
Oracle® Database
JSON Developer's Guide

21c
F30948-08
December 2022



Oracle Database JSON Developer's Guide, 21c

F30948-08

Copyright © 2015, 2022, Oracle and/or its affiliates.

Primary Author: Drew Adams

Contributors: Oracle JSON development, product management, and quality assurance teams.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xv

Documentation Accessibility xv

Diversity and Inclusion xv

Related Documents xvi

Conventions xvi

Code Examples xvii

Part I   JSON Data and Oracle Database

1   JSON Data (Standard)

1.1 Overview of JSON 1-1

1.2 JSON Syntax and the Data It Represents 1-2

1.3 JSON Compared with XML 1-5

2   JSON in Oracle Database

2.1 Getting Started Using JSON with Oracle Database 2-2

2.2 Overview of JSON in Oracle Database 2-3

2.2.1 Data Types for JSON Data 2-5

2.2.2 JSON Columns in Database Tables 2-7

2.2.3 Use SQL With JSON Data 2-7

2.2.4 Use PL/SQL With JSON Data 2-8

2.3 JSON Data Type, To and From 2-8

2.3.1 JSON Data Type Constructor 2-10

2.3.2 Oracle SQL Function JSON_SCALAR 2-13

2.3.3 Oracle SQL Function JSON_SERIALIZE 2-15

2.3.4 JSON Constructor, JSON_SCALAR, and JSON_SERIALIZE: Summary 2-19

2.3.5 Objects That Extend JSON Scalars 2-23

2.3.6 Migration of Textual JSON Data to JSON Type Data 2-29

2.4 Oracle Database Support for JSON 2-29

iii



2.4.1 Support for RFC 8259: JSON Scalars 2-30

Part II   Store and Manage JSON Data

3   Overview of Storing and Managing JSON Data

4   Creating a Table With a JSON Column

4.1 Determining Whether a Column Must Contain Only JSON Data 4-4

5   SQL/JSON Conditions IS JSON and IS NOT JSON

5.1 Unique Versus Duplicate Fields in JSON Objects 5-2

5.2 About Strict and Lax JSON Syntax 5-3

5.3 Specifying Strict or Lax JSON Syntax 5-5

6   Character Sets and Character Encoding for JSON Data

7   Considerations When Using LOB Storage for JSON Data

8   Partitioning JSON Data

9   Replication of JSON Data

Part III   Insert, Update, and Load JSON Data

10  
 

Overview of Inserting, Updating, and Loading JSON Data

11  
 

Oracle SQL Function JSON_TRANSFORM

iv



12  
 

Oracle SQL Function JSON_MERGEPATCH

13  
 

Loading External JSON Data

Part IV   Query JSON Data

14  
 

Simple Dot-Notation Access to JSON Data

15  
 

SQL/JSON Path Expressions

15.1 Overview of SQL/JSON Path Expressions 15-1

15.2 SQL/JSON Path Expression Syntax 15-2

15.2.1 Basic SQL/JSON Path Expression Syntax 15-2

15.2.2 SQL/JSON Path Expression Syntax Relaxation 15-11

15.3 SQL/JSON Path Expression Item Methods 15-13

15.4 Types in Comparisons 15-20

16  
 

Clauses Used in SQL Functions and Conditions for JSON

16.1 RETURNING Clause for SQL Query Functions 16-1

16.2 Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE 16-4

16.3 Error Clause for SQL Query Functions and Conditions 16-7

16.4 Empty-Field Clause for SQL/JSON Query Functions 16-9

16.5 ON MISMATCH Clause for SQL/JSON Query Functions 16-10

17  
 

SQL/JSON Condition JSON_EXISTS

17.1 Using Filters with JSON_EXISTS 17-2

17.2 JSON_EXISTS as JSON_TABLE 17-4

18  
 

SQL/JSON Function JSON_VALUE

18.1 Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value 18-3

18.2 SQL/JSON Function JSON_VALUE Applied to a null JSON Value 18-4

18.3 Using JSON_VALUE To Instantiate a User-Defined Object Type Instance 18-4

v



18.4 JSON_VALUE as JSON_TABLE 18-7

19  
 

SQL/JSON Function JSON_QUERY

19.1 JSON_QUERY as JSON_TABLE 19-3

20  
 

SQL/JSON Function JSON_TABLE

20.1 SQL NESTED Clause Instead of JSON_TABLE 20-4

20.2 COLUMNS Clause of SQL/JSON Function JSON_TABLE 20-5

20.3 JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions 20-9

20.4 Using JSON_TABLE with JSON Arrays 20-10

20.5 Creating a View Over JSON Data Using JSON_TABLE 20-13

21  
 

Full-Text Search Queries

21.1 Oracle SQL Condition JSON_TEXTCONTAINS 21-1

21.2 JSON Facet Search with PL/SQL Procedure CTX_QUERY.RESULT_SET 21-2

22  
 

JSON Data Guide

22.1 Overview of JSON Data Guide 22-2

22.2 Persistent Data-Guide Information: Part of a JSON Search Index 22-4

22.3 Data-Guide Formats and Ways of Creating a Data Guide 22-7

22.4 JSON Data-Guide Fields 22-9

22.5 Data-Dictionary Views For Persistent Data-Guide Information 22-14

22.6 Specifying a Preferred Name for a Field Column 22-15

22.7 Creating a View Over JSON Data Based on Data-Guide Information 22-17

22.7.1 Creating a View Over JSON Data Based on a Hierarchical Data Guide 22-19

22.7.2 Creating a View Over JSON Data Based on a Path Expression 22-21

22.8 Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide
Information 22-24

22.8.1 Adding Virtual Columns For JSON Fields Based on a Hierarchical Data Guide 22-26

22.8.2 Adding Virtual Columns For JSON Fields Based on a Data Guide-Enabled
Search Index 22-29

22.8.3 Dropping Virtual Columns for JSON Fields Based on Data-Guide Information 22-32

22.9 Change Triggers For Data Guide-Enabled Search Index 22-32

22.9.1 User-Defined Data-Guide Change Triggers 22-34

22.10 Multiple Data Guides Per Document Set 22-36

22.11 Querying a Data Guide 22-40

22.12 A Flat Data Guide For Purchase-Order Documents 22-42

vi



22.13 A Hierarchical Data Guide For Purchase-Order Documents 22-48

Part V   Generation of JSON Data

23  
 

Generation of JSON Data Using SQL

23.1 Overview of JSON Generation 23-1

23.2 Handling of Input Values For SQL/JSON Generation Functions 23-5

23.3 SQL/JSON Function JSON_OBJECT 23-8

23.4 SQL/JSON Function JSON_ARRAY 23-14

23.5 SQL/JSON Function JSON_OBJECTAGG 23-15

23.6 SQL/JSON Function JSON_ARRAYAGG 23-17

Part VI   PL/SQL Object Types for JSON

24  
 

Overview of PL/SQL Object Types for JSON

25  
 

Using PL/SQL Object Types for JSON

Part VII   GeoJSON Geographic Data

26  
 

Using GeoJSON Geographic Data

Part VIII   Performance Tuning for JSON

27  
 

Overview of Performance Tuning for JSON

28  
 

Indexes for JSON Data

28.1 Overview of Indexing JSON Data 28-2

28.2 How To Tell Whether a Function-Based Index for JSON Data Is Picked Up 28-3

28.3 Creating Bitmap Indexes for JSON_VALUE 28-4

vii



28.4 Creating B-Tree Indexes for JSON_VALUE 28-4

28.5 Using a JSON_VALUE Function-Based Index with JSON_TABLE Queries 28-5

28.6 Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries 28-6

28.7 Data Type Considerations for JSON_VALUE Indexing and Querying 28-8

28.8 Creating Multivalue Function-Based Indexes for JSON_EXISTS 28-10

28.9 Using a Multivalue Function-Based Index 28-14

28.10 Indexing Multiple JSON Fields Using a Composite B-Tree Index 28-16

28.11 JSON Search Index for Ad Hoc Queries and Full-Text Search 28-17

29  
 

In-Memory JSON Data

29.1 Overview of In-Memory JSON Data 29-1

29.2 Populating JSON Data Into the In-Memory Column Store 29-4

29.3 Upgrading Tables With JSON Data For Use With the In-Memory Column Store 29-7

30  
 

JSON Query Rewrite To Use a Materialized View Over JSON_TABLE

Part IX   Appendixes

A   ISO 8601 Date, Time, and Duration Support

B   Oracle Database JSON Capabilities Specification

C   Diagrams for Basic SQL/JSON Path Expression Syntax

Index

viii



List of Examples

1-1 A JSON Object (Representation of a JavaScript Object Literal) 1-3

2-1 Converting Textual JSON Data to JSON Type On the Fly 2-11

2-2 Adding Time Zone Information to JSON Data 2-14

2-3 Using JSON_SERIALIZE To Convert JSON type or BLOB Data To Pretty-Printed Text 2-18

2-4 Using JSON_SERIALIZE To Convert Non-ASCII Unicode Characters to ASCII Escape Codes 2-18

4-1 Creating a Table with a JSON Type Column 4-2

4-2 Using IS JSON in a Check Constraint to Ensure Textual JSON Data is Well-Formed 4-2

4-3 Inserting JSON Data Into a JSON Column 4-2

5-1 Using IS JSON in a Check Constraint to Ensure Textual JSON Data is Strictly Well-Formed 5-5

7-1 JDBC Client: Using the LOB Locator Interface To Retrieve JSON BLOB Data 7-3

7-2 JDBC Client: Using the LOB Locator Interface To Retrieve JSON CLOB Data 7-4

7-3 ODP.NET Client: Using the LOB Locator Interface To Retrieve JSON BLOB Data 7-4

7-4 ODP.NET Client: Using the LOB Locator Interface To Retrieve JSON CLOB Data 7-5

7-5 JDBC Client: Using the LOB Data Interface To Retrieve JSON BLOB Data 7-6

7-6 JDBC Client: Using the LOB Data Interface To Retrieve JSON CLOB Data 7-7

7-7 JDBC Client: Reading Full BLOB Content Directly with getBytes 7-7

7-8 JDBC Client:Reading Full CLOB Content Directly with getString 7-8

7-9 ODP.NET Client: Reading Full BLOB Content Directly with getBytes 7-8

7-10 ODP.NET Client: Reading Full CLOB Content Directly with getString 7-9

8-1 Creating a Partitioned Table Using a JSON Virtual Column 8-1

11-1 Updating a JSON Column Using JSON_TRANSFORM 11-4

11-2 Modifying JSON Data On the Fly With JSON_TRANSFORM 11-4

11-3 Adding a Field Using JSON_TRANSFORM 11-4

11-4 Removing a Field Using JSON_TRANSFORM 11-5

11-5 Creating or Replacing a Field Value Using JSON_TRANSFORM 11-5

11-6 Replacing an Existing Field Value Using JSON_TRANSFORM 11-5

11-7 Using FORMAT JSON To Set a JSON Boolean Value 11-6

11-8 Setting an Array Element Using JSON_TRANSFORM 11-6

11-9 Prepending an Array Element Using JSON_TRANSFORM 11-6

11-10 Appending an Array Element Using JSON_TRANSFORM 11-6

11-11 Removing Array Elements That Satisfy a Predicate Using JSON_TRANSFORM 11-7

12-1 A JSON Merge Patch Document 12-2

12-2 A Merge-Patched JSON Document 12-3

12-3 Updating a JSON Column Using JSON_MERGEPATCH 12-3

12-4 Modifying JSON Data On the Fly With JSON_MERGEPATCH 12-3

ix



13-1 Creating a Database Directory Object for Purchase Orders 13-2

13-2 Creating an External Table and Filling It From a JSON Dump File 13-2

13-3 Creating a Table With a BLOB Column for JSON Data 13-2

13-4 Copying JSON Data From an External Table To a Database Table 13-2

14-1 JSON Dot-Notation Query Compared With JSON_VALUE 14-5

14-2 JSON Dot-Notation Query Compared With JSON_QUERY 14-5

15-1 Aggregating Values of a Field for Each Document 15-19

15-2 Aggregating Values of a Field Across All Documents 15-19

16-1 Using ON MISMATCH Clauses 16-13

17-1 JSON_EXISTS: Path Expression Without Filter 17-3

17-2 JSON_EXISTS: Current Item and Scope in Path Expression Filters 17-3

17-3 JSON_EXISTS: Filter Conditions Depend On the Current Item 17-3

17-4 JSON_EXISTS: Filter Downscoping 17-4

17-5 JSON_EXISTS: Path Expression Using Path-Expression exists Condition 17-4

17-6 JSON_EXISTS Expressed Using JSON_TABLE 17-5

18-1 JSON_VALUE: Returning a JSON Boolean Value to SQL as VARCHAR2 18-3

18-2 JSON_VALUE: Returning a JSON Boolean Value to SQL as NUMBER 18-3

18-3 JSON_VALUE: Returning a JSON Boolean Value to PL/SQL as BOOLEAN 18-4

18-4 Instantiate a User-Defined Object Instance From JSON Data with JSON_VALUE 18-5

18-5 Instantiate a Collection Type Instance From JSON Data with JSON_VALUE 18-6

18-6 JSON_VALUE Expressed Using JSON_TABLE 18-7

19-1 Selecting JSON Values Using JSON_QUERY 19-2

19-2 JSON_QUERY Expressed Using JSON_TABLE 19-3

20-1 Equivalent JSON_TABLE Queries: Simple and Full Syntax 20-2

20-2 Equivalent: SQL NESTED and JSON_TABLE with LEFT OUTER JOIN 20-5

20-3 Using SQL NESTED To Expand a Nested Array 20-5

20-4 Accessing JSON Data Multiple Times to Extract Data 20-10

20-5 Using JSON_TABLE to Extract Data Without Multiple Parses 20-10

20-6 Projecting an Entire JSON Array as JSON Data 20-11

20-7 Projecting Elements of a JSON Array 20-11

20-8 Projecting Elements of a JSON Array Plus Other Data 20-12

20-9 JSON_TABLE: Projecting Array Elements Using NESTED 20-12

20-10 Creating a View Over JSON Data 20-14

20-11 Creating a Materialized View Over JSON Data 20-14

21-1 Full-Text Query of JSON Data with JSON_TEXTCONTAINS 21-2

22-1 Enabling Persistent Support for a JSON Data Guide But Not For Search 22-6

22-2 Disabling JSON Data-Guide Support For an Existing JSON Search Index 22-7

x



22-3 Gathering Statistics on JSON Data Using a JSON Search Index 22-7

22-4 Specifying Preferred Column Names For Some JSON Fields 22-16

22-5 Creating a View Using a Hierarchical Data Guide Obtained With JSON_DATAGUIDE 22-19

22-6 Creating a View That Projects All Scalar Fields 22-22

22-7 Creating a View That Projects Scalar Fields Targeted By a Path Expression 22-22

22-8 Creating a View That Projects Scalar Fields Having a Given Frequency 22-23

22-9 Adding Virtual Columns That Project JSON Fields Using a Data Guide Obtained With

JSON_DATAGUIDE 22-27

22-10 Adding Virtual Columns, Hidden and Visible 22-28

22-11 Projecting All Scalar Fields Not Under an Array as Virtual Columns 22-30

22-12 Projecting Scalar Fields With a Minimum Frequency as Virtual Columns 22-30

22-13 Projecting Scalar Fields With a Minimum Frequency as Hidden Virtual Columns 22-31

22-14 Dropping Virtual Columns Projected From JSON Fields 22-32

22-15 Adding Virtual Columns Automatically With Change Trigger ADD_VC 22-33

22-16 Tracing Data-Guide Updates With a User-Defined Change Trigger 22-34

22-17 Adding a 2015 Purchase-Order Document 22-37

22-18 Adding a 2016 Purchase-Order Document 22-37

22-19 Creating Multiple Data Guides With Aggregate Function JSON_DATAGUIDE 22-38

22-20 Querying a Data Guide Obtained Using JSON_DATAGUIDE 22-40

22-21 Querying a Data Guide With Index Data For Paths With Frequency at Least 80% 22-41

22-22 Flat Data Guide For Purchase Orders 22-43

22-23 Hierarchical Data Guide For Purchase Orders 22-48

23-1 Declaring an Input Value To Be JSON 23-7

23-2 Using Name–Value Pairs with JSON_OBJECT 23-9

23-3 Using Column Names with JSON_OBJECT 23-10

23-4 Using a Wildcard (*) with JSON_OBJECT 23-11

23-5 Using JSON_OBJECT With ABSENT ON NULL 23-12

23-6 Using a User-Defined Object-Type Instance with JSON_OBJECT 23-13

23-7 Using JSON_ARRAY to Construct a JSON Array 23-14

23-8 Using JSON_OBJECTAGG to Construct a JSON Object 23-16

23-9 Using JSON_ARRAYAGG to Construct a JSON Array 23-17

23-10 Generating JSON Objects with Nested Arrays Using a SQL Subquery 23-18

25-1 Constructing and Serializing an In-Memory JSON Object 25-1

25-2 Using Method GET_KEYS() to Obtain a List of Object Fields 25-2

25-3 Using Method PUT() to Update Parts of JSON Documents 25-2

26-1 A Table With GeoJSON Data 26-2

26-2 Selecting a geometry Object From a GeoJSON Feature As an SDO_GEOMETRY Instance 26-3

xi



26-3 Retrieving Multiple geometry Objects From a GeoJSON Feature As SDO_GEOMETRY 26-4

26-4 Creating a Spatial Index For Scalar GeoJSON Data 26-5

26-5 Using GeoJSON Geometry With Spatial Operators 26-5

26-6 Creating a Materialized View Over GeoJSON Data 26-6

26-7 Creating a Spatial Index on a Materialized View Over GeoJSON Data 26-6

28-1 Creating a Bitmap Index for JSON_VALUE 28-4

28-2 Creating a Function-Based Index for a JSON Field: Dot Notation 28-5

28-3 Creating a Function-Based Index for a JSON Field: JSON_VALUE 28-5

28-4 Specifying NULL ON EMPTY for a JSON_VALUE Function-Based Index 28-5

28-5 Use of a JSON_VALUE Function-Based Index with a JSON_TABLE Query 28-6

28-6 JSON_EXISTS Query Targeting Field Compared to Literal Number 28-7

28-7 JSON_EXISTS Query Targeting Field Compared to Variable Value 28-7

28-8 JSON_EXISTS Query Targeting Field Cast to Number Compared to Variable Value 28-8

28-9 JSON_EXISTS Query Targeting a Conjunction of Field Comparisons 28-8

28-10 JSON_VALUE Query with Explicit RETURNING NUMBER 28-10

28-11 JSON_VALUE Query with Explicit Numerical Conversion 28-10

28-12 JSON_VALUE Query with Implicit Numerical Conversion 28-10

28-13 Table PARTS_TAB, for Multivalue Index Examples 28-12

28-14 Creating a Multivalue Index for JSON_EXISTS 28-12

28-15 Creating a Composite Multivalue Index for JSON_EXISTS 28-12

28-16 Creating a Composite Multivalue Index That Can Target Array Positions 28-13

28-17 JSON_EXISTS Query With Item Method numberOnly() 28-15

28-18 JSON_EXISTS Query Without Item Method numberOnly() 28-15

28-19 JSON_EXISTS Query Checking Multiple Fields 28-15

28-20 JSON_EXISTS Query Checking Array Element Position 28-16

28-21 Creating a Composite B-tree Index For JSON Object Fields 28-17

28-22 Querying JSON Data Indexed With a Composite B-tree Index 28-17

28-23 Creating a JSON Search Index That Is Synchronized On Commit 28-19

28-24 Creating a JSON Search Index That Is Synchronized Each Second 28-19

28-25 Execution Plan Indication that a JSON Search Index Is Used 28-19

28-26 Some Ad Hoc JSON Queries 28-20

29-1 Populating JSON Data Into the IM Column Store For Ad Hoc Query Support 29-6

29-2 Populating a JSON Type Column Into the IM Column Store For Full-Text Query Support 29-6

30-1 Creating a Materialized View of JSON Data To Support Query Rewrite 30-1

30-2 Creating an Index Over a Materialized View of JSON Data 30-2

xii



List of Figures

C-1 json_basic_path_expression C-1

C-2 json_absolute_path_expression C-1

C-3 json_nonfunction_steps C-1

C-4 json_object_step C-1

C-5 json_field_name C-1

C-6 json_array_step C-2

C-7 json_array_index C-2

C-8 json_function_step C-2

C-9 json_item_method C-3

C-10 json_filter_expr C-3

C-11 json_cond C-4

C-12 json_conjunction C-4

C-13 json_comparison C-4

C-14 json_relative_path-expr C-4

C-15 json_compare_pred C-5

C-16 json_var C-5

C-17 json_scalar C-5

xiii



List of Tables

2-1 JSON_SCALAR Type Conversion: SQL Types to Oracle JSON Types 2-13

2-2 JSON_SERIALIZE Converts Oracle JSON-Language Types To Standard JSON-

Language Types 2-16

2-3 Effect of Constructor JSON and Oracle SQL Function JSON_SCALAR: Examples 2-20

2-4 Extended JSON Object Type Relations 2-26

5-1 JSON Object Field Syntax Examples 5-4

15-1 Compatibility of Type-Conversion Item Methods and RETURNING Types 15-19

16-1 JSON_QUERY Wrapper Clause Examples 16-5

16-2 Compatible Scalar Data Types: Converting JSON to SQL 16-11

22-1 SQL and PL/SQL Functions to Obtain a Data Guide 22-8

22-2 JSON Schema Fields (Keywords) 22-9

22-3 Oracle-Specific Data-Guide Fields 22-10

22-4 Preferred Names for Some JSON Field Columns 22-15

22-5 Parameters of a User-Defined Data-Guide Change Trigger Procedure 22-34

26-1 GeoJSON Geometry Objects Other Than Geometry Collections 26-1

xiv



Preface

This manual describes the use of JSON data that is stored in Oracle Database. It covers how
to store, generate, view, manipulate, manage, search, and query it.

• Audience
Oracle Database JSON Developer's Guide is intended for developers building JSON
Oracle Database applications.

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents
Oracle and other resources related to this developer’s guide are presented.

• Conventions
The conventions used in this document are described.

• Code Examples
The code examples in this book are for illustration only. In many cases, however, you can
copy and paste parts of examples and run them in your environment.

Audience
Oracle Database JSON Developer's Guide is intended for developers building JSON Oracle
Database applications.

An understanding of JSON is helpful when using this manual. Many examples provided here
are in SQL or PL/SQL. A working knowledge of one of these languages is presumed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


partners, we are working to remove insensitive terms from our products and
documentation. We are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as
Oracle's offerings and industry standards evolve. Because of these technical
constraints, our effort to remove insensitive terms is ongoing and will take time and
external cooperation.

Related Documents
Oracle and other resources related to this developer’s guide are presented.

• Oracle Database Error Messages Reference. Oracle Database error message
documentation is available only as HTML. If you have access to only printed or
PDF Oracle Database documentation, you can browse the error messages by
range. Once you find the specific range, use the search (find) function of your Web
browser to locate the specific message. When connected to the Internet, you can
search for a specific error message using the error message search feature of the
Oracle Database online documentation.

• Oracle as a Document Store for information about Simple Oracle Document
Access (SODA)

• Oracle Database API for MongoDB

• Oracle Database Concepts

• Oracle Database In-Memory Guide

• Oracle Database SQL Language Reference

• Oracle Database PL/SQL Language Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Text Reference

• Oracle Text Application Developer's Guide

• Oracle Database Development Guide

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration.

For additional information, see:

• ISO/IEC 13249-2:2000, Information technology - Database languages - SQL
Multimedia and Application Packages - Part 2: Full-Text, International Organization
For Standardization, 2000

Conventions
The conventions used in this document are described.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Preface

xvi

https://docs.oracle.com/en/database/oracle/mongodb-api/


Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Code Examples
The code examples in this book are for illustration only. In many cases, however, you can
copy and paste parts of examples and run them in your environment.

• Pretty Printing of JSON Data
To promote readability, especially of lengthy or complex JSON data, output is sometimes
shown pretty-printed (formatted) in code examples.

• Execution Plans
Some of the code examples in this book present execution plans. These are for
illustration only. Running examples that are presented here in your environment is likely
to result in different execution plans from those presented here.

• Reminder About Case Sensitivity
JSON is case-sensitive. SQL is case-insensitive, but names in SQL code are implicitly
uppercase.

Pretty Printing of JSON Data
To promote readability, especially of lengthy or complex JSON data, output is sometimes
shown pretty-printed (formatted) in code examples.

Execution Plans
Some of the code examples in this book present execution plans. These are for illustration
only. Running examples that are presented here in your environment is likely to result in
different execution plans from those presented here.

Reminder About Case Sensitivity
JSON is case-sensitive. SQL is case-insensitive, but names in SQL code are implicitly
uppercase.

When examining the examples in this book, keep in mind the following:

• SQL is case-insensitive, but names in SQL code are implicitly uppercase, unless you
enclose them in double quotation marks (").

• JSON is case-sensitive. You must refer to SQL names in JSON code using the correct
case: uppercase SQL names must be written as uppercase.

For example, if you create a table named my_table in SQL without using double quotation
marks, then you must refer to it in JSON code as "MY_TABLE".

Preface

xvii



Part I
JSON Data and Oracle Database

Get started understanding JSON data and how you can use SQL and PL/SQL with JSON
data stored in Oracle Database.

Schemaless development based on persisting application data in the form of JSON
documents lets you quickly react to changing application requirements. You can change and
redeploy your application without needing to change the storage schemas it uses.

SQL and relational databases provide flexible support for complex data analysis and
reporting, as well as rock-solid data protection and access control. This is typically not the
case for NoSQL databases, which have often been associated with schemaless development
with JSON in the past.

Oracle Database provides all of the benefits of SQL and relational databases to JSON data,
which you store and manipulate in the same ways and with the same confidence as any other
type of database data.

• JSON Data (Standard)
JSON as defined by its standards is described.

• JSON in Oracle Database
Oracle Database supports JSON natively with relational database features, including
transactions, indexing, declarative querying, and views.



1
JSON Data (Standard)

JSON as defined by its standards is described.

• Overview of JSON
JavaScript Object Notation (JSON) is defined in standards ECMA-404 (JSON Data
Interchange Format), IETF RFC 8259, and ECMA-262 (ECMAScript Language
Specification, third edition). The JavaScript dialect of ECMAScript is a general
programming language used widely in web browsers and web servers.

• JSON Syntax and the Data It Represents
Standard JSON values, scalars, objects, and arrays are described.

• JSON Compared with XML
Both JSON and XML (Extensible Markup Language) are commonly used as data-
interchange languages. Their main differences are listed here.

1.1 Overview of JSON
JavaScript Object Notation (JSON) is defined in standards ECMA-404 (JSON Data
Interchange Format), IETF RFC 8259, and ECMA-262 (ECMAScript Language Specification,
third edition). The JavaScript dialect of ECMAScript is a general programming language used
widely in web browsers and web servers.

JSON is almost a subset of the object literal notation of JavaScript.1 Because it can be used
to represent JavaScript object literals, JSON commonly serves as a data-interchange
language. In this it has much in common with XML.

Because it is (almost a subset of) JavaScript notation, JSON can often be used in JavaScript
programs without any need for parsing or serializing. It is a text-based way of representing
JavaScript object literals, arrays, and scalar data.

Although it was defined in the context of JavaScript, JSON is in fact a language-independent
data format. A variety of programming languages can parse and generate JSON data.

JSON is relatively easy for humans to read and write, and easy for software to parse and
generate. It is often used for serializing structured data and exchanging it over a network,
typically between a server and web applications.

1 JSON differs from JavaScript notation in this respect: JSON allows unescaped Unicode characters U+2028 (LINE
SEPARATOR) and U+2029 (PARAGRAPH SEPARATOR) in strings. JavaScript notation requires control characters such
as these to be escaped in strings. This difference can be important when generating JSONP (JSON with padding) data.

1-1



See Also:

• ECMA 404 and IETF RFC 8259 for the definition of the JSON Data
Interchange Format

• ECMA 262 for the ECMAScript Language Specification

• JSON.org for information about JSON

1.2 JSON Syntax and the Data It Represents
Standard JSON values, scalars, objects, and arrays are described.

According to the JSON standard, a JSON value is one of the following JSON-
language data types: object, array, number, string, Boolean (value true or false), or
null (value null). All values except objects and arrays are scalar.

Note:

A JSON value of null is a value as far as SQL is concerned. It is not NULL,
which in SQL represents the absence of a value (missing, unknown, or
inapplicable data). In particular, SQL condition IS NULL returns false for a
JSON null value, and SQL condition IS NOT NULL returns true.

Standard JSON has no date data type (unlike both XML and JavaScript). A date is
represented in standard JSON using the available standard data types, such as string.
There are some de facto standards for converting between dates and JSON strings.
But typically programs using standard JSON data must, one way or another, deal with
date representation conversion.

A JavaScript object is an associative array, or dictionary, of zero or more pairs of
property names and associated JSON values.2 A JSON object is a JavaScript
object literal.3 It is written as such a property list enclosed in braces ({, }), with
name–value pairs separated by commas (,), and with the name and value of each pair
separated by a colon (:). (Whitespace before or after the comma or colon is optional
and insignificant.)

In JSON each property name and each string value must be enclosed in double
quotation marks ("). In JavaScript notation, a property name used in an object literal
can be, but need not be, enclosed in double quotation marks. It can also be enclosed
in single quotation marks (').

As a result of this difference, in practice, data that is represented using unquoted or
single-quoted property names is sometimes referred to loosely as being represented in
JSON, and some implementations of JSON, including the Oracle Database
implementation, support the lax syntax that allows the use of unquoted and single-
quoted property names.

2 JavaScript objects are thus similar to hash tables in C and C++, HashMaps in Java, associative arrays in PHP,
dictionaries in Python, and hashes in Perl and Ruby.

3 An object is created in JavaScript using either constructor Object or object literal syntax: {...}.

Chapter 1
JSON Syntax and the Data It Represents

1-2

https://tools.ietf.org/html/rfc8259


A string in JSON is composed of Unicode characters, with backslash (\) escaping. A JSON
number (numeral) is represented in decimal notation, possibly signed and possibly including
a decimal exponent.

An object property is typically called a field. It is sometimes called a key, but this
documentation generally uses “field” to avoid confusion with other uses here of the word
“key”. An object property name–value pair is often called an object member (but sometimes
member can mean just the property). Order is not significant among object members.

Note:

• A JSON field name can be empty (written "").4

• Each field name in a given JSON object is not necessarily unique; the same
field name can be repeated. The SQL/JSON path evaluation that Oracle
Database employs always uses only one of the object members that have a
given field name; any other members with the same name are ignored. It is
unspecified which of multiple such members is used.

See also Unique Versus Duplicate Fields in JSON Objects.

A JavaScript array has zero or more elements. A JSON array is represented by brackets
([, ]) surrounding the representations of the array elements (also called items), which are
separated by commas (,), and each of which is an object, an array, or a scalar value. Array
element order is significant. (Whitespace before or after a bracket or comma is optional and
insignificant.)

Example 1-1    A JSON Object (Representation of a JavaScript Object Literal)

This example shows a JSON object that represents a purchase order, with top-level field
names PONumber, Reference, Requestor, User, CostCenter, ShippingInstruction, Special
Instructions, AllowPartialShipment and LineItems.

{ "PONumber"             : 1600,
  "Reference"            : "ABULL-20140421",
  "Requestor"            : "Alexis Bull",
  "User"                 : "ABULL",
  "CostCenter"           : "A50",
  "ShippingInstructions" : { "name"   : "Alexis Bull",
                             "Address": { "street"  : "200 Sporting Green",
                                          "city"    : "South San Francisco",
                                          "state"   : "CA",
                                          "zipCode" : 99236,
                                          "country" : "United States of America" },
                             "Phone" : [ { "type"   : "Office", 
                                           "number" : "909-555-7307" },
                                         { "type"   : "Mobile",
                                           "number" : "415-555-1234" } ] },
  "Special Instructions" : null,
  "AllowPartialShipment" : false,
  "LineItems"            : [ { "ItemNumber" : 1,

4 In a few contexts an empty field name cannot be used with Oracle Database. Wherever it can be used, the name must
be wrapped with double quotation marks.

Chapter 1
JSON Syntax and the Data It Represents

1-3



                               "Part"       : { "Description" : "One Magic Christmas",
                                                "UnitPrice"   : 19.95,
                                                "UPCCode"     : 13131092899 },
                               "Quantity"   : 9.0 },
                             { "ItemNumber" : 2,
                               "Part"       : { "Description" : "Lethal Weapon",
                                                "UnitPrice"   : 19.95,
                                                "UPCCode"     : 85391628927 },
                               "Quantity"   : 5.0 } ] }

• Most of the fields here have string values. For example: field User has value
"ABULL".

• Fields PONumber and zipCode have numeric values: 1600 and 99236.

• Field ShippingInstructions has an object as its value. This object has three
members, with fields name, Address, and Phone. Field name has a string value
("Alexis Bull").

• The value of field Address is an object with fields street, city, state, zipCode,
and country. Field zipCode has a numeric value; the others have string values.

• Field Phone has an array as value. This array has two elements, each of which is
an object. Each of these objects has two members: fields type and number with
their values.

• Field Special Instructions has a null value.

• Field AllowPartialShipment has the Boolean value false.

• Field LineItems has an array as value. This array has two elements, each of
which is an object. Each of these objects has three members, with fields
ItemNumber, Part, and Quantity.

• Fields ItemNumber and Quantity have numeric values. Field Part has an object as
value, with fields Description, UnitPrice, and UPCCode. Field Description has a
string value. Fields UnitPrice and UPCCode have numeric values.

Related Topics

• About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript
syntax for object fields; the Boolean and null values are not case-sensitive; and it
is more permissive with respect to numerals, whitespace, and escaping of Unicode
characters.

• Overview of JSON in Oracle Database
Oracle Database supports JSON natively with relational database features,
including transactions, indexing, declarative querying, and views. Unlike relational
data, JSON data can be stored in the database, indexed, and queried without any
need for a schema that defines the data.

See Also:

Example 4-3

Chapter 1
JSON Syntax and the Data It Represents

1-4



1.3 JSON Compared with XML
Both JSON and XML (Extensible Markup Language) are commonly used as data-interchange
languages. Their main differences are listed here.

JSON is most useful with simple, structured data. XML is useful for both structured and semi-
structured data. JSON is generally data-centric, not document-centric; XML can be either.
JSON is not a markup language; it is designed only for data representation. XML is both a
document markup language and a data representation language.

• JSON data types are few and predefined. XML data can be either typeless or based on
an XML schema or a document type definition (DTD).

• JSON has simple structure-defining and document-combining constructs: it lacks
attributes, namespaces, inheritance, and substitution.

• The order of the members of a JavaScript object literal is insignificant. In general, order
matters within an XML document.

• JSON lacks an equivalent of XML text nodes (XPath node test text()). In particular, this
means that there is no mixed content (which is another way of saying that JSON is not a
markup language).

Because of its simple definition and features, JSON data is generally easier to generate,
parse, and process than XML data. Use cases that involve combining different data sources
generally lend themselves well to the use of XML, because it offers namespaces and other
constructs facilitating modularity and inheritance.

Chapter 1
JSON Compared with XML

1-5



2
JSON in Oracle Database

Oracle Database supports JSON natively with relational database features, including
transactions, indexing, declarative querying, and views.

This documentation covers the use of database languages and features to work with JSON
data that is stored in Oracle Database. In particular, it covers how to use SQL and PL/SQL
with JSON data.

Note:

Oracle also provides a family of Simple Oracle Document Access (SODA) APIs
for access to JSON data stored in the database. SODA is designed for schemaless
application development without knowledge of relational database features or
languages such as SQL and PL/SQL. It lets you create and store collections of
documents in Oracle Database, retrieve them, and query them, without needing to
know how the documents are stored in the database.

There are several implementations of SODA:

• SODA for REST — Representational state transfer (REST) requests perform
collection and document operations, using any language capable of making
HTTP calls.

• SODA for Java — Java classes and interfaces represent databases,
collections, and documents.

• SODA for PL/SQL — PL/SQL object types represent collections and
documents.

• SODA for C — Oracle Call Interface (OCI) handles represent collections and
documents.

• SODA for Node.js — Node.js classes represent collections and documents.

• SODA for Python — Python objects represent collections and documents.

For complete information about SODA see Simple Oracle Document Access
(SODA).

• Getting Started Using JSON with Oracle Database
In general, you do the following when working with JSON data in Oracle Database: (1)
create a table with a column of data type JSON, (2) insert JSON data into the column, and
(3) query the data in the column.

• Overview of JSON in Oracle Database
Oracle Database supports JSON natively with relational database features, including
transactions, indexing, declarative querying, and views. Unlike relational data, JSON data
can be stored in the database, indexed, and queried without any need for a schema that
defines the data.

2-1

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/rest/index.html
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/java/index.html
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/plsql/
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/c/
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/nodejs/index.html
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/python/index.html
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html


• JSON Data Type, To and From
SQL data type JSON represents JSON data using a native binary format, OSON,
which is Oracle's optimized format for fast query and update in both Oracle
Database server and Oracle Database clients. You can create JSON type instances
from other SQL data, and conversely.

• Oracle Database Support for JSON
Oracle Database support for JavaScript Object Notation (JSON) is designed to
provide the best fit between the worlds of relational storage and querying JSON
data, allowing relational and JSON queries to work well together. Oracle SQL/
JSON support is closely aligned with the JSON support in the SQL Standard.

2.1 Getting Started Using JSON with Oracle Database
In general, you do the following when working with JSON data in Oracle Database: (1)
create a table with a column of data type JSON, (2) insert JSON data into the column,
and (3) query the data in the column.

1. Create a table with a primary-key column and a column of JSON data type.

The following statement creates table j_purchaseorder with primary key id and
with JSON column po_document.

CREATE TABLE j_purchaseorder
  (id          VARCHAR2 (32) NOT NULL PRIMARY KEY,
   date_loaded TIMESTAMP (6) WITH TIME ZONE,
   po_document JSON);

You can alternatively insert JSON data into a column that has a data type other
than JSON type, such as VARCHAR2. In that case, use an is json check constraint
to ensure that the data inserted into the column is well-formed JSON data. See 
Example 4-2.

2. Insert JSON data into the JSON column, using any of the methods available for
Oracle Database.

The following statement uses a SQL INSERT statement to insert some simple
JSON data into the third column of table j_purchaseorder (which is column
po_document — see previous). Some of the JSON data is elided here (...).

INSERT INTO j_purchaseorder
  VALUES (SYS_GUID(),
          to_date('30-DEC-2014'),
          '{"PONumber"             : 1600,
            "Reference"            : "ABULL-20140421",
            "Requestor"            : "Alexis Bull",
            "User"                 : "ABULL",
            "CostCenter"           : "A50",
            "ShippingInstructions" : {...},
            "Special Instructions" : null,
            "AllowPartialShipment" : true,
            "LineItems"            : [...]}');

Chapter 2
Getting Started Using JSON with Oracle Database

2-2



The SQL string '{"PONumber":1600,…}' is automatically converted to JSON data type for
the INSERT operation.

3. Query the JSON data. The return value is always a VARCHAR2 instance that represents a
JSON value. Here are some simple examples.

The following query extracts, from each document in JSON column po_document, a
scalar value, the JSON number that is the value of field PONumber for the objects in JSON
column po_document (see also Example 14-1):

SELECT po.po_document.PONumber FROM j_purchaseorder po;

The following query extracts, from each document, an array of JSON phone objects,
which is the value of field Phone of the object that is the value of field
ShippingInstructions (see also Example 14-2):

SELECT po.po_document.ShippingInstructions.Phone
  FROM j_purchaseorder po;

The following query extracts, from each document, multiple values as an array: the value
of field type for each object in array Phone. The returned array is not part of the stored
data but is constructed automatically by the query. (The order of the array elements is
unspecified.)

SELECT po.po_document.ShippingInstructions.Phone.type
  FROM j_purchaseorder po;

Related Topics

• Creating a Table With a JSON Column
You can create a table that has JSON columns. Oracle recommends that you use JSON
data type for this.

• Simple Dot-Notation Access to JSON Data
Dot notation is designed for easy, general use and common use cases of querying JSON
data. For simple queries it is a handy alternative to using SQL/JSON query functions.

• Overview of Storing and Managing JSON Data
This overview describes data types for JSON columns and ensuring that JSON columns
contain well-formed JSON data.

2.2 Overview of JSON in Oracle Database
Oracle Database supports JSON natively with relational database features, including
transactions, indexing, declarative querying, and views. Unlike relational data, JSON data
can be stored in the database, indexed, and queried without any need for a schema that
defines the data.

(The JSON data is schemaless, even though a database schema is used to define the table
and column in which it is stored. Nothing in that schema specifies the structure of the JSON
data itself.)

JSON data has often been stored in NoSQL databases such as Oracle NoSQL Database and
Oracle Berkeley DB. These allow for storage and retrieval of data that is not based on any
schema, but they do not offer the rigorous consistency models of relational databases.

Chapter 2
Overview of JSON in Oracle Database

2-3



To compensate for this shortcoming, a relational database is sometimes used in
parallel with a NoSQL database. Applications using JSON data stored in the NoSQL
database must then ensure data integrity themselves.

Native support for JSON by Oracle Database obviates such workarounds. It provides
all of the benefits of relational database features for use with JSON, including
transactions, indexing, declarative querying, and views.

Database queries with Structured Query Language (SQL) are declarative. With Oracle
Database you can use SQL to join JSON data with relational data. And you can project
JSON data relationally, making it available for relational processes and tools. You can
also query, from within the database, JSON data that is stored outside Oracle
Database in an external table.

You can access JSON data stored in the database the same way you access other
database data, including using Oracle Call Interface (OCI), and Java Database
Connectivity (JDBC).

With its native binary JSON format, OSON, Oracle extends the JSON language by
adding scalar types, such as date and double, which are not part of the JSON
standard.

• Data Types for JSON Data
SQL data type JSON is Oracle's binary JSON format for fast query and update. It
extends the standard JSON scalar types (number, string, Boolean, and null), to
include types that correspond to SQL scalar types. This makes conversion of
scalar data between JSON and SQL simple and lossless.

• JSON Columns in Database Tables
Oracle Database places no restrictions on the tables that can be used to store
JSON documents. A column containing JSON documents can coexist with any
other kind of database data. A table can also have multiple columns that contain
JSON documents.

• Use SQL With JSON Data
In SQL, you can create and access JSON data in Oracle Database using JSON
data type constructor JSON, specialized functions and conditions, or a simple dot
notation. Most of the SQL functions and conditions belong to the SQL/JSON
standard, but a few are Oracle-specific.

• Use PL/SQL With JSON Data
You can use JSON data type instances as input and output of PL/SQL
subprograms, and you can manipulate JSON data within PL/SQL code using SQL
code or PL/SQL object types for JSON.

Related Topics

• JSON Data Type, To and From
SQL data type JSON represents JSON data using a native binary format, OSON,
which is Oracle's optimized format for fast query and update in both Oracle
Database server and Oracle Database clients. You can create JSON type instances
from other SQL data, and conversely.

• Simple Dot-Notation Access to JSON Data
Dot notation is designed for easy, general use and common use cases of querying
JSON data. For simple queries it is a handy alternative to using SQL/JSON query
functions.

Chapter 2
Overview of JSON in Oracle Database

2-4



• Overview of SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

• JSON Data Guide
A JSON data guide lets you discover information about the structure and content of
JSON documents stored in Oracle Database.

• Generation of JSON Data Using SQL
You can use SQL to generate JSON objects and arrays from non-JSON data in the
database. For that, use either constructor JSON or SQL/JSON functions json_object,
json_array, json_objectagg, and json_arrayagg.

• PL/SQL Object Types for JSON
You can use PL/SQL object types for JSON to read and write multiple fields of a JSON
document. This can increase performance, in particular by avoiding multiple parses and
serializations of the data.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch accept
an optional RETURNING clause, which specifies the data type of the value returned by the
function. This clause and the default behavior (no RETURNING clause) are described here.

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are described.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which allows a
JSON document to contain only a JSON scalar value at top level. This support also
means that functions that return JSON data can return scalar JSON values.

2.2.1 Data Types for JSON Data
SQL data type JSON is Oracle's binary JSON format for fast query and update. It extends the
standard JSON scalar types (number, string, Boolean, and null), to include types that
correspond to SQL scalar types. This makes conversion of scalar data between JSON and
SQL simple and lossless.

Standard JSON, as a language or notation, has predefined data types: object, array, number,
string, Boolean, and null. All JSON-language types except object and array are scalar types.

The standard defines JSON data in a textual way: it is composed of Unicode characters in a
standard syntax.

When actual JSON data is used in a programming language or is stored in some way, it is
realized using a data type in that particular language or storage format. For example, a JDBC
client application might fill a Java string with JSON data, or a database column might store
JSON data using a SQL data type.

It's important to keep these two kinds of data type in mind. For example, though the JSON-
language type of JSON value "abc" is string, this value can be represented, or realized,
using a value of any of several SQL data types: JSON, VARCHAR2, CLOB, or BLOB.

SQL type JSON is designed specifically for JSON data. Oracle recommends that for use with
Oracle Database you use JSON type for your JSON data. This uses a binary format, OSON,
which is Oracle's optimized binary JSON format for fast query and update in both Oracle
Database server and Oracle Database clients. JSON type is available only if database
initialization parameter compatible is at least 20.

Chapter 2
Overview of JSON in Oracle Database

2-5



When you use one of the other SQL types for JSON data (VARCHAR2, CLOB, or BLOB),
the data is said to be textual — it is unparsed character data (even when stored as a
BLOB instance).

When JSON data is of SQL data type JSON, Oracle extends the set of standard JSON-
language scalar types (number, string, Boolean, and null) to include several that
correspond to SQL scalar types: binary, date, timestamp, year-month interval, day-
second interval, double, and float. This enhances the JSON language, and it makes
conversion of scalar data between that language and SQL simple and lossless.

When JSON data is of SQL data type VARCHAR2, CLOB, or BLOB, only the standard
JSON-language scalar types are supported. But when JSON data is of SQL type JSON,
Oracle Database extends the set of standard JSON-language types to include several
scalar types that correspond directly to SQL scalar data types, as follows:

• binary — Corresponds to SQL RAW.

• date — Corresponds to SQL DATE.

• timestamp — Corresponds to SQL TIMESTAMP.

• year-month interval — Corresponds to SQL INTERVAL YEAR TO MONTH.

• day-second interval — Corresponds to SQL INTERVAL DAY TO SECOND.

• double — Corresponds to SQL BINARY_DOUBLE.

• float — Corresponds to SQL BINARY_FLOAT.

Here are some ways to obtain JSON scalar values of such Oracle-specific JSON-
language types in your JSON data that is stored as JSON type:

• Use SQL/JSON generation functions with RETURNING JSON. Scalar SQL values
used in generating array elements or object field values result in JSON scalar
values of corresponding JSON-language types. For example, a BINARY_FLOAT
SQL value results in a float JSON value.

• Use Oracle SQL function json_scalar. For example, applying it to a
BINARY_FLOAT SQL value results in a float JSON value.

• Use a database client with client-side encoding to create an Oracle-specific JSON
value as JSON type before sending that to the database.

• Instantiate PL/SQL object types for JSON with JSON data having Oracle-specific
JSON scalar types. This includes updating existing such object-type instances.

• Use PL/SQL method to_json() on a PL/SQL DOM instance (JSON_ELEMENT_T
instance).

Here are some ways to make use of JSON scalar values of Oracle-specific JSON-
language types:

• Use SQL/JSON condition json_exists, comparing the value of a SQL bind
variable with the result of applying an item method that corresponds to an Oracle-
specific JSON scalar type.

• Use SQL/JSON function json_value with a RETURNING clause that returns a SQL
type that corresponds to an Oracle-specific JSON scalar type.

Chapter 2
Overview of JSON in Oracle Database

2-6



2.2.2 JSON Columns in Database Tables
Oracle Database places no restrictions on the tables that can be used to store JSON
documents. A column containing JSON documents can coexist with any other kind of
database data. A table can also have multiple columns that contain JSON documents.

When using Oracle Database as a JSON document store, your tables that contain JSON
columns typically also have a few non-JSON housekeeping columns. These typically track
metadata about the JSON documents.

If you use JSON data to add flexibility to a primarily relational application then some of your
tables likely also have a column for JSON documents, which you use to manage the
application data that does not map directly to your relational model.

Oracle recommends that you use data type JSON for JSON columns. If you instead use
textual JSON storage (VARCHAR2, CLOB, or BLOB) then Oracle recommends that you use an is
json check constraint to ensure that column values are valid JSON instances (see 
Example 4-2).

By definition, textual JSON data is encoded using a Unicode encoding, either UTF-8 or
UTF-16. You can use VARCHAR2 or CLOB data that is stored in a non-Unicode character set as
if it were JSON data, but in that case Oracle Database automatically converts the character
set to UTF-8 when processing the data.

Data stored using data type JSON or BLOB is independent of character sets and does not
undergo conversion when processing the data.

2.2.3 Use SQL With JSON Data
In SQL, you can create and access JSON data in Oracle Database using JSON data type
constructor JSON, specialized functions and conditions, or a simple dot notation. Most of the
SQL functions and conditions belong to the SQL/JSON standard, but a few are Oracle-
specific.

• SQL/JSON query functions json_value, json_query, and json_table.

These evaluate SQL/JSON path expressions against JSON data to produce SQL values.

• Oracle SQL condition json_textcontains and SQL/JSON conditions json_exists, is
json, and is not json.

Condition json_exists checks for the existence of given JSON data; json_textcontains
provides full-text querying of JSON data; and is json and is not json check whether
given JSON data is well-formed.

json_exists and json_textcontains check the data that matches a SQL/JSON path
expression.

• A simple dot notation that acts similar to a combination of query functions json_value
and json_query.

This resembles a SQL object access expression, that is, attribute dot notation for an
abstract data type (ADT). This is the easiest way to query JSON data in the database.

• SQL/JSON generation functions json_object, json_array, json_objectagg, and
json_arrayagg.

These gather SQL data to produce JSON object and array data (as a SQL value).

Chapter 2
Overview of JSON in Oracle Database

2-7



• Oracle SQL functions json_serialize and json_scalar, and Oracle SQL
condition json_equal.

Function json_serialize returns a textual representation of JSON data;
json_scalar returns a JSON type scalar value that corresponds to a given SQL
scalar value; and json_equal tests whether two JSON values are the same.

• JSON data type constructor JSON.

This parses textual JSON data to create an instance of SQL data type JSON.

• Oracle SQL aggregate function json_dataguide.

This produces JSON data that is a data guide, which you can use to discover
information about the structure and content of other JSON data in the database.

As a simple illustration of querying, here is a dot-notation query of the documents
stored in JSON column po_document of table j_purchaseorder (aliased here as po). It
obtains all purchase-order requestors (JSON field Requestor).

SELECT po.po_document.Requestor FROM j_purchaseorder po;

2.2.4 Use PL/SQL With JSON Data
You can use JSON data type instances as input and output of PL/SQL subprograms,
and you can manipulate JSON data within PL/SQL code using SQL code or PL/SQL
object types for JSON.

You can generally use SQL code, including SQL code that accesses JSON data,
within PL/SQL code.

The following SQL functions and conditions are also available as built-in PL/SQL
functions: json_value, json_query, json_object, json_array, json_scalar,
json_serialize, json_exists, is json, is not json, and json_equal.

Unlike the case for Oracle SQL, which has no BOOLEAN data type, in PL/SQL:

• json_exists, is json, is not json, and json_equal are Boolean functions.

• json_value can return a BOOLEAN value.

• json_scalar can accept a BOOLEAN value as argument, in which case it returns a
Boolean JSON type instance (true or false).

There are also PL/SQL object types for JSON, which you can use for fine-grained
construction and manipulation of In-Memory JSON data. You can introspect it, modify
it, and serialize it back to textual JSON data.

You can use JSON data type instances as input and output of PL/SQL subprograms.
You can manipulate such data in PL/SQL by instantiating JSON object types, such as
JSON_OBJECT_T.

2.3 JSON Data Type, To and From
SQL data type JSON represents JSON data using a native binary format, OSON, which
is Oracle's optimized format for fast query and update in both Oracle Database server
and Oracle Database clients. You can create JSON type instances from other SQL data,
and conversely.

Chapter 2
JSON Data Type, To and From

2-8



The other SQL data types that support JSON data, besides JSON type, are VARCHAR2, CLOB,
and BLOB. This non-JSON type data is called textual, or serialized, JSON data. It is unparsed
character data (even when stored as a BLOB instance, as the data is a sequence of UTF-8
encoded bytes).

Using data type JSON avoids costly parsing of textual JSON data and provides better query
performance.

You can convert textual JSON data to JSON type data by parsing it with type constructor JSON.
JSON text that you insert into a database column of type JSON is parsed implicitly — you
need not use the constructor explicitly.

In the other direction, you can convert JSON type data to textual JSON data using SQL/JSON
function json_serialize. JSON type data that you insert into a database column of a JSON
textual data type (VARCHAR2, CLOB, or BLOB) is serialized implicitly — you need not use
json_serialize explicitly.

Regardless of whether the JSON type data uses Oracle-specific scalar JSON types (such as
date), the resulting serialized JSON data always conforms to the JSON standard.

You can create complex JSON type data from non-JSON type data using the SQL/JSON
generation functions: json_object, json_array, json_objectagg, and json_arrayagg.

You can create a JSON type instance with a scalar JSON value using Oracle SQL function
json_scalar. In particular, the value can be of an Oracle-specific JSON-language type, such
as a date, which is not part of the JSON standard.

In the other direction, you can use SQL/JSON function json_value to query JSON type data
and return an instance of a SQL object type or collection type.

JSON data type, its constructor JSON, and Oracle SQL function json_scalar can be used only
if database initialization parameter compatible is at least 20. Otherwise, trying to use any of
them raises an error.

Note:

You cannot compare instances of JSON data type directly using operators such as =
and >. This implies that you cannot use them with ORDER BY or GROUP BY.

You can, however, use json_value or the simple dot-notation syntax, together with
data type-conversion item methods, to extract SQL scalar values from a JSON type
instance, and then use such comparison operators on the extracted values.

• JSON Data Type Constructor
The JSON data type constructor, JSON, takes as input a textual JSON value (a scalar,
object, or array), parses it, and returns the value as an instance of JSON type.

• Oracle SQL Function JSON_SCALAR
Oracle SQL function json_scalar accepts a SQL scalar value as input and returns a
corresponding JSON scalar value as a JSON type instance. In particular, the value can be
of an Oracle-specific JSON-language type, such as a date, which is not part of the JSON
standard.

Chapter 2
JSON Data Type, To and From

2-9



• Oracle SQL Function JSON_SERIALIZE
Oracle SQL function json_serialize takes JSON data (of any SQL data type,
JSON, VARCHAR2, CLOB, or BLOB) as input and returns a textual representation of it
(as VARCHAR2, CLOB, or BLOB data). VARCHAR2(4000) is the default return type.

• JSON Constructor, JSON_SCALAR, and JSON_SERIALIZE: Summary
Relations among JSON data type constructor JSON, Oracle SQL function
json_scalar, and Oracle SQL function json_serialize are summarized.

• Objects That Extend JSON Scalars
Native binary JSON data (OSON format) extends the JSON language by adding
scalar types, such as date, that correspond to SQL types and are not part of the
JSON standard. Oracle Database also supports the use of textual JSON objects
that represent JSON scalar values, including such nonstandard values.

• Migration of Textual JSON Data to JSON Type Data
Oracle recommends that you store JSON data in the database using JSON data
type. You can migrate existing data from textual JSON storage (VARCHAR2, CLOB, or
BLOB) to JSON type storage using Oracle GoldenGate or online redefinition.

Related Topics

• Overview of JSON in Oracle Database
Oracle Database supports JSON natively with relational database features,
including transactions, indexing, declarative querying, and views. Unlike relational
data, JSON data can be stored in the database, indexed, and queried without any
need for a schema that defines the data.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which
allows a JSON document to contain only a JSON scalar value at top level. This
support also means that functions that return JSON data can return scalar JSON
values.

See Also:

• Oracle Database SQL Language Reference for information about JSON
data type

• Oracle Database SQL Language Reference for information about
constructor JSON

• Oracle Database SQL Language Reference for information about Oracle
SQL function json_scalar

• Oracle Database SQL Language Reference for information about Oracle
SQL function json_serialize

2.3.1 JSON Data Type Constructor
The JSON data type constructor, JSON, takes as input a textual JSON value (a scalar,
object, or array), parses it, and returns the value as an instance of JSON type.

Chapter 2
JSON Data Type, To and From

2-10



For example, given SQL string '{}' as input, the JSON type instance returned is the empty
object {}. The input '{a : {"b":"beta", c:[+042, "gamma",]},}' results in the JSON
instance {"a":{"b":"beta","c":[42,"gamma"]}}.

(Note that this contrasts with the behavior of Oracle SQL function json_scalar, which does
not parse textual input but just converts it to a JSON string value: json_scalar('{}') returns
the JSON string "{}". To produce the same JSON string using constructor JSON, you must
add explicit double-quote characters: JSON('"{}"').)

You can use constructor JSON only if database initialization parameter compatible is at least
20. Otherwise, the constructor raises an error (regardless of what input you pass it).

The input to constructor JSON can be either a literal SQL string or data of type VARCHAR2, CLOB,
or BLOB. A SQL NULL value as input results in a JSON type instance of SQL NULL.

The value returned by the constructor can be any JSON value that is supported by Oracle.
This includes values of the standard JSON types: object, array, string, Boolean, null, and
number. It also includes any non-standard Oracle scalar JSON values, that is, values of the
Oracle-specific scalar types: double, float, binary, date, timestamp, day-second interval, and
year-month interval. If the constructor is used with keyword EXTENDED then the values of the
Oracle-specific types can be derived from Oracle extended-object patterns in the textual
JSON input.

If the input is not well-formed JSON data then an error is raised. It can have lax JSON syntax,
and any objects in it can have duplicate field (key) names. Other than this relaxation, to be
well-formed the input data must conform to RFC 8259.

If the input has an object with duplicate field names then only one of the field values is used.
If you need to ensure that the input uses only strict syntax or has only objects with unique
field values then use SQL condition is json to filter it. This code prevents acceptance of
non-strict syntax and objects with duplicate fields:

SELECT JSON(jcol) FROM table
  WHERE jcol is json (STRICT WITH UNIQUE KEYS);

As a convenience, when using textual JSON data to perform an INSERT or UPDATE operation
on a JSON type column, the textual data is implicitly wrapped with constructor JSON.

Use cases for constructor JSON include on-the-fly parsing and conversion of textual JSON
data to JSON type. (An alternative is to use condition is json in a WHERE clause.) You can
pass the constructor a bind variable with a string value or data from an external table, for
instance.

As one example, you can use constructor JSON to ensure that textual data that is not stored in
the database with an is json check constraint is well-formed. You can then use the simple
dot-notation query syntax with the resulting JSON type data. (You cannot use the dot notation
with data that is not known to be well-formed.) Example 2-1 illustrates this.

Example 2-1    Converting Textual JSON Data to JSON Type On the Fly

This example uses simple dot-notation syntax to select a field from some textual JSON data
that is not known to the database to be well-formed. It converts the data to JSON type data,

Chapter 2
JSON Data Type, To and From

2-11



before selecting. Constructor JSON raises an error if its argument is not well-formed.
(Note that dot-notation syntax requires the use of a table alias — j in this case.)

WITH jtab AS
  (SELECT JSON(
     '{ "name" : "Alexis Bull",
        "Address": { "street" : "200 Sporting Green",
                     "city" : "South San Francisco",
                     "state" : "CA",
                     "zipCode" : 99236,
                     "country" : "United States of America" } }')
     AS jcol FROM DUAL)
  SELECT j.jcol.Address.city FROM jtab j;

Related Topics

• Overview of JSON in Oracle Database
Oracle Database supports JSON natively with relational database features,
including transactions, indexing, declarative querying, and views. Unlike relational
data, JSON data can be stored in the database, indexed, and queried without any
need for a schema that defines the data.

• About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript
syntax for object fields; the Boolean and null values are not case-sensitive; and it
is more permissive with respect to numerals, whitespace, and escaping of Unicode
characters.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which
allows a JSON document to contain only a JSON scalar value at top level. This
support also means that functions that return JSON data can return scalar JSON
values.

• Overview of JSON Generation
An overview is presented of JSON data generation: best practices, the SQL/JSON
generation functions, a simple JSON constructor syntax, handling of input SQL
values, and resulting generated data.

• Objects That Extend JSON Scalars
Native binary JSON data (OSON format) extends the JSON language by adding
scalar types, such as date, that correspond to SQL types and are not part of the
JSON standard. Oracle Database also supports the use of textual JSON objects
that represent JSON scalar values, including such nonstandard values.

See Also:

Oracle Database SQL Language Reference for information about constructor
JSON

Chapter 2
JSON Data Type, To and From

2-12



2.3.2 Oracle SQL Function JSON_SCALAR
Oracle SQL function json_scalar accepts a SQL scalar value as input and returns a
corresponding JSON scalar value as a JSON type instance. In particular, the value can be of
an Oracle-specific JSON-language type, such as a date, which is not part of the JSON
standard.

You can use function json_scalar only if database initialization parameter compatible is at
least 20. Otherwise it raises an error.

You can think of json_scalar as a scalar generation function. Unlike the SQL/JSON
generation functions, which can return any SQL data type that supports JSON data,
json_scalar always returns an instance of JSON type.

The argument to json_scalar can be an instance of any of these SQL data types: VARCHAR2,
RAW, CLOB, BLOB, DATE, TIMESTAMP, INTERVAL YEAR TO MONTH. INTERVAL DAY TO SECOND,
NUMBER, BINARY_DOUBLE, or BINARY_FLOAT.

The returned JSON type instance is a JSON-language scalar value supported by Oracle. For
example, json_scalar(current_timestamp) returns an Oracle JSON value of type
timestamp (as an instance of SQL data type JSON).

Table 2-1    JSON_SCALAR Type Conversion: SQL Types to Oracle JSON Types

SQL Type (Source) JSON Language Type (Destination)

VARCHAR2 string
CLOB string
BLOB binary
RAW binary
NUMBER number (or string if infinite or undefined value)

BINARY_DOUBLE double (or string if infinite or undefined value)

BINARY_FLOAT float (or string if infinite or undefined value)

DATE date
TIMESTAMP timestamp
INTERVAL DAY TO SECOND daysecondInterval
INTERVAL YEAR TO MONTH yearmonthInterval

An exception are the numeric values of positive and negative infinity, and values that are the
undefined result of a numeric operation ("not a number" or NaN) — they cannot be expressed
as JSON numbers. For those, json_scalar returns not numeric-type values but the JSON
strings "Inf", "-Inf", and "Nan", respectively.

A JSON type value returned by json_scalar remembers the SQL data type from which it was
derived. If you then use json_value (or a json_table column with json_value semantics) to
extract that JSON type value, and you use the corresponding type-conversion item method,
then the value extracted has the original SQL data type. For example, this query returns a
SQL TIMESTAMP value:

SELECT json_value(json_scalar(current_timestamp), '$.timestamp()')
  FROM DUAL;

Chapter 2
JSON Data Type, To and From

2-13



Note that if the argument is a SQL string value (VARCHAR2 or CLOB) then json_scalar
simply converts it to a JSON string value. It does not parse the input as JSON data.

For example, json_scalar('{}') returns the JSON string value "{}". Because
constructor JSON parses a SQL string, it returns the empty JSON object {} for the
same input. To produce the same JSON string using constructor JSON, the double-
quote characters must be explicitly present in the input: JSON('"{}"').

If the argument to json_scalar is a SQL NULL value then you can obtain a return value
of SQL NULL (the default behavior) or JSON null (using keywords JSON NULL ON
NULL). (The default behavior of returning SQL NULL is the only exception to the rule that
a JSON scalar value is returned.)

Note:

Be aware that, although function json_scalar preserves timestamp values, it
drops any time-zone information from a timestamp. The time-zone
information is taken into account by converting to UTC time. See Table 2-3.

If you need to add explicit time-zone information as JSON data then record it
separately from a SQL TIMESTAMP WITH TIME ZONE instance and pass that to
a JSON generation function. Example 2-2 illustrates this.

Example 2-2    Adding Time Zone Information to JSON Data

This example inserts a TIMESTAMP WITH TIME ZONE value into a table, then uses
generation function json_object to construct a JSON object. It uses SQL functions
json_scalar and extract to provide the JSON timestamp and numeric time-zone
inputs for json_object.

CREATE TABLE t (tz TIMESTAMP WITH TIME ZONE);
  INSERT INTO t
    VALUES (to_timestamp_tz('2019-05-03 20:00:00 -8:30',
                            'YYYY-MM-DD HH24:MI:SS TZH:TZM'));

-- This query returns the UTC timestamp value "2019-05-04T04:30:00"
SELECT json_scalar(tz) FROM t;

-- Create a JSON object that has 3 fields:
--  timestamp:       JSON timestamp value (UTC time): 
--  timeZoneHours:   hours component of the time zone, as a JSON number
--  timeZoneMinutes: minutes component of the time zone, as a JSON number

SELECT json_object('timestamp'       : json_scalar(tz),
                   'timezoneHours'   : extract(TIMEZONE_HOUR FROM tz),
                   'timezoneMinutes' : extract(TIMEZONE_MINUTE FROM tz))
  FROM t;

-- That query returns a JSON object and prints it in serialized form.
-- The JSON timestamp value is serialized as an ISO 8601 date-time string.
-- The time-zone values (JSON numbers) are serialized as numbers.
--
-- {"timestamp"       : "2019-05-04T04:30:00",

Chapter 2
JSON Data Type, To and From

2-14



--  "timezoneHours"   : -8,
--  "timezoneMinutes" : -30}

Related Topics

• Overview of JSON in Oracle Database
Oracle Database supports JSON natively with relational database features, including
transactions, indexing, declarative querying, and views. Unlike relational data, JSON data
can be stored in the database, indexed, and queried without any need for a schema that
defines the data.

• JSON Data Type Constructor
The JSON data type constructor, JSON, takes as input a textual JSON value (a scalar,
object, or array), parses it, and returns the value as an instance of JSON type.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which allows a
JSON document to contain only a JSON scalar value at top level. This support also
means that functions that return JSON data can return scalar JSON values.

See Also:

Oracle Database SQL Language Reference for information about Oracle SQL
function json_scalar

2.3.3 Oracle SQL Function JSON_SERIALIZE
Oracle SQL function json_serialize takes JSON data (of any SQL data type, JSON,
VARCHAR2, CLOB, or BLOB) as input and returns a textual representation of it (as VARCHAR2,
CLOB, or BLOB data). VARCHAR2(4000) is the default return type.

You typically use json_serialize to transform the result of a query. The function supports an
error clause and a returning clause. You can optionally do any combination of the following:

• Automatically escape all non-ASCII Unicode characters, using standard ASCII Unicode
escape sequences (keyword ASCII).

• Pretty-print the result (keyword PRETTY).

• Truncate the result to fit the return type (keyword TRUNCATE).

• Translate values of Oracle-specific scalar JSON-language types to Oracle extended-
object patterns (keyword EXTENDED).

By default, function json_serialize always produces JSON data that conforms to the JSON
standard (RFC 8259), in which case the returned data uses only the standard data types of
the JSON language: object, array, and the scalar types string, number, Boolean, and null.

The stored JSON data that gets serialized can also have values of scalar types that Oracle
has added to the JSON language. JSON data of such types is converted when serialized
according to Table 2-2. For example, a numeric value of JSON-language type double is
serialized by converting it to a textual representation of a JSON number.

Chapter 2
JSON Data Type, To and From

2-15



Table 2-2    JSON_SERIALIZE Converts Oracle JSON-Language Types To
Standard JSON-Language Types

Oracle JSON Scalar
Type (Reported by
type())

Standard Type Notes

binary string Conversion is equivalent to the use of SQL
function rawtohex: Binary bytes are
converted to hexadecimal characters
representing their values.

date string The string is in an ISO 8601 date format:
YYYY-MM-DD. For example: "2019-05-21".

daysecondInterval string The string is in an ISO 8601 duration format
that corresponds to a ds_iso_format specified
for SQL function to_dsinterval.

PdDThHmMsS, where d, h, m, and s are digit
sequences for the number of days, hours,
minutes, and seconds, respectively. For
example: "P0DT06H23M34S".

s can also be an integer-part digit sequence
followed by a decimal point and a fractional-
part digit sequence. For example:
P1DT6H23M3.141593S.

Any sequence whose value would be zero is
omitted, along with its designator. For
example: "PT3M3.141593S". However, if all
sequences would have zero values then the
syntax is "P0D".

double number Conversion is equivalent to the use of SQL
function to_number.

float number Conversion is equivalent to the use of SQL
function to_number.

timestamp string The string is in an ISO 8601 date-with-time
format: YYYY-MM-DDThh:mm:ss.ssssss. For
example: "2019-05-21T10:04:02.340129".

timestamp with time
zone

string The string is in an ISO 8601 date-with-time
format: YYYY-MM-
DDThh:mm:ss.ssssss(+|-)hh:mm or, for a zero
offset from UTC, YYYY-MM-
DDThh:mm:ss.ssssssZ For example:
"2019-05-21T10:04:02.123000-08:00" or
"2019-05-21T10:04:02.123000Z".

Chapter 2
JSON Data Type, To and From

2-16



Table 2-2    (Cont.) JSON_SERIALIZE Converts Oracle JSON-Language Types To
Standard JSON-Language Types

Oracle JSON Scalar
Type (Reported by
type())

Standard Type Notes

yearmonthInterval string The string is in an ISO 8601 duration format
that corresponds to a ym_iso_format specified
for SQL function to_yminterval.

PyYmM, where y is a digit sequence for the
number of years and m is a digit sequence for
the number of months. For example: "P7Y8M".

If the number of years or months is zero then it
and its designator are omitted. Examples:
"P7Y", "P8M". However, if there are zero
years and zero months then the syntax is
"P0Y".

You can use json_serialize to convert binary JSON data to textual form (CLOB or VARCHAR2),
or to transform textual JSON data by pretty-printing it or escaping non-ASCII Unicode
characters in it. An important use case is serializing JSON data that is stored in a BLOB or
JSON type column.

(You can use JSON data type only if database initialization parameter compatible is at least
20.)

A BLOB result is in the AL32UTF8 character set. But whatever the data type returned by
json_serialize, the returned data represents textual JSON data.

Note:

You can use the JSON path-expression item method type() to determine the
JSON-language type of any JSON scalar value.

It returns the type name as one of these JSON strings: "binary", "date",
"timestamp", "timestamp with time zone", "yearmonthInterval",
"daysecondInterval", "double", "float", "number", "null", "string". For
example, if the targeted scalar JSON value is of type timestamp with time zone then
type() returns the string "timestamp with time zone". See:

• SQL/JSON Path Expression Item Methods

• Objects That Extend JSON Scalars

Chapter 2
JSON Data Type, To and From

2-17



See Also:

• JSON_SERIALIZE in Oracle Database SQL Language Reference for
information about Oracle SQL function json_serialize

• RAWTOHEX in Oracle Database SQL Language Reference for
information about SQL function rawtohex

• TO_NUMBER in Oracle Database SQL Language Reference for
information about SQL function to_number

Example 2-3    Using JSON_SERIALIZE To Convert JSON type or BLOB Data To
Pretty-Printed Text

This example serializes and pretty-prints the JSON purchase order that has 1600 as
the value of field PONumber data, which is selected from column po_document of table
j_purchaseorder. The return-value data type is VARCHAR2(4000) (the default return
type).

Example 4-1 shows the creation of a table with a JSON type column. You can also use
json_serialize to serialize BLOB data.

SELECT json_serialize(po_document PRETTY)
  FROM j_purchaseorder po
  WHERE po.po_document.PONumber = 1600;

Example 2-4    Using JSON_SERIALIZE To Convert Non-ASCII Unicode
Characters to ASCII Escape Codes

This example serializes an object that has a string field value with a non-ASCII
character (€).

SELECT json_serialize('{"price" : 20, "currency" : "€"}' ASCII)
  FROM DUAL;

The query returns {"currency" : "\u20AC", "price" : 20}.

Related Topics

• Overview of JSON in Oracle Database
Oracle Database supports JSON natively with relational database features,
including transactions, indexing, declarative querying, and views. Unlike relational
data, JSON data can be stored in the database, indexed, and queried without any
need for a schema that defines the data.

• Character Sets and Character Encoding for JSON Data
JSON data always uses the Unicode character set. In this respect, JSON data is
simpler to use than XML data. This is an important part of the JSON Data
Interchange Format (RFC 8259). For JSON data processed by Oracle Database,
any needed character-set conversions are performed automatically.

Chapter 2
JSON Data Type, To and From

2-18



• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which allows a
JSON document to contain only a JSON scalar value at top level. This support also
means that functions that return JSON data can return scalar JSON values.

• Overview of Storing and Managing JSON Data
This overview describes data types for JSON columns and ensuring that JSON columns
contain well-formed JSON data.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

• Objects That Extend JSON Scalars
Native binary JSON data (OSON format) extends the JSON language by adding scalar
types, such as date, that correspond to SQL types and are not part of the JSON
standard. Oracle Database also supports the use of textual JSON objects that represent
JSON scalar values, including such nonstandard values.

2.3.4 JSON Constructor, JSON_SCALAR, and JSON_SERIALIZE:
Summary

Relations among JSON data type constructor JSON, Oracle SQL function json_scalar, and
Oracle SQL function json_serialize are summarized.

Both constructor JSON and function json_scalar accept an instance of a SQL type other than
JSON and return an instance of JSON data type.

The constructor accepts only textual JSON data as input: a VARCHAR2, CLOB, or BLOB instance.
It raises an error for any other input data type.

Function json_scalar accepts an instance of any of several scalar SQL types as input. For
VARCHAR2 or CLOB input it always returns a JSON-language string, as an instance of JSON
type.

The value returned by the constructor can be any JSON value that is supported by Oracle,
including values of the Oracle-specific scalar types: double, float, binary, date, timestamp,
day-second interval, and year-month interval. If the constructor is used with keyword
EXTENDED then the values can be derived from Oracle extended-object patterns in the textual
JSON input.

The JSON value returned by json_scalar is always a scalar — same JSON-language types
as for the constructor, except for the non-scalar types (object and array). For example, an
instance of SQL type DOUBLE as input results in a JSON type instance representing a value of
(Oracle-specific) JSON-language type double.

When Oracle SQL function json_serialize is applied to a JSON type instance, any non-
standard Oracle scalar JSON value is returned as a standard JSON scalar value. But if
json_serialize is used with keyword EXTENDED then values of Oracle-specific scalar JSON-
language types can be serialized to Oracle extended-object patterns in the textual JSON
output.

Table 2-3 summarizes the effects of using constructor JSON and SQL function json_scalar
for various SQL values as JSON data, producing JSON type instances, and the effect of
serializing those instances. The constructor parses the input, which must be textual JSON
data, or an error is raised. Function json_scalar converts its input SQL scalar value to a

Chapter 2
JSON Data Type, To and From

2-19



JSON-language scalar value. VARCHAR2 or CLOB input to json_scalar always results in
a JSON string value (the input is not parsed as JSON data).

Except for the following facts, the result of serializing a value produced by the
constructor is the same textual representation as was accepted by the constructor (but
the textual SQL data type need not be the same, among VARCHAR2, CLOB, and BLOB):

• The constructor accepts lax JSON syntax and json_serialize always returns
strict syntax.

