
Oracle® Database
SecureFiles and Large Objects Developer's
Guide

21c
F31307-05
February 2025

Oracle Database SecureFiles and Large Objects Developer's Guide, 21c

F31307-05

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Authors: Tulika Das, Jayashree Sharma, Janis Greenberg

Contributing Authors: Geeta Arora, Rhonda Day, Tanmay Choudhury, Amith Kumar

Contributors: Bharath Aleti, Parthasarathy Raghunathan, Bharath Aleti, Thomas H. Chang, Maria Chien, Subramanyam
Chitti, Amit Ganesh, Kevin Jernigan, Vikram Kapoor, Balaji Krishnan, Jean de Lavarene, Geoff Lee, Scott Lynn, Jack
Melnick, Atrayee Mullick, Eric Paapanen, Ravi Rajamani, Kam Shergill, Ed Shirk, Srinivas Vemuri

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiv

Documentation Accessibility xiv

Related Documents xv

Conventions xv

1 Introduction to Large Objects and SecureFiles

1.1 Changes in Oracle Database 1-1

1.1.1 Updates to Oracle Database Security 21c 1-1

1.2 What Are Large Objects? 1-2

1.3 Where Should We Use LOBs? 1-3

1.4 LOB Classifications 1-3

1.4.1 Large Object Data Types 1-4

1.4.2 Types of LOBs 1-4

1.4.3 LOBs in Object Data Types 1-5

1.4.4 Oracle Data Types Stored in LOBs 1-5

1.5 LOB Locator and LOB Value 1-5

1.5.1 Using LOBs Without Locators 1-6

1.5.2 Using LOBs with Locators 1-7

1.6 LOB Restrictions 1-7

1.7 How to Navigate This Book 1-9

2 Persistent LOBs

2.1 Creating a Table with LOB Columns 2-2

2.2 Inserting and Updating LOB Values in Tables 2-4

2.2.1 Inserting and Updating with a Buffer 2-4

2.2.2 Inserting and Updating by Selecting a LOB From Another Table 2-5

2.2.3 Inserting and Updating with a NULL or Empty LOB 2-6

2.2.4 Inserting and Updating with a LOB Locator 2-7

2.2.4.1 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable 2-7

2.2.4.2 JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable 2-8

2.2.4.3 OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable 2-9

iii

2.2.4.4 Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind
Variable 2-9

2.2.4.5 Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator Bind
Variable 2-10

2.3 Selecting LOB Values from Tables 2-11

2.3.1 Selecting a LOB into a Character Buffer or a Raw Buffer 2-11

2.3.2 Selecting a LOB into a LOB Variable for Read Operations 2-12

2.3.3 Selecting a LOB into a LOB Variable for Write Operations 2-12

2.4 Performing DML and Query Operations on LOBs in Nested Tables 2-13

2.5 Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations
on LOBs 2-15

2.6 Sharding with LOBs 2-16

3 Temporary LOBs

3.1 Before You Begin 3-1

3.1.1 Creating Temporary LOBs 3-1

3.1.2 Handling Temporary LOBs on the Client Side 3-2

3.2 Temporary LOB APIs in Different Programmatic Interfaces 3-3

3.2.1 PL/SQL APIs for Temporary LOBs 3-4

3.2.2 JDBC API for Temporary LOBs 3-5

3.2.3 OCI APIs for Temporary LOBs 3-6

3.2.4 ODP.NET API for Temporary LOBs 3-8

3.2.5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs 3-8

4 BFILEs

4.1 DIRECTORY Objects 4-1

4.1.1 DIRECTORY Name Specification 4-2

4.1.2 Security on Directory Objects 4-3

4.2 BFILE Locators 4-4

4.3 BFILE APIs 4-9

4.3.1 Sanity Checking 4-10

4.3.2 Opening and Closing a BFILE 4-10

4.3.3 Reading from a BFILE 4-10

4.3.4 Working with Multiple BFILE Locators 4-11

4.4 BFILE APIs in Different Programmatic Interfaces 4-14

4.4.1 PL/SQL APIs for BFILEs 4-15

4.4.2 JDBC API for BFILEs 4-18

4.4.3 OCI API for BFILEs 4-21

4.4.4 ODP.NET API for BFILEs 4-25

4.4.5 OCCI API for BFILEs 4-26

iv

4.4.6 Pro*C/C++ and Pro*COBOL API for BFILEs 4-27

5 SQL Semantics for LOBs

5.1 SQL Functions and Operators Supported for Use with LOBs 5-1

5.2 Detailed Semantics of SQL Operations on LOBs 5-5

5.2.1 Return Datatype for SQL Operations on LOBs 5-5

5.2.2 NULL vs EMPTY LOB: Semantic Difference between LOBs and VARCHAR2 5-5

5.2.3 WHERE Clause Usage with LOBs 5-6

5.2.4 CLOBs and NCLOBs Do Not Follow Session Collation Settings 5-6

5.2.5 Codepoint Semantics 5-7

5.3 Restrictions on SQL Operations on LOBs 5-8

6 PL/SQL Semantics for LOBs

6.1 Implicit Conversion with LOBs 6-1

6.1.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL 6-3

6.1.2 Implicit Conversions Between CLOB and VARCHAR2 6-4

6.1.3 Implicit Conversions Between BLOB and RAW 6-6

6.1.4 Guidelines and Restrictions for Implicit Conversions with LOBs 6-6

6.1.5 Detailed Examples for Implicit Conversions with LOBs 6-7

6.2 Explicit Data Type Conversion Functions 6-10

6.3 Temporary LOBs Created by SQL and PL/SQL Built-in Functions 6-11

7 Data Interface for LOBs

7.1 Overview of the Data Interface for LOBs 7-1

7.2 Benefits of Using the Data Interface for LOBs 7-2

7.3 Data Interface for LOBs in Java 7-3

7.4 Data Interface for LOBs in OCI 7-6

7.4.1 Binding a LOB in OCI 7-7

7.4.2 Defining a LOB in OCI 7-7

7.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs 7-8

7.4.4 Getting LOB Length 7-8

7.4.5 Using OCI Functions to Perform INSERT or UPDATE on LOB Columns 7-8

7.4.5.1 Performing Simple INSERT or UPDATE Operations in One Piece 7-9

7.4.5.2 Using Piecewise INSERT and UPDATE Operations with Polling 7-9

7.4.5.3 Performing Piecewise INSERT and UPDATE Operations with Callback 7-11

7.4.5.4 Performing Array INSERT and UPDATE Operations 7-13

7.4.6 Using OCI Data Interface to Fetch LOB Data 7-14

7.4.6.1 Performing Simple Fetch Operations in One Piece 7-14

7.4.6.2 Performing a Piecewise Fetch with Polling 7-15

v

7.4.6.3 Performing a Piecewise with Callback 7-16

7.4.6.4 Performing an Array Fetch Operation 7-19

7.4.7 PL/SQL and C Binds from OCI 7-20

8 Locator Interface for LOBs

8.1 Before You Begin 8-1

8.1.1 Getting a LOB Locator 8-2

8.1.2 LOB Open and Close Operations 8-3

8.1.3 Read and Write at Chunk Boundaries 8-4

8.1.4 Prefetching LOB Data and Length 8-4

8.1.5 Determining Character Set ID 8-4

8.1.6 LOB APIs 8-4

8.2 PL/SQL API for LOBs 8-7

8.3 JDBC API for LOBs 8-14

8.4 OCI API for LOBs 8-18

8.4.1 Efficiently Reading LOB Data in OCI 8-26

8.4.2 Efficiently Writing LOB Data in OCI 8-31

8.5 ODP.NET API for LOBs 8-34

8.6 OCCI API for LOBs 8-35

8.7 Pro*C/C++ and Pro*COBOL API for LOBs 8-37

9 Distributed LOBs

9.1 Working with Remote LOBs in SQL and PL/SQL 9-1

9.2 Using the Data Interface on Remote LOBs 9-4

9.3 Working with Remote Locators 9-8

9.3.1 Using Local and Remote Locators as Bind with Queries and DML on Remote
Tables 9-9

9.3.2 Using Remote Locator 9-10

9.3.3 Restrictions when using remote LOB locators 9-12

10

Performance Guidelines

10.1 LOB Performance Guidelines 10-1

10.1.1 All LOBs 10-1

10.1.2 Performance Guidelines While Using Persistent LOBs 10-2

10.1.3 Temporary LOBs 10-3

10.2 Moving Data to LOBs in a Threaded Environment 10-5

10.3 LOB Access Statistics 10-6

vi

11

Persistent LOBs: Advanced DDL

11.1 Creating a New LOB Column 11-1

11.1.1 CREATE TABLE BNF 11-3

11.1.2 ENABLE or DISABLE STORAGE IN ROW 11-4

11.1.3 CACHE, NOCACHE, and CACHE READS 11-5

11.1.4 LOGGING and FILESYSTEM_LIKE_LOGGING 11-5

11.1.5 The RETENTION Parameter 11-6

11.1.6 SecureFiles Compression, Deduplication, and Encryption 11-7

11.1.7 BasicFile Specific Parameters 11-12

11.1.8 Restriction on First Extent of a LOB Segment 11-13

11.1.9 Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs 11-14

11.2 Altering an Existing LOB Column 11-15

11.2.1 ALTER TABLE BNF 11-15

11.2.2 ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB 11-17

11.2.3 ALTER TABLE SecureFiles LOB Features 11-18

11.2.3.1 ALTER TABLE with Advanced LOB Compression 11-18

11.2.3.2 ALTER TABLE with Advanced LOB Deduplication 11-19

11.2.3.3 ALTER TABLE with SecureFiles Encryption 11-19

11.3 Creating an Index on LOB Column 11-20

11.3.1 Function-Based Indexing on LOB Columns 11-20

11.3.2 Domain Indexing on LOB Columns 11-21

11.3.2.1 Extensible Optimizer 11-22

11.3.2.2 Text Indexes on LOB Columns 11-22

11.4 LOBs in Partitioned Tables 11-23

11.4.1 Partitioning a Table Containing LOB Columns 11-24

11.4.2 Default LOB Storage Attributes 11-24

11.4.3 Partition Maintenance Operation 11-25

11.4.4 Creating an Index on a Table Containing Partitioned LOB Columns 11-26

11.5 LOBs in Index Organized Tables 11-26

12

Advanced Design Considerations

12.1 Read-Consistent Locators 12-1

12.1.1 A Selected Locator Becomes a Read-Consistent Locator 12-2

12.1.2 Example of Updating LOBs and Read-Consistency 12-2

12.1.3 Example of Updating LOBs Through Updated Locators 12-4

12.1.4 Example of Updating a LOB Using SQL DML and DBMS_LOB 12-5

12.1.5 Example of Using One Locator to Update the Same LOB Value 12-6

12.1.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable 12-8

12.1.7 Example of Deleting a LOB Using Locator 12-10

12.1.8 Ensuring Read Consistency 12-11

vii

12.2 LOB Locators and Transaction Boundaries 12-11

12.2.1 About LOB Locators and Transaction Boundaries 12-12

12.2.2 Read and Write Operations on a LOB Using Locators 12-12

12.2.3 Selecting the Locator Outside of the Transaction Boundary 12-13

12.2.4 Selecting the Locator Within a Transaction Boundary 12-14

12.2.5 LOB Locators Cannot Span Transactions 12-14

12.2.6 Example of Locator Not Spanning a Transaction 12-15

12.3 LOBs in the Object Cache 12-16

12.4 Guidelines for Creating Terabyte sized LOBs 12-16

12.4.1 Creating a Tablespace and Table to Store Terabyte LOBs 12-17

13

Managing LOBs: Database Administration

13.4 LOB Migration with Data Pump 13-1

13.1 Initialization Parameter for SecureFiles LOBs 13-1

13.2 Database Character Set Considerations 13-2

13.3 Database Utilities for Loading Data into LOBs 13-2

13.3.1 Loading LOBs with SQL*Loader 13-3

13.3.2 Loading BFILEs with SQL*Loader 13-6

13.3.3 Loading LOBs with External Tables 13-7

13.3.3.1 Overview of LOBs and External Tables 13-8

13.5 BFILEs Management 13-10

13.5.1 Guidelines for DIRECTORY Usage 13-10

13.5.2 Rules for Using Directory Objects and BFILEs 13-11

13.5.3 Setting Maximum Number of Open BFILEs 13-11

13.6 Managing LOB Signatures 13-11

14

Migrating Columns to SecureFile LOBs

14.1 Migration Considerations 14-1

14.2 Migration Methods 14-2

14.2.1 Migrating LOBs with Online Redefinition 14-2

14.2.2 Migrating LOBs with Data Pump 14-5

14.3 Other Considerations While Migrating LONG Columns to LOBs 14-6

14.3.1 Migrating Applications from LONGs to LOBs 14-6

14.3.2 Alternate Methods for LOB Migration 14-10

15

Introducing the Database File System

15.1 Why a Database File System? 15-1

15.2 What Is Database File System (DBFS)? 15-1

15.2.1 About DBFS 15-2

viii

15.2.2 DBFS Server 15-2

15.2.3 DBFS Client Access Methods 15-3

16

DBFS SecureFiles Store

16.1 Setting Up a SecureFiles Store 16-1

16.1.1 About Managing Permissions 16-1

16.1.2 Creating or Setting Permissions 16-2

16.1.3 Creating a SecureFiles File System Store 16-2

16.1.4 Accessing SecureFiles Store 16-4

16.1.5 Reinitializing SecureFiles Store File Systems 16-4

16.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs 16-5

16.2 Using a DBFS SecureFiles Store File System 16-5

16.2.1 DBFS Content API Working Example 16-5

16.2.2 Dropping SecureFiles Store File Systems 16-6

16.3 About DBFS SecureFiles Store Package, DBMS_DBFS_SFS 16-7

16.4 Database File System (DBFS)— POSIX File Locking 16-8

16.4.1 About Advisory Locking 16-8

16.4.2 About Mandatory Locking 16-9

16.4.3 File Locking Support 16-9

16.4.4 Compatibility and Migration Factors of Database Filesystem—File Locking 16-9

16.4.5 Examples of Database File System—File Locking 16-10

16.4.6 DBFS Locking Behavior 16-11

16.4.7 Scheduling File Locks 16-11

16.4.7.1 Greedy Scheduling 16-12

16.4.7.2 Fair Scheduling 16-12

17

Using DBFS

17.6 Dropping a File System 17-1

17.1 Installing DBFS 17-2

17.2 Creating a DBFS File System 17-2

17.2.1 About the Create File System Command 17-3

17.2.2 Privileges Required to Create a DBFS File System 17-4

17.2.3 Creating a Non-Partitioned File System 17-4

17.2.4 Creating a Partitioned File System 17-5

17.2.5 Enabling Advanced SecureFiles LOB Features for DBFS 17-6

17.3 Accessing DBFS File System 17-7

17.3.1 DBFS Client Prerequisites 17-7

17.3.2 Multiple Mount Points on DBFS Client 17-8

17.3.2.1 MUMV for CDB Variant 17-9

17.3.2.2 MUMV for Cross-Database Variant 17-9

ix

17.3.3 Manager File System 17-9

17.3.3.1 Adding a DBFS Mount Point 17-10

17.3.3.2 Listing DBFS Mount Points 17-11

17.3.3.3 Unmounting a DBFS Mount Point 17-12

17.3.3.4 Configuration Parameters of DBFS Client 17-12

17.3.3.5 Diagnosability of DBFS Client 17-12

17.3.4 DBFS Client Command-Line Interface Operations 17-13

17.3.4.1 About the DBFS Client Command-Line Interface 17-13

17.3.4.2 Listing a Directory 17-13

17.3.4.3 Copying Files and Directories 17-14

17.3.4.4 Removing Files and Directories 17-14

17.3.5 DBFS Mounting Interface (Linux and Solaris Only) 17-15

17.3.5.1 Installing FUSE on Solaris 11 SRU7 and Later 17-15

17.3.5.2 Solaris-Specific Privileges 17-15

17.3.5.3 About the Mount Command for Solaris and Linux 17-16

17.3.5.4 Mounting a File System with a Wallet 17-17

17.3.5.5 Mounting a File System with Password at Command Prompt 17-17

17.3.5.6 Unmounting a File System 17-17

17.3.5.7 Mounting DBFS Through fstab Utility for Linux 17-18

17.3.5.8 Mounting DBFS Through the vfstab Utility for Solaris 17-18

17.3.5.9 Restrictions on Mounted File Systems 17-19

17.3.5.10 Restrictions on Types of Files Stored at DBFS Mount Points 17-19

17.3.6 File System Security Model 17-20

17.3.6.1 About the File System Security Model 17-20

17.3.6.2 Enabling Shared Root Access 17-21

17.3.6.3 About DBFS Access Among Multiple Database Users 17-21

17.3.6.4 Establishing DBFS Access Sharing Across Multiple Database Users 17-21

17.3.7 HTTP, WebDAV, and FTP Access to DBFS 17-25

17.3.7.1 Internet Access to DBFS Through XDB 17-25

17.3.7.2 Web Distributed Authoring and Versioning (WebDAV) Access 17-25

17.3.7.3 FTP Access to DBFS 17-26

17.3.7.4 HTTP Access to DBFS 17-27

17.4 Maintaining DBFS 17-27

17.4.1 Using Oracle Wallet with DBFS Client 17-27

17.4.2 DBFS Diagnostics 17-28

17.4.3 Preventing Data Loss During Failover Events 17-28

17.4.4 Bypassing Client-Side Write Caching 17-29

17.4.5 Backing up DBFS 17-29

17.4.5.1 DBFS Backup at the Database Level 17-29

17.4.5.2 DBFS Backup Through a File System Utility 17-30

17.4.6 Small File Performance of DBFS 17-30

17.5 Shrinking and Reorganizing DBFS Filesystems 17-30

x

17.5.1 About Changing DBFS File Systems 17-31

17.5.2 Advantages of Online Filesystem Reorganization 17-31

17.5.3 Determining Availability of Online Filesystem Reorganization 17-32

17.5.4 Required Permissions for Online Filesystem Reorganization 17-32

17.5.5 Invoking Online Filesystem Reorganization 17-33

18

DBFS Hierarchical Store

18.1 About the Hierarchical Store Package DBMS_DBFS_HS 18-1

18.2 Setting up the Store 18-1

18.2.1 Creating, Registering, and Mounting the Store 18-2

18.3 Using the Hierarchical Store 18-2

18.3.1 Using Hierarchical Store as a File System 18-3

18.3.2 Using Hierarchical Store as an Archive Solution For SecureFiles LOBs 18-3

18.3.3 Dropping a Hierarchical Store 18-3

18.3.4 Compression to Use with the Hierarchical Store 18-3

18.3.5 Program Example Using Tape 18-4

18.3.6 Program Example Using Amazon S3 18-8

18.4 The DBMS_DBFS_HS Package 18-13

18.4.1 Constants for DBMS_DBFS_HS Package 18-13

18.4.2 Methods for DBMS_DBFS_HS Package 18-13

18.5 Views for DBFS Hierarchical Store 18-14

18.5.1 DBA Views 18-14

18.5.2 User Views 18-15

19

Database File System Links

19.1 About Database File System Links 19-1

19.2 Ways to Create Database File System Links 19-3

19.3 Database File System Links Copy 19-4

19.4 The DBMS_LOB Package Used with DBFS 19-4

19.5 DBMS_LOB Constants Used with DBFS 19-4

19.6 DBMS_LOB Subprograms Used with DBFS 19-5

19.7 Copying a Linked LOB Between Tables 19-7

19.8 Online Redefinition and DBFS Links 19-7

19.9 Transparent Read 19-7

20

DBFS Content API

20.1 Overview of DBFS Content API 20-2

20.2 Stores and DBFS Content API 20-3

20.3 Getting Started with DBMS_DBFS_CONTENT Package 20-3

xi

20.3.1 DBFS Content API Role 20-4

20.3.2 Path Name Constants and Types 20-4

20.3.3 Path Properties 20-4

20.3.4 Content IDs 20-5

20.3.5 Path Name Types 20-5

20.3.6 Store Features 20-6

20.3.7 Lock Types 20-6

20.3.8 Standard Properties 20-7

20.3.9 Optional Properties 20-7

20.3.10 User-Defined Properties 20-7

20.3.11 Property Access Flags 20-7

20.3.12 Exceptions 20-8

20.3.13 Property Bundles 20-8

20.3.14 Store Descriptors 20-9

20.4 Administrative and Query APIs 20-9

20.4.1 Registering a Content Store 20-10

20.4.2 Unregistering a Content Store 20-10

20.4.3 Mounting a Registered Store 20-10

20.4.4 Unmounting a Previously Mounted Store 20-11

20.4.5 Listing all Available Stores and Their Features 20-11

20.4.6 Listing all Available Mount Points 20-12

20.4.7 Looking Up Specific Stores and Their Features 20-12

20.5 Querying DBFS Content API Space Usage 20-12

20.6 DBFS Content API Session Defaults 20-13

20.7 DBFS Content API Interface Versioning 20-13

20.8 DBFS Content API Creation Operations 20-14

20.9 DBFS Content API Deletion Operations 20-15

20.10 DBFS Content API Path Get and Put Operations 20-15

20.11 DBFS Content API Rename and Move Operations 20-16

20.12 Directory Listings 20-16

20.13 DBFS Content API Directory Navigation and Search 20-17

20.14 DBFS Content API Locking Operations 20-17

20.15 DBFS Content API Access Checks 20-18

20.16 DBFS Content API Abstract Operations 20-18

20.17 DBFS Content API Path Normalization 20-19

20.18 DBFS Content API Statistics Support 20-19

20.19 DBFS Content API Tracing Support 20-20

20.20 Resource and Property Views 20-21

xii

21

Creating Your Own DBFS Store

21.1 Overview of DBFS Store Creation and Use 21-1

21.2 DBFS Content Store Provider Interface (DBFS Content SPI) 21-2

21.3 Creating a Custom Store Provider 21-3

21.3.1 Installation and Setup 21-4

21.3.2 TBFS Use 21-4

21.3.3 TBFS Internals 21-4

21.3.4 Example Scripts 21-5

21.3.4.1 Driver Script 21-6

21.3.4.2 Creating a Test User, Tablespace and Table to Backup Filesystem 21-6

21.3.4.3 Providing SPI Specification 21-6

21.3.4.4 SPI Implementation of tbfs 21-15

21.3.4.5 Registering and Mounting the DBFS 21-29

22

DBFS Access Using OFS

22.1 About OFS 22-1

22.2 About Oracle File Server Process 22-2

22.4 OFS Client Interface 22-3

22.4.1 DBMS_FS Package 22-3

22.4.2 Views for OFS 22-4

22.5 Managing DBFS Locally Using FUSE 22-5

22.5.1 Configuring FUSE 22-5

22.5.2 Accessing OFS in Cloud 22-6

22.3 OFS Configuration Parameters 22-6

22.6 Accessing DBFS and OFS with an NFS Account 22-7

22.6.1 Accessing OFS with an NFS Account 22-7

22.6.2 Prerequisites to Access Storage Through NFS Server 22-7

22.6.3 NFS Security 22-8

22.6.3.1 About Kerberos 22-8

22.6.3.2 Configuring Kerberos Server 22-9

A Comparing the LOB Interfaces

xiii

Preface

This guide describes database features that support application development using
SecureFiles and Large Object (LOB) data types and Database File System (DBFS). The
information in this guide applies to all platforms, and does not include system-specific
information.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Oracle Database SecureFiles and Large Objects Developer's Guide is intended for
programmers who develop new applications using LOBs and DBFS, and those who have
previously implemented this technology and now want to take advantage of new features.

Efficient and secure storage of multimedia and unstructured data is increasingly important, and
this guide is a key resource for this topic within the Oracle Application Developers
documentation set.

