference using the SET_TABLE_PREFS,
SET_SCHEMA_PREFS, or SET_GLOBAL_PREFS procedures in DBMS_STATS. Regardless of whether
preference_overrides_parameter is set, the database uses the same order of precedence for
setting statistics:

1. Table preference (set for a specific table, all tables in a schema, or all tables in the
database)

2. Global preference

3. Default preference

Example 12-1 Overriding Statistics Preferences at the Table Level

In this example, legacy scripts set estimate_percent explicitly rather than using the
recommended AUTO_SAMPLE_SIZE. Your goal is to prevent users from using these scripts to set
preferences on the sh.costs table.

Chapter 12
Setting Optimizer Statistics Preferences

12-5

Table 12-2 Overriding Statistics Preferences at the Table Level

Action Description

SQL> SELECT DBMS_STATS.GET_PREFS
('estimate_percent', 'sh','costs')
AS "STAT_PREFS" FROM DUAL;

STAT_PREFS

DBMS_STATS.AUTO_SAMPLE_SIZE

No preference for estimate_percent is set for sh.costs
or at the global level, so the preference defaults to
AUTO_SAMPLE_SIZE.

SQL> EXEC DBMS_STATS.SET_TABLE_PREFS
('sh', 'costs',
'preference_overrides_parameter', 'true');

PL/SQL procedure successfully completed.

By default, Oracle Database accepts preferences that are
passed to the GATHER_*_STATS procedures. To override
these parameters, you use SET_TABLE_PREFS to set the
preference_overrides_parameter preference to true
for the costs table only.

SQL> EXEC DBMS_STATS.GATHER_TABLE_STATS
('sh', 'costs', estimate_percent=>100);

PL/SQL procedure successfully completed.

You attempt to set estimate_percent to 100 when
gathering statistics for sh.costs. However, because
preference_overrides_parameter is true for this
table, Oracle Database does not honor the
estimate_percent=>100setting. Instead, the database
gathers statistics using AUTO_SAMPLE_SIZE, which is the
default.

Example 12-2 Overriding Statistics Preferences at the Global Level

In this example, you set estimate_percent to 5 at the global level, which means that this
preference applies to every table in the database that does not have a table preference set.
You then set an override on the sh.sales table, which does not have a table-level preference
set, to prevent users from overriding the global setting in their scripts.

Table 12-3 Overriding Statistics Preferences at the Global Level

Action Description

SQL> SELECT DBMS_STATS.GET_PREFS
('estimate_percent', 'sh','sales')
AS "STAT_PREFS" FROM DUAL;

STAT_PREFS

DBMS_STATS.AUTO_SAMPLE_SIZE

No preference for estimate_percent is set for sh.sales
or at the global level, so the preference defaults to
AUTO_SAMPLE_SIZE.

Chapter 12
Setting Optimizer Statistics Preferences

12-6

Table 12-3 (Cont.) Overriding Statistics Preferences at the Global Level

Action Description

SQL> EXEC DBMS_STATS.SET_GLOBAL_PREFS
('estimate_percent', '5');

PL/SQL procedure successfully completed.

You use the SET_GLOBAL_PREFS procedure to set the
estimate_percent preference to 5 for every table in the
database that does not have a table preference set.

SQL> SELECT DBMS_STATS.GET_PREFS
('estimate_percent', 'sh','sales')
AS "STAT_PREFS" FROM DUAL;

STAT_PREFS

5

Because sh.sales does not have a preference set, the
global setting applies to this table. A query of the
preferences for sh.sales now shows that the
estimate_percent setting is 5, which is the global setting.

SQL> EXEC DBMS_STATS.SET_TABLE_PREFS
('sh', 'sales',
'preference_overrides_parameter', 'true');

PL/SQL procedure successfully completed.

You use SET_TABLE_PREFS to set the
preference_overrides_parameter preference to true
for the sh.sales table only.

SQL> EXEC DBMS_STATS.GATHER_TABLE_STATS
('sh', 'sales', estimate_percent=>10);

PL/SQL procedure successfully completed.

You attempt to set estimate_percent to 10 when
gathering statistics for sh.sales. However, because
preference_overrides_parameter is true for the
sales table, and because a global preference is defined,
Oracle Database actually gathers statistics using the global
setting of 5.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS procedures for setting optimizer statistics

Setting Statistics Preferences: Example
This example illustrates the relationship between SET_TABLE_PREFS, SET_SCHEMA_STATS, and
SET_DATABASE_PREFS.

Chapter 12
Setting Optimizer Statistics Preferences

12-7

Table 12-4 Changing Preferences for Statistics Gathering Procedures

Action Description

SQL> SELECT DBMS_STATS.GET_PREFS
('incremental', 'sh','costs')
AS "STAT_PREFS" FROM DUAL;

STAT_PREFS

TRUE

You query the INCREMENTAL preference for costs and
determine that it is set to true.

SQL> EXEC DBMS_STATS.SET_TABLE_PREFS
('sh', 'costs', 'incremental', 'false');

PL/SQL procedure successfully completed.

You use SET_TABLE_PREFS to set the INCREMENTAL
preference to false for the costs table only.

SQL> SELECT DBMS_STATS.GET_PREFS
('incremental', 'sh', 'costs')
AS "STAT_PREFS" FROM DUAL;

STAT_PREFS

FALSE

You query the INCREMENTAL preference for costs and
confirm that it is set to false.

SQL> EXEC DBMS_STATS.SET_SCHEMA_PREFS
('sh', 'incremental', 'true');

PL/SQL procedure successfully completed.

You use SET_SCHEMA_PREFS to set the INCREMENTAL
preference to true for every table in the sh schema,
including costs.

SQL> SELECT DBMS_STATS.GET_PREFS
('incremental', 'sh', 'costs')
AS "STAT_PREFS" FROM DUAL;

STAT_PREFS

TRUE

You query the INCREMENTAL preference for costs and
confirm that it is set to true.

SQL> EXEC DBMS_STATS.SET_DATABASE_PREFS
('incremental', 'false');

PL/SQL procedure successfully completed.

You use SET_DATABASE_PREFS to set the INCREMENTAL
preference for all tables in all user-defined schemas to
false.

SQL> SELECT DBMS_STATS.GET_PREFS
('incremental', 'sh', 'costs')
AS "STAT_PREFS" FROM DUAL;

STAT_PREFS

FALSE

You query the INCREMENTAL preference for costs and
confirm that it is set to false.

Chapter 12
Setting Optimizer Statistics Preferences

12-8

Setting Global Optimizer Statistics Preferences Using Cloud Control
A global preference applies to any object in the database that does not have an existing table
preference. You can set optimizer statistics preferences at the global level using Cloud Control.

To set global optimizer statistics preferences using Cloud Control:

1. In Cloud Control, access the Database Home page.

2. From the Performance menu, select SQL, then Optimizer Statistics.

The Optimizer Statistics Console appears.

3. Click Global Statistics Gathering Options.

The Global Statistics Gathering Options page appears.

4. Make your desired changes, and click Apply.

See Also:

Online Help for Oracle Enterprise Manager Cloud Control

Setting Object-Level Optimizer Statistics Preferences Using Cloud Control
You can set optimizer statistics preferences at the database, schema, and table level using
Cloud Control.

To set object-level optimizer statistics preferences using Cloud Control:

1. In Cloud Control, access the Database Home page.

2. From the Performance menu, select SQL, then Optimizer Statistics.

The Optimizer Statistics Console appears.

3. Click Object Level Statistics Gathering Preferences.

The Object Level Statistics Gathering Preferences page appears.

4. To modify table preferences for a table that has preferences set at the table level, do the
following (otherwise, skip to the next step):

a. Enter values in Schema and Table Name. Leave Table Name blank to see all tables
in the schema.

The page refreshes with the table names.

b. Select the desired tables and click Edit Preferences.

The General subpage of the Edit Preferences page appears.

c. Change preferences as needed and click Apply.

5. To set preferences for a table that does not have preferences set at the table level, do the
following (otherwise, skip to the next step):

a. Click Add Table Preferences.

The General subpage of the Add Table Preferences page appears.

b. In Table Name, enter the schema and table name.

Chapter 12
Setting Optimizer Statistics Preferences

12-9

c. Change preferences as needed and click OK.

6. To set preferences for a schema, do the following:

a. Click Set Schema Tables Preferences.

The General subpage of the Edit Schema Preferences page appears.

b. In Schema, enter the schema name.

c. Change preferences as needed and click OK.

See Also:

Online Help for Oracle Enterprise Manager Cloud Control

Setting Optimizer Statistics Preferences from the Command Line
If you do not use Cloud Control to set optimizer statistics preferences, then you can invoke the
DBMS_STATS procedures from the command line.

Prerequisites

This task has the following prerequisites:

• To set the global or database preferences, you must have SYSDBA privileges, or both
ANALYZE ANY DICTIONARY and ANALYZE ANY system privileges.

• To set schema preferences, you must connect as owner, or have SYSDBA privileges, or
have the ANALYZE ANY system privilege.

• To set table preferences, you must connect as owner of the table or have the ANALYZE ANY
system privilege.

To set optimizer statistics preferences from the command line:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Optionally, call the DBMS_STATS.GET_PREFS procedure to see preferences set at the object
level, or at the global level if a specific table is not set.

For example, obtain the STALE_PERCENT parameter setting for the sh.sales table as
follows:

SELECT DBMS_STATS.GET_PREFS('STALE_PERCENT', 'SH', 'SALES')
FROM DUAL;

3. Execute the appropriate procedure from Table 12-1, specifying the following parameters:

• ownname - Set schema name (SET_TAB_PREFS and SET_SCHEMA_PREFS only)

• tabname - Set table name (SET_TAB_PREFS only)

• pname - Set parameter name

• pvalue - Set parameter value

• add_sys - Include system tables (optional, SET_DATABASE_PREFS only)

Chapter 12
Setting Optimizer Statistics Preferences

12-10

The following example specifies that 13% of rows in sh.sales must change before the
statistics on that table are considered stale:

EXEC DBMS_STATS.SET_TABLE_PREFS('SH', 'SALES', 'STALE_PERCENT', '13');

4. Optionally, query the *_TAB_STAT_PREFS view to confirm the change.

For example, query DBA_TAB_STAT_PREFS as follows:

COL OWNER FORMAT a5
COL TABLE_NAME FORMAT a15
COL PREFERENCE_NAME FORMAT a20
COL PREFERENCE_VALUE FORMAT a30
SELECT * FROM DBA_TAB_STAT_PREFS;

Sample output appears as follows:

OWNER TABLE_NAME PREFERENCE_NAME PREFERENCE_VALUE
----- --------------- -------------------- -----------------------------
OE CUSTOMERS NO_INVALIDATE DBMS_STATS.AUTO_INVALIDATE
SH SALES STALE_PERCENT 13

See Also:

Oracle Database PL/SQL Packages and Types Reference for descriptions of the
parameter names and values for program units

Configuring Options for Dynamic Statistics
Dynamic statistics are an optimization technique in which the database uses recursive SQL
to scan a small random sample of the blocks in a table.

The sample scan estimate predicate selectivities. Using these estimates, the database
determines better default statistics for unanalyzed segments, and verifies its estimates. By
default, when optimizer statistics are missing, stale, or insufficient, dynamic statistics
automatically run recursive SQL during parsing to scan a small random sample of table blocks.

About Dynamic Statistics Levels
The dynamic statistics level controls both when the database gathers dynamic statistics, and
the size of the sample that the optimizer uses to gather the statistics.

Set the dynamic statistics level using either the OPTIMIZER_DYNAMIC_SAMPLING initialization
parameter or a statement hint.

Note:

Dynamic statistics were called dynamic sampling in releases earlier than Oracle
Database 12c Release 1 (12.1).

Chapter 12
Configuring Options for Dynamic Statistics

12-11

The following table describes the levels for dynamic statistics. Note the following:

• If dynamic statistics are enabled, then the database may choose to use dynamic statistics
when a SQL statement uses parallel execution.

• If OPTIMIZER_ADAPTIVE_STATISTICS is TRUE, then the optimizer uses dynamic statistics
when relevant SQL plan directives exist. The database maintains the resulting statistics in
the SQL plan directives store, making them available to other queries.

Table 12-5 Dynamic Statistics Levels

Level When the Optimizer Uses Dynamic Statistics Sample Size (Blocks)

0 Do not use dynamic statistics. n/a

1 Use dynamic statistics for all tables that do not have statistics, but only if
the following criteria are met:

• At least one nonpartitioned table in the query does not have
statistics.

• This table has no indexes.
• This table has more blocks than the number of blocks that would be

used for dynamic statistics of this table.

32

2 Use dynamic statistics if at least one table in the statement has no
statistics. This is the default value.

64

3 Use dynamic statistics if any of the following conditions is true:

• At least one table in the statement has no statistics.
• The statement has one or more expressions used in the WHERE

clause predicates, for example, WHERE
SUBSTR(CUSTLASTNAME,1,3).

64

4 Use dynamic statistics if any of the following conditions is true:

• At least one table in the statement has no statistics.
• The statement has one or more expressions used in the WHERE

clause predicates, for example, WHERE
SUBSTR(CUSTLASTNAME,1,3).

• The statement uses complex predicates (an OR or AND operator
between multiple predicates on the same table).

64

5 The criteria are identical to level 4, but the database uses a different
sample size.

128

6 The criteria are identical to level 4, but the database uses a different
sample size.

256

7 The criteria are identical to level 4, but the database uses a different
sample size.

512

8 The criteria are identical to level 4, but the database uses a different
sample size.

1024

9 The criteria are identical to level 4, but the database uses a different
sample size.

4086

10 The criteria are identical to level 4, but the database uses a different
sample size.

All blocks

11 The database uses adaptive dynamic sampling automatically when the
optimizer deems it necessary.

Automatically determined

Chapter 12
Configuring Options for Dynamic Statistics

12-12

See Also:

• "When the Database Samples Data"

• Oracle Database Reference to learn about the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter

Setting Dynamic Statistics Levels Manually
Determining a database-level setting that would be beneficial to all SQL statements can be
difficult.

When setting the level for dynamic statistics, Oracle recommends setting the
OPTIMIZER_DYNAMIC_SAMPLING initialization parameter at the session level.

Assumptions

This tutorial assumes the following:

• You want correct selectivity estimates for the following query, which has WHERE clause
predicates on two correlated columns:

 SELECT *
 FROM sh.customers
 WHERE cust_city='Los Angeles'
 AND cust_state_province='CA';

• The preceding query uses serial processing.

• The sh.customers table contains 932 rows that meet the conditions in the query.

• You have gathered statistics on the sh.customers table.

• You created an index on the cust_city and cust_state_province columns.

• The OPTIMIZER_DYNAMIC_SAMPLING initialization parameter is set to the default level of 2.

To set the dynamic statistics level manually:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Explain the execution plan as follows:

EXPLAIN PLAN FOR
 SELECT *
 FROM sh.customers
 WHERE cust_city='Los Angeles'
 AND cust_state_province='CA';

3. Query the plan as follows:

SET LINESIZE 130
SET PAGESIZE 0
SELECT *
FROM TABLE(DBMS_XPLAN.DISPLAY);

Chapter 12
Configuring Options for Dynamic Statistics

12-13

The output appears below (the example has been reformatted to fit on the page):

|Id| Operation | Name |Rows|Bytes|Cost | Time |

0	SELECT STATEMENT		53	9593	53(0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	CUSTOMERS	53	9593	53(0)	00:00:01
*2	INDEX RANGE SCAN	CUST_CITY_STATE_IND	53	9593	3(0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("CUST_CITY"='Los Angeles' AND "CUST_STATE_PROVINCE"='CA')

The columns in the WHERE clause have a real-world correlation, but the optimizer is not
aware that Los Angeles is in California and assumes both predicates reduce the number of
rows returned. Thus, the table contains 932 rows that meet the conditions, but the
optimizer estimates 53, as shown in bold.

If the database had used dynamic statistics for this plan, then the Note section of the plan
output would have indicated this fact. The optimizer did not use dynamic statistics because
the statement executed serially, standard statistics exist, and the parameter
OPTIMIZER_DYNAMIC_SAMPLING is set to the default of 2.

4. Set the dynamic statistics level to 4 in the session using the following statement:

ALTER SESSION SET OPTIMIZER_DYNAMIC_SAMPLING=4;

5. Explain the plan again:

EXPLAIN PLAN FOR
 SELECT *
 FROM sh.customers
 WHERE cust_city='Los Angeles'
 AND cust_state_province='CA';

The new plan shows a more accurate estimate of the number of rows, as shown by the
value 932 in bold:

PLAN_TABLE_OUTPUT
--
Plan hash value: 2008213504

--
| Id | Operation | Name |Rows |Bytes |Cost (%CPU)|Time |
--
| 0 | SELECT STATEMENT | | 932 | 271K| 406 (1)| 00:00:05 |
|* 1 | TABLE ACCESS FULL| CUSTOMERS | 932 | 271K| 406 (1)| 00:00:05 |
--

Predicate Information (identified by operation id):

 1 - filter("CUST_CITY"='Los Angeles' AND "CUST_STATE_PROVINCE"='CA')

Chapter 12
Configuring Options for Dynamic Statistics

12-14

Note

 - dynamic statistics used for this statement (level=4)

The note at the bottom of the plan indicates that the sampling level is 4. The additional
dynamic statistics made the optimizer aware of the real-world relationship between the
cust_city and cust_state_province columns, thereby enabling it to produce a more
accurate estimate for the number of rows: 932 rather than 53.

See Also:

• Oracle Database SQL Language Reference to learn about setting sampling
levels with the DYNAMIC_SAMPLING hint

• Oracle Database Reference to learn about the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter

Disabling Dynamic Statistics
In general, the best practice is not to incur the cost of dynamic statistics for queries whose
compile times must be as fast as possible, for example, unrepeated OLTP queries.

To disable dynamic statistics at the session level:

1. Connect SQL*Plus to the database with the appropriate privileges.

2. Set the dynamic statistics level to 0.

For example, run the following statement:

ALTER SESSION SET OPTIMIZER_DYNAMIC_SAMPLING=0;

See Also:

Oracle Database Reference to learn about the OPTIMIZER_DYNAMIC_SAMPLING
initialization parameter

Managing SQL Plan Directives
A SQL plan directive is additional information and instructions that the optimizer can use to
generate a more optimal plan.

A directive informs the database that the optimizer is misestimate cardinalities of certain types
of predicates, and alerts DBMS_STATS to gather additional statistics in the future. Thus,
directives have an effect on statistics gathering.

The database automatically creates and manages SQL plan directives in the SGA, and then
periodically writes them to the data dictionary. If the directives are not used within 53 weeks,
then the database automatically purges them.

Chapter 12
Managing SQL Plan Directives

12-15

You can use DBMS_SPD procedures and functions to alter, save, drop, and transport directives
manually. The following table lists some of the more commonly used procedures and functions.

Table 12-6 DBMS_SPD Procedures

Procedure Description

FLUSH_SQL_PLAN_DIRECTIVE Forces the database to write directives from memory to
persistent storage in the SYSAUX tablespace.

DROP_SQL_PLAN_DIRECTIVE Drops a SQL plan directive. If a directive that triggers dynamic
sampling is creating unacceptable performance overhead,
then you may want to remove it manually.

If a SQL plan directive is dropped manually or automatically,
then the database can re-create it. To prevent its re-creation,
you can use DBMS_SPM.ALTER_SQL_PLAN_DIRECTIVE to do
the following:

• Disable the directive by setting ENABLED to NO
• Prevent the directive from being dropped by setting

AUTO_DROP to NO
To disable SQL plan directives, set
OPTIMIZER_ADAPTIVE_STATISTICS to FALSE.

Prerequisites

You must have the Administer SQL Management Object privilege to execute the DBMS_SPD
APIs.

Assumptions

This tutorial assumes that you want to do the following:

• Write all directives for the sh schema to persistent storage.

• Delete all directives for the sh schema.

To write and then delete all sh schema plan directives:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Force the database to write the SQL plan directives to disk.

For example, execute the following DBMS_SPD program:

BEGIN
 DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE;
END;
/

3. Query the data dictionary for information about existing directives in the sh schema.

Example 12-3 queries the data dictionary for information about the directive.

4. Delete the existing SQL plan directive for the sh schema.

Chapter 12
Managing SQL Plan Directives

12-16

The following PL/SQL program unit deletes the SQL plan directive with the ID
1484026771529551585:

BEGIN
 DBMS_SPD.DROP_SQL_PLAN_DIRECTIVE (directive_id => 1484026771529551585);
END;
/

Example 12-3 Display Directives for sh Schema

This example shows SQL plan directives, and the results of SQL plan directive dynamic
sampling queries.

SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME,
 o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE object, d.TYPE,
 d.STATE, d.REASON
FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o
WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID
AND o.OWNER IN ('SH')
ORDER BY 1,2,3,4,5;

DIR_ID OWN OBJECT_NA COL_NAME OBJECT TYPE STATE REASON
------------------- --- --------- ---------- ------- -------- ---------- ------------
1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_ SUPERSEDED SINGLE TABLE
 SAMPLING CARDINALITY
 MISESTIMATE
1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_ SUPERSEDED SINGLE TABLE
 PROVINCE SAMPLING CARDINALITY
 MISESTIMATE
1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_ SUPERSEDED SINGLE TABLE
 SAMPLING CARDINALITY
 MISESTIMATE
9781501826140511330 SH dyg4msnst5 SQL STA DYNAMIC_ USABLE VERIFY
 TEMENT SAMPLING CARDINALITY
 _RESULT ESTIMATE
9872337207064898539 SH TIMES TABLE DYNAMIC_ USABLE VERIFY
 SAMPLING CARDINALITY
 _RESULT ESTIMATE
9781501826140511330 SH 2nk1v0fdx0 SQL STA DYNAMIC_ USABLE VERIFY
 TEMENT SAMPLING CARDINALITY
 _RESULT ESTIMATE

See Also:

• "SQL Plan Directives"

• Oracle Database PL/SQL Packages and Types Reference for complete syntax
and semantics for the DBMS_SPD package.

• Oracle Database Reference to learn about DBA_SQL_PLAN_DIRECTIVES

Chapter 12
Managing SQL Plan Directives

12-17

13
Gathering Optimizer Statistics

This chapter explains how to use the DBMS_STATS.GATHER_*_STATS program units.

See Also:

• "Optimizer Statistics Concepts"

• "Query Optimizer Concepts "

• Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_STATS.GATHER_TABLE_STATS

Configuring Automatic Optimizer Statistics Collection
Oracle Database can gather optimizer statistics automatically.

About Automatic Optimizer Statistics Collection
The automated maintenance tasks infrastructure (known as AutoTask) schedules tasks to run
automatically in Oracle Scheduler windows known as maintenance windows.

By default, one window is scheduled for each day of the week. Automatic optimizer statistics
collection runs as part of AutoTask. By default, the collection runs in all predefined
maintenance windows.

Note:

Data visibility and privilege requirements may differ when using automatic optimizer
statistics collection with pluggable databases.

To collect the optimizer statistics, the database calls an internal procedure that operates
similarly to the GATHER_DATABASE_STATS procedure with the GATHER AUTO option. Automatic
statistics collection honors all preferences set in the database.

The principal difference between manual and automatic collection is that the latter prioritizes
database objects that need statistics. Before the maintenance window closes, automatic
collection assesses all objects and prioritizes objects that have no statistics or very old
statistics.

13-1

Note:

When gathering statistics manually, you can reproduce the object prioritization of
automatic collection by using the DBMS_AUTO_TASK_IMMEDIATE package. This package
runs the same statistics gathering job that is executed during the automatic nightly
statistics gathering job.

See Also:

Oracle Database Administrator’s Guide for a table that summarizes how
manageability features work in a container database (CDB)

Configuring Automatic Optimizer Statistics Collection Using Cloud Control
You can enable and disable all automatic maintenance tasks, including automatic optimizer
statistics collection, using Cloud Control.

The default window timing works well for most situations. However, you may have operations
such as bulk loads that occur during the window. In such cases, to avoid potential conflicts that
result from operations occurring at the same time as automatic statistics collection, Oracle
recommends that you change the window accordingly.

Prerequisites

Access the Database Home page, as described in "Accessing the Database Home Page in
Cloud Control."

To control automatic optimizer statistics collection using Cloud Control:

1. From the Administration menu, select Oracle Scheduler, then Automated Maintenance
Tasks.

The Automated Maintenance Tasks page appears.

This page shows the predefined tasks. To retrieve information about each task, click the
corresponding link for the task.

2. Click Configure.

The Automated Maintenance Tasks Configuration page appears.

By default, automatic optimizer statistics collection executes in all predefined maintenance
windows in MAINTENANCE_WINDOW_GROUP.

3. Perform the following steps:

a. In the Task Settings section for Optimizer Statistics Gathering, select either Enabled or
Disabled to enable or disable an automated task.

Chapter 13
Configuring Automatic Optimizer Statistics Collection

13-2

Note:

Oracle strongly recommends that you not disable automatic statistics
gathering because it is critical for the optimizer to generate optimal plans for
queries against dictionary and user objects. If you disable automatic
collection, ensure that you have a good manual statistics collection strategy
for dictionary and user schemas.

b. To disable statistics gathering for specific days in the week, check the appropriate box
next to the window name.

c. To change the characteristics of a window group, click Edit Window Group.

d. To change the times for a window, click the name of the window (for example,
MONDAY_WINDOW), and then in the Schedule section, click Edit.

The Edit Window page appears.

In this page, you can change the parameters such as duration and start time for
window execution.

e. Click Apply.

See Also:

Online Help for Oracle Enterprise Manager Cloud Control

Chapter 13
Configuring Automatic Optimizer Statistics Collection

13-3

Configuring Automatic Optimizer Statistics Collection from the Command
Line

If you do not use Cloud Control to configure automatic optimizer statistics collection, then you
must use the command line.

You have the following options:

• Run the ENABLE or DISABLE procedure in the DBMS_AUTO_TASK_ADMIN PL/SQL package.

This package is the recommended command-line technique. For both the ENABLE and
DISABLE procedures, you can specify a particular maintenance window with the
window_name parameter.

• Set the STATISTICS_LEVEL initialization level to BASIC to disable collection of all advisories
and statistics, including Automatic SQL Tuning Advisor.

Note:

Because monitoring and many automatic features are disabled, Oracle strongly
recommends that you do not set STATISTICS_LEVEL to BASIC.

To control automatic statistics collection using DBMS_AUTO_TASK_ADMIN:

1. In SQL*Plus or SQL Developer, log in to the database as a user with administrative
privileges.

2. Do one of the following:

• To enable the automated task, execute the following PL/SQL block:

BEGIN
 DBMS_AUTO_TASK_ADMIN.ENABLE (
 client_name => 'auto optimizer stats collection'
, operation => NULL
, window_name => NULL
);
END;
/

• To disable the automated task, execute the following PL/SQL block:

BEGIN
 DBMS_AUTO_TASK_ADMIN.DISABLE (
 client_name => 'auto optimizer stats collection'
, operation => NULL
, window_name => NULL
);
END;
/

3. Query the data dictionary to confirm the change.

Chapter 13
Configuring Automatic Optimizer Statistics Collection

13-4

For example, query DBA_AUTOTASK_CLIENT as follows:

COL CLIENT_NAME FORMAT a31

SELECT CLIENT_NAME, STATUS
FROM DBA_AUTOTASK_CLIENT
WHERE CLIENT_NAME = 'auto optimizer stats collection';

Sample output appears as follows:

CLIENT_NAME STATUS
------------------------------- --------
auto optimizer stats collection ENABLED

To change the window attributes for automatic statistics collection:

1. Connect SQL*Plus to the database with administrator privileges.

2. Change the attributes of the maintenance window as needed.

For example, to change the Monday maintenance window so that it starts at 5 a.m.,
execute the following PL/SQL program:

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE (
 'MONDAY_WINDOW'
, 'repeat_interval'
, 'freq=daily;byday=MON;byhour=05;byminute=0;bysecond=0'
);
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_AUTO_TASK_ADMIN package

• Oracle Database Reference to learn about the STATISTICS_LEVEL initialization
parameter

Configuring High-Frequency Automatic Optimizer Statistics
Collection

This lightweight task supplements standard automatic statistics collection.

Chapter 13
Configuring High-Frequency Automatic Optimizer Statistics Collection

13-5

About High-Frequency Automatic Optimizer Statistics Collection
You can configure automatic statistics collection to occur more frequently.

Purpose of High-Frequency Automatic Optimizer Statistics Collection

AutoTask schedules tasks to run automatically in maintenance windows. By default, one
window is scheduled for each day of the week. Automatic optimizer statistics collection
(DBMS_STATS) runs in all predefined maintenance windows.

Statistics can go stale between two consecutive statistics collection tasks. If data changes
frequently, the stale statistics could cause performance problems. For example, a brokerage
company might receive tremendous data during trading hours, leading the optimizer to use
stale statistics for queries executed during this period.

High-frequency automatic optimizer statistics collection complements the standard statistics
collection job. By default, the collection occurs every 15 minutes, meaning that statistics have
less time in which to be stale.

How High-Frequency Automatic Optimizer Statistics Collection Works

To enable and disable the high-frequency task, set the execution interval, and set the
maximum run time, use the DBMS_STATS.SET_GLOBAL_PREFS procedure. The high-frequency
task is “lightweight” and only gathers stale statistics. It does not perform actions such as
purging statistics for non-existent objects or invoking Optimizer Statistics Advisor. The standard
automated job performs these additional tasks.

Automatic statistics collection jobs that run in the maintenance window are not affected by the
high-frequency jobs. The high-frequency task may execute in maintenance windows, but it will
not execute while the maintenance window auto stats gathering job is executing. You can
monitor the tasks by querying DBA_AUTO_STAT_EXECUTIONS.

Setting Preferences for High-Frequency Automatic Optimizer Statistics
Collection

To enable and disable the task, use DBMS_STATS.SET_GLOBAL_PREFS.

You can use DBMS_STATS.SET_GLOBAL_PREFS to set preferences to any of the following values:

• AUTO_TASK_STATUS
Enables or disables the high-frequency automatic optimizer statistics collection. Values
are:

– ON — Enables high-frequency automatic optimizer statistics collection.

– OFF — Disables high-frequency automatic optimizer statistics collection. This is the
default.

• AUTO_TASK_MAX_RUN_TIME
Configures the maximum run time in seconds of an execution of high-frequency automatic
optimizer statistics collection. The maximum value is 3600 (equal to 1 hour), which is the
default.

• AUTO_TASK_INTERVAL

Chapter 13
Configuring High-Frequency Automatic Optimizer Statistics Collection

13-6

Specifies the interval in seconds between executions of high-frequency automatic
optimizer statistics collection. The minimum value is 60. The default is 900 (equal to 15
minutes).

To configure the high-frequency task, you must have administrator privileges.

To configure the high-frequency task:

1. Log in to the database as a user with administrator privileges.

2. To enable the high-frequency task, set the AUTO_TASK_STATUS preference to ON.

The following example enables the automatic task:

EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_TASK_STATUS','ON');

3. To set the maximum run time, set the AUTO_TASK_MAX_RUN_TIME preference to the desired
number of seconds.

The following example sets the maximum run time to 10 minutes:

EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_TASK_MAX_RUN_TIME','600');

4. To set the frequency, set the AUTO_TASK_INTERVAL preference to the desired number of
seconds.

The following example sets the frequency to 8 minutes:

EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_TASK_INTERVAL','240');

High-Frequency Automatic Optimizer Statistics Collection: Example
In this example, you enable run DML statements, and then enable the high-frequency statistics
collection job.

This example assumes the following:

• You are logged in to the database as an administrator.

• The statistics for the sh schema are fresh.

• High-frequency automatic optimizer statistics collection

is not enabled.

1. Query the data dictionary for the statistics for the sales and customers tables (sample
output included):

SET LINESIZE 170
SET PAGESIZE 5000
COL TABLE_NAME FORMAT a20
COL PARTITION_NAME FORMAT a20
COL NUM_ROWS FORMAT 9999999
COL STALE_STATS FORMAT a3

SELECT TABLE_NAME, PARTITION_NAME, NUM_ROWS, STALE_STATS
FROM DBA_TAB_STATISTICS
WHERE OWNER = 'SH'
AND TABLE_NAME IN ('CUSTOMERS','SALES')
ORDER BY TABLE_NAME, PARTITION_NAME;

Chapter 13
Configuring High-Frequency Automatic Optimizer Statistics Collection

13-7

TABLE_NAME PARTITION_NAME NUM_ROWS STA
-------------------- -------------------- -------- ---
CUSTOMERS 55500 NO
SALES SALES_1995 0 NO
SALES SALES_1996 0 NO
SALES SALES_H1_1997 0 NO
SALES SALES_H2_1997 0 NO
SALES SALES_Q1_1998 43687 NO
SALES SALES_Q1_1999 64186 NO
SALES SALES_Q1_2000 62197 NO
SALES SALES_Q1_2001 60608 NO
SALES SALES_Q1_2002 0 NO
SALES SALES_Q1_2003 0 NO
SALES SALES_Q2_1998 35758 NO
SALES SALES_Q2_1999 54233 NO
SALES SALES_Q2_2000 55515 NO
SALES SALES_Q2_2001 63292 NO
SALES SALES_Q2_2002 0 NO
SALES SALES_Q2_2003 0 NO
SALES SALES_Q3_1998 50515 NO
SALES SALES_Q3_1999 67138 NO
SALES SALES_Q3_2000 58950 NO
SALES SALES_Q3_2001 65769 NO
SALES SALES_Q3_2002 0 NO
SALES SALES_Q3_2003 0 NO
SALES SALES_Q4_1998 48874 NO
SALES SALES_Q4_1999 62388 NO
SALES SALES_Q4_2000 55984 NO
SALES SALES_Q4_2001 69749 NO
SALES SALES_Q4_2002 0 NO
SALES SALES_Q4_2003 0 NO
SALES 918843 NO

The preceding output shows that none of the statistics are stale.

2. Perform DML on sales and customers:

-- insert 918K rows in sales
INSERT INTO sh.sales SELECT * FROM sh.sales;
-- update around 15% of sales rows
UPDATE sh.sales SET amount_sold = amount_sold + 1 WHERE amount_sold > 100;
-- insert 1 row into customers
INSERT INTO sh.customers(cust_id, cust_first_name, cust_last_name,
 cust_gender, cust_year_of_birth, cust_main_phone_number,
 cust_street_address, cust_postal_code, cust_city_id,
 cust_city, cust_state_province_id, cust_state_province,
 country_id, cust_total, cust_total_id)
 VALUES(188710, 'Jenny', 'Smith', 'F', '1966', '555-111-2222',
 '400 oracle parkway','94065',51402, 'Redwood Shores',
 52564, 'CA', 52790, 'Customer total', '52772');
COMMIT;

The total number of sales rows increased by 100%, but only 1 row was added to
customers.

Chapter 13
Configuring High-Frequency Automatic Optimizer Statistics Collection

13-8

3. Save the optimizer statistics to disk:

EXEC DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO;

4. Query the table statistics again (sample output included):

SELECT TABLE_NAME, PARTITION_NAME, NUM_ROWS, STALE_STATS
FROM DBA_TAB_STATISTICS
WHERE OWNER = 'SH'
AND TABLE_NAME IN ('CUSTOMERS','SALES')
ORDER BY TABLE_NAME, PARTITION_NAME;

TABLE_NAME PARTITION_NAME NUM_ROWS STA
-------------------- -------------------- -------- ---
CUSTOMERS 55500 NO
SALES SALES_1995 0 NO
SALES SALES_1996 0 NO
SALES SALES_H1_1997 0 NO
SALES SALES_H2_1997 0 NO
SALES SALES_Q1_1998 43687 YES
SALES SALES_Q1_1999 64186 YES
SALES SALES_Q1_2000 62197 YES
SALES SALES_Q1_2001 60608 YES
SALES SALES_Q1_2002 0 NO
SALES SALES_Q1_2003 0 NO
SALES SALES_Q2_1998 35758 YES
SALES SALES_Q2_1999 54233 YES
SALES SALES_Q2_2000 55515 YES
SALES SALES_Q2_2001 63292 YES
SALES SALES_Q2_2002 0 NO
SALES SALES_Q2_2003 0 NO
SALES SALES_Q3_1998 50515 YES
SALES SALES_Q3_1999 67138 YES
SALES SALES_Q3_2000 58950 YES
SALES SALES_Q3_2001 65769 YES
SALES SALES_Q3_2002 0 NO
SALES SALES_Q3_2003 0 NO
SALES SALES_Q4_1998 48874 YES
SALES SALES_Q4_1999 62388 YES
SALES SALES_Q4_2000 55984 YES
SALES SALES_Q4_2001 69749 YES
SALES SALES_Q4_2002 0 NO
SALES SALES_Q4_2003 0 NO
SALES 1837686
SALES 918843 YES

31 rows selected.

The preceding output shows that the statistics are not stale for customers but are stale for
sales.

Chapter 13
Configuring High-Frequency Automatic Optimizer Statistics Collection

13-9

5. Configure high-frequency automatic optimizer statistics collection:

EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_TASK_STATUS','ON');
EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_TASK_MAX_RUN_TIME','180');
EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_TASK_INTERVAL','240');

The preceding PL/SQL programs enable high-frequency collection, set the maximum run
time to 3 minutes, and set the task execution interval to 4 minutes.

6. Wait for a few minutes, and then query the data dictionary:

COL OPID FORMAT 9999
COL STATUS FORMAT a11
COL ORIGIN FORMAT a20
COL COMPLETED FORMAT 99999
COL FAILED FORMAT 99999
COL TIMEOUT FORMAT 99999
COL INPROG FORMAT 99999

SELECT OPID, ORIGIN, STATUS, TO_CHAR(START_TIME, 'DD/MM HH24:MI:SS') AS
BEGIN_TIME,
 TO_CHAR(END_TIME, 'DD/MM HH24:MI:SS') AS END_TIME, COMPLETED,
FAILED,
 TIMED_OUT AS TIMEOUT, IN_PROGRESS AS INPROG
FROM DBA_AUTO_STAT_EXECUTIONS
ORDER BY OPID;

The output shows that the high-frequency job executed twice, and the standard automatic
statistics collection job executed once:

ID ORIGIN STATUS BEGIN_TIME END_TIME COMP FAIL TIMEO INPRO
--- -------------------- -------- -------------- -------------- ---- ---- ----- -----
790 HIGH_FREQ_AUTO_TASK COMPLETE 03/10 14:54:02 03/10 14:54:35 338 3 0 0
793 HIGH_FREQ_AUTO_TASK COMPLETE 03/10 14:58:11 03/10 14:58:45 193 3 0 0
794 AUTO_TASK COMPLETE 03/10 15:00:02 03/10 15:00:20 52 3 0 0

Gathering Optimizer Statistics Manually
As an alternative or supplement to automatic statistics gathering, you can use the DBMS_STATS
package to gather optimizer statistics manually.

See Also:

• "Configuring Automatic Optimizer Statistics Collection"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

Chapter 13
Gathering Optimizer Statistics Manually

13-10

About Manual Statistics Collection with DBMS_STATS
Use the DBMS_STATS package to manipulate optimizer statistics. You can gather statistics on
objects and columns at various levels of granularity: object, schema, and database. You can
also gather statistics for the physical system.

The following table summarizes the DBMS_STATS procedures for gathering optimizer statistics.
This package does not gather statistics for table clusters. However, you can gather statistics on
individual tables in a table cluster.

Table 13-1 DBMS_STATS Procedures for Gathering Optimizer Statistics

Procedure Purpose

GATHER_INDEX_STATS Collects index statistics

GATHER_TABLE_STATS Collects table, column, and index statistics

GATHER_SCHEMA_STATS Collects statistics for all objects in a schema

GATHER_DICTIONARY_STATS Collects statistics for all system schemas, including SYS and
SYSTEM, and other optional schemas, such as CTXSYS and
DRSYS

GATHER_DATABASE_STATS Collects statistics for all objects in a database

When the OPTIONS parameter is set to GATHER STALE or GATHER AUTO, the
GATHER_SCHEMA_STATS and GATHER_DATABASE_STATS procedures gather statistics for any table
that has stale statistics and any table that is missing statistics. If a monitored table has been
modified more than 10%, then the database considers these statistics stale and gathers them
again.

Note:

As explained in "Configuring Automatic Optimizer Statistics Collection", you can
configure a nightly job to gather statistics automatically.

See Also:

• "Gathering System Statistics Manually"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_STATS package

Guidelines for Gathering Optimizer Statistics Manually
In most cases, automatic statistics collection is sufficient for database objects modified at a
moderate speed.

Automatic collection may sometimes be inadequate or unavailable, as shown in the following
table.

Chapter 13
Gathering Optimizer Statistics Manually

13-11

Table 13-2 Reasons for Gathering Statistics Manually

Issue To Learn More

You perform certain types of bulk load and cannot
wait for the maintenance window to collect
statistics because queries must be executed
immediately.

"Online Statistics Gathering for Bulk Loads"

During a nonrepresentative workload, automatic
statistics collection gathers statistics for fixed
tables.

"Gathering Statistics for Fixed Objects"

Automatic statistics collection does not gather
system statistics.

"Gathering System Statistics Manually"

Volatile tables are being deleted or truncated, and
then rebuilt during the day.

"Gathering Statistics for Volatile Tables Using
Dynamic Statistics"

Guideline for Setting the Sample Size
In the context of optimizer statistics, sampling is the gathering of statistics from a random
subset of table rows. By enabling the database to avoid full table scans and sorts of entire
tables, sampling minimizes the resources necessary to gather statistics.

The database gathers the most accurate statistics when it processes all rows in the table,
which is a 100% sample. However, larger sample sizes increase the time of statistics gathering
operations. The challenge is determining a sample size that provides accurate statistics in a
reasonable time.

DBMS_STATS uses sampling when a user specifies the parameter ESTIMATE_PERCENT, which
controls the percentage of the rows in the table to sample. To maximize performance gains
while achieving necessary statistical accuracy, Oracle recommends that the ESTIMATE_PERCENT
parameter use the default setting of DBMS_STATS.AUTO_SAMPLE_SIZE. In this case, Oracle
Database chooses the sample size automatically. This setting enables the use of the following:

• A hash-based algorithm that is much faster than sampling

This algorithm reads all rows and produces statistics that are nearly as accurate as
statistics from a 100% sample. The statistics computed using this technique are
deterministic.

• Incremental statistics

• Concurrent statistics

• New histogram types

The DBA_TABLES.SAMPLE_SIZE column indicates the actual sample size used to gather
statistics.

See Also:

• "Hybrid Histograms"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.AUTO_SAMPLE_SIZE

Chapter 13
Gathering Optimizer Statistics Manually

13-12

Guideline for Gathering Statistics in Parallel
By default, the database gathers statistics with the parallelism degree specified at the table or
index level.

You can override this setting with the degree argument to the DBMS_STATS gathering
procedures. Oracle recommends setting degree to DBMS_STATS.AUTO_DEGREE. This setting
enables the database to choose an appropriate degree of parallelism based on the object size
and the settings for the parallelism-related initialization parameters.

The database can gather most statistics serially or in parallel. However, the database does not
gather some index statistics in parallel, including cluster indexes, domain indexes, and bitmap
join indexes. The database can use sampling when gathering parallel statistics.

Note:

Do not confuse gathering statistics in parallel with gathering statistics concurrently.

See Also:

• "About Concurrent Statistics Gathering"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.AUTO_DEGREE

Guideline for Partitioned Objects
For partitioned tables and indexes, DBMS_STATS can gather separate statistics for each partition
and global statistics for the entire table or index.

Similarly, for composite partitioning, DBMS_STATS can gather separate statistics for
subpartitions, partitions, and the entire table or index.

To determine the type of partitioning statistics to be gathered, specify the granularity
argument to the DBMS_STATS procedures. Oracle recommends setting granularity to the
default value of AUTO to gather subpartition, partition, or global statistics, depending on partition
type. The ALL setting gathers statistics for all types.

See Also:

"Gathering Incremental Statistics on Partitioned Objects"

Chapter 13
Gathering Optimizer Statistics Manually

13-13

Guideline for Frequently Changing Objects
When tables are frequently modified, gather statistics often enough so that they do not go
stale, but not so often that collection overhead degrades performance.

You may only need to gather new statistics every week or month. The best practice is to use a
script or job scheduler to regularly run the DBMS_STATS.GATHER_SCHEMA_STATS and
DBMS_STATS.GATHER_DATABASE_STATS procedures.

Guideline for External Tables
Because the database does not permit data manipulation against external tables, the database
never marks statistics on external tables as stale. If new statistics are required for an external
table, for example, because the underlying data files change, then regather the statistics.

For external tables, use the same DBMS_STATS procedures that you use for internal tables. Note
that the scanrate parameter of DBMS_STATS.SET_TABLE_STATS and
DBMS_STATS.GET_TABLE_STATS specifies the rate (in MB/s) at which Oracle Database scans
data in tables, and is relevant only for external tables. The SCAN_RATE column appears in the
DBA_TAB_STATISTICS and DBA_TAB_PENDING_STATS data dictionary views.

See Also:

• "Creating Artificial Optimizer Statistics for Testing"

• Oracle Database PL/SQL Packages and Types Reference to learn about
SET_TABLE_STATS and GET_TABLE_STATS

• Oracle Database Reference to learn about the DBA_TAB_STATISTICS view

Determining When Optimizer Statistics Are Stale
Stale statistics on a table do not accurately reflect its data. To help you determine when a
database object needs new statistics, the database provides a table monitoring facility.

Monitoring tracks the approximate number of DML operations on a table and whether the table
has been truncated since the most recent statistics collection. To check whether statistics are
stale, query the STALE_STATS column in DBA_TAB_STATISTICS and DBA_IND_STATISTICS. This
column is based on data in the DBA_TAB_MODIFICATIONS view and the STALE_PERCENT
preference for DBMS_STATS.

Note:

Starting in Oracle Database 12c Release 2 (12.2), you no longer need to use
DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO to ensure that view metadata is
current. The statistics shown in the DBA_TAB_STATISTICS, DBA_IND_STATISTICS, and
DBA_TAB_MODIFICATIONS views are obtained from both disk and memory.

The STALE_STATS column has the following possible values:

Chapter 13
Gathering Optimizer Statistics Manually

13-14

• YES
The statistics are stale.

• NO
The statistics are not stale.

• null

The statistics are not collected.

Executing GATHER_SCHEMA_STATS or GATHER_DATABASE_STATS with the GATHER AUTO option
collects statistics only for objects with no statistics or stale statistics.

To determine stale statistics:

1. Start SQL*Plus, and then log in to the database as a user with the necessary privileges.

2. Query the data dictionary for stale statistics.

The following example queries stale statistics for the sh.sales table (partial output
included):

COL PARTITION_NAME FORMAT a15

SELECT PARTITION_NAME, STALE_STATS
FROM DBA_TAB_STATISTICS
WHERE TABLE_NAME = 'SALES'
AND OWNER = 'SH'
ORDER BY PARTITION_NAME;

PARTITION_NAME STA
--------------- ---
SALES_1995 NO
SALES_1996 NO
SALES_H1_1997 NO
SALES_H2_1997 NO
SALES_Q1_1998 NO
SALES_Q1_1999 NO
.
.
.

See Also:

Oracle Database Reference to learn about the DBA_TAB_MODIFICATIONS view

Gathering Schema and Table Statistics
Use GATHER_TABLE_STATS to collect table statistics, and GATHER_SCHEMA_STATS to collect
statistics for all objects in a schema.

To gather schema statistics using DBMS_STATS:

1. Start SQL*Plus, and connect to the database with the appropriate privileges for the
procedure that you intend to run.

Chapter 13
Gathering Optimizer Statistics Manually

13-15

2. Run the GATHER_TABLE_STATS or GATHER_SCHEMA_STATS procedure, specifying the desired
parameters.

Typical parameters include:

• Owner - ownname
• Object name - tabname, indname, partname
• Degree of parallelism - degree

Example 13-1 Gathering Statistics for a Table

This example uses the DBMS_STATS package to gather statistics on the sh.customers table with
a parallelism setting of 2.

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS (
 ownname => 'sh'
, tabname => 'customers'
, degree => 2
);
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
GATHER_TABLE_STATS procedure

Gathering Statistics for Fixed Objects
Fixed objects are dynamic performance tables and their indexes. These objects record current
database activity.

Unlike other database tables, the database does not automatically use dynamic statistics for
SQL statement referencing X$ tables when optimizer statistics are missing. Instead, the
optimizer uses predefined default values. These defaults may not be representative and could
potentially lead to a suboptimal execution plan. Thus, it is important to keep fixed object
statistics current.

Oracle Database automatically gathers fixed object statistics as part of automated statistics
gathering if they have not been previously collected. You can also manually collect statistics on
fixed objects by calling DBMS_STATS.GATHER_FIXED_OBJECTS_STATS. Oracle recommends that
you gather statistics when the database has representative activity.

Prerequisites

You must have the SYSDBA or ANALYZE ANY DICTIONARY system privilege to execute this
procedure.

To gather schema statistics using GATHER_FIXED_OBJECTS_STATS:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

Chapter 13
Gathering Optimizer Statistics Manually

13-16

2. Run the DBMS_STATS.GATHER_FIXED_OBJECTS_STATS procedure, specifying the desired
parameters.

Typical parameters include:

• Table identifier describing where to save the current statistics - stattab
• Identifier to associate with these statistics within stattab (optional) - statid
• Schema containing stattab (if different from current schema) - statown

Example 13-2 Gathering Statistics for a Table

This example uses the DBMS_STATS package to gather fixed object statistics.

BEGIN
 DBMS_STATS.GATHER_FIXED_OBJECTS_STATS;
END;
/

See Also:

• "Configuring Automatic Optimizer Statistics Collection"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
GATHER_TABLE_STATS procedure

Gathering Statistics for Volatile Tables Using Dynamic Statistics
Statistics for volatile tables, which are tables modified significantly during the day, go stale
quickly. For example, a table may be deleted or truncated, and then rebuilt.

When you set the statistics of a volatile object to null, Oracle Database dynamically gathers the
necessary statistics during optimization using dynamic statistics. The
OPTIMIZER_DYNAMIC_SAMPLING initialization parameter controls this feature.

Assumptions

This tutorial assumes the following:

• The oe.orders table is extremely volatile.

• You want to delete and then lock the statistics on the orders table to prevent the database
from gathering statistics on the table. In this way, the database can dynamically gather
necessary statistics as part of query optimization.

• The oe user has the necessary privileges to query DBMS_XPLAN.DISPLAY_CURSOR.

To delete and the lock optimizer statistics:

1. Connect to the database as user oe, and then delete the statistics for the oe table.

For example, execute the following procedure:

BEGIN
 DBMS_STATS.DELETE_TABLE_STATS('OE','ORDERS');

Chapter 13
Gathering Optimizer Statistics Manually

13-17

END;
/

2. Lock the statistics for the oe table.

For example, execute the following procedure:

BEGIN
 DBMS_STATS.LOCK_TABLE_STATS('OE','ORDERS');
END;
/

3. You query the orders table.

For example, use the following statement:

SELECT COUNT(order_id) FROM orders;

4. You query the plan in the cursor.

You run the following commands (partial output included):

SET LINESIZE 150
SET PAGESIZE 0

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

SQL_ID aut9632fr3358, child number 0

SELECT COUNT(order_id) FROM orders

Plan hash value: 425895392

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

0	SELECT STATEMENT			2 (100)	
1	SORT AGGREGATE		1		
2	TABLE ACCESS FULL	ORDERS	105	2 (0)	00:00:01

Note

 - dynamic statistics used for this statement (level=2)

The Note in the preceding execution plan shows that the database used dynamic statistics
for the SELECT statement.

Chapter 13
Gathering Optimizer Statistics Manually

13-18

See Also:

• "Configuring Options for Dynamic Statistics"

• "Locking and Unlocking Optimizer Statistics" to learn how to gather
representative statistics and then lock them, which is an alternative technique for
preventing statistics for volatile tables from going stale

Gathering Optimizer Statistics Concurrently
Oracle Database can gather statistics on multiple tables or partitions concurrently.

About Concurrent Statistics Gathering
By default, each partition of a partition table is gathered sequentially.

When concurrent statistics gathering mode is enabled, the database can simultaneously
gather optimizer statistics for multiple tables in a schema, or multiple partitions or subpartitions
in a table. Concurrency can reduce the overall time required to gather statistics by enabling the
database to fully use multiple processors.

Note:

Concurrent statistics gathering mode does not rely on parallel query processing, but
is usable with it.

How DBMS_STATS Gathers Statistics Concurrently
Oracle Database employs multiple tools and technologies to create and manage multiple
statistics gathering jobs concurrently.

The database uses the following:

• Oracle Scheduler

• Oracle Database Advanced Queuing (AQ)

• Oracle Database Resource Manager (the Resource Manager)

Enable concurrent statistics gathering by setting the CONCURRENT preference with
DBMS_STATS.SET_GLOBAL_PREF.

The database runs as many concurrent jobs as possible. The Job Scheduler decides how
many jobs to execute concurrently and how many to queue. As running jobs complete, the
scheduler dequeues and runs more jobs until the database has gathered statistics on all
tables, partitions, and subpartitions. The maximum number of jobs is bounded by the
JOB_QUEUE_PROCESSES initialization parameter and available system resources.

In most cases, the DBMS_STATS procedures create a separate job for each table partition or
subpartition. However, if the partition or subpartition is empty or very small, then the database
may automatically batch the object with other small objects into a single job to reduce the
overhead of job maintenance.

Chapter 13
Gathering Optimizer Statistics Manually

13-19

The following figure illustrates the creation of jobs at different levels, where Table 3 is a
partitioned table, and the other tables are nonpartitioned. Job 3 acts as a coordinator job for
Table 3, and creates a job for each partition in that table, and a separate job for the global
statistics of Table 3. This example assumes that incremental statistics gathering is disabled; if
enabled, then the database derives global statistics from partition-level statistics after jobs for
partitions complete.

Figure 13-1 Concurrent Statistics Gathering Jobs

Level 2

Job 1

Table 1

Global

Statistics

Job 2

Table 2

Global

Statistics

Job 3

Table 3

Coordinator

Job

Job 4

Table 4

Global

Statistics

Gather Database/Schema/Dictionary Statistics

Job 3.1

Table 3

Partition 1

Job 3.3

Table 3

Global

Statistics

Job 3.2

Table 3

Partition 2

Level 1

See Also:

• "Enabling Concurrent Statistics Gathering"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

• Oracle Database Reference to learn about the JOB_QUEUE_PROCESSES initialization
parameter

Concurrent Statistics Gathering and Resource Management
The DBMS_STATS package does not explicitly manage resources used by concurrent statistics
gathering jobs that are part of a user-initiated statistics gathering call.

Thus, the database may use system resources fully during concurrent statistics gathering. To
address this situation, use the Resource Manager to cap resources consumed by concurrent
statistics gathering jobs. The Resource Manager must be enabled to gather statistics
concurrently.

The system-supplied consumer group ORA$AUTOTASK registers all statistics gathering jobs. You
can create a resource plan with proper resource allocations for ORA$AUTOTASK to prevent
concurrent statistics gathering from consuming all available resources. If you lack your own
resource plan, and if choose not to create one, then consider activating the Resource Manager
with the system-supplied DEFAULT_PLAN.

Chapter 13
Gathering Optimizer Statistics Manually

13-20

Note:

The ORA$AUTOTASK consumer group is shared with the maintenance tasks that
automatically run during the maintenance windows. Thus, when concurrency is
activated for automatic statistics gathering, the database automatically manages
resources, with no extra steps required.

See Also:

Oracle Database Administrator’s Guide to learn about the Resource Manager

Enabling Concurrent Statistics Gathering
To enable concurrent statistics gathering, use the DBMS_STATS.SET_GLOBAL_PREFS procedure to
set the CONCURRENT preference.

Possible values are as follows:

• MANUAL
Concurrency is enabled only for manual statistics gathering.

• AUTOMATIC
Concurrency is enabled only for automatic statistics gathering.

• ALL
Concurrency is enabled for both manual and automatic statistics gathering.

• OFF
Concurrency is disabled for both manual and automatic statistics gathering. This is the
default value.

This tutorial in this section explains how to enable concurrent statistics gathering.

Prerequisites

This tutorial has the following prerequisites:

• In addition to the standard privileges for gathering statistics, you must have the following
privileges:

– CREATE JOB
– MANAGE SCHEDULER
– MANAGE ANY QUEUE

• The SYSAUX tablespace must be online because the scheduler stores its internal tables and
views in this tablespace.

• The JOB_QUEUE_PROCESSES initialization parameter must be set to at least 4.

• The Resource Manager must be enabled.

By default, the Resource Manager is disabled. If you do not have a resource plan, then
consider enabling the Resource Manager with the system-supplied DEFAULT_PLAN.

Chapter 13
Gathering Optimizer Statistics Manually

13-21

Assumptions

This tutorial assumes that you want to do the following:

• Enable concurrent statistics gathering

• Gather statistics for the sh schema

• Monitor the gathering of the sh statistics

To enable concurrent statistics gathering:

1. Connect SQL*Plus to the database with the appropriate privileges, and then enable the
Resource Manager.

The following example uses the default plan for the Resource Manager:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'DEFAULT_PLAN';

2. Set the JOB_QUEUE_PROCESSES initialization parameter to at least twice the number of CPU
cores.

In Oracle Real Application Clusters, the JOB_QUEUE_PROCESSES setting applies to each
node.

Assume that the system has 4 CPU cores. The following example sets the parameter to 8
(twice the number of cores):

ALTER SYSTEM SET JOB_QUEUE_PROCESSES=8;

3. Confirm that the parameter change took effect.

For example, enter the following command in SQL*Plus (sample output included):

SHOW PARAMETER PROCESSES;

NAME TYPE VALUE
-------------------------------- ----------- -----
_high_priority_processes string VKTM
aq_tm_processes integer 1
db_writer_processes integer 1
gcs_server_processes integer 0
global_txn_processes integer 1
job_queue_processes integer 8
log_archive_max_processes integer 4
processes integer 100

4. Enable concurrent statistics.

For example, execute the following PL/SQL anonymous block:

BEGIN
 DBMS_STATS.SET_GLOBAL_PREFS('CONCURRENT','ALL');
END;
/

5. Confirm that the statistics were enabled.

Chapter 13
Gathering Optimizer Statistics Manually

13-22

For example, execute the following query (sample output included):

SELECT DBMS_STATS.GET_PREFS('CONCURRENT') FROM DUAL;

DBMS_STATS.GET_PREFS('CONCURRENT')

ALL

6. Gather the statistics for the SH schema.

For example, execute the following procedure:

EXEC DBMS_STATS.GATHER_SCHEMA_STATS('SH');

7. In a separate session, monitor the job progress by querying
DBA_OPTSTAT_OPERATION_TASKS.

For example, execute the following query (sample output included):

SET LINESIZE 1000

COLUMN TARGET FORMAT a8
COLUMN TARGET_TYPE FORMAT a25
COLUMN JOB_NAME FORMAT a14
COLUMN START_TIME FORMAT a40

SELECT TARGET, TARGET_TYPE, JOB_NAME,
 TO_CHAR(START_TIME, 'dd-mon-yyyy hh24:mi:ss')
FROM DBA_OPTSTAT_OPERATION_TASKS
WHERE STATUS = 'IN PROGRESS'
AND OPID = (SELECT MAX(ID)
 FROM DBA_OPTSTAT_OPERATIONS
 WHERE OPERATION = 'gather_schema_stats');

TARGET TARGET_TYPE JOB_NAME TO_CHAR(START_TIME,'
--------- ------------------------- -------------- --------------------
SH.SALES TABLE (GLOBAL STATS ONLY) ST$T292_1_B29 30-nov-2012 14:22:47
SH.SALES TABLE (COORDINATOR JOB) ST$SD290_1_B10 30-nov-2012 14:22:08

8. In the original session, disable concurrent statistics gathering.

For example, execute the following query:

EXEC DBMS_STATS.SET_GLOBAL_PREFS('CONCURRENT','OFF');

See Also:

• "Monitoring Statistics Gathering Operations"

• Oracle Database Administrator’s Guide

• Oracle Database PL/SQL Packages and Types Reference to learn how to use
the DBMS_STATS.SET_GLOBAL_PREFS procedure

Chapter 13
Gathering Optimizer Statistics Manually

13-23

Monitoring Statistics Gathering Operations
You can monitor statistics gathering jobs using data dictionary views.

The following views are relevant:

• DBA_OPTSTAT_OPERATION_TASKS
This view contains the history of tasks that are performed or currently in progress as part of
statistics gathering operations (recorded in DBA_OPTSTAT_OPERATIONS). Each task
represents a target object to be processed in the corresponding parent operation.

• DBA_OPTSTAT_OPERATIONS
This view contains a history of statistics operations performed or currently in progress at
the table, schema, and database level using the DBMS_STATS package.

The TARGET column in the preceding views shows the target object for that statistics gathering
job in the following form:

OWNER.TABLE_NAME.PARTITION_OR_SUBPARTITION_NAME

All statistics gathering job names start with the string ST$.

To display currently running statistics tasks and jobs:

• To list statistics gathering currently running tasks from all user sessions, use the following
SQL statement (sample output included):

SELECT OPID, TARGET, JOB_NAME,
 (SYSTIMESTAMP - START_TIME) AS elapsed_time
FROM DBA_OPTSTAT_OPERATION_TASKS
WHERE STATUS = 'IN PROGRESS';

OPID TARGET JOB_NAME ELAPSED_TIME
---- ------------------------- ------------- --------------------------
 981 SH.SALES.SALES_Q4_1998 ST$T82_1_B29 +000000000 00:00:00.596321
 981 SH.SALES ST$SD80_1_B10 +000000000 00:00:27.972033

To display completed statistics tasks and jobs:

• To list only completed tasks and jobs from a particular operation, first identify the operation
ID from the DBA_OPTSTAT_OPERATIONS view based on the statistics gathering operation
name, target, and start time. After you identify the operation ID, you can query the
DBA_OPTSTAT_OPERATION_TASKS view to find the corresponding tasks in that operation

For example, to list operations with the ID 981, use the following commands in SQL*Plus
(sample output included):

VARIABLE id NUMBER
EXEC :id := 981

SELECT TARGET, JOB_NAME, (END_TIME - START_TIME) AS ELAPSED_TIME
FROM DBA_OPTSTAT_OPERATION_TASKS
WHERE STATUS <> 'IN PROGRESS'
AND OPID = :id;

Chapter 13
Gathering Optimizer Statistics Manually

13-24

TARGET JOB_NAME ELAPSED_TIME
------------------------- ------------- --------------------------
SH.SALES_TRANSACTIONS_EXT +000000000 00:00:45.479233
SH.CAL_MONTH_SALES_MV ST$SD88_1_B10 +000000000 00:00:45.382764
SH.CHANNELS ST$SD88_1_B10 +000000000 00:00:45.307397

To display statistics gathering tasks and jobs that have failed:

• Use the following SQL statement (partial sample output included):

SET LONG 10000

SELECT TARGET, JOB_NAME AS NM,
 (END_TIME - START_TIME) AS ELAPSED_TIME, NOTES
FROM DBA_OPTSTAT_OPERATION_TASKS
WHERE STATUS = 'FAILED';

TARGET NM ELAPSED_TIME NOTES
------------------ -- -------------------------- -----------------
SYS.OPATCH_XML_INV +000000007 02:36:31.130314 <error>ORA-20011:
 Approximate NDV
 failed: ORA-29913:
 error in

See Also:

Oracle Database Reference to learn about the DBA_SCHEDULER_JOBS view

Gathering Incremental Statistics on Partitioned Objects
Incremental statistics scan only changed partitions. When gathering statistics on large
partitioned table by deriving global statistics from partition-level statistics, incremental
statistics maintenance improves performance.

Purpose of Incremental Statistics
In a typical case, an application loads data into a new partition of a range-partitioned table. As
applications add new partitions and load data, the database must gather statistics on the new
partition and keep global statistics up to date.

Typically, data warehouse applications access large partitioned tables. Often these tables are
partitioned on date columns, with only the recent partitions subject to frequent DML changes.
Without incremental statistics, statistics collection typically uses a two-pass approach:

1. The database scans the table to gather the global statistics.

The full scan of the table for global statistics collection can be very expensive, depending
on the size of the table. As the table adds partitions, the longer the execution time for
GATHER_TABLE_STATS because of the full table scan required for the global statistics. The
database must perform the scan of the entire table even if only a small subset of partitions
change.

2. The database scans the changed partitions to gather their partition-level statistics.

Chapter 13
Gathering Optimizer Statistics Manually

13-25

Incremental maintenance provides a huge performance benefit for data warehouse
applications because of the following:

• The database must scan the table only once to gather partition statistics and to derive the
global statistics by aggregating partition-level statistics. Thus, the database avoids the two
full scans that are required when not using incremental statistics: one scan for the partition-
level statistics, and one scan for the global-level statistics.

• In subsequent statistics gathering, the database only needs to scan the stale partitions and
update their statistics (including synopses). The database can derive global statistics from
the fresh partition statistics, which saves a full table scan.

When using incremental statistics, the database must still gather statistics on any partition that
will change the global or table-level statistics. Incremental statistics maintenance yields the
same statistics as gathering table statistics from scratch, but performs better.

How DBMS_STATS Derives Global Statistics for Partitioned tables
When incremental statistics maintenance is enabled, DBMS_STATS gathers statistics and creates
synopses for changed partitions only. The database also automatically merges partition-level
synopses into a global synopsis, and derives global statistics from the partition-level statistics
and global synopses.

The database avoids a full table scan when computing global statistics by deriving some global
statistics from the partition-level statistics. For example, the number of rows at the global level
is the sum of number of rows of partitions. Even global histograms can be derived from
partition histograms.

However, the database cannot derive all statistics from partition-level statistics, including the
NDV of a column. The following example shows the NDV for two partitions in a table:

Table 13-3 NDV for Two Partitions

Object Column Values NDV

Partition 1 1,3,3,4,5 4

Partition 2 2,3,4,5,6 5

Calculating the NDV in the table by adding the NDV of the individual partitions produces an
NDV of 9, which is incorrect. Thus, a more accurate technique is required: synopses.

Partition-Level Synopses
A synopsis is special type of statistic that tracks the number of distinct values (NDV) for each
column in a partition. You can consider a synopsis as an internal management structure that
samples distinct values.

The database can accurately derive the global-level NDV for each column by merging partition-
level synopses. In the example shown in Table 13-3, the database can use synopses to
calculate the NDV for the column as 6.

Each partition maintains a synopsis in incremental mode. When a new partition is added to the
table you only need to gather statistics for the new partition. The database automatically
updates the global statistics by aggregating the new partition synopsis with the synopses for
existing partitions. Subsequent statistics gathering operations are faster than when synopses
are not used.

Chapter 13
Gathering Optimizer Statistics Manually

13-26

The database stores synopses in data dictionary tables WRI$_OPTSTAT_SYNOPSIS_HEAD$ and
WRI$_OPTSTAT_SYNOPSIS$ in the SYSAUX tablespace. The DBA_PART_COL_STATISTICS dictionary
view contains information of the column statistics in partitions. If the NOTES column contains the
keyword INCREMENTAL, then this column has synopses.

See Also:

Oracle Database Reference to learn more about DBA_PART_COL_STATISTICS

NDV Algorithms: Adaptive Sampling and HyperLogLog
Starting in Oracle Database 12c Release 2 (12.2), the HyperLogLog algorithm can improve
NDV (number of distinct values) calculation performance, and also reduce the storage space
required for synopses.

The legacy algorithm for calculating NDV uses adaptive sampling. A synopsis is a sample of
the distinct values. When calculating the NDV, the database initially stores every distinct value
in a hash table. Each distinct value occupies a distinct hash bucket, so a column with 5000
distinct values has 5000 hash buckets. The database then halves the number of hash buckets,
and then continues to halve the result until a small number of buckets remain. The algorithm is
“adaptive” because the sampling rate changes based on the number of hash table splits.

To calculate the NDV for the column, the database uses the following formula, where B is the
number of hash buckets remaining after all the splits have been performed, and S is the
number of splits:

NDV = B * 2^S

Adaptive sampling produces accurate NDV statistics, but has the following consequences:

• Synopses occupy significant disk space, especially when tables have many columns and
partitions, and the NDV in each column is high.

For example, a 60-column table might have 300,000 partitions, with an average per-
column NDV of 5,000. In this example, each partition has 300,000 entries (60 x 5000). In
total, the synopses tables have 90 billion entries (300,000 squared), which occupies at
least 720 GB of storage space.

• Bulk processing of synopses can negatively affect performance.

Before the database regathers statistics on the stale partitions, it must delete the
associated synopses. Bulk deletion can be slow because it generates significant amounts
of undo and redo data.

In contrast to dynamic sampling, the HyperLogLog algorithm uses a randomization technique.
Although the algorithm is complex, the foundational insight is that in a stream of random
values, n distinct values will be spaced on average 1/n apart. Therefore, if you know the
smallest value in the stream, then you can roughly estimate the number of distinct values. For
example, if the values range from 0 to 1, and if the smallest value observed is .2, then the
numbers will on average be evenly spaced .2 apart, so the NDV estimate is 5.

The HyperLogLog algorithm expands on and corrects the original estimate. The database
applies a hash function to every column value, resulting in a set of hash values with the same
cardinality as the column. For the base estimate, the NDV equals 2n, where n is the maximum
number of trailing zeroes observed in the binary representation of the hash values. The

Chapter 13
Gathering Optimizer Statistics Manually

13-27

database refines its NDV estimate by using part of the output to split values into different hash
buckets.

The advantages of the HyperLogLog algorithm over adaptive sampling are:

• The accuracy of the new algorithm is similar to the original algorithm.

• The memory required is significantly lower, which typically leads to huge reductions in
synopsis size.

Synopses can become large when many partitions exist, and they have many columns
with high NDV. Synopses that use the HyperLogLog algorithm are more compact. Creating
and deleting synopses affects batch run times. Any operational procedures that manage
partitions reduce run time.

The DBMS_STATS preference APPROXIMATE_NDV_ALGORITHM determines which algorithm the
database uses for NDV calculation.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
APPROXIMATE_NDV_ALGORITHM preference

Aggregation of Global Statistics Using Synopses: Example
In this example, the database gathers statistics for the initial six partitions of the sales table,
and then creates synopses for each partition (S1, S2, and so on). The database creates global
statistics by aggregating the partition-level statistics and synopses.

Figure 13-2 Aggregating Statistics

Sales Table

Sysaux
Tablespace

111111111111111111112 The database generates
global statistics by
aggregating partition-level
statistics and synopses

S6

S5

S4

S3

S2

S1

Global
Statistics

May 23 2012

May 22 2012

May 21 2012

May 20 2012

May 19 2012

May 18 2012

1111111111111111111 The database gathers partition-level
statistics, and creates synopses

The following graphic shows a new partition, containing data for May 24, being added to the
sales table. The database gathers statistics for the newly added partition, retrieves synopses
for the other partitions, and then aggregates the synopses to create global statistics.

Chapter 13
Gathering Optimizer Statistics Manually

13-28

Figure 13-3 Aggregating Statistics after Adding a Partition

Sales Table

Sysaux
Tablespace

111111111111111111116 The database generates
global statistics by
aggregating partition-level
synopses.

11111111111111115 The database retrieves
statistics and synopses
for other partitions.

S6

S5

S4

S3

S2

S1

Global
Statistics

May 23 2012

S7May 24 2012

May 22 2012

May 21 2012

May 20 2012

May 19 2012

May 18 2012

11111111111111113 The table adds a
new partition.

1111111111111111114 The database gathers statistics
and synopses for the new partition.

Gathering Statistics for a Partitioned Table: Basic Steps
This section explains how to gather optimizer statistics for a partitioned table.

Considerations for Incremental Statistics Maintenance
Enabling incremental statistics maintenance has several consequences.

Specifically, note the following:

• If a table uses composite partitioning, then the database only gathers statistics for modified
subpartitions. The database does not gather statistics at the subpartition level for
unmodified subpartitions. In this way, the database reduces work by skipping unmodified
partitions.

• If a table uses incremental statistics, and if this table has a locally partitioned index, then
the database gathers index statistics at the global level and for modified (not unmodified)
index partitions. The database does not generate global index statistics from the partition-
level index statistics. Rather, the database gathers global index statistics by performing a
full index scan.

• A hybrid partitioned table contains both internal and external partitions. For internal
partitions only, DDL changes invoke incremental statistic maintenance on individual
partitions and on the table itself. For example, if june18 is an internal partition, then ALTER
TABLE ... MODIFY PARTITION jun18 ... triggers incremental statistics maintenance
during statistics collection; if june18 is an external partition, however, then incremental
maintenance does not occur.

• The SYSAUX tablespace consumes additional space to maintain global statistics for
partitioned tables.

Chapter 13
Gathering Optimizer Statistics Manually

13-29

See Also:

• Oracle Database VLDB and Partitioning Guide to learn how to create hybrid
partitioned tables

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS

Enabling Incremental Statistics Using SET_TABLE_PREFS
To enable incremental statistics maintenance for a partitioned table, use
DBMS_STATS.SET_TABLE_PREFS to set the INCREMENTAL value to true. When INCREMENTAL is set
to false, which is the default, the database uses a full table scan to maintain global statistics.

For the database to update global statistics incrementally by scanning only the partitions that
have changed, the following conditions must be met:

• The PUBLISH value for the partitioned table is true.

• The INCREMENTAL value for the partitioned table is true.

• The statistics gathering procedure must specify AUTO_SAMPLE_SIZE for ESTIMATE_PERCENT
and AUTO for GRANULARITY.

Example 13-3 Enabling Incremental Statistics

Assume that the PUBLISH value for the partitioned table sh.sales is true. The following
program enables incremental statistics for this table:

EXEC DBMS_STATS.SET_TABLE_PREFS('sh', 'sales', 'INCREMENTAL', 'TRUE');

About the APPROXIMATE_NDV_ALGORITHM Settings
The DBMS_STATS.APPROXIMATE_NDV_ALGORITHM preference specifies the synopsis generation
algorithm, either HyperLogLog or adaptive sampling. The INCREMENTAL_STALENESS preference
controls when the database reformats synopses that use the adaptive sampling format.

The APPROXIMATE_NDV_ALGORITHM preference has the following possible values:

• REPEAT OR HYPERLOGLOG
This is the default. If INCREMENTAL is enabled on the table, then the database preserves the
format of any existing synopses that use the adaptive sampling algorithm. However, the
database creates any new synopses in HyperLogLog format. This approach is attractive
when existing performance is acceptable, and you do not want to incur the performance
cost of reformatting legacy content.

• ADAPTIVE SAMPLING
The database uses the adaptive sampling algorithm for all synopses. This is the most
conservative option.

• HYPERLOGLOG
The database uses the HyperLogLog algorithm for all new and stale synopses.

Chapter 13
Gathering Optimizer Statistics Manually

13-30

The INCREMENTAL_STALENESS preference controls when a synopsis is considered stale. When
the APPROXIMATE_NDV_ALGORITHM preference is set to HYPERLOGLOG, then the following
INCREMENTAL_STALENESS settings apply:

• ALLOW_MIXED_FORMAT
This is the default. If this value is specified, and if the following conditions are met, then the
database does not consider existing adaptive sampling synopses as stale:

– The synopses are fresh.

– You gather statistics manually.

Thus, synopses in both the legacy and HyperLogLog formats can co-exist. However, over
time the automatic statistics gathering job regathers statistics on synopses that use the old
format, and replaces them with synopses in HyperLogLog format. In this way, the
automatic statistics gather job gradually phases out the old format. Manual statistics
gathering jobs do not reformat synopses that use the adaptive sampling format.

• Null

Any partitions with the synopses in the legacy format are considered stale, which
immediately triggers the database to regather statistics for stale synopses. The advantage
is that the performance cost occurs only once. The disadvantage is that regathering all
statistics on large tables can be resource-intensive.

Configuring Synopsis Generation: Examples
These examples show different approaches, both conservative and aggressive, to switching
synopses to the new HyperLogLog format.

Example 13-4 Taking a Conservative Approach to Reformatting Synopses

In this example, you allow synopses in mixed formats to coexist for the sh.sales table. Mixed
formats yield less accurate statistics. However, you do not need to regather statistics for all
partitions of the table.

To ensure that all new and stale synopses use the HyperLogLog algorithm, set the
APPROXIMATE_NDV_ALGORITHM preference to HYPERLOGLOG. To ensure that the automatic
statistics gathering job reformats stale synopses gradually over time, set the
INCREMENTAL_STALENESS preference to ALLOW_MIXED_FORMAT.

BEGIN
 DBMS_STATS.SET_TABLE_PREFS
 (ownname => 'sh'
 , tabname => 'sales'
 , pname => 'approximate_ndv_algorithm'
 , pvalue => 'hyperloglog');

 DBMS_STATS.SET_TABLE_PREFS
 (ownname => 'sh'
 , tabname => 'sales'
 , pname => 'incremental_staleness'
 , pvalue => 'allow_mixed_format');
END;

Example 13-5 Taking an Aggressive Approach to Reformatting Synopses

In this example, you force all synopses to use the HyperLogLog algorithm for the sh.sales
table. In this case, the database must regather statistics for all partitions of the table.

Chapter 13
Gathering Optimizer Statistics Manually

13-31

To ensure that all new and stale synopses use the HyperLogLog algorithm, set the
APPROXIMATE_NDV_ALGORITHM preference to HYPERLOGLOG. To force the database to immediately
regather statistics for all partitions in the table and store them in the new format, set the
INCREMENTAL_STALENESS preference to null.

BEGIN
 DBMS_STATS.SET_TABLE_PREFS
 (ownname => 'sh'
 , tabname => 'sales'
 , pname => 'approximate_ndv_algorithm'
 , pvalue => 'hyperloglog');

 DBMS_STATS.SET_TABLE_PREFS
 (ownname => 'sh'
 , tabname => 'sales'
 , pname => 'incremental_staleness'
 , pvalue => 'null');
END;

Maintaining Incremental Statistics for Partition Maintenance Operations
A partition maintenance operation is a partition-related operation such as adding,
exchanging, merging, or splitting table partitions.

Oracle Database provides the following support for incremental statistics maintenance:

• If a partition maintenance operation triggers statistics gathering, then the database can
reuse synopses that would previously have been dropped with the old segments.

• DBMS_STATS can create a synopsis on a nonpartitioned table. The synopsis enables the
database to maintain incremental statistics as part of a partition exchange operation
without having to explicitly gather statistics on the partition after the exchange.

When the DBMS_STATS preference INCREMENTAL is set to true on a table, the
INCREMENTAL_LEVEL preference controls which synopses are collected and when. This
preference takes the following values:

• TABLE
DBMS_STATS gathers table-level synopses on this table. You can only set
INCREMENTAL_LEVEL to TABLE at the table level, not at the schema, database, or global
level.

• PARTITION (default)

DBMS_STATS only gathers synopsis at the partition level of partitioned tables.

When performing a partition exchange, to have synopses after the exchange for the partition
being exchanged, set INCREMENTAL to true and INCREMENTAL_LEVEL to TABLE on the table to be
exchanged with the partition.

Assumptions

This tutorial assumes the following:

• You want to load empty partition p_sales_01_2010 in a sales table.

• You create a staging table t_sales_01_2010, and then populate the table.

Chapter 13
Gathering Optimizer Statistics Manually

13-32

• You want the database to maintain incremental statistics as part of the partition exchange
operation without having to explicitly gather statistics on the partition after the exchange.

To maintain incremental statistics as part of a partition exchange operation:

1. Set incremental statistics preferences for staging table t_sales_01_2010.

For example, run the following statement:

BEGIN
 DBMS_STATS.SET_TABLE_PREFS (
 ownname => 'sh'
, tabname => 't_sales_01_2010'
, pname => 'INCREMENTAL'
, pvalue => 'true'
);
 DBMS_STATS.SET_TABLE_PREFS (
 ownname => 'sh'
, tabname => 't_sales_01_2010'
, pname => 'INCREMENTAL_LEVEL'
, pvalue => 'table'
);
END;

2. Gather statistics on staging table t_sales_01_2010.

For example, run the following PL/SQL code:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS (
 ownname => 'SH'
, tabname => 'T_SALES_01_2010'
);
END;
/

DBMS_STATS gathers table-level synopses on t_sales_01_2010.

3. Ensure that the INCREMENTAL preference is true on the sh.sales table.

For example, run the following PL/SQL code:

BEGIN
 DBMS_STATS.SET_TABLE_PREFS (
 ownname => 'sh'
, tabname => 'sales'
, pname => 'INCREMENTAL'
, pvalue => 'true'
);
END;
/

4. If you have never gathered statistics on sh.sales before with INCREMENTAL set to true,
then gather statistics on the partition to be exchanged.

Chapter 13
Gathering Optimizer Statistics Manually

13-33

For example, run the following PL/SQL code:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS (
 ownname => 'sh'
, tabname => 'sales'
, pname => 'p_sales_01_2010'
, pvalue => granularity=>'partition'
);
END;
/

5. Perform the partition exchange.

For example, use the following SQL statement:

ALTER TABLE sales EXCHANGE PARTITION p_sales_01_2010 WITH TABLE
t_sales_01_2010;

After the exchange, the partitioned table has both statistics and a synopsis for partition
p_sales_01_2010.

In releases before Oracle Database 12c, the preceding statement swapped the segment
data and statistics of p_sales_01_2010 with t_sales_01_2010. The database did not
maintain synopses for nonpartitioned tables such as t_sales_01_2010. To gather global
statistics on the partitioned table, you needed to rescan the p_sales_01_2010 partition to
obtain its synopses.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.SET_TABLE_PREFS

Maintaining Incremental Statistics for Tables with Stale or Locked Partition Statistics
Starting in Oracle Database 12c, incremental statistics can automatically calculate global
statistics for a partitioned table even if the partition or subpartition statistics are stale and
locked.

When incremental statistics are enabled in releases before Oracle Database 12c, if any DML
occurs on a partition, then the optimizer considers statistics on this partition to be stale. Thus,
DBMS_STATS must gather the statistics again to accurately aggregate the global statistics.
Furthermore, if DML occurs on a partition whose statistics are locked, then DBMS_STATS cannot
regather the statistics on the partition, so a full table scan is the only means of gathering global
statistics. Regathering statistics creates performance overhead.

In Oracle Database 12c, the statistics preference INCREMENTAL_STALENESS controls how the
database determines whether the statistics on a partition or subpartition are stale. This
preference takes the following values:

• USE_STALE_PERCENT
A partition or subpartition is not considered stale if DML changes are less than the
STALE_PERCENT preference specified for the table. The default value of STALE_PERCENT is

Chapter 13
Gathering Optimizer Statistics Manually

13-34

10, which means that if DML causes more than 10% of row changes, then the table is
considered stale.

• USE_LOCKED_STATS
Locked partition or subpartition statistics are not considered stale, regardless of DML
changes.

• NULL (default)

A partition or subpartition is considered stale if it has any DML changes. This behavior is
identical to the Oracle Database 11g behavior. When the default value is used, statistics
gathered in incremental mode are guaranteed to be the same as statistics gathered in
nonincremental mode. When a nondefault value is used, statistics gathered in incremental
mode might be less accurate than those gathered in nonincremental mode.

You can specify USE_STALE_PERCENT and USE_LOCKED_STATS together. For example, you can
write the following anonymous block:

BEGIN
 DBMS_STATS.SET_TABLE_PREFS (
 ownname => null
, table_name => 't'
, pname => 'incremental_staleness'
, pvalue => 'use_stale_percent,use_locked_stats'
);
END;

Assumptions

This tutorial assumes the following:

• The STALE_PERCENT for a partitioned table is set to 10.

• The INCREMENTAL value is set to true.

• The table has had statistics gathered in INCREMENTAL mode before.

• You want to discover how statistics gathering changes depending on the setting for
INCREMENTAL_STALENESS, whether the statistics are locked, and the percentage of DML
changes.

To test for tables with stale or locked partition statistics:

1. Set INCREMENTAL_STALENESS to NULL.

Afterward, 5% of the rows in one partition change because of DML activity.

2. Use DBMS_STATS to gather statistics on the table.

DBMS_STATS regathers statistics for the partition that had the 5% DML activity, and
incrementally maintains the global statistics.

3. Set INCREMENTAL_STALENESS to USE_STALE_PERCENT.

Afterward, 5% of the rows in one partition change because of DML activity.

4. Use DBMS_STATS to gather statistics on the table.

DBMS_STATS does not regather statistics for the partition that had DML activity (because the
changes are under the staleness threshold of 10%), and incrementally maintains the global
statistics.

5. Lock the partition statistics.

Chapter 13
Gathering Optimizer Statistics Manually

13-35

Afterward, 20% of the rows in one partition change because of DML activity.

6. Use DBMS_STATS to gather statistics on the table.

DBMS_STATS does not regather statistics for the partition because the statistics are locked.
The database gathers the global statistics with a full table scan.

Afterward, 5% of the rows in one partition change because of DML activity.

7. Use DBMS_STATS to gather statistics on the table.

When you gather statistics on this table, DBMS_STATS does not regather statistics for the
partition because they are not considered stale. The database maintains global statistics
incrementally using the existing statistics for this partition.

8. Set INCREMENTAL_STALENESS to USE_LOCKED_STATS and USE_STALE_PERCENT.

Afterward, 20% of the rows in one partition change because of DML activity.

9. Use DBMS_STATS to gather statistics on the table.

Because USE_LOCKED_STATS is set, DBMS_STATS ignores the fact that the statistics are stale
and uses the locked statistics. The database maintains global statistics incrementally using
the existing statistics for this partition.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.SET_TABLE_PREFS

Gathering System Statistics Manually
System statistics describe hardware characteristics, such as I/O and CPU performance and
utilization, to the optimizer.

About System Statistics
System statistics measure the performance of CPU and storage so that the optimizer can use
these inputs when evaluating plans.

When a query executes, it consumes CPU. In many cases, a query also consumes storage
subsystem resources. Each plan in a typical query may consume a different proportion of CPU
and I/O. Using the cost metric, the optimizer chooses the plan that it estimates will execute
most quickly. If the optimizer knows the speed of CPU and storage, then it can make finer
judgments about the cost of each alternative plan.

The following figure shows a query that has three possible plans. Each plan uses different
amounts of CPU and I/O. For the sake of this example, the optimizer has assigned Plan 1 the
lowest cost.

Chapter 13
Gathering System Statistics Manually

13-36

SQL
Plan 2

SQL
Plan 3

SQL
Plan 1

More I/OMore CPU

High Cost

Low Cost

The database automatically gathers essential system statistics, called noworkload statistics, at
the first instance startup. Typically, these characteristics only change when some aspect of the
hardware configuration is upgraded.

The following figure shows the same database after adding high-performance storage.
Gathering system statistics enables the optimizer to take the storage performance into
account. In this example, the high-performance storage lowers the relative cost of Plan 2 and
Plan 3 significantly. Plan 1 shows only marginal improvement because it uses less I/O. Plan 3
has now been assigned the lowest cost.

More I/OMore CPU

High Cost

Low Cost

SQL
Plan 2

SQL
Plan 3

SQL
Plan 1

Chapter 13
Gathering System Statistics Manually

13-37

On systems with fast I/O infrastructure, system statistics increase the probability that queries
choose table scans over index access methods.

Guidelines for Gathering System Statistics
Unless there is a good reason to gather manually, Oracle recommends using the defaults for
system statistics.

System statistics are important for performance because they affect every SQL statement
executed in the database. Changing system statistics may change SQL execution plans,
perhaps in unexpected or unwanted ways. For this reason, Oracle recommends considering
the options carefully before changing system statistics.

When to Consider Gathering System Statistics Manually

If you are using Oracle Exadata, and if the database is running a pure data warehouse load,
then gathering system statistics using the EXADATA option can help performance in some cases
because table scans are more strongly favored. However, even on Exadata, the defaults are
best for most workloads.

If you are not using Oracle Exadata, and if you choose to gather system statistics manually,
then Oracle recommends the following:

• Gather system statistics when a physical change occurs in your environment, for example,
the server gets faster CPUs, more memory, or different disk storage. Oracle recommends
that you gather noworkload statistics after you create new tablespaces on storage that is
not used by any other tablespace.

• Capture statistics when the system has the most common workload. Gathering workload
statistics does not generate additional overhead.

When to Consider Using Default Statistics

Oracle recommends using the defaults for system statistics in most cases. To reset system
statistics to their default values, execute DBMS_STATS.DELETE_SYSTEM_STATS, and then shut
down and reopen the database. To ensure that appropriate defaults are used, this step is also
recommended on a newly created database.

Gathering System Statistics with DBMS_STATS
To gather system statistics manually, use the DBMS_STATS.GATHER_SYSTEM_STATS procedure.

About the GATHER_SYSTEM_STATS Procedure
The DBMS_STATS.GATHER_SYSTEM_STATS procedure analyzes activity in a specified time period
(workload statistics) or simulates a workload (noworkload statistics).

The input arguments to DBMS_STATS.GATHER_SYSTEM_STATS are:

• NOWORKLOAD
The optimizer gathers statistics based on system characteristics only, without regard to the
workload.

• INTERVAL
After the specified number of minutes has passed, the optimizer updates system statistics
either in the data dictionary, or in an alternative table (specified by stattab). Statistics are
based on system activity during the specified interval.

Chapter 13
Gathering System Statistics Manually

13-38

• START and STOP
START initiates gathering statistics. STOP calculates statistics for the elapsed period (since
START) and refreshes the data dictionary or an alternative table (specified by stattab). The
optimizer ignores INTERVAL.

• EXADATA
The system statistics consider the unique capabilities provided by using Exadata, such as
large I/O size and high I/O throughput. The optimizer sets the multiblock read count and
I/O throughput statistics along with CPU speed.

The following table lists the optimizer system statistics gathered by DBMS_STATS and the options
for gathering or manually setting specific system statistics.

Table 13-4 Optimizer System Statistics in the DBMS_STATS Package

Parameter Name Description Initialization Options for
Gathering or Setting
Statistics

Unit

cpuspeedNW Represents
noworkload CPU
speed. CPU speed is
the average number of
CPU cycles in each
second.

At system startup Set gathering_mode
= NOWORKLOAD or set
statistics manually.

millions/s

ioseektim Represents the time it
takes to position the
disk head to read data.
I/O seek time equals
seek time + latency
time + operating
system overhead time.

At system startup

10 (default)

Set gathering_mode
= NOWORKLOAD or set
statistics manually.

ms

iotfrspeed Represents the rate at
which an Oracle
database can read
data in the single read
request.

At system startup

4096 (default)

Set gathering_mode
= NOWORKLOAD or set
statistics manually.

bytes/ms

cpuspeed Represents workload
CPU speed. CPU
speed is the average
number of CPU cycles
in each second.

None Set gathering_mode
= NOWORKLOAD,
INTERVAL, or START|
STOP, or set statistics
manually.

millions/s

maxthr Maximum I/O
throughput is the
maximum throughput
that the I/O subsystem
can deliver.

None Set gathering_mode
= NOWORKLOAD,
INTERVAL, or START|
STOP, or set statistics
manually.

bytes/s

slavethr Slave I/O throughput is
the average parallel
execution server I/O
throughput.

None Set gathering_mode
= INTERVAL or START|
STOP, or set statistics
manually.

bytes/s

sreadtim Single-block read time
is the average time to
read a single block
randomly.

None Set gathering_mode
= INTERVAL or START|
STOP, or set statistics
manually.

ms

Chapter 13
Gathering System Statistics Manually

13-39

Table 13-4 (Cont.) Optimizer System Statistics in the DBMS_STATS Package

Parameter Name Description Initialization Options for
Gathering or Setting
Statistics

Unit

mreadtim Multiblock read is the
average time to read a
multiblock sequentially.

None Set gathering_mode
= INTERVAL or START|
STOP, or set statistics
manually.

ms

mbrc Multiblock count is the
average multiblock
read count
sequentially.

None Set gathering_mode
= INTERVAL or START|
STOP, or set statistics
manually.

blocks

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information on
the procedures in the DBMS_STATS package for gathering and deleting system
statistics

Gathering Workload Statistics
Oracle recommends that you use DBMS_STATS.GATHER_SYSTEM_STATS to capture statistics when
the database has the most typical workload.

For example, database applications can process OLTP transactions during the day and
generate OLAP reports at night.

About Workload Statistics
Workload statistics analyze activity in a specified time period.

Workload statistics include the following statistics listed in Table 13-4:

• Single block (sreadtim) and multiblock (mreadtim) read times

• Multiblock count (mbrc)

• CPU speed (cpuspeed)

• Maximum system throughput (maxthr)

• Average parallel execution throughput (slavethr)

The database computes sreadtim, mreadtim, and mbrc by comparing the number of physical
sequential and random reads between two points in time from the beginning to the end of a
workload. The database implements these values through counters that change when the
buffer cache completes synchronous read requests.

Because the counters are in the buffer cache, they include not only I/O delays, but also waits
related to latch contention and task switching. Thus, workload statistics depend on system
activity during the workload window. If system is I/O bound (both latch contention and I/O
throughput), then the statistics promote a less I/O-intensive plan after the database uses the
statistics.

Chapter 13
Gathering System Statistics Manually

13-40

As shown in Figure 13-4, if you gather workload statistics, then the optimizer uses the mbrc
value gathered for workload statistics to estimate the cost of a full table scan.

Figure 13-4 Workload Statistics Counters

Database Buffer Cache

May not be
available if
no full table
scans occur

May use if mbrc and mreadtim
are not available

Optimizer

mreadtim

mbrc

sreadtim

cpuspeed

maxthr

slavethr

Counters for Workload
Statistics

DB_FILE_MULTIBLOCK_READ_COUNT

Estimate
costs of
full table
scans

When gathering workload statistics, the database may not gather the mbrc and mreadtim
values if no table scans occur during serial workloads, as is typical of OLTP systems. However,
full table scans occur frequently on DSS systems. These scans may run parallel and bypass
the buffer cache. In such cases, the database still gathers the sreadtim because index lookups
use the buffer cache.

If the database cannot gather or validate gathered mbrc or mreadtim values, but has gathered
sreadtim and cpuspeed, then the database uses only sreadtim and cpuspeed for costing. In
this case, the optimizer uses the value of the initialization parameter
DB_FILE_MULTIBLOCK_READ_COUNT to cost a full table scan. However, if
DB_FILE_MULTIBLOCK_READ_COUNT is 0 or is not set, then the optimizer uses a value of 8 for
calculating cost.

Use the DBMS_STATS.GATHER_SYSTEM_STATS procedure to gather workload statistics. The
GATHER_SYSTEM_STATS procedure refreshes the data dictionary or a staging table with statistics
for the elapsed period. To set the duration of the collection, use either of the following
techniques:

• Specify START the beginning of the workload window, and then STOP at the end of the
workload window.

• Specify INTERVAL and the number of minutes before statistics gathering automatically
stops. If needed, you can use GATHER_SYSTEM_STATS (gathering_mode=>'STOP') to end
gathering earlier than scheduled.

See Also:

Oracle Database Reference to learn about the DB_FILE_MULTIBLOCK_READ_COUNT
initialization parameter

Chapter 13
Gathering System Statistics Manually

13-41

Starting and Stopping System Statistics Gathering
This tutorial explains how to set the workload interval with the START and STOP parameters of
GATHER_SYSTEM_STATS.

Assumptions

This tutorial assumes the following:

• The hour between 10 a.m. and 11 a.m. is representative of the daily workload.

• You intend to collect system statistics directly in the data dictionary.

To gather workload statistics using START and STOP:

1. Start SQL*Plus and connect to the database with administrator privileges.

2. Start statistics collection.

For example, at 10 a.m., execute the following procedure to start collection:

EXECUTE DBMS_STATS.GATHER_SYSTEM_STATS(gathering_mode => 'START');

3. Generate the workload.

4. End statistics collection.

For example, at 11 a.m., execute the following procedure to end collection:

EXECUTE DBMS_STATS.GATHER_SYSTEM_STATS(gathering_mode => 'STOP');

The optimizer can now use the workload statistics to generate execution plans that are
effective during the normal daily workload.

5. Optionally, query the system statistics.

For example, run the following query:

COL PNAME FORMAT a15
SELECT PNAME, PVAL1
FROM SYS.AUX_STATS$
WHERE SNAME = 'SYSSTATS_MAIN';

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_SYSTEM_STATS procedure

Chapter 13
Gathering System Statistics Manually

13-42

Gathering System Statistics During a Specified Interval
This tutorial explains how to set the workload interval with the INTERVAL parameter of
GATHER_SYSTEM_STATS.

Assumptions

This tutorial assumes the following:

• The database application processes OLTP transactions during the day and runs OLAP
reports at night. To gather representative statistics, you collect them during the day for two
hours and then at night for two hours.

• You want to store statistics in a table named workload_stats.

• You intend to switch between the statistics gathered.

To gather workload statistics using INTERVAL:

1. Start SQL*Plus and connect to the production database as administrator dba1.

2. Create a table to hold the production statistics.

For example, execute the following PL/SQL program to create user statistics table
workload_stats:

BEGIN
 DBMS_STATS.CREATE_STAT_TABLE (
 ownname => 'dba1'
, stattab => 'workload_stats'
);
END;
/

3. Ensure that JOB_QUEUE_PROCESSES is not 0 so that DBMS_JOB jobs and Oracle Scheduler
jobs run.

ALTER SYSTEM SET JOB_QUEUE_PROCESSES = 1;

4. Gather statistics during the day.

For example, gather statistics for two hours with the following program:

BEGIN
 DBMS_STATS.GATHER_SYSTEM_STATS (
 interval => 120
, stattab => 'workload_stats'
, statid => 'OLTP'
);
END;
/

5. Gather statistics during the evening.

For example, gather statistics for two hours with the following program:

BEGIN
 DBMS_STATS.GATHER_SYSTEM_STATS (

Chapter 13
Gathering System Statistics Manually

13-43

 interval => 120
, stattab => 'workload_stats'
, statid => 'OLAP'
);
END;
/

6. In the day or evening, import the appropriate statistics into the data dictionary.

For example, during the day you can import the OLTP statistics from the staging table into
the dictionary with the following program:

BEGIN
 DBMS_STATS.IMPORT_SYSTEM_STATS (
 stattab => 'workload_stats'
, statid => 'OLTP'
);
END;
/

For example, during the night you can import the OLAP statistics from the staging table
into the dictionary with the following program:

BEGIN
 DBMS_STATS.IMPORT_SYSTEM_STATS (
 stattab => 'workload_stats'
, statid => 'OLAP'
);
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_SYSTEM_STATS procedure

Gathering Noworkload Statistics
Noworkload statistics capture characteristics of the I/O system.

By default, Oracle Database uses noworkload statistics and the CPU cost model. The values
of noworkload statistics are initialized to defaults at the first instance startup. You can also use
the DBMS_STATS.GATHER_SYSTEM_STATS procedure to gather noworkload statistics manually.

Noworkload statistics include the following system statistics listed in Table 13-4:

• I/O transfer speed (iotfrspeed)

• I/O seek time (ioseektim)

• CPU speed (cpuspeednw)

The major difference between workload statistics and noworkload statistics is in the gathering
method. Noworkload statistics gather data by submitting random reads against all data files,

Chapter 13
Gathering System Statistics Manually

13-44

whereas workload statistics uses counters updated when database activity occurs. If you
gather workload statistics, then Oracle Database uses them instead of noworkload statistics.

To gather noworkload statistics, run DBMS_STATS.GATHER_SYSTEM_STATS with no arguments or
with the gathering mode set to noworkload. There is an overhead on the I/O system during the
gathering process of noworkload statistics. The gathering process may take from a few
seconds to several minutes, depending on I/O performance and database size.

When you gather noworkload statistics, the database analyzes the information and verifies it
for consistency. In some cases, the values of noworkload statistics may retain their default
values. You can either gather the statistics again, or use SET_SYSTEM_STATS to set the values
manually to the I/O system specifications.

Assumptions

This tutorial assumes that you want to gather noworkload statistics manually.

To gather noworkload statistics manually:

1. Start SQL*Plus and connect to the database with administrator privileges.

2. Gather the noworkload statistics.

For example, run the following statement:

BEGIN
 DBMS_STATS.GATHER_SYSTEM_STATS (
 gathering_mode => 'NOWORKLOAD'
);
END;

3. Optionally, query the system statistics.

For example, run the following query:

COL PNAME FORMAT a15

SELECT PNAME, PVAL1
FROM SYS.AUX_STATS$
WHERE SNAME = 'SYSSTATS_MAIN';

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_SYSTEM_STATS procedure

Deleting System Statistics
The DBMS_STATS.DELETE_SYSTEM_STATS procedure deletes system statistics.

This procedure deletes workload statistics collected using the INTERVAL or START and STOP
options, and then resets the default to noworkload statistics. However, if the stattab
parameter specifies a table for storing statistics, then the subprogram deletes all system
statistics with the associated statid from the statistics table.

Chapter 13
Gathering System Statistics Manually

13-45

If the database is newly created, then Oracle recommends deleting system statistics, shutting
down the database, and then reopening the database. This sequence of steps ensures that the
database establishes appropriate defaults for system statistics.

Assumptions

This tutorial assumes the following:

• You gathered statistics for a specific intensive workload, but no longer want the optimizer
to use these statistics.

• You stored workload statistics in the default location, not in a user-specified table.

To delete system statistics:

1. In SQL*Plus, log in to the database as a user with administrative privileges.

2. Delete the system statistics.

For example, run the following statement:

EXEC DBMS_STATS.DELETE_SYSTEM_STATS;

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.DELETE_SYSTEM_STATS procedure

Running Statistics Gathering Functions in Reporting Mode
You can run the DBMS_STATS statistics gathering procedures in reporting mode.

When you use the REPORT_* procedures, the optimizer does not actually gather statistics.
Rather, the package reports objects that would be processed if you were to use a specified
statistics gathering function.

The following table lists the DBMS_STATS.REPORT_GATHER_*_STATS functions. For all functions,
the input parameters are the same as for the corresponding GATHER_*_STATS procedure, with
the following additional parameters: detail_level and format. Supported formats are XML,
HTML, and TEXT.

Table 13-5 DBMS_STATS Reporting Mode Functions

Function Description

REPORT_GATHER_TABLE_STATS Runs GATHER_TABLE_STATS in reporting mode. The
procedure does not collect statistics, but reports all
objects that would be affected by invoking
GATHER_TABLE_STATS.

REPORT_GATHER_SCHEMA_STATS Runs GATHER_SCHEMA_STATS in reporting mode. The
procedure does not actually collect statistics, but
reports all objects that would be affected by invoking
GATHER_SCHEMA_STATS.

Chapter 13
Running Statistics Gathering Functions in Reporting Mode

13-46

Table 13-5 (Cont.) DBMS_STATS Reporting Mode Functions

Function Description

REPORT_GATHER_DICTIONARY_STATS Runs GATHER_DICTIONARY_STATS in reporting mode.
The procedure does not actually collect statistics, but
reports all objects that would be affected by invoking
GATHER_DICTIONARY_STATS.

REPORT_GATHER_DATABASE_STATS Runs GATHER_DATABASE_STATS in reporting mode.
The procedure does not actually collect statistics, but
reports all objects that would be affected by invoking
GATHER_DATABASE_STATS.

REPORT_GATHER_FIXED_OBJ_STATS Runs GATHER_FIXED_OBJ_STATS in reporting mode.
The procedure does not actually collect statistics, but
reports all objects that would be affected by invoking
GATHER_FIXED_OBJ_STATS.

REPORT_GATHER_AUTO_STATS Runs the automatic statistics gather job in reporting
mode. The procedure does not actually collect
statistics, but reports all objects that would be affected
by running the job.

Assumptions

This tutorial assumes that you want to generate an HTML report of the objects that would be
affected by running GATHER_SCHEMA_STATS on the oe schema.

To report on objects affected by running GATHER_SCHEMA_STATS:

1. Start SQL*Plus and connect to the database with administrator privileges.

2. Run the DBMS_STATS.REPORT_GATHER_SCHEMA_STATS function.

For example, run the following commands in SQL*Plus:

SET LINES 200 PAGES 0
SET LONG 100000
COLUMN REPORT FORMAT A200

VARIABLE my_report CLOB;
BEGIN
 :my_report :=DBMS_STATS.REPORT_GATHER_SCHEMA_STATS(
 ownname => 'OE' ,
 detail_level => 'TYPICAL' ,
 format => 'HTML');
END;
/

The following graphic shows a partial example report:

Chapter 13
Running Statistics Gathering Functions in Reporting Mode

13-47

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS

Chapter 13
Running Statistics Gathering Functions in Reporting Mode

13-48

14
Managing Extended Statistics

DBMS_STATS enables you to collect extended statistics, which are statistics that can improve
cardinality estimates when multiple predicates exist on different columns of a table, or when
predicates use expressions.

An extension is either a column group or an expression. Column group statistics can improve
cardinality estimates when multiple columns from the same table occur together in a SQL
statement. Expression statistics improves optimizer estimates when predicates use
expressions, for example, built-in or user-defined functions.

Note:

You cannot create extended statistics on virtual columns.

See Also:

Oracle Database SQL Language Reference for a list of restrictions on virtual columns

Managing Column Group Statistics
A column group is a set of columns that is treated as a unit.

Essentially, a column group is a virtual column. By gathering statistics on a column group, the
optimizer can more accurately determine the cardinality estimate when a query groups these
columns together.

The following sections provide an overview of column group statistics, and explain how to
manage them manually.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

About Statistics on Column Groups
Individual column statistics are useful for determining the selectivity of a single predicate in a
WHERE clause.

When the WHERE clause includes multiple predicates on different columns from the same table,
individual column statistics do not show the relationship between the columns. This is the
problem solved by a column group.

14-1

The optimizer calculates the selectivity of the predicates independently, and then combines
them. However, if a correlation between the individual columns exists, then the optimizer
cannot take it into account when determining a cardinality estimate, which it creates by
multiplying the selectivity of each table predicate by the number of rows.

The following graphic contrasts two ways of gathering statistics on the cust_state_province
and country_id columns of the sh.customers table. The diagram shows DBMS_STATS collecting
statistics on each column individually and on the group. The column group has a system-
generated name.

Figure 14-1 Column Group Statistics

SYS_STU#S#WF25Z#QAHIHE#MOFFMM_

Statistics for
Column Group

CUST_ID CUST_STATE_PROVINCE COUNTRY_ID

101095

103105

52790

52775

CA

Sao Paulo

...

Statistics for
CUST_STATE_PROVINCE

Statistics for
COUNTRY_ID

DBMS_STATS

Note:

The optimizer uses column group statistics for equality predicates, inlist predicates,
and for estimating the GROUP BY cardinality.

Why Column Group Statistics Are Needed: Example
This example demonstrates how column group statistics enable the optimizer to give a more
accurate cardinality estimate.