• If any input JSON objects have duplicate field names then all but one of the field–
value pairs is dropped by the constructor.

• The order of field–value pairs in an object is not, in general, preserved: output
order can differ from input order.

• If the textual data to which the constructor is applied contains extended JSON
constructs (JSON objects that specify non-standard scalar JSON values), then the
resulting JSON type data can (with keyword EXTENDED) have some scalar values
that result from translating those constructs to SQL scalar values. If
json_serialize (with keyword EXTENDED) is applied to the resulting JSON type data
then the result can include some extended JSON constructs that result from
translating in the reverse direction.

The translations in these two directions are not, in general, inverse operations,
however. They are exact inverses only for Oracle, not non-Oracle, extended JSON
constructs. Because extended JSON constructs are translated to Oracle-specific
JSON scalar values in JSON type, their serialization back to textual JSON data as
extended JSON objects can be lossy when they are originally of a non-Oracle
format.

Table 2-3    Effect of Constructor JSON and Oracle SQL Function JSON_SCALAR: Examples

Input SQL Value SQL Type JSON Value from JSON
Constructor

JSON Scalar Value from
JSON_SCALAR

{a:1} VARCHAR2 • JSON object with field a and
value 1

• json_serialize result:
{"a":1}

• JSON string containing the
text {"a":1}

• json_serialize result:
"{\"a\":1}" (escaped
double-quote characters)

[1,2,3] VARCHAR2 • JSON array with elements 1,
2, 3

• json_serialize result:
[1,2,3]

• JSON string containing the
text [1,2,3]

• json_serialize result:
"[1,2,3]"

true VARCHAR2 • JSON Boolean value true
• json_serialize result:

true

• JSON string containing the
text true

• json_serialize result:
"true"

null VARCHAR2 • JSON value null
• json_serialize result:

null

• JSON string containing the
text null

• json_serialize result:
"null"

Chapter 2
JSON Data Type, To and From

2-20



Table 2-3    (Cont.) Effect of Constructor JSON and Oracle SQL Function JSON_SCALAR:
Examples

Input SQL Value SQL Type JSON Value from JSON
Constructor

JSON Scalar Value from
JSON_SCALAR

SQL NULL VARCHAR2 • SQL NULL (JSON type) —
not JSON value null

• json_serialize result:
SQL NULL

• SQL NULL (JSON type) —
not JSON value null

• json_serialize result:
SQL NULL

"city" VARCHAR2 • JSON string containing the
text city

• json_serialize result:
"city"

• JSON string containing the
text "city" (including
double-quote characters)

• json_serialize result:
"\"city\"" (escaped
double-quote characters)

city VARCHAR2 Error — input is not valid JSON
data (there is no JSON scalar
value city)

• JSON string containing the
text city

• json_serialize result:
"city"

{"$numberDouble" :
"1E300"} or
{"$numberDouble" :
1E300}
(An extended JSON object.)

VARCHAR2 JSON scalar of type double A JSON string with the same
content as the input VARCHAR2
value

{"$numberDecimal" :
"1E300"} or
{"$numberDecimal" :
1E300}
(An extended JSON object.)

VARCHAR2 JSON scalar of type number,
tagged internally as having been
derived from a $numberDecimal
extended object

A JSON string with the same
content as the input VARCHAR2
value

{"$oid" :
"deadbeefcafe0123456789a
b"} or {"$rawid" :
"deadbeefcafe0123456789a
b"}
(An extended JSON object.)

VARCHAR2 JSON scalar of type binary,
tagged internally as having been
derived from a $rawid or $oid
extended object

A JSON string with the same
content as the input VARCHAR2
value

{"$date" :
"2020-11-24T12:34:56"} or
{"$oracleDate" :
"2020-11-24T12:34:56"}
(An extended JSON object.)

VARCHAR2 JSON scalar of type date, tagged
internally as having been derived
from an $oracleDate or $date
extended object

A JSON string with the same
content as the input VARCHAR2
value

3.14 VARCHAR2 • JSON number 3.14
• json_serialize result:

3.14

• JSON string containing the
text 3.14

• json_serialize result:
"3.14"

3.14 NUMBER Error — not textual JSON data
(SQL types other than
VARCHAR2, CLOB, and BLOB are
not supported)

• JSON number value 3.14
• json_serialize result:

3.14

Chapter 2
JSON Data Type, To and From

2-21



Table 2-3    (Cont.) Effect of Constructor JSON and Oracle SQL Function JSON_SCALAR:
Examples

Input SQL Value SQL Type JSON Value from JSON
Constructor

JSON Scalar Value from
JSON_SCALAR

3.14 BINARY_DO
UBLE

Error — not textual JSON data
(SQL types other than
VARCHAR2, CLOB, and BLOB are
not supported)

• JSON double value 3.14
(Oracle JSON language
extension)

• json_serialize result:
3.14

3.14 NUMBER,
tagged
internally as
having been
derived from
a $numberD
ecimal
extended
object

JSON scalar of type number,
tagged internally as having been
derived from a $numberDecimal
extended object

A JSON string with the same
content as the original extended
object

A RAW value RAW, tagged
internally as
having been
derived from
a $rawid
or $oid
extended
object

JSON scalar of type binary,
tagged internally as having been
derived from a $rawid or $oid
extended object

A JSON string with the same
content as the original extended
object

SQL date value from
evaluating
to_date('20.07.1974')

DATE Error — not textual JSON data • JSON date value (Oracle
JSON language extension)

• json_serialize result:
ISO 8601 string
"1974-07-20T00:00:00"
(UTC date — input format is
ignored)

SQL timestamp value from
evaluating
to_timestamp('2019-05-23
11:31:04.123', 'YYYY-MM-
DD HH24:MI:SS.FF')

TIMESTAMP Error — not textual JSON data • JSON timestamp value
(Oracle JSON language
extension)

• json_serialize result:
ISO 8601 string
"2019-05-23T11:31:04.1
23000"

SQL timestamp value from
evaluating
to_timestamp_tz('2019-05
-23 11:31:04.123 -8',
'YYYY-MM-DD
HH24:MI:SS.FF TZH')

TIMESTAMP
WITH
TIMEZONE

Error — not textual JSON data • JSON timestamp with time
zone value (Oracle JSON
language extension)

• json_serialize result:
ISO 8601 string
"2019-05-23T11:31.03.1
23000-08:00"

Chapter 2
JSON Data Type, To and From

2-22



Related Topics

• JSON Data Type Constructor
The JSON data type constructor, JSON, takes as input a textual JSON value (a scalar,
object, or array), parses it, and returns the value as an instance of JSON type.

• Oracle SQL Function JSON_SCALAR
Oracle SQL function json_scalar accepts a SQL scalar value as input and returns a
corresponding JSON scalar value as a JSON type instance. In particular, the value can be
of an Oracle-specific JSON-language type, such as a date, which is not part of the JSON
standard.

• Oracle SQL Function JSON_SERIALIZE
Oracle SQL function json_serialize takes JSON data (of any SQL data type, JSON,
VARCHAR2, CLOB, or BLOB) as input and returns a textual representation of it (as VARCHAR2,
CLOB, or BLOB data). VARCHAR2(4000) is the default return type.

• Objects That Extend JSON Scalars
Native binary JSON data (OSON format) extends the JSON language by adding scalar
types, such as date, that correspond to SQL types and are not part of the JSON
standard. Oracle Database also supports the use of textual JSON objects that represent
JSON scalar values, including such nonstandard values.

See Also:

• Oracle Database SQL Language Reference for information about constructor
JSON

• Oracle Database SQL Language Reference for information about Oracle SQL
function json_scalar

• Oracle Database SQL Language Reference for information about Oracle SQL
function json_serialize

2.3.5 Objects That Extend JSON Scalars
Native binary JSON data (OSON format) extends the JSON language by adding scalar types,
such as date, that correspond to SQL types and are not part of the JSON standard. Oracle
Database also supports the use of textual JSON objects that represent JSON scalar values,
including such nonstandard values.

When you create native binary JSON data from textual JSON data that contains such
extended objects, they can optionally be replaced with corresponding (native binary) JSON
scalar values.

An example of an extended object is {"$numberDecimal":31}. It represents a JSON scalar
value of the nonstandard type decimal number, and when interpreted as such it is replaced
by a decimal number in native binary format.

For example, when you use the JSON data type constructor, JSON, if you use keyword
EXTENDED then recognized extended objects in the textual input are replaced with
corresponding scalar values in the native binary JSON result. If you do not include keyword
EXTENDED then no such replacement occurs; the textual extended JSON objects are simply
converted as-is to JSON objects in the native binary format.

Chapter 2
JSON Data Type, To and From

2-23



In the opposite direction, when you use Oracle SQL function json_serialize to
serialize binary JSON data as textual JSON data (VARCHAR2, CLOB, or BLOB), you can
use keyword EXTENDED to replace (native binary) JSON scalar values with
corresponding textual extended JSON objects.

Note:

If the database you use is an Oracle Autonomous Database then you can
use PL/SQL procedure DBMS_CLOUD.copy_collection to create a JSON
document collection from a file of JSON data such as that produced by
common NoSQL databases, including Oracle NoSQL Database.

If you use ejson as the value of the type parameter of the procedure, then
recognized extended JSON objects in the input file are replaced with
corresponding scalar values in the resulting native binary JSON collection. In
the other direction, you can use function json_serialize with keyword
EXTENDED to replace scalar values with extended JSON objects in the
resulting textual JSON data.

These are the two main use cases for extended objects:

• Exchange (import/export):

– Ingest existing JSON data (from somewhere) that contains extended objects.

– Serialize native binary JSON data as textual JSON data with extended
objects, for some use outside the database.

• Inspection of native binary JSON data: see what you have by looking at
corresponding extended objects.

For exchange purposes, you can ingest JSON data from a file produced by common
NoSQL databases, including Oracle NoSQL Database, converting extended objects to
native binary JSON scalars. In the other direction, you can export native binary JSON
data as textual data, replacing Oracle-specific scalar JSON values with corresponding
textual extended JSON objects.

As an example of inspection, consider an object such as {"dob" :
"2000-01-02T00:00:00"} as the result of serializing native JSON data. Is
"2000-01-02T00:00:00" the result of serializing a native binary value of type date, or
is the native binary value just a string? Using json_serialize with keyword EXTENDED
lets you know.

The mapping of extended object fields to scalar JSON types is, in general, many-to-
one: more than one kind of extended JSON object can be mapped to a given scalar
value. For example, the extended JSON objects {"$numberDecimal":"31"} and
{"$numberLong:"31"} are both translated as the value 31 of JSON-language scalar
type number, and item method type() returns number for each of those JSON scalars.

Item method type() reports the JSON-language scalar type of its targeted value.
Some scalar values are distinguishable internally, even when they have the same
scalar type. This generally allows function json_serialize (with keyword EXTENDED) to
reconstruct the original extended JSON object. They are distinguished internally either
by using different SQL types to implement them or by tagging them with the kind of
extended JSON object from which they were derived.

Chapter 2
JSON Data Type, To and From

2-24



When json_serialize reconstructs the original extended JSON object the result is not
always textually identical to the original, but it is always semantically equivalent. For example,
{"$numberDecimal":"31"} and {"$numberDecimal":31} are semantically equivalent, even
though the field values differ in type (string and number). They are translated to the same
internal value, and each is tagged as being derived from a $numberDecimal extended object
(same tag). But when serialized, the result for both is {"$numberDecimal":31}. Oracle always
uses the most directly relevant type for the field value, which in this case is the JSON-
language value 31, of scalar type number.

Note:

There are two cases where the type of the original extended object can be lost
when deriving the internal binary-JSON value.

• An extended object with field $numberInt is translated to an Oracle SQL NUMBER
internal value, with no tag. Serializing that value produces a standard JSON-
language value of type number. There is no loss in the numerical value; the
only loss is the information that the original textual data was a $numberInt
extended object.

• Use of field $numberDecimal with infinite, very small, very large, or not-a-
number values is unsupported, and results in undefined behavior. Do not use a
string value that represents positive infinity ("Infinity" or "Inf"), negative
infinity ("-Infinity" or "-Inf"), or an unknown value (not a number, "Nan")
with $numberDecimal — instead, use $numberDouble with such values.

You can generally go back and forth between native binary JSON data and textual JSON
data without loss of information. However, comparison (and hence indexing) of data in SQL
requires that you stay within the same type family.

You can use item method type() to identify the type family of a JSON value (but not the
exact type within a family), which makes it useful for purposes of comparison or indexing.

You can compare JSON values only within each of the following type families.

• Floating-point number types: double and float (from extended objects with $numberDouble
or $numberFloat).

Item method type() reports values in this family as double or float.

• Decimal number types (from extended objects with $numberInt, $numberDecimal,
or $numberLong).

Item method type() reports values in this family as number.

• Binary types, including identifiers (from extended objects with $binary, $oid, $rawhex
or $rawid).

Item method type() reports values in this family as binary.

• Date and time point types (from extended objects
with $date, $oracleDate, $oracleTimestamp or $oracleTimestampTZ).

Item method type() reports values in this family as date or timestamp. It reports a
timestamp-with-timezone value (from extended objects with $oracleTimestampTZ) as
timestamp.

Chapter 2
JSON Data Type, To and From

2-25



A $date field has a timestamp-with-timezone value, because it allows fractional
seconds, and the value is given for Coordinated Universal Time (UTC).

• Date and time interval types (from extended objects with $intervalDaySecond
or $intervalYearMonth).

Item method type() reports values in this family as daysecondInterval or
yearmonthInterval.

• JSON string type

Item method type() reports values in this family as string.

• JSON null type

Item method type() reports values in this family as null.

• JSON Boolean type

Item method type() reports values in this family as boolean.

Table 2-4 presents correspondences among the various types used. It maps across
types of extended objects used as input, types reported by item method type(), SQL
types used internally, standard JSON-language types used as output by function
json_serialize, and types of extended objects output by json_serialize when
keyword EXTENDED is specified.

Table 2-4    Extended JSON Object Type Relations

Extended Object Type (Input) Oracle
JSON
Scalar
Type
(Reported
by type())

SQL
Scalar
Type

Standard JSON
Scalar Type
(Output)

Extended Object Type
(Output)

$numberDouble with value a JSON
number, a string representing the
number, or one of these strings:
"Infinity", "-Infinity", "Inf",
"-Inf", "Nan"1

double BINARY_D
OUBLE

number $numberDouble with value
a JSON number or one of
these strings: "Inf", "-
Inf", "Nan"2

$numberFloat with value the same as
for $numberDouble

float BINARY_F
LOAT

number $numberFloat with value
the same as
for $numberDouble

$numberDecimal with value the same
as for $numberDouble

number NUMBER number $numberDecimal with value
the same as
for $numberDouble

$numberInt with value a signed 32-bit
integer or a string representing the
number

number NUMBER number $numberInt with value the
same as
for $numberDouble

$numberLong with value a JSON
number or a string representing the
number

number NUMBER number $numberLong with value the
same as
for $numberDouble

Chapter 2
JSON Data Type, To and From

2-26



Table 2-4    (Cont.) Extended JSON Object Type Relations

Extended Object Type (Input) Oracle
JSON
Scalar
Type
(Reported
by type())

SQL
Scalar
Type

Standard JSON
Scalar Type
(Output)

Extended Object Type
(Output)

$binary with value one of these:

• a string of base-64 characters
• An object with fields base64 and

subType, whose values are a
string of base-64 characters and
the number 0 (arbitrary binary) or
4 (UUID), respectively

When the value is a string of base-64
characters, the extended object can
also have field $subtype with value 0
or 4, expressed as a one-byte integer
(0-255) or a 2-character hexadecimal
string. representing such an integer

binary BLOB or
RAW

string

Conversion is
equivalent to the
use of SQL
function
rawtohex.

One of the following:
• $binary with value a

string of base-64
characters

• $rawid with value a
string of 32
hexadecimal characters,
if input had a subType
value of 4 (UUID)

$oid with value a string of 24
hexadecimal characters

binary RAW(12) string

Conversion is
equivalent to the
use of SQL
function
rawtohex.

$rawid with value a string
of 24 hexadecimal
characters

$rawhex with value a string with an
even number of hexadecimal
characters

binary RAW string

Conversion is
equivalent to the
use of SQL
function
rawtohex.

$binary with value a string
of base-64 characters, right-
padded with = characters

$rawid with value a string of 24 or 32
hexadecimal characters

binary RAW string

Conversion is
equivalent to the
use of SQL
function
rawtohex.

$rawid

$oracleDatewith value an ISO 8601
date string

date DATE string $oracleDatewith value an
ISO 8601 date string

$oracleTimestamp with value an ISO
8601 timestamp string

timestam
p

TIMESTAM
P

string $oracleTimestamp with
value an ISO 8601
timestamp string

$oracleTimestampTZ with value an
ISO 8601 timestamp string with a
numeric time zone offset or with Z

timestam
p

TIMESTAM
P WITH
TIME
ZONE

string $oracleTimestampTZ with
value an ISO 8601
timestamp string with a
numeric time zone offset or
with Z

Chapter 2
JSON Data Type, To and From

2-27



Table 2-4    (Cont.) Extended JSON Object Type Relations

Extended Object Type (Input) Oracle
JSON
Scalar
Type
(Reported
by type())

SQL
Scalar
Type

Standard JSON
Scalar Type
(Output)

Extended Object Type
(Output)

$date with value one of the following:

• An integer millisecond count since
January 1, 1990

• An ISO 8601 timestamp string
• An object with field numberLong

with value an integer millisecond
count since January 1, 1990

timestam
p

TIMESTAM
P WITH
TIME
ZONE

string $oracleTimestampTZ with
value an ISO 8601
timestamp string with a
numeric time zone offset or
with Z

$intervalDaySecond with value an
ISO 8601 interval string as specified
for SQL function to_dsinterval

daysecon
dInterva
l

INTERVAL
DAY TO
SECOND

string $intervalDaySecond with
value an ISO 8601 interval
string as specified for SQL
function to_dsinterval

$intervalYearMonth with value an
ISO 8601 interval string as specified
for SQL function to_yminterval

yearmont
hInterva
l

INTERVAL
YEAR TO
MONTH

string $intervalYearMonth with
value an ISO 8601 interval
string as specified for SQL
function to_yminterval

1 The string values are interpreted case-insensitively. For example, "NAN" "nan", and "nAn" are accepted and equivalent,
and similarly "INF", "inFinity", and "iNf". Infinitely large ("Infinity" or "Inf") and small ("-Infinity" or "-
Inf") numbers are accepted with either the full word or the abbreviation.

2 On output, only these string values are used — no full-word Infinity or letter-case variants.

Related Topics

• JSON Constructor, JSON_SCALAR, and JSON_SERIALIZE: Summary
Relations among JSON data type constructor JSON, Oracle SQL function
json_scalar, and Oracle SQL function json_serialize are summarized.

• Oracle SQL Function JSON_SCALAR
Oracle SQL function json_scalar accepts a SQL scalar value as input and returns
a corresponding JSON scalar value as a JSON type instance. In particular, the
value can be of an Oracle-specific JSON-language type, such as a date, which is
not part of the JSON standard.

• JSON Data Type Constructor
The JSON data type constructor, JSON, takes as input a textual JSON value (a
scalar, object, or array), parses it, and returns the value as an instance of JSON
type.

• Oracle SQL Function JSON_SERIALIZE
Oracle SQL function json_serialize takes JSON data (of any SQL data type,
JSON, VARCHAR2, CLOB, or BLOB) as input and returns a textual representation of it
(as VARCHAR2, CLOB, or BLOB data). VARCHAR2(4000) is the default return type.

Chapter 2
JSON Data Type, To and From

2-28



See Also:

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

2.3.6 Migration of Textual JSON Data to JSON Type Data
Oracle recommends that you store JSON data in the database using JSON data type. You can
migrate existing data from textual JSON storage (VARCHAR2, CLOB, or BLOB) to JSON type
storage using Oracle GoldenGate or online redefinition.

When performing online redefinition, for the col_mapping input parameter to PL/SQL
procedure DBMS_REDEFINITION.start_redef_table, you just specify constructor JSON as the
mapping function.

For example, if text_jcol is the source column of textual JSON data, and json_type_col is
the destination column of JSON data type, then you specify parameter col_mapping like this:

BEGIN
  DBMS_REDEFINITION.start_redef_table(
    ...
    col_mapping => 'JSON(text_jcol) json_type_col');
END;

See Also:

• Oracle Database Administrator’s Guide

• https://www.oracle.com/middleware/technologies/goldengate.html for
information about Oracle GoldenGate

2.4 Oracle Database Support for JSON
Oracle Database support for JavaScript Object Notation (JSON) is designed to provide the
best fit between the worlds of relational storage and querying JSON data, allowing relational
and JSON queries to work well together. Oracle SQL/JSON support is closely aligned with
the JSON support in the SQL Standard.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which allows a
JSON document to contain only a JSON scalar value at top level. This support also
means that functions that return JSON data can return scalar JSON values.

Chapter 2
Oracle Database Support for JSON

2-29

https://en.wikipedia.org/wiki/IEEE_754
https://www.oracle.com/middleware/technologies/goldengate.html


See Also:

• ISO/IEC 9075-2:2016, Information technology—Database languages—
SQL—Part 2: Foundation (SQL/Foundation)

• ISO/IEC TR 19075–6

• Oracle Database SQL Language Reference

• JSON.org

• ECMA International

2.4.1 Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which allows
a JSON document to contain only a JSON scalar value at top level. This support also
means that functions that return JSON data can return scalar JSON values.

For this support, database initialization parameter compatible must be 20 or greater.

In database releases prior to 21c only IETF RFC 4627 was supported. It allows only a
JSON object or array, not a scalar, at the top level of a JSON document. RFC 8259
support includes RFC 4627 support (and RFC 7159 support).

If parameter compatible is 20 or greater then JSON data, regardless of how it is
stored, supports RFC 8259 by default. But for a given JSON column you can use an
is json check constraint to exclude the insertion of documents there that have top-
level JSON scalars (that is, support only RFC 4627, not RFC 8259), by specifying the
new is json keywords DISALLOW SCALARS.

With parameter compatible 20 or greater you can also use keywords DISALLOW
SCALARS with SQL/JSON function json_query (or with a json_table column that has
json_query semantics) to specify that the return value must be a JSON object or
array. Without these keywords a JSON scalar can be returned.

If parameter compatible is 20 or greater you can also use SQL data type JSON, its
constructor JSON, and Oracle SQL function json_scalar. If compatible is less than 20
then an error is raised when you try to use them.

If compatible is 20 or greater you can nevertheless restrict some JSON data to not
allow top-level scalars, by using keywords DISALLOW SCALARS. For example, you can
use an is json check constraint with DISALLOW SCALARS to prevent the insertion of
documents that have a top-level scalar JSON value.

WARNING:

If you change the value of parameter compatible to 20 or greater then you
cannot later return it to a lower value.

Chapter 2
Oracle Database Support for JSON

2-30



Part II
Store and Manage JSON Data

This part covers creating JSON columns in a database table, partitioning such tables,
replicating them using Oracle GoldenGate, and character-set encoding of JSON data. It
covers the use of SQL/JSON condition is json as a check constraint to ensure that the data
in a column is well-formed JSON data.

• Overview of Storing and Managing JSON Data
This overview describes data types for JSON columns and ensuring that JSON columns
contain well-formed JSON data.

• Creating a Table With a JSON Column
You can create a table that has JSON columns. Oracle recommends that you use JSON
data type for this.

• SQL/JSON Conditions IS JSON and IS NOT JSON
SQL/JSON conditions is json and is not json are complementary. They test whether
their argument is syntactically correct, that is, well-formed, JSON data. You can use them
in a CASE expression or the WHERE clause of a SELECT statement. You can use is json in
a check constraint.

• Character Sets and Character Encoding for JSON Data
JSON data always uses the Unicode character set. In this respect, JSON data is simpler
to use than XML data. This is an important part of the JSON Data Interchange Format
(RFC 8259). For JSON data processed by Oracle Database, any needed character-set
conversions are performed automatically.

• Considerations When Using LOB Storage for JSON Data
LOB storage considerations for JSON data are described, including considerations when
you use a client to retrieve JSON data as a LOB instance.

• Partitioning JSON Data
You can partition a table using a JSON virtual column as the partitioning key. The virtual
column is extracted from a JSON column using SQL/JSON function json_value.

• Replication of JSON Data
You can use Oracle GoldenGate to replicate tables that have columns containing JSON
data.



3
Overview of Storing and Managing JSON
Data

This overview describes data types for JSON columns and ensuring that JSON columns
contain well-formed JSON data.

Data Types for JSON Columns

You can store JSON data in Oracle Database using columns whose data types are JSON,
VARCHAR2, CLOB, or BLOB. Whichever type you use, you can manipulate JSON data as you
would manipulate any other data of those types. Storing JSON data using standard data
types allows all features of Oracle Database, such as advanced replication, to work with
tables containing JSON documents.

Oracle recommends that you use JSON data type, which stores JSON data in a native binary
format.

If you instead use one of the other types, the choice of which one to use is typically motivated
by the size of the JSON documents you need to manage:

• Use VARCHAR2(4000) if you are sure that your largest JSON documents do not exceed
4000 bytes (or characters)1.

If you use Oracle Exadata then choosing VARCHAR2(4000) can improve performance by
allowing the execution of some JSON operations to be pushed down to Exadata storage
cells, for improved performance.

• Use VARCHAR2(32767) if you know that some of your JSON documents are larger than
4000 bytes (or characters) and you are sure than none of the documents exceeds 32767
bytes (or characters)1.

With VARCHAR2(32767), the first roughly 3.5K bytes (or characters) of a document is
stored in line, as part of the table row. This means that the added cost of using
VARCHAR2(32767) instead of VARCHAR2(4000) applies only to those documents that are
larger than about 3.5K. If most of your documents are smaller than this then you will likely
notice little performance difference from using VARCHAR2(4000).

If you use Oracle Exadata then push-down is enabled for any documents that are stored
in line.

• Use BLOB (binary large object) or CLOB (character large object) storage if you know that
you have some JSON documents that are larger than 32767 bytes (or characters)1.

Ensure That JSON Columns Contain Well-Formed JSON Data

If you use JSON data type to store your JSON data (recommended) then the data is
guaranteed to be well-formed JSON data — you cannot store it otherwise.

If you do not use JSON data type to store your JSON data then you can use SQL/JSON
condition is json to check whether or not some JSON data is well formed. In this case

1 Whether the limit is expressed in bytes or characters is determined by session parameter NLS_LENGTH_SEMANTICS.

3-1



Oracle strongly recommends that you apply an is json check constraint to any JSON
column, unless you expect some rows to contain something other than well-formed
JSON data.

The overhead of parsing JSON is such that evaluating the condition should not have a
significant impact on insert and update performance, and omitting the constraint
means you cannot use the simple dot-notation syntax to query the JSON data.

What constitutes well-formed JSON data is a gray area. In practice, it is common for
JSON data to have some characteristics that do not strictly follow the standard
definition. You can control which syntax you require a given column of JSON data to
conform to: the standard definition (strict syntax) or a JavaScript-like syntax found in
common practice (lax syntax). The default SQL/JSON syntax for Oracle Database is
lax. Which kind of syntax is used is controlled by condition is json. Applying an is
json check constraint to a JSON column thus enables the use of lax JSON syntax, by
default.

Related Topics

• Character Sets and Character Encoding for JSON Data
JSON data always uses the Unicode character set. In this respect, JSON data is
simpler to use than XML data. This is an important part of the JSON Data
Interchange Format (RFC 8259). For JSON data processed by Oracle Database,
any needed character-set conversions are performed automatically.

• Overview of Inserting, Updating, and Loading JSON Data
You can use database APIs to insert or modify JSON data in Oracle Database.
You can use Oracle SQL function json_transform or json_mergepatch to update
a JSON document. You can work directly with JSON data contained in file-system
files by creating an external table that exposes it to the database.

• Simple Dot-Notation Access to JSON Data
Dot notation is designed for easy, general use and common use cases of querying
JSON data. For simple queries it is a handy alternative to using SQL/JSON query
functions.

Chapter 3

3-2



4
Creating a Table With a JSON Column

You can create a table that has JSON columns. Oracle recommends that you use JSON data
type for this.

When using textual JSON data to perform an INSERT or UPDATE operation on a JSON type
column, the data is implicitly wrapped with constructor JSON. If the column is instead
VARCHAR2, CLOB, or BLOB, then use condition is json as a check constraint, to ensure that the
data inserted is (well-formed) JSON data.

Example 4-1, Example 4-2 and Example 4-3 illustrate this. They create and fill a table that
holds data used in examples elsewhere in this documentation. Example 4-1 and Example 4-2
are alternative ways to create the table, using JSON type and VARCHAR2, respectively.

For brevity, only two rows of data (one JSON document) are inserted in Example 4-3.

Note:

A check constraint can reduce performance for data INSERT and UPDATE operations.
If you are sure that your application uses only well-formed JSON data for a
particular column, then consider disabling the check constraint, but do not drop the
constraint.

Note:

SQL/JSON conditions is json and is not json return true or false for any non-
NULL SQL value. But they both return unknown (neither true nor false) for SQL NULL.
When used in a check constraint, they do not prevent a SQL NULL value from being
inserted into the column. (But when used in a SQL WHERE clause, SQL NULL is never
returned.)

See Also:

• Loading External JSON Data for the creation of the full table j_purchaseorder
• Oracle Database SQL Language Reference for information about CREATE

TABLE

4-1



Example 4-1    Creating a Table with a JSON Type Column

This example creates table j_purchaseorder with JSON data type column
po_document. Oracle recommends that you store JSON data as JSON type.

CREATE TABLE j_purchaseorder
  (id          VARCHAR2 (32) NOT NULL PRIMARY KEY,
   date_loaded TIMESTAMP (6) WITH TIME ZONE,
   po_document JSON);

Example 4-2    Using IS JSON in a Check Constraint to Ensure Textual JSON
Data is Well-Formed

This example creates table j_purchaseorder with a VARCHAR2 column for the JSON
data. It uses a check constraint to ensure that the textual data in the column is well-
formed JSON data. Always use such a check constraint if you use a data type other
than JSON to store JSON data.

CREATE TABLE j_purchaseorder
  (id          VARCHAR2 (32) NOT NULL PRIMARY KEY,
   date_loaded TIMESTAMP (6) WITH TIME ZONE,
   po_document VARCHAR2 (23767)
   CONSTRAINT ensure_json CHECK (po_document is json));

Example 4-3    Inserting JSON Data Into a JSON Column

This example inserts two rows of data into table j_purchaseorder. The third column
contains JSON data.

Note that if the data type of the third column is JSON (as in Example 4-1) and you insert
textual data into that column, as in this example, the data is implicitly wrapped with the
JSON constructor to provide JSON type data.

INSERT INTO j_purchaseorder
  VALUES (
    SYS_GUID(),
    to_date('30-DEC-2014'),
    '{"PONumber"             : 1600,
      "Reference"            : "ABULL-20140421",
      "Requestor"            : "Alexis Bull",
      "User"                 : "ABULL",
      "CostCenter"           : "A50",
      "ShippingInstructions" :
        {"name"    : "Alexis Bull",
         "Address" : {"street"  : "200 Sporting Green",
                      "city"    : "South San Francisco",
                      "state"   : "CA",
                      "zipCode" : 99236,
                      "country" : "United States of America"},
         "Phone"   : [{"type" : "Office", "number" : "909-555-7307"},
                      {"type" : "Mobile", "number" : "415-555-1234"}]},
      "Special Instructions" : null,
      "AllowPartialShipment" : true,
      "LineItems"            :

Chapter 4

4-2



        [{"ItemNumber" : 1,
          "Part"       : {"Description" : "One Magic Christmas",
                          "UnitPrice"   : 19.95,
                          "UPCCode"     : 13131092899},
          "Quantity"   : 9.0},
         {"ItemNumber" : 2,
          "Part"       : {"Description" : "Lethal Weapon",
                          "UnitPrice"   : 19.95,
                          "UPCCode"     : 85391628927},
          "Quantity"   : 5.0}]}');

INSERT INTO j_purchaseorder
  VALUES (
    SYS_GUID(),
    to_date('30-DEC-2014'),
    '{"PONumber"             : 672,
      "Reference"            : "SBELL-20141017",
      "Requestor"            : "Sarah Bell",
      "User"                 : "SBELL",
      "CostCenter"           : "A50",
      "ShippingInstructions" : {"name"    : "Sarah Bell",
                                "Address" : {"street"  : "200 Sporting Green",
                                             "city"    : "South San Francisco",
                                             "state"   : "CA",
                                             "zipCode" : 99236,
                                             "country" : "United States of America"},
                                "Phone"   : "983-555-6509"},
      "Special Instructions" : "Courier",
      "LineItems"            :
        [{"ItemNumber" : 1,
          "Part"       : {"Description" : "Making the Grade",
                          "UnitPrice"   : 20,
                          "UPCCode"     : 27616867759},
          "Quantity"   : 8.0},
         {"ItemNumber" : 2,
          "Part"       : {"Description" : "Nixon",
                          "UnitPrice"   : 19.95,
                          "UPCCode"     : 717951002396},
          "Quantity"   : 5},
         {"ItemNumber" : 3,
          "Part"       : {"Description" : "Eric Clapton: Best Of 1981-1999",
                          "UnitPrice"   : 19.95,
                          "UPCCode"     : 75993851120},
          "Quantity"   : 5.0}]}');

• Determining Whether a Column Must Contain Only JSON Data
How can you tell whether a given column of a table or view can contain only well-formed
JSON data? Whenever this is the case, the column is listed in the following static data
dictionary views: DBA_JSON_COLUMNS, USER_JSON_COLUMNS, and ALL_JSON_COLUMNS.

Chapter 4

4-3



4.1 Determining Whether a Column Must Contain Only
JSON Data

How can you tell whether a given column of a table or view can contain only well-
formed JSON data? Whenever this is the case, the column is listed in the following
static data dictionary views: DBA_JSON_COLUMNS, USER_JSON_COLUMNS, and
ALL_JSON_COLUMNS.

Each of these views lists the column name, data type, and format (TEXT or BINARY); the
table or view name (column TABLE_NAME); and whether the object is a table or a view
(column OBJECT_TYPE).

A JSON data type column always contains only well-formed JSON data, so each such
column is always listed, with its type as JSON.

For a column that is not JSON type to be considered JSON data it must have an is
json check constraint. But in the case of a view, any one of the following criteria
suffices for a column to be considered JSON data:

• The underlying data has the data type JSON.

• The underlying data has an is json check constraint.

• The column results from the use of a SQL/JSON generation function, such as
json_object.

• The column results from the use of SQL/JSON function json_query.

• The column results from the use of Oracle SQL function json_mergepatch,
json_scalar, json_serialize, or json_transform.

• The column results from the use of the JSON data type constructor, JSON.

• The column results from the use of SQL function treat with keywords AS JSON.

If an is json check constraint, which constrains a table column to contain only JSON
data, is later deactivated, the column remains listed in the views. If the check
constraint is dropped then the column is removed from the views.

Note:

If a check constraint combines condition is json with another condition
using logical condition OR, then the column is not listed in the views. In this
case, it is not certain that data in the column is JSON data. For example, the
constraint jcol is json OR length(jcol) < 1000 does not ensure that
column jcol contains only JSON data.

Chapter 4
Determining Whether a Column Must Contain Only JSON Data

4-4



See Also:

Oracle Database Reference for information about ALL_JSON_COLUMNS and the
related data-dictionary views

Chapter 4
Determining Whether a Column Must Contain Only JSON Data

4-5



5
SQL/JSON Conditions IS JSON and IS NOT
JSON

SQL/JSON conditions is json and is not json are complementary. They test whether their
argument is syntactically correct, that is, well-formed, JSON data. You can use them in a CASE
expression or the WHERE clause of a SELECT statement. You can use is json in a check
constraint.

If the argument is syntactically correct then is json returns true and is not json returns
false.

If an error occurs during parsing then the error is not raised, and the data is considered to not
be well-formed: is json returns false; is not json returns true. If an error occurs other than
during parsing then that error is raised.

Well-formed data means syntactically correct data. JSON data stored textually can be well-
formed in two senses, referred to as strict and lax syntax. In addition, for textual JSON data
you can specify whether a JSON object can have duplicate fields (keys). For JSON data of
any type you can specify whether a document of well-formed data can have a scalar value at
top level (provided database initialization parameter compatible is 20 or greater).

Whenever textual JSON data is generated inside the database it satisfies condition is json
with keyword STRICT. This includes generation in these ways:

• Using a SQL/JSON generation function (unless you specify keyword STRICT with either
FORMAT JSON or TREAT AS JSON, which means that you declare that the data is JSON
data; you vouch for it, so its well-formedness is not checked)

• Using SQL function json_serialize
• Using SQL function to_clob, to_blob, or to_string on a PL/SQL DOM

• Using SQL/JSON function json_query
• Using SQL/JSON function json_table with FORMAT JSON

Note:

JSON type data has only unique object keys (field names), and the notions of strict
and lax syntax do not apply to it. When you serialize JSON data (of any data type)
to produce textual JSON data the result always has strict syntax.

If JSON data is stored using JSON data type and you use an is json check
constraint then:

• If you specify keywords DISALLOW SCALARS, the JSON column cannot store
documents with top-level scalar JSON values.

• If you specify no keywords or you specify any other keywords than DISALLOW
SCALARS, the is json constraint is ignored. The keywords change nothing.

5-1



• Unique Versus Duplicate Fields in JSON Objects
The JSON standard recommends that a JSON object not have duplicate field
names. Oracle Database enforces this for JSON type data by raising an error. If
stored textually, Oracle recommends that you do not allow duplicate field names,
by using an is json check constraint with keywords WITH UNIQUE KEYS.

• About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript
syntax for object fields; the Boolean and null values are not case-sensitive; and it
is more permissive with respect to numerals, whitespace, and escaping of Unicode
characters.

• Specifying Strict or Lax JSON Syntax
The default JSON syntax for Oracle Database is lax. Strict or lax syntax matters
only for SQL/JSON conditions is json and is not json. All other SQL/JSON
functions and conditions use lax syntax for interpreting input and strict syntax
when returning output.

Related Topics

• Creating a Table With a JSON Column
You can create a table that has JSON columns. Oracle recommends that you use
JSON data type for this.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which
allows a JSON document to contain only a JSON scalar value at top level. This
support also means that functions that return JSON data can return scalar JSON
values.

See Also:

Oracle Database SQL Language Reference for information about is json
and is not json.

5.1 Unique Versus Duplicate Fields in JSON Objects
The JSON standard recommends that a JSON object not have duplicate field names.
Oracle Database enforces this for JSON type data by raising an error. If stored textually,
Oracle recommends that you do not allow duplicate field names, by using an is json
check constraint with keywords WITH UNIQUE KEYS.

If stored textually (VARCHAR2, CLOB, BLOB column), JSON data is, by default, allowed to
have duplicate field names, simply because checking for duplicate names takes
additional time. This default behavior for JSON data stored textually can result in
inconsistent behavior, so Oracle recommends against relying on it.

You can override this default behavior, to instead raise an error if an attempt is made
to insert data containing an object with duplicate fields. You do this by using an is
json check constraint with the keywords WITH UNIQUE KEYS. (These keywords have no
effect for data inserted into a JSON type column.)

Whether duplicate field names are allowed in well-formed textual JSON data is
orthogonal to whether Oracle uses strict or lax syntax to determine well-formedness.

Chapter 5
Unique Versus Duplicate Fields in JSON Objects

5-2



5.2 About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript syntax for
object fields; the Boolean and null values are not case-sensitive; and it is more permissive
with respect to numerals, whitespace, and escaping of Unicode characters.

Standard ECMA-404, the JSON Data Interchange Format, and ECMA-262, the ECMAScript
Language Specification, define JSON syntax.

According to these specifications, each JSON field and each string value must be enclosed in
double quotation marks ("). Oracle supports this strict JSON syntax, but it is not the default
syntax.

In JavaScript notation, a field used in an object literal can be, but need not be, enclosed in
double quotation marks. It can also be enclosed in single quotation marks ('). Oracle also
supports this lax JSON syntax, and it is the default syntax.

In addition, in practice, some JavaScript implementations (but not the JavaScript standard)
allow one or more of the following:

• Case variations for keywords true, false, and null (for example, TRUE, True, TrUe,
fALSe, NulL).

• An extra comma (,) after the last element of an array or the last member of an object (for
example, [a, b, c,], {a:b, c:d,}).

• Numerals with one or more leading zeros (for example, 0042.3).

• Fractional numerals that lack 0 before the decimal point (for example, .14 instead of
0.14).

• Numerals with no fractional part after the decimal point (for example, 342. or 1.e27).

• A plus sign (+) preceding a numeral, meaning that the number is non-negative (for
example, +1.3).

This syntax too is allowed as part of the Oracle default (lax) JSON syntax. (See the JSON
standard for the strict numeral syntax.)

In addition to the ASCII space character (U+0020), the JSON standard defines the following
characters as insignificant (ignored) whitespace when used outside a quoted field or a string
value:

• Tab, horizontal tab (HT, ^I, decimal 9, U+0009, \t)

• Line feed, newline (LF, ^J, decimal 10, U+000A, \n)

• Carriage return (CR, ^M, decimal 13, U+000D, \r)

The lax JSON syntax, however, treats all of the ASCII control characters (Control+0 through
Control+31), as well as the ASCII space character (decimal 32, U+0020), as (insignificant)
whitespace characters. The following are among the control characters:

• Null (NUL, ^@, decimal 0, U+0000, \0)

• Bell (NEL, ^G, decimal 7, U+0007, \a)

• Vertical tab (VT, ^K, decimal 11, U+000B)

• Escape (ESC, ^[, decimal 27, U+001B, \e)

Chapter 5
About Strict and Lax JSON Syntax

5-3



• Delete (DEL, ^?, decimal 127, U+007F)

An ASCII space character (U+0020) is the only whitespace character allowed,
unescaped, within a quoted field or a string value. This is true for both the lax and strict
JSON syntaxes.

For both strict and lax JSON syntax, quoted object field and string values can contain
any Unicode character, but some of them must be escaped, as follows:

• ASCII control characters are not allowed, except for those represented by the
following escape sequences: \b (backspace), \f (form feed), \n (newline, line
feed), \r (carriage return), and \t (tab, horizontal tab).

• Double quotation mark ("), slash (/), and backslash (\) characters must also be
escaped (preceded by a backslash): \", \/, and \\, respectively.

In the lax JSON syntax, an object field that is not quoted can contain any Unicode
character except whitespace and the JSON structural characters — left and right
brackets ([, ]) and curly braces ({, }), colon (:), and comma (,), but escape
sequences are not allowed.

Any Unicode character can also be included in a name or string by using the ASCII
escape syntax \u followed by the four ASCII hexadecimal digits that represent the
Unicode code point.

Note that other Unicode characters that are not printable or that might appear as
whitespace, such as a no-break space character (U+00A0), are not considered
whitespace for either the strict or the lax JSON syntax.

Table 5-1 shows some examples of JSON syntax.

Table 5-1    JSON Object Field Syntax Examples

Example Well-Formed?

"part number": 1234 Lax and strict: yes. Space characters are allowed.

part number: 1234 Lax (and strict): no. Whitespace characters, including space characters, are not
allowed in unquoted names.

"part\tnumber": 1234 Lax and strict: yes. Escape sequence for tab character is allowed.

"part    number": 1234 Lax and strict: no. Unescaped tab character is not allowed. Space is the only
unescaped whitespace character allowed.

"\"part\"number": 1234 Lax and strict: yes. Escaped double quotation marks are allowed, if name is quoted.

\"part\"number: 1234 Lax and strict: no. Name must be quoted.

'\"part\"number': 1234 Lax: yes, strict: no. Single-quoted names (object fields and strings) are allowed for
lax syntax only. Escaped double quotation mark is allowed in a quoted name.

"pärt : number":1234 Lax and strict: yes. Any Unicode character is allowed in a quoted name. This
includes whitespace characters and characters, such as colon (:), that are structural
in JSON.

part:number:1234 Lax (and strict): no. Structural characters are not allowed in unquoted names.

Related Topics

• JSON Syntax and the Data It Represents
Standard JSON values, scalars, objects, and arrays are described.

Chapter 5
About Strict and Lax JSON Syntax

5-4



• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which allows a
JSON document to contain only a JSON scalar value at top level. This support also
means that functions that return JSON data can return scalar JSON values.

See Also:

• ECMA 404 and IETF RFC 8259 for the definition of the JSON Data Interchange
Format

• ECMA International and JSON.org for more information about JSON and
JavaScript

5.3 Specifying Strict or Lax JSON Syntax
The default JSON syntax for Oracle Database is lax. Strict or lax syntax matters only for SQL/
JSON conditions is json and is not json. All other SQL/JSON functions and conditions
use lax syntax for interpreting input and strict syntax when returning output.

If you need to be sure that particular textual JSON data has strictly correct syntax, then check
it first using is json or is not json.

You specify that data is to be checked as strictly well-formed according to the JSON standard
by appending (STRICT) (parentheses included) to an is json or an is not json expression.

Example 5-1 illustrates this. It is identical to Example 4-2 except that it uses (STRICT) to
ensure that all data inserted into the column is well-formed according to the JSON standard.

See Also:

Oracle Database SQL Language Reference for information about CREATE TABLE

Example 5-1    Using IS JSON in a Check Constraint to Ensure Textual JSON Data is
Strictly Well-Formed

The JSON column is data type VARCHAR2. Because the type is not JSON type an is json
check constraint is needed. This example imposes strict, that is, standard, JSON syntax.

CREATE TABLE j_purchaseorder
  (id          VARCHAR2 (32) NOT NULL PRIMARY KEY,
   date_loaded TIMESTAMP (6) WITH TIME ZONE,
   po_document VARCHAR2 (32767)
   CONSTRAINT ensure_json CHECK (po_document is json (STRICT)));

Related Topics

• About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript syntax
for object fields; the Boolean and null values are not case-sensitive; and it is more
permissive with respect to numerals, whitespace, and escaping of Unicode characters.

Chapter 5
Specifying Strict or Lax JSON Syntax

5-5

https://tools.ietf.org/html/rfc8259


6
Character Sets and Character Encoding for
JSON Data

JSON data always uses the Unicode character set. In this respect, JSON data is simpler to
use than XML data. This is an important part of the JSON Data Interchange Format (RFC
8259). For JSON data processed by Oracle Database, any needed character-set conversions
are performed automatically.

Oracle Database uses UTF-8 internally when it processes JSON data (parsing, querying). If
the data that is input to such processing, or the data that is output from it, must be in a
different character set from UTF-8, then character-set conversion is carried out accordingly.

Character-set conversion can affect performance. And in some cases it can be lossy.
Conversion of input data to UTF-8 is a lossless operation, but conversion to output can result
in information loss in the case of characters that cannot be represented in the output
character set.

If your JSON data is stored in the database as Unicode then no character-set conversion is
needed for storage or retrieval. This is the case if any of these conditions apply:

• Your JSON data is stored as JSON type or BLOB instances.

• The database character set is AL32UTF8 (Unicode UTF-8).

• Your JSON data is stored as CLOB instances that have character set AL16UTF16.

Oracle recommends that you store JSON data using JSON type and that you use AL32UTF8
as the database character set if at all possible.

Regardless of the database character set, JSON data that is stored using data type JSON or
BLOB never undergoes character-set conversion for storage or retrieval. JSON data can be
stored using data type BLOB as AL32UTF8, AL16UTF16, or AL16UTF16LE.

If you transform JSON data using SQL/JSON functions or PL/SQL methods and you return
the result of the transformation using data type BLOB then the result is encoded as
AL32UTF8. This is true even if the input BLOB data uses another Unicode encoding.

For example, if you use function json_query to extract some JSON data from BLOB input and
return the result as BLOB, it is returned using AL32UTF8.

Lossy character-set conversion can occur if application of a SQL/JSON function or a PL/SQL
method specifies a return data type of VARCHAR2 or CLOB and the database character set is not
AL32UTF8. If input JSON data was stored in a BLOB or JSON type instance then, even if it is
ultimately written again as BLOB or JSON type, if some of it was temporarily changed to
VARCHAR2 or CLOB then the resulting BLOB data can suffer from lossy conversion. This can
happen, for example, if you use json_serialize.

Related Topics

• Overview of Storing and Managing JSON Data
This overview describes data types for JSON columns and ensuring that JSON columns
contain well-formed JSON data.

6-1



• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which
allows a JSON document to contain only a JSON scalar value at top level. This
support also means that functions that return JSON data can return scalar JSON
values.

See Also:

• Unicode.org for information about Unicode

• ECMA 404 and IETF RFC 8259 for the definition of the JSON Data
Interchange Format

• Oracle Database Migration Assistant for Unicode Guide for information
about using different character sets with the database

• Oracle Database Globalization Support Guide for information about
character-set conversion in the database

Chapter 6

6-2

https://tools.ietf.org/html/rfc8259


7
Considerations When Using LOB Storage for
JSON Data

LOB storage considerations for JSON data are described, including considerations when you
use a client to retrieve JSON data as a LOB instance.

General Considerations

If you use LOB storage for JSON data, Oracle recommends that you use BLOB, not CLOB
storage.

This is particularly relevant if the database character set is the Oracle-recommended value of
AL32UTF8. In AL32UTF8 databases CLOB instances are stored using the UCS2 character
set, which means that each character requires two bytes. This doubles the storage needed
for a document if most of its content consists of characters that are represented using a
single byte in character set AL32UTF8.

Even in cases where the database character set is not AL32UTF8, choosing BLOB over CLOB
storage has the advantage that it avoids the need for character-set conversion when storing
the JSON document  (see Character Sets and Character Encoding for JSON Data).

When using large objects (LOBs), Oracle recommends that you do the following:

• Use the clause LOB (COLUMN_NAME) STORE AS (CACHE) in your CREATE TABLE statement,
to ensure that read operations on the JSON documents are optimized using the database
buffer cache.

• Use SecureFiles LOBs.

SQL/JSON functions and conditions work with JSON data without any special considerations,
whether the data is stored as BLOB or CLOB. From an application-development perspective,
the API calls for working with BLOB content are nearly identical to those for working with CLOB
content.

A downside of choosing BLOB storage over CLOB (for JSON or any other kind of data) is that it
is sometimes more difficult to work with BLOB content using command-line tools such as
SQL*Plus. For instance:

• When selecting data from a BLOB column, if you want to view it as printable text then you
must use SQL function to_clob.

• When performing insert or update operations on a BLOB column, you must explicitly
convert character strings to BLOB format using SQL function rawtohex.1

1 The return value of SQL function rawtohex is limited to 32767 bytes. The value is truncated to remove any converted
data beyond this length.

7-1



See Also:

• Oracle Database SQL Language Reference for information about SQL
function to_clob

• Oracle Database SQL Language Reference for information about SQL
function rawtohex

Considerations When Using a Client To Retrieve JSON Data As a LOB Instance

If you use a client, such as Oracle Call Interface (OCI) or Java Database Connectivity
(JDBC), to retrieve JSON data from the database then the following considerations
apply.

There are three main ways for a client to retrieve a LOB that contains JSON data from
the database:

• Use the LOB locator interface, with a LOB locator returned by a SQL/JSON
operation2

• Use the LOB data interface

• Read the LOB content directly

In general, Oracle recommends that you use the LOB data interface or you read the
content directly.

If you use the LOB locator interface:

• Be aware that the LOB is temporary and read-only.

• Be sure to read the content of the current LOB completely before fetching the next
row. The next row fetch can render this content unreadable.

Save this current-LOB content, in memory or to disk, if your client continues to
need it after the next row fetch.

• Free the fetched LOB locator after each row is read. Otherwise, performance can
be reduced, and memory can leak.

Consider also these optimizations if you use the LOB locator interface:

• Set the LOB prefetch size to a large value, such as 256 KB, to minimize the
number of round trips needed for fetching.

• Set the batch fetch size to a large value, such as 1000 rows.

Example 7-1 and Example 7-2 show how to use the LOB locator interface with JDBC.

Example 7-3 and Example 7-4 show how to use the LOB locator interface with
ODP.NET.

Each of these examples fetches a LOB row at a time. To ensure that the current LOB
content remains readable after the next row fetch, it also reads the full content.

If you use the LOB data interface:

2 The SQL/JSON functions that can return a LOB locator are these, when used with RETURNING CLOB or
RETURNING BLOB: json_serialize, json_value, json_query, json_table, json_array, json_object,
json_arrayagg, and json_objectagg.

Chapter 7

7-2



• In OCI, use data types SQLT_BIN and SQLT_CHR, for BLOB and CLOB data, respectively.

• In JDBC, use data types LONGVARBINARY and LONGVARCHAR, for BLOB and CLOB data,
respectively.

Example 7-5 and Example 7-6 show how to use the LOB data interface with JDBC.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Example 7-7 and Example 7-8 show how to read the full LOB content directly with JDBC.

Example 7-9 and Example 7-10 show how to read the full LOB content directly with
ODP.NET.

Example 7-1    JDBC Client: Using the LOB Locator Interface To Retrieve JSON BLOB
Data

static void test_JSON_SERIALIZE_BLOB() throws Exception {
  try(
      OracleConnection conn = getConnection();
      OracleStatement stmt = (OracleStatement)conn.createStatement();
      ) {
    stmt.setFetchSize(1000); // Set batch fetch size to 1000 rows.

    // Set LOB prefetch size to be 256 KB.
    ((OraclePreparedStatement)stmt).setLobPrefetchSize(256000);

    // Query the JSON data in column jblob of table myTab1,
    // serializing the returned JSON data as a textual BLOB instance.
    String query =
      "SELECT json_serialize(jblob RETURNING BLOB) FROM myTab1";
    ResultSet rs = stmt.executeQuery(query);

    while(rs.next()) { // Iterate over the returned rows.
      Blob blob = rs.getBlob(1);

      // Do something with the BLOB instance for the row...

      // Read full content, to be able to access past current row.
      String val =
        new String(blob.getBytes(1,
                                 (int)blob.length()),
                                 StandardCharsets.UTF_8);
      // Free the LOB at the end of each iteration.
      blob.free();
    }
    rs.close();
    stmt.close();
  }
}

Chapter 7

7-3



Example 7-2    JDBC Client: Using the LOB Locator Interface To Retrieve JSON
CLOB Data

static void test_JSON_SERIALIZE_CLOB() throws Exception {
  try(
      OracleConnection conn = getConnection();
      OracleStatement stmt = (OracleStatement)conn.createStatement();
      ){
    stmt.setFetchSize(1000); // Set batch fetch size to 1000 rows.

    // Set LOB prefetch size to be 256 KB.
    ((OraclePreparedStatement)stmt).setLobPrefetchSize(256000);

    // Query the JSON data in column jclob of table myTab2,
    // serializing the returned JSON data as a textual CLOB instance.
    String query =
      "SELECT json_serialize(jclob RETURNING CLOB) FROM myTab2";
 
    ResultSet rs = stmt.executeQuery(query);

    while(rs.next()) { // Iterate over the returned rows.
      Clob clob = rs.getClob(1);

      // Do something with the CLOB instance for the row...

      // Read full content, to be able to access past current row.
      String val = clob.getSubString(1, (int)clob.length());

      // Free the LOB at the end of each iteration.
      clob.free();
    }
    rs.close();
    stmt.close();
  }
}

Example 7-3    ODP.NET Client: Using the LOB Locator Interface To Retrieve
JSON BLOB Data

static void test_JSON_SERIALIZE_BLOB()
{
  try
  {
    using (OracleConnection conn =
      new OracleConnection(
        "user id=<schema>;password=<password>;data source=oracle"))
    {
      conn.Open();
      OracleCommand cmd = conn.CreateCommand();

      // Set LOB prefetch size to be 256 KB.
      cmd.InitialLOBFetchSize = 256000;

      // Query the JSON datatype data in column jblob of table myTab1,

Chapter 7

7-4



      // serializing the returned JSON data as a textual BLOB instance.
      cmd.CommandText =
        "SELECT json_serialize(jblob RETURNING BLOB) FROM myTab1";

      OracleDataReader rs = cmd.ExecuteReader();

      // Iterate over the returned rows.
      while (rs.Read())
      {
        OracleBlob blob = rs.GetOracleBlob(0);

        // Do something with the BLOB instance for the row...

        // Read full content, to be able to access past current row.
        String val = Encoding.UTF8.GetString(blob.Value);

        blob.Close();
        blob.Dispose();
      }
      rs.Close();
    }
  }
  catch (Exception e)
  {
    throw e;
  }
}

Example 7-4    ODP.NET Client: Using the LOB Locator Interface To Retrieve JSON
CLOB Data

static void test_JSON_SERIALIZE_CLOB()
{
  try
  {
    using (OracleConnection conn =
      new OracleConnection(
        "user id=<schema>;password=<password>;data source=oracle"))
    {
      conn.Open();
      OracleCommand cmd = conn.CreateCommand();

      // Set LOB prefetch size to be 256 KB.
      cmd.InitialLOBFetchSize = 256000;

      // Query the JSON datatype data in column jclob of table myTab2,
      // serializing the returned JSON data as a textual CLOB instance.
      cmd.CommandText =
        "SELECT json_serialize(jclob RETURNING CLOB) FROM myTab2";

      OracleDataReader rs = cmd.ExecuteReader();

      // Iterate over the returned rows.

Chapter 7

7-5



      while (rs.Read())
      {
        OracleClob clob = rs.GetOracleClob(0);

        // Do something with the CLOB instance for the row...

        // Read full content, to be able to access past current row.
        String val = clob.Value;

        clob.Close();
        clob.Dispose();
      }
      rs.Close();
    }
  }
  catch (Exception e)
  {
    throw e;
  }
}

Example 7-5    JDBC Client: Using the LOB Data Interface To Retrieve JSON
BLOB Data

static void test_JSON_SERIALIZE_LONGVARBINARY() throws Exception {
  try(
      OracleConnection conn = getConnection();
      OracleStatement  stmt = (OracleStatement)conn.createStatement();
      ){

    // Query the JSON data in column jblob of table myTab1,
    // serializing the returned JSON data as a textual BLOB instance.
    String query =
      "SELECT json_serialize(jblob RETURNING BLOB) FROM myTab1";
    stmt.defineColumnType(1, OracleTypes.LONGVARBINARY, 1);
    ResultSet rs = stmt.executeQuery(query);
 
    while(rs.next()) { // Iterate over the returned rows.
      BufferedReader br =
        new BufferedReader(
              new InputStreamReader(rs.getBinaryStream( 1 )));
      int size = 0;
      int data = 0;
      data = br.read();
      while( -1 != data ){
          System.out.print( (char)(data) );
        data = br.read();
        size++;
      }
      br.close();
    }
    rs.close();
    stmt.close();

Chapter 7

7-6



  }
}

Example 7-6    JDBC Client: Using the LOB Data Interface To Retrieve JSON CLOB Data

static void test_JSON_SERIALIZE_LONGVARCHAR() throws Exception {
  try(
      OracleConnection conn = getConnection();
      OracleStatement  stmt = (OracleStatement)conn.createStatement();
      ){

    // Query the JSON data in column jclob of table myTab2,
    // serializing the returned JSON data as a textual CLOB instance.
    String query =
      "SELECT json_serialize(jclob RETURNING CLOB) FROM myTab2";
    stmt.defineColumnType(1, OracleTypes.LONGVARCHAR, 1);
    ResultSet rs = stmt.executeQuery(query);
 
    while(rs.next()) { // Iterate over the returned rows.
      Reader reader = rs.getCharacterStream(1);
      int size = 0;
      int data = 0;
      data = reader.read();
      while( -1 != data ){
        System.out.print( (char)(data) );
        data = reader.read();
        size++;
      }
      reader.close();
    }
    rs.close();
    stmt.close();
  }
}

Example 7-7    JDBC Client: Reading Full BLOB Content Directly with getBytes

static void test_JSON_SERIALIZE_BLOB_2() throws Exception {
  try(
      OracleConnection con = getConnection();
      OracleStatement stmt = (OracleStatement)con.createStatement();
      ){
    stmt.setFetchSize(1000); // Set batch fetch size to 1000 rows.

    // set LOB prefetch size to be 256 KB.
    ((OracleStatement)stmt).setLobPrefetchSize(256000);

    // Query the JSON data in column jblob of table myTab1,
    // serializing the returned JSON data as a textual BLOB instance.
    String query =
      "SELECT json_serialize(jblob RETURNING BLOB) FROM myTab1";
    ResultSet rs = stmt.executeQuery(query);

    while(rs.next()) { // Iterate over the returned rows.

Chapter 7

7-7



      String val = new String(rs.getBytes(1), StandardCharsets.UTF_8);
    }
    rs.close();
    stmt.close();
    }
  }

Example 7-8    JDBC Client:Reading Full CLOB Content Directly with getString

static void test_JSON_SERIALIZE_CLOB_2() throws Exception {
  try(
      OracleConnection conn = getConnection();
      OracleStatement  stmt = (OracleStatement)conn.createStatement();
      ){
    stmt.setFetchSize(1000); // Set batch fetch size to 1000 rows.

    // Set LOB prefetch size to be 256 KB.
    ((OracleStatement)stmt).setLobPrefetchSize(256000);

    // Query the JSON data in column jclob of table myTab2,
    // serializing the returned JSON data as a textual CLOB instance.
    String query =
      "SELECT json_serialize(jclob RETURNING CLOB) FROM myTab2";
    ResultSet rs = stmt.executeQuery(query);

    while(rs.next()) { // Iterate over the returned rows.
      String val = rs.getString(1);
    }
    rs.close();
    stmt.close();
    }
  }

Example 7-9    ODP.NET Client: Reading Full BLOB Content Directly with
getBytes

static void test_JSON_SERIALIZE_BLOB_2()
{
  try
  {
    using (OracleConnection conn = new OracleConnection("user 
id=scott;password=tiger;data source=oracle"))
    {
      conn.Open();
      OracleCommand cmd = conn.CreateCommand();

      // Set LOB prefetch size to be 256 KB.
      cmd.InitialLOBFetchSize = 256000;

      // Query the JSON datatype data in column blob of table myTab1,
      // serializing the returned JSON data as a textual BLOB instance.

      cmd.CommandText =
        "SELECT json_serialize(blob RETURNING BLOB) FROM myTab1";

Chapter 7

7-8



      OracleDataReader rs = cmd.ExecuteReader();

      // Iterate over the returned rows.
      while (rs.Read())
      {
        long len = rs.GetBytes(0, 0, null, 0, 0); /* Get LOB length */
        byte[] obuf = new byte[len];
        rs.GetBytes(0, 0, obuf, 0, (int)len);
        String val = Encoding.UTF8.GetString(obuf);
      }
      rs.Close();
    }
  }
  catch (Exception e)
  {
    throw e;
  }
}

Example 7-10    ODP.NET Client: Reading Full CLOB Content Directly with getString

static void test_JSON_SERIALIZE_CLOB_2()
{
  try
  {
    using (OracleConnection conn =
      new OracleConnection(
        "user id=<schema>;password=<password>;data source=oracle"))
    {
      conn.Open();
      OracleCommand cmd = conn.CreateCommand();

      // Set LOB prefetch size to be 256 KB.
      cmd.InitialLOBFetchSize = 256000;

      // Query the JSON datatype data in column clob of table myTab2,
      // serializing the returned JSON data as a textual CLOB instance.

      cmd.CommandText = "SELECT json_serialize(clob RETURNING CLOB) FROM 
myTab2";

      OracleDataReader rs = cmd.ExecuteReader();

      // Iterate over the returned rows.
      while (rs.Read())
      {
        String val = rs.GetString(0);
      }
      rs.Close();
    }
  }
  catch (Exception e)
  {
    throw e;

Chapter 7

7-9



  }
}

Chapter 7

7-10



8
Partitioning JSON Data

You can partition a table using a JSON virtual column as the partitioning key. The virtual
column is extracted from a JSON column using SQL/JSON function json_value.

Partition on a Non-JSON Column When Possible

You can partition a table using a JSON virtual column, but it is generally preferable to use a
non-JSON column. A partitioning key specifies which partition a new row is inserted into. A
partitioning key defined as a JSON virtual column uses SQL/JSON function json_value, and
the partition-defining json_value expression is evaluated each time a row is inserted. This
can be costly, especially for insertion of large JSON documents.

Rules for Partitioning a Table Using a JSON Virtual Column

• The virtual column that serves as the partitioning key must be defined using SQL/JSON
function json_value.

• The data type of the virtual column is defined by the RETURNING clause used for the
json_value expression.

• The json_value path used to extract the data for the virtual column must not contain any
predicates. (The path must be streamable.)

• The JSON column referenced by the expression that defines the virtual column can have
an is json check constraint, but it need not have such a constraint.

See Also:

Oracle Database SQL Language Reference for information about CREATE TABLE

Example 8-1    Creating a Partitioned Table Using a JSON Virtual Column

This example creates table j_purchaseorder_partitioned, which is partitioned using virtual
column po_num_vc. That virtual column references JSON column po_document (which uses
CLOB storage). The json_value expression that defines the virtual column extracts JSON field
PONumber from po_document as a number.

CREATE TABLE j_purchaseorder_partitioned
  (id VARCHAR2 (32) NOT NULL PRIMARY KEY,
   date_loaded TIMESTAMP (6) WITH TIME ZONE,
   po_document JSON,
   po_num_vc NUMBER GENERATED ALWAYS AS
     (json_value (po_document, '$.PONumber' RETURNING NUMBER)))
  PARTITION BY RANGE (po_num_vc)
   (PARTITION p1 VALUES LESS THAN (1000),
    PARTITION p2 VALUES LESS THAN (2000));

8-1



9
Replication of JSON Data

You can use Oracle GoldenGate to replicate tables that have columns containing JSON data.

In particular, you can replicate textual JSON data (VARCHAR2, CLOB, or BLOB) in the primary
server to JSON type data in the secondary. You can also replicate textual data to textual data
or JSON type data to JSON type data.

Be aware that Oracle GoldenGate requires tables that are to be replicated to have a
nonvirtual primary key column; the primary key column cannot be virtual.

All indexes on the JSON data will be replicated also. However, on the replica database, you
must carry out any Oracle Text operations that you use to maintain a JSON search index.
Here are examples of such procedures:

• CTX_DDL.sync_index
• CTX_DDL.optimize_index

See Also:

• Oracle GoldenGate for information about Oracle GoldenGate

• Oracle Text Reference for information about CTX_DDL.sync_index
• Oracle Text Reference for information about CTX_DDL.optimize_index

9-1



Part III
Insert, Update, and Load JSON Data

The usual ways to insert, update, and load data in Oracle Database work with JSON data.
You can also create an external table from the content of a JSON dump file.

• Overview of Inserting, Updating, and Loading JSON Data
You can use database APIs to insert or modify JSON data in Oracle Database. You can
use Oracle SQL function json_transform or json_mergepatch to update a JSON
document. You can work directly with JSON data contained in file-system files by creating
an external table that exposes it to the database.

• Oracle SQL Function JSON_TRANSFORM
Oracle SQL function json_transform modifies JSON documents. You specify
modification operations to perform and SQL/JSON path expressions that target the
places to modify. The operations are applied to the input data in the order specified: each
operation acts on the result of applying all of the preceding operations.

• Oracle SQL Function JSON_MERGEPATCH
You can use Oracle SQL function json_mergepatch to update specific portions of a JSON
document. You pass it a JSON Merge Patch document, which specifies the changes to
make to a specified JSON document. JSON Merge Patch is an IETF standard.

• Loading External JSON Data
You can create a database table of JSON data from the content of a JSON dump file.



10
Overview of Inserting, Updating, and Loading
JSON Data

You can use database APIs to insert or modify JSON data in Oracle Database. You can use
Oracle SQL function json_transform or json_mergepatch to update a JSON document. You
can work directly with JSON data contained in file-system files by creating an external table
that exposes it to the database.

Use Standard Database APIs to Insert or Update JSON Data

All of the usual database APIs used to insert or update VARCHAR2 and large-object (LOB)
columns can be used for JSON columns. If the JSON column is of data type JSON
(recommended) then textual data you input is automatically converted to JSON type.

If you insert or update a JSON column using a client (such as JDBC for Java or Oracle Call
Interface for C and C++) that supports JSON type then you can bind client data directly to JSON
type instances — no conversion from text to JSON type is needed.

A column of data type JSON is always well-formed JSON data. If you use another data type to
store JSON data then you specify that a JSON column must contain only well-formed JSON
data by using SQL condition is json as a check constraint.

The database handles an is json check constraint the same as any other check constraint
— it enforces rules about the content of the column. Working with a column of type VARCHAR2,
BLOB, or CLOB that contains JSON documents is thus no different from working with any other
column of that type.

For JSON type data, condition is json is inappropriate, except if you use keywords DISALLOW
SCALARS (which disallows JSON documents with top-level scalars). Use of any other is json
keywords with JSON type data raises an error.

Inserting a JSON document into a JSON column, or updating data in such a column, is
straightforward if the column is of data type JSON, VARCHAR2, CLOB, or BLOB. See Example 4-3
for an example of using SQL to insert.

You can also use a client, such as JDBC for Java or Oracle Call Interface for C or C++, to do
this. You can even use an older client, which does not support or recognize JSON data type, to
insert JSON data into a JSON type column — the data is implicitly converted for JSON type.

10-1



Note:

In addition to the usual ways to insert, update, and load JSON data, you can
use Simple Oracle Document Access (SODA) APIs. SODA is designed for
schemaless application development without knowledge of relational
database features or languages such as SQL and PL/SQL. It lets you create
and store collections of documents of any kind (not just JSON), retrieve
them, and query them, without needing to know how the documents are
stored in the database. SODA also provides query features that are specific
for JSON documents. There are implementations of SODA for several
languages, as well as for representational state transfer (REST). See Simple
Oracle Document Access (SODA).

Use JSON Transform or JSON Merge Patch To Update a JSON Document

You can use Oracle SQL function json_transform or json_mergepatch to modify
specific portions of a JSON document. These functions are not only for updating
stored JSON data. You can also use them to modify JSON data on the fly, for further
use in a query. The database need not be updated to reflect the modified data.

In addition to providing the input JSON data to each function, you provide the
following:

• For json_transform, a sequence of modification operations to be performed on
parts of the data. Each operation consists of the operation name (e.g. REMOVE)
followed by pairs of (1) a SQL/JSON path expression that targets some data to
modify and (2) an update operation to be performed on that data. The operations
are applied to the input data, in the order specified. Each operation acts on the
result of applying the preceding operations.

• For json_mergepatch, a JSON Merge Patch document, which is a JSON
document that specifies the changes to make to a given JSON document. JSON
Merge Patch is an IETF standard.

json_transform provides a superset of what you can do with json_mergepatch.

When json_transform updates a JSON document on disk, the operation is typically
performed in place, piecewise, if the data is JSON type; the entire document need not
be replaced. Other methods of updating might replace the entire document. With such
methods you can specify fine-grained modifications for a JSON document, but when
you need to save the changes to disk the entire updated document is written.

Updating with json_transform (regardless of the data type) is also piecewise in
another sense: you specify only the document pieces to change, and how. A client
need send only the locations of changes (using SQL/JSON path expressions) and the
update operations to be performed. This contrasts with sending a complete document
to be modified and receiving the complete modified document in return.

On the other hand, json_mergepatch can be easier to use in some contexts where the
patch document is generated by comparing two versions of a document. You need not
specify or think in terms of specific modification locations and operations — the
generated patch takes care of where to make changes, and the changes to be made
are implicit. For example, the database can pass part of a JSON document to a client,
which changes it in some way and passes back the update patch for the document

Chapter 10

10-2

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html


fragment. The database can then apply the patch to the stored document using
json_mergepatch.

Use PL/SQL Object Types To Update a JSON Document

Oracle SQL functions json_transform and json_mergepatch let you modify JSON data in a
declarative way. For json_transform, you specify where to make changes and what changes
to make, but now in detail how to make them. For json_mergepatch, you specify document-
version differences: a patch.

For complex use cases that are not easily handled by these SQL functions you can use
PL/SQL code — in particular JSON PL/SQL object-type methods, such as remove() — to
modify JSON data procedurally. There are no limitations on the kinds of changes you can
make with PL/SQL (it is a Turing-complete programming language). You can parse JSON
data into an instance of object-type JSON_ELEMENT_T, make changes to it, serialize it (if textual
JSON data is needed), and then store it back in the database.

Use an External Table to Work With JSON Data in File-System Files

External tables make it easy to access JSON documents that are stored as separate files in a
file system. Each file can be exposed to Oracle Database as a row in an external table. An
external table can also provide access to the content of a dump file produced by a NoSQL
database. You can use an external table of JSON documents to, in effect, query the data in
file-system files directly. This can be useful if you need only process the data from all of the
files in a one-time operation.

But if you instead need to make multiple queries of the documents, and especially if different
queries select data from different rows of the external table (different documents), then for
better performance consider copying the data from the external table into an ordinary
database table, using an INSERT as SELECT statement — see Example 13-4. Once the JSON
data has been loaded into a JSON column of an ordinary table, you can index the content,
and then you can efficiently query the data in a repetitive, selective way.

Related Topics

• Oracle SQL Function JSON_TRANSFORM
Oracle SQL function json_transform modifies JSON documents. You specify
modification operations to perform and SQL/JSON path expressions that target the
places to modify. The operations are applied to the input data in the order specified: each
operation acts on the result of applying all of the preceding operations.

• Oracle SQL Function JSON_MERGEPATCH
You can use Oracle SQL function json_mergepatch to update specific portions of a JSON
document. You pass it a JSON Merge Patch document, which specifies the changes to
make to a specified JSON document. JSON Merge Patch is an IETF standard.

• Loading External JSON Data
You can create a database table of JSON data from the content of a JSON dump file.

• Creating a Table With a JSON Column
You can create a table that has JSON columns. Oracle recommends that you use JSON
data type for this.

• Overview of Storing and Managing JSON Data
This overview describes data types for JSON columns and ensuring that JSON columns
contain well-formed JSON data.

Chapter 10

10-3



See Also:

• PL/SQL Object Types for JSON for information about updating JSON
data using PL/SQL object types

• Oracle Database SQL Language Reference for information about Oracle
SQL function json_transform

• Oracle Database SQL Language Reference for information about SQL
function json_mergepatch

• IETF RFC7396 for the definition of JSON Merge Patch

Chapter 10

10-4



11
Oracle SQL Function JSON_TRANSFORM

Oracle SQL function json_transform modifies JSON documents. You specify modification
operations to perform and SQL/JSON path expressions that target the places to modify. The
operations are applied to the input data in the order specified: each operation acts on the
result of applying all of the preceding operations.

Function json_transform is atomic: if attempting any of the operations raises an error then
none of the operations take effect. json_transform either succeeds completely, so that the
data is modified as required, or the data remains unchanged. json_transform returns the
original data, modified as expressed by the arguments.

You can use json_transform in a SQL UPDATE statement, to update the documents in a
JSON column. Example 11-1 illustrates this.

You can use it in a SELECT list, to modify the selected documents. The modified documents
can be returned or processed further. Example 11-2 illustrates this.

Function json_transform can accept as input, and return as output, any SQL data type that
supports JSON data: JSON, VARCHAR2, CLOB, or BLOB. Data type JSON is available only if
database initialization parameter compatible is 20 or greater.

The default return (output) data type is the same as the input data type.

Unlike Oracle SQL function json_mergepatch, which has limited applicability (it is suitable for
updating JSON documents that primarily use objects for their structure, and that do not make
use of explicit null values), json_transform is a general modification function.