Feature Coverage and Availability

Oracle Database SecureFiles and Large Objects Developer's Guide contains information that
describes the SecureFiles LOB and BasicFiles LOB features and functionality of Oracle
Database 12c Release 2 (12.2).

Prerequisites for Using LOBs

Oracle Database includes all necessary resources for using LOBs in an application; however,
there are some restrictions as described in the "LOB Rules and Restrictions" section.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents
For more information, see the following manuals:

• Oracle Database 2 Day Developer's Guide

• Oracle Database Development Guide

• Oracle Database Utilities

• Oracle XML DB Developer’s Guide

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Data Cartridge Developer's Guide

• Oracle Call Interface Programmer's Guide

• Oracle C++ Call Interface Programmer's Guide

• Pro*C/C++ Programmer's Guide

• Pro*COBOL Programmer's Guide

• Oracle Database Programmer's Guide to the Oracle Precompilers

• Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Java

The Oracle Java documentation set includes the following:

• Oracle Database JDBC Developer’s Guide

• Oracle Database Java Developer’s Guide

Basic References

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN)

http://www.oracle.com/technetwork/index.html

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xv

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

1
Introduction to Large Objects and SecureFiles

Large Objects are used to hold large amounts of data inside Oracle Database, SecureFiles
provides performance comparable to file system performance, and DBFS provides file system
interface to files stored in Oracle Database.

• Changes in Oracle Database
The following are the changes in SecureFiles and Large Objects Developer's Guide for
Oracle Database.

• What Are Large Objects?
Large Objects (LOBs), SecureFiles LOBs, and Database File System (DBFS) work
together with various database features to support application development.

• Where Should We Use LOBs?
Large objects are suitable for semistructured and unstructured data.

• LOB Classifications
LOBs store a variety of data such as audio, video, documents, and so on. Based on the
type of data stored in the LOB or memory management mechanism used, there are
different classifications.

• LOB Locator and LOB Value
A LOB instance has a locator and a value. A LOB locator is a reference, or a pointer, to
where the LOB value is physically stored. The LOB value is the data stored in the LOB.

• LOB Restrictions
You have to keep a few restrictions in mind while working with LOB data.

• How to Navigate This Book
This section elaborates how to navigate this book using a flow chart that provides
information about the relevant chapters you must read for understanding various concepts
or performing various tasks.

1.1 Changes in Oracle Database
The following are the changes in SecureFiles and Large Objects Developer's Guide for Oracle
Database.

• Updates to Oracle Database Security 21c

• Updates to Oracle Database Security 21c
Oracle Database release 21c has one new security update that applies to all releases
starting from release 11.2.

1.1.1 Updates to Oracle Database Security 21c
Oracle Database release 21c has one new security update that applies to all releases starting
from release 11.2.

Security Update for Native Encryption

Oracle provides a patch that you can download to address necessary security enhancements
that affect native network encryption environments in Oracle Database release 11.2 and later.

1-1

This patch is available in My Oracle Support note 2118136.2.

The supported algorithms that have been improved are as follows:

• Encryption algorithms: AES128, AES192 and AES256

• Checksumming algorithms: SHA1, SHA256, SHA384, and SHA512

Algorithms that are deprecated and should not be used are as follows:

• Encryption algorithms: DES, DES40, 3DES112, 3DES168, RC4_40, RC4_56, RC4_128,
and RC4_256

• Checksumming algorithm: MD5

If your site requires the use of network native encryption, then you must download the patch
that is described in My Oracle Support note 2118136.2. To enable a smooth transition for your
Oracle Database installation, this patch provides two parameters that enable you to disable the
weaker algorithms and start using the stronger algorithms. You will need to install this patch on
both servers and clients in your Oracle Database installation.

An alternative to network native encryption is Transport Layer Security (TLS), which provides
protection against person-in-the-middle attacks.

See Also:

• Choosing Between Native Network Encryption and Transport Layer Security in
Oracle Database Security Guide

• Improving Native Network Encryption Security in Oracle Database Security
Guide

1.2 What Are Large Objects?
Large Objects (LOBs), SecureFiles LOBs, and Database File System (DBFS) work together
with various database features to support application development.

Large Objects

The maximum size for a single LOB can range from 8 terabytes to 128 terabytes depending on
how your database is configured. Storing data in LOBs enables you to access and manipulate
the data efficiently in your application.

SecureFile LOBs

SecureFile LOBs are LOBs that are created in a tablespace managed with Automatic Segment
Space Management (ASSM). SecureFiles is the default storage mechanism for LOBs in
database tables. Oracle strongly recommends SecureFiles for storing and managing LOBs.

Database File System (DBFS)

Database File System (DBFS) provides a file system interface to files that are stored in an
Oracle Database.

Files stored in an Oracle Database are usually stored as SecureFiles LOBs, and path names,
directories, and other file system information is stored in the database tables. SecureFiles

Chapter 1
What Are Large Objects?

1-2

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2

LOBs is the default storage method for DBFS, but BasicFiles LOBs can be used in some
situations.

With DBFS, you can make references from SecureFiles LOB locators to files stored outside the
database. These references are called DBFS Links or Database File System Links.

1.3 Where Should We Use LOBs?
Large objects are suitable for semistructured and unstructured data.

Large object features enable you to store the following types of data in the database and also
in the operating system files that are accessed from the database.

• Semistructured data

Semistructured data has a logical structure that is not typically interpreted by the database,
for example, an XML document that your application or an external service processes.
Oracle Database provides features such as Oracle XML DB, Oracle Multimedia, and
Oracle Spatial and Graph to help your application work with semistructured data.

• Unstructured data

Unstructured data is easily not broken down into smaller logical structures and is not
typically interpreted by the database or your application, such as a photographic image
stored as a binary file.

Data unsuited for LOBs

• Simple Structured Data
Simple structured data can be organized into relational tables that are structured based on
business rules.

• Complex Structured Data
Complex structured data is suited for the object-relational features of the Oracle Database
such as collections, references, and user-defined types.

Maximum Size of a LOB

The maximum permissible LOB size for your configuration depends on the block size setting of
the tablespace. It is calculated as (4 gigabytes - 1)*(space usable for data in the LOB
block). For example, if a LOB is stored in a tablespace of block size 8K, then the approximate
maximum LOB size is about 32 terabytes.

1.4 LOB Classifications
LOBs store a variety of data such as audio, video, documents, and so on. Based on the type of
data stored in the LOB or memory management mechanism used, there are different
classifications.

• Large Object Data Types
Oracle Database provides a set of large object data types as SQL data types, where the
term LOB generally refers to the set.

• Types of LOBs
This section describes the three types of LOB data that Oracle supports.

• LOBs in Object Data Types
Typically, there is no difference in the use of a LOB instance in a LOB column or in an
object data type, as its member.

Chapter 1
Where Should We Use LOBs?

1-3

• Oracle Data Types Stored in LOBs
Many data types provided with Oracle Database are stored as or created with LOB types.

1.4.1 Large Object Data Types
Oracle Database provides a set of large object data types as SQL data types, where the term
LOB generally refers to the set.

In general, the descriptions given for the data types in this table and related sections, also
apply to the corresponding data types provided for other programmatic environments.

The following table describes each large object data type that the database supports and
describes the kind of data that uses it.

Table 1-1 Types of Large Object Data

SQL Data Type Description

BLOB Binary Large Object

Stores any kinds of data in binary format. Used for images, audio, and video.

CLOB Character Large Object

Stores string data in the database character set format. Used for large strings or
documents that use the database character set exclusively. Characters in the
database character set are in a fixed width format.

NCLOB National Character Set Large Object

Stores string data in National Character Set format, typically large strings or
documents. Supports characters of varying width format.

BFILE External Binary File

A binary file stored outside of the database in the host operating system file
system, but accessible from database tables. BFILEs can be accessed from your
application on a read-only basis. Use BFILEs to store static data, such as image
data, that is not manipulated in applications.

Any kind of data, that is, any operating system file, can be stored in a BFILE. For
example, you can store character data in a BFILE and then load the BFILE data
into a CLOB, specifying the character set upon loading.

1.4.2 Types of LOBs
This section describes the three types of LOB data that Oracle supports.

Persistent LOBs

A persistent LOB is a LOB instance that exists in a table row in the database. Persistent LOBs
participate in database transactions. You can recover persistent LOBs in the event of
transaction or media failure, and any changes to a persistent LOB value can be committed or
rolled back. In other words, all the Atomicity, Consistency, Isolation, and Durability (ACID)
properties that apply to database objects apply to persistent LOBs. Persistent LOBs can be of
data types BLOB, CLOB and NCLOB.

Temporary LOBs

A temporary LOB instance is created when you instantiate a LOB only within the scope of your
local application. Temporary LOBs are transient, just like other local variables in an application.
A temporary LOB becomes persistent when you insert it into a table row. Temporary LOBs can
be of data types BLOB, CLOB and NCLOB.

Chapter 1
LOB Classifications

1-4

BFILEs

BFILEs are data objects stored in operating system files, outside the database tablespaces.
Data stored in a table column of type BFILE is physically located in an operating system file,
not in the database.

BFILEs are read-only data types. The database allows read-only byte stream access to data
stored in BFILEs. You cannot write to or update a BFILE from within your application.

You typically use BFILEs to hold:

• Binary data that does not change while your application is running, such as graphics

• Data that is loaded into other large object types, such as a BLOB or CLOB, where the data
can then be manipulated

• Data that is appropriate for byte-stream access, such as multimedia

Any storage device accessed by your operating system can hold BFILE data, including hard
disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFILEs provided the
operating system supports stream-mode access to the operating system files.

Note:

All the information related to BFILEs is exclusively documented either in BFILEs or in
Managing LOBs: Database Administration.

1.4.3 LOBs in Object Data Types
Typically, there is no difference in the use of a LOB instance in a LOB column or in an object
data type, as its member.

In this guide, the term LOB attribute refers to a LOB instance that is a member of an object
data type. Unless otherwise specified, discussions that apply to LOB columns also apply to
LOB attributes.

1.4.4 Oracle Data Types Stored in LOBs
Many data types provided with Oracle Database are stored as or created with LOB types.

The following list mentions a few data types that you can store with LOB types:

• VARCHAR2 or RAW data types of size greater than 4000 bytes

• JSON data type

• XMLType stored as BINARY XML or CLOB
• VARRAY stored as LOB

1.5 LOB Locator and LOB Value
A LOB instance has a locator and a value. A LOB locator is a reference, or a pointer, to where
the LOB value is physically stored. The LOB value is the data stored in the LOB.

Chapter 1
LOB Locator and LOB Value

1-5

A LOB locator can be assigned to any LOB instance of the same type, such as BLOB, CLOB,
NCLOB, or BFILE. When you use a LOB in an operation such as passing a LOB as a parameter,
you are actually passing a LOB locator. For the most part, you can work with a LOB instance in
your application without being concerned with the semantics of LOB locators. There is no
requirement to dereference LOB locators, as is required with pointers in some programming
languages.

There are two different techniques to access and modify LOBs:

• Using LOBs Without Locators
LOBs can be used in many operations similar to how VARCHAR2 or RAW data types are
used. Such LOB operations can be performed without the use of LOB locators.

• Using LOBs with Locators
You can use the LOB locator to access and modify LOB values by passing the LOB locator
to the LOB APIs supplied with the database. These operations support efficient piecewise
read and write to LOBs.

1.5.1 Using LOBs Without Locators
LOBs can be used in many operations similar to how VARCHAR2 or RAW data types are
used. Such LOB operations can be performed without the use of LOB locators.

LOB operations that are similar to VARCHAR2 and RAW types include:

• SQL and PLSQL built-in functions and implicit assignments

See Also:

– SQL Semantics for LOBs

– PL/SQL Semantics for LOBs

• Data interface on LOBs that enables you to insert or select entire LOB data in a LOB
column without using a LOB locator as follows:

– Use a bind variable associated with a LOB column to insert character data into a CLOB,
or RAW data into a BLOB. For example, in PLSQL you can insert a VARCHAR2 buffer into a
CLOB column, and in OCI you can bind a buffer of type SQLT_CHAR to a CLOB column.

– Define an output buffer in your application that holds character data selected from a
CLOB or RAW data selected from a BLOB. For example, in PLSQL you can select the CLOB
output of a query into a VARCHAR2 buffer, and in OCI you can define a CLOB query result
item to a buffer of type SQLT_CHAR.

See Also:

Data Interface for LOBs

Chapter 1
LOB Locator and LOB Value

1-6

1.5.2 Using LOBs with Locators
You can use the LOB locator to access and modify LOB values by passing the LOB locator to
the LOB APIs supplied with the database. These operations support efficient piecewise read
and write to LOBs.

You should use this mode if your application needs to perform random or piecewise read or
write calls to LOBs, which means it needs to specify the offset or amount of the operation to
read or write a part of the LOB value.

See Also:

Locator Interface for LOBs

1.6 LOB Restrictions
You have to keep a few restrictions in mind while working with LOB data.

LOB columns are subject to the following rules and restrictions:

• You cannot specify a LOB as a primary key column.

• You cannot specify LOB columns in the ORDER BY clause of a query, the GROUP BY clause of
a query, or an aggregate function.

• You cannot specify a LOB column in a SELECT... DISTINCT or SELECT... UNIQUE statement or
in a join. However, you can specify a LOB attribute of an object type column in a SELECT...
DISTINCT statement, a query that uses the UNION, or a MINUS set operator if the object type
of the column has a MAP or ORDER function defined on it.

• Clusters cannot contain LOBs, either as key or nonkey columns.

• Even though compressed VARRAY data types are supported, they are less performant.

• The following data structures are supported only as temporary instances. You cannot store
these instances in database tables:

– VARRAY of any LOB type

– VARRAY of any type containing a LOB type, such as an object type with a LOB attribute

– ANYDATA of any LOB type

– ANYDATA of any type containing a LOB

• The first (INITIAL) extent of a LOB segment must contain at least three database blocks.

• The minimum extent size is 14 blocks. For an 8K block size (the default), this is equivalent
to 112K.

• When creating an AFTER UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE OF clause. For a table on which you have defined an AFTER UPDATE DML trigger, if
you use OCI functions or the DBMS_LOB package to change the value of a LOB column or
the LOB attribute of an object type column, the database does not fire the DML trigger.

• You cannot specify a LOB column as part of an index key. However, you can specify a LOB
column in the indextype specification of a functional or domain index. In addition, Oracle
Text lets you define an index on a CLOB column.

Chapter 1
LOB Restrictions

1-7

• In SQL Loader, a field read from a LOB cannot be used as an argument to a clause.

• Case-insensitive searches on CLOB columns often do not succeed. If you perform the
following case-insensitive search on a CLOB column:

ALTER SESSION SET NLS_COMP=LINGUISTIC;
ALTER SESSION SET NLS_SORT=BINARY_CI;
SELECT * FROM ci_test WHERE LOWER(clob_col) LIKE 'aa%';

The select fails without the LOWER function. You can perform case-insensitive searches with
Oracle Text or the DBMS_LOB.INSTR() function.

See Also:

• Restrictions on SQL Operations on LOBs

• Guidelines and Restrictions for Implicit Conversions with LOBs

• Using the Data Interface on Remote LOBs

• Restrictions when using remote LOB locators

• Restrictions on Mounted File Systems

• Restrictions on Types of Files Stored at DBFS Mount Points

• Restrictions on Index Organized Tables with LOB Columns

• Restrictions on Migrating LOBs with Data Pump

Chapter 1
LOB Restrictions

1-8

1.7 How to Navigate This Book
This section elaborates how to navigate this book using a flow chart that provides information
about the relevant chapters you must read for understanding various concepts or performing
various tasks.

Chapter 1
How to Navigate This Book

1-9

2
Persistent LOBs

A persistent LOB is a LOB instance that exists in a table row in the database. Persistent LOBs
can be stored as SecureFiles or BasicFiles.

The term LOB can represent LOBs of either SecureFiles or BasicFiles type, unless the storage
type is explicitly indicated. It can be either by name for both storage types, or by reference to
archiving or linking, which only applies to the SecureFiles storage type. Oracle strongly
recommends SecureFiles for storing and managing LOBs.

SecureFiles LOB storage is the default in the CREATE TABLE statement, if no storage type is
explicitly specified. All new LOB columns use SecureFiles LOB storage by default, which is the
recommended method for storing and managing LOBs. SecureFiles LOB storage is designed
to provide great performance and scalability to meet or exceed the performance of traditional
network file system. However, you must use BasicFiles LOB storage for LOB storage in
tablespaces that are not managed with Automatic Segment Space Management (ASSM).
SecureFiles LOBs can only be created in tablespaces managed with Automatic Segment
Space Management (ASSM).

• Creating a Table with LOB Columns
You can use the CREATE TABLE statement or an ALTER TABLE ADD column statement to
create a new LOB column. This section introduces basic DDL operations on LOBs to get
you started quickly.

• Inserting and Updating LOB Values in Tables
Oracle Database provides various methods to insert and update the data available in LOB
columns of database tables.

• Selecting LOB Values from Tables
You can select a LOB into a Character Buffer, a RAW Buffer, or a LOB variable for
performing read and write operations.

• Performing DML and Query Operations on LOBs in Nested Tables
This section describes the INSERT, UPDATE, and SELECT operations on LOBs in Nested
Tables. To update LOBs in a nested table, you must lock the row containing the LOB
explicitly.

• Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations on
LOBs
Oracle supports parallel execution of the following operations when performed on
partitioned tables with SecureFiles LOBs or BasicFiles LOBs.

• Sharding with LOBs
LOBs can be used in a sharded environment. This section discusses the interfaces to
support LOBs in sharded tables.

2-1

2.1 Creating a Table with LOB Columns
You can use the CREATE TABLE statement or an ALTER TABLE ADD column statement to create a
new LOB column. This section introduces basic DDL operations on LOBs to get you started
quickly.

Following is an example of creating a table with columns of various LOB types, including LOBs
in Object Types and nested tables:

CREATE USER pm identified by password;
GRANT CONNECT, RESOURCE to pm IDENTIFIED BY pm;
CONNECT pm/pm

-- Create an object type with a LOB
CREATE TYPE adheader_typ AS OBJECT (
 header_name VARCHAR2(256),
 creation_date DATE,
 header_text VARCHAR(1024),
 logo BLOB);

CREATE TYPE textdoc_typ AS OBJECT (
 document_typ VARCHAR2(32),
 formatted_doc BLOB);

-- Create a nested table type of Object type containing a LOB
CREATE TYPE Textdoc_ntab AS TABLE of textdoc_typ;

-- Create a table of Object type, and specify a default value for LOB column
CREATE TABLE adheader_tab of adheader_typ (
 logo DEFAULT EMPTY_BLOB(),
 CONSTRAINT header_name CHECK (header_name IS NOT NULL),
 header_text DEFAULT NULL);
-- Create a table with columns of different LOB types,
-- and of object type with LOBs, and nested table containing LOB
CREATE TABLE print_media
(product_id NUMBER(6),
ad_id NUMBER(6),
ad_composite BLOB,
ad_sourcetext CLOB,
ad_finaltext CLOB,
ad_fltextn NCLOB,
ad_testdocs_ntab textdoc_tab,
ad_photo BLOB,
ad_graphic BFILE,
ad_header adheader_typ,
press_release LONG) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

CREATE UNIQUE INDEX printmedia_pk
 ON print_media (product_id, ad_id);

Chapter 2
Creating a Table with LOB Columns

2-2

Figure 2-1 print_media table

You can also perform advanced DDL operations, like the following, on LOBs:

• Specify LOB storage parameters: You can override the default LOB storage settings by
specifying parameters like SECUREFILE/BASICFILE, TABLESPACE where the LOB data will be
stored, ENABLE/DISABLE STORAGE IN ROW, RETENTION, caching, logging, etc. You can also
specify SecureFile specific parameters like COMPRESSION, DEDUPLICATION and ENCRYPTION.

• Alter an existing LOB column: You can use the ALTER TABLE MODIFY LOB syntax to change
any LOB storage parameters that don't require LOB data movement and the ALTER TABLE
MOVE LOB syntax to change any LOB storage parameters that require LOB data movement.

• Create indexes on LOB columns: You can build a functional or a domain index on a LOB
column. You cannot build a B-tree or bitmap index on a LOB column.

• Partition a table containing LOB columns: All partitioning schemes supported by Oracle are
fully supported on LOBs.

• Use LOBs in Index-Organized tables.

Chapter 2
Creating a Table with LOB Columns

2-3

See Also:

Persistent LOBs: Advanced DDL

2.2 Inserting and Updating LOB Values in Tables
Oracle Database provides various methods to insert and update the data available in LOB
columns of database tables.

• Inserting and Updating with a Buffer
You can insert a character string directly into a CLOB or NCLOB column. Similarly, you can
insert a raw buffer into a BLOB column. This is the most efficient way to insert data into a
LOB.

• Inserting and Updating by Selecting a LOB From Another Table
You can insert into a LOB column of a table by selecting data from a LOB column of the
same table or a different table. You can also insert data into a LOB column of a table by
selecting a LOB returned by a SQL operator or a PL/SQL function.

• Inserting and Updating with a NULL or Empty LOB
You can set a persistent LOB, that is, a LOB column in a table or a LOB attribute in an
object type that you defined, to be NULL or empty.

• Inserting and Updating with a LOB Locator
If you are using a Programmatic Interface, which has a LOB variable that was previously
populated by a persistent or temporary LOB locator, then you can insert a row by
initializing the LOB bind variable.

2.2.1 Inserting and Updating with a Buffer
You can insert a character string directly into a CLOB or NCLOB column. Similarly, you can insert
a raw buffer into a BLOB column. This is the most efficient way to insert data into a LOB.

The following code snippet inserts a character string into a CLOB column:

/* Store records in the archive table Online_media: */
INSERT INTO Online_media (product_id, product_text) VALUES (3060, 'some text
about this CRT Monitor');

The following code snippet updates the value in a CLOB column with character buffer:

UPDATE Online_media set product_text = 'some other text' where product_id =
3060;

See Also:

Data Interface for LOBs for more information about INSERT and UPDATE operations

Chapter 2
Inserting and Updating LOB Values in Tables

2-4

2.2.2 Inserting and Updating by Selecting a LOB From Another Table
You can insert into a LOB column of a table by selecting data from a LOB column of the same
table or a different table. You can also insert data into a LOB column of a table by selecting a
LOB returned by a SQL operator or a PL/SQL function.

Ensure that you meet the following conditions while selecting data from columns that are part
of more than one table:

• The LOB data type is the same for both the columns in the tables

• Implicit conversion is allowed between the two LOB data types used in both the columns

When a BLOB, CLOB, or NCLOB is copied from one row to another in the same table or a different
table, the actual LOB value is copied, not just the LOB locator.

The following code snippet demonstrates inserting a LOB column from by selecting a LOB
from another table. The columns online_media.product_text and
print_media.ad_sourcetext are both CLOB types.

/* Insert values into Print_media by selecting from Online_media: */
INSERT INTO Print_media (product_id, ad_id, ad_sourcetext)
(SELECT product_id, 11001, product_text FROM Online_media WHERE product_id =
3060);

/* Insert values into Print_media by selecting a SQL function returning a
CLOB */
INSERT INTO Print_media (product_id, ad_id, ad_sourcetext)
(SELECT product_id, 11001, substr(product_text, 5) FROM Online_media WHERE
product_id = 3060);

/* Updating a row by selecting a LOB from another table (persistent LOBs) */

UPDATE Print_media SET ad_sourcetext = (SELECT product_text FROM online_media
WHERE product_id = 3060);
 WHERE product_id = 3060 AND ad_id = 11001;

/* Updating a row by selecting a SQL function returning a CLOB */

UPDATE Print_media SET ad_sourcetext = (SELECT substr(product_text, 5) FROM
online_media WHERE product_id = 3060);
WHERE product_id = 3060 AND ad_id = 11001;

The following code snippet demonstrates updating a LOB column from by selecting a LOB
from another table.