The following query of the DBA_TAB_COL_STATISTICS table shows information about statistics
that have been gathered on the columns cust_state_province and country_id from the
sh.customers table:

COL COLUMN_NAME FORMAT a20
COL NDV FORMAT 999

SELECT COLUMN_NAME, NUM_DISTINCT AS "NDV", HISTOGRAM
FROM DBA_TAB_COL_STATISTICS
WHERE OWNER = 'SH'
AND TABLE_NAME = 'CUSTOMERS'
AND COLUMN_NAME IN ('CUST_STATE_PROVINCE', 'COUNTRY_ID');

Chapter 14
Managing Column Group Statistics

14-2

Sample output is as follows:

COLUMN_NAME NDV HISTOGRAM
-------------------- ---------- ---------------
CUST_STATE_PROVINCE 145 FREQUENCY
COUNTRY_ID 19 FREQUENCY

As shown in the following query, 3341 customers reside in California:

SELECT COUNT(*)
FROM sh.customers
WHERE cust_state_province = 'CA';

 COUNT(*)

 3341

Consider an explain plan for a query of customers in the state CA and in the country with ID
52790 (USA):

EXPLAIN PLAN FOR
 SELECT *
 FROM sh.customers
 WHERE cust_state_province = 'CA'
 AND country_id=52790;

Explained.

sys@PROD> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

PLAN_TABLE_OUTPUT

Plan hash value: 1683234692

--
| Id | Operation | Name | Rows | Bytes |Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 128 | 24192 | 442 (7)| 00:00:06 |
|* 1 | TABLE ACCESS FULL| CUSTOMERS | 128 | 24192 | 442 (7)| 00:00:06 |
--

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

 1 - filter("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"=52790)

13 rows selected.

Based on the single-column statistics for the country_id and cust_state_province columns,
the optimizer estimates that the query of California customers in the USA will return 128 rows.
In fact, 3341 customers reside in California, but the optimizer does not know that the state of

Chapter 14
Managing Column Group Statistics

14-3

California is in the country of the USA, and so greatly underestimates cardinality by assuming
that both predicates reduce the number of returned rows.

You can make the optimizer aware of the real-world relationship between values in country_id
and cust_state_province by gathering column group statistics. These statistics enable the
optimizer to give a more accurate cardinality estimate.

See Also:

• "Detecting Useful Column Groups for a Specific Workload"

• "Creating Column Groups Detected During Workload Monitoring"

• "Creating and Gathering Statistics on Column Groups Manually"

Automatic and Manual Column Group Statistics
Oracle Database can create column group statistics either automatically or manually.

The optimizer can use SQL plan directives to generate a more optimal plan. If the DBMS_STATS
preference AUTO_STAT_EXTENSIONS is set to ON (by default it is OFF), then a SQL plan directive
can automatically trigger the creation of column group statistics based on usage of predicates
in the workload. You can set AUTO_STAT_EXTENSIONS with the SET_TABLE_PREFS,
SET_GLOBAL_PREFS, or SET_SCHEMA_PREFS procedures.

When you want to manage column group statistics manually, then use DBMS_STATS as follows:

• Detect column groups

• Create previously detected column groups

• Create column groups manually and gather column group statistics

See Also:

• "Detecting Useful Column Groups for a Specific Workload"

• "Creating Column Groups Detected During Workload Monitoring"

• "Creating and Gathering Statistics on Column Groups Manually"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS procedures for setting optimizer statistics

User Interface for Column Group Statistics
Several DBMS_STATS program units have preferences that are relevant for column groups.

Chapter 14
Managing Column Group Statistics

14-4

Table 14-1 DBMS_STATS APIs Relevant for Column Groups

Program Unit or Preference Description

SEED_COL_USAGE Procedure Iterates over the SQL statements in the specified workload,
compiles them, and then seeds column usage information for the
columns that appear in these statements.

To determine the appropriate column groups, the database must
observe a representative workload. You do not need to run the
queries themselves during the monitoring period. Instead, you can
run EXPLAIN PLAN for some longer-running queries in your
workload to ensure that the database is recording column group
information for these queries.

REPORT_COL_USAGE Function Generates a report that lists the columns that were seen in filter
predicates, join predicates, and GROUP BY clauses in the workload.

You can use this function to review column usage information
recorded for a specific table.

CREATE_EXTENDED_STATS
Function

Creates extensions, which are either column groups or expressions.
The database gathers statistics for the extension when either a
user-generated or automatic statistics gathering job gathers
statistics for the table.

AUTO_STAT_EXTENSIONS
Preference

Controls the automatic creation of extensions, including column
groups, when optimizer statistics are gathered. Set this preference
using SET_TABLE_PREFS, SET_SCHEMA_PREFS, or
SET_GLOBAL_PREFS.
When AUTO_STAT_EXTENSIONS is set to OFF (default), the
database does not create column group statistics automatically. To
create extensions, you must execute the
CREATE_EXTENDED_STATS function or specify extended statistics
explicitly in the METHOD_OPT parameter in the DBMS_STATS API.

When set to ON, a SQL plan directive can trigger the creation of
column group statistics automatically based on usage of columns in
the predicates in the workload.

See Also:

• "Setting Artificial Optimizer Statistics for a Table"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

Detecting Useful Column Groups for a Specific Workload
You can use DBMS_STATS.SEED_COL_USAGE and REPORT_COL_USAGE to determine which column
groups are required for a table based on a specified workload.

This technique is useful when you do not know which extended statistics to create. This
technique does not work for expression statistics.

Assumptions

This tutorial assumes the following:

Chapter 14
Managing Column Group Statistics

14-5

• Cardinality estimates have been incorrect for queries of the sh.customers_test table
(created from the customers table) that use predicates referencing the columns
country_id and cust_state_province.

• You want the database to monitor your workload for 5 minutes (300 seconds).

• You want the database to determine which column groups are needed automatically.

To detect column groups:

1. Start SQL*Plus or SQL Developer, and log in to the database as user sh.

2. Create the customers_test table and gather statistics for it:

DROP TABLE customers_test;
CREATE TABLE customers_test AS SELECT * FROM customer;
EXEC DBMS_STATS.GATHER_TABLE_STATS(user, 'customers_test');

3. Enable workload monitoring.

In a different SQL*Plus session, connect as SYS and run the following PL/SQL program to
enable monitoring for 300 seconds:

BEGIN
 DBMS_STATS.SEED_COL_USAGE(null,null,300);
END;
/

4. As user sh, run explain plans for two queries in the workload.

The following examples show the explain plans for two queries on the customers_test
table:

EXPLAIN PLAN FOR
 SELECT *
 FROM customers_test
 WHERE cust_city = 'Los Angeles'
 AND cust_state_province = 'CA'
 AND country_id = 52790;

SELECT PLAN_TABLE_OUTPUT
FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table', null,'basic rows'));

EXPLAIN PLAN FOR
 SELECT country_id, cust_state_province, count(cust_city)
 FROM customers_test
 GROUP BY country_id, cust_state_province;

SELECT PLAN_TABLE_OUTPUT
FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table', null,'basic rows'));

Sample output appears below:

PLAN_TABLE_OUTPUT
--
Plan hash value: 4115398853

Chapter 14
Managing Column Group Statistics

14-6

--
| Id | Operation | Name | Rows |
--
| 0 | SELECT STATEMENT | | 1 |
| 1 | TABLE ACCESS FULL| CUSTOMERS_TEST | 1 |
--

8 rows selected.

PLAN_TABLE_OUTPUT
--
Plan hash value: 3050654408

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		1949
1	HASH GROUP BY		1949
2	TABLE ACCESS FULL	CUSTOMERS_TEST	55500

9 rows selected.

The first plan shows a cardinality of 1 row for a query that returns 932 rows. The second
plan shows a cardinality of 1949 rows for a query that returns 145 rows.

5. Optionally, review the column usage information recorded for the table.

Call the DBMS_STATS.REPORT_COL_USAGE function to generate a report:

SET LONG 100000
SET LINES 120
SET PAGES 0
SELECT DBMS_STATS.REPORT_COL_USAGE(user, 'customers_test')
FROM DUAL;

The report appears below:

LEGEND:
.......

EQ : Used in single table EQuality predicate
RANGE : Used in single table RANGE predicate
LIKE : Used in single table LIKE predicate
NULL : Used in single table is (not) NULL predicate
EQ_JOIN : Used in EQuality JOIN predicate
NONEQ_JOIN : Used in NON EQuality JOIN predicate
FILTER : Used in single table FILTER predicate
JOIN : Used in JOIN predicate
GROUP_BY : Used in GROUP BY expression
..

##

COLUMN USAGE REPORT FOR SH.CUSTOMERS_TEST
...

Chapter 14
Managing Column Group Statistics

14-7

1. COUNTRY_ID : EQ
2. CUST_CITY : EQ
3. CUST_STATE_PROVINCE : EQ
4. (CUST_CITY, CUST_STATE_PROVINCE,
 COUNTRY_ID) : FILTER
5. (CUST_STATE_PROVINCE, COUNTRY_ID) : GROUP_BY
##

In the preceding report, the first three columns were used in equality predicates in the first
monitored query:

...
WHERE cust_city = 'Los Angeles'
AND cust_state_province = 'CA'
AND country_id = 52790;

All three columns appeared in the same WHERE clause, so the report shows them as a
group filter. In the second query, two columns appeared in the GROUP BY clause, so the
report labels them as GROUP_BY. The sets of columns in the FILTER and GROUP_BY report
are candidates for column groups.

See Also:

• "Managing SQL Tuning Sets"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

Creating Column Groups Detected During Workload Monitoring
You can use the DBMS_STATS.CREATE_EXTENDED_STATS function to create column groups that
were detected previously by executing DBMS_STATS.SEED_COL_USAGE.

Assumptions

This tutorial assumes that you have performed the steps in "Detecting Useful Column Groups
for a Specific Workload".

To create column groups:

1. Create column groups for the customers_test table based on the usage information
captured during the monitoring window.

For example, run the following query:

SELECT DBMS_STATS.CREATE_EXTENDED_STATS(user, 'customers_test') FROM DUAL;

Sample output appears below:

##
EXTENSIONS FOR SH.CUSTOMERS_TEST

Chapter 14
Managing Column Group Statistics

14-8

................................
1. (CUST_CITY, CUST_STATE_PROVINCE,
 COUNTRY_ID) :SYS_STUMZ$C3AIHLPBROI#SKA58H_N created
2. (CUST_STATE_PROVINCE, COUNTRY_ID):SYS_STU#S#WF25Z#QAHIHE#MOFFMM_ created
##

The database created two column groups for customers_test: one column group for the
filter predicate and one group for the GROUP BY operation.

2. Regather table statistics.

Run GATHER_TABLE_STATS to regather the statistics for customers_test:

EXEC DBMS_STATS.GATHER_TABLE_STATS(user,'customers_test');

3. As user sh, run explain plans for two queries in the workload.

Check the USER_TAB_COL_STATISTICS view to determine which additional statistics were
created by the database:

SELECT COLUMN_NAME, NUM_DISTINCT, HISTOGRAM
FROM USER_TAB_COL_STATISTICS
WHERE TABLE_NAME = 'CUSTOMERS_TEST'
ORDER BY 1;

Partial sample output appears below:

CUST_CITY 620 HEIGHT BALANCED
...
SYS_STU#S#WF25Z#QAHIHE#MOFFMM_ 145 NONE
SYS_STUMZ$C3AIHLPBROI#SKA58H_N 620 HEIGHT BALANCED

This example shows the two column group names returned from the
DBMS_STATS.CREATE_EXTENDED_STATS function. The column group created on CUST_CITY,
CUST_STATE_PROVINCE, and COUNTRY_ID has a height-balanced histogram.

4. Explain the plans again.

The following examples show the explain plans for two queries on the customers_test
table:

EXPLAIN PLAN FOR
 SELECT *
 FROM customers_test
 WHERE cust_city = 'Los Angeles'
 AND cust_state_province = 'CA'
 AND country_id = 52790;

SELECT PLAN_TABLE_OUTPUT
FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table', null,'basic rows'));

EXPLAIN PLAN FOR
 SELECT country_id, cust_state_province, count(cust_city)
 FROM customers_test
 GROUP BY country_id, cust_state_province;

Chapter 14
Managing Column Group Statistics

14-9

SELECT PLAN_TABLE_OUTPUT
FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table', null,'basic rows'));

The new plans show more accurate cardinality estimates:

--
| Id | Operation | Name | Rows |
--
| 0 | SELECT STATEMENT | | 1093 |
| 1 | TABLE ACCESS FULL| CUSTOMERS_TEST | 1093 |
--

8 rows selected.

Plan hash value: 3050654408

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		145
1	HASH GROUP BY		145
2	TABLE ACCESS FULL	CUSTOMERS_TEST	55500

9 rows selected.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

Creating and Gathering Statistics on Column Groups Manually
In some cases, you may know the column group that you want to create.

The METHOD_OPT argument of the DBMS_STATS.GATHER_TABLE_STATS function can create and
gather statistics on a column group automatically. You can create a new column group by
specifying the group of columns using FOR COLUMNS.

Assumptions

This tutorial assumes the following:

• You want to create a column group for the cust_state_province and country_id columns
in the customers table in sh schema.

• You want to gather statistics (including histograms) on the entire table and the new column
group.

To create a column group and gather statistics for this group:

1. In SQL*Plus, log in to the database as the sh user.

2. Create the column group and gather statistics.

Chapter 14
Managing Column Group Statistics

14-10

For example, execute the following PL/SQL program:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('sh','customers',
 METHOD_OPT => 'FOR ALL COLUMNS SIZE SKEWONLY ' ||
 'FOR COLUMNS SIZE SKEWONLY (cust_state_province,country_id)');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_TABLE_STATS procedure

Displaying Column Group Information
To obtain the name of a column group, use the DBMS_STATS.SHOW_EXTENDED_STATS_NAME
function or a database view.

You can also use views to obtain information such as the number of distinct values, and
whether the column group has a histogram.

Assumptions

This tutorial assumes the following:

• You created a column group for the cust_state_province and country_id columns in the
customers table in sh schema.

• You want to determine the column group name, the number of distinct values, and whether
a histogram has been created for a column group.

To monitor a column group:

1. Start SQL*Plus and connect to the database as the sh user.

2. To determine the column group name, do one of the following.

• Execute the SHOW_EXTENDED_STATS_NAME function.

For example, run the following PL/SQL program:

SELECT SYS.DBMS_STATS.SHOW_EXTENDED_STATS_NAME('sh','customers',
 '(cust_state_province,country_id)') col_group_name
FROM DUAL;

The output is similar to the following:

COL_GROUP_NAME

SYS_STU#S#WF25Z#QAHIHE#MOFFMM_

• Query the USER_STAT_EXTENSIONS view.

Chapter 14
Managing Column Group Statistics

14-11

For example, run the following query:

SELECT EXTENSION_NAME, EXTENSION
FROM USER_STAT_EXTENSIONS
WHERE TABLE_NAME='CUSTOMERS';

EXTENSION_NAME EXTENSION
--
SYS_STU#S#WF25Z#QAHIHE#MOFFMM_ ("CUST_STATE_PROVINCE","COUNTRY_ID")

3. Query the number of distinct values and find whether a histogram has been created for a
column group.

For example, run the following query:

SELECT e.EXTENSION col_group, t.NUM_DISTINCT, t.HISTOGRAM
FROM USER_STAT_EXTENSIONS e, USER_TAB_COL_STATISTICS t
WHERE e.EXTENSION_NAME=t.COLUMN_NAME
AND e.TABLE_NAME=t.TABLE_NAME
AND t.TABLE_NAME='CUSTOMERS';

COL_GROUP NUM_DISTINCT HISTOGRAM

("COUNTRY_ID","CUST_STATE_PROVINCE") 145 FREQUENCY

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.SHOW_EXTENDED_STATS_NAME function

Dropping a Column Group
Use the DBMS_STATS.DROP_EXTENDED_STATS function to delete a column group from a table.

Assumptions

This tutorial assumes the following:

• You created a column group for the cust_state_province and country_id columns in the
customers table in sh schema.

• You want to drop the column group.

To drop a column group:

1. Start SQL*Plus and connect to the database as the sh user.

2. Drop the column group.

For example, the following PL/SQL program deletes a column group from the customers
table:

BEGIN
 DBMS_STATS.DROP_EXTENDED_STATS('sh', 'customers',
 '(cust_state_province, country_id)');

Chapter 14
Managing Column Group Statistics

14-12

END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.DROP_EXTENDED_STATS function

Managing Expression Statistics
The type of extended statistics known as expression statistics improve optimizer estimates
when a WHERE clause has predicates that use expressions.

About Expression Statistics
For an expression in the form (function(col)=constant) applied to a WHERE clause column,
the optimizer does not know how this function affects predicate cardinality unless a function-
based index exists. However, you can gather expression statistics on the
expression(function(col) itself.

The following graphic shows the optimizer using statistics to generate a plan for a query that
uses a function. The top shows the optimizer checking statistics for the column. The bottom
shows the optimizer checking statistics corresponding to the expression used in the query. The
expression statistics yield more accurate estimates.

Figure 14-2 Expression Statistics

Use Default
Column
Statistics

Use
Expression
Statistics

Optimal
Estimate

Suboptimal
Estimate

Do
expression
statistics

exist?

Optimizer

SELECT * FROM sh.customers

WHERE LOWER (cust_state_province) = ‘ca’

LOWER(cust_state_province)
Expression Statistics

cust_state_province
Column Statistics

Yes No

Chapter 14
Managing Expression Statistics

14-13

As shown in Figure 14-2, when expression statistics are not available, the optimizer can
produce suboptimal plans.

See Also:

Oracle Database SQL Language Reference to learn about SQL functions

When Expression Statistics Are Useful: Example
The following query of the sh.customers table shows that 3341 customers are in the state of
California:

sys@PROD> SELECT COUNT(*) FROM sh.customers WHERE cust_state_province='CA';

 COUNT(*)

 3341

Consider the plan for the same query with the LOWER() function applied:

sys@PROD> EXPLAIN PLAN FOR
 2 SELECT * FROM sh.customers WHERE LOWER(cust_state_province)='ca';
Explained.

sys@PROD> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2008213504

|Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 555 | 108K | 406 (1)| 00:00:05 |
|*1 | TABLE ACCESS FULL| CUSTOMERS | 555 | 108K | 406 (1)| 00:00:05 |

Predicate Information (identified by operation id):

 1 - filter(LOWER("CUST_STATE_PROVINCE")='ca')

Because no expression statistics exist for LOWER(cust_state_province)='ca', the optimizer
estimate is significantly off. You can use DBMS_STATS procedures to correct these estimates.

Creating Expression Statistics
You can use DBMS_STATS to create statistics for a user-specified expression.

You can use either of the following program units:

• GATHER_TABLE_STATS procedure

Chapter 14
Managing Expression Statistics

14-14

• CREATE_EXTENDED_STATISTICS function followed by the GATHER_TABLE_STATS procedure

Assumptions

This tutorial assumes the following:

• Selectivity estimates are inaccurate for queries of sh.customers that use the
UPPER(cust_state_province) function.

• You want to gather statistics on the UPPER(cust_state_province) expression.

To create expression statistics:

1. Start SQL*Plus and connect to the database as the sh user.

2. Gather table statistics.

For example, run the following command, specifying the function in the method_opt
argument:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS(
 'sh'
, 'customers'
, method_opt => 'FOR ALL COLUMNS SIZE SKEWONLY ' ||
 'FOR COLUMNS (LOWER(cust_state_province)) SIZE SKEWONLY'
);
END;

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GATHER_TABLE_STATS procedure

Displaying Expression Statistics
To obtain information about expression statistics, use the database view DBA_STAT_EXTENSIONS
and the DBMS_STATS.SHOW_EXTENDED_STATS_NAME function.

You can also use views to obtain information such as the number of distinct values, and
whether the column group has a histogram.

Assumptions

This tutorial assumes the following:

• You created extended statistics for the LOWER(cust_state_province) expression.

• You want to determine the column group name, the number of distinct values, and whether
a histogram has been created for a column group.

To monitor expression statistics:

1. Start SQL*Plus and connect to the database as the sh user.

2. Query the name and definition of the statistics extension.

Chapter 14
Managing Expression Statistics

14-15

For example, run the following query:

COL EXTENSION_NAME FORMAT a30
COL EXTENSION FORMAT a35

SELECT EXTENSION_NAME, EXTENSION
FROM USER_STAT_EXTENSIONS
WHERE TABLE_NAME='CUSTOMERS';

Sample output appears as follows:

EXTENSION_NAME EXTENSION
------------------------------ ------------------------------
SYS_STUBPHJSBRKOIK9O2YV3W8HOUE (LOWER("CUST_STATE_PROVINCE"))

3. Query the number of distinct values and find whether a histogram has been created for the
expression.

For example, run the following query:

SELECT e.EXTENSION expression, t.NUM_DISTINCT, t.HISTOGRAM
FROM USER_STAT_EXTENSIONS e, USER_TAB_COL_STATISTICS t
WHERE e.EXTENSION_NAME=t.COLUMN_NAME
AND e.TABLE_NAME=t.TABLE_NAME
AND t.TABLE_NAME='CUSTOMERS';

EXPRESSION NUM_DISTINCT HISTOGRAM

(LOWER("CUST_STATE_PROVINCE")) 145 FREQUENCY

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.SHOW_EXTENDED_STATS_NAME procedure

• Oracle Database Reference to learn about the DBA_STAT_EXTENSIONS view

Dropping Expression Statistics
To delete a column group from a table, use the DBMS_STATS.DROP_EXTENDED_STATS function.

Assumptions

This tutorial assumes the following:

• You created extended statistics for the LOWER(cust_state_province) expression.

• You want to drop the expression statistics.

To drop expression statistics:

1. Start SQL*Plus and connect to the database as the sh user.

2. Drop the column group.

Chapter 14
Managing Expression Statistics

14-16

For example, the following PL/SQL program deletes a column group from the customers
table:

BEGIN
 DBMS_STATS.DROP_EXTENDED_STATS(
 'sh'
, 'customers'
, '(LOWER(cust_state_province))'
);
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.DROP_EXTENDED_STATS procedure

Chapter 14
Managing Expression Statistics

14-17

15
Controlling the Use of Optimizer Statistics

Using DBMS_STATS, you can specify when and how the optimizer uses statistics.

Locking and Unlocking Optimizer Statistics
You can lock statistics to prevent them from changing.

After statistics are locked, you cannot make modifications to the statistics until the statistics
have been unlocked. Locking procedures are useful in a static environment when you want to
guarantee that the statistics and resulting plan never change. For example, you may want to
prevent new statistics from being gathered on a table or schema by the DBMS_STATS_JOB
process, such as highly volatile tables.

When you lock statistics on a table, all dependent statistics are locked. The locked statistics
include table statistics, column statistics, histograms, and dependent index statistics. To
overwrite statistics even when they are locked, you can set the value of the FORCE argument in
various DBMS_STATS procedures, for example, DELETE_*_STATS and RESTORE_*_STATS, to true.

Locking Statistics
The DBMS_STATS package provides two procedures for locking statistics: LOCK_SCHEMA_STATS
and LOCK_TABLE_STATS.

Assumptions

This tutorial assumes the following:

• You gathered statistics on the oe.orders table and on the hr schema.

• You want to prevent the oe.orders table statistics and hr schema statistics from changing.

To lock statistics:

1. Start SQL*Plus and connect to the database as the oe user.

2. Lock the statistics on oe.orders.

For example, execute the following PL/SQL program:

BEGIN
 DBMS_STATS.LOCK_TABLE_STATS('OE','ORDERS');
END;
/

3. Connect to the database as the hr user.

4. Lock the statistics in the hr schema.

15-1

For example, execute the following PL/SQL program:

BEGIN
 DBMS_STATS.LOCK_SCHEMA_STATS('HR');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.LOCK_TABLE_STATS procedure

Unlocking Statistics
The DBMS_STATS package provides two procedures for unlocking statistics:
UNLOCK_SCHEMA_STATS and UNLOCK_TABLE_STATS.

Assumptions

This tutorial assumes the following:

• You locked statistics on the oe.orders table and on the hr schema.

• You want to unlock these statistics.

To unlock statistics:

1. Start SQL*Plus and connect to the database as the oe user.

2. Unlock the statistics on oe.orders.

For example, execute the following PL/SQL program:

BEGIN
 DBMS_STATS.UNLOCK_TABLE_STATS('OE','ORDERS');
END;
/

3. Connect to the database as the hr user.

4. Unlock the statistics in the hr schema.

For example, execute the following PL/SQL program:

BEGIN
 DBMS_STATS.UNLOCK_SCHEMA_STATS('HR');
END;
/

Chapter 15
Locking and Unlocking Optimizer Statistics

15-2

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.UNLOCK_TABLE_STATS procedure

Publishing Pending Optimizer Statistics
By default, the database automatically publishes statistics when the statistics collection ends.

Alternatively, you can use pending statistics to save the statistics and not publish them
immediately after the collection. This technique is useful for testing queries in a session with
pending statistics. When the test results are satisfactory, you can publish the statistics to make
them available for the entire database.

About Pending Optimizer Statistics
The database stores pending statistics in the data dictionary just as for published statistics.

By default, the optimizer uses published statistics. You can change the default behavior by
setting the OPTIMIZER_USE_PENDING_STATISTICS initialization parameter to true (the default is
false).

The top part of the following graphic shows the optimizer gathering statistics for the
sh.customers table and storing them in the data dictionary with pending status. The bottom
part of the diagram shows the optimizer using only published statistics to process a query of
sh.customers.

Chapter 15
Publishing Pending Optimizer Statistics

15-3

Figure 15-1 Published and Pending Statistics

Data Dictionary

Optimizer Statistics

0 0 1 0 0 0

1 1 0 0 1 0

Pending
Statistics

1 0 0 1 1 1

0 1 0 0 0 1

Published
Statistics

Data Dictionary

Optimizer Statistics

0 0 1 0 0 0

1 1 0 0 1 0

Pending
Statistics

1 0 0 1 1 1

0 1 0 0 0 1

Published
Statistics

Optimizer

OPTIMIZER_USE_PENDING_STATISTICS=false

SELECT ...

FROM

customers

Optimizer

Customers
Table

Publishing
preferences
set to false

GATHER_TABLE_STATS

In some cases, the optimizer can use a combination of published and pending statistics. For
example, the database stores both published and pending statistics for the customers table.
For the orders table, the database stores only published statistics. If
OPTIMIZER_USE_PENDING_STATS = true, then the optimizer uses pending statistics for
customers and published statistics for orders. If OPTIMIZER_USE_PENDING_STATS = false, then
the optimizer uses published statistics for customers and orders.

See Also:

Oracle Database Reference to learn about the OPTIMIZER_USE_PENDING_STATISTICS
initialization parameter

Chapter 15
Publishing Pending Optimizer Statistics

15-4

User Interfaces for Publishing Optimizer Statistics
You can use the DBMS_STATS package to perform operations relating to publishing statistics.

The following table lists the relevant program units.

Table 15-1 DBMS_STATS Program Units Relevant for Publishing Optimizer Statistics

Program Unit Description

GET_PREFS Check whether the statistics are automatically published as
soon as DBMS_STATS gathers them. For the parameter
PUBLISH, true indicates that the statistics must be published
when the database gathers them, whereas false indicates
that the database must keep the statistics pending.

SET_TABLE_PREFS Set the PUBLISH setting to true or false at the table level.

SET_SCHEMA_PREFS Set the PUBLISH setting to true or false at the schema level.

PUBLISH_PENDING_STATS Publish valid pending statistics for all objects or only specified
objects.

DELETE_PENDING_STATS Delete pending statistics.

EXPORT_PENDING_STATS Export pending statistics.

The initialization parameter OPTIMIZER_USE_PENDING_STATISTICS determines whether the
database uses pending statistics when they are available. The default value is false, which
means that the optimizer uses only published statistics. Set to true to specify that the
optimizer uses any existing pending statistics instead. The best practice is to set this
parameter at the session level rather than at the database level.

You can use access information about published statistics from data dictionary views.
Table 15-2 lists relevant views.

Table 15-2 Views Relevant for Publishing Optimizer Statistics

View Description

USER_TAB_STATISTICS Displays optimizer statistics for the tables accessible to the
current user.

USER_TAB_COL_STATISTICS Displays column statistics and histogram information
extracted from ALL_TAB_COLUMNS.

USER_PART_COL_STATISTICS Displays column statistics and histogram information for
the table partitions owned by the current user.

USER_SUBPART_COL_STATISTICS Describes column statistics and histogram information for
subpartitions of partitioned objects owned by the current
user.

USER_IND_STATISTICS Displays optimizer statistics for the indexes accessible to
the current user.

USER_TAB_PENDING_STATS Describes pending statistics for tables, partitions, and
subpartitions accessible to the current user.

USER_COL_PENDING_STATS Describes the pending statistics of the columns accessible
to the current user.

Chapter 15
Publishing Pending Optimizer Statistics

15-5

Table 15-2 (Cont.) Views Relevant for Publishing Optimizer Statistics

View Description

USER_IND_PENDING_STATS Describes the pending statistics for tables, partitions, and
subpartitions accessible to the current user collected using
the DBMS_STATS package.

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

• Oracle Database Reference to learn about USER_TAB_PENDING_STATS and related
views

Managing Published and Pending Statistics
This section explains how to use DBMS_STATS program units to change the publishing behavior
of optimizer statistics, and also to export and delete these statistics.

Assumptions

This tutorial assumes the following:

• You want to change the preferences for the sh.customers and sh.sales tables so that
newly collected statistics have pending status.

• You want the current session to use pending statistics.

• You want to gather and publish pending statistics on the sh.customers table.

• You gather the pending statistics on the sh.sales table, but decide to delete them without
publishing them.

• You want to change the preferences for the sh.customers and sh.sales tables so that
newly collected statistics are published.

To manage published and pending statistics:

1. Start SQL*Plus and connect to the database as user sh.

2. Query the global optimizer statistics publishing setting.

Run the following query (sample output included):

sh@PROD> SELECT DBMS_STATS.GET_PREFS('PUBLISH') PUBLISH FROM DUAL;

PUBLISH

TRUE

The value true indicates that the database publishes statistics as it gathers them. Every
table uses this value unless a specific table preference has been set.

Chapter 15
Publishing Pending Optimizer Statistics

15-6

When using GET_PREFS, you can also specify a schema and table name. The function
returns a table preference if it is set. Otherwise, the function returns the global preference.

3. Query the pending statistics.

For example, run the following query (sample output included):

sh@PROD> SELECT * FROM USER_TAB_PENDING_STATS;

no rows selected

This example shows that the database currently stores no pending statistics for the sh
schema.

4. Change the publishing preferences for the sh.customers table.

For example, execute the following procedure so that statistics are marked as pending:

BEGIN
 DBMS_STATS.SET_TABLE_PREFS('sh', 'customers', 'publish', 'false');
END;
/

Subsequently, when you gather statistics on the customers table, the database does not
automatically publish statistics when the gather job completes. Instead, the database
stores the newly gathered statistics in the USER_TAB_PENDING_STATS table.

5. Gather statistics for sh.customers.

For example, run the following program:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('sh','customers');
END;
/

6. Query the pending statistics.

For example, run the following query (sample output included):

sh@PROD> SELECT TABLE_NAME, NUM_ROWS FROM USER_TAB_PENDING_STATS;

TABLE_NAME NUM_ROWS
------------------------------ ----------
CUSTOMERS 55500

This example shows that the database now stores pending statistics for the sh.customers
table.

7. Instruct the optimizer to use the pending statistics in this session.

Set the initialization parameter OPTIMIZER_USE_PENDING_STATISTICS to true as shown:

ALTER SESSION SET OPTIMIZER_USE_PENDING_STATISTICS = true;

8. Run a workload.

Chapter 15
Publishing Pending Optimizer Statistics

15-7

The following example changes the email addresses of all customers named Bruce
Chalmers:

UPDATE sh.customers
 SET cust_email='ChalmersB@company.example.icom'
 WHERE cust_first_name = 'Bruce'
 AND cust_last_name = 'Chalmers';
COMMIT;

The optimizer uses the pending statistics instead of the published statistics when compiling
all SQL statements in this session.

9. Publish the pending statistics for sh.customers.

For example, execute the following program:

BEGIN
 DBMS_STATS.PUBLISH_PENDING_STATS('SH','CUSTOMERS');
END;
/

10. Change the publishing preferences for the sh.sales table.

For example, execute the following program:

BEGIN
 DBMS_STATS.SET_TABLE_PREFS('sh', 'sales', 'publish', 'false');
END;
/

Subsequently, when you gather statistics on the sh.sales table, the database does not
automatically publish statistics when the gather job completes. Instead, the database
stores the statistics in the USER_TAB_PENDING_STATS table.

11. Gather statistics for sh.sales.

For example, run the following program:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('sh','sales');
END;
/

12. Delete the pending statistics for sh.sales.

Assume you change your mind and now want to delete pending statistics for sh.sales.
Run the following program:

BEGIN
 DBMS_STATS.DELETE_PENDING_STATS('sh','sales');
END;
/

13. Change the publishing preferences for the sh.customers and sh.sales tables back to their
default setting.

Chapter 15
Publishing Pending Optimizer Statistics

15-8

For example, execute the following program:

BEGIN
 DBMS_STATS.SET_TABLE_PREFS('sh', 'customers', 'publish', null);
 DBMS_STATS.SET_TABLE_PREFS('sh', 'sales', 'publish', null);
END;
/

Creating Artificial Optimizer Statistics for Testing
To provide the optimizer with user-created statistics for testing purposes, you can use the
DBMS_STATS.SET_*_STATS procedures. These procedures provide the optimizer with artificial
values for the specified statistics.

About Artificial Optimizer Statistics
For testing purposes, you can manually create artificial statistics for a table, index, or the
system using the DBMS_STATS.SET_*_STATS procedures.

When stattab is null, the DBMS_STATS.SET_*_STATS procedures insert the artificial statistics
into the data dictionary directly. Alternatively, you can specify a user-created table.

Caution:

The DBMS_STATS.SET_*_STATS procedures are intended for development testing only.
Do not use them in a production database. If you set statistics in the data dictionary,
then Oracle Database considers the set statistics as the “real” statistics, which means
that statistics gathering jobs may not re-gather artificial statistics when they do not
meet the criteria for staleness.

Typical use cases for the DBMS_STATS.SET_*_STATS procedures are:

• Showing how execution plans change as the numbers of rows or blocks in a table change

For example, SET_TABLE_STATS can set number of rows and blocks in a small or empty
table to a large number. When you execute a query using the altered statistics, the
optimizer may change the execution plan. For example, the increased row count may lead
the optimizer to choose an index scan rather than a full table scan. By experimenting with
different values, you can see how the optimizer will change its execution plan over time.

• Creating realistic statistics for temporary tables

You may want to see what the optimizer does when a large temporary table is referenced
in multiple SQL statements. You can create a regular table, load representative data, and
then use GET_TABLE_STATS to retrieve the statistics. After you create the temporary table,
you can “deceive” the optimizer into using these statistics by invoking SET_TABLE_STATS.

Optionally, you can specify a unique ID for statistics in a user-created table. The SET_*_STATS
procedures have corresponding GET_*_STATS procedures.

Chapter 15
Creating Artificial Optimizer Statistics for Testing

15-9

Table 15-3 DBMS_STATS Procedures for Setting Optimizer Statistics

DBMS_STATS Procedure Description

SET_TABLE_STATS Sets table or partition statistics using parameters such as numrows,
numblks, and avgrlen.
If the database uses the In-Memory Column store, you can set
im_imcu_count to the number of IMCUs in the table or partition, and
im_block_count to the number of blocks in the table or partition. For
an external table, scanrate specifies the rate at which data is scanned
in MB/second.

The optimizer uses the cached data to estimate the number of cached
blocks for index or statistics table access. The total cost is the I/O cost
of reading data blocks from disk, the CPU cost of reading cached
blocks from the buffer cache, and the CPU cost of processing the data.

SET_COLUMN_STATS Sets column statistics using parameters such as distcnt, density,
nullcnt, and so on.
In the version of this procedure that deals with user-defined statistics,
use stattypname to specify the type of statistics to store in the data
dictionary.

SET_SYSTEM_STATS Sets system statistics using parameters such as iotfrspeed,
sreadtim, and cpuspeed.

SET_INDEX_STATS Sets index statistics using parameters such as numrows, numlblks,
avglblk, clstfct, and indlevel.
In the version of this procedure that deals with user-defined statistics,
use stattypname to specify the type of statistics to store in the data
dictionary.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.SET_TABLE_STATS and the other procedures for setting optimizer
statistics

Setting Artificial Optimizer Statistics for a Table
This topic explains how to set artificial statistics for a table using
DBMS_STATS.SET_TABLE_STATS. The basic steps are the same for SET_INDEX_STATS and
SET_SYSTEM_STATS.

Note the following task prerequisites:

• For an object not owned by SYS, you must be the owner of the object, or have the ANALYZE
ANY privilege.

• For an object owned by SYS, you must have the ANALYZE ANY DICTIONARY privilege or the
SYSDBA privilege.

• When invoking GET_*_STATS for a table, column, or index, the referenced object must exist.

This task assumes the following:

• You have the required privileges to use DBMS_STATS.SET_TABLE_STATS for the specified
table.

Chapter 15
Creating Artificial Optimizer Statistics for Testing

15-10

• You intend to store the statistics in the data dictionary.

1. In SQL*Plus, log in to the database as a user with the required privileges.

2. Run the DBMS_STATS.SET_TABLE_STATS procedure, specifying the appropriate parameters
for the statistics.

Typical parameters include the following:

• ownname (not null)

This parameter specifies the name of the schema containing the table.

• tabname (not null)

This parameter specifies the name of the table whose statistics you intend to set.

• partname
This parameter specifies the name of a partition of the table.

• numrows
This parameter specifies the number of rows in the table.

• numblks
This parameter specifies the number of blocks in the table.

3. Query the table.

4. Optionally, to determine how the statistics affected the optimizer, query the execution plan.

5. Optionally, to perform further testing, return to Step 2 and reset the optimizer statistics.

Setting Optimizer Statistics: Example
This example shows how to gather optimizer statistics for a table, set artificial statistics, and
then compare the plans that the optimizer chooses based on the differing statistics.

This example assumes:

• You are logged in to the database as a user with DBA privileges.

• You want to test when the optimizer chooses an index scan.

1. Create a table called contractors, and index the salary column.

CREATE TABLE contractors (
 con_id NUMBER,
 last_name VARCHAR2(50),
 salary NUMBER,
 CONSTRAINT cond_id_pk PRIMARY KEY(con_id));

CREATE INDEX salary_ix ON contractors(salary);

2. Insert a single row into this table.

INSERT INTO contractors VALUES (8, 'JONES',1000);
COMMIT;

3. Gather statistics for the table.

EXECUTE DBMS_STATS.GATHER_TABLE_STATS(user, tabname => 'CONTRACTORS');

Chapter 15
Creating Artificial Optimizer Statistics for Testing

15-11

4. Query the number of rows for the table and index (sample output included):

SQL> SELECT NUM_ROWS FROM USER_TABLES WHERE TABLE_NAME = 'CONTRACTORS';

 NUM_ROWS

 1

SQL> SELECT NUM_ROWS FROM USER_INDEXES WHERE INDEX_NAME = 'SALARY_IX';

 NUM_ROWS

 1

5. Query contractors whose salary is 1000, using the dynamic_sampling hint to disable
dynamic sampling:

SELECT /*+ dynamic_sampling(contractors 0) */ *
FROM contractors
WHERE salary = 1000;

6. Query the execution plan chosen by the optimizer (sample output included):

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

SQL_ID cy0wzytc16g9n, child number 0

SELECT /*+ dynamic_sampling(contractors 0) */ * FROM contractors WHERE
salary = 1000

Plan hash value: 5038823

--
| Id | Operation | Name |Rows|Bytes|Cost (%CPU)| Time|
--
| 0 | SELECT STATEMENT | | | | 2 (100)| |
|* 1 | TABLE ACCESS FULL| CONTRACTORS | 1 | 12 | 2 (0)| 00:00:01 |
--

Predicate Information (identified by operation id):

 1 - filter("SALARY"=1000)

19 rows selected.

Because only 1 row exists in the table, the optimizer chooses a full table scan over an
index range scan.

7. Use SET_TABLE_STATS and SET_INDEX_STATS to simulate statistics for a table with 2000
rows stored in 10 data blocks:

BEGIN
 DBMS_STATS.SET_TABLE_STATS(
 ownname => user

Chapter 15
Creating Artificial Optimizer Statistics for Testing

15-12

 , tabname => 'CONTRACTORS'
 , numrows => 2000
 , numblks => 10);
END;
/

BEGIN
 DBMS_STATS.SET_INDEX_STATS(
 ownname => user
 , indname => 'SALARY_IX'
 , numrows => 2000);
END;
/

8. Query the number of rows for the table and index (sample output included):

SQL> SELECT NUM_ROWS FROM USER_TABLES WHERE TABLE_NAME = 'CONTRACTORS';

 NUM_ROWS

 2000

SQL> SELECT NUM_ROWS FROM USER_INDEXES WHERE INDEX_NAME = 'SALARY_IX';

 NUM_ROWS

 2000

Now the optimizer believes that the table contains 2000 rows in 10 blocks, even though
only 1 row actually exists in one block.

9. Flush the shared pool to eliminate possibility of plan reuse, and then execute the same
query of contractors:

ALTER SYSTEM FLUSH SHARED_POOL;

SELECT /*+ dynamic_sampling(contractors 0) */ *
FROM contractors
WHERE salary = 1000;

10. Query the execution plan chosen by the optimizer based on the artificial statistics (sample
output included):

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

SQL_ID cy0wzytc16g9n, child number 0

SELECT /*+ dynamic_sampling(contractors 0) */ * FROM contractors WHERE
salary = 1000

Plan hash value: 996794789

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time|

Chapter 15
Creating Artificial Optimizer Statistics for Testing

15-13

0	SELECT STATEMENT				3(100)	
1	TABLE ACCESS BY INDEX ROWID BATCHED	CONTRACTORS	2000	24000	3 (34)	00:00:01
*2	INDEX RANGE SCAN	SALARY_IX	2000		1 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("SALARY"=1000)

20 rows selected.

Based on the artificially generated statistics for the number of rows and block distribution,
the optimizer considers an index range scan more cost-effective.

Chapter 15
Creating Artificial Optimizer Statistics for Testing

15-14

16
Managing Historical Optimizer Statistics

This chapter how to retain, report on, and restore non-current statistics.

Restoring Optimizer Statistics
You can use DBMS_STATS to restore old versions of statistics that are stored in the data
dictionary.

About Restore Operations for Optimizer Statistics
Whenever statistics in the data dictionary are modified, the database automatically saves old
versions of statistics. If newly collected statistics lead to suboptimal execution plans, then you
may want to revert to the previous statistics.

Restoring optimizer statistics can aid in troubleshooting suboptimal plans. The following
graphic illustrates a timeline for restoring statistics. In the graphic, statistics collection occurs
on August 10 and August 20. On August 24, the DBA determines that the current statistics
may be causing the optimizer to generate suboptimal plans. On August 25, the administrator
restores the statistics collected on August 10.

Figure 16-1 Restoring Optimizer Statistics

AAAAAAAAAA BBBBB BBBBB

8/10 8/20 8/24 8/25

Statistics
Gathered

Statistics
Gathered

Recent Statistics
May Be Causing
Suboptimal Plans

8/10 Statistics
Restored

Guidelines for Restoring Optimizer Statistics
Restoring statistics is similar to importing and exporting statistics.

In general, restore statistics instead of exporting them in the following situations:

• You want to recover older versions of the statistics. For example, you want to restore the
optimizer behavior to an earlier date.

• You want the database to manage the retention and purging of statistics histories.

Export statistics rather than restoring them in the following situations:

• You want to experiment with multiple sets of statistics and change the values back and
forth.

• You want to move the statistics from one database to another database. For example,
moving statistics from a production system to a test system.

16-1

• You want to preserve a known set of statistics for a longer period than the desired retention
date for restoring statistics.

See Also:

Oracle Database PL/SQL Packages and Types Reference for an overview of the
procedures for restoring and importing statistics

Restrictions for Restoring Optimizer Statistics
When restoring previous versions of statistics, various limitations apply.

Restrictions include the following:

• DBMS_STATS.RESTORE_*_STATS procedures cannot restore user-defined statistics.

• Old versions of statistics are not stored when the ANALYZE command has been used for
collecting statistics.

• Dropping a table removes the workload data used by the automatic histogram feature and
the statistics history used by DBMS_STATS.RESTORE_*_STATS. Without this data, these
features do not work properly. Therefore, to remove all rows from a table and repopulate it,
Oracle recommends using TRUNCATE instead of dropping and re-creating the table.

Note:

If a table resides in the recycle bin, then flashing back the table also retrieves the
statistics.

Restoring Optimizer Statistics Using DBMS_STATS
You can restore statistics using the DBMS_STATS.RESTORE_*_STATS procedures.

The procedures listed in the following table accept a timestamp as an argument and restore
statistics as of the specified time (as_of_timestamp).

Table 16-1 DBMS_STATS Restore Procedures

Procedure Description

RESTORE_DICTIONARY_STATS Restores statistics of all dictionary tables (tables of SYS,
SYSTEM, and RDBMS component schemas) as of a specified
timestamp.

RESTORE_FIXED_OBJECTS_STATS Restores statistics of all fixed tables as of a specified
timestamp.

RESTORE_SCHEMA_STATS Restores statistics of all tables of a schema as of a
specified timestamp.

RESTORE_SYSTEM_STATS Restores system statistics as of a specified timestamp.

Chapter 16
Restoring Optimizer Statistics

16-2

Table 16-1 (Cont.) DBMS_STATS Restore Procedures

Procedure Description

RESTORE_TABLE_STATS Restores statistics of a table as of a specified timestamp.
The procedure also restores statistics of associated
indexes and columns. If the table statistics were locked at
the specified timestamp, then the procedure locks the
statistics.

Dictionary views display the time of statistics modifications. You can use the following views to
determine the time stamp to be use for the restore operation:

• The DBA_OPTSTAT_OPERATIONS view contain history of statistics operations performed at
schema and database level using DBMS_STATS.

• The DBA_TAB_STATS_HISTORY views contains a history of table statistics modifications.

Assumptions

This tutorial assumes the following:

• After the most recent statistics collection for the oe.orders table, the optimizer began
choosing suboptimal plans for queries of this table.

• You want to restore the statistics from before the most recent statistics collection to see if
the plans improve.

To restore optimizer statistics:

1. Start SQL*Plus and connect to the database with administrator privileges.

2. Query the statistics history for oe.orders.

For example, run the following query:

COL TABLE_NAME FORMAT a10
SELECT TABLE_NAME,
 TO_CHAR(STATS_UPDATE_TIME,'YYYY-MM-DD:HH24:MI:SS') AS STATS_MOD_TIME
FROM DBA_TAB_STATS_HISTORY
WHERE TABLE_NAME='ORDERS'
AND OWNER='OE'
ORDER BY STATS_UPDATE_TIME DESC;

Sample output is as follows:

TABLE_NAME STATS_MOD_TIME
---------- -------------------
ORDERS 2012-08-20:11:36:38
ORDERS 2012-08-10:11:06:20

3. Restore the optimizer statistics to the previous modification time.

For example, restore the oe.orders table statistics to August 10, 2012:

BEGIN
 DBMS_STATS.RESTORE_TABLE_STATS('OE','ORDERS',
 TO_TIMESTAMP('2012-08-10:11:06:20','YYYY-MM-

Chapter 16
Restoring Optimizer Statistics

16-3

DD:HH24:MI:SS'));
END;
/

You can specify any date between 8/10 and 8/20 because DBMS_STATS restores statistics
as of the specified time.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
DBMS_STATS.RESTORE_TABLE_STATS procedure

Managing Optimizer Statistics Retention
By default, the database retains optimizer statistics for 31 days, after which time the statistics
are scheduled for purging.

You can use the DBMS_STATS package to determine the retention period, change the period,
and manually purge old statistics.

Obtaining Optimizer Statistics History
You can use DBMS_STATS procedures to obtain historical information for optimizer statistics.

Historical information is useful when you want to determine how long the database retains
optimizer statistics, and how far back these statistics can be restored. You can use the
following procedure to obtain information about the optimizer statistics history:

• GET_STATS_HISTORY_RETENTION
This function can retrieve the current statistics history retention value.

• GET_STATS_HISTORY_AVAILABILITY
This function retrieves the oldest time stamp when statistics history is available. Users
cannot restore statistics to a time stamp older than the oldest time stamp.

To obtain optimizer statistics history information:

1. Start SQL*Plus and connect to the database with the necessary privileges.

2. Execute the following PL/SQL program:

DECLARE
 v_stats_retn NUMBER;
 v_stats_date DATE;
BEGIN
 v_stats_retn := DBMS_STATS.GET_STATS_HISTORY_RETENTION;
 DBMS_OUTPUT.PUT_LINE('The retention setting is ' ||
 v_stats_retn || '.');
 v_stats_date := DBMS_STATS.GET_STATS_HISTORY_AVAILABILITY;
 DBMS_OUTPUT.PUT_LINE('Earliest restore date is ' ||
 v_stats_date || '.');

Chapter 16
Managing Optimizer Statistics Retention

16-4

END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.GET_STATS_HISTORY_RETENTION procedure

Changing the Optimizer Statistics Retention Period
You can configure the retention period using the
DBMS_STATS.ALTER_STATS_HISTORY_RETENTION procedure. The default is 31 days.

Prerequisites

To run this procedure, you must have either the SYSDBA privilege, or both the ANALYZE ANY
DICTIONARY and ANALYZE ANY system privileges.

Assumptions

This tutorial assumes the following:

• The current retention period for optimizer statistics is 31 days.

• You run queries annually as part of an annual report. To keep the statistics history for more
than 365 days so that you have access to last year's plan (in case a suboptimal plan
occurs now), you set the retention period to 366 days.

• You want to create a PL/SQL procedure set_opt_stats_retention that you can use to
change the optimizer statistics retention period.

To change the optimizer statistics retention period:

1. Start SQL*Plus and connect to the database with the necessary privileges.

2. Create a procedure that changes the retention period.

For example, create the following procedure:

CREATE OR REPLACE PROCEDURE set_opt_stats_retention
 (p_stats_retn IN NUMBER)
IS
 v_stats_retn NUMBER;
BEGIN
 v_stats_retn := DBMS_STATS.GET_STATS_HISTORY_RETENTION;
 DBMS_OUTPUT.PUT_LINE('Old retention setting is ' ||
 v_stats_retn || '.');
 DBMS_STATS.ALTER_STATS_HISTORY_RETENTION(p_stats_retn);
 v_stats_retn := DBMS_STATS.GET_STATS_HISTORY_RETENTION;
 DBMS_OUTPUT.PUT_LINE('New retention setting is ' ||
 v_stats_retn || '.');
END;
/

3. Change the retention period to 366 days.

Chapter 16
Managing Optimizer Statistics Retention

16-5

For example, execute the procedure that you created in the previous step (sample output
included):

SQL> EXECUTE set_opt_stats_retention(366)

The old retention setting is 31.
The new retention setting is 366.

PL/SQL procedure successfully completed.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.ALTER_STATS_HISTORY_RETENTION procedure

Purging Optimizer Statistics
Automatic purging is enabled when the STATISTICS_LEVEL initialization parameter is set to
TYPICAL or ALL.

The database purges all history older than the older of (current time - the
ALTER_STATS_HISTORY_RETENTION setting) and (time of the most recent statistics gathering - 1).

You can purge old statistics manually using the PURGE_STATS procedure. If you do not specify
an argument, then this procedure uses the automatic purging policy. If you specify the
before_timestamp parameter, then the database purges statistics saved before the specified
timestamp.

Prerequisites

To run this procedure, you must have either the SYSDBA privilege, or both the ANALYZE ANY
DICTIONARY and ANALYZE ANY system privileges.

Assumptions

This tutorial assumes that you want to purge statistics more than one week old.

To purge optimizer statistics:

1. In SQL*Plus, log in to the database with the necessary privileges.

2. Execute the DBMS_STATS.PURGE_STATS procedure.

For example, execute the procedure as follows:

EXEC DBMS_STATS.PURGE_STATS(SYSDATE-7);

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.PURGE_STATS procedure

Chapter 16
Managing Optimizer Statistics Retention

16-6

Reporting on Past Statistics Gathering Operations
You can use DBMS_STATS functions to report on a specific statistics gathering operation or on
operations that occurred during a specified time.

Table 16-2 lists the functions.

Table 16-2 DBMS_STATS Reporting Functions

Function Description

REPORT_STATS_OPERATIONS Generates a report of all statistics operations that
occurred between two points in time. You can narrow the
scope of the report to include only automatic statistics
gathering runs. You can also provide a set of pluggable
database (PDB) IDs so that the database reports only
statistics operations from the specified PDBs.

REPORT_SINGLE_STATS_OPERATION Generates a report of the specified operation. Optionally,
you can specify a particular PDB ID in a container
database (CDB).

Assumptions

This tutorial assumes that you want to generate HTML reports of the following:

• All statistics gathering operations within the last day

• The most recent statistics gathering operation

To report on all operations in the past day:

1. Start SQL*Plus and connect to the database with administrator privileges.

2. Run the DBMS_STATS.REPORT_STATS_OPERATIONS function.

For example, run the following commands:

SET LINES 200 PAGES 0
SET LONG 100000
COLUMN REPORT FORMAT A200

VARIABLE my_report CLOB;
BEGIN
 :my_report := DBMS_STATS.REPORT_STATS_OPERATIONS (
 since => SYSDATE-1
, until => SYSDATE
, detail_level => 'TYPICAL'
, format => 'HTML'
);
END;
/

The following graphic shows a sample report:

Chapter 16
Reporting on Past Statistics Gathering Operations

16-7

3. Run the DBMS_STATS.REPORT_SINGLE_STATS_OPERATION function for an individual operation.

For example, run the following program to generate a report of operation 848:

BEGIN
 :my_report :=DBMS_STATS.REPORT_SINGLE_STATS_OPERATION (
 OPID => 848
, FORMAT => 'HTML'
);
END;

The following graphic shows a sample report:

See Also:

• "Graphical Interface for Optimizer Statistics Management" to learn about the
Cloud Control GUI for statistics management

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS

Chapter 16
Reporting on Past Statistics Gathering Operations

16-8

17
Importing and Exporting Optimizer Statistics

You can export and import optimizer statistics from the data dictionary to user-defined statistics
tables. You can also copy statistics from one database to another database.

About Transporting Optimizer Statistics
When you transport optimizer statistics between databases, you must use DBMS_STATS to copy
the statistics to and from a staging table, and tools to make the table contents accessible to the
destination database.

Purpose of Transporting Optimizer Statistics
Importing and exporting are especially useful for testing an application using production
statistics.

Developers often want to tune query plans in a realistic environment before deploying
applications. A typical scenario would be to use DBMS_STATS.EXPORT_SCHEMA_STATS to export
schema statistics from a production database to a test database.

How Transporting Optimizer Statistics Works
The typical transport operation uses a combination of DBMS_STATS and file transfer utilities.

The following figure illustrates the process using Oracle Data Pump and ftp.

Figure 17-1 Transporting Optimizer Statistics

Transport ftp, nfs

Production
Database

Test
Database

Staging Table

Data Pump
Export

.dmp
file

Data Pump
Import

.dmp
file

Data Dictionary Data Dictionary

EXPORT_SCHEMA_STATS IMPORT_SCHEMA_STATS

Staging Table

The basic steps are as follows:

17-1

1. In the production database, copy the statistics from the data dictionary to a staging table
using DBMS_STATS.EXPORT_SCHEMA_STATS.

2. Export the statistics from the staging table to a .dmp file using Oracle Data Pump.

3. Transfer the .dmp file from the production host to the test host using a transfer tool such as
ftp.

4. In the test database, import the statistics from the .dmp file to a staging table using Oracle
Data Pump.

5. Copy the statistics from the staging table to the data dictionary using
DBMS_STATS.IMPORT_SCHEMA_STATS.

User Interface for Importing and Exporting Optimizer Statistics
DBMS_STATS provides the interface for importing and exporting statistics for schemas and
tables.

The following subprograms in DBMS_STATS enable you to export schemas and different types of
tables.

Table 17-1 Subprograms for Exporting Schema and Table Statistics

Subprogram Description

EXPORT_DATABASE_STATS This procedure exports statistics for all objects in the
database and stores them in the user statistics tables
identified by statown.stattab.

EXPORT_DICTIONARY_STATS This procedure exports statistics for all data dictionary
schemas (SYS, SYSTEM, and RDBMS component
schemas) and stores them in the user statistics table
identified by stattab.

EXPORT_FIXED_OBJECT_STATS This procedure exports statistics for fixed tables and
stores them in the user statistics table identified by
stattab.

EXPORT_SCHEMA_STATS This procedure exports statistics for all objects in the
schema identified by ownname and stores them in the
user statistics tables identified by stattab.

By default, the stat_category parameter includes
statistics collected during real-time statistics. The
REALTIME_STATS value specifies only online statistics.

EXPORT_TABLE_STATS This procedure exports statistics for a specified table
(including associated index statistics) and stores them
in the user statistics table identified by stattab.

By default, the stat_category parameter includes
statistics collected during real-time statistics. The
REALTIME_STATS value specifies only online statistics.

The following subprograms in DBMS_STATS enable you to import schemas and different types of
tables.

Chapter 17
About Transporting Optimizer Statistics

17-2

Table 17-2 Subprograms for Importing Optimizer Statistics

Subprogram Description

IMPORT_DATABASE_STATS This procedure imports statistics for all objects in
the database from the user statistics table and
stores them in the data dictionary.

IMPORT_DICTIONARY_STATS This procedure imports statistics for all data
dictionary schemas (SYS, SYSTEM, and RDBMS
component schemas) from the user statistics table
and stores them in the dictionary.

IMPORT_FIXED_OBJECT_STATS This procedure imports statistics for fixed tables
from the user statistics table and stores them in the
data dictionary.

IMPORT_SCHEMA_STATS This procedure imports statistics for all objects in
the schema identified by ownname from the user
statistics table and stores them in the data
dictionary.

By default, the stat_category parameter
includes statistics collected during real-time
statistics. The REALTIME_STATS value specifies
only online statistics.

IMPORT_TABLE_STATS This procedure import statistics for a specified table
from the user statistics table identified by stattab
and stores them in the data dictionary.

By default, the stat_category parameter
includes statistics collected during real-time
statistics. The REALTIME_STATS value specifies
only online statistics.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about DBMS_STATS

Transporting Optimizer Statistics to a Test Database: Tutorial
You can transport schema statistics from a production database to a test database using
Oracle Data Pump.

Prerequisites and Restrictions

When preparing to export optimizer statistics, note the following:

• Before exporting statistics, you must create a table to hold the statistics. The procedure
DBMS_STATS.CREATE_STAT_TABLE creates the statistics table.

• The optimizer does not use statistics stored in a user-owned table. The only statistics used
by the optimizer are the statistics stored in the data dictionary. To make the optimizer use
statistics in user-defined tables, import these statistics into the data dictionary using the
DBMS_STATS import procedure.

• The Data Pump Export and Import utilities export and import optimizer statistics from the
database along with the table. When a column has system-generated names, Original

Chapter 17
Transporting Optimizer Statistics to a Test Database: Tutorial

17-3

Export (exp) does not export statistics with the data, but this restriction does not apply to
Data Pump Export.

Note:

Exporting and importing statistics using DBMS_STATS is a distinct operation from
using Data Pump Export and Import.

Assumptions

This tutorial assumes the following:

• You want to generate representative sh schema statistics on a production database and
use DBMS_STATS to import them into a test database.

• Administrative user dba1 exists on both production and test databases.

• You intend to create table opt_stats to store the schema statistics.

• You intend to use Oracle Data Pump to export and import table opt_stats.

To generate schema statistics and import them into a separate database:

1. On the production host, start SQL*Plus and connect to the production database as
administrator dba1.

2. Create a table to hold the production statistics.

For example, execute the following PL/SQL program to create user statistics table
opt_stats:

BEGIN
 DBMS_STATS.CREATE_STAT_TABLE (
 ownname => 'dba1'
, stattab => 'opt_stats'
);
END;
/

3. Gather schema statistics.

For example, manually gather schema statistics as follows:

-- generate representative workload
EXEC DBMS_STATS.GATHER_SCHEMA_STATS('SH');

4. Use DBMS_STATS to export the statistics.

For example, retrieve schema statistics and store them in the opt_stats table created
previously:

BEGIN
 DBMS_STATS.EXPORT_SCHEMA_STATS (
 ownname => 'dba1'
, stattab => 'opt_stats'
);

Chapter 17
Transporting Optimizer Statistics to a Test Database: Tutorial

17-4

END;
/

5. Use Oracle Data Pump to export the contents of the statistics table.

For example, run the expdp command at the operating schema prompt:

expdp dba1 DIRECTORY=dpump_dir1 DUMPFILE=stat.dmp TABLES=opt_stats

6. Transfer the dump file to the test database host.

7. Log in to the test host, and then use Oracle Data Pump to import the contents of the
statistics table.

For example, run the impdp command at the operating schema prompt:

impdp dba1 DIRECTORY=dpump_dir1 DUMPFILE=stat.dmp TABLES=opt_stats

8. On the test host, start SQL*Plus and connect to the test database as administrator dba1.

9. Use DBMS_STATS to import statistics from the user statistics table and store them in the data
dictionary.

The following PL/SQL program imports schema statistics from table opt_stats into the
data dictionary:

BEGIN
 DBMS_STATS.IMPORT_SCHEMA_STATS(
 ownname => 'dba1'
, stattab => 'opt_stats'
);
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS.CREATE_STAT_TABLE function

• Oracle Database PL/SQL Packages and Types Reference for an overview of the
statistics transfer functions

• Oracle Database Utilities to learn about Oracle Data Pump

Chapter 17
Transporting Optimizer Statistics to a Test Database: Tutorial

17-5

18
Analyzing Statistics Using Optimizer Statistics
Advisor

Optimizer Statistics Advisor analyzes how optimizer statistics are gathered, and then makes
recommendations.

About Optimizer Statistics Advisor
Optimizer Statistics Advisor is built-in diagnostic software that analyzes the quality of statistics
and statistics-related tasks.

The advisor task runs automatically in the maintenance window, but you can also run it on
demand. You can then view the advisor report. If the advisor makes recommendations, then in
some cases you can run system-generated scripts to implement them.

The following figure provides a conceptual overview of Optimizer Statistics Advisor.

Figure 18-1 Optimizer Statistics Advisor

DBA Findings

Recommendations

Filter Options

Task

Optimizer

Automatic
Tuning
Optimizer

Optimizer
Statistics
Advisor

Data Dictionary
and V$ Views

Actions

Rules

DBA_OPSTAT_OPERATIONS

18-1

Purpose of Optimizer Statistics Advisor
Optimizer Statistics Advisor inspects how optimizer statistics are gathered.

The advisor automatically diagnoses problems in the existing practices for gathering statistics.
The advisor does not gather a new or alternative set of optimizer statistics. The output of the
advisor is a report of findings and recommendations, which helps you follow best practices for
gathering statistics.

Optimizer statistics play a significant part in determining the execution plan for queries.
Therefore, it is critical for the optimizer to gather and maintain accurate and up-to-date
statistics. The optimizer provides the DBMS_STATS package, which evolves from release to
release, for this purpose. Typically, users develop their own strategies for gathering statistics
based on specific workloads, and then use homegrown scripts to implement these strategies.

Problems with a Traditional Script-Based Approach
The advantage of the scripted approach is that the scripts are typically tested and reviewed.
However, the owner of suboptimal legacy scripts may not change them for fear of causing plan
changes.

The traditional approach has the following problems:

• Legacy scripts may not keep pace with new best practices, which can change from release
to release.

Frequently, successive releases add enhancements to histograms, sampling, workload
monitoring, concurrency, and other optimizer-related features. For example, starting in
Oracle Database 12c, Oracle recommends setting AUTO_SAMPLE_SIZE instead of a
percentage. However, legacy scripts typically specify a sampling percentage, which may
lead to suboptimal execution plans.

• Resources are wasted on unnecessary statistics gathering.

A script may gather statistics multiple times each day on the same table.

• Automatic statistics gathering jobs do not guarantee accurate and up-to-date statistics.

For example, sometimes the automatic statistics gathering job is not running because an
initialization parameter combination disables it, or the job is terminated. Moreover,
sometimes the automatic job maintenance window is insufficient because of resource
constraints, or because too many objects require statistics collection. Jobs that stop
running before gathering all statistics cause either no statistics or stale statistics for some
objects, which can in turn cause suboptimal plans.

• Statistics can sometimes be missing, stale, or incorrect.

For example, statistics may be inconsistent between a table and its index, or between
tables with a primary key-foreign key relationship. Alternatively, a statistics gathering job
may have been disabled by accident, or you may be unaware that a script has failed.

• Lack of knowledge of the problem can be time-consuming and resource-intensive.

For example, a service request might seek a resolution to a problem, unaware that the
problem is caused by suboptimal statistics. The diagnosis might require a great deal of
time emailing scripts of the problematic queries, enabling traces, and investigating traces.

• Recommended fixes may not be feasible.

Performance engineers may recommend changing the application code that maintains
statistics. In some organizations, this requirement may be difficult or impossible to satisfy.

Chapter 18
About Optimizer Statistics Advisor

18-2

Advantages of Optimizer Statistics Advisor
An advisor-based approach offers better scalability and maintainability than the traditional
approach.

If best practices change in a new release, then Optimizer Statistics Advisor encodes these
practices in its rules. In this way, the advisor always provides the most up-to-date
recommendations.

The advisor analyzes how you are currently gathering statistics (using manual scripts, explicitly
setting parameters, and so on), the effectiveness of existing statistics gathering jobs, and the
quality of the gathered statistics. Optimizer Statistics Advisor does not gather a new or
alternative set of optimizer statistics, and so does not affect the workload. Rather, Optimizer
Statistics Advisor analyzes information stored in the data dictionary, and then stores the
findings and recommendations in the database.

Optimizer Statistics Advisor provides the following advantages over the traditional approach:

• Provides easy-to-understand reports

The advisor applies rules to generate findings, recommendations, and actions.

• Supplies scripts to implement necessary fixes without requiring changes to application
code

When you implement a recommended action, benefit accrues to every execution of the
improved statements. For example, if you set a global preference so that the sample size
is AUTO_SAMPLE_SIZE rather than a suboptimal percentage, then every plan based on the
improved statistics can benefit from this change.

• Runs a predefined task named AUTO_STATS_ADVISOR_TASK once every day in the
maintenance window

For the automated job to run, the STATISTICS_LEVEL initialization parameter must be set to
TYPICAL or ALL.

• Supplies an API in the DBMS_STATS package that enables you to create and run tasks
manually, store findings and recommendations in data dictionary views, generate reports
for the tasks, and implement corrections when necessary

• Integrates with existing tools

The advisor integrates with SQL Tuning Advisor and AWR, which summarize the Optimizer
Statistics Advisor results.

Optimizer Statistics Advisor Concepts
Optimizer Statistics Advisor uses the same advisor framework as Automatic Database
Diagnostic Monitor (ADDM), SQL Performance Analyzer, and other advisors.

Components of Optimizer Statistics Advisor
The Optimizer Statistics Optimizer framework stores its metadata in data dictionary and
dynamic performance views.

The following Venn diagram shows the relationships among rules, findings, recommendations,
and actions for Optimizer Statistics Advisor. For example, all findings are derived from rules,
but not all rules generate findings.

Chapter 18
About Optimizer Statistics Advisor

18-3

Figure 18-2 Optimizer Statistics Advisor Components

Actions

Recommendations

Findings

Rules

Rules for Optimizer Statistics Advisor
An Optimizer Statistics Advisor rule is an Oracle-supplied standard by which Optimizer
Statistics Advisor performs its checks.

The rules embody Oracle best practices based on the current feature set. If the best practices
change from release to release, then the Optimizer Statistics Advisor rules also change.

The advisor organizes rules into the following classes:

• System

This class checks the preferences for statistics collection, status of the automated statistics
gathering job, use of SQL plan directives, and so on. Rules in this class have the value
SYSTEM in V$STATS_ADVISOR_RULES.RULE_TYPE.

• Operation

This class checks whether statistics collection uses the defaults, test statistics are created
using the SET_*_STATS procedures, and so on. Rules in this class have the value
OPERATION in V$STATS_ADVISOR_RULES.RULE_TYPE.

• Object

This class checks for the quality of the statistics, staleness of statistics, unnecessary
collection of statistics, and so on. Rules in this class have the value OBJECT in
V$STATS_ADVISOR_RULES.RULE_TYPE.

The rules check for the following problems:

• How to gather statistics

For example, one rule might specify the recommended setting for an initialization
parameter. Another rule might specify that statistics should be gathered at the schema
level.

• When to gather statistics

For example, the advisor may recommend that the maintenance window for the automatic
statistics gathering job should be enabled, or that the window should be extended.

• How to improve the efficiency of statistics gathering

For example, a rule might specify that default parameters should be used in DBMS_STATS,
or that statistics should not be set manually.

Chapter 18
About Optimizer Statistics Advisor

18-4

In V$STATS_ADVISOR_RULES, each rule has a unique string ID that is usable in the DBMS_STATS
procedures and reports. You can use a rule filter to specify rules that Optimizer Statistics
Advisor should check. However, you cannot write new rules.

Example 18-1 Listing Rules in V$STATS_ADVISOR_RULES

The following query, with sample output, lists a subset of the rules in V$STATS_ADVISOR_RULES.
The rules may change from release to release.

SET LINESIZE 208
SET PAGESIZE 100
COL ID FORMAT 99
COL NAME FORMAT a33
COL DESCRIPTION FORMAT a62

SELECT RULE_ID AS ID, NAME, RULE_TYPE, DESCRIPTION
FROM V$STATS_ADVISOR_RULES
WHERE RULE_ID BETWEEN 1 AND 12
ORDER BY RULE_ID;

ID NAME RULE_TYPE DESCRIPTION
-- ------------------------------- --------- --
 1 UseAutoJob SYSTEM Use Auto Job for Statistics Collection
 2 CompleteAutoJob SYSTEM Auto Statistics Gather Job should complete
 successfully
 3 MaintainStatsHistory SYSTEM Maintain Statistics History
 4 UseConcurrent SYSTEM Use Concurrent preference for Statistics
 Collection
 5 UseDefaultPreference SYSTEM Use Default Preference for Stats Collection
 6 TurnOnSQLPlanDirective SYSTEM SQL Plan Directives should not be disabled
 7 AvoidSetProcedures OPERATION Avoid Set Statistics Procedures
 8 UseDefaultParams OPERATION Use Default Parameters in Statistics
 Collection Proc.
 9 UseGatherSchemaStats OPERATION Use gather_schema_stats procedure
10 AvoidInefficientStatsOprSeq OPERATION Avoid inefficient statistics operation
 sequences
11 AvoidUnnecessaryStatsCollection OBJECT Avoid unnecessary statistics collection
12 AvoidStaleStats OBJECT Avoid objects with stale or no statistics

12 rows selected.

See Also:

Oracle Database Reference to learn more about V$STATS_ADVISOR_RULES

Findings for Optimizer Statistics Advisor
A finding results when Optimizer Statistics Advisor examines the evidence stored in the
database and concludes that the rules were not followed.

To generate findings, Optimizer Statistics Advisor executes a task, which is invoked either
automatically or manually. This task analyzes the statistics history stored in the data dictionary,
the statistics operation log, and the current statistics footprint that exists in SYSAUX. For

Chapter 18
About Optimizer Statistics Advisor

18-5

example, the advisor queries DBA_TAB_STATISTICS and DBA_IND_STATISTICS to determine
whether statistics are stale, or whether a discrepancy exists between the numbers of rows.

Typically, Optimizer Statistics Advisor generates a finding when a specific rule is not followed
or is violated, although some findings—such as object staleness—provide only information. For
example, a finding may show that DBMS_STATS.GATHER_TABLE_STATS has used
ESTIMATE_PERCENT=>0.01, which violates the ESTIMATE_PERCENT=>AUTO_SAMPLE_SIZE rule.

A finding corresponds to exactly one rule. However, a rule can generate many findings.

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS

• Oracle Database Reference to learn more about ALL_TAB_STATISTICS

Recommendations for Optimizer Statistics Advisor
Based on each finding, Optimizer Statistics Advisor makes recommendations on how to
achieve better statistics.

For example, the advisor might discover a violation to the rule of not using sampling when
gathering statistics, and recommend specifying AUTO_SAMPLE_SIZE instead. The advisor stores
the recommendations in DBA_ADVISOR_RECOMMENDATIONS.

Multiple recommendations may exist for a single finding. In this case, you must investigate to
determine which recommendation to follow. Each recommendation includes one or more
rationales that explain why Optimizer Statistics Advisor makes its recommendation. In some
cases, findings may not generate recommendations.

See Also:

• "Guideline for Setting the Sample Size" to learn the guideline for the sample size

• Oracle Database Reference to learn about DBA_ADVISOR_RECOMMENDATIONS

Actions for Optimizer Statistics Advisor
An Optimizer Statistics Advisor action is a SQL or PL/SQL script that implements
recommendations. When feasible, recommendations have corresponding actions. The advisor
stores actions in DBA_ADVISOR_ACTIONS.

For example, Optimizer Statistics Advisor executes a task that performs the following steps:

1. Checks rules

The advisor checks conformity to the rule that stale statistics should be avoided.

2. Generates finding

The advisor discovers that a number of objects have no statistics.

3. Generates recommendation

Chapter 18
About Optimizer Statistics Advisor

18-6

The advisor recommends gathering statistics on the objects with no statistics.

4. Generates action

The advisor generates a PL/SQL script that executes
DBMS_STATS.GATHER_DATABASE_STATS, supplying a list of objects that need to have
statistics gathered.

See Also:

• "Statistics Preference Overrides" to learn how to override statistics gathering
preferences

• "Guideline for Setting the Sample Size" to learn more about AUTO_SAMPLE_SIZE
• Oracle Database Reference to learn about DBA_ADVISOR_ACTIONS

Operational Modes for Optimizer Statistics Advisor
Optimizer Statistics Advisor supports both an automated and manual mode.

• Automated

The predefined task AUTO_STATS_ADVISOR_TASK runs automatically in the maintenance
window once per day. The task runs as part of the automatic optimizer statistics collection
client. The automated task generates findings and recommendations, but does not
implement actions automatically.

As for any other task, you can configure the automated task, and generate reports. If the
report recommends actions, then you can implement the actions manually.

• Manual

You can create your own task using the DBMS_STATS.CREATE_ADVISOR_TASK function, and
then run it at any time using the EXECUTE_ADVISOR_TASK procedure.

Unlike the automated task, the manual task can implement actions automatically.
Alternatively, you can configure the task to generate a PL/SQL script, which you can then
run manually.

See Also:

• "Configuring Automatic Optimizer Statistics Collection"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.CREATE_ADVISOR_TASK

Command-Line Interface to Optimizer Statistics Advisor
Perform Optimizer Statistics Advisor tasks using the DBMS_STATS PL/SQL package.

Chapter 18
About Optimizer Statistics Advisor

18-7

Table 18-1 DBMS_STATS APIs for Task Creation and Deletion

PL/SQL Procedure or Function Description

CREATE_ADVISOR_TASK Creates an advisor task for Optimizer Statistics Advisor. If the task
name is already specified, then the advisor uses the specified task
name; otherwise, the advisor automatically generates a new task
name.

DROP_ADVISOR_TASK Deletes an Optimizer Statistics Advisor task and all its result data.

Table 18-2 DBMS_STATS APIs for Task Execution

PL/SQL Procedure or Function Description

EXECUTE_ADVISOR_TASK Executes a previously created Optimizer Statistics Advisor task.

INTERRUPT_ADVISOR_TASK Interrupts a currently executing Optimizer Statistics Advisor task.
The task ends its operations as it would in a normal exit, enabling
you to access intermediate results. You can resume the task later.

CANCEL_ADVISOR_TASK Cancels an Optimizer Statistics Advisor task execution, and
removes all intermediate results of the current execution.

RESET_ADVISOR_TASK Resets an Optimizer Statistics Advisor task execution to its initial
state. Call this procedure on a task that is not currently executing.

RESUME_ADVISOR_TASK Resumes the Optimizer Statistics Advisor task execution that was
most recently interrupted.

Table 18-3 DBMS_STATS APIs for Advisor Reports

PL/SQL Procedure or Function Description

REPORT_STATS_ADVISOR_TASK Reports the results of an Optimizer Statistics Advisor task.

GET_ADVISOR_RECS Generates a recommendation report on the given item.

Table 18-4 DBMS_STATS APIs for Task and Filter Configuration

PL/SQL Procedure or Function Description

CONFIGURE_ADVISOR_TASK Configures the Optimizer Statistics Advisor lists for the
execution, reporting, script generation, and
implementation of an advisor task.

GET_ADVISOR_OPR_FILTER Creates an operation filter for a statistics operation.

CONFIGURE_ADVISOR_RULE_FILTER Configures the rule filter for an Optimizer Statistics
Advisor task.

CONFIGURE_ADVISOR_OPR_FILTER Configures the operation filter for an Optimizer Statistics
Advisor task.

CONFIGURE_ADVISOR_OBJ_FILTER Configures the object filter for an Optimizer Statistics
Advisor task.

SET_ADVISOR_TASK_PARAMETER Updates the value of an Optimizer Statistics Advisor task
parameter. Valid parameters are TIME_LIMIT and
OP_START_TIME.

Chapter 18
About Optimizer Statistics Advisor

18-8

Table 18-5 DBMS_STATS APIs for Implementation of Recommended Actions

PL/SQL Procedure or Function Description

SCRIPT_ADVISOR_TASK Gets the script that implements the recommended actions for the
problems found by the advisor. You can check this script, and then
choose which actions to execute.

IMPLEMENT_ADVISOR_TASK Implements the actions recommended by the advisor based on
results from a specified Optimizer Statistics Advisor execution.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

Basic Tasks for Optimizer Statistics Advisor
This section explains the basic workflow for using Optimizer Statistics Advisor. All procedures
and functions are in the DBMS_STATS package.

The following figure shows the automatic and manual paths in the workflow. If
AUTO_STATS_ADVISOR_TASK runs automatically in the maintenance window, then your workflow
begins by querying the report. In the manual workflow, you must use PL/SQL to create and
execute the tasks.

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-9

Figure 18-3 Basic Tasks for Optimizer Statistics Advisor

CREATE_ADVISOR_TASK

EXECUTE_ADVISOR_TASK

REPORT_ADVISOR_TASK

CONFIGURE_ADVISOR_*_FILTER

IMPLEMENT_ADVISOR_TASK SCRIPT_ADVISOR_TASK

Edit PL/SQL
script

Run PL/SQL
script

Create an advisor task

Implement all advisor
recommendations

Execute the advisor
task

Generate a report of
findings and
recommendations

Optionally,
alter the
scope of
the advisor
checks

Generate
modifiable
PL/SQL
script

SELECT . . . FROM
DBA_ADVISOR_EXECUTIONS

Optionally,
list tasks

Manual Mode Automatic Mode

Typically, you perform Optimizer Statistics Advisor steps in the sequence shown in the
following table.

Table 18-6 Optimizer Statistics Advisor Workflow

Step Description To Learn More

1 Create an Optimizer Advisor task using
DBMS_STATS.CREATE_ADVISOR_TASK
(manual workflow only).

"Creating an Optimizer Statistics Advisor Task"

2 Optionally, list executions of advisor tasks by
querying DBA_ADVISOR_EXECUTIONS.

"Listing Optimizer Statistics Advisor Tasks"

3 Optionally, configure a filter for the task
using the
DBMS_STATS.CONFIGURE_ADVISOR_*_FIL
TER procedures.

"Creating Filters for an Optimizer Advisor Task"

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-10

Table 18-6 (Cont.) Optimizer Statistics Advisor Workflow

Step Description To Learn More

4 Execute the advisor task using
DBMS_STATS.EXECUTE_ADVISOR_TASK
(manual workflow only).

"Executing an Optimizer Statistics Advisor Task"

5 Generate an advisor report. "Generating a Report for an Optimizer Statistics
Advisor Task"

6 Implement the recommendations in either of
following ways:

• Implement all recommendations
automatically using
DBMS_STATS.IMPLEMENT_ADVISOR_T
ASK.

• Generate a PL/SQL script that
implements recommendations using
DBMS_STATS.SCRIPT_ADVISOR_TASK,
edit this script, and then run it manually.

"Implementing Actions Recommended by
Optimizer Statistics Advisor" and "Generating a
Script Using Optimizer Statistics Advisor"

Example 18-2 Basic Script for Optimizer Statistics Advisor in Manual Workflow

This script illustrates a basic Optimizer Statistics Advisor session. It creates a task, executes it,
generates a report, and then implements the recommendations.

DECLARE
 v_tname VARCHAR2(128) := 'my_task';
 v_ename VARCHAR2(128) := NULL;
 v_report CLOB := null;
 v_script CLOB := null;
 v_implementation_result CLOB;
BEGIN
 -- create a task
 v_tname := DBMS_STATS.CREATE_ADVISOR_TASK(v_tname);

 -- execute the task
 v_ename := DBMS_STATS.EXECUTE_ADVISOR_TASK(v_tname);

 -- view the task report
 v_report := DBMS_STATS.REPORT_ADVISOR_TASK(v_tname);
 DBMS_OUTPUT.PUT_LINE(v_report);

 -- implement all recommendations
 v_implementation_result := DBMS_STATS.IMPLEMENT_ADVISOR_TASK(v_tname);
END;

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-11

Creating an Optimizer Statistics Advisor Task
The DBMS_STATS.CREATE_ADVISOR_TASK function creates a task for Optimizer Statistics Advisor.
If you do not specify a task name, then Optimizer Statistics Advisor generates one
automatically.

Prerequisites

To execute this subprogram, you must have the ADVISOR privilege.

Note:

This subprogram executes using invoker's rights.

To create an Optimizer Statistics Advisor task:

1. In SQL*Plus, log in to the database as a user with the necessary privileges.

2. Execute the DBMS_STATS.CREATE_ADVISOR_TASK function in the following form, where tname
is the name of the task and ret is the variable that contains the returned output:

EXECUTE ret := DBMS_STATS.CREATE_ADVISOR_TASK('tname');

For example, to create the task opt_adv_task1, use the following code:

DECLARE
 v_tname VARCHAR2(32767);
 v_ret VARCHAR2(32767);
BEGIN
 v_tname := 'opt_adv_task1';
 v_ret := DBMS_STATS.CREATE_ADVISOR_TASK(v_tname);
END;
/

3. Optionally, query USER_ADVISOR_TASKS:

SELECT TASK_NAME, ADVISOR_NAME, CREATED, STATUS FROM USER_ADVISOR_TASKS;

Sample output appears below:

TASK_NAME ADVISOR_NAME CREATED STATUS
--------------- -------------------- --------- -----------
OPT_ADV_TASK1 Statistics Advisor 05-SEP-16 INITIAL

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
CREATE_ADVISOR_TASK

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-12

Listing Optimizer Statistics Advisor Tasks
The DBA_ADVISOR_EXECUTIONS view lists executions of Optimizer Statistics Advisor tasks.

To list Optimizer Statistics Advisor tasks:

1. In SQL*Plus, log in to the database as a user with administrator privileges.

2. Query DBA_ADVISOR_EXECUTIONS as follows:

COL EXECUTION_NAME FORMAT a14

SELECT EXECUTION_NAME, EXECUTION_END, STATUS
FROM DBA_ADVISOR_EXECUTIONS
WHERE TASK_NAME = 'AUTO_STATS_ADVISOR_TASK'
ORDER BY 2;

The following sample output shows 8 executions:

EXECUTION_NAME EXECUTION STATUS
-------------- --------- -----------
EXEC_1 27-AUG-16 COMPLETED
EXEC_17 28-AUG-16 COMPLETED
EXEC_42 29-AUG-16 COMPLETED
EXEC_67 30-AUG-16 COMPLETED
EXEC_92 01-SEP-16 COMPLETED
EXEC_117 02-SEP-16 COMPLETED
EXEC_142 03-SEP-16 COMPLETED
EXEC_167 04-SEP-16 COMPLETED

8 rows selected.

See Also:

Oracle Database Reference to learn more about DBA_ADVISOR_EXECUTIONS

Creating Filters for an Optimizer Advisor Task
Filters enable you to include or exclude objects, rules, and operations from Optimizer Statistics
Advisor tasks.

About Filters for Optimizer Statistics Advisor
A filter is the use of DBMS_STATS to restrict an Optimizer Statistics Advisor task to a user-
specified set of rules, schemas, or operations.

Filters are useful for including or excluding a specific set of results. For example, you can
configure an advisor task to include only recommendations for the sh schema. Also, you can
exclude all violations of the rule for stale statistics. The primary advantage of filters is the ability
to ignore recommendations that you are not interested in, and reduce the overhead of the
advisor task.

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-13

The simplest way to create filters is to use the following DBMS_STATS procedures either
individually or in combination:

• CONFIGURE_ADVISOR_OBJ_FILTER
Use this procedure to include or exclude the specified database schemas or objects. The
object filter takes in an owner name and an object name, with wildcards (%) supported.

• CONFIGURE_ADVISOR_RULE_FILTER
Use this procedure to include or exclude the specified rules. Obtain the names of rules by
querying V$STATS_ADVISOR_RULES.

• CONFIGURE_ADVISOR_OPR_FILTER
Use this procedure to include or exclude the specified DBMS_STATS operations. Obtain the
IDs and names for operations by querying DBA_OPTSTAT_OPERATIONS.

For the preceding functions, you can specify the type of operation to which the filter applies:
EXECUTE, REPORT, SCRIPT, and IMPLEMENT. You can also combine types, as in EXECUTE +
REPORT. Null indicates that the filter applies to all types of advisor operations.

See Also:

• Oracle Database Reference to learn more about V$STATS_ADVISOR_RULES
• Oracle Database PL/SQL Packages and Types Reference to learn more about

DBMS_STATS

Creating an Object Filter for an Optimizer Advisor Task
The DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER function creates a rule filter for a specified
Optimizer Statistics Advisor task. The function returns a CLOB that contains the updated
values of the filter.

You can use either of the following basic strategies:

• Include findings for all objects (by default, all objects are considered), and then exclude
findings for specified objects.

• Exclude findings for all objects, and then include findings only for specified objects.

Prerequisites

To use the DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER function, you must meet the following
prerequisites:

• To execute this subprogram, you must have the ADVISOR privilege.

• You must be the owner of the task.

Note:

This subprogram executes using invoker's rights.

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-14

To create an object filter:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Either exclude or include objects for a specified task using the
DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER function.

Invoke the function in the following form, where the placeholders are defined as follows:

• report is the CLOB variable that contains the returned XML.

• tname is the name of the task.

• opr_type is the type of operation to perform.

• rule is the name of the rule.

• owner is the schema for the objects.

• table is the name of the table.

• action is the name of the action: ENABLE, DISABLE, DELETE, or SHOW.

BEGIN
 report := DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER(
 task_name => 'tname'
 , stats_adv_opr_type => 'opr_type'
 , rule_name => 'rule'
 , ownname => 'owner'
 , tabname => 'table'
 , action => 'action');
END;

Example 18-3 Including Only Objects in a Single Schema

In this example, for the task named opt_adv_task1, your goal is to disable recommendations
for all objects except those in the sh schema. User account sh has been granted ADVISOR and
READ ANY TABLE privileges. You perform the following steps:

1. Log in to the database as sh.

2. Drop any existing task named opt_adv_task1.

DECLARE
 v_tname VARCHAR2(32767);
BEGIN
 v_tname := 'opt_adv_task1';
 DBMS_STATS.DROP_ADVISOR_TASK(v_tname);
END;
/

3. Create a procedure named sh_obj_filter that restricts a specified task to objects in the
sh schema.

CREATE OR REPLACE PROCEDURE sh_obj_filter(p_tname IN VARCHAR2) IS
 v_retc CLOB;
BEGIN
 -- Filter out all objects that are not in the sh schema
 v_retc := DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER(

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-15

 task_name => p_tname
 , stats_adv_opr_type => 'EXECUTE'
 , rule_name => NULL
 , ownname => NULL
 , tabname => NULL
 , action => 'DISABLE');

 v_retc := DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER(
 task_name => p_tname
 , stats_adv_opr_type => 'EXECUTE'
 , rule_name => NULL
 , ownname => 'SH'
 , tabname => NULL
 , action => 'ENABLE');
END;
/
SHOW ERRORS

4. Create a task named opt_adv_task1, and then execute the sh_obj_filter procedure for
this task.

DECLARE
 v_tname VARCHAR2(32767);
 v_ret VARCHAR2(32767);
BEGIN
 v_tname := 'opt_adv_task1';
 v_ret := DBMS_STATS.CREATE_ADVISOR_TASK(v_tname);
 sh_obj_filter(v_tname);
END;
/

5. Execute the task opt_adv_task1.

DECLARE
 v_tname VARCHAR2(32767);
 v_ret VARCHAR2(32767);
begin
 v_tname := 'opt_adv_task1';
 v_ret := DBMS_STATS.EXECUTE_ADVISOR_TASK(v_tname);
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.CONFIGURE_ADVISOR_OBJ_FILTER

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-16

Creating a Rule Filter for an Optimizer Advisor Task
The DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER function creates a rule filter for a specified
Optimizer Statistics Advisor task. The function returns a CLOB that contains the updated
values of the filter.

You can use either of the following basic strategies:

• Enable all rules (by default, all rules are enabled), and then disable specified rules.

• Disable all rules, and then enable only specified rules.

Prerequisites

To use the DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER function, you must meet the
following prerequisites:

• To execute this subprogram, you must have the ADVISOR privilege.

• You must be the owner of the task.

Note:

This subprogram executes using invoker's rights.

To create a rule filter:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Obtain the names of the advisor rules by querying V$STATS_ADVISOR_RULES.

For example, query the view as follows (partial sample output included):

SET LINESIZE 200
SET PAGESIZE 100
COL ID FORMAT 99
COL NAME FORMAT a27
COL DESCRIPTION FORMAT a54

SELECT RULE_ID AS ID, NAME, RULE_TYPE, DESCRIPTION
FROM V$STATS_ADVISOR_RULES
ORDER BY RULE_ID;

ID NAME RULE_TYPE DESCRIPTION
-- --------------------------- --------- --
 1 UseAutoJob SYSTEM Use Auto Job for Statistics Collection
 2 CompleteAutoJob SYSTEM Auto Statistics Gather Job should complete
 successfully
 3 MaintainStatsHistory SYSTEM Maintain Statistics History
 4 UseConcurrent SYSTEM Use Concurrent preference for Statistics
 Collection
...

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-17

3. Either exclude or include rules for a specified task using the
DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER function.

Invoke the function in the following form, where the placeholders are defined as follows:

• tname is the name of the task.

• report is the CLOB variable that contains the returned XML.

• opr_type is the type of operation to perform.

• rule is the name of the rule.

• action is the name of the action: ENABLE, DISABLE, DELETE, or SHOW.

BEGIN
 report := DBMS_STATS.DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER(
 task_name => 'tname'
 , stats_adv_opr_type => 'opr_type'
 , rule_name => 'rule'
 , action => 'action');
END;

Example 18-4 Excluding the Rule for Stale Statistics

In this example, you know that statistics are stale because the automated statistics job did not
run. You want to generate a report for the task named opt_adv_task1, but do not want to
clutter it with recommendations about stale statistics.

1. You query V$STATS_ADVISOR_RULES for rules that deal with stale statistics (sample output
included):

COL NAME FORMAT a15
SELECT RULE_ID AS ID, NAME, RULE_TYPE, DESCRIPTION
FROM V$STATS_ADVISOR_RULES
WHERE DESCRIPTION LIKE '%tale%'
ORDER BY RULE_ID;

 ID NAME RULE_TYPE DESCRIPTION
--- --------------- --------- ---
 12 AvoidStaleStats OBJECT Avoid objects with stale or no statistics

2. You configure a filter using CONFIGURE_ADVISOR_RULE_FILTER, specifying that task
execution should exclude the rule AvoidStaleStats, but honor all other rules:

VARIABLE b_ret CLOB
BEGIN
 :b_ret := DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER(
 task_name => 'opt_adv_task1'
, stats_adv_opr_type => 'EXECUTE'
, rule_name => 'AvoidStaleStats'
, action => 'DISABLE');
END;
/

Example 18-5 Including Only the Rule for Avoiding Stale Statistics

This example is the inverse of the preceding example. You want to generate a report for the
task named opt_adv_task1, but want to see only recommendations about stale statistics.

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-18

1. Query V$STATS_ADVISOR_RULES for rules that deal with stale statistics (sample output
included):

COL NAME FORMAT a15

SELECT RULE_ID AS ID, NAME, RULE_TYPE, DESCRIPTION
FROM V$STATS_ADVISOR_RULES
WHERE DESCRIPTION LIKE '%tale%'
ORDER BY RULE_ID;

 ID NAME RULE_TYPE DESCRIPTION
--- --------------- --------- ---
 12 AvoidStaleStats OBJECT Avoid objects with stale or no statistics

2. Configure a filter using CONFIGURE_ADVISOR_RULE_FILTER, specifying that task execution
should exclude all rules:

VARIABLE b_ret CLOB
BEGIN
 :b_ret := DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER(
 task_name => 'opt_adv_task1'
, stats_adv_opr_type => 'EXECUTE'
, rule_name => null
, action => 'DISABLE');
END;
/

3. Configure a filter that enables only the AvoidStaleStats rule:

BEGIN
 :b_ret := DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER(
 task_name => 'opt_adv_task1'
, stats_adv_opr_type => 'EXECUTE'
, rule_name => 'AvoidStaleStats'
, action => 'ENABLE');
END;
/

See Also:

• Oracle Database Reference to learn more about V$STATS_ADVISOR_RULES
• Oracle Database PL/SQL Packages and Types Reference to learn more about

CONFIGURE_ADVISOR_RULE_FILTER

Creating an Operation Filter for an Optimizer Advisor Task
The DBMS_STATS.CONFIGURE_ADVISOR_OPR_FILTER function creates an operation filter for a
specified Optimizer Statistics Advisor task. The function returns a CLOB that contains the
updated values of the filter.

You can use either of the following basic strategies:

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-19

• Disable all operations, and then enable only specified operations.

• Enable all operations (by default, all operations are enabled), and then disable specified
operations.

The DBA_OPTSTAT_OPERATIONS view contains the IDs of statistics-related operations.

Prerequisites

To use DBMS_STATS.CONFIGURE_ADVISOR_OPR_FILTER function, you must meet the following
prerequisites:

• To execute this subprogram, you must have the ADVISOR privilege.

Note:

This subprogram executes using invoker's rights.

• You must be the owner of the task.

• To query the DBA_OPTSTAT_OPERATIONS view, you must have the SELECT ANY TABLE
privilege.

To create an operation filter:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Query the types of operations.

For example, list all distinct operations in DBA_OPTSTAT_OPERATIONS (sample output
included):

SQL> SELECT DISTINCT(OPERATION) FROM DBA_OPTSTAT_OPERATIONS ORDER BY
OPERATION;

OPERATION

gather_dictionary_stats
gather_index_stats
gather_schema_stats
gather_table_stats
purge_stats
set_system_stats

3. Obtain the IDs of the operations to be filtered by querying DBA_OPTSTAT_OPERATIONS.

For example, to obtain IDs for all statistics gathering operations for tables and indexes in
the SYS and sh schemas, use the following query:

SELECT ID
FROM DBA_OPTSTAT_OPERATIONS
WHERE (OPERATION = 'gather_table_stats'
 OR OPERATION = 'gather_index_stats')
AND (TARGET LIKE 'SH.%'
 OR TARGET LIKE 'SYS.%');

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-20

4. Exclude or include rules for a specified task using the
DBMS_STATS.CONFIGURE_ADVISOR_OPR_FILTER function, specifying the IDs obtained in the
previous step.

Invoke the function in the following form, where the placeholders are defined as follows:

• report is the CLOB variable that contains the returned XML.

• tname is the name of the task.

• opr_type is the type of operation to perform. This value cannot be null.

• rule is the name of the rule.

• opr_id is the ID (from DBA_OPTSTAT_OPERATIONS.ID) of the operation to perform. This
value cannot be null.

• action is the name of the action: ENABLE, DISABLE, DELETE, or SHOW.

BEGIN
 report := DBMS_STATS.CONFIGURE_ADVISOR_OPR_FILTER(
 task_name => 'tname'
 , stats_adv_opr_type => 'opr_type'
 , rule_name => 'rule'
 , operation_id => 'op_id'
 , action => 'action');
END;

Example 18-6 Excluding Operations for Gathering Table Statistics

In this example, your goal is to exclude operations that gather table statistics in the hr schema.
User account stats has been granted the DBA role, ADVISOR privilege, and SELECT ON
DBA_OPTSTAT_OPERATIONS privilege. You perform the following steps:

1. Log in to the database as stats.

2. Drop any existing task named opt_adv_task1.

DECLARE
 v_tname VARCHAR2(32767);
BEGIN
 v_tname := 'opt_adv_task1';
 DBMS_STATS.DROP_ADVISOR_TASK(v_tname);
END;
/

3. Create a procedure named opr_filter that configures a task to advise on all operations
except those that gather statistics for tables in the hr schema.

CREATE OR REPLACE PROCEDURE opr_filter(p_tname IN VARCHAR2) IS
 v_retc CLOB;
BEGIN
 -- For all rules, prevent the advisor from operating
 -- on the operations selected in the following query
 FOR rec IN
 (SELECT ID FROM DBA_OPTSTAT_OPERATIONS WHERE OPERATION =
'gather_table_stats' AND TARGET LIKE 'HR.%')
 LOOP
 v_retc := DBMS_STATS.CONFIGURE_ADVISOR_OPR_FILTER(

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-21

 task_name => p_tname
 , stats_adv_opr_type => NULL
 , rule_name => NULL
 , operation_id => rec.id
 , action => 'DISABLE');
 END LOOP;
END;
/
SHOW ERRORS

4. Create a task named opt_adv_task1, and then execute the opr_filter procedure for this
task.

DECLARE
 v_tname VARCHAR2(32767);
 v_ret VARCHAR2(32767);
BEGIN
 v_tname := 'opt_adv_task1';
 v_ret := DBMS_STATS.CREATE_ADVISOR_TASK(v_tname);
 opr_filter(v_tname);
END;
/

5. Execute the task opt_adv_task1.

DECLARE
 v_tname VARCHAR2(32767);
 v_ret VARCHAR2(32767);
begin
 v_tname := 'opt_adv_task1';
 v_ret := DBMS_STATS.EXECUTE_ADVISOR_TASK(v_tname);
END;
/

6. Print the report.

SPOOL /tmp/rep.txt
SET LONG 1000000
COLUMN report FORMAT A200
SET LINESIZE 250
SET PAGESIZE 1000

SELECT DBMS_STATS.REPORT_ADVISOR_TASK(
 task_name => 'opt_adv_task1'
 , execution_name => NULL
 , type => 'TEXT'
 , section => 'ALL'
) AS report
FROM DUAL;
SPOOL OFF

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-22

See Also:

• Oracle Database Reference to learn more about DBA_OPTSTAT_OPERATIONS
• Oracle Database PL/SQL Packages and Types Reference to learn more about

CONFIGURE_ADVISOR_OPR_FILTER

Executing an Optimizer Statistics Advisor Task
The DBMS_STATS.EXECUTE_ADVISOR_TASK function executes a task for Optimizer Statistics
Advisor. If you do not specify an execution name, then Optimizer Statistics Advisor generates
one automatically.

The results of performing this task depend on the privileges of the executing user:

• SYSTEM level

Only users with both the ANALYZE ANY and ANALYZE ANY DICTIONARY privileges can
perform this task on system-level rules.

• Operation level

The results depend on the following privileges:

– Users with both the ANALYZE ANY and ANALYZE ANY DICTIONARY privileges can perform
this task for all statistics operations.

– Users with the ANALYZE ANY privilege but not the ANALYZE ANY DICTIONARY privilege
can perform this task for statistics operations related to any schema except SYS.

– Users with the ANALYZE ANY DICTIONARY privilege but not the ANALYZE ANY privilege
can perform this task for statistics operations related to their own schema and the SYS
schema.

– Users with neither the ANALYZE ANY nor the ANALYZE ANY DICTIONARY privilege can
only perform this operation for statistics operations relating to their own schema.

• Object level

Users can perform this task for any object for which they have statistics collection
privileges.

Prerequisites

This task has the following prerequisites:

• To execute this subprogram, you must have the ADVISOR privilege.

• You must be the owner of the task.

• If you specify an execution name, then this name must not conflict with an existing
execution.

Note:

This subprogram executes using invoker's rights.

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-23

To execute an Optimizer Statistics Advisor task:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Execute the DBMS_STATS.EXECUTE_ADVISOR_TASK function in the following form, where
tname is the name of the task, execname is the optional name of the execution, and ret is
the variable that contains the returned output:

EXECUTE ret := DBMS_STATS.EXECUTE_ADVISOR_TASK('tname','execname');

For example, to execute the task opt_adv_task1, use the following code:

DECLARE
 v_tname VARCHAR2(32767);
 v_ret VARCHAR2(32767);
BEGIN
 v_tname := 'opt_adv_task1';
 v_ret := DBMS_STATS.EXECUTE_ADVISOR_TASK(v_tname);
END;
/

3. Optionally, obtain details about the execution by querying USER_ADVISOR_EXECUTIONS:

SELECT TASK_NAME, EXECUTION_NAME,
 EXECUTION_END, EXECUTION_TYPE AS TYPE, STATUS
FROM USER_ADVISOR_EXECUTIONS;

Sample output appears below:

TASK_NAME EXECUTION_NAME EXECUTION TYPE STATUS
--------------- -------------------- --------- ---------- -----------
OPT_ADV_TASK1 EXEC_136 23-NOV-15 STATISTICS COMPLETED

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
EXECUTE_ADVISOR_TASK

Generating a Report for an Optimizer Statistics Advisor Task
The DBMS_STATS.REPORT_ADVISOR_TASK function generates a report for an Optimizer Statistics
Advisor task.

The report contains the following sections:

• General information

This section describes the task name, execution name, creation date, and modification
date.

• Summary

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-24

This section summarizes the findings and rules violated by the findings.

• Findings

Each finding section lists the relevant rule and findings. If the advisor has a
recommendation, then the recommendation is described. In some cases, a
recommendation also has a rationale.

The name of the automated Optimizer Statistics Advisor task is AUTO_STATS_ADVISOR_TASK. If
you follow the automated workflow, then you only need to query the automatically generated
report.

Prerequisites

To generate a report with the DBMS_STATS.REPORT_ADVISOR_TASK function, you must meet the
following prerequisites:

• To execute this subprogram, you must have the ADVISOR privilege.

• You must be the owner of the task.

Note:

This subprogram executes using invoker's rights.

The results of performing this task depend on the privileges of the executing user:

• SYSTEM level

Only users with both the ANALYZE ANY and ANALYZE ANY DICTIONARY privileges can
perform this task on system-level rules.

• Operation level

The results depend on the following privileges:

– Users with both the ANALYZE ANY and ANALYZE ANY DICTIONARY privileges can perform
this task for all statistics operations.

– Users with the ANALYZE ANY privilege but not the ANALYZE ANY DICTIONARY privilege
can perform this task for statistics operations related to any schema except SYS.

– Users with the ANALYZE ANY DICTIONARY privilege but not the ANALYZE ANY privilege
can perform this task for statistics operations related to their own schema and the SYS
schema.

– Users with neither the ANALYZE ANY nor the ANALYZE ANY DICTIONARY privilege can
only perform this operation for statistics operations relating to their own schema.

• Object level

Users can perform this task for any object for which they have statistics collection
privileges.

To generate an Optimizer Statistics Advisor report:

1. In SQL*Plus, log in to the database as a user with ADVISOR privileges.

2. Query the DBMS_STATS.REPORT_ADVISOR_TASK function output.

Use the following query, where the placeholders have the following definitions:

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-25

• tname is the name of the task.

• exec is the name of the execution.

• type is the type of output: TEXT, HTML, or XML.

• sect is the section of the report: SUMMARY, FINDINGS, ERRORS, and ALL.

• lvl is the format of the report: BASIC, TYPICAL, ALL, or SHOW_HIDDEN.

SET LINESIZE 3000
SET LONG 500000
SET PAGESIZE 0
SET LONGCHUNKSIZE 100000

SELECT DBMS_STATS.REPORT_ADVISOR_TASK('tname', 'exec', 'type',
 'sect', 'lvl') AS REPORT
FROM DUAL;

For example, to print a report for AUTO_STATS_ADVISOR_TASK, use the following query:

SELECT DBMS_STATS.REPORT_ADVISOR_TASK('AUTO_STATS_ADVISOR_TASK', NULL,
 'TEXT', 'ALL', 'ALL') AS REPORT
FROM DUAL;

The following sample report shows four findings:

GENERAL INFORMATION

 Task Name : AUTO_STATS_ADVISOR_TASK
 Execution Name : EXEC_136
 Created : 09-05-16 02:52:34
 Last Modified : 09-05-16 12:31:24

SUMMARY

 For execution EXEC_136 of task AUTO_STATS_ADVISOR_TASK, the Statistics Advisor
 has 4 findings. The findings are related to the following rules:
 AVOIDSETPROCEDURES, USEDEFAULTPARAMS, USEGATHERSCHEMASTATS, NOTUSEINCREMENTAL.
Please refer to the finding section for detailed information.

FINDINGS

 Rule Name: AvoidSetProcedures
 Rule Description: Avoid Set Statistics Procedures
 Finding: There are 5 SET_[COLUMN|INDEX|TABLE|SYSTEM]_STATS procedures being
 used for statistics gathering.
 Recommendation: Do not use SET_[COLUMN|INDEX|TABLE|SYSTEM]_STATS procedures.
 Gather statistics instead of setting them.
 Rationale: SET_[COLUMN|INDEX|TABLE|SYSTEM]_STATS will cause bad plans due to
 wrong or inconsistent statistics.
--
 Rule Name: UseDefaultParams
 Rule Description: Use Default Parameters in Statistics Collection Procedures
 Finding: There are 367 statistics operations using nondefault parameters.

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-26

 Recommendation: Use default parameters for statistics operations.
 Example:

 -- Gathering statistics for 'SH' schema using all default parameter values:
 BEGIN dbms_stats.gather_schema_stats('SH'); END;
 Rationale: Using default parameter values for statistics gathering operations
 is more efficient.
--
 Rule Name: UseGatherSchemaStats
 Rule Description: Use gather_schema_stats procedure
 Finding: There are 318 uses of GATHER_TABLE_STATS.
 Recommendation: Use GATHER_SCHEMA_STATS instead of GATHER_TABLE_STATS.
 Example:

 -- Gather statistics for 'SH' schema:
 BEGIN dbms_stats.gather_schema_stats('SH'); END;
 Rationale: GATHER_SCHEMA_STATS has more options available, including checking
 for staleness and gathering statistics concurrently. Also it is
 more maintainable for new tables added to the schema. If you only
 want to gather statistics for certain tables in the schema, specify
 them in the obj_filter_list parameter of
GATHER_SCHEMA_STATS.
--
 Rule Name: NotUseIncremental

 Rule Description: Statistics should not be maintained incrementally when it is not
 Finding: Incremental option has been turned on for 10 tables, which will not benefit
 from using the incremental option.
 Schema:
 SH
 Objects:
 CAL_MONTH_SALES_MV
 CAL_MONTH_SALES_MV
 CHANNELS
 COUNTRIES
 CUSTOMERS
 DIMENSION_EXCEPTIONS
 FWEEK_PSCAT_SALES_MV
 FWEEK_PSCAT_SALES_MV
 PRODUCTS
 PROMOTIONS
 SUPPLEMENTARY_DEMOGRAPHICS
 TIMES

 Recommendation: Do not use the incremental option for statistics gathering on these
 objects.
 Example:
 --
 Turn off the incremental option for 'SH.SALES':
 dbms_stats.set_table_prefs('SH', 'SALES', 'INCREMENTAL', 'FALSE');
 Rationale: The overhead of using the incremental option on these tables
 outweighs the benefit of using the incremental option.