When you specify more than one operation to be performed by a single invocation of
json_transform, the operations are performed in sequence, in the order specified. Each
operation thus acts on the result of applying all of the preceding operations.

Following the sequence of modification operations that you specify, you can include optional
RETURNING and PASSING clauses. The RETURNING clause is the same as for SQL/JSON
function json_query. The PASSING clause is the same as for SQL/JSON condition
json_exists. They specify the return data type and SQL bind variables, respectively.

(However, the default return type for json_query is different: for JSON type input the
json_query default return type is also JSON, but for other input types it is VARCHAR2(4000).)

The possible modification operations are as follows:

• REMOVE — Remove the input data that is targeted by the specified path expression. An
error is raised if you try to remove all of the data; that is, you cannot use REMOVE '$'. By
default, no error is raised if the targeted data does not exist (IGNORE ON MISSING).

• KEEP — Remove all parts of the input data that are not targeted by at least one of the
specified path expressions. A topmost object or array is not removed; it is emptied,
becoming an empty object ({}) or array ([]).

1 Do not confuse the SQL return type for function json_transform with the type of the SQL result expression that follows
an equal sign (=) in a modification operation other than KEEP and REMOVE.

11-1



• RENAME — Rename the field targeted by the specified path expression to the value
of the SQL expression that follows the equal sign (=). By default, no error is raised
if the targeted field does not exist (IGNORE ON MISSING).

• SET — Set the data targeted by the specified path expression to the value of the
specified SQL expression. The default behavior is like that of SQL UPSERT: replace
existing targeted data with the new value, or insert the new value at the targeted
location if the path expression matches nothing.

(See operator INSERT about inserting an array element past the end of the array.)

• REPLACE — Replace the data targeted by the specified path expression with the
value of the specified SQL expression. By default, no error is raised if the targeted
data does not exist (IGNORE ON MISSING).

(REPLACE has the effect of SET with clause IGNORE ON MISSING.)

• INSERT — Insert the value of the specified SQL expression at the location targeted
by the specified path expression, which must be either the field of an object or an
array position (otherwise, an error is raised). By default, an error is raised if a
targeted object field already exists.

(INSERT for an object field has the effect of SET with clause CREATE ON MISSING
(default for SET), except that the default behavior for ON EXISTING is ERROR, not
REPLACE.)

You can specify an array position past the current end of an array. In that case, the
array is lengthened to accommodate insertion of the value at the indicated
position, and the intervening positions are filled with JSON null values.

For example, if the input JSON data is {"a":["b"]} then INSERT '$.a[3]'=42
returns {"a":["b", null, null 42]} as the modified data. The elements at array
positions 1 and 2 are null.

• APPEND — Append the value of the specified SQL expression to the targeted array.
By default, an error is raised if the path expression does not target an array.

(APPEND has the effect of INSERT for an array position of last+1.)

Immediately following the keyword for each kind of operation is the path expression for
the data targeted by that operation. Operation KEEP is an exception in that the keyword
is followed by one or more path expressions, which target the data to keep — all data
not targeted by at least one of these path expressions is removed.

For all operations except KEEP, and REMOVE, the path expression is followed by an
equal sign (=) and then a SQL result expression. This is evaluated and the resulting
value is used to modify the targeted data. 1

For operation RENAME the result expression must evaluate to a SQL string. Otherwise,
an error is raised.

For all operations except RENAME, the result expression must evaluate to a SQL value
that is of JSON data type or that can be rendered as a JSON value. Otherwise, an error
is raised because of the inappropriate SQL data type. (This is the same requirement
as for the value part of a name–value pair provided to SQL/JSON generation function
json_object.)

If the result expression evaluates to a SQL value that is not JSON type, you can convert
it to JSON data by following the expression immediately with keywords FORMAT JSON.

Chapter 11

11-2



This is particularly useful to convert the SQL string 'true' or 'false' to the corresponding
JSON-language value true or false. Example 11-7 illustrates this.

The last part of an operation specification is an optional set of handlers. Different operations
allow different handlers and provide different handler defaults. (An error is raised if you
provide a handler for an operation that disallows it.)

There are three kinds of handler:

• ON EXISTING — Specifies what happens if a path expression matches the data; that is, it
targets at least one value.

– ERROR ON EXISTING — Raise an error.

– IGNORE ON EXISTING — Leave the data unchanged (no modification).

– REPLACE ON EXISTING — Replace data at the targeted location with the value of the
SQL result expression.

– REMOVE ON EXISTING — Remove the targeted data.

• ON MISSING — Specifies what happens if a path expression does not match the data; that
is, it does not target at least one value.

– ERROR ON MISSING — Raise an error.

– IGNORE ON MISSING — Leave the data unchanged (no modification).

– CREATE ON MISSING — Add data at the targeted location.

Note that for a path-expression array step, an ON MISSING handler does not mean that
the targeted array itself is missing from the data — that is instead covered by handler ON
EMPTY. An ON MISSING handler covers the case where one or more of the positions
specified by the array step does not match the data. For example, array step [2] does
not match data array ["a", "b"] because that array has no element at position 2.

• ON NULL — Specifies what happens if the value of the SQL result expression is NULL.

– NULL ON NULL — Use a JSON null value for the targeted location.

– ERROR ON NULL — Raise an error.

– IGNORE ON NULL — Leave the data unchanged (no modification).

– REMOVE ON NULL — Remove the targeted data.

The default behavior for all handlers that allow ON NULL is NULL ON NULL.

The handlers allowed for the various operations are as follows:

• REMOVE: IGNORE ON MISSING (default), ERROR ON MISSING
• KEEP: no handlers

• RENAME: IGNORE ON MISSING (default), ERROR ON MISSING
• SET:

– REPLACE ON EXISTING (default), ERROR ON EXISTING, IGNORE ON EXISTING,

– CREATE ON MISSING (default), ERROR ON MISSING, IGNORE ON MISSING
– NULL ON NULL (default), ERROR ON NULL, IGNORE ON NULL, REMOVE ON NULL

• REPLACE:

Chapter 11

11-3



– IGNORE ON MISSING (default), ERROR ON MISSING, CREATE ON MISSING
– NULL ON NULL (default), ERROR ON NULL, IGNORE ON NULL, REMOVE ON NULL

• INSERT:

– ERROR ON EXISTING (default), IGNORE ON EXISTING, REPLACE ON EXISTING
– NULL ON NULL (default), ERROR ON NULL, IGNORE ON NULL, REMOVE ON NULL

• APPEND:

– ERROR ON MISSING (default), IGNORE ON MISSING, CREATE ON MISSING. Create
means insert a singleton array at the targeted location. The single array
element is the value of the SQL result expression.

– NULL ON NULL (default), ERROR ON NULL, IGNORE ON NULL
Example 11-1    Updating a JSON Column Using JSON_TRANSFORM

This example updates all documents in j_purchaseorder.po_document, setting the
value of field lastUpdated to the current timestamp.

If the field already exists then its value is replaced; otherwise, the field and its value
are added. (That is, the default handlers are used: REPLACE ON EXISTING and CREATE
ON MISSING.)

UPDATE j_purchaseorder SET po_document =
  json_transform(po_document, SET '$.lastUpdated' = SYSTIMESTAMP);

Example 11-2    Modifying JSON Data On the Fly With JSON_TRANSFORM

This example selects all documents in j_purchaseorder.po_document, returning
pretty-printed, updated copies of them, where field "Special Instructions" has been
removed.

It does nothing (no error is raised) if the field does not exist: IGNORE ON MISSING is the
default behavior.

The return data type is CLOB. (Keyword PRETTY is not available for JSON type.)

SELECT json_transform(po_document, REMOVE '$."Special Instructions"'
                      RETURNING CLOB PRETTY)
  FROM j_purchaseorder;

Example 11-3    Adding a Field Using JSON_TRANSFORM

These two uses of json_tranform are equivalent. They each add field Comments with
value "Helpful". An error is raised if the field already exists. The input for the field
value is literal SQL string 'Helpful'. The default behavior for SET is CREATE ON
MISSING.

json_transform(po_document, INSERT '$.Comments' = 'Helpful')

json_transform(po_document, SET '$.Comments' = 'Helpful'
                                ERROR ON EXISTING)

Chapter 11

11-4



Example 11-4    Removing a Field Using JSON_TRANSFORM

This example removes field Special Instructions. It does nothing (no error is raised) if the
field does not exist: IGNORE ON MISSING is the default behavior.

json_transform(po_document, REMOVE '$.Special Instructions')

Example 11-5    Creating or Replacing a Field Value Using JSON_TRANSFORM

This example sets the value of field Address to the JSON object {"street":"8 Timbly
Lane", "city":"Penobsky", "state":"Utah"}. It creates the field if it does not exist, and it
replaces any existing value for the field. The input for the field value is a literal SQL string.
The updated field value is a JSON object, because FORMAT JSON is specified for the input
value.

json_transform(po_document,
               SET '$.Address' =
                   '{"street":"8 Timbly Rd.",
                     "city":"Penobsky",
                     "state":"UT"}'
                   FORMAT JSON)

If database initialization parameter compatible is 20 or greater than an alternative to using
keywords FORMAT JSON is to apply JSON data type constructor JSON to the input data for the
field value.

json_transform(po_document,
               SET '$.Address' = 
                   JSON('{"street":"8 Timbly Rd.",
                          "city":"Penobsky",
                          "state":"UT"}'))

Without using either FORMAT JSON or constructor JSON, the Address field value would be a
JSON string that corresponds to the SQL input string. Each of the double-quote (")
characters in the input would be escaped in the JSON string:

"{\"street\":\"8 Timbly Rd.\","city\":\"Penobsky\",\"state\":\"UT\"}"

Example 11-6    Replacing an Existing Field Value Using JSON_TRANSFORM

This example sets the value of field Address to the JSON object {"street":"8 Timbly
Lane", "city":"Penobsky", "state":"Utah"}. It replaces an existing value for the field,
and it does nothing if the field does not exist. The only difference between this example and 
Example 11-5 is the presence of handler IGNORE ON MISSING.

json_transform(po_document,
               SET '$.Address' =
                   '{"street":"8 Timbly Rd.",
                     "city":"Penobsky",
                     "state":"UT"}'
                   FORMAT JSON
                   IGNORE ON MISSING)

Chapter 11

11-5



Example 11-7    Using FORMAT JSON To Set a JSON Boolean Value

This example sets the value of field AllowPartialShipment to the JSON-language
Boolean value true. Without keywords FORMAT JSON it would instead set the field to
the JSON-language string "true".

json_transform(po_document,
               SET '$.AllowPartialShipment' = 'true' FORMAT JSON)

Example 11-8    Setting an Array Element Using JSON_TRANSFORM

This example sets the first element of array Phone to the JSON string "909-555-1212".

json_transform(po_document,
               SET '$.ShippingInstructions.Phone[0]' = '909-555-1212')

If the value of array Phone before the operation is this:

[{"type":"Office","number":"909-555-7307"},
 {"type":"Mobile","number":415-555-1234"}]

Then this is the value after the modification:

["909-555-1212",
 {"type":"Mobile","number":415-555-1234"}]

Example 11-9    Prepending an Array Element Using JSON_TRANSFORM

This example prepends element "909-555-1212" to array Phone. Insertion at position 0
shifts all existing elements to the right: element N becomes element N+1.

json_transform(po_document,
               INSERT '$.ShippingInstructions.Phone[0]' =
                      '909-555-1212')

Example 11-10    Appending an Array Element Using JSON_TRANSFORM

These two uses of json_tranform are equivalent. They each append element
"909-555-1212" to array Phone.

json_transform(po_document,
               APPEND '$.ShippingInstructions.Phone' =
                      '909-555-1212')

json_transform(po_document,
               INSERT '$.ShippingInstructions.Phone[last+1]' =
                      '909-555-1212')

Chapter 11

11-6



Example 11-11    Removing Array Elements That Satisfy a Predicate Using
JSON_TRANSFORM

This example removes all nested objects in the LineItems array whose UPCCode is
85391628927. These are the array elements that satisfy the specified predicate, which
requires an object with field Part whose value is an object with field UPCCode of value
85391628927.

json_transform(po_document,
               REMOVE '$.LineItems[*]?(@.Part.UPCCode == 85391628927)')

Related Topics

• Overview of Inserting, Updating, and Loading JSON Data
You can use database APIs to insert or modify JSON data in Oracle Database. You can
use Oracle SQL function json_transform or json_mergepatch to update a JSON
document. You can work directly with JSON data contained in file-system files by creating
an external table that exposes it to the database.

• Using PL/SQL Object Types for JSON
Some examples of using PL/SQL object types for JSON are presented.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch accept
an optional RETURNING clause, which specifies the data type of the value returned by the
function. This clause and the default behavior (no RETURNING clause) are described here.

• Oracle SQL Function JSON_MERGEPATCH
You can use Oracle SQL function json_mergepatch to update specific portions of a JSON
document. You pass it a JSON Merge Patch document, which specifies the changes to
make to a specified JSON document. JSON Merge Patch is an IETF standard.

• Overview of SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

See Also:

Oracle Database SQL Language Reference for information about Oracle SQL
function json_transform

Chapter 11

11-7



12
Oracle SQL Function JSON_MERGEPATCH

You can use Oracle SQL function json_mergepatch to update specific portions of a JSON
document. You pass it a JSON Merge Patch document, which specifies the changes to make
to a specified JSON document. JSON Merge Patch is an IETF standard.

Function json_mergepatch returns the modified JSON data.

You can use it in an UPDATE statement, to update the documents in a JSON column. 
Example 12-3 illustrates this.

You can use it in a SELECT list, to modify the selected documents. The modified documents
can be returned or processed further. Example 12-4 illustrates this.

Function json_mergepatch can accept as input, and return as output, any SQL data type that
supports JSON data: JSON, VARCHAR2, CLOB, or BLOB. Data type JSON is available only if
database initialization parameter compatible is 20 or greater.

The default return type depends on the input data type. If the input type is JSON then JSON is
also the default return type. Otherwise, VARCHAR2 is the default return type.

JSON Merge Patch is suitable for updating JSON documents that primarily use objects for
their structure and do not make use of explicit null values. You cannot use it to add, remove,
or change array elements (except by explicitly replacing the whole array). And you cannot
use it to set the value of a field to null.

JSON Merge Patch acts a bit like a UNIX patch utility: you give it (1) a source document to
patch and (2) a patch document that specifies the changes to make, and it returns a copy of
the source document updated (patched). The patch document specifies the differences
between the source and the result documents. For UNIX patch the differences are in the form
of UNIX diff utility output. For JSON Merge Patch both source and patch are JSON
documents.

You can think of JSON Merge Patch as merging the contents of the source and the patch.
When merging two objects, one from source and one from patch, a member with a field that
is in one object but not in the other is kept in the result. An exception is that a patch member
with field value is null is ignored when the source object has no such field.

When merging object members that have the same field:

• If the patch field value is null then the field is dropped from the source — it is not
included in the result.

• Otherwise, the field is kept in the result, but its value is the result of merging the source
field value with the patch field value. That is, the merging operation in this case is
recursive — it dives down into fields whose values are themselves objects.

A little more precisely, JSON Merge Patch acts as follows:

• If the patch is not a JSON object then replace the source by the patch.

• Otherwise (the patch is an object), do the following:

1. If the source is not an object then act as if it were the empty object ({}).

12-1



2. Iterate over the (p-field:p–value) members of the patch object.

– If the p-value of the patch member is null then remove the
corresponding member from the source.

– Otherwise, recurse: Replace the value of the corresponding source field
with the result of merge-patching that value (as the next source) with the
p-value (as the next patch).

If a patch field value of null did not have a special meaning (remove the
corresponding source member with that field) then you could use it as a field value to
set the corresponding source field value to null. The special removal behavior means
you cannot set a source field value to null.

Examples:

• Patch member "PONumber":99999 overrides a source member with field PONumber,
replacing its value with the patch-specified value, 99999.

json_mergepatch('{"User":"ABULL", "PONumber":1600}',
'{"PONumber":99999}') results in {"User":"ABULL", "PONumber":99999}.

• Patch member "tracking":123456 overrides a missing source member with field
tracking, adding that patch member to the result. And source member
"PONumber":1600 overrides a missing patch member with field PONumber — it is
kept in the result.

json_mergepatch('{"PONumber":1600}', '{"tracking":123456}') results in
{"PONumber":1600, "tracking":123456}".

• Patch member "Reference":null overrides a source member with field
Reference, removing it from the result.

json_mergepatch('{"PONumber":1600, "Reference":"ABULL-20140421"}',
'{"Reference":null}') results in {"PONumber":1600}.

• Patch value [1,2,3] overrides the corresponding source value, [4,5,6], replacing
it.

json_mergepatch('{"PONumber":1600, "LineItems":[1, 2, 3]}',
'{"LineItems":[4,5,6]}') results in {"PONumber":1600, "LineItems":[4, 5,
6]}.

Note:

The merge-patch procedure — in particular the fact that there is no recursive
behavior for a non-object patch — means that you cannot add, remove, or
replace values of an array individually. To make such a change you must
replace the whole array. For example, if the source document has a member
Phone:["999-555-1212", "415-555-1234"] then to remove the second
phone number you can use a patch whose content has a member "Phone":
["999-555-1212"].

Example 12-1    A JSON Merge Patch Document

If applied to the document shown in Example 1-1, this JSON Merge Patch document
does the following:

Chapter 12

12-2



• Adds member "Category" : "Platinum".

• Removes the member with field ShippingInstructions.

• Replaces the value of field Special Instructions with the string "Contact User
SBELL".

• Replaces the value of field LineItems with the empty array, []
• Replaces member "AllowPartialShipment" : null with member "Allow Partial

Shipment" : false (in effect renaming the field, since the field value was already false).

{ "Category" : "Platinum",
  "ShippingInstructions" : null,
  "Special Instructions" : "Contact User SBELL",
  "LineItems" : [],
  "AllowPartialShipment" : null,
  "Allow Partial Shipment" : false }

Example 12-2    A Merge-Patched JSON Document

This example shows the document that results from merge-patching the document in 
Example 1-1 with the patch of Example 12-1.

{ "PONumber" : 1600,
  "Reference" : "ABULL-20140421",
  "Requestor" : "Alexis Bull",
  "User" : "ABULL",
  "CostCenter" : "A50",
  "Special Instructions" : "Contact User SBELL",
  "Allow Partial Shipment" : false,
  "LineItems" : [],
  "Category" : "Platinum" }

Example 12-3    Updating a JSON Column Using JSON_MERGEPATCH

This example updates all documents in j_purchaseorder.po_document, removing field
"Special Instructions".

UPDATE j_purchaseorder SET po_document =
  json_mergepatch(po_document, '{"Special Instructions":null}');

Example 12-4    Modifying JSON Data On the Fly With JSON_MERGEPATCH

This example selects all documents in j_purchaseorder.po_document, returning pretty-
printed, updated copies of them, where field "Special Instructions" has been removed.
The return data type in this example is CLOB. (Keyword PRETTY is not available for JSON type.)

SELECT json_mergepatch(po_document, '{"Special Instructions":null}'
                       RETURNING CLOB PRETTY)
  FROM j_purchaseorder;

Chapter 12

12-3



Related Topics

• Overview of Inserting, Updating, and Loading JSON Data
You can use database APIs to insert or modify JSON data in Oracle Database.
You can use Oracle SQL function json_transform or json_mergepatch to update
a JSON document. You can work directly with JSON data contained in file-system
files by creating an external table that exposes it to the database.

• Using PL/SQL Object Types for JSON
Some examples of using PL/SQL object types for JSON are presented.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which
allows a JSON document to contain only a JSON scalar value at top level. This
support also means that functions that return JSON data can return scalar JSON
values.

• Oracle SQL Function JSON_TRANSFORM
Oracle SQL function json_transform modifies JSON documents. You specify
modification operations to perform and SQL/JSON path expressions that target the
places to modify. The operations are applied to the input data in the order
specified: each operation acts on the result of applying all of the preceding
operations.

See Also:

• IETF RFC7396 for the definition of JSON Merge Patch

• Oracle Database SQL Language Reference for information about SQL
function json_mergepatch

Chapter 12

12-4



13
Loading External JSON Data

You can create a database table of JSON data from the content of a JSON dump file.

This topic shows how you can load a full table of JSON documents from the data in a JSON
dump file, PurchaseOrders.dmp which you can obtain from GitHub at https://github.com/
oracle/db-sample-schemas/tree/master/order_entry.

The file contains JSON objects, one per line. This format is compatible with the export format
produced by common NoSQL databases, including Oracle NoSQL Database.

You can query such an external table directly or, for better performance if you have multiple
queries that target different rows, you can load an ordinary database table from the data in
the external table.

Example 13-1 creates a database directory that corresponds to file-system
directory $ORACLE_HOME/demo/schema/order_entry. Example 13-2 then uses this database
directory to create and fill an external table, json_dump_file_contents, with the data from
the dump file, PurchaseOrders.dmp. It bulk-fills the external table completely, copying all of
the JSON documents to column json_document.

Example 13-4 then uses an INSERT as SELECT statement to copy the JSON documents from
the external table to JSON column po_document of ordinary database table j_purchaseorder.

Because we chose BLOB storage for JSON column json_document of the external table,
column po_document of the ordinary table must also be of type BLOB. Example 13-3 creates
table j_purchaseorder with BLOB column po_document.

Note:

You need system privilege CREATE ANY DIRECTORY to create a database directory.

See Also:

• Oracle Database Concepts for overview information about external tables

• Oracle Database Utilities and Oracle Database Administrator’s Guide for
detailed information about external tables

• Oracle Database Data Warehousing Guide

• Oracle Database SQL Language Reference for information about CREATE TABLE

13-1



Example 13-1    Creating a Database Directory Object for Purchase Orders

You must replace folder-containing-dump-file here by the folder where you placed
the dump file that you downloaded from GitHub at https://github.com/oracle/db-
sample-schemas/tree/master/order_entry. (That folder must be accessible by the
database.)

CREATE OR REPLACE DIRECTORY order_entry_dir
  AS 'folder-containing-dump-file';

Example 13-2    Creating an External Table and Filling It From a JSON Dump File

CREATE TABLE json_dump_file_contents (json_document BLOB)
  ORGANIZATION EXTERNAL
    (TYPE ORACLE_LOADER
     DEFAULT DIRECTORY order_entry_dir
     ACCESS PARAMETERS
       (RECORDS DELIMITED BY 0x'0A'
        FIELDS (json_document CHAR(5000)))
        LOCATION (order_entry_dir:'PurchaseOrders.dmp'))
  PARALLEL
  REJECT LIMIT UNLIMITED;

Example 13-3    Creating a Table With a BLOB Column for JSON Data

Table j_purchaseorder has primary key id and JSON column po_document, which is
stored using data type BLOB. The LOB cache option is turned on for that column.

DROP TABLE j_purchaseorder;

CREATE TABLE j_purchaseorder
  (id          VARCHAR2 (32) NOT NULL PRIMARY KEY,
   date_loaded TIMESTAMP (6) WITH TIME ZONE,
   po_document BLOB
   CONSTRAINT ensure_json CHECK (po_document is json))
  LOB (po_document) STORE AS (CACHE);

Example 13-4    Copying JSON Data From an External Table To a Database Table

INSERT INTO j_purchaseorder (id, date_loaded, po_document)
  SELECT SYS_GUID(), SYSTIMESTAMP, json_document
    FROM json_dump_file_contents
    WHERE json_document is json;

Chapter 13

13-2



Part IV
Query JSON Data

You can query JSON data using a simple dot notation or, for more functionality, using SQL/
JSON functions and conditions. You can create and query a data guide that summarizes the
structure and type information of a set of JSON documents.

To query particular JSON fields, or to map particular JSON fields to SQL columns, you can
use the SQL/JSON path language. In its simplest form a path expression consists of one or
more field names separated by periods (.). More complex path expressions can contain
filters and array indexes.

Oracle provides two ways of querying JSON content:

• A dot-notation syntax, which is essentially a table alias, followed by a JSON column
name, followed by one or more field names — all separated by periods (.). An array step
can follow each of the field names. This syntax is designed to be simple to use and to
return JSON values whenever possible.

• SQL/JSON functions and conditions, which completely support the path language and
provide more power and flexibility than is available using the dot-notation syntax. You can
use them to create, query, and operate on JSON data stored in Oracle Database.

– Condition json_exists tests for the existence of a particular value within some JSON
data.

– Conditions is json and is not json test whether some data is well-formed JSON
data. The former is used especially as a check constraint.

– Function json_value selects a scalar value from some JSON data, as a SQL value.

– Function json_query selects one or more values from some JSON data, as a SQL
string representing the JSON values. It is used especially to retrieve fragments of a
JSON document, typically a JSON object or array.

– Function json_table projects some JSON data as a virtual table, which you can also
think of as an inline view.

Because the path language is part of the query language, no fixed schema is imposed on the
data. This design supports schemaless development. A “schema”, in effect, gets defined on
the fly at query time, by your specifying a given path. This is in contrast to the more usual
approach with SQL of defining a schema (a set of table rows and columns) for the data at
storage time.

Oracle SQL condition json_equal does not accept a path-expression argument. It just
compares two JSON values and returns true if they are equal, false otherwise. For this
comparison, insignificant whitespace and insignificant object member order are ignored. For
example, JSON objects are equal if they have the same members, regardless of their order.
However, if either of two compared objects has one or more duplicate fields then the value
returned by json_equal is unspecified.

You can generate and query a JSON data guide, to help you develop expressions for
navigating your JSON content. A data guide can give you a deep understanding of the
structure and type information of your JSON documents. Data guide information can be
updated automatically, to keep track of new documents that you add.



• Simple Dot-Notation Access to JSON Data
Dot notation is designed for easy, general use and common use cases of querying
JSON data. For simple queries it is a handy alternative to using SQL/JSON query
functions.

• SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path
expressions.

• Clauses Used in SQL Functions and Conditions for JSON
Clauses RETURNING, wrapper, error, and empty-field are described for SQL
functions that use JSON data. Each clause is used in one or more of the SQL
functions and conditions json_value, json_query, json_table, json_serialize,
json_mergepatch, is json, is not json, json_exists, and json_equal.

• SQL/JSON Condition JSON_EXISTS
SQL/JSON condition json_exists lets you use a SQL/JSON path expression as a
row filter, to select rows based on the content of JSON documents. You can use
condition json_exists in a CASE expression or the WHERE clause of a SELECT
statement.

• SQL/JSON Function JSON_VALUE
SQL/JSON function json_value selects JSON data and returns a SQL scalar or
an instance of a user-defined SQL object type or SQL collection type (varray,
nested table).

• SQL/JSON Function JSON_QUERY
SQL/JSON function json_query selects and returns one or more values from
JSON data and returns those values. You can thus use json_query to retrieve
fragments of a JSON document.

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various
SQL data types. You use it to map parts of a JSON document into the rows and
columns of a new, virtual table, which you can also think of as an inline view.

• Full-Text Search Queries
You can use Oracle SQL condition json_textcontains in a CASE expression or the
WHERE clause of a SELECT statement to perform a full-text search of JSON data.
You can use PL/SQL procedure CTX_QUERY.result_set to perform facet search
over JSON data.

• JSON Data Guide
A JSON data guide lets you discover information about the structure and content
of JSON documents stored in Oracle Database.

See Also:

Oracle Database SQL Language Reference for complete information about
the syntax and semantics of the SQL/JSON functions and conditions



14
Simple Dot-Notation Access to JSON Data

Dot notation is designed for easy, general use and common use cases of querying JSON
data. For simple queries it is a handy alternative to using SQL/JSON query functions.

Just as for SQL/JSON query functions, the JSON column that you query must be known to
contain only well-formed JSON data. That is, (1) it must be of data type JSON, VARCHAR2, CLOB,
or BLOB, and (2) if the type is not JSON then the column must have an is json check
constraint.

This query selects the value of field PONumber from JSON column po_document and returns it
as a JSON value:

SELECT po.po_document.PONumber FROM j_purchaseorder po;

The returned value is an instance of JSON data type if the column is of JSON type; otherwise, it
is a VARCHAR2(4000) value.

But JSON values are generally not so useful in SQL. In particular, you can't use them with
SQL ORDER BY or GROUP BY, and you can't use them in comparison or join operations —
JSON data is not comparable.1

Instead of returning JSON data, you typically want to return an instance of a (non-JSON) SQL
scalar data type, which is comparable. You do that by applying an item method to the
targeted data. This query, like the previous one, selects the value of field PONumber, but it
returns it as a SQL NUMBER value:

SELECT po.po_document.PONumber.number() FROM j_purchaseorder po;

An item method transforms the targeted JSON data, The transformed data is then processed
and returned by the query in place of that original data. When you use dot-notation syntax
you generally want to use an item method.

A dot-notation query with an item method always returns a (non-JSON) SQL scalar value. It
has the effect of using SQL/JSON function json_value to convert a JSON scalar value to a
SQL scalar value.

A dot-notation query without an item method always returns JSON data. It has the effect of
using SQL/JSON function json_query (or json_table with a column that has json_query
semantics).

Example 14-1 shows equivalent dot-notation and json_value queries. Example 14-2 shows
equivalent dot-notation and json_query queries.

1 If JSON data is textual, not JSON data type, then it can be compared as a string, according to collation rules, but it cannot
be compared as JSON data.

14-1



Dot Notation With an Item Method

A dot-notation query that uses an item method is equivalent to a json_value query
with a RETURNING clause that returns a scalar SQL type — the type that is indicated by
the item method.

For example: if item method number() is applied to JSON data that can be
transformed to a number then the result is a SQL NUMBER value; if item method date()
is applied to data that is in a supported ISO 8601 date or date-time format then the
result is a SQL DATE value; and so on.

Note:

If a query result includes a JSON string, and if the result is serialized, then
the string appears in textual form. In this form, its content is enclosed in
double-quote characters ("), some characters of the content might be
escaped, and so on.

Be aware that serialization is implicit in some cases — for example, when
you use a client such as SQL*Plus.

Suppose that column t.jcol is of data type JSON, with content
{"name":"orange"}. This SQL*Plus query prints its result, a JSON string of
data type JSON, using double-quote characters:

SELECT t.data.name FROM fruit t;

NAME
----
"orange"

You can convert the JSON string to a SQL string having the same content,
by using item method string(). SQL*Plus serializes (prints) the result
without surrounding (single- or double-) quote characters:

SELECT t.data.name.string() FROM fruit t;

NAME.STRING()
-------------
orange

Dot Notation Without an Item Method

If a dot-notation query does not use an item method then a SQL value representing
JSON data is returned. In this case:

• If the queried data is of type JSON then so is the returned data.

• Otherwise, the queried data is textual (type VARCHAR2, CLOB, or BLOB), and the
returned data is of type VARCHAR2(4000).

Chapter 14

14-2



If a dot-notation query does not use an item method then the returned JSON data depends
on the targeted JSON data, as follows:

• If a single JSON value is targeted, then that value is returned, whether it is a JSON
scalar, object, or array.

• If multiple JSON values are targeted, then a JSON array, whose elements are those
values, is returned. (The order of the array elements is undefined.)

This behavior contrasts with that of SQL/JSON functions json_value and json_query, which
you can use for more complex queries. They can return NULL or raise an error if the path
expression you provide them does not match the queried JSON data. They accept optional
clauses to specify the data type of the return value (RETURNING clause), whether or not to
wrap multiple values as an array (wrapper clause), how to handle errors generally (ON ERROR
clause), and how to handle missing JSON fields (ON EMPTY clause).

When a single value JSON value is targeted, the dot-notation behavior is similar to that of
function json_value for a scalar JSON value, and it is similar to that of json_query for an
object or array value.

When multiple values are targeted, the behavior is similar to that of json_query with an array
wrapper.

Dot Notation Syntax

The dot-notation syntax is a table alias (mandatory) followed by a dot, that is, a period (.), the
name of a JSON column, and one or more pairs of the form . json_field or . json_field
followed by array_step, where json_field is a JSON field name and array_step is an array
step expression as described in Basic SQL/JSON Path Expression Syntax.

Each json_field must have the syntax of a valid SQL identifier2, and the column must be of
JSON data type or have an is json check constraint, which ensures that it contains well-
formed JSON data. If either of these rules is not respected then an error is raised at query
compile time. (If the column is not of data type JSON then the check constraint must be
present to avoid raising an error; however, it need not be active. If you deactivate the
constraint then this error is not raised.)

For the dot notation for JSON queries, unlike the case generally for SQL, unquoted identifiers
(after the column name) are treated case sensitively, that is, just as if they were quoted. This
is a convenience: you can use JSON field names as identifiers without quoting them. For
example, you can write t.jcolumn.friends instead of t.jcolumn."friends" — the meaning
is the same. This also means that if you query a JSON field whose name is uppercase, such
as FRIENDS, then you must write t.jcolumn.FRIENDS, not t.jcolumn.friends.

Here are some examples of dot notation syntax. All of them refer to JSON column
po_document of a table that has alias po.

• po.po_document.PONumber – The value of field PONumber as a JSON value. The value is
returned as an instance of JSON type if column po_document is JSON type; otherwise, it is
returned as a SQL VARCHAR2(4000) value.

• po.po_document.PONumber.number() – The value of field PONumber as a SQL NUMBER
value. Item method number() ensures this.

2 In particular, this means that you cannot use an empty field name ("") with dot-notation syntax.

Chapter 14

14-3



• po.po_document.LineItems[1] – The second element of array LineItems (array
positions are zero-based), returned as JSON data (JSON type or VARCHAR2(4000),
depending on the column data type).

• po.po_document.LineItems[*] – All of the elements of array LineItems (* is a
wildcard), as JSON data.

• po.po_document.ShippingInstructions.name – The value of field name, a child of
the object that is the value of field ShippingInstructions, as JSON data.

Matching of a JSON dot-notation expression against JSON data is the same as
matching of a SQL/JSON path expression, including the relaxation to allow implied
array iteration (see SQL/JSON Path Expression Syntax Relaxation). The JSON
column of a dot-notation expression corresponds to the context item of a path
expression, and each identifier used in the dot notation corresponds to an identifier
used in a path expression.

For example, if JSON column jcolumn corresponds to the path-expression context
item, then the expression jcolumn.friends corresponds to path
expression $.friends, and jcolumn.friends.name corresponds to path
expression $.friends.name.

For the latter example, the context item could be an object or an array of objects. If it is
an array of objects then each of the objects in the array is matched for a field friends.
The value of field friends can itself be an object or an array of objects. In the latter
case, the first object in the array is used.

Note:

Other than (1) the implied use of a wildcard for array elements (see SQL/
JSON Path Expression Syntax Relaxation) and (2) the explicit use of a
wildcard between array brackets ([*]), you cannot use wildcards in a path
expression when you use the dot-notation syntax. This is because an
asterisk (*) is not a valid SQL identifier.

For example, this raises a syntax error:
mytable.mycolumn.object1.*.object2.

Dot-notation syntax is a handy alternative to using simple path expressions;
it is not a replacement for using path expressions in general.

See Also:

Oracle Database SQL Language Reference for information about dot
notation used for SQL object and object attribute access (object access
expressions)

Chapter 14

14-4



Example 14-1    JSON Dot-Notation Query Compared With JSON_VALUE

Given the data from Example 4-3, each of these queries returns the JSON number 1600. If
the JSON column is textual (not JSON type) then the queries return the VARCHAR2 string
'1600', which represents the JSON number.

SELECT po.po_document.PONumber FROM j_purchaseorder po;

SELECT json_value(po_document, '$.PONumber') FROM j_purchaseorder;

Each of these queries returns the SQL NUMBER value 1600.

SELECT po.po_document.PONumber.number() FROM j_purchaseorder po;

SELECT json_value(po_document, '$.PONumber.number()')
  FROM j_purchaseorder;

Example 14-2    JSON Dot-Notation Query Compared With JSON_QUERY

Each of these queries returns a JSON array of phone objects. If the JSON column is textual
(not JSON type) then the queries return VARCHAR2 value representing the array.

SELECT po.po_document.ShippingInstructions.Phone
  FROM j_purchaseorder po;

SELECT json_query(po_document, '$.ShippingInstructions.Phone')
  FROM j_purchaseorder;

Each of these queries returns an array of phone types, just as in Example 19-1. If the JSON
column is textual (not JSON type) then the queries return a VARCHAR2 value representing the
array.

SELECT po.po_document.ShippingInstructions.Phone.type
  FROM j_purchaseorder po;

SELECT json_query(po_document, '$.ShippingInstructions.Phone.type'
                  WITH WRAPPER)
  FROM j_purchaseorder;

Related Topics

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are described.

• Overview of SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

• Creating a Table With a JSON Column
You can create a table that has JSON columns. Oracle recommends that you use JSON
data type for this.

Chapter 14

14-5



• COLUMNS Clause of SQL/JSON Function JSON_TABLE
The mandatory COLUMNS clause for SQL/JSON function json_table defines the
columns of the virtual table that the function creates.

Chapter 14

14-6



15
SQL/JSON Path Expressions

Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

• Overview of SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

• SQL/JSON Path Expression Syntax
SQL/JSON path expressions are matched by SQL/JSON functions and conditions
against JSON data, to select portions of it. Path expressions can use wildcards and array
ranges. Matching is case-sensitive.

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are described.

• Types in Comparisons
Comparisons in SQL/JSON path-expression filter conditions are statically typed at
compile time. If the effective types of the operands of a comparison are not known to be
the same then an attempt is sometimes made to reconcile them by type-casting.

15.1 Overview of SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path expressions.

JSON is a notation for JavaScript values. When JSON data is stored in the database you can
query it using path expressions that are somewhat analogous to XQuery or XPath
expressions for XML data. Similar to the way that SQL/XML allows SQL access to XML data
using XQuery expressions, Oracle Database provides SQL access to JSON data using SQL/
JSON path expressions.

SQL/JSON path expressions have a simple syntax. A path expression selects zero or more
JSON values that match, or satisfy, it.

SQL/JSON condition json_exists returns true if at least one value matches, and false if no
value matches. If a single value matches, then SQL/JSON function json_value returns that
value if it is scalar and raises an error if it is non-scalar. If no value matches the path
expression then json_value returns SQL NULL.

SQL/JSON function json_query returns all of the matching values, that is, it can return
multiple values. You can think of this behavior as returning a sequence of values, as in
XQuery, or you can think of it as returning multiple values. (No user-visible sequence is
manifested.)

In all cases, path-expression matching attempts to match each step of the path expression, in
turn. If matching any step fails then no attempt is made to match the subsequent steps, and
matching of the path expression fails. If matching each step succeeds then matching of the
path expression succeeds.

The maximum length of a SQL/JSON path expression is 32K bytes.

15-1



Related Topics

• SQL/JSON Path Expression Syntax
SQL/JSON path expressions are matched by SQL/JSON functions and conditions
against JSON data, to select portions of it. Path expressions can use wildcards
and array ranges. Matching is case-sensitive.

15.2 SQL/JSON Path Expression Syntax
SQL/JSON path expressions are matched by SQL/JSON functions and conditions
against JSON data, to select portions of it. Path expressions can use wildcards and
array ranges. Matching is case-sensitive.

You pass a SQL/JSON path expression and some JSON data to a SQL/JSON function
or condition. The path expression is matched against the data, and the matching data
is processed by the particular SQL/JSON function or condition. You can think of this
matching process in terms of the path expression returning the matched data to the
function or condition.

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of
a context-item symbol ($) followed by zero or more object, array, and descendant
steps, each of which can be followed by a filter expression, followed optionally by
a function step. Examples are provided.

• SQL/JSON Path Expression Syntax Relaxation
The basic SQL/JSON path-expression syntax is relaxed to allow implicit array
wrapping and unwrapping. This means that you need not change a path
expression in your code if your data evolves to replace a JSON value with an array
of such values, or vice versa. Examples are provided.

Related Topics

• About Strict and Lax JSON Syntax
The Oracle default syntax for JSON is lax. In particular: it reflects the JavaScript
syntax for object fields; the Boolean and null values are not case-sensitive; and it
is more permissive with respect to numerals, whitespace, and escaping of Unicode
characters.

• Diagrams for Basic SQL/JSON Path Expression Syntax
Syntax diagrams and corresponding Backus-Naur Form (BNF) syntax descriptions
are presented for the basic SQL/JSON path expression syntax.

15.2.1 Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of a
context-item symbol ($) followed by zero or more object, array, and descendant steps,
each of which can be followed by a filter expression, followed optionally by a function
step. Examples are provided.

However, this basic syntax is extended by relaxing the matching of arrays and non-
arrays against non-array and array patterns, respectively — see SQL/JSON Path
Expression Syntax Relaxation.

Matching of data against SQL/JSON path expressions is case-sensitive.

• A SQL/JSON basic path expression (also called just a path expression here) is
an absolute path expression or a relative path expression.

Chapter 15
SQL/JSON Path Expression Syntax

15-2



• An absolute path expression begins with a dollar sign ($), which represents the path-
expression context item, that is, the JSON data to be matched. That data is the result of
evaluating a SQL expression that is passed as argument to the SQL/JSON function. The
dollar sign is followed by zero or more nonfunction steps, followed by an optional function
step.

• A relative path expression is an at sign (@) followed by zero or more nonfunction steps,
followed by an optional function step. It has the same syntax as an absolute path
expression, except that it uses an at sign instead of a dollar sign ($).

A relative path expression is used inside a filter expression (filter, for short). The at sign
represents the path-expression current filter item, that is, the JSON data that matches
the part of the (surrounding) path expression that precedes the filter containing the
relative path expression. A relative path expression is matched against the current filter
item in the same way that an absolute path expression is matched against the context
item.

• A nonfunction step is an object step, an array step, or a descendant step, followed by
an optional filter expression.

• A single function step is optional in a basic path expression (absolute or a relative). If
present, it is the last step of the path expression. It is a period (.), sometimes read as
"dot", followed by a SQL/JSON item method, followed by a left parenthesis (() and then
a right parenthesis ()). The parentheses can have whitespace between them (such
whitespace is insignificant).

The item method is applied to the data that is targeted by the rest of the same path
expression, which precedes the function step. The item method is used to transform that
data. The SQL function or condition that is passed the path expression as argument uses
the transformed data in place of the targeted data.

• An object step is a period (.), followed by an object field name or an asterisk (*)
wildcard, which stands for (the values of) all fields. A field name can be empty, in which
case it must be written as "" (no intervening whitespace). A nonempty field name must
start with an uppercase or lowercase letter A to Z and contain only such letters or decimal
digits (0-9), or else it must be enclosed in double quotation marks (").

An object step returns the value of the field that is specified. If a wildcard is used for the
field then the step returns the values of all fields, in no special order.

• An array step is a left bracket ([) followed by either an asterisk (*) wildcard, which
stands for all array elements, or one or more specific array indexes or range
specifications separated by commas (,), followed by a right bracket (]).

An error is raised if you use both an asterisk and either an array index or a range
specification. And an error is raised if no index or range specification is provided: [] is
not a valid array step.

An array index specifies a single array position, which is a whole number (0, 1, 2,...). An
array index can thus be a literal whole number: 0, 1, 2,… Array position and indexing are
zero-based, as in the JavaScript convention for arrays: the first array element has index 0
(specifying position 0).

The last element of a nonempty array of any size can be referenced using the index last.

An array index can also have the form last - N, where - is a minus sign (hyphen) and N
is a literal whole number (0, 1, 2,…) that is no greater than the array size minus 1.

The next-to-last array element can be referenced using index last-1, the second-to-last
by index last-2, and so on. Whitespace surrounding the minus sign (hyphen) is ignored.

Chapter 15
SQL/JSON Path Expression Syntax

15-3



For the array ["a", "b", 42], for example, the element at index 1 (position 1) is
the string "b" — the second array element. The element at index 2, or index last,
is the number 42. The element at index 0, or last-2, is "a".

For Oracle SQL function json_transform, you can also use an index of the form
last + N, where N is a whole number. This lets you append new elements to an
existing array, by specifying positions beyond the current array size minus 1.
Whitespace surrounding the plus sign is ignored. You cannot use an index of this
form in combination with other indexes, including in a range specification (see
next). An error is raised in that case.

A range specification has the form N to M, where N and M are array indexes, and
where to is preceded and followed by one or more whitespace characters.1

Range specification N to M is equivalent to explicitly specifying all of the indexes
from N to M, including N and M, in ascending order.

In a range specification, the order of N and M is not significant; the range of the
third through sixth elements can be written as 2 to 5 or 5 to 2. For a six-element
array the same range can be written as 2 to last or last to 2. The range
specification N to N (same index N on each side of to) is equivalent to the single
index N (it is not equivalent to [N, N]).

The order in which array indexes and ranges are specified in an array step is
significant; it is reflected in the array that results from the function that uses the
path expression.

Multiple range specifications in the same array step are treated independently. In
particular, overlapping ranges result in repetition of the elements in the overlap.

For example, suppose that you query using SQL/JSON function json_query with
array wrapper (which wraps multiple query results to return a single JSON array),
passing it a path expression with this array step: [3 to 1, 2 to 4, last-1 to
last-2, 0, 0]. The data returned by the query will include an array that is made
from these elements of an array in your queried data, in order:

– second through fourth elements (range 3 to 1)

– third through fifth elements (range 2 to 4)

– second-from-last through next-to-last elements (range last-1 to last-2)

– first element (index 0)

– first element again (index 0)

When matching the array ["1", "2", "3", "4", "5", "6", "7", "8", "9"] in
your data, the array in the query result would be ["2", "3", "4", "3", "4",
"5", "7", "8", "1", "1"].

If you use array indexes that specify positions outside the bounds (0 through the
array size minus 1) of an array in your data, no error is raised. The specified path
expression simply does not match the data — the array has no such position.
(Matching of SQL/JSON path expressions follows this rule generally, not just for
array steps.)

This is the case, for example, if you try to match an index of last-6 against an
array with fewer than 7 elements. For an array of 6 elements, last is 5, so last-6
specifies an invalid position (less than 0).

1 The to in a range specification is sometimes informally called the array slice operator.

Chapter 15
SQL/JSON Path Expression Syntax

15-4



It is also the case if you try to match any array step against an empty array. For example,
array steps [0] and [last] both result in no match against the data array []. Step [0]
doesn't match because [] has no first element, and step [last] doesn't match because
[] has no element with index -1 (array length minus 1).

It is also the case, in particular, if you use an index last+N (N non-zero) other than with
function json_transform. For json_transform this is used not to match an existing array
element but to specify where, when modifying an existing array, to insert a new element.

Because a range specification is equivalent to an explicit, ascending sequence of array
indexes, any of those implicit indexes which are out of bounds cannot match any data.
Like explicit indexes, they are ignored.

Another way to think of this is that range specifications are, in effect, truncated to the
nearest bound (0 or last) for a given data array. For example when matching the array
["a", "b", "c"], the range specifications last-3 to 1, 2 to last+1, and last-3 to
last+1 are, in effect, truncated to 0 to 1, 2 to 2, and 0 to 2, respectively. The (implicit)
out-of-bounds indexes for those ranges, last-3 (which is -1, here) and last+1 (which is
3, here), are ignored.

• A descendant step is two consecutive periods (..), sometimes read as "dot dot",
followed by a field name (which has the same syntax as for an object step).

It descends recursively into the objects or arrays that match the step immediately
preceding it (or into the context item if there is no preceding step).

At each descendant level, for each object and for each array element that is an object, it
gathers the values of all fields that have the specified name. It returns all of the gathered
field values.

For example, consider this query and data:

json_query(some_json_column, '$.a..z' WITH ARRAY WRAPPER)

{ "a" : { "b" : { "z" : 1 },
          "c" : [ 5, { "z" : 2 } ],
          "z" : 3 },
  "z" : 4 }

The query returns an array, such as [1,2,3], whose elements are 1, 2, and 3. It gathers
the value of each field z within the step that immediately precedes the dot dot (..), which
is field a. The topmost field z, with value 4, is not matched because it is not within the
value of field a.

The value of field a is an object, which is descended into.

– It has a field z, whose value (3) is gathered. It also has a field b whose value is an
object, which is descended into to gather the value of its field z, which is 1.

– It also has a field c whose value is an array, which has an element that is an object
with a field z, whose value (2) is gathered.

The JSON values gathered are thus 3, 1, and 2. They are wrapped in an array, in an
undefined order. One of the possible return values is [1,2,3].

• A filter expression (filter, for short) is a question mark (?) followed by a filter condition
enclosed in parentheses (()). A filter is satisfied if its condition is satisfied, that is, returns
true.

Chapter 15
SQL/JSON Path Expression Syntax

15-5



• A filter condition applies a predicate (Boolean function) to its arguments.2

A filter condition is one of the following, where each of cond, cond1, and cond2
stands for a filter condition.

– ( cond ): Parentheses are used for grouping, separating filter condition cond
as a unit from other filter conditions that may precede or follow it.

– cond1 && cond2: The conjunction (and) of cond1 and cond2, requiring that
both be satisfied.

– cond1 || cond2: The inclusive disjunction (or) of cond1 and cond2, requiring
that cond1, cond2, or both, be satisfied.

– ! ( cond ): The negation of cond, meaning that cond must not be satisfied.

– exists ( followed by a relative path expression, followed by ): The condition
that the targeted data exists (is present).

– A relative path expression, followed by in, followed by a value list, meaning
that the value is one of those in the value list.

An in filter condition with two or more value-list elements is equivalent to a
disjunction (||) of equality (==) comparisons for the elements of the value list.3

For example, these are equivalent:

@.z in ("a", "b", c")

(@.z == "a") || (@.z == "b") || (@.z == "c")

A value list is ( followed by a list of zero or more scalar values and SQL/
JSON variables separated by commas (,), followed by ).4 A value list can only
follow in; otherwise, an error is raised.

All values in the list (whether literal or variable) must be of the same scalar
JSON-language type — for example, they must all be strings — otherwise, an
error is raised.

A JSON null value is an exception to the same-type restriction: null is
always allowed in a value list (and it is matched by a null value in the
targeted data).

– A comparison, which is one of the following:

* A JSON scalar value, followed by a comparison predicate, followed by
another JSON scalar value.

* Either a JSON scalar value or a SQL/JSON variable, followed by a
comparison predicate, followed by a relative path expression.

* A relative path expression, followed by a comparison predicate, followed
by either a JSON scalar value or a SQL/JSON variable.

2 A filter condition or a filter expression is sometimes informally called a "predicate". But they are actually
applications of predicates to arguments.

3 An in condition with a singleton value list is equivalent to a single equality comparison. An in condition with no
values is unmatchable.

4 An empty value list (no values or variables) does not raise an error, but it also is never matched.

Chapter 15
SQL/JSON Path Expression Syntax

15-6



* A relative path expression, followed by has substring, starts with, like,
like_regex, or eq_regex, followed by either a JSON string or a SQL/JSON
variable that is bound to a SQL string (which is automatically converted from the
database character set to UTF8).

For all of these predicates, a pattern that is the empty string ("") matches data
that is the empty string. And for all except like_regex, a pattern that is a
nonempty string does not match data that is the empty string. For like_regex a
nonempty pattern does match empty-string data.

* has substring means that the matching data value has the specified string
as a substring.

* starts with means that the matching data value has the specified string as
a prefix.

* like means that the JSON string data value matches the specified string,
which is interpreted as a SQL LIKE pattern that uses SQL LIKE4 character-
set semantics. A percent sign (%) in the pattern matches zero or more
characters. An underscore (_) matches a single character.

Note:

Unlike the case for SQL LIKE, you cannot choose the escape
character for path-expression predicate like — it is always
character `, GRAVE ACCENT (U+0060), also known sometimes as
backquote or backtick.

In database releases prior to 21c there is no escape character for
path-expression predicate like. For such releases Oracle
recommends that you avoid using character `, GRAVE ACCENT
(U+0060) in like patterns.

* like_regex means that the JSON string data value matches the specified
string, which is interpreted as a SQL REGEXP LIKE regular expression pattern
that uses SQL LIKE4 character-set semantics.

like_regex is exceptional among the pattern-matching comparisons, in that
its pattern matches the empty JSON string ("").

* eq_regex is just like like_regex, except for these two differences:

* eq_regex matches its regular expression pattern against the entire JSON
string data value — the full string must match the pattern for the
comparison to be satisfied. like_regex is satisfied if any portion of the
JSON string matches the pattern.

* The eq_regex pattern does not match the empty JSON string ("").

A SQL/JSON variable is a dollar sign ($) followed by the name of a SQL identifier that is
bound in a PASSING clause for json_exists.

The predicates that you can use in filter conditions are thus &&, ||, !, exists, ==, <>, !=,
<, <=, >=, >, and in.

As an example, the filter condition (a || b) && (!(c) || d < 42) is satisfied if both of
the following criteria are met:

Chapter 15
SQL/JSON Path Expression Syntax

15-7



– At least one of the filter conditions a and b is satisfied: (a || b).

– Filter condition c is not satisfied or the number d is less than or equal to 42, or
both are true: (!(c) || d < 42).

A comparison predicate is ==, <>, !=5, <, <=, >=, or >, meaning equals, does not
equal, is less than, is less than or equal to, is greater than or equal to, and is
greater than, respectively.

Comparison predicate ! has precedence over &&, which has precedence over ||.
You can always use parentheses to control grouping.

Without parentheses for grouping, the preceding example would be a || b && !
(c) || d < 42, which would be satisfied if at least one of the following criteria is
met:

– Condition b && !(c) is satisfied, which means that each of the conditions b
and !(c) is satisfied (which in turn means that condition c is not satisfied).

– Condition a is satisfied.

– Condition d < 42 is satisfied.

At least one side of a comparison must not be a SQL/JSON variable. The default type
for a comparison is defined at compile time, based on the type(s) for the non-variable
side(s). You can use a type-specifying item method to override this default with a
different type. The type of your matching data is automatically converted, for the
comparison, to fit the determined type (default or specified by item method). For
example, $.a > 5 imposes numerical comparison because 5 is a number, $.a > "5"
imposes string comparison because "5" is a string.

Tip:

For queries that you use often, use a PASSING clause to define SQL bind
variables, which you use as SQL/JSON variables in path expressions. This
can improve performance by avoiding query recompilation when the
(variable) values change.

For example, this query passes the value of bind variable v1 as SQL/JSON
variable $v1:

SELECT po.po_document FROM j_purchaseorder po
  WHERE json_exists(po.po_document,                    
                    '$.LineItems.Part?(@.UPCCode == $v1)'
                    PASSING '85391628927' AS "v1");

5 != is an Oracle alias for the SQL/JSON standard comparison predicate <>.

Chapter 15
SQL/JSON Path Expression Syntax

15-8



Note:

Oracle SQL function json_textcontains provides powerful full-text search of JSON
data. If you need only simple string pattern-matching then you can instead use a
path-expression filter condition with any of these pattern-matching comparisons:
has substring, starts with, like, like_regex, or eq_regex.

Here are some examples of path expressions, with their meanings spelled out in detail.

• $ — The context item.

• $.friends — The value of field friends of a context-item object. The dot (.) immediately
after the dollar sign ($) indicates that the context item is a JSON object.

• $.friends[0] — An object that is the first element of an array that is the value of field
friends of a context-item object. The bracket notation indicates that the value of field
friends is an array.

• $.friends[0].name — Value of field name of an object that is the first element of an array
that is the value of field friends of a context-item object. The second dot (.) indicates
that the first element of array friends is an object (with a name field).

• $.friends[*].name — Value of field name of each object in an array that is the value of
field friends of a context-item object.

• $.*[*].name — Field name values for each object in an array value of a field of a context-
item object.

• $.friends[3, 8 to 10, 12] — The fourth, ninth through eleventh, and thirteenth
elements of an array friends (field of a context-item object). The elements are returned
in the order in which they are specified: fourth, ninth, tenth, eleventh, thirteenth.

If an array to be matched has fewer than 13 elements then there is no match for index 12.
If an array to be matched has only 10 elements then, in addition to not matching index 12,
the range 8 to 10 is in effect truncated to positions 8 and 9 (elements 9 and 10).

• $.friends[12, 3, 10 to 8, 12] — The thirteenth, fourth, ninth through eleventh, and
thirteenth elements of array friends, in that order. The elements are returned in the
order in which they are specified. The range 10 to 8 specifies the same elements, in the
same order, as the range 8 to 10. The thirteenth element (at position 12) is returned
twice.

• $.friends[last-1, last, last, last] — The next-to-last, last, last, and last elements
of array friends, in that order. The last element is returned three times.

• $.friends[last to last-1, last, last] — Same as the previous example. Range
last to last-1, which is the same as range last-1 to last, returns the next-to-last
through the last elements.

• $.friends[3].cars — The value of field cars of an object that is the fourth element of an
array friends. The dot (.) indicates that the fourth element is an object (with a cars
field).

• $.friends[3].* — The values of all of the fields of an object that is the fourth element of
an array friends.

Chapter 15
SQL/JSON Path Expression Syntax

15-9



• $.friends[3].cars[0].year — The value of field year of an object that is the first
element of an array that is the value of field cars of an object that is the fourth
element of an array friends.

• $.friends[3].cars[0]?(@.year > 2016) — The first object of an array cars (field
of an object that is the fourth element of an array friends), provided that the value
of its field year is, or can be converted to, a number greater than 2016. A year
value such as "2017" is converted to the number 2017, which satisfies the test. A
year value such as "recent" fails the test — no match.

• $.friends[3].cars[0]?(@.year.number() > 2016) — Same as the previous.
Item method number() allows only a number or a string value that can be
converted to a number, and that behavior is already provided by numeric
comparison predicate >.

• $.friends[3].cars[0]?(@.year.numberOnly() > 2016) — Same as the
previous, but only if the year value is a number. Item method numberOnly()
excludes a car with a year value that is a string numeral, such as "2017".

• $.friends[3]?(@.addresses.city == "San Francisco") — An object that is the
fourth element of an array friends, provided that it has an addresses field whose
value is an object with a field city whose value is the string "San Francisco".

• $.friends[*].addresses?(@city starts with "San ").zip — Zip codes of all
addresses of friends, where the name of the address city starts with "San ". (In
this case the filter is not the last path step.)

• $..zip — All values of a zip field, anywhere, at any level.

• $.friends[3]?(@.addresses.city == "San Francisco" && @.addresses.state
== "Nevada") — Objects that are the fourth element of an array friends, provided
that there is a match for an address with a city of "San Francisco" and there is a
match for an address with a state of "Nevada".

Note: The filter conditions in the conjunction do not necessarily apply to the same
object — the filter tests for the existence of an object with city San Francisco and
for the existence of an object with state Nevada. It does not test for the existence
of an object with both city San Francisco and state Nevada. See Using Filters with
JSON_EXISTS.

• $.friends[3].addresses?(@.city == "San Francisco" && @.state ==
"Nevada") — An object that is the fourth element of array friends, provided that
object has a match for city of "San Francisco" and a match for state of
"Nevada".

Unlike the preceding example, in this case the filter conditions in the conjunction,
for fields city and state, apply to the same addresses object. The filter applies to
a given addresses object, which is outside it.

• $.friends[3].addresses?(@.city == $City && @.state == $State) — Same
as the previous, except the values used in the comparisons are SQL/JSON
variables, $City and $State. The variable values would be provided by SQL bind
variables City and State in a json_exists PASSING clause: PASSING … AS
"City", … AS "State". Use of variables in comparisons can improve
performance by avoiding query recompilation.

Chapter 15
SQL/JSON Path Expression Syntax

15-10



Related Topics

• Using Filters with JSON_EXISTS
You can use SQL/JSON condition json_exists with a path expression that has one or
more filter expressions, to select documents that contain matching data. Filters let you
test for the existence of documents that have particular fields that satisfy various
conditions.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch accept
an optional RETURNING clause, which specifies the data type of the value returned by the
function. This clause and the default behavior (no RETURNING clause) are described here.

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are described.

• SQL/JSON Path Expression Syntax Relaxation
The basic SQL/JSON path-expression syntax is relaxed to allow implicit array wrapping
and unwrapping. This means that you need not change a path expression in your code if
your data evolves to replace a JSON value with an array of such values, or vice versa.
Examples are provided.

• Diagrams for Basic SQL/JSON Path Expression Syntax
Syntax diagrams and corresponding Backus-Naur Form (BNF) syntax descriptions are
presented for the basic SQL/JSON path expression syntax.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional wrapper
clause, which specifies the form of the value returned by json_query or used for the data
in a json_table column. This clause and the default behavior (no wrapper clause) are
described here. Examples are provided.

• ISO 8601 Date, Time, and Duration Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates, times, and durations. Oracle Database supports the
most common ISO 8601 formats as proper Oracle SQL date, time, and interval (duration)
values. The formats that are supported are essentially those that are numeric-only,
language-neutral, and unambiguous.

See Also:

• ISO 8601 for information about the ISO date formats

• Oracle Database SQL Language Reference for information about SQL
condition REGEXP LIKE

• Oracle Database SQL Language Reference for information about SQL
condition LIKE and LIKE4 character-set semantics

15.2.2 SQL/JSON Path Expression Syntax Relaxation
The basic SQL/JSON path-expression syntax is relaxed to allow implicit array wrapping and
unwrapping. This means that you need not change a path expression in your code if your
data evolves to replace a JSON value with an array of such values, or vice versa. Examples
are provided.

Chapter 15
SQL/JSON Path Expression Syntax

15-11



Basic SQL/JSON Path Expression Syntax defines the basic SQL/JSON path-
expression syntax. The actual path expression syntax supported relaxes that definition
as follows:

• If a path-expression step targets (expects) an array but the actual data presents
no array then the data is implicitly wrapped in an array.

• If a path-expression step targets (expects) a non-array but the actual data
presents an array then the array is implicitly unwrapped.

This relaxation allows for the following abbreviation: [*] can be elided whenever it
precedes the object accessor, ., followed by an object field name, with no change in
effect. The reverse is also true: [*] can always be inserted in front of the object
accessor, ., with no change in effect.

This means that the object step [*].prop, which stands for the value of field prop of
each element of a given array of objects, can be abbreviated as .prop, and the object
step .prop, which looks as though it stands for the prop value of a single object,
stands also for the prop value of each element of an array to which the object
accessor is applied.

This is an important feature, because it means that you need not change a path
expression in your code if your data evolves to replace a given JSON value with an
array of such values, or vice versa.

For example, if your data originally contains objects that have field Phone whose value
is a single object with fields type and number, the path expression $.Phone.number,
which matches a single phone number, can still be used if the data evolves to
represent an array of phones. Path expression $.Phone.number matches either a
single phone object, selecting its number, or an array of phone objects, selecting the
number of each.

Similarly, if your data mixes both kinds of representation — there are some data entries
that use a single phone object and some that use an array of phone objects, or even
some entries that use both — you can use the same path expression to access the
phone information from these different kinds of entry.

Here are some example path expressions from section Basic SQL/JSON Path
Expression Syntax, together with an explanation of equivalences.

• $.friends – The value of field friends of either:

– The (single) context-item object.

– (equivalent to $[*].friends) Each object in the context-item array.

• $.friends[0].name – Value of field name for any of these objects:

– The first element of the array that is the value of field friends of the context-
item object.

– (equivalent to $.friends.name) The value of field friends of the context-item
object.

– (equivalent to $[*].friends.name) The value of field friends of each object in
the context-item array.

– (equivalent to $[*].friends[0].name) The first element of each array that is
the value of field friends of each object in the context-item array.

Chapter 15
SQL/JSON Path Expression Syntax

15-12



The context item can be an object or an array of objects. In the latter case, each object in
the array is matched for a field friends.

The value of field friends can be an object or an array of objects. In the latter case, the
first object in the array is used.

• $.*[*].name – Value of field name for any of these objects:

– An element of an array value of a field of the context-item object.

– (equivalent to $.*.name) The value of a field of the context-item object.

– (equivalent to $[*].*.name) The value of a field of an object in the context-item array.

– (equivalent to $[*].*[*].name) Each object in an array value of a field of an object in
the context-item array.

Related Topics

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of a
context-item symbol ($) followed by zero or more object, array, and descendant steps,
each of which can be followed by a filter expression, followed optionally by a function
step. Examples are provided.

15.3 SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are described.

An item method is applied to the JSON data that is targeted by (the rest of) the path
expression that is terminated by that method. The method is used to transform that data. The
SQL function or condition that is passed the path expression uses the transformed data in
place of the targeted data. In some cases the application of an item method acts as a filter,
removing the targeted data from the result set.

If an item-method conversion fails for any reason, such as its argument being of the wrong
type, then the path cannot be matched (it refers to no data), and no error is raised. In
particular, this means that such an error is not handled by an error clause in the SQL function
or condition to which the path expression is passed.

An item method always transforms the targeted JSON data to (possibly other) JSON data.
But a query using a path expression (with or without an item method) can return data as a
SQL data type that does not support JSON data. That is the case for a json_value query or
an equivalent dot-notation query.

• The return value of SQL/JSON function json_query (or a json_table column expression
that has json_query semantics) is always JSON data, of SQL data type JSON, VARCHAR2,
CLOB, or BLOB. The default return data type is JSON if the targeted data is also of JSON
type. Otherwise, it is VARCHAR2.

• The return value of SQL/JSON function json_value (or a json_table column expression
that has json_value semantics) is always of a SQL data type other than JSON type: a
scalar type, an object type, or a collection type; it does not return JSON data. Though the
path expression targets JSON data and an item method transforms targeted JSON data
to JSON data, json_value converts the resulting JSON data to a scalar SQL value in a
data type that does not necessarily support JSON data.

• A dot-notation query with an item method implicitly applies json_value with a RETURNING
clause that specifies a scalar SQL type to the JSON data that is targeted and possibly

Chapter 15
SQL/JSON Path Expression Item Methods

15-13



transformed by an item method. Thus, a dot-notation query with an item method
always returns a SQL scalar value.

Application of an Item Method to an Array

With the exception of item methods count(), size() and type(), if an array is
targeted by an item method then the method is applied to each of the array elements,
not to the array itself. The results of these applications are returned in place of the
array, as multiple values. That is, the resulting set of matches includes the converted
array elements, not the targeted array.

(This is similar, in its effect, to the implied unwrapping of an array when a non-array is
expected for an object step.)

For example, $.a.method() applies item-method method() to each element of array a,
to convert that element and use it in place of the array.

• For a json_value query that specifies a SQL collection type (varray or nested
table) as the return type, an instance of that collection type is returned,
corresponding to the JSON array that results from applying the item method to
each of the array elements, unless there is a type mismatch with respect to the
collection type definition.

• For a json_value query that returns any other SQL type, SQL NULL is returned.
This is because mapping the item method over the array elements results in
multiple return values, and that represents a mismatch for json_value.

• For json_query or a json_table column expression with json_query semantics,
you can use a wrapper clause to capture all of the converted array-element values
as an array. For example, this query:

SELECT json_query('["alpha", 42, "10.4"]', '$[*].stringOnly()'
                  WITH ARRAY WRAPPER)
  FROM dual;

returns this JSON array: ["alpha", "10.4"]. The SQL data type returned is the
same as the JSON data that was targeted: JSON, VARCHAR2(4000), CLOB, or BLOB.

Item methods count(), size() and type() are exceptional in this regard. When
applied to an array they treat it as such, instead of acting on its elements. For
example:

SELECT json_value('[19, "Oracle", {"a":1},[1,2,3]]', '$.type()')
  FROM dual;

returns the single VARCHAR2 value 'array' — json_value returns VARCHAR2(4000) by
default.

A similar query, but with json_query instead of json_value, returns the single JSON
string "array", of whatever SQL data type is used for the input JSON data: JSON,
VARCHAR2(4000), CLOB, or BLOB.

Chapter 15
SQL/JSON Path Expression Item Methods

15-14



Note:

The same thing that happens for json_value (with a SQL return type other than an
object or collection type) happens for a simple dot notation query. The presence of
an item method in dot notation syntax always results in json_value, not
json_query, semantics. This must produce a single scalar SQL value (which can be
used with SQL ORDER BY, GROUP BY, and comparisons or join operations). But an
item method applied to an array value results in multiple values, which json_value
semantics rejects — SQL NULL is returned.

Item-Method Descriptions

The following item methods are data-type conversion methods: binary(), boolean(),
booleanOnly(), date(), dateWithTime(), number(), numberOnly(), double(), dsInterval(),
float(), number(), numberOnly(), string(), stringOnly(), timestamp(), and
ymInterval().

A targeted JSON value targeted by a data-type conversion item method is said to be
interpreted as a value of a given SQL data type. This means that, in a query that has
json_value semantics, it is handled as if it were controlled by a RETURNING clause with that
SQL data type.

For example, item-method string() interprets its target as would json_value with clause
RETURNING VARCHAR2(4000). A Boolean value is thus treated by string() as "true" or
"false"; a null value is treated as "null"; and a number is represented in a canonical string
form.

The data-type conversion methods with “only” in their name are the same as the
corresponding methods with names without “only”, except that the former convert only JSON
values that are of the given type (e.g., number) to the related SQL data type (e.g. NUMBER).
The methods without “only” in the name allow conversion, when possible, of any JSON value
to the given SQL data type. (When an “only” method targets an array, the conversion applies
to each array element, as usual.)

• abs(): The absolute value of the targeted JSON number. Corresponds to the use of SQL
function ABS.

• avg(): The average of all targeted JSON numbers. Item method number() is first applied
implicitly to each of the possibly multiple values. Their average (a single NUMBER value) is
then returned. Targeted JSON values that cannot not be converted to numbers are
ignored.

• binary(): A SQL RAW interpretation of the targeted JSON value. Only JSON data stored
as JSON type matches.

• boolean(): A SQL VARCHAR2(20) interpretation of the targeted JSON value.

• booleanOnly(): A SQL VARCHAR2(20) interpretation of the targeted JSON data, but only if
it is a JSON Boolean value; otherwise, there is no match. Acts as a filter, allowing
matches only for JSON Boolean values.

• ceiling(): The targeted JSON number, rounded up to the nearest integer. Corresponds
to the use of SQL function CEIL.

• count(): The number of targeted JSON values, regardless of their types.

Chapter 15
SQL/JSON Path Expression Item Methods

15-15



• date(): A SQL DATE interpretation of the targeted JSON string. The targeted string
data must be in a supported ISO 8601 format for a date or a date with time;
otherwise, there is no match. If the JSON string has an ISO 8601 date-with-time
format then the SQL DATE instance has its time component truncated (set to zero).

• dateWithTime(): Like date(), except that the time component of an ISO 8601
date-with-time format is preserved in the SQL DATE instance.

• double(): A SQL BINARY_DOUBLE interpretation of the targeted JSON string or
number.

• dsInterval(): A SQL INTERVAL DAY TO SECOND interpretation of the targeted
JSON string. The targeted string data must be in one of the supported ISO 8601
duration formats; otherwise, there is no match.

• float(): A SQL BINARY_FLOAT interpretation of the targeted JSON string or
number. Only JSON data stored as JSON type matches.

• floor(): The targeted JSON number, rounded down to the nearest integer.
Corresponds to the use of SQL function FLOOR.

• length(): The number of characters in the targeted JSON string, interpreted as a
SQL NUMBER.

• lower(): The lowercase string that corresponds to the characters in the targeted
JSON string.

• maxNumber(): The maximum of all targeted JSON numbers. Item method number()
is first applied implicitly to each of the possibly multiple values. Their maximum (a
single NUMBER value) is then returned. Targeted JSON values that cannot be
converted to numbers are ignored.

• maxString(): The greatest of all targeted JSON strings, using collation order. Item
method string() is first applied implicitly to each of the possibly multiple values.
The greatest of these (a single VARCHAR2 value) is then returned. Targeted JSON
values that cannot be converted to strings are ignored.

• minNumber(): The minimum of all targeted JSON numbers. Item method number()
is first applied implicitly to each of the possibly multiple values. Their minimum (a
single NUMBER value) is then returned. Targeted JSON values that cannot be
converted to numbers are ignored.

• minString(): The least of all targeted JSON strings, using collation order. Item
method string() is first applied implicitly to each of the possibly multiple values.
The least of these (a single VARCHAR2 value) is then returned. Targeted JSON
values that cannot be converted to strings are ignored.

• number(): A SQL NUMBER interpretation of the targeted JSON string or number.

• numberOnly(): A SQL NUMBER interpretation of the targeted JSON data, but only if
it is a JSON number; otherwise, there is no match. Acts as a filter, allowing
matches only for JSON numbers.

• size(): If multiple JSON values are targeted then the result of applying size() to
each targeted value. Otherwise:

– If the single targeted value is a scalar then 1.

– If the single targeted value is an array then the number of array elements.

– If the single targeted value is an object then 1.

Chapter 15
SQL/JSON Path Expression Item Methods

15-16



This item method can be used with json_query, in addition to json_value and
json_table. If applied to data that is an array, no implicit iteration over the array elements
occurs: the resulting value is just the number of array elements. (This is an exception to
the rule of implicit iteration.)

• string(): A SQL VARCHAR2(4000) interpretation of the targeted scalar JSON value.

• stringOnly(): A SQL VARCHAR2(4000) interpretation of the targeted scalar JSON value,
but only if it is a JSON string; otherwise, there is no match. Acts as a filter, allowing
matches only for JSON strings.

• sum(): The sum of all targeted JSON numbers. Item method number() is first applied
implicitly to each of the possibly multiple values. Their sum (a single NUMBER value) is then
returned. Targeted JSON values that cannot be converted to numbers are ignored.

• timestamp(): A SQL TIMESTAMP interpretation of the targeted JSON string. The targeted
string data must be in a supported ISO 8601 format for a date or a date with time;
otherwise, there is no match. 6

• type(): The name of the JSON data type of the targeted data, interpreted as a SQL
VARCHAR2(20) value. This item method can be used with json_query, in addition to
json_value and json_table. If applied to data that is an array, no implicit iteration over
the array elements occurs: the resulting value is "array". (This is an exception to the rule
of implicit iteration.)

– "null" for a value of null.

– "boolean" for a Boolean value (true or false).

– "number" for a number.

– "string" for a string.

– "array" for an array.

– "object" for an object.

– "double" for a number that corresponds to a SQL BINARY_DOUBLE value. (For JSON
type data only.)

– "float" for a number that corresponds to a SQL BINARY_FLOAT value. (For JSON type
data only.)

– "binary" for a value corresponds to a SQL RAW value. (For JSON type data only.)

– "date" for a value corresponds to a SQL DATE value. (For JSON type data only.)

– "timestamp" for a value corresponds to a SQL TIMESTAMP value. (For JSON type data
only.)

– "daysecondInterval" for a value corresponds to a SQL INTERVAL DAY TO SECOND
value. (For JSON type data only.)

– "yearmonthInterval" for a value corresponds to a SQL INTERVAL YEAR TO MONTH
value. (For JSON type data only.)

• upper(): The uppercase string that corresponds to the characters in the targeted JSON
string.

6 Applying item method timestamp() to a supported ISO 8601 string <ISO-STRING> has the effect of SQL
sys_extract_utc(to_utc_timestamp_tz(<ISO-STRING>).

Chapter 15
SQL/JSON Path Expression Item Methods

15-17



• ymInterval(): A SQL INTERVAL YEAR TO MONTH interpretation of the targeted
JSON string. The targeted string data must be in one of the supported ISO 8601
duration formats; otherwise, there is no match.

Item methods binary(), boolean(), booleanOnly(), date(), dateWithTime(),
dsInterval(), float(), length(), lower(), number(), numberOnly(), string(),
stringOnly(), timestamp(), upper(), and ymInterval() are Oracle extensions to the
SQL/JSON standard. The other item methods, abs(), ceiling(), double(), floor(),
size(), and type() are part of the standard.