/* Updating a row by selecting a LOB from another table (persistent LOBs) */
UPDATE Print_media SET ad_sourcetext = (SELECT product_text FROM online_media
WHERE product_id = 3060);
WHERE product_id = 3060 AND ad_id = 11001;

/* Updating a row by selecting a SQL function returning a CLOB */
UPDATE Print_media SET ad_sourcetext = (SELECT substr(product_text, 5) FROM
online_media WHERE product_id = 3060)
WHERE product_id = 3060 AND ad_id = 11001;

Chapter 2
Inserting and Updating LOB Values in Tables

2-5

See Also:

• Oracle Database SQL Language Reference for more information on INSERT
• Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ)

Operations on LOBs for information about how to make the INSERT AS SELECT
operation run in parallel

2.2.3 Inserting and Updating with a NULL or Empty LOB
You can set a persistent LOB, that is, a LOB column in a table or a LOB attribute in an object
type that you defined, to be NULL or empty.

Inserting a NULL LOB value

A persistent LOB set to NULL has no locator. A NULL value is stored in the row in the table,
not a locator. This is the same process as for scalar data types. To INSERT a NULL value into
a LOB column, simply use a statement like:

INSERT INTO print_media(product_id, ad_id, ad_sourcetext) VALUES (1, 1, NULL);

This is useful in situations where you want to use a SELECT statement, such as the following, to
determine whether or not the LOB holds a NULL value:

SELECT COUNT (*) FROM print_media WHERE ad_graphic IS NULL;

Caution:

You cannot call DBMS_LOB functions or LOB APIs in other Programmatic Interfaces on
a NULL LOB, so you must then use a SQL UPDATE statement to reset the LOB
column to a non-NULL (or empty) value.

Inserting an EMPTY LOB value

Before you can write data to a persistent LOB using an API like DBMS_LOB.WRITE or
OCILobWrite2, the LOB column must be non-NULL, that is, it must contain a locator that points
to an empty or a populated LOB value.

You can initialize a BLOB column value by using the EMPTY_BLOB() function as a default
predicate. Similarly, a CLOB or NCLOB column value can be initialized by using the EMPTY_CLOB()
function. Use the RETURNING clause in the INSERT and UPDATE statement, to minimize the
number of round trips while writing the LOB using APIs.

Following PL/SQL block initializes a CLOB column with an empty LOB using the EMPTY_CLOB()
function and also updates the LOB value in a column with an empty CLOB using the
EMPTY_CLOB() function.

DECLARE
 c CLOB;

Chapter 2
Inserting and Updating LOB Values in Tables

2-6

 amt INTEGER := 11;
 buf VARCHAR(11) := 'Hello there';
BEGIN
 /* Insert empty_clob() */
 INSERT INTO Print_media(product_id, ad_id, ad_sourcetext) VALUES (1, 1,
EMPTY_CLOB()) RETURNING ad_source INTO c;
 /* The following statement updates the persistent LOB directly */
 DBMS_LOB.WRITE(c, amt, 1, buf);

 /* Update column to an empty_clob() */
 UPDATE Print_media SET ad_sourcetext = EMPTY_CLOB() WHERE product_id = 2
AND ad_id = 2 RETURNING ad_source INTO c;
 /* The following statement updates the persistent LOB directly */
 DBMS_LOB.WRITE(c, amt, 1, buf);
END;
/

2.2.4 Inserting and Updating with a LOB Locator
If you are using a Programmatic Interface, which has a LOB variable that was previously
populated by a persistent or temporary LOB locator, then you can insert a row by initializing the
LOB bind variable.

You can populate a LOB variable with a persistent LOB or a temporary LOB by either selecting
one out from the database using SQL or by creating a temporary LOB. This section provides
information about how to achieve this in various programmatic environments.

• PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using PL/SQL APIs.

• JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using JDBC APIs:

• OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using OCI APIs:

• Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using Pro*C/C++ APIs:

• Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator
bind variable using Pro*COBOL APIs:

2.2.4.1 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using PL/SQL APIs.

/* inserting a row through an insert statement */

CREATE OR REPLACE PROCEDURE insertLOB_proc (Lob_loc IN BLOB) IS
BEGIN
 /* Insert the BLOB into the row */
 DBMS_OUTPUT.PUT_LINE('------------ LOB INSERT EXAMPLE ------------');
 INSERT INTO print_media (product_id, ad_id, ad_photo)

Chapter 2
Inserting and Updating LOB Values in Tables

2-7

 VALUES (3106, 60315, Lob_loc);
END;
/

2.2.4.2 JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using JDBC APIs:

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class linsert
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "password");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 // retrieve the LOB locator from the ResultSet
 BLOB adphoto_blob = ((OracleResultSet)rset).getBLOB (1);
 OraclePreparedStatement ops =
 (OraclePreparedStatement) conn.prepareStatement(
"INSERT INTO Print_media (product_id, ad_id, ad_photo) VALUES (2268, "
+ "21001, ?)");
 ops.setBlob(1, adphoto_blob);
 ops.execute();
 conn.commit();
 conn.close();
 }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Chapter 2
Inserting and Updating LOB Values in Tables

2-8

2.2.4.3 OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable
The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using OCI APIs:

/* Insert the Locator into table using Bind Variables. */
#include <oratypes.h>
#include <lobdemo.h>
void insertLOB_proc(OCILobLocator *Lob_loc, OCIEnv *envhp,
 OCIError *errhp, OCISvcCtx *svchp, OCIStmt *stmthp)
{
 int product_id;
 OCIBind *bndhp3;
 OCIBind *bndhp2;
 OCIBind *bndhp1;
 text *insstmt =
 (text *) "INSERT INTO Print_media (product_id, ad_id, ad_sourcetext) \
 VALUES (:1, :2, :3)";

 printf ("----------- OCI Lob Insert Demo --------------\n");
 /* Insert the locator into the Print_media table with product_id=3060 */
 product_id = (int)3060;

 /* Prepare the SQL statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
 strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Binds the bind positions */
 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1,
 (void *) &product_id, (sb4) sizeof(product_id),
 SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 2,
 (void *) &product_id, (sb4) sizeof(product_id),
 SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp2, errhp, (ub4) 3,
 (void *) &Lob_loc, (sb4) 0, SQLT_CLOB,
 (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the SQL statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

2.2.4.4 Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind
Variable

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using Pro*C/C++ APIs:

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

Chapter 2
Inserting and Updating LOB Values in Tables

2-9

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void insertUseBindVariable_proc(Rownum, Lob_loc)
 int Rownum, Rownum2;
 OCIBlobLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL INSERT INTO Print_media (product_id, ad_id, ad_photo)
 VALUES (:Rownum, :Rownum2, :Lob_loc);
}
void insertBLOB_proc()
{
 OCIBlobLocator *Lob_loc;

 /* Initialize the BLOB Locator: */
 EXEC SQL ALLOCATE :Lob_loc;

 /* Select the LOB from the row where product_id = 2268 and ad_id=21001: */
 EXEC SQL SELECT ad_photo INTO :Lob_loc
 FROM Print_media WHERE product_id = 2268 AND ad_id = 21001;

 /* Insert into the row where product_id = 3106 and ad_id = 13001: */
 insertUseBindVariable_proc(3106, 13001, Lob_loc);

 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "pm/password";
 EXEC SQL CONNECT :pm;
 insertBLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

2.2.4.5 Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator Bind
Variable

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using Pro*COBOL APIs:

You can insert a row by initializing a LOB locator bind variable in COBOL (Pro*COBOL).

 IDENTIFICATION DIVISION.
 PROGRAM-ID. INSERT-LOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 USERID PIC X(11) VALUES "PM/password".
 EXEC SQL INCLUDE SQLCA END-EXEC.

Chapter 2
Inserting and Updating LOB Values in Tables

2-10

 PROCEDURE DIVISION.
 INSERT-LOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.
 * Initialize the BLOB locator
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 * Populate the LOB
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_PHOTO INTO :BLOB1 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 2268 AND AD_ID = 21001 END-EXEC.

 * Insert the value with PRODUCT_ID of 3060
 EXEC SQL
 INSERT INTO PRINT_MEDIA (PRODUCT_ID, AD_PHOTO)
 VALUES (3060, 11001, :BLOB1)END-EXEC.

 * Free resources held by locator
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

2.3 Selecting LOB Values from Tables
You can select a LOB into a Character Buffer, a RAW Buffer, or a LOB variable for performing
read and write operations.

• Selecting a LOB into a Character Buffer or a Raw Buffer
You can directly select a CLOB or NCLOB value into a character buffer or a BLOB value.
This is called the Data Interface, and is the most efficient way for selecting from a LOB
column.

• Selecting a LOB into a LOB Variable for Read Operations
You can select a persistent or temporary LOB into a LOB variable, and then use APIs to
perform various read operations on it.

• Selecting a LOB into a LOB Variable for Write Operations
To perform a write operation using a LOB locator, you must lock the row in the table in
order to prevent other database users from writing to the LOB during a transaction.

2.3.1 Selecting a LOB into a Character Buffer or a Raw Buffer
You can directly select a CLOB or NCLOB value into a character buffer or a BLOB value. This
is called the Data Interface, and is the most efficient way for selecting from a LOB column.

Chapter 2
Selecting LOB Values from Tables

2-11

See Also:

• Data Interface for LOBs

• PL/SQL Semantics for LOBs

2.3.2 Selecting a LOB into a LOB Variable for Read Operations
You can select a persistent or temporary LOB into a LOB variable, and then use APIs to
perform various read operations on it.

Following code selects a LOB Locator into a variable:

DECLARE
 perslob CLOB;
 templob CLOB;
 amt INTEGER := 11;
 buf VARCHAR(100);
BEGIN
 SELECT ad_source, substr(ad_source, 3) INTO perslob, templob FROM
Print_media WHERE product_id = 1 AND ad_id = 1;
 DBMS_LOB.READ(perslob, amt, buf);
 DBMS_LOB.READ(templob, amt, buf);
END;
/

See Also:

• A Selected Locator Becomes a Read-Consistent Locator

• LOB Locators and Transaction Boundaries

2.3.3 Selecting a LOB into a LOB Variable for Write Operations
To perform a write operation using a LOB locator, you must lock the row in the table in order to
prevent other database users from writing to the LOB during a transaction.

You can use one of the following mechanisms for this operation:

• Performing an INSERT or an UPDATE operation with a RETURNING clause.

See Also:

Inserting and Updating with a NULL or Empty LOB

Chapter 2
Selecting LOB Values from Tables

2-12

• Performing a SELECT for an UPDATE operation. The following code snippet shows how to
select a LOB value to perform a write operation using UPDATE.

DECLARE
 c CLOB;
 amt INTEGER := 9;
 buf VARCHAR(100) := 'New Value';
BEGIN
 SELECT ad_sourcetext INTO c FROM Print_media WHERE product_id = 1 AND
ad_id = 1 FOR UPDATE;
 DBMS_LOB.WRITE(c, amt, 1, buf);
END;
/

• Using an OCI pin or lock function in OCI programs.

2.4 Performing DML and Query Operations on LOBs in Nested
Tables

This section describes the INSERT, UPDATE, and SELECT operations on LOBs in Nested Tables.
To update LOBs in a nested table, you must lock the row containing the LOB explicitly.

To lock the row containing the LOB, you must specify the FOR UPDATE clause in the subquery
prior to updating the LOB value. The following example shows how to perform DML and query
operations on LOBs in nested tables.

Note:

Locking the row of a parent table does not lock the row of a nested table containing
LOB columns.

Example 2-1 Performing DML and Query Operations on LOBs in Nested Tables

CONNECT pm/pm;

---------- Inserting LOBs in Nested Tables ------------------------------

-- INSERT a row into the NT column of print_media with actual data for lob
INSERT INTO print_media (product_id, ad_id, ad_textdocs_ntab)
VALUES
(1, 1, textdoc_tab(textdoc_typ('txt', to_blob('BABABABABABA')),
 textdoc_typ('pdf', to_blob('AAAAAAAAAAAA'))));

-- INSERT a row into the NT column of print_media with empty_lob for the lob
INSERT INTO print_media (product_id, ad_id, ad_textdocs_ntab)
VALUES
(2, 2, textdoc_tab(textdoc_typ('txt', empty_blob()),
 textdoc_typ('pdf', empty_blob())));

Chapter 2
Performing DML and Query Operations on LOBs in Nested Tables

2-13

SET SERVEROUTPUT ON

---------- Read/Write LOBs in Nested Tables using locators --------------

-- INSERT-RETURNING, then write to the LOBs
DECLARE
 txt textdoc_tab;
BEGIN
 INSERT INTO print_media p(product_id, ad_id, ad_textdocs_ntab) VALUES
 (3, 3, textdoc_tab(textdoc_typ('txt', empty_blob()),
 textdoc_typ('pdf', empty_blob())))
 RETURNING p.ad_textdocs_ntab into txt;

 for elem in 1 .. txt.count loop
 DBMS_LOB.WRITEAPPEND(txt(elem).formatted_doc, 2, hextoraw(elem||'FF'));
 end loop;
END;
/

SELECT ad_textdocs_ntab FROM print_media WHERE product_id = 3;

-- SELECT on NT lob, then read
DECLARE
 txt textdoc_tab;
 pos INTEGER;
 amt INTEGER;
 buf RAW(40);
BEGIN
 SELECT ad_textdocs_ntab INTO txt FROM print_media WHERE product_id = 1;

 for elem in 1 .. txt.count loop
 amt := 40;
 pos := 1;
 DBMS_LOB.READ(txt(elem).formatted_doc, amt, pos, buf);
 DBMS_OUTPUT.PUT_LINE(buf);
 end loop;
END;
/

-- SELECT for update on the NT lob, then write
DECLARE
 txt textdoc_tab;
 pos INTEGER;
 amt INTEGER;
 buf RAW(40);
BEGIN
 SELECT ad_textdocs_ntab INTO txt FROM print_media
 WHERE product_id = 1 FOR UPDATE;

 for elem in 1 .. txt.count loop
 DBMS_LOB.WRITEAPPEND(txt(elem).formatted_doc, 2, hextoraw(elem||'FF'));
 end loop;
END;
/

Chapter 2
Performing DML and Query Operations on LOBs in Nested Tables

2-14

SELECT ad_textdocs_ntab FROM print_media WHERE product_id = 1;

2.5 Performing Parallel DDL, Parallel DML (PDML), and Parallel
Query (PQ) Operations on LOBs

Oracle supports parallel execution of the following operations when performed on partitioned
tables with SecureFiles LOBs or BasicFiles LOBs.

• CREATE TABLE AS SELECT
• INSERT AS SELECT
• Multitable INSERT
• SELECT
• DELETE
• UPDATE
• MERGE (conditional UPDATE and INSERT)

• ALTER TABLE MOVE
• SQL Loader

• Import/Export

Additionally, Oracle supports parallel execution of the following operations when performed on
non-partitioned tables with only SecureFile LOBs:

• CREATE TABLE AS SELECT
• INSERT AS SELECT
• Multitable INSERT
• SELECT
• DELETE
• UPDATE
• MERGE (conditional UPDATE and INSERT)

• ALTER TABLE MOVE
• SQL Loader

Restrictions on parallel operations with LOBs

• Parallel insert direct load (PIDL) is disabled if a table also has a BasicFiles LOB column, in
addition to a SecureFiles LOB column.

• PDML is disabled if LOB column is part of a constraint.

• PDML does not work when there are any domain indexes defined on the LOB column.

• Parallelism must be specified only for top-level non-partitioned tables.

• Use the ALTER TABLE MOVE statement with LOB storage clause, to change the storage
properties of LOB columns instead of the ALTER TABLE MODIFY statement. The ALTER
TABLE MOVE statement is more efficient because it executes in parallel and does not
generate undo logs.

Chapter 2
Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations on LOBs

2-15

See Also:

Oracle Database Administrator's Guide section "Managing Processes for Parallel
SQL Execution"

Oracle Database SQL Language Reference section "ALTER TABLE"

2.6 Sharding with LOBs
LOBs can be used in a sharded environment. This section discusses the interfaces to support
LOBs in sharded tables.

The following interfaces are supported:

• Query and DML statements

– Cross shard queries involving LOBs are supported.

– DML statements involving more than one shard are not supported. This behavior is
similar to scalar columns.

– DML statements involving a single shard are supported from coordinator.

– Locator selected from a shard can be passed as bind value to the same shard.

• OCILob
All non-BFILE related OCILob APIs in a sharding environment are supported, with some
restrictions.

On the coordinator, the OCI_ATTR_LOB_REMOTE attribute of a LOB descriptor returns TRUE if
the LOB was obtained from a sharded table.

Restrictions: For APIs that take two locators as input, OCILobAppend, OCILobCompare for
example, both of the locators should be obtained from the same shard. If locators are from
different shards an error is given.

• DBMS_LOB
All non-BFILE related DBMS_LOB APIs in a sharding environment are supported, with
some restrictions. On the coordinator, DBMS_LOB.isremote returns TRUE if the LOB was
obtained from a sharded table.

Restrictions: For APIs that take two locators as input, DBMS_LOB.append and
DBMS_LOB.compare for example, both of the locators should be obtained from the same
shard. If the locators are from different shards an error given.

See Also:

Sharded Tables

Chapter 2
Sharding with LOBs

2-16

3
Temporary LOBs

Temporary LOBs are transient, just like other local variables in an application. This chapter
discusses operations that are specific to temporary LOBs.

• Before You Begin
Ensure that you go through the topics in this section before you start working with
temporary LOBs.

• Temporary LOB APIs in Different Programmatic Interfaces
This section lists the temporary LOB specific APIs in different Programmatic Interfaces.

3.1 Before You Begin
Ensure that you go through the topics in this section before you start working with temporary
LOBs.

• Creating Temporary LOBs
This section describes how a temporary LOB gets created or generated in a client
program.

• Handling Temporary LOBs on the Client Side
You must consider the aspects discussed in this section while handling the temporary
LOBs that are generated by the client programs.

3.1.1 Creating Temporary LOBs
This section describes how a temporary LOB gets created or generated in a client program.

You can create temporary LOB instances in one of the following ways:

• Declare a variable of the given LOB data type and pass it to the temporary LOB creation
API. For example, in PL/SQL it is DBMS_LOB.CREATETEMPORARY, and in OCI it is
OCILobCreateTemporary().

• Invoke a SQL or PL/SQL built-in function that produces a temporary LOB, for example, the
SUBSTR function.

• Invoke a PL/SQL stored procedure or function that returns a temporary LOB as an OUT
bind variable or a return value.

The temporary LOB instance exists in your application until it goes out of scope, your session
terminates, or you explicitly free the instance.

Temporary LOBs reside in either the PGA memory or the temporary tablespace, depending on
their size. Ensure that the PGA memory and the temporary tablespace have space that is large
enough for the temporary LOBs used by your application.

3-1

Note:

• Oracle highly recommends that you release the temporary LOB instances to free
the system resources. Failure to do so may cause accumulation of temporary
LOBs and can considerably slow down your system.

• Starting with Oracle Database Release 21c, you do not need to check whether a
LOB is temporary or persistent before releasing the temporary LOB. If you call
the DBMS_LOB.FREETEMPORARY procedure or the OCILobFreeTemporary() function
on a LOB, it will perform either of the following operations:

– For a temporary LOB, it will release the LOB.

– For a persistent LOB, it will do nothing (no-op).

See Also:

Performance Guidelines

3.1.2 Handling Temporary LOBs on the Client Side
You must consider the aspects discussed in this section while handling the temporary LOBs
that are generated by the client programs.

Preventing Temporary LOB Accumulation

Every time a client program such as JDBC or OCI obtains a LOB locator from SQL or PL/SQL,
and you suspect that it is producing a temporary LOB, then free the LOB as soon as your
application has consumed the LOB. If you do not free the temporary LOB, then it will lead to
accumulation of temporary LOBs, which can considerably slow down your system.

Note:

A temporary LOB duration is always upgraded to SESSION, when it is shipped to the
client side.

For example, to prevent temporary LOB accumulation, an OCI application must call the
OCILobFreeTemporary() function in the following scenarios:

• After getting a locator from a define during a SELECT statement or an OUT bind variable from
a PL/SQL procedure or function. It is desirable that you free the temporary LOB as soon as
you finish performing the required operations on it. If not, then you must free it before
reusing the variable for fetching the next row or for another purpose.

• Before performing a pointer assignment, like <var1 = var2>, free the old temporary LOB
in the variable <var1>.

LOB Assignment
You must take special care when assigning the OCILobLocator pointers in an OCI program
while using the assignment (=) operator. Pointer assignments create a shallow copy of the
LOB. After the pointer assignment, the source and the target LOBs point to the same copy of

Chapter 3
Before You Begin

3-2

data. This means that if you call the OCILobFreeTemporary() function on either one of them,
then both variables will point to non-existent LOBs.

These semantics are different from using the LOB APIs, such as the OCILobLocatorAssign()
function to perform assignments. When you use these APIs, the locators logically point to
independent copies of data after assignment. This means that eventually the
OCILobFreeTemporary() function must be called on each LOB descriptor separately, so that it
frees all LOBs involved in the operation.

For temporary LOBs, before performing pointer assignments, you must ensure that you free
any temporary LOB in the target LOB locator by calling the OCIFreeTemporary() function. In
contrast, when the OCILobLocatorAssign() function is used, the original temporary LOB in the
target LOB locator variable, if any, is freed automatically before the assignment happens.

3.2 Temporary LOB APIs in Different Programmatic Interfaces
This section lists the temporary LOB specific APIs in different Programmatic Interfaces.

Most of the examples in the following sections use the print_media table. Following is the
structure of the print_media table.

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3-3

• PL/SQL APIs for Temporary LOBs
This section describes the PL/SQL APIs used with temporary LOBs.

• JDBC API for Temporary LOBs
This section describes the PL/SQL APIs used with temporary LOBs.

• OCI APIs for Temporary LOBs
This section describes the OCI APIs used with temporary LOBs.

• ODP.NET API for Temporary LOBs
This section describes the ODP.NET APIs used with temporary LOBs.

• Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs
This section describes the Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs.