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-27

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
REPORT_ADVISOR_TASK

Implementing Optimizer Statistics Advisor Recommendations
You can either implement all recommendations automatically using
DBMS_STATS.IMPLEMENT_ADVISOR_TASK, or generate an editable script using
DBMS_STATS.SCRIPT_ADVISOR_TASK.

Implementing Actions Recommended by Optimizer Statistics Advisor
The DBMS_STATS.IMPLEMENT_ADVISOR_TASK function implements the recommendations for a
specified Optimizer Statistics Advisor task. If you do not specify an execution name, then
Optimizer Statistics Advisor uses the most recent execution.

The simplest means of implementing recommendations is using
DBMS_STATS.IMPLEMENT_ADVISOR_TASK. In this case, no generation of a script is necessary. You
can specify that the advisor ignore the existing filters (level=>'ALL') or use the default, which
honors the existing filters (level=>'TYPICAL').

Prerequisites

To use DBMS_STATS.IMPLEMENT_ADVISOR_TASK, you must meet the following prerequisites:

• To execute this subprogram, you must have the ADVISOR privilege.

• You must be the owner of the task.

Note:

This subprogram executes using invoker's rights.

The results of performing this task depend on the privileges of the executing user:

• SYSTEM level

Only users with both the ANALYZE ANY and ANALYZE ANY DICTIONARY privileges can
perform this task on system-level rules.

• Operation level

The results depend on the following privileges:

– Users with both the ANALYZE ANY and ANALYZE ANY DICTIONARY privileges can perform
this task for all statistics operations.

– Users with the ANALYZE ANY privilege but not the ANALYZE ANY DICTIONARY privilege
can perform this task for statistics operations related to any schema except SYS.

– Users with the ANALYZE ANY DICTIONARY privilege but not the ANALYZE ANY privilege
can perform this task for statistics operations related to their own schema and the SYS
schema.

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-28

– Users with neither the ANALYZE ANY nor the ANALYZE ANY DICTIONARY privilege can
only perform this operation for statistics operations relating to their own schema.

• Object level

Users can perform this task for any object for which they have statistics collection
privileges.

To implement advisor actions:

1. In SQL*Plus, log in to the database as a user with the necessary privileges.

2. Execute the DBMS_STATS.IMPLEMENT_ADVISOR_TASK function in the following form, where
the placeholders have the following definitions:

• tname is the name of the task.

• result is the CLOB variable that contains a list of the recommendations that have
been successfully implemented.

• fltr_lvl is the level of implementation: TYPICAL (existing filters honored) or ALL (filters
ignored).

BEGIN
 result := DBMS_STATS.IMPLEMENT_ADVISOR_TASK('tname', level => fltr_lvl);
END;

For example, to implement all recommendations for the task opt_adv_task1, use the
following code:

VARIABLE b_ret CLOB
DECLARE
 v_tname VARCHAR2(32767);
BEGIN
 v_tname := 'opt_adv_task1';
 :b_ret := DBMS_STATS.IMPLEMENT_ADVISOR_TASK(v_tname);
END;
/

3. Optionally, print the XML output to confirm the implemented actions.

For example, to print the XML returned in the previous step, use the following code
(sample output included):

SET LONG 10000
SELECT XMLType(:b_ret) AS imp_results FROM DUAL;

IMP_RESULTS

<implementation_results>
 <rule NAME="AVOIDSETPROCEDURES">
 <implemented>yes</implemented>
 </rule>
 <rule NAME="USEGATHERSCHEMASTATS">
 <implemented>yes</implemented>
 </rule>
 <rule NAME="AVOIDSETPROCEDURES">
 <implemented>yes</implemented>

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-29

 </rule>
 <rule NAME="USEGATHERSCHEMASTATS">
 <implemented>yes</implemented>
 </rule>
 <rule NAME="USEDEFAULTPARAMS">
 <implemented>no</implemented>
 </rule>
 <rule NAME="USEDEFAULTPARAMS">
 <implemented>yes</implemented>
 </rule>
 <rule NAME="NOTUSEINCREMENTAL">
 <implemented>yes</implemented>
 </rule>
</implementation_results>

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.IMPLEMENT_ADVISOR_TASK

Generating a Script Using Optimizer Statistics Advisor
The DBMS_STATS.SCRIPT_ADVISOR_TASK function generates an editable script with
recommendations for a specified Optimizer Statistics Advisor task.

Unlike IMPLEMENT_ADVISOR_TASK, the SCRIPT_ADVISOR_TASK generates a script that you can
edit before execution. The output script contains both comments and executable code. As with
IMPLEMENT_ADVISOR_TASK, you can specify that the advisor ignore the existing filters
(level=>'ALL') or use the default, which honors the existing filters (level=>'TYPICAL'). You
can specify that the function returns the script as a CLOB and file, or only a CLOB.

Prerequisites

To use the DBMS_STATS.SCRIPT_ADVISOR_TASK function, you must meet the following
prerequisites:

• To execute this subprogram, you must have the ADVISOR privilege.

• You must be the owner of the task.

Note:

This subprogram executes using invoker's rights.

The results of performing this task depend on the privileges of the executing user:

• SYSTEM level

Only users with both the ANALYZE ANY and ANALYZE ANY DICTIONARY privileges can
perform this task on system-level rules.

• Operation level

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-30

The results depend on the following privileges:

– Users with both the ANALYZE ANY and ANALYZE ANY DICTIONARY privileges can perform
this task for all statistics operations.

– Users with the ANALYZE ANY privilege but not the ANALYZE ANY DICTIONARY privilege
can perform this task for statistics operations related to any schema except SYS.

– Users with the ANALYZE ANY DICTIONARY privilege but not the ANALYZE ANY privilege
can perform this task for statistics operations related to their own schema and the SYS
schema.

– Users with neither the ANALYZE ANY nor the ANALYZE ANY DICTIONARY privilege can
only perform this operation for statistics operations relating to their own schema.

• Object level

Users can perform this task for any object for which they have statistics collection
privileges.

To generate an advisor script:

1. In SQL*Plus, log in to the database as a user with ADVISOR privileges.

2. Execute the DBMS_STATS.SCRIPT_ADVISOR_TASK function in the following form, where the
placeholders have the following definitions:

• tname is the name of the task.

• exec is the name of the execution (default is null).

• dir is the name of the directory (default is null).

• result is the CLOB variable that contains a list of the recommendations that have
been successfully implemented.

• filter_lvl is the level of implementation: TYPICAL (existing filters honored) or ALL
(filters ignored).

BEGIN
 result := DBMS_STATS.SCRIPT_ADVISOR_TASK('tname',
 execution_name => 'exec', dir_name => 'dir',
 level => 'filter_lvl');
END;

For example, to generate a script that contains recommendations for the task
opt_adv_task1, use the following code:

VARIABLE b_script CLOB
DECLARE
 v_tname VARCHAR2(32767);
BEGIN
 v_tname := 'opt_adv_task1';
 :b_script := DBMS_STATS.SCRIPT_ADVISOR_TASK(v_tname);
END;
/

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-31

Note:

If you do not specify an execution name, then Optimizer Statistics Advisor uses
the most recent execution.

3. Print the script.

For example, to print the script returned in the previous step, use the following code
(sample output included):

DECLARE
 v_len NUMBER(10);
 v_offset NUMBER(10) :=1;
 v_amount NUMBER(10) :=10000;
BEGIN
 v_len := DBMS_LOB.getlength(:b_script);
 WHILE (v_offset < v_len)
 LOOP
 DBMS_OUTPUT.PUT_LINE(DBMS_LOB.SUBSTR(:b_script,v_amount,v_offset));
 v_offset := v_offset + v_amount;
 END LOOP;
END;
/

The following example shows a sample script:

-- Script generated for the recommendations from execution EXEC_23
-- in the statistics advisor task OPT_ADV_TASK1
-- Script version 12.2

-- No scripts will be provided for the rule AVOIDSETPROCEDURES. Please check the
-- report for more details.
-- No scripts will be provided for the rule USEGATHERSCHEMASTATS. Please check the
-- report for more details.
-- No scripts will be provided for the rule AVOIDINEFFICIENTSTATSOPRSEQ. Please check
-- the report for more details.
-- No scripts will be provided for the rule AVOIDUNNECESSARYSTATSCOLLECTION. Please
-- check the report for more details.
-- No scripts will be provided for the rule GATHERSTATSAFTERBULKDML. Please check the
-- report for more details.
-- No scripts will be provided for the rule AVOIDDROPRECREATE. Please check the report
-- for more details.
-- No scripts will be provided for the rule AVOIDOUTOFRANGE. Please check the report
-- for more details.
-- No scripts will be provided for the rule AVOIDANALYZETABLE. Please check the report
-- for more details.
-- No scripts will be provided for the rule AVOIDSETPROCEDURES. Please check the
-- report for more details.
-- No scripts will be provided for the rule USEGATHERSCHEMASTATS. Please check the
-- report for more details.
-- No scripts will be provided for the rule AVOIDINEFFICIENTSTATSOPRSEQ. Please
-- check the report for more details.
-- No scripts will be provided for the rule AVOIDUNNECESSARYSTATSCOLLECTION. Please check
-- the report for more details.

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-32

-- No scripts will be provided for the rule GATHERSTATSAFTERBULKDML. Please check the
-- report for more details.
-- No scripts will be provided for the rule AVOIDDROPRECREATE. Please check the report
-- for more details.
-- No scripts will be provided for the rule AVOIDOUTOFRANGE. Please check the report
-- for more details.
-- No scripts will be provided for the rule AVOIDANALYZETABLE. Please check the report
-- for more details.

-- Scripts for rule USEDEFAULTPARAMS
-- Rule Description: Use Default Parameters in Statistics Collection Procedures
-- Use the default preference value for parameters

begin dbms_stats.set_global_prefs('PREFERENCE_OVERRIDES_PARAMETER', 'TRUE'); end;
/

-- Scripts for rule USEDEFAULTOBJECTPREFERENCE
-- Rule Description: Use Default Object Preference for statistics collection
-- Setting object-level preferences to default values
-- setting CASCADE to default value for object level preference
-- setting ESTIMATE_PERCENT to default value for object level preference
-- setting METHOD_OPT to default value for object level preference
-- setting GRANULARITY to default value for object level preference
-- setting NO_INVALIDATE to default value for object levelpreference

-- Scripts for rule USEINCREMENTAL
-- Rule Description: Statistics should be maintained incrementally when it is
-- beneficial.
-- Turn on the incremental option for those objects for which using incremental is
-- helpful.

-- Scripts for rule UNLOCKNONVOLATILETABLE
-- Rule Description: Statistics for objects with non-volatile should not be locked
-- Unlock statistics for objects that are not volatile.

-- Scripts for rule LOCKVOLATILETABLE
-- Rule Description: Statistics for objects with volatile data should be locked
-- Lock statistics for volatile objects.

-- Scripts for rule NOTUSEINCREMENTAL
-- Rule Description: Statistics should not be maintained incrementally when it is not
 beneficial
-- Turn off incremental option for those objects for which using incremental is not
-- helpful.

begin dbms_stats.set_table_prefs('SH', 'CAL_MONTH_SALES_MV', 'INCREMENTAL', 'FALSE'); end;
/
begin dbms_stats.set_table_prefs('SH', 'CHANNELS', 'INCREMENTAL', 'FALSE'); end;
/
begin dbms_stats.set_table_prefs('SH', 'COUNTRIES', 'INCREMENTAL', 'FALSE'); end;
/
begin dbms_stats.set_table_prefs('SH', 'CUSTOMERS', 'INCREMENTAL', 'FALSE'); end;
/
begin dbms_stats.set_table_prefs('SH', 'DIMENSION_EXCEPTIONS', 'INCREMENTAL', 'FALSE');
end;
/

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-33

begin dbms_stats.set_table_prefs('SH', 'FWEEK_PSCAT_SALES_MV', 'INCREMENTAL', 'FALSE');
end;
/
begin dbms_stats.set_table_prefs('SH', 'PRODUCTS', 'INCREMENTAL', 'FALSE'); end;
/
begin dbms_stats.set_table_prefs('SH', 'PROMOTIONS', 'INCREMENTAL', 'FALSE'); end;
/
begin dbms_stats.set_table_prefs('SH', 'SUPPLEMENTARY_DEMOGRAPHICS', 'INCREMENTAL',
'FALSE'); end;
/
begin dbms_stats.set_table_prefs('SH', 'TIMES', 'INCREMENTAL', 'FALSE'); end;
/

-- Scripts for rule USEAUTODEGREE
-- Rule Description: Use Auto Degree for statistics collection
-- Turn on auto degree for those objects for which using auto degree is helpful.

-- Scripts for rule AVOIDSTALESTATS
-- Rule Description: Avoid objects with stale or no statistics
-- Gather statistics for those objcts that are missing or have no statistics.

-- Scripts for rule MAINTAINSTATSCONSISTENCY
-- Rule Description: Statistics of dependent objects should be consistent
-- Gather statistics for those objcts that are missing or have no statistics.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_STATS.SCRIPT_ADVISOR_TASK

Chapter 18
Basic Tasks for Optimizer Statistics Advisor

18-34

Part VI
Optimizer Controls

You can use hints and initialization parameter to influence optimizer decisions and behavior.

19
Influencing the Optimizer

Optimizer defaults are adequate for most operations, but not all.

In some cases you may have information unknown to the optimizer, or need to tune the
optimizer for a specific type of statement or workload. In such cases, influencing the optimizer
may provide better performance.

Techniques for Influencing the Optimizer
You can influence the optimizer using several techniques, including SQL profiles, SQL Plan
Management, initialization parameters, and hints.

The following figure shows the principal techniques for influencing the optimizer.

Figure 19-1 Techniques for Influencing the Optimizer

Optimizer

DBMS_STATS

SQL Profiles

Initialization Parameters

SQL Plan Management

Hints

User

The overlapping squares in the preceding diagram show that SQL plan management uses both
initialization parameters and hints. SQL profiles also technically include hints.

Note:

A stored outline is a legacy technique that serve a similar purpose to SQL plan
baselines.

19-1

You can use the following techniques to influence the optimizer:

Table 19-1 Optimizer Techniques

Technique Description To Learn More

Initialization
parameters

Parameters influence many types of optimizer
behavior at the database instance and session
level.

"Influencing the Optimizer with
Initialization Parameters"

Hints A hint is a commented instruction in a SQL
statement. Hints control a wide range of
behavior.

"Influencing the Optimizer with
Hints"

DBMS_STATS This package updates and manages optimizer
statistics. The more accurate the statistics, the
better the optimizer estimates. This chapter
does not cover DBMS_STATS.

"Gathering Optimizer Statistics"

SQL profiles A SQL profile is a database object that
contains auxiliary statistics specific to a SQL
statement. Conceptually, a SQL profile is to a
SQL statement what a set of object-level
statistics is to a table or index. A SQL profile
can correct suboptimal optimizer estimates
discovered during SQL tuning.

"Managing SQL Profiles"

SQL plan
management and
stored outlines

SQL plan management is a preventative
mechanism that enables the optimizer to
automatically manage execution plans,
ensuring that the database uses only known or
verified plans. This chapter does not cover
SQL plan management.

"Managing SQL Plan Baselines"

In some cases, multiple techniques optimize the same behavior. For example, you can set
optimizer goals using both initialization parameters and hints.

See Also:

"Migrating Stored Outlines to SQL Plan Baselines" to learn how to migrate stored
outlines to SQL plan baselines

Influencing the Optimizer with Initialization Parameters
This chapter explains which initialization parameters affect optimization, and how to set them.

About Optimizer Initialization Parameters
Oracle Database provides initialization parameters to influence various aspects of optimizer
behavior, including cursor sharing, adaptive optimization, and the optimizer mode.

The following table lists some of the most important optimizer parameters. Note that this table
does not include the approximate query initialization parameters, which are described in
"Approximate Query Initialization Parameters".

Chapter 19
Influencing the Optimizer with Initialization Parameters

19-2

Table 19-2 Initialization Parameters That Control Optimizer Behavior

Initialization Parameter Description

CURSOR_INVALIDATION Provides the default cursor invalidation level for DDL statements.
IMMEDIATE sets the same cursor invalidation behavior for DDL as
in releases before Oracle Database 12c Release 2 (12.2). This is
the default.

DEFERRED allows an application to take advantage of the reduced
cursor invalidation for DDL without making any application
changes. Deferred invalidation reduces the number of cursor
invalidations and spreads the recompilation workload over time.
For this reason, a cursor may run with a suboptimal plan until it is
recompiled, and may incur small execution-time overhead.

You can set this parameter at the SYSTEM or SESSION level. See
"About the Life Cycle of Shared Cursors".

CURSOR_SHARING Converts literal values in SQL statements to bind variables.
Converting the values improves cursor sharing and can affect the
execution plans of SQL statements. The optimizer generates the
execution plan based on the presence of the bind variables and
not the actual literal values.

Set to FORCE to enable the creation of a new cursor when sharing
an existing cursor, or when the cursor plan is not optimal. Set to
EXACT to allow only statements with identical text to share the
same cursor.

DB_FILE_MULTIBLOCK_READ_COUNT Specifies the number of blocks that are read in a single I/O during
a full table scan or index fast full scan. The optimizer uses the
value of this parameter to calculate the cost of full table scans and
index fast full scans. Larger values result in a lower cost for full
table scans, which may result in the optimizer choosing a full table
scan over an index scan.

The default value of this parameter corresponds to the maximum
I/O size that the database can perform efficiently. This value is
platform-dependent and is 1 MB for most platforms. Because the
parameter is expressed in blocks, it is set to a value equal to the
maximum I/O size that can be performed efficiently divided by the
standard block size. If the number of sessions is extremely large,
then the multiblock read count value decreases to avoid the buffer
cache getting flooded with too many table scan buffers.

OPTIMIZER_ADAPTIVE_PLANS Controls adaptive plans. An adaptive plan has alternative choices.
The optimizer decides on a plan at run time based on statistics
collected as the query executes.

By default, this parameter is true, which means adaptive plans
are enabled. Setting to this parameter to false disables the
following features:

• Nested loops and hash join selection
• Star transformation bitmap pruning
• Adaptive parallel distribution method
See "About Adaptive Query Plans".

Chapter 19
Influencing the Optimizer with Initialization Parameters

19-3

Table 19-2 (Cont.) Initialization Parameters That Control Optimizer Behavior

Initialization Parameter Description

OPTIMIZER_ADAPTIVE_REPORTING_ONLY Controls the reporting mode for automatic reoptimization and
adaptive plans (see "Adaptive Query Plans"). By default, reporting
mode is off (false), which means that adaptive optimizations are
enabled.

If set to true, then adaptive optimizations run in reporting-only
mode. In this case, the database gathers information required for
an adaptive optimization, but takes no action to change the plan.
For example, an adaptive plan always choose the default plan, but
the database collects information about which plan the database
would use if the parameter were set to false. You can view the
report by using DBMS_XPLAN.DISPLAY_CURSOR.

OPTIMIZER_ADAPTIVE_STATISTICS Controls adaptive statistics. The optimizer can use adaptive
statistics when query predicates are too complex to rely on base
table statistics alone.

By default, OPTIMIZER_ADAPTIVE_STATISTICS is false, which
means that the following features are disabled:

• SQL plan directives
• Statistics feedback
• Adaptive dynamic sampling
See "Adaptive Statistics".

OPTIMIZER_MODE Sets the optimizer mode at database instance startup. Possible
values are ALL_ROWS, FIRST_ROWS_n, and FIRST_ROWS.

OPTIMIZER_INDEX_CACHING Controls the cost analysis of an index probe with a nested loop.
The range of values 0 to 100 indicates percentage of index blocks
in the buffer cache, which modifies optimizer assumptions about
index caching for nested loops and IN-list iterators. A value of 100
infers that 100% of the index blocks are likely to be found in the
buffer cache, so the optimizer adjusts the cost of an index probe or
nested loop accordingly. Use caution when setting this parameter
because execution plans can change in favor of index caching.

OPTIMIZER_INDEX_COST_ADJ Adjusts the cost of index probes. The range of values is 1 to
10000. The default value is 100, which means that the optimizer
evaluates indexes as an access path based on the normal cost
model. A value of 10 means that the cost of an index access path
is one-tenth the normal cost of an index access path.

OPTIMIZER_INMEMORY_AWARE This parameter enables (TRUE) or disables (FALSE) all Oracle
Database In-Memory (Database In-Memory) optimizer features,
including the cost model for the IM column store, table expansion,
Bloom filters, and so on. Setting the parameter to FALSE causes
the optimizer to ignore the INMEMORY property of tables during the
optimization of SQL statements.

OPTIMIZER_REAL_TIME_STATISTICS When the OPTIMIZER_REAL_TIME_STATISTICS initialization
parameter is set to true, Oracle Database automatically gathers
real-time statistics during conventional DML operations. The
default setting is false, which means real-time statistics are
disabled.

Chapter 19
Influencing the Optimizer with Initialization Parameters

19-4

Table 19-2 (Cont.) Initialization Parameters That Control Optimizer Behavior

Initialization Parameter Description

OPTIMIZER_SESSION_TYPE Determines whether the database verifies statements during
automatic index verification. The default is NORMAL, which means
statements are verified. CRITICAL takes precedence over
NORMAL.

By setting the OPTIMIZER_SESSION_TYPE initialization parameter
to ADHOC in a session, you can suspend automatic indexing for
queries in this session. The automatic indexing process does not
identify index candidates, or create and verify indexes. This control
may be useful for ad hoc queries or testing new functionality.

OPTIMIZER_CAPTURE_SQL_QUARANTINE Enables or disables the automatic creation of SQL Quarantine
configurations.To enable SQL Quarantine to create configurations
automatically after the Resource Manager terminates a query, set
the OPTIMIZER_CAPTURE_SQL_QUARANTINE initialization
parameter to TRUE (the default is FALSE).

OPTIMIZER_USE_INVISIBLE_INDEXES Enables or disables the use of invisible indexes.

QUERY_REWRITE_ENABLED Enables or disables the query rewrite feature of the optimizer.

TRUE, which is the default, enables the optimizer to utilize
materialized views to enhance performance. FALSE disables the
query rewrite feature of the optimizer and directs the optimizer not
to rewrite queries using materialized views even when the
estimated query cost of the unoptimized query is lower. FORCE
enables the query rewrite feature of the optimizer and directs the
optimizer to rewrite queries using materialized views even when
the estimated query cost of the unoptimized query is lower.

OPTIMIZER_USE_SQL_QUARANTINE Determines whether the optimizer considers SQL Quarantine
configurations when choosing an execution plan for a SQL
statement. To disable the use of existing SQL Quarantine
configurations, set OPTIMIZER_USE_SQL_QUARANTINE to FALSE
(the default is TRUE).

QUERY_REWRITE_INTEGRITY Determines the degree to which query rewrite is enforced.

By default, the integrity level is set to ENFORCED. In this mode, all
constraints must be validated. The database does not use query
rewrite transformations that rely on unenforced constraints.
Therefore, if you use ENABLE NOVALIDATE RELY, some types of
query rewrite might not work.

To enable query rewrite when constraints are in NOVALIDATE
mode, the integrity level must be TRUSTED or STALE_TOLERATED.
In TRUSTED mode, the optimizer trusts that the relationships
declared in dimensions and RELY constraints are correct. In
STALE_TOLERATED mode, the optimizer uses materialized views
that are valid but contain stale data as well as those that contain
fresh data. This mode offers the maximum rewrite capability but
creates the risk of generating inaccurate results.

Chapter 19
Influencing the Optimizer with Initialization Parameters

19-5

Table 19-2 (Cont.) Initialization Parameters That Control Optimizer Behavior

Initialization Parameter Description

RESULT_CACHE_MODE Controls whether the database uses the SQL query result cache
for all queries, or only for the queries that are annotated with the
result cache hint. When set to MANUAL (default), you must use the
RESULT_CACHE hint to specify that a specific result is to be stored
in the cache. When set to FORCE, the database stores all results in
the cache. The corresponding options MANUAL TEMP and FORCE
TEMP specify that query results can reside in the temporary
tablespace, unless prohibited by a hint.

When setting this parameter, consider how the result cache
handles PL/SQL functions. The database invalidates query results
in the result cache using the same mechanism that tracks data
dependencies for PL/SQL functions, but otherwise permits
caching of queries that contain PL/SQL functions. Because
PL/SQL function result cache invalidation does not track all kinds
of dependencies (such as on sequences, SYSDATE,
SYS_CONTEXT, and package variables), indiscriminate use of the
query result cache on queries calling such functions can result in
changes to results, that is, incorrect results. Thus, consider
correctness and performance when choosing to enable the result
cache, especially when setting RESULT_CACHE_MODE to FORCE.

RESULT_CACHE_MAX_SIZE Specifies the maximum amount of SGA memory (in bytes) that
can be used by the result cache.

The default is derived from the values of SHARED_POOL_SIZE,
SGA_TARGET, and MEMORY_TARGET. The value of this parameter is
rounded to the largest multiple of 32 KB that is not greater than
the specified value. The value 0 disables the cache.

RESULT_CACHE_MAX_RESULT Specifies the percentage of RESULT_CACHE_MAX_SIZE that any
single result can use. The default value is 5, but you can specify
any percentage value between 1 and 100.

RESULT_CACHE_MAX_TEMP_RESULT Specifies the maximum percentage of temporary tablespace
memory that one cached query can consume. The default value is
5. This parameter is only modifiable at the system level.

RESULT_CACHE_MAX_TEMP_SIZE Specifies the maximum amount of temporary tablespace memory
that the result cache can consume in a PDB. This parameter is
only modifiable at the system level.

The default is 10 times the default or initialized value of
RESULT_CACHE_MAX_SIZE. Any positive value below 5 is rounded
to 5. The specified value cannot exceed 10% of the currently
estimated total free temporary tablespace in the SYS schema. The
value 0 disables the feature.

RESULT_CACHE_REMOTE_EXPIRATION Specifies the number of minutes for which a result that depends
on remote database objects remains valid. The default is 0, which
implies that the database should not cache results using remote
objects. Setting this parameter to a nonzero value can produce
stale answers, such as if a remote database modifies a table that
is referenced in a result.

STAR_TRANSFORMATION_ENABLED Enables the optimizer to cost a star transformation for star queries
(if true). The star transformation combines the bitmap indexes on
the various fact table columns.

Chapter 19
Influencing the Optimizer with Initialization Parameters

19-6

See Also:

• Oracle Database Performance Tuning Guide to learn how to tune the query result
cache

• Oracle Database Data Warehousing Guide

to learn more about star transformations and query rewrite

• Oracle Database In-Memory Guide to learn more about Database In-Memory
features

• Oracle Database Reference for complete information about the preceding
initialization parameters

Enabling Optimizer Features
The OPTIMIZER_FEATURES_ENABLE initialization parameter (or hint) controls a set of optimizer-
related features, depending on the database release.

The parameter accepts one of a list of valid string values corresponding to the release
numbers, such as 11.2.0.2 or 12.2.0.1. You can use this parameter to preserve the old
behavior of the optimizer after a database upgrade. For example, if you upgrade Oracle
Database 12c Release 1 (12.1.0.2) to Oracle Database 12c Release 2 (12.2.0.1), then the
default value of the OPTIMIZER_FEATURES_ENABLE parameter changes from 12.1.0.2 to
12.2.0.1.

For backward compatibility, you may not want the execution plans to change because of new
optimizer features in a new release. In such cases, you can set OPTIMIZER_FEATURES_ENABLE
to an earlier version. If you upgrade to a new release, and if you want to enable the features in
the new release, then you do not need to explicitly set the OPTIMIZER_FEATURES_ENABLE
initialization parameter.

Caution:

Oracle does not recommend explicitly setting the OPTIMIZER_FEATURES_ENABLE
initialization parameter to an earlier release. To avoid SQL performance regression
that may result from execution plan changes, consider using SQL plan management
instead.

Assumptions

This tutorial assumes the following:

• You recently upgraded the database from Oracle Database 12c Release 1 (12 1.0.2) to
Oracle Database 12c Release 2 (12.2.0.1).

• You want to preserve the optimizer behavior from the earlier release.

To enable query optimizer features for a specific release:

1. Log in to the database with the appropriate privileges, and then query the current optimizer
features settings.

Chapter 19
Influencing the Optimizer with Initialization Parameters

19-7

For example, run the following SQL*Plus command:

SQL> SHOW PARAMETER optimizer_features_enable

NAME TYPE VALUE
------------------------------------ ----------- --------
optimizer_features_enable string 12.2.0.1

2. Set the optimizer features setting at the instance or session level.

For example, run the following SQL statement to set the optimizer version to 12.1.0.2:

SQL> ALTER SYSTEM SET OPTIMIZER_FEATURES_ENABLE='12.1.0.2';

The preceding statement restores the optimizer functionality that existed in Oracle
Database 12c Release 1 (12.1.0.2).

See Also:

• "Managing SQL Plan Baselines"

• Oracle Database Reference to learn about optimizer features enabled when you
set OPTIMIZER_FEATURES_ENABLE to different release values

Choosing an Optimizer Goal
The optimizer goal is the prioritization of resource usage by the optimizer.

Using the OPTIMIZER_MODE initialization parameter, you can set the following optimizer goals:

• Best throughput (default)

When you set the OPTIMIZER_MODE value to ALL_ROWS, the database uses the least amount
of resources necessary to process all rows that the statement accessed.

For batch applications such as Oracle Reports, optimize for best throughput. Usually,
throughput is more important in batch applications because the user is only concerned with
the time necessary for the application to complete. Response time is less important
because the user does not examine the results of individual statements while the
application is running.

• Best response time

When you set the OPTIMIZER_MODE value to FIRST_ROWS_n, the database optimizes with a
goal of best response time to return the first n rows, where n equals 1, 10, 100, or 1000.

For interactive applications in Oracle Forms or SQL*Plus, optimize for response time.
Usually, response time is important because the interactive user is waiting to see the first
row or rows that the statement accessed.

Assumptions

This tutorial assumes the following:

• The primary application is interactive, so you want to set the optimizer goal for the
database instance to minimize response time.

Chapter 19
Influencing the Optimizer with Initialization Parameters

19-8

• For the current session only, you want to run a report and optimize for throughput.

To enable query optimizer features for a specific release:

1. Connect SQL*Plus to the database with the appropriate privileges, and then query the
current optimizer mode.

For example, run the following SQL*Plus command:

dba1@PROD> SHOW PARAMETER OPTIMIZER_MODE

NAME TYPE VALUE
------------------------------------ ----------- --------
optimizer_mode string ALL_ROWS

2. At the instance level, optimize for response time.

For example, run the following SQL statement to configure the system to retrieve the first
10 rows as quickly as possible:

SQL> ALTER SYSTEM SET OPTIMIZER_MODE='FIRST_ROWS_10';

3. At the session level only, optimize for throughput before running a report.

For example, run the following SQL statement to configure only this session to optimize for
throughput:

SQL> ALTER SESSION SET OPTIMIZER_MODE='ALL_ROWS';

See Also:

Oracle Database Reference to learn about the OPTIMIZER_MODE initialization
parameter

Controlling Adaptive Optimization
In Oracle Database, adaptive query optimization is the process by which the optimizer
adapts an execution plan based on statistics collected at run time.

Adaptive plans are enabled when the following initialization parameters are set:

• OPTIMIZER_ADAPTIVE_PLANS is TRUE (default)

• OPTIMIZER_FEATURES_ENABLE is 12.1.0.1 or later

• OPTIMIZER_ADAPTIVE_REPORTING_ONLY is FALSE (default)

If OPTIMIZER_ADAPTIVE_REPORTING_ONLY is set to true, then adaptive optimization runs in
reporting-only mode. In this case, the database gathers information required for adaptive
optimization, but does not change the plans. An adaptive plan always chooses the default plan,
but the database collects information about the execution as if the parameter were set to
false.

Adaptive statistics are enabled when the following initialization parameters are set:

• OPTIMIZER_ADAPTIVE_STATISTICS is TRUE (the default is FALSE)

Chapter 19
Influencing the Optimizer with Initialization Parameters

19-9

• OPTIMIZER_FEATURES_ENABLE is 12.1.0.1 or later

Assumptions

This tutorial assumes the following:

• The OPTIMIZER_FEATURES_ENABLE initialization parameter is set to 12.1.0.1 or later.

• The OPTIMIZER_ADAPTIVE_REPORTING_ONLY initialization parameter is set to false (default).

• You want to disable adaptive plans for testing purposes so that the database generates
only reports.

To disable adaptive plans:

1. Connect SQL*Plus to the database as SYSTEM, and then query the current settings.

For example, run the following SQL*Plus command:

SHOW PARAMETER OPTIMIZER_ADAPTIVE_REPORTING_ONLY

NAME TYPE VALUE
------------------------------------ ----------- -----
optimizer_adaptive_reporting_only boolean FALSE

2. At the session level, set the OPTIMIZER_ADAPTIVE_REPORTING_ONLY initialization parameter
to true.

For example, in SQL*Plus run the following SQL statement:

ALTER SESSION SET OPTIMIZER_ADAPTIVE_REPORTING_ONLY=true;

3. Run a query.

4. Run DBMS_XPLAN.DISPLAY_CURSOR with the +REPORT parameter.

When the +REPORT parameter is set, the report shows the plan the optimizer would have
picked if automatic reoptimization had been enabled.

See Also:

• "About Adaptive Query Optimization"

• Oracle Database Reference to learn about the
OPTIMIZER_ADAPTIVE_REPORTING_ONLY initialization parameter

• Oracle Database PL/SQL Packages and Types Reference to learn about the
+REPORT parameter of the DBMS_XPLAN.DISPLAY_CURSOR function

Influencing the Optimizer with Hints
Optimizer hints are special comments in a SQL statement that pass instructions to the
optimizer.

The optimizer uses hints to choose an execution plan for the statement unless prevented by
some condition.

Chapter 19
Influencing the Optimizer with Hints

19-10

Note:

Oracle Database SQL Language Reference contains a complete reference for all
SQL hints

About Optimizer Hints
A hint is embedded within a SQL comment.

The hint comment must immediately follow the first keyword of a SQL statement block. You
can use either style of comment: a slash-star (/*) or pair of dashes (--). The plus-sign (+) hint
delimiter must immediately follow the comment delimiter, with no space permitted before the
plus sign, as in the following fragment:

SELECT /*+ hint_text */ ...

The space after the plus sign is optional. A statement block can have only one comment
containing hints, but it can contain many space-separated hints. Separate multiple hints by at
least one space, as in the following statement:

SELECT /*+ FULL (hr_emp) CACHE(hr_emp) */ last_name FROM employees hr_emp;

Purpose of Hints
Hints enable you to make decisions normally made by the optimizer.

You can use hints to influence the optimizer mode, query transformation, access path, join
order, and join methods. In a test environment, hints are useful for testing the performance of a
specific access path. For example, you may know that an index is more selective for certain
queries, leading to a better plan. The following figure shows how you can use a hint to tell the
optimizer to use a specific index for a specific statement.

Figure 19-2 Optimizer Hint

Optimizer

SELECT /*+ INDEX (employees emp_dep_ix)*/ ...

Id Operation Name

0

1

2

SELECT STATEMENT

 TABLE ACCESS BY INDEX ROWID

 INDEX UNIQUE SCAN

EMPLOYEES

EMP_DEP_IX*

Generate Plan

Chapter 19
Influencing the Optimizer with Hints

19-11

The disadvantage of hints is the extra code to manage, check, and control. Hints were
introduced in Oracle7, when users had little recourse if the optimizer generated suboptimal
plans. Because changes in the database and host environment can make hints obsolete or
have negative consequences, a good practice is to test using hints, but use other techniques to
manage execution plans.

Oracle provides several tools, including SQL Tuning Advisor, SQL plan management, and SQL
Performance Analyzer, to address performance problems not solved by the optimizer. Oracle
strongly recommends that you use these tools instead of hints because they provide fresh
solutions as the data and database environment change.

Types of Hints
You can use hints for tables, query blocks, and statements.

Hints fall into the following types:

• Single-table

Single-table hints are specified on one table or view. INDEX and USE_NL are examples of
single-table hints. The following statement uses a single-table hint:

SELECT /*+ INDEX (employees emp_department_ix)*/ employee_id, department_id
FROM employees
WHERE department_id > 50;

• Multitable

Multitable hints are like single-table hints except that the hint can specify multiple tables or
views. LEADING is an example of a multitable hint. The following statement uses a
multitable hint:

SELECT /*+ LEADING(e j) */ *
FROM employees e, departments d, job_history j
WHERE e.department_id = d.department_id
AND e.hire_date = j.start_date;

Note:

USE_NL(table1 table2) is not considered a multitable hint because it is a
shortcut for USE_NL(table1) and USE_NL(table2).

• Query block

Query block hints operate on single query blocks. STAR_TRANSFORMATION and UNNEST are
examples of query block hints. The following statement uses a query block hint to specify
that the FULL hint applies only to the query block that references employees:

SELECT /*+ INDEX(t1) FULL(@sel$2 t1) */ COUNT(*)
FROM jobs t1
WHERE t1.job_id IN (SELECT job_id FROM employees t1);

• Statement

Chapter 19
Influencing the Optimizer with Hints

19-12

Statement hints apply to the entire SQL statement. ALL_ROWS is an example of a statement
hint. The following statement uses a statement hint:

SELECT /*+ ALL_ROWS */ * FROM sales;

See Also:

Oracle Database SQL Language Reference for the most common hints by functional
category.

Scope of Hints
When you specify a hint in a statement block, the hint applies to the appropriate query block,
table, or entire statement in the statement block. The hint overrides any instance-level or
session-level parameters.

A statement block is one of the following:

• A simple MERGE, SELECT, INSERT, UPDATE, or DELETE statement

• A parent statement or a subquery of a complex statement

• A part of a query using set operators (UNION, MINUS, INTERSECT)

Example 19-1 Query Using a Set Operator

The following query consists of two component queries and the UNION operator:

SELECT /*+ FIRST_ROWS(10) */ prod_id, time_id FROM 2010_sales
UNION ALL
SELECT /*+ ALL_ROWS */ prod_id, time_id FROM current_year_sales;

The preceding statement has two blocks, one for each component query. Hints in the first
component query apply only to its optimization, not to the optimization of the second
component query. For example, in the first week of 2015 you query current year and last year
sales. You apply FIRST_ROWS(10) to the query of last year's (2014) sales and the ALL_ROWS hint
to the query of this year's (2015) sales.

See Also:

Oracle Database SQL Language Reference for an overview of hints

Guidelines for Join Order Hints
In some cases, you can specify join order hints in a SQL statement so that it does not access
rows that have no effect on the result.

The driving table in a join is the table to which other tables are joined. In general, the driving
table contains the filter condition that eliminates the highest percentage of rows in the table.
The join order can have a significant effect on the performance of a SQL statement.

Consider the following guidelines:

Chapter 19
Influencing the Optimizer with Hints

19-13

• Avoid a full table scan when an index retrieves the requested rows more efficiently.

• Avoid using an index that fetches many rows from the driving table when you can use a
different index that fetches a small number of rows.

• Choose the join order so that you join fewer rows to tables later in the join order.

The following example shows how to tune join order effectively:

SELECT *
FROM taba a,
 tabb b,
 tabc c
WHERE a.acol BETWEEN 100 AND 200
AND b.bcol BETWEEN 10000 AND 20000
AND c.ccol BETWEEN 10000 AND 20000
AND a.key1 = b.key1
AND a.key2 = c.key2;

1. Choose the driving table and the driving index (if any).

Each of the first three conditions in the previous example is a filter condition that applies to
a single table. The last two conditions are join conditions.

Filter conditions dominate the choice of driving table and index. In general, the driving table
contains the filter condition that eliminates the highest percentage of rows. Because the
range of 100 to 200 is narrow compared with the range of acol, but the ranges of 10000
and 20000 are relatively large, taba is the driving table, all else being equal.

With nested loops joins, the joins occur through the join indexes, which are the indexes on
the primary or foreign keys used to connect that table to an earlier table in the join tree.
Rarely do you use the indexes on the non-join conditions, except for the driving table.
Thus, after taba is chosen as the driving table, use the indexes on b.key1 and c.key2 to
drive into tabb and tabc, respectively.

2. Choose the best join order, driving to the best unused filters earliest.

You can reduce the work of the following join by first joining to the table with the best still-
unused filter. Therefore, if bcol BETWEEN is more restrictive (rejects a higher percentage of
the rows) than ccol BETWEEN, then the last join becomes easier (with fewer rows) if tabb is
joined before tabc.

3. You can use the ORDERED or STAR hint to force the join order.

See Also:

Oracle Database Reference to learn about OPTIMIZER_MODE

Reporting on Hints
An explained plan includes a report showing which hints were used during plan generation.

Chapter 19
Influencing the Optimizer with Hints

19-14

Purpose of Hint Usage Reports
In releases before Oracle Database 19c, it could be difficult to determine why the optimizer did
not use hints. The hint usage report solves this problem.

The optimizer uses the instructions encoded in hints to choose an execution plan for a
statement, unless a condition prevents the optimizer from using the hint. The database does
not issue error messages for hints that it ignores. The hint report shows which hints were used
and ignored, and typically explains why hints were ignored. The most common reasons for
ignoring hints are as follows:

• Syntax errors

A hint can contain a typo or an invalid argument. If multiple hints appear in the same hint
block, and if one hint has a syntax error, then the optimizer honors all hints before the hint
with an error and ignores hints that appear afterward. For example, in the hint
specification /*+ INDEX(t1) FULL(t2) MERG(v) USE_NL(t2) */, MERG(v) has a syntax
error. The optimizer honors INDEX(t1) and FULL(t2), but ignores MERG(v) and
USE_NL(t2). The hint usage report lists MERG(v) as having an error, but does not list
USE_NL(t2) because it is not parsed.

• Unresolved hints

An unresolved hint is invalid for a reason other than a syntax error. For example, a
statement specifies INDEX(employees emp_idx), where emp_idx is not a valid index name
for table employees.

• Conflicting hints

The database ignores combinations of conflicting hints, even if these hints are correctly
specified. For example, a statement specifies FULL(employees) INDEX(employees), but an
index scan and full table scan are mutually exclusive. In most cases, the optimizer ignores
both conflicting hints.

• Hints affected by transformations

A transformation can make some hints invalid. For example, a statement specifies
PUSH_PRED(some_view) MERGE(some_view). When some_view merges into its containing
query block, the optimizer cannot apply the PUSH_PRED hint because some_view is
unavailable.

See Also:

Oracle Database SQL Language Reference to learn about the syntax rules for
comments and hints

User Interface for Hint Usage Reports
The report includes the status of all optimizer hints. A subset of other hints, including PARALLEL
and INMEMORY, are also included.

Report Access

Hint tracking is enabled by default. You can access the hint usage report by using the following
DBMS_XPLAN functions:

Chapter 19
Influencing the Optimizer with Hints

19-15

• DISPLAY
• DISPLAY_CURSOR
• DISPLAY_WORKLOAD_REPOSITORY
• DISPLAY_SQL_PLAN_BASELINE
• DISPLAY_SQLSET
The preceding functions generate a report when you specify the value HINT_REPORT in the
format parameter. The value TYPICAL displays only the hints that are not used in the final plan,
whereas the value ALL displays both used and unused hints.

Report Format

Suppose that you explain the following hinted query:

SELECT /*+ INDEX(t1) FULL(@sel$2 t1) */ COUNT(*)
FROM jobs t1
WHERE t1.job_id IN (SELECT /*+ FULL(t1) */ job_id FROM employees t1);

The following output of DBMS_XPLAN.DISPLAY shows the plan, including the hint report:

| Id| Operation | Name | Rows | Bytes | Cost (%CPU)| Time|

0	SELECT STATEMENT		1	17	3 (34)	00:00:01
1	SORT AGGREGATE		1	17		
2	NESTED LOOPS		19	323	3 (34)	00:00:01
3	SORT UNIQUE		107	963	2 (0)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	963	2 (0)	00:00:01
*5	INDEX UNIQUE SCAN	JOB_ID_PK	1	8	0 (0)	00:00:01

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$5DA710D3
 4 - SEL$5DA710D3 / "T1"@"SEL$2"
 5 - SEL$5DA710D3 / "T1"@"SEL$1"

Predicate Information (identified by operation id):

 5 - access("T1"."JOB_ID"="JOB_ID")

Column Projection Information (identified by operation id):

 1 - (#keys=0) COUNT(*)[22]
 2 - (#keys=0)
 3 - (#keys=1) "JOB_ID"[VARCHAR2,10]
 4 - (rowset=256) "JOB_ID"[VARCHAR2,10]

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 3 (U - Unused (1))

Chapter 19
Influencing the Optimizer with Hints

19-16

 4 - SEL$5DA710D3 / "T1"@"SEL$2"
 U - FULL(t1) / hint overridden by another in parent query block
 - FULL(@sel$2 t1)

 5 - SEL$5DA710D3 / "T1"@"SEL$1"
 - INDEX(t1)

The report header shows the total number of hints in the report. In this case, the statement
contained 3 total hints. If hints are unused, unresolved, or have syntax errors, then the header
specifies their number. In this case, only 1 hint was unused.

The report displays the hints under the objects (for example, query blocks and tables) that
appear in the plan. Before each object is a number that identifies the line in the plan where the
object first appears. For example, the preceding report shows hints that apply to the following
distinct objects: T1@SEL$2, and T1@SEL$1. The table T1@SEL$2 appears in query block
SEL$5DA710D3 at line 4 of the plan. The table T1@SEL$1 appears in the same query block at line
5 of the plan.

Hints can be specified incorrectly or associated with objects that are not present in the final
plan. If a query block does not appear in the final plan, then the report assigns it line number 0.
In the preceding example, no hints have line number 0, so all query blocks appeared in the
final plan.

The report shows the text of the hints. The hint may also have one of the following annotations:

• E indicates a syntax error.

• N indicates an unresolved hint.

• U indicates that the corresponding hint was not used in the final plan.

In the preceding example, U - FULL(t1) indicates that query block SEL$5DA710D3 appeared in
the final plan, but the FULL(t1) hint was not applied.

Within each object, unused hints appear at the beginning, followed by used hints. For example,
the report first shows the FULL(t1) hint, which was not used, and then FULL(@sel$2 t1),
which was used. For many unused hints, the report explains why the optimizer did not apply
the hints. In the preceding example, the report indicates that FULL(t1) was not used for the
following reason: hint overridden by another in parent query block.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
DBMS_XPLAN package

Reporting on Hint Usage: Tutorial
You can use the DBMS_XPLAN display functions to report on hint usage.

Hint usage reporting is enabled by default. The steps for displaying a plan with hint information
are the same as for displaying a plan normally.

Assumptions

This tutorial assumes the following:

Chapter 19
Influencing the Optimizer with Hints

19-17

• An index named emp_emp_id_pk exists on the employees.employee_id column.

• You want to query a specific employee.

• You want to use the INDEX hint to force the optimizer to use emp_emp_id_pk.

To report on hint usage:

1. Start SQL*Plus or SQL Developer, and log in to the database as user hr.

2. Explain the plan for the query of employees.

For example, enter the following statement:

EXPLAIN PLAN FOR
 SELECT /*+ INDEX(e emp_emp_id_pk) */ COUNT(*)
 FROM employees e
 WHERE e.employee_id = 5;

3. Query the plan table using a display function.

You can specify any of the following values in the format parameter:

• ALL
• TYPICAL
The following query displays all sections of the plan, including the hint usage information
(sample output included):

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'ALL'));

PLAN_TABLE_OUTPUT
--

Plan hash value: 2637910222
--
|Id | Operation | Name |Rows|Bytes | Cost (%CPU)| Time|
--
0	SELECT STATEMENT		1	4	0 (0)	00:00:01
1	SORT AGGREGATE		1	4		
*2	INDEX UNIQUE SCAN	EMP_EMP_ID_PK	1	4	0 (0)	00:00:01
--

Query Block Name / Object Alias (identified by operation id):
--

 1 - SEL$1
 2 - SEL$1 / E@SEL$1

Predicate Information (identified by operation id):

 2 - access("E"."EMPLOYEE_ID"=5)

Column Projection Information (identified by operation id):
--

 1 - (#keys=0) COUNT(*)[22]

Chapter 19
Influencing the Optimizer with Hints

19-18

Hint Report (identified by operation id/Query Block Name/Object Alias)
Total hints for statement: 1
--

 2 - SEL$1 / E@SEL$1
 - INDEX(e emp_emp_id_pk)

The Hint Report section shows that the query block for the INDEX(e emp_emp_id_pk) hint is
SEL$1. The table identifier is E@SEL$1. The line number of the plan line is 2, which
corresponds to the first line where the table E@SEL$1 appears in the plan table.

See Also:

Oracle Database SQL Language Reference to learn more about EXPLAIN PLAN

Hint Usage Reports: Examples
These examples show various types of hint usage reports.

The following examples all show queries of tables in the hr schema.

Example 19-2 Statement-Level Unused Hint

The following example specifies an index range hint for the emp_manager_ix index:

EXPLAIN PLAN FOR
 SELECT /*+ INDEX_RS(e emp_manager_ix) */ COUNT(*)
 FROM employees e
 WHERE e.job_id < 5;

The following query of the plan table specifies the format value of TYPICAL, which shows only
unused hints:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'TYPICAL'));

PLAN_TABLE_OUTPUT

Plan hash value: 2731009358

| Id | Operation | Name | Rows | Bytes| Cost (%CPU)| Time |

0	SELECT STATEMENT		1	9	1 (0)	00:00:01
1	SORT AGGREGATE		1	9		
* 2	INDEX FULL SCAN	EMP_JOB_IX	5	45	1 (0)	00:00:01

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

Chapter 19
Influencing the Optimizer with Hints

19-19

 2 - filter(TO_NUMBER("E"."JOB_ID")<5)

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 1 (U - Unused (1))

 2 - SEL$1 / E@SEL$1
 U - INDEX_RS(e emp_manager_ix)

The U in the preceding hint usage report indicates that the INDEX_RS hint was not used. The
report shows the total number of unused hints: U – Unused (1).

Example 19-3 Conflicting Hints

The following example specifies two hints, one for a skip scan and one for a fast full scan:

EXPLAIN PLAN FOR
 SELECT /*+ INDEX_SS(e emp_manager_ix) INDEX_FFS(e) */ COUNT(*)
 FROM employees e
 WHERE e.manager_id < 5;

The following query of the plan table specifies the format value of TYPICAL, which shows only
unused hints:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'TYPICAL'));

PLAN_TABLE_OUTPUT

Plan hash value: 2262146496

| Id| Operation | Name |Rows |Bytes |Cost (%CPU)|Time |

0	SELECT STATEMENT		1	4	1 (0)	00:00:01
1	SORT AGGREGATE		1	4		
*2	INDEX RANGE SCAN	EMP_MANAGER_IX	1	4	1 (0)	00:00:01

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

 2 - access("E"."MANAGER_ID"<5)

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 2 (U - Unused (2))

 2 - SEL$1 / E@SEL$1
 U - INDEX_FFS(e) / hint conflicts with another in sibling query block
 U - INDEX_SS(e emp_manager_ix) / hint conflicts with another in
 sibling query block

Chapter 19
Influencing the Optimizer with Hints

19-20

The preceding report shows that the INDEX_FFS(e) and INDEX_SS(e emp_manager_ix) hints
conflict with one other. Index skip scans and index fast full scans are mutually exclusive. The
optimizer ignored both hints, as indicated by the text U — Unused (2). Even though the
optimizer ignored the hint specifying the emp_manager_ix index, the optimizer used this index
anyway based on its cost-based analysis.

Example 19-4 Multitable Hints

The following example specifies four hints, one of which specifies two tables:

EXPLAIN PLAN FOR
 SELECT /*+ ORDERED USE_NL(t1, t2) INDEX(t2) NLJ_PREFETCH(t2) */ COUNT(*)
 FROM jobs t1, employees t2
 WHERE t1.job_id = t2.employee_id;

The following query of the plan table specifies the format value of ALL:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'ALL'));

PLAN_TABLE_OUTPUT

Plan hash value: 2668549896

| Id | Operation | Name |Rows |Bytes |Cost (%CPU)|Time|

0	SELECT STATEMENT		1	12	1 (0)	00:00:01
1	SORT AGGREGATE		1	12		
2	NESTED LOOPS		19	228	1 (0)	00:00:01
3	INDEX FULL SCAN	JOB_ID_PK	19	152	1 (0)	00:00:01
* 4	INDEX UNIQUE SCAN	EMP_EMP_ID_PK	1	4	0 (0)	00:00:01

PLAN_TABLE_OUTPUT

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$1
 3 - SEL$1 / T1@SEL$1
 4 - SEL$1 / T2@SEL$1

Predicate Information (identified by operation id):

 4 - access("T2"."EMPLOYEE_ID"=TO_NUMBER("T1"."JOB_ID"))

Column Projection Information (identified by operation id):

 1 - (#keys=0) COUNT(*)[22]
 2 - (#keys=0)
 3 - "T1"."JOB_ID"[VARCHAR2,10]

Hint Report (identified by operation id / Query Block Name / Object Alias):

Chapter 19
Influencing the Optimizer with Hints

19-21

Total hints for statement: 5 (U - Unused (2))

 1 - SEL$1
 - ORDERED

 3 - SEL$1 / T1@SEL$1
 U - USE_NL(t1, t2)

 4 - SEL$1 / T2@SEL$1
 U - NLJ_PREFETCH(t2)
 - INDEX(t2)
 - USE_NL(t1, t2)

The preceding report shows that two hints were not used: USE_NL(t1, t2) and
NLJ_PREFETCH(t2). Step 3 of the plan is an index full scan of the jobs table, which uses the
alias t1. The report shows that the optimizer did not apply the USE_NL(t1, t2) hint for the
access of jobs. Step 4 is an index unique scan of the employees table, which uses the alias t2.
No U prefix exists for USE_NL(t1, t2), which means that the optimizer did use the hint for
employees.

Example 19-5 Hints for Unused Query Blocks

The following example specifies two hints, UNNEST and SEMIJOIN, on a subquery:

EXPLAIN PLAN FOR
 SELECT COUNT(*), manager_id
 FROM departments
 WHERE manager_id IN (SELECT /*+ UNNEST SEMIJOIN */ manager_id FROM
employees)
 AND ROWNUM <= 2
GROUP BY manager_id;

The following query of the plan table specifies the format value of ALL:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'ALL'));

PLAN_TABLE_OUTPUT

Plan hash value: 173733304

| Id |Operation | Name |Rows |Bytes |Cost (%CPU)|Time|

0	SELECT STATEMENT		2	14	3 (34)	00:00:01
1	HASH GROUP BY		2	14	3 (34)	00:00:01
*2	COUNT STOPKEY					
3	NESTED LOOPS SEMI		2	14	2 (0)	00:00:01
*4	TABLE ACCESS FULL	DEPARTMENTS	2	6	2 (0)	00:00:01
*5	INDEX RANGE SCAN	EMP_MANAGER_IX	107	428	0 (0)	00:00:01

PLAN_TABLE_OUTPUT

Query Block Name / Object Alias (identified by operation id):

Chapter 19
Influencing the Optimizer with Hints

19-22

 1 - SEL$5DA710D3
 4 - SEL$5DA710D3 / DEPARTMENTS@SEL$1
 5 - SEL$5DA710D3 / EMPLOYEES@SEL$2

Predicate Information (identified by operation id):

 2 - filter(ROWNUM<=2)
 4 - filter("MANAGER_ID" IS NOT NULL)
 5 - access("MANAGER_ID"="MANAGER_ID")

Column Projection Information (identified by operation id):

 1 - (#keys=1) "MANAGER_ID"[NUMBER,22], COUNT(*)[22]
 2 - "MANAGER_ID"[NUMBER,22]
 3 - (#keys=0) "MANAGER_ID"[NUMBER,22]
 4 - "MANAGER_ID"[NUMBER,22]

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 2

 0 - SEL$2
 - SEMIJOIN
 - UNNEST

In this example, the hints are specified in query block SEL$2, but SEL$2 does not appear in the
final plan. The report displays the hints under SEL$2 with an associated line number of 0.

Example 19-6 Overridden Hints

The following example specifies two FULL hints on the same table in the same query block:

EXPLAIN PLAN FOR
 SELECT /*+ INDEX(t1) FULL(@sel$2 t1) */ COUNT(*)
 FROM jobs t1
 WHERE t1.job_id IN (SELECT /*+ FULL(t1) NO_MERGE */ job_id FROM employees
t1);

The following query of the plan table specifies the format value of ALL:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'ALL'));

PLAN_TABLE_OUTPUT

Plan hash value: 3101158531

| Id | Operation | Name |Rows |Bytes |Cost (%CPU)|Time |

| 0 | SELECT STATEMENT | | 1 | 17 | 3 (34)| 00:00:01 |
| 1 | SORT AGGREGATE | | 1 | 17 | | |

Chapter 19
Influencing the Optimizer with Hints

19-23

2	NESTED LOOPS		19	323	3 (34)	00:00:01
3	SORT UNIQUE		107	963	2 (0)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	963	2 (0)	00:00:01
* 5	INDEX UNIQUE SCAN	JOB_ID_PK	1	8	0 (0)	00:00:01

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$5DA710D3
 4 - SEL$5DA710D3 / T1@SEL$2
 5 - SEL$5DA710D3 / T1@SEL$1

Predicate Information (identified by operation id):

 5 - access("T1"."JOB_ID"="JOB_ID")

Column Projection Information (identified by operation id):

 1 - (#keys=0) COUNT(*)[22]
 2 - (#keys=0)
 3 - (#keys=1) "JOB_ID"[VARCHAR2,10]
 4 - (rowset=256) "JOB_ID"[VARCHAR2,10]

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 4 (U - Unused (1))

 0 - SEL$2
 - NO_MERGE

 4 - SEL$5DA710D3 / T1@SEL$2
 U - FULL(t1) / hint overridden by another in parent query block
 - FULL(@sel$2 t1)

 5 - SEL$5DA710D3 / T1@SEL$1
 - INDEX(t1)

Of the three hints specified, only one was unused. The hint FULL(t1) specified in query block
SEL$2 was overridden by the hint FULL(@sel$2 T1) specified in query block SEL$1. The
NO_MERGE hint in query block SEL$2 was used.

The following query of the plan table using the format setting of TYPICAL shows only unused
hints:

SQL> select * from table(dbms_xplan.display(format => 'TYPICAL'));
Plan hash value: 3101158531

| Id | Operation | Name |Rows |Bytes |Cost (%CPU)|Time |

| 0 | SELECT STATEMENT | | 1 | 17 | 3 (34)| 00:00:01 |
| 1 | SORT AGGREGATE | | 1 | 17 | | |

Chapter 19
Influencing the Optimizer with Hints

19-24

2	NESTED LOOPS		19	323	3 (34)	00:00:01
3	SORT UNIQUE		107	963	2 (0)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	963	2 (0)	00:00:01
* 5	INDEX UNIQUE SCAN	JOB_ID_PK	1	8	0 (0)	00:00:01

Predicate Information (identified by operation id):

 5 - access("T1"."JOB_ID"="JOB_ID")

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 1 (U - Unused (1))

 4 - SEL$5DA710D3 / T1@SEL$2
 U - FULL(t1) / hint overridden by another in parent query block

Example 19-7 Multiple Hints

The following UNION ALL query specifies ten different hints:

SELECT /*+ FULL(t3) INDEX(t2) INDEX(t1) MERGE(@SEL$5) PARALLEL(2) */
t1.first_name
FROM employees t1, jobs t2, job_history t3
WHERE t1.job_id = t2.job_id
AND t2.min_salary = 100000
AND t1.department_id = t3.department_id
UNION ALL
SELECT /*+ INDEX(t3) USE_MERGE(t2) INDEX(t2) FULL(t1) NO_ORDER_SUBQ */
t1.first_name
FROM departments t3, jobs t2, employees t1
WHERE t1.job_id = t2.job_id
AND t2.min_salary = 100000
AND t1.department_id = t3.department_id;

The following query of the shared SQL area specifies the format value of ALL (note that the
plan lines have been truncated for readability):

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(format => 'ALL'))

...

| Id | Operation | Name |Rows |Bytes |Cost (%CPU)|

0	SELECT STATEMENT				9 (100)
1	UNION-ALL				
2	PX COORDINATOR				
3	PX SEND QC (RANDOM)	:TQ10002	5	175	5 (0)
* 4	HASH JOIN		5	175	5 (0)
5	PX RECEIVE		3	93	3 (0)
6	PX SEND BROADCAST	:TQ10001	3	93	3 (0)
7	NESTED LOOPS		3	93	3 (0)
8	NESTED LOOPS		6	93	3 (0)

Chapter 19
Influencing the Optimizer with Hints

19-25

* 9	TABLE ACCESS BY INDEX ROWID BATCHED	JOBS	1	12	2 (0)
10	BUFFER SORT				
11	PX RECEIVE		19		1 (0)
12	PX SEND HASH (BLOCK ADDRESS)	:TQ10000	19		1 (0)
13	PX SELECTOR				
14	INDEX FULL SCAN	JOB_ID_PK	19		1 (0)
* 15	INDEX RANGE SCAN	EMP_JOB_IX	6		0 (0)
16	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	6	114	1 (0)
17	PX BLOCK ITERATOR		10	40	2 (0)
* 18	TABLE ACCESS FULL	JOB_HISTORY	10	40	2 (0)
19	PX COORDINATOR				
20	PX SEND QC (RANDOM)	:TQ20002	3	93	4 (0)
* 21	HASH JOIN		3	93	4 (0)
22	JOIN FILTER CREATE	:BF0000	1	12	2 (0)
23	PX RECEIVE		1	12	2 (0)
24	PX SEND BROADCAST	:TQ20001	1	12	2 (0)
* 25	TABLE ACCESS BY INDEX ROWID BATCHED	JOBS	1	12	2 (0)
26	BUFFER SORT				
27	PX RECEIVE		19		1 (0)
28	PX SEND HASH (BLOCK ADDRESS)	:TQ20000	19		1 (0)
29	PX SELECTOR				
30	INDEX FULL SCAN	JOB_ID_PK	19		1 (0)
31	JOIN FILTER USE	:BF0000	106	2014	2 (0)
32	PX BLOCK ITERATOR		106	2014	2 (0)
* 33	TABLE ACCESS FULL	EMPLOYEES	106	2014	2 (0)

Query Block Name / Object Alias (identified by operation id):

 1 - SET$1
 4 - SEL$1
 9 - SEL$1 / T2@SEL$1
 14 - SEL$1 / T2@SEL$1
 15 - SEL$1 / T1@SEL$1
 16 - SEL$1 / T1@SEL$1
 18 - SEL$1 / T3@SEL$1
 21 - SEL$E0F432AE
 25 - SEL$E0F432AE / T2@SEL$2
 30 - SEL$E0F432AE / T2@SEL$2
 33 - SEL$E0F432AE / T1@SEL$2

Predicate Information (identified by operation id):

 4 - access("T1"."DEPARTMENT_ID"="T3"."DEPARTMENT_ID")
 9 - filter("T2"."MIN_SALARY"=100000)
 15 - access("T1"."JOB_ID"="T2"."JOB_ID")
 18 - access(:Z>=:Z AND :Z<=:Z)
 21 - access("T1"."JOB_ID"="T2"."JOB_ID")
 25 - filter("T2"."MIN_SALARY"=100000)
 33 - access(:Z>=:Z AND :Z<=:Z)
 filter(("T1"."DEPARTMENT_ID" IS NOT NULL AND
 SYS_OP_BLOOM_FILTER(:BF0000,"T1"."JOB_ID")))

Column Projection Information (identified by operation id):

Chapter 19
Influencing the Optimizer with Hints

19-26

 1 - STRDEF[20]
 2 - "T1"."FIRST_NAME"[VARCHAR2,20]
 3 - (#keys=0) "T1"."FIRST_NAME"[VARCHAR2,20]
 4 - (#keys=1; rowset=256) "T1"."FIRST_NAME"[VARCHAR2,20]
 5 - (rowset=256) "T1"."DEPARTMENT_ID"[NUMBER,22], "T1"."FIRST_NAME"[VARCHAR2,20]
 6 - (#keys=0) "T1"."DEPARTMENT_ID"[NUMBER,22], "T1"."FIRST_NAME"[VARCHAR2,20]
 7 - "T1"."FIRST_NAME"[VARCHAR2,20], "T1"."DEPARTMENT_ID"[NUMBER,22]
 8 - "T1".ROWID[ROWID,10]
 9 - "T2"."JOB_ID"[VARCHAR2,10]
 10 - (#keys=0) "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 11 - (rowset=256) "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 12 - (#keys=1) "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 13 - "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 14 - "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 15 - "T1".ROWID[ROWID,10]
 16 - "T1"."FIRST_NAME"[VARCHAR2,20], "T1"."DEPARTMENT_ID"[NUMBER,22]
 17 - (rowset=256) "T3"."DEPARTMENT_ID"[NUMBER,22]
 18 - (rowset=256) "T3"."DEPARTMENT_ID"[NUMBER,22]
 19 - "T1"."FIRST_NAME"[VARCHAR2,20]
 20 - (#keys=0) "T1"."FIRST_NAME"[VARCHAR2,20]
 21 - (#keys=1; rowset=256) "T1"."FIRST_NAME"[VARCHAR2,20]
 22 - (rowset=256) "T2"."JOB_ID"[VARCHAR2,10]
 23 - (rowset=256) "T2"."JOB_ID"[VARCHAR2,10]
 24 - (#keys=0) "T2"."JOB_ID"[VARCHAR2,10]
 25 - "T2"."JOB_ID"[VARCHAR2,10]
 26 - (#keys=0) "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 27 - (rowset=256) "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 28 - (#keys=1) "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 29 - "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 30 - "T2".ROWID[ROWID,10], "T2"."JOB_ID"[VARCHAR2,10]
 31 - (rowset=256) "T1"."FIRST_NAME"[VARCHAR2,20], "T1"."JOB_ID"[VARCHAR2,10]
 32 - (rowset=256) "T1"."FIRST_NAME"[VARCHAR2,20], "T1"."JOB_ID"[VARCHAR2,10]
 33 - (rowset=256) "T1"."FIRST_NAME"[VARCHAR2,20], "T1"."JOB_ID"[VARCHAR2,10]

Hint Report (identified by operation id / Query Block Name / Object Alias):
Total hints for statement: 10 (U - Unused (2), N - Unresolved (1), E - Syntax error (1))
--

 0 - STATEMENT
 - PARALLEL(2)

 0 - SEL$5
 N - MERGE(@SEL$5)

 0 - SEL$2
 E - NO_ORDER_SUBQ

 9 - SEL$1 / T2@SEL$1
 - INDEX(t2)

 15 - SEL$1 / T1@SEL$1
 - INDEX(t1)

 18 - SEL$1 / T3@SEL$1

Chapter 19
Influencing the Optimizer with Hints

19-27

 - FULL(t3)

 21 - SEL$E0F432AE / T3@SEL$2
 U - INDEX(t3)

 25 - SEL$E0F432AE / T2@SEL$2
 U - USE_MERGE(t2)
 - INDEX(t2)

 33 - SEL$E0F432AE / T1@SEL$2
 - FULL(t1)

Note

 - Degree of Parallelism is 2 because of hint

The report indicates the following unused hints:

• Two unused hints (U)

The report indicates that INDEX(t3) and USE_MERGE(t2) were not used in query block
SEL$E0F432AE.

• One unresolved hint (N)

The hint MERGE is unresolved because the query block SEL$5 does not exist.

• One syntax error (E)

The hint NO_ORDER_SUBQ specified in SEL$2 is not a valid hint.

Chapter 19
Influencing the Optimizer with Hints

19-28

20
Improving Real-World Performance Through
Cursor Sharing

Cursor sharing can improve database application performance by orders of magnitude.

Overview of Cursor Sharing
Oracle Database can share cursors, which are pointers to private SQL areas in the shared
pool.

About Cursors
A private SQL area holds information about a parsed SQL statement and other session-
specific information for processing.

When a server process executes SQL or PL/SQL code, the process uses the private SQL area
to store bind variable values, query execution state information, and query execution work
areas. The private SQL areas for each execution of a statement are not shared and may
contain different values and data.

A cursor is a name or handle to a specific private SQL area. The cursor contains session-
specific state information such as bind variable values and result sets.

As shown in the following graphic, you can think of a cursor as a pointer on the client side and
as a state on the server side. Because cursors are closely associated with private SQL areas,
the terms are sometimes used interchangeably.

Figure 20-1 Cursor

PGA

SQL Work Areas

Cursor

Data Area

Server

Process

Client

Process

Session Memory Private SQL Area

Pointer

Private and Shared SQL Areas
A cursor in the private SQL area points to a shared SQL area in the library cache.

Unlike the private SQL area, which contains session state information, the shared SQL area
contains the parse tree and execution plan for the statement. For example, an execution of
SELECT * FROM employees has a plan and parse tree stored in one shared SQL area. An

20-1

execution of SELECT * FROM departments, which differs both syntactically and semantically,
has a plan and parse tree stored in a separate shared SQL area.

Multiple private SQL areas in the same or different sessions can reference a single shared
SQL area, a phenomenon known as cursor sharing. For example, an execution of SELECT *
FROM employees in one session and an execution of the SELECT * FROM employees (accessing
the same table) in a different session can use the same parse tree and plan. A shared SQL
area that is accessed by multiple statements is known as a shared cursor.

Figure 20-2 Cursor Sharing

System Global Area (SGA)

Instance

Shared Pool

Private �
SQL Area�
(Shared�
Server Only)

Shared SQL Area

Library Cache

Data

Dictionary

Cache

Server

Result

Cache

Other Reserved

Pool

SELECT * FROM employees

Client

Process

Server

Process

PGA

Session Memory Private SQL Area

SQL Work Areas

SELECT * FROM

 employees

Client

Process

Server

Process

PGA

Session Memory Private SQL Area

SQL Work Areas

SELECT * FROM employees

Oracle Database automatically determines whether the SQL statement or PL/SQL block being
issued is textually identical to another statement currently in the library cache, using the
following steps:

1. The text of the statement is hashed.

2. The database looks for a matching hash value for an existing SQL statement in the shared
pool. The following options are possible:

• No matching hash value exists.

In this case, the SQL statement does not currently exist in the shared pool, so the
database performs a hard parse. This ends the shared pool check.

• A matching hash value exists.

Chapter 20
Overview of Cursor Sharing

20-2

In this case, the database proceeds to the next step, which is a text match.

3. The database compares the text of the matched statement to the text of the hashed
statement to determine whether they are identical. The following options are possible:

• The textual match fails.

In this case, the text match process stops, resulting in a hard parse.

• The textual match succeeds.

In this case, the database proceeds to the next step: determining whether the SQL can
share an existing parent cursor.

For a textual match to occur, the text of the SQL statements or PL/SQL blocks must be
character-for-character identical, including spaces, case, and comments. For example,
the following statements cannot use the same shared SQL area:

SELECT * FROM employees;
SELECT * FROM Employees;
SELECT * FROM employees;

Usually, SQL statements that differ only in literals cannot use the same shared SQL
area. For example, the following statements do not resolve to the same SQL area:

SELECT count(1) FROM employees WHERE manager_id = 121;
SELECT count(1) FROM employees WHERE manager_id = 247;

The only exception to this rule is when the parameter CURSOR_SHARING has been set to
FORCE, in which case similar statements can share SQL areas.

See Also:

• "Parent and Child Cursors"

• "Do Not Use CURSOR_SHARING = FORCE as a Permanent Fix" to learn about
the costs involved in using CURSOR_SHARING

• Oracle Database Reference to learn more about the CURSOR_SHARING initialization
parameter

Parent and Child Cursors
Every parsed SQL statement has a parent cursor and one or more child cursors.

The parent cursor stores the text of the SQL statement. If the text of two statements is
identical, then the statements share the same parent cursor. If the text is different, however,
then the database creates a separate parent cursor.

Example 20-1 Parent Cursors

In this example, the first two statements are syntactically different (the letter “c” is lowercase in
the first statement and uppercase in the second statement), but semantically identical.
Because of the syntactic difference, these statements have different parent cursors. The third
statement is syntactically identical to the first statement (lowercase “c”), but semantically

Chapter 20
Overview of Cursor Sharing

20-3

different because it refers to a customers table in a different schema. Because of the syntactic
identity, the third statement can share a parent cursor with the first statement.

SQL> CONNECT oe@inst1
Enter password: *******
Connected.
SQL> SELECT COUNT(*) FROM customers;

 COUNT(*)

 319

SQL> SELECT COUNT(*) FROM Customers;

 COUNT(*)

 319

SQL> CONNECT sh@inst1
Enter password: *******
Connected.
SQL> SELECT COUNT(*) FROM customers;

 COUNT(*)

 155500

The following query of V$SQL indicates the two parents. The statement with the SQL ID of
8h916vv2yw400, which is the lowercase “c” version of the statement, has one parent cursor and
two child cursors: child 0 and child 1. The statement with the SQL ID of 5rn2uxjtpz0wd, which
is the uppercase “c” version of the statement, has a different parent cursor and only one child
cursor: child 0.

SQL> CONNECT SYSTEM@inst1
Enter password: *******
Connected.

SQL> COL SQL_TEXT FORMAT a30
SQL> COL CHILD# FORMAT 99999
SQL> COL EXEC FORMAT 9999
SQL> COL SCHEMA FORMAT a6
SQL> SELECT SQL_ID, PARSING_SCHEMA_NAME AS SCHEMA, SQL_TEXT,
 2 CHILD_NUMBER AS CHILD#, EXECUTIONS AS EXEC FROM V$SQL
 3 WHERE SQL_TEXT LIKE '%ustom%' AND SQL_TEXT NOT LIKE '%SQL_TEXT%' ORDER
BY SQL_ID;

SQL_ID SCHEMA SQL_TEXT CHILD# EXEC
------------- ------ ------------------------------ ------ -----
5rn2uxjtpz0wd OE SELECT COUNT(*) FROM Customers 0 1
8h916vv2yw400 OE SELECT COUNT(*) FROM customers 0 1
8h916vv2yw400 SH SELECT COUNT(*) FROM customers 1 1

Chapter 20
Overview of Cursor Sharing

20-4

Parent Cursors and V$SQLAREA
The V$SQLAREA view contains one row for every parent cursor.

In the following example, a query of V$SQLAREA shows two parent cursors, each identified with
a different SQL_ID. The VERSION_COUNT indicates the number of child cursors.

COL SQL_TEXT FORMAT a30
SELECT SQL_TEXT, SQL_ID, VERSION_COUNT, HASH_VALUE
FROM V$SQLAREA
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

SQL_TEXT SQL_ID VERSION_COUNT HASH_VALUE
------------------------------ ------------- ------------- ----------
SELECT * FROM Employees 5bzhzpaa0wy9m 1 2483976499
SELECT * FROM employees 4959aapufrm1k 2 1961610290

In the preceding output, the VERSION_COUNT of 2 for SELECT * FROM employees indicates
multiple child cursors, which were necessary because the statement was executed against two
different objects. In contrast, the statement SELECT * FROM Employees (note the capital "E")
was executed once, and so has one parent cursor, and one child cursor (VERSION_COUNT of 1).

Child Cursors and V$SQL
Every parent cursor has one or more child cursors.

A child cursor contains the execution plan, bind variables, metadata about objects referenced
in the query, optimizer environment, and other information. In contrast to the parent cursor, the
child cursor does not store the text of the SQL statement.

If a statement is able to reuse a parent cursor, then the database checks whether the
statement can reuse an existing child cursor. The database performs several checks, including
the following:

• The database compares objects referenced in the issued statement to the objects
referenced by the statement in the pool to ensure that they are all identical.

References to schema objects in the SQL statements or PL/SQL blocks must resolve to
the same object in the same schema. For example, if two users issue the following SQL
statement, and if each user has its own employees table, then the following statement is
not identical because the statement references different employees tables for each user:

SELECT * FROM employees;

Note:

The database can share cursors for a private temporary table, but only within the
same session. The database associates the session identifier as part of the
cursor context. During a soft parse, the database can share the child cursor only
when the current session ID matches with the session ID in the cursor context.

• The database determines whether the optimizer mode is identical.

Chapter 20
Overview of Cursor Sharing

20-5

For example, SQL statements must be optimized using the same optimizer goal.

Example 20-2 Multiple Child Cursors

V$SQL describes the statements that currently reside in the library cache. It contains one row
for every child cursor, as shown in the following example:

SELECT SQL_TEXT, SQL_ID, USERNAME AS USR, CHILD_NUMBER AS CHILD#,
 HASH_VALUE, PLAN_HASH_VALUE AS PLAN_HASHV
FROM V$SQL s, DBA_USERS d
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%'
AND d.USER_ID = s.PARSING_USER_ID;

SQL_TEXT SQL_ID USR CHILD# HASH_VALUE PLAN_HASHV
----------------------- ------------- --- ------ ---------- ----------
SELECT * FROM Employees 5bzhzpaa0wy9m HR 0 2483976499 1445457117
SELECT * FROM employees 4959aapufrm1k HR 0 1961610290 1445457117
SELECT * FROM employees 4959aapufrm1k SH 1 1961610290 1445457117

In the preceding results, the CHILD# of the bottom two statements is different (0 and 1), even
though the SQL_ID is the same. This means that the statements have the same parent cursor,
but different child cursors. In contrast, the statement with the SQL_ID of 5bzhzpaa0wy9m has one
parent and one child (CHILD# of 0). All three SQL statements use the same execution plan, as
indicated by identical values in the PLAN_HASH_VALUE column.

Related Topics

• Types of Temporary Tables
Temporary tables are classified as global, private, or cursor-duration.

• Choosing an Optimizer Goal
The optimizer goal is the prioritization of resource usage by the optimizer.

Cursor Mismatches and V$SQL_SHARED_CURSOR
If a parent cursor has multiple children, then the V$SQL_SHARED_CURSOR view provides
information about why the cursor was not shared. For several types of incompatibility, the
TRANSLATION_MISMATCH column indicates a mismatch with the value Y or N.

Example 20-3 Translation Mismatch

In this example, the TRANSLATION_MISMATCH column shows that the two statements (SELECT *
FROM employees) referenced different objects, resulting in a TRANSLATION_MISMATCH value of Y
for the last statement. Because sharing was not possible, each statement had a separate child
cursor, as indicated by CHILD_NUMBER of 0 and 1.

SELECT S.SQL_TEXT, S.CHILD_NUMBER, s.CHILD_ADDRESS,
 C.TRANSLATION_MISMATCH
FROM V$SQL S, V$SQL_SHARED_CURSOR C
WHERE SQL_TEXT LIKE '%employee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%'
AND S.CHILD_ADDRESS = C.CHILD_ADDRESS;

SQL_TEXT CHILD_NUMBER CHILD_ADDRESS T
------------------------------ ------------ ---------------- -

Chapter 20
Overview of Cursor Sharing

20-6

SELECT * FROM employees 0 0000000081EE8690 N
SELECT * FROM employees 1 0000000081F22508 Y

About Cursors and Parsing
If an application issues a statement, and if Oracle Database cannot reuse a cursor, then it must
build a new executable version of the application code. This operation is known as a hard
parse.

A soft parse is any parse that is not a hard parse, and occurs when the database can reuse
existing code. Some soft parses are less resource-intensive than others. For example, if a
parent cursor for the statement already exists, then Oracle Database can perform various
optimizations, and then store the child cursor in the shared SQL area. If a parent cursor does
not exist, however, then Oracle Database must also store the parent cursor in the shared SQL
area, which creates additional memory overhead.

Effectively, a hard parse recompiles a statement before running it. Hard parsing a SQL
statement before every execution is analogous to recompiling a C program before every
execution. A hard parse performs operations such as the following:

• Checking the syntax of the SQL statement

• Checking the semantics of the SQL statement

• Checking the access rights of the user issuing the statement

• Creating an execution plan

• Accessing the library cache and data dictionary cache numerous times to check the data
dictionary

An especially resource-intensive aspect of hard parsing is accessing the library cache and data
dictionary cache numerous times to check the data dictionary. When the database accesses
these areas, it uses a serialization device called a latch on required objects so that their
definition does not change during the check. Latch contention increases statement execution
time and decreases concurrency.

For all of the preceding reasons, the CPU and memory overhead of hard parses can create
serious performance problems. The problems are especially evident in web applications that
accept user input from a form, and then generate SQL statements dynamically. The Real-
World Performance group strongly recommends reducing hard parsing as much as possible.

Video:

Video

Example 20-4 Finding Parse Information Using V$SQL

You can use various techniques to monitor hard and soft parsing. This example queries the
session statistics to determine whether repeated executions of a DBA_JOBS query increase the
hard parse count. The first execution of the statement increases the hard parse count to 49, but
the second execution does not change the hard parse count, which means that Oracle
Database reused application code.

SQL> ALTER SYSTEM FLUSH SHARED_POOL;

Chapter 20
Overview of Cursor Sharing

20-7

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9268

System altered.

SQL> COL NAME FORMAT a18

SQL> SELECT s.NAME, m.VALUE
 2 FROM V$STATNAME s, V$MYSTAT m
 3 WHERE s.STATISTIC# = m.STATISTIC#
 4 AND s.NAME LIKE '%(hard%';

NAME VALUE
------------------ ----------
parse count (hard) 48

SQL> SELECT COUNT(*) FROM DBA_JOBS;

 COUNT(*)

 0

SQL> SELECT s.NAME, m.VALUE
 2 FROM V$STATNAME s, V$MYSTAT m
 3 WHERE s.STATISTIC# = m.STATISTIC#
 4 AND s.NAME LIKE '%(hard%';

NAME VALUE
------------------ ----------
parse count (hard) 49

SQL> SELECT COUNT(*) FROM DBA_JOBS;

 COUNT(*)

 0

SQL> SELECT s.NAME, m.VALUE
 2 FROM V$STATNAME s, V$MYSTAT m
 3 WHERE s.STATISTIC# = m.STATISTIC#
 4 AND s.NAME LIKE '%(hard%';

NAME VALUE
------------------ ----------
parse count (hard) 49

Example 20-5 Finding Parse Information Using Trace Files

This example uses SQL Trace and the TKPROF utility to find parse information. You log in to
the database with administrator privileges, and then query the directory location of the trace
files (sample output included):

SET LINESIZE 120
COLUMN value FORMAT A80

SELECT value
FROM v$diag_info
WHERE name = 'Default Trace File';

Chapter 20
Overview of Cursor Sharing

20-8

VALUE

/disk1/oracle/log/diag/rdbms/orcl/orcl/trace/orcl_ora_23054.trc

You enable tracing, use the TRACEFILE_IDENTIFIER initialization parameter to give the trace file
a meaningful name, and then query hr.employees:

EXEC DBMS_MONITOR.SESSION_TRACE_ENABLE(waits=>TRUE, binds=>TRUE);
ALTER SESSION SET TRACEFILE_IDENTIFIER = "emp_stmt";
SELECT * FROM hr.employees;
EXIT;

Search the default trace file directory for the trace file that you generated:

% ls *emp_stmt.trc
orcl_ora_17950_emp_stmt.trc

Use TKPROF to format the trace file, and then open the formatted file:

% tkprof orcl_ora_17950_emp_stmt.trc emp.out; vi emp.out

The formatted trace file contains the parse information for the query of hr.employees.

SQL ID: brmjpfs7dcnub Plan Hash: 1445457117

SELECT *
FROM
 hr.employees

call count cpu lapsed disk query current rows
------- ----- -------- --------- ------- -------- -------- --------
Parse 1 0.07 0.08 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 9 0.00 0.00 3 12 0 107
------- ----- ------- --------- -------- -------- -------- --------
total 11 0.07 0.08 3 12 0 107

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: SYSTEM
Number of plan statistics captured: 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation
---------- ---------- ---------- ---------------------------------------
 107 107 107 TABLE ACCESS FULL EMPLOYEES (cr=12 pr=3
 pw=0 time=497 us starts=1 cost=2
 size=7383 card=107)

Chapter 20
Overview of Cursor Sharing

20-9

A library cache miss indicates a hard parse. Performing the same steps for a second execution
of the same statement produces the following trace output, which shows no library cache
misses:

SQL ID: brmjpfs7dcnub Plan Hash: 1445457117

SELECT *
FROM
 hr.employees

call count cpu elapsed disk query current rows
------- ------ ------ --------- -------- -------- --------- --------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 9 0.00 0.00 3 12 0 107
------- ------ ------ --------- -------- -------- --------- --------
total 11 0.00 0.00 3 12 0 107

Misses in library cache during parse: 0
Optimizer mode: ALL_ROWS
Parsing user id: SYSTEM
Number of plan statistics captured: 1

Rows (1st) Rows (avg) Rows (max) Row Source Operation
---------- ---------- ---------- ---------------------------------------
 107 107 107 TABLE ACCESS FULL EMPLOYEES (cr=12 pr=3
 pw=0 time=961 us starts=1 cost=2
 size=7383 card=107)

See Also:

"Shared Pool Check"

About Literals and Bind Variables
Bind variables are essential to cursor sharing in Oracle database applications.

Literals and Cursors
When constructing SQL statements, some Oracle applications use literals instead of bind
variables.

For example, the statement SELECT SUM(salary) FROM hr.employees WHERE employee_id <
101 uses the literal value 101 for the employee ID. By default, when similar statements do not
use bind variables, Oracle Database cannot take advantage of cursor sharing. Thus, Oracle
Database sees a statement that is identical except for the value 102, or any other random
value, as a completely new statement, requiring a hard parse.

The Real-World Performance group has determined that applications that use literals are a
frequent cause of performance, scalability, and security problems. In the real world, it is not
uncommon for applications to be written quickly, without considering cursor sharing. A classic

Chapter 20
Overview of Cursor Sharing

20-10

example is a “screen scraping” application that copies the contents out of a web form, and then
concatenates strings to construct the SQL statement dynamically.

Major problems that result from using literal values include the following:

• Applications that concatenate literals input by an end user are prone to SQL injection
attacks. Only rewriting the applications to use bind variables eliminates this threat.

• If every statement is hard parsed, then cursors are not shared, and so the database must
consume more memory to create the cursors.

• Oracle Database must latch the shared pool and library cache when hard parsing. As the
number of hard parses increases, so does the number of processes waiting to latch the
shared pool. This situation decreases concurrency and increases contention.

Video:

Video

Example 20-6 Literals and Cursor Sharing

Consider an application that executes the following statements, which differ only in literals:

SELECT SUM(salary) FROM hr.employees WHERE employee_id < 101;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < 120;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < 165;

The following query of V$SQLAREA shows that the three statements require three different
parent cursors. As shown by VERSION_COUNT, each parent cursor requires its own child cursor.

COL SQL_TEXT FORMAT a30
SELECT SQL_TEXT, SQL_ID, VERSION_COUNT, HASH_VALUE
FROM V$SQLAREA
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

SQL_TEXT SQL_ID VERSION_COUNT HASH_VALUE
------------------------------ ------------- ------------- ----------
SELECT SUM(salary) FROM hr.emp b1tvfcc5qnczb 1 191509483
loyees WHERE employee_id < 165
SELECT SUM(salary) FROM hr.emp cn5250y0nqpym 1 2169198547
loyees WHERE employee_id < 101
SELECT SUM(salary) FROM hr.emp au8nag2vnfw67 1 3074912455
loyees WHERE employee_id < 120

See Also:

"Do Not Use CURSOR_SHARING = FORCE as a Permanent Fix" to learn about
SQL injection

Chapter 20
Overview of Cursor Sharing

20-11

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9269

Bind Variables and Cursors
You can develop Oracle applications to use bind variables instead of literals.

A bind variable is a placeholder in a query. For example, the statement SELECT SUM(salary)
FROM hr.employees WHERE employee_id < :emp_id uses the bind variable:emp_id for the
employee ID.

The Real-World Performance group has found that applications that use bind variables perform
better, scale better, and are more secure. Major benefits that result from using bind variables
include the following:

• Applications that use bind variables are not vulnerable to the same SQL injection attacks
as applications that use literals.

• When identical statements use bind variables, Oracle Database can take advantage of
cursor sharing, and share the plan and other information when different values are bound
to the same statement.

• Oracle Database avoids the overhead of latching the shared pool and library cache
required for hard parsing.

Note:

You cannot use more that 65535 bind variables in a query.

Video:

Video

Example 20-7 Bind Variables and Shared Cursors

The following example uses the VARIABLE command in SQL*Plus to create the emp_id bind
variable, and then executes a query using three different bind values (101, 120, and 165):

VARIABLE emp_id NUMBER

EXEC :emp_id := 101;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < :emp_id;
EXEC :emp_id := 120;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < :emp_id;
EXEC :emp_id := 165;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < :emp_id;

The following query of V$SQLAREA shows one unique SQL statement:

COL SQL_TEXT FORMAT a34
SELECT SQL_TEXT, SQL_ID, VERSION_COUNT, HASH_VALUE
FROM V$SQLAREA
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

Chapter 20
Overview of Cursor Sharing

20-12

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9269

SQL_TEXT SQL_ID VERSION_COUNT HASH_VALUE
---------------------------------- ------------- ------------- ----------
SELECT SUM(salary) FROM hr.employe 4318cbskba8yh 1 615850960
es WHERE employee_id < :emp_id

The VERSION_COUNT value of 1 indicates that the database reused the same child cursor rather
than creating three separate child cursors. Using a bind variable made this reuse possible.

Note:

A maximum of 65535 bind variables can be used in a query. Also note that there are
circumstances in which bind sensitivity is not used:

• The bind is used in an equality or a range predicate.

• The optimizer has peeked at the bind values to generate cardinality estimates.

• The number of bind variables does not exceed internally-defined thresholds.

Bind Variable Peeking
In bind variable peeking (also known as bind peeking), the optimizer looks at the value in a
bind variable when the database performs a hard parse of a statement.

The optimizer does not look at the bind variable values before every parse. Rather, the
optimizer peeks only when the optimizer is first invoked, which is during the hard parse.

When a query uses literals, the optimizer can use the literal values to find the best plan.
However, when a query uses bind variables, the optimizer must select the best plan without the
presence of literals in the SQL text. This task can be extremely difficult. By peeking at bind
values during the initial hard parse, the optimizer can determine the cardinality of a WHERE
clause condition as if literals had been used, thereby improving the plan.

Because the optimizer only peeks at the bind value during the hard parse, the plan may not be
optimal for all possible bind values. The following examples illustrate this principle.

Example 20-8 Literals Result in Different Execution Plans

Assume that you execute the following statements, which execute three different statements
using different literals (101, 120, and 165), and then display the execution plans for each:

SET LINESIZE 167
SET PAGESIZE 0
SELECT SUM(salary) FROM hr.employees WHERE employee_id < 101;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());
SELECT SUM(salary) FROM hr.employees WHERE employee_id < 120;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());
SELECT SUM(salary) FROM hr.employees WHERE employee_id < 165;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());

The database hard parsed all three statements, which were not identical. The DISPLAY_CURSOR
output, which has been edited for clarity, shows that the optimizer chose the same index range

Chapter 20
Overview of Cursor Sharing

20-13

scan plan for the first two statements, but a full table scan plan for the statement using literal
165:

SQL_ID cn5250y0nqpym, child number 0

SELECT SUM(salary) FROM hr.employees WHERE employee_id < 101

Plan hash value: 2410354593

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time|

0	SELECT STATEMENT				2 (100)	
1	SORT AGGREGATE		1	8		
2	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	1	8	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_EMP_ID_PK	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("EMPLOYEE_ID"<101)

SQL_ID au8nag2vnfw67, child number 0

SELECT SUM(salary) FROM hr.employees WHERE employee_id < 120

Plan hash value: 2410354593

|Id| Operation | Name |Rows|Bytes|Cost(%CPU)|Time|

0	SELECT STATEMENT				2 (100)	
1	SORT AGGREGATE		1	8		
2	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	20	160	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_EMP_ID_PK	20		1 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("EMPLOYEE_ID"<120)

SQL_ID b1tvfcc5qnczb, child number 0

SELECT SUM(salary) FROM hr.employees WHERE employee_id < 165

Plan hash value: 1756381138

| Id | Operation | Name |Rows| Bytes |Cost(%CPU)| Time |

0	SELECT STATEMENT				2 (100)	
1	SORT AGGREGATE		1	8		
* 2	TABLE ACCESS FULL	EMPLOYEES	66	528	2 (0)	00:00:01

Chapter 20
Overview of Cursor Sharing

20-14

Predicate Information (identified by operation id):

 2 - filter("EMPLOYEE_ID"<165)

The preceding output shows that the optimizer considers a full table scan more efficient than
an index scan for the query that returns more rows.

Example 20-9 Bind Variables Result in Cursor Reuse

This example rewrites the queries executed in Example 20-8 to use bind variables instead of
literals. You bind the same values (101, 120, and 165) to the bind variable :emp_id, and then
display the execution plans for each:

VAR emp_id NUMBER

EXEC :emp_id := 101;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < :emp_id;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());
EXEC :emp_id := 120;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < :emp_id;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());
EXEC :emp_id := 165;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < :emp_id;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());

The DISPLAY_CURSOR output shows that the optimizer chose exactly the same plan for all three
statements:

SELECT SUM(salary) FROM hr.employees WHERE employee_id < :emp_id

Plan hash value: 2410354593

| Id | Operation | Name |Rows|Bytes|Cost (%CPU)|Time|

0	SELECT STATEMENT				2 (100)	
1	SORT AGGREGATE		1	8		
2	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	1	8	2 (0)	00:00:01
* 3	INDEX RANGE SCAN	EMP_EMP_ID_PK	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("EMPLOYEE_ID"<:EMP_ID)

In contrast, when the preceding statements were executed with literals, the optimizer chose a
lower-cost full table scan when the employee ID value was 165. This is the problem solved by
adaptive cursor sharing.

Chapter 20
Overview of Cursor Sharing

20-15

See Also:

"Adaptive Cursor Sharing"

About the Life Cycle of Shared Cursors
The database allocates a new shared SQL area when the optimizer parses a new SQL
statement that is not DDL. The amount of memory required depends on the statement
complexity.

The database can remove a shared SQL area from the shared pool even if this area
corresponds to an open cursor that has been unused for a long time. If the open cursor is later
used to run its statement, then the database reparses the statement and allocates a new
shared SQL area. The database does not remove cursors whose statements are executing, or
whose rows have not been completely fetched.

Shared SQL areas can become invalid because of changes to dependent schema objects or to
optimizer statistics. Oracle Database uses two techniques to manage the cursor life cycle:
invalidation and rolling invalidation.

See Also:

Oracle Database Concepts for an overview of memory allocation in the shared pool

Cursor Marked Invalid
When a shared SQL area is marked invalid, the database can remove it from the shared pool,
along with valid cursors that have been unused for some time.

In some situations, the database must execute a statement that is associated with an invalid
shared SQL area in the shared pool. In this case, the database performs a hard parse of the
statement before execution.

The database immediately marks dependent shared SQL areas invalid when the following
conditions are met:

• DBMS_STATS gathers statistics for a table, table cluster, or index when the NO_INVALIDATE
parameter is FALSE.

• A SQL statement references a schema object, which is later modified by a DDL statement
that uses immediate cursor invalidation (default).

You can manually specify immediate invalidation on statements such as ALTER TABLE ...
IMMEDIATE VALIDATION and ALTER INDEX ... IMMEDIATE VALIDATION, or set the
CURSOR_INVALIDATION initialization parameter to IMMEDIATE at the session or system level.

Note:

A DDL statement using the DEFERRED VALIDATION clause overrides the
IMMEDIATE setting of the CURSOR_INVALIDATION initialization parameter.

Chapter 20
Overview of Cursor Sharing

20-16

When the preceding conditions are met, the database reparses the affected statements at next
execution.

When the database invalidates a cursor, the V$SQL.INVALIDATIONS value increases (for
example, from 0 to 1), and V$SQL.OBJECT_STATUS shows INVALID_UNAUTH.

Example 20-10 Forcing Cursor Invalidation by Setting NO_INVALIDATE=FALSE

This example logs in as user sh, who has been granted administrator privileges. The example
queries sales, and then gathers statistics for this table with NO_INVALIDATE=FALSE. Afterward,
the V$SQL.INVALIDATIONS value changes from 0 to 1 for the cursor, indicating that the
database flagged the cursor as invalid.

SQL> SELECT COUNT(*) FROM sales;

 COUNT(*)

 918843

SQL> SELECT PREV_SQL_ID SQL_ID FROM V$SESSION WHERE SID =
SYS_CONTEXT('userenv', 'SID');

SQL_ID

1y17j786c7jbh

SQL> SELECT CHILD_NUMBER, EXECUTIONS,
 2 PARSE_CALLS, INVALIDATIONS, OBJECT_STATUS
 3 FROM V$SQL WHERE SQL_ID = '1y17j786c7jbh';

CHILD_NUMBER EXECUTIONS PARSE_CALLS INVALIDATIONS OBJECT_STATUS
------------ ---------- ----------- ------------- -------------
 0 1 1 0 VALID

SQL> EXEC DBMS_STATS.GATHER_TABLE_STATS(null,'sales',no_invalidate => FALSE);

PL/SQL procedure successfully completed.

SQL> SELECT CHILD_NUMBER, EXECUTIONS,
 2 PARSE_CALLS, INVALIDATIONS, OBJECT_STATUS
 3 FROM V$SQL WHERE SQL_ID = '1y17j786c7jbh';

CHILD_NUMBER EXECUTIONS PARSE_CALLS INVALIDATIONS OBJECT_STATUS
------------ ---------- ----------- ------------- --------------
 0 1 1 1 INVALID_UNAUTH

Chapter 20
Overview of Cursor Sharing

20-17

See Also:

• "About Optimizer Initialization Parameters"

• Oracle Database SQL Language Reference to learn more about ALTER
TABLE ... IMMEDIATE VALIDATION and other DDL statements that permit
immediate validation

• Oracle Database Reference to learn more about V$SQL and V$SQLAREA dynamic
views

• Oracle Database Reference to learn more about the CURSOR_INVALIDATION
initialization parameter

Cursors Marked Rolling Invalid
When cursors are marked rolling invalid (V$SQL.IS_ROLLING_INVALID is Y), the database
gradually performs hard parses over an extended time.

Note:

When V$SQL.IS_ROLLING_REFRESH_INVALID is Y, the underlying object has changed,
but recompilation of the cursor is not required. The database updates metadata in the
cursor.

Purpose of Rolling Invalidation

Because a sharp increase in hard parses can significantly degrade performance, rolling
invalidation—also called deferred invalidation—is useful for workloads that simultaneously
invalidate many cursors. The database assigns each invalid cursor a randomly generated time
period. SQL areas invalidated at the same time typically have different time periods.

A hard parse occurs only if a query accessing the cursor executes after the time period has
expired. In this way, the database diffuses the overhead of hard parsing over time.

Note:

If parallel SQL statements are marked rolling invalid, then the database performs a
hard parse at next execution, regardless of whether the time period has expired. In
an Oracle Real Application Clusters (Oracle RAC) environment, this technique
ensures consistency between execution plans of parallel execution servers and the
query coordinator.

An analogy for rolling invalidation might be the gradual replacement of worn-out office furniture.
Instead of replacing all the furniture at once, forcing a substantial financial outlay, a company
assigns each piece a different expiration date. Over the course of a year, a piece stays in use
until it is replaced, at which point a cost is incurred.

Chapter 20
Overview of Cursor Sharing

20-18

Specification of Deferred Invalidation

By default, DDL specifies that statements accessing the object use immediate cursor
invalidation. For example, if you create a table or an index, then cursors that reference this
table or index use immediate invalidation.

If a DDL statement supports deferred cursor invalidation, then you can override the default
behavior by using statements such as ALTER TABLE ... DEFERRED INVALIDATION. The options
depend on the DDL statement. For example, ALTER INDEX only supports DEFERRED
INVALIDATION when the UNUSABLE or REBUILD option is also specified.

An alternative to DDL is setting the CURSOR_INVALIDATION initialization parameter to DEFERRED
at the session or system level. A DDL statement using the IMMEDIATE INVALIDATION clause
overrides the DEFERRED setting of the CURSOR_INVALIDATION initialization parameter.

When Rolling Invalidation Occurs

If the DEFERRED INVALIDATION attribute applies to an object, either as a result of DDL or an
initialization parameter setting, then statements that access the object may be subject to
deferred invalidation. The database marks shared SQL areas as rolling invalid in either of the
following circumstances:

• DBMS_STATS gathers statistics for a table, table cluster, or index when the NO_INVALIDATE
parameter is set to DBMS_STATS.AUTO_INVALIDATE. This is the default setting.

• One of the following statements is issued with DEFERRED INVALIDATION in circumstances
that do not prevent the use of deferred invalidation:

– ALTER TABLE on partitioned tables

– ALTER TABLE ... PARALLEL
– ALTER INDEX ... UNUSABLE
– ALTER INDEX ... REBUILD
– CREATE INDEX
– DROP INDEX
– TRUNCATE TABLE on partitioned tables

A subset of DDL statements require immediate cursor invalidation for DML (INSERT,
UPDATE, DELETE, or MERGE) but not SELECT statements. Many factors relating to the specific
DDL statements and affected cursors determine whether Oracle Database uses deferred
invalidation.

Chapter 20
Overview of Cursor Sharing

20-19

See Also:

• "About Optimizer Initialization Parameters"

• Oracle Database SQL Language Reference to learn more about ALTER
TABLE ... DEFERRED INVALIDATION and other DDL statements that permit
deferred invalidation

• Oracle Database Reference to learn more about V$SQL and V$SQLAREA dynamic
views

• Oracle Database Reference to learn more about the CURSOR_INVALIDATION
initialization parameter

CURSOR_SHARING and Bind Variable Substitution
This topic explains what the CURSOR_SHARING initialization parameter is, and how setting it to
different values affects how Oracle Database uses bind variables.

CURSOR_SHARING Initialization Parameter
The CURSOR_SHARING initialization parameter controls how the database processes statements
with bind variables.

In Oracle Database 12c, the parameter supports the following values:

• EXACT
This is the default value. The database enables only textually identical statements to share
a cursor. The database does not attempt to replace literal values with system-generated
bind variables. In this case, the optimizer generates a plan for each statement based on
the literal value.

• FORCE
The database replaces all literals with system-generated bind variables. For statements
that are identical after the bind variables replace the literals, the optimizer uses the same
plan.

Note:

The SIMILAR value for CURSOR_SHARING is deprecated.

You can set CURSOR_SHARING at the system or session level, or use the CURSOR_SHARING_EXACT
hint at the statement level.

See Also:

"Do Not Use CURSOR_SHARING = FORCE as a Permanent Fix"

Chapter 20
CURSOR_SHARING and Bind Variable Substitution

20-20

Parsing Behavior When CURSOR_SHARING = FORCE
When SQL statements use literals rather than bind variables, setting the CURSOR_SHARING
initialization parameter to FORCE enables the database to replace literals with system-generated
bind variables. Using this technique, the database can sometimes reduce the number of parent
cursors in the shared SQL area.

Note:

If a statement uses an ORDER BY clause, then the database does not perform literal
replacement in the clause because it is not semantically correct to consider the
constant column number as a literal. The column number in the ORDER BY clause
affects the query plan and execution, so the database cannot share two cursors
having different column numbers.

When CURSOR_SHARING is set to FORCE, the database performs the following steps during the
parse:

1. Copies all literals in the statement to the PGA, and replaces them with system-generated
bind variables

For example, an application could process the following statement:

SELECT SUBSTR(last_name, 1, 4), SUM(salary)
FROM hr.employees
WHERE employee_id < 101 GROUP BY last_name

The optimizer replaces literals, including the literals in the SUBSTR function, as follows:

SELECT SUBSTR(last_name, :"SYS_B_0", :"SYS_B_1"), SUM(salary)
FROM hr.employees
WHERE employee_id < :"SYS_B_2" GROUP BY last_name

2. Searches for an identical statement (same SQL hash value) in the shared pool

If an identical statement is not found, then the database performs a hard parse. Otherwise,
the database proceeds to the next step.

3. Performs a soft parse of the statement

As the preceding steps indicate, setting the CURSOR_SHARING initialization parameter to FORCE
does not reduce the parse count. Rather, in some cases, FORCE enables the database to
perform a soft parse instead of a hard parse. Also, FORCE does not the prevent against SQL
injection attacks because Oracle Database binds the values after any injection has already
occurred.

Example 20-11 Replacement of Literals with System Bind Variables

This example sets CURSOR_SHARING to FORCE at the session level, executes three statements
containing literals, and displays the plan for each statement:

ALTER SESSION SET CURSOR_SHARING=FORCE;
SET LINESIZE 170

Chapter 20
CURSOR_SHARING and Bind Variable Substitution

20-21

SET PAGESIZE 0
SELECT SUM(salary) FROM hr.employees WHERE employee_id < 101;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());
SELECT SUM(salary) FROM hr.employees WHERE employee_id < 120;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());
SELECT SUM(salary) FROM hr.employees WHERE employee_id < 165;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR());

The following DISPLAY_CURSOR output, edited for readability, shows that all three statements
used the same plan. The optimizer chose the plan, an index range scan, because it peeked at
the first value (101) bound to the system bind variable, and picked this plan as the best for all
values. In fact, this plan is not the best plan for all values. When the value is 165, a full table
scan is more efficient.

SQL_ID cxx8n1cxr9khn, child number 0

SELECT SUM(salary) FROM hr.employees WHERE employee_id < :"SYS_B_0"

Plan hash value: 2410354593

| Id | Operation | Name |Rows|Bytes|Cost(%CPU)|Time|

0	SELECT STATEMENT				2 (100)	
1	SORT AGGREGATE		1	8		
2	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	1	8	2 (0)	00:00:01
* 3	INDEX RANGE SCAN	EMP_EMP_ID_PK	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("EMPLOYEE_ID"<101)

A query of V$SQLAREA confirms that Oracle Database replaced with the literal with system bind
variable :”SYS_B_0”, and created one parent and one child cursor (VERSION_COUNT=1) for all
three statements, which means that all executions shared the same plan.

COL SQL_TEXT FORMAT a36
SELECT SQL_TEXT, SQL_ID, VERSION_COUNT, HASH_VALUE
FROM V$SQLAREA
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

SQL_TEXT SQL_ID VERSION_COUNT HASH_VALUE
------------------------------------ ------------- ------------- ----------
SELECT SUM(salary) FROM hr.employees cxx8n1cxr9khn 1 997509652
 WHERE employee_id < :"SYS_B_0"

Chapter 20
CURSOR_SHARING and Bind Variable Substitution

20-22

See Also:

• "Private and Shared SQL Areas" for more details on the various checks
performed

• Oracle Database Reference to learn about the CURSOR_SHARING initialization
parameter

Adaptive Cursor Sharing
The adaptive cursor sharing feature enables a single statement that contains bind variables
to use multiple execution plans.

Cursor sharing is "adaptive" because the cursor adapts its behavior so that the database does
not always use the same plan for each execution or bind variable value.

Purpose of Adaptive Cursor Sharing
With bind peeking, the optimizer peeks at the values of user-defined bind variables on the first
invocation of a cursor.