Item methods avg(), count(), maxNumber(), minNumber(), maxString(), minString(),
and sum() are aggregate item methods. Instead of acting individually on each targeted
value they act on all targeted values together. For example, if a path expression
targets multiple values that can be converted to numbers then sum() returns the sum
of those numbers.

Note that when a path expression targets an array, applying an aggregate item
method to it, the array is handled as a single value — there is no implicit iteration over
the array elements. For example, count() counts any targeted array as one value, and
size() returns the size of the array, not the sizes of its elements.

If you want an aggregate item method to act on the array elements then you need to
explicitly iterate over those elements, using wildcard *. For example, if the value of
field LineItems in a given document is an array then $.LineItems.count() returns 1,
but $.LineItems[*].count() returns the number of array elements.

An aggregate item method applies to a single JSON document at a time, just like the
path expression (or dot-notation) of which it is part. It aggregates the multiple values
that the path expression targets in that document. In a query it returns a row for each
document. It does not aggregate information across multiple documents, returning a
single row for all documents, as do SQL aggregate functions. See Example 15-1 and 
Example 15-2.

Item Methods and JSON_VALUE RETURNING Clause

Because some item methods interpret the targeted JSON data as if it were of a SQL
data type, they can be used with json_value in place of a RETURNING clause, and they
can be used with json_table in place of a column type specification. That is, the item
methods can be used to specify the returned SQL data type for the extracted JSON
data.

You can also use such item methods together with a json_value RETURNING clause or
a json_table column type specification. What happens if the SQL data type to use for
extracted JSON data is controlled by both an item method and either a json_value
RETURNING clause or a json_table column type?

• If the two data types are compatible then the data type for the RETURNING clause or
the column is used. For these purposes, VARCHAR2 is compatible with both
VARCHAR2 and CLOB.

• If the data types are incompatible then a static, compile-time error is raised.

Chapter 15
SQL/JSON Path Expression Item Methods

15-18



Table 15-1    Compatibility of Type-Conversion Item Methods and RETURNING Types

Item Method Compatible RETURNING Clause Data Types

string(), stringOnly(), minString(), or
maxString()

VARCHAR2 or CLOB, except that string() returns
SQL NULL for a JSON null value

number(), numberOnly(), avg(), sum(),
count(), minNumber(), or maxNumber()

NUMBER

double() BINARY_DOUBLE
float() BINARY_FLOAT
date() DATE, with truncated time component (set to zero),

corresponding to RETURNING DATE TRUNCATE
TIME

dateWithTime() DATE, with time component, corresponding to
RETURNING DATE PRESERVE TIME

timestamp() TIMESTAMP
ymInterval() INTERVAL YEAR TO MONTH
dsInterval() INTERVAL DAY TO SECOND
boolean() or booleanOnly() VARCHAR2
binary() RAW

Using a RETURNING clause or a column specification, you can specify a length for character
data and a precision and scale for numerical data. This lets you assign a more precise SQL
data type for extraction than what is provided by an item method for target-data comparison
purposes.

For example, if you use item method string() and RETURNING VARCHAR2(150) then the data
type of the returned data is VARCHAR2(150), not VARCHAR2(4000).

Example 15-1    Aggregating Values of a Field for Each Document

This example uses item method avg() to aggregate the values of field Quantity across all
LineItems elements of a JSON document, returning the average for each document as a
separate result row.

SELECT json_value(po_document, 
                  '$.LineItems[*].Quantity.avg()')
  FROM j_purchaseorder;

Example 15-2    Aggregating Values of a Field Across All Documents

This example uses SQL function avg to aggregate the average line-item Quantity values for
all JSON documents, returning the overall average for the entire document collection as a
single row. The average quantity for all line items of a given document is computed using
item method avg().

SELECT avg(json_value(po_document, 
                      '$.LineItems[*].Quantity.avg()'))
  FROM j_purchaseorder;

Chapter 15
SQL/JSON Path Expression Item Methods

15-19



Related Topics

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of
a context-item symbol ($) followed by zero or more object, array, and descendant
steps, each of which can be followed by a filter expression, followed optionally by
a function step. Examples are provided.

• Simple Dot-Notation Access to JSON Data
Dot notation is designed for easy, general use and common use cases of querying
JSON data. For simple queries it is a handy alternative to using SQL/JSON query
functions.

• ISO 8601 Date, Time, and Duration Support
International Standards Organization (ISO) standard 8601 describes an
internationally accepted way to represent dates, times, and durations. Oracle
Database supports the most common ISO 8601 formats as proper Oracle SQL
date, time, and interval (duration) values. The formats that are supported are
essentially those that are numeric-only, language-neutral, and unambiguous.

• Types in Comparisons
Comparisons in SQL/JSON path-expression filter conditions are statically typed at
compile time. If the effective types of the operands of a comparison are not known
to be the same then an attempt is sometimes made to reconcile them by type-
casting.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• SQL/JSON Function JSON_VALUE
SQL/JSON function json_value selects JSON data and returns a SQL scalar or
an instance of a user-defined SQL object type or SQL collection type (varray,
nested table).

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various
SQL data types. You use it to map parts of a JSON document into the rows and
columns of a new, virtual table, which you can also think of as an inline view.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and
JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional
wrapper clause, which specifies the form of the value returned by json_query or
used for the data in a json_table column. This clause and the default behavior
(no wrapper clause) are described here. Examples are provided.

15.4 Types in Comparisons
Comparisons in SQL/JSON path-expression filter conditions are statically typed at
compile time. If the effective types of the operands of a comparison are not known to
be the same then an attempt is sometimes made to reconcile them by type-casting.

A SQL/JSON path expression targets JSON data, so the operands of a comparison
are JSON values. Type comparison of JSON values is straightforward: JSON data
types string, number, null, object, and array are mutually exclusive and incomparable.

Chapter 15
Types in Comparisons

15-20



But comparison operands are sometimes interpreted (essentially cast) as values of SQL data
types. This is the case, for example, when some item methods, such as number(), are used.
This section addresses the type-checking of such effective values.

You can prevent such type-casting by explicitly using one of the “only” item methods. For
example, applying method numberOnly() prevents implicit type-casting to a number.

SQL is a statically typed language; types are determined at compile time. The same applies
to SQL/JSON path expressions, and in particular to comparisons in filter conditions. This
means that you get the same result for a query regardless of how it is evaluated — whether
functionally or using features such as indexes, materialized views, and In-Memory scans.

To realize this:

• If the types of both operands are known and they are the same then type-checking is
satisfied.

• If the types of both operands are unknown then a compile-time error is raised.

• If the type of one operand is known and the other is unknown then the latter operand is
cast to the type of the former.

For example, in $.a?(@.b.c == 3) the type of $a.b.c is unknown at compile time. The
path expression is compiled as $.a?(@.b.c.number() == 3). At runtime an attempt is
thus made to cast the data that matches $a.b.c to a number. A string value "3" would be
cast to the number 3, satisfying the comparison.7

• If the types of both operands are known and they are not the same then an attempt is
made to cast the type of one to the type of the other. Details are presented below.

An attempt is made to reconcile comparison operands used in the following combinations, by
type-casting. You can think of a type-casting item method being implicitly applied to one of
the operands in order to make it type-compatible with the other operand.

• Number compared with double — double() is implicitly applied to the number to make it
a double value.

• Number compared with float — float() is implicitly applied to the number to make it a
float value.

• String in a supported ISO 8601 format compared with date — date() is implicitly applied
to the string to make it a date value. For this, the UTC time zone (Coordinated Universal
Time, zero offset) is used as the default, taking into account any time zone specified in
the string.

• String in a supported ISO 8601 format compared with timestamp without time zone —
timestamp() is implicitly applied to the string to make it a timestamp value. For this, the
UTC time zone (Coordinated Universal Time, zero offset) is used as the default, taking
into account any time zone specified in the string.

Comparison operands used in the following combinations are not reconciled; a compile-time
error is raised.

• Number, double, or float compared with any type other than number, double, or float.

• Boolean compared with any type other than Boolean.

• Date or timestamp compared with string, unless the string has a supported ISO 8601
format.

7 To prevent such casting here, you can explicitly apply item method numberOnly(): $.a?(@.b.c.numberOnly() ==
3). Data with a string value "3" would simply not match; it would be filtered out.

Chapter 15
Types in Comparisons

15-21



• Date compared with any non-date type other than string (in supported ISO 8601
format).

• Timestamp (with or without time zone) compared with any non-timestamp type
other than string (in supported ISO 8601 format).

• Timestamp compared with timestamp with time zone.

• JSON null type compared with any type other than JSON null.

Related Topics

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are
described.

• ISO 8601 Date, Time, and Duration Support
International Standards Organization (ISO) standard 8601 describes an
internationally accepted way to represent dates, times, and durations. Oracle
Database supports the most common ISO 8601 formats as proper Oracle SQL
date, time, and interval (duration) values. The formats that are supported are
essentially those that are numeric-only, language-neutral, and unambiguous.

Chapter 15
Types in Comparisons

15-22



16
Clauses Used in SQL Functions and
Conditions for JSON

Clauses RETURNING, wrapper, error, and empty-field are described for SQL functions that use
JSON data. Each clause is used in one or more of the SQL functions and conditions
json_value, json_query, json_table, json_serialize, json_mergepatch, is json, is not
json, json_exists, and json_equal.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch accept
an optional RETURNING clause, which specifies the data type of the value returned by the
function. This clause and the default behavior (no RETURNING clause) are described here.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional wrapper
clause, which specifies the form of the value returned by json_query or used for the data
in a json_table column. This clause and the default behavior (no wrapper clause) are
described here. Examples are provided.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an optional
ON EMPTY clause, which specifies the handling to use when a targeted JSON field is
absent from the data queried. This clause and the default behavior (no ON EMPTY clause)
are described here.

• ON MISMATCH Clause for SQL/JSON Query Functions
You can use an ON MISMATCH clause with SQL/JSON functions json_value, json_query,
and json_table, to handle type-matching exceptions. It specifies handling to use when a
targeted JSON does not match the specified SQL return value. This clause and its default
behavior (no ON MISMATCH clause) are described here.

16.1 RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch accept an
optional RETURNING clause, which specifies the data type of the value returned by the
function. This clause and the default behavior (no RETURNING clause) are described here.

For json_value, you can use any of these SQL data types in a RETURNING clause: VARCHAR2,
NUMBER, BINARY_DOUBLE, BINARY_FLOAT, DATE (with optional keywords PRESERVE TIME or
TRUNCATE TIME), TIMESTAMP, TIMESTAMP WITH TIME ZONE, INTERVAL YEAR TO MONTH,
INTERVAL DAY TO SECOND, SDO_GEOMETRY, and CLOB. You can also use a user-defined object
type or a collection type. (See Using SQL/JSON Function JSON_VALUE With a Boolean
JSON Value for information about return types when a JSON Boolean value is targeted.)

16-1



Note:

An instance of Oracle SQL data type DATE includes a time component. And in
your JSON data you can use a string that represents an ISO 8601 date-with-
time value, that is, it can have a time component.

By default, json_value with RETURNING DATE returns a SQL DATE value that
has a zero time component (zero hours, minutes, and seconds). By default, a
time component in the queried JSON scalar value is truncated in the
returned SQL DATE instance. But before any time truncation is done, if the
value represented by an ISO 8601 date-with-time string has a time-zone
component then the value is first converted to UTC, to take any time-zone
information into account.

You can use RETURNING DATE PRESERVE TIME to override this default
truncating behavior and preserve the time component, when present, of the
queried JSON scalar value. (Using RETURNING DATE TRUNCATE TIME has the
same effect as just RETURNING DATE, the default behavior.)

(The same considerations apply to item methods date(), which corresponds
to TRUNCATE TIME, and dateWithTime(), which corresponds to PRESERVE
TIME.)

For json_query, json_serialize, and json_mergepatch you can use VARCHAR2, CLOB,
BLOB, or JSON.1

A BLOB result is in the AL32UTF8 character set. Whatever the data type returned by
json_serialize, the returned data represents textual JSON data.

You can optionally specify a length for VARCHAR2 (default: 4000) and a precision and
scale for NUMBER.

Data type SDO_GEOMETRY is for Oracle Spatial and Graph data. In particular, this means
that you can use json_value with GeoJSON data, which is a format for encoding
geographic data in JSON.

For json_query (only), if database initialization parameter compatible is 20 or greater,
and if the input data is of data type JSON:

• The default return type (no RETURNING clause) is also JSON.

Otherwise, the default return type is VARCHAR2(4000).

• Regardless of the return data type, by default the data returned can be a scalar
JSON value.

You can override this behavior by including keywords DISALLOW SCALARS just after
the return data type. The json_query invocation then returns only non-scalar
JSON values (which provides the same behavior as if RFC 8259 were not
supported).

The RETURNING clause also accepts two optional keywords, PRETTY and ASCII, unless
the return data type is JSON. If both are present then PRETTY must come before ASCII.
Keyword PRETTY is not allowed for json_value.

1 JSON data type is available only if database initialization parameter compatible is 20 or greater.

Chapter 16
RETURNING Clause for SQL Query Functions

16-2



The effect of keyword PRETTY is to pretty-print the returned data, by inserting newline
characters and indenting. The default behavior is not to pretty-print.

The effect of keyword ASCII is to automatically escape all non-ASCII Unicode characters in
the returned data, using standard ASCII Unicode escape sequences. The default behavior is
not to escape non-ASCII Unicode characters.

Tip:

You can pretty-print the entire context item by using only $ as the path expression.

If VARCHAR2 is specified in a RETURNING clause then scalars in the value are represented as
follows:

• Boolean values are represented by the lowercase strings "true" and "false".

• The null value is represented by SQL NULL.

• A JSON number is represented in a canonical form. It can thus appear differently in the
output string from its representation in textual input data. When represented in canonical
form:

– It can be subject to the precision and range limitations for a SQL NUMBER.

– When it is not subject to the SQL NUMBER limitations:

* The precision is limited to forty (40) digits.

* The optional exponent is limited to nine (9) digits plus a sign (+ or -).

* The entire text, including possible signs (-, +), decimal point (.), and exponential
indicator (E), is limited to 48 characters.

The canonical form of a JSON number:

– Is a JSON number. (It can be parsed in JSON data as a number.)

– Does not have a leading plus (+) sign.

– Has a decimal point (.) only when necessary.

– Has a single zero (0) before the decimal point if the number is a fraction (between
zero and one).

– Uses exponential notation (E) only when necessary. In particular, this can be the case
if the number of output characters is too limited (by a small N for VARCHAR2(N)).

Oracle extends the SQL/JSON standard in the case when the returning data type is
VARCHAR2(N), by allowing optional keyword TRUNCATE immediately after the data type. When
TRUNCATE is present and the value to return is wider than N, the value is truncated — only the
first N characters are returned. If TRUNCATE is absent then this case is treated as an error,
handled as usual by an error clause or the default error-handling behavior.

Related Topics

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

Chapter 16
RETURNING Clause for SQL Query Functions

16-3



• Using JSON_VALUE To Instantiate a User-Defined Object Type Instance
You can use SQL/JSON function json_value to instantiate an instance of a user-
defined SQL object type or collection type. You do this by targeting a JSON object
or array in the path expression and specifying the object or collection type,
respectively, in the RETURNING clause.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which
allows a JSON document to contain only a JSON scalar value at top level. This
support also means that functions that return JSON data can return scalar JSON
values.

See Also:

• Oracle Database SQL Language Reference for information about SQL
data types DATE and TIMESTAMP

• Oracle Database SQL Language Reference for information about SQL
data type NUMBER

• Oracle Spatial Developer's Guide for information about using Oracle
Spatial and Graph data

• GeoJSON.org

16.2 Wrapper Clause for SQL/JSON Query Functions
JSON_QUERY and JSON_TABLE

SQL/JSON query functions json_query and json_table accept an optional wrapper
clause, which specifies the form of the value returned by json_query or used for the
data in a json_table column. This clause and the default behavior (no wrapper
clause) are described here. Examples are provided.

The JSON data targeted by a path expression for json_query or a json_table column
can be a single JSON value (scalar, object, or array value), or it can be multiple JSON
values. With an optional wrapper clause you can wrap the targeted data in an array
before returning it.

For example, if the targeted data is the set of values "A50" and {"a": 42} you can
specify that those be wrapped to return the array ["A50", {"a": 42}] (or [{"a":
42}, "A50"] — you cannot control the element order). Or if the only targeted value is
42 then you can wrap that and return the array [42].

Prior to Oracle Database 21c only RFC 4627 was supported, not RFC 8259. A single
scalar JSON value could not be returned in this context — wrapping it in an array was
necessary, to avoid raising an error. This is still the case if database initialization
parameter compatible is less than 20. And even when RFC 8259 is supported you
might sometimes want to wrap the result in an array.

The behavior of a wrapper clause (or its absence, which is the same as using
keywords WITHOUT WRAPPER) depends on (1) whether or not the targeted JSON data is
a single scalar value and (2) whether returning a single scalar value is allowed for the
particular invocation of the SQL/JSON function.

Chapter 16
Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE

16-4



Without wrapping, returning a single scalar value or multiple values (scalar or not) raises an
error if either of the following is true:

• Database initialization parameter compatible is less than 20.

• Keywords DISALLOW SCALARS are used in the RETURNING clause.

The ON EMPTY clause takes precedence over the wrapper clause. The default for the former is
NULL ON EMPTY, which means that if no JSON values match the path expression then SQL
NULL is returned. If you want an empty JSON array ([]) returned instead then specify EMPTY
ARRAY ON EMPTY. If you want an error raised instead then specify ERROR ON EMPTY.

The wrapper clause for nonempty matches is as follows:

• WITH WRAPPER – Use a JSON array that contains all of the JSON values that match the
path expression. The order of the array elements is unspecified.

• WITHOUT WRAPPER – Use the JSON value or values that match the path expression.

Raise an error if either of these conditions holds:

– The path expression matches multiple values.

– Returning a scalar value is not allowed, and the path expression matches a single
scalar value (not an object or array).

• WITH CONDITIONAL WRAPPER – Use a value that represents all of the JSON values that
match the path expression.

If multiple JSON values match then this is the same as WITH WRAPPER.

If only one JSON value matches:

– If returning a scalar value is allowed, or if the single matching value is an object or an
array, then this is the same as WITHOUT WRAPPER.

– Otherwise, this is the same as WITH WRAPPER.

The default behavior is WITHOUT WRAPPER.

You can use keyword UNCONDITIONAL if you find that it makes your code clearer: WITH
WRAPPER and WITH UNCONDITIONAL WRAPPER mean the same thing.

You can add keyword ARRAY immediately before keyword WRAPPER, if you find it clearer:
WRAPPER and ARRAY WRAPPER mean the same thing.

Table 16-1 illustrates the wrapper-clause possibilities. The array wrapper is shown in bold
italics.

Table 16-1    JSON_QUERY Wrapper Clause Examples

JSON Values
Matching Path
Expression

WITH WRAPPER WITHOUT
WRAPPER

WITH CONDITIONAL WRAPPER

{"id": 38327}
(single object)

[{"id": 38327}] {"id": 38327} {"id": 38327} (same as WITHOUT
WRAPPER)

[42, "a", true]
(single array)

[[42, "a",
true]]

[42, "a", true] [42, "a", true] (same as WITHOUT
WRAPPER)

Chapter 16
Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE

16-5



Table 16-1    (Cont.) JSON_QUERY Wrapper Clause Examples

JSON Values
Matching Path
Expression

WITH WRAPPER WITHOUT
WRAPPER

WITH CONDITIONAL WRAPPER

42 [42] • 42, if returning a
single scalar
value is allowed

• Error, if returning
a single scalar
value is not
allowed

• 42, if returning a single scalar value is
allowed (same as WITHOUT WRAPPER)

• [42], if returning a single scalar value is
not allowed (same as WITH WRAPPER)

42, "a", true
(multiple values)

[42, "a", true] Error (multiple
values)

[42, "a", true] (same as WITH
WRAPPER)

none Determined by the ON
EMPTY clause.

• SQL NULL by
default (NULL ON
EMPTY)

• [] with clause
EMPTY ARRAY
ON EMPTY

Error (no values) Same as WITH WRAPPER.

Consider, for example, a json_query query to retrieve a JSON object. What happens if
the path expression matches multiple JSON values (of any kind)? You might want to
retrieve the matched values instead of raising an error. For example, you might want to
pick one of the values that is an object, for further processing. Using an array wrapper
lets you do this.

A conditional wrapper can be convenient if the only reason you are using a wrapper is
to avoid raising an error and you do not need to distinguish those error cases from
non-error cases. If your application is looking for a single object or array and the data
matched by a path expression is just that, then there is no need to wrap that expected
value in a singleton array.

On the other hand, with an unconditional wrapper you know that the resulting array is
always a wrapper — your application can count on that. If you use a conditional
wrapper then your application might need extra processing to interpret a returned
array. In Table 16-1, for instance, note that the same array ([42, "a", true]) is
returned for the very different cases of a path expression matching that array and a
path expression matching each of its elements.

Related Topics

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which
allows a JSON document to contain only a JSON scalar value at top level. This
support also means that functions that return JSON data can return scalar JSON
values.

Chapter 16
Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE

16-6



16.3 Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which specifies
handling for a runtime error that is raised by the function or condition. This clause and the
default behavior (no error clause) are summarized here.

By default, SQL functions and conditions for JSON avoid raising runtime errors. For example,
when JSON data is syntactically invalid, json_exists and json_equal return false and
json_value returns NULL.

But in some cases you can also specify an error clause, which overrides the default behavior.
The error handling you can specify varies, but each SQL function and condition for JSON that
lets you specify error handling supports at least the ERROR ON ERROR behavior of raising an
error.

The optional error clause can take these forms:

• ERROR ON ERROR – Raise the error (no special handling).

• NULL ON ERROR – Return NULL instead of raising the error.

Not available for json_exists.

• FALSE ON ERROR – Return false instead of raising the error.

Available only for json_exists and json_equal, for which it is the default.

• TRUE ON ERROR – Return true instead of raising the error.

Available only for json_exists and json_equal.

• EMPTY OBJECT ON ERROR – Return an empty object ({}) instead of raising the error.

Available only for json_query.

• EMPTY ARRAY ON ERROR – Return an empty array ([]) instead of raising the error.

Available only for json_query.

• EMPTY ON ERROR – Same as EMPTY ARRAY ON ERROR.

• DEFAULT 'literal_return_value' ON ERROR – Return the specified value instead of
raising the error. The value must be a constant at query compile time.

Not available:

– For json_exists, json_equal, json_serialize, json_mergepatch, or a json_table
column value clause that has json_exists behavior

– For json_query or a json_table column value clause that has json_query behavior

– For row-level error-handing for json_table
– When SDO_GEOMETRY is specified either as the RETURNING clause data type for

json_value or as a json_table column data type

The default behavior is NULL ON ERROR, except for conditions json_exists and json_equal.

Chapter 16
Error Clause for SQL Query Functions and Conditions

16-7



Note:

There are two levels of error handling for json_table, corresponding to its
two levels of path expressions: row and column. When present, a column
error handler overrides row-level error handling. The default error handler for
both levels is NULL ON ERROR.

Note:

An ON EMPTY clause overrides the behavior specified by ON ERROR for the
error of trying to match a missing field.

Note:

The ON ERROR clause takes effect only for runtime errors that arise when a
syntactically correct SQL/JSON path expression is matched against JSON
data. A path expression that is syntactically incorrect results in a compile-
time syntax error; it is not handled by the ON ERROR clause.

Related Topics

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an
optional ON EMPTY clause, which specifies the handling to use when a targeted
JSON field is absent from the data queried. This clause and the default behavior
(no ON EMPTY clause) are described here.

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various
SQL data types. You use it to map parts of a JSON document into the rows and
columns of a new, virtual table, which you can also think of as an inline view.

• SQL/JSON Function JSON_QUERY
SQL/JSON function json_query selects and returns one or more values from
JSON data and returns those values. You can thus use json_query to retrieve
fragments of a JSON document.

• SQL/JSON Function JSON_VALUE
SQL/JSON function json_value selects JSON data and returns a SQL scalar or
an instance of a user-defined SQL object type or SQL collection type (varray,
nested table).

• Oracle SQL Function JSON_SERIALIZE
Oracle SQL function json_serialize takes JSON data (of any SQL data type,
JSON, VARCHAR2, CLOB, or BLOB) as input and returns a textual representation of it
(as VARCHAR2, CLOB, or BLOB data). VARCHAR2(4000) is the default return type.

Chapter 16
Error Clause for SQL Query Functions and Conditions

16-8



• SQL/JSON Condition JSON_EXISTS
SQL/JSON condition json_exists lets you use a SQL/JSON path expression as a row
filter, to select rows based on the content of JSON documents. You can use condition
json_exists in a CASE expression or the WHERE clause of a SELECT statement.

• ON MISMATCH Clause for SQL/JSON Query Functions
You can use an ON MISMATCH clause with SQL/JSON functions json_value, json_query,
and json_table, to handle type-matching exceptions. It specifies handling to use when a
targeted JSON does not match the specified SQL return value. This clause and its default
behavior (no ON MISMATCH clause) are described here.

See Also:

• Oracle Database SQL Language Reference for detailed information about the
error clause for SQL functions for JSON

• Oracle Database SQL Language Reference for detailed information about the
error clause for SQL conditions for JSON

16.4 Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an optional ON
EMPTY clause, which specifies the handling to use when a targeted JSON field is absent from
the data queried. This clause and the default behavior (no ON EMPTY clause) are described
here.

You generally handle errors for SQL/JSON functions and conditions using an error clause (ON
ERROR). However, there is a special case where you might want different handling from this
general error handling: when querying to match given JSON fields that are missing from the
data. Sometimes you do not want to raise an error just because a field to be matched is
absent. (A missing field is normally treated as an error.)

You typically use a NULL ON EMPTY clause in conjunction with an accompanying ON ERROR
clause. This combination specifies that other errors are handled according to the ON ERROR
clause, but the error of trying to match a missing field is handled by just returning NULL. If no
ON EMPTY clause is present then an ON ERROR clause handles also the missing-field case.

In addition to NULL ON EMPTY there are ERROR ON EMPTY and DEFAULT ... ON EMPTY, which are
analogous to the similarly named ON ERROR clauses.

If only an ON EMPTY clause is present (no ON ERROR clause) then missing-field behavior is
specified by the ON EMPTY clause, and other errors are handled the same as if NULL ON ERROR
were present (it is the ON ERROR default). If both clauses are absent then only NULL ON ERROR
is used.

Use NULL ON EMPTY for an Index Created on JSON_VALUE

NULL ON EMPTY is especially useful for the case of a functional index created on a json_value
expression. The clause has no effect on whether or when the index is picked up, but it is
effective in allowing some data to be indexed that would otherwise not be because it is
missing a field targeted by the json_value expression.

Chapter 16
Empty-Field Clause for SQL/JSON Query Functions

16-9



You generally want to use ERROR ON ERROR for the queries that populate the index, so
that a query path expression that results in multiple values or complex values raises
an error. But you sometimes do not want to raise an error just because the field
targeted by a path expression is missing — you want that data to be indexed. 
Example 28-4 illustrates this use of NULL ON EMPTY when creating an index on a
json_value expression.

Related Topics

• Creating B-Tree Indexes for JSON_VALUE
You can create a B-tree function-based index for SQL/JSON function json_value.
You can use the standard syntax for this, explicitly specifying json_value, or you
can use dot-notation syntax with an item method. Indexes created in either of
these ways can be used with both dot-notation queries and json_value queries.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

16.5 ON MISMATCH Clause for SQL/JSON Query
Functions

You can use an ON MISMATCH clause with SQL/JSON functions json_value,
json_query, and json_table, to handle type-matching exceptions. It specifies
handling to use when a targeted JSON does not match the specified SQL return value.
This clause and its default behavior (no ON MISMATCH clause) are described here.

Note:

Clause ON MISMATCH applies only when neither of the clauses ON EMPTY and
ON ERROR applies. It applies when the targeted JSON data matches the path
expression, in general, but the type of that targeted data does not match the
specified return type. More precisely, ON MISMATCH applies when the targeted
data cannot be converted to the return type. For example, targeted value
"cat", a JSON string, cannot be converted to a SQL NUMBER value.

Clause ON EMPTY applies when the field targeted by a path expression does
not exist in the queried data.

Clause ON ERROR applies when any error is raised while processing the
query. This includes the cases of invalid query syntax and targeting of
multiple values in a json_value query or a json_query query without an
array wrapper.

When a query returns a SQL value that reflects the JSON data targeted by function
json_value, json_query, or json_table, the types of the targeted data and the value
to be returned must match, or else an error is raised.

If an ON ERROR handler is specified then its behavior applies as the default behavior for
ON MISMATCH: it is the behavior for a type mismatch if no ON MISMATCH clause is given.

Chapter 16
ON MISMATCH Clause for SQL/JSON Query Functions

16-10



You can use one or more ON MISMATCH clauses to specify type mismatch behavior in the
following ways:

• IGNORE ON MISMATCH — Explicitly specify the default behavior: ignore the mismatch. The
object or collection returned can contain one or more SQL NULL values because of
mismatches against the targeted JSON data.

This value is available only if the query targets an instance of a user-defined object or
collection type, which can be the case only when json_value (or a json_table column
with json_value semantics) is used. An error is raised if data of another type is targeted.

• NULL ON MISMATCH — Return SQL NULL as the value.

• ERROR ON MISMATCH — Raise an error for the mismatch.

When function json_value (or a json_table column with json_value semantics) returns a
user-defined object-type or collection-type instance, each of the ON MISMATCH clause types
can be followed, in parentheses ((…)), by one or more clauses that each indicates a kind of
mismatch to handle, separated by commas (,). These are the possible mismatch kinds:

• MISSING DATA — Some JSON data was needed to match the object-type or collection-
type data, but it was missing.

• EXTRA DATA — One or more JSON fields have no corresponding object-type or collection-
type data. For example, for JSON field address there is no object-type attribute with the
same name (matching case-insensitively, by default).

• TYPE ERROR — A JSON scalar value has a data type that is incompatible with the
corresponding return SQL scalar data type. This can be because of general type
incompatibility, as put forth in Table 16-2, or because the SQL data type is too
constraining (e.g., VARCHAR(2) is too short for JSON string "hello").

If no such kind-of-mismatch clause (e.g. EXTRA DATA) is present for a given handler (e.g. NULL
ON MISMATCH) then that handler applies to all kinds of mismatch.

You can have any number of ON MISMATCH clauses of different kinds, but if two or more such
contradict each other then a query compile-time error is raised.

Table 16-2    Compatible Scalar Data Types: Converting JSON to SQL

JSON Language Type (Source) SQL Type (Destination) Notes

binary RAW Supported only for JSON data
stored as SQL type JSON.

binary BLOB Supported only for JSON data
stored as SQL type JSON.

binary CLOB Supported only for JSON data
stored as SQL type JSON.

boolean VARCHAR2 The instance value is the SQL
string "true" or "false".

boolean CLOB The instance value is the SQL
string "true" or "false".

date DATE, with a (possibly zero) time
component1

Supported only for JSON data
stored as SQL type JSON.

date TIMESTAMP Time component is padded with
zeros. Supported only for JSON
data stored as SQL type JSON.

Chapter 16
ON MISMATCH Clause for SQL/JSON Query Functions

16-11



Table 16-2    (Cont.) Compatible Scalar Data Types: Converting JSON to SQL

JSON Language Type (Source) SQL Type (Destination) Notes

daysecondInterval INTERVAL DAY TO SECOND Supported only for JSON data
stored as SQL type JSON.

double BINARY_DOUBLE Supported only for JSON data
stored as SQL type JSON.

double BINARY_FLOAT Supported only for JSON data
stored as SQL type JSON.

double NUMBER Supported only for JSON data
stored as SQL type JSON.

double VARCHAR2 Supported only for JSON data
stored as SQL type JSON.

double CLOB Supported only for JSON data
stored as SQL type JSON.

float BINARY_FLOAT Supported only for JSON data
stored as SQL type JSON.

float BINARY_DOUBLE Supported only for JSON data
stored as SQL type JSON.

float NUMBER Supported only for JSON data
stored as SQL type JSON.

float VARCHAR2 Supported only for JSON data
stored as SQL type JSON.

float CLOB Supported only for JSON data
stored as SQL type JSON.

null Any SQL data type. The instance value is SQL NULL.

number NUMBER None.

number BINARY_DOUBLE None.

number BINARY_FLOAT None.

number VARCHAR2 None.

number CLOB None.

string VARCHAR2 None.

string CLOB None.

string NUMBER The JSON string must be
numeric.

string BINARY_DOUBLE The JSON string must be
numeric.

string BINARY_FLOAT The JSON string must be
numeric.

string DATE, with a (possibly zero) time
component1

The JSON string must have a
supported ISO 8601 format.

string TIMESTAMP The JSON string must have a
supported ISO 8601 format.

string INTERVAL YEAR TO MONTH The JSON string must have a
supported ISO 8601 duration
format.

string INTERVAL DAY TO SECOND The JSON string must have a
supported ISO 8601 duration
format.

Chapter 16
ON MISMATCH Clause for SQL/JSON Query Functions

16-12



Table 16-2    (Cont.) Compatible Scalar Data Types: Converting JSON to SQL

JSON Language Type (Source) SQL Type (Destination) Notes

timestamp TIMESTAMP Supported only for JSON data
stored as SQL type JSON,

timestamp DATE, with a (possibly zero) time
component1

Supported only for JSON data
stored as SQL type JSON.

yearmonthInterval INTERVAL YEAR TO MONTH Supported only for JSON data
stored as SQL type JSON.

1 For example, a DATE instance with a zero time component is returned by a json_value RETURNING DATE
clause that does not specify preservation of the time component.

Example 16-1    Using ON MISMATCH Clauses

This example uses the following object-relational data with various queries. The queries are
the same except for the type-mismatch behavior. Each query targets a non-existent JSON
field middle.

CREATE TYPE person_T AS OBJECT (
  first     VARCHAR2(30),
  last      VARCHAR2(30),
  birthyear NUMBER);

This query returns the object person_t('Grace', 'Hopper', 1906). Field middle is ignored,
because the default error handler is NULL ON ERROR.

SELECT json_value('{"first":     "Grace",
                    "middle":    "Brewster",
                    "last":      "Hopper",
                    "birthyear": "1906"}',
                  '$'
                  RETURNING person_t)
FROM DUAL;

This query raises an error because of the extra-data mismatch: field middle is extra.

SELECT json_value('{"first":     "Grace",
                    "middle":    "Brewster",
                    "last":      "Hopper",
                    "birthyear": "1906"}',
                  '$'
                  RETURNING person_t
                  ERROR ON MISMATCH (EXTRA DATA))
FROM DUAL;
ORA-40602: extra data for object type conversion

Chapter 16
ON MISMATCH Clause for SQL/JSON Query Functions

16-13



This query uses three ON MISMATCH clauses. It returns the object person_t('Grace',
'Hopper', NULL). The clause ERROR ON MISMATCH (EXTRA DATA) would, by itself,
raise an error, but the IGNORE ON MISMATCH (TYPE ERROR) causes that error to be
ignored.

SELECT json_value('{"first":     "Grace",
                    "middle":    "Brewster",
                    "last":      "Hopper",
                    "birthyear": "1906"}',
                  '$'
                  RETURNING person_t
                  ERROR ON MISMATCH (EXTRA DATA)
                  ERROR ON MISMATCH (MISSING DATA)
                  IGNORE ON MISMATCH (TYPE ERROR))
FROM DUAL;

Related Topics

• Using JSON_VALUE To Instantiate a User-Defined Object Type Instance
You can use SQL/JSON function json_value to instantiate an instance of a user-
defined SQL object type or collection type. You do this by targeting a JSON object
or array in the path expression and specifying the object or collection type,
respectively, in the RETURNING clause.

Chapter 16
ON MISMATCH Clause for SQL/JSON Query Functions

16-14



17
SQL/JSON Condition JSON_EXISTS

SQL/JSON condition json_exists lets you use a SQL/JSON path expression as a row filter,
to select rows based on the content of JSON documents. You can use condition json_exists
in a CASE expression or the WHERE clause of a SELECT statement.

Condition json_exists checks for the existence of a particular value within JSON data: it
returns true if the value is present and false if it is absent. More precisely, json_exists
returns true if the data it targets matches one or more JSON values. If no JSON values are
matched then it returns false.

Error handlers ERROR ON ERROR, FALSE ON ERROR, and TRUE ON ERROR apply. The default is
FALSE ON ERROR. The handler takes effect when any error occurs, but typically an error
occurs when the given JSON data is not well-formed (using lax syntax). Unlike the case for
conditions is json and is not json, condition json_exists expects the data it examines to
be well-formed JSON data.

The second argument to json_exists is a SQL/JSON path expression followed by an
optional PASSING clause and an optional error clause.

For json_exists, the following have no effect in a path-expression array step: the order of
indexes and ranges, multiple occurrences of an array index, and duplication of a specified
position due to range overlaps. All that counts is the set of specified positions, not how they
are specified, including the order or number of times they are specified. All that is checked is
the existence of a match for at least one specified position.

The optional filter expression of a SQL/JSON path expression used with json_exists can
refer to SQL/JSON variables, whose values are passed from SQL by binding them with the
PASSING clause. The following SQL data types are supported for such variables: VARCHAR2,
NUMBER, BINARY_DOUBLE, DATE, TIMESTAMP, and TIMESTAMP WITH TIMEZONE.

Tip:

For queries that you use often, use a PASSING clause to define SQL bind variables,
which you use as SQL/JSON variables in path expressions. This can improve
performance by avoiding query recompilation when the (variable) values change.

For example, this query passes the value of bind variable v1 as SQL/JSON
variable $v1:

SELECT po.po_document FROM j_purchaseorder po
  WHERE json_exists(po.po_document,                    
                    '$.LineItems.Part?(@.UPCCode == $v1)'
                    PASSING '85391628927' AS "v1");

17-1



Note:

SQL/JSON condition json_exists applied to JSON value null returns the
SQL string 'true'.

• Using Filters with JSON_EXISTS
You can use SQL/JSON condition json_exists with a path expression that has
one or more filter expressions, to select documents that contain matching data.
Filters let you test for the existence of documents that have particular fields that
satisfy various conditions.

• JSON_EXISTS as JSON_TABLE
SQL/JSON condition json_exists can be viewed as a special case of SQL/JSON
function json_table.

Related Topics

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of
a context-item symbol ($) followed by zero or more object, array, and descendant
steps, each of which can be followed by a filter expression, followed optionally by
a function step. Examples are provided.

See Also:

Oracle Database SQL Language Reference for information about
json_exists and the PASSING clause

17.1 Using Filters with JSON_EXISTS
You can use SQL/JSON condition json_exists with a path expression that has one or
more filter expressions, to select documents that contain matching data. Filters let you
test for the existence of documents that have particular fields that satisfy various
conditions.

SQL/JSON condition json_exists returns true for documents containing data that
matches a SQL/JSON path expression. If the path expression contains a filter, then
the data that matches the path to which that filter is applied must also satisfy the filter,
in order for json_exists to return true for the document containing the data.

Chapter 17
Using Filters with JSON_EXISTS

17-2



A filter applies to the path that immediately precedes it, and the test is whether both (a) the
given document has some data that matches that path, and (b) that matching data satisfies
the filter. If both of these conditions hold then json_exists returns true for the document.

The path expression immediately preceding a filter defines the scope of the patterns used in
it. An at-sign (@) within a filter refers to the data targeted by that path, which is termed the
current item for the filter. For example, in the path expression $.LineItems?(@.Part.UPCCode
== 85391628927), @ refers to an occurrence of array LineItems.

Example 17-1    JSON_EXISTS: Path Expression Without Filter

This example selects purchase-order documents that have a line item whose part description
contains a UPC code entry.

SELECT po.po_document FROM j_purchaseorder po
  WHERE json_exists(po.po_document, '$.LineItems.Part.UPCCode');

Example 17-2    JSON_EXISTS: Current Item and Scope in Path Expression Filters

This example shows three equivalent ways to select documents that have a line item whose
part contains a UPC code with a value of 85391628927.

SELECT po.po_document FROM j_purchaseorder po
  WHERE json_exists(po.po_document,
                    '$?(@.LineItems.Part.UPCCode == 85391628927)');

SELECT po.po_document FROM j_purchaseorder po
  WHERE json_exists(po.po_document,
                    '$.LineItems?(@.Part.UPCCode == 85391628927)');

SELECT po.po_document FROM j_purchaseorder po
  WHERE json_exists(po.po_document,
                    '$.LineItems.Part?(@.UPCCode == 85391628927)');

• In the first query, the scope of the filter is the context item, that is, an entire purchase
order. @ refers to the context item.

• In the second query, the filter scope is a LineItems array (and each of its elements,
implicitly). @ refers to an element of that array.

• In the third query, the filter scope is a Part field of an element in a LineItems array. @
refers to a Part field.

Example 17-3    JSON_EXISTS: Filter Conditions Depend On the Current Item

This example selects purchase-order documents that have both a line item with a part that
has UPC code 85391628927 and a line item with an order quantity greater than 3. The scope
of each filter, that is, the current item, is in this case the context item. Each filter condition
applies independently (to the same document); the two conditions do not necessarily apply to
the same line item.

SELECT po.po_document FROM j_purchaseorder po
  WHERE json_exists(po.po_document,
                    '$?(@.LineItems.Part.UPCCode == 85391628927
                        && @.LineItems.Quantity > 3)');

Chapter 17
Using Filters with JSON_EXISTS

17-3



Example 17-4    JSON_EXISTS: Filter Downscoping

This example looks similar to Example 17-3, but it acts quite differently. It selects
purchase-order documents that have a line item with a part that has UPC code and
with an order quantity greater than 3. The scope of the current item in the filter is at a
lower level; it is not the context item but a LineItems array element. That is, the same
line item must satisfy both conditions, for json_exists to return true.

SELECT po.po_document FROM j_purchaseorder po
  WHERE json_exists(po.po_document,
                    '$.LineItems[*]?(@.Part.UPCCode == 85391628927
                                  && @.Quantity > 3)');

Example 17-5    JSON_EXISTS: Path Expression Using Path-Expression exists
Condition

This example shows how to downscope one part of a filter while leaving another part
scoped at the document (context-item) level. It selects purchase-order documents that
have a User field whose value is "ABULL" and documents that have a line item with a
part that has UPC code and with an order quantity greater than 3. That is, it selects the
same documents selected by Example 17-4, as well as all documents that have
"ABULL" as the user. The argument to path-expression predicate exists is a path
expression that specifies particular line items; the predicate returns true if a match is
found, that is, if any such line items exist.

(If you use this example or similar with SQL*Plus then you must use SET DEFINE OFF
first, so that SQL*Plus does not interpret && exists as a substitution variable and
prompt you to define it.)

SELECT po.po_document FROM j_purchaseorder po
  WHERE json_exists(po.po_document,
                    '$?(@.User == "ABULL"
                        && exists(@.LineItems[*]?(
                                    @.Part.UPCCode == 85391628927
                                    && @.Quantity > 3)))');

Related Topics

• Basic SQL/JSON Path Expression Syntax
The basic syntax of a SQL/JSON path expression is presented. It is composed of
a context-item symbol ($) followed by zero or more object, array, and descendant
steps, each of which can be followed by a filter expression, followed optionally by
a function step. Examples are provided.

17.2 JSON_EXISTS as JSON_TABLE
SQL/JSON condition json_exists can be viewed as a special case of SQL/JSON
function json_table.

Example 17-6 illustrates the equivalence: the two SELECT statements have the same
effect.

In addition to perhaps helping you understand json_exists better, this equivalence is
important practically, because it means that you can use either to get the same effect.

Chapter 17
JSON_EXISTS as JSON_TABLE

17-4



In particular, if you use json_exists more than once, or you use it in combination with
json_value or json_query (which can also be expressed using json_table), to access the
same data, then a single invocation of json_table presents the advantage that the data is
parsed only once.

Because of this, the optimizer often automatically rewrites multiple invocations of
json_exists, json_value and json_query (any combination) to fewer invocations of
json_table.

Example 17-6    JSON_EXISTS Expressed Using JSON_TABLE

SELECT select_list
  FROM table WHERE json_exists(column, 
                               json_path error_handler ON ERROR);
       
SELECT select_list
  FROM table,
       json_table(column, '$' error_handler ON ERROR
         COLUMNS ("COLUMN_ALIAS" NUMBER EXISTS PATH json_path)) AS "JT"
  WHERE jt.column_alias = 1;

Related Topics

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists and SQL/
JSON functions json_value and json_query. Everything that you can do using these
functions you can do using json_table. For the jobs they accomplish, the syntax of these
functions is simpler to use than is the syntax of json_table.

Chapter 17
JSON_EXISTS as JSON_TABLE

17-5



18
SQL/JSON Function JSON_VALUE

SQL/JSON function json_value selects JSON data and returns a SQL scalar or an instance
of a user-defined SQL object type or SQL collection type (varray, nested table).

• If json_value targets a single scalar JSON value then it returns a scalar SQL value. You
can specify the SQL data type for the returned scalar value. By default it is
VARCHAR2(4000).

• If json_value targets a JSON array, and you specify a SQL collection type (varray or
nested table) as the return type, then json_value returns an instance of that collection
type.

The elements of a targeted JSON array provide the elements of the returned collection-
type instance. A scalar JSON array element produces a scalar SQL value in the returned
collection instance (see previous). A JSON array element that is an object (see next) or
an array is handled recursively.

• If json_value targets a JSON object, and you specify a user-defined SQL object type as
the return type, then json_value returns an instance of that object type.

The field values of a targeted JSON object provide the attribute values of the returned
object-type instance. The field names of the targeted JSON object are compared with the
SQL names of the SQL object attributes. A scalar field value produces a scalar SQL
value in the returned object-type instance (see above). A field value that is an array (see
previous) or an object is handled recursively,

Ultimately it is the names of JSON fields with scalar values that are compared with the
names of scalar SQL object attributes. If the names do not match exactly, case-
sensitively, then a mismatch error is handled at query compile time.

You can also use json_value to create function-based B-tree indexes for use with JSON data
— see Indexes for JSON Data.

Function json_value has two required arguments, and it accepts optional returning and error
clauses.

The first argument to json_value is a SQL expression that returns an instance of a scalar
SQL data type (that is, not an object or collection data type). A scalar return value can be of
data type JSON, VARCHAR2, BLOB, CLOB.

The first argument can be a table or view column value, a PL/SQL variable, or a bind variable
with proper casting. The result of evaluating the SQL expression is used as the context item
for evaluating the path expression.

The second argument to json_value is a SQL/JSON path expression followed by optional
clauses RETURNING, ON ERROR, ON EMPTY, and ON MISMATCH. The path expression must target
a single scalar value, or else an error occurs.

The default error-handling behavior is NULL ON ERROR, which means that no value is returned
if an error occurs — an error is not raised. In particular, if the path expression targets a non-
scalar value, such as an array, no error is raised, by default. To ensure that an error is raised,
use ERROR ON ERROR.

18-1



In a path-expression array step, if only one position is specified then it is matched
against the data. Otherwise, there is no match (by default, NULL is returned).

Note:

Each field name in a given JSON object is not necessarily unique; the same
field name may be repeated. The streaming evaluation that Oracle Database
employs always uses only one of the object members that have a given field
name; any other members with the same field name are ignored. It is
unspecified which of multiple such members is used.

See also Unique Versus Duplicate Fields in JSON Objects.

• Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value
JSON has Boolean values true and false. When SQL/JSON function json_value
evaluates a path expression to JSON true or false, it can return a PL/SQL
BOOLEAN value, a SQL VARCHAR2 (string) value 'true' or 'false', or a SQL NUMBER
value 1 (for true) or 0 (for false).

• SQL/JSON Function JSON_VALUE Applied to a null JSON Value
SQL/JSON function json_value applied to JSON value null returns SQL NULL,
not the SQL string 'null'. This means, in particular, that you cannot use
json_value to distinguish the JSON value null from the absence of a value; SQL
NULL indicates both cases.

• Using JSON_VALUE To Instantiate a User-Defined Object Type Instance
You can use SQL/JSON function json_value to instantiate an instance of a user-
defined SQL object type or collection type. You do this by targeting a JSON object
or array in the path expression and specifying the object or collection type,
respectively, in the RETURNING clause.

• JSON_VALUE as JSON_TABLE
SQL/JSON function json_value can be viewed as a special case of function
json_table.

Related Topics

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an
optional ON EMPTY clause, which specifies the handling to use when a targeted
JSON field is absent from the data queried. This clause and the default behavior
(no ON EMPTY clause) are described here.

Chapter 18

18-2



See Also:

Oracle Database SQL Language Reference for information about json_value

18.1 Using SQL/JSON Function JSON_VALUE With a Boolean
JSON Value

JSON has Boolean values true and false. When SQL/JSON function json_value evaluates
a path expression to JSON true or false, it can return a PL/SQL BOOLEAN value, a SQL
VARCHAR2 (string) value 'true' or 'false', or a SQL NUMBER value 1 (for true) or 0 (for
false).

By default, json_value returns a string (VARCHAR2) value. If the targeted data is a JSON
Boolean value then the returned value is the string 'true' or 'false'. Example 18-1
illustrates this — the query returns 'true'.

With a RETURNING clause you can specify the return data type. By default, RETURNING NUMBER
raises an error when the targeted data is a JSON Boolean value. However, if you include the
clause ALLOW BOOLEAN TO NUMBER CONVERSION then no error is raised; in that case, 1 is
returned for a true JSON value, and 0 is returned for a false value. Example 18-2 illustrates
this — the query returns 1.

SQL/JSON function json_table generalizes other SQL/JSON query functions, including
json_value. When you use it to project a JSON Boolean value, json_value is used implicitly,
and the resulting SQL value is returned as a VARCHAR2 value, by default. By default, the data
type of the projection column is therefore VARCHAR2. But just as for json_value, you can
project a JSON Boolean value as a NUMBER value, by specifying NUMBER data type for the
column and including the clause ALLOW BOOLEAN TO NUMBER CONVERSION.

In PL/SQL code, BOOLEAN is a valid PL/SQL return type for built-in PL/SQL function
json_value. Example 18-3 illustrates the use of RETURNING BOOLEAN in PL/SQL.

Example 18-1    JSON_VALUE: Returning a JSON Boolean Value to SQL as VARCHAR2

SELECT json_value(po_document, '$.AllowPartialShipment')
  FROM j_purchaseorder;

Example 18-2    JSON_VALUE: Returning a JSON Boolean Value to SQL as NUMBER

This examples uses clause ALLOW BOOLEAN TO NUMBER CONVERSION to return the SQL NUMBER
value 1, meaning true. Without that clause, RETURNING NUMBER raises an error for Boolean
JSON data.

SELECT json_value(po_document, '$.AllowPartialShipment'
                  RETURNING NUMBER
                  ALLOW BOOLEAN TO NUMBER CONVERSION)
  FROM j_purchaseorder;

Chapter 18
Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value

18-3



Example 18-3    JSON_VALUE: Returning a JSON Boolean Value to PL/SQL as
BOOLEAN

This example uses clause ERROR ON ERROR, to raise an error in case of error. (User
exception-handling code can then handle the error.)

DECLARE
  b BOOLEAN;
  jsonData CLOB;
BEGIN
  SELECT po_document INTO jsonData FROM j_purchaseorder
    WHERE rownum = 1;
  b := json_value(jsonData, '$.AllowPartialShipment'
                  RETURNING BOOLEAN
                  ERROR ON ERROR);
END;
/ 

Related Topics

• JSON_VALUE as JSON_TABLE
SQL/JSON function json_value can be viewed as a special case of function
json_table.

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists
and SQL/JSON functions json_value and json_query. Everything that you can do
using these functions you can do using json_table. For the jobs they accomplish,
the syntax of these functions is simpler to use than is the syntax of json_table.

18.2 SQL/JSON Function JSON_VALUE Applied to a null
JSON Value

SQL/JSON function json_value applied to JSON value null returns SQL NULL, not the
SQL string 'null'. This means, in particular, that you cannot use json_value to
distinguish the JSON value null from the absence of a value; SQL NULL indicates both
cases.

18.3 Using JSON_VALUE To Instantiate a User-Defined
Object Type Instance

You can use SQL/JSON function json_value to instantiate an instance of a user-
defined SQL object type or collection type. You do this by targeting a JSON object or
array in the path expression and specifying the object or collection type, respectively,
in the RETURNING clause.

The elements of a targeted JSON array provide the elements of a returned collection-
type instance. The JSON array elements must correspond, one-to-one, with the
collection-type elements. If they do not then a mismatch error occurs. A JSON array
element that is an object (see next) or an array is handled recursively.

Chapter 18
SQL/JSON Function JSON_VALUE Applied to a null JSON Value

18-4



The fields of a targeted JSON object provide the attribute values of a returned object-type
instance. The JSON fields must correspond, one-to-one, with the object-type attributes. If
they do not then a mismatch error occurs.

The field names of the targeted JSON object are compared with the SQL names of the object
attributes. A field value that is an array or an object is handled recursively, so that ultimately it
is the names of JSON fields with scalar values that are compared with the names of scalar
SQL object attributes. If the names do not match (case insensitively, by default), then a
mismatch error occurs.

If all names match then the corresponding data types are checked for compatibility. If there is
any type incompatibility then a mismatch error occurs. Table 16-2 specifies the compatible
scalar data types — any other type combinations are incompatible, which entails a mismatch
error.

A mismatch error occurs at query compile time if any of the following are true. By default,
mismatch errors are ignored, but you can change this error handling by including one or more
ON MISMATCH clauses in your invocation of json_value.

• The fields of a targeted JSON object, or the elements of a targeted JSON array, do not
correspond in number and kind to the attributes of the specified object-type instance, or
to the elements of the specified collection-type instance, respectively.

• The fields of a targeted JSON object do not have the same names as the attributes of a
specified object-type instance. By default this matching is case-insensitive.

• The JSON and Oracle SQL scalar data types of a JSON value and its corresponding
object attribute value or collection element value are not compatible, according to 
Table 16-2.

Example 18-4    Instantiate a User-Defined Object Instance From JSON Data with
JSON_VALUE

This example defines SQL object types shipping_t and addr_t. Object type shipping_t has
attributes name and address, which have types VARCHAR2(30) and addr_t, respectively.

Object type addr_t has attributes street and city.

The example uses json_value to select the JSON object that is the value of field
ShippingInstructions and return an instance of SQL object type shipping_t. Names of the
object-type attributes are matched against JSON object field names case-insensitively, so
that, for example, attribute address (which is the same as ADDRESS) of SQL object-type
shipping_t matches JSON field address.

(The query output is shown pretty-printed here, for clarity.)

CREATE TYPE shipping_t AS OBJECT
  (name    VARCHAR2(30),
   address addr_t); 

CREATE TYPE addr_t AS OBJECT
  (street VARCHAR2(100),
   city   VARCHAR2(30));

-- Query data to return shipping_t instances:
SELECT json_value(po_document, '$.ShippingInstructions'
                  RETURNING shipping_t)
  FROM j_purchaseorder;

Chapter 18
Using JSON_VALUE To Instantiate a User-Defined Object Type Instance

18-5



JSON_VALUE(PO_DOCUMENT,'$.SHIPPINGINSTRUCTIONS'RETURNING
--------------------------------------------------------
SHIPPING_T('Alexis Bull',
           ADDR_T('200 Sporting Green',
                  'South San Francisco'))
SHIPPING_T('Sarah Bell',
           ADDR_T('200 Sporting Green',
                  'South San Francisco'))

Example 18-5    Instantiate a Collection Type Instance From JSON Data with
JSON_VALUE

This example defines SQL collection type items_t and SQL object types part_t and
item_t. An instance of collection type items_t is a varray of item_t instances.
Attribute part of object-type item_t is itself of SQL object-type part_t.

It then uses json_value to select the JSON

(The query output is shown pretty-printed here, for clarity.)

CREATE TYPE part_t AS OBJECT
  (description VARCHAR2(30),
   unitprice   NUMBER);
 
CREATE TYPE item_t AS OBJECT
  (itemnumber NUMBER,
   part       part_t);
  
CREATE TYPE items_t AS VARRAY(10) OF item_t;

-- Query data to return items_t collections of item_t objects
SELECT json_value(po_document, '$.LineItems' RETURNING items_t)
  FROM j_purchaseorder;

JSON_VALUE(PO_DOCUMENT,'$.LINEITEMS'RETURNINGITEMS_TUSIN
--------------------------------------------------------
ITEMS_T(ITEM_T(1, PART_T('One Magic Christmas', 19.95)),
        ITEM_T(2, PART_T('Lethal Weapon', 19.95)))
ITEMS_T(ITEM_T(1, PART_T('Making the Grade', 20)),
        ITEM_T(2, PART_T('Nixon', 19.95)),
        ITEM_T(3, PART_T(NULL, 19.95)))

Related Topics

• ON MISMATCH Clause for SQL/JSON Query Functions
You can use an ON MISMATCH clause with SQL/JSON functions json_value,
json_query, and json_table, to handle type-matching exceptions. It specifies
handling to use when a targeted JSON does not match the specified SQL return
value. This clause and its default behavior (no ON MISMATCH clause) are described
here.

Chapter 18
Using JSON_VALUE To Instantiate a User-Defined Object Type Instance

18-6



See Also:

Oracle Database SQL Language Reference for information about json_value

18.4 JSON_VALUE as JSON_TABLE
SQL/JSON function json_value can be viewed as a special case of function json_table.

Example 18-6 illustrates the equivalence: the two SELECT statements have the same effect.

In addition to perhaps helping you understand json_value better, this equivalence is
important practically, because it means that you can use either function to get the same
effect.

In particular, if you use json_value more than once, or you use it in combination with
json_exists or json_query (which can also be expressed using json_table), to access the
same data, then a single invocation of json_table presents the advantage that the data is
parsed only once.

Because of this, the optimizer often automatically rewrites multiple invocations of
json_exists, json_value and json_query (any combination) to fewer invocations of
json_table.

Example 18-6    JSON_VALUE Expressed Using JSON_TABLE

SELECT json_value(column, json_path 
                  RETURNING data_type error_hander ON ERROR)
  FROM table;

SELECT jt.column_alias
  FROM table,
       json_table(column, '$' error_handler ON ERROR
         COLUMNS ("COLUMN_ALIAS" data_type PATH json_path)) AS "JT";

Related Topics

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists and SQL/
JSON functions json_value and json_query. Everything that you can do using these
functions you can do using json_table. For the jobs they accomplish, the syntax of these
functions is simpler to use than is the syntax of json_table.

Chapter 18
JSON_VALUE as JSON_TABLE

18-7



19
SQL/JSON Function JSON_QUERY

SQL/JSON function json_query selects and returns one or more values from JSON data and
returns those values. You can thus use json_query to retrieve fragments of a JSON
document.

The JSON data you query is the first argument to json_query. More precisely, it is a SQL
expression that returns an instance of a SQL data type that contains JSON data: type JSON1,
VARCHAR2, CLOB, or BLOB. It can be a table or view column value, a PL/SQL variable, or a bind
variable with proper casting. The result of evaluating the expression is used as the context
item for evaluating the path expression (described next).

The second argument to json_query is a SQL/JSON path expression followed by optional
clauses RETURNING, WRAPPER, ON ERROR, and ON EMPTY. The path expression can target any
number of JSON values.

In a path-expression array step, each of the specified positions is matched against the data,
in order, no matter how it is specified. The order of array indexes and ranges, multiple
occurrences of an index, and duplication of a specified position due to range overlaps all
matter.

In the RETURNING clause you can specify data type JSON, VARCHAR2, CLOB, or BLOB. A BLOB
result is in the AL32UTF8 character set.

The default return type depends on the input data type. If the input type is JSON then JSON is
also the default return type. Otherwise, VARCHAR2 is the default return type.

The value returned always contains well-formed JSON data. This includes ensuring that non-
ASCII characters in string values are escaped as needed. For example, an ASCII TAB
character (Unicode character CHARACTER TABULATION, U+0009) is escaped as \t.
Keywords FORMAT JSON are not needed (or available) for json_query — JSON formatting is
implicit for the return value.

The wrapper clause determines the form of the returned string value.

The error clause for json_query can specify EMPTY ON ERROR, which means that an empty
array ([]) is returned in case of error (no error is raised).

If initialization parameter compatible is 20 or greater then Oracle Database supports IETF
RFC 8259, which allows a JSON document to contain only a JSON scalar value at top level.

If parameter compatible is less than 20 then only RFC 4627 is supported. It allows only a
JSON object or array, not a scalar, at the top level of a JSON document. RFC 8259 includes
support for RFC 4627 (and RFC 7159).

If RFC 8259 is not supported, and if the value targeted by a json-query path-expression
argument targets multiple values or a single scalar value, then you must use keywords WITH
WRAPPER to return the value(s) wrapped in an array. Otherwise, an error is raised.

1 Database initialization parameter compatible must be at least 20 to use data type JSON.

19-1



If RFC 8259 is supported then json_query can return scalar JSON values, by default.
To require json_query to return only non-scalar JSON values, use keywords DISALLOW
SCALARS in the RETURNING clause. In that case the behavior is the same as if RFC 8259
were not supported — you must use WITH WRAPPER.

Example 19-1 shows an example of using SQL/JSON function json_query with an
array wrapper. For each document it returns a VARCHAR2 value whose contents
represent a JSON array with elements the phone types, in an unspecified order. For
the document in Example 4-3 the phone types are "Office" and "Mobile", and the
array returned is either ["Mobile", "Office"] or ["Office", "Mobile"].

Note that if path expression $.ShippingInstructions.Phone.type were used in 
Example 19-1 it would give the same result. Because of SQL/JSON path-expression
syntax relaxation, [*].type is equivalent to .type.

See Also:

• Oracle Database SQL Language Reference for information about
json_query

• IETF RFC 8259

Example 19-1    Selecting JSON Values Using JSON_QUERY

SELECT json_query(po_document, '$.ShippingInstructions.Phone[*].type'
                  WITH WRAPPER)
  FROM j_purchaseorder;

• JSON_QUERY as JSON_TABLE
SQL/JSON function json_query can be viewed as a special case of function
json_table.

Related Topics

• SQL/JSON Path Expression Syntax Relaxation
The basic SQL/JSON path-expression syntax is relaxed to allow implicit array
wrapping and unwrapping. This means that you need not change a path
expression in your code if your data evolves to replace a JSON value with an array
of such values, or vice versa. Examples are provided.

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and
JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional
wrapper clause, which specifies the form of the value returned by json_query or
used for the data in a json_table column. This clause and the default behavior
(no wrapper clause) are described here. Examples are provided.

Chapter 19

19-2

https://tools.ietf.org/html/rfc8259


• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an optional
ON EMPTY clause, which specifies the handling to use when a targeted JSON field is
absent from the data queried. This clause and the default behavior (no ON EMPTY clause)
are described here.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which allows a
JSON document to contain only a JSON scalar value at top level. This support also
means that functions that return JSON data can return scalar JSON values.

19.1 JSON_QUERY as JSON_TABLE
SQL/JSON function json_query can be viewed as a special case of function json_table.

Example 19-2 illustrates the equivalence: the two SELECT statements have the same effect.

In addition to perhaps helping you understand json_query better, this equivalence is
important practically, because it means that you can use either function to get the same
effect.

In particular, if you use json_query more than once, or you use it in combination with
json_exists or json_value (which can also be expressed using json_table), to access the
same data, then a single invocation of json_table presents the advantage that the data is
parsed only once.

Because of this, the optimizer often automatically rewrites multiple invocations of
json_exists, json_value and json_query (any combination) to fewer invocations of
json_table.

Example 19-2    JSON_QUERY Expressed Using JSON_TABLE

The keywords FORMAT JSON are used only if data_type is not JSON type. (Keywords FORMAT
JSON cannot be used with JSON type.)

SELECT json_query(column, json_path
                  RETURNING data_type array_wrapper
                            error_handler ON ERROR)
  FROM table;

SELECT jt.column_alias
  FROM table,
       json_table(column, '$' error_handler ON ERROR
         COLUMNS ("COLUMN_ALIAS" data_type FORMAT JSON array_wrapper
                  PATH json_path)) AS "JT";

Related Topics

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists and SQL/
JSON functions json_value and json_query. Everything that you can do using these

Chapter 19
JSON_QUERY as JSON_TABLE

19-3



functions you can do using json_table. For the jobs they accomplish, the syntax
of these functions is simpler to use than is the syntax of json_table.

Chapter 19
JSON_QUERY as JSON_TABLE

19-4



20
SQL/JSON Function JSON_TABLE

SQL/JSON function json_table projects specific JSON data to columns of various SQL data
types. You use it to map parts of a JSON document into the rows and columns of a new,
virtual table, which you can also think of as an inline view.

You can then insert this virtual table into a pre-existing database table, or you can query it
using SQL — in a join expression, for example.

A common use of json_table is to create a view of JSON data. You can use such a view just
as you would use any table or view. This lets applications, tools, and programmers operate
on JSON data without consideration of the syntax of JSON or JSON path expressions.

Defining a view over JSON data in effect maps a kind of schema onto that data. This
mapping is after the fact: the underlying JSON data can be defined and created without any
regard to a schema or any particular pattern of use. Data first, schema later.

Such a schema (mapping) imposes no restriction on the kind of JSON documents that can be
stored in the database (other than being well-formed JSON data). The view exposes only
data that conforms to the mapping (schema) that defines the view. To change the schema,
just redefine the view — no need to reorganize the underlying JSON data.

You use json_table in a SQL FROM clause. It is a row source: it generates a row of virtual-
table data for each JSON value selected by a row path expression (row pattern). The
columns of each generated row are defined by the column path expressions of the COLUMNS
clause.

Typically a json_table invocation is laterally joined, implicitly, with a source table in the FROM
list, whose rows each contain a JSON document that is used as input to the function.
json_table generates zero or more new rows, as determined by evaluating the row path
expression against the input document.

The first argument to json_table is a SQL expression. It can be a table or view column
value, a PL/SQL variable, or a bind variable with proper casting. The result of evaluating the
expression is used as the context item for evaluating the row path expression.

The second argument to json_table is the SQL/JSON row path expression followed by an
optional error clause for handling the row and the (required) COLUMNS clause, which defines
the columns of the virtual table to be created. There is no RETURNING clause.

There are two levels of error handling for json_table, corresponding to the two levels of path
expressions: row and column. When present, a column error handler overrides row-level
error handling. The default error handler for both levels is NULL ON ERROR.

In a row path-expression array step, the order of indexes and ranges, multiple occurrences of
an array index, and duplication of a specified position due to range overlaps all have the
usual effect: the specified positions are matched, in order, against the data, producing one
row for each position match.

As an alternative to passing the context-item argument and the row path expression, you can
use simple dot-notation syntax. (You can still use an error clause, and the COLUMNS clause is

20-1



still required.) Dot notation specifies a table or view column together with a simple path
to the targeted JSON data. For example, these two queries are equivalent:

json_table(t.j, '$.ShippingInstructions.Phone[*]' ...)

json_table(t.j.ShippingInstructions.Phone[*] ...)

And in cases where the row path expression is only '$', which targets the entire
document, you can omit the path part. These queries are equivalent:

json_table(t.j, '$' ...)

json_table(t.j ...)

Example 20-1 illustrates the difference between using the simple dot notation and
using the fuller, more explicit notation.

You can also use the dot notation in any PATH clause of a COLUMNS clause, as an
alternative to using a SQL/JSON path expression. For example, you can use just PATH
'ShippingInstructions.name' instead of PATH '$.ShippingInstructions.name'.

Example 20-1    Equivalent JSON_TABLE Queries: Simple and Full Syntax

This example uses json_table for two equivalent queries. The first query uses the
simple, dot-notation syntax for the expressions that target the row and column data.
The second uses the full syntax.

Except for column Special Instructions, whose SQL identifier is quoted, the SQL
column names are, in effect, uppercase. (Identifier Special Instructions contains a
space character.)

In the first query the column names are written exactly the same as the names of the
targeted object fields, including with respect to letter case. Regardless of whether they
are quoted, they are interpreted case-sensitively for purposes of establishing the
default path (the path used when there is no explicit PATH clause).

The second query has:

• Separate arguments of a JSON column-expression and a SQL/JSON row path-
expression

• Explicit column data types of VARCHAR2(4000)
• Explicit PATH clauses with SQL/JSON column path expressions, to target the

object fields that are projected

SELECT jt.*
  FROM j_purchaseorder po,
       json_table(po.po_document
         COLUMNS ("Special Instructions",
                  NESTED LineItems[*]
                    COLUMNS (ItemNumber NUMBER,

Chapter 20

20-2



                             Description PATH Part.Description))
       ) AS "JT";

SELECT jt.*
  FROM j_purchaseorder po,
       json_table(po.po_document, 
         '$'
         COLUMNS (
           "Special Instructions" VARCHAR2(4000)
                                  PATH '$."Special Instructions"',
           NESTED PATH '$.LineItems[*]'
             COLUMNS (
               ItemNumber  NUMBER        PATH '$.ItemNumber',
               Description VARCHAR(4000) PATH '$.Part.Description'))
       ) AS "JT";

• SQL NESTED Clause Instead of JSON_TABLE
In a SELECT clause you can often use a NESTED clause instead of SQL/JSON function
json_table. This can mean a simpler query expression. It also has the advantage of
including rows with non-NULL relational columns when the JSON column is NULL.

• COLUMNS Clause of SQL/JSON Function JSON_TABLE
The mandatory COLUMNS clause for SQL/JSON function json_table defines the columns
of the virtual table that the function creates.

• JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
SQL/JSON function json_table generalizes SQL/JSON condition json_exists and SQL/
JSON functions json_value and json_query. Everything that you can do using these
functions you can do using json_table. For the jobs they accomplish, the syntax of these
functions is simpler to use than is the syntax of json_table.

• Using JSON_TABLE with JSON Arrays
A JSON value can be an array or can include one or more arrays, nested to any number
of levels inside other JSON arrays or objects. You can use a json_table NESTED path
clause to project specific elements of an array.

• Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you project to
columns using SQL/JSON function json_table. To further improve query performance
you can create a materialized view and place the JSON data in memory.

Related Topics

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition. This
clause and the default behavior (no error clause) are summarized here.

• SQL/JSON Function JSON_QUERY
SQL/JSON function json_query selects and returns one or more values from JSON data
and returns those values. You can thus use json_query to retrieve fragments of a JSON
document.

Chapter 20

20-3



• Creating Multivalue Function-Based Indexes for JSON_EXISTS
For JSON data that is stored as JSON data type you can use a multivalue function-
based index for SQL/JSON condition json_exists. Such an index targets scalar
JSON values, either individually or within a JSON array.

See Also:

Oracle Database SQL Language Reference for information about
json_table

20.1 SQL NESTED Clause Instead of JSON_TABLE
In a SELECT clause you can often use a NESTED clause instead of SQL/JSON function
json_table. This can mean a simpler query expression. It also has the advantage of
including rows with non-NULL relational columns when the JSON column is NULL.

The NESTED clause is a shortcut for using json_table with an ANSI left outer join. That
is, these two queries are equivalent:

SELECT ... 
  FROM mytable NESTED jcol COLUMNS (...);

SELECT ...
  FROM mytable t1 LEFT OUTER JOIN
       json_table(t1.jcol COLUMNS (...)
       ON 1=1;

Using a left outer join with json_table, or using the NESTED clause, allows the
selection result to include rows with relational columns where there is no
corresponding JSON-column data, that is, where the JSON column is NULL. The only
semantic difference between the two is that if you use a NESTED clause then the JSON
column itself is not included in the result.

The NESTED clause provides the same COLUMNS clause as json_table, including the
possibility of nested columns. These are the advantages of using NESTED:

• You need not provide a table alias, even if you use the simple dot notation.

• You need not provide an is json check constraint, even if the JSON column is not
JSON type. (The constraint is needed for json_table with the simple dot notation,
unless the column is JSON type.)

• You need not specify LEFT OUTER JOIN.

The NESTED clause syntax is simpler, it allows all of the flexibility of the COLUMNS clause,
and it performs an implicit left outer join. This is illustrated in Example 20-2.

Example 20-3 shows the use of a NESTED clause with the simple dot notation.

Chapter 20
SQL NESTED Clause Instead of JSON_TABLE

20-4



Example 20-2    Equivalent: SQL NESTED and JSON_TABLE with LEFT OUTER JOIN

These two queries are equivalent. One uses SQL/JSON function json_table with an explicit
LEFT OUTER JOIN. The other uses a SQL NESTED clause.

SELECT id, requestor, type, "number"
  FROM j_purchaseorder LEFT OUTER JOIN
       json_table(po_document
         COLUMNS (Requestor,
                  NESTED ShippingInstructions.Phone[*]
                    COLUMNS (type, "number")))
       ON 1=1);

SELECT id, requestor, type, "number"
  FROM j_purchaseorder NESTED
       po_document
         COLUMNS (Requestor,
                  NESTED ShippingInstructions.Phone[*]
                    COLUMNS (type, "number");

The output is the same in both cases:

7C3A54B183056369E0536DE05A0A15E4 Alexis Bull Office 909-555-7307
7C3A54B183056369E0536DE05A0A15E4 Alexis Bull Mobile 415-555-1234
7C3A54B183066369E0536DE05A0A15E4 Sarah Bell

If table j_purchaseorder had a row with non-NULL values for columns id and requestor, but
a NULL value for column po_document then that row would appear in both cases. But it would
not appear in the json_table case if LEFT OUTER JOIN were absent.

Example 20-3    Using SQL NESTED To Expand a Nested Array

This example selects columns id and date_loaded from table j_purchaseorder, along with
the array elements of field Phone, which is nested in the value of field ShippingInstructions
of JSON column po_document. It expands the Phone array value as columns type and
number.

(Column specification "number" requires the double-quote marks because number is a
reserved term in SQL.)

SELECT *
  FROM j_purchaseorder NESTED
       po_document.ShippingInstructions.Phone[*]
         COLUMNS (type, "number")

20.2 COLUMNS Clause of SQL/JSON Function JSON_TABLE
The mandatory COLUMNS clause for SQL/JSON function json_table defines the columns of
the virtual table that the function creates.

It consists of the keyword COLUMNS followed by the following entries, enclosed in parentheses.
Other than the optional FOR ORDINALITY entry, each entry in the COLUMNS clause is either a
regular column specification or a nested columns specification.

Chapter 20
COLUMNS Clause of SQL/JSON Function JSON_TABLE

20-5



• At most one entry in the COLUMNS clause can be a column name followed by the
keywords FOR ORDINALITY, which specifies a column of generated row numbers
(SQL data type NUMBER). These numbers start with one. For example:

COLUMNS (linenum FOR ORDINALITY, ProductID)

An array step in a row path expression can lead to any number of rows that match
the path expression. In particular, the order of array-step indexes and ranges,
multiple occurrences of an array index, and duplication of a specified position due
to range overlaps produce one row for each position match. The ordinality row
numbers reflect this.

• A regular column specification consists of a column name followed by an optional
data type for the column, which can be any SQL data type that can be used in the
RETURNING clause of json_value, followed by an optional value clause and an
optional PATH clause. The default data type is VARCHAR2(4000).

The column data type can thus be any of these: JSON, VARCHAR2, NUMBER, DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, or SDO_GEOMETRY.

Data type SDO_GEOMETRY is used for Oracle Spatial and Graph data. In particular,
this means that you can use json_table with GeoJSON data, which is a format for
encoding geographic data in JSON.