See Also:

Comparing the LOB Interfaces

3.2.1 PL/SQL APIs for Temporary LOBs
This section describes the PL/SQL APIs used with temporary LOBs.

See Also:

DBMS_LOB

Table 3-1 DBMS_LOB Functions and Procedures for Temporary LOBs

Function / Procedure Description

CREATETEMPORARY Creates a Temporary LOB

ISTEMPORARY Checks if a LOB locator refers to a temporary LOB

FREETEMPORARY Frees a temporary LOB

Example 3-1 PL/SQL API for Temporary LOBs

DECLARE
 blob1 BLOB;
 clob1 CLOB;
 clob2 CLOB;
 nclob1 NCLOB;
BEGIN
 -- create a temp LOB using CREATETEMPORARY and fill it with data
 DBMS_LOB.CREATETEMPORARY(blob1,TRUE, DBMS_LOB.SESSION);
 writeDataToLOB_proc(blob1);

 -- create a temp LOB using SQL built-in function
 SELECT substr(ad_sourcetext, 5) INTO clob1 FROM print_media WHERE
product_id=1 AND ad_id=1;

 -- create a temp LOB using a PLSQL built-in function
 nclob1 := TO_NCLOB(clob1);

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3-4

 -- create a temp LOB using a PLSQL procedure. Assume foo creates a temp lob
and it's parameter is IN/OUT
 foo(clob2);

 -- Other APIs
 CALL_LOB_APIS(blob1, clob1, clob2, nclob1);

 -- free temp LOBs
 DBMS_LOB.FREETEMPORARY(blob1);
 DBMS_LOB.FREETEMPORARY(clob1);
 DBMS_LOB.FREETEMPORARY(clob2);
 DBMS_LOB.FREETEMPORARY(nclob1);

END;
/
show errors;

3.2.2 JDBC API for Temporary LOBs
This section describes the PL/SQL APIs used with temporary LOBs.

See Also:

Working with LOBs and BFILEs

Table 3-2 jdbc.sql.Clob and java.sql.Blob APIs for Temporary LOBs

Methods Description

createTemporary Creates a temporary LOB

isTemporary Checks if a LOB locator refers to a temporary LOB

freeTemporary Frees a temporary LOB

Example 3-2 JDBC API for Temporary LOBs

public class listempc
{
 public static void main (String args [])
 throws Exception
 {
 Connection conn = LobDemoConnectionFactory.getConnection();

 // SELECT TEMPORARY LOB USING SQL
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery
 ("SELECT SUBSTR(ad_sourcetext, 5) FROM Print_media WHERE product_id
= 3106 AND ad_id = 1");
 if (rset.next())
 {
 Clob clob = rset.getClob (1);
 System.out.println("Is lob temporary: " + ((CLOB)clob).isTemporary());

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3-5

 call_other_apis_to_read_write_from_lob(clob);
 clob.free();
 }
 stmt.close();

 // CREATE TEMPORARY LOB VIA API
 Clob clob = conn.createClob();

 System.out.println("Is clob temporary: " +
((oracle.jdbc.OracleClob)clob).isTemporary());

 call_other_apis_to_read_write_from_lob(clob);

 // ALWAYS FREE THE TEMPORARY LOB WHEN DONE WITH IT
 clob.free();

 conn.close();
 }
}

3.2.3 OCI APIs for Temporary LOBs
This section describes the OCI APIs used with temporary LOBs.

See Also:

LOB and BFILE Operations

Table 3-3 OCI APIs for Temporary LOBs

Function / Procedure Description

OCILobCreateTemporary() Creates a Temporary LOB

OCILobIsTemporary() Checks if a LOB locator refers to a temporary LOB

OCILobFreeTemporary() Frees a temporary LOB

Example 3-3 OCI APIs for Temporary LOBs

void temp_lob_operations()
{
 OCILobLocator *temp_clob1;
 OCILobLocator *temp_clob2;
 OCIStmt *stmhp = (OCIStmt *) 0;
 OCIDefine *dfnhp1;
 ub1 bufp[BUFLEN];
 ub4 amtp = 0;
 ub8 bamtp = 0;
 ub8 camtp = 0;
 ub2 retl1, rcode1;
 sb4 ind_ptr1 = 0;
 boolean istemp = FALSE;
 char *sel_stmt = "SELECT SUBSTR(ad_sourcetext, 5) FROM Print_media
WHERE product_id = 3106 AND ad_id = 1";

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3-6

 /* allocate lob descriptors */
 checkerr(errhp, OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &temp_clob1,
 (ub4) OCI_DTYPE_LOB, (size_t) 0,
 (dvoid **) 0));
 checkerr(errhp, OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &temp_clob2,
 (ub4) OCI_DTYPE_LOB, (size_t) 0,
 (dvoid **) 0));

 /* statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *)envhp, (dvoid **) &stmhp,
 (ub4) OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));
 checkerr(errhp, OCIHandleAlloc((dvoid *)stmhp, (dvoid **) &dfnhp1,
 (ub4) OCI_HTYPE_DEFINE, (size_t) 0, (dvoid **) 0));

 /*-------------------- SELECT TEMPORARY LOB USING SQL
------------------------*/
 checkerr(errhp, OCIStmtPrepare(stmhp, errhp, (text *) sel_stmt,
 (ub4) strlen(sel_stmt), OCI_NTV_SYNTAX, OCI_DEFAULT));

 checkerr(errhp, OCIDefineByPos(stmhp, &dfnhp1, errhp, (ub4) 1, &temp_clob1,
 (sb4) -1, SQLT_CLOB, &ind_ptr1, &retl1, &rcode1,
 (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmhp, errhp, (ub4) 0, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL,
OCI_DEFAULT));
 checkerr(errhp, OCIStmtFetch(stmhp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT));

 checkerr(errhp, OCILobWriteAppend2(svchp, errhp, temp_clob1,
 (oraub8 *)&bamtp, (oraub8 *) &camtp, bufp, (oraub8)BUFLEN,
 OCI_ONE_PIECE, (dvoid*)0, (OCICallbackLobWrite2)0, (ub2)0,
 (ub1)SQLCS_IMPLICIT));

 /*-------------------- CREATE TEMPORARY LOB USING API
------------------------*/
 checkerr(errhp, OCILobCreateTemporary(svchp, errhp, temp_clob2,
 (ub2) 0, OCI_DEFAULT, OCI_TEMP_CLOB,
 FALSE, OCI_DURATION_SESSION));

 /* write into bufp */
 strcpy((char *)bufp, (const char *)"Demo program for testing temp lobs");
 bamtp = amtp = (ub4) strlen((char *)bufp);

 /* write bufp contents to temp lob */
 checkerr(errhp, OCILobWrite2(svchp, errhp, temp_clob2, &amtp, 1,
 (dvoid *)bufp, (ub4)bamtp , OCI_ONE_PIECE, (dvoid *)0,
 (OCICallbackLobWrite) 0, (ub2) 0, (ub1) SQLCS_IMPLICIT));

 /*--------------------- ALWAYS FREE TEMPORARY LOBS -------------------------
*/
 checkerr(errhp, OCILobIsTemporary(envhp, errhp, temp_clob1, &istemp));
 if (istemp)
 checkerr(errhp, OCILobFreeTemporary(svchp, errhp, temp_clob1));

 checkerr(errhp, OCILobIsTemporary(envhp, errhp, temp_clob2, &istemp));

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3-7

 if (istemp)
 checkerr(errhp, OCILobFreeTemporary(svchp, errhp, temp_clob2));

 /* Free lob descriptors */
 checkerr(errhp, OCIDescriptorFree ((dvoid *)temp_clob1, (ub4)
OCI_DTYPE_LOB));
 checkerr(errhp, OCIDescriptorFree ((dvoid *)temp_clob2, (ub4)
OCI_DTYPE_LOB));
}

3.2.4 ODP.NET API for Temporary LOBs
This section describes the ODP.NET APIs used with temporary LOBs.

See Also:

Temporary LOBs

Table 3-4 ODP.NET methods for Temporary LOBs in the OracleClob and OracleBlob
Classes

Methods Description

Add() Creates a temporary LOB

IsTemporary() Checks if a LOB locator refers to a temporary LOB

Dispose() or Close() Frees a temporary LOB

3.2.5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs
This section describes the Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs.

See Also:

• Pro*C/C++ Programmer's Guide

• Pro*COBOL Programmer's Guide

Table 3-5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a Temporary LOB

DESCRIBE [ISTEMPORARY] Checks if a LOB locator refers to a temporary LOB

FREE TEMPORARY Frees a temporary LOB

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3-8

4
BFILEs

BFILEs are data objects stored in operating system files, outside the database tablespaces.
Data stored in a table column of type BFILE is physically located in an operating system file,
not in the database. The BFILE column stores a reference to the operating system file.

BFILEs are read-only data types. The database allows read-only byte stream access to data
stored in BFILEs. You cannot write to or update a BFILE from within your application.

You create BFILEs to hold the following types of data:

• Binary data that does not change while your application is running, such as graphics.

• Data that is loaded into other large object types, such as a BLOB or CLOB, where the data
can be manipulated.

• Data that is appropriate for byte-stream access, such as multimedia.

Any storage device accessed by your operating system can hold BFILE data, including hard
disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFILEs provided the
operating system supports stream-mode access to the operating system files.

• DIRECTORY Objects
A BFILE locator is initialized by using the function BFILENAME(DIRECTORY, FILENAME). This
section describes how to initialize the DIRECTORY Object.

• BFILE Locators
For BFILEs, the value is stored in a server-side operating system file, in other words,
BFILEs are external to the database. The BFILE locator that refers to the file is stored in the
database row.

• BFILE APIs
This section discusses the different operations supported through BFILEs.

• BFILE APIs in Different Programmatic Interfaces
This section lists all the APIs from different Programmatic Interfaces supported by Oracle
Database.

4.1 DIRECTORY Objects
A BFILE locator is initialized by using the function BFILENAME(DIRECTORY, FILENAME). This
section describes how to initialize the DIRECTORY Object.

A DIRECTORY object specifies a logical alias name for a physical directory on the database
server file system under which the file to be accessed is located. You can access a file in the
server file system only if you have the required access privilege on the DIRECTORY object. You
can also use Oracle Enterprise Manager Cloud Control to manage the DIRECTORY objects.

The DIRECTORY object provides the flexibility to manage the locations of the files, instead of
forcing you to hard-code the absolute path names of physical files in your applications.

A DIRECTORY object name is used in conjunction with the BFILENAME function, in SQL and PL/
SQL, or the OCILobFileSetName() function in OCI, for initializing a BFILE locator.

4-1

• DIRECTORY Name Specification
You must have CREATE ANY DIRECTORY system privilege to create directories.

• Security on Directory Objects
This section describes the security on DIRECTORY objects.

See Also:

• CREATE DIRECTORY in Oracle Database SQL Language Reference

• See Oracle Database Administrator's Guide for the description of Oracle
Enterprise Manager Cloud Control

4.1.1 DIRECTORY Name Specification
You must have CREATE ANY DIRECTORY system privilege to create directories.

The naming convention for DIRECTORY objects is the same as that for tables and indexes. That
is, normal identifiers are interpreted in uppercase, but delimited identifiers are interpreted as is.
For example, the following statement:

CREATE OR REPLACE DIRECTORY scott_dir AS '/usr/home/scott';

creates or redefines a DIRECTORY object whose name is 'SCOTT_DIR' (in uppercase). But if a
delimited identifier is used for the DIRECTORY name, as shown in the following statement

CREATE DIRECTORY "Mary_Dir" AS '/usr/home/mary';

then the DIRECTORYdirectory object name is 'Mary_Dir'. Use 'SCOTT_DIR' and 'Mary_Dir' when
calling BFILENAME. For example:

BFILENAME('SCOTT_DIR', 'afile')
BFILENAME('Mary_Dir', 'afile')

WARNING:

The database does not verify that the directory and path name you specify actually
exist. You must ensure to specify a valid directory name in your operating system. If
your operating system uses case-sensitive path names, then be sure that you specify
the directory name in the correct format. There is no requirement to specify a
terminating slash (for example, /tmp/ is not necessary, simply use /tmp).

Directory specifications cannot contain ".." anywhere in the path (for
example: ../../abc/def or abc/../def or abc/def/hij..

On Windows Platform

On Windows platforms the directory names are case-insensitive. Therefore the following two
statements refer to the same directory:

CREATE DIRECTORY "big_cap_dir" AS "g:\data\source";

CREATE DIRECTORY "small_cap_dir" AS "G:\DATA\SOURCE";

Chapter 4
DIRECTORY Objects

4-2

4.1.2 Security on Directory Objects
This section describes the security on DIRECTORY objects.

The DIRECTORY object model has two distinct levels of security:

• SQL DDL: CREATE or DROP a DIRECTORY object

• SQL DML: READ system and object privileges on DIRECTORY objects

DBA Privileges: CREATE / DROP DIRECTORY
The DIRECTORY object is a system owned object. Oracle Database supports the following
system privileges, which are granted only to DBA:

• CREATE ANY DIRECTORY: For creating or altering the DIRECTORY object creation

• DROP ANY DIRECTORY: For deleting the DIRECTORY object

WARNING:

Because CREATE ANY DIRECTORY and DROP ANY DIRECTORY privileges potentially
expose the server file system to all database users, the DBA should be prudent in
granting these privileges to normal database users to prevent security breach.

See Also:

Oracle Database SQL Language Reference for information about system owned
objects, CREATE DIRECTORY and DROP DIRECTORY

USER Privileges: READ Permission on the Directory

READ permission on the DIRECTORY object enables you to read files located under that directory.
The creator of the DIRECTORY object automatically earns the READ privilege.

If you have been granted the READ permission with GRANT option, then you may in turn grant
this privilege to other users or roles and then add them to your privilege domains.

Note:

The READ permission is defined only on the DIRECTORY object, not on individual files.
Hence there is no way to assign different privileges to files in the same directory.

The physical directory that it represents may or may not have the corresponding operating
system privileges (read in this case) for the Oracle Server process.

It is the responsibility of the DBA to ensure the following:

• That the physical directory exists

• Read permission for the Oracle Server process is enabled on the file, the directory, and the
path leading to it

Chapter 4
DIRECTORY Objects

4-3

• The directory remains available, and read permission remains enabled, for the entire
duration of file access by database users

The privilege just implies that as far as the Oracle Server is concerned, you may read from files
in the directory. These privileges are checked and enforced by the PL/SQL DBMS_LOB package
and OCI APIs at the time of the actual file operations.

See Also:

• Guidelines for DIRECTORY Usage

• Oracle Database SQL Language Reference for information about the GRANT,
REVOKE and AUDIT system and object privileges that provide security for BFILEs.

Catalog Views on DIRECTORY Objects

Catalog views are provided for DIRECTORY objects to enable users to view object names and
corresponding paths and privileges. Following are the supported views:

• ALL_DIRECTORIES (OWNER, DIRECTORY_NAME, DIRECTORY_PATH)
This view describes all directories accessible to the user.

• DBA_DIRECTORIES(OWNER, DIRECTORY_NAME, DIRECTORY_PATH)
This view describes all directories specified for the entire database.

4.2 BFILE Locators
For BFILEs, the value is stored in a server-side operating system file, in other words, BFILEs
are external to the database. The BFILE locator that refers to the file is stored in the database
row.

To associate an operating system file to a BFILE, first create a DIRECTORY object that is an alias
for the full path name to the operating system file. Then, you can initialize an instance of BFILE
type, using the BFILENAME function in SQL or PL/SQL, or OCILobFileSetName()in OCI. You can
use this BFILE instance in one of the following ways:

• If your need for a particular BFILE is temporary and limited within the module on which you
are working, then you can assign this BFILE instance to a PL/SQL or OCI local variable of
type BFILE. Subsequently, you can use the BFILE related APIs on this variable without
having to associate this with a column in the database. The BFILE API operations on a
temporary instance are executed on the client side, without any round-trips to the server.

• You can insert a persistent reference to a BFILE in the BFILE column using an INSERT or
UPDATE statement. Before using SQL to insert or update a row with a BFILE, you must
initialize the BFILE variable to either NULL or a DIRECTORY object name and file name.

Note:

The OCISetAttr() function does not allow you to set a BFILE locator to NULL. To
insert a NULL BFILE in OCI, you must set the bind value to NULL.

Chapter 4
BFILE Locators

4-4

It is possible to have multiple BFILE columns in the same record or different records referring to
the same file. For example, the following UPDATE statements set the BFILE column of the row
with key_value = 21 in lob_table to point to the same file as the row with key_value = 22.

UPDATE lob_table SET f_lob = (SELECT f_lob FROM lob_table WHERE key_value =
22) WHERE
 key_value = 21;

See Also:

Loading BFILEs with SQL*Loader

BFILEs in Objects

If you are using BFILEs in objects, you must first set the BFILE value, and then flush the object
to the database. So, you must first call the OCIObjectNew() function, followed by the
OCILobFileSetName() function and the OCIObjectFlush() function respectively.

BFILEs in Shared Server (Multithreaded Server) Mode

The database does not support session migration for BFILE data types in shared server
(multithreaded server) mode. This implies that in shared server sessions, BFILE operations are
bound to one shared server, they cannot migrate from one server to another, and open BFILE
instances can persist beyond the end of a call to a shared server.

Examples of Creating Directory Objects and BFILE Locators

Many examples in the following sections use the print_media table. Following is the structure
of the table:

Chapter 4
BFILE Locators

4-5

Figure 4-1 print_media table

Example 4-1 Inserting BFILEs in SQL and PL/SQL

conn system/manager

 -- The DBA creates DIRECTORY object and grants READ to the user
create or replace directory MYDIR as '/your/directory/path/here';
GRANT read ON DIRECTORY MYDIR TO pm;

conn pm/pm

 -- Use BFILENAME to create a BFILE locator for INSERT
INSERT INTO print_media
(product_id, ad_id, ad_composite, ad_sourcetext, ad_graphic)
VALUES
(1, 1, empty_blob(), empty_clob(), BFILENAME('MYDIR','file1.txt'));

-- After this statement, 2 rows point to the same BFILE

Chapter 4
BFILE Locators

4-6

INSERT INTO print_media
(product_id, ad_id, ad_composite, ad_sourcetext, ad_graphic)
 select 2, ad_id, ad_composite, ad_sourcetext, ad_graphic from
print_media;

-- Update the 2nd row to point to a different file
UPDATE print_media SET ad_graphic = BFILENAME('MYDIR','file2.txt') WHERE
product_id =2;

-- Insert a 3rd row with invalid file name
INSERT INTO print_media
(product_id, ad_id, ad_composite, ad_sourcetext, ad_graphic)
VALUES
(3, 3, empty_blob(), empty_clob(),
BFILENAME('MYDIR','file_does_not_exist.txt'));

-- Insert a NULL for BFILE
INSERT INTO print_media
(product_id, ad_id, ad_composite, ad_sourcetext, ad_graphic)
VALUES
(4, 4, empty_blob(), empty_clob(), NULL);

-- Inserting in PLSQL using a BFILE variable
DECLARE
 f BFILE;
BEGIN
 f := BFILENAME('MYDIR','file5.txt');
 INSERT INTO print_media (product_id, ad_id, ad_composite, ad_sourcetext,
ad_graphic)
 VALUES (5, 5, NULL, NULL, f);
END;
/
SELECT product_id, ad_id, ad_graphic FROM print_media ORDER BY 1,2;

Example 4-2 Inserting BFILEs in OCI

STATIC TEXT *insstmt = "INSERT INTO print_media (product_id, ad_id,
ad_graphic) VALUES (:1, :1, :2)";
sword insert_bfile()
{
 OCILobLocator *f = (OCILobLocator *)0;

 OCIStmt *stmthp;
 OCIBind *bndp1 = (OCIBind *) 0;
 OCIBind *bndp2 = (OCIBind *) 0;

 ub4 id;

 CHECK_ERROR (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /*************** Allocate descriptor ***********************/
 CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &f,
 (ub4)OCI_DTYPE_FILE, (size_t) 0,
 (dvoid **) 0));

Chapter 4
BFILE Locators

4-7

 /********** Execute insstmt to insert f ********************/
 id = 6;
 CHECK_ERROR (OCILobFileSetName(envhp, errhp, &f,
 (text*)"MYDIR", sizeof("MYDIR") -1,
 (text*)"file6.txt",
 sizeof("file6.txt") -1));

 CHECK_ERROR (OCIStmtPrepare(stmthp, errhp, insstmt,
 (ub4) strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 CHECK_ERROR (OCIBindByPos(stmthp, &bndp1, errhp, (ub4) 1, (dvoid *) &id,
 (sb4) sizeof(id), SQLT_INT, (dvoid *) 0, (ub2
*) 0,
 (ub2 *)0, (ub4) 0, (ub4*) 0, (ub4)
OCI_DEFAULT));

 CHECK_ERROR (OCIBindByPos(stmthp, &bndp2, errhp, (ub4) 2, (dvoid *) &f4,
 (sb4) -1, SQLT_BFILE, (dvoid *) 0, (ub2 *) 0,
 (ub2 *)0, (ub4) 0, (ub4*) 0, (ub4)
OCI_DEFAULT));

 CHECK_ERROR (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *)
NULL,
 OCI_DEFAULT));

 /********** Execute insstmt to insert NULL ********************/
 id = 7;
 CHECK_ERROR (OCIStmtPrepare(stmthp, errhp, insstmt,
 (ub4) strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 CHECK_ERROR (OCIBindByPos(stmthp, &bndp1, errhp, (ub4) 1, (dvoid *) &id,
 (sb4) sizeof(id), SQLT_INT, (dvoid *) 0, (ub2
*) 0,
 (ub2 *)0, (ub4) 0, (ub4*) 0, (ub4)
OCI_DEFAULT));

 CHECK_ERROR (OCIBindByPos(stmthp, &bndp2, errhp, (ub4) 2, (dvoid *) NULL,
 (sb4) -1, SQLT_BFILE, (dvoid *) 0, (ub2 *) 0,
 (ub2 *)0, (ub4) 0, (ub4*) 0, (ub4)
OCI_DEFAULT));

 CHECK_ERROR (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *)
NULL,
 OCI_DEFAULT));

}

Chapter 4
BFILE Locators

4-8

4.3 BFILE APIs
This section discusses the different operations supported through BFILEs.

Once you initialize a BFILE variable either by using the BFILENAME function or an equivalent
API, or by using a SELECT operation on a BFILE column, you can perform read operations on
the BFILE using APIs such as DBMS_LOB. Note that BFILE is a read-only data type. So, you
cannot update or delete the operating system files, accessed using BFILEs, through the BFILE
APIs.
The operations performed on BFILEs are divided into following categories:

Table 4-1 Operations on BFILEs

Category Operation Example function /procedure
in DBMS_LOB package

Sanity Checking Check if the BFILE exists on the
server

FILEEXISITS

Get the DIRECTORY object name
and file name

FILEGETNAME

Set the name of a BFILE in a
locator without checking if the
directory or file exists

BFILENAME

Open / Close Open a file OPEN
Check if the file was opened
using the input BFILE locators

ISOPEN

Close the file CLOSE
Close all previously opened files FILECLOSEALL

Read Operations Get the length of the BFILE GETLENGTH
Read data from the BFILE
starting at the specified offset

READ

Return part of the BFILE value
starting at the specified offset
using SUBSTR

SUBSTR

Return the matching position of a
pattern in a BFILE using INSTR

INSTR

Operations involving multiple
locators

Assign BFILE locator src to
BFILE locator dst

dst := src

Load BFILE data into a LOB LOADCLOBFROMFILE,
LOADBLOBFROMFILE

Compare all or part of the value
of two BFILEs

COMPARE

• Sanity Checking
Sanity Checking functions on BFILEs enable you to retrieve information about the BFILEs.

• Opening and Closing a BFILE
You must OPEN a BFILE before performing any operations on it, and CLOSE it before you
terminate your program.

• Reading from a BFILE
You can perform many different read operations on the BFILE data, including reading its
length, reading part of the data, or reading the whole data.

Chapter 4
BFILE APIs

4-9

• Working with Multiple BFILE Locators
Some BFILE operations accept two locators, at least one of which is a BFILE locator. For
the assignment and the comparison operations involving BFILES, both the locators must
be of BFILE type.

4.3.1 Sanity Checking
Sanity Checking functions on BFILEs enable you to retrieve information about the BFILEs.

Recall that the BFILENAME() and OCILobFileSetName() functions do not verify that the
directory and path name you specify actually exist. You can use the sanity checking functions
to verify that a BFILE exists and to extract the directory and file names from a BFILE locator.

4.3.2 Opening and Closing a BFILE
You must OPEN a BFILE before performing any operations on it, and CLOSE it before you
terminate your program.

A BFILE locator operates like a file descriptor available as part of the standard input/output
library of most conventional programming languages. This implies that once you define and
initialize a BFILE locator, and open the file pointed to by this locator, all subsequent operations
until the closure of the file must be done from within the same program block using the locator
or local copies of it. The BFILE locator variable can be used as a parameter to other
procedures, member methods, or external function callouts. However, it is recommended that
you open and close a file from the same program block at the same nesting level.

You must close all the open BFILE instances even in cases, where an exception or unexpected
termination of your application occurs. In these cases, if a BFILE instance is not closed, then it
is still considered open by the database. Ensure that your exception handling strategy does not
allow BFILE instances to remain open in these situations.