The optimizer determines the cardinality of any WHERE clause condition as if literals had been
used instead of bind variables. If a column in a WHERE clause has skewed data, however, then a
histogram may exist on this column. When the optimizer peeks at the value of the user-defined
bind variable and chooses a plan, this plan may not be good for all values.

In adaptive cursor sharing, the database monitors data accessed over time for different bind
values, ensuring the optimal choice of cursor for a specific bind value. For example, the
optimizer might choose one plan for bind value 10 and a different plan for bind value 50. Cursor
sharing is "adaptive" because the cursor adapts its behavior so that the optimizer does not
always choose the same plan for each execution or bind variable value. Thus, the optimizer
automatically detects when different execution of a statement would benefit from different
execution plans.

Note:

Adaptive cursor sharing is independent of the CURSOR_SHARING initialization
parameter. Adaptive cursor sharing is equally applicable to statements that contain
user-defined and system-generated bind variables. Adaptive cursor sharing does not
apply to statements that contain only literals.

How Adaptive Cursor Sharing Works: Example
Adaptive cursor sharing monitors statements that use bind variables to determine whether a
new plan is more efficient.

Assume that an application executes the following statement five times, binding different
values every time:

SELECT * FROM employees WHERE salary = :sal AND department_id = :dept

Chapter 20
Adaptive Cursor Sharing

20-23

Also assume in this example that a histogram exists on at least one of the columns in the
predicate. The database processes this statement as follows:

1. The application issues the statement for the first time, which causes a hard parse. During
the parse, the database performs the following tasks:

• Peeks at the bind variables to generate the initial plan.

• Marks the cursor as bind-sensitive. A bind-sensitive cursor is a cursor whose optimal
plan may depend on the value of a bind variable. To determine whether a different plan
is beneficial, the database monitors the behavior of a bind-sensitive cursor that uses
different bind values.

• Stores metadata about the predicate, including the cardinality of the bound values (in
this example, assume that only 5 rows were returned).

• Creates an execution plan (in this example, index access) based on the peeked
values.

2. The database executes the cursor, storing the bind values and execution statistics in the
cursor.

3. The application issues the statement a second time, using different bind variables, causing
the database to perform a soft parse, and find the matching cursor in the library cache.

4. The database executes the cursor.

5. The database performs the following post-execution tasks:

a. The database compares the execution statistics for the second execution with the first-
execution statistics.

b. The database observes the pattern of statistics over all previous executions, and then
decides whether to mark the cursor as a bind-aware cursor. In this example, assume
that the database decides the cursor is bind-aware.

6. The application issues the statement a third time, using different bind variables, which
causes a soft parse. Because the cursor is bind-aware, the database does the following:

• Determines whether the cardinality of the new values falls within the same range as
the stored cardinality. In this example, the cardinality is similar: 8 rows instead of 5
rows.

• Reuses the execution plan in the existing child cursor.

7. The database executes the cursor.

8. The application issues the statement a fourth time, using different bind variables, causing a
soft parse. Because the cursor is bind-aware, the database does the following:

• Determines whether the cardinality of the new values falls within the same range as
the stored cardinality. In this example, the cardinality is vastly different: 102 rows (in a
table with 107 rows) instead of 5 rows.

• Does not find a matching child cursor.

9. The database performs a hard parse. As a result, the database does the following:

• Creates a new child cursor with a second execution plan (in this example, a full table
scan)

• Stores metadata about the predicate, including the cardinality of the bound values, in
the cursor

10. The database executes the new cursor.

11. The database stores the new bind values and execution statistics in the new child cursor.

Chapter 20
Adaptive Cursor Sharing

20-24

12. The application issues the statement a fifth time, using different bind variables, which
causes a soft parse. Because the cursor is bind-aware, the database does the following:

• Determines whether the cardinality of the new values falls within the same range as
the stored cardinality. In this example, the cardinality is 20.

• Does not find a matching child cursor.

13. The database performs a hard parse. As a result, the database does the following:

a. Creates a new child cursor with a third execution plan (in this example, index access)

b. Determines that this index access execution plan is the same as the index access
execution plan used for the first execution of the statement

c. Merges the two child cursors containing index access plans, which involves storing the
combined cardinality statistics into one child cursor, and deleting the other one

14. The database executes the cursor using the index access execution plan.

Bind-Sensitive Cursors
A bind-sensitive cursor is a cursor whose optimal plan may depend on the value of a bind
variable.

The database has examined the bind value when computing cardinality, and considers the
query “sensitive” to plan changes based on different bind values. The database monitors the
behavior of a bind-sensitive cursor that uses different bind values to determine whether a
different plan is beneficial.

The optimizer uses the following criteria to decide whether a cursor is bind-sensitive:

• The optimizer has peeked at the bind values to generate cardinality estimates.

• The bind is used in an equality or a range predicate.

For each execution of the query with a new bind value, the database records the execution
statistics for the new value and compares them to the execution statistics for the previous
value. If execution statistics vary greatly, then the database marks the cursor bind-aware.

Example 20-12 Column with Significant Data Skew

This example assumes that the hr.employees.department_id column has significant data
skew. SYSTEM executes the following setup code, which adds 100,000 employees in
department 50 to the employees table in the sample schema, for a total of 100,107 rows, and
then gathers table statistics:

DELETE FROM hr.employees WHERE employee_id > 999;

ALTER TABLE hr.employees DISABLE NOVALIDATE CONSTRAINT emp_email_uk;

DECLARE
v_counter NUMBER(7) := 1000;
BEGIN
 FOR i IN 1..100000 LOOP
 INSERT INTO hr.employees
 VALUES (v_counter, null, 'Doe', 'Doe@example.com', null,'07-JUN-02',
 'AC_ACCOUNT', null, null, null, 50);
 v_counter := v_counter + 1;
 END LOOP;
END;

Chapter 20
Adaptive Cursor Sharing

20-25

/
COMMIT;

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS (ownname = 'hr',tabname => 'employees');
END;
/

ALTER SYSTEM FLUSH SHARED_POOL;

The following query shows a histogram on the employees.department_id column:

COL TABLE_NAME FORMAT a15
COL COLUMN_NAME FORMAT a20
COL HISTOGRAM FORMAT a9

SELECT TABLE_NAME, COLUMN_NAME, HISTOGRAM
FROM DBA_TAB_COLS
WHERE OWNER = 'HR'
AND TABLE_NAME = 'EMPLOYEES'
AND COLUMN_NAME = 'DEPARTMENT_ID';

TABLE_NAME COLUMN_NAME HISTOGRAM
--------------- -------------------- ---------
EMPLOYEES DEPARTMENT_ID FREQUENCY

Example 20-13 Low-Cardinality Query

This example continues the example in Example 20-12. The following query shows that the
value 10 has extremely low cardinality for the column department_id, occupying .00099% of
the rows:

VARIABLE dept_id NUMBER
EXEC :dept_id := 10;
SELECT COUNT(*), MAX(employee_id) FROM hr.employees WHERE department_id
= :dept_id;

 COUNT(*) MAX(EMPLOYEE_ID)
---------- ----------------
 1 200

The optimizer chooses an index range scan, as expected for such a low-cardinality query:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

PLAN_TABLE_OUTPUT

SQL_ID a9upgaqqj7bn5, child number 0

select COUNT(*), MAX(employee_id) FROM hr.employees WHERE department_id = :dept_id

Plan hash value: 1642965905

Chapter 20
Adaptive Cursor Sharing

20-26

| Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT				2(100)	
1	SORT AGGREGATE		1	8		
2	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	1	8	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"=:DEPT_ID)

The following query of V$SQL obtains information about the cursor:

COL BIND_AWARE FORMAT a10
COL SQL_TEXT FORMAT a22
COL CHILD# FORMAT 99999
COL EXEC FORMAT 9999
COL BUFF_GETS FORMAT 999999999
COL BIND_SENS FORMAT a9
COL SHARABLE FORMAT a9

SELECT SQL_TEXT, CHILD_NUMBER AS CHILD#, EXECUTIONS AS EXEC,
 BUFFER_GETS AS BUFF_GETS, IS_BIND_SENSITIVE AS BIND_SENS,
 IS_BIND_AWARE AS BIND_AWARE, IS_SHAREABLE AS SHARABLE
FROM V$SQL
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

SQL_TEXT CHILD# EXEC BUFF_GETS BIND_SENS BIND_AWARE SHARABLE
---------------------- ------ ----- ---------- --------- ---------- --------
SELECT COUNT(*), MAX(e 0 1 196 Y N Y
mployee_id) FROM hr.em
ployees WHERE departme
nt_id = :dept_id

The preceding output shows one child cursor that has been executed once for the low-
cardinality query. The cursor has been marked bind-sensitive because the optimizer believes
the optimal plan may depend on the value of the bind variable.

When a cursor is marked bind-sensitive, Oracle Database monitors the behavior of the cursor
using different bind values, to determine whether a different plan for different bind values is
more efficient. The database marked this cursor bind-sensitive because the optimizer used the
histogram on the department_id column to compute the selectivity of the predicate WHERE
department_id = :dept_id. Because the presence of the histogram indicates that the column
is skewed, different values of the bind variable may require different plans.

Example 20-14 High-Cardinality Query

This example continues the example in Example 20-13. The following code re-executes the
same query using the value 50, which occupies 99.9% of the rows:

EXEC :dept_id := 50;
SELECT COUNT(*), MAX(employee_id) FROM hr.employees WHERE department_id

Chapter 20
Adaptive Cursor Sharing

20-27

= :dept_id;

 COUNT(*) MAX(EMPLOYEE_ID)
---------- ----------------
 100045 100999

Even though such an unselective query would be more efficient with a full table scan, the
optimizer chooses the same index range scan used for department_id=10. This reason is that
the database assumes that the existing plan in the cursor can be shared:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

PLAN_TABLE_OUTPUT

SQL_ID a9upgaqqj7bn5, child number 0

SELECT COUNT(*), MAX(employee_id) FROM hr.employees WHERE department_id = :dept_id

Plan hash value: 1642965905

| Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT				2(100)	
1	SORT AGGREGATE		1	8		
2	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	1	8	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"=:DEPT_ID)

A query of V$SQL shows that the child cursor has now been executed twice:

SELECT SQL_TEXT, CHILD_NUMBER AS CHILD#, EXECUTIONS AS EXEC,
 BUFFER_GETS AS BUFF_GETS, IS_BIND_SENSITIVE AS BIND_SENS,
 IS_BIND_AWARE AS BIND_AWARE, IS_SHAREABLE AS SHARABLE
FROM V$SQL
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

SQL_TEXT CHILD# EXEC BUFF_GETS BIND_SENS BIND_AWARE SHARABLE
---------------------- ------ ----- ---------- --------- ---------- --------
SELECT COUNT(*), MAX(e 0 2 1329 Y N Y
mployee_id) FROM hr.em
ployees WHERE departme
nt_id = :dept_id

At this stage, the optimizer has not yet marked the cursor as bind-aware.

Chapter 20
Adaptive Cursor Sharing

20-28

Note:

There are circumstances in which bind sensitivity is not used. Specifically:

• If collection bind variables are used, such as PL/SQL arrays.

• When the number of bind variables exceed internal limits.

See Also:

Oracle Database Reference to learn about V$SQL

Bind-Aware Cursors
A bind-aware cursor is a bind-sensitive cursor that is eligible to use different plans for
different bind values.

After a cursor has been made bind-aware, the optimizer chooses plans for future executions
based on the bind value and its cardinality estimate. Thus, “bind-aware” means essentially
“best plan for the current bind value.”

When a statement with a bind-sensitive cursor executes, the optimizer uses an internal
algorithm to determine whether to mark the cursor bind-aware. The decision depends on
whether the cursor produces significantly different data access patterns for different bind
values, resulting in a performance cost that differs from expectations.

If the database marks the cursor bind-aware, then the next time that the cursor executes the
database does the following:

• Generates a new plan based on the bind value

• Marks the original cursor generated for the statement as not sharable
(V$SQL.IS_SHAREABLE is N). The original cursor is no longer usable and is eligible to age
out of the library cache

When the same query repeatedly executes with different bind values, the database adds new
bind values to the “signature” of the SQL statement (which includes the optimizer environment,
NLS settings, and so on), and categorizes the values. The database examines the bind values,
and considers whether the current bind value results in a significantly different data volume, or
whether an existing plan is sufficient. The database does not need to create a new plan for
each new value.

Consider a scenario in which you execute a statement with 12 distinct bind values (executing
each distinct value twice), which causes the database to trigger 5 hard parses, and create 2
additional plans. Because the database performs 5 hard parses, it creates 5 new child cursors,
even though some cursors have the same execution plan as existing cursors. The database
marks the superfluous cursors as not usable, which means these cursors eventually age out of
the library cache.

During the initial hard parses, the optimizer is essentially mapping out the relationship between
bind values and the appropriate execution plan. After this initial period, the database eventually
reaches a steady state. Executing with a new bind value results in picking the best child cursor
in the cache, without requiring a hard parse. Thus, the number of parses does not scale with
the number of different bind values.

Chapter 20
Adaptive Cursor Sharing

20-29

Example 20-15 Bind-Aware Cursors

This example continues the example in "Bind-Sensitive Cursors". The following code issues a
second query employees with the bind variable set to 50:

EXEC :dept_id := 50;
SELECT COUNT(*), MAX(employee_id) FROM hr.employees WHERE department_id
= :dept_id;

 COUNT(*) MAX(EMPLOYEE_ID)
---------- ----------------
 100045 100999

During the first two executions, the database was monitoring the behavior of the queries, and
determined that the different bind values caused the queries to differ significantly in cardinality.
Based on this difference, the database adapts its behavior so that the same plan is not always
shared for this query. Thus, the optimizer generates a new plan based on the current bind
value, which is 50:

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

PLAN_TABLE_OUTPUT

SQL_ID a9upgaqqj7bn5, child number 1

SELECT COUNT(*), MAX(employee_id) FROM hr.employees WHERE department_id
= :dept_id

Plan hash value: 1756381138

| Id | Operation | Name | Rows | Bytes | Cost(%CPU)| Time |

0	SELECT STATEMENT				254 (100)	
1	SORT AGGREGATE		1	8		
* 2	TABLE ACCESS FULL	EMPLOYEES	100K	781K	254 (15)	00:00:01

Predicate Information (identified by operation id):

 2 - filter("DEPARTMENT_ID"=:DEPT_ID)

The following query of V$SQL obtains information about the cursor:

SELECT SQL_TEXT, CHILD_NUMBER AS CHILD#, EXECUTIONS AS EXEC,
 BUFFER_GETS AS BUFF_GETS, IS_BIND_SENSITIVE AS BIND_SENS,
 IS_BIND_AWARE AS BIND_AWARE, IS_SHAREABLE AS SHAREABLE
FROM V$SQL
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

SQL_TEXT CHILD# EXEC BUFF_GETS BIND_SENS BIND_AWARE SHAREABLE
---------------------- ------ ----- ---------- --------- ---------- ---------
SELECT COUNT(*), MAX(e 0 2 1329 Y N N

Chapter 20
Adaptive Cursor Sharing

20-30

mployee_id) FROM hr.em
ployees WHERE departme
nt_id = :dept_id

SELECT COUNT(*), MAX(e 1 1 800 Y Y Y
mployee_id) FROM hr.em
ployees WHERE departme
nt_id = :dept_id

The preceding output shows that the database created an additional child cursor (CHILD# of 1).
Cursor 0 is now marked as not shareable. Cursor 1 shows a number of buffers gets lower than
cursor 0, and is marked both bind-sensitive and bind-aware. A bind-aware cursor may use
different plans for different bind values, depending on the selectivity of the predicates
containing the bind variable.

Example 20-16 Bind-Aware Cursors: Choosing the Optimal Plan

This example continues the example in "Example 20-15". The following code executes the
same employees query with the value of 10, which has extremely low cardinality (only one row):

EXEC :dept_id := 10;
SELECT COUNT(*), MAX(employee_id) FROM hr.employees WHERE department_id
= :dept_id;

 COUNT(*) MAX(EMPLOYEE_ID)
---------- ----------------
 1 200

The following output shows that the optimizer picked the best plan, which is an index scan,
based on the low cardinality estimate for the current bind value of 10:

SQL> SELECT * from TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

PLAN_TABLE_OUTPUT

SQL_ID a9upgaqqj7bn5, child number 2

select COUNT(*), MAX(employee_id) FROM hr.employees WHERE department_id = :dept_id

Plan hash value: 1642965905

| Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT				2(100)	
1	SORT AGGREGATE		1	8		
2	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	1	8	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"=:DEPT_ID)

Chapter 20
Adaptive Cursor Sharing

20-31

The V$SQL output now shows that three child cursors exist:

SELECT SQL_TEXT, CHILD_NUMBER AS CHILD#, EXECUTIONS AS EXEC,
 BUFFER_GETS AS BUFF_GETS, IS_BIND_SENSITIVE AS BIND_SENS,
 IS_BIND_AWARE AS BIND_AWARE, IS_SHAREABLE AS SHAREABLE
FROM V$SQL
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

SQL_TEXT CHILD# EXEC BUFF_GETS BIND_SENS BIND_AWARE SHAREABLE
---------------------- ------ ----- ---------- --------- ---------- ---------
SELECT COUNT(*), MAX(e 0 2 1329 Y N N
mployee_id) FROM hr.em
ployees WHERE departme
nt_id = :dept_id

SELECT COUNT(*), MAX(e 1 1 800 Y Y Y
mployee_id) FROM hr.em
ployees WHERE departme
nt_id = :dept_id

SELECT COUNT(*), MAX(e 2 1 3 Y Y Y
mployee_id) FROM hr.em
ployees WHERE departme
nt_id = :dept_id

The database discarded the original cursor (CHILD# of 0) when the cursor switched to bind-
aware mode. This is a one-time overhead. The database marked cursor 0 as not shareable
(SHAREABLE is N), which means that this cursor is unusable and will be among the first to age
out of the cursor cache.

See Also:

Oracle Database Reference to learn about V$SQL

Cursor Merging
If the optimizer creates a plan for a bind-aware cursor, and if this plan is the same as an
existing cursor, then the optimizer can perform cursor merging.

In this case, the database merges cursors to save space in the library cache. The database
increases the selectivity range for the cursor to include the selectivity of the new bind value.

When a query uses a new bind variable, the optimizer tries to find a cursor that it thinks is a
good fit based on similarity in the selectivity of the bind value. If the database cannot find such
a cursor, then it creates a new one. If the plan for the new cursor is the same as one of the
existing cursors, then the database merges the two cursors to save space in the library cache.
The merge results in the database marking one cursor as not sharable. If the library cache is
under space pressure, then the database ages out the non-sharable cursor first.

Chapter 20
Adaptive Cursor Sharing

20-32

See Also:

"Example 20-12"

Adaptive Cursor Sharing Views
You can use the V$ views for adaptive cursor sharing to see selectivity ranges, cursor
information (such as whether a cursor is bind-aware or bind-sensitive), and execution statistics.

Specifically, use the following views:

• V$SQL shows whether a cursor is bind-sensitive or bind-aware.

• V$SQL_CS_HISTOGRAM shows the distribution of the execution count across a three-bucket
execution history histogram.

• V$SQL_CS_SELECTIVITY shows the selectivity ranges stored for every predicate containing
a bind variable if the selectivity was used to check cursor sharing. It contains the text of the
predicates, and the low and high values for the selectivity ranges.

• V$SQL_CS_STATISTICS summarizes the information that the optimizer uses to determine
whether to mark a cursor bind-aware. For a sample of executions, the database tracks the
rows processed, buffer gets, and CPU time. The PEEKED column shows YES when the bind
set was used to build the cursor; otherwise, the value is NO.

See Also:

Oracle Database Reference to learn about V$SQL and its related views

Real-World Performance Guidelines for Cursor Sharing
The Real-World Performance team has created guidelines for how to optimize cursor sharing
in Oracle database applications.

Develop Applications with Bind Variables for Security and Performance
The Real-World Performance group strongly suggests that all enterprise applications use bind
variables.

Oracle Database applications were intended to be written with bind variables. Avoid application
designs that result in large numbers of users issuing dynamic, unshared SQL statements.
Whenever Oracle Database fails to find a match for a statement in the library cache, it must
perform a hard parse. Despite the dangers of developing applications with literals, not all real-
world applications use bind variables. Developers sometimes find that it is faster and easier to
write programs that use literals. However, decreased development time does not lead to better
performance and security after deployment.

Chapter 20
Real-World Performance Guidelines for Cursor Sharing

20-33

Video:

Video

The primary benefits of using bind variables are as follows:

• Resource efficiency

Compiling a program before every execution does not use resources efficiently, but this is
essentially what Oracle Database does when it performs a hard parse. The database
server must expend significant CPU and memory to create cursors, generate and evaluate
execution plans, and so on. By enabling the database to share cursors, soft parsing
consumes far fewer resources. If an application uses literals instead of bind variables, but
executes only a few queries each day, then DBAs may not perceive the extra overhead as
a performance problem. However, if an application executes hundreds or thousands of
queries per second, then the extra resource overhead can easily degrade performance to
unacceptable levels. Using bind variables enables the database to perform a hard parse
only once, no matter how many times the statement executes.

• Scalability

When the database performs a hard parse, the database spends more time acquiring and
holding latches in the shared pool and library cache. Latches are low-level serialization
devices. The longer and more frequently the database latches structures in shared
memory, the longer the queue for these latches becomes. When multiple statements share
the same execution plan, the requests for latches and the durations of latches go down.
This behavior increases scalability.

• Throughput and response time

When the database avoids constantly reparsing and creating cursors, more of its time is
spent in user space. The Real-World Performance group has found that changing literals
to use binds often leads to orders of magnitude improvements in throughput and user
response time.

Video:

Video

• Security

The only way to prevent SQL injection attacks is to use bind variables. Malicious users can
exploit application that concatenate strings by “injecting” code into the application.

See Also:

Oracle Database PL/SQL Language Reference for an example of an application that
fixes a security vulnerability created by literals

Chapter 20
Real-World Performance Guidelines for Cursor Sharing

20-34

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9268
http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9269

Do Not Use CURSOR_SHARING = FORCE as a Permanent Fix
The best practice is to write sharable SQL and use the default of EXACT for CURSOR_SHARING.

However, for applications with many similar statements, setting CURSOR_SHARING to FORCE can
sometimes significantly improve cursor sharing. The replacement of literals with system-
generated bind values can lead to reduced memory usage, faster parses, and reduced latch
contention. However, FORCE is not meant to be a permanent development solution.
As a general guideline, the Real-World Performance group recommends against setting
CURSOR_SHARING to FORCE exception in rare situations, and then only when all of the following
conditions are met:

• Statements in the shared pool differ only in the values of literals.

• Response time is suboptimal because of a very high number of library cache misses.

• Your existing code has a serious security and scalability bug—the absence of bind
variables—and you need a temporary band-aid until the source code can be fixed.

• You set this initialization parameter at the session level and not at the instance level.

Setting CURSOR_SHARING to FORCE has the following drawbacks:

• It indicates that the application does not use user-defined bind variables, which means that
it is open to SQL injection. Setting CURSOR_SHARING to FORCE does not fix SQL injection
bugs or render the code any more secure. The database binds values only after any
malicious SQL text has already been injected.

Video:

Video

• The database must perform extra work during the soft parse to find a similar statement in
the shared pool.

• The database removes every literal, which means that it can remove useful information.
For example, the database strips out literal values in SUBSTR and TO_DATE functions. The
use of system-generated bind variables where literals are more optimal can have a
negative impact on execution plans.

• There is an increase in the maximum lengths (as returned by DESCRIBE) of any selected
expressions that contain literals in a SELECT statement. However, the actual length of the
data returned does not change.

• Star transformation is not supported.

See Also:

• "CURSOR_SHARING and Bind Variable Substitution"

• Oracle Database Reference to learn about the CURSOR_SHARING initialization
parameter

Chapter 20
Real-World Performance Guidelines for Cursor Sharing

20-35

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9269

Establish Coding Conventions to Increase Cursor Reuse
By default, any variation in the text of two SQL statements prevents the database from sharing
a cursor, including the names of bind variables. Also, changes in the size of bind variables can
cause cursor mismatches. For this reason, using bind variables in application code is not
enough to guarantee cursor sharing.

The Real-World Performance group recommends that you standardize spacing and
capitalization conventions for SQL statements and PL/SQL blocks. Also establish conventions
for the naming and definitions of bind variables. If the database does not share cursors as
expected, begin your diagnosis by querying V$SQL_SHARED_CURSOR.

Example 20-17 Variations in SQL Text

In this example, an application that uses bind variables executes 7 statements using the same
bind variable value, but the statements are not textually identical:

VARIABLE emp_id NUMBER
EXEC :emp_id := 101;

SELECT SUM(salary) FROM hr.employees WHERE employee_id < :emp_id;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < :EMP_ID;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < :Emp_Id;
SELECT SUM(salary) FROM hr.employees WHERE employee_id < :emp_id;
select sum(salary) from hr.employees where employee_id < :emp_id;
Select sum(salary) From hr.employees Where employee_id < :emp_id;
Select sum(salary) From hr.employees Where employee_id< :emp_id;

A query of V$SQLAREA shows that no cursor sharing occurred:

COL SQL_TEXT FORMAT a35
SELECT SQL_TEXT, SQL_ID, VERSION_COUNT, HASH_VALUE
FROM V$SQLAREA
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

SQL_TEXT SQL_ID VERSION_COUNT HASH_VALUE
----------------------------------- ------------- ------------- ----------
SELECT SUM(salary) FROM hr.employee bkrfu3ggu5315 1 3751971877
s WHERE employee_id < :EMP_ID
SELECT SUM(salary) FROM hr.employee 70mdtwh7xj9gv 1 265856507
s WHERE employee_id < :Emp_Id
Select sum(salary) From hr.employee 18tt4ny9u5wkt 1 2476929625
s Where employee_id< :emp_id
SELECT SUM(salary) FROM hr.employe b6b21tbyaf8aq 1 4238811478
es WHERE employee_id < :emp_id
SELECT SUM(salary) FROM hr.employee 4318cbskba8yh 1 615850960
s WHERE employee_id < :emp_id
select sum(salary) from hr.employee 633zpx3xm71kj 1 4214457937
s where employee_id < :emp_id
Select sum(salary) From hr.employee 1mqbbbnsrrw08 1 830205960
s Where employee_id < :emp_id

Chapter 20
Real-World Performance Guidelines for Cursor Sharing

20-36

7 rows selected.

Example 20-18 Bind Length Mismatch

The following code defines a bind variable with different lengths, and then executes textually
identical statements with the same bind values:

VARIABLE lname VARCHAR2(20)
EXEC :lname := 'Taylor';
SELECT SUM(salary) FROM hr.employees WHERE last_name = :lname;
VARIABLE lname VARCHAR2(100)
EXEC :lname := 'Taylor';
SELECT SUM(salary) FROM hr.employees WHERE last_name = :lname;

The following query shows that the database did not share the cursor:

COL SQL_TEXT FORMAT a35
SELECT SQL_TEXT, SQL_ID, VERSION_COUNT, HASH_VALUE
FROM V$SQLAREA
WHERE SQL_TEXT LIKE '%mployee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%';

SQL_TEXT SQL_ID VERSION_COUNT HASH_VALUE
----------------------------------- ------------- ------------- ----------
SELECT SUM(salary) FROM hr.employee buh8j4557r0h1 2 1249608193
s WHERE last_name = :lname

The reason is because of the bind lengths:

COL BIND_LENGTH_UPGRADEABLE FORMAT a15
SELECT s.SQL_TEXT, s.CHILD_NUMBER,
 c.BIND_LENGTH_UPGRADEABLE
FROM V$SQL s, V$SQL_SHARED_CURSOR c
WHERE SQL_TEXT LIKE '%employee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%'
AND s.CHILD_ADDRESS = c.CHILD_ADDRESS;

SQL_TEXT CHILD_NUMBER BIND_LENGTH_UPG
----------------------------------- ------------ ---------------
SELECT SUM(salary) FROM hr.employee 0 N
s WHERE last_name = :lname
SELECT SUM(salary) FROM hr.employee 1 Y
s WHERE last_name = :lname

Minimize Session-Level Changes to the Optimizer Environment
A best practice is to prevent users of the application from changing the optimization approach
and goal for their individual sessions. Any changes to the optimizer environment can prevent
otherwise identical statements from sharing cursors.

Chapter 20
Real-World Performance Guidelines for Cursor Sharing

20-37

Example 20-19 Environment Mismatches

This example shows two textually identical statements that nevertheless do not share a cursor:

VARIABLE emp_id NUMBER

EXEC :emp_id := 110;

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS;
SELECT salary FROM hr.employees WHERE employee_id < :emp_id;
ALTER SESSION SET OPTIMIZER_MODE = ALL_ROWS;
SELECT salary FROM hr.employees WHERE employee_id < :emp_id;

A query of V$SQL_SHARED_CURSOR shows a mismatch in the optimizer modes:

SELECT S.SQL_TEXT, S.CHILD_NUMBER, s.CHILD_ADDRESS,
 C.OPTIMIZER_MODE_MISMATCH
FROM V$SQL S, V$SQL_SHARED_CURSOR C
WHERE SQL_TEXT LIKE '%employee%'
AND SQL_TEXT NOT LIKE '%SQL_TEXT%'
AND S.CHILD_ADDRESS = C.CHILD_ADDRESS;

SQL_TEXT CHILD_NUMBER CHILD_ADDRESS O
----------------------------------- ------------ ---------------- -
SELECT salary FROM hr.employees WHE 0 0000000080293040 N
RE employee_id < :emp_id
SELECT salary FROM hr.employees WHE 1 000000008644E888 Y
RE employee_id < :emp_id

Chapter 20
Real-World Performance Guidelines for Cursor Sharing

20-38

Part VII
Monitoring and Tracing SQL

Use DBMS_MONITOR to track database operations, SQL Test Case Builder to package
information relating to a performance problem, and SQL Trace to generate diagnostic data for
problem SQL statements.

21
Monitoring Database Operations

This chapter describes how to monitor SQL and PL/SQL.

About Monitoring Database Operations
The SQL monitoring feature is enabled by default when the STATISTICS_LEVEL initialization
parameter is either set to TYPICAL (the default value) or ALL.

See Also:

Oracle Database Concepts for a brief conceptual overview of database operations

About Database Operations
A database operation is a set of database tasks. A typical task might be a batch job or
Extraction, Transformation, and Loading (ETL) processing job.

Database operations are either simple or composite.

Simple Database Operation

A simple database operation is a single SQL statement or PL/SQL subprogram. When the
SQL Monitor feature is enabled, the database monitors simple database operations
automatically when any of the following conditions is true:

• A SQL statement or PL/SQL subprogram has consumed at least 5 seconds of CPU or I/O
time in a single execution.

• A SQL statement executes in parallel.

• A SQL statement specifies the /*+ MONITOR */ hint.

• The event sql_monitor specifies a list of SQL IDs for the statements to be monitored. For
example, the following statement forces instance-level monitoring for SQL IDs
5hc07qvt8v737 and 9ht3ba3arrzt3:

ALTER SYSTEM SET EVENTS 'sql_monitor [sql: 5hc07qvt8v737|sql:
9ht3ba3arrzt3] force=true'

At each step of the SQL execution plan, the database tracks statistics by performance metrics
such as elapsed time, CPU time, number of reads and writes, and I/O wait time. These metrics
are available in a graphical and interactive report called the SQL monitor active report.

Composite Database Operation

A composite database operation is defined by the user. It includes all SQL statements or
PL/SQL subprograms that execute within a database session, with the beginning and end
points defined using the procedures DBMS_SQL_MONITOR.BEGIN_OPERATION and

21-1

DBMS_SQL_MONITOR.END_OPERATION. A composite database operation is uniquely identified by
its name and execution ID, and can be executed multiple times.

Note:

A database session can participate in at most one database operation at a time.

Oracle Database automatically monitors a composite operation when either of the following
conditions is true:

• The operation has consumed at least 5 seconds of CPU or I/O time.

• Tracking for the operations is forced by setting FORCED_TRACKING to Y in
DBMS_SQL_MONITOR.BEGIN_OPERATION.

Note:

"Getting the Most Out of SQL Monitor" for a brief overview of SQL Monitor

Purpose of Monitoring Database Operations
For simple operations, Real-Time SQL Monitoring helps determine where a statement is
spending its time.

You can also see the breakdown of time and resource usage for recently completed
statements. In this way, you can better determine why a particular operation is expensive. Use
cases for Real-Time SQL Monitoring include the following:

• A frequently executed SQL statement is executing more slowly than normal. You must
identify the root cause of this problem.

• A database session is experiencing slow performance.

• A parallel SQL statement is taking a long time. You want to determine how the server
processes are dividing the work.

In OLTP and data warehouse environments, a job often logically groups related SQL
statements. The job can span multiple concurrent sessions. Database operations extend Real-
Time SQL Monitoring by enabling you to treat a set of statements or procedures as a named,
uniquely identified, and re-executable unit. Use cases for monitoring operations include the
following:

• A periodic batch job containing many SQL statements must complete in a certain number
of hours, but took longer than expected.

• After a database upgrade, the execution time of an important batch job increased. To
resolve this problem, you must collect enough relevant statistical data from the batch job
before and after the upgrade, compare the two sets of data, and then identify the changes.

• Packing a SQL tuning set (STS) took far longer than anticipated. To diagnose the problem,
you need to know what was being executed over time. Because this issue cannot be easily
reproduced, you need to monitor the process while it is running.

Chapter 21
About Monitoring Database Operations

21-2

https://sqlmaria.com/2017/08/01/getting-the-most-out-of-oracle-sql-monitor/

Related Topics

• Generating and Accessing SQL Monitor Reports
By default, AWR automatically captures SQL monitoring reports in XML format.

• Oracle Database Administrator’s Guide

See Also:

Why Use SQL Monitor for a video demonstrating some uses of SQL Monitor

How Database Monitoring Works
Real-Time SQL Monitoring is a built-in database infrastructure that helps you identify
performance problems with long-running and parallel SQL statements.

The following figure gives an overview of the architecture for Real-Time SQL Monitoring.

Figure 21-1 Architecture for Database Operations Monitoring

User

Oracle
Enterprise
Manager

V$SQL_MONITOR
V$SQL_PLAN_MONITOR
V$SQL_MONITOR_SESSTAT

AWR

DBMS_SQL_MONITOR
REPORT_SQL_MONITOR

DBMS_SQL_MONITOR Database Operations

User-Defined Operations

Real-Time SQL Monitoring

BEGIN OPERATION

...

END_OPERATION

CONTROL_MANAGEMENT_PACK_ACCESS

Chapter 21
About Monitoring Database Operations

21-3

https://www.youtube.com/watch?v=pEC5GdtzpRs

As shown in the preceding graphic, the DBMS_SQL_MONITOR package defines database
operations. After monitoring is initiated, the database stores metadata about the database
operations in AWR, and the data in AWR and ASH. The database refreshes monitoring
statistics in close to real time as each monitored statement executes, typically once every
second. The database stores the operational data (the statements and metadata) in the SGA.
After an operation completes, the database writes the SQL Monitor report to disk, where it can
be queried using the DBA_HIST_REPORTS view.

Every monitored database operation has an entry in the V$SQL_MONITOR view. This entry tracks
key performance metrics collected for the execution, including the elapsed time, CPU time,
number of reads and writes, I/O wait time, and various other wait times. The
V$SQL_PLAN_MONITOR view includes monitoring statistics for each operation in the execution
plan of the SQL statement being monitored. You can access reports by using
DBMS_SQL_MONITOR.REPORT_SQL_MONITOR, Oracle Enterprise Manager Cloud Control (Cloud
Control), or EM Express.

See Also:

• "Generating and Accessing SQL Monitor Reports"

• Oracle Database Reference to learn about V$SQL_MONITOR, V$SQL_PLAN_MONITOR,
and CONTROL_MANAGEMENT_PACK_ACCESS

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SQL_MONITOR package

User Interfaces for Database Operations Monitoring
Real-Time SQL Monitoring is a feature of the Oracle Database Tuning Pack. Database
operations are enabled when the CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter is
set to DIAGNOSTIC+TUNING (default).

Monitored SQL Executions Page in Cloud Control
The Monitored SQL Executions page in Cloud Control, also known as SQL Monitor, displays
details of SQL execution. SQL Monitor is the recommended interface for reporting on database
operations.

Statistics at each step of the execution plan are tracked by key performance metrics, including
elapsed time, CPU time, number of reads and writes, I/O wait time, and various other wait
times. These metrics enable DBAs to analyze SQL execution in depth and decide on the most
appropriate tuning strategies for monitored SQL statements.

SQL Monitor Active Reports provide a flash-based interactive report that enables you to save
data in an HTML file. You can save this file and view it offline.

Chapter 21
About Monitoring Database Operations

21-4

Accessing the Monitored SQL Executions Page
The Monitored SQL Executions shows information such as the SQL ID, database time, and I/O
requests.

To access the Monitored SQL Executions page:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. From the Performance menu, select SQL Monitoring.

The Monitored SQL Executions page appears.

Figure 21-2 Monitored SQL Executions

DBMS_SQL_MONITOR Package
The DBMS_SQL_MONITOR package defines the beginning and ending of a composite database
operation, and generates a report of the database operations.

Table 21-1 DBMS_SQL_MONITOR

Subprogram Description

BEGIN_OPERATION This function starts a database operation in the current session.

This function associates a session with a database operation.
Starting in Oracle Database 12c Release 2 (12.2), you can use
session_id and session_num to indicate the session in which to
start monitoring.

END_OPERATION This function ends a database operation in the current session. If
the specified database operation does not exist, then this function
has no effect.

Chapter 21
About Monitoring Database Operations

21-5

Table 21-1 (Cont.) DBMS_SQL_MONITOR

Subprogram Description

REPORT_SQL_MONITOR This function builds a detailed report with monitoring information for
a SQL statement, PL/SQL block, or database operation.

For each operation, it gives key information and associated global
statistics. Use this function to get detailed monitoring information
for a database operation.

The target database operation for this report can be:

• The last database operation monitored by Oracle Database
(default, no parameter).

• The last database operation executed in the specified session
and monitored by Oracle Database. The session is identified
by its session ID and optionally its serial number (-1 is current
session).

• The last execution of a specific database operation identified
by its sql_id.

• A specific execution of a database operation identified by the
combination sql_id, sql_exec_start, and sql_exec_id.

• The last execution of a specific database operation identified
by dbop_name.

• The specific execution of a database operation identified by the
combination dbop_name, dbop_exec_id.

Use the type parameter to specify the output type: TEXT (default),
HTML, ACTIVE, or XML.

REPORT_SQL_MONITOR_XML This function is identical to the REPORT_SQL_MONITOR function,
except that the return type is XMLType.

REPORT_SQL_MONITOR_LIST This function builds a report for all or a subset of database
operations that have been monitored by Oracle Database.

REPORT_SQL_MONITOR_LIST_XML This function is identical to the REPORT_SQL_MONITOR_LIST
function, except that it returns XMLType.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SQL_MONITOR package

Attributes of composite Database Operations
The DBMS_SQL_MONITOR.BEGIN_OPERATION function defines a database operation.

A composite database operation is uniquely identified by the following information:

• Database operation name

This is a user-created name such as daily_sales_report. The operation name is the
same for a job even if it is executed concurrently by different sessions or on different
databases. Database operation names do not reside in different namespaces.

• Database operation execution ID

Chapter 21
About Monitoring Database Operations

21-6

Two or more occurrences of the same database operation can run at the same time, with
the same name but different execution IDs. This numeric ID uniquely identifies different
executions of the same database operation.

The database automatically creates an execution ID when you begin a database operation.
You can also specify a user-created execution ID.

Optionally, you can specify the session ID and session serial number in which to start the
database operations. Thus, one database session can start a database operation defined in a
different database session.

The database uses the following triplet of values to identify each SQL and PL/SQL statement
monitored in the V$SQL_MONITOR view, regardless of whether the statement is included in a
database operation:

• SQL identifier to identify the SQL statement (SQL_ID)

• Start execution timestamp (SQL_EXEC_START)

• An internally generated identifier to ensure that this primary key is truly unique
(SQL_EXEC_ID)

You can use zero or more additional attributes to describe and identify the characteristics of a
composite database operation. Every attribute has a name and value. For example, for
database operation daily_sales_report, you might define the attribute db_name and assign it
the value prod.

Related Topics

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

MONITOR and NO_MONITOR Hints
You can use the MONITOR and NO_MONITOR hints to control tracking for individual
statements.

The MONITOR hint forces real-time SQL monitoring for the query, even if the statement is not
long-running. This hint is valid only when the parameter CONTROL_MANAGEMENT_PACK_ACCESS is
set to DIAGNOSTIC+TUNING. The following query forces SQL Monitor to enable tracking:

SELECT /*+ MONITOR */ prod_id, AVG(amount_sold), AVG(quantity_sold)
FROM sales
GROUP BY prod_id
ORDER BY prod_id;

The NO_MONITOR hint disables real-time SQL monitoring for the query, even if the query is long
running. The following query forces SQL Monitor to disable tracking:

SELECT /*+ NO_MONITOR */ prod_id, AVG(amount_sold), AVG(quantity_sold)
FROM sales
GROUP BY prod_id
ORDER BY prod_id;

Chapter 21
About Monitoring Database Operations

21-7

Note:

Oracle Database SQL Language Reference to learn about the MONITOR and
NO_MONITOR hints

Views for Monitoring and Reporting on Database Operations
You can obtain the statistics for database operations using V$ and data dictionary view.

The following table summarizes these views.

Table 21-2 Views for Database Operations Monitoring

View Description

DBA_HIST_REPORTS This view displays metadata about XML reports captured in
Automatic Workload Repository (AWR). Each XML report contains
details about some activity of a component. For example, a SQL
Monitor report contains a detailed report about a particular
database operation.

Important columns include:

• The REPORT_SUMMARY column contains the summary of the
report.

• The COMPONENT_NAME column accepts the value sqlmonitor.

• The REPORT_ID column provides the ID of the report, which
you can specify in the RID parameter of
DBMS_AUTO_REPORT.REPORT_REPOSITORY_DETAIL when
generating the report.

• The KEY1 column is the is the SQL ID for the statement.

• The KEY2 column is the SQL execution ID for the statement

AWR controls the retention period for SQL Monitor reports. Every
SQL Monitor report in DBA_HIST_REPORTS is associated with an
AWR SNAP_ID. Note that SQL Monitor reports are not exported or
imported when you export or import the corresponding AWR data.

DBA_HIST_REPORTS_DETAILS This view displays details about each report captured in AWR.
Metadata for each report appears in the DBA_HIST_REPORTS view,
whereas the actual report is available in the
DBA_HIST_REPORTS_DETAILS view.

Chapter 21
About Monitoring Database Operations

21-8

Table 21-2 (Cont.) Views for Database Operations Monitoring

View Description

V$SQL_MONITOR This view contains global, high-level information about simple and
composite database operations.

For simple database operations, monitoring statistics are not
cumulative over several executions. In this case, one entry in
V$SQL_MONITOR is dedicated to a single execution of a SQL
statement. If the database monitors two executions of the same
SQL statement, then each execution has a separate entry in
V$SQL_MONITOR.

For simple database operations, V$SQL_MONITOR has one entry for
the parallel execution coordinator process and one entry for each
parallel execution server process. Each entry has corresponding
entries in V$SQL_PLAN_MONITOR. Because the processes allocated
for the parallel execution of a SQL statement are cooperating for the
same execution, these entries share the same execution key (the
combination of SQL_ID, SQL_EXEC_START, and SQL_EXEC_ID).

For composite database operations, each row contains an operation
whose statistics are accumulated over the SQL statements and
PL/SQL subprograms that run in the same session as part of the
operation. The primary key is the combination of the columns
DBOP_NAME and DBOP_EXEC_ID.

V$SQL_MONITOR_SESSTAT This view contains the statistics for all sessions involved in the
database operation.

Most of the statistics are cumulative. The database stores the
statistics in XML format instead of using each column for each
statistic. This view is primarily intended for the report generator.
Oracle recommends that you use V$SESSTAT instead of
V$SQL_MONITOR_SESSTAT.

V$SQL_PLAN_MONITOR This view contains monitoring statistics for each step in the
execution plan of the monitored SQL statement.

The database updates statistics in V$SQL_PLAN_MONITOR every
second while the SQL statement is executing. Multiple entries exist
in V$SQL_PLAN_MONITOR for every monitored SQL statement. Each
entry corresponds to a step in the execution plan of the statement.

You can use the preceding V$ views with the following views to get additional information about
the monitored execution:

• V$ACTIVE_SESSION_HISTORY
• V$SESSION
• V$SESSION_LONGOPS
• V$SQL
• V$SQL_PLAN

See Also:

Oracle Database Reference to learn about the V$ views for database operations
monitoring

Chapter 21
About Monitoring Database Operations

21-9

Basic Tasks in Database Operations Monitoring
This section explains the basic tasks in database operations monitoring.

Basic tasks are as follows:

• "Enabling and Disabling Monitoring of Database Operations"

This task explains how you can enable automatic monitoring of database operations at the
system and statement level.

• "Defining a Composite Database Operation"

This section explains how you can define the beginning and end of a database operation
using PL/SQL.

• "Generating and Accessing SQL Monitor Reports"

This section explains how you can generate and interpret reports on a database operation.

Enabling and Disabling Monitoring of Database Operations
Use initialization parameters to enable or disable monitoring.

Enabling Monitoring of Database Operations at the System Level
The SQL monitoring feature is enabled by default when the STATISTICS_LEVEL initialization
parameter is either set to TYPICAL (the default value) or ALL. SQL monitoring starts
automatically for all long-running queries.

Prerequisites

Because SQL monitoring is a feature of the Oracle Database Tuning Pack, the
CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter must be set to DIAGNOSTIC+TUNING
(the default value).

Assumptions

This tutorial assumes the following:

• The STATISTICS_LEVEL initialization parameter is set to BASIC.

• You want to enable automatic monitoring of database operations.

To enable monitoring of database operations:

1. Connect SQL*Plus to the database with the appropriate privileges, and then query the
current database operations settings.

For example, run the following SQL*Plus command:

SQL> SHOW PARAMETER statistics_level

NAME TYPE VALUE
----------------------------------- ----------- -----
statistics_level string BASIC

2. Set the statistics level to TYPICAL.

Chapter 21
Enabling and Disabling Monitoring of Database Operations

21-10

For example, run the following SQL statement:

SQL> ALTER SYSTEM SET STATISTICS_LEVEL='TYPICAL';

See Also:

Oracle Database Reference to learn about the STATISTICS_LEVEL and
CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter

Enabling and Disabling Monitoring of Database Operations at the Statement
Level

When the CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter is set to
DIAGNOSTIC+TUNING, you can use hints to enable or disable monitoring of specific SQL
statements.

The database monitors SQL statements or PL/SQL subprograms automatically when they
have consumed at least 5 seconds of CPU or I/O time in a single execution. The MONITOR hint
is useful to enforce monitoring of statements or subprograms that do not meet the time criteria.

Two statement-level hints are available to force or prevent the database from monitoring a SQL
statement. To force SQL monitoring, use the MONITOR hint:

SELECT /*+ MONITOR */ SYSDATE FROM DUAL;

This hint is effective only when the CONTROL_MANAGEMENT_PACK_ACCESS parameter is set to
DIAGNOSTIC+TUNING. To prevent the hinted SQL statement from being monitored, use the
NO_MONITOR reverse hint.

Assumptions

This tutorial assumes the following:

• Database monitoring is currently enabled at the system level.

• You want to disable automatic monitoring for the statement SELECT * FROM sales ORDER
BY time_id.

To disable monitoring of database operations for a SQL statement:

1. Execute the query with the NO_MONITOR hint.

For example, run the following statement:

SQL> SELECT * /*+NO_MONITOR*/ FROM sales ORDER BY time_id;

See Also:

Oracle Database SQL Language Reference for information about using the MONITOR
and NO_MONITOR hints

Chapter 21
Enabling and Disabling Monitoring of Database Operations

21-11

Defining a Composite Database Operation
Defining a database operation involves supplying a name and specifying its beginning and end
times.

Start a database operation by using the DBMS_SQL_MONITOR.BEGIN_OPERATION function, and
end it by using the DBMS_SQL_MONITOR.END_OPERATION procedure.

To begin the operation in a different session, specify the combination of session_id and
serial_num. The BEGIN_OPERATION function returns the database operation execution ID. If
dbop_exec_id is null, then the database generates a unique value.

A single namespace exists for database operations, which means that name collisions are
possible. Oracle recommends the following naming convention:
component_name.subcomponent_name.operation name. For operations inside the database,
Oracle recommends using ORA for the component name. For example, a materialized view
refresh could be named ORA.MV.refresh. An E-Business Suite payroll function could be
named EBIZ.payroll.

To create a database operation in the current session:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Start the operation by using DBMS_SQL_MONITOR.BEGIN_OPERATION.

This function returns the database operation execution ID. The following example creates
the operation named ORA.sales.agg, and stores the execution ID in a SQL*Plus variable:

VARIABLE exec_id NUMBER;
BEGIN
 :exec_id := DBMS_SQL_MONITOR.BEGIN_OPERATION (dbop_name =>
'ORA.sales.agg');
END;
/

3. Execute the SQL statements or PL/SQL programs that you want to monitor.

4. End the operation by using DBMS_SQL_MONITOR.END_OPERATION.

The following example ends operation ORA.sales.agg:

BEGIN
 DBMS_SQL_MONITOR.END_OPERATION (dbop_name => 'ORA.sales.agg', dbop_eid
=> :exec_id);
END;
/

Example 21-1 Creating a Database Operation

The following example illustrates how to use the DBMS_SQL_MONITOR package to begin and end
a database operation in a different session. This example assumes the following:

• You are an administrator and want to monitor statements in a session started by user sh.

• You want to monitor queries of the sh.sales table and sh.customers table.

• You want these two queries to be monitored as a database operation named sh_count.

Chapter 21
Defining a Composite Database Operation

21-12

Table 21-3 Creating a Database Operation

SYSTEM Session SH Session DESCRIPTION

SQL> CONNECT SYSTEM
Enter password: *********
Connected.

n/a Start SQL*Plus and
connect as a user with the
administrator privileges.

n/a
SQL> CONNECT sh
Enter password: ******
Connected.

In a different terminal, start
SQL*Plus and connect as
a user as user sh.

SELECT SID, SERIAL#
FROM V$SESSION
WHERE USERNAME = 'SH';

 SID SERIAL#
---------- ----------
 121 13397

n/a In the SYSTEM session,
query the session ID and
serial number of the sh
session.

VARIABLE eid NUMBER

BEGIN
:eid:=DBMS_SQL_MONITOR.BEGIN_OPERATION
 ('sh_count', null, null,
 null, '121', '13397');
END;
/

PRINT eid

 EID

 2

n/a In the SYSTEM session,
begin a database
operation, specifying the
session ID and serial
number for the sh session.

Chapter 21
Defining a Composite Database Operation

21-13

Table 21-3 (Cont.) Creating a Database Operation

SYSTEM Session SH Session DESCRIPTION

n/a
SELECT count(*)
FROM sh.sales;

 COUNT(*)

 918843

SELECT COUNT(*)
FROM sh.customers;

 COUNT(*)

 55500

In the sh session, query
the sales and customers
tables. These SQL queries
are part of the sh_count
operation.

BEGIN
 DBMS_SQL_MONITOR.END_OPERATION
 ('sh_count',:eid);
END;
/

n/a End the database
operation by specifying the
operation name and
execution ID.

COL DBOP_NAME FORMAT a10
COL STATUS FORMAT a10
COL ID FORMAT 999

SELECT DBOP_NAME, DBOP_EXEC_ID AS ID,
 STATUS, CPU_TIME, BUFFER_GETS
FROM V$SQL_MONITOR
WHERE DBOP_NAME IS NOT NULL
 ORDER BY DBOP_EXEC_ID;

DBOP_NAME ID STATUS CPU_TIME GETS
---------- -- ---------- -------- ----
sh_count 1 EXECUTING 24997 65

n/a Query the metadata for the
sh_count database
operation. The status of the
operation is EXECUTING
because the session has
not picked up the new
session status.

n/a
SELECT SYSDATE FROM DUAL;

To collect changed session
information, execute a
query that performs a
round trip to the database.

Chapter 21
Defining a Composite Database Operation

21-14

Table 21-3 (Cont.) Creating a Database Operation

SYSTEM Session SH Session DESCRIPTION

COL DBOP_NAME FORMAT a10
COL STATUS FORMAT a10
COL ID FORMAT 999

SELECT DBOP_NAME, DBOP_EXEC_ID AS ID,
 STATUS, CPU_TIME, BUFFER_GETS
FROM V$SQL_MONITOR
WHERE DBOP_NAME IS NOT NULL
 ORDER BY DBOP_EXEC_ID;

DBOP_NAME ID STATUS CPU_TIME GETS
---------- -- ---------- -------- ----
sh_count 1 DONE 24997 65

n/a The status of the operation
is now updated to DONE.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Generating and Accessing SQL Monitor Reports
By default, AWR automatically captures SQL monitoring reports in XML format.

The reports capture only SQL statements that are not executing or queued and have finished
execution since the last capture cycle. AWR captures reports only for the most expensive
statements according to elapsed execution time. The SQL Monitor retention policy is controlled
by the AWR policy. You can change the retention policy using the
DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS procedure.

The Monitored SQL Executions page in Enterprise Manager Cloud Control (Cloud Control)
summarizes the activity for monitored statements. You can use this page to drill down and
obtain additional details about particular statements. The Monitored SQL Executions Details
page uses data from several views, including the following:

• GV$SQL_MONITOR
• GV$SQL_PLAN_MONITOR
• GV$SQL_MONITOR_SESSTAT
• GV$SQL
• GV$SQL_PLAN
• GV$ACTIVE_SESSION_HISTORY
• GV$SESSION_LONGOPS
• DBA_HIST_REPORTS
• DBA_HIST_REPORTS_DETAILS

Chapter 21
Generating and Accessing SQL Monitor Reports

21-15

Note:

Starting in Oracle Database 19c, Oracle Database includes undocumented V$ views
that enable a database user without the SELECT_CATALOG_ROLE to see the plans and
statistics for simple database operations (individual SQL and PL/SQL statements)
executed within the session. A user without SELECT_CATALOG_ROLE cannot see SQL
execution statistics and details for other users.

Assumptions

This tutorial assumes the following:

• The user sh is executing the following long-running parallel query of the sales made to
each customer:

SELECT c.cust_id, c.cust_last_name, c.cust_first_name,
 s.prod_id, p.prod_name, s.time_id
FROM sales s, customers c, products p
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
ORDER BY c.cust_id, s.time_id;

• You want to ensure that the preceding query does not consume excessive resources.
While the statement executes, you want to determine basic statistics about the database
operation, such as the level of parallelism, the total database time, and number of I/O
requests.

• You use Cloud Control to monitor statement execution.

Note:

To generate the SQL monitor report from the command line, run the
REPORT_SQL_MONITOR function in the DBMS_SQLTUNE package, as in the following
sample SQL*Plus script:

VARIABLE my_rept CLOB
BEGIN
 :my_rept :=DBMS_SQLTUNE.REPORT_SQL_MONITOR();
END;
/
PRINT :my_rept

To monitor SQL executions:

1. Access the Monitored SQL Executions page, as described in "Monitored SQL Executions
Page in Cloud Control".

In the following graphic, the top row shows the parallel query.

Chapter 21
Generating and Accessing SQL Monitor Reports

21-16

In this example, the query has been executing for 1.4 minutes.

2. Click the value in the SQL ID column to see details about the statement.

The Monitored SQL Details page appears.

The preceding report shows the execution plan and statistics relating to statement
execution. For example, the Timeline column shows when each step of the execution plan
was active. Times are shown relative to the beginning and end of the statement execution.
The Executions column shows how many times an operation was executed.

3. In the Overview section, click the link next to the SQL text.

A message shows the full text of the SQL statement.

Chapter 21
Generating and Accessing SQL Monitor Reports

21-17

4. In the Time & Wait Statistics section, next to Database Time, move the cursor over the
largest portion on the bar graph.

A message shows that user I/O is consuming over half of database time.

Database Time measures the amount of time the database has spent working on this SQL
statement. This value includes CPU and wait times, such as I/O time. The bar graph is
divided into several color-coded portions to highlight CPU resources, user I/O resources,
and other resources. You can move the cursor over any portion to view the percentage
value of the total.

5. In the Details section, in the IO Requests column, move the cursor over the I/O requests
bar to view the percentage value of the total.

A message appears.

In the preceding graphic, the IO Requests message shows the total number of read
requests issued by the monitored SQL. The message shows that read requests form 80%
of the total I/O requests.

Chapter 21
Generating and Accessing SQL Monitor Reports

21-18

See Also:

• Cloud Control Online Help for descriptions of the elements on the Monitored SQL
Executions Details page, and for complete descriptions of all statistics in the
report.

• Oracle Database Reference to learn about V$SQL_MONITOR and related views for
database operations monitoring

• Why Use SQL Monitor for a video demonstrating useful features of the Monitored
SQL Details report

Monitoring Database Operations: Scenarios
In these scenarios, you report on both simple and composite database operations.

Reporting on a Simple Database Operation: Scenario
In this scenario, a query is expected to complete in seconds, but is continuing to execute.

In this example, assume that you log in to the database as user sh, and then run the following
query:

SELECT /*+ MONITOR */ s.prod_id, c.cust_last_name FROM sales s, customers c
ORDER BY prod_id

The query is not completing. Starting in Oracle Database 19c, low-privileged users such as sh
can generate a SQL Monitor report for simple database operations (individual SQL and
PL/SQL statements) in their session. To identify the source of the problem, you use SQL
Monitor for diagnosis as follows:

1. Cancel the query.

2. Obtain a text report by invoking DBMS_SQL_MONITOR.REPORT_SQL_MONITOR:

SET LONG 1000000
VARIABLE my_rept CLOB;
BEGIN
 :my_rept := DBMS_SQL_MONITOR.REPORT_SQL_MONITOR(
 report_level => 'ALL',
 TYPE => 'text');
END;
/
PRINT :my_rept

Partial sample output appears below:

SQL Text

SELECT /*+ MONITOR */ s.prod_id, c.cust_last_name FROM sales s, customers c
ORDER BY prod_id

Global Information

Chapter 21
Monitoring Database Operations: Scenarios

21-19

https://www.youtube.com/watch?v=pEC5GdtzpRs

 Status : DONE (ERROR)
 Instance ID : 1
 Session : SH (42:3617)
 SQL ID : d9w9dw5v007xp
 SQL Execution ID : 16777217
 Execution Started : 09/18/2018 14:08:13
 First Refresh Time : 09/18/2018 14:08:13
 Last Refresh Time : 09/18/2018 14:08:34

MY_REPT
--
 Duration : 21s
 Module/Action : SQL*Plus/-
 Service : SYS$USERS
 Program : sqlplus@slc16iva (TNS V1-V3)
 Fetch Calls : 1
Global Stats

MY_REPT
--
| Time(s)|Time(s)|Waits(s) |Calls | Gets |Reqs | Bytes | Reqs | Bytes |
==
| 21 | 11 | 10 | 1 | 204 | 233 | 3MB | 4568 | 909MB |
==

SQL Plan Monitoring Details (Plan Hash Value=2036849021)
==

MY_REPT
--
==
| Id | Operation | Name | Rows | Cost |
Time | Start | Execs | Rows | Read | Read | Write | Write | Mem | Tem
p | Activity | Activity Detail |
| | | | (Estim) | | Ac
tive(s) | Active | | (Actual) | Reqs | Bytes | Reqs | Bytes | (Max) | (Ma
x) | (%) | (# samples) |
==
==
=================================

MY_REPT
--
| 0 | SELECT STATEMENT | | | |
 19 | +2 | 1 | 0 | | | | | . |
 . | | |
| 1 | SORT ORDER BY | | 51G |316M |
 20 | +1 | 1 | 0 | | | 4496 | 908MB | 99MB | 909
MB | | |
| 2 | MERGE JOIN CARTESIAN | | 51G | 2M |
 19 | +2 | 1 | 50M | | | | | . |
 . | | |
| 3 | TABLE ACCESS FULL | CUSTOMERS | 55500 | 414 |
 20 | +2 | 1 | 54 | 3 | 120KB | | | . |
 . | | |
| 4 | BUFFER SORT | | 919K |316M |
 19 | +2 | 54 | 50M | | | | | 28MB |
 . | | |
| 5 | PARTITION RANGE ALL | | 919K | 29 |
 1 | +2 | 1 | 919K | | | | | . |
 . | | |
| 6 | BITMAP CONVERSION TO ROWIDS | | 919K | 29 |
 1 | +2 | 28 | 919K | | | | | . |
 . | | |
| 7 | BITMAP INDEX FAST FULL SCAN | SALES_PROD_BIX | | |
 1 | +2 | 28 | 1074 | 32 | 512KB | | | . |
 . | | |
==

Chapter 21
Monitoring Database Operations: Scenarios

21-20

Because of the formatting, the preceding output is difficult to read. You decide to create an
active SQL Monitor report, which is graphical.

3. Create a SQL script containing the following commands:

SET FEEDBACK OFF
SET TERMOUT OFF
SET TRIMSPOOL ON
SET TRIM ON
SET PAGES 0
SET LINESIZE 1000
SET LONG 1000000
SET LONGCHUNKSIZE 1000000

SPOOL /tmp/long_sql.htm
SELECT DBMS_SQL_MONITOR.REPORT_SQL_MONITOR(
 report_level => 'ALL',
 TYPE => 'active')
FROM DUAL;
SPOOL OFF

4. In SQL*Plus, run the SQL script that you created in the preceding step.

5. Open the output HTML file in a browser, and then review the report:

The cause of the performance problem is shown in Line 2: a Cartesian join. The author of
the query inadvertently left off the WHERE clause. Instead of returning around 1 million rows
as it would for an inner join of sales and customers, the query returned 50 million rows
before it was canceled. Sorting the joined data from the two tables is consuming most of
the DB time (Line 1).

Chapter 21
Monitoring Database Operations: Scenarios

21-21

Reporting on Composite Database Operation: Scenario
This scenario uses DBMS_SQL_MONITOR to define a database operation and generates an active
report.

Your goal is to group four queries of tables in the sh schema into an operation, and then
generate a report.

1. In SQL*Plus, log on as an administrative user SAM. Begin an operation named SHOP
(specifying forced_tracking to ensure that SQL Monitor tracks the SQL), run four queries,
and then end the operation as follows:

VARIABLE exec_id NUMBER;
BEGIN
 :exec_id := DBMS_SQL_MONITOR.BEGIN_OPERATION (dbop_name => 'SHOP',
forced_tracking => 'Y');
END;
/

SELECT COUNT(*) FROM sh.sales;
SELECT COUNT(*) FROM sh.customers;

SELECT prod_id, cust_id
FROM sh.sales
WHERE prod_id < 26
ORDER BY prod_id;

SELECT cust_id, cust_first_name, cust_last_name, cust_city
FROM sh.customers
WHERE cust_id < 30000
ORDER BY cust_id;

BEGIN
 DBMS_SQL_MONITOR.END_OPERATION (dbop_name => 'SHOP', dbop_eid
=> :exec_id);
END;
/

2. To obtain metadata about the operation, including its status and metadata, query
V$SQL_MONITOR (sample output included):

COL STATUS FORMAT a10
COL DBOP_NAME FORMAT a10
COL CON_NAME FORMAT a5

SELECT STATUS, SQL_ID, DBOP_NAME, DBOP_EXEC_ID,
 TO_CHAR(ELAPSED_TIME/1000000,'000.00') AS ELA_SEC
FROM V$SQL_MONITOR
WHERE DBOP_NAME = 'SHOP';

STATUS SQL_ID DBOP_NAME DBOP_EXEC_ID ELA_SEC
---------- ------------- ---------- ------------ -------
DONE SHOP 3 001.34

Chapter 21
Monitoring Database Operations: Scenarios

21-22

3. To obtain metadata about the SQL Monitor report, call
DBMS_SQL_MONITOR.REPORT_SQL_MONITOR (sample output included):

SET LONG 10000000
SET LONGCHUNKSIZE 10000000
SET PAGES 0
SELECT DBMS_SQL_MONITOR.REPORT_SQL_MONITOR(
 dbop_name => 'SHOP', type => 'TEXT', report_level => 'ALL') AS rpt
FROM DUAL;

SQL Monitoring Report

Global Information

 Status : DONE
 Instance ID : 1
 Session : SAM (87:6406)
 DBOP Name : SHOP
 DBOP Execution ID : 3
 First Refresh Time : 10/03/2017 07:33:32
 Last Refresh Time : 10/03/2017 07:34:24
 Duration : 52s
 Module/Action : sqlplus@myhost (TNS V1-V3)/-
 Service : MYSERVICE
 Program : sqlplus@myhost (TNS V1-V3)

Global Stats
==
| Elapsed | Cpu | IO | Buffer | Read | Read |
| Time(s) | Time(s) | Waits(s) | Gets | Reqs | Bytes |
==
| 1.36 | 1.34 | 0.02 | 202 | 583 | 27MB |
==

4. To generate an active HTML report, pass the name of the operation to
DBMS_SQL_MONITOR.REPORT_SQL_MONITOR:

SET TRIMSPOOL ON
SET TRIM ON
SET PAGES 0
SET LINESIZE 1000
SET LONG 1000000
SET LONGCHUNKSIZE 1000000

SPOOL /tmp/shop.htm
SELECT
DBMS_SQL_MONITOR.REPORT_SQL_MONITOR(dbop_name=>'SHOP',report_level=>'ALL',T
YPE=>'active')
FROM DUAL;
SPOOL OFF

The following graphic shows the active report:

Chapter 21
Monitoring Database Operations: Scenarios

21-23

Figure 21-3 SQL Monitor Report

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_SQL_MONITOR

Chapter 21
Monitoring Database Operations: Scenarios

21-24

22
Gathering Diagnostic Data with SQL Test
Case Builder

SQL Test Case Builder is a tool that automatically gathers information needed to reproduce
the problem in a different database instance.

A SQL test case is a set of information that enables a developer to reproduce the execution
plan for a specific SQL statement that has encountered a performance problem.

This chapter contains the following topics:

Purpose of SQL Test Case Builder
SQL Test Case Builder automates the process of gathering and reproducing information about
a problem and the environment in which it occurred.

For most SQL components, obtaining a reproducible test case is the most important factor in
bug resolution speed. It is also the longest and most painful step for users. The goal of SQL
Test Case Builder is to gather as much as information related to an SQL incident as possible,
and then package it in a way that enables Oracle staff to reproduce the problem on a different
system.

The output of SQL Test Case Builder is a set of scripts in a predefined directory. These scripts
contain the commands required to re-create all the necessary objects and the environment on
another database instance. After the test case is ready, you can create a zip file of the directory
and move it to another database, or upload the file to Oracle Support.

Concepts for SQL Test Case Builder
Key concepts for SQL Test Case Builder include SQL incidents, types of information recorded,
and the form of the output.

This section contains the following topics:

SQL Incidents
In the fault diagnosability infrastructure of Oracle Database, an incident is a single occurrence
of a problem.

A SQL incident is a SQL-related problem. When a problem (critical error) occurs multiple times,
the database creates an incident for each occurrence. Incidents are timestamped and tracked
in the Automatic Diagnostic Repository (ADR). Each incident has a numeric incident ID, which
is unique within the ADR.

SQL Test Case Builder is accessible any time on the command line. In Oracle Enterprise
Manager Cloud Control (Cloud Control), the SQL Test Case pages are only available after a
SQL incident is found.

22-1

What SQL Test Case Builder Captures
SQL Test Case Builder captures permanent information about a SQL query and its
environment.

The information includes the query being executed, table and index definitions (but not the
actual data), PL/SQL packages and program units, optimizer statistics, SQL plan baselines,
and initialization parameter settings. Starting with Oracle Database 12c, SQL Test Case
Builder also captures and replays transient information, including information only available as
part of statement execution.

SQL Test Case Builder supports the following:

• Adaptive plans

SQL Test Case Builder captures inputs to the decisions made regarding adaptive plans,
and replays them at each decision point. For adaptive plans, the final statistics value at
each buffering statistics collector is sufficient to decide on the final plan.

• Automatic memory management

The database automatically handles the memory requested for each SQL operation.
Actions such as sorting can affect performance significantly. SQL Test Case Builder keeps
track of the memory activities, for example, where the database allocated memory and
how much it allocated.

• Dynamic statistics

Dynamic statistics is an optimization technique in which the database executes a recursive
SQL statement to scan a small random sample of a table's blocks to estimate predicate
selectivities. Regathering dynamic statistics on a different database does not always
generate the same results, for example, when data is missing. To reproduce the problem,
SQL Test Case Builder exports the dynamic statistics result from the source database. In
the testing database, SQL Test Case Builder reuses the same values captured from the
source database instead of regathering dynamic statistics.

• Multiple execution support

SQL Test Case Builder can capture dynamic information accumulated during multiple
executions of the query. This capability is important for automatic reoptimization.

• Compilation environment and bind values replay

The compilation environment setting is an important part of the query optimization context.
SQL Test Case Builder captures nondefault settings altered by the user when running the
problem query in the source database. If any nondefault parameter values are used, SQL
Test Case Builder re-establishes the same values before running the query.

• Object statistics history

The statistics history for objects is helpful to determine whether a plan change was caused
by a change in statistics values. DBMS_STATS stores the history in the data dictionary. SQL
Test Case Builder stores this statistics data into a staging table during export. During
import, SQL Test Case Builder automatically reloads the statistics history data into the
target database from the staging table.

• Statement history

The statement history is important for diagnosing problems related to adaptive cursor
sharing, statistics feedback, and cursor sharing bugs. The history includes execution plans
and compilation and execution statistics.

Chapter 22
Concepts for SQL Test Case Builder

22-2

See Also:

• Oracle Database SQL Tuning Guide for more information about adaptive query
plans, supplemental dynamic statistics, automatic reoptimization, and SQL plan
baselines

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

Output of SQL Test Case Builder
The output of SQL Test Case Builder is a set of files that contains commands required to re-
create the environment and all necessary objects.

By default, SQL Test Case Builder stores the files in the following directory, where incnum
refers to the incident number and runnum refers to the run number:

$ADR_HOME/incident/incdir_incnum/SQLTCB_runnum

For example, a valid output file name could be as follows:

$ORACLE_HOME/log/diag/rdbms/dbsa/dbsa/incident/incdir_2657/SQLTCB_1

You can also specify a particular directory for storing the SQL Test Case Builder files by
creating a directory object with the name SQL_TCB_DIR and running the procedure
DBMS_SQLDIAG.EXPORT_SQL_TESTCASE as shown in the following example:

CREATE OR REPLACE DIRECTORY SQL_TCB_DIR '/tmp';

DECLARE
tc CLOB;
BEGIN
 DBMS_SQLDIAG.EXPORT_SQL_TESTCASE (
 directory => 'SQL_TCB_DIR',
 sql_text => 'select * from hr_table',
 testcase => tc);
END;

Note:

The database administrator must have read and write access permissions to the
operating system directory specified in the directory object SQL_TCB_DIR.

You can also specify a name for a test case using the testcase_name parameter of the
DBMS_SQLDIAG.EXPORT_SQL_TESTCASE procedure. A test case name is used as a prefix for all
the files generated by SQL Test Case Builder.

Chapter 22
Concepts for SQL Test Case Builder

22-3

If you do not specify a test case name, then a default test case name having the following
format is used by SQL Test Case Builder:

oratcb_connectionId_sqlId_sequenceNumber_sessionId

Here, connectionId is the database connection ID, sqlId is the SQL statement ID,
sequenceNumber is the internal sequence number, and sessionId is the database session ID.

You can also specify any additional information to include in the output of SQL Test Case
Builder using the ctrlOptions parameter of the DBMS_SQLDIAG.EXPORT_SQL_TESTCASE
procedure. The following are some of the options that you can specify in the ctrlOptions
parameter:

• compress: This option is used to compress the SQL Test Case Builder output files into a zip
file.

• diag_event: This option is used to specify the level of trace information to include in the
SQL Test Case Builder output.

• problem_type: This option is used to assign an issue type for a SQL Test Case Builder test
case. For example, if a test case is related to performance regression issue, then you can
assign the value of PERFORMANCE to the problem_type option.

You can view the information about all the test cases generated by SQL Test Case Builder by
querying the V$SQL_TESTCASES view as shown in the following example:

select testcase_name, sql_text from v$sql_testcases;

TESTCASE_NAME SQL_TEXT
------------------------------------- ----------------------
oratcb_0_am8q8kudm02v9_1_00244CC50001 select * from hr_table

Note:

The V$SQL_TESTCASES view requires the existence of a SQL Test Case Builder root
directory object named SQL_TCB_DIR. In Oracle Autonomous Database environments,
this directory object is created automatically on each POD during provisioning. For
on-premises databases, you must explicitly create the SQL Test Case Builder root
directory object SQL_TCB_DIR, otherwise the V$SQL_TESTCASES view will not display
any information. The database administrator must have read and write access
permissions to the operating system directory specified in the directory object
SQL_TCB_DIR.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SQLDIAG.EXPORT_SQL_TESTCASE procedure

• Oracle Database Reference for more information about the V$SQL_TESTCASES
view

Chapter 22
Concepts for SQL Test Case Builder

22-4

User Interfaces for SQL Test Case Builder
You can access SQL Test Case Builder either through Cloud Control or using PL/SQL on the
command line.

This section contains the following topics:

Graphical Interface for SQL Test Case Builder
Within Cloud Control, you can access SQL Test Case Builder from the Incident Manager page
or the Support Workbench page.

This section contains the following topics:

Accessing the Incident Manager
From the Incidents and Problems section on the Database Home page, you can navigate to
the Incident Manager.

To access the Incident Manager:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. In the Incidents and Problems section, locate the SQL incident to be investigated.

In the following example, the ORA 600 error is a SQL incident.

6. Click the summary of the incident.

The Problem Details page of the Incident Manager appears.

Chapter 22
User Interfaces for SQL Test Case Builder

22-5

The Support Workbench page appears, with the incidents listed in a table.

Accessing the Support Workbench
From the Oracle Database menu, you can navigate to the Support Workbench.

To access the Support Workbench:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. From the Oracle Database menu, select Diagnostics, then Support Workbench.

The Support Workbench page appears, with the incidents listed in a table.

Command-Line Interface for SQL Test Case Builder
The DBMS_SQLDIAG package performs tasks relating to SQL Test Case Builder.

This package consists of various subprograms for the SQL Test Case Builder, some of which
are listed in the following table.

Table 22-1 SQL Test Case Functions in the DBMS_SQLDIAG Package

Procedure Description

EXPORT_SQL_TESTCASE Exports a SQL test case to a user-specified directory

EXPORT_SQL_TESTCASE_DIR_BY_INC Exports a SQL test case corresponding to the incident ID
passed as an argument

EXPORT_SQL_TESTCASE_DIR_BY_TXT Exports a SQL test case corresponding to the SQL text
passed as an argument

IMPORT_SQL_TESTCASE Imports a SQL test case into a schema

Chapter 22
User Interfaces for SQL Test Case Builder

22-6

Table 22-1 (Cont.) SQL Test Case Functions in the DBMS_SQLDIAG Package

Procedure Description

REPLAY_SQL_TESTCASE Automates reproduction of a SQL test case

EXPLAIN_SQL_TESTCASE Explains a SQL test case

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
DBMS_SQLDIAG package

Running SQL Test Case Builder
You can run SQL Test Case Builder using Cloud Control.

Assumptions

This tutorial assumes the following:

• You ran the following EXPLAIN PLAN statement as user sh, which causes an internal error:

EXPLAIN PLAN FOR
 SELECT unit_cost, sold
 FROM costs c,
 (SELECT /*+ merge */ p.prod_id, SUM(quantity_sold) AS sold
 FROM products p, sales s
 WHERE p.prod_id = s.prod_id
 GROUP BY p.prod_id) v
 WHERE c.prod_id = v.prod_id;

• In the Incidents and Problems section on the Database Home page, a SQL incident
generated by the internal error appears.

• You access the Incident Details page, as explained in "Accessing the Incident Manager".

To run SQL Test Case Builder:

1. Click the Incidents tab.

The Problem Details page appears.

2. Click the summary for the incident.

The Incident Details page appears.

Chapter 22
Running SQL Test Case Builder

22-7

3. In Guided Resolution, click View Diagnostic Data.

The Incident Details: incident_number page appears.

Chapter 22
Running SQL Test Case Builder

22-8

4. In the Application Information section, click Additional Diagnostics.

The Additional Diagnostics subpage appears.

5. Select SQL Test Case Builder, and then click Run.

The Run User Action page appears.

6. Select a sampling percentage (optional), and then click Submit.

After processing completes, the Confirmation page appears.

7. Access the SQL Test Case files in the location described in "Output of SQL Test Case
Builder".

Chapter 22
Running SQL Test Case Builder

22-9

23
Performing Application Tracing

This chapter explains what end-to-end application tracing is, and how to generate and read
trace files.

See Also:

SQL*Plus User's Guide and Reference to learn about the use of Autotrace to trace
and tune SQL*Plus statements

Overview of End-to-End Application Tracing
End-to-end application tracing can identify the source of an excessive database workload,
such as a high load SQL statement, by client identifier, service, module, action, session,
instance, or an entire database.

In multitier environments, the middle tier routes a request from an end client to different
database sessions, making it difficult to track a client across database sessions. End-to-end
application tracing is an infrastructure that uses a client ID to uniquely trace a specific end-
client through all tiers to the database and provides information about the operation that an end
client is performing in the database.

Purpose of End-to-End Application Tracing
End-to-end application tracing simplifies diagnosing performance problems in multitier
environments.

For example, you can identify the source of an excessive database workload, such as a high-
load SQL statement, and contact the user responsible. Also, a user having problems can
contact you. You can then identify what this user session is doing at the non-CDB or PDB level

End-to-end application tracing also simplifies management of application workloads by tracking
specific modules and actions in a service. The module and action names are set by the
application developer. For example, you would use the SET_MODULE and SET_ACTION
procedures in the DBMS_APPLICATION_INFO package to set these values in a PL/SQL program.

End-to-end application tracing can identify workload problems in a database for:

• Client identifier

Specifies an end user based on the logon ID, such as HR.HR
• Service

Specifies a group of applications with common attributes, service level thresholds, and
priorities; or a single application, such as ACCTG for an accounting application

• Module

Specifies a functional block, such as Accounts Receivable or General Ledger, of an
application

23-1

• Action

Specifies an action, such as an INSERT or UPDATE operation, in a module

• Session

Specifies a session based on a given database session identifier (SID), on the local
instance

• Instance

Specifies a given database instance based on the instance name

• Container

Specifies the container in a CDB

End-to-End Application Tracing in a Multitenant Environment
Starting in Oracle Database 12c Release 2 (12.2), when you are connected to a container in a
CDB, new V$ views enable read access to trace files that are specific to the container.

The primary use cases are as follows:

• CDB administrators must view traces from a specific PDB.

The V$DIAG_TRACE_FILE view lists all trace files in the ADR trace directory that contain
trace data from a specific PDB. V$DIAG_TRACE_FILE_CONTENTS displays the contents of the
trace files.

• PDB administrators must view traces from a specific PDB.

You can use SQL Trace to collect diagnostic data for the SQL statements executing in a
PDB application. The trace data includes SQL tracing (event 10046) and optimizer tracing
(event 10053). Using V$ views, developers can access only SQL or optimizer trace records
without accessing the entire trace file.

To enable users and tools to determine which PDB is associated with a file or a part of a file,
PDB annotations exist in trace files, incident dumps, and log files. The PDB information is part
of the structured metadata that is stored in the .trm file for each trace file. Each record
captures the following attributes:

• CON_ID, which is the ID of the container associated with the data

• CON_UID, which is the unique ID of the container

• NAME, which is the name of the container

See Also:

"Views for Application Tracing"

Tools for End-to-End Application Tracing
The SQL Trace facility and TKPROF are two basic performance diagnostic tools that can help
you accurately assess the efficiency of the SQL statements an application runs.

For best results, use these tools with EXPLAIN PLAN rather than using EXPLAIN PLAN alone.
After tracing information is written to files, you can consolidate this data with the TRCSESS
utility, and then diagnose it with TKPROF or SQL Trace.

Chapter 23
Overview of End-to-End Application Tracing

23-2

The recommended interface for end-to-end application tracing is Oracle Enterprise Manager
Cloud Control (Cloud Control). Using Cloud Control, you can view the top consumers for each
consumer type, and enable or disable statistics gathering and SQL tracing for specific
consumers. If Cloud Control is unavailable, then you can manage this feature using the
DBMS_MONITOR APIs.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_MONITOR, DBMS_SESSION, DBMS_SERVICE, and DBMS_APPLICATION_INFO packages

Overview of the SQL Trace Facility
The SQL Trace facility provides performance information on individual SQL statements.

SQL Trace generates the following statistics for each statement:

• Parse, execute, and fetch counts

• CPU and elapsed times

• Physical reads and logical reads

• Number of rows processed

• Misses on the library cache

• User name under which each parse occurred

• Each commit and rollback

• Wait event data for each SQL statement, and a summary for each trace file

If the cursor for the SQL statement is closed, then SQL Trace also provides row source
information that includes:

• Row operations showing the actual execution plan of each SQL statement

• Number of rows, number of consistent reads, number of physical reads, number of
physical writes, and time elapsed for each operation on a row

Although you can enable the SQL Trace facility for a session or an instance, Oracle
recommends that you use the DBMS_SESSION or DBMS_MONITOR packages instead. When the
SQL Trace facility is enabled for a session or for an instance, performance statistics for all SQL
statements executed in a user session or in the instance are placed into trace files. Using the
SQL Trace facility can affect performance and may result in increased system overhead,
excessive CPU usage, and inadequate disk space.

The TRCSESS command-line utility consolidates tracing information from several trace files
based on specific criteria, such as session or client ID.

See Also:

• "TRCSESS"

• "Enabling End-to-End Application Tracing" to learn how to use the DBMS_SESSION
or DBMS_MONITOR packages to enable SQL tracing for a session or an instance

Chapter 23
Overview of End-to-End Application Tracing

23-3

Overview of TKPROF
To format the contents of the trace file and place the output into a readable output file, run the
TKPROF program.

TKPROF can also do the following:

• Create a SQL script that stores the statistics in the database

• Determine the execution plans of SQL statements

TKPROF reports each statement executed with the resources it has consumed, the number of
times it was called, and the number of rows which it processed. This information enables you
to locate those statements that are using the greatest resource. With baselines available, you
can assess whether the resources used are reasonable given the work done.

Enabling Statistics Gathering for End-to-End Tracing
To gather the appropriate statistics using PL/SQL, you must enable statistics gathering for
client identifier, service, module, or action using procedures in DBMS_MONITOR.

The default level is the session-level statistics gathering. Statistics gathering is global for the
database and continues after a database instance is restarted.

Enabling Statistics Gathering for a Client ID
The procedure CLIENT_ID_STAT_ENABLE enables statistics gathering for a given client ID,
whereas the procedure CLIENT_ID_STAT_DISABLE disables it.

You can view client identifiers in the CLIENT_IDENTIFIER column in V$SESSION.

Assumptions

This tutorial assumes that you want to enable and then disable statistics gathering for the client
with the ID oe.oe.

To enable and disable statistics gathering for a client identifier:

1. Start SQL*Plus, and then connect to the database with the appropriate privileges.

2. Enable statistics gathering for oe.oe.

For example, run the following command:

EXECUTE DBMS_MONITOR.CLIENT_ID_STAT_ENABLE(client_id => 'OE.OE');

3. Disable statistics gathering for oe.oe.

For example, run the following command:

EXECUTE DBMS_MONITOR.CLIENT_ID_STAT_DISABLE(client_id => 'OE.OE');

Chapter 23
Enabling Statistics Gathering for End-to-End Tracing

23-4

Enabling Statistics Gathering for Services, Modules, and Actions
The procedure SERV_MOD_ACT_STAT_ENABLE enables statistic gathering for a combination of
service, module, and action, whereas the procedure SERV_MOD_ACT_STAT_DISABLE disables
statistic gathering for a combination of service, module, and action.

When you change the module or action using the preceding DBMS_MONITOR procedures, the
change takes effect when the next user call is executed in the session. For example, if a
module is set to module1 in a session, and if the module is reset to module2 in a user call in the
session, then the module remains module1 during this user call. The module is changed to
module2 in the next user call in the session.

Assumptions

This tutorial assumes that you want to gather statistics as follows:

• For the ACCTG service

• For all actions in the PAYROLL module

• For the INSERT ITEM action within the GLEDGER module

To enable and disable statistics gathering for a service, module, and action:

1. Start SQL*Plus, and then connect to the database with the appropriate privileges.

2. Enable statistics gathering for the desired service, module, and action.

For example, run the following commands:

BEGIN
 DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(
 service_name => 'ACCTG'
, module_name => 'PAYROLL');
END;

BEGIN
 DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(
 service_name => 'ACCTG'
, module_name => 'GLEDGER'
, action_name => 'INSERT ITEM');
END;

3. Disable statistic gathering for the previously specified combination of service, module, and
action.

For example, run the following command:

BEGIN
 DBMS_MONITOR.SERV_MOD_ACT_STAT_DISABLE(
 service_name => 'ACCTG'
, module_name => 'GLEDGER'
, action_name => 'INSERT ITEM');
END;

Chapter 23
Enabling Statistics Gathering for End-to-End Tracing

23-5

Enabling End-to-End Application Tracing
To enable tracing for client identifier, service, module, action, session, instance or database,
execute the appropriate procedures in the DBMS_MONITOR package.

With the criteria that you provide, specific trace information is captured in a set of trace files
and combined into a single output trace file. You can enable tracing for specific diagnosis and
workload management by the following criteria:

See Also:

Oracle Database Administrator’s Guide for information about how to locate trace files

Enabling Tracing for a Client Identifier
To enable tracing globally for the database for a specified client identifier, use the
DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE procedure.

The CLIENT_ID_TRACE_DISABLE procedure disables tracing globally for the database for a given
client identifier.

Assumptions

This tutorial assumes the following:

• OE.OE is the client identifier for which SQL tracing is to be enabled.

• You want to include wait information in the trace.

• You want to exclude bind information from the trace.

To enable and disable tracing for a client identifier:

1. Start SQL*Plus, and then connect to the database with the appropriate privileges.

2. Enable tracing for the client.

For example, execute the following program:

BEGIN
 DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE(
 client_id => 'OE.OE' ,
 waits => true ,
 binds => false);
END;

3. Disable tracing for the client.

For example, execute the following command:

EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_DISABLE(client_id => 'OE.OE');

Chapter 23
Enabling End-to-End Application Tracing

23-6

Enabling Tracing for a Service, Module, and Action
The DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE procedure enables SQL tracing for a
specified combination of service name, module, and action globally for a database, unless the
procedure specifies a database instance name.

The SERV_MOD_ACT_TRACE_DISABLE procedure disables the trace at all enabled instances for a
given combination of service name, module, and action name globally.

Assumptions

This tutorial assumes the following:

• You want to enable tracing for the service ACCTG.

• You want to enable tracing for all actions for the combination of the ACCTG service and the
PAYROLL module.

• You want to include wait information in the trace.

• You want to exclude bind information from the trace.

• You want to enable tracing only for the inst1 instance.

To enable and disable tracing for a service, module, and action:

1. Start SQL*Plus, and then connect to the database with the appropriate privileges.

2. Enable tracing for the service, module, and actions.

For example, execute the following command:

BEGIN
 DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE(
 service_name => 'ACCTG' ,
 module_name => 'PAYROLL' ,
 waits => true ,
 binds => false ,
 instance_name => 'inst1');
END;

3. Disable tracing for the service, module, and actions.

For example, execute the following command:

BEGIN
 DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE(
 service_name => 'ACCTG' ,
 module_name => 'PAYROLL' ,
 instance_name => 'inst1');
END;

Chapter 23
Enabling End-to-End Application Tracing

23-7

Enabling Tracing for a Session
The SESSION_TRACE_ENABLE procedure enables the trace for a given database session
identifier (SID) on the local instance.

Whereas the DBMS_MONITOR package can only be invoked by a user with the DBA role, users
can also enable SQL tracing for their own session by invoking the
DBMS_SESSION.SESSION_TRACE_ENABLE procedure, as in the following example:

BEGIN
 DBMS_SESSION.SESSION_TRACE_ENABLE(
 waits => true
 , binds => false);
END;

Assumptions

This tutorial assumes the following:

• You want to log in to the database with administrator privileges.

• User OE has one active session.

• You want to temporarily enable tracing for the OE session.

• You want to include wait information in the trace.

• You want to exclude bind information from the trace.

To enable and disable tracing for a session:

1. Start SQL*Plus, and then log in to the database with the administrator privileges.

2. Determine the session ID and serial number values for the session to trace.

For example, query V$SESSION as follows:

SELECT SID, SERIAL#, USERNAME
FROM V$SESSION
WHERE USERNAME = 'OE';

 SID SERIAL# USERNAME
---------- ---------- ------------------------------
 27 60 OE

3. Use the values from the preceding step to enable tracing for a specific session.

For example, execute the following program to enable tracing for the OE session, where the
true argument includes wait information in the trace and the false argument excludes
bind information from the trace:

BEGIN
 DBMS_MONITOR.SESSION_TRACE_ENABLE(
 session_id => 27
 , serial_num => 60
 , waits => true

Chapter 23
Enabling End-to-End Application Tracing

23-8

 , binds => false);
END;

4. Disable tracing for the session.

The SESSION_TRACE_DISABLE procedure disables the trace for a given database session
identifier (SID) and serial number. For example:

BEGIN
 DBMS_MONITOR.SESSION_TRACE_DISABLE(
 session_id => 27
 , serial_num => 60);
END;

Enabling Tracing for an Instance or Database
The DBMS_MONITOR.DATABASE_TRACE_ENABLE procedure overrides all other session-level traces,
but is complementary to the client identifier, service, module, and action traces. Tracing is
enabled for all current and future sessions.

All new sessions inherit the wait and bind information specified by this procedure until you call
the DATABASE_TRACE_DISABLE procedure. When you invoke this procedure with the
instance_name parameter, the procedure resets the session-level SQL trace for the named
instance. If you invoke this procedure without the instance_name parameter, then the
procedure resets the session-level SQL trace for the entire database.

Prerequisites

You must have administrative privileges to execute the DATABASE_TRACE_ENABLE procedure.

Assumptions

This tutorial assumes the following:

• You want to enable tracing for all SQL the inst1 instance.

• You want wait information to be in the trace.

• You do not want bind information in the trace.

To enable and disable tracing for an instance or database:

1. Start SQL*Plus, and then log in to the database with the necessary privileges.

2. Call the DATABASE_TRACE_ENABLE procedure to enable SQL tracing for a given instance or
an entire database.

For example, execute the following program, where the true argument specifies that wait
information is in the trace, and the false argument specifies that no bind information is in
the trace:

BEGIN
 DBMS_MONITOR.DATABASE_TRACE_ENABLE(
 waits => true
 , binds => false
 , instance_name => 'inst1');
END;

Chapter 23
Enabling End-to-End Application Tracing

23-9

3. Disable tracing.

The DATABASE_TRACE_DISABLE procedure disables the trace. For example, the following
program disables tracing for inst1:

EXECUTE DBMS_MONITOR.DATABASE_TRACE_DISABLE(instance_name => 'inst1');

To disable SQL tracing for an entire database, invoke the DATABASE_TRACE_DISABLE
procedure without specifying the instance_name parameter:

EXECUTE DBMS_MONITOR.DATABASE_TRACE_DISABLE();

Generating Output Files Using SQL Trace and TKPROF
This section explains the basic procedure for using SQL Trace and TKPROF.

The procedure for generating output files is as follows:

1. Set initialization parameters for trace file management.

See "Step 1: Setting Initialization Parameters for Trace File Management".

2. Enable the SQL Trace facility for the desired session, and run the application. This step
produces a trace file containing statistics for the SQL statements issued by the application.

See "Step 2: Enabling the SQL Trace Facility".

3. Run TKPROF to translate the trace file created in Step 2 into a readable output file. This
step can optionally create a SQL script that you can use to store the statistics in a
database.

See "Step 3: Generating Output Files with TKPROF".

4. Optionally, run the SQL script produced in Step 3 to store the statistics in the database.

See "Step 4: Storing SQL Trace Facility Statistics".

Step 1: Setting Initialization Parameters for Trace File Management
To enable trace files, you must ensure that specific initialization parameters are set.

When the SQL Trace facility is enabled for a session, Oracle Database generates a trace file
containing statistics for traced SQL statements for that session. When the SQL Trace facility is
enabled for an instance, Oracle Database creates a separate trace file for each process.

To set initialization parameters for trace file management:

1. Check the settings of the TIMED_STATISTICS, MAX_DUMP_FILE_SIZE, and DIAGNOSTIC_DEST
initialization parameters, as indicated in "Table 23-1".

Table 23-1 Initialization Parameters to Check Before Enabling SQL Trace

Parameter Description

DIAGNOSTIC_DEST Specifies the location of the Automatic Diagnostic Repository
(ADR) Home. The diagnostic files for each database instance are
located in this dedicated directory.

Chapter 23
Generating Output Files Using SQL Trace and TKPROF

23-10

Table 23-1 (Cont.) Initialization Parameters to Check Before Enabling SQL Trace

Parameter Description

MAX_DUMP_FILE_SIZE When the SQL Trace facility is enabled at the database instance
level, every call to the database writes a text line in a file in the
operating system's file format. The maximum size of these files in
operating system blocks is limited by this initialization parameter.
The default is UNLIMITED.

TIMED_STATISTICS Enables and disables the collection of timed statistics, such as
CPU and elapsed times, by the SQL Trace facility, and the
collection of various statistics in the V$ views.

If STATISTICS_LEVEL is set to TYPICAL or ALL, then the default
value of TIMED_STATISTICS is true. If STATISTICS_LEVEL is
set to BASIC, then the default value of TIMED_STATISTICS is
false.

Enabling timing causes extra timing calls for low-level operations.
This is a dynamic parameter. It is also a session parameter.

2. Devise a way of recognizing the resulting trace file.

Be sure you know how to distinguish the trace files by name. You can tag trace files by
including in your programs a statement such as SELECT program_name' FROM DUAL. You
can then trace each file back to the process that created it.

You can also set the TRACEFILE_IDENTIFIER initialization parameter to specify a custom
identifier that becomes part of the trace file name. For example, you can add my_trace_id
to subsequent trace file names for easy identification with the following:

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'my_trace_id';

3. If the operating system retains multiple versions of files, then ensure that the version limit
is high enough to accommodate the number of trace files you expect the SQL Trace facility
to generate.

4. If the generated trace files can be owned by an operating system user other than yourself,
then ensure that you have the necessary permissions to use TKPROF to format them.

See Also:

• Oracle Database Reference to learn about the DIAGNOSTIC_DEST,
STATISTICS_LEVEL, TIMED_STATISTICS, and TRACEFILE_IDENTIFIER initialization
parameters

• Oracle Database Administrator’s Guide to learn how to control the trace file size

Step 2: Enabling the SQL Trace Facility
You can enable the SQL Trace facility at the instance or session level.

The package to use depends on the level:

• Database instance

Chapter 23
Generating Output Files Using SQL Trace and TKPROF

23-11

Use DBMS_MONITOR.DATABASE_TRACE_ENABLE procedure to enable tracing, and
DBMS_MONITOR.DATABASE_TRACE_DISABLE procedure to disable tracing.

• Database session

Use DBMS_SESSION.SET_SQL_TRACE procedure to enable tracing (true) or disable tracing
(false).

Note:

Because running the SQL Trace facility increases system overhead, enable it
only when tuning SQL statements, and disable it when you are finished.

To enable and disable tracing at the database instance level:

1. Start SQL*Plus, and connect to the database with administrator privileges.

2. Enable tracing at the database instance level.

The following example enables tracing for the orcl instance:

EXEC DBMS_MONITOR.DATABASE_TRACE_ENABLE(INSTANCE_NAME => 'orcl');

3. Execute the statements to be traced.

4. Disable tracing for the database instance.

The following example disables tracing for the orcl instance:

EXEC DBMS_MONITOR.DATABASE_TRACE_DISABLE(INSTANCE_NAME => 'orcl');

To enable and disable tracing at the session level:

1. Start SQL*Plus, and connect to the database with the desired credentials.

2. Enable tracing for the current session.

The following example enables tracing for the current session:

EXEC DBMS_SESSION.SET_SQL_TRACE(sql_trace => true);

3. Execute the statements to be traced.

4. Disable tracing for the current session.

The following example disables tracing for the current session:

EXEC DBMS_SESSION.SET_SQL_TRACE(sql_trace => false);

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_MONITOR.DATABASE_TRACE_ENABLE

Chapter 23
Generating Output Files Using SQL Trace and TKPROF

23-12

Step 3: Generating Output Files with TKPROF
TKPROF accepts as input a trace file produced by the SQL Trace facility, and it produces a
formatted output file. TKPROF can also generate execution plans.

After the SQL Trace facility has generated trace files, you can:

• Run TKPROF on each individual trace file, producing several formatted output files, one for
each session.

• Concatenate the trace files, and then run TKPROF on the result to produce a formatted
output file for the entire instance.

• Run the TRCSESS command-line utility to consolidate tracing information from several
trace files, then run TKPROF on the result.

TKPROF does not report COMMIT and ROLLBACK statements recorded in the trace file.

Note:

The following SQL statements are truncated to 25 characters in the SQL Trace file:

SET ROLE
GRANT
ALTER USER
ALTER ROLE
CREATE USER
CREATE ROLE

Example 23-1 TKPROF Output

SELECT * FROM emp, dept
WHERE emp.deptno = dept.deptno;

call count cpu elapsed disk query current rows
---- ------- ------- --------- -------- -------- ------- ------
Parse 1 0.16 0.29 3 13 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.03 0.26 2 2 4 14

Misses in library cache during parse: 1
Parsing user id: (8) SCOTT

Rows Execution Plan
------- --- 14 MERGE JOIN
 4 SORT JOIN
 4 TABLE ACCESS (FULL) OF 'DEPT'
14 SORT JOIN
14 TABLE ACCESS (FULL) OF 'EMP'

For this statement, TKPROF output includes the following information:

• The text of the SQL statement

Chapter 23
Generating Output Files Using SQL Trace and TKPROF

23-13

• The SQL Trace statistics in tabular form

• The number of library cache misses for the parsing and execution of the statement.

• The user initially parsing the statement.

• The execution plan generated by EXPLAIN PLAN.

TKPROF also provides a summary of user level statements and recursive SQL calls for the
trace file.

Step 4: Storing SQL Trace Facility Statistics
You might want to keep a history of the statistics generated by the SQL Trace facility for an
application, and compare them over time.

TKPROF can generate a SQL script that creates a table and inserts rows of statistics into it. This
script contains the following:

• A CREATE TABLE statement that creates an output table named TKPROF_TABLE.

• INSERT statements that add rows of statistics, one for each traced SQL statement, to
TKPROF_TABLE.

After running TKPROF, run this script to store the statistics in the database.

Generating the TKPROF Output SQL Script
When you run TKPROF, use the INSERT parameter to specify the name of the generated SQL
script.

If you omit the INSERT parameter, then TKPROF does not generate a script.

Editing the TKPROF Output SQL Script
After TKPROF has created the SQL script, you might want to edit the script before running it.

If you have created an output table for previously collected statistics, and if you want to add
new statistics to this table, then remove the CREATE TABLE statement from the script. The script
then inserts the new rows into the existing table. If you have created multiple output tables,
perhaps to store statistics from different databases in different tables, then edit the CREATE
TABLE and INSERT statements to change the name of the output table.

Querying the Output Table
After you have created the output table, query using a SELECT statement.

The following CREATE TABLE statement creates the TKPROF_TABLE:

CREATE TABLE TKPROF_TABLE (

DATE_OF_INSERT DATE,
CURSOR_NUM NUMBER,
DEPTH NUMBER,
USER_ID NUMBER,
PARSE_CNT NUMBER,
PARSE_CPU NUMBER,
PARSE_ELAP NUMBER,
PARSE_DISK NUMBER,

Chapter 23
Generating Output Files Using SQL Trace and TKPROF

23-14

PARSE_QUERY NUMBER,
PARSE_CURRENT NUMBER,
PARSE_MISS NUMBER,
EXE_COUNT NUMBER,
EXE_CPU NUMBER,
EXE_ELAP NUMBER,
EXE_DISK NUMBER,
EXE_QUERY NUMBER,
EXE_CURRENT NUMBER,
EXE_MISS NUMBER,
EXE_ROWS NUMBER,
FETCH_COUNT NUMBER,
FETCH_CPU NUMBER,
FETCH_ELAP NUMBER,
FETCH_DISK NUMBER,
FETCH_QUERY NUMBER,
FETCH_CURRENT NUMBER,
FETCH_ROWS NUMBER,
CLOCK_TICKS NUMBER,
SQL_STATEMENT LONG);

Most output table columns correspond directly to the statistics that appear in the formatted
output file. For example, the PARSE_CNT column value corresponds to the count statistic for the
parse step in the output file.

The columns in the following table help you identify a row of statistics.

Table 23-2 TKPROF_TABLE Columns for Identifying a Row of Statistics

Column Description

SQL_STATEMENT This is the SQL statement for which the SQL Trace facility collected the row
of statistics. Because this column has data type LONG, you cannot use it in
expressions or WHERE clause conditions.

DATE_OF_INSERT This is the date and time when the row was inserted into the table. This
value is different from the time when the SQL Trace facility collected the
statistics.

DEPTH This indicates the level of recursion at which the SQL statement was issued.
For example, a value of 0 indicates that a user issued the statement. A value
of 1 indicates that Oracle Database generated the statement as a recursive
call to process a statement with a value of 0 (a statement issued by a user).
A value of n indicates that Oracle Database generated the statement as a
recursive call to process a statement with a value of n-1.

USER_ID This identifies the user issuing the statement. This value also appears in the
formatted output file.

CURSOR_NUM Oracle Database uses this column value to keep track of the cursor to which
each SQL statement was assigned.

The output table does not store the statement's execution plan. The following query returns the
statistics from the output table. These statistics correspond to the formatted output shown in
"Example 23-7".

SELECT * FROM TKPROF_TABLE;

Chapter 23
Generating Output Files Using SQL Trace and TKPROF

23-15

Sample output appears as follows:

DATE_OF_INSERT CURSOR_NUM DEPTH USER_ID PARSE_CNT PARSE_CPU PARSE_ELAP
-------------- ---------- ----- ------- --------- --------- ----------
21-DEC-2017 1 0 8 1 16 22

PARSE_DISK PARSE_QUERY PARSE_CURRENT PARSE_MISS EXE_COUNT EXE_CPU
---------- ----------- ------------- ---------- --------- -------
 3 11 0 1 1 0

EXE_ELAP EXE_DISK EXE_QUERY EXE_CURRENT EXE_MISS EXE_ROWS FETCH_COUNT
-------- -------- --------- ----------- -------- -------- -----------
 0 0 0 0 0 0 1

FETCH_CPU FETCH_ELAP FETCH_DISK FETCH_QUERY FETCH_CURRENT FETCH_ROWS
--------- ---------- ---------- ----------- ------------- ----------
 2 20 2 2 4 10

SQL_STATEMENT

SELECT * FROM EMP, DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO

Guidelines for Interpreting TKPROF Output
While TKPROF provides a useful analysis, the most accurate measure of efficiency is the
performance of the application. At the end of the TKPROF output is a summary of the work that
the process performed during the period that the trace was running.

Guideline for Interpreting the Resolution of Statistics
Timing statistics have a resolution of one hundredth of a second. Therefore, any operation on a
cursor that takes a hundredth of a second or less might not be timed accurately.

Keep the time limitation in mind when interpreting statistics. In particular, be careful when
interpreting the results from simple queries that execute very quickly.

Guideline for Recursive SQL Statements
Recursive SQL is additional SQL that Oracle Database must issue to execute a SQL statement
issued by a user.

Conceptually, recursive SQL is “side-effect SQL.” For example, if a session inserts a row into a
table that has insufficient space to hold that row, then the database makes recursive SQL calls
to allocate the space dynamically. The database also generates recursive calls when data
dictionary information is not available in memory and so must be retrieved from disk.

If recursive calls occur while the SQL Trace facility is enabled, then TKPROF produces statistics
for the recursive SQL statements and marks them clearly as recursive SQL statements in the
output file. You can suppress the listing of Oracle Database internal recursive calls (for
example, space management) in the output file by setting the SYS command-line parameter to
NO. The statistics for a recursive SQL statement are included in the listing for that statement,
not in the listing for the SQL statement that caused the recursive call. So, when you are
calculating the total resources required to process a SQL statement, consider the statistics for
that statement and those for recursive calls caused by that statement.

Chapter 23
Guidelines for Interpreting TKPROF Output

23-16

Note:

Recursive SQL statistics are not included for SQL-level operations.

Guideline for Deciding Which Statements to Tune
You must determine which SQL statements use the most CPU or disk resource.

If the TIMED_STATISTICS parameter is enabled, then you can find high CPU activity in the CPU
column. If TIMED_STATISTICS is not enabled, then check the QUERY and CURRENT columns.

With the exception of locking problems and inefficient PL/SQL loops, neither the CPU time nor
the elapsed time is necessary to find problem statements. The key is the number of block
visits, both query (that is, subject to read consistency) and current (that is, not subject to read
consistency). Segment headers and blocks that are going to be updated are acquired in
current mode, but all query and subquery processing requests the data in query mode. These
are precisely the same measures as the instance statistics CONSISTENT GETS and DB BLOCK
GETS. You can find high disk activity in the disk column.

The following listing shows TKPROF output for one SQL statement as it appears in the output
file:

SELECT *
FROM emp, dept
WHERE emp.deptno = dept.deptno;

call count cpu elapsed disk query current rows
---- ------- ------- --------- -------- -------- ------- ------
Parse 11 0.08 0.18 0 0 0 0
Execute 11 0.23 0.66 0 3 6 0
Fetch 35 6.70 6.83 100 12326 2 824
--
total 57 7.01 7.67 100 12329 8 826

Misses in library cache during parse: 0

If it is acceptable to have 7.01 CPU seconds and to retrieve 824 rows, then you need not look
any further at this trace output. In fact, a major use of TKPROF reports in a tuning exercise is to
eliminate processes from the detailed tuning phase.

The output indicates that 10 unnecessary parse call were made (because 11 parse calls exist
for this single statement) and that array fetch operations were performed. More rows were
fetched than there were fetches performed. A large gap between CPU and elapsed timings
indicates Physical I/Os.

See Also:

"Example 23-4"

Chapter 23
Guidelines for Interpreting TKPROF Output

23-17

Guidelines for Avoiding Traps in TKPROF Interpretation
When interpreting TKPROF output, it helps to be aware of common traps.

Guideline for Avoiding the Argument Trap
If you are not aware of the values being bound at run time, then it is possible to fall into the
argument trap.

EXPLAIN PLAN cannot determine the type of a bind variable from the text of SQL statements,
and it always assumes that the type is VARCHAR. If the bind variable is actually a number or a
date, then TKPROF can cause implicit data conversions, which can cause inefficient plans to be
executed. To avoid this situation, experiment with different data types in the query, and perform
the conversion yourself.