Oracle extends the SQL/JSON standard in the case when the returning data type
for a column is VARCHAR2(N), by allowing optional keyword TRUNCATE immediately
after the data type. When TRUNCATE is present and the value to return is wider than
N, the value is truncated — only the first N characters are returned. If TRUNCATE is
absent then this case is treated as an error, handled as usual by an error clause or
the default error-handling behavior.

• A nested columns specification consists of the keyword NESTED followed by an
optional PATH keyword, a SQL/JSON row path expression, and then a COLUMNS
clause. This COLUMNS clause specifies columns that represent nested data. The
row path expression used here provides a refined context for the specified nested
columns: each nested column path expression is relative to the row path
expression. You can nest columns clauses to project values that are present in
arrays at different levels to columns of the same row.

A COLUMNS clause at any level (nested or not) has the same characteristics. In
other words, the COLUMNS clause is defined recursively. For each level of nesting
(that is, for each use of keyword NESTED), the nested COLUMNS clause is said to be
the child of the COLUMNS clause within which it is nested, which is its parent. Two
or more COLUMNS clauses that have the same parent clause are siblings.

The virtual tables defined by parent and child COLUMNS clauses are joined using an
outer join, with the parent being the outer table. The virtual columns defined by
sibling COLUMNS clauses are joined using a union join.

Example 20-1 and Example 20-9 illustrate the use of a nested columns clause.

The only thing required in a regular column specification is the column name. Defining
the column projection in more detail, by specifying a scalar data type, value handling,
or a target path, is optional.

• The optional value clause specifies how to handle the data projected to the
column: whether to handle it as would json_value, json_exists, or json_query.

Chapter 20
COLUMNS Clause of SQL/JSON Function JSON_TABLE

20-6



This value handling includes the return data type, return format (pretty or ASCII),
wrapper, and error treatment.

If you use keyword EXISTS then the projected data is handled as if by json_exists
(regardless of the column data type).

Otherwise:

– For a column of data type JSON, the projected data is handled as if by json_query.

– For a non-JSON type column (any type that can be used in a json_value RETURNING
clause), the projected data is handled by default as if by json_value. But if you use
keywords FORMAT JSON then it is handled as if by json_query. You typically use
FORMAT JSON only when the projected data is a JSON object or array. (An error is
raised if you use FORMAT JSON with a JSON type column.)

For example, here the value of column FirstName is projected directly using json_value
semantics, and the value of column Address is projected as a JSON string using
json_query semantics:

COLUMNS (FirstName, Address FORMAT JSON)

json_query semantics imply that the projected JSON data is well-formed. If the column is
a non-JSON type then this includes ensuring that non-ASCII characters in string values
are escaped as needed. For example, a TAB character (CHARACTER TABULATION,
U+0009) is escaped as \t. (For JSON type data, any such escaping is done when the
JSON data is created, not when json_query is used.)

When the column has json_query semantics:

– If database initialization parameter compatible is at least 20 then you can use
keywords DISALLOW SCALARS to affect the json_query behavior by excluding scalar
JSON values.

– You can override the default wrapping behavior by adding an explicit wrapper clause.

You can override the default error handling for a given handler (json_exists,
json_value, or json_query) by adding an explicit error clause appropriate for it.

• The optional PATH clause specifies the portion of the row that is to be used as the column
content. The column path expression following keyword PATH is matched against the
context item provided by the virtual row. The column path expression must represent a
relative path; it is relative to the path specified by the row path expression.

If the PATH clause is not present then the behavior is the same as if it were present with a
path of '$.<column-name>', where <column-name> is the column name. That is, the
name of the object field that is targeted is taken implicitly as the column name.

For purposes of specifying the targeted field only, the SQL identifier used for <column-
name> is interpreted case-sensitively, even if it is not quoted. The SQL name of the
column itself follows the usual rule: if it is enclosed in double quotation marks (") then the
letter case used is significant; otherwise, it is not (it is treated as if uppercase).

For example, these two COLUMNS clauses are equivalent. For SQL, case is significant only
for column Comments (because it is quoted). The other two columns have case-insensitive
names (that is, their names are treated case-insensitively), regardless of whether a PATH

Chapter 20
COLUMNS Clause of SQL/JSON Function JSON_TABLE

20-7



clause is used. In the first COLUMNS clause the first two columns are written with
mixed case that matches the field names they target implicitly.

COLUMNS(ProductId, Quantity NUMBER, "Comments")

COLUMNS(productid   VARCHAR2(4000) PATH '$.ProductId',
        quantity    NUMBER         PATH '$.Quantity',
        "Comments"  VARCHAR2(4000) PATH '$.Comments')

Example 20-1 presents equivalent queries that illustrate this.

You can also use the dot notation in a PATH clause, as an alternative to a SQL/
JSON path expression. Example 20-2 and Example 20-9 illustrate this.

In a column path-expression array step, the order of indexes and ranges, multiple
occurrences of an array index, and duplication of a specified position due to range
overlaps have the effect they would have for the particular semantics use for the
column: json_exists, json_query, or json_value:

• json_exists — All that counts is the set of specified positions, not how they are
specified, including the order or number of times they are specified. All that is
checked is the existence of a match for at least one specified position.

• json_query — Each occurrence of a specified position is matched against the
data, in order.

• json_value — If only one position is specified then it is matched against the data.
Otherwise, there is no match — by default (NULL ON ERROR) a SQL NULL value is
returned.

Related Topics

• RETURNING Clause for SQL Query Functions
SQL functions json_value, json_query, json_serialize, and json_mergepatch
accept an optional RETURNING clause, which specifies the data type of the value
returned by the function. This clause and the default behavior (no RETURNING
clause) are described here.

• Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and
JSON_TABLE
SQL/JSON query functions json_query and json_table accept an optional
wrapper clause, which specifies the form of the value returned by json_query or
used for the data in a json_table column. This clause and the default behavior
(no wrapper clause) are described here. Examples are provided.

• Error Clause for SQL Query Functions and Conditions
Some SQL query functions and conditions accept an optional error clause, which
specifies handling for a runtime error that is raised by the function or condition.
This clause and the default behavior (no error clause) are summarized here.

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an
optional ON EMPTY clause, which specifies the handling to use when a targeted
JSON field is absent from the data queried. This clause and the default behavior
(no ON EMPTY clause) are described here.

Chapter 20
COLUMNS Clause of SQL/JSON Function JSON_TABLE

20-8



• SQL/JSON Function JSON_QUERY
SQL/JSON function json_query selects and returns one or more values from JSON data
and returns those values. You can thus use json_query to retrieve fragments of a JSON
document.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which allows a
JSON document to contain only a JSON scalar value at top level. This support also
means that functions that return JSON data can return scalar JSON values.

See Also:

• Oracle Database SQL Language Reference

• Oracle Spatial Developer's Guide for information about using Oracle Spatial
and Graph data

• GeoJSON.org

20.3 JSON_TABLE Generalizes SQL/JSON Query Functions
and Conditions

SQL/JSON function json_table generalizes SQL/JSON condition json_exists and SQL/
JSON functions json_value and json_query. Everything that you can do using these
functions you can do using json_table. For the jobs they accomplish, the syntax of these
functions is simpler to use than is the syntax of json_table.

If you use any of json_exists, json_value, or json_query more than once, or in
combination, to access the same data then a single invocation of json_table presents the
advantage that the data is parsed only once.

Because of this, the optimizer often automatically rewrites multiple invocations of
json_exists, json_value and json_query (any combination) to fewer invocations of
json_table instead, so the data is parsed only once.

Example 20-4 and Example 20-5 illustrate this. They each select the requestor and the set of
phones used by each object in column j_purchaseorder.po_document. But Example 20-5
parses that column only once, not four times.

Note the following in connection with Example 20-5:

• A JSON value of null is a value as far as SQL is concerned; it is not NULL, which in SQL
represents the absence of a value (missing, unknown, or inapplicable data). In 
Example 20-5, if the JSON value of object attribute zipCode is null then the SQL string
'true' is returned.

• json_exists is a SQL condition; you can use it in a SQL WHERE clause, a CASE statement,
or a check constraint. In Example 20-4 it is used in a WHERE clause. Function json_table
employs the semantics of json_exists implicitly when you specify keyword EXISTS. It
must return a SQL value in the virtual column. Since Oracle SQL has no Boolean data
type, a SQL string 'true' or 'false' is used to represent the Boolean value. This is the
case in Example 20-5: the VARCHAR2 value is stored in column jt.has_zip, and it is then
tested explicitly for equality against the literal SQL string 'true'.

Chapter 20
JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions

20-9



• JSON field AllowPartialShipment has a JSON Boolean value. When json_value
is applied to that value it is returned as a string. In Example 20-5, data type
VARCHAR2 is used as the column data type. Function json_table implicitly uses
json_value for this column, returning the value as a VARCHAR2 value, which is then
tested for equality against the literal SQL string 'true'.

Example 20-4    Accessing JSON Data Multiple Times to Extract Data

SELECT json_value(po_document, '$.Requestor' RETURNING VARCHAR2(32)),
       json_query(po_document, '$.ShippingInstructions.Phone'
                  RETURNING VARCHAR2(100))
  FROM j_purchaseorder
  WHERE json_exists(po_document, '$.ShippingInstructions.Address.zipCode')
    AND json_value(po_document,  '$.AllowPartialShipment'
                   RETURNING VARCHAR2(5 CHAR))
        = 'true';

Example 20-5    Using JSON_TABLE to Extract Data Without Multiple Parses

(If the JSON data is of JSON data type then do not use keywords FORMAT JSON;
otherwise, an error is raised.)

SELECT jt.requestor, jt.phones
  FROM j_purchaseorder,
       json_table(po_document, '$'
         COLUMNS (
           requestor VARCHAR2(32 CHAR) PATH '$.Requestor',
           phones    VARCHAR2(100 CHAR) FORMAT JSON
                     PATH '$.ShippingInstructions.Phone',
           partial   VARCHAR2(5 CHAR) PATH '$.AllowPartialShipment',
           has_zip   VARCHAR2(5 CHAR) EXISTS
                     PATH '$.ShippingInstructions.Address.zipCode')) jt
  WHERE jt.partial = 'true' AND jt.has_zip = 'true';

Related Topics

• Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value
JSON has Boolean values true and false. When SQL/JSON function json_value
evaluates a path expression to JSON true or false, it can return a PL/SQL
BOOLEAN value, a SQL VARCHAR2 (string) value 'true' or 'false', or a SQL NUMBER
value 1 (for true) or 0 (for false).

20.4 Using JSON_TABLE with JSON Arrays
A JSON value can be an array or can include one or more arrays, nested to any
number of levels inside other JSON arrays or objects. You can use a json_table
NESTED path clause to project specific elements of an array.

Example 20-6 projects the requestor and associated phone numbers from the JSON
data in column po_document. The entire JSON array Phone is projected as a column of
JSON data, ph_arr. To format this JSON data as a VARCHAR2 column, the keywords
FORMAT JSON are needed if the JSON data is not of JSON data type (and those
keywords raise an error if the type is JSON data).

Chapter 20
Using JSON_TABLE with JSON Arrays

20-10



What if you wanted to project the individual elements of JSON array Phone and not the array
as a whole? Example 20-7 shows one way to do this, which you can use if the array elements
are the only data you need to project.

If you want to project both the requestor and the corresponding phone data then the row path
expression of Example 20-7 ($.Phone[*]) is not appropriate: it targets only the (phone object)
elements of array Phone.

Example 20-8 shows one way to target both: use a row path expression that targets both the
name and the entire phones array, and use column path expressions that target fields type
and number of individual phone objects.

In Example 20-8 as in Example 20-6, keywords FORMAT JSON are needed if the JSON data is
not of JSON data type, because the resulting VARCHAR2 columns contain JSON data, namely
arrays of phone types or phone numbers, with one array element for each phone. In addition,
unlike the case for Example 20-6, a wrapper clause is needed for column phone_type and
column phone_num, because array Phone contains multiple objects with fields type and
number.

Sometimes you might not want the effect of Example 20-8. For example, you might want a
column that contains a single phone number (one row per number), rather than one that
contains a JSON array of phone numbers (one row for all numbers for a given purchase
order).

To obtain that result, you need to tell json_table to project the array elements, by using a
json_table NESTED path clause for the array. A NESTED path clause acts, in effect, as an
additional row source (row pattern). Example 20-9 illustrates this.

You can use any number of NESTED keywords in a given json_table invocation.

In Example 20-9 the outer COLUMNS clause is the parent of the nested (inner) COLUMNS clause.
The virtual tables defined are joined using an outer join, with the table defined by the parent
clause being the outer table in the join.

(If there were a second columns clause nested directly under the same parent, the two
nested clauses would be sibling COLUMNS clauses.)

Example 20-6    Projecting an Entire JSON Array as JSON Data

SELECT jt.*
  FROM j_purchaseorder,
       json_table(po_document, '$'
         COLUMNS (requestor VARCHAR2(32 CHAR) PATH '$.Requestor',
                  ph_arr    VARCHAR2(100 CHAR) FORMAT JSON
                            PATH '$.ShippingInstructions.Phone')
                 ) AS "JT";

Example 20-7    Projecting Elements of a JSON Array

SELECT jt.*
  FROM j_purchaseorder,
       json_table(po_document, '$.ShippingInstructions.Phone[*]'
         COLUMNS (phone_type VARCHAR2(10) PATH '$.type',
                  phone_num  VARCHAR2(20) PATH '$.number')) AS "JT";

PHONE_TYPE     PHONE_NUM

Chapter 20
Using JSON_TABLE with JSON Arrays

20-11



----------     ---------
Office         909-555-7307
Mobile         415-555-1234

Example 20-8    Projecting Elements of a JSON Array Plus Other Data

SELECT jt.*
  FROM j_purchaseorder,
       json_table(po_document, '$'
         COLUMNS (
           requestor  VARCHAR2(32 CHAR) PATH '$.Requestor',
           phone_type VARCHAR2(50 CHAR) FORMAT JSON WITH WRAPPER
                      PATH '$.ShippingInstructions.Phone[*].type',
           phone_num  VARCHAR2(50 CHAR) FORMAT JSON WITH WRAPPER
                      PATH '$.ShippingInstructions.Phone[*].number')) AS "JT";

REQUESTOR    PHONE_TYPE            PHONE_NUM
---------    ----------            ---------
Alexis Bull  ["Office", "Mobile"]  ["909-555-7307", "415-555-1234"]

Example 20-9    JSON_TABLE: Projecting Array Elements Using NESTED

This example shows two equivalent queries that project array elements. The first query
uses the simple, dot-notation syntax for the expressions that target the row and
column data. The second uses the full syntax.

Except for column number, whose SQL identifier is quoted ("number"), the SQL column
names are, in effect, uppercase. (Column number is lowercase.)

In the first query the column names are written exactly the same as the field names
that are targeted, including with respect to letter case. Regardless of whether they are
quoted, they are interpreted case-sensitively for purposes of establishing the proper
path.

The second query has:

• Separate arguments of a JSON column-expression and a SQL/JSON row path-
expression

• Explicit column data types of VARCHAR2(4000)
• Explicit PATH clauses with SQL/JSON column path expressions, to target the

object fields that are projected

SELECT jt.*
  FROM j_purchaseorder po,
       json_table(po.po_document
         COLUMNS (Requestor,
                  NESTED ShippingInstructions.Phone[*]
                    COLUMNS (type, "number"))) AS "JT";

SELECT jt.*
  FROM j_purchaseorder po,
       json_table(po.po_document, '$'
         COLUMNS (Requestor VARCHAR2(4000) PATH '$.Requestor',

Chapter 20
Using JSON_TABLE with JSON Arrays

20-12



                  NESTED
                    PATH '$.ShippingInstructions.Phone[*]'
                    COLUMNS (type     VARCHAR2(4000) PATH '$.type',
                             "number" VARCHAR2(4000) PATH '$.number'))
       ) AS "JT";

Related Topics

• Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you project to
columns using SQL/JSON function json_table. To further improve query performance
you can create a materialized view and place the JSON data in memory.

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various SQL
data types. You use it to map parts of a JSON document into the rows and columns of a
new, virtual table, which you can also think of as an inline view.

20.5 Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you project to
columns using SQL/JSON function json_table. To further improve query performance you
can create a materialized view and place the JSON data in memory.

Example 20-10 defines a view over JSON data. It uses a NESTED path clause to project the
elements of array LineItems.

Example 20-11 defines a materialized view that has the same data and structure as 
Example 20-10.

In general, you cannot update a view directly (whether materialized or not). But if a
materialized view is created using keywords REFRESH and ON STATEMENT, as in 
Example 20-11, then the view is updated automatically whenever you update the base table.

You can use json_table to project any fields as view columns, and the view creation
(materialized or not) can involve joining any tables and any number of invocations of
json_table.

The only differences between Example 20-10 and Example 20-11 are these:

• The use of keyword MATERIALIZED.

• The use of BUILD IMMEDIATE.

• The use of REFRESH FAST ON STATEMENT WITH PRIMARY KEY.

The use of REFRESH FAST means that the materialized view will be refreshed incrementally.
For this to occur, you must use either WITH PRIMARY KEY or WITH ROWID (if there is no primary
key). Oracle recommends that you specify a primary key for a table that has a JSON column
and that you use WITH PRIMARY KEY when creating a materialized view based on it.

You could use ON COMMIT in place of ON STATEMENT for the view creation. The former
synchronizes the view with the base table only when your table-updating transaction is
committed. Until then the table changes are not reflected in the view. If you use ON STATEMENT
then the view is immediately synchronized after each DML statement. This also means that a
view created using ON STATEMENT reflects any rollbacks that you might perform. (A
subsequent COMMIT statement ends the transaction, preventing a rollback.)

Chapter 20
Creating a View Over JSON Data Using JSON_TABLE

20-13



See Also:

Refreshing Materialized Views in Oracle Database Data Warehousing Guide

Example 20-10    Creating a View Over JSON Data

CREATE VIEW j_purchaseorder_detail_view
  AS SELECT jt.*
       FROM j_purchaseorder po,
            json_table(po.po_document, '$'
              COLUMNS (
                po_number        NUMBER(10)         PATH '$.PONumber',
                reference        VARCHAR2(30 CHAR)  PATH '$.Reference',
                requestor        VARCHAR2(128 CHAR) PATH '$.Requestor',
                userid           VARCHAR2(10 CHAR)  PATH '$.User',
                costcenter       VARCHAR2(16)       PATH '$.CostCenter',
                ship_to_name     VARCHAR2(20 CHAR)
                                 PATH '$.ShippingInstructions.name',
                ship_to_street   VARCHAR2(32 CHAR)
                                 PATH '$.ShippingInstructions.Address.street',
                ship_to_city     VARCHAR2(32 CHAR)
                                 PATH '$.ShippingInstructions.Address.city',
                ship_to_county   VARCHAR2(32 CHAR)
                                 PATH '$.ShippingInstructions.Address.county',
                ship_to_postcode VARCHAR2(10 CHAR)
                                 PATH '$.ShippingInstructions.Address.postcode',
                ship_to_state    VARCHAR2(2 CHAR)
                                 PATH '$.ShippingInstructions.Address.state',
                ship_to_zip      VARCHAR2(8 CHAR)
                                 PATH '$.ShippingInstructions.Address.zipCode',
                ship_to_country  VARCHAR2(32 CHAR)
                                 PATH '$.ShippingInstructions.Address.country',
                ship_to_phone    VARCHAR2(24 CHAR)
                                 PATH '$.ShippingInstructions.Phone[0].number',
                NESTED PATH '$.LineItems[*]'
                  COLUMNS (
                    itemno      NUMBER(38)         PATH '$.ItemNumber', 
                    description VARCHAR2(256 CHAR) PATH '$.Part.Description', 
                    upc_code    NUMBER             PATH '$.Part.UPCCode', 
                    quantity    NUMBER(12,4)       PATH '$.Quantity', 
                    unitprice   NUMBER(14,2)       PATH '$.Part.UnitPrice'))) jt;

Example 20-11    Creating a Materialized View Over JSON Data

CREATE MATERIALIZED VIEW j_purchaseorder_materialized_view
  BUILD IMMEDIATE
  REFRESH FAST ON STATEMENT WITH PRIMARY KEY
  AS SELECT jt.*
       FROM j_purchaseorder po,
            json_table(po.po_document, '$'
              COLUMNS (
                po_number        NUMBER(10)         PATH '$.PONumber',

Chapter 20
Creating a View Over JSON Data Using JSON_TABLE

20-14



                reference        VARCHAR2(30 CHAR)  PATH '$.Reference',
                requestor        VARCHAR2(128 CHAR) PATH '$.Requestor',
                userid           VARCHAR2(10 CHAR)  PATH '$.User',
                costcenter       VARCHAR2(16)       PATH '$.CostCenter',
                ship_to_name     VARCHAR2(20 CHAR)
                                 PATH '$.ShippingInstructions.name',
                ship_to_street   VARCHAR2(32 CHAR)
                                 PATH '$.ShippingInstructions.Address.street',
                ship_to_city     VARCHAR2(32 CHAR)
                                 PATH '$.ShippingInstructions.Address.city',
                ship_to_county   VARCHAR2(32 CHAR)
                                 PATH '$.ShippingInstructions.Address.county',
                ship_to_postcode VARCHAR2(10 CHAR)
                                 PATH '$.ShippingInstructions.Address.postcode',
                ship_to_state    VARCHAR2(2 CHAR)
                                 PATH '$.ShippingInstructions.Address.state',
                ship_to_zip      VARCHAR2(8 CHAR)
                                 PATH '$.ShippingInstructions.Address.zipCode',
                ship_to_country  VARCHAR2(32 CHAR)
                                 PATH '$.ShippingInstructions.Address.country',
                ship_to_phone    VARCHAR2(24 CHAR)
                                 PATH '$.ShippingInstructions.Phone[0].number',
                NESTED PATH '$.LineItems[*]'
                  COLUMNS (
                    itemno      NUMBER(38)         PATH '$.ItemNumber', 
                    description VARCHAR2(256 CHAR) PATH '$.Part.Description', 
                    upc_code    NUMBER             PATH '$.Part.UPCCode', 
                    quantity    NUMBER(12,4)       PATH '$.Quantity', 
                    unitprice   NUMBER(14,2)       PATH '$.Part.UnitPrice'))) jt;

Related Topics

• Using JSON_TABLE with JSON Arrays
A JSON value can be an array or can include one or more arrays, nested to any number
of levels inside other JSON arrays or objects. You can use a json_table NESTED path
clause to project specific elements of an array.

Related Topics

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples are
provided of creating GeoJSON data, indexing it, and querying it.

• JSON Query Rewrite To Use a Materialized View Over JSON_TABLE
You can enhance the performance of queries that access particular JSON fields by
creating, and indexing, a materialized view over such data that's defined using SQL/
JSON function json_table.

Chapter 20
Creating a View Over JSON Data Using JSON_TABLE

20-15



21
Full-Text Search Queries

You can use Oracle SQL condition json_textcontains in a CASE expression or the WHERE
clause of a SELECT statement to perform a full-text search of JSON data. You can use
PL/SQL procedure CTX_QUERY.result_set to perform facet search over JSON data.

• Oracle SQL Condition JSON_TEXTCONTAINS
You can use Oracle SQL condition json_textcontains in a CASE expression or the WHERE
clause of a SELECT statement to perform a full-text search of JSON data.

• JSON Facet Search with PL/SQL Procedure CTX_QUERY.RESULT_SET
If you have created a JSON search index then you can also use PL/SQL procedure
CTX_QUERY.result_set to perform facet search over JSON data. This search is optimized
to produce various kinds of search hits all at once, rather than, for example, using
multiple separate queries with SQL function contains.

21.1 Oracle SQL Condition JSON_TEXTCONTAINS
You can use Oracle SQL condition json_textcontains in a CASE expression or the WHERE
clause of a SELECT statement to perform a full-text search of JSON data.

Oracle Text technology underlies condition json_textcontains. This condition acts like SQL
function contains when the latter uses parameter INPATH. The syntax of the search-pattern
argument of json_textcontains is the same as that of SQL function contains. This means,
for instance, that you can query for text that is near some other text, or query use fuzzy
pattern-matching. If the search-pattern argument contains a character or a word that is
reserved with respect to Oracle Text search then you must escape that character or word.

To be able to use condition json_textcontains you must first do one of the following;
otherwise, an error is raised when you use json_textcontains. (You cannot do both — an
error is raised if you try.)

• Create a JSON search index for the JSON column.

• Store the column of JSON data to be queried in the In-Memory Column Store (IM column
store), specifying keyword TEXT. The column must of data type JSON; otherwise an error is
raised. (JSON type is available only if database initialization parameter compatible is at
least 20.)

Note:

Oracle SQL function json_textcontains provides powerful full-text search of JSON
data. If you need only simple string pattern-matching then you can instead use a
path-expression filter condition with any of these pattern-matching comparisons:
has substring, starts with, like, like_regex, or eq_regex.

21-1



Example 21-1 shows a full-text query that finds purchase-order documents that
contain the keyword Magic in any of the line-item part descriptions.

See Also:

• Oracle Database SQL Language Reference for information about Oracle
SQL condition json_textcontains.

• Oracle Text CONTAINS Query Operators in Oracle Text Reference for
complete information about Oracle Text contains operator.

• Special Characters in Oracle Text Application Developer's Guide for
information about configuring a JSON search index to index documents
with special characters.

• Special Characters in Oracle Text Queries in Oracle Text Reference for
information about the use of special characters in SQL function contains
search patterns (and hence in json_textcontains search patterns).

• Reserved Words and Characters in Oracle Text Reference for
information about the words and characters that are reserved with
respect to Oracle Text search, and Escape Characters in Oracle Text
Reference for information about how to escape them.

Example 21-1    Full-Text Query of JSON Data with JSON_TEXTCONTAINS

SELECT po_document FROM j_purchaseorder
  WHERE json_textcontains(po_document,
                          '$.LineItems.Part.Description',
                          'Magic');

Related Topics

• Overview of In-Memory JSON Data
You can populate JSON data into the In-Memory Column Store (IM column store),
to improve the performance of ad hoc and full-text queries.

• Populating JSON Data Into the In-Memory Column Store
Use ALTER TABLE … INMEMORY to populate a column of JSON data, or a table with
such a column, into the In-Memory Column Store (IM column store), to improve
the performance of JSON queries.

• JSON Search Index for Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both
(1) ad hoc structural queries, that is, queries that you might not anticipate or use
regularly, and (2) full-text search. It is an Oracle Text index that is designed
specifically for use with JSON data.

21.2 JSON Facet Search with PL/SQL Procedure
CTX_QUERY.RESULT_SET

If you have created a JSON search index then you can also use PL/SQL procedure
CTX_QUERY.result_set to perform facet search over JSON data. This search is

Chapter 21
JSON Facet Search with PL/SQL Procedure CTX_QUERY.RESULT_SET

21-2



optimized to produce various kinds of search hits all at once, rather than, for example, using
multiple separate queries with SQL function contains.

To search using procedure CTX_QUERY.result_set you pass it a result set descriptor
(RSD), which specifies (as a JSON object with predefined operator fields $query, $search,
and $facet) the JSON values you want to find from your indexed JSON data, and how you
want them grouped or aggregated. The values you can retrieve and act on are either JSON
scalars or JSON arrays of scalars.

(Operator-field $query is also used in SODA query-by-example (QBE) queries. You can use
operator $contains in the value of field $query for full-text matching similar to that provided
by Oracle SQL condition json_textcontains.)

The RSD fields serve as an ordered template, specifying what to include in the output result
set. (In addition to the found JSON data, a result set typically includes a list of search-hit
rowids and some counts.)

A $facet field value is a JSON array of facet objects, each of which defines JSON data
located at a particular path and perhaps satisfying some conditions, and perhaps an
aggregation operation to apply to that data.

You can aggregate facet data using operators $count, $min, $max, $avg, and $sum. For
example, $sum returns the sum of the targeted data values. You can apply an aggregation
operator to all scalar values targeted by a path, or you can apply it separately to buckets of
such values, defined by different ranges of values.

Finally, you can obtain the counts of occurrences of distinct values at a given path, using
operator $uniqueCount.

For example, consider this $facet value:

[{"$uniqueCount" : "zebra.name"},
 {"$sum"         : {"path"  : "zebra.price",                   
                    "bucket : [{"$lt"  : 3000},
                               {"$gte" : 3000}]},
 {"$avg"         : "zebra.rating"}]

When query results are returned, the value of field $facet in the output is an array of three
objects, with these fields:

• zebra.name — The number of occurrences of each zebra name.

• zebra.price — The sum of zebra prices, in two buckets: prices less than 3000 and
prices at least 3000.

• zebra.rating — The average of all zebra ratings. (Zebras with no rating are ignored.)

[{"zebra.name"   : [{"value":"Zigs",
                     "$uniqueCount:2},                  
                    {"value":"Zigzag",
                     "$uniqueCount:1},             
                    {"value":"Storm",
                     "$uniqueCount:1}]},
 {"zebra.price"  : [{"value":1000,
                     "$uniqueCount:2},                  
                    {"value":3000,

Chapter 21
JSON Facet Search with PL/SQL Procedure CTX_QUERY.RESULT_SET

21-3



                     "$uniqueCount:2},                  
                    {"value":2000,
                     "$uniqueCount:1}]},
 {"zebra.rating" : {"$avg":4.66666666666666666667}}]

Related Topics

• JSON Search Index for Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both
(1) ad hoc structural queries, that is, queries that you might not anticipate or use
regularly, and (2) full-text search. It is an Oracle Text index that is designed
specifically for use with JSON data.

See Also:

RESULT_SET in Oracle Text Reference

Chapter 21
JSON Facet Search with PL/SQL Procedure CTX_QUERY.RESULT_SET

21-4



22
JSON Data Guide

A JSON data guide lets you discover information about the structure and content of JSON
documents stored in Oracle Database.

Some ways that you can use this information include:

• Generating a JSON Schema document that describes the set of JSON documents.

• Creating views that you can use to perform SQL operations on the data in the
documents.

• Automatically adding or updating virtual columns that correspond to added or changed
fields in the documents.

• Overview of JSON Data Guide
A data guide is a summary of the structural and type information contained in a set of
JSON documents. It records metadata about the fields used in those documents.

• Persistent Data-Guide Information: Part of a JSON Search Index
JSON data-guide information can be saved persistently as part of the JSON search index
infrastructure, and this information is updated automatically as new JSON content is
added. This is the case by default, when you create a JSON search index: data-guide
information is part of the index infrastructure.

• Data-Guide Formats and Ways of Creating a Data Guide
There are two formats for a data guide: flat and hierarchical. Both are made available to
SQL and PL/SQL as CLOB data. You can construct a data guide from the data-guide
information stored in a JSON search index or by scanning JSON documents.

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

• Data-Dictionary Views For Persistent Data-Guide Information
You can query static data-dictionary views to see which tables have JSON columns with
data guide-enabled JSON search indexes and to extract JSON object field information
that is recorded in dataguide-enabled JSON search indexes.

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as non-JSON columns in a database view or
as non-JSON virtual columns added to the same table that contains the JSON column.
You can specify a preferred name for such a column.

• Creating a View Over JSON Data Based on Data-Guide Information
Based on data-guide information, you can create a database view whose columns project
particular scalar fields from a set of JSON documents. You can choose the fields to
project by editing a hierarchical data guide or by specifying a SQL/JSON path expression
and possibly a minimum frequency of field occurrence.

• Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information
Based on data-guide information for a JSON column, you can project scalar fields from
that JSON data as virtual columns in the same table. The scalar fields projected are
those that are not under an array.

22-1



• Change Triggers For Data Guide-Enabled Search Index
When JSON data changes, some information in a data guide-enabled JSON
search index is automatically updated. You can specify a procedure whose
invocation is triggered whenever this happens. You can define your own PL/SQL
procedure for this, or you can use the predefined change-trigger procedure
add_vc.

• Multiple Data Guides Per Document Set
A data guide reflects the shape of a given set of JSON documents. If a JSON
column contains different types of documents, with different structure or type
information, you can create and use different data guides for the different kinds of
documents.

• Querying a Data Guide
A data guide is information about a set of JSON documents. You can query it from
a flat data guide that you obtain using either Oracle SQL function json_dataguide
or PL/SQL function DBMS_JSON.get_index_dataguide. In the latter case, a data
guide-enabled JSON search index must be defined on the JSON data.

• A Flat Data Guide For Purchase-Order Documents
The fields of a sample flat data guide are described. It corresponds to a set of
purchase-order documents.

• A Hierarchical Data Guide For Purchase-Order Documents
The fields of a sample hierarchical data guide are described. It corresponds to a
set of purchase-order documents.

See Also:

JSON Schema

22.1 Overview of JSON Data Guide
A data guide is a summary of the structural and type information contained in a set of
JSON documents. It records metadata about the fields used in those documents.

For example, for the JSON object presented in Example 1-1, a data guide specifies
that the document has, among other things, an object ShippingInstructions with
fields name, Address, and Phone, of types string, object, and array, respectively. The
structure of object Address is recorded similarly, as are the types of the elements in
array Phone.

JSON data-guide information can be saved persistently as part of the JSON search
index infrastructure, and this information is updated automatically as new JSON
content is added. This is the case by default, when you create a JSON search index:
data-guide information is part of the index infrastructure.

You can use a data guide:

• As a basis for developing applications that involve data mining, business
intelligence, or other analysis of JSON documents.

• As a basis for providing user assistance about requested JSON information,
including search.

Chapter 22
Overview of JSON Data Guide

22-2

https://json-schema.org/


• To check or manipulate new JSON documents before adding them to a document set (for
example: validate, type-check, or exclude certain fields).

For such purposes you can:

• Query a data guide directly for information about the document set, such as field lengths
or which fields occur with at least a certain frequency.

• Create views, or add virtual columns, that project particular JSON fields of interest, based
on their significance according to a data guide.

Note:

• The advantages of virtual columns over a view are that you can build an index
on a virtual column and you can obtain statistics on it for the optimizer.

• Virtual columns, like columns in general, are subject to the 1000-column limit for
a given table.

The following data-guide capabilities apply:

Note:

• Path length: 4000 bytes. A path longer than 4000 bytes is ignored by a data
guide.

• Number of children under a parent node: 5000. A node that has more than
5000 children is ignored by a data guide.

• Field value length: 32767 bytes. If a JSON field has a value longer than 32767
bytes then the data guide reports the length as 32767.

• Data-guide behavior is undefined for data that contains zero-length (empty)
object field name ("").

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

• JSON Search Index for Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both (1) ad
hoc structural queries, that is, queries that you might not anticipate or use regularly, and
(2) full-text search. It is an Oracle Text index that is designed specifically for use with
JSON data.

• Querying a Data Guide
A data guide is information about a set of JSON documents. You can query it from a flat
data guide that you obtain using either Oracle SQL function json_dataguide or PL/SQL
function DBMS_JSON.get_index_dataguide. In the latter case, a data guide-enabled JSON
search index must be defined on the JSON data.

Chapter 22
Overview of JSON Data Guide

22-3



• Creating a View Over JSON Data Based on a Hierarchical Data Guide
You can use a hierarchical data guide to create a database view whose columns
project specified JSON fields from your documents. The fields projected are those
in the data guide. You can edit the data guide to include only the fields that you
want to project.

• Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide
Information
Based on data-guide information for a JSON column, you can project scalar fields
from that JSON data as virtual columns in the same table. The scalar fields
projected are those that are not under an array.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.get_index_dataguide

• Oracle Database SQL Language Reference for information about SQL
function json_dataguide

22.2 Persistent Data-Guide Information: Part of a JSON
Search Index

JSON data-guide information can be saved persistently as part of the JSON search
index infrastructure, and this information is updated automatically as new JSON
content is added. This is the case by default, when you create a JSON search index:
data-guide information is part of the index infrastructure.

You can use CREATE SEARCH INDEX with keywords FOR JSON to create a search index,
a data guide, or both at the same time. The default behavior is to create both.

To create persistent data-guide information as part of a JSON search index without
enabling support for search in the index, you specify SEARCH_ON NONE in the
PARAMETERS clause for CREATE SEARCH INDEX, but you leave the value for DATAGUIDE as
ON (the default value). Example 22-1 illustrates this.

You can use ALTER INDEX ... REBUILD to enable or disable data-guide support for an
existing JSON search index. Example 22-2 illustrates this — it disables the data-guide
support that is added by default in Example 28-23.

Note:

To create a data guide-enabled JSON search index, or to data guide-enable
an existing JSON search index, you need database privilege CTXAPP and
Oracle Database Release 12c (12.2.0.1) or later.

Chapter 22
Persistent Data-Guide Information: Part of a JSON Search Index

22-4



Note:

A data guide-enabled JSON search index can be built only on a column that is
known to contain JSON data, which means that it is either of JSON data type or it
has an is json check constraint. In the latter case, for the data-guide information in
the index to be updated, the check constraint must be enabled.

If the check constraint becomes disabled for some reason then you must rebuild the
data-guide information in the index and re-enable the check constraint, to resume
automatic data-guide support updating, as follows:

ALTER INDEX index_name REBUILD ('dataguide off');
ALTER INDEX index_name REBUILD ('dataguide on');
ALTER TABLE table_name ENABLE CONSTRAINT 
is_json_check_constraint_name;

In particular, using SQL*Loader (sqlldr) disables is json check constraints.

Because persistent data-guide information is part of the search index infrastructure, it is
always live: its content is automatically updated whenever the index is synchronized.
Changes in the indexed data are reflected in the search index, including in its data-guide
information, only after the index is synchronized.

In addition, update of data-guide information in a search index is always additive: none of it is
ever deleted. This is another reason that the index often does not accurately reflect the data
in its document set: deletions within the documents it applies to are not reflected in its data-
guide information. If you need to ensure that such information accurately reflects the current
data then you must drop the JSON search index and create it anew.

The persistent data-guide information in a search index can also include statistics, such as
how frequently each JSON field is used in the document set. Statistics are present only if you
explicitly gather them on the document set (gather them on the JSON search index, for
example). They are not updated automatically — gather statistics anew if you want to be sure
they are up to date. Example 22-3 gathers statistics on the JSON data indexed by JSON
search index po_search_idx, which is created in Example 28-23.

Note:

When a local data guide-enabled JSON search index is created in a sharding
environment, each individual shard contains the data-guide information for the
JSON documents stored in that shard. For this reason, if you invoke data guide-
related operations on the shard catalog database then they will have no effect.

Considerations for a Data Guide-Enabled Search Index on a Partitioned Table

The data-guide information in a data guide-enabled JSON search index that is local to a
partitioned table is not partitioned. It is shared among all partitions.

Because the data-guide information in the index is only additive, dropping, merging, splitting,
or truncating partitions has no impact on the index.

Chapter 22
Persistent Data-Guide Information: Part of a JSON Search Index

22-5



Exchanging a partitioned table with a table that is not partitioned updates the data-
guide information in an index on the partitioned table, but any data guide-enabled
index on the non-partitioned table must be rebuilt.

Avoid Persistent Data-Guide Information If Serializing Hash-Table Data

If you serialize Java hash tables or associative arrays (such as are found in
JavaScript) as JSON objects, then avoid the use of persistent data-guide information.

The default hash-table serialization provided by popular libraries such as GSON and
Jackson produces textual JSON documents with object field names that are taken
from the hash-table key entries and with field values taken from the corresponding
Java hash-table values. Serializing a single Java hash-table entry produces a new
(unique) JSON field and value.

Persisted data-guide information reflects the shape of your data, and it is updated
automatically as new JSON documents are inserted. Each hash-table key–value pair
results in a separate entry in the JSON search index. Such serialization can thus
greatly increase the size of the information maintained in the index. In addition to the
large size, the many index updates affect performance negatively, making DML slow.

If you serialize a hash table or an associative array instead as a JSON array of
objects, each of which includes a field derived from a hash-table key entry, then there
are no such problems.

The default serialization of a hash table or associative array as a JSON object is
indistinguishable from an object that has field names assigned by a developer. A
JSON data guide cannot tell which (metadata-like) field names have been assigned by
a developer and which (data-like) names might have been derived from a hash table
or associative array. It treats all field names as essentially metadata, as if specified by
a developer.

For example:

• If you construct an application object using a hash table that has animalName as
the hash key and sets of animal properties as values then the resulting default
serialization is a single JSON object that has a separate field ("cat", "mouse",...)
for each hash-table entry, with the field value being an object with the
corresponding animal properties. This can be problematic in terms of data-guide
size and performance because of the typically large number of fields ("cat",
"mouse",...) derived from the hash key.

• If you instead construct an application array of animal structures, each of which
has a field animalName (with value "cat" or "mouse"...) then the resulting
serialization is a JSON array of objects, each of which has the same field,
animalName. The corresponding data guide has no size or performance problem.

Example 22-1    Enabling Persistent Support for a JSON Data Guide But Not For
Search

CREATE SEARCH INDEX po_dg_only_idx
  ON j_purchaseorder (po_document) FOR JSON
    PARAMETERS ('SEARCH_ON NONE');

Chapter 22
Persistent Data-Guide Information: Part of a JSON Search Index

22-6



Example 22-2    Disabling JSON Data-Guide Support For an Existing JSON Search
Index

ALTER INDEX po_search_idx REBUILD PARAMETERS ('DATAGUIDE OFF');

Example 22-3    Gathering Statistics on JSON Data Using a JSON Search Index

EXEC DBMS_STATS.gather_index_stats(docuser, po_search_idx, NULL, 100);

Related Topics

• JSON Search Index for Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both (1) ad
hoc structural queries, that is, queries that you might not anticipate or use regularly, and
(2) full-text search. It is an Oracle Text index that is designed specifically for use with
JSON data.

See Also:

• Oracle Text Reference for information about the PARAMETERS clause for CREATE
SEARCH INDEX

• Oracle Text Reference for information about the PARAMETERS clause for ALTER
INDEX ... REBUILD

• Faster XML / Jackson for information about the Jackson JSON processor

• google / gson for information about the GSON Java library

22.3 Data-Guide Formats and Ways of Creating a Data Guide
There are two formats for a data guide: flat and hierarchical. Both are made available to SQL
and PL/SQL as CLOB data. You can construct a data guide from the data-guide information
stored in a JSON search index or by scanning JSON documents.

• You can use a flat data guide to query data-guide information such as field frequencies
and types.

A flat data guide is represented in JSON as an array of objects, each of which represents
the JSON data of a specific path in the document set. A Flat Data Guide For Purchase-
Order Documents describes a flat data guide for the purchase-order data of Example 1-1.

• You can use a hierarchical data guide to create a view, or to add virtual columns, using
particular fields that you choose on the basis of data-guide information.

A hierarchical data guide is represented in JSON as an object with nested JSON data, in
the same format as that defined by JSON Schema. A Hierarchical Data Guide For
Purchase-Order Documents describes a hierarchical data guide for the purchase-order
data of Example 1-1.

You use PL/SQL function DBMS_JSON.get_index_dataguide to obtain a data guide from the
data-guide information stored in a JSON search index.

Chapter 22
Data-Guide Formats and Ways of Creating a Data Guide

22-7

https://json-schema.org/


You can also use SQL aggregate function json_dataguide to scan your document set
and construct a data guide for it, whether or not it has a data guide-enabled search
index. The data guide accurately reflects the document set at the moment of function
invocation.

A data guide can include statistical fields, such as how frequently each JSON field is
used in the document set.

• If you use SQL function json_dataguide then statistical fields are present only if
specify DBMS_JSON.gather_stats in the third argument. They are computed
dynamically (up-to-date) at the time of the function call.

• If you use PL/SQL function DBMS_JSON.get_index_dataguide then statistical fields
are present only if you have gathered them on the JSON search index. They are
not updated automatically — gather them anew if you want to be sure they are up
to date.

Table 22-1    SQL and PL/SQL Functions to Obtain a Data Guide

Uses Data
Guide-
Enabled
Search
Index?

Flat Data Guide Hierarchical Data Guide

Yes PL/SQL function
get_index_dataguide with format
DBMS_JSON.FORMAT_FLAT

PL/SQL function
get_index_dataguide with format
DBMS_JSON.FORMAT_HIERARCHICAL

No SQL function json_dataguide, with
no format argument or with
DBMS_JSON.FORMAT_FLAT as the
format argument

SQL function json_dataguide, with
DBMS_JSON.FORMAT_HIERARCHICAL as
the format argument

Advantages of obtaining a data guide based on a data guide-enabled JSON search
index include:

• Additive updates to the document set are automatically reflected in the persisted
data-guide information whenever the index is synced.

• Because this data-guide information is persisted, obtaining a data guide based on
it (using PL/SQL function get_index_dataguide) is typically faster than obtaining a
data guide by analyzing the document set (using SQL function json_dataguide).

Advantages of obtaining a data guide without using a data guide-enabled JSON
search index include assurance that the data guide is accurate and the lack of index
maintenance overhead. In addition, a data guide that is not derived from an index is
appropriate in some particular use cases:

• The JSON data is in an external table. You cannot create an index on it.

• The JSON column could be indexed, but the index would not be very useful. This
can be the case, for example, if the column contains different kinds of documents.
In this case, it can sometimes be helpful to add a column to the table that identifies
the kind of document stored in the JSON column. You can then use the data guide
with SQL aggregate functions and GROUP BY. See Multiple Data Guides Per
Document Set.

Chapter 22
Data-Guide Formats and Ways of Creating a Data Guide

22-8



Related Topics

• A Flat Data Guide For Purchase-Order Documents
The fields of a sample flat data guide are described. It corresponds to a set of purchase-
order documents.

• A Hierarchical Data Guide For Purchase-Order Documents
The fields of a sample hierarchical data guide are described. It corresponds to a set of
purchase-order documents.

• Persistent Data-Guide Information: Part of a JSON Search Index
JSON data-guide information can be saved persistently as part of the JSON search index
infrastructure, and this information is updated automatically as new JSON content is
added. This is the case by default, when you create a JSON search index: data-guide
information is part of the index infrastructure.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.get_index_dataguide

• Oracle Database SQL Language Reference for information about SQL function
json_dataguide

• Oracle Database SQL Language Reference for information about PL/SQL
constants DBMS_JSON.FORMAT_FLAT and DBMS_JSON.FORMAT_HIERARCHICAL

22.4 JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema fields
(keywords) and Oracle-specific fields.

A given occurrence of a field in a data guide corresponds to a field that is present in one or
more JSON documents of the document set.

JSON Schema Fields (Keywords)

A JSON Schema is a JSON document that contains a JSON object, which can itself contain
child objects (subschemas). Fields that are defined by JSON Schema are called JSON
Schema keywords. Table 22-2 describes the keywords that can be used in an Oracle JSON
data guide. Keywords properties, items, and oneOf are used only in a hierarchical JSON
data guide (which is a JSON schema). Keyword type is used in both flat and hierarchical
data guides.

Table 22-2    JSON Schema Fields (Keywords)

Field (Keyword) Value Description

properties An object whose members represent the properties of a JSON object used in
JSON data that is represented by the hierarchical data guide (JSON schema).

items An object whose members represent the elements (items) of an array used in
JSON data represented by the hierarchical data guide (JSON schema).

Chapter 22
JSON Data-Guide Fields

22-9

https://json-schema.org/


Table 22-2    (Cont.) JSON Schema Fields (Keywords)

Field (Keyword) Value Description

oneOf An array, each of whose items represents one or more occurrences of a JSON
field in the JSON data represented by the hierarchical data guide (JSON
schema).

type A string naming the type of some JSON data represented by the (flat or
hierarchical) data guide.

The possible values are: "number", "string", "boolean", "null",
"object", "array", "GeoJSON", and, for JSON type data, "double",
"float", "binary", "date", "timestamp", "yearmonthInterval", and
"daysecondInterval".

Oracle-Specific JSON Data-Guide Fields

In addition to JSON Schema keywords, a JSON data guide can contain Oracle data
guide-specific fields. The field names all have the prefix o:. They are described in 
Table 22-3.

Table 22-3    Oracle-Specific Data-Guide Fields

Field Value Description

o:path Path through the JSON documents to the JSON field. Used
only in a flat data guide. The value is a simple SQL/JSON
path expression (no filter expression), possibly with
relaxation (implicit array wrapping and unwrapping), and
possibly with a wildcard array step. It has no array steps with
array indexes or range specifications, and it has no function
step. See SQL/JSON Path Expression Syntax.

o:length Maximum length of the JSON field value, in bytes. The value
is always a power of two. For example, if the maximum
length of all actual field values is 5 then the value of
o:length is 8, the smallest power of two greater than or
equal to 5.

o:preferred_column_name An identifier, case-sensitive and unique to a given data
guide, that you prefer as the name to use for a view column
or a virtual column that is created using the data guide.

This field is absent if the data guide was obtained using
SQL function json_dataguide with format parameter
DBMS_JSON.FORMAT_FLAT or without any format parameter
(DBMS_JSON.FORMAT_FLAT is the default).

Chapter 22
JSON Data-Guide Fields

22-10



Table 22-3    (Cont.) Oracle-Specific Data-Guide Fields

Field Value Description

o:frequency Percentage of JSON documents that contain the given field.
Duplicate occurrences of a field under the same array are
ignored. (Available only if statistics were gathered on the
document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide, unless the third parameter
specified DBMS_JSON.gather_stats.

If the data guide was created using PL/SQL function
get_index_dataguide then all documents in the
document set are taken into account. Otherwise, only the
documents targeted by the json_dataguide query are
considered.

o:num_nulls Number of documents whose value for the targeted scalar
field is JSON null. (Available only if statistics were
gathered on the document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide, unless the third parameter
specified DBMS_JSON.gather_stats.

If the data guide was created using PL/SQL function
get_index_dataguide then all documents in the
document set are taken into account. Otherwise, only the
documents targeted by the json_dataguide query are
considered.

o:high_value Highest value for the targeted scalar field, among all
documents examined. (Available only if statistics were
gathered on the document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide, unless the third parameter
specified DBMS_JSON.gather_stats.

If the data guide was created using PL/SQL function
get_index_dataguide then all documents in the
document set are taken into account. Otherwise, only the
documents targeted by the json_dataguide query are
considered.

o:low_value Lowest value for the targeted scalar field, among all
documents examined. (Available only if statistics were
gathered on the document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide, unless the third parameter
specified DBMS_JSON.gather_stats.

If the data guide was created using PL/SQL function
get_index_dataguide then all documents in the
document set are taken into account. Otherwise, only the
documents targeted by the json_dataguide query are
considered.

Chapter 22
JSON Data-Guide Fields

22-11



Table 22-3    (Cont.) Oracle-Specific Data-Guide Fields

Field Value Description

o:last_analyzed Date and time when statistics were last gathered on the
document set. (Available only if statistics were gathered on
the document set.)

This field is absent if the data guide was obtained using
SQL function json_dataguide, unless the third parameter
specified DBMS_JSON.gather_stats.

If the data guide was created using PL/SQL function
get_index_dataguide then all documents in the
document set are taken into account. Otherwise, only the
documents targeted by the json_dataguide query are
considered.

o:sample_size Total number of JSON documents selected by a query that
uses SQL function json_dataguide with its the third
parameter specifying DBMS_JSON.gather_stats. You can
use a SAMPLE clause in the query to further control the
sample size.

This field is absent if the data guide was obtained in some
other way.

The data-guide information for documents that contain a JSON array with only scalar
elements records the path and type for both (1) the array and (2) all of the array
elements taken together. For the elements:

• The o:path value is the o:path value for the array, followed by an array with a
wildcard ([*]), which indicates all array elements.

• The type value is the type string, if the scalar types are not the same for all
elements in all documents. If all of the scalar elements the array have the same
type, across all documents, then that type is recorded.

For example, if, in all documents, all of the elements in the array value for object field
serial_numbers are JSON numbers, then type for the array elements is number.
Otherwise it is string.

When present, the default value of field o:preferred_column_name depends on
whether the data guide was obtained using SQL function json_dataguide (with format
DBMS_JSON.FORMAT_HIERARCHICAL) or using PL/SQL function
DBMS_JSON.get_index_dataguide:

• get_index_dataguide — Same as the corresponding JSON field name, prefixed
with the JSON column name followed by $, and with any non-ASCII characters
removed. If the resulting field name already exists in the same data guide then it is
suffixed with a new sequence number, to make it unique.

The JSON column-name part is uppercase unless that column was defined using
escaped lowercase letters (for example, 'PO_Column' instead of po_column).

For example, the default value for field User for data in JSON column po_document
is PO_DOCUMENT$User.

• json_dataguide (hierarchical format) — Same as the corresponding JSON field
name.

Chapter 22
JSON Data-Guide Fields

22-12



You can, however, control column naming when you create a view or a virtual column
based on the data guide, by specifying the following parameters to DBMS_JSON procedures
create_view, get_view_sql, and add_virtual_columns:

– colNamePrefix => prefix — Prefix the column names specified by
o:preferred_column_name with prefix.

– mixedCaseColumns=> FALSE — Make column names be case-insensitive. (They are
case-sensitive by default.)

– resolveNameConflicts=> TRUE — Resolve any name conflicts: if the resulting field
name already exists in the same data guide then it is suffixed with a new sequence
number, to make it unique (same behavior that get_index_dataguide provides).

You can use PL/SQL procedure DBMS_JSON.rename_column to set the value of
o:preferred_column_name for a given field and type. This procedure has no effect if data-
guide information is not persisted as part of a JSON search index.

Field o:preferred_column_name is used to name a new, virtual column in the table that
contains the JSON column, or it is used to name a column in a new view that also contains
the other columns of the table. In either case, a name specified by field
o:preferred_column_name must be unique with respect to the other column names of the
table. In addition, the name must be unique across all JSON fields of any type in the
document set. When you use DBMS_JSON.get_index_dataguide, the default name is
guaranteed to be unique in these ways.

If the name you specify with DBMS_JSON.rename_column causes a name conflict then the
specified name is ignored and a system-generated name is used instead.

Related Topics

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as non-JSON columns in a database view or
as non-JSON virtual columns added to the same table that contains the JSON column.
You can specify a preferred name for such a column.

• A Flat Data Guide For Purchase-Order Documents
The fields of a sample flat data guide are described. It corresponds to a set of purchase-
order documents.

• A Hierarchical Data Guide For Purchase-Order Documents
The fields of a sample hierarchical data guide are described. It corresponds to a set of
purchase-order documents.

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples are
provided of creating GeoJSON data, indexing it, and querying it.

Chapter 22
JSON Data-Guide Fields

22-13



See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.get_index_dataguide

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

• Oracle Database SQL Language Reference for information about SQL
function json_dataguide

• Oracle Spatial Developer's Guide for information about using GeoJSON
data with Oracle Spatial and Graph

• Oracle Spatial Developer's Guide for information about Oracle Spatial
and Graph and SDO_GEOMETRY object type

• GeoJSON.org for information about GeoJSON

• JSON Schema for information about JSON Schema

22.5 Data-Dictionary Views For Persistent Data-Guide
Information

You can query static data-dictionary views to see which tables have JSON columns
with data guide-enabled JSON search indexes and to extract JSON object field
information that is recorded in dataguide-enabled JSON search indexes.

Tables that do not have JSON columns with data guide-enabled indexes are not
present in the views.

You can use the following views to find columns that have data guide-enabled JSON
search indexes. The views have columns TABLE_NAME (the table name), COLUMN_NAME
(the JSON column name), and DATAGUIDE (a data guide).

• USER_JSON_DATAGUIDES — tables owned by the current user

• ALL_JSON_DATAGUIDES — tables accessible by the current user

• DBA_JSON_DATAGUIDES — all tables

If the JSON column has a data guide-enabled JSON search index then the value of
column DATAGUIDE is the data guide for the JSON column, in flat format as a CLOB
instance. If it does not have a data guide-enabled index then there is no row for that
column in the view.

You can use the following views to extract JSON field path and type information that is
recorded in dataguide-enabled JSON search indexes. The views have columns
TABLE_NAME, COLUMN_NAME, PATH, TYPE, and LENGTH. Columns PATH, TYPE, and LENGTH
correspond to the values of data-guide fields o:path, o:type, and o:length,
respectively.

• USER_JSON_DATAGUIDE_FIELDS — tables owned by the current user

• ALL_JSON_DATAGUIDE_FIELDS — tables accessible by the current user

• DBA_JSON_DATAGUIDE_FIELDS — all tables

Chapter 22
Data-Dictionary Views For Persistent Data-Guide Information

22-14

https://json-schema.org/


In the case of both types of view, a view whose name has the prefix ALL_ or DBA_ also has
column OWNER, whose value is the table owner.

See Also:

• Oracle Database Reference for information about ALL_JSON_DATAGUIDES and
the related data-dictionary views

• Oracle Database Reference for information about ALL_JSON_DATAGUIDE_FIELDS
and the related data-dictionary views

22.6 Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as non-JSON columns in a database view or as
non-JSON virtual columns added to the same table that contains the JSON column. You can
specify a preferred name for such a column.

The document fields are projected as columns when you use procedure
DBMS_JSON.create_view, DBMS_JSON.create_view_on_path, or
DBMS_JSON.add_virtual_columns.

A data guide obtained from your JSON document set is used to define this projection. The
name of each projected column is taken from data-guide field o:preferred_column_name for
the JSON data field to be projected.

If your JSON data has a data guide-enabled search index then you can use procedure
DBMS_JSON.rename_column to set the value of o:preferred_column_name for a given
document field and type. Example 22-4 illustrates this. It specifies preferred names for the
columns to be projected from various fields, as described in Table 22-4.

A hierarchical data guide is populated with field o:preferred_column_name. When you use
procedure DBMS_JSON.create_view or DBMS_JSON.add_virtual_columns, you can pass
parameters that further control the naming of projected columns:

• colNamePrefix => prefix — Prefix the names specified by o:preferred_column_name
with prefix.

• mixedCaseColumns => FALSE — Make column names be case-insensitive. (They are
case-sensitive by default.)

• resolveNameConflicts => TRUE — Resolve any name conflicts.

Table 22-4    Preferred Names for Some JSON Field Columns

Field JSON Type Preferred Column
Name

PONumber number PONumber
Phone (phone as string, not object – just the number) string Phone
type (phone type) string PhoneType
number (phone number) string PhoneNumber
ItemNumber (line-item number) number ItemNumber

Chapter 22
Specifying a Preferred Name for a Field Column

22-15



Table 22-4    (Cont.) Preferred Names for Some JSON Field Columns

Field JSON Type Preferred Column
Name

Description (part description) string PartDescription

See Also:

• JSON Data-Guide Fields for information about the default value of field
o:preferred_column_name and the possibility of name conflicts when
you use DBMS_JSON.rename_column

• Creating a Table With a JSON Column for information about the JSON
data referenced here

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.create_view

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.create_view_on_path

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

• Oracle Database PL/SQL Packages and Types Referencefor information
about DBMS_JSON.add_virtual_columns

Example 22-4    Specifying Preferred Column Names For Some JSON Fields

BEGIN
  DBMS_JSON.rename_column(
    'J_PURCHASEORDER', 'PO_DOCUMENT',
    '$.PONumber',
    DBMS_JSON.TYPE_NUMBER, 'PONumber');
  DBMS_JSON.rename_column(
    'J_PURCHASEORDER', 'PO_DOCUMENT',
    '$.ShippingInstructions.Phone',
    DBMS_JSON.TYPE_STRING, 'Phone');
  DBMS_JSON.rename_column(
    'J_PURCHASEORDER', 'PO_DOCUMENT',
    '$.ShippingInstructions.Phone.type',
    DBMS_JSON.TYPE_STRING, 'PhoneType');
  DBMS_JSON.rename_column(
    'J_PURCHASEORDER', 'PO_DOCUMENT',
    '$.ShippingInstructions.Phone.number',
    DBMS_JSON.TYPE_STRING, 'PhoneNumber');
  DBMS_JSON.rename_column(
    'J_PURCHASEORDER', 'PO_DOCUMENT',
    '$.LineItems.ItemNumber',
    DBMS_JSON.TYPE_NUMBER, 'ItemNumber');
  DBMS_JSON.rename_column(
    'J_PURCHASEORDER', 'PO_DOCUMENT',

Chapter 22
Specifying a Preferred Name for a Field Column

22-16



    '$.LineItems.Part.Description',
    DBMS_JSON.TYPE_STRING, 'PartDescription');
END;
/

22.7 Creating a View Over JSON Data Based on Data-Guide
Information

Based on data-guide information, you can create a database view whose columns project
particular scalar fields from a set of JSON documents. You can choose the fields to project by
editing a hierarchical data guide or by specifying a SQL/JSON path expression and possibly
a minimum frequency of field occurrence.

You can create multiple views based on the same JSON document set, projecting different
fields. See Multiple Data Guides Per Document Set.

You can create a view by projecting JSON fields using SQL/JSON function json_table —
see Creating a View Over JSON Data Using JSON_TABLE.

An alternative is to use PL/SQL procedure DBMS_JSON.create_view or
DBMS_JSON.create_view_on_path, to create a view by projecting fields that you choose
based on available data-guide information.

The data-guide information can come from either:

• A hierarchical data guide that includes the fields to project, and possibly a SQL/JSON
path expression.

• A data guide-enabled JSON search index, together with a SQL/JSON path expression,
and possibly a minimum field frequency.

In the former case, use procedure create_view. You can edit a (hierarchical) data guide to
specify fields that you want included. In this case you do not need a data guide-enabled
search index.

In the latter case, use procedure create_view_on_path. In this case you need a data guide-
enabled search index, but you do not need a data guide.

In either case, you can provide a SQL/JSON path expression, to specify a field to be
expanded for the view. This is required for procedure create_view_on_path. To specify a
path for procedure create_view, use optional parameter PATH. The path $ creates a view
starting from the JSON document root.

For procedure create_view_on_path, you can also provide a minimum frequency of
occurrence, using optional parameter FREQUENCY. The resulting view includes only JSON
fields along the path whose frequency is greater than the specified frequency.

When you specify a path, all descendant fields under it are expanded. A view column is
created for each scalar value in the resulting sub-tree. The fields in the document set that are
projected include both:

• All scalar fields present, at any level, in the data that is targeted by the path expression.

• All scalar fields, anywhere in the document, that are not under an array.

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-17



The path argument you provide must be a simple SQL/JSON path expression (no filter
expression), possibly with relaxation (implicit array wrapping and unwrapping), but with
no array steps and no function step. See SQL/JSON Path Expression Syntax.

Regardless of whether you use procedure create_view or create_view_on_path, in
addition to the JSON fields that are projected as columns, all non-JSON columns of
the table are also columns of the view.

The data guide that serves as the basis for a given view definition is static and does
not necessarily faithfully continue to reflect the current data in the document set. The
fields that are projected for the view are determined when the view is created.

In particular, if you use create_view_on_path (which requires a data guide-enabled
search index) then what counts are the fields specified by the given path expression
and that have at least the given frequency (default 0), based on the index data at the
time of the view creation.

There is also PL/SQL function DBMS_JSON.get_view_sql, which does not create a
view, but instead returns the SQL DDL code that would create a view. You can, for
example, edit that DDL to create different views. You can also optionally obtain only
the SQL SELECT statement that the view-creation DDL would use. In this case, if more
than 1000 columns would be needed for the view (which is not allowed) then the
SELECT statement would involve joins of multiple json_table expressions.

• Creating a View Over JSON Data Based on a Hierarchical Data Guide
You can use a hierarchical data guide to create a database view whose columns
project specified JSON fields from your documents. The fields projected are those
in the data guide. You can edit the data guide to include only the fields that you
want to project.

• Creating a View Over JSON Data Based on a Path Expression
You can use the information in a data guide-enabled JSON search index to create
a database view whose columns project JSON fields from your documents. The
fields projected are the scalar fields not under an array plus the scalar fields in the
data targeted by a specified SQL/JSON path expression.

Related Topics

• Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you
project to columns using SQL/JSON function json_table. To further improve
query performance you can create a materialized view and place the JSON data in
memory.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about procedure DBMS_JSON.create_view

• Oracle Database PL/SQL Packages and Types Reference for
information about procedure DBMS_JSON.create_view_on_path

• Oracle Database PL/SQL Packages and Types Reference for
information about procedure DBMS_JSON.get_view_sql

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-18



22.7.1 Creating a View Over JSON Data Based on a Hierarchical Data
Guide

You can use a hierarchical data guide to create a database view whose columns project
specified JSON fields from your documents. The fields projected are those in the data guide.
You can edit the data guide to include only the fields that you want to project.

You can obtain a hierarchical data guide using SQL function json_dataguide with argument
DBMS_JSON.FORMAT_HIERARCHICAL.

You can edit the data guide obtained to include only specific fields, change the length of given
types, or rename fields. The resulting data guide specifies which fields of the JSON data to
project as columns of the view.

You use PL/SQL procedure DBMS_JSON.create_view to create the view.

Example 22-5 illustrates this using a data guide obtained with json_dataguide with argument
DBMS_JSON.FORMAT_HIERARCHICAL.

If you create a view using the data guide obtained with json_dataguide then GeoJSON data
in your documents is supported. In this case the view column corresponding to the GeoJSON
data has SQL data type SDO_GEOMETRY. For that you pass constant DBMS_JSON.GEOJSON or
DBMS_JSON.GEOJSON+DBMS_JSON.PRETTY as the third argument to json_dataguide.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.create_view

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.get_index_dataguide

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.rename_column

• Oracle Database SQL Language Reference for information about SQL function
json_dataguide

• Oracle Database SQL Language Reference for information about PL/SQL
constant DBMS_JSON.FORMAT_HIERARCHICAL

Example 22-5    Creating a View Using a Hierarchical Data Guide Obtained With
JSON_DATAGUIDE

This example creates a view that projects all of the fields present in the hierarchical data
guide that is obtained by invoking SQL function json_dataguide on po_document of table
j_purchaseorder. The second and third arguments passed to json_dataguide are used,
respectively, to specify that the data guide is to be hierarchical and pretty-printed.

The view column names come from the values of field o:preferred_column_name of the data
guide that you pass to DBMS_JSON.create_view. By default, the view columns are thus named
the same as the projected fields.

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-19



Because the columns must be uniquely named in the view, you must ensure that the
field names themselves are unique. You can do this by specifying true as the value of
optional parameter RESOLVENAMECONFLICTS. Alternatively, you can edit the data guide
returned by json_dataguide to add appropriate o:preferred_column_name entries that
ensure uniqueness. If parameter RESOLVENAMECONFLICTS is missing or is specified as
false, then an error is raised by DBMS_JSON.create_view if the names for the columns
are not unique.

Although this example does not do so, you can provide a column-name prefix using
DBMS_JSON.create_view with parameter colNamePrefix. For example, to get the same
effect as that provided when you use a data guide obtained from the information in a
data guide-enabled JSON search index, you could specify parameter colNamePrefix
as 'PO_DOCUMENT$', that is, the JSON column name, PO_DOCUMENT followed by $. See 
Example 22-8.

DECLARE
  dg CLOB;
  BEGIN
    SELECT json_dataguide(po_document,
                          FORMAT DBMS_JSON.FORMAT_HIERARCHICAL,
                          DBMS_JSON.PRETTY)
      INTO dg
      FROM j_purchaseorder
      WHERE extract(YEAR FROM date_loaded) = 2014;
    DBMS_JSON.create_view('MYVIEW',
                          'J_PURCHASEORDER',
                          'PO_DOCUMENT',
                          dg);
  END;
/

DESCRIBE myview
 Name                 Null?    Type
 -------------------- -------- ---------------------------
 DATE_LOADED                   TIMESTAMP(6) WITH TIME ZONE
 ID                   NOT NULL RAW(16)
 User                          VARCHAR2(8)
 PONumber                      NUMBER
 UPCCode                       NUMBER
 UnitPrice                     NUMBER
 Description                   VARCHAR2(32)
 Quantity                      NUMBER
 ItemNumber                    NUMBER
 Reference                     VARCHAR2(16)
 Requestor                     VARCHAR2(16)
 CostCenter                    VARCHAR2(4)
 AllowPartialShipment          VARCHAR2(4)
 name                          VARCHAR2(16)
 Phone                         VARCHAR2(16)
 type                          VARCHAR2(8)
 number                        VARCHAR2(16)
 city                          VARCHAR2(32)
 state                         VARCHAR2(2)
 street                        VARCHAR2(32)
 country                       VARCHAR2(32)

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-20



 zipCode                       NUMBER
 Special Instructions          VARCHAR2(8)

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

22.7.2 Creating a View Over JSON Data Based on a Path Expression
You can use the information in a data guide-enabled JSON search index to create a database
view whose columns project JSON fields from your documents. The fields projected are the
scalar fields not under an array plus the scalar fields in the data targeted by a specified SQL/
JSON path expression.

For example, if the path expression is $ then all scalar fields are projected, because the root
(top) of the document is targeted. Example 22-6 illustrates this. If the path
is $.LineItems.Part then only the scalar fields that are present (at any level) in the data
targeted by $.LineItems.Part are projected (in addition to scalar fields elsewhere that are
not under an array). Example 22-7 illustrates this.

If you gather statistics on your JSON document set then the data-guide information in a data
guide-enabled JSON search index records the frequency of occurrence, across the document
set, of each path to a field that is present in a document. When you create the view, you can
specify that only the (scalar) fields with a given minimum frequency of occurrence (as a
percentage) are to be projected as view columns. You do this by specifying a non-zero value
for parameter FREQUENCY of procedure DBMS_JSON.create_view_on_path.

For example, if you specify the path as $ and the minimum frequency as 50 then all scalar
fields (on any path, since $ targets the whole document) that occur in at least half (50%) of
the documents are projected. Example 22-8 illustrates this.

The value of argument PATH is a simple SQL/JSON path expression (no filter expression),
possibly with relaxation (implicit array wrapping and unwrapping), but with no array steps and
no function step. See SQL/JSON Path Expression Syntax.

No frequency filtering is done in either of the following cases — targeted fields are projected
regardless of their frequency of occurrence in the documents:

• You never gather statistics information on your set of JSON documents. (No frequency
information is included in the data guide-enabled JSON search index.)

• The FREQUENCY argument of DBMS_JSON.create_view_on_path is zero (0).

Note:

When the FREQUENCY argument is non-zero, even if you have gathered statistics
information on your document set, the index contains no statistical information for
any documents added after the most recent gathering of statistics. This means that
any fields added after that statistics gathering are ignored (not projected).

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-21



See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.create_view_on_path

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

Example 22-6    Creating a View That Projects All Scalar Fields

All scalar fields are represented in the view, because the specified path is $.

(Columns whose names are italic in the describe command output are those that
have been renamed using PL/SQL procedure DBMS_JSON.rename_column. Underlined
rows are missing from Example 22-8.)

EXEC DBMS_JSON.create_view_on_path('VIEW2',
                                   'J_PURCHASEORDER',
                                   'PO_DOCUMENT',
                                   '$');

DESCRIBE view2;
 Name                              Null?    Type
 --------------------------------  -------- ------------------
 ID                                NOT NULL RAW(16)
 DATE_LOADED                       TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT$User                  VARCHAR2(8)
 PONumber                          NUMBER
 PO_DOCUMENT$Reference             VARCHAR2(16)
 PO_DOCUMENT$Requestor             VARCHAR2(16)
 PO_DOCUMENT$CostCenter            VARCHAR2(4)
 PO_DOCUMENT$AllowPartialShipment  VARCHAR2(4)
 PO_DOCUMENT$name                  VARCHAR2(16)
 Phone                             VARCHAR2(16)
 PO_DOCUMENT$city                  VARCHAR2(32)
 PO_DOCUMENT$state                 VARCHAR2(2)
 PO_DOCUMENT$street                VARCHAR2(32)
 PO_DOCUMENT$country               VARCHAR2(32)
 PO_DOCUMENT$zipCode               NUMBER
 PO_DOCUMENT$SpecialInstructions   VARCHAR2(8)
 PO_DOCUMENT$UPCCode               NUMBER
 PO_DOCUMENT$UnitPrice             NUMBER
 PartDescription                   VARCHAR2(32)
 PO_DOCUMENT$Quantity              NUMBER
 ItemNumber                        NUMBER
 PhoneType                         VARCHAR2(8)
 PhoneNumber                       VARCHAR2(16)

Example 22-7    Creating a View That Projects Scalar Fields Targeted By a Path
Expression

Fields Itemnumber, PhoneType, and PhoneNumber are not represented in the view. The
only fields that are projected are those scalar fields that are not under an array plus

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-22



those that are present (at any level) in the data that is targeted by $.LineItems.Part (that is,
the scalar fields whose paths start with $.LineItems.Part). (Columns whose names are
italic in the describe command output are those that have been renamed using PL/SQL
procedure DBMS_JSON.rename_column.)

SQL> EXEC DBMS_JSON.create_view_on_path('VIEW4',
                                        'J_PURCHASEORDER',
                                        'PO_DOCUMENT',
                                        '$.LineItems.Part');

SQL> DESCRIBE view4;
 Name                             Null?    Type
 -------------------------------- -------- ------------------
 ID                               NOT NULL RAW(16)
 DATE_LOADED                      TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT$User                 VARCHAR2(8)
 PONumber                         NUMBER
 PO_DOCUMENT$Reference            VARCHAR2(16)
 PO_DOCUMENT$Requestor            VARCHAR2(16)
 PO_DOCUMENT$CostCenter           VARCHAR2(4)
 PO_DOCUMENT$AllowPartialShipment VARCHAR2(4)
 PO_DOCUMENT$name                 VARCHAR2(16)
 Phone                            VARCHAR2(16)
 PO_DOCUMENT$city                 VARCHAR2(32)
 PO_DOCUMENT$state                VARCHAR2(2)
 PO_DOCUMENT$street               VARCHAR2(32)
 PO_DOCUMENT$country              VARCHAR2(32)
 PO_DOCUMENT$zipCode              NUMBER
 PO_DOCUMENT$SpecialInstructions  VARCHAR2(8)
 PO_DOCUMENT$UPCCode              NUMBER
 PO_DOCUMENT$UnitPrice            NUMBER
 PartDescription                  VARCHAR2(32)

Example 22-8    Creating a View That Projects Scalar Fields Having a Given Frequency

All scalar fields that occur in all (100%) of the documents are represented in the view. Field
AllowPartialShipment does not occur in all of the documents, so there is no column
PO_DOCUMENT$AllowPartialShipment in the view. Similarly for fields Phone, PhoneType, and
PhoneNumber.

(Columns whose names are italic in the describe command output are those that have
been renamed using PL/SQL procedure DBMS_JSON.rename_column.)

SQL> EXEC DBMS_JSON.create_view_on_path('VIEW3',
                                        'J_PURCHASEORDER',
                                        'PO_DOCUMENT',
                                        '$',
                                        100);

SQL> DESCRIBE view3;
 Name                             Null?    Type
 -------------------------------- -------- ------------------

Chapter 22
Creating a View Over JSON Data Based on Data-Guide Information

22-23



 ID                               NOT NULL RAW(16)
 DATE_LOADED                      TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT$User                 VARCHAR2(8)
 PONumber                         NUMBER
 PO_DOCUMENT$Reference            VARCHAR2(16)
 PO_DOCUMENT$Requestor            VARCHAR2(16)
 PO_DOCUMENT$CostCenter           VARCHAR2(4)
 PO_DOCUMENT$name                 VARCHAR2(16)
 PO_DOCUMENT$city                 VARCHAR2(32)
 PO_DOCUMENT$state                VARCHAR2(2)
 PO_DOCUMENT$street               VARCHAR2(32)
 PO_DOCUMENT$country              VARCHAR2(32)
 PO_DOCUMENT$zipCode              NUMBER
 PO_DOCUMENT$SpecialInstructions  VARCHAR2(8)
 PO_DOCUMENT$UPCCode              NUMBER
 PO_DOCUMENT$UnitPrice            NUMBER
 PartDescription                  VARCHAR2(32)
 PO_DOCUMENT$Quantity             NUMBER
 ItemNumber                       NUMBER

Related Topics

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as non-JSON columns in a database
view or as non-JSON virtual columns added to the same table that contains the
JSON column. You can specify a preferred name for such a column.

• SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path
expressions.

22.8 Adding and Dropping Virtual Columns For JSON Fields
Based on Data-Guide Information

Based on data-guide information for a JSON column, you can project scalar fields from
that JSON data as virtual columns in the same table. The scalar fields projected are
those that are not under an array.

You can do all of the following with a virtual column, with the aim of improving
performance:

• Build an index on it.

• Gather statistics on it for the optimizer.

• Load it into the In-Memory Column Store (IM column store).

Note:

Virtual columns, like columns in general, are subject to the 1000-column limit
for a given table.

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-24



You use PL/SQL procedure DBMS_JSON.add_virtual_columns to add virtual columns based
on data-guide information for a JSON column. Before it adds virtual columns, procedure
add_virtual_columns first drops any existing virtual columns that were projected from fields
in the same JSON column by a previous invocation of add_virtual_columns or by data-guide
change-trigger procedure add_vc (in effect, it does what procedure
DBMS_JSON.drop_virtual_columns does).

There are two alternative sources of the data-guide information that you provide to procedure
add_virtual_columns:

• It can come from a hierarchical data guide that you pass as an argument. All scalar fields
in the data guide that are not under an array are projected as virtual columns. All other
fields in the data guide are ignored (not projected).

In this case, you can edit the data guide before passing it, so that it specifies the scalar
fields (not under an array) that you want projected. You do not need a data guide-enabled
search index in this case.

• It can come from a data guide-enabled JSON search index.

In this case, you can specify, as the value of argument FREQUENCY to procedure
add_virtual_columns, a minimum frequency of occurrence for the scalar fields to be
projected. You need a data guide-enabled search index in this case, but you do not need
a data guide.

You can also specify that added virtual columns be hidden. The SQL describe command
does not list hidden columns.

• If you pass a (hierarchical) data guide to add_virtual_columns then you can specify
projection of particular scalar fields (not under an array) as hidden virtual columns by
adding "o:hidden": true to their descriptions in the data guide.

• If you use a data guide-enabled JSON search index with add_virtual_columns then you
can specify a PL/SQL TRUE value for argument HIDDEN, to make all of the added virtual
columns be hidden. (The default value of HIDDEN is FALSE, meaning that the added virtual
columns are not hidden.)

• Adding Virtual Columns For JSON Fields Based on a Hierarchical Data Guide
You can use a hierarchical data guide to project scalar fields from JSON data as virtual
columns in the same table. All scalar fields in the data guide that are not under an array
are projected as virtual columns. All other fields in the data guide are ignored (not
projected).

• Adding Virtual Columns For JSON Fields Based on a Data Guide-Enabled Search Index
You can use a data guide-enabled search index for a JSON column to project scalar
fields from that JSON data as virtual columns in the same table. Only scalar fields not
under an array are projected. You can specify a minimum frequency of occurrence for the
fields to be projected.

• Dropping Virtual Columns for JSON Fields Based on Data-Guide Information
You can use procedure DBMS_JSON.drop_virtual_columns to drop all virtual columns that
were added for JSON fields in a column of JSON data.

Related Topics

• In-Memory JSON Data
A column of JSON data can be stored in the In-Memory Column Store (IM column store)
to improve query performance.

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-25



See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.create_view_on_path

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.drop_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

22.8.1 Adding Virtual Columns For JSON Fields Based on a
Hierarchical Data Guide

You can use a hierarchical data guide to project scalar fields from JSON data as virtual
columns in the same table. All scalar fields in the data guide that are not under an
array are projected as virtual columns. All other fields in the data guide are ignored
(not projected).

You can obtain a hierarchical data guide using Oracle SQL function json_dataguide.

You can edit the data guide obtained, to include only specific scalar fields (that are not
under an array), rename those fields, or change the lengths of their types. The
resulting data guide specifies which such fields to project as new virtual columns. Any
fields in the data guide that are not scalar fields not under an array are ignored (not
projected).

You use PL/SQL procedure DBMS_JSON.add_virtual_columns to add the virtual
columns to the table that contains the JSON column containing the projected fields.
That procedure first drops any existing virtual columns that were projected from fields
in the same JSON column by a previous invocation of add_virtual_columns or by
data-guide change-trigger procedure add_vc (in effect, it does what procedure
DBMS_JSON.drop_virtual_columns does).

Example 22-9 illustrates this. It projects scalar fields that are not under an array, from
the data in JSON column po_document of table j_purchaseorder. The fields projected
are those that are indicated in the hierarchical data guide.

Example 22-10 illustrates passing a data-guide argument that specifies the projection
of two fields as virtual columns. Data-guide field o:hidden is used to hide one of these
columns.

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-26



See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.drop_virtual_columns

• Oracle Database SQL Language Reference for information about SQL function
json_dataguide

• Oracle Database SQL Language Reference for information about PL/SQL
constant DBMS_JSON.FORMAT_HIERARCHICAL

Example 22-9    Adding Virtual Columns That Project JSON Fields Using a Data Guide
Obtained With JSON_DATAGUIDE

This example uses a hierarchical data guide obtained using function json_dataguide with
JSON column po_document.

The added virtual columns are all of the columns in table j_purchaseorder except for ID,
DATE_LOADED, and PODOCUMENT.

• Parameter resolveNameConflicts is TRUE, to ensure that any name conflicts get
resolved.

• Parameter colNamePrefix is 'PO_DOCUMENT$', to use that as the default prefix for column
names.

• Parameter mixedCaseColumns is TRUE, to make column names be case-sensitive, that is,
to distinguish uppercase and lowercase letters.

DECLARE
  dg CLOB;
BEGIN
  SELECT json_dataguide(po_document, DBMS_JSON.FORMAT_HIERARCHICAL) INTO dg
    FROM j_purchaseorder;
  DBMS_JSON.add_virtual_columns('J_PURCHASEORDER',
                                'PO_DOCUMENT',
                                dg,
                                resolveNameConflicts=>TRUE,
                                colNamePrefix=>'PO_DOCUMENT$',
                                mixedCaseColumns=>TRUE);
END;
/

DESCRIBE j_purchaseorder;
 Name                             Null?    Type
 -------------------------------- -------- ---------------------------
 ID                               NOT NULL RAW(16)
 DATE_LOADED                               TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT                               CLOB
 PO_DOCUMENT$User                          VARCHAR2(8)
 PO_DOCUMENT$PONumber                      NUMBER
 PO_DOCUMENT$Reference                     VARCHAR2(16)

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-27



 PO_DOCUMENT$Requestor                     VARCHAR2(16)
 PO_DOCUMENT$CostCenter                    VARCHAR2(4)
 PO_DOCUMENT$AllowPartialShipment          VARCHAR2(4)
 PO_DOCUMENT$name                          VARCHAR2(16)
 PO_DOCUMENT$Phone                         VARCHAR2(16)
 PO_DOCUMENT$city                          VARCHAR2(32)
 PO_DOCUMENT$state                         VARCHAR2(2)
 PO_DOCUMENT$street                        VARCHAR2(32)
 PO_DOCUMENT$country                       VARCHAR2(32)
 PO_DOCUMENT$zipCode                       NUMBER
 PO_DOCUMENT$SpecialInstructions           VARCHAR2(8)

Example 22-10    Adding Virtual Columns, Hidden and Visible

In this example only two fields are projected as virtual columns: PO_Number and
PO_Reference. The data guide is defined locally as a literal string. Data-guide field
o:hidden is used here to hide the virtual column for PO_Reference. (For PO_Number the
o:hidden: false entry is not needed, as false is the default value.)

DECLARE
  dg CLOB;
BEGIN
  dg := '{"type" : "object",
          "properties" :
            {"PO_Number"    : {"type" : "number",
                               "o:length" : 4,
                               "o:preferred_column_name" : "PO_Number",
                               "o:hidden" : false},
             "PO_Reference" : {"type" : "string",
                               "o:length" : 16,
                               "o:preferred_column_name" : "PO_Reference",
                               "o:hidden" : true}}}';
  DBMS_JSON.add_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT', dg);
END;
/

DESCRIBE j_purchaseorder;
 Name        Null?    Type
 ----------- -------- ---------------------------
 ID          NOT NULL RAW(16)
 DATE_LOADED          TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT          CLOB
 PO_Number            NUMBER

SELECT column_name FROM user_tab_columns
  WHERE table_name = 'J_PURCHASEORDER' ORDER BY 1;
COLUMN_NAME
-----------
DATE_LOADED
ID
PO_DOCUMENT
PO_Number
PO_Reference

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-28



5 rows selected.

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

22.8.2 Adding Virtual Columns For JSON Fields Based on a Data Guide-
Enabled Search Index

You can use a data guide-enabled search index for a JSON column to project scalar fields
from that JSON data as virtual columns in the same table. Only scalar fields not under an
array are projected. You can specify a minimum frequency of occurrence for the fields to be
projected.

You use procedure DBMS_JSON.add_virtual_columns to add the virtual columns.

Example 22-11 illustrates this. It projects all scalar fields that are not under an array to table
j_purchaseorder as virtual columns.

If you gather statistics on the documents in the JSON column where you want to project fields
then the data-guide information in the data guide-enabled JSON search index records the
frequency of occurrence, across that document set, of each field in a document.

When you add virtual columns you can specify that only those fields with a given minimum
frequency of occurrence are to be projected.

You do this by specifying a non-zero value for parameter FREQUENCY of procedure
add_virtual_columns. Zero is the default value, so if you do not include argument FREQUENCY
then all scalar fields (not under an array) are projected. The frequency of a given field is the
number of documents containing that field divided by the total number of documents in the
JSON column, expressed as a percentage.

Example 22-12 projects all scalars (not under an array) that occur in all (100%) of the
documents as virtual columns.

If you want to hide all of the added virtual columns then specify a TRUE value for argument
HIDDEN. (The default value of parameter HIDDEN is FALSE, meaning that the added virtual
columns are not hidden.)

Example 22-13 projects, as hidden virtual columns, the scalar fields (not under an array) that
occur in all (100%) of the documents.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_JSON.rename_column

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-29



Example 22-11    Projecting All Scalar Fields Not Under an Array as Virtual Columns

The added virtual columns are all of the columns in table j_purchaseorder except for
ID, DATE_LOADED, and PODOCUMENT. This is because no FREQUENCY argument is passed
to add_virtual_columns, so all scalar fields (that are not under an array) are
projected.

(Columns whose names are italic in the describe command output are those that
have been renamed using PL/SQL procedure DBMS_JSON.rename_column.)

EXEC DBMS_JSON.add_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT');

DESCRIBE j_purchaseorder;
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ID                                        NOT NULL RAW(16)
 DATE_LOADED                                        TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT                                        CLOB
 PO_DOCUMENT$User                                   VARCHAR2(8)
 PONumber                                           NUMBER
 PO_DOCUMENT$Reference                              VARCHAR2(16)
 PO_DOCUMENT$Requestor                              VARCHAR2(16)
 PO_DOCUMENT$CostCenter                             VARCHAR2(4)
 PO_DOCUMENT$AllowPartialShipment                   VARCHAR2(4)
 PO_DOCUMENT$name                                   VARCHAR2(16)
 Phone                                              VARCHAR2(16)
 PO_DOCUMENT$city                                   VARCHAR2(32)
 PO_DOCUMENT$state                                  VARCHAR2(2)
 PO_DOCUMENT$street                                 VARCHAR2(32)
 PO_DOCUMENT$country                                VARCHAR2(32)
 PO_DOCUMENT$zipCode                                NUMBER
 PO_DOCUMENT$SpecialInstructions                    VARCHAR2(8)

Example 22-12    Projecting Scalar Fields With a Minimum Frequency as Virtual Columns

All scalar fields that occur in all (100%) of the documents are projected as virtual
columns. The result is the same as that for Example 22-11, except that fields
AllowPartialShipment and Phone are not projected, because they do not occur in
100% of the documents.

(Columns whose names are italic in the describe command output are those that
have been renamed using PL/SQL procedure DBMS_JSON.rename_column.)

EXEC DBMS_JSON.add_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT', 100);

DESCRIBE j_purchaseorder;
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ID                                        NOT NULL RAW(16)
 DATE_LOADED                                        TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT                                        CLOB
 PO_DOCUMENT$User                                   VARCHAR2(8)
 PONumber                                           NUMBER
 PO_DOCUMENT$Reference                              VARCHAR2(16)
 PO_DOCUMENT$Requestor                              VARCHAR2(16)

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-30



 PO_DOCUMENT$CostCenter                             VARCHAR2(4)
 PO_DOCUMENT$name                                   VARCHAR2(16)
 PO_DOCUMENT$city                                   VARCHAR2(32)
 PO_DOCUMENT$state                                  VARCHAR2(2)
 PO_DOCUMENT$street                                 VARCHAR2(32)
 PO_DOCUMENT$country                                VARCHAR2(32)
 PO_DOCUMENT$zipCode                                NUMBER
 PO_DOCUMENT$SpecialInstructions                    VARCHAR2(8)

Example 22-13    Projecting Scalar Fields With a Minimum Frequency as Hidden Virtual Columns

The result is the same as that for Example 22-12, except that all of the added virtual columns
are hidden. (The query of view USER_TAB_COLUMNS shows that the virtual columns were in fact
added.)

EXEC DBMS_JSON.add_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT', 100, TRUE);

DESCRIBE j_purchaseorder;
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ID                                        NOT NULL RAW(16)
 DATE_LOADED                                        TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT                                        CLOB

SELECT column_name FROM user_tab_columns
  WHERE table_name = 'J_PURCHASEORDER'
  ORDER BY 1;

COLUMN_NAME
-----------
DATE_LOADED
ID
PONumber
PO_DOCUMENT
PO_DOCUMENT$CostCenter
PO_DOCUMENT$Reference
PO_DOCUMENT$Requestor
PO_DOCUMENT$SpecialInstructions
PO_DOCUMENT$User
PO_DOCUMENT$city
PO_DOCUMENT$country
PO_DOCUMENT$name
PO_DOCUMENT$state
PO_DOCUMENT$street
PO_DOCUMENT$zipCode

Chapter 22
Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information

22-31



22.8.3 Dropping Virtual Columns for JSON Fields Based on Data-
Guide Information

You can use procedure DBMS_JSON.drop_virtual_columns to drop all virtual columns
that were added for JSON fields in a column of JSON data.

Procedure DBMS_JSON.drop_virtual_columns drops all virtual columns that were
projected from fields in a given JSON column by an invocation of
add_virtual_columns or by data-guide change-trigger procedure add_vc. 
Example 22-14 illustrates this for fields projected from column po_document of table
j_purchaseorder.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.drop_virtual_columns

Example 22-14    Dropping Virtual Columns Projected From JSON Fields

EXEC DBMS_JSON.drop_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT');

22.9 Change Triggers For Data Guide-Enabled Search
Index

When JSON data changes, some information in a data guide-enabled JSON search
index is automatically updated. You can specify a procedure whose invocation is
triggered whenever this happens. You can define your own PL/SQL procedure for this,
or you can use the predefined change-trigger procedure add_vc.

The data-guide information in a data guide-enabled JSON search index records
structure, type, and possibly statistical information about a set of JSON documents.
Except for the statistical information, which is updated only when you gather statistics,
relevant changes in the document set are automatically reflected in the data-guide
information stored in the index.

You can define a PL/SQL procedure whose invocation is automatically triggered by
such an index update. The invocation occurs when the index is updated. Any errors
that occur during the execution of the procedure are ignored.

You can use the predefined change-trigger procedure add_vc to automatically add
virtual columns that project JSON fields from the document set or to modify existing
such columns, as needed. The virtual columns added by add_vc follow the same
naming rules as those you add by invoking procedure
DBMS_JSON.add_virtual_columns for a JSON column that has a data guide-enabled
search index.

Chapter 22
Change Triggers For Data Guide-Enabled Search Index

22-32



In either case, any error that occurs during the execution of the procedure is ignored.

Unlike DBMS_JSON.add_virtual_columns, add_vc does not first drop any existing virtual
columns that were projected from fields in the same JSON column. To drop virtual columns
projected from fields in the same JSON column by add_vc or by add_virtual_columns, use
procedure DBMS_JSON.drop_virtual_columns.

You specify the use of a trigger for data-guide changes by using the keywords DATAGUIDE ON
CHANGE in the PARAMETERS clause when you create or alter a JSON search index. Only one
change trigger is allowed per index: altering an index to specify a trigger automatically
replaces any previous trigger for it.

Example 22-15 alters existing JSON search index po_search_idx to use procedure add_vc.

Example 22-15    Adding Virtual Columns Automatically With Change Trigger ADD_VC

This example adds predefined change trigger add_vc to JSON search index po_search_idx.

It first drops any existing virtual columns that were projected from fields in JSON column
po_document either by procedure DBMS_JSON.add_virtual_columns or by a pre-existing
add_vc change trigger for the same JSON search index.

Then it alters the search index to add change trigger add_vc (if it was already present then
this is has no effect).

Finally, it inserts a new document that provokes a change in the data guide. Two virtual
columns are added to the table, for the two scalar fields not under an array.

EXEC DBMS_JSON.drop_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT');

ALTER INDEX po_search_idx REBUILD
  PARAMETERS ('DATAGUIDE ON CHANGE add_vc');

INSERT INTO j_purchaseorder
  VALUES (
    SYS_GUID(),
    to_date('30-JUN-2015'),
    '{"PO_Number"     : 4230,
      "PO_Reference"  : "JDEER-20140421",
      "PO_LineItems"  : [{"Part_Number"  : 230912362345,
                          "Quantity"     : 3.0}]}');

DESCRIBE j_purchaseorder;
 Name                      Null?    Type
 ------------------------- -------- ----------------------------
 ID                        NOT NULL RAW(16)
 DATE_LOADED                        TIMESTAMP(6) WITH TIME ZONE
 PO_DOCUMENT                        CLOB
 PO_DOCUMENT$PO_Number              NUMBER
 PO_DOCUMENT$PO_Reference           VARCHAR2(16)

• User-Defined Data-Guide Change Triggers
You can define a procedure whose invocation is triggered automatically whenever a given
data guide-enabled JSON search index is updated. Any errors that occur during the
execution of the procedure are ignored.

Chapter 22
Change Triggers For Data Guide-Enabled Search Index

22-33



Related Topics

• Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide
Information
Based on data-guide information for a JSON column, you can project scalar fields
from that JSON data as virtual columns in the same table. The scalar fields
projected are those that are not under an array.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.add_virtual_columns

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.drop_virtual_columns

22.9.1 User-Defined Data-Guide Change Triggers
You can define a procedure whose invocation is triggered automatically whenever a
given data guide-enabled JSON search index is updated. Any errors that occur during
the execution of the procedure are ignored.

Example 22-16 illustrates this.

A user-defined procedure specified with keywords DATAGUIDE ON CHANGE in a JSON
search index PARAMETERS clause must accept the parameters specified in Table 22-5.

Table 22-5    Parameters of a User-Defined Data-Guide Change Trigger Procedure

Name Type Description

table_name VARCHAR2 Name of the table containing
column column_name.

column_name VARCHAR2 Name of a JSON column that
has a data guide-enabled
JSON search index.

path VARCHAR2 A SQL/JSON path expression
that targets a particular field in
the data in column
column_name. This path is
affected by the index change
that triggered the procedure
invocation. For example, the
index change involved adding
this path or changing its type
value or its type-length value.

new_type NUMBER A new type for the given path.

new_type_length NUMBER A new type length for the given
path.

Example 22-16    Tracing Data-Guide Updates With a User-Defined Change Trigger

This example first drops any existing virtual columns projected from fields in JSON
column po_document.

Chapter 22
Change Triggers For Data Guide-Enabled Search Index

22-34



It then defines PL/SQL procedure my_dataguide_trace, which prints the names of the table
and JSON column, together with the path, type and length fields of the added virtual column.
It then alters JSON search index po_search_idx to specify that this procedure be invoked as
a change trigger for updates to the data-guide information in the index.

It then inserts a new document that provokes a change in the data guide, which triggers the
output of trace information.

Note that the TYPE argument to the procedure must be a number that is one of the DBMS_JSON
constants for a JSON type. The procedure tests the argument and outputs a user-friendly
string in place of the number.

EXEC DBMS_JSON.drop_virtual_columns('J_PURCHASEORDER', 'PO_DOCUMENT');

CREATE OR REPLACE PROCEDURE my_dataguide_trace(tableName VARCHAR2,
                                               jcolName  VARCHAR2,
                                               path      VARCHAR2,
                                               type      NUMBER,
                                               tlength   NUMBER)
  IS
    typename VARCHAR2(10);
  BEGIN
    IF    (type = DBMS_JSON.TYPE_NULL)    THEN typename := 'null';
    ELSIF (type = DBMS_JSON.TYPE_BOOLEAN) THEN typename := 'boolean';
    ELSIF (type = DBMS_JSON.TYPE_NUMBER)  THEN typename := 'number';
    ELSIF (type = DBMS_JSON.TYPE_STRING)  THEN typename := 'string';
    ELSIF (type = DBMS_JSON.TYPE_OBJECT)  THEN typename := 'object';
    ELSIF (type = DBMS_JSON.TYPE_ARRAY)   THEN typename := 'array';
    ELSE                                       typename := 'unknown';
    END IF;
    DBMS_OUTPUT.put_line('Updating ' || tableName || '(' || jcolName
                         || '): Path = ' || path || ', Type = ' || type
                         || ', Type Name = ' || typename
                         || ', Type Length = ' || tlength);
  END;
/

ALTER INDEX po_search_idx REBUILD
  PARAMETERS ('DATAGUIDE ON CHANGE my_dataguide_trace');

INSERT INTO j_purchaseorder
  VALUES (
    SYS_GUID(),
    to_date('30-MAR-2016'),
    '{"PO_ID"     : 4230,
      "PO_Ref"  : "JDEER-20140421",
      "PO_Items"  : [{"Part_No"       : 98981327234,
                      "Item_Quantity" : 13}]}');

COMMIT;
Updating J_PURCHASEORDER(PO_DOCUMENT):
  Path = $.PO_ID, Type = 3, Type Name = number, Type Length = 4
Updating J_PURCHASEORDER(PO_DOCUMENT):
  Path = $.PO_Ref, Type = 4, Type Name = string, Type Length = 16
Updating J_PURCHASEORDER(PO_DOCUMENT):

Chapter 22
Change Triggers For Data Guide-Enabled Search Index

22-35



  Path = $.PO_Items, Type = 6, Type Name = array, Type Length = 64
Updating J_PURCHASEORDER(PO_DOCUMENT):
  Path = $.PO_Items.Part_No, Type = 3, Type Name = number, Type Length = 16
Updating J_PURCHASEORDER(PO_DOCUMENT):
  Path = $.PO_Items.Item_Quantity, Type = 3, Type Name = number, Type Length = 2

Commit complete.

See Also:

• Oracle Database SQL Language Reference for information about
PL/SQL constants TYPE_NULL, TYPE_BOOLEAN, TYPE_NUMBER,
TYPE_STRING, TYPE_OBJECT, and TYPE_ARRAY.

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.drop_virtual_columns

22.10 Multiple Data Guides Per Document Set
A data guide reflects the shape of a given set of JSON documents. If a JSON column
contains different types of documents, with different structure or type information, you
can create and use different data guides for the different kinds of documents.

Data Guides For Different Kinds of JSON Documents

JSON documents need not, and typically do not, follow a prescribed schema. This is
true even for documents that are used similarly in a given application; they may differ
in structural ways (shape), and field types may differ.

A JSON data guide summarizes the structural and type information of a given set of
documents. In general, the more similar the structure and type information of the
documents in a given set, the more useful the resulting data guide.

A data guide is created for a given column of JSON data. If the column contains very
different kinds of documents (for example, purchase orders and health records) then a
single data guide for the column is likely to be of limited use.

One way to address this concern is to put different kinds of JSON documents in
different JSON columns. But sometimes other considerations decide in favor of mixing
document types in the same column.

In addition, documents of the same general type, which you decide to store in the
same column, can nevertheless differ in relatively systematic ways. This includes the
case of evolving document shape and type information. For example, the structure of
tax-information documents could change from year to year.

When you create a data guide you can decide which information to summarize. And
you can thus create different data guides for the same JSON column, to represent
different subsets of the document set.

Chapter 22
Multiple Data Guides Per Document Set

22-36



An additional aid in this regard is to have a separate, non-JSON, column in the same table,
which is used to label, or categorize, the documents in a JSON column.

In the case of the purchase-order documents used in our examples, let’s suppose that their
structure can evolve significantly from year to year, so that column date_loaded of table
j_purchaseorder can be used to group them into subsets of reasonably similar shape. 
Example 22-17 adds a purchase-order document for 2015, and Example 22-18 adds a
purchase-order document for 2016. (Compare with the documents for 2014, which are added
in Example 4-3.)

Using a SQL Aggregate Function to Create Multiple Data Guides

Oracle SQL function json_dataguide is in fact an aggregate function. An aggregate function
returns a single result row based on groups of rows, rather than on a single row. It is typically
used in a SELECT list for a query that has a GROUP BY clause, which divides the rows of a
queried table or view into groups. The aggregate function applies to each group of rows,
returning a single result row for each group. For example, aggregate function avg returns the
average of a group of values.

Function json_dataguide aggregates JSON data to produce a summary, or specification, of
it, which is returned in the form of a JSON document. In other words, for each group of JSON
documents to which they are applied, they return a data guide.

If you omit GROUP BY then this function returns a single data guide that summarizes all of the
JSON data in the subject JSON column.

Example 22-19 queries the documents of JSON column po_document, grouping them to
produce three data guides, one for each year of column date_loaded.

Example 22-17    Adding a 2015 Purchase-Order Document

The 2015 purchase-order format uses only part number, reference, and line-items as its top-
level fields, and these fields use prefix PO_. Each line item contains only a part number and a
quantity.

INSERT INTO j_purchaseorder
  VALUES (
    SYS_GUID(),
    to_date('30-JUN-2015'),
    '{"PO_Number"     : 4230,
      "PO_Reference"  : "JDEER-20140421",
      "PO_LineItems"  : [{"Part_Number"  : 230912362345,
                          "Quantity"     : 3.0}]}');

Example 22-18    Adding a 2016 Purchase-Order Document

The 2016 format uses PO_ID instead of PO_Number, PO_Ref instead of PO_Reference,
PO_Items instead of PO_LineItems, Part_No instead of Part_Number, and Item_Quantity
instead of Quantity.

INSERT INTO j_purchaseorder
  VALUES (
    SYS_GUID(),
    to_date('30-MAR-2016'),
    '{"PO_ID"     : 4230,
      "PO_Ref"  : "JDEER-20140421",

Chapter 22
Multiple Data Guides Per Document Set

22-37



      "PO_Items"  : [{"Part_No"       : 98981327234,
                      "Item_Quantity" : 13}]}');

Example 22-19    Creating Multiple Data Guides With Aggregate Function
JSON_DATAGUIDE

This example uses aggregate SQL function json_dataguide to obtain three flat1 data
guides, one for each year-specific format. The data guide for 2014 is shown only
partially — it is the same as the data guide from A Flat Data Guide For Purchase-
Order Documents, except that no statistics fields are present. (Data guides returned by
functions json_dataguide do not contain any statistics fields.

SELECT extract(YEAR FROM date_loaded), json_dataguide(po_document)
  FROM j_purchaseorder
  GROUP BY extract(YEAR FROM date_loaded)
  ORDER BY extract(YEAR FROM date_loaded) DESC;

EXTRACT(YEARFROMDATE_LOADED)
----------------------------
JSON_DATAGUIDE(PO_DOCUMENT)
---------------------------
                        2016
[
  {
    "o:path" : "$.PO_ID",
    "type" : "number",
    "o:length" : 4
  },
  {
    "o:path" : "$.PO_Ref",
    "type" : "string",
    "o:length" : 16
  },
  {
    "o:path" : "$.PO_Items",
    "type" : "array",
    "o:length" : 64
  },
  {
    "o:path" : "$.PO_Items.Part_No",
    "type" : "number",
    "o:length" : 16
  },
  {
    "o:path" : "$.PO_Items.Item_Quantity",
    "type" : "number",
    "o:length" : 2
  }
]

                        2015
[

1 If function json_dataguide were passed DBMS_JSON.FORMAT_HIERARCHICAL as optional second argument then
the result would be three hierarchical data guides.

Chapter 22
Multiple Data Guides Per Document Set

22-38



  {
    "o:path" : "$.PO_Number",
    "type" : "number",
    "o:length" : 4
  },
  {
    "o:path" : "$.PO_LineItems",
    "type" : "array",
    "o:length" : 64
  },
  {
    "o:path" : "$.PO_LineItems.Quantity",
    "type" : "number",
    "o:length" : 4
  },
  {
    "o:path" : "$.PO_LineItems.Part_Number",
    "type" : "number",
    "o:length" : 16
  },
  {
    "o:path" : "$.PO_Reference",
    "type" : "string",
    "o:length" : 16
  }
]

                        2014
[
  {
    "o:path" : "$.User",
    "type" : "string",
    "o:length" : 8
  },
  {
    "o:path" : "$.PONumber",
    "type" : "number",
    "o:length" : 4
  },
...
  {
    "o:path" : "$.\"Special Instructions\"",
    "type" : "string",
    "o:length" : 8
  }
]

3 rows selected.

Chapter 22
Multiple Data Guides Per Document Set

22-39



See Also:

Oracle Database SQL Language Reference for information about SQL
function json_dataguide

22.11 Querying a Data Guide
A data guide is information about a set of JSON documents. You can query it from a
flat data guide that you obtain using either Oracle SQL function json_dataguide or
PL/SQL function DBMS_JSON.get_index_dataguide. In the latter case, a data guide-
enabled JSON search index must be defined on the JSON data.

See Also:

• Oracle Database SQL Language Reference for information about SQL
function json_dataguide

• Oracle Database SQL Language Reference for information about SQL/
JSON function json_table

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.get_index_dataguide

• Oracle Database SQL Language Reference for information about
PL/SQL constant DBMS_JSON.FORMAT_FLAT

Example 22-20    Querying a Data Guide Obtained Using JSON_DATAGUIDE

This example uses SQL/JSON function json_dataguide to obtain a flat data guide. It
then queries the relational columns projected on the fly by SQL/JSON function
json_table from fields o:path, type, and o:length. It returns the projected columns
ordered lexicographically by the path column created, jpath.

If DBMS_JSON.GATHER_STATS were included in a third argument to json_dataguide then
the data guide returned would also include statistical fields.

WITH dg_t AS (SELECT json_dataguide(po_document) dg_doc
                FROM j_purchaseorder)
  SELECT jt.*
    FROM dg_t,
         json_table(dg_doc, '$[*]'
           COLUMNS
             jpath   VARCHAR2(40) PATH '$."o:path"',
             type    VARCHAR2(10) PATH '$."type"',
             tlength NUMBER       PATH '$."o:length"') jt
   ORDER BY jt.jpath;

JPATH                                    TYPE          TLENGTH
---------------------------------------- ------------- -------
$."Special Instructions"                 string              8

Chapter 22
Querying a Data Guide

22-40



$.AllowPartialShipment                   boolean             4
$.CostCenter                             string              4
$.LineItems                              array             512
$.LineItems.ItemNumber                   number              1
$.LineItems.Part                         object            128
$.LineItems.Part.Description             string             32
$.LineItems.Part.UPCCode                 number             16
$.LineItems.Part.UnitPrice               number              8
$.LineItems.Quantity                     number              4
$.PONumber                               number              4
$.PO_LineItems                           array              64
$.Reference                              string             16
$.Requestor                              string             16
$.ShippingInstructions                   object            256
$.ShippingInstructions.Address           object            128
$.ShippingInstructions.Address.city      string             32
$.ShippingInstructions.Address.country   string             32
$.ShippingInstructions.Address.state     string              2
$.ShippingInstructions.Address.street    string             32
$.ShippingInstructions.Address.zipCode   number              8
$.ShippingInstructions.Phone             array             128
$.ShippingInstructions.Phone             string             16
$.ShippingInstructions.Phone.number      string             16
$.ShippingInstructions.Phone.type        string              8
$.ShippingInstructions.name              string             16
$.User                                   string              8

Example 22-21    Querying a Data Guide With Index Data For Paths With Frequency at Least 80%

This example uses PL/SQL function DBMS_JSON.get_index_dataguide with format value
DBMS_JSON.FORMAT_FLAT to obtain a flat data guide from the data-guide information stored in
a data guide-enabled JSON search index. It then queries the relational columns projected on
the fly from fields o:path, type, o:length, and o:frequency by SQL/JSON function
json_table.

The value of field o:frequency is a statistic that records the frequency of occurrence, across
the document set, of each field in a document. It is available only if you have gathered
statistics on the document set. The frequency of a given field is the number of documents
containing that field divided by the total number of documents in the JSON column,
expressed as a percentage.

WITH dg_t AS
  (SELECT DBMS_JSON.get_index_dataguide('J_PURCHASEORDER',
                                        'PO_DOCUMENT',
                                        DBMS_JSON.FORMAT_FLAT) dg_doc

    FROM DUAL)
 SELECT jt.*
   FROM dg_t,
        json_table(dg_doc, '$[*]'
          COLUMNS
            jpath     VARCHAR2(40) PATH '$."o:path"',
            type      VARCHAR2(10) PATH '$."type"',
            tlength   NUMBER       PATH '$."o:length"',
            frequency NUMBER       PATH '$."o:frequency"') jt

Chapter 22
Querying a Data Guide

22-41



   WHERE jt.frequency > 80;

JPATH                                    TYPE          TLENGTH  FREQUENCY
---------------------------------------- ------------- -------- ---------
$.User                                   string              8        100
$.PONumber                               number              4        100
$.LineItems                              array             512        100
$.LineItems.Part                         object            128        100
$.LineItems.Part.UPCCode                 number             16        100
$.LineItems.Part.UnitPrice               number              8        100
$.LineItems.Part.Description             string             32        100
$.LineItems.Quantity                     number              4        100
$.LineItems.ItemNumber                   number              1        100
$.Reference                              string             16        100
$.Requestor                              string             16        100
$.CostCenter                             string              4        100
$.ShippingInstructions                   object            256        100
$.ShippingInstructions.name              string             16        100
$.ShippingInstructions.Address           object            128        100
$.ShippingInstructions.Address.city      string             32        100
$.ShippingInstructions.Address.state     string              2        100
$.ShippingInstructions.Address.street    string             32        100
$.ShippingInstructions.Address.country   string             32        100
$.ShippingInstructions.Address.zipCode   number              8        100
$."Special Instructions"                 string              8        100

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON
Schema fields (keywords) and Oracle-specific fields.

22.12 A Flat Data Guide For Purchase-Order Documents
The fields of a sample flat data guide are described. It corresponds to a set of
purchase-order documents.

The only JSON Schema keyword used in a flat data guide is type. The other fields are
all Oracle data-guide fields, which have prefix o:.

Example 22-22 shows a flat data guide for the purchase-order documents in table
j_purchaseorder. Things to note:

• The values of o:preferred_column_name use prefix PO_DOCUMENT$. This prefix
comes from using DBMS_JSON.get_index_dataguide to obtain this data guide.

• The value of o:length is 8 for path $.User, for example, in spite of the fact that the
actual lengths of the field values are 5. This is because the value of o:length is
always a power of two.

• The value of o:path for field Special Instructions is wrapped in double
quotation marks ("Special Instructions") because of the embedded space
character.

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-42

https://json-schema.org/


Example 22-22    Flat Data Guide For Purchase Orders

Paths are bold. JSON schema keywords are italic. Preferred column names that result
from using DBMS_JSON.rename_column are also italic. The formatting used is similar to that
produced by using SQL/JSON function json_dataguide with format arguments
DBMS_JSON.FORMAT_FLAT and DBMS_JSON.PRETTY.

Note that fields o:frequency, o:low_value, o:high_value, o:num_nulls, and
o:last_analyzed are present. This can only be because statistics were gathered on the
document set. Their values reflect the state as of the last statistics gathering.

See Example 22-3 for an example of gathering statistics for this data.

In order for statistics to be gathered, either the data guide needs to be based on a JSON
search index or it needs to be created using function json_dataguide, specifying
DBMS_JSON.GATHER_STATS in the third argument.

[
  {
    "o:path": "$.User",
    "type": "string",
    "o:length": 8,
    "o:preferred_column_name": "PO_DOCUMENT$User",
    "o:frequency": 100,
    "o:low_value": "ABULL",
    "o:high_value": "SBELL",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.PONumber",
    "type": "number",
    "o:length": 4,
    "o:preferred_column_name": "PONumber",
    "o:frequency": 100,
    "o:low_value": "672",
    "o:high_value": "1600",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.LineItems",
    "type": "array",
    "o:length": 512,
    "o:preferred_column_name": "PO_DOCUMENT$LineItems",
    "o:frequency": 100,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.LineItems.Part",
    "type": "object",
    "o:length": 128,
    "o:preferred_column_name": "PO_DOCUMENT$Part",
    "o:frequency": 100,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-43



  {
    "o:path": "$.LineItems.Part.UPCCode",
    "type": "number",
    "o:length": 16,
    "o:preferred_column_name": "PO_DOCUMENT$UPCCode",
    "o:frequency": 100,
    "o:low_value": "13131092899",
    "o:high_value": "717951002396",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.LineItems.Part.UnitPrice",
    "type": "number",
    "o:length": 8,
    "o:preferred_column_name": "PO_DOCUMENT$UnitPrice",
    "o:frequency": 100,
    "o:low_value": "20",
    "o:high_value": "19.95",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.LineItems.Part.Description",
    "type": "string",
    "o:length": 32,
    "o:preferred_column_name": "PartDescription",
    "o:frequency": 100,
    "o:low_value": "Nixon",
    "o:high_value": "Eric Clapton: Best Of 1981-1999",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.LineItems.Quantity",
    "type": "number",
    "o:length": 4,
    "o:preferred_column_name": "PO_DOCUMENT$Quantity",
    "o:frequency": 100,
    "o:low_value": "5",
    "o:high_value": "9.0",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.LineItems.ItemNumber",
    "type": "number",
    "o:length": 1,
    "o:preferred_column_name": "ItemNumber",
    "o:frequency": 100,
    "o:low_value": "1",
    "o:high_value": "3",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-44



  {
    "o:path": "$.Reference",
    "type": "string",
    "o:length": 16,
    "o:preferred_column_name": "PO_DOCUMENT$Reference",
    "o:frequency": 100,
    "o:low_value": "ABULL-20140421",
    "o:high_value": "SBELL-20141017",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.Requestor",
    "type": "string",
    "o:length": 16,
    "o:preferred_column_name": "PO_DOCUMENT$Requestor",
    "o:frequency": 100,
    "o:low_value": "Sarah Bell",
    "o:high_value": "Alexis Bull",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.CostCenter",
    "type": "string",
    "o:length": 4,
    "o:preferred_column_name": "PO_DOCUMENT$CostCenter",
    "o:frequency": 100,
    "o:low_value": "A50",
    "o:high_value": "A50",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.AllowPartialShipment",
    "type": "boolean",
    "o:length": 4,
    "o:preferred_column_name": "PO_DOCUMENT$AllowPartialShipment",
    "o:frequency": 50,
    "o:low_value": "true",
    "o:high_value": "true",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions",
    "type": "object",
    "o:length": 256,
    "o:preferred_column_name": "PO_DOCUMENT$ShippingInstructions",
    "o:frequency": 100,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.name",
    "type": "string",

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-45



    "o:length": 16,
    "o:preferred_column_name": "PO_DOCUMENT$name",
    "o:frequency": 100,
    "o:low_value": "Sarah Bell",
    "o:high_value": "Alexis Bull",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Phone",
    "type": "string",
    "o:length": 16,
    "o:preferred_column_name": "Phone",
    "o:frequency": 50,
    "o:low_value": "983-555-6509",
    "o:high_value": "983-555-6509",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Phone",
    "type": "array",
    "o:length": 128,
    "o:preferred_column_name": "PO_DOCUMENT$Phone_1",
    "o:frequency": 50,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Phone.type",
    "type": "string",
    "o:length": 8,
    "o:preferred_column_name": "PhoneType",
    "o:frequency": 50,
    "o:low_value": "Mobile",
    "o:high_value": "Office",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Phone.number",
    "type": "string",
    "o:length": 16,
    "o:preferred_column_name": "PhoneNumber",
    "o:frequency": 50,
    "o:low_value": "415-555-1234",
    "o:high_value": "909-555-7307",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Address",
    "type": "object",
    "o:length": 128,
    "o:preferred_column_name": "PO_DOCUMENT$Address",
    "o:frequency": 100,

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-46



    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Address.city",
    "type": "string",
    "o:length": 32,
    "o:preferred_column_name": "PO_DOCUMENT$city",
    "o:frequency": 100,
    "o:low_value": "South San Francisco",
    "o:high_value": "South San Francisco",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Address.state",
    "type": "string",
    "o:length": 2,
    "o:preferred_column_name": "PO_DOCUMENT$state",
    "o:frequency": 100,
    "o:low_value": "CA",
    "o:high_value": "CA",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Address.street",
    "type": "string",
    "o:length": 32,
    "o:preferred_column_name": "PO_DOCUMENT$street",
    "o:frequency": 100,
    "o:low_value": "200 Sporting Green",
    "o:high_value": "200 Sporting Green",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Address.country",
    "type": "string",
    "o:length": 32,
    "o:preferred_column_name": "PO_DOCUMENT$country",
    "o:frequency": 100,
    "o:low_value": "United States of America",
    "o:high_value": "United States of America",
    "o:num_nulls": 0,
    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.ShippingInstructions.Address.zipCode",
    "type": "number",
    "o:length": 8,
    "o:preferred_column_name": "PO_DOCUMENT$zipCode",
    "o:frequency": 100,
    "o:low_value": "99236",
    "o:high_value": "99236",
    "o:num_nulls": 0,

Chapter 22
A Flat Data Guide For Purchase-Order Documents

22-47



    "o:last_analyzed": "2016-03-31T12:17:53"
  },
  {
    "o:path": "$.\"Special Instructions\"",
    "type": "string",
    "o:length": 8,
    "o:preferred_column_name": "PO_DOCUMENT$SpecialInstructions",
    "o:frequency": 100,
    "o:low_value": "Courier",
    "o:high_value": "Courier",
    "o:num_nulls": 1,
    "o:last_analyzed": "2016-03-31T12:17:53"
  }
]

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON
Schema fields (keywords) and Oracle-specific fields.

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as non-JSON columns in a database
view or as non-JSON virtual columns added to the same table that contains the
JSON column. You can specify a preferred name for such a column.

See Also:

• Example 4-3

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.get_index_dataguide

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

22.13 A Hierarchical Data Guide For Purchase-Order
Documents

The fields of a sample hierarchical data guide are described. It corresponds to a set of
purchase-order documents.

Example 22-23 shows a hierarchical data guide for the purchase-order documents in
table j_purchaseorder. The data guide was created using procedure
DBMS_JSON.get_index_dataguide.

Example 22-23    Hierarchical Data Guide For Purchase Orders

Field names are bold. JSON Schema keywords are italic. Preferred column names
that result from using DBMS_JSON.rename_column are also italic. The formatting used

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-48

https://json-schema.org/


is similar to that produced by using SQL/JSON function json_dataguide with format
arguments DBMS_JSON.FORMAT_HIERARCHICAL and DBMS_JSON.PRETTY.

Note that statistical fields o:frequency, o:low_value, o:high_value, o:num_nulls, and
o:last_analyzed are present in this example. This can only be because statistics were
gathered on the document set. Their values reflect the state as of the last statistics gathering.
See Example 22-3 for an example of gathering statistics for this data.

A hierarchical data guide created by SQL function json_dataguide would look similar to this
example, but with these differences:

• The values of field o:preferred_column_name would the same as the field names in your
JSON documents. That is, they would not be prefixed with PO_DOCUMENT$.

• Statistical fields would be present only if json_dataguide were invoked with
DBMS_JSON.GATHER_STATS in its third argument. And in this case field o:sample_size
would also be present, following field o:last_analyzed. (The value of o:sample_size
would be 2 if there are two documents in the queried column of JSON data.)

{
  "type": "object",
  "properties": {
    "User": {
      "type": "string",
      "o:length": 8,
      "o:preferred_column_name": "PO_DOCUMENT$User",
      "o:frequency": 100,
      "o:low_value": "ABULL",
      "o:high_value": "SBELL",
      "o:num_nulls": 0,
      "o:last_analyzed": "2016-03-31T12:17:53"
    },
    "PONumber": {
      "type": "number",
      "o:length": 4,
      "o:preferred_column_name": "PONumber",
      "o:frequency": 100,
      "o:low_value": "672",
      "o:high_value": "1600",
      "o:num_nulls": 0,
      "o:last_analyzed": "2016-03-31T12:17:53"
    },
    "LineItems": {
      "type": "array",
      "o:length": 512,
      "o:preferred_column_name": "PO_DOCUMENT$LineItems",
      "o:frequency": 100,
      "o:last_analyzed": "2016-03-31T12:17:53",
      "items": {
        "properties": {
          "Part": {
            "type": "object",
            "o:length": 128,
            "o:preferred_column_name": "PO_DOCUMENT$Part",
            "o:frequency": 100,
            "o:last_analyzed": "2016-03-31T12:17:53",

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-49



            "properties": {
              "UPCCode": {
                "type": "number",
                "o:length": 16,
                "o:preferred_column_name": "PO_DOCUMENT$UPCCode",
                "o:frequency": 100,
                "o:low_value": "13131092899",
                "o:high_value": "717951002396",
                "o:num_nulls": 0,
                "o:last_analyzed": "2016-03-31T12:17:53"
              },
              "UnitPrice": {
                "type": "number",
                "o:length": 8,
                "o:preferred_column_name": "PO_DOCUMENT$UnitPrice",
                "o:frequency": 100,
                "o:low_value": "20",
                "o:high_value": "19.95",
                "o:num_nulls": 0,
                "o:last_analyzed": "2016-03-31T12:17:53"
              },
              "Description": {
                "type": "string",
                "o:length": 32,
                "o:preferred_column_name": "PartDescription",
                "o:frequency": 100,
                "o:low_value": "Nixon",
                "o:high_value": "Eric Clapton: Best Of 1981-1999",
                "o:num_nulls": 0,
                "o:last_analyzed": "2016-03-31T12:17:53"
              }
            }
          },
          "Quantity": {
            "type": "number",
            "o:length": 4,
            "o:preferred_column_name": "PO_DOCUMENT$Quantity",
            "o:frequency": 100,
            "o:low_value": "5",
            "o:high_value": "9.0",
            "o:num_nulls": 0,
            "o:last_analyzed": "2016-03-31T12:17:53"
          },
          "ItemNumber": {
            "type": "number",
            "o:length": 1,
            "o:preferred_column_name": "ItemNumber",
            "o:frequency": 100,
            "o:low_value": "1",
            "o:high_value": "3",
            "o:num_nulls": 0,
            "o:last_analyzed": "2016-03-31T12:17:53"
          }
        }
      }

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-50



    },
    "Reference": {
      "type": "string",
      "o:length": 16,
      "o:preferred_column_name": "PO_DOCUMENT$Reference",
      "o:frequency": 100,
      "o:low_value": "ABULL-20140421",
      "o:high_value": "SBELL-20141017",
      "o:num_nulls": 0,
      "o:last_analyzed": "2016-03-31T12:17:53"
    },
    "Requestor": {
      "type": "string",
      "o:length": 16,
      "o:preferred_column_name": "PO_DOCUMENT$Requestor",
      "o:frequency": 100,
      "o:low_value": "Sarah Bell",
      "o:high_value": "Alexis Bull",
      "o:num_nulls": 0,
      "o:last_analyzed": "2016-03-31T12:17:53"
    },
    "CostCenter": {
      "type": "string",
      "o:length": 4,
      "o:preferred_column_name": "PO_DOCUMENT$CostCenter",
      "o:frequency": 100,
      "o:low_value": "A50",
      "o:high_value": "A50",
      "o:num_nulls": 0,
      "o:last_analyzed": "2016-03-31T12:17:53"
    },
    "AllowPartialShipment": {
      "type": "boolean",
      "o:length": 4,
      "o:preferred_column_name": "PO_DOCUMENT$AllowPartialShipment",
      "o:frequency": 50,
      "o:last_analyzed": "2016-03-31T12:17:53"
    },
    "ShippingInstructions": {
      "type": "object",
      "o:length": 256,
      "o:preferred_column_name": "PO_DOCUMENT$ShippingInstructions",
      "o:frequency": 100,
      "o:last_analyzed": "2016-03-31T12:17:53",
      "properties": {
        "name": {
          "type": "string",
          "o:length": 16,
          "o:preferred_column_name": "PO_DOCUMENT$name",
          "o:frequency": 100,
          "o:low_value": "Sarah Bell",
          "o:high_value": "Alexis Bull",
          "o:num_nulls": 0,
          "o:last_analyzed": "2016-03-31T12:17:53"
        },

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-51



        "Phone": {
          "oneOf": [
            {
              "type": "string",
              "o:length": 16,
              "o:preferred_column_name": "Phone",
              "o:frequency": 50,
              "o:low_value": "983-555-6509",
              "o:high_value": "983-555-6509",
              "o:num_nulls": 0,
              "o:last_analyzed": "2016-03-31T12:17:53"
            },
            {
              "type": "array",
              "o:length": 128,
              "o:preferred_column_name": "PO_DOCUMENT$Phone_1",
              "o:frequency": 50,
              "o:last_analyzed": "2016-03-31T12:17:53",
              "items": {
                "properties": {
                  "type": {
                    "type": "string",
                    "o:length": 8,
                    "o:preferred_column_name": "PhoneType",
                    "o:frequency": 50,
                    "o:low_value": "Mobile",
                    "o:high_value": "Office",
                    "o:num_nulls": 0,
                    "o:last_analyzed": "2016-03-31T12:17:53"
                  },
                  "number": {
                    "type": "string",
                    "o:length": 16,
                    "o:preferred_column_name": "PhoneNumber",
                    "o:frequency": 50,
                    "o:low_value": "415-555-1234",
                    "o:high_value": "909-555-7307",
                    "o:num_nulls": 0,
                    "o:last_analyzed": "2016-03-31T12:17:53"
                  }
                }
              }
            }
          ]
        },
        "Address": {
          "type": "object",
          "o:length": 128,
          "o:preferred_column_name": "PO_DOCUMENT$Address",
          "o:frequency": 100,
          "o:last_analyzed": "2016-03-31T12:17:53",
          "properties": {
            "city": {
              "type": "string",
              "o:length": 32,

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-52



              "o:preferred_column_name": "PO_DOCUMENT$city",
              "o:frequency": 100,
              "o:low_value": "South San Francisco",
              "o:high_value": "South San Francisco",
              "o:num_nulls": 0,
              "o:last_analyzed": "2016-03-31T12:17:53"
            },
            "state": {
              "type": "string",
              "o:length": 2,
              "o:preferred_column_name": "PO_DOCUMENT$state",
              "o:frequency": 100,
              "o:low_value": "CA",
              "o:high_value": "CA",
              "o:num_nulls": 0,
              "o:last_analyzed": "2016-03-31T12:17:53"
            },
            "street": {
              "type": "string",
              "o:length": 32,
              "o:preferred_column_name": "PO_DOCUMENT$street",
              "o:frequency": 100,
              "o:low_value": "200 Sporting Green",
              "o:high_value": "200 Sporting Green",
              "o:num_nulls": 0,
              "o:last_analyzed": "2016-03-31T12:17:53"
            },
            "country": {
              "type": "string",
              "o:length": 32,
              "o:preferred_column_name": "PO_DOCUMENT$country",
              "o:frequency": 100,
              "o:low_value": "United States of America",
              "o:high_value": "United States of America",
              "o:num_nulls": 0,
              "o:last_analyzed": "2016-03-31T12:17:53"
            },
            "zipCode": {
              "type": "number",
              "o:length": 8,
              "o:preferred_column_name": "PO_DOCUMENT$zipCode",
              "o:frequency": 100,
              "o:low_value": "99236",
              "o:high_value": "99236",
              "o:num_nulls": 0,
              "o:last_analyzed": "2016-03-31T12:17:53"
            }
          }
        }
      }
    },
    "Special Instructions": {
      "type": "string",
      "o:length": 8,
      "o:preferred_column_name": "PO_DOCUMENT$SpecialInstructions",

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-53



      "o:frequency": 100,
      "o:low_value": "Courier",
      "o:high_value": "Courier",
      "o:num_nulls": 1,
      "o:last_analyzed": "2016-03-31T12:17:53"
    }
  }
}

Related Topics

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON
Schema fields (keywords) and Oracle-specific fields.

• Specifying a Preferred Name for a Field Column
You can project JSON fields from your data as non-JSON columns in a database
view or as non-JSON virtual columns added to the same table that contains the
JSON column. You can specify a preferred name for such a column.

See Also:

• Example 4-3

• Oracle Database SQL Language Reference for information about SQL
function json_dataguide

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_JSON.rename_column

Chapter 22
A Hierarchical Data Guide For Purchase-Order Documents

22-54



Part V
Generation of JSON Data

You can use SQL to generate JSON data from other kinds of database data
programmatically. You can do this using either (1) SQL/JSON functions json_object,
json_array, json_objectagg, and json_arrayagg or (2) constructor JSON with a simplified
syntax.

• Generation of JSON Data Using SQL
You can use SQL to generate JSON objects and arrays from non-JSON data in the
database. For that, use either constructor JSON or SQL/JSON functions json_object,
json_array, json_objectagg, and json_arrayagg.



23
Generation of JSON Data Using SQL

You can use SQL to generate JSON objects and arrays from non-JSON data in the database.
For that, use either constructor JSON or SQL/JSON functions json_object, json_array,
json_objectagg, and json_arrayagg.

• Overview of JSON Generation
An overview is presented of JSON data generation: best practices, the SQL/JSON
generation functions, a simple JSON constructor syntax, handling of input SQL values, and
resulting generated data.

• Handling of Input Values For SQL/JSON Generation Functions
The SQL/JSON generation functions take SQL values as input and return a JSON object
or array. The input values are used to produce JSON object field–value pairs or JSON
array elements. How the input values are used depends on their SQL data type.

• SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of evaluating
its argument SQL expressions.

• SQL/JSON Function JSON_ARRAY
SQL/JSON function json_array constructs a JSON array from the results of evaluating
its argument SQL expressions.

• SQL/JSON Function JSON_OBJECTAGG
SQL/JSON function json_objectagg constructs a JSON object by aggregating
information from multiple rows of a grouped SQL query as the object members.

• SQL/JSON Function JSON_ARRAYAGG
SQL/JSON function json_arrayagg constructs a JSON array by aggregating information
from multiple rows of a grouped SQL query as the array elements. The order of array
elements reflects the query result order, by default, but you can use the ORDER BY clause
to impose array element order.

23.1 Overview of JSON Generation
An overview is presented of JSON data generation: best practices, the SQL/JSON generation
functions, a simple JSON constructor syntax, handling of input SQL values, and resulting
generated data.

The best way to generate JSON data from non-JSON database data is to use SQL. The
standard SQL/JSON functions, json_object, json_array, json_objectagg, and
json_arrayagg are designed specifically for this. If the generated data is of JSON type then a
handy alternative is to use the JSON data type constructor function, JSON.

Both make it easy to construct JSON data directly from a SQL query. They allow non-JSON
data to be represented as JSON objects and JSON arrays. You can generate complex,
hierarchical JSON documents by nesting calls to the generation functions or constructor
JSON. Nested subqueries can generate JSON collections that represent one-to-many
relationships.1

23-1



The Best Way to Construct JSON Data from Non-JSON Data

Alternatives to using the SQL/JSON generation functions are generally error prone or
inefficient.

• Using string concatenation to generate JSON documents is error prone. In
particular, there are a number of complex rules that must be respected concerning
when and how to escape special characters, such as double quotation marks (").
It is easy to overlook or misunderstand these rules, which can result in generating
incorrect JSON data.

• Reading non-JSON result sets from the database and using client-side application
code to generate JSON data is typically quite inefficient, particularly due to
network overhead. When representing one-to-many relationships as JSON data,
multiple SELECT operations are often required, to collect all of the non-JSON data
needed. If the documents to be generated represent multiple levels of one-to-
many relationships then this technique can be quite costly.

The SQL/JSON generation functions and constructor JSON do not suffer from such
problems; they are designed for the job of constructing JSON data from non-JSON
database data.

• They always construct well-formed JSON documents.

• By using SQL subqueries with the functions, you can generate an entire set of
JSON documents using a single SQL statement, which allows the generation
operation to be optimized.

• Because only the generated documents are returned to a client, network overhead
is minimized: there is at most one round trip per document generated.

The SQL/JSON Generation Functions

• Functions json_object and json_array construct a JSON object or array,
respectively. In the simplest case, json_object takes SQL name–value pairs as
arguments, and json_array takes SQL values as arguments.

• Functions json_objectagg, and json_arrayagg are aggregate SQL functions.
They transform information that is contained in the rows of a grouped SQL query
into JSON objects and arrays, respectively. Evaluation of the arguments
determines the number of object members and array elements, respectively; that
is, the size of the result reflects the current queried data.

For json_objectagg and json_arrayagg, the order of object members and array
elements, respectively, is unspecified. For json_arrayagg, you can use an ORDER
BY clause within the json_arrayagg invocation to control the array element order.

Result Returned by SQL/JSON Generation Functions

By default, the generated JSON data is returned from a generation function as a SQL
VARCHAR2(4000) value. You can use the optional RETURNING clause to specify a
different VARCHAR2 size or to specify a JSON, CLOB or BLOB return value instead. When
BLOB is the return type, the character set is AL32UTF8.

Unless the return type is JSON, the JSON values produced from the input SQL values
are serialized to textual JSON. This serialization has the same effect as Oracle SQL
function json_serialize.

1 The behavior of the SQL/JSON generation functions for JSON data is similar to that of the SQL/XML generation
functions for XML data.

Chapter 23
Overview of JSON Generation

23-2



Handling of Input Values For SQL/JSON Generation Functions

The SQL/JSON generation functions take SQL values as input and, from them, produce
JSON values inside the JSON object or array that is returned. How the input values produce
the JSON values used in the output depends on their SQL data type.

Optional Behavior For SQL/JSON Generation Functions

You can optionally specify a SQL NULL-handling clause, a RETURNING clause, and keywords
STRICT and WITH UNIQUE KEYS.

• NULL-handling clause — Determines how a SQL NULL value resulting from input
evaluation is handled.

– NULL ON NULL — An input SQL NULL value is converted to JSON null for output. This
is the default behavior for json_object and json_objectagg.

– ABSENT ON NULL — An input SQL NULL value results in no corresponding output. This
is the default behavior for json_array and json_arrayagg.

• RETURNING clause — The SQL data type used for the function return value. The return
type can be any of the SQL types that support JSON data: JSON, VARCHAR2, CLOB, or BLOB.
The default return type (no RETURNING clause) is VARCHAR2(4000).

• STRICT keyword — If present, the returned JSON data is checked to be sure it is well-
formed. If STRICT is present and the returned data is not well-formed then an error is
raised.

Note:

In general, you need not specify STRICT when generating data of JSON data
type, and doing so can introduce a small performance penalty.

When an input and the returned data are both of JSON type, if you do not specify
STRICT then that input is used as is in the returned data; it is not checked for
strict well-formedness.

You might want to use STRICT when returning JSON type data if (1) the input
data is also of JSON type and (2) you suspect that it is not completely strict. That
could be the case, for example, if a client application created the input data and
it did not ensure that each JSON string is represented by a valid UTF-8
sequence of bytes.

• WITH UNIQUE KEYS keywords (available only for json_object and json_objectagg) — If
present, the returned JSON object is checked to be sure there are no duplicate field
names. If there are duplicates, an error is raised.

If absent (or if WITHOUT UNIQUE KEYS is present) then no check for unique fields is
performed. In that case:

– If the return data type is JSON then only one field of a set of duplicates is used, and
which is used is undefined.

– If the return data type is not JSON then all fields are used, including any duplicates.

Chapter 23
Overview of JSON Generation

23-3



JSON Data Type Constructor

You can use constructor JSON with a special syntax as an alternative to using
json_object and json_array when generating data of data type JSON. (You can use
constructor JSON and JSON type only if database initialization parameter compatible is
at least 20. Otherwise an error is raised.)

The only difference in behavior is that the return data type when you use the
constructor is always JSON (there is no RETURNING clause for the constructor).

When employed as an alternative syntax for json_object or json_array, you follow
constructor JSON directly with braces ({}) and brackets ([]), respectively, for object
and array generation, instead of the usual parentheses (()).

• JSON { … } has the same effect as JSON(json_object( … )), which has the same
effect as json_object( … RETURNING JSON).

• JSON [ … ] has the same effect as JSON(json_array( … )), which has the same
effect as json_array( … RETURNING JSON).

All of the behavior and syntax possibilities that json_object and json_array offer
when they are used with RETURNING JSON are also available when you use constructor
JSON with the special syntax. See, for example, Example 23-2, Example 23-3, 
Example 23-4, Example 23-5, and Example 23-6.

JSON {…} and JSON […] provide alternative syntax only for json_object and
json_array, not for the aggregate generation functions, json_objectagg and
json_arrayagg. But you can of course use constructor JSON (without the special
syntax) on the result of an explicit call to json_objectagg or json_arrayagg. For
example, these two queries are equivalent:

SELECT JSON(json_objectagg(department_name VALUE department_id))
  FROM departments;

SELECT json_objectagg(department_name VALUE department_id
                      RETURNING JSON)
  FROM departments;

Related Topics

• Handling of Input Values For SQL/JSON Generation Functions
The SQL/JSON generation functions take SQL values as input and return a JSON
object or array. The input values are used to produce JSON object field–value
pairs or JSON array elements. How the input values are used depends on their
SQL data type.

• ISO 8601 Date, Time, and Duration Support
International Standards Organization (ISO) standard 8601 describes an
internationally accepted way to represent dates, times, and durations. Oracle
Database supports the most common ISO 8601 formats as proper Oracle SQL
date, time, and interval (duration) values. The formats that are supported are
essentially those that are numeric-only, language-neutral, and unambiguous.

Chapter 23
Overview of JSON Generation

23-4



• JSON Data Type Constructor
The JSON data type constructor, JSON, takes as input a textual JSON value (a scalar,
object, or array), parses it, and returns the value as an instance of JSON type.

• Unique Versus Duplicate Fields in JSON Objects
The JSON standard recommends that a JSON object not have duplicate field names.
Oracle Database enforces this for JSON type data by raising an error. If stored textually,
Oracle recommends that you do not allow duplicate field names, by using an is json
check constraint with keywords WITH UNIQUE KEYS.

See Also:

• Oracle Database SQL Language Reference in Oracle Database SQL Language
Reference

• Oracle Database SQL Language Reference in Oracle Database SQL Language
Reference

• Oracle Database SQL Language Reference in Oracle Database SQL Language
Reference

• Oracle Database SQL Language Reference in Oracle Database SQL Language
Reference

• JSON Type Constructor in Oracle Database SQL Language Reference

23.2 Handling of Input Values For SQL/JSON Generation
Functions

The SQL/JSON generation functions take SQL values as input and return a JSON object or
array. The input values are used to produce JSON object field–value pairs or JSON array
elements. How the input values are used depends on their SQL data type.

The returned JSON object or array is of a SQL data type that supports JSON data: JSON,
VARCHAR2, CLOB, or BLOB. The default return type is VARCHAR2(4000). In all cases, the return
value is known by the database to contain well-formed JSON data.

Unless it is of JSON data type, an input can optionally be followed by keywords FORMAT JSON,
which declares that the value is to be considered as already representing JSON data (you
vouch for it), so it is interpreted (parsed) as JSON data. For example, if the input is '{}' then
you might want it to produce an empty JSON object, {}, and not a JSON string, "{}". 
Example 23-1 illustrates the use of FORMAT JSON to cause input SQL string "true" to produce
the JSON Boolean value true.

Equivalently, if the input type is not JSON then you can apply SQL function treat with
keywords AS JSON to it — the effect is the same as using FORMAT JSON.

If the input data is of JSON type then it is used as is. This includes the case where the JSON
type constructor is used. (Do not use FORMAT JSON or treat … AS JSON in this case;
otherwise, an error is raised.)

In some cases where an input is not of JSON type, and you do not use FORMAT JSON or treat
… AS JSON, Oracle nevertheless knows that the result is JSON data. In such cases using

Chapter 23
Handling of Input Values For SQL/JSON Generation Functions

23-5



FORMAT JSON or treat … AS JSON is not needed and is optional. This is the case, for
example, if the input data is the result of using function json_query or one of the
JSON generation functions.

If, one way or another, an input is known to be JSON data then it is used essentially as
is to construct the result — it need not be processed in any way. This applies
regardless of whether the input represents a JSON scalar, object, or array.

If an input is not known to be JSON data, then it produces a JSON value as follows
(any other SQL value raises an error):

• An instance of a user-defined SQL object type produces a JSON object whose
field names are taken from the object attribute names and whose field values are
taken from the object attribute values (to which JSON generation is applied
recursively).

• An instance of a SQL collection type produces a JSON array whose element
values are taken from the collection element values (to which JSON generation is
applied recursively).

• A VARCHAR2, CLOB, or NVARCHAR value is wrapped in double quotation marks ("),
and characters are escaped when necessary to conform to the JSON standard for
a JSON string. For example, input SQL input '{}' produces the JSON string "{}".

• A numeric value produces a JSON numeric value.

If compatible is at least 20 then NUMBER input produces a JSON number value,
BINARY_DOUBLE input produces a JSON double value, and BINARY_FLOAT input
produces a JSON float value.

If database initialization parameter compatible is less than 20 then the value is a
JSON number, regardless of the numeric input type (NUMBER, BINARY_DOUBLE, or
BINARY_FLOAT).

The numeric values of positive and negative infinity, and values that are the
undefined result of a numeric operation ("not a number" or NaN), cannot be
expressed as JSON numbers. They instead produce the JSON strings "Inf", "-
Inf", and "Nan", respectively.

• A RAW or BLOB value produces a hexadecimal JSON string, with double quotation
marks, (").

• A time-related value (DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP
WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, or INTERVAL DAY TO SECOND)
produces a supported ISO 8601 format, and the result is enclosed in double
quotation marks (") as a JSON string.

• A BOOLEAN PL/SQL value of TRUE or FALSE produces JSON true or false,
respectively.

• A SQL NULL value produces JSON null, regardless of the NULL data type.

Chapter 23
Handling of Input Values For SQL/JSON Generation Functions

23-6



Note:

For input of data types CLOB and BLOB, an empty instance is distinguished from SQL
NULL. It produces an empty JSON string (""). But for input of data types VARCHAR2,
NVARCHAR2, and RAW, Oracle SQL treats an empty (zero-length) value as NULL, so do
not expect such a value to produce a JSON string.

Example 23-1    Declaring an Input Value To Be JSON

This example specifies FORMAT JSON for SQL string values 'true' and 'false', in order that
the JSON Boolean values true and false are used. Without specifying FORMAT JSON, the
values of field hasCommission would be the JSON string values "true" and "false", not the
JSON Boolean values true and false.

SELECT json_object('name'          VALUE first_name || ' ' || last_name,
                   'hasCommission' VALUE
                     CASE WHEN commission_pct IS NULL THEN 'false'
                                                      ELSE 'true'
                     END FORMAT JSON)
  FROM employees WHERE first_name LIKE 'W%';

JSON_OBJECT('NAME'ISFIRST_NAME||''||LAST_NAME,'
-----------------------------------------------
{"name":"William Gietz","hasCommission":false}
{"name":"William Smith","hasCommission":true}
{"name":"Winston Taylor","hasCommission":false}

Related Topics

• Overview of JSON Generation
An overview is presented of JSON data generation: best practices, the SQL/JSON
generation functions, a simple JSON constructor syntax, handling of input SQL values, and
resulting generated data.

• SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of evaluating
its argument SQL expressions.

• SQL/JSON Function JSON_ARRAY
SQL/JSON function json_array constructs a JSON array from the results of evaluating
its argument SQL expressions.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which allows a
JSON document to contain only a JSON scalar value at top level. This support also
means that functions that return JSON data can return scalar JSON values.

Chapter 23
Handling of Input Values For SQL/JSON Generation Functions

23-7



See Also:

olink:SQLRF-GUID-7B72E154-677A-4342-A1EA-
C74C1EA928E6#GUID-7B72E154-677A-4342-A1EA-C74C1EA928E6

23.3 SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of
evaluating its argument SQL expressions.

It can accept any number of arguments, each of which is one of the following:

• An explicit field name–value pair. Example: answer : 42.

A name–value pair argument specifies an object member for the generated JSON
object (except when the value expression evaluates to SQL NULL and the ABSENT
ON NULL clause applies). The name and value are SQL expressions. The name
expression must evaluate to a SQL string. The value expression must evaluate to
a SQL value that is of JSON data type or that can be rendered as a JSON value.
The name and value expressions are separated by keyword VALUE or a colon (:).

Note:

Some client drivers might try to scan query text and identify bind
variables before sending the query to the database. In some such cases
a colon as name–value separator in json_object might be
misinterpreted as introducing a bind variable. You can use keyword
VALUE as the separator to avoid this problem ('Name' VALUE Diderot), or
you can simply enclose the value part of the pair in parentheses:
'Name':(Diderot).

• A relational column name, possibly preceded by a table name or alias, or a view
name followed by a dot (.). Example: t1.address.

In this case, for a given row of data, the JSON-object member specified by the
column-name argument has the column name as its field name and the column
value as the field value.

Regardless of whether it is quoted, the column name you provide is interpreted
case-sensitively. For example, if you use Email as a column-name argument then
the data in column EMAIL is used to produce object members with field name
Email (not EMAIL).

• A table name or alias, or a view name, followed by a dot and an asterisk wildcard
(.*). Example: t1.*. (The name or alias can also be prefixed by a database
schema name, as in myschema.t1.*.)

In this case, all columns of the table or view are used as input. Each is handled as
if it were named explicitly. In particular, the column names are interpreted case-
sensitively.

Alternatively, json_object accepts a single argument that is one of the following:

Chapter 23
SQL/JSON Function JSON_OBJECT

23-8



• An instance of a user-defined SQL object-type. Example:
json_object(my_sql_object_42).

In this case, the resulting JSON-object field names are taken from the SQL object
attribute names, and their values are taken from the SQL object attribute values (to which
JSON generation is applied recursively).

• An asterisk wildcard (*). Example: json_object(*).

The wildcard acts as a shortcut to explicitly specifying all of the columns of a table or
view, to produce the object members. The resulting JSON-object field names are the
uppercase column names. You can use a wildcard with a table, a view, or a table alias,
which is understood from the FROM list. The columns can be of any SQL data type.

Note the difference between this case (json_object(*)) and the case described above,
where the asterisk is preceded by an explicit table or view name (or table alias), followed
by a dot: json_object(t.*). In the json_object(*) case, the column names are not
interpreted case-sensitively.

Another way of describing the use of asterisk wildcards with json_object is to say that it
follows what is allowed for wildcards in a SQL SELECT list.

Just as for SQL/JSON condition is json, you can use keywords STRICT and WITH UNIQUE
KEYS with functions json_object and json_objectagg. The behavior for each is the same as
for is json.

Example 23-2    Using Name–Value Pairs with JSON_OBJECT

This example constructs a JSON object for each employee of table hr.employees (from
standard database schema HR) whose salary is greater than 15000.

It passes explicit name–value pairs to specify the members of the JSON object. The object
includes, as the value of its field contactInfo, an object with fields mail and phone.

The use of RETURNING JSON here specifies that the JSON data is returned as JSON data type,
not the default return type, VARCHAR2(4000).

SELECT json_object('id'          : employee_id,
                   'name'        : first_name || ' ' || last_name,
                   'contactInfo' : json_object('mail'  : email,
                                               'phone' : phone_number),
                   'hireDate'    : hire_date,
                   'pay'         : salary
                   RETURNING JSON) 
  FROM hr.employees
  WHERE salary > 15000;

-- The query returns rows such as this (pretty-printed here for clarity):

{"id"          : 101,
 "name"        : "Neena Kochhar",
 "contactInfo" : {"mail"  : "NKOCHHAR",
                  "phone" : "515.123.4568"},
 "hireDate"    : "21-SEP-05",
 "pay"         : 17000}

Chapter 23
SQL/JSON Function JSON_OBJECT

23-9



Note:

Because function json_object always returns JSON data, there is no need
to specify FORMAT JSON for the value of input field contactInfo. But if the
value of that field had been given as, for example, '{"mail":' || email ',
"phone":' || phone_number || '}' then you would need to follow it with
FORMAT JSON to have that string value interpreted as JSON data:

"contactInfo" : '{"mail":' || email ', "phone":' || 
phone_number || '}'
FORMAT JSON,

Because the return type of the JSON data is JSON, this is an alternative syntax for the
same query:

SELECT JSON { 'id'          : employee_id,
              'name'        : first_name || ' ' || last_name,
              'contactInfo' : JSON { 'mail'  : email,
                                     'phone' : phone_number }
              'hireDate'    : hire_date,
              'pay'         : salary } 
  FROM hr.employees
  WHERE salary > 15000;

Example 23-3    Using Column Names with JSON_OBJECT

This example constructs a JSON object for the employee whose employee_id is 101.
The fields produced are named after the columns, but case-sensitively.

SELECT json_object(last_name,
                   'contactInfo' : json_object(email, phone_number),
                   hire_date,
                   salary,
                   RETURNING JSON)
  FROM hr.employees
  WHERE employee_id = 101;

-- The query returns rows such as this (pretty-printed here for 
clarity):

{"last_name"   : "Kochhar",
 "contactInfo" : {"email"        : "NKOCHHAR",
                  "phone_number" : "515.123.4568"},
 "hire-date"   : "21-SEP-05",
 "salary"      : 17000}

Chapter 23
SQL/JSON Function JSON_OBJECT

23-10



Because the return type of the JSON data is JSON, this is an alternative syntax for the same
query:

SELECT JSON { last_name,
              'contactInfo' : JSON { email, phone_number },
              hire_date,
              salary}
  FROM hr.employees
  WHERE employee_id = 101;

Example 23-4    Using a Wildcard (*) with JSON_OBJECT

This example constructs a JSON object for each employee whose salary is greater than
15000. Each column of table employees is used to construct one object member, whose field
name is the (uppercase) column name. Note that a SQL NULL value results in a JSON field
value of null.