You can close all open BFILEs together by using a procedure like DBMS_LOB.FILECLOSEALL or
OCILobFileCloseAll().

4.3.3 Reading from a BFILE
You can perform many different read operations on the BFILE data, including reading its length,
reading part of the data, or reading the whole data.

When reading from a large BFILE, you can use the streaming read mode in JDBC or OCI. In
JDBC, you can achieve this by using the getBinaryStream() method. In OCI, you can achieve
it in the way as described in the following section.

Streaming Read in OCI

The most efficient way to read large amounts of BFILE data is by using the OCILobRead2()
function with the streaming mechanism enabled, and using polling or callback. To do so,
specify the starting point of the read using the offset parameter as follows:

ub8 char_amt = 0;
ub8 byte_amt = 0;
ub4 offset = 1000;

OCILobRead2(svchp, errhp, locp, &byte_amt, &char_amt, offset, bufp, bufl,
 OCI_ONE_PIECE, 0, 0, 0, 0);

Chapter 4
BFILE APIs

4-10

When using polling mode, be sure to look at the value of the byte_amt parameter after each
OCILobRead2() call to see how many bytes were read into the buffer, because the buffer may
not be entirely full.

When using callbacks, the lenp parameter, which is input to the callback, indicates how many
bytes are filled in the buffer. Be sure to check the lenp parameter during your callback
processing because the entire buffer may not be filled with data.

Amount Parameter

• When calling the DBMS_LOB.READ API, the size of the amount parameter can be larger than
the size of the data. However, this parameter should be less than or equal to the size of the
buffer. In PL/SQL, the buffer size is limited to 32K.

• When calling the OCILobRead2() function, you can pass a value of UB8MAXVAL for the
byte_amt parameter to read to the end of the BFILE.

4.3.4 Working with Multiple BFILE Locators
Some BFILE operations accept two locators, at least one of which is a BFILE locator. For the
assignment and the comparison operations involving BFILES, both the locators must be of
BFILE type.

Loading a LOB with BFILE data involves special considerations that we will discuss in the
following sections:

Loading a LOB with BFILE Data

In PLSQL, the DBMS_LOB.LOADFROMFILE procedure is deprecated in favor of
DBMS_LOB.LOADBLOBFROMFILE and DBMS_LOB.LOADCLOBFROMFILE. Specifically, when you use
DBMS_LOB.LOADCLOBFROMFILE procedure to load a CLOB or NCLOB instance, it will perform the
character set conversions.

Specifying the Amount of BFILE Data to Load

The value you pass for the amount parameter to functions listed in the table below must be
one of the following:

• An amount less than or equal to the actual size (in bytes) of the BFILE you are loading.

• The maximum allowable LOB size (in bytes). Passing this value, loads the entire BFILE.
You can use this technique to load the entire BFILE without determining the size of the
BFILE before loading. To get the maximum allowable LOB size, use the technique
described in the following table:

Table 4-2 Maximum LOB Size for Load from File Operations

Environment Function To pass maximum LOB size,
get value of:

DBMS_LOB DBMS_LOB.LOADBLOBFROMFILE DBMS_LOB.LOBMAXSIZE
DBMS_LOB DBMS_LOB.LOADCLOBFROMFILE DBMS_LOB.LOBMAXSIZE
OCI OCILobLoadFromFile2() UB8MAXVAL
OCI OCILobLoadFromFile()(For

LOBs less than 4 gigabytes in
size.)

UB4MAXVAL

Loading a BLOB with BFILE Data

Chapter 4
BFILE APIs

4-11

The DBMS_LOB.LOADBLOBFROMFILE procedure loads a BLOB with data from a BFILE. It can be
used to load data into any persistent or temporary BLOB instance. This procedure returns the
new source and the destination offsets of the BLOB, which you can then pass into subsequent
calls, when used in a loop.

Loading a CLOB with BFILE Data

The DBMS_LOB.LOADCLOBFROMFILE procedure loads a CLOB or NCLOB with character data from a
BFILE. It can be used to load data into a persistent or temporary CLOB or NCLOB instance. You
can specify the character set ID of the BFILE when calling this procedure and ensure that the
character set is properly converted from the BFILE data character set to the destination CLOB or
NCLOB character set. This procedure returns the new source and destination offsets of the
CLOB or NCLOB, which you can then passe into subsequent calls, when used in a loop.

The following example illustrates:

• How to use default csid(0).

• How to load the entire file without calling getlength for the BFILE.

• How to find out the actual amount loaded using return offsets.

This example assumes that ad_source is a BFILE in UTF8 character set format and the
database character set is UTF8.

CREATE OR REPLACE PROCEDURE loadCLOB1_proc (dst_loc IN OUT CLOB) IS
 src_loc BFILE := BFILENAME('MEDIA_DIR','monitor_3060.txt') ;
 amt NUMBER := DBMS_LOB.LOBMAXSIZE;
 src_offset NUMBER := 1 ;
 dst_offset NUMBER := 1 ;
 lang_ctx NUMBER := DBMS_LOB.DEFAULT_LANG_CTX;
 warning NUMBER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('------------ LOB LOADCLOBFORMFILE EXAMPLE
------------');
 DBMS_LOB.FILEOPEN(src_loc, DBMS_LOB.FILE_READONLY);

 /* The default_csid can be used when the BFILE encoding is in the same
charset
 * as the destination CLOB/NCLOB charset
 */
 DBMS_LOB.LOADCLOBFROMFILE(dst_loc,src_loc, amt, dst_offset,
src_offset,
 DBMS_LOB.DEFAULT_CSID, lang_ctx,warning) ;
 DBMS_OUTPUT.PUT_LINE(' Amount specified ' || amt) ;
 DBMS_OUTPUT.PUT_LINE(' Number of bytes read from source: ' ||
(src_offset-1));
 DBMS_OUTPUT.PUT_LINE(' Number of characters written to destination: ' ||
(dst_offset-1));
 IF (warning = DBMS_LOB.WARN_INCONVERTIBLE_CHAR)
 THEN
 DBMS_OUTPUT.PUT_LINE('Warning: Inconvertible character');
 END IF;
 DBMS_LOB.FILECLOSEALL() ;
END;
/

The following example illustrates:

Chapter 4
BFILE APIs

4-12

• How to get the character set ID from the character set name using the NLS_CHARSET_ID
function.

• How to load a stream of data from a single BFILE into different LOBs using the returned
offset value and the language context lang_ctx.

• How to read a warning message

This example assumes that ad_file_ext_01 is a BFILE in JA16TSTSET format and the database
national character set is AL16UTF16.

CREATE OR REPLACE PROCEDURE loadCLOB2_proc (dst_loc1 IN OUT NCLOB,dst_loc2 IN
OUT NCLOB) IS
 src_loc BFILE := BFILENAME('MEDIA_DIR','monitor_3060.txt');
 amt NUMBER := 100;
 src_offset NUMBER := 1;
 dst_offset NUMBER := 1;
 src_osin NUMBER;
 cs_id NUMBER := NLS_CHARSET_ID('JA16TSTSET'); /* 998 */
 lang_ctx NUMBER := dbms_lob.default_lang_ctx;
 warning NUMBER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('------------ LOB LOADCLOBFORMFILE EXAMPLE
------------');
 DBMS_LOB.FILEOPEN(src_loc, DBMS_LOB.FILE_READONLY);
 DBMS_OUTPUT.PUT_LINE(' BFILE csid is ' || cs_id) ;

 /* Load the first 1KB of the BFILE into dst_loc1 */

 DBMS_OUTPUT.PUT_LINE(' ----------------------------') ;
 DBMS_OUTPUT.PUT_LINE(' First load ') ;
 DBMS_OUTPUT.PUT_LINE(' ----------------------------') ;

 DBMS_LOB.LOADCLOBFROMFILE(dst_loc1, src_loc, amt, dst_offset, src_offset,
 cs_id, lang_ctx, warning);

 /* the number bytes read may or may not be 1k */

 DBMS_OUTPUT.PUT_LINE(' Amount specified ' || amt) ;
 DBMS_OUTPUT.PUT_LINE(' Number of bytes read from source: ' ||
 (src_offset-1));
 DBMS_OUTPUT.PUT_LINE(' Number of characters written to destination: ' ||
 (dst_offset-1));
 if (warning = dbms_lob.warn_inconvertible_char)
 then
 DBMS_OUTPUT.PUT_LINE('Warning: Inconvertible character');
 end if;

 /* load the next 1KB of the BFILE into the dst_loc2 */

 DBMS_OUTPUT.PUT_LINE(' ----------------------------') ;
 DBMS_OUTPUT.PUT_LINE(' Second load ') ;
 DBMS_OUTPUT.PUT_LINE(' ----------------------------') ;

 /* Notice we are using the src_offset and lang_ctx returned from the
previous
 * load. We do not use value 1001 as the src_offset here because sometimes

Chapter 4
BFILE APIs

4-13

the
 * actual amount read may not be the same as the amount specified.
 */

 src_osin := src_offset;
 dst_offset := 1;
 DBMS_LOB.LOADCLOBFROMFILE(dst_loc2, src_loc, amt, dst_offset, src_offset,
 cs_id, lang_ctx, warning);
 DBMS_OUTPUT.PUT_LINE(' Number of bytes read from source: ' ||
 (src_offset-src_osin));
 DBMS_OUTPUT.PUT_LINE(' Number of characters written to destination: ' ||
 (dst_offset-1));
 if (warning = DBMS_LOB.WARN_INCONVERTIBLE_CHAR)
 then
 DBMS_OUTPUT.PUT_LINE('Warning: Inconvertible character');
 end if;
 DBMS_LOB.FILECLOSEALL() ;

END;
/

4.4 BFILE APIs in Different Programmatic Interfaces
This section lists all the APIs from different Programmatic Interfaces supported by Oracle
Database.

Note:

The PL/SQL DBMS_LOB package provides a rich set of operations on BFILEs. If you
are using a different Programmatic Interface where some of these operations are not
provided, then call the corresponding PL/SQL DBMS_LOB procedure or function.

• PL/SQL APIs for BFILEs
This section describes the PL/SQL APIs that you can use with BFILEs.

• JDBC API for BFILEs
This section describes the JDBC APIs that you can use to work with BFILEs.

• OCI API for BFILEs
This section describes the OCI APIs that you can use with BFILEs.

• ODP.NET API for BFILEs
This section describes the ODP.NET APIs that you can use with BFILEs.

• OCCI API for BFILEs
This section describes the OCCI APIs that you can use with BFILEs.

• Pro*C/C++ and Pro*COBOL API for BFILEs
This section describes Pro*C/C++ and Pro*COBOL APIs APIs you can use for BFILEs.

See Also:

Comparing the LOB Interfaces

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-14

4.4.1 PL/SQL APIs for BFILEs
This section describes the PL/SQL APIs that you can use with BFILEs.

See Also:

DBMS_LOB

Table 4-3 DBMS_LOB functions and procedures for BFILEs

Category Function/ Procedure Description

Sanity Checking FILEEXISTS Checks if the BFILE exists on the
server

FILEGETNAME Gets the DIRECTORY object name
and file name

BFILENAME Sets the name of a BFILE in a
locator without checking if the
directory or file exists

Open/Close OPEN, FILEOPEN Opens a file. Use OPEN instead of
FILEOPEN.

ISOPEN, FILEISOPEN Checks if the file was opened
using the input BFILE locators.
Use ISOPEN instead of
FILEISOPEN.

CLOSE, FILECLOSE Closes the file. Use CLOSE
instead of FILECLOSE.

FILECLOSEALL Closes all previously opened files.

Read Operations GETLENGTH Gets the length of the BFILE
READ Reads data from the BFILE

starting at the specified offset.

SUBSTR Returns part of the BFILE value
starting at the specified offset.

INSTR Returns the matching position of
the nth occurrence of the pattern
in the BFILE.

Operations involving multiple
locators

:= (operator) Assigns a BFILE locator to
another

LOADCLOBFROMFILE Loads character data from a file
into a LOB

LOADBLOBFROMFILE Loads binary data from a file into
a LOB

LOADFROMFILE Loads BFILE data into a LOB
(deprecated)

COMPARE Compares the value of two
BFILEs.

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-15

Example 4-3 PL/SQL API for BFILEs

declare
 f BFILE;
 f2 BFILE;
 b BLOB;
 c CLOB;
 dest_offset NUMBER;
 src_offset NUMBER;
 lang NUMBER;
 warn NUMBER;
 buffer RAW(128);
 amt NUMBER;
 len NUMBER;
 pos NUMBER;
 filename VARCHAR2(128);
 dirname VARCHAR2(128);
BEGIN

 /* Select out a BFILE locator */
 SELECT ad_graphic INTO f FROM print_media WHERE product_id = 1 AND ad_id =
1;

 /*--*/
 /*---------------------- Sanity Checking ---------------------------*/
 /*--*/

 /*-------------- Determining Whether a BFILE Exists ----------------*/
 if DBMS_LOB.FILEEXISTS(f) = 1 then
 DBMS_OUTPUT.PUT_LINE('F exists!');
 else
 DBMS_OUTPUT.PUT_LINE('F does not exist :(');
 return;
 end if;

 /*------ Getting Directory Object Name and File Name of a BFILE ----*/
 DBMS_LOB.FILEGETNAME(f, dirname, filename);
 DBMS_OUTPUT.PUT_LINE('F: directory: '|| dirname ||' filename: '|| filename);

 /*--*/
 /*----------------------- Open/Close -------------------------------*/
 /*--*/

 /*----------------------- Opening a BFILE --------------------------*/
 DBMS_LOB.OPEN(f, DBMS_LOB.LOB_READONLY);

 /*-------------- Determining Whether a BFILE Is Open ---------------*/
 if DBMS_LOB.ISOPEN(f) = 1 then
 DBMS_OUTPUT.PUT_LINE('F is open!');
 else
 DBMS_OUTPUT.PUT_LINE('F is not open :(');
 end if;

 /*----------------------- Closing a BFILE --------------------------*/
 DBMS_LOB.CLOSE(f);

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-16

 /*------------ Closing All Open BFILEs with FILECLOSEALL -----------*/
 DBMS_LOB.FILECLOSEALL;

 /*--*/
 /*-------------------- BFILE operations ----------------------------*/
 /*--*/

 DBMS_LOB.OPEN(f, dbms_lob.lob_readonly);

 /*----------------- Getting the Length of a BFILE ------------------*/
 len := DBMS_LOB.GETLENGTH(f);
 DBMS_OUTPUT.PUT_LINE('dbms_lob.getlength: '||len);

 /*------------------------ Reading BFILE Data ----------------------*/
 amt := 15;
 DBMS_LOB.READ(f, amt, 1, buffer);
 DBMS_OUTPUT.PUT_LINE('dbms_lob.read: '||UTL_RAW.CAST_TO_VARCHAR2(buffer));

 /*--------- Reading a Portion of BFILE Data Using SUBSTR -----------*/
 buffer := DBMS_LOB.SUBSTR(f, 15, 3);
 DBMS_OUTPUT.PUT_LINE('dbms_lob.substr: '||UTL_RAW.CAST_TO_VARCHAR2(buffer));

 /*------ Checking If a Pattern Exists in a BFILE Using INSTR -------*/
 pos := DBMS_LOB.INSTR(f, utl_raw.cast_to_raw('BFILE'), 1, 1);
 if pos != 0 then
 DBMS_OUTPUT.PUT_LINE('dbms_lob.instr: "BFILE" word exists in position '
|| pos);
 else
 DBMS_OUTPUT.PUT_LINE('dbms_lob.instr: "BFILE" word does not exist in
file');
 end if;

 /*--*/
 /*------------- Operations involving 2 locators ---------------------*/
 /*--*/

 /*----------------- Assigning a BFILE Locator ----------------------*/
 f2 := f; -- where f2 is also a bfile variable

 amt := 15;
 DBMS_LOB.READ(f2, amt, 1, buffer);
 DBMS_OUTPUT.PUT_LINE('assign: dbms_lob.read: '||
UTL_RAW.CAST_TO_VARCHAR2(buffer));

 /*--------------- Loading a LOB with BFILE Data --------------------*/
 /* Select out BLOB and CLOB for update so we can write to them */
 select ad_composite, ad_sourcetext into b, c
 from print_media where product_id = 1 and ad_id = 1 for update;

 /* Load BLOB from BFILE */
 dest_offset := 1;
 src_offset := 1;

 DBMS_LOB.LOADBLOBFROMFILE(b, f, dbms_lob.lobmaxsize, dest_offset,
src_offset);

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-17

 /* Load CLOB from BFILE, for this operation is necessary to know the charset
 * id of BFILE to read it correctly */
 dest_offset := 1;
 src_offset := 1;
 lang := 0;
 /* Specifying the amount as DBMS_LOB.LOBMAXSIZE to copy till end of file */
 DBMS_LOB.LOADCLOBFROMFILE(c, f, DBMS_LOB.LOBMAXSIZE, dest_offset,
src_offset,
 NLS_CHARSET_ID('utf8'), lang, warn);

 /*-------------- Comparing All or Parts of Two BFILES -------------*/
 SELECT ad_graphic INTO f2 FROM print_media WHERE product_id = 2 AND ad_id =
1;
 DBMS_LOB.OPEN(f2, dbms_lob.lob_readonly);
 if DBMS_LOB.COMPARE(f, f2, 10, 1, 1) = 0 then
 DBMS_OUTPUT.PUT_LINE('dbms_lob.compare: They are equals!!');
 else
 DBMS_OUTPUT.PUT_LINE('dbms_lob.compare: They are not equals :(');
 end if;

 -- Close just f
 DBMS_LOB.CLOSE(f);

 -- Close the rest of bfiles opended
 DBMS_LOB.FILECLOSEALL;

END;
/

4.4.2 JDBC API for BFILEs
This section describes the JDBC APIs that you can use to work with BFILEs.

In JDBC, the oracle.jdbc.OracleBfile interface provides methods for performing operations
on BFILE data in the database. It encapsulates the BFILE locators, so you do not deal with
locators, but instead use methods and properties provided to perform operations and get state
information.

To retrieve the locator for the most current row, you must call the getBFILE() method on the
OracleResultSet each time a move operation is made, depending on whether the instance is
a BFILE.

See Also:

Working with LOBs and BFILEs

Table 4-4 JDBC APIs for BFILEs

Category Function/ Procedure Description

Sanity Checking boolean fileExists() Checks if the BFILE exists on the
server

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-18

Table 4-4 (Cont.) JDBC APIs for BFILEs

Category Function/ Procedure Description

public java.lang.String
getName()

Gets the file name

public java.lang.String
getDirAlias()

Gets the DIRECTORY object name

Open/Close public void openFile() Opens a file.

public boolean
isFileOpen()

Checks if the file was opened
using the input BFILE locators. .

public void closeFile() Closes the file. Use CLOSE
instead of FILECLOSE.

Read Operations long length() Gets the length of the BFILE
public java.io.InputStream
getBinaryStream()

Reads the BFILE as a binary
stream.

byte[] getBytes(long, int) Gets the contents of the BFILE
as an array of bytes, given an
offset

int getBytes(long, int,
byte[])

Reads a subset of the BFILE into
a byte array

long
position(oracle.jdbc.Oracl
eBfile, long)

Finds the first appearance of the
given BFILE contents within the
LOB, from the given offset.

long position(byte[],
long)

Finds the first appearance of the
given byte array within the BFILE,
from the given offset

Operations involving multiple
locators

[use equal sign] Assigns a BFILE locator to
another

Example 4-4 JDBC API for BFILEs

static void run_query() throws Exception {

 try(
 OracleConnection con = getConnection();
 Statement stmt = con.createStatement();
){

 ResultSet rs = null;

 OracleBfile f = null;
 OracleBfile f2 = null;
 OracleBfile f3 = null;

 InputStream in = null;
 String output = null;
 byte buffer[] = new byte[15];
 long pos;

 String filename = null;
 String dirname = null;
 long len = 0;

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-19

 rs = stmt.executeQuery("select ad_graphic from print_media where
product_id = 1");
 rs.next();
 f = (OracleBfile)((OracleResultSet)rs).getBfile(1);
 rs.close();

 rs = stmt.executeQuery("select ad_graphic from print_media where
product_id = 2");
 rs.next();
 f2 = (OracleBfile)((OracleResultSet)rs).getBfile(1);
 rs.close();

 stmt.close();

 /*--*/
 /*---------------------- Sanity Checking ---------------------------*/
 /*--*/

 /*-------------- Determining Whether a BFILE Exists ----------------*/
 if (f.fileExists())
 System.out.println("F exists!");
 else
 System.out.println("F does not exist :(");

 /*------ Getting Directory Object Name and File Name of a BFILE ----*/
 dirname = f.getDirAlias();
 filename = f.getName();

 System.out.println("Directory: " + dirname + " Filename: " + filename);

 /*--*/
 /*----------------------- Open/Close -------------------------------*/
 /*--*/

 /*----------------------- Opening a BFILE --------------------------*/
 f.open(LargeObjectAccessMode.MODE_READONLY);

 /*-------------- Determining Whether a BFILE Is Open ---------------*/
 if (f.isOpen())
 System.out.println("F is open!");
 else
 System.out.println("F is not open :(");

 /*----------------------- Closing a BFILE --------------------------*/
 f.close();

 /*--*/
 /*-------------------- BFILE operations ----------------------------*/
 /*--*/

 f.open(LargeObjectAccessMode.MODE_READONLY);

 /*----------------- Getting the Length of a BFILE ------------------*/
 len = f.length();
 System.out.println("F Length: "+len);

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-20

 /*------------------------ Reading BFILE Data ----------------------*/
 in = f.getBinaryStream();
 in.read(buffer);
 in.close();

 output = new String(buffer);
 System.out.println("Buffer: " + output);

 /*---- Checking If a Pattern Exists in a BFILE Using POSITION ------*/
 pos = f.position("BFILE".getBytes(), 1);

 if (pos != -1)
 System.out.println("\"BFILE\" word exists in position: " + pos);
 else
 System.out.println("\"BFILE\" word doesn't exist :(");

 /*--*/
 /*------------- Operations involing 2 locators ---------------------*/
 /*--*/

 /*----------------- Assigning a BFILE Locator ----------------------*/
 f3 = f;

 in = f3.getBinaryStream();
 in.read(buffer);
 in.close();

 output = new String(buffer);
 System.out.println("assign: Buffer: " + output);

 /*-------------- Comparing All or Parts of Two BFILES -------------*/
 f2.open(LargeObjectAccessMode.MODE_READONLY);
 pos = f.position(f2, 1);

 if (pos != -1)
 System.out.println("f2 exists in position " + pos);
 else
 System.out.println("f2 doesn't exist in position");

 f.close();
 f2.close();
 f3.close();
 }
}

4.4.3 OCI API for BFILEs
This section describes the OCI APIs that you can use with BFILEs.

See Also:

LOB and BFILE Operations

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-21

Table 4-5 OCI APIs for BFILEs

Category Function/ Procedure Description

Sanity Checking OCILobFileExists() Checks if the BFILE exists on the
server

OCILobFileGetName() Gets the DIRECTORY object name
and the file name

OCILobFileSetName() Sets the name of a BFILE in a
locator without checking if the
directory or file exists

OCILobLocatorIsInit() Checks whether a LOB Locator is
initialized

Open/Close OCILobOpen() and
OCILobFileOpen()

Opens a file. Use OciLobOpen()
instead of OCILobFileOpen().

OCILobIsOpen() and
OCILobFileIsOpen()

Checks if the file was opened
using the input BFILE locators.
Use OCILobIsOpen() instead of
OciLobFileIsOpen().

OCILobClose() and
OCILobFileClose()

Closes the file. Use
OciLobClose() instead of
OciLobFileClose().

OCILobFileCloseAll() Closes all previously opened files.

Read Operations OCILobGetLength2() Gets the length of the BFILE
OCILobRead2() Reads data from the BFILE

starting at the specified offset.