Guideline for Avoiding the Read Consistency Trap
Without knowing that an uncommitted transaction had made a series of updates to a column, it
is difficult to see why so many block visits would be incurred.

Such cases are not normally repeatable. If the process were run again, it is unlikely that
another transaction would interact with it in the same way.

SELECT name_id
FROM cq_names
WHERE name = 'FLOOR';

call count cpu elapsed disk query current rows
---- ----- --- ------- ---- ----- ------- ----
Parse 1 0.10 0.18 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.11 0.21 2 101 0 1

Misses in library cache during parse: 1
Parsing user id: 01 (USER1)

Rows Execution Plan
---- --------- ----
 0 SELECT STATEMENT
 1 TABLE ACCESS (BY ROWID) OF 'CQ_NAMES'
 2 INDEX (RANGE SCAN) OF 'CQ_NAMES_NAME' (NON_UNIQUE)

Guideline for Avoiding the Schema Trap
In some cases, an apparently straightforward indexed query looks at many database blocks
and accesses them in current mode.

The following example shows an extreme (and thus easily detected) example of the schema
trap:

SELECT name_id
FROM cq_names
WHERE name = 'FLOOR';

Chapter 23
Guidelines for Interpreting TKPROF Output

23-18

call count cpu elapsed disk query current rows
-------- ------- -------- --------- ------- ------ ------- ----
Parse 1 0.06 0.10 0 0 0 0
Execute 1 0.02 0.02 0 0 0 0
Fetch 1 0.23 0.30 31 31 3 1

Misses in library cache during parse: 0
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT
 2340 TABLE ACCESS (BY ROWID) OF 'CQ_NAMES'
 0 INDEX (RANGE SCAN) OF 'CQ_NAMES_NAME' (NON-UNIQUE)

Two statistics suggest that the query might have been executed with a full table scan: the
current mode block visits, and the number of rows originating from the Table Access row
source in the plan. The explanation is that the required index was built after the trace file had
been produced, but before TKPROF had been run. Generating a new trace file gives the
following data:

SELECT name_id
FROM cq_names
WHERE name = 'FLOOR';

call count cpu elapsed disk query current rows
----- ------ ------ -------- ----- ------ ------- -----
Parse 1 0.01 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 2 0 1

Misses in library cache during parse: 0
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT
 1 TABLE ACCESS (BY ROWID) OF 'CQ_NAMES'
 2 INDEX (RANGE SCAN) OF 'CQ_NAMES_NAME' (NON-UNIQUE)

In the correct version, the parse call took 10 milliseconds of CPU time and 20 milliseconds of
elapsed time, but the query apparently took no time to execute and perform the fetch. These
anomalies arise because the clock tick of 10 milliseconds is too long relative to the time taken
to execute and fetch the data. In such cases, it is important to get many executions of the
statements, so that you have statistically valid numbers.

Guideline for Avoiding the Time Trap
In some cases, a query takes an inexplicably long time.

For example, the following update of 7 rows executes in 19 seconds:

UPDATE cq_names
 SET ATTRIBUTES = lower(ATTRIBUTES)
 WHERE ATTRIBUTES = :att

Chapter 23
Guidelines for Interpreting TKPROF Output

23-19

call count cpu elapsed disk query current rows
-------- ------- -------- --------- -------- -------- ------- ----------
Parse 1 0.06 0.24 0 0 0 0
Execute 1 0.62 19.62 22 526 12 7
Fetch 0 0.00 0.00 0 0 0 0

Misses in library cache during parse: 1
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 UPDATE STATEMENT
 2519 TABLE ACCESS (FULL) OF 'CQ_NAMES'

The explanation is interference from another transaction. In this case, another transaction held
a shared lock on the table cq_names for several seconds before and after the update was
issued. It takes experience to diagnose that interference effects are occurring. On the one
hand, comparative data is essential when the interference is contributing only a short delay (or
a small increase in block visits in the previous example). However, if the interference
contributes only modest overhead, and if the statement is essentially efficient, then its statistics
may not require analysis.

Application Tracing Utilities
The Oracle tracing utilities are TKPROF and TRCSESS.

TRCSESS
The TRCSESS utility consolidates trace output from selected trace files based on user-
specified criteria.

After TRCSESS merges the trace information into a single output file, TKPROF can process
the output file.

Purpose
TRCSESS is useful for consolidating the tracing of a particular session for performance or
debugging purposes.

Tracing a specific session is usually not a problem in the dedicated server model because one
process serves a session during its lifetime. You can see the trace information for the session
from the trace file belonging to the server process. However, in a shared server configuration,
a user session is serviced by different processes over time. The trace for the user session is
scattered across different trace files belonging to different processes, which makes it difficult to
get a complete picture of the life cycle of a session.

Guidelines
You must specify one of the session, clientid, service, action, or module options.

If you specify multiple options, then TRCSESS consolidates all trace files that satisfy the
specified criteria into the output file.

Chapter 23
Application Tracing Utilities

23-20

Syntax

trcsess [output=output_file_name]
 [session=session_id]
 [clientid=client_id]
 [service=service_name]
 [action=action_name]
 [module=module_name]
 [trace_files]

Options
TRCSESS supports a number of command-line options.

Argument Description

output Specifies the file where the output is generated. If this option is not specified, then
the utility writes to standard output.

session Consolidates the trace information for the session specified. The session identifier
is a combination of session index and session serial number, such as 21.2371.
You can locate these values in the V$SESSION view.

clientid Consolidates the trace information for the specified client ID.

service Consolidates the trace information for the specified service name.

action Consolidates the trace information for the specified action name.

module Consolidates the trace information for the specified module name.

trace_files Lists the trace file names, separated by spaces, in which TRCSESS should look for
trace information. You can use the wildcard character (*) to specify the trace file
names. If you do not specify trace files, then TRCSESS uses all files in the current
directory as input.

Examples
This section demonstrates common TRCSESS use cases.

Example 23-2 Tracing a Single Session

This sample output of TRCSESS shows the container of traces for a particular session. In this
example, the session index and serial number equals 21.2371. All files in current directory are
taken as input.

trcsess session=21.2371

Example 23-3 Specifying Multiple Trace Files

The following example specifies two trace files:

trcsess session=21.2371 main_12359.trc main_12995.trc

Chapter 23
Application Tracing Utilities

23-21

The sample output is similar to the following:

[PROCESS ID = 12359]
*** 2014-04-02 09:48:28.376
PARSING IN CURSOR #1 len=17 dep=0 uid=27 oct=3 lid=27 tim=868373970961
hv=887450622 ad='22683fb4'
select * from cat
END OF STMT
PARSE #1:c=0,e=339,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=868373970944
EXEC #1:c=0,e=221,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=868373971411
FETCH #1:c=0,e=791,p=0,cr=7,cu=0,mis=0,r=1,dep=0,og=4,tim=868373972435
FETCH #1:c=0,e=1486,p=0,cr=20,cu=0,mis=0,r=6,dep=0,og=4,tim=868373986238
*** 2014-04-02 10:03:58.058
XCTEND rlbk=0, rd_only=1
STAT #1 id=1 cnt=7 pid=0 pos=1 obj=0 op='FILTER '
STAT #1 id=2 cnt=7 pid=1 pos=1 obj=18 op='TABLE ACCESS BY INDEX ROWID OBJ$ '
STAT #1 id=3 cnt=7 pid=2 pos=1 obj=37 op='INDEX RANGE SCAN I_OBJ2 '
STAT #1 id=4 cnt=0 pid=1 pos=2 obj=4 op='TABLE ACCESS CLUSTER TAB$J2 '
STAT #1 id=5 cnt=6 pid=4 pos=1 obj=3 op='INDEX UNIQUE SCAN I_OBJ# '
[PROCESS ID=12995]
*** 2014-04-02 10:04:32.738
Archiving is disabled

TKPROF
The TKPROF program formats the contents of the trace file and places the output into a
readable output file.

TKPROF can also do the following:

• Create a SQL script that stores the statistics in the database

• Determine the execution plans of SQL statements

Note:

If the cursor for a SQL statement is not closed, then TKPROF output does not
automatically include the actual execution plan of the SQL statement. In this
situation, use the EXPLAIN option with TKPROF to generate an execution plan.

TKPROF reports each statement executed with the resources it has consumed, the number of
times it was called, and the number of rows which it processed.

Purpose
TKPROF can locate statements that are consuming the greatest resources.

With baselines available, you can assess whether the resources used are reasonable given
the work performed.

Guidelines
The input and output files are the only required arguments.

Chapter 23
Application Tracing Utilities

23-22

If you invoke TKPROF without arguments, then the tool displays online help.

Syntax

tkprof input_file output_file
 [waits=yes|no]
 [sort=option]
 [print=n]
 [aggregate=yes|no]
 [insert=filename3]
 [sys=yes|no]
 [table=schema.table]
 [explain=user/password]
 [record=filename4]
 [width=n]

Options
TKPROF supports a number of command-line options.

Table 23-3 TKPROF Arguments

Argument Description

input_file Specifies the input file, a trace file containing statistics produced by the SQL Trace
facility. This file can be either a trace file produced for a single session, or a file
produced by concatenating individual trace files from multiple sessions.

output_file Specifies the file to which TKPROF writes its formatted output.

WAITS Specifies whether to record summary for any wait events found in the trace file.
Valid values are YES (default) and NO.

Chapter 23
Application Tracing Utilities

23-23

Table 23-3 (Cont.) TKPROF Arguments

Argument Description

SORT Sorts traced SQL statements in descending order of specified sort option before
listing them in the output file. If multiple options are specified, then the output is
sorted in descending order by the sum of the values specified in the sort options. If
you omit this parameter, then TKPROF lists statements into the output file in order of
first use. Sort options are listed as follows:

• PRSCNT - Number of times parsed

• PRSCPU - CPU time spent parsing

• PRSELA - Elapsed time spent parsing

• PRSDSK - Number of physical reads from disk during parse

• PRSQRY - Number of consistent mode block reads during parse

• PRSCU - Number of current mode block reads during parse

• PRSMIS - Number of library cache misses during parse

• EXECNT - Number of executions

• EXECPU - CPU time spent executing

• EXEELA - Elapsed time spent executing

• EXEDSK - Number of physical reads from disk during execute

• EXEQRY - Number of consistent mode block reads during execute

• EXECU - Number of current mode block reads during execute

• EXEROW - Number of rows processed during execute

• EXEMIS - Number of library cache misses during execute

• FCHCNT - Number of fetches

• FCHCPU - CPU time spent fetching

• FCHELA - Elapsed time spent fetching

• FCHDSK - Number of physical reads from disk during fetch

• FCHQRY - Number of consistent mode block reads during fetch

• FCHCU - Number of current mode block reads during fetch

• FCHROW - Number of rows fetched

• USERID - ID of user that parsed the cursor

PRINT Lists only the first integer sorted SQL statements from the output file. If you omit
this parameter, then TKPROF lists all traced SQL statements. This parameter does
not affect the optional SQL script. The SQL script always generates insert data for
all traced SQL statements.

AGGREGATE If you specify AGGREGATE = NO, then TKPROF does not aggregate multiple users of
the same SQL text.

INSERT Creates a SQL script that stores the trace file statistics in the database. TKPROF
creates this script with the name filename3. This script creates a table and
inserts a row of statistics for each traced SQL statement into the table.

SYS Enables and disables the listing of SQL statements issued by the user SYS, or
recursive SQL statements, into the output file. The default value of YES causes
TKPROF to list these statements. The value of NO causes TKPROF to omit them. This
parameter does not affect the optional SQL script. The SQL script always inserts
statistics for all traced SQL statements, including recursive SQL statements.

Chapter 23
Application Tracing Utilities

23-24

Table 23-3 (Cont.) TKPROF Arguments

Argument Description

TABLE Specifies the schema and name of the table into which TKPROF temporarily places
execution plans before writing them to the output file. If the specified table exists,
then TKPROF deletes all rows in the table, uses it for the EXPLAIN PLAN statement
(which writes more rows into the table), and then deletes those rows. If this table
does not exist, then TKPROF creates it, uses it, and then drops it.

The specified user must be able to issue INSERT, SELECT, and DELETE statements
against the table. If the table does not exist, then the user must also be able to
issue CREATE TABLE and DROP TABLE statements.

This option enables multiple users to run TKPROF concurrently with the same
database user account in the EXPLAIN value. These users can specify different
TABLE values and avoid destructively interfering with each other when processing
the temporary plan table.

TKPROF supports the following combinations:

• The EXPLAIN parameter without the TABLE parameter

TKPROF uses the table PROF$PLAN_TABLE in the schema of the user specified
by the EXPLAIN parameter

• The TABLE parameter without the EXPLAIN parameter

TKPROF ignores the TABLE parameter.

If no plan table exists, then TKPROF creates the table PROF$PLAN_TABLE and then
drops it at the end.

EXPLAIN Determines the execution plan for each SQL statement in the trace file and writes
these execution plans to the output file. TKPROF also displays the number of rows
processed by each step of the execution plan.

TKPROF determines execution plans by issuing the EXPLAIN PLAN statement after
connecting to Oracle Database with the user and password specified in this
parameter. The specified user must have CREATE SESSION system privileges.
TKPROF takes longer to process a large trace file if the EXPLAIN option is used.

Note: Trace files generated immediately after instance startup contain data that
reflects the activity of the startup process. In particular, they reflect a
disproportionate amount of I/O activity as caches in the system global area (SGA)
are filled. For the purposes of tuning, ignore such trace files.

RECORD Creates a SQL script with the specified filename with all of the nonrecursive SQL
in the trace file. You can use this script to replay the user events from the trace file.

WIDTH An integer that controls the output line width of some TKPROF output, such as the
explain plan. This parameter is useful for post-processing of TKPROF output.

Output
This section explains the TKPROF output.

Identification of User Issuing the SQL Statement in TKPROF
TKPROF lists the user ID of the user issuing each SQL statement.

If the SQL Trace input file contained statistics from multiple users, and if the statement was
issued by multiple users, then TKPROF lists the ID of the last user to parse the statement. The
user ID of all database users appears in the data dictionary in the column ALL_USERS.USER_ID.

Chapter 23
Application Tracing Utilities

23-25

Tabular Statistics in TKPROF
TKPROF lists the statistics for a SQL statement returned by the SQL Trace facility in rows and
columns.

Each row corresponds to one of three steps of SQL statement processing. Statistics are
identified by the value of the CALL column. See Table 23-4.

Table 23-4 CALL Column Values

CALL Value Meaning

PARSE Translates the SQL statement into an execution plan, including checks for
proper security authorization and checks for the existence of tables, columns,
and other referenced objects.

EXECUTE Actual execution of the statement by Oracle Database. For INSERT, UPDATE,
DELETE, and MERGE statements, this modifies the data. For SELECT
statements, this identifies the selected rows.

FETCH Retrieves rows returned by a query. Fetches are only performed for SELECT
statements.

The other columns of the SQL Trace facility output are combined statistics for all parses,
executions, and fetches of a statement. The sum of query and current is the total number of
buffers accessed, also called Logical I/Os (LIOs). See Table 23-5.

Table 23-5 SQL Trace Statistics for Parses, Executes, and Fetches.

SQL Trace Statistic Meaning

COUNT Number of times a statement was parsed, executed, or fetched.

CPU Total CPU time in seconds for all parse, execute, or fetch calls for the
statement. This value is zero (0) if TIMED_STATISTICS is not enabled.

ELAPSED Total elapsed time in seconds for all parse, execute, or fetch calls for the
statement. This value is zero (0) if TIMED_STATISTICS is not enabled.

DISK Total number of data blocks physically read from the data files on disk for all
parse, execute, or fetch calls.

QUERY Total number of buffers retrieved in consistent mode for all parse, execute, or
fetch calls. Usually, buffers are retrieved in consistent mode for queries.

CURRENT Total number of buffers retrieved in current mode. Buffers are retrieved in
current mode for statements such as INSERT, UPDATE, and DELETE.

Statistics about the processed rows appear in the ROWS column. The column shows the number
of rows processed by the SQL statement. This total does not include rows processed by
subqueries of the SQL statement. For SELECT statements, the number of rows returned
appears for the fetch step. For UPDATE, DELETE, and INSERT statements, the number of rows
processed appears for the execute step.

Chapter 23
Application Tracing Utilities

23-26

Note:

The row source counts are displayed when a cursor is closed. In SQL*Plus, there is
only one user cursor, so each statement executed causes the previous cursor to be
closed; therefore, the row source counts are displayed. PL/SQL has its own cursor
handling and does not close child cursors when the parent cursor is closed. Exiting or
reconnecting causes the counts to be displayed.

Library Cache Misses in TKPROF
TKPROF also lists the number of library cache misses resulting from parse and execute steps
for each SQL statement.

These statistics appear on separate lines following the tabular statistics. If the statement
resulted in no library cache misses, then TKPROF does not list the statistic. In "Examples", the
statement resulted in one library cache miss for the parse step and no misses for the execute
step.

Row Source Operations in TKPROF
In the TKPROF output, row source operations show the number of rows processed for each
operation executed on the rows, and additional row source information, such as physical reads
and writes.

Table 23-6 Row Source Operations

Row Source Operation Meaning

cr Consistent reads performed by the row source.

r Physical reads performed by the row source

w Physical writes performed by the row source

time Time in microseconds

In the following sample TKPROF output, note the cr, r, w, and time values under the Row
Source Operation column:

Rows Row Source Operation
------- ---
 0 DELETE (cr=43141 r=266947 w=25854 time=60235565 us)
 28144 HASH JOIN ANTI (cr=43057 r=262332 w=25854 time=48830056 us)
 51427 TABLE ACCESS FULL STATS$SQLTEXT (cr=3465 r=3463 w=0 time=865083 us)
 647529 INDEX FAST FULL SCAN STATS$SQL_SUMMARY_PK
 (cr=39592 r=39325 w=0 time=10522877 us) (object id 7409)

Wait Event Information in TKPROF
If wait event information exists, then the TKPROF output includes a section on wait events.

Output looks similar to the following:

Elapsed times include waiting on following events:

Chapter 23
Application Tracing Utilities

23-27

 Event waited on Times Waited Max. Wait Total Waited
 --------------------------- ------------ --------- ------------
 db file sequential read 8084 0.12 5.34
 direct path write 834 0.00 0.00
 direct path write temp 834 0.00 0.05
 db file parallel read 8 1.53 5.51
 db file scattered read 4180 0.07 1.45
 direct path read 7082 0.00 0.05
 direct path read temp 7082 0.00 0.44
 rdbms ipc reply 20 0.00 0.01
 SQL*Net message to client 1 0.00 0.00
 SQL*Net message from client 1 0.00 0.00

In addition, wait events are summed for the entire trace file at the end of the file.

To ensure that wait events information is written to the trace file for the session, run the
following SQL statement:

ALTER SESSION SET EVENTS '10046 trace name context forever, level 8';

Examples
This section demonstrates common TKPROF use cases.

Example 23-4 Printing the Most Resource-Intensive Statements

If you are processing a large trace file using a combination of SORT parameters and the PRINT
parameter, then you can produce a TKPROF output file containing only the highest resource-
intensive statements. The following statement prints the 10 statements in the trace file that
have generated the most physical I/O:

TKPROF ora53269.trc ora53269.prf SORT = (PRSDSK, EXEDSK, FCHDSK) PRINT = 10

Example 23-5 Generating a SQL Script

This example runs TKPROF, accepts a trace file named examp12_jane_fg_sqlplus_007.trc,
and writes a formatted output file named outputa.prf:

TKPROF examp12_jane_fg_sqlplus_007.trc OUTPUTA.PRF EXPLAIN=hr
 TABLE=hr.temp_plan_table_a INSERT=STOREA.SQL SYS=NO SORT=(EXECPU,FCHCPU)

This example is likely to be longer than a single line on the screen, and you might need to use
continuation characters, depending on the operating system.

Note the other parameters in this example:

• The EXPLAIN value causes TKPROF to connect as the user hr and use the EXPLAIN PLAN
statement to generate the execution plan for each traced SQL statement. You can use this
to get access paths and row source counts.

Chapter 23
Application Tracing Utilities

23-28

Note:

If the cursor for a SQL statement is not closed, then TKPROF output does not
automatically include the actual execution plan of the SQL statement. In this
situation, you can use the EXPLAIN option with TKPROF to generate an execution
plan.

• The TABLE value causes TKPROF to use the table temp_plan_table_a in the schema scott
as a temporary plan table.

• The INSERT value causes TKPROF to generate a SQL script named STOREA.SQL that stores
statistics for all traced SQL statements in the database.

• The SYS parameter with the value of NO causes TKPROF to omit recursive SQL statements
from the output file. In this way, you can ignore internal Oracle Database statements such
as temporary table operations.

• The SORT value causes TKPROF to sort the SQL statements in order of the sum of the CPU
time spent executing and the CPU time spent fetching rows before writing them to the
output file. For greatest efficiency, always use SORT parameters.

Example 23-6 TKPROF Header

This example shows a sample header for the TKPROF report.

TKPROF: Release 12.1.0.0.2

Copyright (c) 1982, 2012, Oracle and/or its affiliates. All rights reserved.

Trace file: /disk1/oracle/log/diag/rdbms/orcla/orcla/trace/orcla_ora_917.trc
Sort options: default

count = number of times OCI procedure was executed
cpu = cpu time in seconds executing
elapsed = elapsed time in seconds executing
disk = number of physical reads of buffers from disk
query = number of buffers gotten for consistent read
current = number of buffers gotten in current mode (usually for update)
rows = number of rows processed by the fetch or execute call

Example 23-7 TKPROF Body

This example shows a sample body for a TKPROF report.

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.01 0.00 0 0 0 0

Misses in library cache during parse: 1
Optimizer mode: FIRST_ROWS

Chapter 23
Application Tracing Utilities

23-29

Parsing user id: 44

Elapsed times include waiting on following events:
 Event waited on Times Max. Wait Total Waited
 -- Waited ---------- ------------
 SQL*Net message to client 1 0.00 0.00
 SQL*Net message from client 1 28.59 28.59
**

select condition
from
 cdef$ where rowid=:1

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 2 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 2 0 1

Misses in library cache during parse: 1
Optimizer mode: CHOOSE
Parsing user id: SYS (recursive depth: 1)

Rows Row Source Operation
------- ---
 1 TABLE ACCESS BY USER ROWID OBJ#(31) (cr=1 r=0 w=0 time=151 us)

**

SELECT last_name, job_id, salary
 FROM employees
WHERE salary =
 (SELECT max(salary) FROM employees)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.02 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.00 0.00 0 15 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 0.02 0.01 0 15 0 1

Misses in library cache during parse: 1
Optimizer mode: FIRST_ROWS
Parsing user id: 44

Rows Row Source Operation
------- ---
 1 TABLE ACCESS FULL EMPLOYEES (cr=15 r=0 w=0 time=1743 us)
 1 SORT AGGREGATE (cr=7 r=0 w=0 time=777 us)
 107 TABLE ACCESS FULL EMPLOYEES (cr=7 r=0 w=0 time=655 us)

Elapsed times include waiting on following events:
 Event waited on Times Max. Wait Total Waited

Chapter 23
Application Tracing Utilities

23-30

 -- Waited ---------- ------------
 SQL*Net message to client 2 0.00 0.00
 SQL*Net message from client 2 9.62 9.62
**

**
 delete
 from stats$sqltext st
 where (hash_value, text_subset) not in
 (select --+ hash_aj
 hash_value, text_subset
 from stats$sql_summary ss
 where ((snap_id < :lo_snap
 or snap_id > :hi_snap
)
 and dbid = :dbid
 and instance_number = :inst_num
)
 or (dbid != :dbid
 or instance_number != :inst_num)
)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 29.60 60.68 266984 43776 131172 28144
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 29.60 60.68 266984 43776 131172 28144

Misses in library cache during parse: 1
Misses in library cache during execute: 1
Optimizer mode: CHOOSE
Parsing user id: 22

Rows Row Source Operation
------- ---
 0 DELETE (cr=43141 r=266947 w=25854 time=60235565 us)
 28144 HASH JOIN ANTI (cr=43057 r=262332 w=25854 time=48830056 us)
 51427 TABLE ACCESS FULL STATS$SQLTEXT (cr=3465 r=3463 w=0 time=865083 us)
 647529 INDEX FAST FULL SCAN STATS$SQL_SUMMARY_PK
 (cr=39592 r=39325 w=0 time=10522877 us) (object id 7409)

Elapsed times include waiting on following events:
 Event waited on Times Max. Wait Total Waited
 -- Waited ---------- ------------
 db file sequential read 8084 0.12 5.34
 direct path write 834 0.00 0.00
 direct path write temp 834 0.00 0.05
 db file parallel read 8 1.53 5.51
 db file scattered read 4180 0.07 1.45
 direct path read 7082 0.00 0.05
 direct path read temp 7082 0.00 0.44
 rdbms ipc reply 20 0.00 0.01
 SQL*Net message to client 1 0.00 0.00

Chapter 23
Application Tracing Utilities

23-31

 SQL*Net message from client 1 0.00 0.00
**

Example 23-8 TKPROF Summary

This example that shows a summary for the TKPROF report.

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 4 0.04 0.01 0 0 0 0
Execute 5 0.00 0.04 0 0 0 0
Fetch 2 0.00 0.00 0 15 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 11 0.04 0.06 0 15 0 1

Misses in library cache during parse: 4
Misses in library cache during execute: 1
Elapsed times include waiting on following events:
 Event waited on Times Max. Wait Total Waited
 -- Waited ---------- ------------
 SQL*Net message to client 6 0.00 0.00
 SQL*Net message from client 5 77.77 128.88

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 2 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 2 0 1

Misses in library cache during parse: 1
 5 user SQL statements in session.
 1 internal SQL statements in session.
 6 SQL statements in session.
**
Trace file: main_ora_27621.trc
Trace file compatibility: 9.00.01
Sort options: default
 1 session in tracefile.
 5 user SQL statements in trace file.
 1 internal SQL statements in trace file.
 6 SQL statements in trace file.
 6 unique SQL statements in trace file.
 76 lines in trace file.
 128 elapsed seconds in trace file.

Views for Application Tracing
You can use data dictionary and V$ views to monitor tracing.

Chapter 23
Views for Application Tracing

23-32

This section includes the following topics:

Views Relevant for Trace Statistics
You can display the statistics that have been gathered with the following V$ and DBA views.

Table 23-7 Diagnostic Views

View Description

DBA_ENABLED_AGGREGATIONS Accumulated global statistics for the currently enabled statistics

V$CLIENT_STATS Accumulated statistics for a specified client identifier

V$SERVICE_STATS Accumulated statistics for a specified service

V$SERV_MOD_ACT_STATS Accumulated statistics for a combination of specified service,
module, and action

V$SERVICEMETRIC Accumulated statistics for elapsed time of database calls and for
CPU use

V$DIAG_TRACE_FILE Information about all trace files in ADR for the current container

V$DIAG_APP_TRACE_FILE Information about all trace files that contain application trace data
(SQL_TRACE or OPTIMIZER_TRACE event data) in ADR for the
current container

V$DIAG_TRACE_FILE_CONTENTS Trace data in the trace files in ADR

V$DIAG_SQL_TRACE_RECORDS SQL_TRACE data in the trace files in ADR

V$DIAG_OPT_TRACE_RECORDS Optimizer trace event data in the trace files in ADR

V$DIAG_SESS_SQL_TRACE_RECORDS SQL_TRACE data in the trace files in ADR for the current user session

V$DIAG_SESS_OPT_TRACE_RECORDS Optimizer trace event data in the trace files in ADR for the current
user session

V$DIAG_ALERT_EXT Contents of the XML-based alert log in ADR for the current container

See Also:

Oracle Database Reference for information about V$ and data dictionary views

Views Related to Enabling Tracing
A Cloud Control report or the DBA_ENABLED_TRACES view can display outstanding traces.

In the DBA_ENABLED_TRACES view, you can determine detailed information about how a trace
was enabled, including the trace type. The trace type specifies whether the trace is enabled for
client identifier, session, service, database, or a combination of service, module, and action.

Chapter 23
Views for Application Tracing

23-33

Part VIII
Automatic SQL Tuning

SQL Tuning Advisor and SQL Access Advisor are built-in tools that provide SQL tuning
recommendations.

24
Managing SQL Tuning Sets

You can use SQL tuning sets to group statements and related metadata into a single object,
which you can use as input to SQL tuning tools.

About SQL Tuning Sets
A SQL tuning set (STS) is a database object that you can use as input to tuning tools.

The database stores SQL tuning sets in a database-provided schema. An STS includes:

• A set of SQL statements

• Associated execution context, such as user schema, application module name and action,
list of bind values, and the environment for SQL compilation of the cursor

• Associated basic execution statistics, such as elapsed time, CPU time, buffer gets, disk
reads, rows processed, cursor fetches, the number of executions, the number of complete
executions, optimizer cost, and the command type

• Associated execution plans and row source statistics for each SQL statement (optional)

Note:

Data visibility and privilege requirements may differ when using an STS with
pluggable databases. See Oracle Database Administrator’s Guide for a table that
summarizes how manageability features work in a container database (CDB).

Purpose of SQL Tuning Sets
An STS enables you to group SQL statements and related metadata in a single database
object, which you can use to meet your tuning goals.

Specifically, SQL tuning sets achieve the following goals:

• Providing input to the performance tuning advisors

You can use an STS as input to multiple database advisors, including SQL Tuning Advisor,
SQL Access Advisor, and SQL Performance Analyzer.

• Transporting SQL between databases

You can export SQL tuning sets from one database to another, enabling transfer of SQL
workloads between databases for remote performance diagnostics and tuning. When
suboptimally performing SQL statements occur on a production database, developers may
not want to investigate and tune directly on the production database. The DBA can
transport the problematic SQL statements to a test database where the developers can
safely analyze and tune them.

24-1

Concepts for SQL Tuning Sets
To create an STS, you must load SQL statements into an STS from a source.

As shown in Figure 24-1, the source can be Automatic Workload Repository (AWR), the
shared SQL area, customized SQL provided by the user, trace files, or another STS.

Figure 24-1 SQL Tuning Sets

SQL Tuning
Advisor

SQL Access
Advisor

SQL Performance
Analyzer

Transport

Filter

Custom
SQL

AWR

Shared SQL
Area

SQL Trace
Files

STS

SQL tuning sets can do the following:

• Filter SQL statements using the application module name and action, or any execution
statistics

• Rank SQL statements based on any combination of execution statistics

• Serve as input to the advisors or transport it to a different database

Chapter 24
About SQL Tuning Sets

24-2

See Also:

Oracle Database Performance Tuning Guide to learn about AWR

User Interfaces for SQL Tuning Sets
You can use either Oracle Enterprise Manager Cloud Control (Cloud Control) or PL/SQL
packages to manage SQL tuning sets. Oracle recommends Cloud Control.

Accessing the SQL Tuning Sets Page in Cloud Control
The SQL Tuning Sets page in Cloud Control is the starting page from which you can perform
most operations relating to SQL tuning sets.

To access the SQL Tuning Sets page:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. From the Performance menu, select SQL, then SQL Tuning Sets.

The SQL Tuning Sets page appears, as shown in Figure 24-2.

Figure 24-2 SQL Tuning Sets

See Also:

Oracle Database 2 Day + Performance Tuning Guide

Chapter 24
About SQL Tuning Sets

24-3

Command-Line Interface to SQL Tuning Sets
On the command line, you can use the DBMS_SQLTUNE or DBMS_SQLSET packages to manage
SQL tuning sets.

You must have the ADMINISTER SQL TUNING SET system privilege to manage SQL tuning sets
that you own, or the ADMINISTER ANY SQL TUNING SET system privilege to manage any SQL
tuning sets.

The traditional package for managing SQL tuning sets is DBMS_SQLTUNE, which requires the
Oracle Tuning Pack. Starting in Oracle Database 18c, you can perform the same tasks with
DBMS_SQLSET, which does not require the Oracle Tuning Pack. In most cases, the name of the
subprogram in DBMS_SQLSET is identical to the name of the equivalent subprogram in
DBMS_SQLTUNE. The following table shows only the subprograms whose names differ.

Table 24-1 Naming Differences for SQL Tuning Set Subprograms

DBMS_SQLTUNE DBMS_SQLSET

ADD_SQLSET_REFERENCE ADD_REFERENCE
CAPTURE_CURSOR_CACHE_SQLSET CAPTURE_CURSOR_CACHE
CREATE_STGTAB_SQLSET CREATE_STGTAB
PACK_STGTAB_SQLSET PACK_STGTAB
REMAP_STGTAB_SQLSET REMAP_STGTAB
REVOVE_SQLSET_REFERENCE REMOVE_REFERENCE
UNPACK_STGTAB_SQLSET UNPACK_STGTAB

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_SQLTUNE and DBMS_SQLSET

Basic Tasks for Managing SQL Tuning Sets
You can use DBMS_SQLTUNE or DBMS_SQLSET to create, use, and delete SQL tuning sets. In most
cases, the relevant subprograms in these packages have identical names.

The following graphic shows the basic workflow.

Chapter 24
About SQL Tuning Sets

24-4

Figure 24-3 SQL Tuning Sets APIs

LOAD_SQLSET

Create a Tuning Task

CREATE_SQLSET

DROP_SQLSET

DELETE_SQLSET

UPDATE SQLSET

CREATE_STGTAB_SQLSET

PACK_STGTAB_SQLSET

Transport STS

UNPACK_STGTAB_SQLSET

Modify STS
Contents

Display
Contents
of STS

Create STS

Drop STS

Populate STS
with SQL

Optionally, transport
STS to different
database

SELECT_SQLSET

Typically, you perform STS operations in the following sequence:

1. Create a new STS.

"Creating a SQL Tuning Set Using CREATE_SQLSET" describes this task.

2. Load the STS with SQL statements and associated metadata.

"Loading a SQL Tuning Set Using LOAD_SQLSET" describes this task.

3. Optionally, display the contents of the STS.

"Querying a SQL Tuning Set" describes this task.

4. Optionally, update or delete the contents of the STS.

"Modifying a SQL Tuning Set Using UPDATE_SQLSET" describes this task.

5. Create a tuning task with the STS as input.

6. Optionally, transport the STS to another database.

"Transporting a SQL Tuning Set" describes this task.

7. Drop the STS when finished.

"Dropping a SQL Tuning Set Using DROP_SQLSET" describes this task.

Chapter 24
About SQL Tuning Sets

24-5

See Also:

"Command-Line Interface to SQL Tuning Sets" for the names of the equivalent
DBMS_SQLSET subprograms

Creating a SQL Tuning Set Using CREATE_SQLSET
Use the CREATE_SQLSET procedure in DBMS_SQLTUNE or DBMS_SQLSET to create an empty STS in
the database.

Using the function instead of the procedure causes the database to generate a name for the
STS. The following table describes some procedure parameters.

Table 24-2 DBMS_SQLSET.CREATE_SQLSET Parameters

Parameter Description

sqlset_name Name of the STS

description Optional description of the STS

Assumptions

This tutorial assumes that

• You want to create an STS named SQLT_WKLD_STS.

• You use DBMS_SQLTUNE instead of DBMS_SQLSET.

To create an STS:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Use the DBMS_SQLSET.CREATE_SQLSET procedure.

For example, execute the following PL/SQL program:

BEGIN
 DBMS_SQLSET.CREATE_SQLSET (
 sqlset_name => 'SQLT_WKLD_STS'
, description => 'STS to store SQL from the private SQL area'
);
END;

3. Optionally, confirm that the STS was created.

The following example queries the status of all SQL tuning sets owned by the current user:

COLUMN NAME FORMAT a20
COLUMN COUNT FORMAT 99999
COLUMN DESCRIPTION FORMAT a11

SELECT NAME, STATEMENT_COUNT AS "SQLCNT", DESCRIPTION
FROM USER_SQLSET;

Chapter 24
Creating a SQL Tuning Set Using CREATE_SQLSET

24-6

Sample output appears below:

NAME SQLCNT DESCRIPTION
-------------------- ------ -----------
SQLT_WKLD_STS 2 SQL Cache

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete reference
information

Loading a SQL Tuning Set Using LOAD_SQLSET
To load an STS with SQL statements, use the LOAD_SQLSET procedure in the DBMS_SQLTUNE or
DBMS_SQLSET package.

The standard sources for populating an STS are AWR, another STS, or the shared SQL area.
For both the workload repository and SQL tuning sets, predefined table functions can select
columns from the source to populate a new STS.

The following table describes some DBMS_SQLSET.LOAD_SQLSET procedure parameters.

Table 24-3 DBMS_SQLSET.LOAD_SQLSET Parameters

Parameter Description

populate_cursor Specifies the cursor reference from which to populate the STS.

load_option Specifies how the statements are loaded into the STS. The possible
values are INSERT (default), UPDATE, and MERGE.

The DBMS_SQLSET.SELECT_CURSOR_CACHE function collects SQL statements from the shared
SQL area according to the specified filter. This function returns one SQLSET_ROW per SQL ID or
PLAN_HASH_VALUE pair found in each data source.

Use the DBMS_SQLSET.CAPTURE_CURSOR_CACHE_SQLSET function (or the equivalent
DBMS_SQLSET.CAPTURE_CURSOR_CACHE) to repeatedly poll the shared SQL area over a specified
interval. This function is more efficient than repeatedly calling the SELECT_CURSOR_CACHE and
LOAD_SQLSET procedures. This function effectively captures the entire workload, as opposed to
the AWR, which only captures the workload of high-load SQL statements, or the LOAD_SQLSET
procedure, which accesses the data source only once.

Prerequisites

This tutorial has the following prerequisites:

• Filters provided to the SELECT_CURSOR_CACHE function are evaluated as part of SQL
statements run by the current user. As such, they are executed with that user's security
privileges and can contain any constructs and subqueries that user can access, but no
more.

• The current user must have privileges on the shared SQL area views.

Chapter 24
Loading a SQL Tuning Set Using LOAD_SQLSET

24-7

Assumptions

This tutorial assumes the following:

• You want to load the SQL tuning set named SQLT_WKLD_STS with statements from the
shared SQL area.

• You want to use DBMS_SQLSET rather than DBMS_SQLTUNE to load the STS.

To load an STS:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Run the DBMS_SQLSET.LOAD_SQLSET procedure.

For example, execute the following PL/SQL program to populate a SQL tuning set with all
cursor cache statements that belong to the sh schema:

DECLARE
 c_sqlarea_cursor DBMS_SQLSET.SQLSET_CURSOR;
BEGIN
 OPEN c_sqlarea_cursor FOR
 SELECT VALUE(p)
 FROM TABLE(
 DBMS_SQLSET.SELECT_CURSOR_CACHE(
 ' module = ''SQLT_WKLD'' AND parsing_schema_name = ''SH'' ')
) p;
-- load the tuning set
 DBMS_SQLSET.LOAD_SQLSET (
 sqlset_name => 'SQLT_WKLD_STS'
, populate_cursor => c_sqlarea_cursor
);
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete reference
information.

Querying a SQL Tuning Set
To read the contents of an STS after it has been created and populated, use the
SELECT_SQLSET function of DBMS_SQLTUNE or DBMS_SQLSET, optionally using filtering criteria.

Select the output of SELECT_SQLSET using a PL/SQL pipelined table function, which accepts a
collection of rows as input. You invoke the table function as the operand of the table operator in
the FROM list of a SELECT statement. The following table describes some SELECT_SQLSET
function parameters.

Chapter 24
Querying a SQL Tuning Set

24-8

Table 24-4 DBMS_SQLTUNE.SELECT_SQLSET Parameters

Parameter Description

basic_filter The SQL predicate to filter the SQL from the STS defined on attributes of the
SQLSET_ROW

object_filter Specifies the objects that exist in the object list of selected SQL from the
shared SQL area

The following table describes some attributes of the SQLSET_ROW object. These attributes
appears as columns when you query TABLE(DBMS_SQLTUNE.SELECT_SQLSET()).

Table 24-5 SQLSET_ROW Attributes

Parameter Description

parsing_schema_name Schema in which the SQL is parsed

elapsed_time Sum of the total number of seconds elapsed for this SQL statement

buffer_gets Total number of buffer gets (number of times the database accessed a block)
for this SQL statement

Assumptions

This tutorial assumes the following:

• You want to display the contents of an STS named SQLT_WKLD_STS.

• You are using DBMS_SQLTUNE instead of DBMS_SQLSET.

To display the contents of an STS:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Query the STS contents using the TABLE function.

For example, execute the following query:

COLUMN SQL_TEXT FORMAT a30
COLUMN SCH FORMAT a3
COLUMN ELAPSED FORMAT 999999999

SELECT SQL_ID, PARSING_SCHEMA_NAME AS "SCH", SQL_TEXT,
 ELAPSED_TIME AS "ELAPSED", BUFFER_GETS
FROM TABLE(DBMS_SQLTUNE.SELECT_SQLSET('SQLT_WKLD_STS'));

Sample output appears below:

SQL_ID SCH SQL_TEXT ELAPSED BUFFER_GETS
------------- --- ------------------------------ ---------- -----------
79f8shn041a1f SH select * from sales where quan 8373148 24016
 tity_sold < 5 union select * f
 rom sales where quantity_sold
 > 500

Chapter 24
Querying a SQL Tuning Set

24-9

2cqsw036j5u7r SH select promo_name, count(*) c 3557373 309
 from promotions p, sales s whe
 re s.promo_id = p.promo_id and
 p.promo_category = 'internet'
 group by p.promo_name order b
 y c desc

fudq5z56g642p SH select sum(quantity_sold) from 4787891 12118
 sales s, products p where s.p
 rod_id = p.prod_id and s.amoun
 t_sold > 20000 and p.prod_name
 = 'Linen Big Shirt'

bzmnj0nbvmz8t SH select * from sales where amou 442355 15281
 nt_sold = 4

3. Optionally, filter the results based on user-specific criteria.

The following example displays statements with a disk reads to buffer gets ratio greater
than or equal to 50%:

COLUMN SQL_TEXT FORMAT a30
COLUMN SCH FORMAT a3
COLUMN BUF_GETS FORMAT 99999999
COLUMN DISK_READS FORMAT 99999999
COLUMN %_DISK FORMAT 9999.99
SELECT sql_id, parsing_schema_name as "SCH", sql_text,
 buffer_gets as "B_GETS",
 disk_reads as "DR", ROUND(disk_reads/buffer_gets*100,2) "%_DISK"
FROM TABLE(DBMS_SQLTUNE.SELECT_SQLSET(
 'SQLT_WKLD_STS',
 '(disk_reads/buffer_gets) >= 0.50'));

Sample output appears below:

SQL_ID SCH SQL_TEXT B_GETS DR %_DISK
------------- --- ------------------------------ ------ ------- -------
79f8shn041a1f SH select * from sales where quan 24016 17287 71.98
 tity_sold < 5 union select * f
 rom sales where quantity_sold
 > 500

fudq5z56g642p SH select sum(quantity_sold) from 12118 6355 52.44
 sales s, products p where s.p
 rod_id = p.prod_id and s.amoun
 t_sold > 20000 and p.prod_name
 = 'Linen Big Shirt'

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete reference
information

Chapter 24
Querying a SQL Tuning Set

24-10

Modifying a SQL Tuning Set Using UPDATE_SQLSET
Use the UPDATE_SQLSET procedure in DBMS_SQLTUNE or DBMS_SQLSET to delete SQL statements
from an STS.

You can use the UPDATE_SQLSET procedure to update the attributes of SQL statements (such as
PRIORITY or OTHER) in an existing STS identified by STS name and SQL ID.

Assumptions

This tutorial assumes that you want to modify SQLT_WKLD_STS as follows:

• You want to delete all SQL statements with fetch counts over 100.

• You want to change the priority of the SQL statement with ID fudq5z56g642p to 1. You can
use priority as a ranking criteria when running SQL Tuning Advisor.

• You use DBMS_SQLSET instead of DBMS_SQLTUNE.

To modify the contents of an STS:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Optionally, query the STS contents using the TABLE function.

For example, execute the following query:

SELECT SQL_ID, ELAPSED_TIME, FETCHES, EXECUTIONS
FROM TABLE(DBMS_SQLSET.SELECT_SQLSET('SQLT_WKLD_STS'));

Sample output appears below:

SQL_ID ELAPSED_TIME FETCHES EXECUTIONS
------------- ------------ ---------- ----------
2cqsw036j5u7r 3407459 2 1
79f8shn041a1f 9453965 61258 1
bzmnj0nbvmz8t 401869 1 1
fudq5z56g642p 5300264 1 1

3. Delete SQL statements based on user-specified criteria.

Use the basic_filter predicate to filter the SQL from the STS defined on attributes of the
SQLSET_ROW. The following example deletes all statements in the STS with fetch counts
over 100:

BEGIN
 DBMS_SQLSET.DELETE_SQLSET (
 sqlset_name => 'SQLT_WKLD_STS'
, basic_filter => 'fetches > 100'
);
END;
/

4. Set attribute values for SQL statements.

Chapter 24
Modifying a SQL Tuning Set Using UPDATE_SQLSET

24-11

The following example sets the priority of statement 2cqsw036j5u7r to 1:

BEGIN
 DBMS_SQLSET.UPDATE_SQLSET (
 sqlset_name => 'SQLT_WKLD_STS'
, sql_id => '2cqsw036j5u7r'
, attribute_name => 'PRIORITY'
, attribute_value => 1
);
END;
/

5. Optionally, query the STS to confirm that the intended modifications were made.

For example, execute the following query:

SELECT SQL_ID, ELAPSED_TIME, FETCHES, EXECUTIONS, PRIORITY
FROM TABLE(DBMS_SQLSET.SELECT_SQLSET('SQLT_WKLD_STS'));

Sample output appears below:

SQL_ID ELAPSED_TIME FETCHES EXECUTIONS PRIORITY
------------- ------------ ---------- ---------- ----------
2cqsw036j5u7r 3407459 2 1 1
bzmnj0nbvmz8t 401869 1 1
fudq5z56g642p 5300264 1 1

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information

Transporting a SQL Tuning Set
You can transport an STS to any database created in Oracle Database 10g Release 2 (10.2) or
later. This technique is useful when using SQL Performance Analyzer to tune regressions on a
test database.

About Transporting SQL Tuning Sets
Transporting SQL tuning sets between databases means copying the SQL tuning sets to and
from a staging table, and then using other tools to move the staging table to the destination
database. The most common tools are Oracle Data Pump or a database link.

Basic Steps for Transporting SQL Tuning Sets
Transporting SQL tuning sets requires exporting the STS, transporting the dump file, and then
importing the dump file.

The following graphic shows the process using Oracle Data Pump and ftp.

Chapter 24
Transporting a SQL Tuning Set

24-12

Figure 24-4 Transporting SQL Tuning Sets

Transport ftp, nfs

Production
Database

Test
Database

Staging Table

Data Pump
Export

.dmp
file

Data Pump
Import

.dmp
file

System-Supplied Schema System-Supplied Schema

PACK_STGTAB_SQLSET UNPACK_STGTAB_SQLSET

Staging Table

As shown in Figure 24-4, the steps are as follows:

1. In the production database, pack the STS into a staging table using
DBMS_SQLTUNE.PACK_STGTAB_SQLSET or DBMS_SQLSET.PACK_STGTAB.

2. Export the STS from the staging table to a .dmp file using Oracle Data Pump.

3. Transfer the .dmp file from the production host to the test host using a transfer tool such as
ftp.

4. In the test database, import the STS from the .dmp file to a staging table using Oracle Data
Pump.

5. Unpack the STS from the staging table using DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET or
DBMS_SQLSET.UNPACK_STGTAB.

Basic Steps for Transporting SQL Tuning Sets When the CON_DBID Values Differ
When transporting an STS, you must remap the con_dbid of each SQL statement in the STS
when the con_dbid of the source database and the destination database are different.

Situations that cause the con_dbid value to differ include the following:

• A single-instance database whose instance has been restarted

• Different instances of an Oracle RAC database

• Different PDBs

• A non-CDB and a CDB

The basic steps for remapping are as follows:

1. Pack the STS into a staging table using DBMS_SQLTUNE.PACK_STGTAB_SQLSET or
DBMS_SQLSET.PACK_STGTAB.

2. Remap each con_dbid in the staging table using DBMS_SQLTUNE.REMAP_STGTAB_SQLSET or
DBMS_SQLSET.REMAP_STGTAB.

3. Export the STS.

Chapter 24
Transporting a SQL Tuning Set

24-13

4. Unpack the STS in the destination CDB.

Example 24-1 Remapping a CON_DBID When Transporting an STS from a Non-CDB to
a CDB

In this example, you intend to transport an STS named STS_for_transport from a non-CDB to
a CDB. On the source non-CDB, you have already packed the STS into source staging table
src_stg_tbl using the DBMS_SQLTUNE.PACK_STGTAB_SQLSET procedure. The container ID of the
destination CDB is 12345.

In the source non-CDB, you execute the following commands:

VARIABLE con_dbid_src NUMBER;

EXEC SELECT UNIQUE con_dbid INTO :con_dbid_src FROM src_stg_tbl;

BEGIN
 DBMS_SQLTUNE.REMAP_STGTAB_SQLSET (
 staging_table_name => 'src_stg_tbl'
, staging_schema_owner => 'dba1'
, old_sqlset_name => 'STS_for_transport'
, old_con_dbid => :con_dbid_src
, new_con_dbid => 12345);
END;

You can now export the contents of the staging table, and then continue using the normal
transport procedure.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about
REMAP_STGTAB_SQLSET

Transporting SQL Tuning Sets with DBMS_SQLTUNE
You can transport SQL tuning sets using three subprograms in the DBMS_SQLTUNE or
DBMS_SQLSET package.

The following table describes the procedures relevant for transporting SQL tuning sets.

Table 24-6 Procedures for Transporting SQL Tuning Sets

DBMS_SQLTUNE Procedure Equivalent DBMS_SQLSET
Procedure

Description

CREATE_STGTAB_SQLSET CREATE_STGTAB Create a staging table to hold the
exported SQL tuning sets

PACK_STGTAB_SQLSET PACK_STGTAB Populate a staging table with SQL
tuning sets

UNPACK_STGTAB_SQLSET UNPACK_STGTAB Copy the SQL tuning sets from the
staging table into a database

Chapter 24
Transporting a SQL Tuning Set

24-14

Assumptions

This tutorial assumes the following:

• An STS with regressed SQL resides in a production database created in the current
release.

• You run SQL Performance Analyzer trials on a remote test database created in Oracle
Database 11g Release 2 (11.2).

• You want to copy the STS from the production database to the test database and tune the
regressions from the SQL Performance Analyzer trials.

• You want to use Oracle Database Pump to transfer the SQL tuning sets between database
hosts.

• You use DBMS_SQLTUNE rather than DBMS_SQLSET.

To transport an STS:

1. In SQL*Plus or SQL Developer, log in to the database as a user with administrative
privileges.

2. Use the CREATE_STGTAB_SQLSET procedure to create a staging table to hold the exported
SQL tuning sets.

The following example creates my_11g_staging_table in the dba1 schema and specifies
the format of the staging table as 11.2:

BEGIN
 DBMS_SQLTUNE.CREATE_STGTAB_SQLSET (
 table_name => 'my_10g_staging_table'
, schema_name => 'dba1'
, db_version => DBMS_SQLTUNE.STS_STGTAB_11_2_VERSION
);
END;
/

3. Use the PACK_STGTAB_SQLSET procedure to populate the staging table with SQL tuning
sets.

The following example populates dba1.my_11g_staging_table with the STS my_sts
owned by hr:

BEGIN
 DBMS_SQLTUNE.PACK_STGTAB_SQLSET (
 sqlset_name => 'sqlt_wkld_sts'
, sqlset_owner => 'sh'
, staging_table_name => 'my_11g_staging_table'
, staging_schema_owner => 'dba1'
, db_version => DBMS_SQLTUNE.STS_STGTAB_11_2_VERSION
);
END;
/

4. If necessary, remap the container ID values for the statements in the STS as described in
"Basic Steps for Transporting SQL Tuning Sets When the CON_DBID Values Differ".

5. Use Oracle Data Pump to export the contents of the staging table.

Chapter 24
Transporting a SQL Tuning Set

24-15

For example, run the expdp command at the operating system prompt:

expdp dba1 DIRECTORY=dpump_dir1 DUMPFILE=sts.dmp
TABLES=my_11g_staging_table

6. Transfer the dump file to the test database host.

7. Log in to the test host as an administrator, and then use Oracle Data Pump to import the
contents of the staging table.

For example, run the impdp command at the operating system prompt:

impdp dba1 DIRECTORY=dpump_dir1 DUMPFILE=sts.dmp
TABLES=my_11g_staging_table

8. On the test database, execute the UNPACK_STGTAB_SQLSET procedure to copy the SQL
tuning sets from the staging table into the database.

The following example shows how to unpack the SQL tuning sets:

BEGIN
 DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET (
 sqlset_name => '%'
, replace => true
, staging_table_name => 'my_11g_staging_table');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET

Dropping a SQL Tuning Set Using DROP_SQLSET
To drop an STS from the database, use the DROP_SQLSET procedure in the DBMS_SQLTUNE or
DBMS_SQLSET package.

Prerequisites

Ensure that no tuning task is currently using the STS to be dropped. If an existing tuning task is
using this STS, then drop the task before dropping the STS. Otherwise, the database issues
an ORA-13757 error.

Assumptions

This tutorial assumes the following:

• You want to drop an STS named SQLT_WKLD_STS.

• You use DBMS_SQLSET instead of DBMS_SQLTUNE.

Chapter 24
Dropping a SQL Tuning Set Using DROP_SQLSET

24-16

To drop an STS:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Use the DBMS_SQLSET.DROP_SQLSET procedure.

For example, execute the following PL/SQL program:

BEGIN
 DBMS_SQLSET.DROP_SQLSET(sqlset_name => 'SQLT_WKLD_STS');
END;
/

3. Optionally, confirm that the STS was deleted.

The following example counts the number of SQL tuning sets named SQLT_WKLD_STS
owned by the current user (sample output included):

SELECT COUNT(*)
FROM USER_SQLSET
WHERE NAME = 'SQLT_WKLD_STS';

 COUNT(*)

 0

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the STS
procedures in DBMS_SQLSET

Chapter 24
Dropping a SQL Tuning Set Using DROP_SQLSET

24-17

25
Analyzing SQL with SQL Tuning Advisor

Use SQL Tuning Advisor to obtain recommendations for improving performance of high-load
SQL statements, and prevent regressions by only executing optimal plans.

About SQL Tuning Advisor
SQL Tuning Advisor is SQL diagnostic software in the Oracle Database Tuning Pack.

You can submit one or more SQL statements as input to the advisor and receive advice or
recommendations for how to tune the statements, along with a rationale and expected benefit.

Purpose of SQL Tuning Advisor
SQL Tuning Advisor is a mechanism for resolving problems related to suboptimally performing
SQL statements.

Use SQL Tuning Advisor to obtain recommendations for improving performance of high-load
SQL statements, and prevent regressions by only executing optimal plans.

Tuning recommendations include:

• Collection of object statistics

• Creation of indexes

• Rewriting SQL statements

• Creation of SQL profiles

• Creation of SQL plan baselines

The recommendations generated by SQL Tuning Advisor help you achieve the following
specific goals:

• Avoid labor-intensive manual tuning

Identifying and tuning high-load SQL statements is challenging even for an expert. SQL
Tuning Advisor uses the optimizer to tune SQL for you.

• Generate recommendations and implement SQL profiles automatically

You can configure an Automatic SQL Tuning task to run nightly in maintenance windows.
When invoked in this way, the advisor can generate recommendations and also implement
SQL profiles automatically.

• Analyze database-generated statistics to achieve optimal plans

The database contains a vast amount of statistics about its own operations. SQL Tuning
Advisor can perform deep mining and analysis of internal information to improve execution
plans.

• Enable developers to tune SQL on a test system instead of the production system

When suboptimally performing SQL statements occur on a production database,
developers may not want to investigate and tune directly on the production database. The

25-1

DBA can transport the problematic SQL statements to a test database where the
developers can safely analyze and tune them.

When tuning multiple statements, SQL Tuning Advisor does not recognize interdependencies
between the statements. Instead, SQL Tuning Advisor offers a convenient way to get tuning
recommendations for many statements.

Note:

Data visibility and privilege requirements may differ when using SQL Tuning Advisor
with pluggable databases. The advisor can tune a query in the current pluggable
database (PDB), and in other PDBs in which this query has been executed. In this
way, a container database (CDB) administrator can tune the same query in many
PDBs at the same time, whereas a PDB administrator can only tune a single PDB.

See Also:

• "Managing SQL Plan Baselines" to learn about SQL plan management

• Oracle Database Administrator’s Guide for a table that summarizes how
manageability features work in a CDB

SQL Tuning Advisor Architecture
Automatic Tuning Optimizer is the central tool used by SQL Tuning Advisor. The advisor can
receive SQL statements as input from multiple sources, analyze these statements using the
optimizer, and then make recommendations.

Invoking Automatic Tuning Optimizer for every hard parse consumes significant time and
resources. Tuning mode is meant for complex and high-load SQL statements that significantly
affect database performance.

Manageability advisors such as SQL tuning advisor use a common infrastructure called the
advisor framework. This framework provides a common schema and interface for storing task
objects. An advisor schema is a set of tables to store the data from advisors. SQL Tuning
Advisor receives tuning input, and then writes to the advisor schemas by means of the advisor
framework. SQL Tuning Advisor reads data from advisor schema when it produces its reports.

The following figure shows the basic architecture of SQL Tuning Advisor.

Chapter 25
About SQL Tuning Advisor

25-2

Figure 25-1 SQL Tuning Advisor Architecture

SQL
Tuning
Set

Shared Pool

Library Cache

Shared SQL Area

SELECT * FROM
 employees

ADDM

AWR

AUTOTASK

Recommendations

Inplementation
of SQL Profiles
(Automatic Only)

SQL Tuning
Advisor

Optimizer

Automatic
Tuning
Optimizer

See Also:

"SQL Parsing"

Input to SQL Tuning Advisor
Input for SQL Tuning Advisor can come from several sources, including ADDM, AWR, the
shared SQL area, and SQL tuning sets.

SQL Tuning Advisor uses its input sources as follows:

• Automatic Database Diagnostic Monitor (ADDM)

The primary input source for SQL Tuning Advisor is ADDM (pronounced Adam). By
default, ADDM runs proactively once every hour. To identify performance problems
involving high-load SQL statements, ADDM analyzes key statistics gathered by Automatic
Workload Repository (AWR) over the last hour . If a high-load SQL statement is identified,
then ADDM recommends running SQL Tuning Advisor on the SQL.

• AWR

AWR takes regular snapshots of system activity, including high-load SQL statements
ranked by relevant statistics, such as CPU consumption and wait time.

You can view the AWR and manually identify high-load SQL statements. You can run SQL
Tuning Advisor on these statements, although Oracle Database automatically performs this
work as part of automatic SQL tuning. By default, AWR retains data for the last eight days.

Chapter 25
About SQL Tuning Advisor

25-3

You can locate and tune any high-load SQL that ran within the retention period of AWR
using this technique.

• Shared SQL area

The database uses the shared SQL area to tune recent SQL statements that have yet to
be captured in AWR. The shared SQL area and AWR provide the capability to identify and
tune high-load SQL statements from the current time going as far back as the AWR
retention allows, which by default is at least 8 days.

• SQL tuning set

A SQL tuning set (STS) is a database object that stores SQL statements along with their
execution context. An STS can include SQL statements that are yet to be deployed, with
the goal of measuring their individual performance, or identifying the ones whose
performance falls short of expectation. When a set of SQL statements serve as input, the
database must first construct and use an STS.

See Also:

• "About SQL Tuning Sets"

• Oracle Database Performance Tuning Guide to learn about ADDM

• Oracle Database Performance Tuning Guide to learn about AWR

• Oracle Database Concepts to learn about the shared SQL area

Output of SQL Tuning Advisor
After analyzing the SQL statements, SQL Tuning Advisor publishes recommendations.

Specifically, SQL Tuning Advisor produces the following types of output:

• Advice on optimizing the execution plan

• Rationale for the proposed optimization

• Estimated performance benefit

• SQL statement to implement the advice

The benefit percentage shown for each recommendation is calculated using the following
formula:

abnf% = (time_old - time_new)/(time_old)

For example, assume that before tuning the execution time was 100 seconds, and after
implementing the recommendation the new execution time is expected to be 33 seconds. This
benefit calculation for this performance improvement is as follows:

67% = (100 - 33)/(100)

You choose whether to accept the recommendations to optimize the SQL statements.
Depending on how it is configured, Automatic SQL Tuning Advisor can implement the SQL
profile recommendations to tune the statement without user intervention. When invoked on
demand, SQL Tuning Advisor can recommend that the user implement a SQL profile, but can
never implement it automatically.

Chapter 25
About SQL Tuning Advisor

25-4

Automatic Tuning Optimizer Analyses
In tuning mode, the optimizer has more time to consider options and gather statistics. For
example, Automatic Tuning Optimizer can use dynamic statistics and partial statement
execution.

The following graphic depicts the different types of analysis that Automatic Tuning Optimizer
performs.

Figure 25-2 Automatic Tuning Optimizer

SQL Tuning
Advisor

Optimizer

Automatic Tuning
Optimizer

Normal Mode
Tuning Mode

Statistical
Analysis

Access Path
Analysis

SQL Structure
Analysis

Alternative Plan
Analysis

SQL
Profiling

See Also:

"Query Optimizer Concepts "

Statistical Analysis
The optimizer relies on statistics to generate execution plans.

If these statistics are stale or missing, then the optimizer can generate suboptimal plans.
Automatic Tuning Optimizer checks for missing or stale statistics, and recommends gathering
fresh statistics if needed.

• Object statistics

The optimizer checks the statistics for each object referenced in the query.

Chapter 25
About SQL Tuning Advisor

25-5

• System statistics

On Oracle Exadata Database Machine, the cost of smart scans depends on the system
statistics I/O seek time, multiblock read count, and I/O transfer speed. The values of these
system statistics are usually different on Oracle Exadata Database Machine, so an
analysis to determines whether these system statistics are not up to date. If gathering
these statistics would improve the plan, then SQL Tuning Advisor recommends accepting a
SQL profile.

The following graphic depicts the analysis of object-level statistics.

Figure 25-3 Statistical Analysis by Automatic Tuning Optimizer

Optimizer

Automatic Tuning
Optimizer

Recommended collecting
object-level statistics

SELECT . . .

SQL Tuning
Advisor

Customers
Table

Customers
Table

Stale
Statistics Absent

Statistics

See Also:

Oracle Exadata Database Machine System Overview

SQL Profiling
SQL profiling is the verification by the Automatic Tuning Optimizer of its own estimates.

By reviewing execution history and testing the SQL, the optimizer can ensure that it has the
most accurate information available to generate execution plans. SQL profiling is related to but
distinct from the steps of generating SQL Tuning Advisor recommendations and implementing
these recommendations.

The following graphic shows SQL Tuning Advisor recommending a SQL profile and
automatically implementing it. After creating the profile, the optimizer can use it as additional
input when generating execution plans.

Chapter 25
About SQL Tuning Advisor

25-6

Figure 25-4 SQL Profile

SQL Tuning
Advisor

Optimizer

(Tuning Mode)
CreateSubmit

SQL
Profile

Optimizer

(Normal Mode)
Output

No application
code change

Well-Tuned
Plan

GB

HJ
HJ

Database
Users

Use

See Also:

"About SQL Profiles"

How SQL Profiling Works

The database can profile some DML and DDL statements.

Specifically, SQL Tuning Advisor can profile the following types of statement:

• DML statements (SELECT, INSERT with a SELECT clause, UPDATE, DELETE, and the update or
insert operations of MERGE)

• CREATE TABLE statements (only with the AS SELECT clause)

After performing its analysis, SQL Tuning Advisor either recommends or does not recommend
implementing a SQL profile.

The following graphic shows the SQL profiling process.

Chapter 25
About SQL Tuning Advisor

25-7

Figure 25-5 SQL Profiling

Optimizer

* Reviews past execution history to
 adjust settings

* Performs sampling or partial
 execution

SQL Profiling

Automatic Tuning
Optimizer

SELECT . . .

SQL Tuning
Advisor

Recommendation
to Implement
SQL Profile

No Recommendation

During SQL profiling, the optimizer verifies cost, selectivity, and cardinality for a statement. The
optimizer uses either of the following methods:

• Samples the data and applies appropriate predicates to the sample

The optimizer compares the new estimate to the regular estimate and, if the difference is
great enough, applies a correction factor.

• Executes a fragment of the SQL statement

This method is more efficient than the sampling method when the predicates provide
efficient access paths.

The optimizer uses the past statement execution history to determine correct settings. For
example, if the history indicates that a SQL statement is usually executed only partially, then
the optimizer uses FIRST_ROWS instead of ALL_ROWS optimization.

See Also:

"Choosing an Optimizer Goal"

SQL Profile Implementation

If the optimizer generates auxiliary information during statistical analysis or SQL profiling, then
the optimizer recommends implementing a SQL profile.

As shown in Figure 25-6, the following options are possible:

Chapter 25
About SQL Tuning Advisor

25-8

• When SQL Tuning Advisor is run on demand, the user must choose whether to implement
the SQL profile.

• When the Automatic SQL Tuning task is configured to implement SQL profiles
automatically, advisor behavior depends on the setting of the ACCEPT_SQL_PROFILE tuning
task parameter:

– If set to true, then the advisor implements SQL profiles automatically.

– If set to false, then user intervention is required.

– If set to AUTO (default), then the setting is true when at least one SQL statement exists
with a SQL profile, and false when this condition is not satisfied.

Note:

The Automatic SQL Tuning task cannot automatically create SQL plan baselines
or add plans to them.

Figure 25-6 Implementing SQL Profiles

On Demand

Autotask

SQL Tuning
Advisor

Recommends
Implementing
SQL profile

User must
choose whether
to implement

Autoimplementation

No Autoimplementation

Implements
SQL profile

At any time during or after automatic SQL tuning, you can view a report. This report describes
in detail the SQL statements that were analyzed, the recommendations generated, and any
SQL profiles that were automatically implemented.

See Also:

• "Configuring the Automatic SQL Tuning Task Using the Command Line"

• "Plan Evolution"

• "About SQL Profiles"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
ACCEPT_SQL_PROFILE

Access Path Analysis
An access path is the means by which the database retrieves data.

Chapter 25
About SQL Tuning Advisor

25-9

For example, a query using an index and a query using a full table scan use different access
paths. In some cases, indexes can greatly enhance the performance of a SQL statement by
eliminating full table scans. The following graphic illustrates access path analysis.

Figure 25-7 Access Path Analysis

Optimizer

Automatic Tuning
Optimizer

SELECT . . .

SQL Tuning
Advisor

SQL Access
Advisor

Recommends

Workload

Comprehensive
Analysis

Index
Creation

Automatic Tuning Optimizer explores whether a new index can significantly enhance query
performance and recommends either of the following:

• Creating an index

Index recommendations are specific to the SQL statement processed by SQL Tuning
Advisor. Sometimes a new index provides a quick solution to the performance problem
associated with a single SQL statement.

• Running SQL Access Advisor

Because the Automatic Tuning Optimizer does not analyze how its index recommendation
can affect the entire SQL workload, it also recommends running SQL Access Advisor on
the SQL statement along with a representative SQL workload. SQL Access Advisor
examines the effect of creating an index on the SQL workload before making
recommendations.

SQL Structural Analysis
During structural analysis, Automatic Tuning Optimizer tries to identify syntactic, semantic, or
design problems that can lead to suboptimal performance. The goal is to identify poorly written
SQL statements and to advise you how to restructure them.

The following graphic illustrates structural analysis.

Chapter 25
About SQL Tuning Advisor

25-10

Figure 25-8 Structural Analysis

Optimizer

SQL Constructors (NOT IN, UNION)

Data Type Mismatches

Design Mistakes (No WHERE Clause)

Automatic Tuning
Optimizer

SELECT . . . UNION

SELECT . . . UNION ALL

SQL Tuning
Advisor

Restructured

Some syntax variations negatively affect performance. In structural analysis, the automatic
tuning optimizer evaluates statements against a set of rules, identifies inefficient coding
techniques, and recommends an alternative statement if possible.

As shown in Figure 25-8, Automatic Tuning Optimizer identifies the following categories of
structural problems:

• Inefficient use of SQL constructors

A suboptimally performing statement may be using NOT IN instead of NOT EXISTS, or UNION
instead of UNION ALL. The UNION operator, as opposed to the UNION ALL operator, uses a
unique sort to ensure that no duplicate rows are in the result set. If you know that two
queries do not return duplicates, then use UNION ALL.

• Data type mismatches

If the indexed column and the compared value have a data type mismatch, then the
database does not use the index because of the implicit data type conversion. Also, the
database must expend additional resources converting data types, and some SQL
statements may fail because data values do not convert correctly. Common mistakes
include columns that contain numeric data but are never used for arithmetic operations:
telephone numbers, credit card numbers, and check numbers. To avoid poor cardinality
estimates, suboptimal plans, and ORA-01722 errors, developers must ensure that bind
variables are type VARCHAR2 and not numbers.

• Design mistakes

A classic example of a design mistake is a missing join condition. If n is the number of
tables in a query block, then n-1 join conditions must exist to avoid a Cartesian product.

In each case, Automatic Tuning Optimizer makes relevant suggestions to restructure the
statements. The suggested alternative statement is similar, but not equivalent, to the original
statement. For example, the suggested statement may use UNION ALL instead of UNION. You
can then determine if the advice is sound.

Chapter 25
About SQL Tuning Advisor

25-11

Alternative Plan Analysis
While tuning a SQL statement, SQL Tuning Advisor searches real-time and historical
performance data for alternative execution plans for the statement.

If plans other than the original plan exist, then SQL Tuning Advisor reports an alternative plan
finding. The follow graphic shows SQL Tuning Advisor finding two alternative plans and
generating an alternative plan finding.

Figure 25-9 Alternative Plan Analysis

SQL Tuning
Advisor

Real-Time
Performance Data

Origin:
Cursor
Cache

GB

HJ
HJ

AWR

Origin:
STS

GB

HJ
HJ

Searches Produces

Optimizer

Automatic Tuning
Optimizer

Alternative Plan Finding

Performance Summary
Recommendations

SQL Tuning Advisor validates the alternative execution plans and notes any plans that are not
reproducible. When reproducible alternative plans are found, you can create a SQL plan
baseline to instruct the optimizer to choose these plans in the future.

Example 25-1 Alternative Plan Finding

The following example shows an alternative plan finding for a SELECT statement:

2- Alternative Plan Finding

 Some alternative execution plans for this statement were found by searching
 the system's real-time and historical performance data.

 The following table lists these plans ranked by their average elapsed time.
 See section "ALTERNATIVE PLANS SECTION" for detailed information on each
 plan.

 id plan hash last seen elapsed (s) origin note

Chapter 25
About SQL Tuning Advisor

25-12

 -- ---------- -------------------- ------------ --------------- ----------------
 1 1378942017 2009-02-05/23:12:08 0.000 Cursor Cache original plan
 2 2842999589 2009-02-05/23:12:08 0.002 STS

 Information

 - The Original Plan appears to have the best performance, based on the
 elapsed time per execution. However, if you know that one alternative
 plan is better than the Original Plan, you can create a SQL plan baseline
 for it. This will instruct the Oracle optimizer to pick it over any other
 choices in the future.
 execute dbms_sqltune.create_sql_plan_baseline(task_name => 'TASK_XXXXX',
 object_id => 2, task_owner => 'SYS', plan_hash => xxxxxxxx);

The preceding example shows that SQL Tuning Advisor found two plans, one in the shared
SQL area and one in a SQL tuning set. The plan in the shared SQL area is the same as the
original plan.

SQL Tuning Advisor only recommends an alternative plan if the elapsed time of the original
plan is worse than alternative plans. In this case, SQL Tuning Advisor recommends that users
create a SQL plan baseline on the plan with the best performance. In Example 25-1, the
alternative plan did not perform as well as the original plan, so SQL Tuning Advisor did not
recommend using the alternative plan.

Example 25-2 Alternative Plans Section

In this example, the alternative plans section of the SQL Tuning Advisor output includes both
the original and alternative plans and summarizes their performance. The most important
statistic is elapsed time. The original plan used an index, whereas the alternative plan used a
full table scan, increasing elapsed time by .002 seconds.

Plan 1

 Plan Origin :Cursor Cache
 Plan Hash Value :1378942017
 Executions :50
 Elapsed Time :0.000 sec
 CPU Time :0.000 sec
 Buffer Gets :0
 Disk Reads :0
 Disk Writes :0

Notes:
 1. Statistics shown are averaged over multiple executions.
 2. The plan matches the original plan.

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	MERGE JOIN	
3	INDEX FULL SCAN	TEST1_INDEX
4	SORT JOIN	
5	TABLE ACCESS FULL	TEST

Chapter 25
About SQL Tuning Advisor

25-13

--

Plan 2

 Plan Origin :STS
 Plan Hash Value :2842999589
 Executions :10
 Elapsed Time :0.002 sec
 CPU Time :0.002 sec
 Buffer Gets :3
 Disk Reads :0
 Disk Writes :0

Notes:
 1. Statistics shown are averaged over multiple executions.

| Id | Operation | Name |

0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	HASH JOIN	
3	TABLE ACCESS FULL	TEST
4	TABLE ACCESS FULL	TEST1

To adopt an alternative plan regardless of whether SQL Tuning Advisor recommends it, call
DBMS_SQLTUNE.CREATE_SQL_PLAN_BASELINE. You can use this procedure to create a SQL plan
baseline on any existing reproducible plan.

See Also:

"Differences Between SQL Plan Baselines and SQL Profiles"

SQL Tuning Advisor Operation
You can run SQL Tuning Advisor automatically or on demand. You can also run the advisor on
a local or remote database.

Automatic and On-Demand SQL Tuning
Configure SQL Tuning Advisor to run automatically using DBMS_AUTO_SQLTUNE, or on demand
using DBMS_SQLTUNE.

The methods of invocation differ as follows:

• Automatically

You can configure SQL Tuning Advisor to run during nightly system maintenance windows.
When run by AUTOTASK, the advisor is known as Automatic SQL Tuning Advisor and
performs automatic SQL tuning.

• On-Demand

Chapter 25
About SQL Tuning Advisor

25-14

In on-demand SQL tuning, you manually invoke SQL Tuning Advisor to diagnose and fix
SQL-related performance problems after they have been discovered. Oracle Enterprise
Manager Cloud Control (Cloud Control) is the preferred interface for tuning SQL on
demand, but you can also use the DBMS_SQLTUNE PL/SQL package.

SQL Tuning Advisor uses Automatic Tuning Optimizer to perform its analysis. This optimization
is "automatic" because the optimizer analyzes the SQL instead of the user. Do not confuse
Automatic Tuning Optimizer with automatic SQL tuning, which in this document refers only to
the work performed by the Automatic SQL Tuning task.

See Also:

• "Running SQL Tuning Advisor On Demand"

• "Managing the Automatic SQL Tuning Task"

• Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_SQLTUNE

SQL Tuning on Active Data Guard Databases
You can run SQL Tuning Advisor either in a primary database or in a Data Guard Active
Standby Database. In a Standby database, the SQL statement being tuned must be created in
the standby database and you use a database link to write tuning details and results in the
primary database.

In the simplest case, SQL Tuning Advisor accepts input, executes, and stores results within a
single database. Local mode is appropriate for databases in which the performance overhead
of SQL Tuning Advisor execution is acceptable.

In remote tuning, you issue SQL Tuning Advisor tasks on a standby database in order to tune
individual SQL statements. The SQL statement being tuned must be created on the primary
database. A private, secure standby-to-primary database link is used to write data to and read
data from the primary database. The link is necessary because the standby database, which is
read-only, cannot write the SQL tuning data locally.

You can do remote tuning on the standby database by manually running DBMS_SQLTUNE
statements on the command line. Starting with Oracle Database 19c, you also can use Oracle
Enterprise Manager Cloud Control on the standby to create and execute tuning tasks and
implement SQL profile recommendations.

The following below the general setup for tuning a standby database workload on a primary
database. This technique requires a standby-to-primary database link.

Chapter 25
About SQL Tuning Advisor

25-15

Figure 25-10 Tuning a Standby Workload on a Primary Database

Standby-to-Primary Database Link

Primary Database Standby Database

See Also:

• "Configuring a SQL Tuning Task"

• Oracle Data Guard Concepts and Administration to learn how to perform remote
tuning in a Data Guard environment

• Oracle Database PL/SQL Packages and Types Reference for details about
DBMS_SQLTUNE.

Using DBMS_SQLTUNE to Tune the Primary Database Remotely
If you want to tune a SQL statement written on the primary database on the standby database,
then on the standby, specify the database_link_to parameter in DBMS_SQLTUNE procedures. By
default, the database_link_to parameter is null, which means that tuning is local.

The database_link_to parameter must specify a private database link. This link must be
owned by SYS and accessed by the default privileged user SYS$UMF. The following sample
statement creates a link named lnk_to_pri:

CREATE DATABASE LINK lnk_to_pri CONNECT TO SYS$UMF IDENTIFIED BY password
USING 'inst1';

The following table illustrates a typical remote tuning session. You issue the SQL tuning
statement on the standby database. DBMS_SQLTUNE uses the database link both to fetch data
from the primary database, and store data in the primary database.

Table 25-1 Using DBMS_SQLTUNE on a Standby Database to Remotely Tune the
Primary Database

Step Statement Issued on Standby
Database

Result

1 CREATE_TUNING_TASK DBMS_SQLTUNE creates the task data in the primary database
using the standby-to-primary database link.

Chapter 25
About SQL Tuning Advisor

25-16

Table 25-1 (Cont.) Using DBMS_SQLTUNE on a Standby Database to Remotely Tune
the Primary Database

Step Statement Issued on Standby
Database

Result

2 EXECUTE_TUNING_TASK DBMS_SQLTUNE uses the database link to read the SQL Tuning
Advisor task data stored in the primary database. The tuning
analysis occurs on the standby database, but DBMS_SQLTUNE
writes the results remotely to the primary database.

3 REPORT_TUNING_TASK DBMS_SQLTUNE uses the database link to read the SQL Tuning
Advisor report data from the primary database, and then
constructs the report locally on the standby database.

4 ACCEPT_SQL_PROFILE DBMS_SQLTUNE uses the database link to write the SQL profile
data remotely to the primary database.

Using Enterprise Manager Cloud Control to Tune an Active Standby Query Workload

Prerequisites

• Enterprise Manager must be discovered and must be connected to an Active Data Guard
Standby Database.

• The SQL tuning statement used must be created on the primary database.

• A non-public database link that points to the primary database must be created on the
primary database for user SYS$UMF. In each case, in order to execute tuning tasks from an
Active Data Guard Standby Database in a PDB, a separate database link must be created
for that PDB. For example:

CREATE DATABASE LINK lnk_to_pri CONNECT TO SYS$UMF IDENTIFIED BY
<password> USING \
'(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<fully_qualified_hostname>)
(PORT=<port_number>)) \
(CONNECT_DATA=(SERVICE_NAME=<fully_qualified_service_name>)))';

You select this database link in SQL Tuning Advisor on the standby.

• The SYS$UMF account must be unlocked with password set to the same password as the
database link.

Note:

In all cases in this section, the "standby" refers to an Active Data Guard Standby
Database.

See Also:

Oracle Data Guard Concepts and Administration.

Chapter 25
About SQL Tuning Advisor

25-17

https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/introduction-to-oracle-data-guard-concepts.html#GUID-5E73667D-4A56-445E-911F-1E99092DD8D7

Steps

1. Log in to the standby database as a user with privileges to execute DBMS_SQLTUNE
procedures, such as the SYS user.

2. There are several different ways to select the query you want to tune. From the
Performance menu, one way is to click Performance Hub, and then Ash Analytics. Find
and select the query, then click Tune SQL to bring the query into SQL Tuning Advisor.

Note:

The Database Link field shown above appears only in SQL Tuning Advisor on
the standby. It is not visible from a primary database.

3. You can either accept the default tuning task name or change it. The default name includes
an " _STDBY_" segment so that you can distinguish tasks created on the standby from those
created on the primary. If you change it, be sure to give it a name which indicates that the
task was created from the standby.

4. In the Database Link field, select the database link to the primary database. This must be
a SYS$UMF link.

5. Click Submit.

6. When the task is done, the SQL Tuning Result Summary page displays. After reviewing
the results, click SQL Profile. (See Viewing the Result of a SQL Tuning Task at the end of
this topic, which shows an example of a result summary.)

7. On the SQL Result Details page, click View Recommendations.

8. On the Recommendation for SQL <ID name> page, click Implement.

9. On the Confirmation page, click Yes. (You may choose to implement the new profile with
forced matching if you want this to impact the same SQL, but with different values).

Note:

You can access previously-created SQL tuning tasks by navigating to Advisors
Home. From there, you can view all tasks that were created on both the primary
database and on the standby. You can select and implement SQL Profile
recommendations for tuning tasks that were created from the standby.

Chapter 25
About SQL Tuning Advisor

25-18

SQL Tuning Advisor Limitations From the Active Data Guard Standby Database

• You can only implement SQL Profile recommendations for tasks that were created on the
standby. (This is why it is important that the name of a task includes some indicator that it
was created on the standby.)

• You cannot implement recommendations for the SYS_AUTO_SQL_TUNING_TASK or any other
task that was created from the primary database.

• You cannot collect optimizer statistics.

• You cannot implement index recommendations.

• A tuning task can tune only a single SQL statement (not a SQL tuning set).

The image below shows the Advisor Tasks section of Advisors Home. By default, user-
created tasks include "_STDBY_" in the task name, as shown in this list. The tasks that do not
include that segment in the name are presumed to tasks that were created from the primary
database. SQL Profile recommendations for these tasks cannot be implemented from the
standby database. The SYS_AUTO_SQL_TUNING_TASK also cannot be implemented from
the standby database.

Viewing the Result of a SQL Tuning Task

The SQL Tuning Task Result Summary displays after a SQL Tuning Task completes and also
when you select a tuning task from the Advisor Central page.

On an Active Data Guard Standby database you can view the result summary of a completed
SQL tuning task that was executed on the same standby. You can click SQL Profiles view and
implement recommended SQL profiles. The Index and Statistics links are view only.

Chapter 25
About SQL Tuning Advisor

25-19

Managing the Automatic SQL Tuning Task
When your goal is to identify SQL performance problems proactively, configuring SQL Tuning
Advisor as an automated task is a simple solution. The task processes selected high-load SQL
statements from AWR that qualify as tuning candidates.

See Also:

Oracle Database Administrator’s Guide to learn more about automated maintenance
tasks

About the Automatic SQL Tuning Task
By default, the Automatic SQL Tuning task runs for in a nightly maintenance window.

See Also:

Oracle Database Administrator’s Guide to learn more about automatic maintenance
tasks

Purpose of Automatic SQL Tuning
Configuring automatic SQL tuning instead of tuning manually decreases cost and increases
manageability

Many DBAs do not have the time needed for the intensive analysis required for SQL tuning.
Even when they do, SQL tuning involves several manual steps. Because several different SQL
statements may be high load on any given day, DBAs may have to expend considerable effort
to monitor and tune them. .

The automated SQL tuning task does not process the following types of SQL:

• Ad hoc SQL statements or SQL statements that do not repeat within a week

• Parallel queries

• Queries that take too long to run after being SQL profiled, so that it is not practical for SQL
Tuning Advisor to test execution

• Recursive SQL

You can run SQL Tuning Advisor on demand to tune the preceding types of SQL statements.

Automatic SQL Tuning Concepts
Oracle Scheduler uses the automated maintenance tasks infrastructure (known as AutoTask)
to schedules tasks to run automatically.

By default, the Automatic SQL Tuning task runs for at most one hour in a nightly maintenance
window. You can customize attributes of the maintenance windows, including start and end
time, frequency, and days of the week.

Chapter 25
Managing the Automatic SQL Tuning Task

25-20

See Also:

• Oracle Database Administrator’s Guide to learn about Oracle Scheduler

• Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_AUTO_TASK_ADMIN

Command-Line Interface to SQL Tuning Advisor
On the command line, you can use PL/SQL packages to perform SQL tuning tasks.

The following table describes the most relevant packages.

Table 25-2 SQL Tuning Advisor Packages

Package Description

DBMS_AUTO_SQLTUNE Enables you run SQL Tuning Advisor, manage SQL profiles,
manage SQL tuning sets, and perform real-time SQL
performance monitoring. To use this API, you must have the
ADVISOR privilege.

DBMS_AUTO_TASK_ADMIN Provides an interface to AUTOTASK. You can use this interface
to enable and disable the Automatic SQL Tuning task.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_SQLTUNE ad DBMS_AUTO_TASK_ADMIN

Basic Tasks for Automatic SQL Tuning
This section explains the basic tasks in running SQL Tuning Advisor as an automatic task.

The following graphic shows the basic workflow.

Chapter 25
Managing the Automatic SQL Tuning Task

25-21

Figure 25-11 Automatic SQL Tuning APIs

DBMS_AUTO_TASK_ADMIN.DISABLE

DBMS_SQLTUNE.

SET_TUNING_TASK_PARAMETER

Report on the SQL
Tuning Task

Disable the Automatic
SQL Tuning Task

DBMS_SQLTUNE.

REPORT_AUTO_TUNING_TASK

Configure the Automatic
SQL Tuning Task

DBMS_AUTO_TASK_ADMIN.ENABLE
Enable the Automatic
SQL Tuning Task

As shown in Figure 25-12, the basic procedure is as follows:

1. Enable the Automatic SQL Tuning task.

See "Enabling and Disabling the Automatic SQL Tuning Task".

2. Optionally, configure the Automatic SQL Tuning task.

See "Configuring the Automatic SQL Tuning Task".

3. Display the results of the Automatic SQL Tuning task.

See "Viewing Automatic SQL Tuning Reports".

4. Disable the Automatic SQL Tuning task.

See "Enabling and Disabling the Automatic SQL Tuning Task".

Enabling and Disabling the Automatic SQL Tuning Task
You can enable or disable the Automatic SQL Tuning task using Cloud Control (preferred) or a
command-line interface.

Enabling and Disabling the Automatic SQL Tuning Task Using Cloud Control
You can enable and disable all automatic maintenance tasks, including the Automatic SQL
Tuning task, using Cloud Control.

To enable or disable the Automatic SQL Tuning task using Cloud Control:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

Chapter 25
Managing the Automatic SQL Tuning Task

25-22

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. From the Administration menu, select Oracle Scheduler, then Automated Maintenance
Tasks.

The Automated Maintenance Tasks page appears.

This page shows the predefined tasks. You access each task by clicking the corresponding
link to get more information about the task.

6. Click Automatic SQL Tuning.

The Automatic SQL Tuning Result Summary page appears.

The Task Status section shows whether the Automatic SQL Tuning Task is enabled or
disabled. In the following graphic, the task is disabled:

7. In Automatic SQL Tuning, click Configure.

The Automated Maintenance Tasks Configuration page appears.

By default, Automatic SQL Tuning executes in all predefined maintenance windows in
MAINTENANCE_WINDOW_GROUP.

8. Perform the following steps:

a. In the Task Settings for Automatic SQL Tuning, select either Enabled or Disabled to
enable or disable the automated task.

b. To disable Automatic SQL Tuning for specific days in the week, check the appropriate
box next to the window name.

c. To change the characteristics of a window, click Edit Window Group.

d. Click Apply.

Chapter 25
Managing the Automatic SQL Tuning Task

25-23

Enabling and Disabling the Automatic SQL Tuning Task from the Command Line
If you do not use Cloud Control to enable and disable the Automatic SQL Tuning task, then you
must use the command line.

You have the following options:

• Run the ENABLE or DISABLE procedure in the DBMS_AUTO_TASK_ADMIN PL/SQL package.

This package is the recommended command-line technique. For both the ENABLE and
DISABLE procedures, you can specify a particular maintenance window with the
window_name parameter.

• Set the STATISTICS_LEVEL initialization parameter to BASIC to disable collection of all
advisories and statistics, including Automatic SQL Tuning Advisor.

Because monitoring and many automatic features are disabled, Oracle strongly
recommends that you do not set STATISTICS_LEVEL to BASIC.

To enable or disable Automatic SQL Tuning using DBMS_AUTO_TASK_ADMIN:

1. Connect SQL*Plus to the database with administrator privileges, and then do one of the
following:

• To enable the automated task, execute the following PL/SQL block:

BEGIN
 DBMS_AUTO_TASK_ADMIN.ENABLE (
 client_name => 'sql tuning advisor'
, operation => NULL
, window_name => NULL
);
END;
/

• To disable the automated task, execute the following PL/SQL block:

BEGIN
 DBMS_AUTO_TASK_ADMIN.DISABLE (
 client_name => 'sql tuning advisor'
, operation => NULL
, window_name => NULL
);
END;
/

2. Query the data dictionary to confirm the change.

For example, query DBA_AUTOTASK_CLIENT as follows (sample output included):

COL CLIENT_NAME FORMAT a20

SELECT CLIENT_NAME, STATUS
FROM DBA_AUTOTASK_CLIENT
WHERE CLIENT_NAME = 'sql tuning advisor';

CLIENT_NAME STATUS

Chapter 25
Managing the Automatic SQL Tuning Task

25-24

-------------------- --------
sql tuning advisor ENABLED

To disable collection of all advisories and statistics:

1. Connect SQL*Plus to the database with administrator privileges, and then query the
current statistics level setting.

The following SQL*Plus command shows that STATISTICS_LEVEL is set to ALL:

sys@PROD> SHOW PARAMETER statistics_level

NAME TYPE VALUE
------------------------------------ ----------- -----
statistics_level string ALL

2. Set STATISTICS_LEVEL to BASIC as follows:

sys@PROD> ALTER SYSTEM SET STATISTICS_LEVEL ='BASIC';

System altered.

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete reference
information

Configuring the Automatic SQL Tuning Task
You can configure the Automatic SQL Tuning task using Cloud Control or the command line.

Configuring the Automatic SQL Tuning Task Using Cloud Control
You can enable and disable all automatic maintenance tasks, including the Automatic SQL
Tuning task, using Cloud Control. You must perform the operation as SYS or have the EXECUTE
privilege on the PL/SQL package DBMS_AUTO_SQLTUNE.

To configure the Automatic SQL Tuning task using Cloud Control:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. From the Administration menu, click Oracle Scheduler, then Automated Maintenance
Tasks.

The Automated Maintenance Tasks page appears.

Chapter 25
Managing the Automatic SQL Tuning Task

25-25

This page shows the predefined tasks. You access each task by clicking the corresponding
link to get more information about the task itself.

6. Click Automatic SQL Tuning.

The Automatic SQL Tuning Result Summary page appears.

7. Under Task Settings, click Configure next to Automatic SQL Tuning
(SYS_AUTO_SQL_TUNING_TASK).

The Automated Maintenance Tasks Configuration page appears.

8. Under Task Settings, click Configure next to Automatic SQL Tuning.

The Automatic SQL Tuning Settings page appears.

9. Make the desired changes and click Apply.

Configuring the Automatic SQL Tuning Task Using the Command Line
The DBMS_AUTO_SQLTUNE package enables you to configure automatic SQL tuning by specifying
the task parameters using the SET_AUTO_TUNING_TASK_PARAMETER procedure.

Because the task is owned by SYS, only SYS can set task parameters.

The ACCEPT_SQL_PROFILE tuning task parameter specifies whether to implement SQL profiles
automatically (true) or require user intervention (false). The default is AUTO, which means
true if at least one SQL statement exists with a SQL profile and false if this condition is not
satisfied.

Note:

When automatic implementation is enabled, the advisor only implements
recommendations to create SQL profiles. Recommendations such as creating new
indexes, gathering optimizer statistics, and creating SQL plan baselines are not
automatically implemented.

Assumptions

This tutorial assumes the following:

• You want the database to implement SQL profiles automatically, but to implement no more
than 50 SQL profiles per execution, and no more than 50 profiles total on the database.

• You want the task to time out after 1200 seconds per execution.

Chapter 25
Managing the Automatic SQL Tuning Task

25-26

To set Automatic SQL Tuning task parameters:

1. Connect SQL*Plus to the database with the appropriate privileges, and then optionally
query the current task settings.

For example, connect SQL*Plus to the database with administrator privileges and execute
the following query:

COL PARAMETER_NAME FORMAT a25
COL VALUE FORMAT a10

SELECT PARAMETER_NAME, PARAMETER_VALUE AS "VALUE"
FROM DBA_ADVISOR_PARAMETERS
WHERE ((TASK_NAME = 'SYS_AUTO_SQL_TUNING_TASK') AND
 ((PARAMETER_NAME LIKE '%PROFILE%') OR
 (PARAMETER_NAME = 'LOCAL_TIME_LIMIT') OR
 (PARAMETER_NAME = 'EXECUTION_DAYS_TO_EXPIRE')));

Sample output appears as follows:

PARAMETER_NAME VALUE
------------------------- ----------
EXECUTION_DAYS_TO_EXPIRE 30
LOCAL_TIME_LIMIT 1000
ACCEPT_SQL_PROFILES FALSE
MAX_SQL_PROFILES_PER_EXEC 20
MAX_AUTO_SQL_PROFILES 10000

2. Set parameters using PL/SQL code of the following form:

BEGIN
 DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER (
 task_name => 'SYS_AUTO_SQL_TUNING_TASK'
, parameter => parameter_name
, value => value
);
END;
/

Example 25-3 Setting SQL Tuning Task Parameters

The following PL/SQL block sets a time limit to 20 minutes, and also automatically implements
SQL profiles and sets limits for these profiles:

BEGIN
 DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER('SYS_AUTO_SQL_TUNING_TASK',
 'LOCAL_TIME_LIMIT', 1200);
 DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER('SYS_AUTO_SQL_TUNING_TASK',
 'ACCEPT_SQL_PROFILES', 'true');
 DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER('SYS_AUTO_SQL_TUNING_TASK',
 'MAX_SQL_PROFILES_PER_EXEC', 50);
 DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER('SYS_AUTO_SQL_TUNING_TASK',
 'MAX_AUTO_SQL_PROFILES', 10002);
END;
/

Chapter 25
Managing the Automatic SQL Tuning Task

25-27

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete reference
information for DBMS_AUTO_SQLTUNE

Viewing Automatic SQL Tuning Reports
At any time during or after the running of the Automatic SQL Tuning task, you can view a
tuning report.

The tuning report contains information about all executions of the automatic SQL tuning task.
Depending on the sections that were included in the report, you can view information in the
following sections:

• General information

This section has a high-level description of the automatic SQL tuning task, including
information about the inputs given for the report, the number of SQL statements tuned
during the maintenance, and the number of SQL profiles created.

• Summary

This section lists the SQL statements (by their SQL identifiers) that were tuned during the
maintenance window and the estimated benefit of each SQL profile, or the execution
statistics after performing a test execution of the SQL statement with the SQL profile.

• Tuning findings

This section contains the following information about each SQL statement analyzed by
SQL Tuning Advisor:

– All findings associated with each SQL statement

– Whether the profile was implemented on the database, and why

– Whether the SQL profile is currently enabled on the database

– Detailed execution statistics captured when testing the SQL profile

• Explain plans

This section shows the old and new explain plans used by each SQL statement analyzed
by SQL Tuning Advisor.

• Errors

This section lists all errors encountered by the automatic SQL tuning task.

Viewing Automatic SQL Tuning Reports Using the Command Line
To generate a SQL tuning report as a CLOB, execute the
DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK function.

You can store the CLOB in a variable and then print the variable to view the report.

Assumptions

This section assumes that you want to show all SQL statements that were analyzed in the
most recent execution, including recommendations that were not implemented.

Chapter 25
Managing the Automatic SQL Tuning Task

25-28

To create and access an Automatic SQL Tuning Advisor report:

1. Connect SQL*Plus to the database with administrator privileges, and then execute the
DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK function.

The following example generates a text report to show all SQL statements that were
analyzed in the most recent execution, including recommendations that were not
implemented:

VARIABLE my_rept CLOB;
BEGIN
 :my_rept :=DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK (
 begin_exec => NULL
, end_exec => NULL
, type => 'TEXT'
, level => 'TYPICAL'
, section => 'ALL'
, object_id => NULL
, result_limit => NULL
);
END;
/

PRINT :my_rept

2. Read the general information section for an overview of the tuning execution.

The following sample shows the Automatic SQL Tuning task analyzed 17 SQL statements
in just over 7 minutes:

MY_REPT
--
GENERAL INFORMATION SECTION
--
Tuning Task Name : SYS_AUTO_SQL_TUNING_TASK
Tuning Task Owner : SYS
Workload Type : Automatic High-Load SQL Workload
Execution Count : 6
Current Execution : EXEC_170
Execution Type : TUNE SQL
Scope : COMPREHENSIVE
Global Time Limit(seconds) : 3600
Per-SQL Time Limit(seconds) : 1200
Completion Status : COMPLETED
Started at : 04/16/2012 10:00:00
Completed at : 04/16/2012 10:07:11
Number of Candidate SQLs : 17
Cumulative Elapsed Time of SQL (s) : 8

3. Look for findings and recommendations.

If SQL Tuning Advisor makes a recommendation, then weigh the pros and cons of
accepting it.

Chapter 25
Managing the Automatic SQL Tuning Task

25-29

The following example shows that SQL Tuning Advisor found a plan for a statement that is
potentially better than the existing plan. The advisor recommends implementing a SQL
profile.

--
SQLs with Findings Ordered by Maximum (Profile/Index) Benefit, Object ID
--
ob ID SQL ID stats profile(benefit) index(benefit) restructure
------ ------------- ----- ---------------- -------------- -----------
 82 dqjcc345dd4ak 58.03%
 72 51bbkcd9zwsjw 2
 81 03rxjf8gb18jg

--
DETAILS SECTION
--
 Statements with Results Ordered by Max (Profile/Index) Benefit, Obj ID
--
Object ID : 82
Schema Name: DBA1
SQL ID : dqjcc345dd4ak
SQL Text : SELECT status FROM dba_autotask_client WHERE client_name=:1

--
FINDINGS SECTION (1 finding)
--

1- SQL Profile Finding (see explain plans section below)
--
 A potentially better execution plan was found for this statement.
 The SQL profile was not automatically created because the verified
 benefit was too low.

 Recommendation (estimated benefit: 58.03%)
 --
 - Consider accepting the recommended SQL profile.
 execute dbms_sqltune.accept_sql_profile(task_name =>
 'SYS_AUTO_SQL_TUNING_TASK', object_id => 82, replace => TRUE);

 Validation results

 The SQL profile was tested by executing its plan and the original
 plan and measuring their respective execution statistics. A plan
 may have been only partially executed if the other could be run
 to completion in less time.

 Original Plan With SQL Profile % Improved
 ------------- ---------------- ----------
 Completion Status: COMPLETE COMPLETE
 Elapsed Time(us): 26963 8829 67.25 %
 CPU Time(us): 27000 9000 66.66 %
 User I/O Time(us): 25 14 44 %
 Buffer Gets: 905 380 58.01 %
 Physical Read Requests: 0 0
 Physical Write Requests: 0 0
 Physical Read Bytes: 0 0

Chapter 25
Managing the Automatic SQL Tuning Task

25-30

 Physical Write Bytes: 7372 7372 0 %
 Rows Processed: 1 1
 Fetches: 1 1
 Executions: 1 1

 Notes

 1. The original plan was first executed to warm the buffer cache.
 2. Statistics for original plan were averaged over next 9 executions.
 3. The SQL profile plan was first executed to warm the buffer cache.
 4. Statistics for the SQL profile plan were averaged over
 next 9 executions.

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete reference
information.

The Automatic SQL Tuning Set
The Automatic SQL Tuning Set (ASTS) is a system-maintained record of SQL execution plans
and SQL statement performance metrics seen by the database.

The ASTS is required by automatic features such as automatic indexing and automatic SQL
plan management. Over time, it accumulates information on all SQL statements executed on
the system (including details of all execution plans).

ASTS and AWR

ASTS is complementary to AWR. Both are core manageability infrastructure components of
Oracle Database.

Like AWR, the ASTS is a historic record of SQL execution plans and SQL statement
performance metrics. It differs from the Automatic Workload Repository (AWR) because it is
not limited to statements that consume significant system resources. Over time, ASTS will
include examples of all queries seen on the system. However, it does impose a limit on the
collection of non-reusable statements such as ad-hoc queries or statements that use literals
instead of bind variables.

ASTS is particularly useful for diagnosing and potentially correcting SQL performance
regressions in situations where the regression is caused by a plan change. In cases like this,
the better plan may not be available in AWR, but it is likely to be available in ASTS. This is
significant because, for example, SQL plan management can be used to locate, test, and
enforce better SQL execution plans contained in ASTS. Automatic SQL plan management
implements this entire workflow without manual intervention.

Example 25-4 How to View Captured SQL statements in ASTS

CopySelect sql_text
From dba_sqlset_Statements
Where sqlset_name = 'SYS_AUTO_STS';

Chapter 25
The Automatic SQL Tuning Set

25-31

Example 25-5 Enabling the ASTS Task

CopyBegin
 DBMS_Auto_Task_Admin.Enable(
 Client_Name => 'Auto STS Capture Task',
 Operation => NULL,
 Window_name => NULL);
End;
/

Example 25-6 Disabling the ASTS Task

CopyBegin
 DBMS_Auto_Task_Admin.Disable(
 Client_Name => 'Auto STS Capture Task',
 Operation => NULL,
 Window_name => NULL);
End;
/

Example 25-7 Viewing Task Status

CopySelect Task_Name, Enabled
From DBA_AutoTask_Schedule_Control
Where Task_Name = 'Auto STS Capture Task';

See Also:

The Oracle Database Reference for the following views.

• DBA_AUTOTASK_SCHEDULE_CONTROL

• DBA_AUTOTASK_SETTINGS

Running SQL Tuning Advisor On Demand
You can run SQL Tuning Advisor on demand.

About On-Demand SQL Tuning
On-demand SQL tuning is defined as any invocation of SQL Tuning Advisor that does not
result from the Automatic SQL Tuning task.

Purpose of On-Demand SQL Tuning
Typically, you invoke SQL Tuning Advisor to run ADDM proactively, or to tune SQL statement
reactively when users complain about suboptimal performance.

In both the proactive and reactive scenarios, running SQL Tuning Advisor is usually the
quickest way to fix unexpected SQL performance problems.

Chapter 25
Running SQL Tuning Advisor On Demand

25-32

User Interfaces for On-Demand SQL Tuning
The recommended user interface for running SQL Tuning Advisor manually is Cloud Control.

Accessing the SQL Tuning Advisor Using Cloud Control
Automatic Database Diagnostic Monitor (ADDM) automatically identifies high-load SQL
statements. If ADDM identifies such statements, then click Schedule/Run SQL Tuning
Advisor on the Recommendation Detail page to run SQL Tuning Advisor.

To tune SQL statements manually using SQL Tuning Advisor:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. From the Performance menu, click SQL, then SQL Tuning Advisor.

The Schedule SQL Tuning Advisor page appears.

Chapter 25
Running SQL Tuning Advisor On Demand

25-33

See Also:

Oracle Database 2 Day + Performance Tuning Guide to learn how to configure and
run SQL Tuning Advisor using Cloud Control.

Command-Line Interface to On-Demand SQL Tuning
If Cloud Control is unavailable, then you can run SQL Tuning Advisor using procedures in the
DBMS_SQLTUNE package.

To use the APIs, the user must have the ADVISOR privilege.

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete reference
information

Basic Tasks in On-Demand SQL Tuning
This section explains the basic tasks in running SQL Tuning Advisor using the DBMS_SQLTUNE
package.

The following graphic shows the basic workflow when using the PL/SQL APIs.

Chapter 25
Running SQL Tuning Advisor On Demand

25-34

Figure 25-12 SQL Tuning Advisor APIs

create_tuning_task

execute_tuning_task

STS

report_tuning_task

Implement

Recommendations

Gather
optimizer
statistics

Create
SQL
Profile

set_tuning_task_parameter

Monitor Task

Create
Index

Restructure
SQL

Create SQL
Plan
Baseline

As shown in Figure 25-12, the basic procedure is as follows:

1. Prepare or create the input to SQL Tuning Advisor. The input can be either:

• The text of a single SQL statement

• A SQL tuning set that contains one or more statements

2. Create a SQL tuning task.

See "Creating a SQL Tuning Task".

3. Optionally, configure the SQL tuning task that you created.

See "Configuring a SQL Tuning Task".

4. Execute a SQL tuning task.

See "Executing a SQL Tuning Task".

5. Optionally, check the status or progress of a SQL tuning task.

"Monitoring a SQL Tuning Task".

6. Display the results of a SQL tuning task.

"Displaying the Results of a SQL Tuning Task".

7. Implement recommendations as appropriate.

Chapter 25
Running SQL Tuning Advisor On Demand

25-35

See Also:

Oracle Database 2 Day + Performance Tuning Guide to learn how to tune SQL using
Cloud Control

Creating a SQL Tuning Task
To create a SQL tuning task execute the DBMS_SQLTUNE.CREATE_TUNING_TASK function.

You can create tuning tasks from any of the following:

• The text of a single SQL statement

• A SQL tuning set containing multiple statements

• A SQL statement selected by SQL identifier from the shared SQL area

• A SQL statement selected by SQL identifier from AWR

The scope parameter is one of the most important for this function. You can set this parameter
to the following values:

• LIMITED
SQL Tuning Advisor produces recommendations based on statistical checks, access path
analysis, and SQL structure analysis. SQL profile recommendations are not generated.

• COMPREHENSIVE
SQL Tuning Advisor carries out all the analysis it performs under limited scope plus SQL
profiling.

Assumptions

This tutorial assumes the following:

• You want to tune as user hr, who has the ADVISOR privilege.

• You want to tune the following query:

SELECT /*+ ORDERED */ *
FROM employees e, locations l, departments d
WHERE e.department_id = d.department_id
AND l.location_id = d.location_id
AND e.employee_id < :bnd;

• You want to pass the bind variable 100 to the preceding query.

• You want SQL Tuning Advisor to perform SQL profiling.

• You want the task to run no longer than 60 seconds.

To create a SQL tuning task:

1. Connect SQL*Plus to the database with the appropriate privileges, and then run the
DBMS_SQLTUNE.CREATE_TUNING_TASK function.

Chapter 25
Running SQL Tuning Advisor On Demand

25-36

For example, execute the following PL/SQL program:

DECLARE
 my_task_name VARCHAR2(30);
 my_sqltext CLOB;
BEGIN
 my_sqltext := 'SELECT /*+ ORDERED */ * ' ||
 'FROM employees e, locations l, departments d ' ||
 'WHERE e.department_id = d.department_id AND ' ||
 'l.location_id = d.location_id AND ' ||
 'e.employee_id < :bnd';

 my_task_name := DBMS_SQLTUNE.CREATE_TUNING_TASK (
 sql_text => my_sqltext
, bind_list => sql_binds(anydata.ConvertNumber(100))
, user_name => 'HR'
, scope => 'COMPREHENSIVE'
, time_limit => 60
, task_name => 'STA_SPECIFIC_EMP_TASK'
, description => 'Task to tune a query on a specified employee'
);
END;
/

2. Optionally, query the status of the task.

The following example queries the status of all tasks owned by the current user, which in
this example is hr:

COL TASK_ID FORMAT 999999
COL TASK_NAME FORMAT a25
COL STATUS_MESSAGE FORMAT a33

SELECT TASK_ID, TASK_NAME, STATUS, STATUS_MESSAGE
FROM USER_ADVISOR_LOG;

Sample output appears below:

TASK_ID TASK_NAME STATUS STATUS_MESSAGE
------- ------------------------- ----------- --------------
 884 STA_SPECIFIC_EMP_TASK INITIAL

In the preceding output, the INITIAL status indicates that the task has not yet started
execution.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SQLTUNE.CREATE_TUNING_TASK function

Chapter 25
Running SQL Tuning Advisor On Demand

25-37

Configuring a SQL Tuning Task
To change the parameters of a tuning task after it has been created, execute the
DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER function.