SELECT json_object(* RETURNING JSON)
  FROM hr.employees
  WHERE salary > 15000;

-- The query returns rows such as this (pretty-printed here for clarity):

JSON_OBJECT(*)
--------------
{"EMPLOYEE_ID":100,
 "FIRST_NAME":"Steven",
 "LAST_NAME":"King",
 "EMAIL":"SKING",
 "PHONE_NUMBER":"515.123.4567",
 "HIRE_DATE":"2003-06-17T00:00:00",
 "JOB_ID":"AD_PRES",
 "SALARY":24000,
 "COMMISSION_PCT":null,
 "MANAGER_ID":null,
 "DEPARTMENT_ID":90}

{"EMPLOYEE_ID":101,
 "FIRST_NAME":"Neena",
 "LAST_NAME":"Kochhar",
 "EMAIL":"NKOCHHAR",
 "PHONE_NUMBER":"515.123.4568",
 "HIRE_DATE":"2005-09-21T00:00:00",
 "JOB_ID":"AD_VP",
 "SALARY":17000,
 "COMMISSION_PCT":null,
 "MANAGER_ID":100,
 "DEPARTMENT_ID":90}

{"EMPLOYEE_ID":102,
 "FIRST_NAME":"Lex",
 "LAST_NAME":"De Haan",
 "EMAIL":"LDEHAAN",
 "PHONE_NUMBER":"515.123.4569",

Chapter 23
SQL/JSON Function JSON_OBJECT

23-11



 "HIRE_DATE":"2001-01-13T00:00:00",
 "JOB_ID":"AD_VP",
 "SALARY":17000,
 "COMMISSION_PCT":null,
 "MANAGER_ID":100,
 "DEPARTMENT_ID":90}

Because the return type of the JSON data is JSON, this is an alternative syntax for the
same query:

SELECT JSON { * }
  FROM hr.employees
  WHERE salary > 15000;

Example 23-5    Using JSON_OBJECT With ABSENT ON NULL

This example queries table hr.locations from standard database schema HR to
create JSON objects with fields city and province.

The default NULL-handling behavior for json_object is NULL ON NULL.

In order to prevent the creation of a field with a null JSON value, this example uses
ABSENT ON NULL. The NULL SQL value for column state_province when column city
has value 'Singapore' means that no province field is created for that location.

SELECT JSON_OBJECT('city'     VALUE city,
                   'province' : state_province ABSENT ON NULL) 
  FROM hr.locations
  WHERE city LIKE 'S%';

JSON_OBJECT('CITY'ISCITY,'PROVINCE'ISSTATE_PROVINCEABSENTONNULL)
----------------------------------------------------------------
{"city":"Southlake","province":"Texas"}
{"city":"South San Francisco","province":"California"}
{"city":"South Brunswick","province":"New Jersey"}
{"city":"Seattle","province":"Washington"}
{"city":"Sydney","province":"New South Wales"}
{"city":"Singapore"}
{"city":"Stretford","province":"Manchester"}
{"city":"Sao Paulo","province":"Sao Paulo"}

Because there is no RETURNING clause in this example, the JSON data is returned as
VARCHAR2(4000), the default. If RETURNING JSON were used then you could use this
alternative syntax for the query:

SELECT JSON {'city'     VALUE city,
                   'province' : state_province ABSENT ON NULL} 
  FROM hr.locations
  WHERE city LIKE 'S%';

Chapter 23
SQL/JSON Function JSON_OBJECT

23-12



Example 23-6    Using a User-Defined Object-Type Instance with JSON_OBJECT

This example creates table po_ship with column shipping of object type shipping_t. (It uses
SQL/JSON function json_value to construct the shipping_t instances from JSON data —
see Example 18-4.)

It then uses json_object to generate JSON objects from the SQL object-type instances in
column po_ship.shipping, returning them as JSON data type instances.

(The query output is shown pretty-printed here, for clarity.)

CREATE TABLE po_ship
  AS SELECT json_value(po_document, '$.ShippingInstructions'
                       RETURNING shipping_t)
  shipping
  FROM j_purchaseorder;

DESCRIBE po_ship;

Name      Null?   Type
--------- ------- ----------
SHIPPING          SHIPPING_T

SELECT json_object(shipping RETURNING JSON)
  FROM po_ship;

JSON_OBJECT(SHIPPING)
---------------------
{"NAME":"Alexis Bull",
 "ADDRESS":{"STREET":"200 Sporting Green",
            "CITY":"South San Francisco"}}
{"NAME":"Sarah Bell",
 "ADDRESS":{"STREET":"200 Sporting Green",
            "CITY":"South San Francisco"}}

Because the return type from json_object is JSON, this is an alternative syntax for the same
query:

SELECT JSON {shipping} FROM po_ship;

Related Topics

• Overview of JSON Generation
An overview is presented of JSON data generation: best practices, the SQL/JSON
generation functions, a simple JSON constructor syntax, handling of input SQL values, and
resulting generated data.

• Handling of Input Values For SQL/JSON Generation Functions
The SQL/JSON generation functions take SQL values as input and return a JSON object
or array. The input values are used to produce JSON object field–value pairs or JSON
array elements. How the input values are used depends on their SQL data type.

Chapter 23
SQL/JSON Function JSON_OBJECT

23-13



See Also:

• Oracle Database SQL Language Reference for information about the
select_list syntax

• Oracle Database SQL Language Reference for information about SQL/
JSON function json_object and the equivalent JSON constructor {…}
syntax

• Oracle Database SQL Language Reference for SQL identifier syntax

23.4 SQL/JSON Function JSON_ARRAY
SQL/JSON function json_array constructs a JSON array from the results of
evaluating its argument SQL expressions.

In the simplest case, the evaluated arguments you provide to json_array are SQL
values that produce JSON values as the JSON array elements. The resulting array
has an element for each argument you provide (except when an argument expression
evaluates to SQL NULL and the ABSENT ON NULL clause applies). Array element order
is the same as the argument order.

There are several kinds of SQL values that you can use as an argument to
json_array, including SQL scalar, collection instance, and user-defined object-type
instance.

Example 23-7    Using JSON_ARRAY to Construct a JSON Array

This example constructs a JSON object for each employee job in database table
hr.jobs (from standard database schema HR). The fields of the objects are the job title
and salary range. The salary range (field salaryRange) is an array of two numeric
values, the minimum and maximum salaries for the job. These values are taken from
SQL columns min_salary and max_salary.

The use of RETURNING JSON here specifies that the JSON data is returned as JSON data
type, not the default return type, VARCHAR2(4000).

SELECT json_object('title'       VALUE job_title, 
                   'salaryRange' VALUE json_array(min_salary, max_salary)
                   RETURNING JSON)
  FROM jobs;

JSON_OBJECT('TITLE'ISJOB_TITLE,'SALARYRANGE'ISJSON_ARRAY(MIN_SALARY,
--------------------------------------------------------------------
{"title":"President","salaryRange":[20080,40000]}
{"title":"Administration Vice President","salaryRange":[15000,30000]}
{"title":"Administration Assistant","salaryRange":[3000,6000]}
{"title":"Finance Manager","salaryRange":[8200,16000]}
{"title":"Accountant","salaryRange":[4200,9000]}
{"title":"Accounting Manager","salaryRange":[8200,16000]}
{"title":"Public Accountant","salaryRange":[4200,9000]}
{"title":"Sales Manager","salaryRange":[10000,20080]}
{"title":"Sales Representative","salaryRange":[6000,12008]}

Chapter 23
SQL/JSON Function JSON_ARRAY

23-14



{"title":"Purchasing Manager","salaryRange":[8000,15000]}
{"title":"Purchasing Clerk","salaryRange":[2500,5500]}
{"title":"Stock Manager","salaryRange":[5500,8500]}
{"title":"Stock Clerk","salaryRange":[2008,5000]}
{"title":"Shipping Clerk","salaryRange":[2500,5500]}
{"title":"Programmer","salaryRange":[4000,10000]}
{"title":"Marketing Manager","salaryRange":[9000,15000]}
{"title":"Marketing Representative","salaryRange":[4000,9000]}
{"title":"Human Resources Representative","salaryRange":[4000,9000]}
{"title":"Public Relations Representative","salaryRange":[4500,10500]}

Because the return type of the JSON data is JSON, this is an alternative syntax for the same
query:

SELECT JSON { 'title'       VALUE job_title, 
              'salaryRange' VALUE [ min_salary, max_salary ] }
  FROM jobs;

Related Topics

• Overview of JSON Generation
An overview is presented of JSON data generation: best practices, the SQL/JSON
generation functions, a simple JSON constructor syntax, handling of input SQL values, and
resulting generated data.

• Handling of Input Values For SQL/JSON Generation Functions
The SQL/JSON generation functions take SQL values as input and return a JSON object
or array. The input values are used to produce JSON object field–value pairs or JSON
array elements. How the input values are used depends on their SQL data type.

• SQL/JSON Function JSON_OBJECT
SQL/JSON function json_object constructs JSON objects from the results of evaluating
its argument SQL expressions.

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_array and the equivalent JSON constructor […] syntax

23.5 SQL/JSON Function JSON_OBJECTAGG
SQL/JSON function json_objectagg constructs a JSON object by aggregating information
from multiple rows of a grouped SQL query as the object members.

Unlike the case for SQL/JSON function json_object, where the number of members in the
resulting object directly reflects the number of arguments, for json_objectagg the size of the
resulting object reflects the current queried data. It can thus vary, depending on the data that
is queried.

Chapter 23
SQL/JSON Function JSON_OBJECTAGG

23-15



Example 23-8    Using JSON_OBJECTAGG to Construct a JSON Object

This example constructs a single JSON object from table hr.departments (from
standard database schema HR) using field names taken from column department_name
and field values taken from column department_id.

Just as for SQL/JSON condition is json, you can use keywords STRICT and WITH
UNIQUE KEYS with functions json_object and json_objectagg. The behavior for each
is the same as for is json.

SELECT json_objectagg(department_name VALUE department_id)
  FROM departments;

-- The returned object is pretty-printed here for clarity.
-- The order of the object members is arbitrary.

JSON_OBJECTAGG(DEPARTMENT_NAMEISDEPARTMENT_ID)
----------------------------------------------
{"Administration":        10,
 "Marketing":             20,
 "Purchasing":            30,
 "Human Resources":       40,
 "Shipping":              50,
 "IT":                    60,
 "Public Relations":      70,
 "Sales":                 80,
 "Executive":             90,
 "Finance":              100,
 "Accounting":           110,
 "Treasury":             120,
 "Corporate Tax":        130,
 "Control And Credit":   140,
 "Shareholder Services": 150,
 "Benefits":             160,
 "Manufacturing":        170,
 "Construction":         180,
 "Contracting":          190,
 "Operations":           200,
 "IT Support":           210,
 "NOC":                  220,
 "IT Helpdesk":          230,
 "Government Sales":     240,
 "Retail Sales":         250,
 "Recruiting":           260,
 "Payroll":              270}

Related Topics

• Overview of JSON Generation
An overview is presented of JSON data generation: best practices, the SQL/JSON
generation functions, a simple JSON constructor syntax, handling of input SQL
values, and resulting generated data.

Chapter 23
SQL/JSON Function JSON_OBJECTAGG

23-16



See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_objectagg

23.6 SQL/JSON Function JSON_ARRAYAGG
SQL/JSON function json_arrayagg constructs a JSON array by aggregating information from
multiple rows of a grouped SQL query as the array elements. The order of array elements
reflects the query result order, by default, but you can use the ORDER BY clause to impose
array element order.

Unlike the case for SQL/JSON function json_array, where the number of elements in the
resulting array directly reflects the number of arguments, for json_arrayagg the size of the
resulting array reflects the current queried data. It can thus vary, depending on the data that
is queried.

Example 23-9    Using JSON_ARRAYAGG to Construct a JSON Array

This example constructs a JSON object for each employee of table hr.employees (from
standard database schema HR) who is a manager in charge of at least six employees. The
objects have fields for the manager id number, manager name, number of employees
reporting to the manager, and id numbers of those employees.

The order of the employee id numbers in the array is determined by the ORDER BY clause for
json_arrayagg. The default direction for ORDER BY is ASC (ascending). The array elements,
which are numeric, are in ascending numerical order.

SELECT json_object('id'         VALUE mgr.employee_id, 
                   'manager'    VALUE (mgr.first_name || ' '|| mgr.last_name),
                   'numReports' VALUE count(rpt.employee_id),
                   'reports'    VALUE json_arrayagg(rpt.employee_id
                                                    ORDER BY rpt.employee_id))
  FROM  employees mgr, employees rpt
  WHERE mgr.employee_id = rpt.manager_id
  GROUP BY mgr.employee_id, mgr.last_name, mgr.first_name
  HAVING count(rpt.employee_id) > 6;

-- The returned object is pretty-printed here for clarity.

JSON_OBJECT('ID'ISMGR.EMPLOYEE_ID,'MANAGER'VALUE(MGR.FIRST_NAME||''||MGR.LAST_NAME)
-----------------------------------------------------------------------------------
{"id":         100,
 "manager":    "Steven King",
 "numReports": 14,
 "reports":    [101,102,114,120,121,122,123,124,145,146,147,148,149,201]}

{"id":         120,
 "manager":    "Matthew Weiss",
 "numReports": 8,
 "reports":    [125,126,127,128,180,181,182,183]}

Chapter 23
SQL/JSON Function JSON_ARRAYAGG

23-17



{"id":         121,
 "manager":    "Adam Fripp",
 "numReports": 8,
 "reports":    [129,130,131,132,184,185,186,187]}

{"id":         122,
 "manager":    "Payam Kaufling",
 "numReports": 8,
 "reports":    [133,134,135,136,188,189,190,191]}

{"id":         123,
 "manager":    "Shanta Vollman",
 "numReports": 8,
 "reports":    [137,138,139,140,192,193,194,195]}

{"id":         124,
 "manager":    "Kevin Mourgos",
 "numReports": 8,
 "reports":    [141,142,143,144,196,197,198,199]}

Example 23-10    Generating JSON Objects with Nested Arrays Using a SQL
Subquery

This example shows a SQL left outer join between two tables: countries and regions.
Table countries has a foreign key, region_id, which joins with the primary key of
table regions, also named region_id.

The query returns a JSON object for each row in table regions. Each of these region
objects has a countries field whose value is an array of country objects — the
countries in that region.

SELECT json_object(
         'region'    : region_name,
         'countries' :
         (SELECT json_arrayagg(json_object('id'   : country_id,
                                           'name' : country_name))
            FROM countries c
            WHERE c.region_id = r.region_id))
  FROM regions r;

The query results in objects such as the following:

{"region"    : "Europe",
 "countries" : [{"id"   : "BE",
                 "name" : "Belgium"},
                {"id"   : "CH",
                 "name" : "Switzerland"},
                {"id"   : "DE",
                 "name" : "Germany"},
                {"id"   : "DK",
                 "name" : "Denmark"},
                {"id"   : "FR",
                 "name" : "France"},
                {"id"   : "IT",

Chapter 23
SQL/JSON Function JSON_ARRAYAGG

23-18



                 "name" : "Italy"},
                {"id"   : "NL",
                 "name" : "Netherlands"},
                {"id"   : "UK",
                 "name" : "United Kingdom"}]}

Related Topics

• Overview of JSON Generation
An overview is presented of JSON data generation: best practices, the SQL/JSON
generation functions, a simple JSON constructor syntax, handling of input SQL values, and
resulting generated data.

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_arrayagg

Chapter 23
SQL/JSON Function JSON_ARRAYAGG

23-19



Part VI
PL/SQL Object Types for JSON

You can use PL/SQL object types for JSON to read and write multiple fields of a JSON
document. This can increase performance, in particular by avoiding multiple parses and
serializations of the data.

• Overview of PL/SQL Object Types for JSON
PL/SQL object types allow fine-grained programmatic construction and manipulation of
In-Memory JSON data. You can introspect it, modify it, and serialize it back to textual
JSON data.

• Using PL/SQL Object Types for JSON
Some examples of using PL/SQL object types for JSON are presented.



24
Overview of PL/SQL Object Types for JSON

PL/SQL object types allow fine-grained programmatic construction and manipulation of In-
Memory JSON data. You can introspect it, modify it, and serialize it back to textual JSON
data.

The principal PL/SQL JSON object types are JSON_ELEMENT_T, JSON_OBJECT_T,
JSON_ARRAY_T, and JSON_SCALAR_T. Another, less used object type is JSON_KEY_LIST, which
is a varray of VARCHAR2(4000). Object types are also called abstract data types (ADTs).

These JSON object types provide an In-Memory, hierarchical (tree-like), programmatic
representation of JSON data that is stored in the database.1

You can use the object types to programmatically manipulate JSON data in memory, to do
things such as the following:

• Check the structure, types, or values of existing JSON data. For example, check whether
the value of a given object field satisfies certain conditions.

• Transform existing JSON data. For example, convert address or phone-number formats
to follow a particular convention.

• Create JSON data using programming rules that match the characteristics of whatever
the data represents. For example, if a product to be represented as a JSON object is
flammable then include fields that represent safety information.

You construct an object-type instance in memory, either all at once, by parsing JSON text, or
piecemeal, starting with an empty object or array instance and adding object members or
array elements to it. You can construct an object-type instance directly from JSON type data
using JSON type method load().

PL/SQL object-type instances are transient. To persist the information they contain you must
either store it in a database table or marshal it to a database client such as Java Database
Connectivity (JDBC). For this, you need to convert the object-type instance to a persistable
data type for JSON data: JSON, VARCHAR2, CLOB, or BLOB.

Opposite to the use of method load(), you can use PL/SQL function to_json to convert an
object-type instance to a JSON type instance.

An unused object-type instance is automatically garbage-collected; you cannot, and need
not, free up the memory used by an instance that you no longer need.

Relations Among the JSON Object Types

Type JSON_ELEMENT_T is the supertype of the other JSON object types: each of them extends
it as a subtype. Subtypes JSON_OBJECT_T and JSON_ARRAY_T are used for JSON objects and
arrays, respectively. Subtype JSON_SCALAR_T is used for scalar JSON values: strings,
numbers, the Boolean values true and false, and the value null.

1 This is similar to what is available for XML data using the Document Object Model (DOM), a language-neutral and
platform-neutral object model and API for accessing the structure of XML documents that is recommended by the World
Wide Web Consortium (W3C).

24-1



You can construct an instance of type JSON_ELEMENT_T only by parsing JSON text.
Parsing creates a JSON_ELEMENT_T instance, which is an In-Memory representation of
the JSON data. You cannot construct an empty instance of type JSON_ELEMENT_T or
type JSON_SCALAR_T.

Types JSON_OBJECT_T and JSON_ARRAY_T each have a constructor function of the same
name as the type, which you can use to construct an instance of the type: an empty
(In-Memory) representation of a JSON object or array, respectively. You can then fill
this object or array as needed, adding object members or array elements, represented
by PL/SQL object-type instances.

You can cast an instance of JSON_ELEMENT_T to a subtype instance, using PL/SQL
function treat. For example, treat(elt AS JSON_OBJECT_T) casts instance elt as a
JSON object (instance of JSON_OBJECT_T).

Parsing Function and JSON Type Constructor

Static function parse accepts an instance of type VARCHAR2, CLOB, or BLOB as
argument, which it parses as JSON text to return an instance of type JSON_ELEMENT_T,
JSON_OBJECT_T, or JSON_ARRAY_T.

In addition to parsing textual JSON data, you can construct object-type instances by
passing existing JSON type data to constructors JSON_OBJECT_T, JSON_ARRAY_T and
JSON_SCALAR_T. Alternatively, you can use method load() to construct object-type
instances (JSON_ELEMENT_T, JSON_OBJECT_T, JSON_ARRAY_T, and JSON_SCALAR_T) from
JSON type data.

Serialization Functions and TO_JSON

Parsing accepts input JSON data as text and returns an instance of a PL/SQL JSON
object type. Serialization does essentially the opposite: you apply it to a PL/SQL object
representation of JSON data and it returns a textual representation of that object. The
serialization methods have names that start with prefix to_. For example, method
to_string() returns a string (VARCHAR2) representation of the JSON object-type
instance you apply it to.

Besides serializing an object-type instance to textual JSON data, you can use function
to_json to convert an object-type instance to an instance of JSON data type.

Most serialization methods are member functions. For serialization as a CLOB or BLOB
instance, however, there are two forms of the methods: a member function and a
member procedure. The member function accepts no arguments. It creates a
temporary LOB as the serialization destination. The member procedure accepts a LOB
IN OUT argument (CLOB instance for method to_clob(), BLOB for method to_blob()).
You can thus pass it the LOB (possibly empty) that you want to use for the serialized
representation.

Getter and Setter Methods

Types JSON_OBJECT_T and JSON_ARRAY_T have getter and setter methods, which obtain
and update, respectively, the values of a given object field or a given array element
position.

There are two kinds of getter method:

• Method get() returns a reference to the original object to which you apply it, as an
instance of type JSON_ELEMENT_T. That is, the object to which you apply it is

Chapter 24

24-2



passed by reference: If you then modify the returned JSON_ELEMENT_T instance, your
modifications apply to the original object to which you applied get().

• Getter methods whose names have the prefix get_ return a copy of any data that is
targeted within the object or array to which they are applied. That data is passed by
value, not reference.

For example, if you apply method get_string() to a JSON_OBJECT_T instance, passing a
given field as argument, it returns a copy of the string that is the value of that field. If you
apply get_string() to a JSON_ARRAY_T instance, passing a given element position as
argument, it returns a copy of the string at that position in the array.

Like the serialization methods, most getter methods are member functions. But methods
get_clob() and get_blob(), which return the value of a given object field or the element at a
given array position as a CLOB or BLOB instance, have two forms (like the serialization
methods to_clob() and to_blob()): a member function and a member procedure. The
member function accepts no argument other than the targeted object field or array position. It
creates and returns a temporary LOB instance. The member procedure accepts also a LOB
IN OUT argument (CLOB for get_clob, BLOB for get_blob). You can thus pass it the (possibly
empty) LOB instance to use.

The setter methods are put(), put_null(), and (for JSON_ARRAY_T only) append(). These
update the object or array instance to which they are applied, setting the value of the targeted
object field or array element. Note: The setter methods modify the existing instance, instead
of returning a modified copy of it.

Method append()adds a new element at the end of the array instance. Method put_null()
sets an object field or array element value to JSON null.

Method put() requires a second argument (besides the object field name or array element
position), which is the new value to set. For an array, put() also accepts an optional third
argument, OVERWRITE. This is a BOOLEAN value (default FALSE) that says whether to replace an
existing value at the given position.

• If the object already has a field of the same name then put() replaces that value with the
new value.

• If the array already has an element at the given position then, by default, put() shifts that
element and any successive elements forward (incrementing their positions by one) to
make room for the new element, which is placed at the given position. But if optional
argument OVERWRITE is present and is TRUE, then the existing element at the given
position is simply replaced by the new element.

Introspection Methods

Type JSON_ELEMENT_T has introspection methods that you can use to determine whether an
instance is a JSON object, array, scalar, string, number, or Boolean, or whether it is the JSON
value true, false, or null. The names of these methods begin with prefix is_. They are
predicates, returning a BOOLEAN value.

It also has introspection method get_size(), which returns the number of members of a
JSON_OBJECT_T instance and the number of elements of a JSON_ARRAY_T instance (it returns 1
for a JSON_SCALAR_T instance).

Type JSON_ELEMENT_T also has introspection methods is_date() and is_timestamp(), which
test whether an instance represents a date or timestamp. JSON has no native types for dates
or timestamps; these are typically representing using JSON strings. But if a JSON_ELEMENT_T

Chapter 24

24-3



instance is constructed using SQL data of SQL data type DATE or TIMESTAMP then this
type information is kept for the PL/SQL object representation.

Date and timestamp data is represented using PL/SQL object type JSON_SCALAR_T,
whose instances you cannot construct directly. You can, however, add such a value to
an object (as a field value) or an array (as an element) using method put(). Retrieving
it using method get() returns a JSON_SCALAR_T instance.

Types JSON_OBJECT_T and JSON_ARRAY_T have introspection method get_type(),
which returns the JSON type of the targeted object field or array element (as a
VARCHAR2 instance). Type JSON_OBJECT_T also has introspection methods has(), which
returns TRUE if the object has a field of the given name, and get_keys(), which returns
an instance of PL/SQL object type JSON_KEY_LIST, which is a varray of type
VARCHAR2(4000). The varray contains the names of the fields 2 present in the given
JSON_OBJECT_T instance. 

Other Methods

Types JSON_OBJECT_T and JSON_ARRAY_T have the following methods:

• remove() — Remove the object member with the given field or the array element
at the given position.

• clone() — Create and return a (deep) copy of the object or array to which the
method is applied. Modifying any part of this copy has no effect on the original
object or array.

Type JSON_OBJECT_T has method rename_key(), which renames a given object field.2

If the new name provided already names an existing field then an error is raised.

Related Topics

• Using PL/SQL Object Types for JSON
Some examples of using PL/SQL object types for JSON are presented.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about JSON_ARRAY_T

• Oracle Database PL/SQL Packages and Types Reference for
information about JSON_ELEMENT_T

• Oracle Database PL/SQL Packages and Types Reference for
information about JSON_OBJECT_T and JSON_KEY_LIST

• Oracle Database PL/SQL Packages and Types Reference for
information about JSON_SCALAR_T

2 An object field is sometimes called an object “key”.

Chapter 24

24-4



25
Using PL/SQL Object Types for JSON

Some examples of using PL/SQL object types for JSON are presented.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
JSON_ARRAY_T

• Oracle Database PL/SQL Packages and Types Reference for information about
JSON_ELEMENT_T

• Oracle Database PL/SQL Packages and Types Reference for information about
JSON_OBJECT_T

• Oracle Database PL/SQL Packages and Types Reference for information about
JSON_KEY_LIST

Example 25-1    Constructing and Serializing an In-Memory JSON Object

This example uses function parse to parse a string of JSON data that represents a JSON
object with one field, name, creating an instance je of object type JSON_ELEMENT_T. This
instance is tested to see if it represents an object, using introspection method (predicate)
is_object().

If it represents an object (the predicate returns TRUE for je), it is cast to an instance of
JSON_OBJECT_T and assigned to variable jo. Method put() for object type JSON_OBJECT_T is
then used to add object field price with value 149.99.

Finally, JSON_ELEMENT_T instance je (which is the same data in memory as JSON_OBJECT_T
instance jo) is serialized to a string using method to_string(), and this string is printed out
using procedure DBMS_OUTPUT.put_line. The result printed out shows the updated object as
{"name":"Radio-controlled plane","price":149.99}.

The updated transient object je is serialized here only to be printed out; the resulting text is
not stored in the database. Sometime after the example code is run, the memory allocated for
object-type instances je and jo is reclaimed by the garbage collector.

DECLARE
  je JSON_ELEMENT_T;
  jo JSON_OBJECT_T;
BEGIN
  je := JSON_ELEMENT_T.parse('{"name":"Radio controlled plane"}');
  IF (je.is_Object) THEN
    jo := treat(je AS JSON_OBJECT_T);
    jo.put('price', 149.99);
  END IF;
  DBMS_OUTPUT.put_line(je.to_string);

25-1



END;
/

Example 25-2    Using Method GET_KEYS() to Obtain a List of Object Fields

PL/SQL method get_keys() is defined for PL/SQL object type JSON_OBJECT_T. It
returns an instance of PL/SQL object type JSON_KEY_LIST, which is a varray of
VARCHAR2(4000). The varray contains all of the field names for the given
JSON_OBJECT_T instance.

This example iterates through the fields returned by get_keys(), adding them to an
instance of PL/SQL object type JSON_ARRAY_T. It then uses method to_string() to
serialize that JSON array and then prints the resulting string.

DECLARE
  jo          JSON_OBJECT_T;
  ja          JSON_ARRAY_T;
  keys        JSON_KEY_LIST;
  keys_string VARCHAR2(100);
BEGIN
  ja := new JSON_ARRAY_T;
  jo := JSON_OBJECT_T.parse('{"name":"Beda", 
                              "jobTitle":"codmonki", 
                              "projects":["json", "xml"]}');
  keys := jo.get_keys;
  FOR i IN 1..keys.COUNT LOOP
     ja.append(keys(i));
  END LOOP;
  keys_string := ja.to_string;
  DBMS_OUTPUT.put_line(keys_string);
END;
/

The printed output is ["name","jobTitle","projects"].

Example 25-3    Using Method PUT() to Update Parts of JSON Documents

This example updates each purchase-order document in JSON column po_document
of table j_purchaseorder. It iterates over the JSON array LineItems in each
document (variable li_arr), calculating the total price and quantity for each line-item
object (variable li_obj), and it uses method put() to add these totals to li_obj as the
values of new fields totalQuantity and totalPrice. This is done by user-defined
function add_totals.

The SELECT statement here selects one of the documents that has been updated.

CREATE OR REPLACE FUNCTION add_totals(purchaseOrder IN VARCHAR2) RETURN VARCHAR2 IS
  po_obj        JSON_OBJECT_T;
  li_arr        JSON_ARRAY_T;
  li_item       JSON_ELEMENT_T;
  li_obj        JSON_OBJECT_T;
  unitPrice     NUMBER;
  quantity      NUMBER;
  totalPrice    NUMBER := 0;

Chapter 25

25-2



  totalQuantity NUMBER := 0;
BEGIN
  po_obj := JSON_OBJECT_T.parse(purchaseOrder);
  li_arr := po_obj.get_Array('LineItems');
  FOR i IN 0 .. li_arr.get_size - 1 LOOP
    li_obj := JSON_OBJECT_T(li_arr.get(i));
    quantity := li_obj.get_Number('Quantity');
    unitPrice := li_obj.get_Object('Part').get_Number('UnitPrice');
    totalPrice := totalPrice + (quantity * unitPrice);
    totalQuantity := totalQuantity + quantity;
  END LOOP;
  po_obj.put('totalQuantity', totalQuantity);
  po_obj.put('totalPrice', totalPrice);
  RETURN po_obj.to_string;
END;
/

UPDATE j_purchaseorder SET (po_document) = add_totals(po_document);

SELECT po_document FROM j_purchaseorder po
  WHERE po.po_document.PONumber = 1600;

That selects this updated document:

{"PONumber": 1600,
 "Reference": "ABULL-20140421",
 "Requestor": "Alexis Bull",
 "User": "ABULL",
 "CostCenter": "A50",
 "ShippingInstructions":
   {"name": "Alexis Bull",
    "Address": {"street": "200 Sporting Green",
                "city": "South San Francisco",
                "state": "CA",
                "zipCode": 99236,
                "country": "United States of America"},
    "Phone": [{"type": "Office", "number": "909-555-7307"},
              {"type": "Mobile", "number": "415-555-1234"}]},
 "Special Instructions": null,
 "AllowPartialShipment": true,
 "LineItems": [{"ItemNumber": 1,
                "Part": {"Description": "One Magic Christmas",
                         "UnitPrice": 19.95,
                         "UPCCode": 13131092899},
                "Quantity": 9.0},
               {"ItemNumber": 2,
                "Part": {"Description": "Lethal Weapon",
                         "UnitPrice": 19.95,
                         "UPCCode": 85391628927},
                "Quantity": 5.0}],
 "totalQuantity": 14,
 "totalPrice": 279.3}

Chapter 25

25-3



Related Topics

• Overview of PL/SQL Object Types for JSON
PL/SQL object types allow fine-grained programmatic construction and
manipulation of In-Memory JSON data. You can introspect it, modify it, and
serialize it back to textual JSON data.

• Oracle SQL Function JSON_MERGEPATCH
You can use Oracle SQL function json_mergepatch to update specific portions of
a JSON document. You pass it a JSON Merge Patch document, which specifies
the changes to make to a specified JSON document. JSON Merge Patch is an
IETF standard.

Chapter 25

25-4



Part VII
GeoJSON Geographic Data

GeoJSON data is geographic JSON data. Oracle Spatial and Graph supports the use of
GeoJSON objects to store, index, and manage GeoJSON data.

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples are
provided of creating GeoJSON data, indexing it, and querying it.



26
Using GeoJSON Geographic Data

GeoJSON objects are JSON objects that represent geographic data. Examples are provided
of creating GeoJSON data, indexing it, and querying it.

GeoJSON Objects: Geometry, Feature, Feature Collection

GeoJSON uses JSON objects that represent various geometrical entities and combinations
of these together with user-defined properties.

A position is an array of two or more spatial (numerical) coordinates, the first three of which
generally represent longitude, latitude, and altitude.

A geometry object has a type field and (except for a geometry-collection object) a
coordinates field, as shown in Table 26-1.

A geometry collection is a geometry object with type GeometryCollection. Instead of a
coordinates field it has a geometries field, whose value is an array of geometry objects
other than GeometryCollection objects.

Table 26-1    GeoJSON Geometry Objects Other Than Geometry Collections

type Field coordinates Field

Point A position.

MultiPoint An array of positions.

LineString An array of two or more positions.

MultiLineString An array of LineString arrays of positions.

Polygon A MultiLineString, each of whose arrays is a LineString whose first
and last positions coincide (are equivalent). If the array of a polygon contains
more than one array then the first represents the outside polygon and the
others represent holes inside it.

MultiPolygon An array of Polygon arrays, that is, multidimensional array of positions.

A feature object has a type field of value Feature, a geometry field whose value is a
geometric object, and a properties field whose value can be any JSON object.

A feature collection object has a type field of value FeatureCollection, and it has a
features field whose value is an array of feature objects.

Example 26-1 presents a feature-collection object whose features array has three features.
The geometry of the first feature is of type Point; that of the second is of type LineString;
and that of the third is of type Polygon.

Query and Index GeoJSON Data

You can use SQL/JSON query functions and conditions to examine GeoJSON data or to
project parts of it as non-JSON data, including as Oracle Spatial and Graph SDO_GEOMETRY
object-type instances. This is illustrated in Example 26-2, Example 26-3, and Example 26-5.

26-1



To improve query performance, you can create an Oracle Spatial and Graph index
(type MDSYS.SPATIAL_INDEX) on function json_value applied to GeoJSON data. This is
illustrated by Example 26-4.

Example 26-4 indexes only one particular element of an array of geometry features
(the first element). A B-tree index on function json_value can target only a scalar
value. To improve the performance of queries, such as that of Example 26-3, that
target any number of array elements, you can do the following:

• Create an on-statement, refreshable materialized view of the array data, and place
that view in memory.

• Create a spatial index on the array data.

This is shown in Example 26-6 and Example 26-7.

SDO_GEOMETRY Object-Type Instances and Spatial Operations

You can convert Oracle Spatial and Graph SDO_GEOMETRY object-type instances to
GeoJSON objects and GeoJSON objects to SDO_GEOMETRY instances.

You can use Oracle Spatial and Graph operations on SDO_GEOMETRY objects that you
obtain from GeoJSON objects. For example, you can use operator sdo_distance in
PL/SQL package SDO_GEOM to compute the minimum distance between two geometry
objects. This is the distance between the closest two points or two segments, one
point or segment from each object. This is illustrated by Example 26-5.

JSON Data Guide Supports GeoJSON Data

A JSON data guide summarizes structural and type information contained in a set of
JSON documents. If some of the documents contain GeoJSON data then that data is
summarized in a data guide that you create using SQL aggregate function
json_dataguide. If you use SQL function json_dataguide to create a view based on
such a data guide, and you specify the formatting argument as DBMS_JSON.GEOJSON or
DBMS_JSON.GEOJSON+DBMS_JSON.PRETTY, then a column that projects GeoJSON data
from the document set is of SQL data type SDO_GEOMETRY.

See Also:

• Oracle Spatial Developer's Guide for information about using GeoJSON
data with Oracle Spatial and Graph

• Oracle Spatial Developer's Guide for information about Oracle Spatial
and Graph and SDO_GEOMETRY object type

• GeoJSON.org for information about GeoJSON

• The GeoJSON Format Specification for details about GeoJSON data

Example 26-1    A Table With GeoJSON Data

This example creates table j_geo, which has a column, geo_doc of GeoJSON
documents.

Chapter 26

26-2



Only one such document is inserted here. It contains a GeoJSON object of type
FeatureCollection, and a features array of objects of type Feature. Those objects have
geometry, respectively, of type Point, LineString, and Polygon.

CREATE TABLE j_geo
  (id      VARCHAR2 (32) NOT NULL,
   geo_doc VARCHAR2 (4000) CHECK (geo_doc is json));

INSERT INTO j_geo
  VALUES (1,
          '{"type"     : "FeatureCollection",
            "features" : [{"type"       : "Feature",
                           "geometry"   : {"type" : "Point",
                                           "coordinates" : [-122.236111, 37.482778]},
                           "properties" : {"Name" : "Redwood City"}},
                          {"type"       : "Feature",
                           "geometry"   : {"type" : "LineString",
                                           "coordinates" : [[102.0, 0.0],
                                                            [103.0, 1.0],
                                                            [104.0, 0.0],
                                                            [105.0, 1.0]]},
                           "properties" : {"prop0" : "value0",
                                           "prop1" : 0.0}},
                          {"type"       : "Feature",
                           "geometry"   : {"type" : "Polygon",
                                           "coordinates" : [[[100.0, 0.0],
                                                             [101.0, 0.0],
                                                             [101.0, 1.0],
                                                             [100.0, 1.0],
                                                             [100.0, 0.0]]]},
                           "properties" : {"prop0" : "value0",
                                           "prop1" : {"this" : "that"}}}]}');

Example 26-2    Selecting a geometry Object From a GeoJSON Feature As an
SDO_GEOMETRY Instance

This example uses SQL/JSON function json_value to select the value of field geometry from
the first element of array features. The value is returned as Oracle Spatial and Graph data,
not as JSON data, that is, as an instance of PL/SQL object type SDO_GEOMETRY, not as a SQL
string or LOB instance.

SELECT json_value(geo_doc, '$.features[0].geometry'
                  RETURNING SDO_GEOMETRY 
                  ERROR ON ERROR)
  FROM j_geo;

The value returned is this, which represents a point with longitude and latitude (coordinates)
-122.236111 and 37.482778, respectively.

SDO_GEOMETRY(2001,
             4326,
             SDO_POINT_TYPE(-122.236111, 37.482778, NULL),

Chapter 26

26-3



             NULL,
             NULL)

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_value

Example 26-3    Retrieving Multiple geometry Objects From a GeoJSON Feature
As SDO_GEOMETRY

This example uses SQL/JSON function json_table to project the value of field
geometry from each element of array features, as column sdo_val of a virtual table.
The retrieved data is returned as SDO_GEOMETRY.

SELECT jt.*
  FROM j_geo,
       json_table(geo_doc, '$.features[*]'
         COLUMNS (sdo_val SDO_GEOMETRY PATH '$.geometry')) jt;

See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_table

The following three rows are returned for the query. The first represents the same
Point as in Example 26-2. The second represents the LineString array. The third
represents the Polygon.

SDO_GEOMETRY(2001,
             4326,
             SDO_POINT_TYPE(-122.236111, 37.482778, NULL),
             NULL,
             NULL)

SDO_GEOMETRY(2002,
             4326,
             NULL,
             SDO_ELEM_INFO_ARRAY(1, 2, 1),
             SDO_ORDINATE_ARRAY(102, 0, 103, 1, 104, 0, 105, 1))

SDO_GEOMETRY(2003,
             4326,
             NULL,
             SDO_ELEM_INFO_ARRAY(1, 1003, 1),
             SDO_ORDINATE_ARRAY(100, 0, 101, 0, 101, 1, 100, 1, 100, 
0))

Chapter 26

26-4



The second and third elements of attribute SDO_ELEM_INFO_ARRAY specify how to interpret the
coordinates provided by attribute SDO_ORDINATE_ARRAY. They show that the first row returned
represents a line string (2) with straight segments (1), and the second row represents a
polygon (2003) of straight segments (1).

Example 26-4    Creating a Spatial Index For Scalar GeoJSON Data

This example creates a json_value function-based index of type MDSYS.SPATIAL_INDEX on
field geometry of the first element of array features. This can improve the performance of
queries that use json_value to retrieve that value.

CREATE INDEX geo_first_feature_idx
  ON j_geo (json_value(geo_doc, '$.features[0].geometry'
                       RETURNING SDO_GEOMETRY))
  INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Example 26-5    Using GeoJSON Geometry With Spatial Operators

This example selects the documents (there is only one in this table) for which the geometry
field of the first features element is within 100 kilometers of a given point. The point is
provided literally here (its coordinates are the longitude and latitude of San Francisco,
California). The distance is computed from this point to each geometry object.

The query orders the selected documents by the calculated distance. The tolerance in meters
for the distance calculation is provided in this query as the literal argument 100.

SELECT id,
       json_value(geo_doc, '$.features[0].properties.Name') "Name",
       SDO_GEOM.sdo_distance(
         json_value(geo_doc, '$.features[0].geometry'
                    RETURNING SDO_GEOMETRY),
         SDO_GEOMETRY(2001,
                      4326,
                      SDO_POINT_TYPE(-122.416667, 37.783333, NULL),
                      NULL,
                      NULL),
         100, -- Tolerance in meters
         'unit=KM') "Distance in kilometers"
  FROM  j_geo
  WHERE sdo_within_distance(
          json_value(geo_doc, '$.features[0].geometry'
                     RETURNING SDO_GEOMETRY),
          SDO_GEOMETRY(2001,
                       4326,
                       SDO_POINT_TYPE(-122.416667, 37.783333, NULL),
                       NULL,
                       NULL),
          'distance=100 unit=KM')
        = 'TRUE';

Chapter 26

26-5



See Also:

Oracle Database SQL Language Reference for information about SQL/JSON
function json_value

The query returns a single row:

ID    Name           Distance in kilometers
----- -------------- ----------------------
1     Redwood City   26.9443035

Example 26-6    Creating a Materialized View Over GeoJSON Data

CREATE OR REPLACE MATERIALIZED VIEW geo_doc_view
  BUILD IMMEDIATE
  REFRESH FAST ON STATEMENT WITH ROWID
  AS SELECT g.rowid, jt.*
       FROM j_geo g,
            json_table(geo_doc, '$.features[*]'
              COLUMNS (sdo_val SDO_GEOMETRY PATH '$.geometry')) jt;

Example 26-7    Creating a Spatial Index on a Materialized View Over GeoJSON
Data

This example first prepares for the creation of the spatial index by populating some
spatial-indexing metadata. It then creates the index on the SDO_GEOMETRY column,
sdo_val, of materialized view geo_doc_view, which is created in Example 26-6. Except
for the view and column names, the code for populating the indexing metadata is fixed
— use it each time you need to create a spatial index on a materialized view.

-- Populate spatial-indexing metadata

INSERT INTO USER_SDO_GEOM_METADATA
  VALUES ('GEO_DOC_VIEW',
          'SDO_VAL',
          MDSYS.sdo_dim_array(
            MDSYS.sdo_dim_element('Longitude', -180, 180, 0.05),
            MDSYS.sdo_dim_element('Latitude', -90, 90, 0.05)),
          7
          4326);

-- Create spatial index on geometry column of materialized view

CREATE INDEX geo_all_features_idx ON geo_doc_view(sdo_val)
  INDEXTYPE IS MDSYS.SPATIAL_INDEX V2;

Chapter 26

26-6



Related Topics

• Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you project to
columns using SQL/JSON function json_table. To further improve query performance
you can create a materialized view and place the JSON data in memory.

• JSON Data-Guide Fields
The predefined fields of a JSON data guide are described. They include JSON Schema
fields (keywords) and Oracle-specific fields.

Chapter 26

26-7



Part VIII
Performance Tuning for JSON

To tune query performance you can index JSON fields in several ways, store their values in
the In-Memory Column Store (IM column store), or expose them as non-JSON data using
materialized views.

• Overview of Performance Tuning for JSON
Which performance-tuning approaches you take depend on the needs of your
application. Some use cases and recommended solutions are outlined here.

• Indexes for JSON Data
You can index scalar values in your JSON data using function-based indexes. In addition,
you can define a JSON search index, which is useful for both ad hoc structural queries
and full-text queries.

• In-Memory JSON Data
A column of JSON data can be stored in the In-Memory Column Store (IM column store)
to improve query performance.

• JSON Query Rewrite To Use a Materialized View Over JSON_TABLE
You can enhance the performance of queries that access particular JSON fields by
creating, and indexing, a materialized view over such data that's defined using SQL/
JSON function json_table.



27
Overview of Performance Tuning for JSON

Which performance-tuning approaches you take depend on the needs of your application.
Some use cases and recommended solutions are outlined here.

The use cases can be divided into two classes: searching for or accessing data based on
values of JSON fields that occur (1) at most once in a given document or (2) possibly more
than once.

Queries That Access the Values of Fields That Occur at Most Once in a Given
Document

You can tune the performance of such queries in the same ways as for non-JSON data. The
choices of which JSON fields to define virtual columns for or which to index, whether to place
the column containing your JSON data in the In-Memory Column Store (IM column store),
and whether to create materialized views that project some of its fields, are analogous to the
non-JSON case.

However, in the case of JSON data it is generally more important to apply at least one such
performance tuning than it is in the case non-JSON data. Without any such performance aid,
it is typically more expensive to access a JSON field than it is to access (non-JSON) column
data, because a JSON document must be traversed to locate the data you seek.

Create virtual columns from JSON fields or index JSON fields:

• If your queries use simple and highly selective search criteria, for a single JSON field:

– Define a virtual column on the field.

You can often improve performance further by placing the table in the IM column
store or creating an index on the virtual column.

– Create a function-based index on the field using SQL/JSON function json_value.

• If your queries involve more than one field:

– Define a virtual column on each of the fields.

You can often improve performance further by placing the table in the IM column
store or creating a composite index on the virtual columns.

– Create a composite function-based index on the fields using multiple invocations of
SQL/JSON function json_value, one for each field.

Queries That Access the Values of Fields That Can Occur More Than Once in a Given
Document

In particular, this is the case when you access fields that are contained within an array.

There are four techniques you can use to tune the performance of such queries:

• Use a multivalue function-based index for SQL/JSON condition json_exists.

This is possible only for JSON data that is stored as JSON data type. Such an index
targets scalar JSON values, either individually or within a JSON array.

27-1



• Place the table that contains the JSON data in the IM column store.

• Use a JSON search index.

This indexes all of the fields in a JSON document along with their values, including
fields that occur inside arrays. The index can optimize any path-based search,
including those using path expressions that include filters and full-text operators.
The index also supports range-based searches on numeric values.

• Use a materialized view of non-JSON columns that are projected from JSON field
values using SQL/JSON function json_table.

You can generate a separate row from each member of a JSON array, using the
NESTED PATH clause with json_table.

A materialized view is typically used for optimizing SQL-based reporting and
analytics for JSON content.

Chapter 27

27-2



28
Indexes for JSON Data

You can index scalar values in your JSON data using function-based indexes. In addition, you
can define a JSON search index, which is useful for both ad hoc structural queries and full-
text queries.

• Overview of Indexing JSON Data
You can index particular scalar values within your JSON data using function-based
indexes. You can index JSON data in a general way using a JSON search index, for ad
hoc structural queries and full-text queries.

• How To Tell Whether a Function-Based Index for JSON Data Is Picked Up
Whether or not a particular index is picked up for a given query is determined by the
optimizer. To determine whether a given query picks up a given function-based index,
look for the index name in the execution plan for the query.

• Creating Bitmap Indexes for JSON_VALUE
You can create a bitmap index for SQL/JSON function json_value. A bitmap index can
be appropriate whenever your queries target only a small set of JSON values.

• Creating B-Tree Indexes for JSON_VALUE
You can create a B-tree function-based index for SQL/JSON function json_value. You
can use the standard syntax for this, explicitly specifying json_value, or you can use dot-
notation syntax with an item method. Indexes created in either of these ways can be used
with both dot-notation queries and json_value queries.

• Using a JSON_VALUE Function-Based Index with JSON_TABLE Queries
An index created using json_value with ERROR ON ERROR can be used for a query
involving json_table. In this case the index acts as a constraint on the indexed path, to
ensure that only one (non-null) scalar JSON value is projected for each item in the
JSON collection.

• Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries
An index created using SQL/JSON function json_value with ERROR ON ERROR can be
used for a query involving SQL/JSON condition json_exists.

• Data Type Considerations for JSON_VALUE Indexing and Querying
For a function-based index created using SQL/JSON function json_value to be picked
up for a given query, the data type returned by json_value in the query must match the
type specified in the index.

• Creating Multivalue Function-Based Indexes for JSON_EXISTS
For JSON data that is stored as JSON data type you can use a multivalue function-based
index for SQL/JSON condition json_exists. Such an index targets scalar JSON values,
either individually or within a JSON array.

• Using a Multivalue Function-Based Index
A json_exists query in a WHERE clause can pick up a multivalue function-based index if
(and only if) the data that it targets matches the scalar types specified in the index.

• Indexing Multiple JSON Fields Using a Composite B-Tree Index
To index multiple fields of a JSON object you can create a composite B-tree index using
multiple path expressions with SQL/JSON function json_value or dot-notation syntax.

28-1



• JSON Search Index for Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both
(1) ad hoc structural queries, that is, queries that you might not anticipate or use
regularly, and (2) full-text search. It is an Oracle Text index that is designed
specifically for use with JSON data.

28.1 Overview of Indexing JSON Data
You can index particular scalar values within your JSON data using function-based
indexes. You can index JSON data in a general way using a JSON search index, for
ad hoc structural queries and full-text queries.

As always, function-based indexing is appropriate for queries that target particular
functions, which in the context of SQL/JSON functions means particular SQL/JSON
path expressions. This indexing is not very helpful for queries that are ad hoc, that is,
arbitrary. Define a function-based index if you know that you will often query a
particular path expression.

Regardless of the SQL data type you use to store JSON data, you can use a B-tree or
bitmap function-based index for SQL/JSON function json_value queries. Such an
index targets a single scalar JSON value. A bitmap index can be appropriate wherever
the number of possible values for the function is small. For example, you can use a
bitmap index for json_value if the values targeted are expected to be few.

For JSON data that is stored as JSON type you can use a multivalue function-based
index for SQL/JSON condition json_exists. Such an index targets scalar JSON
values, either individually or (especially) as elements of a JSON array.

Although a multivalue index can index a single scalar value, if you expect a path
expression to target such a value then it is more performant to use a B-tree or bitmap
index. Use a multivalue index especially to index a path expression that you expect to
target an array of scalar values.

SQL/JSON path expressions that contain predicates can be used in queries that pick
up a function-based index. But a path expression that you use to define a function-
based index cannot contain predicates.

If you query in an ad hoc manner then define a JSON search index. This is a general
index, not targeted to any specific path expression. It is appropriate for structural
queries, such as looking for a JSON field with a particular value, and for full-text
queries using Oracle SQL condition json_textcontains, such as looking for a
particular word among various string values.

You can of course define both function-based indexes and a JSON search index for
the same JSON column.

A JSON search index is an Oracle Text (full-text) index designed specifically for use
with JSON data.

Chapter 28
Overview of Indexing JSON Data

28-2



Note:

Oracle recommends that you use AL32UTF8 as the database character set.
Automatic character-set conversion can take place when creating or applying an
index. Such conversion can be lossy, which can mean that some data that you
might expect to be returned by a query is not returned. See Character Sets and
Character Encoding for JSON Data.

Related Topics

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples are
provided of creating GeoJSON data, indexing it, and querying it.

• JSON Search Index for Ad Hoc Queries and Full-Text Search
A JSON search index is a general index. It can improve the performance of both (1) ad
hoc structural queries, that is, queries that you might not anticipate or use regularly, and
(2) full-text search. It is an Oracle Text index that is designed specifically for use with
JSON data.

• JSON Query Rewrite To Use a Materialized View Over JSON_TABLE
You can enhance the performance of queries that access particular JSON fields by
creating, and indexing, a materialized view over such data that's defined using SQL/
JSON function json_table.

28.2 How To Tell Whether a Function-Based Index for JSON
Data Is Picked Up

Whether or not a particular index is picked up for a given query is determined by the
optimizer. To determine whether a given query picks up a given function-based index, look for
the index name in the execution plan for the query.

For example:

• Given the index defined in Example 28-3, an execution plan for each of the queries in
these examples references an index scan with index po_num_id1: Example 28-5, 
Example 28-6, Example 28-7, Example 28-8, and Example 28-10

• Given the index defined in Example 28-14, an execution plan for the queries in examples 
Example 28-17 and Example 28-18 references an index scan with index mvi_1.

When a multivalue index is picked up, the execution plan also shows (MULTI VALUE) for the
index range scan, and the filter used in the plan is JSON_QUERY, not JSON_EXISTS2. If the
execution plan does not use a multivalue index for a given json_exists query, then the filter
is JSON_EXISTS2.

Related Topics

• JSON Query Rewrite To Use a Materialized View Over JSON_TABLE
You can enhance the performance of queries that access particular JSON fields by
creating, and indexing, a materialized view over such data that's defined using SQL/
JSON function json_table.

Chapter 28
How To Tell Whether a Function-Based Index for JSON Data Is Picked Up

28-3



28.3 Creating Bitmap Indexes for JSON_VALUE
You can create a bitmap index for SQL/JSON function json_value. A bitmap index can
be appropriate whenever your queries target only a small set of JSON values.

Example 28-1    Creating a Bitmap Index for JSON_VALUE

This is an appropriate index to create provided there are only a few possible values for
field CostCenter in your data.

CREATE BITMAP INDEX cost_ctr_idx ON j_purchaseorder
  (json_value(po_document, '$.CostCenter'));

28.4 Creating B-Tree Indexes for JSON_VALUE
You can create a B-tree function-based index for SQL/JSON function json_value. You
can use the standard syntax for this, explicitly specifying json_value, or you can use
dot-notation syntax with an item method. Indexes created in either of these ways can
be used with both dot-notation queries and json_value queries.

Example 28-3 creates a function-based index for json_value on field PONumber of the
object that is in column po_document of table j_purchaseorder. The object is passed
as the path-expression context item.

The use of ERROR ON ERROR here means that if the data contains a record that has no
PONumber field, has more than one PONumber field, or has a PONumber field with a non-
number value then index creation fails. And if the index exists then trying to insert such
a record fails.

An alternative is to create an index using the dot-notation syntax described in Simple
Dot-Notation Access to JSON Data, applying an item method to the targeted data. 
Example 28-2 illustrates this.

The indexes created in both Example 28-3 and Example 28-2 can be picked up for
either a query that uses dot-notation syntax or a query that uses json_value.

If you want to allow indexing of data that might be missing the field targeted by a
json_value expression, then use a NULL ON EMPTY clause, together with an ERROR ON
ERROR clause. Example 28-4 illustrates this.

Oracle recommends that you create a function-based index for json_value using one
of the following forms. In each case the index can be used in both dot-notation and
json_value queries that lead to a scalar result of the specified JSON data type.

• Dot-notation syntax, with an item method applied to the value to be indexed. The
indexed values are only scalars of the data type specified by the item method.

• A json_value expression that specifies a RETURNING data type. It can optionally
use ERROR ON ERROR and NULL ON EMPTY. The indexed values are only scalars of
the data type specified by the RETURNING clause.

Indexes created in either of these ways can thus be used with both dot-notation
queries and json_value queries.

Chapter 28
Creating Bitmap Indexes for JSON_VALUE

28-4



Example 28-2    Creating a Function-Based Index for a JSON Field: Dot Notation

Item method number() causes the index to be of numeric type. Always apply an item method
to the targeted data when you use dot notation to create a function-based index.

CREATE UNIQUE INDEX po_num_idx1 ON j_purchaseorder po
  (po.po_document.PONumber.number());

Example 28-3    Creating a Function-Based Index for a JSON Field: JSON_VALUE

Item method number() causes the index to be of numeric type. Alternatively you can instead
use clause RETURNING NUMBER.

CREATE UNIQUE INDEX po_num_idx2 ON j_purchaseorder
  (json_value(po_document, '$.PONumber.number()' 
              ERROR ON ERROR));

Example 28-4    Specifying NULL ON EMPTY for a JSON_VALUE Function-Based Index

Clause RETURNING VARCHAR2(200) causes the index to be a SQL string of maximum length
200 characters. You could use item method string() in the path expression instead, but in
that case the default return type of VARCHAR2(4000) is used.

Because of clause NULL ON EMPTY, index po_ref_idx1 can index JSON documents that have
no Reference field.

CREATE UNIQUE INDEX po_ref_idx1 ON j_purchaseorder
  (json_value(po_document, '$.Reference'
              RETURNING VARCHAR2(200) ERROR ON ERROR
              NULL ON EMPTY));

Related Topics

• Empty-Field Clause for SQL/JSON Query Functions
SQL/JSON query functions json_value, json_query, and json_table accept an optional
ON EMPTY clause, which specifies the handling to use when a targeted JSON field is
absent from the data queried. This clause and the default behavior (no ON EMPTY clause)
are described here.

• Using GeoJSON Geographic Data
GeoJSON objects are JSON objects that represent geographic data. Examples are
provided of creating GeoJSON data, indexing it, and querying it.

28.5 Using a JSON_VALUE Function-Based Index with
JSON_TABLE Queries

An index created using json_value with ERROR ON ERROR can be used for a query involving
json_table. In this case the index acts as a constraint on the indexed path, to ensure that
only one (non-null) scalar JSON value is projected for each item in the JSON collection.

For the index to be used in this way each of these conditions must hold:

• The query WHERE clause refers to a column projected by json_table.

Chapter 28
Using a JSON_VALUE Function-Based Index with JSON_TABLE Queries

28-5



• The data type of that column matches the data type used in the index definition.

• The effective SQL/JSON path that targets that column matches the indexed path
expression.

The query in Example 28-5 thus makes use of the index created in Example 28-3.

Note:

A function-based index created using a json_value expression or dot
notation can be picked up for a corresponding occurrence in a query WHERE
clause only if the occurrence is used in a SQL comparison condition, such as
>=. In particular, it is not picked up for an occurrence used in condition IS
NULL or IS NOT NULL.

See Oracle Database SQL Language Reference for information about SQL
comparison conditions.

Example 28-5    Use of a JSON_VALUE Function-Based Index with a
JSON_TABLE Query

The index can be picked up because the column SQL type, NUMBER(5), matches the
type used in the index.

SELECT jt.*
  FROM j_purchaseorder po,
       json_table(po.po_document, '$'
         COLUMNS po_number  NUMBER(5) PATH '$.PONumber',
                 reference  VARCHAR2(30 CHAR) PATH '$.Reference',
                 requestor  VARCHAR2(32 CHAR) PATH '$.Requestor',
                 userid     VARCHAR2(10 CHAR) PATH '$.User',
                 costcenter VARCHAR2(16 CHAR) PATH '$.CostCenter') jt
  WHERE po_number = 1600;

28.6 Using a JSON_VALUE Function-Based Index with
JSON_EXISTS Queries

An index created using SQL/JSON function json_value with ERROR ON ERROR can be
used for a query involving SQL/JSON condition json_exists.

In order for a json_value function-based index to be picked up for one of the
comparisons of the query, the type of that comparison must be the same as the
returning SQL data type for the index. The SQL data types used are those mentioned
for item methods double(), float(), number(), string(),timestamp(), date(),
dateWithTime(), dsInterval(), and ymInterval() — see SQL/JSON Path
Expression Item Methods.

For example, if the index returns a number then the comparison type must also be
number. If the query filter expression contains more than one comparison that matches
a json_value index, the optimizer chooses one of the indexes.

The type of a comparison is determined as follows:

Chapter 28
Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries

28-6



1. If the SQL data types of the two comparison terms (sides of the comparison) are different
then the type of the comparison is unknown, and the index is not picked up. Otherwise,
the types are the same, and this type is the type of the comparison.

2. If a comparison term is of SQL data type string (a text literal) then the type of the
comparison is the type of the other comparison term.

3. If a comparison term is a path expression with a function step whose item method
imposes a SQL match type then that is also the type of that comparison term. The item
methods that impose a SQL match type are double(), float(), number(), string(),
timestamp(), date(), dateWithTime(), dsInterval(), and ymInterval().

4. If a comparison term is a path expression with no such function step then its type is SQL
string (text literal).

Example 28-3 creates a function-based index for json_value on field PONumber. The index
indexes NUMBER values.

Each of the queries Example 28-6, Example 28-7, and Example 28-8 can make use of this
index when evaluating its json_exists condition. Each of these queries uses a comparison
that involves a simple path expression that is relative to the absolute path
expression $.PONumber. The relative simple path expression in each case targets the current
filter item, @, but in the case of Example 28-8 it transforms (casts) the matching data to SQL
data type NUMBER.

Example 28-6    JSON_EXISTS Query Targeting Field Compared to Literal Number

This query makes use of the index because:

1. One comparison term is a path expression with no function step, so its type is SQL string
(text literal).

2. Because one comparison term is of type string, the comparison has the type of the other
term, which is number (the other term is a numeral).

3. The type of the (lone) comparison is the same as the type returned by the index: number.

SELECT count(*) FROM j_purchaseorder 
  WHERE json_exists(po_document, '$.PONumber?(@ > 1500)');

Example 28-7    JSON_EXISTS Query Targeting Field Compared to Variable Value

This query can make use of the index because:

1. One comparison term is a path expression with no function step, so its type is SQL string
(text literal).

2. Because one comparison term is of type string, the comparison has the type of the other
term, which is number (the other term is a variable that is bound to a number).

3. The type of the (lone) comparison is the same as the type returned by the index: number.

SELECT count(*) FROM j_purchaseorder 
  WHERE json_exists(po_document, '$.PONumber?(@ > $d)'
                    PASSING 1500 AS "d");

Chapter 28
Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries

28-7



Example 28-8    JSON_EXISTS Query Targeting Field Cast to Number Compared
to Variable Value

This query can make use of the index because:

1. One comparison term is a path expression with a function step whose item method
(number()) transforms the matching data to a number, so the type of that
comparison term is SQL number.

2. The other comparison term is a numeral, which has SQL type number. The types
of the comparison terms match, so the comparison has this same type, number.

3. The type of the (lone) comparison is the same as the type returned by the index:
number.

SELECT count(*) FROM j_purchaseorder 
  WHERE json_exists(po_document, '$.PONumber?(@.number() > $d)'
                    PASSING 1500 AS "d");

Example 28-9    JSON_EXISTS Query Targeting a Conjunction of Field
Comparisons

Just as for Example 28-6, this query can make use of the index on field PONumber. If a
json_value index is also defined for field Reference then the optimizer chooses which
index to use for this query.

SELECT count(*) FROM j_purchaseorder
  WHERE json_exists(po_document,
                    '$?(@.PONumber > 1500
                        && @.Reference == "ABULL-20140421")');

Related Topics

• Creating B-Tree Indexes for JSON_VALUE
You can create a B-tree function-based index for SQL/JSON function json_value.
You can use the standard syntax for this, explicitly specifying json_value, or you
can use dot-notation syntax with an item method. Indexes created in either of
these ways can be used with both dot-notation queries and json_value queries.

• SQL/JSON Path Expressions
Oracle Database provides SQL access to JSON data using SQL/JSON path
expressions.

• JSON Query Rewrite To Use a Materialized View Over JSON_TABLE
You can enhance the performance of queries that access particular JSON fields by
creating, and indexing, a materialized view over such data that's defined using
SQL/JSON function json_table.

28.7 Data Type Considerations for JSON_VALUE Indexing
and Querying

For a function-based index created using SQL/JSON function json_value to be picked
up for a given query, the data type returned by json_value in the query must match
the type specified in the index.

Chapter 28
Data Type Considerations for JSON_VALUE Indexing and Querying

28-8



When RETURNING DATE is used with json_value, the same time-handling behavior (truncation
or preservation) must be used in both the index and the query, for the index to be picked up.
That is, either RETURNING DATE PRESERVE TIME must be used in both, or RETURNING DATE
TRUNCATE TIME (or RETURNING DATE, since truncation is the default behavior) must be used in
both.

By default, SQL/JSON function json_value returns a VARCHAR2 value. When you create a
function-based index using json_value, unless you use a RETURNING clause or an item
method to specify a different return data type, the index is not picked up for a query that
expects a non-VARCHAR2 value.

For example, in the query of Example 28-10, json_value uses RETURNING NUMBER. The index
created in Example 28-3 can be picked up for this query, because the indexed json_value
expression specifies a return type of NUMBER. Without keywords RETURNING NUMBER in the
index the return type it specifies would be VARCHAR2(4000) (the default) — the index would
not be picked up for such a query.

Similarly, the index created in Example 28-2 can be picked up for the query because it uses
item method number(), which also imposes a return type of NUMBER.

Now consider the queries in Example 28-11 and Example 28-12, which use json_value
without a RETURNING clause, so that the value returned is of type VARCHAR2.

In Example 28-11, SQL function to_number explicitly converts the VARCHAR2 value returned by
json_value to a number. Similarly, in Example 28-12, comparison condition > (greater-than)
implicitly converts the value to a number.

Neither of the indexes of Example 28-3 and Example 28-2 is picked up for either of these
queries. The queries might return the right results in each case, because of type-casting, but
the indexes cannot be used to evaluate the queries.

Consider also what happens if some of the data cannot be converted to a particular data
type. For example, given the queries in Example 28-10, Example 28-11, and Example 28-12,
what happens to a PONumber value such as "alpha"?

For Example 28-11 and Example 28-12, the query stops in error because of the attempt to
cast the value to a number. For Example 28-10, however, because the default error handling
behavior is NULL ON ERROR, the non-number value "alpha" is simply filtered out. The value is
indexed, but it is ignored for the query.

Similarly, if the query used, say, DEFAULT '1000' ON ERROR, that is, if it specified a numeric
default value, then no error would be raised for the value "alpha": the default value of 1000
would be used.

Note:

For a function-based index based on SQL/JSON function json_value to be picked
up for a given query, the same return data type and handling (error, empty, and
mismatch) must be used in both the index and the query.

This means that if you change the return type or handling in a query, so that it no
longer matches what is specified in the index, then you must rebuild any persistent
objects that depend on that query pattern. (The same applies to materialized views,
partitions, check constraints and PL/SQL subprograms that depend on that pattern.)

Chapter 28
Data Type Considerations for JSON_VALUE Indexing and Querying

28-9



Example 28-10    JSON_VALUE Query with Explicit RETURNING NUMBER

SELECT count(*) FROM j_purchaseorder po
  WHERE json_value(po_document, '$.PONumber' RETURNING NUMBER) > 1500;

Example 28-11    JSON_VALUE Query with Explicit Numerical Conversion

SELECT count(*) FROM j_purchaseorder po
  WHERE to_number(json_value(po_document, '$.PONumber')) > 1500;

Example 28-12    JSON_VALUE Query with Implicit Numerical Conversion

SELECT count(*) FROM j_purchaseorder po
  WHERE json_value(po_document, '$.PONumber') > 1500;

28.8 Creating Multivalue Function-Based Indexes for
JSON_EXISTS

For JSON data that is stored as JSON data type you can use a multivalue function-
based index for SQL/JSON condition json_exists. Such an index targets scalar
JSON values, either individually or within a JSON array.

The main use of a multivalue index is to index scalar values within arrays. This
includes scalar array elements, but also scalar field values of object array elements.

A multivalue index can also index a single scalar value, but for queries that target a
single value it is generally more performant to use a B-tree or bitmap index.

In a query, you use json_exists in the WHERE clause of a SELECT statement. Condition
json_exists returns true if the data it targets matches the SQL/JSON path expression
(or equivalent simple dot-notation syntax) in the query. Otherwise it returns false. It is
common for the path expression to include a predicate — matching then requires that
the targeted data satisfy the predicate.

You create a multivalue index using CREATE INDEX with keyword MULTIVALUE, and
using either the syntax of SQL/JSON function json_table or simple dot-notation that
you use in queries to specify the path to the indexed data. (However, you cannot use a 
SQL NESTED clause in place of json_table — a compile-time error is raised if you do
that.)

You can create a composite function-based index, to index more than one virtual
column, that is, more than one JSON field. A composite index acts like a set of
function-based indexes. When used to query, you use function json_table to project
specified JSON field values as virtual columns of SQL scalar values. Similarly, when
used to define an index, the field values that json_table specifies are indexed as a
composite function-based index.

When using json_table syntax to create a multivalue index you must use these error-
handling clauses: ERROR ON ERROR NULL ON EMPTY NULL ON MISMATCH; otherwise, a
query compile-time error is raised. When using simple dot-notation syntax without
json_table, the behavior of these clauses is provided implicitly.

Chapter 28
Creating Multivalue Function-Based Indexes for JSON_EXISTS

28-10



When using json_table syntax you can use a FOR ORDINALITY clause, to enable use of the
index for queries that target specific array positions. (See COLUMNS Clause of SQL/JSON
Function JSON_TABLE.)

For a multivalue index to be picked up by a query, the index must specify the SQL type of the
data to be indexed, and the SQL type for the query result must match the type specified by
the index.

If you create a non-composite multivalue index, that is, without using json_table syntax, then
the index specification must include a data-type conversion item method (other than
binary() and dateWithTime()), to indicate the SQL data type. See SQL/JSON Path
Expression Item Methods for information about the data-type conversion item methods.

If the index uses an item method with "only" in its name then only queries that use that same
item method can pick up the index. Otherwise (with a non-"only" method or with no method),
any query that targets a scalar value (possibly as an array element) that can be converted to
the type indicated by the item method can pick up the index.

For example, a multivalue index that uses item method numberOnly() can only be picked up
for a query that also uses numberOnly(). But an index that uses number(), or that uses no
item method, can be picked up for a query that matches any scalar (such as the string
"3.14") that can be converted to a number.

If you create a composite multivalue index then the json_table virtual column type specifies
the SQL type to use. This means that queries of data that can be converted to the specified
SQL type can pick up the index.

However, just as in the non-composite index case, you can use a data-type conversion item
method with "only" in its name, to override (further constrain) the specified column type. You
use the item method in the column path expression.

For example, if the column type is specified as NUMBER then queries with matching data (such
as the string "3.14") that can be converted to a number can pick up the index. But if the
column path expression uses item method numberOnly() then only queries that also use
numberOnly() can pick up the index.

You can create more than one multivalue index for a given target. For example, you can
create one index for a field month that uses item method number() and another for the same
field that uses item method string().

The following are not allowed, as ways to create a multivalue index:

• You cannot specify sibling nested arrays in the json_table expression used to create a
composite multivalue index. An error is raised if you try. You can index multiple arrays,
but they cannot be siblings, that is, they cannot have the same parent field.

• Using a SQL NESTED clause (see SQL NESTED Clause Instead of JSON_TABLE).

A type-error mismatch between the type of a scalar JSON value and the corresponding
scalar SQL data type of a json_table virtual column can be because of type incompatibility,
as put forth in Table 16-2, or because the SQL data type is too constraining — too small to
store the data.

Error-handling ERROR ON ERROR NULL ON EMPTY NULL ON MISMATCH returns SQL NULL for the
first kind of mismatch, but it raises an error for the second kind. For example, type
incompatibility is tolerated when creating an index with SQL type NUMBER for JSON string
data, but an error is raised if you try to create an index using SQL type VARCHAR(2) for data
that has a JSON string value of "hello", because the data has more than two characters.

Chapter 28
Creating Multivalue Function-Based Indexes for JSON_EXISTS

28-11



Example 28-13    Table PARTS_TAB, for Multivalue Index Examples

Table parts_tab, with JSON data type column jparts, is used in multivalue index
examples here. The JSON data includes field subparts whose value is an array with
scalar elements.

CREATE TABLE parts_tab (id NUMBER, jparts JSON);

INSERT INTO parts_tab VALUES
  (1, '{"parts" : [{"partno"   : 3, "subparts" : [510, 580, 520]},
                   {"partno"   : 4, "subparts" : 730}]}');

INSERT INTO parts_tab VALUES
  (2, '{"parts" : [{"partno"   : 7, "subparts" : [410, 420, 410]},
                   {"partno"   : 4, "subparts" : [710, 730, 730]}]}');

Example 28-14    Creating a Multivalue Index for JSON_EXISTS

The multivalue index created here indexes the value of field subparts. The table alias
(t in this case) is required when using simple dot notation syntax.

If the subparts value targeted by a query is an array then the index can be picked up
for any array elements that are numbers. If the value is a scalar then the index can be
picked up if the scalar is a number.

Given the data in table parts_tab, a subparts field in each of the objects of array
parts in the first row (which has id 1) is indexed: the field in the first object because its
array value has elements that are numbers (510, 580, and 520 ) the field in the second
object because its value is a number (730).

If item method number() were used in the index definition, instead of numberOnly(),
then non-number scalar values (such as the string "730") that can be converted to
numbers would also be indexed.

CREATE MULTIVALUE INDEX mvi ON parts_tab t
  (t.jparts.parts.subparts.numberOnly());

Example 28-15    Creating a Composite Multivalue Index for JSON_EXISTS

This example shows two equivalent ways to create a composite multivalue index that
targets both field partno and field subparts. The composite index acts like a set of two
function-based indexes that target those two fields.

The first query uses json_table syntax with a SQL/JSON path expression for the row
pattern, $.parts[*]. The second uses simple dot notation for the row pattern.
Otherwise, the code is the same for both. As must always be the case for multivalue
index creation using json_table, the error handling is specified as ERROR ON ERROR
NULL ON EMPTY NULL ON MISMATCH.

Column PARTNUM is given SQL data type NUMBER(10) here, which means that, for the
index to be used for a query that targets field partno, the value of that field must be
convertible to that data type.

• If type conversion is impossible because the types are generally incompatible, as
put forth in Table 16-2, then the NULL ON MISMATCH error handler causes SQL NULL

Chapter 28
Creating Multivalue Function-Based Indexes for JSON_EXISTS

28-12



to be returned. An example of this would be a partno string value of "hello" for the SQL
partNum column of type NUMBER(10).

• If, on the other hand, the SQL data type storage is too constraining then an error is raised
— the index is not created. An example of this would be a partno string with more than
10 characters, such as "1234567890123".

CREATE MULTIVALUE INDEX cmvi_1 ON parts_tab
  (json_table(jparts, '$.parts[*]'
     ERROR ON ERROR NULL ON EMPTY NULL ON MISMATCH
     COLUMNS (partNum NUMBER(10) PATH '$.partno',
       NESTED
         PATH '$.subparts[*]'
         COLUMNS (subpartNum NUMBER(20) PATH '$'))));

CREATE MULTIVALUE INDEX cmvi_1 ON parts_tab t
  (t.jparts.parts[*]
  ERROR ON ERROR NULL ON EMPTY NULL ON MISMATCH
  COLUMNS (partNum NUMBER(10) PATH '$.partno',
    NESTED subparts[*]
      COLUMNS (subpartNum NUMBER(20) PATH '$'))));

Example 28-16    Creating a Composite Multivalue Index That Can Target Array
Positions

The code in this example is like that in Example 28-15, except that it also specifies virtual
column SEQ for ordinality. That means that values in the column just before it, SUBPARTNUM,
can be accessed by way of their (one-based) positions in array subparts. (The SQL data
type of a FOR ORDINALITY column is always NUMBER.)

As always, at most one entry in a COLUMNS clause can be a column name followed by FOR
ORDINALITY, which specifies a column of generated row numbers (SQL data type NUMBER),
starting with one. Otherwise, an error is raised when creating the index.

In addition to that general rule for json_table syntax:

• When json_table is used to create a multivalue index, the FOR ORDINALITY column must
be the last column of json_table. (This is not required when json_table is used in
queries; it applies only to index creation.)

• In order for a multivalue index created using json_table to be picked up for a given
query, the query must include a predicate on the JSON field corresponding to the first
virtual column of the json_table expression.

In order for a query that targets array elements by their position to pick up a multivalue index
for array positions, the index column for those array elements must be the one immediately
before the FOR ORDINALITY column

(The code here uses simple dot notation for the row pattern; if it instead used a SQL/JSON
path expression for the row pattern, the rest of the code would be the same.)