OCILobArrayRead() Reads data using multiple
locators in one round trip.

Operations involving multiple
locators

OCILobLocatorAssign() Assigns a BFILE locator to
another

OCILobLoadFromFile2() Loads BFILE data from a file into
a LOB

Example 4-5 OCI API for BFILEs

static text *selstmt = (text *) "select ad_graphic, ad_composite,
ad_sourcetext from print_media where product_id = 1 and ad_id = 1 for update"
sword run_query()
{
 OCILobLocator *f = (OCILobLocator *)0;
 OCILobLocator *f2 = (OCILobLocator *)0;

 OCILobLocator *b = (OCILobLocator *)0;
 OCILobLocator *c = (OCILobLocator *)0;

 OCIStmt *stmthp;
 OCIDefine *defn1p = (OCIDefine *) 0;
 OCIDefine *defn2p = (OCIDefine *) 0;
 OCIDefine *defn3p = (OCIDefine *) 0;

 ub4 bfilelen;
 ub1 lbuf[128];

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-22

 ub8 amt = 15;
 boolean flag = FALSE;
 ub4 id = 10;

 text filename[128];
 ub2 filename_len;
 text dirname[128];
 ub2 dirname_len;

 CHECK_ERROR (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /************** Allocate descriptors ***********************/
 CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &f,
 (ub4)OCI_DTYPE_FILE, (size_t) 0,
 (dvoid **) 0));

 CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &f2,
 (ub4)OCI_DTYPE_FILE, (size_t) 0,
 (dvoid **) 0));

 CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &b,
 (ub4)OCI_DTYPE_LOB, (size_t) 0,
 (dvoid **) 0));

 CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &c,
 (ub4)OCI_DTYPE_LOB, (size_t) 0,
 (dvoid **) 0));

 /********** Execute selstmt to get f, b, c ***********************/
 CHECK_ERROR (OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 CHECK_ERROR (OCIDefineByPos(stmthp, &defn1p, errhp, (ub4) 1, (dvoid *) &f,
 (sb4) -1, SQLT_BFILE, (dvoid *) 0, (ub2 *) 0,
 (ub2 *)0, (ub4) OCI_DEFAULT));
 CHECK_ERROR (OCIDefineByPos(stmthp, &defn2p, errhp, (ub4) 2, (dvoid *) &b,
 (sb4) -1, SQLT_BLOB, (dvoid *) 0, (ub2 *) 0,
 (ub2 *)0, (ub4) OCI_DEFAULT));
 CHECK_ERROR (OCIDefineByPos(stmthp, &defn3p, errhp, (ub4) 3, (dvoid *) &c,
 (sb4) -1, SQLT_CLOB, (dvoid *) 0, (ub2 *) 0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 CHECK_ERROR (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *)
NULL,
 OCI_DEFAULT));

 /*--*/
 /*---------------------- Sanity Checking ---------------------------*/
 /*--*/

 /*-------------- Determining Whether a BFILE Exists ----------------*/
 CHECK_ERROR (OCILobFileExists(svchp, errhp, f, &flag));
 printf("OCILobFileExists: %s\n", (flag)?"TRUE":"FALSE");

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-23

 /*------ Getting Directory Object Name and File Name of a BFILE ----*/
 CHECK_ERROR (OCILobFileGetName(envhp, errhp, f, (text*)dirname,
&dirname_len,
 (text*)filename, &filename_len));
 printf("OCILobFileGetName: Directory: %.*s Filaname: %.*s \n",
 dirname_len, dirname, filename_len, filename);

 /*--*/
 /*----------------------- Open/Close -------------------------------*/
 /*--*/

 /*----------------------- Opening a BFILE --------------------------*/
 CHECK_ERROR (OCILobFileOpen(svchp, errhp, f, OCI_FILE_READONLY));
 printf("OCILobFileOpen: Works\n");

 /*-------------- Determining Whether a BFILE Is Open ---------------*/
 CHECK_ERROR (OCILobFileIsOpen(svchp, errhp, f, &flag));
 printf("OCILobFileIsOpen: %s\n", (flag)?"TRUE":"FALSE");

 /*----------------------- Closing a BFILE --------------------------*/
 CHECK_ERROR (OCILobFileClose (svchp, errhp, f));

 /*------------ Closing All Open BFILEs with FILECLOSEALL -----------*/
 CHECK_ERROR (OCILobFileCloseAll(svchp, errhp));

 /*--*/
 /*-------------------- BFILE operations ----------------------------*/
 /*--*/

 CHECK_ERROR (OCILobFileOpen(svchp, errhp, f, OCI_FILE_READONLY));
 printf("OCILobFileOpen: Works\n");

 /*----------------- Getting the Length of a BFILE ------------------*/
 CHECK_ERROR (OCILobGetLength(svchp, errhp, b, &bfilelen));
 printf("OCILobGetLength: loblen: %d \n", bfilelen);

 /*------------------------ Reading BFILE Data ----------------------*/
 CHECK_ERROR (OCILobRead2(svchp, errhp, f, &amt,
 NULL, (oraub8)1, lbuf,
 (oraub8)sizeof(lbuf), OCI_ONE_PIECE ,(dvoid*)0,
 NULL, (ub2)0, (ub1)SQLCS_IMPLICIT));
 printf("OCILobRead2: buf: %.*s amt: %lu\n", amt, lbuf, amt);

 /*--*/
 /*------------- Operations involing 2 locators ---------------------*/
 /*--*/

 /*----------------- Assigning a BFILE Locator ----------------------*/
 CHECK_ERROR (OCILobLocatorAssign(svchp, errhp, f, &f2));
 printf("OCILobLocatorAssign: Works! \n");

 amt = 15;
 CHECK_ERROR (OCILobRead2(svchp, errhp, f2, &amt,
 NULL, (oraub8)1, lbuf,
 (oraub8)sizeof(lbuf), OCI_ONE_PIECE ,(dvoid*)0,

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-24

 NULL, (ub2)0, (ub1)SQLCS_IMPLICIT));
 printf("OCILobLocatorAssign: OCILobRead2: buf: %.*s amt: %lu\n", amt, lbuf,
amt);

 /*--------------- Loading a LOB with BFILE Data --------------------*/
 /* Load BLOB from BFILE. Specify amount = UB8MAXVAL to copy till end of
bfile */
 CHECK_ERROR (OCILobLoadFromFile2(svchp, errhp, b, f, UB8MAXVAL, 1,1));
 printf("OCILobLoadFromFile2: BLOB case Works\n");

 /* Load CLOB from BFILE. Specify amount = UB8MAXVAL to copy till end of
bfile.
 * Note that there is no character set conversion here. */
 CHECK_ERROR (OCILobLoadFromFile2(svchp, errhp, c, f, UB8MAXVAL, 1,1));
 printf("OCILobLoadFromFile2: CLOB case Works\n");

 /* Close just f */
 CHECK_ERROR (OCILobFileClose (svchp, errhp, f));

 /* Close the rest of bfiles opened */
 CHECK_ERROR (OCILobFileCloseAll(svchp, errhp));

 OCIDescriptorFree((dvoid *) b, (ub4) SQLT_BLOB);
 OCIDescriptorFree((dvoid *) c, (ub4) SQLT_CLOB);
 OCIDescriptorFree((dvoid *) f, (ub4) SQLT_BFILE);
 OCIDescriptorFree((dvoid *) f2, (ub4) SQLT_BFILE);

 CHECK_ERROR (OCIHandleFree((dvoid *) stmthp, OCI_HTYPE_STMT));
}

4.4.4 ODP.NET API for BFILEs
This section describes the ODP.NET APIs that you can use with BFILEs.

See Also:

OracleBFile Class

Table 4-6 ODP.NET methods in OracleBfileClass

Category Function/Description Description

Sanity Checking FileExists Checks if the BFILE exists on the
server

FileName Sets or gets the file name

DirectoryName Sets or gets the DIRECTORY
object name

Open/Close OpenFile Opens a file. Use OPEN instead of
FILEOPEN.

IsOpen Checks if the file was opened
using the input BFILE locators.
Use ISOPEN instead of
FILEISOPEN.

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-25

Table 4-6 (Cont.) ODP.NET methods in OracleBfileClass

Category Function/Description Description

CloseFile Closes the file.

Read Operations Length Get the length of the BFILE

Value Returns the entire LOB data as a
string for CLOB and a byte array
for BLOB

Read Reads data from the BFILE
starting at the specified offset.

Search Returns the matching position of
the nth occurrence of the pattern
in the BFILE.

Operations involving multiple
locators

Compare Compares the values of two
BFILEs

IsEqual Check if two LOBs point to the
same LOB data

4.4.5 OCCI API for BFILEs
This section describes the OCCI APIs that you can use with BFILEs.

In OCCI, the Bfile class enables you to instantiate a Bfile object in your C++ application. You
must then use methods of the Bfile class, such as the setName() method, to initialize the
Bfile object, which associates the object properties with an object of type BFILE in a BFILE
column of the database.

See Also:

Bfile Class

Amount Parameter for OCCI LOB copy() Methods

The copy() method on Clob and Blob enables you to load data from a BFILE. You can pass
one of the following values for the amount parameter to this method:

• An amount smaller than the size of the BFILE to load a portion of the data

• An amount equal to the size of the BFILE to load all of the data

• The UB8MAXVAL constant to load all of the BFILE data

You cannot specify an amount larger than the length of the BFILE.

Amount Parameter for OCCI read() Operations

The read() method on an Clob, Blob, or Bfile object, reads data from a BFILE. You can pass
one of these values for the amount parameter to specify the amount of data to read:

• An amount smaller than the size of the BFILE to load a portion of the data

• An amount equal to the size of the BFILE to load all of the data

• An amount equal to zero (0) to read until the end of the BFILE in streaming mode

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-26

You cannot specify an amount larger than the length of the BFILE.

Table 4-7 OCCI Methods for BFILEs

Category Function/ Procedure Description

Sanity Checking fileExists() Checks if the BFILE exists on the
server

getFileName() Gets the file name

getDirAlias() Gets the DIRECTORY object name

setName() Sets the name of a BFILE in a
locator without checking if the
directory or file exists.

isInitialized() Checks whether a BFILE is
initialized.

Open/Close open() Opens a file.

isOpen() Checks if the file was opened
using the input BFILE locators.

close() Closes the file.

Read Operations length() Gets the length of the BFILE
read() Reads data from the BFILE

starting at the specified offset.

Operations involving multiple
locators

(operator) = Assigns a BFILE locator to
another. Use the assignment
operator (=) or the copy
constructor.

Blob.copy() or Clob.copy() Loads BFILEdata into a LOB

4.4.6 Pro*C/C++ and Pro*COBOL API for BFILEs
This section describes Pro*C/C++ and Pro*COBOL APIs APIs you can use for BFILEs.

See Also:

• Pro*C/C++ Programmer's Guide

• Pro*COBOL Programmer's Guide

Table 4-8 Pro*C/C++ and Pro*COBOL APIs for BFILEs

Category Function/ Procedure Description

Sanity Checking DESCRIBE[FILEEXISTS] Checks if the BFILE exists on the
server

DESCRIBE[DIRECTORY,FILENAM
E]

Gets the directory object name
and file name

FILE SET Sets the name of a BFILE in a
locator without checking if the
directory or file exists

Open/Close OPEN Opens a file.

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-27

Table 4-8 (Cont.) Pro*C/C++ and Pro*COBOL APIs for BFILEs

Category Function/ Procedure Description

DESCRIBE[ISOPEN] Checks if the file was opened
using the input BFILE locators.

CLOSE Closes the file.

FILE CLOSE ALL Closes all previously opened files.

Read Operations DESCRIBE[LENGTH] Gets the length of the BFILE
READ Reads data from the BFILE

starting at the specified offset.

Operations involving multiple
locators

ASSIGN Assigns a BFILE locator to
another

LOAD FROM FILE Loads BFILE data into a LOB

Chapter 4
BFILE APIs in Different Programmatic Interfaces

4-28

5
SQL Semantics for LOBs

You can use various SQL mechanisms to operate on LOBs.

You can access CLOB and NCLOB data types using SQL VARCHAR2 semantics, such as SQL
string operators and functions. These techniques allow you to use LOBs directly in SQL code
and provide an alternative to using LOB-specific APIs for some operations, and are beneficial
in the following situations:

• When performing operations on LOBs that are relatively small in size, i.e., up to about
100K bytes

• After migrating your database from LONG columns to LOB data types, so that any SQL
string functions contained in your existing PL/SQL application continue to work

SQL semantics are not recommended in the following situations, you must use LOB APIs
instead:

• When using advanced features such as random access and piece-wise fetch.

• When performing operations on LOBs that are relatively large in size (greater than 1MB),
because using SQL semantics can impact performance.

Note:

SQL semantics are used with persistent and temporary LOBs, and do not apply to
BFILEs.

• SQL Functions and Operators Supported for Use with LOBs
Many SQL operators and functions that take VARCHAR2 columns as arguments, also accept
LOB columns. The following list summarizes those categories of SQL functions and
operators that are supported for use with LOBs.

• Detailed Semantics of SQL Operations on LOBs
This section explains semantics of SQL operations on LOBs in details.

• Restrictions on SQL Operations on LOBs
There are many SQL operations that are not supported on LOB columns. This section lists
those operations.

5.1 SQL Functions and Operators Supported for Use with LOBs
Many SQL operators and functions that take VARCHAR2 columns as arguments, also accept
LOB columns. The following list summarizes those categories of SQL functions and operators
that are supported for use with LOBs.

SQL Operations/ Functions Support

Concatenation Supported

Comparison Some comparison functions are not supported for
LOBs

5-1

SQL Operations/ Functions Support

Character functions Supported

Conversion Some conversion functions are not supported for
LOBs

Aggregate functions Not supported

Unicode functions Not supported

See Also:

Working with Remote LOBs in SQL and PL/SQL

The following table provides the details on each of the operations that accept VARCHAR2 types
as operands or arguments, or return a VARCHAR2 value.

• The SQL column identifies the built-in functions and operators that are supported for CLOB
and NCLOB data types. The LENGTH function is also supported for the BLOB data type.

• The PL/SQL column identifies the PL/SQL built-in functions and operators that are
supported on LOBs.

• Functions designated as CNV in the SQL or PL/SQL column in the table are performed by
converting the CLOB to a character data type, such as VARCHAR2. In the SQL environment,
only the first 4K bytes of the CLOB are converted and used in the operation. In the PL/SQL
environment, only the first 32K bytes of the CLOB are converted and used in the operation.

Table 5-1 SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example / Comments SQL PL/SQL

Concatenation ||, CONCAT() Select clobCol || clobCol2 from tab; Yes Yes

Comparison = , !=, >, >=, <, <=, <>, ^= if clobCol=clobCol2 then... No Yes

Comparison IN, NOT IN if clobCol NOT IN (clob1, clob2, clob3)
then...

No Yes

Comparison SOME, ANY, ALL if clobCol < SOME (select clobCol2
from...) then...

No N/A

Comparison BETWEEN if clobCol BETWEEN clobCol2 and clobCol3
then...

No Yes

Comparison LIKE [ESCAPE] if clobCol LIKE '%pattern%' then... Yes Yes

Comparison IS [NOT] NULL where clobCol IS NOT NULL Yes Yes

Character
Functions

INITCAP, NLS_INITCAP select INITCAP(clobCol) from... CNV CNV

Character
Functions

LOWER, NLS_LOWER, UPPER,
NLS_UPPER

...where LOWER(clobCol1) = LOWER(clobCol2) Yes Yes

Character
Functions

LPAD, RPAD select RPAD(clobCol, 20, ' La') from... Yes Yes

Character
Functions

TRIM, LTRIM, RTRIM ...where RTRIM(LTRIM(clobCol,'ab'), 'xy')
= 'cd'

Yes Yes

Chapter 5
SQL Functions and Operators Supported for Use with LOBs

5-2

Table 5-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example / Comments SQL PL/SQL

Character
Functions

REPLACE select REPLACE(clobCol, 'orig','new')
from...

Yes Yes

Character
Functions

SOUNDEX ...where SOUNDEX(clobCOl) =
SOUNDEX('SMYTHE')

CNV CNV

Character
Functions

SUBSTR ...where substr(clobCol, 1,4) = like
'THIS'

Yes Yes

Character
Functions

TRANSLATE select TRANSLATE(clobCol, '123abc','NC')
from...

CNV CNV

Character
Functions

ASCII select ASCII(clobCol) from... CNV CNV

Character
Functions

INSTR ...where instr(clobCol, 'book') = 11 Yes Yes

Character
Functions

LENGTH ...where length(clobCol) != 7; Yes Yes

Character
Functions

NLSSORT ...where NLSSORT (clobCol,'NLS_SORT =
German') > NLSSORT ('S','NLS_SORT =
German')

CNV CNV

Character
Functions

INSTRB, SUBSTRB,
LENGTHB

These functions are supported only for CLOBs that use
single-byte character sets. (LENGTHB is supported for
BLOBs and CLOBs.)

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_LIKE This function searches a character column for a
pattern. Use this function in the WHERE clause of a
query to return rows matching the regular expression
you specify.

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_REPLACE This function searches for a pattern in a character
column and replaces each occurrence of that pattern
with the pattern you specify.

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_INSTR This function searches a string for a given occurrence
of a regular expression pattern. You specify which
occurrence you want to find and the start position to
search from. This function returns an integer indicating
the position in the string where the match is found.

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_SUBSTR This function returns the actual substring matching the
regular expression pattern you specify.

Yes Yes

Conversion CHARTOROWID CHARTOROWID(clobCol) CNV CNV

Conversion COMPOSE COMPOSE('string')
Returns a Unicode string given a string in the data type
CHAR, VARCHAR2, CLOB, NCHAR, NVARCHAR2, NCLOB.

CNV CNV

Conversion DECOMPOSE DECOMPOSE('str' [CANONICAL |
COMPATIBILITY])
Valid for Unicode character arguments.

CNV CNV

Conversion HEXTORAW HEXTORAW(CLOB) No CNV

Chapter 5
SQL Functions and Operators Supported for Use with LOBs

5-3

Table 5-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example / Comments SQL PL/SQL

Conversion CONVERT select CONVERT(clobCol,'WE8DEC','WE8HP')
from...

Yes CNV

Conversion TO_DATE TO_DATE(clobCol) CNV CNV

Conversion TO_NUMBER TO_NUMBER(clobCol) CNV CNV

Conversion TO_TIMESTAMP TO_TIMESTAMP(clobCol) No CNV

Conversion TO_MULTI_BYTE
TO_SINGLE_BYTE

TO_MULTI_BYTE(clobCol)
TO_SINGLE_BYTE(clobCol)

CNV CNV

Conversion TO_CHAR TO_CHAR(clobCol) Yes Yes

Conversion TO_NCHAR TO_NCHAR(clobCol) Yes Yes

Conversion TO_LOB INSERT INTO... SELECT TO_LOB(longCol)...
Note that TO_LOB can only be used to create or insert
into a table with LOB columns as SELECT FROM a table
with a LONG column.

N/A N/A

Conversion TO_CLOB TO_CLOB(varchar2Col) Yes Yes

Conversion TO_NCLOB TO_NCLOB(varchar2Clob) Yes Yes

Aggregate
Functions

COUNT select count(clobCol) from... No N/A

Aggregate
Functions

MAX, MIN select MAX(clobCol) from... No N/A

Aggregate
Functions

GROUPING select grouping(clobCol) from... group by
cube (clobCol);

No N/A

Other Functions GREATEST, LEAST select GREATEST (clobCol1, clobCol2)
from...

No CNV

Other Functions DECODE select DECODE(clobCol, condition1, value1,
defaultValue) from...

CNV CNV

Other Functions NVL select NVL(clobCol,'NULL') from... Yes Yes

Other Functions DUMP select DUMP(clobCol) from... No N/A

Other Functions VSIZE select VSIZE(clobCol) from... No N/A

Unicode INSTR2, SUBSTR2,
LENGTH2, LIKE2

These functions use UCS2 code point semantics. No CNV

Unicode INSTR4, SUBSTR4,
LENGTH4, LIKE4

These functions use UCS4 code point semantics. No CNV

Unicode INSTRC, SUBSTRC,
LENGTHC, LIKEC

These functions use complete character semantics. No CNV

Chapter 5
SQL Functions and Operators Supported for Use with LOBs

5-4

See Also:

• Oracle Database SQL Language Reference for syntax details on SQL functions
for regular expressions.

• Oracle Database Development Guide for information on using regular
expressions with the database.

5.2 Detailed Semantics of SQL Operations on LOBs
This section explains semantics of SQL operations on LOBs in details.

• Return Datatype for SQL Operations on LOBs
The return data type of SQL functions on LOBs is dependent on the input parameters.

• NULL vs EMPTY LOB: Semantic Difference between LOBs and VARCHAR2
For the VARCHAR2 data type, a string of length zero is indistinguishable from a NULL value
for the column.

• WHERE Clause Usage with LOBs
SQL functions with LOBs as arguments, except functions that compare LOB values, are
allowed in predicates of the WHERE clause.

• CLOBs and NCLOBs Do Not Follow Session Collation Settings
Learn about various operators on CLOBs and NCLOBs and compare the operations on
VARCHAR2 and NVARCHAR2 variables with respect to LOBs in this section.

• Codepoint Semantics
Codepoint semantics of the INSTR, SUBSTR, LENGTH, and LIKE functions differ depending on
the data type of the argument passed to the function.

5.2.1 Return Datatype for SQL Operations on LOBs
The return data type of SQL functions on LOBs is dependent on the input parameters.

The return type of a function or operator that takes a LOB or VARCHAR2 is the same as the data
type of the argument passed to the function or operator. Functions that take more than one
argument, such as CONCAT, return a LOB data type if one or more arguments is a LOB.

Example 5-1 CONCAT function returning CLOB
CONCAT(CLOB, VARCHAR2)CLOB
Any LOB instance returned by a SQL function is a temporary LOB instance. LOB instances in
tables (persistent LOBs) are not modified by SQL functions, even when the function is used in
the SELECT list of a query.

5.2.2 NULL vs EMPTY LOB: Semantic Difference between LOBs and
VARCHAR2

For the VARCHAR2 data type, a string of length zero is indistinguishable from a NULL value for the
column.

For the column of a LOB data type, there are three possible states:

1. NULL: This means the column has no LOB locator.

Chapter 5
Detailed Semantics of SQL Operations on LOBs

5-5

2. Zero-length value: This can be achieved by inserting an EMPTY LOB into the column, or by
using an API such as DBMS_LOB.TRIM() to trim the length to zero. In either case, there is a
valid LOB locator in the column, but the LOB value length is zero.

3. Non-zero length value.

Due to this difference, the LENGTH function differs depending on whether the argument passed
is a LOB or a character string:

• For a character string of length zero, the LENGTH function returns NULL.

• For a CLOB of length zero, or an empty locator such as that returned by EMPTY_CLOB(), the
LENGTH and DBMS_LOB.GETLENGTH functions return 0.

Similarly, when used with LOBs, the IS NULL and IS NOT NULL operators determine whether a
LOB locator is stored in the row:

• When you pass an initialized LOB of length zero to the IS NULL function, FALSE is returned.
These semantics are compliant with the SQL 92 standard.

• When you pass a VARCHAR2 of length zero to the IS NULL function, TRUE is returned.

5.2.3 WHERE Clause Usage with LOBs
SQL functions with LOBs as arguments, except functions that compare LOB values, are
allowed in predicates of the WHERE clause.