This tutorial assumes the following:

• You want to tune with user account hr, which has been granted the ADVISOR privilege.

• You want to tune the STA_SPECIFIC_EMP_TASK created in "Creating a SQL Tuning Task".

• You want to change the maximum time that the SQL tuning task can run to 300 seconds.

To configure a SQL tuning task:

1. Connect SQL*Plus to the database with the appropriate privileges, and then run the
DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER function.

For example, execute the following PL/SQL program to change the time limit of the tuning
task to 300 seconds:

BEGIN
 DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER (
 task_name => 'STA_SPECIFIC_EMP_TASK'
, parameter => 'TIME_LIMIT'
, value => 300
);
END;
/

2. Optionally, verify that the task parameter was changed.

The following example queries the values of all used parameters in task
STA_SPECIFIC_EMP_TASK:

COL PARAMETER_NAME FORMAT a25
COL VALUE FORMAT a15

SELECT PARAMETER_NAME, PARAMETER_VALUE AS "VALUE"
FROM USER_ADVISOR_PARAMETERS
WHERE TASK_NAME = 'STA_SPECIFIC_EMP_TASK'
AND PARAMETER_VALUE != 'UNUSED'
ORDER BY PARAMETER_NAME;

Sample output appears below:

PARAMETER_NAME VALUE
------------------------- ---------------
DAYS_TO_EXPIRE 30
DEFAULT_EXECUTION_TYPE TUNE SQL
EXECUTION_DAYS_TO_EXPIRE UNLIMITED
JOURNALING INFORMATION
MODE COMPREHENSIVE
SQL_LIMIT -1
SQL_PERCENTAGE 1
TARGET_OBJECTS 1

Chapter 25
Running SQL Tuning Advisor On Demand

25-38

TEST_EXECUTE AUTO
TIME_LIMIT 300

Example 25-8 Tuning a Standby Database Workload Using a Database Link

Starting in Oracle Database 12c Release 2 (12.2), you can tune a standby database workload
by specifying a database link in the database_link_to parameter. For security reasons, Oracle
recommends using a private database link. The link must be owned by SYS and accessed by a
privileged user. Oracle Database includes a default privileged user named SYS$UMF.

The following program, which is issued on the standby database, shows a sample SQL tuning
session for a query of table1. The database_link_to parameter specifies the name of the
standby-to-primary database link.

VARIABLE tname VARCHAR2(30);
VARIABLE query VARCHAR2(500);

EXEC :tname := 'my_task';
EXEC :query := 'SELECT /*+ FULL(t)*/ col1 FROM table1 t WHERE col1=9000';

BEGIN
:tname := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_text => :query
 , task_name => :tname
 , database_link_to => 'lnk_to_pri');
END;
/

EXEC DBMS_SQLTUNE.EXECUTE_TUNING_TASK(:tname);

SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK(:tname) FROM DUAL;

BEGIN
 DBMS_SQLTUNE.ACCEPT_SQL_PROFILE(
 task_name => :tname
, name => 'prof'
, task_owner => 'SYS'
, replace => TRUE
, database_link_to => 'lnk_to_pri');
END;
/

Note that the bind_list parameter of CREATE_TUNING_TASK is not supported on a standby
database.

See Also:

• "SQL Tuning on Active Data Guard Databases"

• Oracle Data Guard Concepts and Administration to learn how to perform remote
tuning in a Data Guard environment

• Oracle Database PL/SQL Packages and Types Reference for
DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER syntax and semantics

Chapter 25
Running SQL Tuning Advisor On Demand

25-39

Executing a SQL Tuning Task
To execute a SQL tuning task, use the DBMS_SQLTUNE.EXECUTE_TUNING_TASK function. The
most important parameter is task_name.

Note:

You can also execute the automatic tuning task SYS_AUTO_SQL_TUNING_TASK using
the EXECUTE_TUNING_TASK API. SQL Tuning Advisor performs the same analysis and
actions as it would when run automatically.

Assumptions

This tutorial assumes the following:

• You want to tune as user hr, who has the ADVISOR privilege.

• You want to execute the STA_SPECIFIC_EMP_TASK created in "Creating a SQL Tuning Task".

To execute a SQL tuning task:

1. Connect SQL*Plus to the database with the appropriate privileges, and then run the
DBMS_SQLTUNE.EXECUTE_TUNING_TASK function.

For example, execute the following PL/SQL program:

BEGIN
 DBMS_SQLTUNE.EXECUTE_TUNING_TASK(task_name=>'STA_SPECIFIC_EMP_TASK');
END;
/

2. Optionally, query the status of the task.

The following example queries the status of all tasks owned by the current user, which in
this example is hr:

COL TASK_ID FORMAT 999999
COL TASK_NAME FORMAT a25
COL STATUS_MESSAGE FORMAT a33

SELECT TASK_ID, TASK_NAME, STATUS, STATUS_MESSAGE
FROM USER_ADVISOR_LOG;

Sample output appears below:

TASK_ID TASK_NAME STATUS STATUS_MESSAGE
------- ------------------------- ----------- --------------
 884 STA_SPECIFIC_EMP_TASK COMPLETED

Chapter 25
Running SQL Tuning Advisor On Demand

25-40

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete reference
information about the DBMS_SQLTUNE.EXECUTE_TUNING_TASK function

Monitoring a SQL Tuning Task
When you create a SQL tuning task in Cloud Control, no separate monitoring step is
necessary. Cloud Control displays the status page automatically.

If you do not use Cloud Control, then you can monitor currently executing SQL tuning tasks by
querying the data dictionary and dynamic performance views. The following table describes the
relevant views.

Table 25-3 DBMS_SQLTUNE.EXECUTE_TUNING_TASK Parameters

View Description

USER_ADVISOR_TASKS Displays information about tasks owned by the current user.
The view contains one row for each task. Each task has a
name that is unique to the owner. Task names are just
informational and no uniqueness is enforced within any other
namespace.

V$ADVISOR_PROGRESS Displays information about the progress of advisor execution.

Assumptions

This tutorial assumes the following:

• You tune as user hr, who has the ADVISOR privilege.

• You monitor the STA_SPECIFIC_EMP_TASK that you executed in "Executing a SQL Tuning
Task".

To monitor a SQL tuning task:

1. Connect SQL*Plus to the database with the appropriate privileges, and then determine
whether the task is executing or completed.

For example, query the status of STA_SPECIFIC_EMP_TASK as follows:

SELECT STATUS
FROM USER_ADVISOR_TASKS
WHERE TASK_NAME = 'STA_SPECIFIC_EMP_TASK';

The following output shows that the task has completed:

STATUS

EXECUTING

2. Determine the progress of an executing task.

Chapter 25
Running SQL Tuning Advisor On Demand

25-41

The following example queries the status of the task with task ID 884:

VARIABLE my_tid NUMBER;
EXEC :my_tid := 884
COL ADVISOR_NAME FORMAT a20
COL SOFAR FORMAT 999
COL TOTALWORK FORMAT 999

SELECT TASK_ID, ADVISOR_NAME, SOFAR, TOTALWORK,
 ROUND(SOFAR/TOTALWORK*100,2) "%_COMPLETE"
FROM V$ADVISOR_PROGRESS
WHERE TASK_ID = :my_tid;

Sample output appears below:

 TASK_ID ADVISOR_NAME SOFAR TOTALWORK %_COMPLETE
---------- -------------------- ----- --------- ----------
 884 SQL Tuning Advisor 1 2 50

See Also:

Oracle Database Reference to learn about the V$ADVISOR_PROGRESS view

Displaying the Results of a SQL Tuning Task
To report the results of a tuning task, use the DBMS_SQLTUNE.REPORT_TUNING_TASK function.

The report contains all the findings and recommendations of SQL Tuning Advisor. For each
proposed recommendation, the report provides the rationale and benefit along with the SQL
statements needed to implement the recommendation.

Assumptions

This tutorial assumes the following:

• You want to tune as user hr, who has the ADVISOR privilege.

• You want to access the report for the STA_SPECIFIC_EMP_TASK executed in "Executing a
SQL Tuning Task".

To view the report for a SQL tuning task:

1. Connect SQL*Plus to the database with the appropriate privileges, and then run the
DBMS_SQLTUNE.REPORT_TUNING_TASK function.

For example, you run the following statements:

SET LONG 1000
SET LONGCHUNKSIZE 1000
SET LINESIZE 100
SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK('STA_SPECIFIC_EMP_TASK')
FROM DUAL;

Chapter 25
Running SQL Tuning Advisor On Demand

25-42

Truncated sample output appears below:

DBMS_SQLTUNE.REPORT_TUNING_TASK('STA_SPECIFIC_EMP_TASK')
--
GENERAL INFORMATION SECTION
--
Tuning Task Name : STA_SPECIFIC_EMP_TASK
Tuning Task Owner : HR
Workload Type : Single SQL Statement
Execution Count : 11
Current Execution : EXEC_1057
Execution Type : TUNE SQL
Scope : COMPREHENSIVE
Time Limit(seconds): 300
Completion Status : COMPLETED
Started at : 04/22/2012 07:35:49
Completed at : 04/22/2012 07:35:50

--
Schema Name: HR
SQL ID : dg7nfaj0bdcvk
SQL Text : SELECT /*+ ORDERED */ * FROM employees e, locations l,
 departments d WHERE e.department_id = d.department_id AND
 l.location_id = d.location_id AND e.employee_id < :bnd
Bind Variables :
 1 - (NUMBER):100

--
FINDINGS SECTION (4 findings)

2. Interpret the results.

See Also:

• "Viewing Automatic SQL Tuning Reports Using the Command Line"

• Oracle Database PL/SQL Packages and Types Reference for complete reference
information

Chapter 25
Running SQL Tuning Advisor On Demand

25-43

26
Optimizing Access Paths with SQL Access
Advisor

SQL Access Advisor is diagnostic software that identifies and helps resolve SQL
performance problems by recommending indexes, materialized views, materialized view logs,
or partitions to create, drop, or retain.

About SQL Access Advisor
SQL Access Advisor accepts input from several sources, including SQL tuning sets, and then
issues recommendations.

Note:

Data visibility and privilege requirements may differ when using SQL Access Advisor
with pluggable databases.

See Also:

Oracle Database Administrator’s Guide for a table that summarizes how
manageability features work in a container database (CDB)

Purpose of SQL Access Advisor
SQL Access Advisor recommends the proper set of materialized views, materialized view logs,
partitions, and indexes for a specified workload.

Materialized views, partitions, and indexes are essential when tuning a database to achieve
optimum performance for complex, data-intensive queries. SQL Access Advisor takes an
actual workload as input, or derives a hypothetical workload from a schema. The advisor then
recommends access structures for faster execution path. The advisor provides the following
advantages:

• Does not require you to have expert knowledge

• Makes decisions based on rules that reside in the optimizer

• Covers all aspects of SQL access in a single advisor

• Provides simple, user-friendly GUI wizards in Cloud Control

• Generates scripts for implementation of recommendations

26-1

See Also:

• Oracle Database 2 Day + Performance Tuning Guide to learn how to use SQL
Access Advisor with Cloud Control

• Oracle Database Administrator’s Guide to learn more about automated indexing

• Oracle Database Licensing Information User Manual for details on whether
automated indexing is supported for different editions and services

SQL Access Advisor Architecture
Automatic Tuning Optimizer is the central tool used by SQL Access Advisor.

The advisor can receive SQL statements as input from the sources shown in Figure 26-1,
analyze these statements using the optimizer, and then make recommendations.

Figure 26-1 shows the basic architecture of SQL Access Advisor.

Figure 26-1 SQL Access Advisor Architecture

Optimizer

Automatic
Tuning
Optimizer

SQL
Access
Advisor

DBA

Workload

SQL
Tuning
Set

Shared Pool

Library Cache

Shared SQL Area

SELECT * FROM
 employees

Hypothetical

Recommendations

Indexes

Materialized
Views

Materialized
View Logs

Partitions

Filter Options

See Also:

"About Automatic Tuning Optimizer"

Chapter 26
About SQL Access Advisor

26-2

Input to SQL Access Advisor
SQL Access Advisor requires a workload, which consists of one or more SQL statements, plus
statistics and attributes that fully describe each statement.

A full workload contains all SQL statements from a target business application. A partial
workload contains a subset of SQL statements.

As shown in Figure 26-1, SQL Access Advisor input can come from the following sources:

• Shared SQL area

The database uses the shared SQL area to analyze recent SQL statements that are
currently in V$SQL.

• SQL tuning set

A SQL tuning set (STS) is a database object that stores SQL statements along with their
execution context. When a set of SQL statements serve as input, the database must first
construct and use an STS.

Note:

For best results, provide a workload as a SQL tuning set. The DBMS_SQLTUNE
package provides helper functions that can create SQL tuning sets from common
workload sources, such as the SQL cache, a user-defined workload stored in a
table, and a hypothetical workload.

• Hypothetical workload

You can create a hypothetical workload from a schema by analyzing dimensions and
constraints. This option is useful when you are initially designing your application.

See Also:

• "About SQL Tuning Sets"

• Oracle Database Concepts to learn about the shared SQL area

Filter Options for SQL Access Advisor
You can apply a filter to a workload to restrict what is analyzed.

For example, specify that the advisor look at only the 30 most resource-intensive statements in
the workload, based on optimizer cost. This restriction can generate different sets of
recommendations based on different workload scenarios.

SQL Access Advisor parameters control the recommendation process and customization of the
workload. These parameters control various aspects of the process, such as the type of
recommendation required and the naming conventions for what it recommends.

To set these parameters, use the DBMS_ADVISOR.SET_TASK_PARAMETER procedure. Parameters
are persistent in that they remain set for the life span of the task. When a parameter value is

Chapter 26
About SQL Access Advisor

26-3

set using DBMS_ADVISOR.SET_TASK_PARAMETER, the value does not change until you make
another call to this procedure.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_ADVISOR.SET_TASK_PARAMETER procedure

SQL Access Advisor Recommendations
A task recommendation can range from a simple to a complex solution.

The advisor can recommend that you create database objects such as the following:

• Indexes

SQL Access Advisor index recommendations include bitmap, function-based, and B-tree
indexes. A bitmap index offers a reduced response time for many types of ad hoc queries
and reduced storage requirements compared to other indexing techniques. B-tree indexes
are most commonly used in a data warehouse to index unique or near-unique keys. SQL
Access Advisor materialized view recommendations include fast refreshable and full
refreshable materialized views, for either general rewrite or exact text match rewrite.

• Materialized views

SQL Access Advisor, using the TUNE_MVIEW procedure, also recommends how to optimize
materialized views so that they can be fast refreshable and take advantage of general
query rewrite.

• Materialized view logs

A materialized view log is a table at the materialized view's master site or master
materialized view site that records all DML changes to the master table or master
materialized view. A fast refresh of a materialized view is possible only if the materialized
view's master has a materialized view log.

• Partitions

SQL Access Advisor can recommend partitioning on an existing unpartitioned base table to
improve performance. Furthermore, it may recommend new indexes and materialized
views that are themselves partitioned.

While creating new partitioned indexes and materialized view is no different from the
unpartitioned case, partition existing base tables with care. This is especially true when
indexes, views, constraints, or triggers are defined on the table.

To make recommendations, SQL Access Advisor relies on structural statistics about table and
index cardinalities of dimension level columns, JOIN KEY columns, and fact table key columns.
You can gather exact or estimated statistics with the DBMS_STATS package.

Because gathering statistics is time-consuming and full statistical accuracy is not required, it is
usually preferable to estimate statistics. Without gathering statistics on a specified table,
queries referencing this table are marked as invalid in the workload, resulting in no
recommendations for these queries. It is also recommended that all existing indexes and
materialized views have been analyzed.

Chapter 26
About SQL Access Advisor

26-4

See Also:

• "About Manual Statistics Collection with DBMS_STATS"

• Oracle Database Data Warehousing Guide to learn more about materialized
views

• Oracle Database VLDB and Partitioning Guide to learn more about partitions

SQL Access Advisor Actions
In general, each recommendation provides a benefit for a set of queries.

All individual actions in a recommendation must be implemented together to achieve the full
benefit. Recommendations can share actions.

For example, a CREATE INDEX statement could provide a benefit for several queries, but some
queries might benefit from an additional CREATE MATERIALIZED VIEW statement. In that case,
the advisor would generate two recommendations: one for the set of queries that require only
the index, and another one for the set of queries that require both the index and the
materialized view.

Types of Actions
SQL Access Advisor makes several different types of recommendations.

Recommendations include the following types of actions:

• PARTITION BASE TABLE
This action partitions an existing unpartitioned base table.

• CREATE|DROP|RETAIN {MATERIALIZED VIEW|MATERIALIZED VIEW LOG|INDEX}
The CREATE actions corresponds to new access structures. RETAIN recommends keeping
existing access structures. SQL Access Advisor only recommends DROP when the
WORKLOAD_SCOPE parameter is set to FULL.

• GATHER STATS
This action generates a call to a DBMS_STATS procedure to gather statistics on a newly
generated access structure.

Multiple recommendations may refer to the same action. However, when generating a script for
the recommendation, you only see each action once.

See Also:

• "About Manual Statistics Collection with DBMS_STATS"

• "Viewing SQL Access Advisor Task Results" to learn how to view actions and
recommendations

Chapter 26
About SQL Access Advisor

26-5

Guidelines for Interpreting Partitioning Recommendations
When SQL Access Advisor determines that partitioning a base table would improve
performance, the advisor adds a partition action to every recommendation containing a query
referencing the table. In this way, index and materialized view recommendations are
implemented on the correctly partitioned tables.

SQL Access Advisor may recommend partitioning an existing nonpartitioned base table. When
the advisor implementation script contains partition recommendations, note the following
issues:

• Partitioning an existing table is a complex and extensive operation, which may take
considerably longer than implementing a new index or materialized view. Sufficient time
should be reserved for implementing this recommendation.

• While index and materialized view recommendations are easy to reverse by deleting the
index or view, a table, after being partitioned, cannot easily be restored to its original state.
Therefore, ensure that you back up the database before executing a script containing
partition recommendations.

• While repartitioning a base table, SQL Access Advisor scripts make a temporary copy of
the original table, which occupies the same amount of space as the original table.
Therefore, the repartitioning process requires sufficient free disk space for another copy of
the largest table to be repartitioned. Ensure that such space is available before running the
implementation script.

The partition implementation script attempts to migrate dependent objects such as
indexes, materialized views, and constraints. However, some object cannot be
automatically migrated. For example, PL/SQL stored procedures defined against a
repartitioned base table typically become invalid and must be recompiled.

• If you decide not to implement a partition recommendation, then all other
recommendations on the same table in the same script (such as CREATE INDEX and CREATE
MATERIALIZED VIEW recommendations) depend on the partitioning recommendation. To
obtain accurate recommendations, do not simply remove the partition recommendation
from the script. Rather, rerun the advisor with partitioning disabled, for example, by setting
parameter ANALYSIS_SCOPE to a value that does not include the keyword TABLE.

See Also:

• Oracle Database SQL Language Reference for CREATE DIRECTORY syntax

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_ADVISOR.GET_TASK_SCRIPT function

SQL Access Advisor Repository
Information required and generated by SQL Access Advisor resides in the Advisor repository,
which is in the data dictionary.

The SQL Access Advisor repository has the following benefits:

• Collects a complete workload for SQL Access Advisor

• Supports historical data

Chapter 26
About SQL Access Advisor

26-6

• Is managed by the database

User Interfaces for SQL Access Advisor
Oracle recommends that you use SQL Access Advisor through its GUI wizard, which is
available in Cloud Control.

You can also invoke SQL Access Advisor through the DBMS_ADVISOR package. This chapter
explains how to use the API.

See Also:

• Oracle Database 2 Day + Performance Tuning Guide explains how to use the
SQL Access Advisor wizard.

• See Oracle Database PL/SQL Packages and Types Reference for complete
semantics and syntax.

Accessing the SQL Access Advisor: Initial Options Page Using Cloud Control
The SQL Access Advisor: Initial Options page in Cloud Control is the starting page for a wizard
that guides you through the process of obtaining recommendations.

To access the SQL Access Advisor: Initial Options page:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. From the Performance menu, select SQL, then SQL Access Advisor.

The SQL Access Advisor: Initial Options page appears., shown in Figure 26-2.

Figure 26-2 SQL Access Advisor: Initial Options

Chapter 26
About SQL Access Advisor

26-7

You can perform most SQL plan management tasks in this page or in pages accessed
through this page.

See Also:

• Cloud Control context-sensitive online help to learn about the options on the SQL
Access Advisor: Initial Options page

• Oracle Database 2 Day + Performance Tuning Guide to learn how to configure
and run SQL Tuning Advisor using Cloud Control

Command-Line Interface to SQL Tuning Sets
On the command line, you can use the DBMS_ADVISOR package to manage SQL Tuning
Advisor.

The DBMS_ADVISOR package consists of a collection of analysis and advisory functions and
procedures callable from any PL/SQL program. You must have the ADVISOR privilege to use
DBMS_ADVISOR.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about
DBMS_ADVISOR

Using SQL Access Advisor: Basic Tasks
Basic tasks include creating an STS, loading it, creating a SQL Access Advisor task, and then
executing the task.

The following graphic shows the basic workflow for SQL Access Advisor.

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-8

Figure 26-3 Using SQL Access Advisor

SQLAccess
Task

SQL Tuning
Set

Recommendations

ADD_STS_REF

SET_TASK_PARAMETER

Create a SQLAccess Task
and Prepare Task

CREATE_TASK

Step 3

GET_TASK_SCRIPT

Step 6

Review Results

Step 5

EXECUTE_TASK

Step 4

Create SQL Tuning Set

CREATE_SQLSET

Step 1

LOAD_SQLSET...

Gather and Manage Workload

Identify Workload Source

Step 2

Create a SQL
Tuning Set

Workload
Reference

Typically, you use SQL Access Advisor by performing the following steps:

1. Create a SQL tuning set

The input workload source for SQL Access Advisor is a SQL tuning set (STS). Use
DBMS_SQLTUNE.CREATE_SQLSET or DBMS_SQLSET.CREATE_SQLSET to create a SQL tuning set.

"Creating a SQL Tuning Set as Input for SQL Access Advisor" describes this task.

2. Load the SQL tuning set

SQL Access Advisor performs best when a workload based on actual usage is available.
Use DBMS_SQLTUNE.LOAD_SQLSET or DBMS_SQLSET.LOAD_SQLSET to populate the SQL tuning
set with your workload.

"Populating a SQL Tuning Set with a User-Defined Workload" describes this task.

3. Create and configure a task

In the task, you define what SQL Access Advisor must analyze and the location of the
analysis results. Create a task using the DBMS_ADVISOR.CREATE_TASK procedure. You can
then define parameters for the task using the SET_TASK_PARAMETER procedure, and then
link the task to an STS by using the DBMS_ADVISOR.ADD_STS_REF procedure.

"Creating and Configuring a SQL Access Advisor Task" describes this task.

4. Execute the task

Run the DBMS_ADVISOR.EXECUTE_TASK procedure to generate recommendations. Each
recommendation specifies one or more actions. For example, a recommendation could be
to create several materialized view logs, create a materialized view, and then analyze it to
gather statistics.

"Executing a SQL Access Advisor Task" describes this task.

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-9

5. View the recommendations

You can view the recommendations by querying data dictionary views.

"Viewing SQL Access Advisor Task Results" describes this task.

6. Optionally, generate and execute a SQL script that implements the recommendations.

"Generating and Executing a Task Script" that describes this task.

Creating a SQL Tuning Set as Input for SQL Access Advisor
The input workload source for SQL Access Advisor is an STS.

Because an STS is stored as a separate entity, multiple advisor tasks can share it. Create an
STS with the DBMS_SQLTUNE.CREATE_SQLSET or DBMS_SQLSET.CREATE_SQLSET procedure.

After an advisor task has referenced an STS, you cannot delete or modify the STS until all
advisor tasks have removed their dependency on it. A workload reference is removed when a
parent advisor task is deleted, or when you manually remove the workload reference from the
advisor task.

Prerequisites

The user creating the STS must have been granted the ADMINISTER SQL TUNING SET privilege.
To run SQL Access Advisor on SQL tuning sets owned by other users, the user must have the
ADMINISTER ANY SQL TUNING SET privilege.

Assumptions

This tutorial assumes the following:

• You want to create an STS named MY_STS_WORKLOAD.

• You want to use this STS as input for a workload derived from the sh schema.

• You use DBMS_SQLTUNE rather than DBMS_SQLSET.

To create an STS :

1. In SQL*Plus, log in to the database as user sh.

2. Set SQL*Plus variables.

For example, enter the following commands:

SET SERVEROUTPUT ON;
VARIABLE task_id NUMBER;
VARIABLE task_name VARCHAR2(255);
VARIABLE workload_name VARCHAR2(255);

3. Create the SQL tuning set.

For example, assign a value to the workload_name variable and create the STS as follows:

EXECUTE :workload_name := 'MY_STS_WORKLOAD';
EXECUTE DBMS_SQLTUNE.CREATE_SQLSET(:workload_name, 'test purpose');

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-10

See Also:

• "About SQL Tuning Sets"

• Oracle Database PL/SQL Packages and Types Reference to learn about
CREATE_SQLSET

Populating a SQL Tuning Set with a User-Defined Workload
A workload consists of one or more SQL statements, plus statistics and attributes that fully
describe each statement.

A full workload contains all SQL statements from a target business application. A partial
workload contains a subset of SQL statements. The difference is that for full workloads SQL
Access Advisor may recommend dropping unused materialized views and indexes.

You cannot use SQL Access Advisor without a workload. SQL Access Advisor ranks the
entries according to a specific statistic, business importance, or combination of the two, which
enables the advisor to process the most important SQL statements first.

SQL Access Advisor performs best with a workload based on actual usage. You can store
multiple workloads in the form of SQL tuning sets, so that you can view the different uses of a
real-world data warehousing or OLTP environment over a long period and across the life cycle
of database instance startup and shutdown.

The following table describes procedures that you can use to populate an STS with a user-
defined workload.

Table 26-1 Procedures for Loading an STS

Procedure Description To Learn More

DBMS_SQLTUNE.LOAD_SQLSET or
DBMS_SQLSET.LOAD_SQLSET

Populates the SQL tuning set
with a set of selected SQL. You
can call the procedure multiple
times to add new SQL
statements or replace attributes
of existing statements.

Oracle Database PL/SQL
Packages and Types Reference

DBMS_ADVISOR.COPY_SQLWKLD_TO
_STS

Copies SQL workload data to a
user-designated SQL tuning set.
The user must have the required
SQL tuning set privileges and
the required ADVISOR privilege.

Oracle Database PL/SQL
Packages and Types Reference

Assumptions

This tutorial assumes that you want to do the following:

• Create a table named sh.user_workload to store information about SQL statements

• Load the sh.user_workload table with information about three queries of tables in the sh
schema

• Populate the STS created in "Creating a SQL Tuning Set as Input for SQL Access Advisor"
with the workload contained in sh.user_workload

• Use DBMS_SQLTUNE.LOAD_SQLSET instead of DBMS_SQLSET.LOAD_SQLSET

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-11

To populate an STS with a user-defined workload:

1. In SQL*Plus, log in to the database as user sh.

2. Create the user_workload table.

For example, enter the following commands:

DROP TABLE user_workload;
CREATE TABLE user_workload
(
 username varchar2(128), /* User who executes statement */
 module varchar2(64), /* Application module name */
 action varchar2(64), /* Application action name */
 elapsed_time number, /* Elapsed time for query */
 cpu_time number, /* CPU time for query */
 buffer_gets number, /* Buffer gets consumed by query */
 disk_reads number, /* Disk reads consumed by query */
 rows_processed number, /* # of rows processed by query */
 executions number, /* # of times query executed */
 optimizer_cost number, /* Optimizer cost for query */
 priority number, /* User-priority (1,2 or 3) */
 last_execution_date date, /* Last time query executed */
 stat_period number, /* Window exec time in seconds */
 sql_text clob /* Full SQL Text */
);

3. Load the user_workload table with information about queries.

For example, execute the following statements:

-- aggregation with selection
INSERT INTO user_workload (username, module, action, priority, sql_text)
VALUES ('SH', 'Example1', 'Action', 2,
'SELECT t.week_ending_day, p.prod_subcategory,
 SUM(s.amount_sold) AS dollars, s.channel_id, s.promo_id
 FROM sales s, times t, products p
 WHERE s.time_id = t.time_id
 AND s.prod_id = p.prod_id
 AND s.prod_id > 10
 AND s.prod_id < 50
 GROUP BY t.week_ending_day, p.prod_subcategory, s.channel_id, s.promo_id')
/

-- aggregation with selection
INSERT INTO user_workload (username, module, action, priority, sql_text)
VALUES ('SH', 'Example1', 'Action', 2,
 'SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
 FROM sales s , times t
 WHERE s.time_id = t.time_id
 AND s.time_id BETWEEN TO_DATE(''01-JAN-2000'', ''DD-MON-YYYY'')
 AND TO_DATE(''01-JUL-2000'', ''DD-MON-YYYY'')
 GROUP BY t.calendar_month_desc')
/

-- order by

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-12

INSERT INTO user_workload (username, module, action, priority, sql_text)
VALUES ('SH', 'Example1', 'Action', 2,
 'SELECT c.country_id, c.cust_city, c.cust_last_name
 FROM customers c
 WHERE c.country_id IN (52790, 52789)
 ORDER BY c.country_id, c.cust_city, c.cust_last_name')
/
COMMIT;

4. Execute a PL/SQL program that fills a cursor with rows from the user_workload table, and
then loads the contents of this cursor into the STS named MY_STS_WORKLOAD.

For example, execute the following PL/SQL program:

DECLARE
 sqlset_cur DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 OPEN sqlset_cur FOR
 SELECT SQLSET_ROW(null,null, SQL_TEXT, null, null, 'SH', module,
 'Action', 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, null, 2, 3,
 sysdate, 0, 0, null, 0, null, null)
 FROM USER_WORKLOAD;
 DBMS_SQLTUNE.LOAD_SQLSET('MY_STS_WORKLOAD', sqlset_cur);
END;
/

Creating and Configuring a SQL Access Advisor Task
Use the DBMS_ADVISOR.CREATE_TASK procedure to create a SQL Access Advisor task.

In the SQL Access Advisor task, you define what the advisor must analyze and the location of
the results. You can create multiple tasks, each with its own specialization. All are based on the
same Advisor task model and share the same repository.

Configuring the task involves the following steps:

• Defining task parameters

At the time the recommendations are generated, you can apply a filter to the workload to
restrict what is analyzed. This restriction provides the ability to generate different sets of
recommendations based on different workload scenarios.

SQL Access Advisor parameters control the recommendation process and customization
of the workload. These parameters control various aspects of the process, such as the
type of recommendation required and the naming conventions for what it recommends.

If parameters are not defined, then the database uses the defaults. You can set task
parameters by using the DBMS_ADVISOR.SET_TASK_PARAMETER procedure. Parameters are
persistent in that they remain set for the life span of the task. When a parameter value is
set using SET_TASK_PARAMETER, it does not change until you make another call to this
procedure.

• Linking the task to the workload

Because the workload is independent, you must link it to a task using the
DBMS_ADVISOR.ADD_STS_REF procedure. After this link has been established, you cannot
delete or modify the workload until all advisor tasks have removed their dependency on the
workload. A workload reference is removed when a user deletes a parent advisor task or

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-13

manually removes the workload reference from the task by using the
DBMS_ADVISOR.DELETE_STS_REF procedure.

Prerequisites

The user creating the task must have been granted the ADVISOR privilege.

Assumptions

This tutorial assumes the following:

• You want to create a task named MYTASK.

• You want to use this task to analyze the workload that you defined in "Populating a SQL
Tuning Set with a User-Defined Workload".

• You want to terminate the task if it takes longer than 30 minutes to execute.

• You want to SQL Access Advisor to only consider indexes.

To create and configure a SQL Access Advisor task:

1. Connect SQL*Plus to the database as user sh, and then create the task.

For example, enter the following commands:

EXEC :task_name := 'MYTASK';
EXEC DBMS_ADVISOR.CREATE_TASK('SQL Access Advisor', :task_id, :task_name);

2. Set task parameters.

For example, execute the following statements:

EXEC DBMS_ADVISOR.SET_TASK_PARAMETER(:task_name, 'TIME_LIMIT', 30);
EXEC DBMS_ADVISOR.SET_TASK_PARAMETER(:task_name, 'ANALYSIS_SCOPE', 'ALL');

3. Link the task to the workload.

For example, execute the following statement:

EXECUTE DBMS_ADVISOR.ADD_STS_REF(:task_name, 'SH', :workload_name);

See Also:

• "Categories for SQL Access Advisor Task Parameters"

• "Deleting SQL Access Advisor Tasks"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_ADVISOR.CREATE_TASK, DBMS_ADVISOR.SET_TASK_PARAMETER, and
DBMS_ADVISOR.ADD_STS_REF procedures

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-14

Executing a SQL Access Advisor Task
The DBMS_ADVISOR.EXECUTE_TASK procedure performs SQL Access Advisor analysis or
evaluation for the specified task.

Task execution is a synchronous operation, so the database does not return control to the user
until the operation has completed, or the database detects a user interrupt. After the return or
execution of the task, you can check the DBA_ADVISOR_LOG table for the execution status.

Running EXECUTE_TASK generates recommendations. A recommendation includes one or more
actions, such as creating a materialized view log or a materialized view.

Prerequisites

When processing a workload, SQL Access Advisor attempts to validate each statement to
identify table and column references. The database achieves validation by processing each
statement as if it were being executed by the statement's original user.

If the user does not have SELECT privileges to a particular table, then SQL Access Advisor
bypasses the statement referencing the table. This behavior can cause many statements to be
excluded from analysis. If SQL Access Advisor excludes all statements in a workload, then the
workload is invalid. SQL Access Advisor returns the following message:

QSM-00774, there are no SQL statements to process for task TASK_NAME

To avoid missing critical workload queries, the current database user must have SELECT
privileges on the tables targeted for materialized view analysis. For these tables, these SELECT
privileges cannot be obtained through a role.

Assumptions

This tutorial assumes that you want to execute the task you configured in "Creating and
Configuring a SQL Access Advisor Task".

To create and configure a SQL Access Advisor task:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Execute the task.

For example, execute the following statement:

EXECUTE DBMS_ADVISOR.EXECUTE_TASK(:task_name);

3. Optionally, query USER_ADVISOR_LOG to check the status of the task.

For example, execute the following statements (sample output included):

COL TASK_ID FORMAT 999
COL TASK_NAME FORMAT a25
COL STATUS_MESSAGE FORMAT a25

SELECT TASK_ID, TASK_NAME, STATUS, STATUS_MESSAGE
FROM USER_ADVISOR_LOG;

TASK_ID TASK_NAME STATUS STATUS_MESSAGE

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-15

------- ------------------------- ----------- -------------------------
 103 MYTASK COMPLETED Access advisor execution
 completed

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
EXECUTE_TASK procedure and its parameters

Viewing SQL Access Advisor Task Results
You can view each recommendation generated by SQL Access Advisor using several data
dictionary views.

The views are summarized in Table 26-2. However, it is easier to use the
DBMS_ADVISOR.GET_TASK_SCRIPT procedure or Cloud Control, which graphically displays the
recommendations and provides hyperlinks to quickly see which SQL statements benefit from a
recommendation.

Each recommendation produced by SQL Access Advisor is linked to the SQL statement it
benefits. Each recommendation corresponds to one or more actions. Each action has one or
more attributes.

Each action has attributes pertaining to the access structure properties. The name and
tablespace for each applicable access structure are in the ATTR1 and ATTR2 columns of
USER_ADVISOR_ATTRIBUTES. The space occupied by each new access structure is in the
NUM_ATTR1 column. Other attributes are different for each action.

Table 26-2 Views Showing Task Results

Data Dictionary View (DBA, USER) Description

DBA_ADVISOR_TASKS Displays information about advisor tasks. To see
SQL Access Advisor tasks, select where
ADVISOR_NAME = 'SQL Access Advisor'.

DBA_ADVISOR_RECOMMENDATIONS Displays the results of an analysis of all
recommendations in the database. A
recommendation can have multiple actions
associated with it. The DBA_ADVISOR_ACTIONS
view describe the actions. A recommendation also
points to a set of rationales that present a
justification/reasoning for that recommendation.
The DBA_ADVISOR_RATIONALE view describes the
rationales.

DBA_ADVISOR_ACTIONS Displays information about the actions associated
with all recommendations in the database. Each
action is specified by the COMMAND and ATTR1
through ATTR6 columns. Each command defines
how to use the attribute columns.

DBA_ADVISOR_RATIONALE Displays information about the rationales for all
recommendations in the database.

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-16

Table 26-2 (Cont.) Views Showing Task Results

Data Dictionary View (DBA, USER) Description

DBA_ADVISOR_SQLA_WK_STMTS Displays information about all workload objects in
the database after a SQL Access Advisor analysis.
The precost and postcost numbers are in terms of
the estimated optimizer cost (shown in EXPLAIN
PLAN) without and with the recommended access
structure.

Assumptions

This tutorial assumes that you want to view results of the task you executed in "Executing a
SQL Access Advisor Task".

To view the results of a SQL Access Advisor task:

1. Connect SQL*Plus to the database with the appropriate privileges, and then query the
advisor recommendations.

For example, execute the following statements (sample output included):

VARIABLE workload_name VARCHAR2(255);
VARIABLE task_name VARCHAR2(255);
EXECUTE :task_name := 'MYTASK';
EXECUTE :workload_name := 'MY_STS_WORKLOAD';

SELECT REC_ID, RANK, BENEFIT
FROM USER_ADVISOR_RECOMMENDATIONS
WHERE TASK_NAME = :task_name
ORDER BY RANK;

 REC_ID RANK BENEFIT
---------- ---------- ----------
 1 1 236
 2 2 356

The preceding output shows the recommendations (rec_id) produced by an SQL Access
Advisor run, with their rank and total benefit. The rank is a measure of the importance of
the queries that the recommendation helps. The benefit is the total improvement in
execution cost (in terms of optimizer cost) of all queries using the recommendation.

2. Identify which query benefits from which recommendation.

For example, execute the following query of USER_ADVISOR_SQLA_WK_STMTS (sample output
included):

SELECT SQL_ID, REC_ID, PRECOST, POSTCOST,
 (PRECOST-POSTCOST)*100/PRECOST AS PERCENT_BENEFIT
FROM USER_ADVISOR_SQLA_WK_STMTS
WHERE TASK_NAME = :task_name
AND WORKLOAD_NAME = :workload_name
ORDER BY percent_benefit DESC;

SQL_ID REC_ID PRECOST POSTCOST PERCENT_BENEFIT

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-17

------------- ---------- ---------- ---------- ---------------
fn4bsxdm98w3u 2 578 222 61.5916955
29bbju72rv3t2 1 5750 5514 4.10434783
133ym38r6gbar 0 772 772 0

The precost and postcost numbers are in terms of the estimated optimizer cost (shown in
EXPLAIN PLAN) both without and with the recommended access structure changes.

3. Display the number of distinct actions for this set of recommendations.

For example, use the following query (sample output included):

SELECT 'Action Count', COUNT(DISTINCT action_id) cnt
FROM USER_ADVISOR_ACTIONS
WHERE TASK_NAME = :task_name;

'ACTIONCOUNT CNT
------------ ----------
Action Count 4

4. Display the actions for this set of recommendations.

For example, use the following query (sample output included):

SELECT REC_ID, ACTION_ID, SUBSTR(COMMAND,1,30) AS command
FROM USER_ADVISOR_ACTIONS
WHERE TASK_NAME = :task_name
ORDER BY rec_id, action_id;

 REC_ID ACTION_ID COMMAND
---------- ---------- ------------------------------
 1 1 PARTITION TABLE
 1 2 RETAIN INDEX
 2 1 PARTITION TABLE
 2 3 RETAIN INDEX
 2 4 RETAIN INDEX

5. Display attributes of the recommendations.

For example, create the following PL/SQL procedure show_recm, and then execute it to see
attributes of the actions:

CREATE OR REPLACE PROCEDURE show_recm (in_task_name IN VARCHAR2) IS
CURSOR curs IS
 SELECT DISTINCT action_id, command, attr1, attr2, attr3, attr4
 FROM user_advisor_actions
 WHERE task_name = in_task_name
 ORDER BY action_id;
 v_action number;
 v_command VARCHAR2(32);
 v_attr1 VARCHAR2(4000);
 v_attr2 VARCHAR2(4000);
 v_attr3 VARCHAR2(4000);
 v_attr4 VARCHAR2(4000);
 v_attr5 VARCHAR2(4000);
BEGIN
 OPEN curs;

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-18

 DBMS_OUTPUT.PUT_LINE('===');
 DBMS_OUTPUT.PUT_LINE('Task_name = ' || in_task_name);
 LOOP
 FETCH curs INTO
 v_action, v_command, v_attr1, v_attr2, v_attr3, v_attr4 ;
 EXIT when curs%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Action ID: ' || v_action);
 DBMS_OUTPUT.PUT_LINE('Command : ' || v_command);
 DBMS_OUTPUT.PUT_LINE('Attr1 (name) : ' || SUBSTR(v_attr1,1,30));
 DBMS_OUTPUT.PUT_LINE('Attr2 (tablespace): ' || SUBSTR(v_attr2,1,30));
 DBMS_OUTPUT.PUT_LINE('Attr3 : ' || SUBSTR(v_attr3,1,30));
 DBMS_OUTPUT.PUT_LINE('Attr4 : ' || v_attr4);
 DBMS_OUTPUT.PUT_LINE('Attr5 : ' || v_attr5);
 DBMS_OUTPUT.PUT_LINE('--');
 END LOOP;
 CLOSE curs;
 DBMS_OUTPUT.PUT_LINE('=========END RECOMMENDATIONS============');
END show_recm;
/

SET SERVEROUTPUT ON SIZE 99999
EXECUTE show_recm(:task_name);

The following output shows attributes of actions in the recommendations:

===
Task_name = MYTASK
Action ID: 1
Command : PARTITION TABLE
Attr1 (name) : "SH"."SALES"
Attr2 (tablespace):
Attr3 : ("TIME_ID")
Attr4 : INTERVAL
Attr5 :
--
Action ID: 2
Command : RETAIN INDEX
Attr1 (name) : "SH"."PRODUCTS_PK"
Attr2 (tablespace):
Attr3 : "SH"."PRODUCTS"
Attr4 : BTREE
Attr5 :
--
Action ID: 3
Command : RETAIN INDEX
Attr1 (name) : "SH"."TIMES_PK"
Attr2 (tablespace):
Attr3 : "SH"."TIMES"
Attr4 : BTREE
Attr5 :
--
Action ID: 4
Command : RETAIN INDEX
Attr1 (name) : "SH"."SALES_TIME_BIX"
Attr2 (tablespace):

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-19

Attr3 : "SH"."SALES"
Attr4 : BITMAP
Attr5 :
--
=========END RECOMMENDATIONS============

See Also:

• "Action Attributes in the DBA_ADVISOR_ACTIONS View"

• Oracle Database PL/SQL Packages and Types Reference for details regarding
Attr5 and Attr6

Generating and Executing a Task Script
You can use the procedure DBMS_ADVISOR.GET_TASK_SCRIPT to create a script of the SQL
statements for the SQL Access Advisor recommendations. The script is an executable SQL file
that can contain DROP, CREATE, and ALTER statements.

For new objects, the names of the materialized views, materialized view logs, and indexes are
automatically generated by using the user-specified name template. Review the generated
SQL script before attempting to execute it.

Assumptions

This tutorial assumes that you want to save and execute a script that contains the
recommendations generated in "Executing a SQL Access Advisor Task".

To save and execute a SQL script:

1. Connect SQL*Plus to the database as an administrator.

2. Create a directory object and grant permissions to read and write to it.

For example, use the following statements:

CREATE DIRECTORY ADVISOR_RESULTS AS '/tmp';
GRANT READ ON DIRECTORY ADVISOR_RESULTS TO PUBLIC;
GRANT WRITE ON DIRECTORY ADVISOR_RESULTS TO PUBLIC;

3. Connect to the database as sh, and then save the script to a file.

For example, use the following statement:

EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('MYTASK'),
'ADVISOR_RESULTS', 'advscript.sql');

4. Use a text editor to view the contents of the script.

The following is a fragment of a script generated by this procedure:

Rem Username: SH
Rem Task: MYTASK
Rem Execution date:
Rem

Chapter 26
Using SQL Access Advisor: Basic Tasks

26-20

Rem
Rem Repartitioning table "SH"."SALES"
Rem

SET SERVEROUTPUT ON
SET ECHO ON

Rem
Rem Creating new partitioned table
Rem
 CREATE TABLE "SH"."SALES1"
 ("PROD_ID" NUMBER,
 "CUST_ID" NUMBER,
 "TIME_ID" DATE,
 "CHANNEL_ID" NUMBER,
 "PROMO_ID" NUMBER,
 "QUANTITY_SOLD" NUMBER(10,2),
 "AMOUNT_SOLD" NUMBER(10,2)
) PCTFREE 5 PCTUSED 40 INITRANS 1 MAXTRANS 255
 NOCOMPRESS NOLOGGING
 TABLESPACE "EXAMPLE"
PARTITION BY RANGE ("TIME_ID") INTERVAL(NUMTOYMINTERVAL(1, 'MONTH'))
(PARTITION VALUES LESS THAN (TO_DATE(' 1998-02-01 00:00:00',
'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN')));
.
.
.

5. Optionally, in SQL*Plus, run the SQL script.

For example, enter the following command:

@/tmp/advscript.sql

See Also:

• Oracle Database SQL Language Reference for CREATE DIRECTORY syntax

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the GET_TASK_SCRIPT function

Performing a SQL Access Advisor Quick Tune
To tune a single SQL statement, the DBMS_ADVISOR.QUICK_TUNE procedure accepts as its input
a task_name and a single SQL statement.

The DBMS_ADVISOR.QUICK_TUNE procedure creates a task and workload and executes this task.
EXECUTE_TASK and QUICK_TUNE produce the same results. However, QUICK_TUNE is easier when
tuning a single SQL statement.

Chapter 26
Performing a SQL Access Advisor Quick Tune

26-21

Assumptions

This tutorial assumes the following:

• You want to tune a single SQL statement.

• You want to name the task MY_QUICKTUNE_TASK.

To create a template and base a task on this template:

1. Connect SQL*Plus to the database as user sh, and then initialize SQL*Plus variables for
the SQL statement and task name.

For example, enter the following commands:

VARIABLE t_name VARCHAR2(255);
VARIABLE sq VARCHAR2(4000);
EXEC :sq := 'SELECT COUNT(*) FROM customers WHERE cust_state_province
=''CA''';
EXECUTE :t_name := 'MY_QUICKTUNE_TASK';

2. Perform the quick tune.

For example, the following statement executes MY_QUICKTUNE_TASK:

EXEC DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR,:t_name,:sq);

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
QUICK_TUNE procedure and its parameters

Using SQL Access Advisor: Advanced Tasks
This section describes advanced tasks involving SQL Access Advisor.

Evaluating Existing Access Structures
SQL Access Advisor operates in two modes: problem-solving and evaluation.

By default, SQL Access Advisor attempts to solve access method problems by looking for
enhancements to index structures, partitions, materialized views, and materialized view logs.
For example, a problem-solving run may recommend creating a new index, adding a new
column to a materialized view log, and so on.

When you set the ANALYSIS_SCOPE parameter to EVALUATION, SQL Access Advisor comments
only on which access structures the supplied workload uses. An evaluation-only run may only
produce recommendations such as retaining an index, retaining a materialized view, and so
on. The evaluation mode can be useful to see exactly which indexes and materialized views a
workload is using. SQL Access Advisor does not evaluate the performance impact of existing
base table partitioning.

Chapter 26
Using SQL Access Advisor: Advanced Tasks

26-22

To create a task and set it to evaluation mode:

1. Connect SQL*Plus to the database with the appropriate privileges, and then create a task.

For example, enter the following statement, where t_name is a SQL*Plus variable set to the
name of the task:

EXECUTE DBMS_ADVISOR.EXECUTE_TASK(:t_name);

2. Perform the quick tune.

For example, the following statement sets the previous task to evaluation mode:

EXECUTE
DBMS_ADVISOR.SET_TASK_PARAMETER(:t_name,'ANALYSIS_SCOPE','EVALUATION');

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
SET_TASK_PARAMETER procedure and its parameters

Updating SQL Access Advisor Task Attributes
You can use the DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES procedure to set attributes for the
task.

You can set the following attributes:

• Change the name of a task.

• Give a task a description.

• Set the task to be read-only so it cannot be changed.

• Make the task a template upon which you can define other tasks.

• Changes various attributes of a task or a task template.

Assumptions

This tutorial assumes the following:

• You want to change the name of existing task MYTASK to TUNING1.

• You want to make the task TUNING1 read-only.

To update task attributes:

1. Connect SQL*Plus to the database as user sh, and then change the name of the task.

For example, use the following statement:

EXECUTE DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES('MYTASK', 'TUNING1');

2. Set the task to read-only.

Chapter 26
Using SQL Access Advisor: Advanced Tasks

26-23

For example, use the following statement:

EXECUTE DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES('TUNING1',
 read_only => 'true');

See Also:

• "Creating and Using SQL Access Advisor Task Templates"

• Oracle Database PL/SQL Packages and Types Reference for more information
regarding the UPDATE_TASK_ATTRIBUTES procedure and its parameters

Creating and Using SQL Access Advisor Task Templates
A task template is a saved configuration on which to base future tasks and workloads.

A template enables you to set up any number of tasks or workloads that can serve as starting
points or templates for future task creation. By setting up a template, you can save time when
performing tuning analysis. This approach also enables you to custom fit a tuning analysis to
the business operation.

Physically, there is no difference between a task and a template. However, a template cannot
be executed. To create a task from a template, you specify the template to be used when a
new task is created. At that time, SQL Access Advisor copies the data and parameter settings
from the template into the newly created task. You can also set an existing task to be a
template by setting the template attribute when creating the task or later using the
UPDATE_TASK_ATTRIBUTE procedure.

The following table describes procedures that you can use to manage task templates.

Table 26-3 DBMS_ADVISOR Procedures for Task Templates

Procedure Description

CREATE_TASK The template parameter is an optional task name of an existing task or task
template. To specify built-in SQL Access Advisor templates, use the template name
as described in Table 26-6. is_template is an optional parameter that enables
you to set the newly created task as a template. Valid values are true and false.

SET_TASK_PARAME
TER

The INDEX_NAME_TEMPLATE parameter specifies the method by which new index
names are formed. The MVIEW_NAME_TEMPLATE parameter specifies the method
by which new materialized view names are formed. The
PARTITION_NAME_TEMPLATE parameter specifies the method by which new
partition names are formed.

UPDATE_TASK_ATT
RIBUTES

is_template marks the task as a template. Physically, there is no difference
between a task and a template; however, a template cannot be executed. Possible
values are: true and false. If the value is NULL or contains the value
ADVISOR_UNUSED, then the setting is not changed.

Assumptions

This tutorial assumes the following:

• You want to create a template named MY_TEMPLATE.

Chapter 26
Using SQL Access Advisor: Advanced Tasks

26-24

• You want to set naming conventions for indexes and materialized views that are
recommended by tasks based on MY_TEMPLATE.

• You want to create task NEWTASK based on MY_TEMPLATE.

To create a template and base a task on this template:

1. Connect SQL*Plus to the database as user sh, and then create a task as a template.

For example, create a template named MY_TEMPLATE as follows:

VARIABLE template_id NUMBER;
VARIABLE template_name VARCHAR2(255);
EXECUTE :template_name := 'MY_TEMPLATE';
BEGIN
 DBMS_ADVISOR.CREATE_TASK (
 'SQL Access Advisor'
, :template_id
, :template_name
, is_template => 'true'
);
END;

2. Set template parameters.

For example, the following statements set the naming conventions for recommended
indexes and materialized views:

-- set naming conventions for recommended indexes/mvs
BEGIN
 DBMS_ADVISOR.SET_TASK_PARAMETER (
 :template_name
, 'INDEX_NAME_TEMPLATE'
, 'SH_IDX$$_<SEQ>'
);
END;

BEGIN
 DBMS_ADVISOR.SET_TASK_PARAMETER (
 :template_name
, 'MVIEW_NAME_TEMPLATE'
, 'SH_MV$$_<SEQ>'
);
END;

3. Create a task based on a preexisting template.

For example, enter the following commands to create NEWTASK based on MY_TEMPLATE:

VARIABLE task_id NUMBER;
VARIABLE task_name VARCHAR2(255);
EXECUTE :task_name := 'NEWTASK';
BEGIN
 DBMS_ADVISOR.CREATE_TASK (
 'SQL Access Advisor'
, :task_id
, :task_name
, template=>'MY_TEMPLATE'

Chapter 26
Using SQL Access Advisor: Advanced Tasks

26-25

);
END;

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
CREATE_TASK and SET_TASK_PARAMETER procedures

Terminating SQL Access Advisor Task Execution
SQL Access Advisor enables you to interrupt the recommendation process or allow it to
complete.

An interruption signals SQL Access Advisor to stop processing and marks the task as
INTERRUPTED. At that point, you may update recommendation attributes and generate scripts.

Intermediate results represent recommendations for the workload contents up to that point in
time. If recommendations must be sensitive to the entire workload, then Oracle recommends
that you let the task complete. Additionally, recommendations made by the advisor early in the
recommendation process do not contain base table partitioning recommendations. The
partitioning analysis requires a large part of the workload to be processed before it can
determine whether partitioning would be beneficial. Therefore, if SQL Access Advisor detects a
benefit, then only later intermediate results contain base table partitioning recommendations.

Interrupting SQL Access Advisor Tasks
The DBMS_ADVISOR.INTERRUPT_TASK procedure causes a SQL Access Advisor task execution
to terminate as if it had reached its normal end.

Thus, you can see any recommendations that have been formed up to the point of the
interruption. An interrupted task cannot be restarted. The syntax is as follows:

DBMS_ADVISOR.INTERRUPT_TASK (task_name IN VARCHAR2);

Assumptions

This tutorial assumes the following:

• Long-running task MYTASK is currently executing.

• You want to interrupt this task, and then view the recommendations.

To interrupt a currently executing task:

1. Connect SQL*Plus to the database as sh, and then interrupt the task.

For example, create a template named MY_TEMPLATE as follows:

EXECUTE DBMS_ADVISOR.INTERRUPT_TASK ('MYTASK');

Chapter 26
Using SQL Access Advisor: Advanced Tasks

26-26

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
INTERRUPT_TASK procedure

Canceling SQL Access Advisor Tasks
You can stop task execution by calling the DBMS_ADVISOR.CANCEL_TASK procedure and passing
in the task name for this recommendation process.

SQL Access Advisor may take a few seconds to respond to this request. Because all advisor
task procedures are synchronous, to cancel an operation, you must use a separate database
session. If you use CANCEL_TASK, then SQL Access Advisor makes no recommendations.

A cancel command effective restores the task to its condition before the start of the canceled
operation. Therefore, a canceled task or data object cannot be restarted. However, you can
reset the task using DBMS_ADVISOR.RESET_TASK, and then execute it again. The CANCEL_TASK
syntax is as follows:

DBMS_ADVISOR.CANCEL_TASK (task_name IN VARCHAR2);

The RESET_TASK procedure resets a task to its initial starting point, which has the effect of
removing all recommendations and intermediate data from the task. The task status is set to
INITIAL. The syntax is as follows:

DBMS_ADVISOR.RESET_TASK (task_name IN VARCHAR2);

Assumptions

This tutorial assumes the following:

• Long-running task MYTASK is currently executing. This task is set to make partitioning
recommendations.

• You want to cancel this task, and then reset it so that the task makes only index
recommendations.

To cancel a currently executing task:

1. Connect SQL*Plus to the database as user sh, and then cancel the task.

For example, create a template named MY_TEMPLATE as follows:

EXECUTE DBMS_ADVISOR.CANCEL_TASK ('MYTASK');

2. Reset the task.

For example, execute the RESET_TASK procedure as follows:

EXECUTE DBMS_ADVISOR.RESET_TASK('MYTASK');

3. Set task parameters.

Chapter 26
Using SQL Access Advisor: Advanced Tasks

26-27

For example, change the analysis scope to INDEX as follows:

EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER(:task_name, 'ANALYSIS_SCOPE',
'INDEX');

4. Execute the task.

For example, execute MYTASK as follows:

EXECUTE DBMS_ADVISOR.EXECUTE_TASK ('MYTASK');

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
RESET_TASK and CANCEL_TASK

Deleting SQL Access Advisor Tasks
The DBMS_ADVISOR.DELETE_TASK procedure deletes existing SQL Access Advisor tasks from
the repository.

The syntax for SQL Access Advisor task deletion is as follows:

DBMS_ADVISOR.DELETE_TASK (task_name IN VARCHAR2);

If a task is linked to an STS workload, and if you want to delete the task or workload, then you
must remove the link between the task and the workload using the DELETE_STS_REF procedure.
The following example deletes the link between task MYTASK and the current user's SQL tuning
set MY_STS_WORKLOAD:

EXECUTE DBMS_ADVISOR.DELETE_STS_REF('MYTASK', null, 'MY_STS_WORKLOAD');

Assumptions

This tutorial assumes the following:

• User sh currently owns multiple SQL Access Advisor tasks.

• You want to delete MYTASK.

• The task MYTASK is currently linked to workload MY_STS_WORKLOAD.

To delete a SQL Access Advisor task:

1. Connect SQL*Plus to the database as user sh, and then query existing SQL Access
Advisor tasks.

For example, query the data dictionary as follows (sample output included):

SELECT TASK_NAME
FROM USER_ADVISOR_TASKS
WHERE ADVISOR_NAME = 'SQL Access Advisor';

Chapter 26
Using SQL Access Advisor: Advanced Tasks

26-28

TASK_NAME

MYTASK
NEWTASK

2. Delete the link between MYTASK and MY_STS_WORKLOAD.

For example, delete the reference as follows:

EXECUTE DBMS_ADVISOR.DELETE_STS_REF('MYTASK', null, 'MY_STS_WORKLOAD');

3. Delete the desired task.

For example, delete MYTASK as follows:

EXECUTE DBMS_ADVISOR.DELETE_TASK('MYTASK');

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
DELETE_TASK procedure and its parameters

Marking SQL Access Advisor Recommendations
By default, all SQL Access Advisor recommendations are ready to be implemented. However,
you can choose to skip or exclude selected recommendations by using the
DBMS_ADVISOR.MARK_RECOMMENDATION procedure.

MARK_RECOMMENDATION enables you to annotate a recommendation with a REJECT or IGNORE
setting, which causes the GET_TASK_SCRIPT to skip it when producing the implementation
procedure.

If SQL Access Advisor makes a recommendation to partition one or multiple previously
nonpartitioned base tables, then consider carefully before skipping this recommendation.
Changing a table's partitioning scheme affects the cost of all queries, indexes, and materialized
views defined on the table. Therefore, if you skip the partitioning recommendation, then the
advisor's remaining recommendations on this table are no longer optimal. To see
recommendations on your workload that do not contain partitioning, reset the advisor task and
rerun it with the ANALYSIS_SCOPE parameter changed to exclude partitioning recommendations.

The syntax is as follows:

DBMS_ADVISOR.MARK_RECOMMENDATION (
 task_name IN VARCHAR2
 id IN NUMBER,
 action IN VARCHAR2);

Assumptions

This tutorial assumes the following:

• You are reviewing the recommendations as described in tutorial "Viewing SQL Access
Advisor Task Results".

Chapter 26
Using SQL Access Advisor: Advanced Tasks

26-29

• You want to reject the first recommendation, which partitions a table.

To mark a recommendation:

1. Connect SQL*Plus to the database as user sh, and then mark the recommendation.

For example, reject recommendation 1 as follows:

EXECUTE DBMS_ADVISOR.MARK_RECOMMENDATION('MYTASK', 1, 'REJECT');

This recommendation and any dependent recommendations do not appear in the script.

2. Generate the script as explained in "Generating and Executing a Task Script".

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
MARK_RECOMMENDATIONS procedure and its parameters

Modifying SQL Access Advisor Recommendations
Using the UPDATE_REC_ATTRIBUTES procedure, SQL Access Advisor names and assigns
ownership to new objects such as indexes and materialized views during analysis.

SQL Access Advisor may not necessarily choose appropriate names. In this case, you may
choose to manually set the owner, name, and tablespace values for new objects. For
recommendations referencing existing database objects, owner and name values cannot be
changed. The syntax is as follows:

DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES (
 task_name IN VARCHAR2
 rec_id IN NUMBER,
 action_id IN NUMBER,
 attribute_name IN VARCHAR2,
 value IN VARCHAR2);

The attribute_name parameter can take the following values:

• OWNER
Specifies the owner name of the recommended object.

• NAME
Specifies the name of the recommended object.

• TABLESPACE
Specifies the tablespace of the recommended object.

Assumptions

This tutorial assumes the following:

• You are reviewing the recommendations as described in tutorial "Viewing SQL Access
Advisor Task Results".

Chapter 26
Using SQL Access Advisor: Advanced Tasks

26-30

• You want to change the tablespace for recommendation 1, action 1 to SH_MVIEWS.

To mark a recommendation:

1. Connect SQL*Plus to the database as user sh, and then update the recommendation
attribute.

For example, change the tablespace name to SH_MVIEWS as follows:

BEGIN
 DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES (
 'MYTASK'
, 1
, 1
, 'TABLESPACE'
, 'SH_MVIEWS'
);
END;

2. Generate the script as explained in "Generating and Executing a Task Script".

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
UPDATE_REC_ATTRIBUTES procedure and its parameters

SQL Access Advisor Examples
Oracle Database provides a script that contains several SQL Access Advisor examples that
you can run on a test database.

The script is named ORACLE_HOME/rdbms/demo/aadvdemo.sql.

SQL Access Advisor Reference
You can access metadata about SQL Access Advisor using data dictionary views.

Action Attributes in the DBA_ADVISOR_ACTIONS View
The DBA_ADVISOR_ACTIONS view displays information about the actions associated with all
recommendations in the database. Each action is specified by the COMMAND and ATTR1 through
ATTR6 columns.

The following table maps SQL Access Advisor actions to attribute columns in the
DBA_ADVISOR_ACTIONS view. In the table, MV refers to a materialized view.

Chapter 26
SQL Access Advisor Examples

26-31

Table 26-4 SQL Access Advisor Action Attributes

Action ATTR1
Column

ATTR2
Column

ATTR3
Column

ATTR4
Column

ATTR5
Column

ATTR6
Column

NUM_ATTR
1 Column

CREATE
INDEX

Index name Index
tablespace

Target table BITMAP
orBTREE

Index column
list /
expression

Unused Storage size
in bytes for
the index

CREATE
MATERIALIZ
ED VIEW

MV name MV tablespace REFRESH
COMPLETE,
REFRESH
FAST,REFRES
H FORCE,
NEVER
REFRESH

ENABLE
QUERY
REWRITE,
DISABLE
QUERY
REWRITE

SQL SELECT
statement

Unused Storage size
in bytes for
the MV

CREATE
MATERIALIZ
ED VIEW
LOG

Target table
name

MV log
tablespace

ROWID
PRIMARY
KEY,SEQUENC
E OBJECT ID

INCLUDING
NEW VALUES,
EXCLUDING
NEW VALUES

Table column
list

Partitioning
subclauses

Unused

CREATE
REWRITE
EQUIVALENC
E

Name of
equivalence

Checksum
value

Unused Unused Source SQL
statement

Equivalent
SQL
statement

Unused

DROP INDEX Index name Unused Unused Unused Index columns Unused Storage size
in bytes for
the index

DROP
MATERIALIZ
ED VIEW

MV name Unused Unused Unused Unused Unused Storage size
in bytes for
the MV

DROP
MATERIALIZ
ED VIEW
LOG

Target table
name

Unused Unused Unused Unused Unused Unused

PARTITION
TABLE

Table name RANGE,
INTERVAL,
LIST, HASH,
RANGE-HASH,
RANGE-LIST

Partition key
for partitioning
(column name
or list of
column
names)

Partition key
for
subpartitioning
(column name
or list of
column
names)

SQL
PARTITION
clause

SQL
SUBPARTITIO
N clause

Unused

PARTITION
INDEX

Index name LOCAL, RANGE,
HASH

Partition key
for partitioning
(list of column
names)

Unused SQL
PARTITION
clause

Unused Unused

PARTITION
ON
MATERIALIZ
ED VIEW

MV name RANGE,
INTERVAL,
LIST, HASH,
RANGE-HASH,
RANGE-LIST

Partition key
for partitioning
(column name
or list of
column
names)

Partition key
for
subpartitioning
(column name
or list of
column
names)

SQL
SUBPARTITIO
N clause

SQL
SUBPARTITIO
N clause

Unused

RETAIN
INDEX

Index name Unused Target table BITMAP or
BTREE

Index columns Unused Storage size
in bytes for
the index

Chapter 26
SQL Access Advisor Reference

26-32

Table 26-4 (Cont.) SQL Access Advisor Action Attributes

Action ATTR1
Column

ATTR2
Column

ATTR3
Column

ATTR4
Column

ATTR5
Column

ATTR6
Column

NUM_ATTR
1 Column

RETAIN
MATERIALIZ
ED VIEW

MV name Unused REFRESH
COMPLETE or
REFRESH
FAST

Unused SQL SELECT
statement

Unused Storage size
in bytes for
the MV

RETAIN
MATERIALIZ
ED VIEW
LOG

Target table
name

Unused Unused Unused Unused Unused Unused

Categories for SQL Access Advisor Task Parameters
SQL Access Advisor task parameters fall into the following categories: workload filtering, task
configuration, schema attributes, and recommendation options.

The following table groups the most relevant SQL Access Advisor task parameters into
categories. All task parameters for workload filtering are deprecated.

Table 26-5 Types of Advisor Task Parameters And Their Uses

Workload Filtering Task Configuration Schema Attributes Recommendation Options

END_TIME DAYS_TO_EXPIRE DEF_INDEX_OWNER ANALYSIS_SCOPE
INVALID_ACTION_LIST JOURNALING DEF_INDEX_TABLESPACE COMPATIBILITY
INVALID_MODULE_LIST REPORT_DATE_FORMAT DEF_MVIEW_OWNER CREATION_COST
INVALID_SQLSTRING_LIMIT DEF_MVIEW_TABLESPACE DML_VOLATILITY
INVALID_TABLE_LIST DEF_MVLOG_TABLESPACE LIMIT_PARTITION_SCHEMES
INVALID_USERNAME_LIST DEF_PARTITION_TABLESPAC

E
MODE

RANKING_MEASURE INDEX_NAME_TEMPLATE PARTITIONING_TYPES
SQL_LIMIT MVIEW_NAME_TEMPLATE REFRESH_MODE
START_TIME STORAGE_CHANGE
TIME_LIMIT USE_SEPARATE_TABLESPACE

S
VALID_ACTION_LIST WORKLOAD_SCOPE
VALID_MODULE_LIST
VALID_SQLSTRING_LIST
VALID_TABLE_LIST
VALID_USERNAME_LIST

SQL Access Advisor Constants
DBMS_ADVISOR provides a number of constants.

You can use the constants shown in the following table with SQL Access Advisor.

Chapter 26
SQL Access Advisor Reference

26-33

Table 26-6 SQL Access Advisor Constants

Constant Description

ADVISOR_ALL A value that indicates all possible values. For string parameters, this
value is equivalent to the wildcard (%) character.

ADVISOR_CURRENT Indicates the current time or active set of elements. Typically, this is used
in time parameters.

ADVISOR_DEFAULT Indicates the default value. Typically used when setting task or workload
parameters.

ADVISOR_UNLIMITED A value that represents an unlimited numeric value.

ADVISOR_UNUSED A value that represents an unused entity. When a parameter is set to
ADVISOR_UNUSED, it has no effect on the current operation. A typical
use for this constant is to set a parameter as unused for its dependent
operations.

SQLACCESS_GENERAL Specifies the name of a default SQL Access general-purpose task
template. This template sets the DML_VOLATILITY task parameter to
true and ANALYSIS_SCOPE to INDEX, MVIEW.

SQLACCESS_OLTP Specifies the name of a default SQL Access OLTP task template. This
template sets the DML_VOLATILITY task parameter to true and
ANALYSIS_SCOPE to INDEX.

SQLACCESS_WAREHOUSE Specifies the name of a default SQL Access warehouse task template.
This template sets the DML_VOLATILITY task parameter to false and
EXECUTION_TYPE to INDEX, MVIEW.

SQLACCESS_ADVISOR Contains the formal name of SQL Access Advisor. You can specify this
name when procedures require the Advisor name as an argument.

Chapter 26
SQL Access Advisor Reference

26-34

Part IX
SQL Management Objects

A SQL management object is a feature that stabilizes the execution plans of individual SQL
statements. SQL profiles and SQL plan baselines are SQL management objects.

27
Managing SQL Profiles

When warranted, SQL Tuning Advisor recommends a SQL profile. You can use DBMS_SQLTUNE
to implement, alter, drop, and transport SQL profiles.

About SQL Profiles
A SQL profile is a database object that contains auxiliary statistics specific to a SQL
statement.

Conceptually, a SQL profile is to a SQL statement what object-level statistics are to a table or
index. SQL profiles are created when a DBA invokes SQL Tuning Advisor.

See Also:

"About SQL Tuning Advisor"

Purpose of SQL Profiles
When profiling a SQL statement, SQL Tuning Advisor uses a specific set of bind values as
input.

The advisor compares the optimizer estimate with values obtained by executing fragments of
the statement on a data sample. When significant variances are found, SQL Tuning Advisor
bundles corrective actions together in a SQL profile, and then recommends its acceptance.

The corrected statistics in a SQL profile can improve optimizer cardinality estimates, which in
turn leads the optimizer to select better plans. SQL profiles provide the following benefits over
other techniques for improving plans:

• Unlike hints and stored outlines, SQL profiles do not tie the optimizer to a specific plan or
subplan. SQL profiles fix incorrect estimates while giving the optimizer the flexibility to pick
the best plan in different situations.

• Unlike hints, no changes to application source code are necessary when using SQL
profiles. The use of SQL profiles by the database is transparent to the user.

See Also:

• "Influencing the Optimizer with Hints"

• "Analyzing SQL with SQL Tuning Advisor"

27-1

Concepts for SQL Profiles
A SQL profile is a collection of auxiliary statistics on a query, including all tables and columns
referenced in the query.

The profile is stored in an internal format in the data dictionary. The user interface is the
DBA_SQL_PROFILES dictionary view. The optimizer uses this information during optimization to
determine the most optimal plan.

See Also:

Oracle Database Reference to learn more about DBA_SQL_PROFILES

Statistics in SQL Profiles
A SQL profile contains, among other statistics, a set of cardinality adjustments.

The cardinality measure is based on sampling the WHERE clause rather than on statistical
projection. A profile uses parts of the query to determine whether the estimated cardinalities
are close to the actual cardinalities and, if a mismatch exists, uses the corrected cardinalities.
For example, if a SQL profile exists for SELECT * FROM t WHERE x=5 AND y=10, then the profile
stores the actual number of rows returned.

Starting in Oracle Database 18c, SQL Tuning Advisor can recommend an Exadata-aware SQL
profile. On Oracle Exadata Database Machine, the cost of smart scans depends on the system
statistics I/O seek time (ioseektim), multiblock read count (mbrc), and I/O transfer speed
(iotfrspeed). The values of these statistics usually differ on Exadata and can thus influence
the choice of plan. If system statistics are stale, and if gathering them improves performance,
then SQL Tuning Advisor recommends accepting an Exadata-aware SQL profile.

See Also:

• "Permanent Table Statistics"

• Oracle Database Performance Tuning Guide to learn about system statistics

• Oracle Exadata Database Machine System Overview

SQL Profiles and Execution Plans
The SQL profile contains supplemental statistics for the entire statement, not individual plans.
The profile does not itself determine a specific plan.

Internally, a SQL profile is implemented using hints that address different types of problems.
These hints do not specify any particular plan. Rather, the hints correct errors in the optimizer
estimation algorithm that lead to suboptimal plans. For example, a profile may use the
TABLE_STATS hint to set object statistics for tables when the statistics are missing or stale.

When choosing plans, the optimizer has the following sources of information:

Chapter 27
About SQL Profiles

27-2

• The environment, which contains the database configuration, system statistics, bind
variable values, optimizer statistics, data set, and so on

• The supplemental statistics in the SQL profile

The following figure shows the relationship between a SQL statement and the SQL profile for
this statement. The optimizer uses the SQL profile and the environment to generate an
execution plan. In this example, the plan is in the SQL plan baseline for the statement.

Figure 27-1 SQL Profile

SQL Plan Baseline

GB

NL
NL

GB

HJ
HJ

SQL Profile

Environment

OptimizerSQL Statement

SELECT . . .

Optimizer�
Statistics

ConfigurationBind�
Variables

Data�
Set

If either the optimizer environment or SQL profile changes, then the optimizer can create a new
plan. As tables grow, or as indexes are created or dropped, the plan for a SQL profile can
change. The profile continues to be relevant even if the data distribution or access path of the
corresponding statement changes.

In general, you do not need to refresh SQL profiles. Over time, however, profile content can
become outdated. In this case, performance of the SQL statement may degrade. The
statement may appear as high-load or top SQL. In this case, the Automatic SQL Tuning task
again captures the statement as high-load SQL. You can implement a new SQL profile for the
statement.

See Also:

• "Differences Between SQL Plan Baselines and SQL Profiles"

• "Introduction to Optimizer Statistics"

• Oracle Database SQL Language Reference to learn about SQL hints

SQL Profile Recommendations
SQL Tuning Advisor invokes Automatic Tuning Optimizer to generate SQL profile
recommendations.

Recommendations to implement SQL profiles occur in a finding, which appears in a separate
section of the SQL Tuning Advisor report. When you implement (or accept) a SQL profile, the
database creates the profile and stores it persistently in the data dictionary. However, the SQL
profile information is not exposed through regular dictionary views.

Chapter 27
About SQL Profiles

27-3

Example 27-1 SQL Profile Recommendation

In this example, the database found a better plan for a SELECT statement that uses several
expensive joins. The database recommends running DBMS_SQLTUNE.ACCEPT_SQL_PROFILE to
implement the profile, which enables the statement to run 98.53% faster.

FINDINGS SECTION (2 findings)

1- SQL Profile Finding (see explain plans section below)
--
 A potentially better execution plan was found for this statement. Choose
 one of the following SQL profiles to implement.

 Recommendation (estimated benefit: 99.45%)
 --
 - Consider accepting the recommended SQL profile.
 execute dbms_sqltune.accept_sql_profile(task_name => 'my_task',
 object_id => 3, task_owner => 'SH', replace => TRUE);

 Validation results

 The SQL profile was tested by executing both its plan and the original
 plan and measuring their respective execution statistics. A plan may
 have been only partially executed if the other could be run to
 completion in less time.

 Original Plan With SQL Profile % Improved
 ------------- ---------------- ----------
 Completion Status: PARTIAL COMPLETE
 Elapsed Time(us): 15467783 226902 98.53 %
 CPU Time(us): 15336668 226965 98.52 %
 User I/O Time(us): 0 0
 Buffer Gets: 3375243 18227 99.45 %
 Disk Reads: 0 0
 Direct Writes: 0 0
 Rows Processed: 0 109
 Fetches: 0 109
 Executions: 0 1

 Notes

 1. The SQL profile plan was first executed to warm the buffer cache.
 2. Statistics for the SQL profile plan were averaged over next 3 executions.

Sometimes SQL Tuning Advisor may recommend implementing a profile that uses the
Automatic Degree of Parallelism (Auto DOP) feature. A parallel query profile is only
recommended when the original plan is serial and when parallel execution can significantly
reduce the elapsed time for a long-running query.

When it recommends a profile that uses Auto DOP, SQL Tuning Advisor gives details about the
performance overhead of using parallel execution for the SQL statement in the report. For
parallel execution recommendations, SQL Tuning Advisor may provide two SQL profile
recommendations, one using serial execution and one using parallel.

Chapter 27
About SQL Profiles

27-4

The following example shows a parallel query recommendation. In this example, a degree of
parallelism of 7 improves response time significantly at the cost of increasing resource
consumption by almost 25%. You must decide whether the reduction in database throughput is
worth the increase in response time.

 Recommendation (estimated benefit: 99.99%)
 --
 - Consider accepting the recommended SQL profile to use parallel
 execution for this statement.
 execute dbms_sqltune.accept_sql_profile(task_name => 'gfk_task',
 object_id => 3, task_owner => 'SH', replace => TRUE,
 profile_type => DBMS_SQLTUNE.PX_PROFILE);

 Executing this query parallel with DOP 7 will improve its response time
 82.22% over the SQL profile plan. However, there is some cost in enabling
 parallel execution. It will increase the statement's resource
 consumption by an estimated 24.43% which may result in a reduction of
 system throughput. Also, because these resources are consumed over a
 much smaller duration, the response time of concurrent statements
 might be negatively impacted if sufficient hardware capacity is not
 available.

 The following data shows some sampled statistics for this SQL from the
 past week and projected weekly values when parallel execution is enabled.

 Past week sampled statistics for this SQL

 Number of executions 0
 Percent of total activity .29
 Percent of samples with #Active Sessions > 2*CPU 0
 Weekly DB time (in sec) 76.51

 Projected statistics with Parallel Execution
 --
 Weekly DB time (in sec) 95.21

See Also:

• "SQL Profiling"

• Oracle Database VLDB and Partitioning Guide to learn more about Auto DOP

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SQLTUNE.ACCEPT_SQL_PROFILE procedure

SQL Profiles and SQL Plan Baselines
You can use SQL profiles with or without SQL plan management.

No strict relationship exists between the SQL profile and a SQL plan baseline. If a statement
has multiple plans in a SQL plan baseline, then a SQL profile is useful because it enables the
optimizer to choose the lowest-cost plan in the baseline.

Chapter 27
About SQL Profiles

27-5

See Also:

"Overview of SQL Plan Management"

User Interfaces for SQL Profiles
Oracle Enterprise Manager Cloud Control (Cloud Control) usually handles SQL profiles as part
of automatic SQL tuning.

On the command line, you can manage SQL profiles with the DBMS_SQLTUNE package. To use
the APIs, you must have the ADMINISTER SQL MANAGEMENT OBJECT privilege.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_SQLTUNE package

• Oracle Database 2 Day + Performance Tuning Guide to learn how to manage
SQL profiles with Cloud Control

Basic Tasks for SQL Profiles
Basic tasks include accepting (implementing) a SQL profile, altering it, listing it, and dropping it.

The following graphic shows the basic workflow.

Figure 27-2 Managing SQL Profiles

DBMS_SQLTUNE.DROP_SQL_PROFILE

DBMS_SQLTUNE.

ALTER_SQL_PROFILE

List SQL Profiles

Drop a SQL Profile

Implement a
SQL Profile

DBA_SQL_PROFILES

Alter a SQL Profile

DBMS_SQLTUNE.

ACCEPT_SQL_PROFILE

Chapter 27
About SQL Profiles

27-6

Typically, you manage SQL profiles in the following sequence:

1. Implement a recommended SQL profile.

"Implementing a SQL Profile" describes this task.

2. Obtain information about SQL profiles stored in the database.

"Listing SQL Profiles" describes this task.

3. Optionally, modify the implemented SQL profile.

"Altering a SQL Profile" describes this task.

4. Drop the implemented SQL profile when it is no longer needed.

"Dropping a SQL Profile" describes this task.

To tune SQL statements on another database, you can transport both a SQL tuning set and a
SQL profile to a separate database. "Transporting a SQL Profile" describes this task.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_SQLTUNE package

Implementing a SQL Profile
Implementing a SQL profile means storing it persistently in the database.

Implementing a profile is the same as accepting it. A profile must be accepted before the
optimizer can use it as input when generating plans.

About SQL Profile Implementation
As a rule of thumb, implement a SQL profile recommended by SQL Tuning Advisor.

If the database recommends both an index and a SQL profile, then either use both or use the
SQL profile only. If you create an index, then the optimizer may need the profile to pick the new
index.

In some situations, SQL Tuning Advisor may find an improved serial plan in addition to an even
better parallel plan. In this case, the advisor recommends both a standard and a parallel SQL
profile, enabling you to choose between the best serial and best parallel plan for the statement.
Implement a parallel plan only if the increase in response time is worth the decrease in
throughput.

To implement a SQL profile, execute the DBMS_SQLTUNE.ACCEPT_SQL_PROFILE procedure. Some
important parameters are as follows:

• profile_type
Set this parameter to REGULAR_PROFILE for a SQL profile without a change to parallel
execution, or PX_PROFLE for a SQL profile with a change to parallel execution.

• force_match
This parameter controls statement matching. Typically, an accepted SQL profile is
associated with the SQL statement through a SQL signature that is generated using a

Chapter 27
Implementing a SQL Profile

27-7

hash function. This hash function changes the SQL statement to upper case and removes
all extra whitespace before generating the signature. Thus, the same SQL profile works for
all SQL statements in which the only difference is case and white spaces.

By setting force_match to true, the SQL profile additionally targets all SQL statements
that have the same text after the literal values in the WHERE clause have been replaced by
bind variables. This setting may be useful for applications that use only literal values
because it enables SQL with text differing only in its literal values to share a SQL profile. If
both literal values and bind variables are in the SQL text, or if force_match is set to false
(default), then the literal values in the WHERE clause are not replaced by bind variables.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
ACCEPT_SQL_PROFILE procedure

Implementing a SQL Profile
To implement a SQL profile, use the DBMS_SQLTUNE.ACCEPT_SQL_PROFILE procedure.

Assumptions

This tutorial assumes the following:

• The SQL Tuning Advisor task STA_SPECIFIC_EMP_TASK includes a recommendation to
create a SQL profile.

• The name of the SQL profile is my_sql_profile.

• The PL/SQL block accepts a profile that uses parallel execution (profile_type).

• The profile uses force matching.

To implement a SQL profile:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Execute the ACCEPT_SQL_PROFILE function.

For example, execute the following PL/SQL:

DECLARE
 my_sqlprofile_name VARCHAR2(30);
BEGIN
 my_sqlprofile_name := DBMS_SQLTUNE.ACCEPT_SQL_PROFILE (
 task_name => 'STA_SPECIFIC_EMP_TASK'
, name => 'my_sql_profile'
, profile_type => DBMS_SQLTUNE.PX_PROFILE
, force_match => true
);
END;
/

Chapter 27
Implementing a SQL Profile

27-8

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SQLTUNE.ACCEPT_SQL_PROFILE procedure

Listing SQL Profiles
The data dictionary view DBA_SQL_PROFILES stores SQL profiles persistently in the database.

The profile statistics are in an Oracle Database internal format, so you cannot query profiles
directly. However, you can list profiles.

To list SQL profiles:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Query the DBA_SQL_PROFILES view.

For example, execute the following query:

COLUMN category FORMAT a10
COLUMN sql_text FORMAT a20

SELECT NAME, SQL_TEXT, CATEGORY, STATUS
FROM DBA_SQL_PROFILES;

Sample output appears below:

NAME SQL_TEXT CATEGORY STATUS
------------------------------ -------------------- ---------- --------
SYS_SQLPROF_01285f6d18eb0000 select promo_name, c DEFAULT ENABLED
 ount(*) c from promo
 tions p, sales s whe
 re s.promo_id = p.pr
 omo_id and p.promo_c
 ategory = 'internet'
 group by p.promo_na
 me order by c desc

See Also:

Oracle Database Reference to learn about the DBA_SQL_PROFILES view

Chapter 27
Listing SQL Profiles

27-9

Altering a SQL Profile
You can alter attributes of an existing SQL profile using the attribute_name parameter of the
ALTER_SQL_PROFILE procedure.

The CATEGORY attribute determines which sessions can apply a profile. View the CATEGORY
attribute by querying DBA_SQL_PROFILES.CATEGORY. By default, all profiles are in the DEFAULT
category, which means that all sessions in which the SQLTUNE_CATEGORY initialization parameter
is set to DEFAULT can use the profile.

By altering the category of a SQL profile, you determine which sessions are affected by profile
creation. For example, by setting the category to DEV, only sessions in which the
SQLTUNE_CATEGORY initialization parameter is set to DEV can use the profile. Other sessions do
not have access to the SQL profile and execution plans for SQL statements are not impacted
by the SQL profile. This technique enables you to test a profile in a restricted environment
before making it available to other sessions.

The example in this section assumes that you want to change the category of the SQL profile
so it is used only by sessions with the SQL profile category set to TEST, run the SQL statement,
and then change the profile category back to DEFAULT.

To alter a SQL profile:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Use the ALTER_SQL_PROFILE procedure to set the attribute_name.

For example, execute the following code to set the attribute CATEGORY to TEST:

VARIABLE pname my_sql_profile
BEGIN DBMS_SQLTUNE.ALTER_SQL_PROFILE (
 name => :pname
, attribute_name => 'CATEGORY'
, value => 'TEST'
);
END;

3. Change the initialization parameter setting in the current database session.

For example, execute the following SQL:

ALTER SESSION SET SQLTUNE_CATEGORY = 'TEST';

4. Test the profiled SQL statement.

5. Use the ALTER_SQL_PROFILE procedure to set the attribute_name.

For example, execute the following code to set the attribute CATEGORY to DEFAULT:

VARIABLE pname my_sql_profile
BEGIN
 DBMS_SQLTUNE.ALTER_SQL_PROFILE (
 name => :pname
, attribute_name => 'CATEGORY'
, value => 'DEFAULT'

Chapter 27
Altering a SQL Profile

27-10

);
END;

See Also:

• Oracle Database Reference to learn about the SQLTUNE_CATEGORY initialization
parameter

• Oracle Database PL/SQL Packages and Types Reference to learn about the
ALTER_SQL_PROFILE procedure

Dropping a SQL Profile
You can drop a SQL profile with the DROP_SQL_PROFILE procedure.

Assumptions

This section assumes the following:

• You want to drop my_sql_profile.

• You want to ignore errors raised if the name does not exist.

To drop a SQL profile:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the necessary
privileges.

2. Use the DBMS_SQLTUNE.DROP_SQL_PROFILE procedure.

The following example drops the profile named my_sql_profile:

BEGIN
 DBMS_SQLTUNE.DROP_SQL_PROFILE (
 name => 'my_sql_profile'
);
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DROP_SQL_PROFILE procedure

• Oracle Database Reference to learn about the SQLTUNE_CATEGORY initialization
parameter

Chapter 27
Dropping a SQL Profile

27-11

Transporting a SQL Profile
You can export a SQL profile from the SYS schema in one database to a staging table, and then
import it from the staging table into another database. You can transport a SQL profile to any
Oracle database created in the same release or later.

Table 27-1 shows the main procedures and functions for managing SQL profiles.

Table 27-1 APIs for Transporting SQL Profiles

Procedure or Function Description

CREATE_STGTAB_SQLPROF Creates the staging table used for copying SQL profiles from
one system to another.

PACK_STGTAB_SQLPROF Moves profile data out of the SYS schema into the staging
table.

UNPACK_STGTAB_SQLPROF Uses the profile data stored in the staging table to create
profiles on this system.

The following graphic shows the basic workflow of transporting SQL profiles.

Figure 27-3 Transporting SQL Profiles

DBMS_SQLTUNE
ACCEPT_SQL_PROFILE

CREATE_STGTAB_SQLPROF

PACK_STGTAB_SQLPROF

UNPACK_STGTAB_SQLPROF

Accept a
SQL Profile

Transport
to different
database

Transport SQL Profile

Assumptions

This tutorial assumes the following:

• You want to transport my_profile from a production database to a test database.

• You want to create the staging table in the dba1 schema.

To transport a SQL profile:

1. Connect SQL*Plus to the database with the appropriate privileges, and then use the
CREATE_STGTAB_SQLPROF procedure to create a staging table to hold the SQL profiles.

Chapter 27
Transporting a SQL Profile

27-12

The following example creates my_staging_table in the dba1 schema:

BEGIN
 DBMS_SQLTUNE.CREATE_STGTAB_SQLPROF (
 table_name => 'my_staging_table'
, schema_name => 'dba1'
);
END;
/

2. Use the PACK_STGTAB_SQLPROF procedure to export SQL profiles into the staging table.

The following example populates dba1.my_staging_table with the SQL profile
my_profile:

BEGIN
 DBMS_SQLTUNE.PACK_STGTAB_SQLPROF (
 profile_name => 'my_profile'
, staging_table_name => 'my_staging_table'
, staging_schema_owner => 'dba1'
);
END;
/

3. Move the staging table to the database where you plan to unpack the SQL profiles.

Move the table using your utility of choice. For example, use Oracle Data Pump or a
database link.

4. On the database where you plan to import the SQL profiles, use UNPACK_STGTAB_SQLPROF
to unpack SQL profiles from the staging table.

The following example shows how to unpack SQL profiles in the staging table:

BEGIN
 DBMS_SQLTUNE.UNPACK_STGTAB_SQLPROF(
 replace => true
, staging_table_name => 'my_staging_table'
);
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference for complete reference
information about DBMS_SQLTUNE

• Oracle Database Utilities to learn how to use Oracle Data Pump

Chapter 27
Transporting a SQL Profile

27-13

28
Overview of SQL Plan Management

SQL plan management is a preventative mechanism that enables the optimizer to
automatically manage execution plans, ensuring that the database uses only known or verified
plans.

About SQL Plan Baselines
SQL plan management uses a mechanism called a SQL plan baseline, which is a set of
accepted plans that the optimizer is allowed to use for a SQL statement.

In this context, a plan includes all plan-related information (for example, SQL plan identifier, set
of hints, bind values, and optimizer environment) that the optimizer needs to reproduce an
execution plan. The baseline is implemented as a set of plan rows and the outlines required to
reproduce the plan. An outline is a set of optimizer hints used to force a specific plan.

The main components of SQL plan management are as follows:

• Plan capture

This component stores relevant information about plans for a set of SQL statements.

• Plan selection

This component is the detection by the optimizer of plan changes based on stored plan
history, and the use of SQL plan baselines to select appropriate plans to avoid potential
performance regressions.

• Plan evolution

This component is the process of adding new plans to existing SQL plan baselines, either
manually or automatically. In the typical use case, the database accepts a plan into the
plan baseline only after verifying that the plan performs well.

Purpose of SQL Plan Management
SQL plan management prevents performance regressions caused by plan changes.

A secondary goal is to gracefully adapt to changes such as new optimizer statistics or indexes
by verifying and accepting only plan changes that improve performance.

Note:

SQL plan baselines cannot help when an event has caused irreversible execution
plan changes, such as dropping an index.

Benefits of SQL Plan Management
SQL plan management can improve or preserve SQL performance in database upgrades and
system and data changes.

28-1

Specifically, benefits include:

• A database upgrade that installs a new optimizer version usually results in plan changes
for a small percentage of SQL statements.

Most plan changes result in either improvement or no performance change. However,
some plan changes may cause performance regressions. SQL plan baselines significantly
minimize potential regressions resulting from an upgrade.

When you upgrade, the database only uses plans from the plan baseline. The database
puts new plans that are not in the current baseline into a holding area, and later evaluates
them to determine whether they use fewer resources than the current plan in the baseline.
If the plans perform better, then the database promotes them into the baseline; otherwise,
the database does not promote them.

• Ongoing system and data changes can affect plans for some SQL statements, potentially
causing performance regressions.

SQL plan baselines help minimize performance regressions and stabilize SQL
performance.

• Deployment of new application modules introduces new SQL statements into the
database.

The application software may use appropriate SQL execution plans developed in a
standard test configuration for the new statements. If the system configuration is
significantly different from the test configuration, then the database can evolve SQL plan
baselines over time to produce better performance.

See Also:

Oracle Database Upgrade Guide to learn how to upgrade an Oracle database

Differences Between SQL Plan Baselines and SQL Profiles
Both SQL profiles and SQL plan baselines help improve the performance of SQL statements
by ensuring that the optimizer uses only optimal plans.

Both profiles and baselines are internally implemented using hints. However, these
mechanisms have significant differences, including the following:

• In general, SQL plan baselines are proactive, whereas SQL profiles are reactive.

Typically, you create SQL plan baselines before significant performance problems occur.
SQL plan baselines prevent the optimizer from using suboptimal plans in the future.

The database creates SQL profiles when you invoke SQL Tuning Advisor, which you do
typically only after a SQL statement has shown high-load symptoms. SQL profiles are
primarily useful by providing the ongoing resolution of optimizer mistakes that have led to
suboptimal plans. Because the SQL profile mechanism is reactive, it cannot guarantee
stable performance as drastic database changes occur.

Chapter 28
Purpose of SQL Plan Management

28-2

Figure 28-1 SQL Plan Baselines and SQL Profiles

Suboptimal
Plan

Corrects

Cause

Suboptimal
Plan

SQL Plan
Baseline

SQL Profile

Prevents

Use

Past Present Future

• SQL plan baselines reproduce a specific plan, whereas SQL profiles correct optimizer cost
estimates.

A SQL plan baseline is a set of accepted plans. Each plan is implemented using a set of
outline hints that fully specify a particular plan. SQL profiles are also implemented using
hints, but these hints do not specify any specific plan. Rather, the hints correct
miscalculations in the optimizer estimates that lead to suboptimal plans. For example, a
hint may correct the cardinality estimate of a table.

Because a profile does not constrain the optimizer to any one plan, a SQL profile is more
flexible than a SQL plan baseline. For example, changes in initialization parameters and
optimizer statistics enable the optimizer to choose a better plan.

Oracle recommends that you use SQL Tuning Advisor. In this way, you follow the
recommendations made by the advisor for SQL profiles and plan baselines rather than trying to
determine which mechanism is best for each SQL statement.

See Also:

• "About Optimizer Hints"

• "Managing SQL Profiles"

• "Analyzing SQL with SQL Tuning Advisor"

Plan Capture
SQL plan capture refers to techniques for capturing and storing relevant information about
plans in the SQL Management Base for a set of SQL statements.

Capturing a plan means making SQL plan management aware of this plan. You can configure
initial plan capture to occur automatically by setting an initialization parameter, or you can
capture plans manually by using the DBMS_SPM package.

Automatic Initial Plan Capture
When enabled, the database checks whether executed SQL statements are eligible for
automatic capture.

You can enable automatic initial plan capture by setting
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES to true (the default is false). Note that the
initialization parameter OPTIMIZER_USE_SQL_PLAN_BASELINES is independent. For example, if

Chapter 28
Plan Capture

28-3

OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES is true, then the database creates initial plan
baselines regardless of whether OPTIMIZER_USE_SQL_PLAN_BASELINES is true or false.

See Also:

• "Plan Selection"

• Oracle Database Reference to learn about the
OPTIMIZER_USE_SQL_PLAN_BASELINES initialization parameter

Eligibility for Automatic Initial Plan Capture
To be eligible for automatic plan capture, an executed statement must be repeatable, and it
must not be excluded by any capture filters.

By default, the database considers all repeatable SQL statements as eligible for capture, with
the following exceptions:

• CREATE TABLE when the AS SELECT clause is not specified

• DROP TABLE
• INSERT INTO ... VALUES
The first check for eligibility is repeated execution. If a statement is executed less than twice,
then the database does not consider it eligible for a SQL plan baseline. If a statement is
executed at least twice, then it is by definition repeatable, and so the database considers it
eligible for further checking.

Note:

SQL plan management does not protect statements that have been explained using
EXPLAIN PLAN but have not been executed.

For repeatable statements, the DBMS_SPM.CONFIGURE procedure enables you to create an
automatic capture filter. Thus, you can capture only statements that you want, and exclude
noncritical statements, thereby saving space in the SYSAUX tablespace. Noncritical queries
often have the following characteristics:

• Not executed often enough to be significant

• Not resource-intensive

• Not sufficiently complex to benefit from SQL plan management

For a specified parameter, a filter either includes (allow=>TRUE) or excludes (allow=>FALSE)
plans for statements with the specified values. To be eligible for capture, a repeatable
statement must not be excluded by any filter. The DBMS_SPM.CONFIGURE procedure supports
filters for SQL text, parsing schema name, module, and action.

A null value for any parameter removes the filter. By using parameter_value=>'%' in
combination with allow=FALSE, you can filter out all values for a parameter, and then create a
separate filter to include only specified values. The DBA_SQL_MANAGEMENT_CONFIG view shows
the current filters.

Chapter 28
Plan Capture

28-4

See Also:

• "Configuring Filters for Automatic Plan Capture"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_SPM.CONFIGURE procedure

• Oracle Database Reference to learn more about the
DBA_SQL_MANAGEMENT_CONFIG view

Plan Matching for Automatic Initial Plan Capture
If the database executes a repeatable SQL statement, and if this statement passes through the
DBMS_SPM.CONFIGURE filters, then the database attempts to match a plan in the SQL plan
baseline.

For automatic initial plan capture, the plan matching algorithm is as follows:

• If a SQL plan baseline does not exist, then the optimizer creates a plan history and SQL
plan baseline for the statement, marking the initial plan for the statement as accepted and
adding it to the SQL plan baseline.

• If a SQL plan baseline exists, then the optimizer behavior depends on the cost-based plan
derived at parse time:

– If this plan does not match a plan in the SQL plan baseline, then the optimizer marks
the new plan as unaccepted and adds it to the SQL plan baseline.

– If this plan does match a plan in the SQL plan baseline, then nothing is added to the
SQL plan baseline.

Manual Plan Capture
In SQL plan management, manual plan capture refers to the user-initiated bulk load of
existing plans into a SQL plan baseline.

Use Cloud Control or PL/SQL to load the execution plans for SQL statements from AWR, a
SQL tuning set (STS), the shared SQL area, a staging table, or a stored outline.

Chapter 28
Plan Capture

28-5

Figure 28-2 Loading Plans into a SQL Plan Baseline

SQL Management Base

SQL Statement Log

Loading
Plans into
a Plan
Baseline

SQL Plan History

SQL Plan Baseline

accepted
enabled

accepted
enabled

GB

HJ
HJ

GB

HJ
HJ

SQL
Tuning
Set

Staging Table

AWR

/*+ hint */

/*+ hint */

/*+ hint */

Stored Outline

Shared Pool

Library Cache

Shared SQL Area

SELECT * FROM
 employees

The loading behavior varies depending on whether a SQL plan baseline exists for each
statement represented in the bulk load:

• If a baseline for the statement does not exist, then the database does the following:

1. Creates a plan history and plan baseline for the statement

2. Marks the initial plan for the statement as accepted

3. Adds the plan to the new baseline

• If a baseline for the statement exists, then the database does the following:

1. Marks the loaded plan as accepted

2. Adds the plan to the plan baseline for the statement without verifying the plan's
performance

Manually loaded plans are always marked accepted because the optimizer assumes that any
plan loaded manually by the administrator has acceptable performance. You can load plans
without enabling them by setting the enabled parameter to NO in the
DBMS_SPM.LOAD_PLANS_FROM_% functions.

Chapter 28
Plan Capture

28-6

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
DBMS_SPM.LOAD_PLANS_FROM_% functions

Plan Selection
SQL plan selection is the optimizer ability to detect plan changes based on stored plan
history, and the use of SQL plan baselines to select plans to avoid potential performance
regressions.

When the database performs a hard parse of a SQL statement, the optimizer generates a best-
cost plan. By default, the optimizer then attempts to find a matching plan in the SQL plan
baseline for the statement. If no plan baseline exists, then the database runs the statement
with the best-cost plan.

If a plan baseline exists, then the optimizer behavior depends on whether the newly generated
plan is in the plan baseline:

• If the new plan is in the baseline, then the database executes the statement using the
found plan.

• If the new plan is not in the baseline, then the optimizer marks the newly generated plan as
unaccepted and adds it to the plan history. Optimizer behavior depends on the contents of
the plan baseline:

– If fixed plans exist in the plan baseline, then the optimizer uses the fixed plan with the
lowest cost.

– If no fixed plans exist in the plan baseline, then the optimizer uses the baseline plan
with the lowest cost.

– If no reproducible plans exist in the plan baseline, which could happen if every plan in
the baseline referred to a dropped index, then the optimizer uses the newly generated
cost-based plan.

Chapter 28
Plan Selection

28-7

Figure 28-3 Decision Tree for SQL Plan Selection

Execute this plan

No

Yes

Mark plan as unaccepted
in plan history

No

Compare costs of
accepted plans

Execute lowest-cost
plan in baseline

Yes Execute this
plan

SQL is issued

Generate execution
plan

Does
a SQL plan baseline

exist?

Is this
plan in SQL plan

baseline?

See Also:

"Fixed Plans"

Plan Evolution
In general, SQL plan evolution is the process by which the optimizer verifies new plans and
adds them to an existing SQL plan baseline.

Purpose of Plan Evolution
Typically, a SQL plan baseline for a statement starts with one accepted plan.

However, some SQL statements perform well when executed with different plans under
different conditions. For example, a SQL statement with bind variables whose values result in
different selectivities may have several optimal plans. Creating a materialized view or an index
or repartitioning a table may make current plans more expensive than other plans.

If new plans were never added to SQL plan baselines, then the performance of some SQL
statements might degrade. Thus, it is sometimes necessary to evolve newly accepted plans
into SQL plan baselines. Plan evolution prevents performance regressions by verifying the
performance of a new plan before including it in a SQL plan baseline.

How Plan Evolution Works
Plan evolution involves both verifying and adding plans.

Chapter 28
Plan Evolution

28-8

Specifically, plan evolution consists of the following distinct steps:

1. Verifying

The optimizer ensures that unaccepted plans perform at least as well as accepted plans in
a SQL plan baseline (known as plan verification).

2. Adding

After the database has proved that unaccepted plans perform as well as accepted plans,
the database adds the plans to the baseline.

In the standard case of plan evolution, the optimizer performs the preceding steps sequentially,
so that a new plan is not usable by SQL plan management until the optimizer verifies plan
performance relative to the SQL plan baseline. However, you can configure SQL plan
management to perform one step without performing the other. The following graphic shows
the possible paths for plan evolution.

Figure 28-4 Plan Evolution

Verifying Adding

Verifying without adding

Adding without verifying

PL/SQL Subprograms for Plan Evolution
The DBMS_SPM package provides procedures and functions for plan evolution.

These subprograms use the task infrastructure. For example, CREATE_EVOLVE_TASK creates an
evolution task, whereas EXECUTE_EVOLVE_TASK executes it. All task evolution subprograms
have the string EVOLVE_TASK in the name.

Use the evolve procedures on demand, or configure the subprograms to run automatically. The
automatic maintenance task SYS_AUTO_SPM_EVOLVE_TASK executes daily in the scheduled
maintenance window. The task perform the following actions automatically:

1. Selects and ranks unaccepted plans for verification

2. Accepts each plan if it satisfies the performance threshold

See Also:

• "Managing the SPM Evolve Advisor Task"

• "Evolving SQL Plan Baselines Manually"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM package

Chapter 28
Plan Evolution

28-9

Storage Architecture for SQL Plan Management
The SQL plan management infrastructure records the signatures of parsed statements, and
both accepted and unaccepted plans.

SQL Management Base
The SQL management base (SMB) is a logical repository in the data dictionary.

The SMB contains the following:

• SQL statement log, which contains only SQL IDs

• SQL plan history, which includes the SQL plan baselines

• SQL profiles

• SQL patches

The SMB stores information that the optimizer can use to maintain or improve SQL
performance.

The SMB resides in the SYSAUX tablespace and uses automatic segment-space management.
Because the SMB is located entirely within the SYSAUX tablespace, the database does not use
SQL plan management and SQL tuning features when this tablespace is unavailable.

Figure 28-5 SMB Architecture

SQL
Statement

Log

SQL
Profiles

SQL
Plan

History

SQL
Patches

SYSAUX

SQL Management Base

Note:

Data visibility and privilege requirements may differ when using the SMB with
pluggable databases. See Oracle Database Administrator’s Guide for a table that
summarizes how manageability features work in a container database (CDB).

See Also:

Oracle Database Administrator’s Guide to learn about the SYSAUX tablespace

Chapter 28
Storage Architecture for SQL Plan Management

28-10

SQL Statement Log
When automatic SQL plan capture is enabled, the SQL statement log contains the signature
of statements that the optimizer has evaluated over time.

A SQL signature is a numeric hash value computed using a SQL statement text that has been
normalized for case insensitivity and white space. When the optimizer parses a statement, it
creates signature.

During automatic capture, the database matches this signature against the SQL statement log
(SQLLOG$) to determine whether the signature has been observed before. If it has not, then the
database adds the signature to the log. If the signature is already in the log, then the database
has confirmation that the statement is a repeatable SQL statement.

Note:

If a filter excludes a statement, then its signature is also excluded from the log.

Example 28-1 Logging SQL Statements

This example illustrates how the database tracks statements in the statement log and creates
baselines automatically for repeatable statements. An initial query of the statement log shows
no tracked SQL statements. After a query of hr.jobs for AD_PRES, the log shows one tracked
statement.

SQL> ALTER SYSTEM SET OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=true;

System altered.

SQL> SELECT * FROM SQLLOG$;

no rows selected

SQL> SELECT job_title FROM hr.jobs WHERE job_id = 'AD_PRES';

JOB_TITLE

President

SQL> SELECT * FROM SQLLOG$;

 SIGNATURE BATCH#
---------- ----------
1.8096E+19 1

Now the session executes a different jobs query. The log shows two tracked statements:

SQL> SELECT job_title FROM hr.jobs WHERE job_id='PR_REP';

JOB_TITLE

Public Relations Representative

Chapter 28
Storage Architecture for SQL Plan Management

28-11

SQL> SELECT * FROM SQLLOG$;

 SIGNATURE BATCH#
---------- ----------
1.7971E+19 1
1.8096E+19 1

A query of DBA_SQL_PLAN_BASELINES shows that no baseline for either statement exists
because neither statement is repeatable:

SQL> SELECT SQL_HANDLE, SQL_TEXT
 2 FROM DBA_SQL_PLAN_BASELINES
 3 WHERE SQL_TEXT LIKE 'SELECT job_title%';

no rows selected

The session executes the query for job_id='PR_REP' a second time. Because this statement is
now repeatable, and because automatic SQL plan capture is enabled, the database creates a
plan baseline for this statement. The query for job_id='AD_PRES' has only been executed
once, so no plan baseline exists for it.

SQL> SELECT job_title FROM hr.jobs WHERE job_id='PR_REP';

JOB_TITLE

Public Relations Representative

SQL> SELECT SQL_HANDLE, SQL_TEXT
 2 FROM DBA_SQL_PLAN_BASELINES
 3 WHERE SQL_TEXT LIKE 'SELECT job_title%';

SQL_HANDLE SQL_TEXT
-------------------- --------------------
SQL_f9676a330f972dd5 SELECT job_title FRO
 M hr.jobs WHERE job_
 id='PR_REP'

See Also:

• "Automatic Initial Plan Capture"

• Oracle Database Reference to learn about DBA_SQL_PLAN_BASELINES

SQL Plan History
The SQL plan history is the set of captured SQL execution plans. The history contains both
SQL plan baselines and unaccepted plans.