CREATE MULTIVALUE INDEX cmvi_2 ON parts_tab t
  (t.jparts.parts[*]
  ERROR ON ERROR NULL ON EMPTY NULL ON MISMATCH
  COLUMNS (partNum NUMBER(10) PATH '$.partno',

Chapter 28
Creating Multivalue Function-Based Indexes for JSON_EXISTS

28-13



    NESTED subparts[*]
      COLUMNS (subpartNum NUMBER(20) PATH '$',
               seq FOR ORDINALITY))));

Related Topics

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are
described.

• Overview of Indexing JSON Data
You can index particular scalar values within your JSON data using function-based
indexes. You can index JSON data in a general way using a JSON search index,
for ad hoc structural queries and full-text queries.

• Using a Multivalue Function-Based Index
A json_exists query in a WHERE clause can pick up a multivalue function-based
index if (and only if) the data that it targets matches the scalar types specified in
the index.

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various
SQL data types. You use it to map parts of a JSON document into the rows and
columns of a new, virtual table, which you can also think of as an inline view.

• ON MISMATCH Clause for SQL/JSON Query Functions
You can use an ON MISMATCH clause with SQL/JSON functions json_value,
json_query, and json_table, to handle type-matching exceptions. It specifies
handling to use when a targeted JSON does not match the specified SQL return
value. This clause and its default behavior (no ON MISMATCH clause) are described
here.

28.9 Using a Multivalue Function-Based Index
A json_exists query in a WHERE clause can pick up a multivalue function-based index
if (and only if) the data that it targets matches the scalar types specified in the index.

A multivalue function-based index for SQL/JSON condition json_exists targets scalar
JSON values, either individually or as elements of a JSON array. You can define a
multivalue index only for JSON data that is stored as JSON data type.

Condition json_exists returns true if the data it targets matches the SQL/JSON path
expression (or equivalent simple dot-notation syntax) in the query. Otherwise it returns
false. It is common for the path expression to include a predicate — matching then
requires that the targeted data satisfy the predicate.

A multivalue index that is defined using a data-type conversion item method (such as
numberOnly()) that has "only" in its name can be picked up only by json_exist
queries that also use that same item method. That is, the query must use the same
item method explicitly. See Creating Multivalue Function-Based Indexes for
JSON_EXISTS for more information.

A multivalue index defined using no item method, or using a data-type conversion item
method (such as number()) that does not have "only" in its name, can be picked up by
a query that targets a scalar value (possibly as an array element) that can be
converted to the type indicated by the item method. See SQL/JSON Path Expression
Item Methods for information about the data-type conversion item methods.

Chapter 28
Using a Multivalue Function-Based Index

28-14



The examples here use SQL/JSON condition json_exists in a WHERE clause to check for a
subparts field value that matches 730. They are discussed in terms of whether they can pick
up multivalue indexes mvi, cmvi_1, and cmvi_2, which are defined in Creating Multivalue
Function-Based Indexes for JSON_EXISTS. Conversion of JSON scalar values to SQL
scalar values is specified in Table 16-2.

Example 28-17    JSON_EXISTS Query With Item Method numberOnly()

This example uses item method numberOnly() in a WHERE clause. The query can pick up
index mvi when the path expression targets either a numeric subparts value of 730 (e.g.
subparts : 730) or an array subparts value with one or more numeric elements of 730 (e.g.
subparts:[630, 730, 690, 730]). It cannot pick up index mvi for targeted string values of
"730" (e.g. subparts:"730" or subparts:["630", "730", 690, "730"]).

If index mvi had instead been defined used item method number(), then this query could pick
up the index for a numeric subparts value of 730, a string subparts value of "730", or an
array subparts value with numeric elements of 730 or string elements of "730".

SELECT count(*) FROM parts_tab
  WHERE json_exists(jparts, '$.parts.subparts?(@.numberOnly() == 730)');

Example 28-18    JSON_EXISTS Query Without Item Method numberOnly()

These two queries do not use item method numberOnly(). The first uses method number(),
which converts the targeted data to a number, if possible. The second does no type
conversion of the targeted data.

Index mvi cannot be picked up by either of these queries, even if the targeted data is the
number 730. For the index to be picked up, a query must use numberOnly(), because the
index is defined using numberOnly().

SELECT count(*) FROM parts_tab t
  WHERE json_exists(jparts, '$.parts.subparts?(@.number() == 730)');

SELECT count(*) FROM parts_tab t
  WHERE json_exists(jparts, '$.parts.subparts?(@ == 730)');

Example 28-19    JSON_EXISTS Query Checking Multiple Fields

The predicate in this query specifies the existence of a partno field that matches the SQL
NUMBER value 4 (possibly by conversion from a JSON string), and a field subparts that
matches the number 730.

The query can pick up either of the indexes cmvi_1 or cmvi_2. Both rows of the data match
these indexes, because each row has a parts.partno value that matches the number 4 and
a parts.subparts value that matches the number 730. For the subparts match, the first row
has a subparts value of 730, and the second row has a subparts value that is an array with a
value of 730.

SELECT a FROM parts_tab
  WHERE json_exists(jparts,'$.parts[*]?(@.partno == 4 &&
                                        @.subparts == 730)');

Chapter 28
Using a Multivalue Function-Based Index

28-15



Example 28-20    JSON_EXISTS Query Checking Array Element Position

This example is similar to Example 28-19, but in addition to requiring that field partno
match the number 4, the predicate here requires that the value of field subparts match
an array of at least two elements, and that the second element of the array match the
number 730.

This query can pick up index cmvi_2, including for positional predicate [1]. Index
cmvi_2 specifies virtual column subpartNum, which corresponds to JSON field
subparts, as the penultimate column, just before the final, FOR ORDINALITY, column.

This query could also pick up index cmvi_1, but that index has no FOR ORDINALITY
column, so making use of it would require an extra step, to evaluate the array-position
condition, [1]. Using index cmvi_2 requires no such extra step, so it is more
performant for such queries.

SELECT a FROM parts_tab
  WHERE json_exists(jparts,'$.parts[*]?(@.partno == 4 &&
                                        @.subparts[1] == 730)');

Related Topics

• SQL/JSON Path Expression Item Methods
The Oracle item methods available for a SQL/JSON path expression are
described.

• Overview of Indexing JSON Data
You can index particular scalar values within your JSON data using function-based
indexes. You can index JSON data in a general way using a JSON search index,
for ad hoc structural queries and full-text queries.

• SQL/JSON Function JSON_TABLE
SQL/JSON function json_table projects specific JSON data to columns of various
SQL data types. You use it to map parts of a JSON document into the rows and
columns of a new, virtual table, which you can also think of as an inline view.

• ON MISMATCH Clause for SQL/JSON Query Functions
You can use an ON MISMATCH clause with SQL/JSON functions json_value,
json_query, and json_table, to handle type-matching exceptions. It specifies
handling to use when a targeted JSON does not match the specified SQL return
value. This clause and its default behavior (no ON MISMATCH clause) are described
here.

28.10 Indexing Multiple JSON Fields Using a Composite B-
Tree Index

To index multiple fields of a JSON object you can create a composite B-tree index
using multiple path expressions with SQL/JSON function json_value or dot-notation
syntax.

Example 28-21 illustrates this. A SQL query that references the corresponding JSON
data (object fields) picks up the composite index. Example 28-22 illustrates this.

Alternatively, you can create virtual columns for the JSON object fields you want to
index, and then create a composite B-tree index on those virtual columns. In that case

Chapter 28
Indexing Multiple JSON Fields Using a Composite B-Tree Index

28-16



a SQL query that references either the virtual columns or the corresponding JSON data
(object fields) picks up the composite index. The query performance is the same in both
cases.

The data does not depend logically on any indexes that are implemented to improve query
performance. If you want this independence from implementation to be reflected in your code,
then query the data directly (not virtual columns). Doing that ensures that the query behaves
the same with or without the index — the index serves only to improve performance.

Example 28-21    Creating a Composite B-tree Index For JSON Object Fields

CREATE INDEX user_cost_ctr_idx ON
  j_purchaseorder(json_value(po_document, '$.User'
                             RETURNING VARCHAR2(20),
                  json_value(po_document, '$.CostCenter'
                             RETURNING VARCHAR2(6)));

Example 28-22    Querying JSON Data Indexed With a Composite B-tree Index

SELECT po_document FROM j_purchaseorder
  WHERE json_value(po_document, '$.User')       = 'ABULL'
    AND json_value(po_document, '$.CostCenter') = 'A50';

Related Topics

• JSON Query Rewrite To Use a Materialized View Over JSON_TABLE
You can enhance the performance of queries that access particular JSON fields by
creating, and indexing, a materialized view over such data that's defined using SQL/
JSON function json_table.

28.11 JSON Search Index for Ad Hoc Queries and Full-Text
Search

A JSON search index is a general index. It can improve the performance of both (1) ad hoc
structural queries, that is, queries that you might not anticipate or use regularly, and (2) full-
text search. It is an Oracle Text index that is designed specifically for use with JSON data.

Full-text querying of JSON data is covered in Full-Text Search Queries. The present topic
covers the creation and maintenance of JSON search indexes, which are required for full-text
search and are also useful for ad hoc queries. Examples of ad hoc queries that are supported
by a JSON search index are presented here.

Create a JSON search index for queries that involve full-text search. Create a JSON search
index also for queries that aren't particularly expected or used regularly — that is, ad hoc
queries. But to index queries for which you know the query pattern ahead of time, it's
generally advisable to use a function-based index that targets such a specific pattern. If both
function-based and JSON search indexes are applicable to given a query, it is the function-
based index that's used.

For JSON data stored as JSON type, an alternative to creating and maintaining a JSON
search index is to populate the JSON column into the In-Memory Column Store (IM column
store) — see In-Memory JSON Data.

Chapter 28
JSON Search Index for Ad Hoc Queries and Full-Text Search

28-17



Note:

If you created a JSON search index using Oracle Database 12c Release 1
(12.1.0.2) then Oracle recommends that you drop that index and create a
new search index for use with later releases, using CREATE SEARCH INDEX as
shown here.

Note:

You must rebuild any JSON search indexes and Oracle Text indexes
created prior to Oracle Database 18c if they index JSON data that contains
object fields with names longer than 64 bytes. Otherwise, such fields might
not be searchable until they are reindexed. See Oracle Database Upgrade
Guide for more information.

You create a JSON search index using CREATE SEARCH INDEX with the keywords FOR
JSON. Example 28-23 illustrates this.

The column on which you create a JSON search index can be of data type JSON,
VARCHAR2, CLOB, or BLOB. It must be known to contain only well-formed JSON data,
which means that it is either of type JSON or it has an is json check constraint. CREATE
SEARCH INDEX raises an error if the column is not known to contain JSON data.

If the name of your JSON search index is present in the execution plan for your query,
then you know that the index was in fact picked up for that query. You will see a line
similar to that shown in Example 28-25.

You can specify a PARAMETERS clause when creating a search index, to override the
default settings of certain configurable options. By default (no PARAMETERS clause), the
index is synchronized on commit, and both text and numeric ranges are indexed.

If your queries that make use of a JSON search index involve only full-text search or
string-equality search, and never involve string-range search or numeric or temporal
search (equality or range), then you can save some index maintenance time and some
disk space by specifying TEXT for parameter SEARCH_ON. The default value of
SEARCH_ON is TEXT_VALUE, which means index numeric ranges as well as text.

Also by default, the search index created records and maintains persistent data-guide
information, which requires some maintenance overhead. You can inhibit this support
for persistent data-guide information by specifying DATAGUIDE OFF in the PARAMETERS
clause.

A JSON search index is maintained asynchronously. Until it is synchronized, the index
is not used for data that has been modified or newly inserted. An index can improve
query performance, but the act of synchronizing it with the data affects performance
negatively while it occurs. In particular, it can negatively affect DML operations.

There are essentially three ways to synchronize a JSON search index. Each is
typically appropriate for a different use case.

• Synchronize on commit.

Chapter 28
JSON Search Index for Ad Hoc Queries and Full-Text Search

28-18



This is appropriate when commits are infrequent and it is important that the committed
changes be immediately visible to other operations (such as queries). (A stale index can
result in uncommitted changes not being visible.) Example 28-23 creates a search index
that is synchronized on commit.

• Synchronize periodically at some interval of time.

For online transaction-processing (OLTP) applications, which require fast and reliable
transaction handling with high throughput, and which typically commit each operation,
periodic index synchronization is often appropriate. In this case, the synchronization
interval is generally greater than the time between commits, and it is not essential that
the result of each commit be immediately visible to other operations. Example 28-24
creates a search index that is synchronized each second.

• Synchronize on demand, for example at a time when database load is reduced.

You generally do this infrequently — the index is synchronized less often than with on-
commit or interval synchronizing. This method is typically appropriate when DML
performance is particularly important.

If you need to invoke procedures in package CTX_DDL, such as CTX_DDL.sync_index to
manually sync the index, then you need privilege CTXAPP. To create the index with a
synchronization interval, as opposed to having the index be synchronized on commit, then
you need privilege CREATE JOB.

Note:

To alter a JSON search index j_s_idx, you use ALTER INDEX j_s_idx
REBUILD ... (not ALTER SEARCH INDEX j_s_idx ...).

Example 28-23    Creating a JSON Search Index That Is Synchronized On Commit

Synchronization on commit is the default behavior, but you can explicitly specify it using
PARAMETERS ('SYNC (ON COMMIT)'.

CREATE SEARCH INDEX po_search_idx ON j_purchaseorder (po_document)
  FOR JSON;

Example 28-24    Creating a JSON Search Index That Is Synchronized Each Second

CREATE SEARCH INDEX po_search_1_sec_idx ON j_purchaseorder (po_document)
  FOR JSON
  PARAMETERS('SYNC (EVERY "FREQ=SECONDLY; INTERVAL=1")')

Example 28-25    Execution Plan Indication that a JSON Search Index Is Used

|* 2|   DOMAIN INDEX     | PO_SEARCH_IDX |     |     |     4 (0)

Ad Hoc Queries of JSON Data

Example 28-26 shows some non full-text queries of JSON data that also make use of the
JSON search index created in Example 28-23.

Chapter 28
JSON Search Index for Ad Hoc Queries and Full-Text Search

28-19



Example 28-26    Some Ad Hoc JSON Queries

This query selects documents that contain a shipping instructions address that
includes a country.

SELECT po_document FROM j_purchaseorder
  WHERE json_exists(po_document,
                    '$.ShippingInstructions.Address.country');

This query selects documents that contain user AKHOO where there are more than 8
items ordered. It takes advantage of numeric-range indexing.

SELECT po_document FROM j_purchaseorder
  WHERE json_exists(po_document, '$?(@.User == "AKHOO"
                                     && @.LineItems.Quantity > 8)');

This query selects documents where the user is AKHOO. It uses json_value instead of
json_exists in the WHERE clause.

SELECT po_document FROM j_purchaseorder
  WHERE json_value(po_document, '$.User') = 'AKHOO';

Related Topics

• Overview of Indexing JSON Data
You can index particular scalar values within your JSON data using function-based
indexes. You can index JSON data in a general way using a JSON search index,
for ad hoc structural queries and full-text queries.

• JSON Data Guide
A JSON data guide lets you discover information about the structure and content
of JSON documents stored in Oracle Database.

• In-Memory JSON Data
A column of JSON data can be stored in the In-Memory Column Store (IM column
store) to improve query performance.

• Oracle SQL Condition JSON_TEXTCONTAINS
You can use Oracle SQL condition json_textcontains in a CASE expression or the
WHERE clause of a SELECT statement to perform a full-text search of JSON data.

• JSON Facet Search with PL/SQL Procedure CTX_QUERY.RESULT_SET
If you have created a JSON search index then you can also use PL/SQL
procedure CTX_QUERY.result_set to perform facet search over JSON data. This
search is optimized to produce various kinds of search hits all at once, rather than,
for example, using multiple separate queries with SQL function contains.

Chapter 28
JSON Search Index for Ad Hoc Queries and Full-Text Search

28-20



See Also:

• Oracle Text Reference for information about the PARAMETERS clause for CREATE
SEARCH INDEX

• Oracle Text Reference for information about the PARAMETERS clause for ALTER
INDEX ... REBUILD

• CREATE INDEX in Oracle Text Reference for information about synchronizing a
JSON search index

• Oracle Text Application Developer's Guide for guidance about optimizing and
tuning the performance of a JSON search index

Chapter 28
JSON Search Index for Ad Hoc Queries and Full-Text Search

28-21



29
In-Memory JSON Data

A column of JSON data can be stored in the In-Memory Column Store (IM column store) to
improve query performance.

• Overview of In-Memory JSON Data
You can populate JSON data into the In-Memory Column Store (IM column store), to
improve the performance of ad hoc and full-text queries.

• Populating JSON Data Into the In-Memory Column Store
Use ALTER TABLE … INMEMORY to populate a column of JSON data, or a table with such a
column, into the In-Memory Column Store (IM column store), to improve the performance
of JSON queries.

• Upgrading Tables With JSON Data For Use With the In-Memory Column Store
A table with JSON columns created using a database that did not have a compatibility
setting of at least 12.2 or did not have max_string_size = extended must first be
upgraded, before it can be populated into the In-Memory Column Store (IM column
store). To do this, run script rdbms/admin/utlimcjson.sql.

See Also:

Oracle Database In-Memory Guide

29.1 Overview of In-Memory JSON Data
You can populate JSON data into the In-Memory Column Store (IM column store), to improve
the performance of ad hoc and full-text queries.

Using the IM column store for JSON data is especially useful for ad hoc analytical queries
that scan a large number of small JSON documents.

If a JSON column is of data type JSON then you can also use the IM column store to provide
support for full-text search. (JSON type is available only if database initialization parameter
compatible is at least 20.)

29-1



Note:

An alternative to placing a JSON column in the IM column store is to create a
JSON search index on the column. This provides support for both ad hoc
queries and full-text search.

If a JSON search index is defined for a JSON column (of any data type), and
that column is also populated into the IM column store, then the search
index, not the IM column store, is used for queries of that column.

Unlike the case for using the IM column store to support full-text search,
JSON search index support is available for any JSON column, not just a
column of data type JSON.

The IM column store is supported only for JSON documents smaller than 32,767
bytes. If you have a mixture of document sizes, those documents that are larger than
32,767 bytes are processed without the In-Memory optimization. For better
performance, consider breaking up documents larger than 32,767 bytes into smaller
documents.

The IM column store is an optional SGA pool that stores copies of tables and partitions
in a special columnar format optimized for rapid scans. The IM column store
supplements the row-based storage in the database buffer cache. You do not need to
load the same object into both the IM column store and the buffer cache. The two
caches are kept transactionally consistent. The database transparently sends online
transaction processing (OLTP) queries (such as primary-key lookups) to the buffer
cache and analytic and reporting queries to the IM column store.

You can think of the use of JSON data in memory as improving the performance of
SQL/JSON path access. SQL functions and conditions json_table, json_query,
json_value, json_exists, and json_textcontains all accept a SQL/JSON path
argument, and they can all benefit from loading JSON data into the IM column store.

Once JSON documents have been loaded into memory, any subsequent path-based
operations on them use the In-Memory representation, which avoids the overhead
associated with reading and parsing the on-disk format.

If queried JSON data is populated into the IM column store, and if there are function-
based indexes that can apply to that data, the optimizer chooses whether to use an
index or to scan the data in memory. In general, if index probing results in few
documents then a functional index can be preferred by the optimizer. In practice this
means that the optimizer can prefer a functional index for very selective queries or
DML statements.

On the other hand, if index probing results in many documents then the optimizer
might choose to scan the data in memory, by scanning the function-based index
expression as a virtual-column expression.

Ad hoc queries, that is, queries that are not used frequently to target a given SQL/
JSON path expression, benefit in a general way from populating JSON data into the
IM column store, by quickly scanning the data. But if you have some frequently used
queries then you can often further improve their performance in these ways:

• Creating virtual columns that project scalar values (not under an array) from a
column of JSON data and loading those virtual columns into the IM column store.

Chapter 29
Overview of In-Memory JSON Data

29-2



• Creating a materialized view on a frequently queried json_table expression and loading
the view into the IM column store.

However, if you have a function-based index that projects a scalar value using function
json_value then you need not explicitly create a virtual column to project it. As mentioned
above, in this case the function-based index expression is automatically loaded into the IM
column store as a virtual column. The optimizer can choose, based on estimated cost,
whether to scan the function-based index in the usual manner or to scan the index
expression as a virtual-column expression.

Note:

• The advantages of a virtual column over a materialized view are that you can
build an index on it and you can obtain statistics on it for the optimizer.

• Virtual columns, like columns in general, are subject to the 1000-column limit for
a given table.

Note:

A table with one or more columns of JSON data type has an additional, hidden virtual
column for each such column. It has a system-generated name, which starts with
SYS_IME_OSON_. As it is virtual, it does not use any space.

This hidden column is used when data is loaded into the IM column store, to
optimize in-memory performance. It's not listed when you use a describe
command, and it's not affected by a SELECT * query. It is however listed when you
query dictionary views such as USER_TAB_COLS.

Prerequisites For Using JSON Data In Memory

To be able to take advantage of the IM column store for JSON data, the following must all be
true:

• Database compatibility is 12.2.0.0 or higher. For full-text support it must be 20 or higher.

• The value set for max_string_size in the Oracle instance start-up configuration file must
be 'extended'.

• Sufficient SGA memory must be configured for the IM column store.

• A DBA has specified that the tablespace, table, or materialized view that contains the
JSON columns is eligible for population into the IM column store, using keyword
INMEMORY in a CREATE or ALTER statement.

• Initialization parameters are set as follows:

– IMMEMORY_EXPRESSIONS_USAGE is STATIC_ONLY or ENABLE.

ENABLE allows In-Memory materialization of dynamic expressions, if used in
conjunction with PL/SQL procedure DBMS_INMEMORY.ime_capture_expressions.

– IMMEMORY_VIRTUAL_COLUMNS is ENABLE, meaning that the IM column store populates
all virtual columns. (The default value is MANUAL.)

Chapter 29
Overview of In-Memory JSON Data

29-3



• The columns storing the JSON data must be known to contain well-formed JSON
data. This is the case if the column is of JSON data type or it has an is json check
constraint.

You can check the value of each initialization parameter using command SHOW
PARAMETER. (You must be logged in as database user SYS or equivalent for this.) For
example:

SHOW PARAMETER INMEMORY_VIRTUAL_COLUMNS

Related Topics

• Populating JSON Data Into the In-Memory Column Store
Use ALTER TABLE … INMEMORY to populate a column of JSON data, or a table with
such a column, into the In-Memory Column Store (IM column store), to improve
the performance of JSON queries.

• Oracle SQL Condition JSON_TEXTCONTAINS
You can use Oracle SQL condition json_textcontains in a CASE expression or the
WHERE clause of a SELECT statement to perform a full-text search of JSON data.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which
allows a JSON document to contain only a JSON scalar value at top level. This
support also means that functions that return JSON data can return scalar JSON
values.

See Also:

Oracle Database Reference for information about parameter
INMEMORY_VIRTUAL_COLUMNS

29.2 Populating JSON Data Into the In-Memory Column
Store

Use ALTER TABLE … INMEMORY to populate a column of JSON data, or a table with
such a column, into the In-Memory Column Store (IM column store), to improve the
performance of JSON queries.

You specify that a table with one or more columns of JSON data is to be populated into
the IM column store, by marking the table as INMEMORY. Example 29-1 illustrates this.

A column is guaranteed to contain only well-formed JSON data if (1) it is of data type
JSON or (2) it is of type VARCHAR2, CLOB, or BLOB and it has an is json check constraint.
(Database initialization parameter compatible must be at least 20 to use data type
JSON.)

The IM column store is used for queries of documents that are smaller than 32,767
bytes. Queries of documents that are larger than that do not benefit from the IM
column store.

Chapter 29
Populating JSON Data Into the In-Memory Column Store

29-4



Note:

If a JSON column in a table that is to be populated into the IM column store was
created using a database that did not have a compatibility setting of at least 12.2 or
did not have max_string_size set to extended (this is the case prior to Oracle
Database 12c Release 2 (12.2.0.1), for instance) then you must first run script
rdbms/admin/utlimcjson.sql. It prepares all existing tables that have JSON
columns to take advantage of the In-Memory JSON processing that was added in
Release 12.2.0.1. See Upgrading Tables With JSON Data For Use With the In-
Memory Column Store.

After you have marked a table that has JSON columns as INMEMORY, an In-Memory virtual
column is added to it for each JSON column. The corresponding virtual column is used for
queries of a given JSON column. The virtual column contains the same JSON data as the
corresponding JSON column, but in OSON format, regardless of the data type of the JSON
column (VARCHAR2, CLOB, BLOB, or JSON type). OSON is Oracle's optimized binary JSON
format for fast query and update in both Oracle Database server and Oracle Database
clients.

Populating JSON data into the IM column store using ALTER TABLE … INMEMORY provides
support for ad hoc structural queries, that is, queries that you might not anticipate or use
regularly.

If a column is of data type JSON then you can populate it into the IM column store using ALTER
TABLE … INMEMORY TEXT, to provide support for full-text search. (Using ALTER TABLE …
INMEMORY both with and without keyword TEXT for the same JSON column provides support
for both ad hoc and full-text queries.)

Note:

If a JSON search index is defined for a JSON column (of any data type) that is
populated into the IM Column Store then the search index, not the IM Column
Store, is used for queries of that column.

See Also:

• Oracle Database In-Memory Guide for information about ALTER TABLE ...
INMEMORY

• Oracle Database In-Memory Guide for information about IM column store
support for full-text search

• Oracle Database In-Memory Guide for information about IM column store
support for JSON data stored as JSON type or textually

Chapter 29
Populating JSON Data Into the In-Memory Column Store

29-5



Example 29-1    Populating JSON Data Into the IM Column Store For Ad Hoc
Query Support

SELECT COUNT(1) FROM j_purchaseorder
  WHERE json_exists(po_document,
                    '$.ShippingInstructions?(
                       @.Address.zipCode == 99236)');

-- The execution plan shows: TABLE ACCESS FULL

-- Specify table as INMEMORY, with default PRIORITY setting of NONE,
-- so it is populated only when a full scan is triggered.

ALTER TABLE j_purchaseorder INMEMORY;

-- Query the table again, to populate it into the IM column store.
SELECT COUNT(1) FROM j_purchaseorder
  WHERE json_exists(po_document,
                    '$.ShippingInstructions?(
                       @.Address.zipCode == 99236)');

-- The execution plan for the query now shows:
-- TABLE ACCESS INMEMORY FULL

Example 29-2    Populating a JSON Type Column Into the IM Column Store For
Full-Text Query Support

This example populates column po_document of table j_purchaseorder into the IM
column store for full-text support (keyword TEXT).

ALTER TABLE j_purchaseorder INMEMORY TEXT (po_document);

If column po_document is not of JSON data type, and if no JSON search index is defined
on the column, then JSON full-text querying is not supported. Trying to use
json_textcontains to search the data raises an error in that case.

Related Topics

• Oracle SQL Condition JSON_TEXTCONTAINS
You can use Oracle SQL condition json_textcontains in a CASE expression or the
WHERE clause of a SELECT statement to perform a full-text search of JSON data.

• Support for RFC 8259: JSON Scalars
Starting with Release 21c, Oracle Database can support IETF RFC 8259, which
allows a JSON document to contain only a JSON scalar value at top level. This
support also means that functions that return JSON data can return scalar JSON
values.

Chapter 29
Populating JSON Data Into the In-Memory Column Store

29-6



29.3 Upgrading Tables With JSON Data For Use With the In-
Memory Column Store

A table with JSON columns created using a database that did not have a compatibility setting
of at least 12.2 or did not have max_string_size = extended must first be upgraded, before
it can be populated into the In-Memory Column Store (IM column store). To do this, run script
rdbms/admin/utlimcjson.sql.

Script rdbms/admin/utlimcjson.sql upgrades all existing tables that have JSON columns so
they can be populated into the IM column store. To use it, all of the following must be true:

• Database parameter compatible must be set to 12.2.0.0 or higher.

• Database parameter max_string_size must be set to extended.

• The JSON columns being upgraded must be known to contain well-formed JSON data.
This is the case for a column of data type JSON1 or a non-JSON type column that has an is
json check constraint defined on it.

Related Topics

• Overview of In-Memory JSON Data
You can populate JSON data into the In-Memory Column Store (IM column store), to
improve the performance of ad hoc and full-text queries.

1 Database initialization parameter compatible must be at least 20 to use data type JSON.

Chapter 29
Upgrading Tables With JSON Data For Use With the In-Memory Column Store

29-7



30
JSON Query Rewrite To Use a Materialized
View Over JSON_TABLE

You can enhance the performance of queries that access particular JSON fields by creating,
and indexing, a materialized view over such data that's defined using SQL/JSON function
json_table.

Example 20-11 shows how to create a materialized view over JSON data using function
json_table. That example creates a virtual column for each JSON field expected in the data.

You can instead create a materialized view that projects only certain fields that you query
often. If you do that, and if the following conditions are all satisfied, then queries that match
the column data types of any of the projected fields can be rewritten automatically to go
against the materialized view.

• The materialized view is created with REFRESH FAST ON STATEMENT.

• The materialized view definition includes either WITH PRIMARY KEY or WITH ROWID (if there
is no primary key).

• The materialized view joins the parent table and only one virtual table defined by
json_table.

• The columns projected by json_table use ERROR ON ERROR.

Automatic query rewrite is supported if those conditions are satisfied. You do not need to
specify ENABLE QUERY REWRITE in the view definition. Rewriting applies to queries that use
any of the following in a WHERE clause: simple dot notation, condition json_exists, or function
json_value.

Columns that do not specify ERROR ON ERROR are also allowed, but queries are not rewritten
to use those columns. If you use ERROR ON ERROR for the json_table row pattern, the effect is
the same as if you specify ERROR ON ERROR for each column.

If some of your JSON data lacks a given projected field, using NULL ON EMPTY allows that field
to nevertheless be picked up when it is present — no error is raised when it is missing.

Automatic query rewrite to use a materialized view can enhance performance. Performance
can be further enhanced if you also create an index on the materialized view.

Example 30-1 creates such a materialized view. Example 30-2 creates an index for it.

Example 30-1    Creating a Materialized View of JSON Data To Support Query Rewrite

This example creates materialized view mv_for_query_rewrite, which projects several JSON
fields to relational columns. Queries that access those fields in a WHERE clause using simple
dot notation, condition json_exists, or function json_value can be automatically rewritten to
instead go against the corresponding view columns.

An example of such a query is that of Example 17-5, which has comparisons for fields User,
UPCCode, and Quantity. All of these comparisons are rewritten to use the materialized view.

30-1



In order for the materialized view to be used for a given comparison of a query, the
type of that comparison must be the same as the SQL data type for the corresponding
view column. See Using a JSON_VALUE Function-Based Index with JSON_EXISTS
Queries for information about the type of a comparison.

For example, view mv_for_query_rewrite can be used for a query that checks
whether field UPCCode has numeric value 85391628927, because the view column
projected from that field has SQL type NUMBER. But the view cannot be used for a query
that checks whether that field has string value "85391628927".

CREATE MATERIALIZED VIEW mv_for_query_rewrite
  BUILD IMMEDIATE
  REFRESH FAST ON STATEMENT WITH PRIMARY KEY
  AS SELECT po.id, jt.*
       FROM j_purchaseorder po,
            json_table(po.po_document, '$' ERROR ON ERROR NULL ON EMPTY
              COLUMNS (
                po_number       NUMBER         PATH '$.PONumber',
                userid          VARCHAR2(10)   PATH '$.User',
                NESTED PATH '$.LineItems[*]'
                  COLUMNS (
                    itemno      NUMBER         PATH '$.ItemNumber',
                    description VARCHAR2(256)  PATH '$.Part.Description',
                    upc_code    NUMBER         PATH '$.Part.UPCCode',
                    quantity    NUMBER         PATH '$.Quantity',
                    unitprice   NUMBER         PATH '$.Part.UnitPrice'))) jt;

You can tell whether the materialized view is used for a particular query by examining
the execution plan. If it is, then the plan refers to mv_for_query_rewrite. For example:

|* 4| MAT_VIEW ACCESS FULL | MV_FOR_QUERY_REWRITE |1|51|3(0)|00:00:01|

Example 30-2    Creating an Index Over a Materialized View of JSON Data

This example creates composite relational index mv_idx on columns userid,
upc_code, and quantity of the materialized view mv_for_query_rewrite created in 
Example 30-1.

CREATE INDEX mv_idx ON mv_for_query_rewrite(userid, upc_code, 
quantity);

The execution plan snippet in Example 30-1 shows a full table scan (MAT_VIEW ACCESS
FULL) of the materialized view. Defining index mv_idx can result in a better plan for the
query. This is indicated by the presence of INDEX RANGE SCAN (as well as the name of
the index, MV_IDX, and the material view, MV_FOR_QUERY_REWRITE).

|  4|MAT_VIEW ACCESS BY INDEX ROWID BATCHED|MV_FOR_QUERY_REWRITE|1|51|2(0)|00:00:01|

|* 5|                      INDEX RANGE SCAN|MV_IDX              |1|  |1(0)|00:00:01|

Chapter 30

30-2



Related Topics

• Creating a View Over JSON Data Using JSON_TABLE
To improve query performance you can create a view over JSON data that you project to
columns using SQL/JSON function json_table. To further improve query performance
you can create a materialized view and place the JSON data in memory.

• How To Tell Whether a Function-Based Index for JSON Data Is Picked Up
Whether or not a particular index is picked up for a given query is determined by the
optimizer. To determine whether a given query picks up a given function-based index,
look for the index name in the execution plan for the query.

• Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries
An index created using SQL/JSON function json_value with ERROR ON ERROR can be
used for a query involving SQL/JSON condition json_exists.

• Indexing Multiple JSON Fields Using a Composite B-Tree Index
To index multiple fields of a JSON object you can create a composite B-tree index using
multiple path expressions with SQL/JSON function json_value or dot-notation syntax.

Chapter 30

30-3



Part IX
Appendixes

Appendixes here provide background material for using JSON data with Oracle Database.

• ISO 8601 Date, Time, and Duration Support
International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates, times, and durations. Oracle Database supports the
most common ISO 8601 formats as proper Oracle SQL date, time, and interval (duration)
values. The formats that are supported are essentially those that are numeric-only,
language-neutral, and unambiguous.

• Oracle Database JSON Capabilities Specification
This appendix specifies capabilities for Oracle support of JSON data in Oracle Database.

• Diagrams for Basic SQL/JSON Path Expression Syntax
Syntax diagrams and corresponding Backus-Naur Form (BNF) syntax descriptions are
presented for the basic SQL/JSON path expression syntax.



A
ISO 8601 Date, Time, and Duration Support

International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates, times, and durations. Oracle Database supports the most
common ISO 8601 formats as proper Oracle SQL date, time, and interval (duration) values.
The formats that are supported are essentially those that are numeric-only, language-neutral,
and unambiguous.

(Simple Oracle Document Access (SODA) does not support durations.)

Oracle Database Syntax for ISO Dates and Times

This is the syntax that Oracle Database supports for ISO dates and times:

• Date (only): YYYY-MM-DD
• Date with time: YYYY-MM-DDThh:mm:ss[.s[s[s[s[s[s]]]]][Z|(+|-)hh:mm]
where:

• YYYY specifies the year, as four decimal digits.

• MM specifies the month, as two decimal digits, 00 to 12.

• DD specifies the day, as two decimal digits, 00 to 31.

• hh specifies the hour, as two decimal digits, 00 to 23.

• mm specifies the minutes, as two decimal digits, 00 to 59.

• ss[.s[s[s[s[s]]]]] specifies the seconds, as two decimal digits, 00 to 59, optionally
followed by a decimal point and 1 to 6 decimal digits (representing the fractional part of a
second).

• Z specifies UTC time (time zone 0). (It can also be specified by +00:00, but not by –
00:00.)

• (+|-)hh:mm specifies the time-zone as difference from UTC. (One of + or – is required.)

For a time value, the time-zone part is optional. If it is absent then UTC time is assumed.

No other ISO 8601 date-time syntax is supported. In particular:

• Negative dates (dates prior to year 1 BCE), which begin with a hyphen (e.g. –2018–10–
26T21:32:52), are not supported.

• Hyphen and colon separators are required: so-called “basic” format, YYYYMMDDThhmmss, is
not supported.

• Ordinal dates (year plus day of year, calendar week plus day number) are not supported.

• Using more than four digits for the year is not supported.

Supported dates and times include the following:

• 2018–10–26T21:32:52
• 2018-10-26T21:32:52+02:00

A-1



• 2018-10-26T19:32:52Z
• 2018-10-26T19:32:52+00:00
• 2018-10-26T21:32:52.12679
Unsupported dates and times include the following:

• 2018-10-26T21:32 (if a time is specified then all of its parts must be present)

• 2018-10-26T25:32:52+02:00 (the hours part, 25, is out of range)

• 18-10-26T21:32 (the year is not specified fully)

Oracle Database Syntax for ISO Durations

Note:

Oracle Database supports ISO durations, but Simple Oracle Document
Access (SODA) does not support them.

There are two supported Oracle Database syntaxes for ISO durations, the
ds_iso_format specified for SQL function to_dsinterval and the ym_iso_format
specified for SQL function to_yminterval. (to_dsinterval returns an instance of SQL
type INTERVAL DAY TO SECOND, and to_yminterval returns an instance of type
INTERVAL YEAR TO MONTH.)

These formats are used for data types daysecondInterval and yearmonthInterval,
respectively, which Oracle has added to the JSON language.

• ds_iso_format:

PdDThHmMsS, where d, h, m, and s are digit sequences for the number of days,
hours, minutes, and seconds, respectively. For example: "P0DT06H23M34S".

s can also be an integer-part digit sequence followed by a decimal point and a
fractional-part digit sequence. For example: P1DT6H23M3.141593S.

Any sequence whose value would be zero is omitted, along with its designator. For
example: "PT3M3.141593S". However, if all sequences would have zero values
then the syntax is "P0D".

• ym_iso_format

PyYmM, where y is a digit sequence for the number of years and m is a digit
sequence for the number of months. For example: "P7Y8M".

If the number of years or months is zero then it and its designator are omitted.
Examples: "P7Y", "P8M". However, if there are zero years and zero months then
the syntax is "P0Y".

Appendix A

A-2



See Also:

• ISO 8601 standard

• ISO 8601 at Wikipedia

Appendix A

A-3

https://en.wikipedia.org/wiki/ISO_8601


B
Oracle Database JSON Capabilities
Specification

This appendix specifies capabilities for Oracle support of JSON data in Oracle Database.

Unless otherwise specified, an error is raised if a specification is not respected.

• General

– Number of nesting levels for a JSON object or array: 1000.

– JSON field name length: 255 bytes each.

–

• SQL/JSON functions and dot-notation syntax

– SQL/JSON path length: 32K bytes.

See Overview of SQL/JSON Path Expressions for general information about SQL/
JSON path expressions.

– Path component length for dot-notation syntax: 128 bytes. (This is the maximum
length of a SQL identifier.)

* Oracle Database Object-Relational Developer's Guide for information about SQL
dot-notation syntax

* Oracle Database SQL Language Reference for information about SQL identifiers

• JSON data guide

Note:

– Path length: 4000 bytes. A path longer than 4000 bytes is ignored by a data
guide.

– Number of children under a parent node: 5000. A node that has more than
5000 children is ignored by a data guide.

– Field value length: 32767 bytes. If a JSON field has a value longer than
32767 bytes then the data guide reports the length as 32767.

– Data-guide behavior is undefined for data that contains zero-length (empty)
object field name ("").

See Overview of JSON Data Guide for more information about JSON data guide.

• OSON and JSON data type

OSON is Oracle's optimized binary JSON format for query and update in both Oracle
Database server and Oracle Database clients. An instance of JSON data type is stored
using format OSON.

B-1



– Total size of a JSON type instance: 32M bytes.

See Data Types for JSON Data for more information about the storage of
JSON data as JSON type

Appendix B

B-2



C
Diagrams for Basic SQL/JSON Path
Expression Syntax

Syntax diagrams and corresponding Backus-Naur Form (BNF) syntax descriptions are
presented for the basic SQL/JSON path expression syntax.

The basic syntax of SQL/JSON path expression is explained in Basic SQL/JSON Path
Expression Syntax. This topic recapitulates that information in the form of syntax diagrams
and BNF descriptions.

Figure C-1    json_basic_path_expression

json_absolute_path_expr

json_relative_path_expr

Figure C-2    json_absolute_path_expression

$

json_nonfunction_steps json_function_step

Figure C-3    json_nonfunction_steps

json_object_step

json_array_step

json_descendent_step

json_filter_expr

Figure C-4    json_object_step

.
*

json_field_name

Figure C-5    json_field_name

json_string

letter

letter

digit

C-1



Figure C-6    json_array_step

[

*

json_array_index

to json_array_index

,
]

Figure C-7    json_array_index

last

–

+
integer

integer

Array indexing is zero-based, so integer is a non-negative integer (0, 1, 2, 3,...).

The array index form last + integer is only for use with Oracle SQL function
json_transform, and you cannot use it in combination with other indexes, including in
a range specification (a json_array_step of the form json_array_index to
json_array_index).

Figure C-8    json_function_step

. json_item_method ( )

Appendix C

C-2



Figure C-9    json_item_method

abs

avg

binary

boolean

booleanOnly

ceiling

count

date

dateWithTime

double

dsInterval

float

floor

length

lower

maxNumber

maxString

minNumber

minString

number

numberOnly

size

string

stringOnly

sum

timestamp

type

upper

ymInterval

Figure C-10    json_filter_expr

? ( json_cond )

Appendix C

C-3



Figure C-11    json_cond

json_disjunction

json_conjunction

json_negation

( json_cond )

json_comparison

json_exists_cond

json_in_cond

json_like_cond

json_like_regex_cond

json_eq_regex_cond

json_has_substring_cond

json_starts_with_cond

Figure C-12    json_conjunction

json_cond && json_cond

Figure C-13    json_comparison

json_relative_path_expr json_compare_pred
json_var

json_scalar

json_var

json_scalar
json_compare_pred json_relative_path_expr

json_scalar json_compare_pred json_scalar

Figure C-14    json_relative_path-expr

@

json_nonfunction_steps json_function_step

Appendix C

C-4



Figure C-15    json_compare_pred

==

!=

<

<=

>=

>

Figure C-16    json_var

$ identifier

Figure C-17    json_scalar

json_number

true

false

null

json_string

Note:

json_number is a JSON number: a decimal numeral, possibly signed and possibly
including a decimal exponent.

Related Topics

• SQL/JSON Path Expression Syntax Relaxation
The basic SQL/JSON path-expression syntax is relaxed to allow implicit array wrapping
and unwrapping. This means that you need not change a path expression in your code if
your data evolves to replace a JSON value with an array of such values, or vice versa.
Examples are provided.

See Also:

• Oracle Database SQL Language Reference for information about Oracle syntax
diagrams

• Syntax diagram, Wikipedia

Appendix C

C-5

https://en.wikipedia.org/wiki/Syntax_diagram


Index

Symbols
! filter predicate, SQL/JSON path expressions,

15-2
!= comparison filter predicate, SQL/JSON path

expressions, 15-2
&& filter predicate, SQL/JSON path expressions,

15-2
< comparison filter predicate, SQL/JSON path

expressions, 15-2
<= comparison filter predicate, SQL/JSON path

expressions, 15-2
<> comparison filter predicate, SQL/JSON path

expressions, 15-2
== comparison filter predicate, SQL/JSON path

expressions, 15-2
> comparison filter predicate, SQL/JSON path

expressions, 15-2
>= comparison filter predicate, SQL/JSON path

expressions, 15-2
|| filter predicate, SQL/JSON path expressions,

15-2
$, SQL/JSON path expressions

for a SQL/JSON variable, 15-2
for the context item, 15-2

A
abs() item method, SQL/JSON path expressions,

15-13
ABSENT ON NULL, SQL/JSON generation

functions, 23-1
absolute path expression, 15-2

syntax, C-1
add_vc trigger procedure, 22-32
add_virtual_columns, DBMS_JSON PL/SQL

procedure, 22-24, 22-26, 22-29
adding virtual columns for JSON fields, 22-24

based on a data guide-enabled search index,
22-29

based on a hierarchical data guide, 22-26
aggregate item method, 15-13
ALL_JSON_COLUMNS view, 4-4
ALL_JSON_DATAGUIDE_FIELDS view, 22-14
ALL_JSON_DATAGUIDES view, 22-14

ALLOW SCALARS keywords, json_query
RETURNING clause, 16-1

array element, JSON, 1-2
array index, 15-2
array range specification, 15-2
array step, SQL/JSON path expressions, 15-2

syntax, C-1
array, JSON, 1-2
ASCII keyword

json_serialize function, 2-15
ASCII keyword, SQL functions, 16-1
avg() item method, SQL/JSON path expressions,

15-13

B
basic SQL/JSON path expression, 15-2

BNF description, C-1
diagrams, C-1

bind variable, passing a value to a SQL/JSON
variable, 15-2

BNF syntax descriptions, basic SQL/JSON path
expression, C-1

Boolean JSON value
generating, 23-5
targeted by json_value, 18-3
using FORMAT JSON to set, 11-1

boolean() item method, SQL/JSON path
expressions, 15-13

booleanOnly() item method, SQL/JSON path
expressions, 15-13

C
canonical form of a JSON number, 16-1
capabilities specification, Oracle Database

support for JSON, B-1
case-sensitivity

in data-guide field
o:preferred_column_name, 22-9

in query dot notation, 14-1
in SQL/JSON path expression, 15-2
JSON and SQL, xvii
strict and lax JSON syntax, 5-3

Index-1



ceiling() item method, SQL/JSON path
expressions, 15-13

change trigger, data guide, 22-32
user-defined, 22-34

character sets, 6-1
check constraint used to ensure well-formed

JSON data, 4-1
child COLUMNS clause, json_table, 20-5
client, using to retrieve JSON LOB data, 7-1
column, JSON, 4-1
COLUMNS clause

json_table, 20-5
columns of JSON data, 2-7
compare predicate, SQL/JSON path expressions

syntax, C-1
comparison filter predicates, SQL/JSON path

expressions, 15-2
comparison in SQL/JSON path expression,

types, 15-20
comparison, SQL/JSON path expressions

syntax, C-1
compatibility of data types, item methods, 15-13
composite multivalue function-based index,

28-10, 28-14
condition (filter), SQL/JSON path expressions,

15-2
condition, SQL/JSON path expressions

syntax, C-1
conditions, Oracle SQL

json_equal, 1
json_textcontains, 21-1

conditions, SQL/JSON
is json, 5-1

and JSON null, 1-2
is not json, 5-1

and JSON null, 1-2
json_exists, 17-1

indexing, 28-4, 28-10, 28-14
conjunction, SQL/JSON path expressions

syntax, C-1
constructor, JSON, 2-19

JSON generation, 23-1
constructor, JSON data type, 2-10
context item, SQL/JSON path expressions, 15-2
count() item method, SQL/JSON path

expressions, 15-13
create_view_on_path, DBMS_JSON PL/SQL

procedure, 22-17, 22-21
create_view, DBMS_JSON PL/SQL procedure,

22-17, 22-19

D
data guide

change trigger, 22-32
user-defined, 22-34

fields, 22-9
flat, 22-42
hierarchical, 22-48
multiple for the same JSON column, 22-36
overview, 22-2

data types for JSON columns, 3-1
date formats, ISO 8601, A-1
date() item method, SQL/JSON path

expressions, 15-13
DBA_JSON_COLUMNS view, 4-4
DBA_JSON_DATAGUIDE_FIELDS view, 22-14
DBA_JSON_DATAGUIDES view, 22-14
DBMS_JSON.add_virtual_columns PL/SQL

procedure, 22-24, 22-26, 22-29
DBMS_JSON.create_view PL/SQL procedure,

22-17, 22-19
DBMS_JSON.create_view_on_path PL/SQL

procedure, 22-17, 22-21
DBMS_JSON.drop_virtual_columns PL/SQL

procedure, 22-24, 22-32
DBMS_JSON.FORMAT_FLAT, 22-7, 22-9, 22-42
DBMS_JSON.FORMAT_HIERARCHICAL, 22-7,

22-19, 22-26, 22-48
DBMS_JSON.get_index_dataguide PL/SQL

function, 22-7, 22-9, 22-19
DBMS_JSON.get_view_sql PL/SQL procedure,

22-17
DBMS_JSON.PRETTY, 22-19, 22-42, 22-48
DBMS_JSON.rename_column PL/SQL

procedure, 22-9
descendant step, SQL/JSON path expressions,

15-2
diagrams, basic SQL/JSON path expression

syntax, C-1
DISALLOW SCALARS keywords

json_query, 19-1
json_table, 20-5

DISALLOW SCALARS keywords, json_query
RETURNING clause, 16-1

disjunction, SQL/JSON path expressions
syntax, C-1

Document Object Model (DOM), 24-1
DOM-like manipulation of JSON data, 24-1
dot-notation access to JSON data, 14-1

use with json_table SQL/JSON function, 20-1
double() item method, SQL/JSON path

expressions, 15-13
drop_virtual_columns, DBMS_JSON PL/SQL

procedure, 22-24, 22-32

Index

Index-2



dropping virtual columns for JSON fields, 22-24,
22-32

ds_iso_format ISO 8601 duration format, A-1
dsInterval() item method, SQL/JSON path

expressions, 15-13
duplicate field names in JSON objects, 5-2
duration formats, ISO 8601, A-1

E
element of a JSON array, 1-2
eq_regex filter predicate, SQL/JSON path

expressions, 15-2
error clause, SQL query functions and conditions,

16-7
ERROR ON MISMATCH clause, 16-10
exists filter predicate, SQL/JSON path

expressions, 15-2
EXISTS keyword, json_table, 20-5
EXTENDED keyword

JSON constructor, 2-10
json_serialize function, 2-15

extended object representation of JSON scalars,
2-23

EXTRA DATA clause, ON MISMATCH clause,
16-10

F
facet search of JSON data, 21-2
field name, SQL/JSON path expressions

syntax, C-1
field, JSON object, 1-2
filter condition, SQL/JSON path expressions,

15-2
filter expression, SQL/JSON path expressions,

15-2
filter, SQL/JSON path expressions, 15-2

syntax, C-1
float() item method, SQL/JSON path

expressions, 15-13
floor() item method, SQL/JSON path

expressions, 15-13
FOR ORDINALITY keywords, json_table, 20-5
FORMAT JSON keywords

json_table, 20-5
SQL/JSON generation functions, 23-1, 23-5

FORMAT_FLAT, package DBMS_JSON, 22-7,
22-9, 22-42

FORMAT_HIERARCHICAL, package
DBMS_JSON, 22-7, 22-19, 22-26, 22-48

full-text search of JSON data, 21-1
function step, SQL/JSON path expressions, 15-2

syntax, C-1

function-based indexing
multivalue, 28-10, 28-14

functions, Oracle SQL
json_dataguide, 22-7, 22-9

as an aggregate function, 22-36
hierarchical format, 22-26, 22-48
pretty-print format, 22-48

json_mergepatch, 10-1
json_scalar, 2-13, 2-19
json_serialize, 2-15, 2-19
json_transform, 10-1

functions, SQL/JSON
json_array, 23-14
json_arrayagg, 23-17
json_object, 23-8
json_objectagg, 23-15
json_query, 19-1
json_table, 20-1
json_value, 18-1

function-based indexing, 28-4
indexing for geographic data, 26-1
null JSON value, 18-4
returning an object-type instance, 18-4

G
generation of JSON data using SQL, 23-1

input SQL values, 23-5
geographic JSON data, 26-1
GeoJSON, 26-1
geometric features in JSON, 26-1
get_index_dataguide, DBMS_JSON PL/SQL

function, 22-7, 22-9, 22-19
get_view_sql, DBMS_JSON PL/SQL procedure,

22-17
get() method, PL/SQL object types, 24-1

H
has substring filter predicate, SQL/JSON path

expressions, 15-2
hidden virtual columns projected from JSON

data, 22-24

I
IGNORE ON MISMATCH clause, 16-10
IM column store, 29-1
in filter predicate, SQL/JSON path expressions,

15-2
In-Memory Column Store, 29-1

populating JSON into, 29-4
upgrading tables with JSON data for, 29-7

index, array, 15-2

Index

Index-3



indexing JSON data, 28-1
composite B-tree index for multiple fields,

28-16
for json_exists queries, 28-6, 28-10, 28-14
for json_table queries, 28-5
for search, 28-17
full-text and numeric-range, 28-17
function-based, 28-4

for geographic data, 26-1
GeoJSON, 26-1
is (not) json SQL/JSON condition, 28-2
json_exists SQL/JSON condition, 28-4,

28-10, 28-14
json_value SQL/JSON function, 28-4

data type considerations, 28-8
for geographic data, 26-1
for json_exists queries, 28-6
for json_table queries, 28-5

multivalue function-based index, 28-10
spatial, 26-1

inserting JSON data into a column, 10-1
introspection of PL/SQL object types, 24-1
is json SQL/JSON condition, 5-1

and JSON null, 1-2
indexing, 28-2
STRICT keyword, 5-5

is not json SQL/JSON condition, 5-1
and JSON null, 1-2
indexing, 28-2
STRICT keyword, 5-5

ISO 8601 formats, A-1
item method

use with dot-notation syntax, 14-1
item method, SQL/JSON path expressions, 15-2,

15-13
data type compatibility, 15-13
implicit "only" method application, 20-5
syntax, C-1

items data-guide field (JSON Schema keyword),
22-9

J
JavaScript array, 1-2
JavaScript notation compared with JSON, 1-1
JavaScript object, 1-2
JavaScript object literal, 1-2
JavaScript Object Notation (JSON), 1-1
JSON, 1-1

character encoding, 6-1
character-set conversion, 6-1
compared with JavaScript notation, 1-1
compared with XML, 1-5
overview, 1-1, 2-1

JSON (continued)
support by Oracle Database, specifications,

B-1
syntax, 1-1, 1-2, 2-1

basic path expression, 15-2, C-1
strict and lax, 5-3

JSON column, 4-1
JSON columns, 2-7
JSON data guide, 22-1

overview, 22-2
JSON data type (SQL), 2-5
JSON generation functions, 23-1
JSON language, Oracle-specific scalar types, 1-2
JSON LOB data, 7-1
JSON object types, PL/SQL

overview, 24-1
JSON scalar types, Oracle extended, 2-5
JSON scalars, object representation, 2-23
JSON Schema, 22-1

keywords, 22-9
JSON search index, 28-17
JSON type constructor, 2-10, 2-19

JSON generation, 23-1
JSON type data, migration from textual JSON

data, 2-29
json_array SQL/JSON function, 23-14
JSON_ARRAY_T PL/SQL object type, 24-1
json_arrayagg SQL/JSON function, 23-17
json_dataguide Oracle SQL function, 22-7, 22-9

as an aggregate function, 22-36
hierarchical format, 22-26, 22-48
pretty-print format, 22-48

JSON_ELEMENT_T PL/SQL object type, 24-1
json_equal Oracle SQL condition, 1
json_exists SQL/JSON condition, 17-1

as json_table, 17-4
indexing, 28-2, 28-4, 28-6, 28-10, 28-14

JSON_KEY_LIST PL/SQL object type, 24-1
json_mergepatch Oracle SQL function, 10-1
json_object SQL/JSON function, 23-8
JSON_OBJECT_T PL/SQL object type, 24-1
json_objectagg SQL/JSON function, 23-15
json_query SQL/JSON function, 19-1

as json_table, 19-3
json_scalar Oracle SQL function, 2-13, 2-19
JSON_SCALAR_T PL/SQL object type, 24-1
json_serialize Oracle SQL function, 2-15, 2-19
json_table SQL/JSON function, 20-1

DISALLOW SCALARS keywords, 20-5
EXISTS keyword, 20-5
FORMAT JSON keywords, 20-5
generalizes other SQL/JSON functions and

conditions, 20-9
indexing for queries, 28-5
NESTED PATH clause, 20-10

Index

Index-4



json_table SQL/JSON function (continued)
PATH clause, 20-1, 20-5
TRUNCATE keyword, 20-5

json_textcontains Oracle SQL condition, 21-1
json_transform Oracle SQL function, 10-1
json_value SQL/JSON function, 18-1

as json_table, 18-7
data type considerations for indexing, 28-8
function-based indexing, 28-4

for geographic data, 26-1
indexing for json_exists queries, 28-6
indexing for json_table queries, 28-5
null JSON value, 18-4
returning an object-type instance, 18-4

JSON, extended objects, 2-23

K
key, JSON object

See field, JSON object
keywords

JSON Schema, 22-9

L
lax JSON syntax, 5-3

specifying, 5-5
length() item method, SQL/JSON path

expressions, 15-13
like filter predicate, SQL/JSON path expressions,

15-2
like_regex filter predicate, SQL/JSON path

expressions, 15-2
limitations, Oracle Database support for JSON,

B-1
loading JSON data into the database, 10-1
LOB storage of JSON data, 7-1
lower() item method, SQL/JSON path

expressions, 15-13

M
materialized view of JSON data, 20-13

indexing, 30-1
rewriting automatically, 30-1

maxNumber() item method, SQL/JSON path
expressions, 15-13

maxString() item method, SQL/JSON path
expressions, 15-13

migration of textual JSON data to JSON type
data, 2-29

minNumber() item method, SQL/JSON path
expressions, 15-13

minString() item method, SQL/JSON path
expressions, 15-13

MISSING DATA clause, ON MISMATCH clause,
16-10

multiple data guides for the same JSON column,
22-36

multivalue function-based index, 28-10, 28-14

N
NESTED clause, instead of json_table, 20-4
NESTED PATH clause, json_table, 20-10
NoSQL databases, 2-3
null handling, SQL/JSON generation functions,

23-1, 23-5
NULL ON EMPTY clause, SQL/JSON query

functions, 16-9
NULL ON MISMATCH clause, 16-10
NULL ON NULL, SQL/JSON generation

functions, 23-1
NULL-handling clause, SQL/JSON generation

functions, 23-1
number() item method, SQL/JSON path

expressions, 15-13
numberOnly() item method, SQL/JSON path

expressions, 15-13
numeric-range indexing, 28-17

O
o:frequency data-guide field, 22-9
o:hidden data-guide field, 22-24
o:high_value data-guide field, 22-9
o:last_analyzed data-guide field, 22-9
o:length data-guide field, 22-9
o:low_value data-guide field, 22-9
o:num_nulls data-guide field, 22-9
o:path data-guide field, 22-9
o:preferred_column_name data-guide field, 22-9
o:sample_size data-guide field, 22-9
object literal, Javascript, 1-2
object member, JSON, 1-2
object step, SQL/JSON path expressions, 15-2

syntax, C-1
object, Javascript and JSON, 1-2
objects representation of JSON scalars, 2-23
ON EMPTY clause, SQL/JSON query functions,

16-9
ON MISMATCH clause, 16-10
oneOf data-guide field (JSON Schema keyword),

22-9
Oracle scalar types for JSON language, 1-2
Oracle SQL conditions, 1

json_equal, 1
json_textcontains, 21-1

See also SQL/JSON conditions

Index

Index-5



Oracle SQL functions, 1
json_dataguide, 22-7, 22-9

as an aggregate function, 22-36
hierarchical format, 22-26, 22-48
pretty-print format, 22-48

json_mergepatch, 10-1
json_scalar, 2-13, 2-19
json_serialize, 2-15, 2-19
json_transform, 10-1

See also SQL/JSON functions
Oracle support for JSON in the database, 2-29

specifications, B-1
OSON binary JSON data format, 2-5

P
parent COLUMNS clause, json_table, 20-5
parsing of JSON data to PL/SQL object types,

24-1
PASSING clause, json_exists, 17-1
PATH clause

json_table, 20-5
PATH clause, json_table, 20-1
path expression, SQL/JSON, 15-1

comparison, types, 15-20
for a json_table column, 20-5
item methods, 15-13
syntax, 15-2, C-1

path expression, SQL/JSON, for json_exists,
17-1

path expression, SQL/JSON, for json_query,
18-1, 19-1

path expression, SQL/JSON, for json_table rows,
20-1

performance tuning, 27-1
PL/SQL functions

DBMS_JSON.get_index_dataguide, 22-7,
22-9, 22-19

PL/SQL object types
overview, 24-1

PL/SQL object-type methods, 24-1
PL/SQL procedures

DBMS_JSON.add_virtual_columns, 22-24,
22-26, 22-29

DBMS_JSON.create_view, 22-17, 22-19
DBMS_JSON.create_view_on_path, 22-17,

22-21
DBMS_JSON.drop_virtual_columns, 22-24,

22-32
DBMS_JSON.get_view_sql, 22-17
DBMS_JSON.rename_column, 22-9

PL/SQL, use of JSON data, 2-8
predicate

See filter expression

PRETTY keyword
json_serialize function, 2-15

PRETTY keyword, SQL functions, 16-1
pretty-printing

in book examples, xvii
pretty-printing serialized JSON data, 2-15
PRETTY, package DBMS_JSON, 22-19, 22-42,

22-48
projecting virtual columns from JSON fields,

22-24
properties data-guide field (JSON Schema

keyword), 22-9
property, JSON object

See field, JSON object
put() method, PL/SQL object types, 24-1

Q
queries, dot notation, 14-1

use with json_table SQL/JSON function, 20-1
query rewrite to a materialized view, 30-1

R
range specification, array, 15-2
rawtohex SQL function, for insert or update with

BLOB JSON column, 7-1
relational database with JSON data, 2-3
relative path expression, 15-2

syntax, C-1
rename_column, DBMS_JSON PL/SQL

procedure, 22-9
rendering of JSON data, 16-1
restrictions, Oracle Database support for JSON,

B-1
retrieval of JSON LOB data from database by

client, 7-1
RETURNING clause

SQL query functions, 16-1
SQL/JSON generation functions, 23-1

rewrite of JSON queries to a materialized view,
30-1

row source, JSON
definition, 20-1

S
scalar types and values, JSON, 1-2

object representation, 2-23
scalar, SQL/JSON path expressions

syntax, C-1
schema, JSON, 22-1
schemaless database data, 2-3
SDO_GEOMETRY, 26-1

Index

Index-6



searching JSON data, 21-1
facets, 21-2
full-text, 21-1

SELECT statement, NESTED clause instead of
json_table, 20-4

serialization
of JSON data from queries, 16-1
of JSON data in PL/SQL object types, 24-1

serializing JSON data, 2-15
setting values in PL/SQL object types, 24-1
sharding, data-guide information in index, 22-4
sibling COLUMNS clauses, json_table, 20-5
simple dot-notation access to JSON data, 14-1

use with json_table SQL/JSON function, 20-1
Simple Oracle Document Access (SODA), 2-1
simplified syntax

See simple dot-notation access to JSON data
size() item method, SQL/JSON path expressions,

15-13
SODA, 2-1
spatial JSON data, 26-1
specifications, Oracle Database support for

JSON, B-1
SQL functions

json_dataguide, 22-7, 22-9
as an aggregate function, 22-36
hierarchical format, 22-26, 22-48
pretty-print format, 22-48

json_mergepatch, 10-1
json_transform, 10-1

SQL NESTED clause, instead of json_table, 20-4
SQL, overview of use with JSON data, 2-7
SQL/JSON conditions, 1

is (not) json, 5-1
is json

and JSON null, 1-2
indexing, 28-2

is not json
and JSON null, 1-2
indexing, 28-2

json_exists, 17-1
as json_table, 17-4
indexing, 28-2, 28-4, 28-10, 28-14
See also Oracle SQL conditions

SQL/JSON functions, 1
for generating JSON, 23-1
json_array, 23-14
json_arrayagg, 23-17
json_object, 23-8
json_objectagg, 23-15
json_query, 19-1

as json_table, 19-3
json_table, 20-1
json_value, 18-1

as json_table, 18-7

SQL/JSON functions (continued)
json_value (continued)
function-based indexing, 26-1, 28-4
null JSON value, 18-4
returning an object-type instance, 18-4
See also Oracle SQL functions

SQL/JSON generation functions, 23-1
input SQL values, 23-5

SQL/JSON path expression, 15-1
comparison, types, 15-20
for a json_table column, 20-5
item methods, 15-13
syntax, 15-2

array step, C-1
basic, 15-2, C-1
compare predicate, C-1
comparison, C-1
condition, C-1
conjunction, C-1
disjunction, C-1
field name, C-1
filter, C-1
function step, C-1
item method, C-1
object step, C-1
relaxed, 15-11
scalar, C-1
variable, C-1

SQL/JSON path expression, for json_exists, 17-1
SQL/JSON path expression, for json_query,

18-1, 19-1
SQL/JSON path expression, for json_table rows,

20-1
SQL/JSON query functions

WITH WRAPPER keywords, 16-4
SQL/JSON variable, 15-2
starts with filter predicate, SQL/JSON path

expressions, 15-2
step, SQL/JSON path expressions, 15-2
storing and managing JSON data, overview, 3-1
strict JSON syntax, 5-3

specifying, 5-5
STRICT keyword

is (not) json SQL/JSON condition, 5-5
SQL/JSON generation functions, 23-1

string() item method, SQL/JSON path
expressions, 15-13

stringOnly() item method, SQL/JSON path
expressions, 15-13

sum() item method, SQL/JSON path
expressions, 15-13

support for JSON, Oracle Database, 2-29
specifications, B-1

syntax diagrams, basic SQL/JSON path
expression, C-1

Index

Index-7



T
tables with JSON data, 2-7
textual JSON data, migration to JSON type data,

2-29
textual SQL data types for JSON data, 2-5
time formats, ISO 8601, A-1
timestamp() item method, SQL/JSON path

expressions, 15-13
tree-like representation of JSON data, 24-1
trigger for data-guide changes, 22-32
TRUNCATE keyword

json_serialize function, 2-15
json_table, 20-5

TRUNCATE keyword, Oracle extension for SQL/
JSON VARCHAR2 return value, 16-1

type data-guide field (JSON Schema keyword),
22-9

TYPE ERROR clause, ON MISMATCH clause,
16-10

type() item method, SQL/JSON path
expressions, 15-13

types in path-expression comparisons, 15-20

U
UNCONDITIONAL keyword, SQL/JSON query

functions, 16-4
unique field names in JSON objects, 5-2
updating JSON data, 10-1
upper() item method, SQL/JSON path

expressions, 15-13
USER_JSON_COLUMNS view, 4-4
USER_JSON_DATAGUIDE_FIELDS view, 22-14
USER_JSON_DATAGUIDES view, 22-14
user-defined data-guide change trigger, 22-34

V
value, JSON language, 1-2
variable, SQL/JSON path expressions, 15-2

syntax, C-1
view

create based on a data guide, 22-19

view (continued)
create based on data guide-enabled index

and a path, 22-21
create using SQL/JSON function json_table,

20-13
views

ALL_JSON_COLUMNS, 4-4
ALL_JSON_DATAGUIDE_FIELDS, 22-14
ALL_JSON_DATAGUIDES, 22-14
DBA_JSON_COLUMNS, 4-4
DBA_JSON_DATAGUIDE_FIELDS, 22-14
DBA_JSON_DATAGUIDES, 22-14
USER_JSON_COLUMNS, 4-4
USER_JSON_DATAGUIDE_FIELDS, 22-14
USER_JSON_DATAGUIDES, 22-14

virtual columns for JSON fields, adding, 22-24
based on a data guide-enabled search index,

22-29
based on a hierarchical data guide, 22-26

W
well-formed JSON data, 5-1

ensuring, 3-1
WITH UNIQUE KEYS keywords, JSON condition

is json, 5-2
WITH WRAPPER keywords, SQL/JSON query

functions, 16-4
WITHOUT UNIQUE KEYS keywords, JSON

condition is json, 5-2
wrapper clause, SQL/JSON query functions, 16-4
WRAPPER keyword, SQL/JSON query functions,

16-4

X
XML

compared with JSON, 1-5
DOM, 24-1

Y
ym_iso_format ISO 8601 duration format, A-1
ymInterval() item method, SQL/JSON path

expressions, 15-13

Index

Index-8


	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions
	Code Examples
	Pretty Printing of JSON Data
	Execution Plans
	Reminder About Case Sensitivity


	Part I JSON Data and Oracle Database
	1 JSON Data (Standard)
	1.1 Overview of JSON
	1.2 JSON Syntax and the Data It Represents
	1.3 JSON Compared with XML

	2 JSON in Oracle Database
	2.1 Getting Started Using JSON with Oracle Database
	2.2 Overview of JSON in Oracle Database
	2.2.1 Data Types for JSON Data
	2.2.2 JSON Columns in Database Tables
	2.2.3 Use SQL With JSON Data
	2.2.4 Use PL/SQL With JSON Data

	2.3 JSON Data Type, To and From
	2.3.1 JSON Data Type Constructor
	2.3.2 Oracle SQL Function JSON_SCALAR
	2.3.3 Oracle SQL Function JSON_SERIALIZE
	2.3.4 JSON Constructor, JSON_SCALAR, and JSON_SERIALIZE: Summary
	2.3.5 Objects That Extend JSON Scalars
	2.3.6 Migration of Textual JSON Data to JSON Type Data

	2.4 Oracle Database Support for JSON
	2.4.1 Support for RFC 8259: JSON Scalars



	Part II Store and Manage JSON Data
	3 Overview of Storing and Managing JSON Data
	4 Creating a Table With a JSON Column
	4.1 Determining Whether a Column Must Contain Only JSON Data

	5 SQL/JSON Conditions IS JSON and IS NOT JSON
	5.1 Unique Versus Duplicate Fields in JSON Objects
	5.2 About Strict and Lax JSON Syntax
	5.3 Specifying Strict or Lax JSON Syntax

	6 Character Sets and Character Encoding for JSON Data
	7 Considerations When Using LOB Storage for JSON Data
	8 Partitioning JSON Data
	9 Replication of JSON Data

	Part III Insert, Update, and Load JSON Data
	10 Overview of Inserting, Updating, and Loading JSON Data
	11 Oracle SQL Function JSON_TRANSFORM
	12 Oracle SQL Function JSON_MERGEPATCH
	13 Loading External JSON Data

	Part IV Query JSON Data
	14 Simple Dot-Notation Access to JSON Data
	15 SQL/JSON Path Expressions
	15.1 Overview of SQL/JSON Path Expressions
	15.2 SQL/JSON Path Expression Syntax
	15.2.1 Basic SQL/JSON Path Expression Syntax
	15.2.2 SQL/JSON Path Expression Syntax Relaxation

	15.3 SQL/JSON Path Expression Item Methods
	15.4 Types in Comparisons

	16 Clauses Used in SQL Functions and Conditions for JSON
	16.1 RETURNING Clause for SQL Query Functions
	16.2 Wrapper Clause for SQL/JSON Query Functions JSON_QUERY and JSON_TABLE
	16.3 Error Clause for SQL Query Functions and Conditions
	16.4 Empty-Field Clause for SQL/JSON Query Functions
	16.5 ON MISMATCH Clause for SQL/JSON Query Functions

	17 SQL/JSON Condition JSON_EXISTS
	17.1 Using Filters with JSON_EXISTS
	17.2 JSON_EXISTS as JSON_TABLE

	18 SQL/JSON Function JSON_VALUE
	18.1 Using SQL/JSON Function JSON_VALUE With a Boolean JSON Value
	18.2 SQL/JSON Function JSON_VALUE Applied to a null JSON Value
	18.3 Using JSON_VALUE To Instantiate a User-Defined Object Type Instance
	18.4 JSON_VALUE as JSON_TABLE

	19 SQL/JSON Function JSON_QUERY
	19.1 JSON_QUERY as JSON_TABLE

	20 SQL/JSON Function JSON_TABLE
	20.1 SQL NESTED Clause Instead of JSON_TABLE
	20.2 COLUMNS Clause of SQL/JSON Function JSON_TABLE
	20.3 JSON_TABLE Generalizes SQL/JSON Query Functions and Conditions
	20.4 Using JSON_TABLE with JSON Arrays
	20.5 Creating a View Over JSON Data Using JSON_TABLE

	21 Full-Text Search Queries
	21.1 Oracle SQL Condition JSON_TEXTCONTAINS
	21.2 JSON Facet Search with PL/SQL Procedure CTX_QUERY.RESULT_SET

	22 JSON Data Guide
	22.1 Overview of JSON Data Guide
	22.2 Persistent Data-Guide Information: Part of a JSON Search Index
	22.3 Data-Guide Formats and Ways of Creating a Data Guide
	22.4 JSON Data-Guide Fields
	22.5 Data-Dictionary Views For Persistent Data-Guide Information
	22.6 Specifying a Preferred Name for a Field Column
	22.7 Creating a View Over JSON Data Based on Data-Guide Information
	22.7.1 Creating a View Over JSON Data Based on a Hierarchical Data Guide
	22.7.2 Creating a View Over JSON Data Based on a Path Expression

	22.8 Adding and Dropping Virtual Columns For JSON Fields Based on Data-Guide Information
	22.8.1 Adding Virtual Columns For JSON Fields Based on a Hierarchical Data Guide
	22.8.2 Adding Virtual Columns For JSON Fields Based on a Data Guide-Enabled Search Index
	22.8.3 Dropping Virtual Columns for JSON Fields Based on Data-Guide Information

	22.9 Change Triggers For Data Guide-Enabled Search Index
	22.9.1 User-Defined Data-Guide Change Triggers

	22.10 Multiple Data Guides Per Document Set
	22.11 Querying a Data Guide
	22.12 A Flat Data Guide For Purchase-Order Documents
	22.13 A Hierarchical Data Guide For Purchase-Order Documents


	Part V Generation of JSON Data
	23 Generation of JSON Data Using SQL
	23.1 Overview of JSON Generation
	23.2 Handling of Input Values For SQL/JSON Generation Functions
	23.3 SQL/JSON Function JSON_OBJECT
	23.4 SQL/JSON Function JSON_ARRAY
	23.5 SQL/JSON Function JSON_OBJECTAGG
	23.6 SQL/JSON Function JSON_ARRAYAGG


	Part VI PL/SQL Object Types for JSON
	24 Overview of PL/SQL Object Types for JSON
	25 Using PL/SQL Object Types for JSON

	Part VII GeoJSON Geographic Data
	26 Using GeoJSON Geographic Data

	Part VIII Performance Tuning for JSON
	27 Overview of Performance Tuning for JSON
	28 Indexes for JSON Data
	28.1 Overview of Indexing JSON Data
	28.2 How To Tell Whether a Function-Based Index for JSON Data Is Picked Up
	28.3 Creating Bitmap Indexes for JSON_VALUE
	28.4 Creating B-Tree Indexes for JSON_VALUE
	28.5 Using a JSON_VALUE Function-Based Index with JSON_TABLE Queries
	28.6 Using a JSON_VALUE Function-Based Index with JSON_EXISTS Queries
	28.7 Data Type Considerations for JSON_VALUE Indexing and Querying
	28.8 Creating Multivalue Function-Based Indexes for JSON_EXISTS
	28.9 Using a Multivalue Function-Based Index
	28.10 Indexing Multiple JSON Fields Using a Composite B-Tree Index
	28.11 JSON Search Index for Ad Hoc Queries and Full-Text Search

	29 In-Memory JSON Data
	29.1 Overview of In-Memory JSON Data
	29.2 Populating JSON Data Into the In-Memory Column Store
	29.3 Upgrading Tables With JSON Data For Use With the In-Memory Column Store

	30 JSON Query Rewrite To Use a Materialized View Over JSON_TABLE

	Part IX Appendixes
	A ISO 8601 Date, Time, and Duration Support
	B Oracle Database JSON Capabilities Specification
	C Diagrams for Basic SQL/JSON Path Expression Syntax

	Index