The LENGTH function, for example, can be included in the predicate of the WHERE clause:

CREATE TABLE t (n NUMBER, c CLOB);
INSERT INTO t VALUES (1, 'abc');

SELECT * FROM t WHERE c IS NOT NULL;
SELECT * FROM t WHERE LENGTH(c) > 0;
SELECT * FROM t WHERE c LIKE '%a%';
SELECT * FROM t WHERE SUBSTR(c, 1, 2) LIKE '%b%';
SELECT * FROM t WHERE INSTR(c, 'b') = 2;

5.2.4 CLOBs and NCLOBs Do Not Follow Session Collation Settings
Learn about various operators on CLOBs and NCLOBs and compare the operations on VARCHAR2
and NVARCHAR2 variables with respect to LOBs in this section.

Standard operators that operate on CLOBs and NCLOBs without first converting them to VARCHAR2
or NVARCHAR2, are marked as 'Yes' in the SQL or PL/SQL columns of Table 7-1. These
operators do not behave linguistically, except for REGEXP functions. Binary comparison of the
character data is performed irrespective of the NLS_COMP and NLS_SORT parameter settings.

These REGEXP functions are the exceptions, where, if CLOB or NCLOB data is passed in, the
linguistic comparison is similar to the comparison of VARCHAR2 and NVARCHAR2 values.

• REGEXP_LIKE
• REGEXP_REPLACE
• REGEXP_INSTR
• REGEXP_SUBSTR
• REGEXP_COUNT

Chapter 5
Detailed Semantics of SQL Operations on LOBs

5-6

https://docs.oracle.com/en/database/oracle/oracle-database/20/adlob/SQL-semantics-and-LOBs.html#GUID-D8F66A2A-4D17-49C3-ADB2-BE384510DD6D__G1016221

Note:

CLOBs and NCLOBs support the default USING NLS_COMP option.

See Also:

Oracle Database Reference for more information about NLS_COMP

5.2.5 Codepoint Semantics
Codepoint semantics of the INSTR, SUBSTR, LENGTH, and LIKE functions differ depending on the
data type of the argument passed to the function.

These functions use different codepoint semantics depending on whether the argument is a
VARCHAR2 or a CLOB type as follows:

• When the argument is a CLOB, UCS2 codepoint semantics are used for all character sets.

• When the argument is a character type, such as VARCHAR2, the default codepoint semantics
are used for the given character set:

– UCS2 codepoint semantics are used for AL16UTF16 and UTF8 character sets.

– UCS4 codepoint semantics are used for all other character sets, such as AL32UTF8.

• If you are storing character data in a CLOB or NCLOB, then note that the amount and offset
parameters for any APIs that read or write data to the CLOB or NCLOB are specified in UCS2
codepoints. In some character sets, a full character consists one or more UCS2 codepoints
called a surrogate pair. In this scenario, you must ensure that the amount or offset you
specify does not cut into a full character. This avoids reading or writing a partial character.

• Oracle Database helps to detect half surrogate pair on read or write boundaries in case of
SQL functions and in case of read/write through LOB APIs. The behavior is as follows:

– If the starting offset is in the middle of a surrogate pair, an error is raised for both read
and write operations.

– If the read amount reads only a partial character, increment or decrement the amount
by 1 to read complete characters.

Note:

The output amount may vary from the input amount.

– If the write amount overwrites a partial character, an error is raised to prevent the
corruption of existing data caused by overwriting of a partial character in the
destination CLOB or NCLOB.

Chapter 5
Detailed Semantics of SQL Operations on LOBs

5-7

Note:

This check only applies to the existing data in the CLOB or NCLOB. You must
make sure that the incoming buffer for the write operation starts and ends in
complete characters.

5.3 Restrictions on SQL Operations on LOBs
There are many SQL operations that are not supported on LOB columns. This section lists
those operations.

Table 5-2 Unsupported Usage of LOBs in SQL

SQL Operations Not Supported Example of unsupported usage

SELECT DISTINCT SELECT DISTINCT clobCol from...
SELECT clause

ORDER BY
SELECT... ORDER BY clobCol

SELECT clause

GROUP BY
SELECT avg(num) FROM...
GROUP BY clobCol

UNION, INTERSECT, MINUS
(Note that UNION ALL works for LOBs.)

SELECT clobCol1 from tab1 UNION SELECT clobCol2 from
tab2;

Join queries SELECT... FROM... WHERE tab1.clobCol = tab2.clobCol
Index columns CREATE INDEX clobIndx ON tab(clobCol)...

Related Topics

• BFILE APIs
This section discusses the different operations supported through BFILEs.

Chapter 5
Restrictions on SQL Operations on LOBs

5-8

6
PL/SQL Semantics for LOBs

This chapter covers topics related to PL/SQL semantics for LOBs.

• Implicit Conversion with LOBs
This section describes the implicit conversion process in PL/SQL from one LOB type to
another LOB type or from a LOB type to a non-LOB type.

• Explicit Data Type Conversion Functions
This section describes the explicit conversion functions in SQL and PL/SQL to convert
other data types to and from CLOB, NCLOB, and BLOB data types.

• Temporary LOBs Created by SQL and PL/SQL Built-in Functions
When a LOB is returned from a SQL or PL/SQL built-in function, then the result returned is
a temporary LOB. Similarly, a LOB returned from a user-defined PL/SQL function or
procedure, as a value or an OUT parameter, may be a temporary LOB.

6.1 Implicit Conversion with LOBs
This section describes the implicit conversion process in PL/SQL from one LOB type to
another LOB type or from a LOB type to a non-LOB type.

Most of the in the following sections use print_media table. Following is the structure of
print_media table:

6-1

Figure 6-1 print_media table

• Implicit Conversion Between CLOB and NCLOB Data Types in SQL
This section describes support for implicit conversions between CLOB and NCLOB data
types.

• Implicit Conversions Between CLOB and VARCHAR2
This section describes support for implicit conversions between CLOB and VARCHAR2 data
types.

• Implicit Conversions Between BLOB and RAW
This section describes support for implicit conversions between BLOB and RAW data
types.

• Guidelines and Restrictions for Implicit Conversions with LOBs
This section describes the techniques that you use to access LOB columns or attributes
using the Data Interface for LOBs.

• Detailed Examples for Implicit Conversions with LOBs
The example in this section demonstrates using multiple VARCHAR and RAW binds in INSERT
and UPDATE operations.

Chapter 6
Implicit Conversion with LOBs

6-2

6.1.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL
This section describes support for implicit conversions between CLOB and NCLOB data types.

The database enables you to perform operations such as cross-type assignment and cross-
type parameter passing between CLOB and NCLOB data types. The database performs implicit
conversions between these types when necessary to preserve properties such as character
set formatting.

Note that, when implicit conversions occur, each character in the source LOB is changed to the
character set of the destination LOB, if needed. In this situation, some degradation of
performance may occur if the data size is large. When the character set of the destination and
the source are the same, there is no degradation of performance.

After an implicit conversion between CLOB and NCLOB types, the destination LOB is implicitly
created as a temporary LOB. This new temporary LOB is independent from the source LOB. If
the implicit conversion occurs as part of a define operation in a SELECT statement, then any
modifications to the destination LOB do not affect the persistent LOB in the table that the LOB
was selected from as shown in the following example:

SQL> -- check lob length before update
SQL> SELECT DBMS_LOB.GETLENGTH(ad_sourcetext) FROM Print_media
 2 WHERE product_id=3106 AND ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 205

SQL>
SQL> DECLARE
 2 clob1 CLOB;
 3 amt NUMBER:=10;
 4 BEGIN
 5 -- select a clob column into a clob, no implicit convesion
 6 SELECT ad_sourcetext INTO clob1 FROM Print_media
 7 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;
 8 -- Trim the selected lob to 10 bytes
 9 DBMS_LOB.TRIM(clob1, amt);
 10 END;
 11 /

PL/SQL procedure successfully completed.

SQL> -- Modification is performed on clob1 which points to the
SQL> -- clob column in the table
SQL> SELECT DBMS_LOB.GETLENGTH(ad_sourcetext) FROM Print_media
 2 WHERE product_id=3106 AND ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 10

SQL>
SQL> ROLLBACK;

Rollback complete.

SQL> -- check lob length before update
SQL> SELECT DBMS_LOB.GETLENGTH(ad_sourcetext) FROM Print_media
 2 WHERE product_id=3106 AND ad_id = 13001;

Chapter 6
Implicit Conversion with LOBs

6-3

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 205

SQL>
SQL> DECLARE
 2 nclob1 NCLOB;
 3 amt NUMBER:=10;
 4 BEGIN
 5
 6 -- select a clob column into a nclob, implicit conversion occurs
 7 SELECT ad_sourcetext INTO nclob1 FROM Print_media
 8 WHERE product_id=3106 AND ad_id=13001 FOR UPDATE;
 9
 10 DBMS_LOB.TRIM(nclob1, amt); -- Trim the selected lob to 10 bytes
 11 END;
 12 /

PL/SQL procedure successfully completed.

SQL> -- Modification to nclob1 does not affect the clob in the table,
SQL> -- because nclob1 is a independent temporary LOB

SQL> SELECT DBMS_LOB.GETLENGTH(ad_sourcetext) FROM Print_media
 2 WHERE product_id=3106 AND ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 205

See Also:

Oracle Database SQL Language Reference for details on implicit conversions
supported for all data types.

6.1.2 Implicit Conversions Between CLOB and VARCHAR2
This section describes support for implicit conversions between CLOB and VARCHAR2 data types.

Implicit conversions from CLOB to VARCHAR2 and from VARCHAR2 to CLOB data types are
supported in PL/SQL.

See Also:

SQL Semantics for LOBs for details on LOB support in SQL statements.

Chapter 6
Implicit Conversion with LOBs

6-4

Note:

While this section uses VARCHAR2 data type as an example for simplicity, other
character types like CHAR and LONG can also participate in implicit conversions with
CLOBs.

Assigning a CLOB to a VARCHAR2 in PL/SQL

When assigning a CLOB to a VARCHAR2, the data stored in the CLOB column is retrieved and
stored into the VARCHAR2 buffer. If the buffer is not large enough to contain all the CLOB data,
then a truncation error is thrown and no data is written to the buffer. This is consistent with
VARCHAR2 semantics. After successful completion of this assignment operation, the VARCHAR2
variable holds the data as a regular character buffer. This operation can be performed in the
following ways:

• SELECT persistent or temporary CLOB data into a character buffer variable such as CHAR,
LONG, or VARCHAR2. In a single SELECT statement, you can have more than one of such
defines.

• Assign a CLOB to a VARCHAR2, CHAR, or LONG variable.

• Pass CLOB data types to built-in SQL and PL/SQL functions and operators that accept
VARCHAR2 arguments, such as the INSTR function and the SUBSTR function.

• Pass CLOB data types to user-defined PL/SQL functions that accept VARCHAR2 or LONG data
types.

The following example illustrates the way CLOB data is accessed when the CLOBs are treated as
VARCHAR2s:

DECLARE
 myStoryBuf VARCHAR2(32000);
 myLob CLOB;
BEGIN
 -- Select a LOB into a VARCHAR2 variable
 SELECT ad_sourcetext INTO myStoryBuf FROM print_media WHERE ad_id = 12001;
 DBMS_OUTPUT.PUT_LINE(myStoryBuf);
 -- Assign a LOB to a VARCHAR2 variable
 SELECT ad_sourcetext INTO myLob FROM print_media WHERE ad_id = 12001;
 myStoryBuf := myLob;
 DBMS_OUTPUT.PUT_LINE(myStoryBuf);
END;
/

Assigning a VARCHAR2 to a CLOB in PL/SQL

A VARCHAR2 can be assigned to a CLOB in the following scenarios:

• INSERT or UPDATE character data stored in VARCHAR2, CHAR, or LONG variables into a CLOB
column. Multiple such binds are allowed in a single INSERT or UPDATE statement.

• Assign a VARCHAR2, CHAR, or LONG variable to a CLOB variable.

Chapter 6
Implicit Conversion with LOBs

6-5

• Pass VARCHAR2 or LONG data types to user-defined PL/SQL functions that accept LOB data
types.

DECLARE
 myLOB CLOB;
BEGIN
 -- Select a VARCHAR2 into a LOB variable
 SELECT 'ABCDE' INTO myLOB FROM print_media WHERE ad_id = 11001;
 -- myLOB is a temporary LOB.
 -- Use myLOB as a lob locator
 DBMS_OUTPUT.PUT_LINE('Is temp? '||DBMS_LOB.ISTEMPORARY(myLOB));

 -- Insert a VARCHAR2 into a lob column
 INSERT INTO print_media(product_id, ad_id, AD_SOURCETEXT) VALUES (1000, 1,
'ABCDE');

 -- Assign a VARCHAR2 to a LOB variable
 myLob := 'XYZ';
 END;
/

6.1.3 Implicit Conversions Between BLOB and RAW
This section describes support for implicit conversions between BLOB and RAW data types.

Most discussions related to PL/SQL semantics for implicit conversion between CLOB and
VARCHAR2 data types also apply to the implicit conversion process between BLOB and RAW data
types, unless mentioned otherwise. However, to provide concise description, most examples in
this chapter do not explicitly mention BLOB and RAW data types. The following operations
involving BLOB data types support implicit conversions:

• INSERT or UPDATE binary data stored in RAW or LONG RAW variables into a BLOB column.
Multiple such binds are allowed in a single INSERT or UPDATE statement.

• SELECT persistent or temporary BLOB data into a binary buffer variable such as RAW and
LONGRAW. Multiple such defines are allowed in a single SELECT statement.

• Assign a BLOB to a RAW or LONG RAW variable, or assign a RAW or LONG RAW to a BLOB
variable.

• Pass BLOB data types to built-in or user-defined PL/SQL functions defined to accept RAW or
LONG RAW data types or pass RAW or LONG RAW data types to built-in or user-defined PL/SQL
functions defined to accept BLOB data types.

6.1.4 Guidelines and Restrictions for Implicit Conversions with LOBs
This section describes the techniques that you use to access LOB columns or attributes using
the Data Interface for LOBs.

Data from CLOB and BLOB columns or attributes can be referenced by regular SQL statements,
such as INSERT, UPDATE, and SELECT.

There is no piecewise INSERT, UPDATE, or fetch routine in PL/SQL. Therefore, the amount of
data that can be accessed from a LOB column or attribute is limited by the maximum character
buffer size in PL/SQL, which is 32767 bytes. For this reason, only LOBs less than 32 kilo bytes
in size can be accessed by PL/SQL applications using the data interface for persistent LOBs.

Chapter 6
Implicit Conversion with LOBs

6-6

If you must access a LOB with a size more than 32 kilobytes -1 bytes, using the data
interface, then you must make JDBC or OCI calls from the PL/SQL code to use the APIs for
piecewise insert and fetch.

Use the following guidelines for using the Data Interface to access LOB columns or attributes:

• SELECT operations

LOB columns or attributes can be selected into character or binary buffers in PL/SQL. If
the LOB column or attribute is longer than the buffer size, then an exception is raised
without filling the buffer with any data. LOB columns or attributes can also be selected into
LOB locators.

• INSERT operations

You can INSERT into tables containing LOB columns or attributes using regular INSERT
statements in the VALUES clause. The field of the LOB column can be a literal, a character
data type, a binary data type, or a LOB locator.

• UPDATE operations

LOB columns or attributes can be updated as a whole by UPDATE... SET statements. In the
SET clause, the new value can be a literal, a character data type, a binary data type, or a
LOB locator.

• There are restrictions for binds of more than 4000 bytes:

– If a table has both LONG and LOB columns, then you can bind more than 4000 bytes of
data to either the LONG or LOB columns, but not both in the same statement.

– In an INSERT AS SELECT operation, binding of any length data to LOB columns is not
allowed.

– If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data consists of
a SQL operator, then Oracle Database limits the size of the result to at most 4000
bytes. For example, the following statement inserts only 4000 bytes because the result
of LPAD is limited to 4000 bytes:

INSERT INTO print_media (ad_sourcetext) VALUES (lpad('a', 5000, 'a'));

– The database does not do implicit hexadecimal to RAW or RAW to hexadecimal
conversions on data that is more than 4000 bytes in size. You cannot bind a buffer of
character data to a binary data type column, and you cannot bind a buffer of binary
data to a character data type column if the buffer is over 4000 bytes in size. Attempting
to do so results in your column data being truncated at 4000 bytes.

For example, you cannot bind a VARCHAR2 buffer to a BLOB column if the buffer is more
than 4000 bytes in size. Similarly, you cannot bind a RAW buffer to a CLOB column if the
buffer is more than 4000 bytes in size.

6.1.5 Detailed Examples for Implicit Conversions with LOBs
The example in this section demonstrates using multiple VARCHAR and RAW binds in INSERT and
UPDATE operations.

Example 6-1 Using Character and RAW Binds in INSERT and UPDATE Operations

The following example demonstrates using Character and RAW binds for LOB columns in
INSERT and UPDATE operations

Chapter 6
Implicit Conversion with LOBs

6-7

DECLARE
 bigtext VARCHAR2(32767);
 smalltext VARCHAR2(2000);
 bigraw RAW (32767);
BEGIN
 bigtext := LPAD('a', 32767, 'a');
 smalltext := LPAD('a', 2000, 'a');
 bigraw := utl_raw.cast_to_raw (bigtext);

 /* Multiple long binds for LOB columns are allowed for INSERT: */
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext, ad_composite)
 VALUES (2004, 1, bigtext, bigraw);

 /* Single long bind for LOB columns is allowed for INSERT: */
 INSERT INTO print_media (product_id, ad_id, ad_sourcetext)
 VALUES (2005, 2, smalltext);

 bigtext := LPAD('b', 32767, 'b');
 smalltext := LPAD('b', 20, 'a');
 bigraw := utl_raw.cast_to_raw (bigtext);

 /* Multiple long binds for LOB columns are allowed for UPDATE: */
 UPDATE print_media SET ad_sourcetext = bigtext, ad_composite = bigraw,
 ad_finaltext = smalltext;

 /* Single long bind for LOB columns is allowed for UPDATE: */
 UPDATE print_media SET ad_sourcetext = smalltext, ad_finaltext = bigtext;

 /* The following is NOT allowed because we are trying to insert more than
 4000 bytes of data in a LONG and a LOB column: */
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext, press_release)
 VALUES (2030, 3, bigtext, bigtext);

 /* Insert of data into LOB attribute is allowed */
 INSERT INTO print_media(product_id, ad_id, ad_header)
 VALUES (2049, 4, adheader_typ(null, null, null, bigraw));

 /* The following is not allowed because we try to perform INSERT AS
 SELECT data INTO LOB */
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext)
 SELECT 2056, 5, bigtext FROM dual;

END;
/

Example 6-2 Multiple Defines for LOBs in SELECT

The following example demonstrates performing a SELECT operation to retrieve multiple
persistent or temporary CLOBs from a SQL query into a VARCHAR2 variable, or a BLOB to a RAW
variable.

DECLARE
 ad_src_buffer VARCHAR2(32000);
 ad_comp_buffer RAW(32000);
BEGIN
 /* This retrieves the LOB columns if they are up to 32000 bytes,
 * otherwise it raises an exception */
 SELECT ad_sourcetext, ad_composite INTO ad_src_buffer, ad_comp_buffer FROM
print_media
 WHERE product_id=2004 AND ad_id=5;

Chapter 6
Implicit Conversion with LOBs

6-8

 /* This retrieves the temporary LOB produced by SUBSTR if it is up to 32000
bytes,
 * otherwise it raises an exception */
 SELECT substr(ad_sourcetext, 2) INTO ad_src_buffer FROM print_media
 WHERE product_id=2004 AND ad_id=5;END;
/

Example 6-3 Implicit Conversions between BLOB and RAW
Implicit assignment works for variables declared explicitly and for variables declared by
referencing an existing column type using the %TYPE attribute as show in the following example.
The example assumes that column long_col in table t has been migrated from a LONG to a
CLOB column.

CREATE TABLE t (long_col LONG); -- Alter this table to change LONG column to
LOB
DECLARE
 a VARCHAR2(100);
 b t.long_col%type; -- This variable changes from LONG to CLOB
BEGIN
 SELECT * INTO b FROM t;
 a := b; -- This changes from "VARCHAR2 := LONG to VARCHAR2 := CLOB
 b := a; -- This changes from "LONG := VARCHAR2 to CLOB := VARCHAR2
END;

Example 6-4 Calling PL/SQL and C Procedures from PL/SQL

You can call a PL/SQL or C procedure from PL/SQL. You can pass a CLOB as an actual
parameter, where a VARCHAR2 is the formal parameter, or you can pass a VARCHAR2 as an actual
parameter, where a CLOB is the formal parameter. The same holds good for BLOBs and RAWs.
One example of when these cases can arise is when either the formal or the actual parameter
is an anchored type, that is, the variable is declared using the table_name.column_name%type
syntax. PL/SQL procedures or functions can accept a CLOB or a VARCHAR2 as a formal
parameter. This holds for both built-in and user-defined procedures and functions.

The following example demonstrates implicit conversion during procedure calls:

CREATE OR REPLACE PROCEDURE foo(vvv IN VARCHAR2, ccc INOUT CLOB) AS
 ...
 BEGIN
 ...
 END;
 /
 DECLARE
 vvv VARCHAR2[32000] := rpad('varchar', 32000, 'varchar')
 ccc CLOB := rpad('clob', 32000, 'clob')
BEGIN
 foo(vvv, ccc); -- No implicit conversion needed here
 foo(ccc, vvv); -- Implicit conversion for both parameters done here
END;
/

Chapter 6
Implicit Conversion with LOBs

6-9

Example 6-5 Implicit Conversion with PL/SQL built-in functions

The following example illustrates the use of CLOBs in PL/SQL built-in functions.

DECLARE
 my_ad CLOB;
 revised_ad CLOB;
 myGist VARCHAR2(100):= 'This is my gist.';
 revisedGist VARCHAR2(100);
BEGIN
 INSERT INTO print_media (product_id, ad_id, ad_sourcetext)
 VALUES (2004, 5, 'Source for advertisement 1');

 -- select a CLOB column into a CLOB variable
 SELECT ad_sourcetext INTO my_ad FROM print_media
 WHERE product_id=2004 AND ad_id=5;

 -- perform VARCHAR2 operations on a CLOB variable
 revised_ad := UPPER(SUBSTR(my_ad, 1, 20));

 -- revised_ad is a temporary LOB
 -- Concat a VARCHAR2 at the end of a CLOB
 revised_ad := revised_ad || myGist;

 -- The following statement raises an error if my_ad is
 -- longer than 100 bytes
 myGist := my_ad;
END;
/

6.2 Explicit Data Type Conversion Functions
This section describes the explicit conversion functions in SQL and PL/SQL to convert other
data types to and from CLOB, NCLOB, and BLOB data types.

• TO_CLOB(): Converts from VARCHAR2, NVARCHAR2, or NCLOB to a CLOB
• TO_NCLOB(): Converts from VARCHAR2, NVARCHAR2, or CLOB to an NCLOB
• TO_BLOB(varchar|clob, destcsid,[mime_type]): Converts the object from its current

character set to the given character set in destcsid. The resultant object is BLOB. Following
are various ways in which you can use the conversion function:

– TO_BLOB(character, destcsid)
– TO_BLOB(character, destcsid, mime_type)
– TO_BLOB(clob, destcsid)
– TO_BLOB(clob, destcsid, mime_type)
If the destcsid is 0, then it converts to the database character set ID. The parameter
mime_type is applicable only to INSERT and UPDATE statements on Secure File LOB
columns. If the mime_type parameter is used in SELECT statements or in temporary or
BasicFile LOBs, then it is ignored.

• TO_BLOB(varchar): Converts the input to RAW before converting to BLOB. In other words,
TO_BLOB(HEXTORAW(varchar)) and TO_BLOB(varchar) are equivalent.

Chapter 6
Explicit Data Type Conversion Functions

6-10

Note:

TO_BLOB(CLOB) is not supported.