Chapter 28
Storage Architecture for SQL Plan Management

28-12

In SQL plan management, the database detects new SQL execution plans for existing SQL
plan baselines and records the new plan in the history so that they can be evolved (verified).
Evolution is initiated automatically by the database or manually by the DBA.

Starting in Oracle Database 12c, the SMB stores the execution plans for all SQL statements in
the SQL plan history. The DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE function fetches and
displays the plan from the SMB. For plans created before Oracle Database 12c, the function
must compile the SQL statement and generate the plan because the SMB does not store it.

See Also:

• "Displaying Plans in a SQL Plan Baseline"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE function

Enabled Plans
An enabled plan is a plan that is eligible for use by the optimizer.

When plans are loaded with the enabled parameter set to YES (default), the database
automatically marks the resulting SQL plan baselines as enabled, even if they are unaccepted.
You can manually change an enabled plan to a disabled plan, which means the optimizer can
no longer use the plan even if it is accepted.

Accepted Plans
An accepted plan is a plan that is in a SQL plan baseline for a SQL statement and thus
available for use by the optimizer. An accepted plan contains a set of hints, a plan hash value,
and other plan-related information.

The SQL plan history for a statement contains all plans, both accepted and unaccepted. After
the optimizer generates the first accepted plan in a plan baseline, every subsequent
unaccepted plan is added to the plan history, awaiting verification, but is not in the SQL plan
baseline.

Fixed Plans
A fixed plan is an accepted plan that is marked as preferred, so that the optimizer considers
only the fixed plans in the baseline. Fixed plans influence the plan selection process of the
optimizer.

Assume that three plans exist in the SQL plan baseline for a statement. You want the optimizer
to give preferential treatment to only two of the plans. As shown in the following figure, you
mark these two plans as fixed so that the optimizer uses only the best plan from these two,
ignoring the other plans.

Chapter 28
Storage Architecture for SQL Plan Management

28-13

Figure 28-6 Fixed Plans

DBA marks
as fixed

Considers

Ignores unless
fixed plans are
not reproducible

SQL Plan Baseline

fixed
accepted
enabled

fixed
accepted
enabled

accepted
enabled
accepted
enabled

GB

HJ
HJ

GB

HJ
HJ

GB

HJ
HJ

Optimizer

If new plans are added to a baseline that contains at least one enabled fixed plan, then the
optimizer cannot use the new plans until you manually declare them as fixed.

Chapter 28
Storage Architecture for SQL Plan Management

28-14

29
Managing SQL Plan Baselines

This chapter explains the concepts and tasks relating to SQL plan management using the
DBMS_SPM package.

See Also:

• "Migrating Stored Outlines to SQL Plan Baselines"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_SPM

About Managing SQL Plan Baselines
This topic describes the available interfaces and basic tasks for SQL plan management.

User Interfaces for SQL Plan Management
You can access the DBMS_SPM package through Cloud Control or through the command line.

Accessing the SQL Plan Baseline Page in Cloud Control
The SQL Plan Control page in Cloud Control is a GUI that shows information about SQL
profiles, SQL patches, and SQL plan baselines.

To access the SQL Plan Baseline page:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. From the Performance menu, select SQL, then SQL Plan Control.

The SQL Plan Control page appears.

6. Click Files to view the SQL Plan Baseline subpage, shown in Figure 29-1.

29-1

Figure 29-1 SQL Plan Baseline Subpage

You can perform most SQL plan management tasks in this page or in pages accessed
through this page.

See Also:

• Cloud Control context-sensitive online help to learn about the options on the SQL
Plan Baseline subpage

• "Managing the SPM Evolve Advisor Task"

DBMS_SPM Package
On the command line, use the DBMS_SPM and DBMS_XPLAN PL/SQL packages to perform most
SQL plan management tasks.

The following table describes the most relevant DBMS_SPM procedures and functions for
creating, dropping, and loading SQL plan baselines.

Table 29-1 DBMS_SPM Procedures and Functions

Procedure or Function Description

CONFIGURE This procedure changes configuration options for the SMB in
name/value format.

CREATE_STGTAB_BASELINE This procedure creates a staging table that enables you to
transport SQL plan baselines from one database to another.

Chapter 29
About Managing SQL Plan Baselines

29-2

Table 29-1 (Cont.) DBMS_SPM Procedures and Functions

Procedure or Function Description

DROP_SQL_PLAN_BASELINE This function drops some or all plans in a plan baseline.

LOAD_PLANS_FROM_CURSOR_CACHE This function loads plans in the shared SQL area (also called
the cursor cache) into SQL plan baselines.

LOAD_PLANS_FROM_SQLSET This function loads plans in an STS into SQL plan baselines.

LOAD_PLANS_FROM_AWR This function loads plans from AWR into SQL plan baselines.

PACK_STGTAB_BASELINE This function packs SQL plan baselines, which means that it
copies them from the SMB into a staging table.

UNPACK_STGTAB_BASELINE This function unpacks SQL plan baselines, which means that
it copies SQL plan baselines from a staging table into the
SMB.

Also, you can use DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE to show one or more execution
plans for the SQL statement identified by SQL handle.

See Also:

• "About the DBMS_SPM Evolve Functions" describes the functions related to
SQL plan evolution.

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM and DBMS_XPLAN packages

Basic Tasks in SQL Plan Management
This topic explains the basic tasks in using SQL plan management to prevent performance
regressions and enable the optimizer to consider new execution plans.

The tasks are as follows:

• Set initialization parameters to control whether the database captures and uses SQL plan
baselines, and whether it evolves new plans.

See "Configuring SQL Plan Management".

• Display plans in a SQL plan baseline.

See "Displaying Plans in a SQL Plan Baseline".

• Manually load plans into SQL plan baselines.

Load plans from AWR, SQL tuning sets, the shared SQL area, a staging table, or stored
outlines.

See "Loading SQL Plan Baselines".

• Manually evolve plans into SQL plan baselines.

Use PL/SQL to verify the performance of specified plans and add them to plan baselines.

See "Evolving SQL Plan Baselines Manually".

• Drop all or some plans in SQL plan baselines.

Chapter 29
About Managing SQL Plan Baselines

29-3

See "Dropping SQL Plan Baselines".

• Manage the SMB.

Alter disk space limits and change the length of the plan retention policy.

See "Managing the SQL Management Base".

• Migrate stored outlines to SQL plan baselines.

See "Migrating Stored Outlines to SQL Plan Baselines".

Configuring SQL Plan Management
You can configure the capture and use of SQL plan baselines, and the SPM Evolve Advisor
task.

Configuring the Capture and Use of SQL Plan Baselines
You control SQL plan management with the initialization parameters
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES and OPTIMIZER_USE_SQL_PLAN_BASELINES.

The default values are as follows:

• OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=false
For any repeatable SQL statement that does not already exist in the plan history, the
database does not automatically create an initial SQL plan baseline for the statement.

If OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=true, then you can use the
DBMS_SPM.CONFIGURE procedure to configure filters that determine which statements are
eligible for plan capture. By default, no filters are configured, which means that all
repeatable statements are eligible for plan capture.

• OPTIMIZER_USE_SQL_PLAN_BASELINES=true
For any SQL statement that has an existing SQL plan baseline, the database automatically
adds new plans to the SQL plan baseline as unaccepted plans.

Note:

The settings of the preceding parameters are independent of each other. For
example, if OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES is true, then the database
creates initial plan baselines for new statements even if
OPTIMIZER_USE_SQL_PLAN_BASELINES is false.

If the default behavior is what you intend, then skip this section.

The following sections explain how to change the default parameter settings from the
command line. If you use Cloud Control, then set these parameters in the SQL Plan Baseline
subpage.

Chapter 29
Configuring SQL Plan Management

29-4

See Also:

• "Figure 29-1"

• "Automatic Initial Plan Capture"

• "Plan Selection"

Enabling Automatic Initial Plan Capture for SQL Plan Management
Setting the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES initialization parameter to true is all that
is necessary for the database to automatically create an initial SQL plan baseline for any
eligible SQL statement not already in the plan history.

By default, the database considers all repeatable SQL statements as eligible for capture, with
the following exceptions:

• CREATE TABLE when the AS SELECT clause is not specified

• DROP TABLE
• INSERT INTO ... VALUES

Caution:

By default, when automatic baseline capture is enabled, the database creates a SQL
plan baseline for every eligible repeatable statement, including all recursive SQL and
monitoring SQL. Thus, automatic capture may result in the creation of an extremely
large number of plan baselines. To limit the statements that are eligible for plan
baselines, configure filters using the DBMS_SPM.CONFIGURE procedure.

The OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES parameter does not control the automatic
addition of newly discovered plans to a previously created SQL plan baseline.

To enable automatic initial plan capture for SQL plan management:

1. In SQL*Plus, log in to the database with the necessary privileges.

2. Show the current settings for SQL plan management.

For example, connect SQL*Plus to the database with administrator privileges and execute
the following command (sample output included):

SHOW PARAMETER SQL_PLAN

The following sample output shows that automatic initial plan capture is disabled:

NAME TYPE VALUE
------------------------------------ ----------- -----
optimizer_capture_sql_plan_baselines boolean FALSE
optimizer_use_sql_plan_baselines boolean TRUE

If the parameters are set as you intend, then skip the remaining steps.

Chapter 29
Configuring SQL Plan Management

29-5

3. To enable the automatic recognition of repeatable SQL statements and the generation of
SQL plan baselines for these statements, enter the following statement:

ALTER SYSTEM SET OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=true;

See Also:

Oracle Database Reference to learn more about
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES

Configuring Filters for Automatic Plan Capture
If OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=true, then you can use the DBMS_SPM.CONFIGURE
procedure to create an automatic capture filter for repeatable statements.

An automatic filter enables you to capture only statements that you want, and exclude
noncritical statements. This technique saves space in the SYSAUX tablespace.

The following table describes the relevant parameters of the DBMS_SPM.CONFIGURE procedure.

Table 29-2 DBMS_SPM.CONFIGURE Parameters

Parameter Description

parameter_name The type of filter for automatic capture.

Possible values are AUTO_CAPTURE_SQL_TEXT,
AUTO_CAPTURE_PARSING_SCHEMA_NAME, AUTO_CAPTURE_MODULE, and
AUTO_CAPTURE_ACTION.

parameter_value The search criteria for the automatic capture filter.

When parameter_name is set to AUTO_CAPTURE_SQL_TEXT, the search
pattern depends on the allow setting:

• LIKE
The parameter uses this pattern when allow=>true.

• NOT LIKE
The parameter uses this pattern when allow=>false.

For all other non-null parameter_name values, the search pattern depends
on the allow setting:

• =
The parameter uses this pattern when allow=>true.

• <>
The parameter uses this pattern when allow=>false.

A null value removes the filter for parameter_name entirely.

allow Whether to include (true) or exclude (false) matching SQL statements and
plans. If null, then the procedure ignores the specified parameter.

You can configure multiple parameters of different types. Also, you can specify multiple values
for the same parameter in separate statements, which the database combines. The settings

Chapter 29
Configuring SQL Plan Management

29-6

are additive: one parameter setting does not override a previous setting. For example, the
following filter captures SQL in the parsing schema SYS or SYSTEM:

EXEC DBMS_SPM.CONFIGURE('AUTO_CAPTURE_PARSING_SCHEMA_NAME','SYS',true);
EXEC DBMS_SPM.CONFIGURE('AUTO_CAPTURE_PARSING_SCHEMA_NAME','SYSTEM',true);

However, you cannot configure multiple values for the same parameter in the same procedure.
For example, you cannot specify multiple SQL text strings for AUTO_CAPTURE_SQL_TEXT.

The DBA_SQL_MANAGEMENT_CONFIG view shows the current parameter values.

This tutorial assumes the following:

• The OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES initialization parameter is set to true.

• You want to include only statements parsed in the sh schema to be eligible for baselines.

• You want to exclude statements that contain the text TEST_ONLY.

To filter out all statements except those parsed in the sh schema:

1. Connect SQL*Plus to the database with the appropriate privileges.

2. To remove any existing filters for parsing schema and SQL text, execute the following
PL/SQL programs:

EXEC DBMS_SPM.CONFIGURE('AUTO_CAPTURE_PARSING_SCHEMA_NAME',null,true);
EXEC DBMS_SPM.CONFIGURE('AUTO_CAPTURE_SQL_TEXT',null,true);

3. Include only statements parsed in the sh schema for consideration for automatic capture:

EXEC DBMS_SPM.CONFIGURE('AUTO_CAPTURE_PARSING_SCHEMA_NAME','sh',true);

4. Exclude any statement that contains the text TEST_ONLY from consideration for automatic
capture:

EXEC DBMS_SPM.CONFIGURE('AUTO_CAPTURE_SQL_TEXT','%TEST_ONLY%',false);

5. Optionally, to confirm the filters, query DBA_SQL_MANAGEMENT_CONFIG.

For example, use the following query (sample output included):

COL PARAMETER_NAME FORMAT a32
COL PARAMETER_VALUE FORMAT a32

SELECT PARAMETER_NAME, PARAMETER_VALUE
FROM DBA_SQL_MANAGEMENT_CONFIG
WHERE PARAMETER_NAME LIKE '%AUTO%';

PARAMETER_NAME PARAMETER_VALUE
-------------------------------- --------------------------------
AUTO_CAPTURE_PARSING_SCHEMA_NAME parsing_schema IN (SH)
AUTO_CAPTURE_MODULE
AUTO_CAPTURE_ACTION
AUTO_CAPTURE_SQL_TEXT (sql_text NOT LIKE %TEST_ONLY%)

Chapter 29
Configuring SQL Plan Management

29-7

See Also:

• "Automatic Initial Plan Capture"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_SPM.CONFIGURE procedure

• Oracle Database Reference to learn more about the
DBA_SQL_MANAGEMENT_CONFIG view

Disabling All SQL Plan Baselines
When you set the OPTIMIZER_USE_SQL_PLAN_BASELINES initialization parameter to false, the
database does not use any plan baselines in the database.

Typically, you might want to disable one or two plan baselines, but not all of them. A possible
use case might be testing the benefits of SQL plan management.

To disable all SQL plan baselines in the database:

1. Connect SQL*Plus to the database with the appropriate privileges, and then show the
current settings for SQL plan management.

For example, connect SQL*Plus to the database with administrator privileges and execute
the following command (sample output included):

SQL> SHOW PARAMETER SQL_PLAN

NAME TYPE VALUE
------------------------------------ ----------- -----
optimizer_capture_sql_plan_baselines boolean FALSE
optimizer_use_sql_plan_baselines boolean TRUE

If the parameters are set as you intend, then skip the remaining steps.

2. To ignore all existing plan baselines enter the following statement:

SQL> ALTER SYSTEM SET OPTIMIZER_USE_SQL_PLAN_BASELINES=false

See Also:

Oracle Database Reference to learn about the SQL plan baseline initialization
parameters

Managing the SPM Evolve Advisor Task
SPM Evolve Advisor is a SQL advisor that evolves plans that have recently been added to the
SQL plan baseline. The advisor simplifies plan evolution by eliminating the requirement to do it
manually.

Chapter 29
Configuring SQL Plan Management

29-8

Automatic SQL Plan Management
A SQL plan baseline prevents performance regressions caused by suboptimal plans.

The High Frequency SPM Evolve Advisor Task can be configured to identify execution plan
changes and compare the performance of the new plan with plans previously captured in the
automatic SQL tuning set

If an SQL statement does not have a SQL plan baseline, then the High Frequency SPM Evolve
Advisor Task can sometimes resolve such performance regressions automatically. The advisor
compares all available plans and chooses the best-performing plan as the baseline.

The SPM configuration parameter AUTO_SPM_EVOLVE_TASK controls Automatic SQL Plan
Management. The setting ON enables this task in the background. It can also be set to OFF.

The following figure shows the workflow for the High Frequency SPM Evolve Advisor Task:

Figure 29-2 High Frequency SPM Evolve Advisor Task

Whenever it runs, the High Frequency SPM Evolve Advisor Task performs the following tasks:

1. Searches AWR and ASTS for resource-intensive SQL statements.

2. Looks for alternative plans in the automatic SQL tuning set.

3. If multiple plans are identified, they are added to the SQL plan history.

Chapter 29
Configuring SQL Plan Management

29-9

4. Test executes and measures the performance of the plans alternatives.

The database test executes the statement and records the performance statistics.

5. Performs either of the following actions, depending on whether the alternative plan
performs better than the current plan:

• If performance is better, then High Frequency SPM Evolve Advisor accepts the plan.
The alternative plan is now in the baseline.

• If performance is worse, then the plan remains in the statement history, but not the
baseline.

See Also:

• The Automatic SQL Tuning Set, the system-maintained record of SQL execution
plans and SQL statement performance metrics seen by the database. The High
Frequency SPM Evolve Advisor Task compares the performance of a new plan
with plans previously captured in the automatic SQL tuning set.

• Oracle Database Licensing Information User Manual for details on which features
are supported for different editions and services

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_SPM.SET_EVOLVE_TASK_PARAMETER procedure

Enabling and Disabling the Automatic SPM Evolve Advisor Task
No separate scheduler client exists for the Automatic SPM Evolve Advisor task.

One client controls both Automatic SQL Tuning Advisor and Automatic SPM Evolve Advisor.
Thus, the same task enables or disables both. You can also disable it using
DBMS_SPM.SET_EVOLVE_TASK_PARAMETER.

To disable the Automatic SPM Evolve Advisor task:

1. Log in to the database with the appropriate privileges.

2. Set the ALTERNATE_PLAN_BASELINE parameter to null:

BEGIN
 DBMS_SPM.SET_EVOLVE_TASK_PARAMETER(
 task_name => 'SYS_AUTO_SPM_EVOLVE_TASK',
 parameter => 'ALTERNATE_PLAN_BASELINE',
 value => '');
END;
/

3. Set the ALTERNATE_PLAN_SOURCE parameter to an empty string:

BEGIN
 DBMS_SPM.SET_EVOLVE_TASK_PARAMETER(
 task_name => 'SYS_AUTO_SPM_EVOLVE_TASK',
 parameter => 'ALTERNATE_PLAN_SOURCE',
 value => '');

Chapter 29
Configuring SQL Plan Management

29-10

END;
/

See Also:

"Enabling and Disabling the Automatic SQL Tuning Task" to learn how to enable and
disable Automatic SPM Evolve Advisor

Configuring the Automatic SPM Evolve Advisor Task
Configure automatic plan evolution by using the DBMS_SPM package.

Overview of the Automatic SPM Evolve Advisor Task

Specify the automatic task parameters using the SET_EVOLVE_TASK_PARAMETER procedure. The
following table describes some procedure parameters.

Table 29-3 DBMS_SPM.SET_EVOLVE_TASK_PARAMETER Parameters

Parameter Description Default

alternate_plan_source Determines which sources to search for
additional plans:

• AUTO (the database selects the source
automatically)

• AUTOMATIC_WORKLOAD_REPOSITORY
• CURSOR_CACHE
• SQL_TUNING_SET
You can combine multiple values with the
plus sign (+).

The default depends on whether the
SPM Evolve Advisor task is automated
or manual:

• If automated, the default is AUTO.

• If manual, the default is
CURSOR_CACHE+AUTOMATIC_WORK
LOAD_REPOSITORY.

alternate_plan_baseline Determines which alternative plans should
be loaded:

• AUTO lets Autonomous Database
choose whether to load plans for
statements with or without baselines.

• EXISTING loads alternate plans with
for statements with existing baselines.

• NEW loads alternative plans for
statements without a baseline, in
which case a new baseline is created.

You can combine multiple values with the
plus sign (+), as in EXISTING+NEW.

EXISTING

alternate_plan_limit Specifies the maximum number of plans to
load in total (that is, not the limit for each
SQL statement).

The default depends on whether the
SPM Evolve Advisor task is automated
or manual:

• If automated, the default is
UNLIMITED.

• If manual, the default is 10.

Chapter 29
Configuring SQL Plan Management

29-11

Table 29-3 (Cont.) DBMS_SPM.SET_EVOLVE_TASK_PARAMETER Parameters

Parameter Description Default

accept_plans Specifies whether to accept recommended
plans automatically.

When ACCEPT_PLANS is true, SQL plan
management automatically accepts all
plans recommended by the task.

When ACCEPT_PLANS is false, the task
verifies the plans and generates a report of
its findings, but does not evolve the plans
automatically. You can use a report to
identify new SQL plan baselines and
accept them manually.

true (regardless of whether the advisor
is run automatically or manually)

time_limit Global time limit in seconds. This is the
total time allowed for the task.

The default depends on whether the
SPM Evolve Advisor task is automated
or manual:

• If automated, the default is 3600.

• If manual, the default is
2147483646.

Assumptions

The tutorial in this section assumes the following:

• You can log in to the database as SYS. Because the SYS_AUTO_SPM_EVOLVE_TASK task is
owned by SYS, only SYS can set task parameters.

• You want the database to accept plans automatically.

• You want the task to time out after 1200 seconds per execution.

• You want the evolve task to look for up to a maximum of 500 plans in the shared SQL area
and AWR repository

To set automatic evolution task parameters:

1. Start SQL*Plus, and then log in to the database as SYS.

2. Query the current parameter settings for SYS_AUTO_SPM_EVOLVE_TASK.

For example, connect SQL*Plus to the database with administrator privileges and execute
the following query:

COL PARAMETER_NAME FORMAT a25
COL VALUE FORMAT a42
SELECT PARAMETER_NAME, PARAMETER_VALUE AS "VALUE"
FROM DBA_ADVISOR_PARAMETERS
WHERE ((TASK_NAME = 'SYS_AUTO_SPM_EVOLVE_TASK') AND
 ((PARAMETER_NAME = 'ACCEPT_PLANS') OR
 (PARAMETER_NAME LIKE '%ALT%') OR
 (PARAMETER_NAME = 'TIME_LIMIT')));

Chapter 29
Configuring SQL Plan Management

29-12

Sample output appears as follows:

PARAMETER_NAME VALUE
------------------------- --
ALTERNATE_PLAN_LIMIT 0
ALTERNATE_PLAN_SOURCE CURSOR_CACHE+AUTOMATIC_WORKLOAD_REPOSITORY
ALTERNATE_PLAN_BASELINE EXISTING
ACCEPT_PLANS true
TIME_LIMIT 3600

3. Set parameters using PL/SQL code of the following form:

BEGIN
 DBMS_SPM.SET_EVOLVE_TASK_PARAMETER(
 task_name => 'SYS_AUTO_SPM_EVOLVE_TASK'
, parameter => parameter_name
, value => value
);
END;
/

For example, the following PL/SQL block configures the SYS_AUTO_SPM_EVOLVE_TASK task
to automatically accept plans, seek up a maximum of 500 plans in the shared SQL area
and AWR repository, and time out after 20 minutes:

BEGIN
 DBMS_SPM.SET_EVOLVE_TASK_PARAMETER(
 task_name => 'SYS_AUTO_SPM_EVOLVE_TASK'
, parameter => 'TIME_LIMIT'
, value => '1200'
);
 DBMS_SPM.SET_EVOLVE_TASK_PARAMETER(
 task_name => 'SYS_AUTO_SPM_EVOLVE_TASK'
, parameter => 'ACCEPT_PLANS'
, value => 'true'
);
 DBMS_SPM.SET_EVOLVE_TASK_PARAMETER(
 task_name => 'SYS_AUTO_SPM_EVOLVE_TASK'
, parameter => 'ALTERNATE_PLAN_LIMIT'
, value => '500'
);
END;
/

4. Optionally, confirm your changes by querying the current parameter settings for
SYS_AUTO_SPM_EVOLVE_TASK.

For example, execute the following query:

SELECT PARAMETER_NAME, PARAMETER_VALUE AS "VALUE"
FROM DBA_ADVISOR_PARAMETERS
WHERE ((TASK_NAME = 'SYS_AUTO_SPM_EVOLVE_TASK') AND
 ((PARAMETER_NAME = 'ACCEPT_PLANS') OR
 (PARAMETER_NAME LIKE '%ALT%') OR
 (PARAMETER_NAME = 'TIME_LIMIT')));

Chapter 29
Configuring SQL Plan Management

29-13

Sample output appears as follows:

PARAMETER_NAME VALUE
------------------------- --
ALTERNATE_PLAN_LIMIT 500
ALTERNATE_PLAN_SOURCE CURSOR_CACHE+AUTOMATIC_WORKLOAD_REPOSITORY
ALTERNATE_PLAN_BASELINE EXISTING
ACCEPT_PLANS true
TIME_LIMIT 1200

See Also:

• Oracle Database PL/SQL Packages and Types Reference for complete reference
information for DBMS_SPM.SET_EVOLVE_TASK_PARAMETER

• Oracle Database Reference to learn more about the DBA_ADVISOR_PARAMETERS
view

Configuring the High-Frequency Automatic SPM Evolve Advisor Task
You can configure automatic plan evolution to occur more frequently.

About the High-Frequency Automatic SPM Evolve Advisor Task
The high-frequency SPM Evolve Advisor task complements the standard Automatic SPM
Evolve Advisor task.

By default, SYS_AUTO_SPM_EVOLVE_TASK runs daily in the scheduled AutoTask maintenance
window. If data changes frequently between two consecutive task executions, then the
optimizer may choose suboptimal plans. For example, if product list prices change more
frequently than executions of SYS_AUTO_SPM_EVOLVE_TASK, then more out-of-range queries may
occur, possibly leading to suboptimal plans.

When you enable the high-frequency Automatic SPM Evolve Advisor task,
SYS_AUTO_SPM_EVOLVE_TASK runs more frequently, performing the same operations during
every execution. The high-frequency task runs every hour and runs for no longer than 30
minutes. These settings are not configurable. The frequent executions mean that the optimizer
has more opportunities to find and evolve better performing plans.

Both the standard Automatic SPM Evolve Advisor task and high-frequency task have the same
name: SYS_AUTO_SPM_EVOLVE_TASK. In DBA_ADVISOR_EXECUTIONS, the two tasks are
distinguished by execution name. The name of the standard task execution has the form
EXEC_number, whereas the name of the high-frequency execution has the form
SYS_SPM_timestamp.

DBMS_SPM.CONFIGURE enables the high-frequency task, but has no dependency on the SPM
Evolve Advisor. The standard task and high-frequency task are independent and are
scheduled through two different frameworks.

Chapter 29
Configuring SQL Plan Management

29-14

See Also:

• Oracle Database Licensing Information User Manual for details on which features
are supported for different editions and services

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_SPM.CONFIGURE procedure

Enabling the High-Frequency Automatic SPM Evolve Advisor Task: Tutorial
To enable and disable the high-frequency Automatic SPM Evolve Advisor task, use the
DBMS_SPM.CONFIGURE procedure.

You can set auto_spm_evolve_task to any of the following values:

• ON — Enables the high-frequency SPM Evolve Advisor task.

• OFF — Disables the high-frequency SPM Evolve Advisor task. This is the default.

• AUTO — Allows the database to determine when to execute the high-frequency SPM Evolve
Advisor task. In this release, AUTO is equivalent to OFF.

Note that the task interval and runtime are fixed and cannot be adjusted by the user.

To enable the high-frequency SPM Evolve Advisor task:

1. Log in to the database as SYS.

2. Query the current setting for DBMS_SPM.CONFIGURE (sample output included):

COL PARAMETER_NAME FORMAT a32
COL PARAMETER_VALUE FORMAT a32
SELECT PARAMETER_NAME, PARAMETER_VALUE
FROM DBA_SQL_MANAGEMENT_CONFIG
WHERE PARAMETER_NAME LIKE '%SPM%';

PARAMETER_NAME PARAMETER_VALUE
-------------------------------- --------------------------------
AUTO_SPM_EVOLVE_TASK OFF
AUTO_SPM_EVOLVE_TASK_INTERVAL 3600
AUTO_SPM_EVOLVE_TASK_MAX_RUNTIME 1800

3. Enable the task.

Execute the following PL/SQL code:

EXEC DBMS_SPM.CONFIGURE('AUTO_SPM_EVOLVE_TASK', 'ON');

4. To confirm that the task is enabled, query the current setting for AUTO_SPM_EVOLVE_TASK
(sample output included):

COL PARAMETER_NAME FORMAT a32
COL PARAMETER_VALUE FORMAT a32
SELECT PARAMETER_NAME, PARAMETER_VALUE
FROM DBA_SQL_MANAGEMENT_CONFIG
WHERE PARAMETER_NAME = 'AUTO_SPM_EVOLVE_TASK';

Chapter 29
Configuring SQL Plan Management

29-15

PARAMETER_NAME PARAMETER_VALUE
-------------------------------- --------------------------------
AUTO_SPM_EVOLVE_TASK ON

5. Optionally, wait a few hours, and then query the status of the task executions:

SET LINESIZE 150
COL TASK_NAME FORMAT a30
COL EXECUTION_NAME FORMAT a30

SELECT TASK_NAME, EXECUTION_NAME, STATUS
FROM DBA_ADVISOR_EXECUTIONS
WHERE TASK_NAME LIKE '%SPM%'
AND (EXECUTION_NAME LIKE 'SYS_SPM%' OR EXECUTION_NAME LIKE 'EXEC_%')
ORDER BY EXECUTION_END;

TASK_NAME EXECUTION_NAME STATUS
------------------------------ ------------------------------ ---------
SYS_AUTO_SPM_EVOLVE_TASK SYS_SPM_2019-06-03/13:15:26 COMPLETED
SYS_AUTO_SPM_EVOLVE_TASK SYS_SPM_2019-06-03/14:16:04 COMPLETED
SYS_AUTO_SPM_EVOLVE_TASK EXEC_6 COMPLETED
SYS_AUTO_SPM_EVOLVE_TASK SYS_SPM_2019-06-03/15:16:32 COMPLETED
SYS_AUTO_SPM_EVOLVE_TASK SYS_SPM_2019-06-03/16:17:00 COMPLETED
...

In the preceding output, EXEC_6 is the execution name of the standard SPM Automatic
Advisor task. The other executions are of the high-frequency task.

Displaying Plans in a SQL Plan Baseline
To view the plans stored in the SQL plan baseline for a specific statement, use the
DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE function.

This function uses plan information stored in the plan history to display the plans. The following
table describes the relevant parameters for DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE.

Table 29-4 DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE Parameters

Function Parameter Description

sql_handle SQL handle of the statement. Retrieve the SQL handle by joining the
V$SQL.SQL_PLAN_BASELINE and DBA_SQL_PLAN_BASELINES views on the
PLAN_NAME columns.

plan_name Name of the plan for the statement.

This section explains how to show plans in a baseline from the command line. If you use Cloud
Control, then display plan baselines from the SQL Plan Baseline subpage shown in
Figure 29-1.

To display plans in a SQL plan baselines:

1. Connect SQL*Plus to the database with the appropriate privileges, and then obtain the
SQL ID of the query whose plan you want to display.

Chapter 29
Displaying Plans in a SQL Plan Baseline

29-16

For example, assume that a SQL plan baseline exists for a SELECT statement with the SQL
ID 31d96zzzpcys9.

2. Query the plan by SQL ID.

The following query displays execution plans for the statement with the SQL ID
31d96zzzpcys9:

SELECT PLAN_TABLE_OUTPUT
FROM V$SQL s, DBA_SQL_PLAN_BASELINES b,
 TABLE(

DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE(b.sql_handle,b.plan_name,'basic')
) t
WHERE s.EXACT_MATCHING_SIGNATURE=b.SIGNATURE
AND b.PLAN_NAME=s.SQL_PLAN_BASELINE
AND s.SQL_ID='31d96zzzpcys9';

The sample query results are as follows:

PLAN_TABLE_OUTPUT
--

--
SQL handle: SQL_513f7f8a91177b1a
SQL text: select * from hr.employees where employee_id=100
--

--
Plan name: SQL_PLAN_52gvzja8jfysuc0e983c6 Plan id: 3236529094
Enabled: YES Fixed: NO Accepted: YES Origin: AUTO-CAPTURE
--

Plan hash value: 3236529094

| Id | Operation | Name |

0	SELECT STATEMENT	
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES
2	INDEX UNIQUE SCAN	EMP_EMP_ID_PK

The results show that the plan for SQL ID 31d96zzzpcys is named
SQL_PLAN_52gvzja8jfysuc0e983c6 and was captured automatically.

See Also:

• "SQL Management Base"

• Oracle Database PL/SQL Packages and Types Reference to learn about
additional parameters used by the DISPLAY_SQL_PLAN_BASELINE function

Chapter 29
Displaying Plans in a SQL Plan Baseline

29-17

Loading SQL Plan Baselines
Using DBMS_SPM, you can initiate the bulk load of a set of existing plans into a SQL plan
baseline.

About Loading SQL Plan Baselines
The DBMS_SPM package enables you to load plans from multiple sources.

The goal of this task is to load plans from the following sources:

• AWR

Load plans from Automatic Workload Repository (AWR) snapshots. You must specify the
beginning and ending of the snapshot range. Optionally, you can apply a filter to load only
plan that meet specified criteria. By default, the optimizer uses the loaded plans the next
time that the database executes the SQL statements.

• Shared SQL area

Load plans for statements directly from the shared SQL area, which is in the shared pool of
the SGA. By applying a filter on the module name, the schema, or the SQL ID you identify
the SQL statement or set of SQL statements to capture. The optimizer uses the plans the
next time that the database executes the SQL statements.

Loading plans directly from the shared SQL area is useful when application SQL has been
hand-tuned using hints. Because you probably cannot change the SQL to include the hint,
populating the SQL plan baseline ensures that the application SQL uses optimal plans.

• SQL tuning set (STS)

Capture the plans for a SQL workload into an STS, and then load the plans into the SQL
plan baselines. The optimizer uses the plans the next time that the database executes the
SQL statements. Bulk loading execution plans from an STS is an effective way to prevent
plan regressions after a database upgrade.

• Staging table

Use the DBMS_SPM package to define a staging table, DBMS_SPM.PACK_STGTAB_BASELINE to
copy the baselines into a staging table, and Oracle Data Pump to transfer the table to
another database. On the destination database, use DBMS_SPM.UNPACK_STGTAB_BASELINE
to unpack the plans from the staging table and put the baselines into the SMB.

A use case is the introduction of new SQL statements into the database from a new
application module. A vendor can ship application software with SQL plan baselines for the
new SQL. In this way, the new SQL uses plans that are known to give optimal performance
under a standard test configuration. Alternatively, if you develop or test an application in-
house, export the correct plans from the test database and import them into the production
database.

• Stored outline

Migrate stored outlines to SQL plan baselines. After the migration, you maintain the same
plan stability that you had using stored outlines while being able to use the more advanced
features provided by SQL Plan Management, such as plan evolution. See .

Chapter 29
Loading SQL Plan Baselines

29-18

See Also:

• "Migrating Stored Outlines to SQL Plan Baselines"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM.PACK_STGTAB_BASELINE Function

Loading Plans from AWR
This topic explains how to load plans from AWR using PL/SQL.

Load plans with the LOAD_PLANS_FROM_AWR function of the DBMS_SPM package. The following
table describes some function parameters.

Table 29-5 LOAD_PLANS_FROM_AWR Parameters

Function Parameter Description

begin_snap Number of the beginning snapshot in the range. Required.

end_snap Number of the ending snapshot in the range. Required.

basic_filter A filter applied to AWR to select only qualifying plans to be loaded. The
default null means that all plans in AWR are selected. The filter can take the
form of any WHERE clause predicate that can be specified against the column
DBA_HIST_SQLTEXT.SQL_TEXT. An example is basic_filter =>
'sql_text like ''SELECT /*LOAD_STS*/%'''.

fixed Default NO means the loaded plans are used as nonfixed plans. YES means
the loaded plans are fixed plans. "Plan Selection" explains that the optimizer
chooses a fixed plan in the plan baseline over a nonfixed plan.

This section explains how to load plans using the command line. In Cloud Control, go to the
SQL Plan Baseline subpage (shown in Figure 29-1) and click Load to load plan baselines from
AWR.

This tutorial assumes the following:

• You want to load plans for the following query into the SMB:

SELECT /*LOAD_AWR*/ *
FROM sh.sales
WHERE quantity_sold > 40
ORDER BY prod_id;

• You want the loaded plans to be nonfixed.

• The user sh has privileges to query DBA_HIST_SNAPSHOT and DBA_SQL_PLAN_BASELINES,
execute DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT, and execute
DBMS_SPM.LOAD_PLANS_FROM_AWR.

To load plans from the shared SQL area:

1. Log in to the database with the appropriate privileges, and then query the most recent 3
AWR snapshots.

Chapter 29
Loading SQL Plan Baselines

29-19

For example, query DBA_HIST_SNAPSHOT as follows:

SELECT *
FROM (SELECT SNAP_ID, SNAP_LEVEL,
 TO_CHAR(BEGIN_INTERVAL_TIME, 'DD/MM/YY HH24:MI:SS') BEGIN
 FROM DBA_HIST_SNAPSHOT
 ORDER BY SNAP_ID DESC)
WHERE ROWNUM <= 3;

 SNAP_ID SNAP_LEVEL BEGIN
---------- ---------- -----------------
 212 1 10/12/15 06:00:02
 211 1 10/12/15 05:00:11
 210 1 10/12/15 04:00:59

2. Query sh.sales, using the LOAD_AWR tag to identify the SQL statement.

For example, use the following query:

SELECT /*LOAD_AWR*/ *
FROM sh.sales
WHERE quantity_sold > 40
ORDER BY prod_id;

3. Take a new AWR snapshot.

For example, use the following program:

EXEC DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT;

4. Query the most recent 3 AWR snapshots to confirm that a new snapshot was taken.

For example, query DBA_HIST_SNAPSHOT as follows:

SELECT *
FROM (SELECT SNAP_ID, SNAP_LEVEL,
 TO_CHAR(BEGIN_INTERVAL_TIME, 'DD/MM/YY HH24:MI:SS') BEGIN
 FROM DBA_HIST_SNAPSHOT
 ORDER BY SNAP_ID DESC)
WHERE ROWNUM <= 3;

 SNAP_ID SNAP_LEVEL BEGIN
---------- ---------- -----------------
 213 1 10/12/15 06:24:53
 212 1 10/12/15 06:00:02
 211 1 10/12/15 05:00:11

5. Load the plans for the most recent 2 snapshots from AWR.

For example, execute the LOAD_PLANS_FROM_AWR function in SQL*Plus to load the plans
from snapshot 212 to 213:

VARIABLE v_plan_cnt NUMBER
EXEC :v_plan_cnt := DBMS_SPM.LOAD_PLANS_FROM_AWR(begin_snap => 212,
end_snap => 213);

Chapter 29
Loading SQL Plan Baselines

29-20

In the preceding example, the variable v_plan_cnt contains the number of plans that were
loaded.

6. Query the data dictionary to ensure that the plans were loaded into the baseline for the
LOAD_AWR statement.

The following statement queries DBA_SQL_PLAN_BASELINES (sample output included):

COL SQL_HANDLE FORMAT a20
COL SQL_TEXT FORMAT a20
COL PLAN_NAME FORMAT a30
COL ORIGIN FORMAT a20

SELECT SQL_HANDLE, SQL_TEXT, PLAN_NAME,
 ORIGIN, ENABLED, ACCEPTED
FROM DBA_SQL_PLAN_BASELINES
WHERE SQL_TEXT LIKE '%LOAD_AWR%';

SQL_HANDLE SQL_TEXT PLAN_NAME ORIGIN ENA ACC
-------------------- ----------------- -------------------------- ----------- --- ---
SQL_495d29c5f4612cda SELECT /*LOAD_AWR SQL_PLAN_4kr99sru62b6u54bc MANUAL-LOAD- YES YES
 */ * FROM 8843 FROM-AWR
 sh.sales WHERE
 quantity_sold
 > 40
 ORDER BY prod_id

The output shows that the plan is accepted, which means that it is in the plan baseline for
the statement. Also, the origin is MANUAL-LOAD-FROM-AWR, which means that the statement
was loaded manually from AWR rather than automatically captured.

See Also:

• "Fixed Plans"

• Oracle Database PL/SQL Packages and Types Reference to learn how to use
the DBMS_SPM.LOAD_PLANS_FROM_AWR function

• Oracle Database Reference to learn more about the DBA_SQL_PLAN_BASELINES
view

Loading Plans from the Shared SQL Area
This topic explains how to load plans from the shared SQL area, also called the cursor cache,
using PL/SQL.

Load plans with the LOAD_PLANS_FROM_CURSOR_CACHE function of the DBMS_SPM package. The
following table describes some function parameters.

Chapter 29
Loading SQL Plan Baselines

29-21

Table 29-6 LOAD_PLANS_FROM_CURSOR_CACHE Parameters

Function Parameter Description

sql_id SQL statement identifier. Identifies a SQL statement in the shared SQL area.

fixed Default NO means the loaded plans are used as nonfixed plans. YES means
the loaded plans are fixed plans. "Plan Selection" explains that the optimizer
chooses a fixed plan in the plan baseline over a nonfixed plan.

This section explains how to load plans using the command line. In Cloud Control, go to the
SQL Plan Baseline subpage (shown in Figure 29-1) and click Load to load plan baselines from
the shared SQL area.

This tutorial assumes the following:

• You have executed the following query:

SELECT /*LOAD_CC*/ *
FROM sh.sales
WHERE quantity_sold > 40
ORDER BY prod_id;

• You want the loaded plans to be nonfixed.

To load plans from the shared SQL area:

1. Connect SQL*Plus to the database with the appropriate privileges, and then determine the
SQL IDs of the relevant statements in the shared SQL area.

For example, query V$SQL for the SQL ID of the sh.sales query (sample output included):

SELECT SQL_ID, CHILD_NUMBER AS "Child Num",
 PLAN_HASH_VALUE AS "Plan Hash",
 OPTIMIZER_ENV_HASH_VALUE AS "Opt Env Hash"
FROM V$SQL
WHERE SQL_TEXT LIKE 'SELECT /*LOAD_CC*/%';

SQL_ID Child Num Plan Hash Opt Env Hash
------------- ---------- ---------- ------------
27m0sdw9snw59 0 1421641795 3160571937

The preceding output shows that the SQL ID of the statement is 27m0sdw9snw59.

2. Load the plans for the specified statements into the SQL plan baseline.

For example, execute the LOAD_PLANS_FROM_CURSOR_CACHE function in SQL*Plus to load
the plan for the statement with the SQL ID 27m0sdw9snw59:

VARIABLE v_plan_cnt NUMBER
BEGIN
 :v_plan_cnt:=DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE(
 sql_id => '27m0sdw9snw59');
END;

Chapter 29
Loading SQL Plan Baselines

29-22

In the preceding example, the variable v_plan_cnt contains the number of plans that were
loaded.

3. Query the data dictionary to ensure that the plans were loaded into the baseline for the
statement.

The following statement queries DBA_SQL_PLAN_BASELINES (sample output included):

SELECT SQL_HANDLE, SQL_TEXT, PLAN_NAME,
 ORIGIN, ENABLED, ACCEPTED
FROM DBA_SQL_PLAN_BASELINES;

SQL_HANDLE SQL_TEXT PLAN_NAME ORIGIN ENA ACC
--------------------- -------------------- -------------- ------------------- --- ---
SQL_a8632bd857a4a25e SELECT /*LOAD_CC*/ SQL_PLAN_gdkvz MANUAL-LOAD-FROM-CC YES YES
 * fhrgkda71694fc
 FROM sh.sales 6b
 WHERE quantity_sold
 > 40
 ORDER BY prod_id

The output shows that the plan is accepted, which means that it is in the plan baseline for
the statement. Also, the origin is MANUAL-LOAD-FROM-CC, which means that the statement
was loaded manually from the shared SQL area rather than automatically captured.

See Also:

• "Fixed Plans"

• Oracle Database PL/SQL Packages and Types Reference to learn how to use
the DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE function

• Oracle Database Reference to learn more about the DBA_SQL_PLAN_BASELINES
view

Loading Plans from a SQL Tuning Set
A SQL tuning set (STS) is a database object that includes one or more SQL statements,
execution statistics, and execution context. This topic explains how to load plans from an STS.

Load plans with the DBMS_SPM.LOAD_PLANS_FROM_SQLSET function or using Cloud Control. The
following table describes some function parameters.

Table 29-7 LOAD_PLANS_FROM_SQLSET Parameters

Function
Parameter

Description

sqlset_name Name of the STS from which the plans are loaded into SQL plan baselines.

basic_filter A filter applied to the STS to select only qualifying plans to be loaded. The filter can
take the form of any WHERE clause predicate that can be specified against the view
DBA_SQLSET_STATEMENTS. An example is basic_filter => 'sql_text like
''SELECT /*LOAD_STS*/%'''.

Chapter 29
Loading SQL Plan Baselines

29-23

Table 29-7 (Cont.) LOAD_PLANS_FROM_SQLSET Parameters

Function
Parameter

Description

fixed Default NO means the loaded plans are used as nonfixed plans. YES means the
loaded plans are fixed plans. "Plan Selection" explains that the optimizer chooses a
fixed plan in the plan baseline over a nonfixed plan.

This section explains how to load plans from the command line. In Cloud Control, go to the
SQL Plan Baseline subpage (shown in Figure 29-1) and click Load to load plan baselines from
SQL tuning sets.

Assumptions

This tutorial assumes the following:

• You want the loaded plans to be nonfixed.

• You have executed the following query:

SELECT /*LOAD_STS*/ *
FROM sh.sales
WHERE quantity_sold > 40
ORDER BY prod_id;

• You have loaded the plan from the shared SQL area into the SQL tuning set named
SPM_STS, which is owned by user SPM.

• After the operation, you want to drop the STS using DBMS_SQLTUNE.DROP_SQLSET rather
than the equivalent DBMS_SQLSET.DROP_SQLSET.

To load plans from a SQL tuning set:

1. Connect SQL*Plus to the database with the appropriate privileges, and then verify which
plans are in the SQL tuning set.

For example, query DBA_SQLSET_STATEMENTS for the STS name (sample output included):

SELECT SQL_TEXT
FROM DBA_SQLSET_STATEMENTS
WHERE SQLSET_NAME = 'SPM_STS';

SQL_TEXT

SELECT /*LOAD_STS*/
*
FROM sh.sales
WHERE quantity_sold
> 40
ORDER BY prod_id

The output shows that the plan for the select /*LOAD_STS*/ statement is in the STS.

2. Load the plan from the STS into the SQL plan baseline.

Chapter 29
Loading SQL Plan Baselines

29-24

For example, in SQL*Plus execute the function as follows:

VARIABLE v_plan_cnt NUMBER
EXECUTE :v_plan_cnt := DBMS_SPM.LOAD_PLANS_FROM_SQLSET(-
 sqlset_name => 'SPM_STS', -
 basic_filter => 'sql_text like ''SELECT /*LOAD_STS*/%''');

The basic_filter parameter specifies a WHERE clause that loads only the plans for the
queries of interest. The variable v_plan_cnt stores the number of plans loaded from the
STS.

3. Query the data dictionary to ensure that the plan was loaded into the baseline for the
statement.

The following statement queries the DBA_SQL_PLAN_BASELINES view (sample output
included).

SQL> SELECT SQL_HANDLE, SQL_TEXT, PLAN_NAME,
 2 ORIGIN, ENABLED, ACCEPTED
 3 FROM DBA_SQL_PLAN_BASELINES;

SQL_HANDLE SQL_TEXT PLAN_NAME ORIGIN ENA ACC
--------------------- --------------- ---------------- -------------------- --- ---
SQL_a8632bd857a4a25e SELECT SQL_PLAN_ahstb MANUAL-LOAD-FROM-STS YES YES
 /*LOAD_STS*/* v1bu98ky1694fc6b
 FROM sh.sales
 WHERE
 quantity_sold
 > 40 ORDER BY
 prod_id

The output shows that the plan is accepted, which means that it is in the plan baseline.
Also, the origin is MANUAL-LOAD-FROM-STS, which means that the plan was loaded manually
from a SQL tuning set rather than automatically captured.

4. Optionally, drop the STS.

For example, execute DBMS_SQLTUNE.DROP_SQLSET to drop the SPM_STS tuning set as
follows:

EXEC SYS.DBMS_SQLTUNE.DROP_SQLSET(sqlset_name => 'SPM_STS', -
 sqlset_owner => 'SPM');

See Also:

• "Command-Line Interface to SQL Tuning Sets"

• Oracle Database Reference to learn about the DBA_SQL_PLAN_BASELINES view

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM.LOAD_PLANS_FROM_SQLSET function

Chapter 29
Loading SQL Plan Baselines

29-25

Loading Plans from a Staging Table
You may want to transfer optimal plans from a source database to a different destination
database.

For example, you may have investigated a set of plans on a test database and confirmed that
they have performed well. You may then want to load these plans into a production database.

A staging table is a table that, for the duration of its existence, stores plans so that the plans do
not disappear from the table while you are unpacking them. Use the
DBMS_SPM.CREATE_STGTAB_BASELINE procedure to create a staging table. To pack (insert row
into) and unpack (extract rows from) the staging table, use the PACK_STGTAB_BASELINE and
UNPACK_STGTAB_BASELINE functions of the DBMS_SPM package. Oracle Data Pump Import and
Export enable you to copy the staging table to a different database.

Figure 29-3 Loading Plans from a Staging Table

Destination HostSource Host

1114

Transfer Dump File
to Destination Host

Source Database Destination Database

1

Staging Table

SQL
Management
Base

SQL Plan
Baselines

1112Pack

3Data Pump
Export

.dump
file

SQL
Management
Base

SQL Plan
Baselines

1116Unpack

5Data Pump
Import

.dump
file

Staging Table

Export plans with the PACK_STGTAB_BASELINE function of the DBMS_SPM package, and then
import them with UNPACK_STGTAB_BASELINE. The following table describes some function
parameters.

Table 29-8 PACK_STGTAB_BASELINE and UNPACK_STGTAB_BASELINE Parameters

Function Parameter Description

table_name Specifies the table to be imported or exported.

origin Origin of SQL plan baseline. These procedures accept all possible values of
DBA_SQL_PLAN_BASELINES.ORIGIN as the origin argument. For example,
the origin parameter permits MANUAL-LOAD-FROM-STS, MANUAL-LOAD-
FROM-AWR, and MANUAL-LOAD-FROM-CC.

Chapter 29
Loading SQL Plan Baselines

29-26

This tutorial assumes the following:

• You want to create a staging table named stage1 in the source database.

• You want to load all plans owned by user spm into the staging table.

• You want to transfer the staging table to a destination database.

• You want to load the plans in stage1 as fixed plans.

To transfer a set of SQL plan baselines from one database to another:

1. Connect SQL*Plus to the source database with the appropriate privileges, and then create
a staging table using the CREATE_STGTAB_BASELINE procedure.

The following example creates a staging table named stage1:

BEGIN
 DBMS_SPM.CREATE_STGTAB_BASELINE (
 table_name => 'stage1');
END;
/

2. On the source database, pack the SQL plan baselines you want to export from the SQL
management base into the staging table.

The following example packs enabled plan baselines created by user spm into staging table
stage1. Select SQL plan baselines using the plan name (plan_name), SQL handle
(sql_handle), or any other plan criteria. The table_name parameter is mandatory.

DECLARE
 v_plan_cnt NUMBER;
BEGIN
 v_plan_cnt := DBMS_SPM.PACK_STGTAB_BASELINE (
 table_name => 'stage1'
, enabled => 'yes'
, creator => 'spm'
);
END;
/

3. Export the staging table stage1 into a dump file using Oracle Data Pump Export.

4. Transfer the dump file to the host of the destination database.

5. On the destination database, import the staging table stage1 from the dump file using the
Oracle Data Pump Import utility.

6. On the destination database, unpack the SQL plan baselines from the staging table into
the SQL management base.

The following example unpacks all fixed plan baselines stored in the staging table stage1:

DECLARE
 v_plan_cnt NUMBER;
BEGIN
 v_plan_cnt := DBMS_SPM.UNPACK_STGTAB_BASELINE (
 table_name => 'stage1'
, fixed => 'yes'
);

Chapter 29
Loading SQL Plan Baselines

29-27

END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about using the DBMS_SPM package

• Oracle Database Reference to learn more about the DBA_SQL_PLAN_BASELINES
view

• Oracle Database Utilities for detailed information about using the Data Pump
Export and Import utilities

Evolving SQL Plan Baselines Manually
You can use PL/SQL or Cloud Control to manually evolve an unaccepted plan to determine
whether it performs better than any plan currently in the plan baseline.

See Also:

"Managing the SPM Evolve Advisor Task"

About the DBMS_SPM Evolve Functions
This topic describes the most relevant DBMS_SPM functions for managing plan evolution.
Execute evolution tasks manually or schedule them to run automatically.

Table 29-9 DBMS_SPM Functions and Procedures for Managing Plan Evolution Tasks

Procedure or Function Description

ACCEPT_SQL_PLAN_BASELINE This function accepts one recommendation to evolve
a single plan into a SQL plan baseline.

CREATE_EVOLVE_TASK This function creates an advisor task to prepare the
plan evolution of one or more plans for a specified
SQL statement. The input parameters can be a SQL
handle, plan name or a list of plan names, time limit,
task name, and description.

EXECUTE_EVOLVE_TASK This function executes an evolution task. The input
parameters can be the task name, execution name,
and execution description. If not specified, the
advisor generates the name, which is returned by the
function.

IMPLEMENT_EVOLVE_TASK This function implements all recommendations for an
evolve task. Essentially, this function is equivalent to
using ACCEPT_SQL_PLAN_BASELINE for all
recommended plans. Input parameters include task
name, plan name, owner name, and execution name.

Chapter 29
Evolving SQL Plan Baselines Manually

29-28

Table 29-9 (Cont.) DBMS_SPM Functions and Procedures for Managing Plan Evolution
Tasks

Procedure or Function Description

REPORT_EVOLVE_TASK This function displays the results of an evolve task as
a CLOB. Input parameters include the task name and
section of the report to include.

SET_EVOLVE_TASK_PARAMETER This function updates the value of an evolve task
parameter.

Oracle recommends that you configure SPM Evolve Advisor to run automatically. You can also
evolve SQL plan baselines manually. The following graphic shows the basic workflow for
managing SQL plan management tasks.

Figure 29-4 Evolving SQL Plan Baselines

DBMS_SPM.CREATE_EVOLVE_TASK

DBMS_SPM.EXECUTE_EVOLVE_TASK

DBMS_SPM.IMPLEMENT_EVOLVE_TASK

DBMS_SPM.REPORT_EVOLVE_TASK

DBMS_SPM.SET_EVOLVE_TASK_PARAMETER

Typically, you manage SQL plan evolution tasks in the following sequence:

1. Create an evolve task

2. Optionally, set evolve task parameters

3. Execute the evolve task

4. Implement the recommendations in the task

5. Report on the task outcome

See Also:

• "Configuring the Automatic SPM Evolve Advisor Task" to learn about
SET_EVOLVE_TASK_PARAMETER

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SPM package

Chapter 29
Evolving SQL Plan Baselines Manually

29-29

Managing an Evolve Task
This topic describes a typical use case in which you create and execute a task, and then
implement its recommendations.

The following table describes some parameters of the CREATE_EVOLVE_TASK function.

Table 29-10 DBMS_SPM.CREATE_EVOLVE_TASK Parameters

Function Parameter Description

sql_handle SQL handle of the statement. The default NULL considers all SQL statements
with unaccepted plans.

plan_name Plan identifier. The default NULL means consider all unaccepted plans of the
specified SQL handle or all SQL statements if the SQL handle is NULL.

time_limit Time limit in number of minutes. The time limit for first unaccepted plan
equals the input value. The time limit for the second unaccepted plan equals
the input value minus the time spent in first plan verification, and so on. The
default DBMS_SPM.AUTO_LIMIT means let the system choose an appropriate
time limit based on the number of plan verifications required to be done.

task_name User-specified name of the evolution task.

This section explains how to evolve plan baselines from the command line. In Cloud Control,
from the SQL Plan Baseline subpage, select a plan, and then click Evolve.

This tutorial assumes the following:

• You do not have the automatic evolve task enabled.

• You want to create a SQL plan baseline for the following query:

SELECT /* q1_group_by */ prod_name, sum(quantity_sold)
FROM products p, sales s
WHERE p.prod_id = s.prod_id
AND p.prod_category_id =203
GROUP BY prod_name;

• You want to create two indexes to improve the query performance, and then evolve the
plan that uses these indexes if it performs better than the plan currently in the plan
baseline.

To evolve a specified plan:

1. Perform the initial setup as follows:

a. Connect SQL*Plus to the database with administrator privileges, and then prepare for
the tutorial by flushing the shared pool and the buffer cache:

ALTER SYSTEM FLUSH SHARED_POOL;
ALTER SYSTEM FLUSH BUFFER_CACHE;

b. Enable the automatic capture of SQL plan baselines.

Chapter 29
Evolving SQL Plan Baselines Manually

29-30

For example, enter the following statement:

ALTER SYSTEM SET OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=true;

c. Connect to the database as user sh, and then set SQL*Plus display parameters:

CONNECT sh
-- enter password
SET PAGES 10000 LINES 140
SET SERVEROUTPUT ON
COL SQL_TEXT FORMAT A20
COL SQL_HANDLE FORMAT A20
COL PLAN_NAME FORMAT A30
COL ORIGIN FORMAT A12
SET LONGC 60535
SET LONG 60535
SET ECHO ON

2. Execute the SELECT statements so that SQL plan management captures them:

a. Execute the SELECT /* q1_group_by */ statement for the first time.

Because the database only captures plans for repeatable statements, the plan
baseline for this statement is empty.

b. Query the data dictionary to confirm that no plans exist in the plan baseline.

For example, execute the following query (sample output included):

SELECT SQL_HANDLE, SQL_TEXT, PLAN_NAME, ORIGIN, ENABLED,
 ACCEPTED, FIXED, AUTOPURGE
FROM DBA_SQL_PLAN_BASELINES
WHERE SQL_TEXT LIKE '%q1_group%';

no rows selected

SQL plan management only captures repeatable statements, so this result is
expected.

c. Execute the SELECT /* q1_group_by */ statement for the second time.

3. Query the data dictionary to ensure that the plans were loaded into the plan baseline for
the statement.

The following statement queries DBA_SQL_PLAN_BASELINES (sample output included):

SELECT SQL_HANDLE, SQL_TEXT, PLAN_NAME,
 ORIGIN, ENABLED, ACCEPTED, FIXED
FROM DBA_SQL_PLAN_BASELINES
WHERE SQL_TEXT LIKE '%q1_group%';

SQL_HANDLE SQL_TEXT PLAN_NAME ORIGIN ENA ACC FIX
-------------------- ---------------- ---------------------- ------------ --- --- ---
SQL_07f16c76ff893342 SELECT /* q1_gro SQL_PLAN_0gwbcfvzskcu2 AUTO-CAPTURE YES YES NO
 up_by */ prod_na 42949306
 me, sum(quantity
 _sold) FROM
 products p,

Chapter 29
Evolving SQL Plan Baselines Manually

29-31

 sales s WHERE
 p.prod_id =
 s.prod_id AND
 p.prod_category
 _id =203 GROUP
 BY prod_name

The output shows that the plan is accepted, which means that it is in the plan baseline for
the statement. Also, the origin is AUTO-CAPTURE, which means that the statement was
automatically captured and not manually loaded.

4. Explain the plan for the statement and verify that the optimizer is using this plan.

For example, explain the plan as follows, and then display it:

EXPLAIN PLAN FOR
 SELECT /* q1_group_by */ prod_name, sum(quantity_sold)
 FROM products p, sales s
 WHERE p.prod_id = s.prod_id
 AND p.prod_category_id =203
 GROUP BY prod_name;

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(null, null, 'basic +note'));

Sample output appears below:

Plan hash value: 1117033222

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	HASH GROUP BY	
2	HASH JOIN	
3	TABLE ACCESS FULL	PRODUCTS
4	PARTITION RANGE ALL	
5	TABLE ACCESS FULL	SALES
--

Note

 - SQL plan baseline "SQL_PLAN_0gwbcfvzskcu242949306" used for this
statement

The note indicates that the optimizer is using the plan shown with the plan name listed in
the previous step.

5. Create two indexes to improve the performance of the SELECT /* q1_group_by */
statement.

For example, use the following statements:

CREATE INDEX ind_prod_cat_name
 ON products(prod_category_id, prod_name, prod_id);

Chapter 29
Evolving SQL Plan Baselines Manually

29-32

CREATE INDEX ind_sales_prod_qty_sold
 ON sales(prod_id, quantity_sold);

6. Execute the select /* q1_group_by */ statement again.

Because automatic capture is enabled, the plan baseline is populated with the new plan for
this statement.

7. Query the data dictionary to ensure that the plan was loaded into the SQL plan baseline for
the statement.

The following statement queries DBA_SQL_PLAN_BASELINES (sample output included).

SELECT SQL_HANDLE, SQL_TEXT, PLAN_NAME, ORIGIN, ENABLED, ACCEPTED
FROM DBA_SQL_PLAN_BASELINES
WHERE SQL_HANDLE IN ('SQL_07f16c76ff893342')
ORDER BY SQL_HANDLE, ACCEPTED;

SQL_HANDLE SQL_TEXT PLAN_NAME ORIGIN ENA ACC
-------------------- -------------------- ---------------------- ------------ --- ---
SQL_07f16c76ff893342 SELECT /* q1_group_b SQL_PLAN_0gwbcfvzskcu2 AUTO-CAPTURE YES NO
 y */ prod_name, sum(0135fd6c
 quantity_sold)
 FROM products p, s
 ales s
 WHERE p.prod_id = s
 .prod_id
 AND p.prod_catego
 ry_id =203
 GROUP BY prod_name

SQL_07f16c76ff893342 SELECT /* q1_group_b SQL_PLAN_0gwbcfvzskcu2 AUTO-CAPTURE YES YES
 y */ prod_name, sum(42949306
 quantity_sold)
 FROM products p, s
 ales s
 WHERE p.prod_id = s
 .prod_id
 AND p.prod_catego
 ry_id =203
 GROUP BY prod_name

The output shows that the new plan is unaccepted, which means that it is in the statement
history but not the SQL plan baseline.

8. Explain the plan for the statement and verify that the optimizer is using the original
unindexed plan.

For example, explain the plan as follows, and then display it:

EXPLAIN PLAN FOR
 SELECT /* q1_group_by */ prod_name, sum(quantity_sold)
 FROM products p, sales s
 WHERE p.prod_id = s.prod_id
 AND p.prod_category_id =203
 GROUP BY prod_name;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(null, null, 'basic +note'));

Chapter 29
Evolving SQL Plan Baselines Manually

29-33

Sample output appears below:

Plan hash value: 1117033222

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	HASH GROUP BY	
2	HASH JOIN	
3	TABLE ACCESS FULL	PRODUCTS
4	PARTITION RANGE ALL	
5	TABLE ACCESS FULL	SALES
--

Note

 - SQL plan baseline "SQL_PLAN_0gwbcfvzskcu242949306" used for this
statement

The note indicates that the optimizer is using the plan shown with the plan name listed in
Step 3.

9. Connect as an administrator, and then create an evolve task that considers all SQL
statements with unaccepted plans.

For example, execute the DBMS_SPM.CREATE_EVOLVE_TASK function and then obtain the
name of the task:

CONNECT / AS SYSDBA
VARIABLE cnt NUMBER
VARIABLE tk_name VARCHAR2(50)
VARIABLE exe_name VARCHAR2(50)
VARIABLE evol_out CLOB

EXECUTE :tk_name := DBMS_SPM.CREATE_EVOLVE_TASK(
 sql_handle => 'SQL_07f16c76ff893342',
 plan_name => 'SQL_PLAN_0gwbcfvzskcu20135fd6c');

SELECT :tk_name FROM DUAL;

The following sample output shows the name of the task:

:EVOL_OUT
--
TASK_11

Now that the task has been created and has a unique name, execute the task.

10. Execute the task.

For example, execute the DBMS_SPM.EXECUTE_EVOLVE_TASK function (sample output
included):

EXECUTE :exe_name :=DBMS_SPM.EXECUTE_EVOLVE_TASK(task_name=>:tk_name);
SELECT :exe_name FROM DUAL;

Chapter 29
Evolving SQL Plan Baselines Manually

29-34

:EXE_NAME
--
EXEC_1

11. View the report.

For example, execute the DBMS_SPM.REPORT_EVOLVE_TASK function (sample output
included):

EXECUTE :evol_out := DBMS_SPM.REPORT_EVOLVE_TASK(task_name=>:tk_name,
execution_name=>:exe_name);
SELECT :evol_out FROM DUAL;

GENERAL INFORMATION SECTION
--

 Task Information:

 Task Name : TASK_11
 Task Owner : SYS
 Execution Name : EXEC_1
 Execution Type : SPM EVOLVE
 Scope : COMPREHENSIVE
 Status : COMPLETED
 Started : 01/09/2012 12:21:27
 Finished : 01/09/2012 12:21:29
 Last Updated : 01/09/2012 12:21:29
 Global Time Limit : 2147483646
 Per-Plan Time Limit : UNUSED
 Number of Errors : 0
--

SUMMARY SECTION
--
 Number of plans processed : 1
 Number of findings : 1
 Number of recommendations : 1
 Number of errors : 0
--

DETAILS SECTION
--
 Object ID : 2
 Test Plan Name : SQL_PLAN_0gwbcfvzskcu20135fd6c
 Base Plan Name : SQL_PLAN_0gwbcfvzskcu242949306
 SQL Handle : SQL_07f16c76ff893342
 Parsing Schema : SH
 Test Plan Creator : SH
 SQL Text : SELECT /*q1_group_by*/ prod_name,
 sum(quantity_sold)
 FROM products p, sales s
 WHERE p.prod_id=s.prod_id AND p.prod_category_id=203
 GROUP BY prod_name

Execution Statistics:

Chapter 29
Evolving SQL Plan Baselines Manually

29-35

 Base Plan Test Plan
 ---------------------------- ---------
 Elapsed Time (s): .044336 .012649
 CPU Time (s): .044003 .012445
 Buffer Gets: 360 99
 Optimizer Cost: 924 891
 Disk Reads: 341 82
 Direct Writes: 0 0
 Rows Processed: 4 2
 Executions: 5 9

FINDINGS SECTION
--

Findings (1):

 1. The plan was verified in 2.18 seconds. It passed the benefit
 criterion because its verified performance was 2.01 times
 better than that of the baseline plan.

Recommendation:

 Consider accepting the plan. Execute
 dbms_spm.accept_sql_plan_baseline(task_name => 'TASK_11',
 object_id => 2, task_owner => 'SYS');

EXPLAIN PLANS SECTION
--

Baseline Plan

 Plan Id : 1
 Plan Hash Value : 1117033222

| Id| Operation | Name | Rows | Bytes |Cost | Time |

0	SELECT STATEMENT		21	861	924	00:00:12
1	HASH GROUP BY		21	861	924	00:00:12
*2	HASH JOIN		267996	10987836	742	00:00:09
*3	TABLE ACCESS FULL	PRODUCTS	21	714	2	00:00:01
4	PARTITION RANGE ALL		918843	6431901	662	00:00:08
5	TABLE ACCESS FULL	SALES	918843	6431901	662	00:00:08

Predicate Information (identified by operation id):
--
* 2 - access("P"."PROD_ID"="S"."PROD_ID")
* 3 - filter("P"."PROD_CATEGORY_ID"=203)

Test Plan

 Plan Id : 2
 Plan Hash Value : 20315500

Chapter 29
Evolving SQL Plan Baselines Manually

29-36

--
|Id| Operation | Name | Rows |Bytes |Cost| Time |
--
0	SELECT STATEMENT		21	861	891	00:00:11
1	SORT GROUP BY NOSORT		21	861	891	00:00:11
2	NESTED LOOPS		267K	10987K	891	00:00:11
*3	INDEX RANGE SCAN	IND_PROD_CAT_NAME	21	714	1	00:00:01
*4	INDEX RANGE SCAN	IND_SALES_PROD_QTY	12762	9334	42	00:00:01
--

Predicate Information (identified by operation id):
--
* 3 - access("P"."PROD_CATEGORY_ID"=203)
* 4 - access("P"."PROD_ID"="S"."PROD_ID")

This report indicates that the new execution plan, which uses the two new indexes,
performs better than the original plan.

12. Implement the recommendations of the evolve task.

For example, execute the IMPLEMENT_EVOLVE_TASK function:

BEGIN
 :cnt := DBMS_SPM.IMPLEMENT_EVOLVE_TASK(
 task_name=>:tk_name, execution_name=>:exe_name);
END;

13. Query the data dictionary to ensure that the new plan is accepted.

The query provides the following sample output:

SELECT SQL_HANDLE, SQL_TEXT, PLAN_NAME, ORIGIN, ENABLED, ACCEPTED
FROM DBA_SQL_PLAN_BASELINES
WHERE SQL_HANDLE IN ('SQL_07f16c76ff893342')
ORDER BY SQL_HANDLE, ACCEPTED;

SQL_HANDLE SQL_TEXT PLAN_NAME ORIGIN ENA ACC
-------------------- -------------------- ---------------------- ------------ --- ---
SQL_07f16c76ff893342 SELECT /* q1_group_b SQL_PLAN_0gwbcfvzskcu2 AUTO-CAPTURE YES YES
 y */ prod_name, sum(0135fd6c
 quantity_sold)
 FROM products p, s
 ales s
 WHERE p.prod_id = s
 .prod_id
 AND p.prod_catego
 ry_id =203
 GROUP BY prod_name

SQL_07f16c76ff893342 SELECT /* q1_group_b SQL_PLAN_0gwbcfvzskcu2 AUTO-CAPTURE YES YES
 y */ prod_name, sum(42949306
 quantity_sold)
 FROM products p, s
 ales s
 WHERE p.prod_id = s
 .prod_id

Chapter 29
Evolving SQL Plan Baselines Manually

29-37

 AND p.prod_catego
 ry_id =203
 GROUP BY prod_name

The output shows that the new plan is accepted.

14. Clean up after the example.

For example, enter the following statements:

EXEC :cnt := DBMS_SPM.DROP_SQL_PLAN_BASELINE('SQL_07f16c76ff893342');
EXEC :cnt := DBMS_SPM.DROP_SQL_PLAN_BASELINE('SQL_9049245213a986b3');
EXEC :cnt := DBMS_SPM.DROP_SQL_PLAN_BASELINE('SQL_bb77077f5f90a36b');
EXEC :cnt := DBMS_SPM.DROP_SQL_PLAN_BASELINE('SQL_02a86218930bbb20');
DELETE FROM SQLLOG$;
CONNECT sh
-- enter password
DROP INDEX IND_SALES_PROD_QTY_SOLD;
DROP INDEX IND_PROD_CAT_NAME;

See Also:

• "Managing the SPM Evolve Advisor Task"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_SPM evolve functions

Dropping SQL Plan Baselines
You can remove some or all plans from a SQL plan baseline. This technique is sometimes
useful when testing SQL plan management.

Drop plans with the DBMS_SPM.DROP_SQL_PLAN_BASELINE function. This function returns the
number of dropped plans. The following table describes input parameters.

Table 29-11 DROP_SQL_PLAN_BASELINE Parameters

Function Parameter Description

sql_handle SQL statement identifier.

plan_name Name of a specific plan. Default NULL drops all plans associated with the SQL
statement identified by sql_handle.

This section explains how to drop baselines from the command line. In Cloud Control, from the
SQL Plan Baseline subpage, select a plan, and then click Drop.

This tutorial assumes that you want to drop all plans for the following SQL statement,
effectively dropping the SQL plan baseline:

SELECT /* repeatable_sql */ COUNT(*) FROM hr.jobs;

Chapter 29
Dropping SQL Plan Baselines

29-38

To drop a SQL plan baseline:

1. Connect SQL*Plus to the database with the appropriate privileges, and then query the data
dictionary for the plan baseline.

The following statement queries DBA_SQL_PLAN_BASELINES (sample output included):

SQL> SELECT SQL_HANDLE, SQL_TEXT, PLAN_NAME, ORIGIN,
 2 ENABLED, ACCEPTED
 3 FROM DBA_SQL_PLAN_BASELINES
 4 WHERE SQL_TEXT LIKE 'SELECT /* repeatable_sql%';

SQL_HANDLE SQL_TEXT PLAN_NAME ORIGIN ENA ACC
-------------------- -------------------- ---------------------- ------------ --- ---
SQL_b6b0d1c71cd1807b SELECT /* repeatable SQL_PLAN_bdc6jswfd303v AUTO-CAPTURE YES YES
 _sql */ count(*) 2f1e9c20
 from hr.jobs

2. Drop the SQL plan baseline for the statement.

The following example drops the plan baseline with the SQL handle
SQL_b6b0d1c71cd1807b, and returns the number of dropped plans. Specify plan baselines
using the plan name (plan_name), SQL handle (sql_handle), or any other plan criteria. The
table_name parameter is mandatory.

DECLARE
 v_dropped_plans number;
BEGIN
 v_dropped_plans := DBMS_SPM.DROP_SQL_PLAN_BASELINE (
 sql_handle => 'SQL_b6b0d1c71cd1807b'
);
 DBMS_OUTPUT.PUT_LINE('dropped ' || v_dropped_plans || ' plans');
END;
/

3. Confirm that the plans were dropped.

For example, execute the following query:

SELECT SQL_HANDLE, SQL_TEXT, PLAN_NAME, ORIGIN,
 ENABLED, ACCEPTED
FROM DBA_SQL_PLAN_BASELINES
WHERE SQL_TEXT LIKE 'SELECT /* repeatable_sql%';

no rows selected

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DROP_SQL_PLAN_BASELINE function

Chapter 29
Dropping SQL Plan Baselines

29-39

Managing the SQL Management Base
The SQL management base is a part of the data dictionary that resides in the SYSAUX
tablespace. It stores statement logs, plan histories, SQL plan baselines, and SQL profiles.

About Managing the SMB
Use the DBMS_SPM.CONFIGURE procedure to set configuration options for the SMB and the
maintenance of SQL plan baselines.

The DBA_SQL_MANAGEMENT_CONFIG view shows the current configuration settings for the SMB.
The following table describes the parameters in the PARAMETER_NAME column.

Table 29-12 Parameters in DBA_SQL_MANAGEMENT_CONFIG.PARAMETER_NAME

Parameter Description

SPACE_BUDGET_PERCENT Maximum percent of SYSAUX space that the SQL management
base can use. The default is 10. The allowable range for this limit
is between 1% and 50%.

PLAN_RETENTION_WEEKS Number of weeks to retain unused plans before they are purged.
The default is 53.

AUTO_CAPTURE_PARSING_SCHEMA_
NAME

A list of the form (% LIKE a OR % LIKE b ...) AND (% NOT
LIKE c AND % NOT LIKE d ...), which is the internal
representation of the parsing schema name filter. If no parsing
schema filters exist, then one side of the outer conjunction will be
absent.

AUTO_CAPTURE_MODULE A list of the form (% LIKE a OR % LIKE b ...) AND (% NOT
LIKE c AND % NOT LIKE d ...), which is the internal
representation of the module filter. If no module filters exist, then
one side of the outer conjunction will be absent.

AUTO_CAPTURE_ACTION A list of the form (% LIKE a OR % LIKE b ...) AND (% NOT
LIKE c AND % NOT LIKE d ...), which is the internal
representation of the action filter. If no action filters exist, then
one side of the outer conjunction will be absent.

AUTO_CAPTURE_SQL_TEXT A list of the form (% LIKE a OR % LIKE b ...) AND (% NOT
LIKE c AND % NOT LIKE d ...), which is the internal
representation of the SQL text filter. If no SQL text filters exist,
then one side of the outer conjunction will be absent.

See Also:

• "Eligibility for Automatic Initial Plan Capture"

• Oracle Database Reference to learn more about DBA_SQL_MANAGEMENT_CONFIG
• Oracle Database PL/SQL Packages and Types Reference to learn more about

DBMS_SPM.CONFIGURE

Chapter 29
Managing the SQL Management Base

29-40

Changing the Disk Space Limit for the SMB
A weekly background process measures the total space occupied by the SMB.

When the defined limit is exceeded, the process writes a warning to the alert log. The database
generates alerts weekly until either the SMB space limit is increased, the size of the SYSAUX
tablespace is increased, or the disk space used by the SMB is decreased by purging SQL
management objects (SQL plan baselines or SQL profiles). This task explains how to change
the limit with the DBMS_SPM.CONFIGURE procedure.

Assumptions

This tutorial assumes the following:

• The current SMB space limit is the default of 10%.

• You want to change the percentage limit to 30%

To change the percentage limit of the SMB:

1. Connect SQL*Plus to the database with the appropriate privileges, and then query the data
dictionary to see the current space budget percent.

For example, execute the following query (sample output included):

SELECT PARAMETER_NAME, PARAMETER_VALUE AS "%_LIMIT",
 (SELECT sum(bytes/1024/1024) FROM DBA_DATA_FILES
 WHERE TABLESPACE_NAME = 'SYSAUX') AS SYSAUX_SIZE_IN_MB,
 PARAMETER_VALUE/100 *
 (SELECT sum(bytes/1024/1024) FROM DBA_DATA_FILES
 WHERE TABLESPACE_NAME = 'SYSAUX') AS "CURRENT_LIMIT_IN_MB"
FROM DBA_SQL_MANAGEMENT_CONFIG
WHERE PARAMETER_NAME = 'SPACE_BUDGET_PERCENT';

PARAMETER_NAME %_LIMIT SYSAUX_SIZE_IN_MB CURRENT_LIMIT_IN_MB
-------------------- ---------- ----------------- -------------------
SPACE_BUDGET_PERCENT 10 211.4375 21.14375

2. Change the percentage setting.

For example, execute the following command to change the setting to 30%:

EXECUTE DBMS_SPM.CONFIGURE('space_budget_percent',30);

3. Query the data dictionary to confirm the change.

For example, execute the following join (sample output included):

SELECT PARAMETER_NAME, PARAMETER_VALUE AS "%_LIMIT",
 (SELECT sum(bytes/1024/1024) FROM DBA_DATA_FILES
 WHERE TABLESPACE_NAME = 'SYSAUX') AS SYSAUX_SIZE_IN_MB,
 PARAMETER_VALUE/100 *
 (SELECT sum(bytes/1024/1024) FROM DBA_DATA_FILES
 WHERE TABLESPACE_NAME = 'SYSAUX') AS "CURRENT_LIMIT_IN_MB"
FROM DBA_SQL_MANAGEMENT_CONFIG
WHERE PARAMETER_NAME = 'SPACE_BUDGET_PERCENT';

Chapter 29
Managing the SQL Management Base

29-41

PARAMETER_NAME %_LIMIT SYSAUX_SIZE_IN_MB CURRENT_LIMIT_IN_MB
-------------------- ---------- ----------------- -------------------
SPACE_BUDGET_PERCENT 30 211.4375 63.43125

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
DBMS_SPM.CONFIGURE procedure

Changing the Plan Retention Policy in the SMB
A weekly scheduled purging task manages disk space used by SQL plan management.

The task runs as an automated task in the maintenance window. The database purges plans
that have not been used for longer than the plan retention period, as identified by the
LAST_EXECUTED timestamp stored in the SMB for that plan. The default retention period is 53
weeks. The period can range between 5 and 523 weeks.

This task explains how to change the plan retention period with the DBMS_SPM.CONFIGURE
procedure. In Cloud Control, set the plan retention policy in the SQL Plan Baseline subpage
(shown in Figure 29-1).

To change the plan retention period for the SMB:

1. Connect SQL*Plus to the database with the appropriate privileges, and then query the data
dictionary to see the current plan retention period.

For example, execute the following query (sample output included):

SQL> SELECT PARAMETER_NAME, PARAMETER_VALUE
 2 FROM DBA_SQL_MANAGEMENT_CONFIG
 3 WHERE PARAMETER_NAME = 'PLAN_RETENTION_WEEKS';

PARAMETER_NAME PARAMETER_VALUE
------------------------------ ---------------
PLAN_RETENTION_WEEKS 53

2. Change the retention period.

For example, execute the CONFIGURE procedure to change the period to 105 weeks:

EXECUTE DBMS_SPM.CONFIGURE('plan_retention_weeks',105);

3. Query the data dictionary to confirm the change.

For example, execute the following query:

SQL> SELECT PARAMETER_NAME, PARAMETER_VALUE
 2 FROM DBA_SQL_MANAGEMENT_CONFIG
 3 WHERE PARAMETER_NAME = 'PLAN_RETENTION_WEEKS';

PARAMETER_NAME PARAMETER_VALUE
------------------------------ ---------------
PLAN_RETENTION_WEEKS 105

Chapter 29
Managing the SQL Management Base

29-42

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
CONFIGURE procedure

Chapter 29
Managing the SQL Management Base

29-43

30
Migrating Stored Outlines to SQL Plan
Baselines

Stored outline migration is the user-initiated process of converting stored outlines to SQL
plan baselines. A SQL plan baseline is a set of plans proven to provide optimal performance.

Note:

Starting in Oracle Database 12c, stored outlines are deprecated. See "Migrating
Stored Outlines to SQL Plan Baselines" for an alternative.

This chapter explains the concepts and tasks relating to stored outline migration.

About Stored Outline Migration
A stored outline is a set of hints for a SQL statement.

The hints direct the optimizer to choose a specific plan for the statement. A stored outline is a
legacy technique for providing plan stability.

Purpose of Stored Outline Migration
If you rely on stored outlines to maintain plan stability and prevent performance regressions,
then you can safely migrate from stored outlines to SQL plan baselines. After the migration,
you can maintain the same plan stability while benefiting from the features provided by the
SQL Plan Management framework.

Stored outlines have the following disadvantages:

• Stored outlines cannot automatically evolve over time. Consequently, a stored outline may
be optimal when you create it, but become a suboptimal plan after a database change,
leading to performance degradation.

• Hints in a stored outline can become invalid, as with an index hint on a dropped index. In
such cases, the database still uses the outlines but excludes the invalid hints, producing a
plan that is often worse than the original plan or the current best-cost plan generated by
the optimizer.

• For a SQL statement, the optimizer can only choose the plan defined in the stored outline
in the currently specified category. The optimizer cannot choose from other stored outlines
in different categories or the current cost-based plan even if they improve performance.

• Stored outlines are a reactive tuning technique, which means that you only use a stored
outline to address a performance problem after it has occurred. For example, you may
implement a stored outline to correct the plan of a SQL statement that became high-load.
In this case, you used stored outlines instead of proactively tuning the statement before it
became high-load.

30-1

The stored outline migration PL/SQL API helps solve the preceding problems in the following
ways:

• SQL plan baselines enable the optimizer to use the same optimal plan and allow this plan
to evolve over time.

For a specified SQL statement, you can add new plans as SQL plan baselines after they
are verified not to cause performance regressions.

• SQL plan baselines prevent plans from becoming unreproducible because of invalid hints.

If hints stored in a plan baseline become invalid, then the plan may not be reproducible by
the optimizer. In this case, the optimizer selects an alternative reproducible plan baseline
or the current best-cost plan generated by optimizer.

• For a specific SQL statement, the database can maintain multiple plan baselines.

The optimizer can choose from a set of optimal plans for a specific SQL statement instead
of being restricted to a single plan per category, as required by stored outlines.

How Stored Outline Migration Works
Stored outline migration is a user-initiated process that goes through multiple stages.

This section explains how the database migrates stored outlines to SQL plan baselines. This
information is important for performing the task of migrating stored outlines.

Stages of Stored Outline Migration
To migrate stored outlines, you specify the stores outlines. The database then creates and
updates SQL plan baselines.

Figure 30-1 Stages of Stored Outline Migration

outline1 ... outlinen

Obtain missing information such as bind data

Copy information from stored outlines

baseline1 ... baselinen

Reparse hints to generate plans

User specifies stored outlines

Database creates SQL plan baselines

Database updates SQL plan baselines �
at first statement execution

The migration process has the following stages:

1. The user invokes a function that specifies which outlines to migrate.

2. The database processes the outlines as follows:

a. The database copies information in the outline needed by the plan baseline.

The database copies it directly or calculates it based on information in the outline. For
example, the text of the SQL statement exists in both schemas, so the database can
copy the text from outline to baseline.

Chapter 30
About Stored Outline Migration

30-2

b. The database reparses the hints to obtain information not in the outline.

The plan hash value and plan cost cannot be derived from the existing information in
the outline, which necessitates reparsing the hints.

c. The database creates the baselines.

3. The database obtains missing information when it chooses the SQL plan baseline for the
first time to execute the SQL statement.

The compilation environment and execution statistics are only available during execution
when the plan baseline is parsed and compiled.

The migration is complete only after the preceding phases complete.

Outline Categories and Baseline Modules
An outline is a set of hints, whereas a SQL plan baseline is a set of plans.

Because they are different technologies, some functionality of outlines does not map exactly to
functionality of baselines. For example, a single SQL statement can have multiple outlines,
each of which is in a different outline category, but the only category that currently exists for
baselines is DEFAULT.

The equivalent of a category for an outline is a module for a SQL plan baseline. Table 30-1
explains how outline categories map to modules.

Table 30-1 Outline Categories

Concept Description Default Value

Outline Category Specifies a user-defined
grouping for a set of stored
outlines.

You can use categories to
maintain different stored
outlines for a SQL statement.
For example, a single
statement can have an outline
in the OLTP category and the
DW category.

Each SQL statement can
have one or more stored
outlines. Each stored outline
is in one and only one outline
category. A statement can
have multiple stored outlines
in different categories, but
only one stored outline exists
for each category of each
statement.

During migration, the
database maps each outline
category to a SQL plan
baseline module.

DEFAULT

Baseline Module Specifies a high-level function
being performed.

A SQL plan baseline can
belong to one and only one
module.

After an outline is migrated to a SQL
plan baseline, the module name defaults
to outline category name.

Chapter 30
About Stored Outline Migration

30-3

Table 30-1 (Cont.) Outline Categories

Concept Description Default Value

Baseline Category Only one SQL plan baseline
category exists. This category
is named DEFAULT. During
stored outline migration, the
module name of the SQL plan
baseline is set to the category
name of the stored outline.

A statement can have multiple
SQL plan baselines in the
DEFAULT category.

DEFAULT

When migrating stored outlines to SQL plan baselines, Oracle Database maps every outline
category to a SQL plan baseline module with the same name. As shown in the following
diagram, the outline category OLTP is mapped to the baseline module OLTP. After migration,
DEFAULT is a super-category that contains all SQL plan baselines.

Figure 30-2 DEFAULT Category

Module OLTP

Baseline emp1

Module DW

Baseline emp2

Category DEFAULT

Baseline dept

Category OLTP

Category DW

Outline emp1

Outline emp2

Outline dept

SELECT...

SELECT...

User Interface for Stored Outline Migration
You can use the DBMS_SPM package to perform the stored outline migration.

Table 30-2 DBMS_SPM Functions Relating to Stored Outline Migration

DBMS_SPM Function Description

MIGRATE_STORED_OUTLINE Migrates existing stored outlines to plan baselines.

Use either of the following formats:

• Specify outline name, SQL text, outline category, or all stored outlines.
• Specify a list of outline names.

ALTER_SQL_PLAN_BASELINE Changes an attribute of a single plan or all plans associated with a SQL
statement.

Chapter 30
About Stored Outline Migration

30-4

Table 30-2 (Cont.) DBMS_SPM Functions Relating to Stored Outline Migration

DBMS_SPM Function Description

DROP_MIGRATED_STORED_OUTLINE Drops stored outlines that have been migrated to SQL plan baselines.

The function finds stored outlines marked as MIGRATED in the DBA_OUTLINES
view, and then drops these outlines from the database.

You can control stored outline and plan baseline behavior with initialization and session
parameters. Table 30-3 describes the relevant parameters. See Table 30-5 and Table 30-6 for
an explanation of how these parameter settings interact.

Table 30-3 Parameters Relating to Stored Outline Migration

Initialization or Session Parameter Description Parameter Type

CREATE_STORED_OUTLINES Determines whether Oracle Database
automatically creates and stores an outline
for each query submitted during the
session.

Initialization parameter

OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES Enables or disables the automatic
recognition of repeatable SQL statement
and the generation of SQL plan baselines
for these statements.

Initialization parameter

OPTIMIZER_USE_SQL_PLAN_BASELINES Enables or disables the use of SQL plan
baselines stored in SQL Management
Base.

Initialization parameter

USE_STORED_OUTLINES Determines whether the optimizer uses
stored outlines to generate execution plans.

Note: This is a session parameter, not an
initialization parameter.

Session

You can use database views to access information relating to stored outline migration.
Table 30-4 describes the following main views.

Table 30-4 Views Relating to Stored Outline Migration

View Description

DBA_OUTLINES Describes all stored outlines in the database.

The MIGRATED column is important for outline migration and shows
one of the following values: NOT-MIGRATED and MIGRATED. When
MIGRATED, the stored outline has been migrated to a plan baseline
and is not usable.

DBA_SQL_PLAN_BASELINES Displays information about the SQL plan baselines currently
created for specific SQL statements.

The ORIGIN column indicates how the plan baseline was created.
The value STORED-OUTLINE indicates the baseline was created by
migrating an outline.

Chapter 30
About Stored Outline Migration

30-5

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM package

• Oracle Database Reference to learn about the CREATE_STORED_OUTLINES
initialization parameter

Basic Steps in Stored Outline Migration
The basic process is to prepare, migrate, and then clean up.

The basic steps are as follows:

1. Prepare for stored outline migration.

Review the migration prerequisites and determine how you want the migrated plan
baselines to behave.

See "Preparing for Stored Outline Migration".

2. Perform either of the following tasks:

• Migrate to baselines to use SQL Plan Management features.

See "Migrating Outlines to Utilize SQL Plan Management Features".

• Migrate to baselines while exactly preserving the behavior of the stored outlines.

See "Migrating Outlines to Preserve Stored Outline Behavior".

3. Perform post-migration confirmation and cleanup.

See "Performing Follow-Up Tasks After Stored Outline Migration".

Preparing for Stored Outline Migration
The goal is preparation is determining which stored outlines are eligible for migration.

To prepare for stored outline migration:

1. Connect SQL*Plus to the database with SYSDBA privileges or the EXECUTE privilege on the
DBMS_SPM package.

2. Query the stored outlines in the database.

The following example queries all stored outlines that have not been migrated to SQL plan
baselines:

SELECT NAME, CATEGORY, SQL_TEXT
FROM DBA_OUTLINES
WHERE MIGRATED = 'NOT-MIGRATED';

3. Determine which stored outlines meet the following prerequisites for migration eligibility:

• The statement must not be a run-time INSERT AS SELECT statement.

• The statement must not reference a remote object.

• This statement must not be a private stored outline.

Chapter 30
Preparing for Stored Outline Migration

30-6

4. Decide whether to migrate all outlines, specified stored outlines, or outlines belonging to a
specified outline category.

If you do not decide to migrate all outlines, then identify the outlines or categories that you
intend to migrate.

5. Decide whether the stored outlines migrated to SQL plan baselines use fixed plans or
nonfixed plans:

• Fixed plans

A fixed plan is frozen. If a fixed plan is reproducible using the hints stored in plan
baseline, then the optimizer always chooses the lowest-cost fixed plan baseline over
plan baselines that are not fixed. Essentially, a fixed plan baseline acts as a stored
outline with valid hints.

A fixed plan is reproducible when the database can parse the statement based on the
hints stored in the plan baseline and create a plan with the same plan hash value as
the one in the plan baseline. If one of more of the hints become invalid, then the
database may not be able to create a plan with the same plan hash value. In this case,
the plan is nonreproducible.

If a fixed plan cannot be reproduced when parsed using its hints, then the optimizer
chooses a different plan, which can be either of the following:

– Another plan for the SQL plan baseline

– The current cost-based plan created by the optimizer

In some cases, a performance regression occurs because of the different plan,
requiring SQL tuning.

• Nonfixed plans

If a plan baseline does not contain fixed plans, then SQL Plan Management considers
the plans equally when picking a plan for a SQL statement.

6. Before beginning the actual migration, ensure that the Oracle database meets the following
prerequisites:

• The database must be Enterprise Edition.

• The database must be open and not in a suspended state.

• The database must not be in restricted access (DBA), read-only, or migrate mode.

• Oracle Call Interface (OCI) must be available.

See Also:

• Oracle Database Administrator’s Guide to learn about administrator privileges

• Oracle Database Reference to learn about the DBA_OUTLINES views

Migrating Outlines to Utilize SQL Plan Management Features
You can migrate stored outline to SQL plan baselines.

The goals of this task are as follows:

Chapter 30
Migrating Outlines to Utilize SQL Plan Management Features

30-7

• To allow SQL Plan Management to select from all plans in a plan baseline for a SQL
statement instead of applying the same fixed plan after migration

• To allow the SQL plan baseline to evolve in the face of database changes by adding new
plans to the baseline

Assumptions

This tutorial assumes the following:

• You migrate all outlines.

To migrate specific outlines, use the DBMS_SPM.MIGRATE_STORED_OUTLINE function.

• You want the module names of the baselines to be identical to the category names of the
migrated outlines.

• You do not want the SQL plans to be fixed.

By default, generated plans are not fixed and SQL Plan Management considers all plans
equally when picking a plan for a SQL statement. This situation permits the advanced
feature of plan evolution to capture new plans for a SQL statement, verify their
performance, and accept these new plans into the plan baseline.

To migrate stored outlines to SQL plan baselines:

1. Connect SQL*Plus to the database with the appropriate privileges.

2. Call PL/SQL function MIGRATE_STORED_OUTLINE.

The following sample PL/SQL block migrates all stored outlines to fixed baselines:

DECLARE
 my_report CLOB;
BEGIN
 my_outlines := DBMS_SPM.MIGRATE_STORED_OUTLINE(
 attribute_name => 'all');
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM package

• Oracle Database SQL Language Reference to learn about the ALTER SYSTEM
statement

Migrating Outlines to Preserve Stored Outline Behavior
You can migrate stored outlines to SQL plan baselines and preserve the original behavior of
the stored outlines by creating fixed plan baselines.

A fixed plan has higher priority over other plans for the same SQL statement. If a plan is fixed,
then the plan baseline cannot be evolved. The database does not add new plans to a plan
baseline that contains a fixed plan.

Chapter 30
Migrating Outlines to Preserve Stored Outline Behavior

30-8

Assumptions

This tutorial assumes the following:

• You want to migrate only the stored outlines in the category named firstrow.

• You want the module names of the baselines to be identical to the category names of the
migrated outlines.

To migrate stored outlines to plan baselines:

1. Connect SQL*Plus to the database with the appropriate privileges.

2. Call PL/SQL function MIGRATE_STORED_OUTLINE.

The following sample PL/SQL block migrates stored outlines in the category firstrow to
fixed baselines:

DECLARE
 my_report CLOB;
BEGIN
 my_outlines := DBMS_SPM.MIGRATE_STORED_OUTLINE(
 attribute_name => 'category',
 attribute_value => 'firstrow',
 fixed => 'YES');
END;
/

After migration, the SQL plan baselines is in module firstrow and category DEFAULT.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for syntax and
semantics of the DBMS_SPM.MIGRATE_STORED_OUTLINE function

• Oracle Database SQL Language Reference to learn about the ALTER SYSTEM
statement

Performing Follow-Up Tasks After Stored Outline Migration
After migrating outlines to SQL plan baselines, you must perform some follow-up work.

The goals of this task are as follows:

• To configure the database to use plan baselines instead of stored outlines for stored
outlines that have been migrated to SQL plan baselines

• To create SQL plan baselines instead of stored outlines for future SQL statements

• To drop the stored outlines that have been migrated to SQL plan baselines

This section explains how to set initialization parameters relating to stored outlines and plan
baselines. The OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES and CREATE_STORED_OUTLINES
initialization parameters determine how and when the database creates stored outlines and
SQL plan baselines. Table 30-5 explains the interaction between these parameters.

Chapter 30
Performing Follow-Up Tasks After Stored Outline Migration

30-9

Table 30-5 Creation of Outlines and Baselines

CREATE_STORED_O
UTLINES Initialization
Parameter

OPTIMIZER_CAPTURE_S
QL_PLAN_BASELINES
Initialization Parameter

Database Behavior

false false When executing a SQL statement, the database
does not create stored outlines or SQL plan
baselines.

false true The automatic recognition of repeatable SQL
statements and the generation of SQL plan
baselines for these statements is enabled. When
executing a SQL statement, the database
creates only new SQL plan baselines (if they do
not exist) with the category name DEFAULT for
the statement.

true false Oracle Database automatically creates and
stores an outline for each query submitted during
the session. When executing a SQL statement,
the database creates only new stored outlines (if
they do not exist) with the category name
DEFAULT for the statement.

category false When executing a SQL statement, the database
creates only new stored outlines (if they do not
exist) with the specified category name for the
statement.

true true Oracle Database automatically creates and
stores an outline for each query submitted during
the session. The automatic recognition of
repeatable SQL statements and the generation
of SQL plan baselines for these statements is
also enabled.

When executing a SQL statement, the database
creates both stored outlines and SQL plan
baselines with the category name DEFAULT.

category true Oracle Database automatically creates and
stores an outline for each query submitted during
the session. The automatic recognition of
repeatable SQL statements and the generation
of SQL plan baselines for these statements is
also enabled.

When executing a SQL statement, the database
creates stored outlines with the specified
category name and SQL plan baselines with the
category name DEFAULT.

The USE_STORED_OUTLINES session parameter (it is not an initialization parameter) and
OPTIMIZER_USE_SQL_PLAN_BASELINES initialization parameter determine how the database
uses stored outlines and plan baselines. Table 30-6 explains how these parameters interact.

Chapter 30
Performing Follow-Up Tasks After Stored Outline Migration

30-10

Table 30-6 Use of Stored Outlines and SQL Plan Baselines

USE_STORED_OUTLINES
Session Parameter

OPTIMIZER_USE_SQL_P
LAN_BASELINES
Initialization Parameter

Database Behavior

false false When choosing a plan for a SQL
statement, the database does not use
stored outlines or plan baselines.

false true When choosing a plan for a SQL
statement, the database uses only SQL
plan baselines.

true false When choosing a plan for a SQL
statement, the database uses stored
outlines with the category name
DEFAULT.

category false When choosing a plan for a SQL
statement, the database uses stored
outlines with the specified category
name.

If a stored outline with the specified
category name does not exist, then the
database uses a stored outline in the
DEFAULT category if it exists.

true true When choosing a plan for a SQL
statement, stored outlines take priority
over plan baselines.

If a stored outline with the category name
DEFAULT exists for the statement and is
applicable, then the database applies the
stored outline. Otherwise, the database
uses SQL plan baselines. However, if the
stored outline has the property
MIGRATED, then the database does not
use the outline and uses the
corresponding SQL plan baseline instead
(if it exists).

category true When choosing a plan for a SQL
statement, stored outlines take priority
over plan baselines.

If a stored outline with the specified
category name or the DEFAULT category
exists for the statement and is applicable,
then the database applies the stored
outline. Otherwise, the database uses
SQL plan baselines. However, if the
stored outline has the property
MIGRATED, then the database does not
use the outline and uses the
corresponding SQL plan baseline instead
(if it exists).

Assumptions

This tutorial assumes the following:

• You have completed the basic steps in the stored outline migration.

Chapter 30
Performing Follow-Up Tasks After Stored Outline Migration

30-11

• Some stored outlines may have been created before Oracle Database 10g.

Hints in releases before Oracle Database 10g use a local hint format. After migration, hints
stored in a plan baseline use the global hints format introduced in Oracle Database 10g.

To place the database in the proper state after the migration:

1. Connect SQL*Plus to the database with the appropriate privileges, and then check that
SQL plan baselines have been created as the result of migration.

Ensure that the plans are enabled and accepted. For example, enter the following query
(partial sample output included):

SELECT SQL_HANDLE, PLAN_NAME, ORIGIN, ENABLED, ACCEPTED, FIXED, MODULE
FROM DBA_SQL_PLAN_BASELINES;

SQL_HANDLE PLAN_NAME ORIGIN ENA ACC FIX MODULE
------------------------- ---------- -------------- --- --- --- ------
SYS_SQL_f44779f7089c8fab STMT01 STORED-OUTLINE YES YES NO DEFAULT
.
.
.

2. Optionally, change the attributes of the SQL plan baselines.

For example, the following statement changes the status of the baseline for the specified
SQL statement to fixed:

DECLARE
 v_cnt PLS_INTEGER;
BEGIN
 v_cnt := DBMS_SPM.ALTER_SQL_PLAN_BASELINE(
 sql_handle=>'SYS_SQL_f44779f7089c8fab',
 attribute_name=>'FIXED',
 attribute_value=>'NO');
 DBMS_OUTPUT.PUT_LINE('Plans altered: ' || v_cnt);
END;
/

3. Check the status of the original stored outlines.

For example, enter the following query (partial sample output included):

SELECT NAME, OWNER, CATEGORY, USED, MIGRATED
FROM DBA_OUTLINES
ORDER BY NAME;

NAME OWNER CATEGORY USED MIGRATED
---------- ---------- ---------- ------ ------------
STMT01 SYS DEFAULT USED MIGRATED
STMT02 SYS DEFAULT USED MIGRATED
.
.
.

4. Drop all stored outlines that have been migrated to SQL plan baselines.

Chapter 30
Performing Follow-Up Tasks After Stored Outline Migration

30-12

For example, the following statements drops all stored outlines with status MIGRATED in
DBA_OUTLINES:

DECLARE
 v_cnt PLS_INTEGER;
BEGIN
 v_cnt := DBMS_SPM.DROP_MIGRATED_STORED_OUTLINE();
 DBMS_OUTPUT.PUT_LINE('Migrated stored outlines dropped: ' || v_cnt);
END;
/

5. Set initialization parameters so that:

• When executing a SQL statement, the database creates plan baselines but does not
create stored outlines.

• The database only uses stored outlines when the equivalent SQL plan baselines do
not exist.

For example, the following SQL statements instruct the database to create SQL plan
baselines instead of stored outlines when a SQL statement is executed. The example also
instructs the database to apply a stored outline in category allrows or DEFAULT only if it
exists and has not been migrated to a SQL plan baseline. In other cases, the database
applies SQL plan baselines instead.

ALTER SYSTEM
 SET CREATE_STORED_OUTLINE = false SCOPE = BOTH;

ALTER SYSTEM
 SET OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES = true SCOPE = BOTH;

ALTER SYSTEM
 SET OPTIMIZER_USE_SQL_PLAN_BASELINES = true SCOPE = BOTH;

ALTER SESSION
 SET USE_STORED_OUTLINES = allrows SCOPE = BOTH;

See Also:

• "Basic Steps in Stored Outline Migration"

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM package

• Oracle Database Reference to learn about the CREATE_STORED_OUTLINES
initialization parameter

Chapter 30
Performing Follow-Up Tasks After Stored Outline Migration

30-13

Glossary

accepted plan
In the context of SQL plan management, a plan that is in a SQL plan baseline for a SQL
statement and thus available for use by the optimizer. An accepted plan contains a set of hints,
a plan hash value, and other plan-related information.

access path
The means by which the database retrieves data from a database. For example, a query using
an index and a query using a full table scan use different access paths.

adaptive cursor sharing
A feature that enables a single statement that contains bind variables to use multiple execution
plans. Cursor sharing is "adaptive" because the cursor adapts its behavior so that the
database does not always use the same plan for each execution or bind variable value.

adaptive dynamic sampling
A feature of the adaptive optimizer that enables the automatic adjustment of the dynamic
statistics level.

adaptive optimizer
A feature of the optimizer that enables it to adapt plans based on run-time statistics.

adaptive query plan
An execution plan that changes after optimization because run-time conditions indicate that
optimizer estimates are inaccurate. An adaptive query plan has different built-in plan options.
During the first execution, before a specific subplan becomes active, the optimizer makes a
final decision about which option to use. The optimizer bases its choice on observations made
during the execution up to this point. Thus, an adaptive query plan enables the final plan for a
statement to differ from the default plan.

Glossary-1

adaptive query optimization
A set of capabilities that enables the adaptive optimizer to make run-time adjustments to
execution plans and discover additional information that can lead to better statistics. Adaptive
optimization is helpful when existing statistics are not sufficient to generate an optimal plan.

ADDM
See Automatic Database Diagnostic Monitor (ADDM).

antijoin
A join that returns rows that fail to match the subquery on the right side. For example, an
antijoin can list departments with no employees. Antijoins use the NOT EXISTS or NOT IN
constructs.

approximate query processing
A set of optimization techniques that speed analytic queries by calculating results within an
acceptable range of error.

automatic capture filter
A SQL plan management feature that enables you to specify the eligibility criteria for automatic
initial plan capture.

Automatic Database Diagnostic Monitor (ADDM)
ADDM is self-diagnostic software built into Oracle Database. ADDM examines and analyzes
data captured in Automatic Workload Repository (AWR) to determine possible database
performance problems.

automatic optimizer statistics collection
The automatic running of the DBMS_STATS package to collect optimizer statistics for all schema
objects for which statistics are missing or stale.

automatic initial plan capture
The mechanism by which the database automatically creates a SQL plan baseline for any
repeatable SQL statement executed on the database. Enable automatic initial plan capture by
setting the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES initialization parameter to true (the
default is false).

See repeatable SQL statement.

automatic reoptimization
The ability of the optimizer to automatically change a plan on subsequent executions of a SQL
statement. Automatic reoptimization can fix any suboptimal plan chosen due to incorrect

Glossary

Glossary-2

optimizer estimates, from a suboptimal distribution method to an incorrect choice of degree of
parallelism.

automatic SQL tuning
The work performed by Automatic SQL Tuning Advisor it runs as an automated task within
system maintenance windows.

Automatic SQL Tuning Advisor
SQL Tuning Advisor when run as an automated maintenance task. Automatic SQL Tuning runs
during system maintenance windows as an automated maintenance task, searching for ways
to improve the execution plans of high-load SQL statements.

See SQL Tuning Advisor.

Automatic Tuning Optimizer
The optimizer when invoked by SQL Tuning Advisor. In SQL tuning mode, the optimizer
performs additional analysis to check whether it can further improve the plan produced in
normal mode. The optimizer output is not an execution plan, but a series of actions, along with
their rationale and expected benefit for producing a significantly better plan.

Automatic Workload Repository (AWR)
The infrastructure that provides services to Oracle Database components to collect, maintain,
and use statistics for problem detection and self-tuning.

AWR
See Automatic Workload Repository (AWR).

AWR snapshot
A set of data for a specific time that is used for performance comparisons. The delta values
captured by the snapshot represent the changes for each statistic over the time period.
Statistics gathered by are queried from memory. You can display the gathered data in both
reports and views.

band join
A special type of nonequijoin in which key values in one data set must fall within the specified
range (“band”) of the second data set.

base cardinality
For a table, the total number of rows in the table.

Glossary

Glossary-3

baseline
In the context of AWR, the interval between two AWR snapshots that represent the database
operating at an optimal level.

bind-aware cursor
A bind-sensitive cursor that is eligible to use different plans for different bind values. After a
cursor has been made bind-aware, the optimizer chooses plans for future executions based on
the bind value and its cardinality estimate.

bind-sensitive cursor
A cursor whose optimal plan may depend on the value of a bind variable. The database
monitors the behavior of a bind-sensitive cursor that uses different bind values to determine
whether a different plan is beneficial.

bind variable
A placeholder in a SQL statement that must be replaced with a valid value or value address for
the statement to execute successfully. By using bind variables, you can write a SQL statement
that accepts inputs or parameters at run time. The following query uses v_empid as a bind
variable:

SELECT * FROM employees WHERE employee_id = :v_empid;

bind variable peeking
The ability of the optimizer to look at the value in a bind variable during a hard parse. By
peeking at bind values, the optimizer can determine the selectivity of a WHERE clause condition
as if literals had been used, thereby improving the plan.

bitmap join index
A bitmap index for the join of two or more tables.

bitmap piece
A subcomponent of a single bitmap index entry. Each indexed column value may have one or
more bitmap pieces. The database uses bitmap pieces to break up an index entry that is large
in relation to the size of a block.

B-tree index
An index organized like an upside-down tree. A B-tree index has two types of blocks: branch
blocks for searching and leaf blocks that store values. The leaf blocks contain every indexed

Glossary

Glossary-4

data value and a corresponding rowid used to locate the actual row. The "B" stands for
"balanced" because all leaf blocks automatically stay at the same depth.

bulk load
A CREATE TABLE AS SELECT or INSERT INTO ... SELECT operation.

bushy join tree
A join tree in which the left or the right child of an internal node can be a join node. Nodes in a
bushy join tree may have recursive structures in both its descendents.

cardinality
The number of rows that is expected to be or is returned by an operation in an execution plan.

Cartesian join
A join in which one or more of the tables does not have any join conditions to any other tables
in the statement. The optimizer joins every row from one data source with every row from the
other data source, creating the Cartesian product of the two sets.

child cursor
The cursor containing the plan, compilation environment, and other information for a statement
whose text is stored in a parent cursor. The parent cursor is number 0, the first child is
number 1, and so on. Child cursors reference the same SQL text as the parent cursor, but are
different. For example, two queries with the text SELECT * FROM t use different cursors when
they reference two different tables named t.

cluster scan
An access path for a table cluster. In an indexed table cluster, Oracle Database first obtains the
rowid of one of the selected rows by scanning the cluster index. Oracle Database then locates
the rows based on this rowid.

column group
A set of columns that is treated as a unit.

column group statistics
Extended statistics gathered on a group of columns treated as a unit.

Glossary

Glossary-5

column statistics
Statistics about columns that the optimizer uses to determine optimal execution plans.
Column statistics include the number of distinct column values, low value, high value, and
number of nulls.

complex view merging
The merging of views containing the GROUP BY or DISTINCT keywords.

composite database operation
In a database operation, the activity between two points in time in a database session, with
each session defining its own beginning and end points. A session can participate in at most
one composite database operation at a time.

concurrency
Simultaneous access of the same data by many users. A multiuser database management
system must provide adequate concurrency controls so that data cannot be updated or
changed improperly, compromising data integrity.

concurrent statistics gathering mode
A mode that enables the database to simultaneously gather optimizer statistics for multiple
tables in a schema, or multiple partitions or subpartitions in a table. Concurrency can reduce
the overall time required to gather statistics by enabling the database to fully use multiple
CPUs.

condition
A combination of one or more expressions and logical operators that returns a value of TRUE,
FALSE, or UNKNOWN.

cost
A numeric internal measure that represents the estimated resource usage for an execution
plan. The lower the cost, the more efficient the plan.

cost-based optimizer (CBO)
The legacy name for the optimizer. In earlier releases, the cost-based optimizer was an
alternative to the rule-based optimizer (RBO).

cost model
The internal optimizer model that accounts for the cost of the I/O, CPU, and network resources
that a query is predicted to use.

Glossary

Glossary-6

cumulative statistics
A count such as the number of block reads. Oracle Database generates many types of
cumulative statistics for the system, sessions, and individual SQL statements.

cursor
A handle or name for a private SQL area in the PGA. Because cursors are closely associated
with private SQL areas, the terms are sometimes used interchangeably.

cursor cache
See shared SQL area.

cursor merging
Combining cursors to save space in the shared SQL area. If the optimizer creates a plan for a
bind-aware cursor, and if this plan is the same as an existing cursor, then the optimizer can
merge the cursors.

cursor-duration temporary table
A temporary, in-memory table that stores query results for the duration of a cursor. For complex
operations such as WITH clause queries and star transformations, this optimization enhances
the materialization of intermediate results from repetitively used subqueries. In this way, cursor-
duration temporary tables improve performance and optimizes I/O.

data flow operator (DFO)
The unit of work between data redistribution stages in a parallel query.

data skew
Large variations in the number of duplicate values in a column.

database operation
A set of database tasks defined by end users or application code, for example, a batch job or
ETL processing.

default plan
For an adaptive plan, the execution plan initially chosen by the optimizer using the statistics
from the data dictionary. The default plan can differ from the final plan.

Glossary

Glossary-7

disabled plan
A plan that a database administrator has manually marked as ineligible for use by the
optimizer.

degree of parallelism (DOP)
The number of parallel execution servers associated with a single operation. Parallel execution
is designed to effectively use multiple CPUs. Oracle Database parallel execution framework
enables you to either explicitly choose a specific degree of parallelism or to rely on Oracle
Database to automatically control it.

dense key
A numeric key that is stored as a native integer and has a range of values.

dense grouping key
A key that represents all grouping keys whose grouping columns come from a specific fact
table or dimension.

dense join key
A key that represents all join keys whose join columns come from a particular fact table or
dimension.

density
A decimal number between 0 and 1 that measures the selectivity of a column. Values close to 1
indicate that the column is unselective, whereas values close to 0 indicate that this column is
more selective.

direct path read
A single or multiblock read into the PGA, bypassing the SGA.

driving table
The table to which other tables are joined. An analogy from programming is a for loop that
contains another for loop. The outer for loop is the analog of a driving table, which is also
called an outer table.

dynamic performance view
A view created on dynamic performance tables, which are virtual tables that record current
database activity. The dynamic performance views are called fixed views because they cannot
be altered or removed by the database administrator. They are also called V$ views because
they begin with the string V$ (GV$ in Oracle RAC).

Glossary

Glossary-8

dynamic plan
A set of subplan groups. A subplan group is set of subplans. In an adaptive query plan, the
optimizer chooses a subplan at run time depending on the statistics obtained by the statistics
collector.

dynamic statistics
An optimization technique in which the database executes a recursive SQL statement to scan
a small random sample of a table's blocks to estimate predicate selectivities.

dynamic statistics level
The level that controls both when the database gathers dynamic statistics, and the size of the
sample that the optimizer uses to gather the statistics. Set the dynamic statistics level using
either the OPTIMIZER_DYNAMIC_SAMPLING initialization parameter or a statement hint.

enabled plan
In SQL plan management, a plan that is eligible for use by the optimizer.

endpoint number
A number that uniquely identifies a bucket in a histogram. In frequency and hybrid histograms,
the endpoint number is the cumulative frequency of endpoints. In height-balanced histograms,
the endpoint number is the bucket number.

endpoint repeat count
In a hybrid histogram, the number of times the endpoint value is repeated, for each endpoint
(bucket) in the histogram. By using the repeat count, the optimizer can obtain accurate
estimates for almost popular values.

endpoint value
An endpoint value is the highest value in the range of values in a histogram bucket.

equijoin
A join whose join condition contains an equality operator.

estimator
The component of the optimizer that determines the overall cost of a given execution plan.

Glossary

Glossary-9

execution plan
The combination of steps used by the database to execute a SQL statement. Each step either
retrieves rows of data physically from the database or prepares them for the session issuing
the statement. You can override execution plans by using a hint.

execution tree
A tree diagram that shows the flow of row sources from one step to another in an execution
plan.

expected cardinality
For a table, the estimated number of rows the table has after all filter predicates have been
applied to the table.

expression
A combination of one or more values, operators, and SQL functions that evaluates to a value.
For example, the expression 2*2 evaluates to 4. In general, expressions assume the data type
of their components.

expression statistics
A type of extended statistics that improves optimizer estimates when a WHERE clause has
predicates that use expressions.

extended statistics
A type of optimizer statistics that improves estimates for cardinality when multiple predicates
exist or when predicates contain an expression.

extensible optimizer
An optimizer capability that enables authors of user-defined functions and indexes to create
statistics collection, selectivity, and cost functions that the optimizer uses when choosing an
execution plan. The optimizer cost model is extended to integrate information supplied by the
user to assess CPU and I/O cost.

extension
A column group or an expression. The statistics collected for column groups and expressions
are called extended statistics.

Glossary

Glossary-10

external table
A read-only table whose metadata is stored in the database but whose data in stored in files
outside the database. The database uses the metadata describing external tables to expose
their data as if they were relational tables.

filter condition
A WHERE clause component that eliminates rows from a single object referenced in a SQL
statement.

final plan
In an adaptive plan, the plan that executes to completion. The default plan can differ from the
final plan.

fixed object
A dynamic performance table or its index. The fixed objects are owned by SYS. Fixed object
tables have names beginning with X$ and are the base tables for the V$ views.

fixed plan
An accepted plan that is marked as preferred, so that the optimizer considers only the fixed
plans in the SQL plan baseline. You can use fixed plans to influence the plan selection
process of the optimizer.

frequency histogram
A type of histogram in which each distinct column value corresponds to a single bucket. An
analogy is sorting coins: all pennies go in bucket 1, all nickels go in bucket 2, and so on.

full outer join
A combination of a left and right outer join. In addition to the inner join, the database uses nulls
to preserve rows from both tables that have not been returned in the result of the inner join. In
other words, full outer joins join tables together, yet show rows with no corresponding rows in
the joined tables.

full table scan
A scan of table data in which the database sequentially reads all rows from a table and filters
out those that do not meet the selection criteria. All data blocks under the high water mark are
scanned.

global temporary table
A special temporary table that stores intermediate session-private data for a specific duration.

Glossary

Glossary-11

hard parse
The steps performed by the database to build a new executable version of application code.
The database must perform a hard parse instead of a soft parse if the parsed representation of
a submitted statement does not exist in the shared SQL area.

hash cluster
A type of table cluster that is similar to an indexed cluster, except the index key is replaced with
a hash function. No separate cluster index exists. In a hash cluster, the data is the index.

hash collision
Hashing multiple input values to the same output value.

hash function
A function that operates on an arbitrary-length input value and returns a fixed-length hash
value.

hash join
A method for joining large data sets. The database uses the smaller of two data sets to build a
hash table on the join key in memory. It then scans the larger data set, probing the hash table
to find the joined rows.

hash scan
An access path for a table cluster. The database uses a hash scan to locate rows in a hash
cluster based on a hash value. In a hash cluster, all rows with the same hash value are stored
in the same data block. To perform a hash scan, Oracle Database first obtains the hash value
by applying a hash function to a cluster key value specified by the statement, and then scans
the data blocks containing rows with that hash value.

hash table
An in-memory data structure that associates join keys with rows in a hash join. For example, in
a join of the employees and departments tables, the join key might be the department ID. A
hash function uses the join key to generate a hash value. This hash value is an index in an
array, which is the hash table.

hash value
In a hash cluster, a unique numeric ID that identifies a bucket. Oracle Database uses a hash
function that accepts an infinite number of hash key values as input and sorts them into a finite
number of buckets. Each hash value maps to the database block address for the block that
stores the rows corresponding to the hash key value (department 10, 20, 30, and so on).

Glossary

Glossary-12

hashing
A mathematical technique in which an infinite set of input values is mapped to a finite set of
output values, called hash values. Hashing is useful for rapid lookups of data in a hash table.

heap-organized table
A table in which the data rows are stored in no particular order on disk. By default, CREATE
TABLE creates a heap-organized table.

height-balanced histogram
A histogram in which column values are divided into buckets so that each bucket contains
approximately the same number of rows.

hint
An instruction passed to the optimizer through comments in a SQL statement. The optimizer
uses hints to choose an execution plan for the statement.

histogram
A special type of column statistic that provides more detailed information about the data
distribution in a table column.

hybrid hash distribution technique
An adaptive parallel data distribution that does not decide the final data distribution method
until execution time.

hybrid histogram
An enhanced height-based histogram that stores the exact frequency of each endpoint in the
sample, and ensures that a value is never stored in multiple buckets.

hybrid partitioned table
A table in which some partitions are stored in data file segments and some are stored in
external data source.

implicit query
A component of a DML statement that retrieves data without a subquery. An UPDATE, DELETE,
or MERGE statement that does not explicitly include a SELECT statement uses an implicit query to
retrieve the rows to be modified.

Glossary

Glossary-13

In-Memory scan
A table scan that retrieves rows from the In-Memory Column Store (IM column store).

incremental statistics maintenance
The ability of the database to generate global statistics for a partitioned table by aggregating
partition-level statistics.

index
Optional schema object associated with a nonclustered table, table partition, or table cluster. In
some cases indexes speed data access.

index cluster
An table cluster that uses an index to locate data. The cluster index is a B-tree index on the
cluster key.

index clustering factor
A measure of row order in relation to an indexed value such as employee last name. The more
scattered the rows among the data blocks, the lower the clustering factor.

index fast full scan
A scan of the index blocks in unsorted order, as they exist on disk. This scan reads the index
instead of the table.

index full scan
The scan of an entire index in key order.

index-organized table
A table whose storage organization is a variant of a primary B-tree index. Unlike a heap-
organized table, data is stored in primary key order.

index range scan
An index range scan is an ordered scan of an index that has the following characteristics:

• One or more leading columns of an index are specified in conditions.

• 0, 1, or more values are possible for an index key.

index range scan descending
An index range scan in which the database returns rows in descending order.

Glossary

Glossary-14

index skip scan
An index scan occurs in which the initial column of a composite index is "skipped" or not
specified in the query. For example, if the composite index key is (cust_gender,cust_email),
then the query predicate does not reference the cust_gender column.

index statistics
Statistics about indexes that the optimizer uses to determine whether to perform a full table
scan or an index scan. Index statistics include B-tree levels, leaf block counts, the index
clustering factor, distinct keys, and number of rows in the index.

index unique scan
A scan of an index that returns either 0 or 1 rowid.

indextype
An object that specifies the routines that manage a domain (application-specific) index.

inner join
A join of two or more tables that returns only those rows that satisfy the join condition.

inner table
In a nested loops join, the table that is not the outer table (driving table). For every row in the
outer table, the database accesses all rows in the inner table. The outer loop is for every row in
the outer table and the inner loop is for every row in the inner table.

join
A statement that retrieves data from multiple tables specified in the FROM clause of a SQL
statement. Join types include inner joins, outer joins, and Cartesian joins.

join condition
A condition that compares two row sources using an expression. The database combines pairs
of rows, each containing one row from each row source, for which the join condition evaluates
to true.

join elimination
The removal of redundant tables from a query. A table is redundant when its columns are only
referenced in join predicates, and those joins are guaranteed to neither filter nor expand the
resulting rows.

Glossary

Glossary-15

join factorization
A cost-based transformation that can factorize common computations from branches of a
UNION ALL query. Without join factorization, the optimizer evaluates each branch of a UNION
ALL query independently, which leads to repetitive processing, including data access and joins.
Avoiding an extra scan of a large base table can lead to a huge performance improvement.

join group
A user-created database object that specifies a group of columns that participate in an join.
Join groups are only supported in the In-Memory column store.

join method
A method of joining a pair of row sources. The possible join methods are nested loop, sort
merge, and hash joins. A Cartesian join requires one of the preceding join methods

join order
The order in which multiple tables are joined together. For example, for each row in the
employees table, the database can read each row in the departments table. In an alternative
join order, for each row in the departments table, the database reads each row in the
employees table.

To execute a statement that joins more than two tables, Oracle Database joins two of the
tables and then joins the resulting row source to the next table. This process continues until all
tables are joined into the result.

join predicate
A predicate in a WHERE or JOIN clause that combines the columns of two tables in a join.

key vector
A data structure that maps between dense join keys and dense grouping keys.

latch
A low-level serialization control mechanism used to protect shared data structures in the SGA
from simultaneous access.

left deep join tree
A join tree in which the left input of every join is the result of a previous join.

Glossary

Glossary-16

left table
In an outer join, the table specified on the left side of the OUTER JOIN keywords (in ANSI SQL
syntax).

library cache
An area of memory in the shared pool. This cache includes the shared SQL areas, private SQL
areas (in a shared server configuration), PL/SQL procedures and packages, and control
structures such as locks and library cache handles.

library cache hit
The reuse of SQL statement code found in the library cache.

library cache miss
During SQL processing, the act of searching for a usable plan in the library cache and not
finding it.

maintenance window
A contiguous time interval during which automated maintenance tasks run. The maintenance
windows are Oracle Scheduler windows that belong to the window group named
MAINTENANCE_WINDOW_GROUP.

manual plan capture
The user-initiated bulk load of existing plans into a SQL plan baseline.

materialized view
A schema object that stores a query result. All materialized views are either read-only or
updatable.

multiblock read
An I/O call that reads multiple database blocks. Multiblock reads can significantly speed up full
table scans. For example, a data block might be 8 KB, but the operating system can read 1024
KB in a single I/O. For some queries, the optimizer may decide that it is more cost-efficient to
read 128 data blocks in one I/O than in 128 sequential I/Os.

NDV
Number of distinct values. The NDV is important in generating cardinality estimates.

nested loops join
A type of join method. A nested loops join determines the outer table that drives the join, and
for every row in the outer table, probes each row in the inner table. The outer loop is for each

Glossary

Glossary-17

row in the outer table and the inner loop is for each row in the inner table. An analogy from
programming is a for loop inside of another for loop.

nonequijoin
A join whose join condition does not contain an equality operator.

nonjoin column
A predicate in a WHERE clause that references only one table.

nonpopular value
In a histogram, any value that does not span two or more endpoints. Any value that is not
nonpopular is a popular value.

noworkload statistics
Optimizer system statistics gathered when the database simulates a workload.

on-demand SQL tuning
The manual invocation of SQL Tuning Advisor. Any invocation of SQL Tuning Advisor that is
not the result of an Automatic SQL Tuning task is on-demand tuning.

optimization
The overall process of choosing the most efficient means of executing a SQL statement.

optimizer
Built-in database software that determines the most efficient way to execute a SQL statement
by considering factors related to the objects referenced and the conditions specified in the
statement.

optimizer cost model
The model that the optimizer uses to select an execution plan. The optimizer selects the
execution plan with the lowest cost, where cost represents the estimated resource usage for
that plan. The optimizer cost model accounts for the I/O, CPU, and network resources that the
query will use.

optimizer environment
The totality of session settings that can affect execution plan generation, such as the work area
size or optimizer settings (for example, the optimizer mode).

Glossary

Glossary-18

optimizer goal
The prioritization of resource usage by the optimizer. Using the OPTIMIZER_MODE initialization
parameter, you can set the optimizer goal best throughput or best response time.

optimizer statistics
Details about the database its object used by the optimizer to select the best execution plan
for each SQL statement. Categories include table statistics such as numbers of rows, index
statistics such as B-tree levels, system statistics such as CPU and I/O performance, and
column statistics such as number of nulls.

Optimizer Statistics Advisor
A tool that inspects statistics gathering practices, automatically diagnoses problems with these
practices, and generates a report of findings and recommendations.

Optimizer Statistics Advisor rules
System-supplied standards by which Optimizer Statistics Advisor performs its checks.

optimizer statistics collection
The gathering of optimizer statistics for database objects. The database can collect these
statistics automatically, or you can collect them manually by using the system-supplied
DBMS_STATS package.

optimizer statistics collector
A row source inserted into an execution plan at key points to collect run-time statistics for use
in adaptive plans.

optimizer statistics preferences
The default values of the parameters used by automatic statistics collection and the
DBMS_STATS statistics gathering procedures.

outer join
A join condition using the outer join operator (+) with one or more columns of one of the tables.
The database returns all rows that meet the join condition. The database also returns all rows
from the table without the outer join operator for which there are no matching rows in the table
with the outer join operator.

outer table
See driving table

Glossary

Glossary-19

parallel execution
The application of multiple CPU and I/O resources to the execution of a single database
operation.

parallel query
A query in which multiple processes work together simultaneously to run a single SQL query.
By dividing the work among multiple processes, Oracle Database can run the statement more
quickly. For example, four processes retrieve rows for four different quarters in a year instead
of one process handling all four quarters by itself.

parent cursor
The cursor that stores the SQL text and other minimal information for a SQL statement. The
child cursor contains the plan, compilation environment, and other information. When a
statement first executes, the database creates both a parent and child cursor in the shared
pool.

parse call
A call to Oracle to prepare a SQL statement for execution. The call includes syntactically
checking the SQL statement, optimizing it, and then building or locating an executable form of
that statement.

parsing
The stage of SQL processing that involves separating the pieces of a SQL statement into a
data structure that can be processed by other routines.

A hard parse occurs when the SQL statement to be executed is either not in the shared pool,
or it is in the shared pool but it cannot be shared. A soft parse occurs when a session attempts
to execute a SQL statement, and the statement is already in the shared pool, and it can be
used.

partition maintenance operation
A partition-related operation such as adding, exchanging, merging, or splitting table partitions.

partition-wise join
A join optimization that divides a large join of two tables, one of which must be partitioned on
the join key, into several smaller joins.

pending statistics
Unpublished optimizer statistics. By default, the optimizer uses published statistics but does
not use pending statistics.

Glossary

Glossary-20

performance feedback
This form of automatic reoptimization helps improve the degree of parallelism automatically
chosen for repeated SQL statements when PARALLEL_DEGREE_POLICY is set to ADAPTIVE.

pipelined table function
A PL/SQL function that accepts a collection of rows as input. You invoke the table function as
the operand of the table operator in the FROM list of a SELECT statement.

plan evolution
The manual change of an unaccepted plan in the SQL plan history into an accepted plan in
the SQL plan baseline.

plan generator
The part of the optimizer that tries different access paths, join methods, and join orders for a
given query block to find the plan with the lowest cost.

plan selection
The attempt to find a matching plan in the SQL plan baseline for a statement after performing
a hard parse.

plan verification
Comparing the performance of an unaccepted plan to a plan in a SQL plan baseline and
ensuring that it performs better.

popular value
In a histogram, any value that spans two or more endpoints. Any value that is not popular is an
nonpopular value.

predicate pushing
A transformation technique in which the optimizer "pushes" the relevant predicates from the
containing query block into the view query block. For views that are not merged, this technique
improves the subplan of the unmerged view because the database can use the pushed-in
predicates to access indexes or to use as filters.

private SQL area
An area in memory that holds a parsed statement and other information for processing. The
private SQL area contains data such as bind variable values, query execution state
information, and query execution work areas.

Glossary

Glossary-21

private temporary table
A memory-only temporary table whose data and metadata is session-private.

proactive SQL tuning
Using SQL tuning tools to identify SQL statements that are candidates for tuning before users
have complained about a performance problem.

See reactive SQL tuning, SQL tuning.

projection view
An optimizer-generated view that appear in queries in which a DISTINCT view has been
merged, or a GROUP BY view is merged into an outer query block that also contains GROUP BY,
HAVING, or aggregates.

See simple view merging, complex view merging.

query
An operation that retrieves data from tables or views. For example, SELECT * FROM employees
is a query.

query block
A top-level SELECT statement, subquery, or unmerged view

query optimizer
See optimizer.

reactive SQL tuning
Diagnosing and fixing SQL-related performance problems after users have complained about
them.

See proactive SQL tuning, SQL tuning.

real-time statistics
Supplemental statistics collected automatically during conventional DML operations.

recursive SQL
Additional SQL statements that the database must issue to execute a SQL statement issued
by a user. The generation of recursive SQL is known as a recursive call. For example, the
database generates recursive calls when data dictionary information is not available in memory
and so must be retrieved from disk.

Glossary

Glossary-22

reoptimization
See automatic reoptimization.

repeatable SQL statement
A statement that the database parses or executes after recognizing that it is tracked in the
SQL statement log.

response time
The time required to complete a unit of work.

See throughput.

result set
In a query, the set of rows generated by the execution of a cursor.

right deep join tree
A join tree in which the right input of every join is the result of a previous join, and the left child
of every internal node of a join tree is a table.

right table
In an outer join, the table specified on the right side of the OUTER JOIN keywords (in ANSI SQL
syntax).

rowid
A globally unique address for a row in a table.

row set
A set of rows returned by a step in an execution plan.

row source
An iterative control structure that processes a set of rows in an iterated manner and produces
a row set.

row source generator
Software that receives the optimal plan from the optimizer and outputs the execution plan for
the SQL statement.

Glossary

Glossary-23

row source tree
A collection of row sources produced by the row source generator. The row source tree for a
SQL statement shows information such as table order, access methods, join methods, and
data operations such as filters and sorts.

rule filter
The use of DBMS_STATS.CONFIGURE_ADVISOR_RULE_FILTER to restrict an Optimizer Statistics
Advisor task to a user-specified set of rules. For example, you might exclude the rule that
checks for stale statistics.

sample table scan
A scan that retrieves a random sample of data from a simple table or a complex SELECT
statement, such as a statement involving joins and views.

sampling
Gathering statistics from a random subset of rows in a table.

selectivity
A value indicating the proportion of a row set retrieved by a predicate or combination of
predicates, for example, WHERE last_name = 'Smith'. A selectivity of 0 means that no rows
pass the predicate test, whereas a value of 1 means that all rows pass the test.

The adjective selective means roughly "choosy." Thus, a highly selective query returns a low
proportion of rows (selectivity close to 0), whereas an unselective query returns a high
proportion of rows (selectivity close to 1).

semijoin
A join that returns rows from the first table when at least one match exists in the second table.
For example, you list departments with at least one employee. The difference between a
semijoin and a conventional join is that rows in the first table are returned at most once.
Semijoins use the EXISTS or IN constructs.

shared cursor
A shared SQL area that is used by multiple SQL statements.

shared pool
Portion of the SGA that contains shared memory constructs such as shared SQL areas.

Glossary

Glossary-24

shared SQL area
An area in the shared pool that contains the parse tree and execution plan for a SQL
statement. Only one shared SQL area exists for a unique statement. The shared SQL area is
sometimes referred to as the cursor cache.

simple database operation
A database operation consisting of a single SQL statement or PL/SQL procedure or function.

simple view merging
The merging of select-project-join views. For example, a query joins the employees table to a
subquery that joins the departments and locations tables.

SMB
See SQL management base (SMB).

snowflake schema
A star schema in which dimension tables reference other tables.

snowstorm schema
A combination of multiple snowflake schemas.

soft parse
Any parse that is not a hard parse. If a submitted SQL statement is the same as a reusable
SQL statement in the shared pool, then Oracle Database reuses the existing code. This reuse
of code is also called a library cache hit.

sort merge join
A type of join method. The join consists of a sort join, in which both inputs are sorted on the
join key, followed by a merge join, in which the sorted lists are merged.

SQL Access Advisor
SQL Access Advisor is internal diagnostic software that recommends which materialized
views, indexes, and materialized view logs to create, drop, or retain.

SQL compilation
In the context of Oracle SQL processing, this term refers collectively to the phases of parsing,
optimization, and plan generation.

Glossary

Glossary-25

SQL handle
A string value derived from the numeric SQL signature. Like the signature, the handle uniquely
identifies a SQL statement. It serves as a SQL search key in user APIs.

SQL ID
For a specific SQL statement, the unique identifier of the parent cursor in the library cache. A
hash function applied to the text of the SQL statement generates the SQL ID. The
V$SQL.SQL_ID column displays the SQL ID.

SQL incident
In the fault diagnosability infrastructure of Oracle Database, a single occurrence of a SQL-
related problem. When a problem (critical error) occurs multiple times, the database creates an
incident for each occurrence. Incidents are timestamped and tracked in the Automatic
Diagnostic Repository (ADR).

SQL management base (SMB)
A logical repository that stores statement logs, plan histories, SQL plan baselines, and SQL
profiles. The SMB is part of the data dictionary and resides in the SYSAUX tablespace.

SQL management object
A feature that stabilizes the execution plans of individual SQL statements. Examples include
SQL profiles, SQL plan baselines, and SQL patches.

SQL plan baseline
A set of one or more accepted plans for a repeatable SQL statement. Each accepted plan
contains a set of hints, a plan hash value, and other plan-related information. SQL plan
management uses SQL plan baselines to record and evaluate the execution plans of SQL
statements over time.

SQL plan capture
Techniques for capturing and storing relevant information about plans in the SQL management
base (SMB) for a set of SQL statements. Capturing a plan means making SQL plan
management aware of this plan.

SQL plan directive
Additional information and instructions that the optimizer can use to generate a more optimal
plan. For example, a SQL plan directive might instruct the optimizer to collect missing statistics
or gather dynamic statistics.

Glossary

Glossary-26

SQL plan history
The set of captured execution plans. The history contains both SQL plan baselines and
unaccepted plans.

SQL plan management
SQL plan management is a preventative mechanism that records and evaluates the execution
plans of SQL statements over time. SQL plan management can prevent SQL plan regressions
caused by environmental changes such as a new optimizer version, changes to optimizer
statistics, system settings, and so on.

SQL processing
The stages of parsing, optimization, row source generation, and execution of a SQL statement.

SQL profile
A set of auxiliary information built during automatic tuning of a SQL statement. A SQL profile is
to a SQL statement what statistics are to a table. The optimizer can use SQL profiles to
improve cardinality and selectivity estimates, which in turn leads the optimizer to select better
plans.

SQL profiling
The verification and validation by the Automatic Tuning Advisor of its own estimates.

SQL signature
A numeric hash value computed using a SQL statement text that has been normalized for case
insensitivity and white space. It uniquely identifies a SQL statement. The database uses this
signature as a key to maintain SQL management objects such as SQL profiles, SQL plan
baselines, and SQL patches.

SQL statement log
When automatic SQL plan capture is enabled, a log that contains the SQL ID of SQL
statements that the optimizer has evaluated over time. A statement is tracked when it exists in
the log.

SQL test case
A problematic SQL statement and related information needed to reproduce the execution plan
in a different environment. A SQL test case is stored in an Oracle Data Pump file.

Glossary

Glossary-27

SQL test case builder
A database feature that gathers information related to a SQL statement and packages it so that
a user can reproduce the problem on a different database. The DBMS_SQLDIAG package is the
interface for SQL test case builder.

SQL trace file
A server-generated file that provides performance information on individual SQL statements.
For example, the trace file contains parse, execute, and fetch counts, CPU and elapsed times,
physical reads and logical reads, and misses in the library cache.

SQL tuning
The process of improving SQL statement efficiency to meet measurable goals.

SQL Tuning Advisor
Built-in database diagnostic software that optimizes high-load SQL statements.

See Automatic SQL Tuning Advisor.

SQL tuning set (STS)
A database object that includes one or more SQL statements along with their execution
statistics and execution context.

star schema
A relational schema whose design represents a dimensional data model. The star schema
consists of one or more fact tables and one or more dimension tables that are related through
foreign keys.

statistics feedback
A form of automatic reoptimization that automatically improves plans for repeated queries that
have cardinality misestimates. The optimizer may estimate cardinalities incorrectly for many
reasons, such as missing statistics, inaccurate statistics, or complex predicates.

stored outline
A set of hints for a SQL statement. The hints in stored outlines direct the optimizer to choose a
specific plan for the statement.

subplan
A portion of an adaptive plan that the optimizer can switch to as an alternative at run time. A
subplan can consist of multiple operations in the plan. For example, the optimizer can treat a

Glossary

Glossary-28

join method and the corresponding access path as one unit when determining whether to
change the plan at run time.

subplan group
A set of subplans in an adaptive query plan.

subquery
A query nested within another SQL statement. Unlike implicit queries, subqueries use a
SELECT statement to retrieve data.

subquery unnesting
A transformation technique in which the optimizer transforms a nested query into an equivalent
join statement, and then optimizes the join.

synopsis
A set of auxiliary statistics gathered on a partitioned table when the INCREMENTAL value is set to
true.

system statistics
Statistics that enable the optimizer to use CPU and I/O characteristics. Index statistics include
B-tree levels, leaf block counts, clustering factor, distinct keys, and number of rows in the
index.

table cluster
A schema object that contains data from one or more tables, all of which have one or more
columns in common. In table clusters, the database stores together all the rows from all tables
that share the same cluster key.

table expansion
A transformation technique that enables the optimizer to generate a plan that uses indexes on
the read-mostly portion of a partitioned table, but not on the active portion of the table.

table statistics
Statistics about tables that the optimizer uses to determine table access cost, join cardinality,
join order, and so on. Table statistics include row counts, block counts, empty blocks, average
free space per block, number of chained rows, average row length, and staleness of the
statistics on the table.

throughput
The amount of work completed in a unit of time.

Glossary

Glossary-29

See response time.

top frequency histogram
A variation of a frequency histogram that ignores nonpopular values that are statistically
insignificant, thus producing a better histogram for highly popular values.

tuning mode
One of the two optimizer modes. When running in tuning mode, the optimizer is known as the
Automatic Tuning Optimizer. In tuning mode, the optimizer determines whether it can further
improve the plan produced in normal mode. The optimizer output is not an execution plan, but
a series of actions, along with their rationale and expected benefit for producing a significantly
better plan.

unaccepted plan
A plan for a statement that is in the SQL plan history but has not been added to the SQL plan
management.

unselective
A relatively large fraction of rows from a row set. A query becomes more unselective as the
selectivity approaches 1. For example, a query that returns 999,999 rows from a table with
one million rows is unselective. A query of the same table that returns one row is selective.

user response time
The time between when a user submits a command and receives a response.

See throughput.

V$ view
See dynamic performance view.

vector I/O
A type of I/O in which the database obtains a set of rowids, sends them batched in an array to
the operating system, which performs the read.

view merging
The merging of a query block representing a view into the query block that contains it. View
merging can improve plans by enabling the optimizer to consider additional join orders, access
methods, and other transformations.

Glossary

Glossary-30

workload statistics
Optimizer statistics for system activity in a specified time period.

Glossary

Glossary-31

Index

A
accepted plans, 4-28
access paths, 3-6, 8-1

B-tree indexes, 8-12
bitmap index, 8-30
bitmap index range scans, 8-37
bitmap indexes, 8-30, 8-31, 8-39
execution plans, 6-1
full table scans, 8-4, 10-8, 11-1
heap-organized tables, 8-2
In-Memory table scans, 8-10, 8-11
index fast full, 8-25
index full scans, 8-23
index join scans, 8-28
index range scans, 8-19
index skip scans, 8-26
index unique scans, 8-16
sample table scans, 8-9
table, 8-2
table access by rowid, 8-7
table cluster, 8-40

adaptive query optimization, 4-11
adaptive plans, 22-2
adaptive query plans, 4-11, 6-12, 6-15
controlling, 19-9
dynamic statistics, 10-14, 13-27

adaptive query plans, 4-11, 6-12, 6-15, 22-2
about, 4-12
bitmap index pruning, 4-18
cardinality misestimates, 4-12
enabling, 4-20
join methods, 4-13
optimizer statistics collector, 4-13
parallel distribution methods, 4-16
subplans, 4-13

adaptive sampling, 13-27
adaptive statistics, 4-20

automatic reoptimization, 4-21
dynamic statistics, 4-20
SQL plan directives, 4-23, 14-1
when enabled, 4-24

ADDM, 1-5
ADMINISTER ANY SQL TUNING SET system

privilege, 24-4

advisors
Optimizer Statistics Advisor, 18-1, 18-2
SPM Evolve Advisor, 29-4, 29-8
SQL Access Advisor, 26-1, 26-7, 26-8
SQL Tuning Advisor, 25-1

aggregate functions, 4-24
ALTER SESSION statement, 23-11
ANALYZE command, 16-2
antijoins, 9-4, 9-36

handling nulls, 9-38
how they work, 9-37
when the optimizer considers, 9-36

APPEND hint, 10-15
applications

implementing, 2-3
APPROX_COUNT function, 4-26
APPROX_COUNT_DISTINCT function, 4-26
APPROX_COUNT_DISTINCT_AGG function,

4-26
APPROX_COUNT_DISTINCT_DETAIL function,

4-26
APPROX_FOR_AGGREGATION initialization

parameter, 4-25
APPROX_FOR_COUNT_DISTINCT initialization

parameter, 4-25
APPROX_FOR_PERCENTILE initialization

parameter, 4-25
APPROX_MEDIAN function, 4-26
APPROX_PERCENTILE function, 4-26
APPROX_RANK function, 4-26
APPROX_SUM function, 4-26
approximate query processing, 4-24

initialization parameters, 4-25
SQL functions, 4-26

automatic indexing, 1-6
automatic plan capture

creating automatic capture filters, 29-6
enabling, 29-5

automatic reoptimization, 4-11, 4-21, 6-15, 10-28
cardinality misestimates, 4-21
performance feedback, 4-23
statistics feedback, 4-21

automatic statistics collection, 13-1
Automatic Tuning Optimizer, 1-5, 4-10

SQL profiles, 25-6
Automatic Workload Repository (AWR), 1-5

Index-1

B
B-tree indexes, 8-12
band joins, 9-26
big bang rollout strategy, 2-4
bind variables, 20-1

bind peeking, 20-13
cursors, 20-12
substitution, 20-20

bind-aware cursors, 20-29
bind-sensitive cursors, 20-25
bitmap indexes

access paths, 8-30
bitmap merge, 8-39
conversion to rowid, 8-35
inlist iterator, 6-30
pruning, 4-18
purpose, 8-31
range scans, 8-37
single value, 8-36

Bloom filters, 9-43
controls, 9-45
how they work, 9-44
metadata, 9-45
purpose, 9-43

BOOLEAN data type, 8-19
bulk loads

creating histograms, 10-16
gathering index statistics, 10-16
restrictions for online statistics gathering,

10-16
bushy join trees, 9-1
BYTES column

PLAN_TABLE table, 7-1

C
cardinality, 1-5, 4-5, 4-12, 4-13, 4-21, 4-23, 8-31,

10-2, 10-26, 11-1, 11-4, 27-2
CARDINALITY column

PLAN_TABLE table, 7-1
Cartesian joins, 9-41, 9-42
child cursors, 20-3

V$SQL, 20-5
column group statistics, 10-26

automatic and manual, 14-4
column groups, 14-1, 14-5

about, 14-1
creating, 14-8, 14-10
displaying information, 14-11
dropping, 14-12
optimizer statistics, 14-1
why needed, 14-2

columns
cardinality, 4-5

COMPARE_PLANS function, 6-32

compilation, SQL, 10-25, 10-26, 10-38
composite partitioning

examples of, 6-25
concurrent statistics gathering, 13-19, 13-20, 6
CONFIGURE procedure, 28-4
consistent mode

TKPROF, 23-26
COST column

PLAN_TABLE table, 7-1
CPU

system statistics, 13-36
current mode

TKPROF, 23-26
cursor sharing

adaptive, 20-23, 20-33
forcing, 20-21
Real-World Performance guidelines, 20-33

CURSOR_NUM column
TKPROF_TABLE table, 23-14

CURSOR_SHARING initialization parameter,
20-1, 20-20

cursor-duration temporary tables, 5-21, 5-22
cursors, 3-2

about, 20-1
adaptive sharing, 20-23, 20-33
bind variable peeking, 20-13
bind variables, 20-12
bind-aware, 20-29
bind-sensitive, 20-25
child, 20-3, 20-5
invalidating, 20-16
literals, 20-10
marked DEFERRED INVALIDATION, 20-18
marked rolling invalid, 20-18
merging, 20-32
parent, 20-3, 20-5
parsing and, 20-7
Real-World Performance guidelines, 20-33
sharing, 20-1
temporary tables and, 5-21, 5-22

D
data blocks, 3-8
data dictionary cache, 3-3
data modeling, 2-1
Data Pump

Export utility
statistics on system-generated columns

names, 17-3
Import utility

copying statistics, 17-3
data skew, 11-1
data types

BOOLEAN, 8-19

Index

Index-2

database operations
attributes, 21-6
composite, 1-10
definition, 1-10, 21-1
monitoring, 21-1
simple, 1-10, 21-1

database operations, monitoring, 1-10, 21-1
creating database operations, 21-12
enabling with hints, 21-11
enabling with initialization parameters, 21-10
Enterprise Manager interface, 21-4
PL/SQL interface, 21-5
purpose, 21-2
real-time SQL, 21-1
user interfaces, 21-4
using Cloud Control, 21-15

Database Resource Manager, 13-20
DATE_OF_INSERT column

TKPROF_TABLE table, 23-14
DB_FILE_MULTIBLOCK_READ_COUNT

initialization parameter, 8-6
DBA_ADVISOR_ACTIONS view, 26-31
DBA_ADVISOR_EXECUTIONS view, 18-13
DBA_IND_STATISTICS view, 13-14
DBA_OPTSTAT_OPERATION_TASKS view,

13-24
DBA_OPTSTAT_OPERATIONS view, 13-24
DBA_OUTLINES view, 30-6
DBA_SQL_MANAGEMENT_CONFIG view, 28-4,

29-40
DBA_SQL_PROFILES view, 27-2
DBA_STAT_EXTENSIONS view, 14-15
DBA_TAB_COL_STATISTICS view, 10-19, 11-4,

14-2
DBA_TAB_MODIFICATIONS view, 13-14
DBA_TAB_PENDING_STATS view, 15-5
DBA_TAB_STATISTICS view, 10-19, 13-14
DBMS_ADVISOR package, 26-1, 26-23, 26-26,

26-27
DBMS_AUTO_SQLTUNE package, 25-26
DBMS_AUTO_TASK_ADMIN package, 12-2
DBMS_MONITOR package, 1, 23-7, 23-11

end-to-end application tracing, 23-2
DBMS_SESSION package, 23-11
DBMS_SPM package, 29-1, 29-18, 29-30, 29-41,

30-6
DBMS_SQL_MONITOR package, 21-4
DBMS_SQLDIAG package, 22-6
DBMS_SQLSET package, 24-4
DBMS_SQLTUNE package, 24-4, 25-28, 25-34,

25-41, 25-42, 27-6
SQL Tuning Advisor, 25-33

DBMS_STATS package, 12-2, 13-13, 13-20,
13-26, 13-38, 13-44–13-46, 14-1, 14-8,
14-11, 14-15, 15-1, 15-5, 15-6, 16-2, 16-5,
16-6, 17-3

DBMS_XPLAN, 6-10
DBMS_XPLAN package, 6-9, 6-32
DDL (data definition language)

processing of, 3-9
deadlocks, 3-2
debugging designs, 2-3
dedicated server, 3-3
deferred invalidation, 20-18
density, histogram, 11-4
DEPTH column

TKPROF_TABLE table, 23-14
designs

debugging, 2-3
testing, 2-3
validating, 2-3

development environments, 2-3
DIAGNOSTIC_DEST initialization parameter,

23-10
DISTRIBUTION column

PLAN_TABLE table, 7-1, 7-9
domain indexes

and EXPLAIN PLAN, 6-31
DROP_SQL_PLAN_DIRECTIVE procedure,

12-15
dynamic statistics, 4-20, 10-14, 10-25, 10-36,

13-17, 22-2
controlling, 12-11
process, 12-11
sampling levels, 12-11
setting statistics level, 12-13
when to use, 12-15

E
end-to-end application tracing, 1-11, 1

action and module names, 23-2
creating a service, 23-2
DBMS_APPLICATION_INFO package, 23-2
DBMS_MONITOR package, 23-2
enabling, 23-6, 23-7
gathering statistics, 23-4
multitenant environment, 23-2
overview, 23-1
performing, 23-1
purpose, 23-1

endpoint repeat counts, in histograms, 11-17
ESS

See Expression Statistics Store
examples

EXPLAIN PLAN output, 23-17
EXECUTE_TASK procedure, 26-15
execution plans, 1-10, 3-3

about, 6-3
adaptive, 4-11, 6-12, 6-15
comparing, 6-31, 6-32, 6-39
contents, 6-1

Index

Index-3

execution plans (continued)
displaying, 6-1
generating, 6-1
generation, 4-8
overview of, 6-1
parallel execution, 6-20
reading, 6-9
reference, 7-1
TKPROF, 23-13, 23-23
V$ views, 6-12
viewing with the utlxpls.sql script, 6-3

execution trees, 3-6
EXPLAIN PLAN statement

access paths, 8-9, 8-11
and full partition-wise joins, 6-29
and partial partition-wise joins, 6-27
and partitioned objects, 6-23
basic steps, 6-4
examples of output, 23-17
invoking with the TKPROF program, 23-23
PLAN_TABLE table, 6-3
restrictions, 6-4
viewing the output, 6-3

expression statistics
creating, 14-14
dropping, 14-16
managing, 14-13

Expression Statistics Store (ESS), 4-29
expressions, optimizer

statistics, 14-13, 14-16
extended statistics, 10-6
extensions, optimizer, 10-25, 14-1

displaying, 14-15
external tables

guideline for gathering optimizer statistics,
13-14

F
fixed objects

gathering statistics for, 12-1, 13-16
FLUSH_DATABASE_MONITORING_INFO

procedure, 13-14
FLUSH_SQL_PLAN_DIRECTIVE procedure,

12-15
frequency histograms, 11-5, 11-6, 11-9
full outer joins, 9-32
full partition-wise joins, 6-29
full table scans, 8-4, 10-8, 11-1

G
global temporary tables, 10-3

H
hard parsing, 2-1, 3-3, 3-5, 20-7
hash clusters, 8-42
hash joins, 9-15

cost-based optimization, 9-4
how they work, 9-16
outer joins, 9-30

hash partitions, 6-23
examples of, 6-24

height-balanced histograms, 11-13, 11-14
high-frequency automatic optimizer statistics

collection
about, 13-6
configuring, 13-5
enabling, 13-6

high-load SQL
tuning, 12-2, 25-33

hints, optimizer, 1-11, 19-10
about, 19-11
APPEND, 10-15
conflicting, 19-19
examples, 19-19
GATHER_OPTIMIZER_STATISTICS, 10-17
guidelines, 19-15
INDEX_JOIN, 8-29
MONITOR, 21-7
multiple, 19-15
NO_GATHER_OPTIMIZER_STATISTICS,

10-17, 10-19
NO_MONITOR, 21-7, 21-11
NO_PX_JOIN_FILTER, 9-45
OPTIMIZER_FEATURES_ENABLE, 19-7
ORDERED, 9-42
PQ_DISTRIBUTE, 6-27
purpose, 19-11
PX_JOIN_FILTER, 9-45
reporting, 19-14, 19-17
statement-level, 19-19
types, 19-12
USE_NL, 9-14, 9-30
user interface for hint reports, 19-15

histograms, 11-1
bucket compression, 11-5
cardinality algorithms, 11-4
creation during bulk loads, 10-16
criteria for creation, 11-3
data skew, 11-1
definition, 11-1
density, 11-4
endpoint numbers, 11-4
endpoint repeat counts, 11-17
endpoint values, 11-4
frequency, 11-5, 11-6, 11-9
height-balanced, 11-13, 11-14
hybrid, 11-17, 11-19

Index

Index-4

histograms (continued)
NDV, 11-1
nonpopular values, 11-4
popular values, 11-4
purpose, 11-1
top frequency, 11-9

hybrid histograms, 11-17, 11-19
HyperLogLog algorithm, 13-27

I
I/O

system statistics, 13-36
ID column

PLAN_TABLE table, 7-1
In-Memory Aggregation, 5-21
In-Memory Expressions (IMEs)

Expression Statistics Store (ESS), 4-29
In-Memory table scans, 8-10

controls, 8-10
example, 8-11
when chosen, 8-10

Incident Manager, accessing, 22-5
incidents, SQL, 22-1
incremental statistics, 13-32, 13-34

considerations, 13-29
maintenance, 13-25
synopses, 13-26

index clustering factor, 10-8
index statistics, 10-7

index clustering factor, 10-8
INDEX_JOIN hint, 8-29
indexes

automatic, 1-6
B-tree, 8-12
bitmap, 4-18, 8-30, 8-31, 8-36
domain, 6-31
fast full scans, 8-25
full scans, 8-23
join scans, 8-28
range scans, 8-19
skip scans, 8-26
unique scans, 8-16

inner loop, in nested loops joins, 9-6
invalidation, deferred, 20-18

J
join conditions, 9-1
join methods

about, 9-5
hash joins, 9-16
nested loops, 9-5, 9-7, 9-10
sort merge joins, 9-19

join optimizations, 9-43
Bloom filters, 9-43

join optimizations (continued)
partition-wise, 9-47

join types, 9-24
antijoins, 9-36
inner joins, 9-24
outer joins, 5-31, 9-29, 9-30
semijoins, 9-34

joins, 9-1
about, 9-1
antijoins, 9-4, 9-37
band, 9-26
Bloom filters, 9-43
Cartesian, 9-1, 9-41, 9-42
conditions, 9-1
full outer, 9-32
hash, 9-15
how the optimizer executes, 9-3
index join scans, 8-28
inner, 9-24
join types, 9-24
nested loops, 3-6, 9-5, 9-6
nested loops and cost-based optimization, 9-4
order, 19-13
outer, 5-31, 9-29
partition-wise, 9-47

examples of full, 6-29
examples of partial, 6-27
full, 6-29

semijoins, 9-4, 9-34
sort merge, 9-20
sort-merge and cost-based optimization, 9-4
trees, 9-1

L
latches

parsing and, 3-3
left deep join trees, 9-1
library cache

misses, 3-3
literals, in cursors, 20-10

M
management objects, SQL, 1
manual plan capture, 28-5
materialized views

query rewrite, 5-11
parameters, 5-11

modeling, data, 2-1
multiversion read consistency, 3-8

N
NDV, 11-1

Index

Index-5

nested loops joins, 9-5, 9-6
controls, 9-14
cost-based optimization, 9-4
current implementation, 9-10
how they work, 9-6
nested nested loops, 9-7
original implementation, 9-12
outer joins, 9-30
USE_NL hint, 9-14

NO_GATHER_OPTIMIZER_STATISTICS hint,
10-19

NO_PX_JOIN_FILTER hint, 9-45
nonpopular values, in histograms, 11-4
NOT IN subquery, 9-4
nulls

in antijoins, 9-38

O
OBJECT_INSTANCE column

PLAN_TABLE table, 7-1
OBJECT_NAME column

PLAN_TABLE table, 7-1
OBJECT_NODE column

PLAN_TABLE table, 7-1
OBJECT_OWNER column

PLAN_TABLE table, 7-1
OBJECT_TYPE column

PLAN_TABLE table, 7-1
OPERATION column

PLAN_TABLE table, 7-1
optimizer

about, 3-5
access paths, 8-1
adaptive, 6-15
concepts, 4-1
cost-based, 4-1
definition, 4-1
environment, 3-3
estimator, 4-5
execution, 3-6
Expression Statistics Store (ESS), 4-29
extensions, 10-25, 14-15
goals, 19-8
plan generation, 4-8
purpose of, 4-1
query transformer, 4-4
row sources, 3-5, 9-5
SQL plan directives, 10-25
SQL processing, 3-1
throughput, 19-8
with rewrite, 5-11

OPTIMIZER column
PLAN_TABLE, 7-1

optimizer hints, 1-11, 19-10
about, 19-11

optimizer hints (continued)
APPEND, 10-15
examples, 19-19
guidelines, 19-15
INDEX_JOIN, 8-29
MONITOR, 21-11
multiple, 19-15
OPTIMIZER_FEATURES_ENABLE, 19-7
ORDERED, 9-42
PQ_DISTRIBUTE, 6-27
purpose, 19-11
reporting, 19-14, 19-17
types, 19-12
USE_NL, 9-30
user interface for reports, 19-15

optimizer statistics, 1, 10-1
adaptive statistics, 4-20
automatic collection, 13-1
bulk loads, 10-15
cardinality, 11-1
collection, 12-1
column groups, 10-26, 14-1, 14-2, 14-4, 14-8,

14-10
controlling, 15-1
determining staleness, 13-14
dynamic, 10-14, 10-25, 12-11, 13-17, 22-2
exporting and importing, 17-1
expressions, 14-13, 14-16
extended, 10-6, 14-1
gathering, 13-1
gathering concurrently, 13-19, 13-20, 6
gathering during bulk loads, 10-16
gathering manually, 13-10, 13-11
global statistics, 13-26
guideline for gathering external table, 13-14
high-frequency collection, 13-5, 13-6
histograms, 11-1, 11-14
history, 16-4
how gathered, 10-13
incremental, 13-25, 13-29, 13-32, 13-34
index, 10-7
locking, 15-1
managing, 16-1
manual collection, 13-11
monitoring collection, 13-24
noworkload, 13-44
Optimizer Statistics Advisor, 18-1, 18-2
options for gathering, 12-1
partitioned tables, 13-13, 13-29
pending, 15-3, 15-6
pluggable databases and, 13-1
preferences, 12-2, 12-4, 12-5
publishing, 15-5
purging, 16-6
reporting mode, 13-46
restoring, 16-1, 16-2

Index

Index-6

optimizer statistics (continued)
retention, 16-4
retention period, 16-5
setting, 15-9, 15-10
SQL plan directives, 10-25, 14-1
system, 13-38, 13-44, 13-45, 25-5
table, 10-2
temporary, 10-3
transporting, 17-3
types, 10-2
unlocking, 15-2
when gathered, 10-25
workload, 13-40

Optimizer Statistics Advisor, 18-1
about, 18-3
actions, 18-6
basic tasks, 18-9
benefits, 18-3
components, 18-3
creating a rule filter, 18-17, 18-19
creating a task, 18-12, 18-24
creating an object filter, 18-14
DBA_ADVISOR_EXECUTIONS view, 18-13
DBMS_STATS PL/SQL package, 18-7
executing a task, 18-23
filters, 18-13
findings, 18-5
generating a script, 18-30
implementing actions automatically, 18-28
listing advisor tasks, 18-13
modes of operation, 18-7
problems with script-based approach, 18-2
purpose, 18-2
recommendations, 18-6
rules, 18-4

optimizer statistics collection, 12-1, 13-5, 13-6
optimizer statistics collectors, 4-13
OPTIMIZER_ADAPTIVE_STATISTICS

initialization parameter, 4-24
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINE

S initialization parameter, 28-3, 29-4
OPTIMIZER_FEATURES_ENABLE initialization

parameter, 19-7
OPTIMIZER_USE_PENDING_STATISTICS

initialization parameter, 15-5
OPTIMIZER_USE_SQL_PLAN_BASELINES

initialization parameter, 28-3, 29-4
OPTIONS column

PLAN_TABLE table, 7-1
OR expansion, 5-1
ORA$AUTOTASK consumer group, 13-20
Oracle Exadata Database Machine, 25-5, 27-2
ORDERED hint, 9-42
OTHER column

PLAN_TABLE table, 7-1

OTHER_TAG column
PLAN_TABLE table, 7-1

outer joins, 9-29, 9-30
hash joins, 9-30

outer loops, in nested loops join, 9-6

P
parent cursors, 20-3, 20-5
PARENT_ID column

PLAN_TABLE table, 7-1
parsing, SQL, 3-2

hard, 2-1, 20-7
hard parse, 3-3
parse trees, 3-6
soft, 2-1
soft parse, 3-3

PARTITION_ID column
PLAN_TABLE table, 7-1

PARTITION_START column
PLAN_TABLE table, 7-1

PARTITION_STOP column
PLAN_TABLE table, 7-1

partition-wise joins, 9-47
full, 6-29
full, and EXPLAIN PLAN output, 6-29
how they work, 9-47
partial, and EXPLAIN PLAN output, 6-27
purpose, 9-47

partitioned objects
and EXPLAIN PLAN statement, 6-23
gathering incremental statistics, 13-25, 13-29
gathering statistics, 13-29
guideline for gathering statistics, 13-13

partitioning
examples of, 6-24
examples of composite, 6-25
hash, 6-23
maintenance operations, 13-32
range, 6-23
start and stop columns, 6-24

plan evolution
purpose, 28-8

PLAN_TABLE table
BYTES column, 7-1
CARDINALITY column, 7-1
COST column, 7-1
creating, 6-3
displaying, 6-9
DISTRIBUTION column, 7-1
ID column, 7-1
OBJECT_INSTANCE column, 7-1
OBJECT_NAME column, 7-1
OBJECT_NODE column, 7-1
OBJECT_OWNER column, 7-1
OBJECT_TYPE column, 7-1

Index

Index-7

PLAN_TABLE table (continued)
OPERATION column, 7-1
OPTIMIZER column, 7-1
OPTIONS column, 7-1
OTHER column, 7-1
OTHER_TAG column, 7-1
PARENT_ID column, 7-1
PARTITION_ID column, 7-1
PARTITION_START column, 7-1
PARTITION_STOP column, 7-1
POSITION column, 7-1
REMARKS column, 7-1
SEARCH_COLUMNS column, 7-1
STATEMENT_ID column, 7-1
TIMESTAMP column, 7-1

pluggable databases
automatic optimizer statistics collection, 13-1
manageability features, 13-1
SQL management base, 28-10
SQL Tuning Advisor, 25-1
SQL tuning sets, 24-1

popular values, in histograms, 11-4
POSITION column

PLAN_TABLE table, 7-1
PQ_DISTRIBUTE hint, 6-27
preferences, optimizer statistics, 12-2, 12-5
private SQL areas, 20-1

parsing and, 3-2
processes

dedicated server, 3-3
profiles, SQL

about, 27-1
concepts, 27-2
implementing, 27-7
managing, 27-1

programming languages, 2-3
PX_JOIN_FILTER hint, 9-45

Q
quarantined SQL, 4-28
query rewrite

correctness, 5-12
parameters, 5-11

query transformations, 5-1
In-Memory Aggregation, 5-21
join factorization, 5-28, 5-29
OR expansion, 5-1
predicate pushing, 5-9
purpose of table expansions, 5-23
query rewrite with materialized views, 5-11
star transformation, 5-16
star transformations, 5-14, 8-31
subquery unnesting, 5-10
table expansion, 5-23, 5-24
view merging, 5-3

query transformer, 4-4

R
range

examples of partitions, 6-24
partitions, 6-23

Real-Time Database Operations, 1-10
Real-Time SQL Monitoring, 1-10, 21-1

architecture, 21-3
Real-World Performance

cursor sharing, 20-1
recursive SQL, 3-9, 10-14, 10-38, 23-16
REMARKS column

PLAN_TABLE table, 7-1
reoptimization, automatic, 4-21, 6-15, 10-28

cardinality misestimates, 4-21
performance feedback, 4-23
statistics feedback, 4-21

restoring optimizer statistics, 16-1, 16-2
result sets, SQL, 3-5, 3-8
rewrites

parameters, 5-11
right deep join trees, 9-1
rolling invalid cursors, 20-18
rollout strategies

big bang approach, 2-4
trickle approach, 2-4

rowids
table access by, 8-7

rows
row sets, 3-5
row sources, 3-5, 1, 9-5
rowids used to locate, 8-7

S
SAMPLE BLOCK clause, 8-9
SAMPLE clause, 8-9
sample table scans, 8-9
scans

In-Memory, 8-10
sample table, 8-9

SEARCH_COLUMNS column
PLAN_TABLE table, 7-1

SELECT statement
SAMPLE clause, 8-9

semijoins, 9-4, 9-34
how they work, 9-34
when the optimizer consider, 9-34

SET_EVOLVE_TASK_PARAMETER procedure,
29-9

shared cursors
life cycle, 20-16

shared pool, 10-26, 20-1
parsing check, 3-3

Index

Index-8

shared SQL areas, 3-3, 20-1
SMB

See SQL management base
soft parsing, 2-1, 3-3
sort merge joins, 9-19

cost-based optimization, 9-4
how they work, 9-20

SPM Evolve Advisor, 29-4, 29-8
SPM Evolve Advisor task

about, 29-9
managing, 29-8
scheduling, 29-10

SQL
execution, 3-6
management objects, 1
operators, 1
optimization, 4-1
parsing, 3-2
processing, 3-1
quarantined, 4-28
recursive, 3-9, 10-38, 12-11
result sets, 3-5, 3-8
stages of processing, 8-2, 8-12
test cases, 22-1

SQL Access Advisor, 1-6, 26-1
about, 26-1
actions, 26-5
advanced tasks, 26-22
basic tasks, 26-8
constants, 26-33
creating task templates, 26-24
deleting tasks, 26-28
demo script, 26-31
evaluation mode, 26-22
EXECUTE_TASK procedure, 26-15
filter options, 26-3
input sources, 26-3
marking recommendations, 26-29
modifying recommendations, 26-30
populating SQL tuning sets, 26-11
quick tune, 26-21
recommendations, 26-6
reference, 26-31
repository, 26-6
task categories, 26-33
terminating tasks, 26-26
updating task attributes, 26-23
user interfaces, 26-7

SQL compilation, 10-25, 10-26, 10-38
SQL incidents, 22-1
SQL management base, 29-41

changing disk space limits, 29-41
managing, 29-40
plan retention policy, 29-42
pluggable databases and, 28-10

SQL Performance Analyzer, 1-9

SQL plan baselines, 1-9, 4-28, 28-1
automatic plan capture, 28-4
configuring initial capture, 29-4
displaying, 29-16
dropping, 29-38
loading, 29-18
loading from AWR, 29-19
loading from shared SQL area, 29-21
loading using DBMS_SPM, 29-18
managing, 29-1
plan history, 28-12
plan matching, 28-5
plan retention, 29-42

SQL plan capture, 28-3
configuring filters of automatic plan capture,

29-6
enabling automatic, 29-5

SQL plan directives, 4-23, 10-25, 14-1
cardinality misestimates, 10-26
creation, 10-26
managing, 12-15

SQL plan evolution
managing an evolve task, 29-30

SQL plan history, 28-12
SQL plan management, 1-9

accepted plans, 4-28
automatic plan capture, 28-3, 29-5
basic tasks, 29-3
benefits, 28-1
configuring, 29-4
DBMS_SPM, 29-2
DBMS_SPM package, 29-1
filters for automatic plan capture, 29-6
introduction, 28-1
loading plans from a staging table, 29-26
loading plans from SQL tuning sets, 29-23
manual plan capture, 28-5
plan capture, 28-1
plan evolution, 28-1, 28-8, 29-30
plan retention, 29-42
plan selection, 28-1, 28-7
plan verification, 28-8
purpose, 28-1
SPM Evolve Advisor, 29-8
SQL management base, 29-40, 29-41
SQL plan baselines, 4-28, 28-1, 29-1, 29-38
SQL plan capture, 28-3
storage architecture, 28-10
user interfaces, 29-1

SQL processing, 3-1
semantic check, 3-2
shared pool check, 3-3
stages, 3-1
syntax check, 3-2

SQL profiles, 1-5, 25-6
about, 27-1

Index

Index-9

SQL profiles (continued)
and SQL plan baselines, 28-2
concepts, 27-2
Exadata-aware, 27-2
implementing, 27-7
managing, 27-1
statistics, 27-2
user interface, 27-6

SQL statement log, 28-11
SQL statements

execution plans of, 6-1
SQL Test Case Builder, 22-1

accessing the Incident Manager, 22-5
accessing the Support Workbench, 22-6
command-line interface, 22-6
gathering diagnostic data, 22-1
graphical interface, 22-5
key concepts, 22-1
output, 22-3
running, 22-7
SQL incidents, 22-1
user interfaces, 22-5
what it captures, 22-2

SQL trace facility, 1, 23-3, 23-10
enabling, 23-11
generating output, 23-13
output, 23-26
statement truncation, 23-13
trace files, 1-11, 23-10

SQL tuning
automation, 1-4
definition, 1-1
introduction, 1-1
manual tools, 1-10
proactive, 1-2
purpose, 1-1
reactive, 1-2
tools overview, 1-2, 1-4

SQL Tuning Advisor, 1-5, 25-1
about, 25-1
administering with APIs, 25-33
analyses, 25-5
architecture, 25-2
automatic, 25-22, 25-28
automatic tuning task, 25-20, 25-26
command-line interface, 25-34
configuring a SQL tuning task, 25-38
controls, 25-14
creating a task, 25-36
DBMS_SQLTUNE, 25-34
displaying tuning results, 25-42
executing a task, 25-40
input sources, 25-3
monitoring tasks, 25-41
pluggable databases and, 25-1
reports, 25-28

SQL Tuning Advisor (continued)
running on-demand, 25-32
statistical analysis, 25-5
using, 12-2, 25-33

SQL tuning sets
command-line interface, 24-4
creating, 24-6
loading, 24-7
loading in SQL plan baselines, 29-23
managing with APIs, 24-1
pluggable databases and, 24-1
populating with user-defined workload, 26-11

SQL_STATEMENT column
TKPROF_TABLE, 23-14

star transformations, 5-14, 5-16, 8-31
start columns

in partitioning and EXPLAIN PLAN statement,
6-24

STATEMENT_ID column
PLAN_TABLE table, 7-1

STATISTICS_LEVEL initialization parameter, 16-6
statistics, optimizer, 4-1, 1

adaptive statistics, 4-20, 13-27
automatic collection, 13-1
bulk loads, 10-15
cardinality, 11-1
collection, 12-1
column group, 10-26
column groups, 14-1, 14-2, 14-5, 14-8, 14-10
controlling, 15-1
deleting, 13-45
determining staleness, 13-14
dynamic, 10-14, 10-25, 12-11, 13-17, 22-2
dynamic statistics, 10-36
exporting and importing, 17-1
expressions, 14-13
extended, 10-6, 14-1
gathering concurrently, 13-19
gathering manually, 13-10, 13-11
global statistics, 13-26
guideline for external tables, 13-14
history, 16-4
how gathered, 10-13
incremental, 13-25, 13-29, 13-32, 13-34
index, 10-7
locking, 15-1
managing, 16-1
manual collection, 13-11
monitoring collection, 13-24
noworkload, 13-44
Optimizer Statistics Advisor, 18-1, 18-2
options for gathering, 12-1
partitioned tables, 13-29
pending, 15-3, 15-6
preferences, 12-2
publishing, 15-5

Index

Index-10

statistics, optimizer (continued)
purging, 16-6
reporting mode, 13-46
restoring, 16-1, 16-2
retention, 16-4
retention period, 16-5
setting, 15-9
system, 10-12, 13-36, 13-38
table, 10-2
transporting, 17-3
types, 10-2
unlocking, 15-2
user-defined, 10-13
when gathered, 10-25
workload, 13-40

stop columns
in partitioning and EXPLAIN PLAN statement,

6-24
stored outlines

about, 30-1
categories, 30-3
how they work, 30-2
purpose of migrating, 30-1

subqueries
NOT IN, 9-4

Support Workbench, accessing, 22-6
synopses, 13-26
SYS_AUTO_SQL_TUNING_TASK, 25-40
system statistics, 13-38, 25-5

about, 13-36
deleting, 13-45
gathering, 13-42
noworkload, 13-44

T
table clusters

access paths, 8-40
table expansion

about, 5-23
how it works, 5-23
purpose, 5-23
scenario, 5-24

table statistics, 10-2
task templates, SQL Access Advisor, 26-24
temporary tables

cursor-duration, 5-21, 5-22
global, 10-3
types, 10-3

testing designs, 2-3
throughput

optimizer goal, 19-8
TIMED_STATISTICS initialization parameter,

23-26
TIMESTAMP column

PLAN_TABLE table, 7-1

TKPROF program, 23-4, 23-10, 23-20, 23-22
editing the output SQL script, 23-14
example of output, 23-17
generating the output SQL script, 23-14
row source operations, 23-27
timing statistics, 23-16
using the EXPLAIN PLAN statement, 23-23
wait event information, 23-27

TKPROF_TABLE, 23-14
top frequency histograms, 11-9
tracing, 1, 23-1

consolidating with TRCSESS, 23-20
enabling, 23-6, 23-7
enabling statistics gathering, 23-4
generating output files, 23-10
identifying files, 23-10

transformations, query
In-Memory Aggregation, 5-21
join factorization, 5-28, 5-29
predicate pushing, 5-9
purpose of table expansions, 5-23
star, 5-14
subquery unnesting, 5-10
table expansion, 5-23, 5-24
view merging, 5-3

transformer, query, 4-4
TRCSESS program, 23-20
trees, join, 9-1
trickle rollout strategy, 2-4
TRUNCATE command, 16-2

U
unique index scans, 8-16
USE_NL hint, 9-14, 9-30
USER_ID column, TKPROF_TABLE, 23-14
utlxplp.sql script, 6-9
utlxpls.sql script, 6-9

V
V$SESSION view, 23-4
V$SQL view, 20-5, 20-33
V$SQL_CS_HISTOGRAM view, 20-33
V$SQL_CS_SELECTIVITY view, 20-33
V$SQL_CS_STATISTICS view, 20-33
V$SQLAREA view, 20-5
validating designs, 2-3
view merging, 5-3

W
workloads, 2-3

Index

Index-11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database SQL Tuning Guide
	Changes in Oracle Database Release 19c, Version 19.10
	Changes in Oracle Database Release 19c, Version 19.6
	Changes in Oracle Database Release 19c, Version 19.1
	New Features
	Other Changes

	Changes in Oracle Database Release 18c, Version 18.1
	New Features

	Part I SQL Performance Fundamentals
	1 Introduction to SQL Tuning
	About SQL Tuning
	Purpose of SQL Tuning
	Prerequisites for SQL Tuning
	Tasks and Tools for SQL Tuning
	SQL Tuning Tasks
	SQL Tuning Tools
	Automated SQL Tuning Tools
	Automatic Database Diagnostic Monitor (ADDM)
	SQL Tuning Advisor
	SQL Access Advisor
	Automatic Indexing
	How Automatic Indexing Works
	Enabling and Managing Automatic Indexing

	SQL Plan Management
	SQL Performance Analyzer

	Manual SQL Tuning Tools
	Execution Plans
	Real-Time SQL Monitoring and Real-Time Database Operations
	Application Tracing
	Optimizer Hints

	User Interfaces to SQL Tuning Tools

	2 SQL Performance Methodology
	Guidelines for Designing Your Application
	Guideline for Data Modeling
	Guideline for Writing Efficient Applications

	Guidelines for Deploying Your Application
	Guideline for Deploying in a Test Environment
	Guidelines for Application Rollout

	Part II Query Optimizer Fundamentals
	3 SQL Processing
	About SQL Processing
	SQL Parsing
	Syntax Check
	Semantic Check
	Shared Pool Check

	SQL Optimization
	SQL Row Source Generation
	SQL Execution

	How Oracle Database Processes DML
	How Row Sets Are Fetched
	Read Consistency
	Data Changes

	How Oracle Database Processes DDL

	4 Query Optimizer Concepts
	Introduction to the Query Optimizer
	Purpose of the Query Optimizer
	Cost-Based Optimization
	Execution Plans
	Query Blocks
	Query Subplans
	Analogy for the Optimizer

	About Optimizer Components
	Query Transformer
	Estimator
	Selectivity
	Cardinality
	Cost

	Plan Generator

	About Automatic Tuning Optimizer
	About Adaptive Query Optimization
	Adaptive Query Plans
	About Adaptive Query Plans
	Purpose of Adaptive Query Plans
	How Adaptive Query Plans Work
	Adaptive Query Plans: Join Method Example
	Adaptive Query Plans: Parallel Distribution Methods
	Adaptive Query Plans: Bitmap Index Pruning

	When Adaptive Query Plans Are Enabled

	Adaptive Statistics
	Dynamic Statistics
	Automatic Reoptimization
	Reoptimization: Statistics Feedback
	Reoptimization: Performance Feedback

	SQL Plan Directives
	When Adaptive Statistics Are Enabled

	About Approximate Query Processing
	Approximate Query Initialization Parameters
	Approximate Query SQL Functions

	About SQL Plan Management
	About Quarantined SQL Plans
	About the Expression Statistics Store (ESS)

	5 Query Transformations
	OR Expansion
	View Merging
	Query Blocks in View Merging
	Simple View Merging
	Complex View Merging

	Predicate Pushing
	Subquery Unnesting
	Query Rewrite with Materialized Views
	About Query Rewrite and the Optimizer
	About Initialization Parameters for Query Rewrite
	About the Accuracy of Query Rewrite
	Example of Query Rewrite

	Star Transformation
	About Star Schemas
	Purpose of Star Transformations
	How Star Transformation Works
	Controls for Star Transformation
	Star Transformation: Scenario
	Temporary Table Transformation: Scenario

	In-Memory Aggregation (VECTOR GROUP BY)
	Cursor-Duration Temporary Tables
	Purpose of Cursor-Duration Temporary Tables
	How Cursor-Duration Temporary Tables Work
	Cursor-Duration Temporary Tables: Example

	Table Expansion
	Purpose of Table Expansion
	How Table Expansion Works
	Table Expansion: Scenario
	Table Expansion and Star Transformation: Scenario

	Join Factorization
	Purpose of Join Factorization
	How Join Factorization Works
	Factorization and Join Orders: Scenario
	Factorization of Outer Joins: Scenario

	Part III Query Execution Plans
	6 Explaining and Displaying Execution Plans
	Introduction to Execution Plans
	Contents of an Execution Plan
	Why Execution Plans Change
	Different Schemas
	Different Costs

	Generating Plan Output Using the EXPLAIN PLAN Statement
	About the EXPLAIN PLAN Statement
	About PLAN_TABLE
	EXPLAIN PLAN Restrictions

	Explaining a SQL Statement: Basic Steps
	Specifying a Statement ID in EXPLAIN PLAN: Example
	Specifying a Different Location for EXPLAIN PLAN Output: Example
	EXPLAIN PLAN Output for a CONTAINERS Query: Example

	Displaying Execution Plans
	About the Display of PLAN_TABLE Output
	DBMS_XPLAN Display Functions
	Plan-Related Views

	Displaying Execution Plans: Basic Steps
	Displaying Adaptive Query Plans: Tutorial
	Display Execution Plans: Examples
	Customizing PLAN_TABLE Output
	Displaying Parallel Execution Plans: Example
	About EXPLAIN PLAN and Parallel Queries
	Viewing Parallel Queries with EXPLAIN PLAN: Example

	Displaying Bitmap Index Plans: Example
	Displaying Result Cache Plans: Example
	Displaying Plans for Partitioned Objects: Example
	Displaying Range and Hash Partitioning with EXPLAIN PLAN: Examples
	Pruning Information with Composite Partitioned Objects: Examples
	Examples of Partial Partition-Wise Joins
	Example of Full Partition-Wise Join
	Examples of INLIST ITERATOR and EXPLAIN PLAN
	When the IN-List Column is an Index Column: Example
	When the IN-List Column is an Index and a Partition Column: Example
	When the IN-List Column is a Partition Column: Example

	Example of Domain Indexes and EXPLAIN PLAN

	Comparing Execution Plans
	Purpose of Plan Comparison
	User Interface for Plan Comparison
	Comparing Execution Plans: Tutorial
	Comparing Execution Plans: Examples

	7 PLAN_TABLE Reference
	PLAN_TABLE Columns
	OPERATION and OPTION Columns of PLAN_TABLE
	DISTRIBUTION Column of PLAN_TABLE

	Part IV SQL Operators: Access Paths and Joins
	8 Optimizer Access Paths
	Introduction to Access Paths
	Table Access Paths
	About Heap-Organized Table Access
	Row Storage in Data Blocks and Segments: A Primer
	Importance of Rowids for Row Access
	Direct Path Reads

	Full Table Scans
	When the Optimizer Considers a Full Table Scan
	How a Full Table Scan Works
	Full Table Scan: Example

	Table Access by Rowid
	When the Optimizer Chooses Table Access by Rowid
	How Table Access by Rowid Works
	Table Access by Rowid: Example

	Sample Table Scans
	When the Optimizer Chooses a Sample Table Scan
	Sample Table Scans: Example

	In-Memory Table Scans
	When the Optimizer Chooses an In-Memory Table Scan
	In-Memory Query Controls
	In-Memory Table Scans: Example

	B-Tree Index Access Paths
	About B-Tree Index Access
	B-Tree Index Structure
	How Index Storage Affects Index Scans
	Unique and Nonunique Indexes
	B-Tree Indexes and Nulls

	Index Unique Scans
	When the Optimizer Considers Index Unique Scans
	How Index Unique Scans Work
	Index Unique Scans: Example

	Index Range Scans
	When the Optimizer Considers Index Range Scans
	How Index Range Scans Work
	Index Range Scan: Example
	Index Range Scan Descending: Example

	Index Full Scans
	When the Optimizer Considers Index Full Scans
	How Index Full Scans Work
	Index Full Scans: Example

	Index Fast Full Scans
	When the Optimizer Considers Index Fast Full Scans
	How Index Fast Full Scans Work
	Index Fast Full Scans: Example

	Index Skip Scans
	When the Optimizer Considers Index Skip Scans
	How Index Skip Scans Work
	Index Skip Scans: Example

	Index Join Scans
	When the Optimizer Considers Index Join Scans
	How Index Join Scans Work
	Index Join Scans: Example

	Bitmap Index Access Paths
	About Bitmap Index Access
	Differences Between Bitmap and B-Tree Indexes
	Purpose of Bitmap Indexes
	Bitmaps and Rowids
	Bitmap Join Indexes
	Bitmap Storage

	Bitmap Conversion to Rowid
	When the Optimizer Chooses Bitmap Conversion to Rowid
	How Bitmap Conversion to Rowid Works
	Bitmap Conversion to Rowid: Example

	Bitmap Index Single Value
	When the Optimizer Considers Bitmap Index Single Value
	How Bitmap Index Single Value Works
	Bitmap Index Single Value: Example

	Bitmap Index Range Scans
	When the Optimizer Considers Bitmap Index Range Scans
	How Bitmap Index Range Scans Work
	Bitmap Index Range Scans: Example

	Bitmap Merge
	When the Optimizer Considers Bitmap Merge
	How Bitmap Merge Works
	Bitmap Merge: Example

	Table Cluster Access Paths
	Cluster Scans
	When the Optimizer Considers Cluster Scans
	How a Cluster Scan Works
	Cluster Scans: Example

	Hash Scans
	When the Optimizer Considers a Hash Scan
	How a Hash Scan Works
	Hash Scans: Example

	9 Joins
	About Joins
	Join Trees
	How the Optimizer Executes Join Statements
	How the Optimizer Chooses Execution Plans for Joins

	Join Methods
	Nested Loops Joins
	When the Optimizer Considers Nested Loops Joins
	How Nested Loops Joins Work
	Nested Nested Loops
	Current Implementation for Nested Loops Joins
	Original Implementation for Nested Loops Joins
	Nested Loops Controls

	Hash Joins
	When the Optimizer Considers Hash Joins
	How Hash Joins Work
	Hash Tables
	Hash Join: Basic Steps

	How Hash Joins Work When the Hash Table Does Not Fit in the PGA
	Hash Join Controls

	Sort Merge Joins
	When the Optimizer Considers Sort Merge Joins
	How Sort Merge Joins Work
	Sort Merge Join Controls

	Join Types
	Inner Joins
	Equijoins
	Nonequijoins
	Band Joins

	Outer Joins
	Nested Loops Outer Joins
	Hash Join Outer Joins
	Sort Merge Outer Joins
	Full Outer Joins
	Multiple Tables on the Left of an Outer Join

	Semijoins
	When the Optimizer Considers Semijoins
	How Semijoins Work

	Antijoins
	When the Optimizer Considers Antijoins
	How Antijoins Work
	How Antijoins Handle Nulls

	Cartesian Joins
	When the Optimizer Considers Cartesian Joins
	How Cartesian Joins Work
	Cartesian Join Controls

	Join Optimizations
	Bloom Filters
	Purpose of Bloom Filters
	How Bloom Filters Work
	Bloom Filter Controls
	Bloom Filter Metadata
	Bloom Filters: Scenario

	Partition-Wise Joins
	Purpose of Partition-Wise Joins
	How Partition-Wise Joins Work
	How a Full Partition-Wise Join Works
	How a Partial Partition-Wise Join Works

	In-Memory Join Groups

	Part V Optimizer Statistics
	10 Optimizer Statistics Concepts
	Introduction to Optimizer Statistics
	About Optimizer Statistics Types
	Table Statistics
	Permanent Table Statistics
	Temporary Table Statistics
	Types of Temporary Tables
	Statistics for Global Temporary Tables
	Shared and Session-Specific Statistics for Global Temporary Tables

	Column Statistics
	Index Statistics
	Types of Index Statistics
	Index Clustering Factor
	Effect of Index Clustering Factor on Cost: Example

	System Statistics
	User-Defined Optimizer Statistics

	How the Database Gathers Optimizer Statistics
	DBMS_STATS Package
	Supplemental Dynamic Statistics
	Online Statistics Gathering
	Online Statistics Gathering for Bulk Loads
	Purpose of Online Statistics Gathering for Bulk Loads
	Global Statistics During Inserts into Partitioned Tables
	Histogram Creation After Bulk Loads
	Restrictions for Online Statistics Gathering for Bulk Loads
	User Interface for Online Statistics Gathering for Bulk Loads

	Online Statistics Gathering for Partition Maintenance Operations
	Real-Time Statistics
	Purpose of Real-Time Statistics
	How Real-Time Statistics Work
	User Interface for Real-Time Statistics
	Real-Time Statistics: Example

	When the Database Gathers Optimizer Statistics
	Sources for Optimizer Statistics
	SQL Plan Directives
	When the Database Creates SQL Plan Directives
	How the Database Uses SQL Plan Directives
	SQL Plan Directive Maintenance
	How the Optimizer Uses SQL Plan Directives: Example
	How the Optimizer Uses Extensions and SQL Plan Directives: Example

	When the Database Samples Data
	How the Database Samples Data

	11 Histograms
	Purpose of Histograms
	When Oracle Database Creates Histograms
	How Oracle Database Chooses the Histogram Type
	Cardinality Algorithms When Using Histograms
	Endpoint Numbers and Values
	Popular and Nonpopular Values
	Bucket Compression

	Frequency Histograms
	Criteria For Frequency Histograms
	Generating a Frequency Histogram

	Top Frequency Histograms
	Criteria For Top Frequency Histograms
	Generating a Top Frequency Histogram

	Height-Balanced Histograms (Legacy)
	Criteria for Height-Balanced Histograms
	Generating a Height-Balanced Histogram

	Hybrid Histograms
	How Endpoint Repeat Counts Work
	Criteria for Hybrid Histograms
	Generating a Hybrid Histogram

	12 Configuring Options for Optimizer Statistics Gathering
	About Optimizer Statistics Collection
	Purpose of Optimizer Statistics Collection
	User Interfaces for Optimizer Statistics Management
	Graphical Interface for Optimizer Statistics Management
	Accessing the Database Home Page in Cloud Control
	Accessing the Optimizer Statistics Console

	Command-Line Interface for Optimizer Statistics Management

	Setting Optimizer Statistics Preferences
	About Optimizer Statistics Preferences
	Purpose of Optimizer Statistics Preferences
	Examples of Statistics Preferences
	DBMS_STATS Procedures for Setting Statistics Preferences
	Statistics Preference Overrides
	Setting Statistics Preferences: Example

	Setting Global Optimizer Statistics Preferences Using Cloud Control
	Setting Object-Level Optimizer Statistics Preferences Using Cloud Control
	Setting Optimizer Statistics Preferences from the Command Line

	Configuring Options for Dynamic Statistics
	About Dynamic Statistics Levels
	Setting Dynamic Statistics Levels Manually
	Disabling Dynamic Statistics

	Managing SQL Plan Directives

	13 Gathering Optimizer Statistics
	Configuring Automatic Optimizer Statistics Collection
	About Automatic Optimizer Statistics Collection
	Configuring Automatic Optimizer Statistics Collection Using Cloud Control
	Configuring Automatic Optimizer Statistics Collection from the Command Line

	Configuring High-Frequency Automatic Optimizer Statistics Collection
	About High-Frequency Automatic Optimizer Statistics Collection
	Setting Preferences for High-Frequency Automatic Optimizer Statistics Collection
	High-Frequency Automatic Optimizer Statistics Collection: Example

	Gathering Optimizer Statistics Manually
	About Manual Statistics Collection with DBMS_STATS
	Guidelines for Gathering Optimizer Statistics Manually
	Guideline for Setting the Sample Size
	Guideline for Gathering Statistics in Parallel
	Guideline for Partitioned Objects
	Guideline for Frequently Changing Objects
	Guideline for External Tables

	Determining When Optimizer Statistics Are Stale
	Gathering Schema and Table Statistics
	Gathering Statistics for Fixed Objects
	Gathering Statistics for Volatile Tables Using Dynamic Statistics
	Gathering Optimizer Statistics Concurrently
	About Concurrent Statistics Gathering
	How DBMS_STATS Gathers Statistics Concurrently
	Concurrent Statistics Gathering and Resource Management

	Enabling Concurrent Statistics Gathering
	Monitoring Statistics Gathering Operations

	Gathering Incremental Statistics on Partitioned Objects
	Purpose of Incremental Statistics
	How DBMS_STATS Derives Global Statistics for Partitioned tables
	Partition-Level Synopses
	NDV Algorithms: Adaptive Sampling and HyperLogLog
	Aggregation of Global Statistics Using Synopses: Example

	Gathering Statistics for a Partitioned Table: Basic Steps
	Considerations for Incremental Statistics Maintenance
	Enabling Incremental Statistics Using SET_TABLE_PREFS
	About the APPROXIMATE_NDV_ALGORITHM Settings
	Configuring Synopsis Generation: Examples

	Maintaining Incremental Statistics for Partition Maintenance Operations
	Maintaining Incremental Statistics for Tables with Stale or Locked Partition Statistics

	Gathering System Statistics Manually
	About System Statistics
	Guidelines for Gathering System Statistics
	Gathering System Statistics with DBMS_STATS
	About the GATHER_SYSTEM_STATS Procedure
	Gathering Workload Statistics
	About Workload Statistics
	Starting and Stopping System Statistics Gathering
	Gathering System Statistics During a Specified Interval

	Gathering Noworkload Statistics

	Deleting System Statistics

	Running Statistics Gathering Functions in Reporting Mode

	14 Managing Extended Statistics
	Managing Column Group Statistics
	About Statistics on Column Groups
	Why Column Group Statistics Are Needed: Example
	Automatic and Manual Column Group Statistics
	User Interface for Column Group Statistics

	Detecting Useful Column Groups for a Specific Workload
	Creating Column Groups Detected During Workload Monitoring
	Creating and Gathering Statistics on Column Groups Manually
	Displaying Column Group Information
	Dropping a Column Group

	Managing Expression Statistics
	About Expression Statistics
	When Expression Statistics Are Useful: Example

	Creating Expression Statistics
	Displaying Expression Statistics
	Dropping Expression Statistics

	15 Controlling the Use of Optimizer Statistics
	Locking and Unlocking Optimizer Statistics
	Locking Statistics
	Unlocking Statistics

	Publishing Pending Optimizer Statistics
	About Pending Optimizer Statistics
	User Interfaces for Publishing Optimizer Statistics
	Managing Published and Pending Statistics

	Creating Artificial Optimizer Statistics for Testing
	About Artificial Optimizer Statistics
	Setting Artificial Optimizer Statistics for a Table
	Setting Optimizer Statistics: Example

	16 Managing Historical Optimizer Statistics
	Restoring Optimizer Statistics
	About Restore Operations for Optimizer Statistics
	Guidelines for Restoring Optimizer Statistics
	Restrictions for Restoring Optimizer Statistics
	Restoring Optimizer Statistics Using DBMS_STATS

	Managing Optimizer Statistics Retention
	Obtaining Optimizer Statistics History
	Changing the Optimizer Statistics Retention Period
	Purging Optimizer Statistics

	Reporting on Past Statistics Gathering Operations

	17 Importing and Exporting Optimizer Statistics
	About Transporting Optimizer Statistics
	Purpose of Transporting Optimizer Statistics
	How Transporting Optimizer Statistics Works
	User Interface for Importing and Exporting Optimizer Statistics

	Transporting Optimizer Statistics to a Test Database: Tutorial

	18 Analyzing Statistics Using Optimizer Statistics Advisor
	About Optimizer Statistics Advisor
	Purpose of Optimizer Statistics Advisor
	Problems with a Traditional Script-Based Approach
	Advantages of Optimizer Statistics Advisor

	Optimizer Statistics Advisor Concepts
	Components of Optimizer Statistics Advisor
	Rules for Optimizer Statistics Advisor
	Findings for Optimizer Statistics Advisor
	Recommendations for Optimizer Statistics Advisor
	Actions for Optimizer Statistics Advisor

	Operational Modes for Optimizer Statistics Advisor

	Command-Line Interface to Optimizer Statistics Advisor

	Basic Tasks for Optimizer Statistics Advisor
	Creating an Optimizer Statistics Advisor Task
	Listing Optimizer Statistics Advisor Tasks
	Creating Filters for an Optimizer Advisor Task
	About Filters for Optimizer Statistics Advisor
	Creating an Object Filter for an Optimizer Advisor Task
	Creating a Rule Filter for an Optimizer Advisor Task
	Creating an Operation Filter for an Optimizer Advisor Task

	Executing an Optimizer Statistics Advisor Task
	Generating a Report for an Optimizer Statistics Advisor Task
	Implementing Optimizer Statistics Advisor Recommendations
	Implementing Actions Recommended by Optimizer Statistics Advisor
	Generating a Script Using Optimizer Statistics Advisor

	Part VI Optimizer Controls
	19 Influencing the Optimizer
	Techniques for Influencing the Optimizer
	Influencing the Optimizer with Initialization Parameters
	About Optimizer Initialization Parameters
	Enabling Optimizer Features
	Choosing an Optimizer Goal
	Controlling Adaptive Optimization

	Influencing the Optimizer with Hints
	About Optimizer Hints
	Purpose of Hints
	Types of Hints
	Scope of Hints

	Guidelines for Join Order Hints
	Reporting on Hints
	Purpose of Hint Usage Reports
	User Interface for Hint Usage Reports
	Reporting on Hint Usage: Tutorial
	Hint Usage Reports: Examples

	20 Improving Real-World Performance Through Cursor Sharing
	Overview of Cursor Sharing
	About Cursors
	Private and Shared SQL Areas
	Parent and Child Cursors
	Parent Cursors and V⁠$SQLAREA
	Child Cursors and V⁠$SQL
	Cursor Mismatches and V⁠$SQL_SHARED_CURSOR

	About Cursors and Parsing
	About Literals and Bind Variables
	Literals and Cursors
	Bind Variables and Cursors
	Bind Variable Peeking

	About the Life Cycle of Shared Cursors
	Cursor Marked Invalid
	Cursors Marked Rolling Invalid

	CURSOR_SHARING and Bind Variable Substitution
	CURSOR_SHARING Initialization Parameter
	Parsing Behavior When CURSOR_SHARING = FORCE

	Adaptive Cursor Sharing
	Purpose of Adaptive Cursor Sharing
	How Adaptive Cursor Sharing Works: Example
	Bind-Sensitive Cursors
	Bind-Aware Cursors
	Cursor Merging
	Adaptive Cursor Sharing Views

	Real-World Performance Guidelines for Cursor Sharing
	Develop Applications with Bind Variables for Security and Performance
	Do Not Use CURSOR_SHARING = FORCE as a Permanent Fix
	Establish Coding Conventions to Increase Cursor Reuse
	Minimize Session-Level Changes to the Optimizer Environment

	Part VII Monitoring and Tracing SQL
	21 Monitoring Database Operations
	About Monitoring Database Operations
	About Database Operations
	Purpose of Monitoring Database Operations
	How Database Monitoring Works
	User Interfaces for Database Operations Monitoring
	Monitored SQL Executions Page in Cloud Control
	Accessing the Monitored SQL Executions Page

	DBMS_SQL_MONITOR Package
	Attributes of composite Database Operations
	MONITOR and NO_MONITOR Hints
	Views for Monitoring and Reporting on Database Operations

	Basic Tasks in Database Operations Monitoring

	Enabling and Disabling Monitoring of Database Operations
	Enabling Monitoring of Database Operations at the System Level
	Enabling and Disabling Monitoring of Database Operations at the Statement Level

	Defining a Composite Database Operation
	Generating and Accessing SQL Monitor Reports
	Monitoring Database Operations: Scenarios
	Reporting on a Simple Database Operation: Scenario
	Reporting on Composite Database Operation: Scenario

	22 Gathering Diagnostic Data with SQL Test Case Builder
	Purpose of SQL Test Case Builder
	Concepts for SQL Test Case Builder
	SQL Incidents
	What SQL Test Case Builder Captures
	Output of SQL Test Case Builder

	User Interfaces for SQL Test Case Builder
	Graphical Interface for SQL Test Case Builder
	Accessing the Incident Manager
	Accessing the Support Workbench

	Command-Line Interface for SQL Test Case Builder

	Running SQL Test Case Builder

	23 Performing Application Tracing
	Overview of End-to-End Application Tracing
	Purpose of End-to-End Application Tracing
	End-to-End Application Tracing in a Multitenant Environment
	Tools for End-to-End Application Tracing
	Overview of the SQL Trace Facility
	Overview of TKPROF

	Enabling Statistics Gathering for End-to-End Tracing
	Enabling Statistics Gathering for a Client ID
	Enabling Statistics Gathering for Services, Modules, and Actions

	Enabling End-to-End Application Tracing
	Enabling Tracing for a Client Identifier
	Enabling Tracing for a Service, Module, and Action
	Enabling Tracing for a Session
	Enabling Tracing for an Instance or Database

	Generating Output Files Using SQL Trace and TKPROF
	Step 1: Setting Initialization Parameters for Trace File Management
	Step 2: Enabling the SQL Trace Facility
	Step 3: Generating Output Files with TKPROF
	Step 4: Storing SQL Trace Facility Statistics
	Generating the TKPROF Output SQL Script
	Editing the TKPROF Output SQL Script
	Querying the Output Table

	Guidelines for Interpreting TKPROF Output
	Guideline for Interpreting the Resolution of Statistics
	Guideline for Recursive SQL Statements
	Guideline for Deciding Which Statements to Tune
	Guidelines for Avoiding Traps in TKPROF Interpretation
	Guideline for Avoiding the Argument Trap
	Guideline for Avoiding the Read Consistency Trap
	Guideline for Avoiding the Schema Trap
	Guideline for Avoiding the Time Trap

	Application Tracing Utilities
	TRCSESS
	Purpose
	Guidelines
	Syntax
	Options
	Examples

	TKPROF
	Purpose
	Guidelines
	Syntax
	Options
	Output
	Identification of User Issuing the SQL Statement in TKPROF
	Tabular Statistics in TKPROF
	Library Cache Misses in TKPROF
	Row Source Operations in TKPROF
	Wait Event Information in TKPROF

	Examples

	Views for Application Tracing
	Views Relevant for Trace Statistics
	Views Related to Enabling Tracing

	Part VIII Automatic SQL Tuning
	24 Managing SQL Tuning Sets
	About SQL Tuning Sets
	Purpose of SQL Tuning Sets
	Concepts for SQL Tuning Sets
	User Interfaces for SQL Tuning Sets
	Accessing the SQL Tuning Sets Page in Cloud Control
	Command-Line Interface to SQL Tuning Sets

	Basic Tasks for Managing SQL Tuning Sets

	Creating a SQL Tuning Set Using CREATE_SQLSET
	Loading a SQL Tuning Set Using LOAD_SQLSET
	Querying a SQL Tuning Set
	Modifying a SQL Tuning Set Using UPDATE_SQLSET
	Transporting a SQL Tuning Set
	About Transporting SQL Tuning Sets
	Basic Steps for Transporting SQL Tuning Sets
	Basic Steps for Transporting SQL Tuning Sets When the CON_DBID Values Differ

	Transporting SQL Tuning Sets with DBMS_SQLTUNE

	Dropping a SQL Tuning Set Using DROP_SQLSET

	25 Analyzing SQL with SQL Tuning Advisor
	About SQL Tuning Advisor
	Purpose of SQL Tuning Advisor
	SQL Tuning Advisor Architecture
	Input to SQL Tuning Advisor
	Output of SQL Tuning Advisor
	Automatic Tuning Optimizer Analyses
	Statistical Analysis
	SQL Profiling
	How SQL Profiling Works
	SQL Profile Implementation

	Access Path Analysis
	SQL Structural Analysis
	Alternative Plan Analysis

	SQL Tuning Advisor Operation
	Automatic and On-Demand SQL Tuning
	SQL Tuning on Active Data Guard Databases
	Using DBMS_SQLTUNE to Tune the Primary Database Remotely
	Using Enterprise Manager Cloud Control to Tune an Active Standby Query Workload

	Managing the Automatic SQL Tuning Task
	About the Automatic SQL Tuning Task
	Purpose of Automatic SQL Tuning
	Automatic SQL Tuning Concepts
	Command-Line Interface to SQL Tuning Advisor
	Basic Tasks for Automatic SQL Tuning

	Enabling and Disabling the Automatic SQL Tuning Task
	Enabling and Disabling the Automatic SQL Tuning Task Using Cloud Control
	Enabling and Disabling the Automatic SQL Tuning Task from the Command Line

	Configuring the Automatic SQL Tuning Task
	Configuring the Automatic SQL Tuning Task Using Cloud Control
	Configuring the Automatic SQL Tuning Task Using the Command Line

	Viewing Automatic SQL Tuning Reports
	Viewing Automatic SQL Tuning Reports Using the Command Line

	The Automatic SQL Tuning Set
	Running SQL Tuning Advisor On Demand
	About On-Demand SQL Tuning
	Purpose of On-Demand SQL Tuning
	User Interfaces for On-Demand SQL Tuning
	Accessing the SQL Tuning Advisor Using Cloud Control
	Command-Line Interface to On-Demand SQL Tuning

	Basic Tasks in On-Demand SQL Tuning

	Creating a SQL Tuning Task
	Configuring a SQL Tuning Task
	Executing a SQL Tuning Task
	Monitoring a SQL Tuning Task
	Displaying the Results of a SQL Tuning Task

	26 Optimizing Access Paths with SQL Access Advisor
	About SQL Access Advisor
	Purpose of SQL Access Advisor
	SQL Access Advisor Architecture
	Input to SQL Access Advisor
	Filter Options for SQL Access Advisor
	SQL Access Advisor Recommendations
	SQL Access Advisor Actions
	Types of Actions
	Guidelines for Interpreting Partitioning Recommendations

	SQL Access Advisor Repository

	User Interfaces for SQL Access Advisor
	Accessing the SQL Access Advisor: Initial Options Page Using Cloud Control
	Command-Line Interface to SQL Tuning Sets

	Using SQL Access Advisor: Basic Tasks
	Creating a SQL Tuning Set as Input for SQL Access Advisor
	Populating a SQL Tuning Set with a User-Defined Workload
	Creating and Configuring a SQL Access Advisor Task
	Executing a SQL Access Advisor Task
	Viewing SQL Access Advisor Task Results
	Generating and Executing a Task Script

	Performing a SQL Access Advisor Quick Tune
	Using SQL Access Advisor: Advanced Tasks
	Evaluating Existing Access Structures
	Updating SQL Access Advisor Task Attributes
	Creating and Using SQL Access Advisor Task Templates
	Terminating SQL Access Advisor Task Execution
	Interrupting SQL Access Advisor Tasks
	Canceling SQL Access Advisor Tasks

	Deleting SQL Access Advisor Tasks
	Marking SQL Access Advisor Recommendations
	Modifying SQL Access Advisor Recommendations

	SQL Access Advisor Examples
	SQL Access Advisor Reference
	Action Attributes in the DBA_ADVISOR_ACTIONS View
	Categories for SQL Access Advisor Task Parameters
	SQL Access Advisor Constants

	Part IX SQL Management Objects
	27 Managing SQL Profiles
	About SQL Profiles
	Purpose of SQL Profiles
	Concepts for SQL Profiles
	Statistics in SQL Profiles
	SQL Profiles and Execution Plans
	SQL Profile Recommendations
	SQL Profiles and SQL Plan Baselines

	User Interfaces for SQL Profiles
	Basic Tasks for SQL Profiles

	Implementing a SQL Profile
	About SQL Profile Implementation
	Implementing a SQL Profile

	Listing SQL Profiles
	Altering a SQL Profile
	Dropping a SQL Profile
	Transporting a SQL Profile

	28 Overview of SQL Plan Management
	About SQL Plan Baselines
	Purpose of SQL Plan Management
	Benefits of SQL Plan Management
	Differences Between SQL Plan Baselines and SQL Profiles

	Plan Capture
	Automatic Initial Plan Capture
	Eligibility for Automatic Initial Plan Capture
	Plan Matching for Automatic Initial Plan Capture

	Manual Plan Capture

	Plan Selection
	Plan Evolution
	Purpose of Plan Evolution
	How Plan Evolution Works
	PL/SQL Subprograms for Plan Evolution

	Storage Architecture for SQL Plan Management
	SQL Management Base
	SQL Statement Log
	SQL Plan History
	Enabled Plans
	Accepted Plans
	Fixed Plans

	29 Managing SQL Plan Baselines
	About Managing SQL Plan Baselines
	User Interfaces for SQL Plan Management
	Accessing the SQL Plan Baseline Page in Cloud Control
	DBMS_SPM Package

	Basic Tasks in SQL Plan Management

	Configuring SQL Plan Management
	Configuring the Capture and Use of SQL Plan Baselines
	Enabling Automatic Initial Plan Capture for SQL Plan Management
	Configuring Filters for Automatic Plan Capture
	Disabling All SQL Plan Baselines

	Managing the SPM Evolve Advisor Task
	Automatic SQL Plan Management
	Enabling and Disabling the Automatic SPM Evolve Advisor Task
	Configuring the Automatic SPM Evolve Advisor Task
	Configuring the High-Frequency Automatic SPM Evolve Advisor Task
	About the High-Frequency Automatic SPM Evolve Advisor Task
	Enabling the High-Frequency Automatic SPM Evolve Advisor Task: Tutorial

	Displaying Plans in a SQL Plan Baseline
	Loading SQL Plan Baselines
	About Loading SQL Plan Baselines
	Loading Plans from AWR
	Loading Plans from the Shared SQL Area
	Loading Plans from a SQL Tuning Set
	Loading Plans from a Staging Table

	Evolving SQL Plan Baselines Manually
	About the DBMS_SPM Evolve Functions
	Managing an Evolve Task

	Dropping SQL Plan Baselines
	Managing the SQL Management Base
	About Managing the SMB
	Changing the Disk Space Limit for the SMB
	Changing the Plan Retention Policy in the SMB

	30 Migrating Stored Outlines to SQL Plan Baselines
	About Stored Outline Migration
	Purpose of Stored Outline Migration
	How Stored Outline Migration Works
	Stages of Stored Outline Migration
	Outline Categories and Baseline Modules

	User Interface for Stored Outline Migration
	Basic Steps in Stored Outline Migration

	Preparing for Stored Outline Migration
	Migrating Outlines to Utilize SQL Plan Management Features
	Migrating Outlines to Preserve Stored Outline Behavior
	Performing Follow-Up Tasks After Stored Outline Migration

	Glossary
	accepted plan
	access path
	adaptive cursor sharing
	adaptive dynamic sampling
	adaptive optimizer
	adaptive query plan
	adaptive query optimization
	ADDM
	antijoin
	approximate query processing
	automatic capture filter
	Automatic Database Diagnostic Monitor (ADDM)
	automatic optimizer statistics collection
	automatic initial plan capture
	automatic reoptimization
	automatic SQL tuning
	Automatic SQL Tuning Advisor
	Automatic Tuning Optimizer
	Automatic Workload Repository (AWR)
	AWR
	AWR snapshot
	band join
	base cardinality
	baseline
	bind-aware cursor
	bind-sensitive cursor
	bind variable
	bind variable peeking
	bitmap join index
	bitmap piece
	B-tree index
	bulk load
	bushy join tree
	cardinality
	Cartesian join
	child cursor
	cluster scan
	column group
	column group statistics
	column statistics
	complex view merging
	composite database operation
	concurrency
	concurrent statistics gathering mode
	condition
	cost
	cost-based optimizer (CBO)
	cost model
	cumulative statistics
	cursor
	cursor cache
	cursor merging
	cursor-duration temporary table
	data flow operator (DFO)
	data skew
	database operation
	default plan
	disabled plan
	degree of parallelism (DOP)
	dense key
	dense grouping key
	dense join key
	density
	direct path read
	driving table
	dynamic performance view
	dynamic plan
	dynamic statistics
	dynamic statistics level
	enabled plan
	endpoint number
	endpoint repeat count
	endpoint value
	equijoin
	estimator
	execution plan
	execution tree
	expected cardinality
	expression
	expression statistics
	extended statistics
	extensible optimizer
	extension
	external table
	filter condition
	final plan
	fixed object
	fixed plan
	frequency histogram
	full outer join
	full table scan
	global temporary table
	hard parse
	hash cluster
	hash collision
	hash function
	hash join
	hash scan
	hash table
	hash value
	hashing
	heap-organized table
	height-balanced histogram
	hint
	histogram
	hybrid hash distribution technique
	hybrid histogram
	hybrid partitioned table
	implicit query
	In-Memory scan
	incremental statistics maintenance
	index
	index cluster
	index clustering factor
	index fast full scan
	index full scan
	index-organized table
	index range scan
	index range scan descending
	index skip scan
	index statistics
	index unique scan
	indextype
	inner join
	inner table
	join
	join condition
	join elimination
	join factorization
	join group
	join method
	join order
	join predicate
	key vector
	latch
	left deep join tree
	left table
	library cache
	library cache hit
	library cache miss
	maintenance window
	manual plan capture
	materialized view
	multiblock read
	NDV
	nested loops join
	nonequijoin
	nonjoin column
	nonpopular value
	noworkload statistics
	on-demand SQL tuning
	optimization
	optimizer
	optimizer cost model
	optimizer environment
	optimizer goal
	optimizer statistics
	Optimizer Statistics Advisor
	Optimizer Statistics Advisor rules
	optimizer statistics collection
	optimizer statistics collector
	optimizer statistics preferences
	outer join
	outer table
	parallel execution
	parallel query
	parent cursor
	parse call
	parsing
	partition maintenance operation
	partition-wise join
	pending statistics
	performance feedback
	pipelined table function
	plan evolution
	plan generator
	plan selection
	plan verification
	popular value
	predicate pushing
	private SQL area
	private temporary table
	proactive SQL tuning
	projection view
	query
	query block
	query optimizer
	reactive SQL tuning
	real-time statistics
	recursive SQL
	reoptimization
	repeatable SQL statement
	response time
	result set
	right deep join tree
	right table
	rowid
	row set
	row source
	row source generator
	row source tree
	rule filter
	sample table scan
	sampling
	selectivity
	semijoin
	shared cursor
	shared pool
	shared SQL area
	simple database operation
	simple view merging
	SMB
	snowflake schema
	snowstorm schema
	soft parse
	sort merge join
	SQL Access Advisor
	SQL compilation
	SQL handle
	SQL ID
	SQL incident
	SQL management base (SMB)
	SQL management object
	SQL plan baseline
	SQL plan capture
	SQL plan directive
	SQL plan history
	SQL plan management
	SQL processing
	SQL profile
	SQL profiling
	SQL signature
	SQL statement log
	SQL test case
	SQL test case builder
	SQL trace file
	SQL tuning
	SQL Tuning Advisor
	SQL tuning set (STS)
	star schema
	statistics feedback
	stored outline
	subplan
	subplan group
	subquery
	subquery unnesting
	synopsis
	system statistics
	table cluster
	table expansion
	table statistics
	throughput
	top frequency histogram
	tuning mode
	unaccepted plan
	unselective
	user response time
	V⁠$ view
	vector I/O
	view merging
	workload statistics

	Index