• TO_CHAR(): Converts a CLOB to a CHAR type. When you use this function to convert a
character LOB into the database character set, if the LOB value to be converted is larger
than the target type, then the database returns an error. Implicit conversions also raise an
error if the LOB data does not fit.

• TO_NCHAR(): Converts an NCLOB to an NCHAR type. When you use this function to convert a
character LOB into the national character set, if the LOB value to be converted is larger
than the target type, then the database returns an error. Implicit conversions also raise an
error if the LOB data does not fit.

• CAST does not directly support any of the LOB data types. When you use CAST to convert a
CLOB value into a character data type, an NCLOB value into a national character data type,
or a BLOB value into a RAW data type, the database implicitly converts the LOB value to
character or raw data and then explicitly casts the resulting value into the target data type.
If the resulting value is larger than the target type, then the database returns an error.

6.3 Temporary LOBs Created by SQL and PL/SQL Built-in
Functions

When a LOB is returned from a SQL or PL/SQL built-in function, then the result returned is a
temporary LOB. Similarly, a LOB returned from a user-defined PL/SQL function or procedure,
as a value or an OUT parameter, may be a temporary LOB.

In PL/SQL, a temporary LOB has the same lifetime (duration) as the local PL/SQL program
variable in which it is stored. It can be passed to subsequent SQL or PL/SQL VARCHAR2
functions or queries as a PL/SQL local variable. The temporary LOB goes out of scope at the
end of the program block at which time, the LOB is freed. These are the same semantics as
those for PL/SQL VARCHAR2 variables. At any time, nonetheless, you can use a
DBMS_LOB.FREETEMPORARY() call to release the resources taken by the local temporary LOBs.

Note:

If a SQL or PL/SQL function returns a temporary LOB, or if a LOB is an OUT
parameter for a PL/SQL function or procedure, then you must free it as soon as you
are done with it. Failure to do so may cause temporary LOB accumulation and can
considerably slow down your system.

The following example illustrates implicit creation of temporary LOBs using SQL built-in
functions:

DECLARE
 vc1 VARCHAR2(32000);
 lb1 CLOB;
 lb2 CLOB;
BEGIN
 SELECT clobCol1 INTO vc1 FROM tab WHERE colID=1;
 -- lb1 is a temporary LOB
 SELECT clobCol2 || clobCol3 INTO lb1 FROM tab WHERE colID=2;

Chapter 6
Temporary LOBs Created by SQL and PL/SQL Built-in Functions

6-11

 lb2 := vc1|| lb1;
 -- lb2 is a still temporary LOB, so the persistent data in the database
 -- is not modified. An update is necessary to modify the table data.
 UPDATE tab SET clobCol1 = lb2 WHERE colID = 1;

DBMS_LOB.FREETEMPORARY(lb2); -- Free up the space taken by lb2

<... some more queries ...>

END; -- at the end of the block, lb1 is automatically freed

Here is another example of implicit creation of temporary LOBs using PL/SQL built-in
functions.

1 DECLARE
2 myStory CLOB;
3 revisedStory CLOB;
4 myGist VARCHAR2(100);
5 revisedGist VARCHAR2(100);
6 BEGIN
7 -- select a CLOB column into a CLOB variable
8 SELECT Story INTO myStory FROM print_media WHERE product_id=10;
9 -- perform VARCHAR2 operations on a CLOB variable
10 revisedStory := UPPER(SUBSTR(myStory, 100, 1));
11 -- revisedStory is a temporary LOB
12 -- Concat a VARCHAR2 at the end of a CLOB
13 revisedStory := revisedStory || myGist;
14 -- The following statement raises an error because myStory is
15 -- longer than 100 bytes
16 myGist := myStory;
17 END;
/

Note that in the preceding example:

• In line number 7, a temporary CLOB is implicitly created and is pointed to by the
revisedStory CLOB locator.

• In line number 13, myGist is appended to the end of the temporary LOB, which has the
same effect as the following code snippet:

DBMS_LOB.WRITEAPPEND(revisedStory, myGist, length(myGist));

In some scenarios, implicitly created temporary LOBs in PL/SQL statements can change the
representation of previously defined LOB locators. The following code snippet explains this
scenario:

Change in Locator-Data Linkage

1 DECLARE
2 myStory CLOB;
3 amt number:=100;
4 buffer VARCHAR2(100):='some data';
5 BEGIN
6 -- select a CLOB column into a CLOB variable
7 SELECT Story INTO myStory FROM print_media WHERE product_id=10;
8 DBMS_LOB.WRITE(myStory, amt, 1, buf);
9 -- write to the persistent LOB in the table
10
11 myStory:= UPPER(SUBSTR(myStory, 100, 1));
12 -- perform VARCHAR2 operations on a CLOB variable, temporary LOB created.

Chapter 6
Temporary LOBs Created by SQL and PL/SQL Built-in Functions

6-12

13 -- Changes are not reflected in the database table from this point on.
14
15 UPDATE print_media SET Story = myStory WHERE product_id = 10;
16 -- an update is necessary to synchronize the data in the table.
17 END;

In the preceding example, myStory represents a persistent LOB column in the print_media
table. The DBMS_LOB.WRITE procedure writes the data directly to the table without an UPDATE
statement in the code.

Subsequently in line number 11, a temporary LOB is created and assigned to myStory because
myStory is now used like a local VARCHAR2 variable. The LOB locator myStory now points to the
newly-created temporary LOB.

Therefore, modifications to myStory are no longer reflected in the database. To propagate the
changes to the database table now, you must use an UPDATE statement. Note that for the
previous persistent LOB, the UPDATE statement is not required.

See Also:

Working with Remote LOBs in SQL and PL/SQL for PL/SQL functions that support
remote LOBs and BFILEs

Chapter 6
Temporary LOBs Created by SQL and PL/SQL Built-in Functions

6-13

7
Data Interface for LOBs

This chapter discusses how to perform DML and Query operations on LOBs. These operations
are similar to the ones performed on traditional Character and RAW data types.

• Overview of the Data Interface for LOBs
The data interface for LOBs includes a set of Java and OCI APIs that are extended to work
with the LOB data types.

• Benefits of Using the Data Interface for LOBs
This section discusses the benefits of the using the Data Interface for LOBs.

• Data Interface for LOBs in Java
This section discusses the usage of data interface for LOBs in Java.

• Data Interface for LOBs in OCI
This section discusses OCI functions included in the data interface for LOBs. These OCI
functions work for LOB data types exactly the same way as they do for VARCHAR or LONG
data types.

7.1 Overview of the Data Interface for LOBs
The data interface for LOBs includes a set of Java and OCI APIs that are extended to work
with the LOB data types.

These APIs, originally designed for use with legacy data types such as VARCHAR2, RAW, LONG,
and LONG RAW, can also be used with the corresponding LOB data types shown in the following
table. The table shows the legacy data types in the bind or define type column and the
corresponding supported LOB data type in the LOB column type column. You can use the data
interface for LOBs to store and manipulate character data and binary data in a LOB column
just as if it were stored in the corresponding legacy data type. The data interface supports data
size up to two gigabytes minus one (2 GB - 1), the maximum size of an sb4 data type.

Note:

The data interface works for persistent and temporary LOBs and LOBs that are
attributes of objects. In this chapter LOB columns means LOB columns and LOB
attributes.

While most of this discussion focuses on character data types, the same concepts apply to the
full set of character and binary data types listed in the following table. CLOB also means NCLOB
in the table.

Table 7-1 Corresponding LONG and LOB Data Types in OCI

Bind or Define Type LOB Column Type Used For Storing

SQLT_AFC(n) CLOB Character data

SQLT_CHR CLOB Character data

7-1

Table 7-1 (Cont.) Corresponding LONG and LOB Data Types in OCI

Bind or Define Type LOB Column Type Used For Storing

SQLT_LNG CLOB Character data

SQLT_VCS CLOB Character data

SQLT_BIN BLOB Binary data

SQLT_LBI BLOB Binary data

SQLT_LVB BLOB Binary data

7.2 Benefits of Using the Data Interface for LOBs
This section discusses the benefits of the using the Data Interface for LOBs.

Following are the benefits of using the Data Interface for LOBs:

• If your application uses LONG data types, then you can use the same application with LOB
data types with little or no modification of your existing application required. To do so, just
convert LONG columns in your tables to LOB columns.

See Also:

Migrating Columns to SecureFile LOBs

• The Data Interface gives you the best performance if you know the maximum size of your
LOB data, and you intend to read or write the entire LOB. A piecewise INSERT or fetch
using the data interface makes only 1 round-trip the server, as opposed to using LOB API
which makes separate round-trips to get the locator and to read/write data.

• You can read LOB data in one OCIStmtFetch() call, instead of fetching the LOB locator
first and then calling OCILobRead2(). This improves performance when you want to read
LOB data starting at the beginning.

• You can use array bind and define interfaces to insert and select multiple rows with LOBs
in one round trip. Irrespective of whether the LOB data is inserted or fetched using single
piece, piecewise or callbacks, it is inserted or fetched in a single round trip for multiple
rows when using array binds or defines.

Caution:

If your application needs to perform random or piecewise read or write calls to LOBs,
which means it needs to specify the offset or amount of the operation, then use the
LOB APIs instead of the Data Interface.

See Also:

Locator Interface for LOBs

Chapter 7
Benefits of Using the Data Interface for LOBs

7-2

Most of the examples in the following sections use the print_media table. Following is the
structure of the print_media table.

Figure 7-1 print_media Table

7.3 Data Interface for LOBs in Java
This section discusses the usage of data interface for LOBs in Java.

You can read and write CLOB and BLOB data using the same streaming mechanism as for LONG
and LONG RAW data.

For read operations, use the defineColumnType(nn, Types.LONGVARCHAR) method or the
defineColumnType(nn, Types.LONGVARBINARY) method on the persistent or temporary LOBs
returned by the SELECT statement. This produces a direct stream on the data that is similar to
VARCHAR2 or RAW column.

Chapter 7
Data Interface for LOBs in Java

7-3

Note:

1. If you use VARCHAR or RAW as the defineColumnType, then the selected value will
be truncated to size 32k.

2. Standard JDBC methods such as getString or getBytes on ResultSet and
CallableStatement are not part of the Data Interface as they use the LOB
locator underneath.

To insert character data into a LOB column in a PreparedStatement, you may use
setBinaryStream(), setCharacterStream(), or setAsciiStream() for a parameter which is a
BLOB or CLOB. These methods use the stream interface to create a LOB in the database from
the data in the stream. If the length of the data is known, for better performance, use the
versions of setBinaryStream() or setCharacterStream functions which accept the length
parameter. The data interface also supports standard JDBC methods such as setString or
setBytes on PreparedStatement to write LOB data. It is easier to code, and in many cases
faster, to use these APIs for LOB access. All these techniques reduce database round trips
and result in improved performance in many cases.

The following code snippets work with all JDBC drivers:

Bind:

This is for the non-streaming mode:

...
String sql = "insert into print_media (product_id, ad_id, ad_final_text)" +
 " values (:1, :2, :3)";
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, 2);
 pstmt.setInt(2, 20);
 pstmt.setString(3, "Java string");
 int rows = pstmt.executeUpdate();
...

Note:

Oracle supports the non-streaming mode for strings of size up to 2 GB, but your
machine's memory may be a limiting factor.

For the streaming mode, the same code as the preceding works, except that the setString()
statement is replaced by one of the following:

pstmt.setCharacterStream(3, new LabeledReader(), 1000000);
pstmt.setAsciiStream(3, new LabeledAsciiInputStream(), 1000000);

Note:

You can use the streaming interface to insert Gigabyte sized character and binary
data into a LOB column.

Chapter 7
Data Interface for LOBs in Java

7-4

Here, LabeledReader() and LabeledAsciiInputStream() produce character and ASCII
streams respectively. If ad_finaltext were a BLOB column instead of a CLOB, then the
preceding example works if the bind is of type RAW:

pstmt.setBytes(3, <some byte[] array>);
pstmt.setBinaryStream(3, new LabeledInputStream(), 1000000);

Here, LabeledInputStream() produces a binary stream.

Define:

For non-streaming mode:

OracleStatement stmt = (OracleStatement)(conn.createStatement());
 stmt.defineColumnType(1, Types.VARCHAR);
 ResultSet rst = stmt.executeQuery("select ad_finaltext from print_media");
 while(rst.next())
 {
 String s = rst.getString(1);
 System.out.println(s);
 }

Note:

If the LOB size is greater than 32767 bytes, the data is truncated and no error is
thrown.

For streaming mode:

OracleStatement stmt = (OracleStatement)(conn.createStatement());
 stmt.defineColumnType(1, Types.LONGVARCHAR);
 ResultSet rst = stmt.executeQuery("select ad_finaltext from print_media");
 while(rs.next()) {
 Reader reader = rs.getCharacterStream(1);
 int data = 0;
 data = reader.read();
 while(-1 != data){
 System.out.print((char)(data));
 data = reader.read();
 }
 reader.close();
 }

Note:

Specifying the datatype as LONGVARCHAR lets you select the entire LOB. If the define
type is set as VARCHAR instead of LONGVARCHAR, the data will be truncated at 32k.

If ad_finaltext were a BLOB column instead of a CLOB, then the preceding examples work if
the define is of type LONGVARBINARY:

...
OracleStatement stmt = (OracleStatement)conn.createStatement();

stmt.defineColumnType(1, Types.INTEGER);

Chapter 7
Data Interface for LOBs in Java

7-5

stmt.defineColumnType(2, Types.LONGVARBINARY);

ResultSet rset = stmt.executeQuery("SELECT ID, LOBCOL FROM LOBTAB");
 while(rset.next())
 {
 /* using getBytes() */
 /*
 byte[] b = rset.getBytes("LOBCOL");
 System.out.println("ID: " + rset.getInt("ID") + " length: " +
b.length);
 */

 /* using getBinaryStream() */
 InputStream byte_stream = rset.getBinaryStream("LOBCOL");
 byte [] b = new byte [100000];
 int b_len = byte_stream.read(b);
 System.out.println("ID: " + rset.getInt("ID") + " length: " +
b_len);

 byte_stream.close();
 }
...

See Also:

Working with Large Objects and SecureFiles

7.4 Data Interface for LOBs in OCI
This section discusses OCI functions included in the data interface for LOBs. These OCI
functions work for LOB data types exactly the same way as they do for VARCHAR or LONG data
types.

Using these functions, you can perform INSERT, UPDATE and fetch operations in OCI on LOBs.
These techniques are the same as the ones that you use on the other data types for storing
character or binary data.

Note:

You can use array bind and define interfaces to insert and select multiple rows with
LOBs in one round trip.

• Binding a LOB in OCI
This section describes the operations that you can use for binding the LOB data types in
OCI.

• Defining a LOB in OCI
The OCI functions discussed in this section associate a LOB type with a data type and an
output buffer.

Chapter 7
Data Interface for LOBs in OCI

7-6

• Multibyte Character Sets Used in OCI with the Data Interface for LOBs
This section discusses the functionality of Data Interface for LOBs when the OCI client
uses a multibyte character set.

• Getting LOB Length
This section describes how an OCI application can fetch the LOB length.

• Using OCI Functions to Perform INSERT or UPDATE on LOB Columns
This section discusses the various techniques you can use to perform INSERT or UPDATE
operations on LOB columns or attributes using the data interface.

• Using OCI Data Interface to Fetch LOB Data
This section discusses techniques you can use to fetch data from persistent or temporary
LOBs in OCI using the data interface.

• PL/SQL and C Binds from OCI
Learn about PL/SQL and C Binds from OCI with respect to LOBs in this section.

See Also:

Runtime Data Allocation and Piecewise Operations in OCI

7.4.1 Binding a LOB in OCI
This section describes the operations that you can use for binding the LOB data types in OCI.

• Regular, piecewise, and callback binds for INSERT and UPDATE operations

• Array binds for INSERT and UPDATE operations

• Parameter passing across PL/SQL and OCI boundaries

Piecewise operations can be performed by polling or by providing a callback. To support these
operations, the following OCI functions accept the LONG and LOB data types listed in Table 7-1.

• OCIBindByName() and OCIBindByPos()
These functions create an association between a program variable and a placeholder in
the SQL statement or a PL/SQL block for INSERT and UPDATE operations.

• OCIBindDynamic()
You use this call to register callbacks for dynamic data allocation for INSERT and UPDATE
operations

• OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo()
These calls are used to get or set piece information for piecewise operations.

7.4.2 Defining a LOB in OCI
The OCI functions discussed in this section associate a LOB type with a data type and an
output buffer.

The data interface for LOBs enables the following OCI functions to accept the LONG and LOB
data types listed in Table 7-1.

You can use the following functions

• OCIDefineByPos()

Chapter 7
Data Interface for LOBs in OCI

7-7

This call associates an item in a SELECT list with the type and output data buffer.

• OCIDefineDynamic()
This call registers user callbacks for SELECT operations if the OCI_DYNAMIC_FETCH mode
was selected in OCIDefineByPos() function call. You can use the
OCIDataServerLengthGet() function to retrieve LOB length while using dynamic define
callback.

When you use these functions with LOB types, the LOB data, and not the locator, is selected
into your buffer. Note that in OCI, you cannot specify the amount you want to read using the
data interface for LOBs. You can only specify the buffer length of your buffer. The database
only reads whatever amount fits into your buffer and the data is truncated.

7.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs
This section discusses the functionality of Data Interface for LOBs when the OCI client uses a
multibyte character set.

When the client character set is in a multibyte format, functions included in the data interface
operate the same way with LOB datatypes as they do for VARCHAR2 or LONG data types as
follows:

• For a piecewise fetch in a multibyte character set, a multibyte character could be cut in the
middle, with some bytes at the end of one buffer and remaining bytes in the next buffer.

• For a regular fetch, if the buffer cannot hold all bytes of the last character, then Oracle
returns as many bytes as fit into the buffer, hence returning partial characters.

7.4.4 Getting LOB Length
This section describes how an OCI application can fetch the LOB length.

To fetch the LOB data length, use the OCIServerDataLengthGet() OCI function. When you
access a LOB column using the Data Interface, the server first sends the LOB data length,
followed by LOB data. The server first communicates the length of the LOB data, before any
conversions are made. The OCI client stores the retrieved LOB length in define handle. The
OCI application can use the OCIServerDataLengthGet() function to access the LOB length.

You can access the LOB length in all fetch modes, that is, single piece, piecewise, and
callback. You can also access it inside the callback without incurring a round-trip to the server.
However, you should not use it before the fetch operation. In case of piecewise or callback
operations, you should use it right after the first piece is fetched.

7.4.5 Using OCI Functions to Perform INSERT or UPDATE on LOB
Columns

This section discusses the various techniques you can use to perform INSERT or UPDATE
operations on LOB columns or attributes using the data interface.

The operations described in this section assume that you have initialized the OCI environment
and allocated all necessary handles.

• Performing Simple INSERT or UPDATE Operations in One Piece
This section lists the steps to perform simple INSERT or UPDATE operations in one piece,
using the data interface for LOBs.

Chapter 7
Data Interface for LOBs in OCI

7-8

• Using Piecewise INSERT and UPDATE Operations with Polling
This section lists the steps to perform piecewise INSERT or UPDATE operations with
polling, using the data interface for LOBs.

• Performing Piecewise INSERT and UPDATE Operations with Callback
This section lists the steps to perform piecewise INSERT or UPDATE operations with
callback, using the data interface for LOBs.

• Performing Array INSERT and UPDATE Operations
To perform array INSERT or UPDATE operations using the data interface for LOBs, use any
of the techniques discussed in this section.

7.4.5.1 Performing Simple INSERT or UPDATE Operations in One Piece
This section lists the steps to perform simple INSERT or UPDATE operations in one piece, using
the data interface for LOBs.

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIBindByName() or OCIBindbyPos() in OCI_DEFAULT mode to bind a placeholder for
LOB as character data or binary data.

3. Call OCIStmtExecute() to do the actual INSERT or UPDATE operation.

Following is an example of binding character data for INSERT and UPDATE operations on a LOB
column.

void simple_insert()
{
/* Insert of data into LOB attributes is allowed. */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO Print_media (ad_header) \
 VALUES (adheader_typ(NULL, NULL, NULL,:1))";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (const OCISnapshot*) 0,
 (OCISnapshot*)0, OCI_DEFAULT);
}

7.4.5.2 Using Piecewise INSERT and UPDATE Operations with Polling
This section lists the steps to perform piecewise INSERT or UPDATE operations with polling,
using the data interface for LOBs.

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIBindByName() or OCIBindbyPos() in OCI_DATA_AT_EXEC mode to bind a LOB as
character data or binary data.

3. Call OCIStmtExecute() in default mode. Do each of the following in a loop while the value
returned from OCIStmtExecute() is OCI_NEED_DATA. Terminate your loop when the value
returned from OCIStmtExecute() is OCI_SUCCESS.

• Call OCIStmtGetPieceInfo() to retrieve information about the piece to be inserted.

• Call OCIStmtSetPieceInfo() to set information about piece to be inserted.

Chapter 7
Data Interface for LOBs in OCI

7-9

The following example illustrates using piecewise INSERT with polling using the data interface
for LOBs.

void piecewise_insert()
{
 text *sqlstmt = (text *)"INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (:1, :2, :3)";
 ub2 rcode;
 ub1 piece, i;
 word product_id = 2004;
 word ad_id = 2;
 ub4 buflen;
 char buf[5000];

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,
 (dvoid *) &product_id, (sb4) sizeof(product_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[1], errhp, (ub4) 2,
 (dvoid *) &ad_id, (sb4) sizeof(ad_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) 0, (sb4) 15000, SQLT_LNG,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC);

 i = 0;
 while (1)
 {
 i++;
 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
 switch(retval)
 {
 case OCI_NEED_DATA:
 memset((void *)buf, (int)'A'+i, (size_t)5000);
 buflen = 5000;
 if (i == 1) piece = OCI_FIRST_PIECE;
 else if (i == 3) piece = OCI_LAST_PIECE;
 else piece = OCI_NEXT_PIECE;

 if (OCIStmtSetPieceInfo((dvoid *)bndhp[2],
 (ub4)OCI_HTYPE_BIND, errhp, (dvoid *)buf,
 &buflen, piece, (dvoid *) 0, &rcode))
 {
 printf("ERROR: OCIStmtSetPieceInfo: %d \n", retval);
 break;
 }

 break;
 case OCI_SUCCESS:
 break;

Chapter 7
Data Interface for LOBs in OCI

7-10

 default:
 printf("oci exec returned %d \n", retval);
 report_error(errhp);
 retval = OCI_SUCCESS;
 } /* end switch */
 if (retval == OCI_SUCCESS)
 break;
 } /* end while(1) */
}

7.4.5.3 Performing Piecewise INSERT and UPDATE Operations with Callback
This section lists the steps to perform piecewise INSERT or UPDATE operations with callback,
using the data interface for LOBs.

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIBindByName() or OCIBindbyPos() in OCI_DATA_AT_EXEC mode to bind a
placeholder for the LOB column as character data or binary data.

3. Call OCIBindDynamic() to specify the callback.

4. Call OCIStmtExecute() in default mode.

You do not need to supply an output callback for pure IN binds in OCI to SQL/PLSQL
operation. Starting from Oracle Database 21c Release, you do not need to supply an input
callback for pure OUT binds in OCI to SQL/PLSQL operation.

The following example illustrates binding character data to LOB columns using a piecewise
INSERT with callback:

void callback_insert()
{
 word buflen = 15000;
 word product_id = 2004;
 word ad_id = 3;
 text *sqlstmt = (text *) "INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (:1, :2, :3)";
 word pos = 3;

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)

 OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,
 (dvoid *) &product_id, (sb4) sizeof(product_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[1], errhp, (ub4) 2,
 (dvoid *) &ad_id, (sb4) sizeof(ad_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) 0, (sb4) buflen, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC);

 OCIBindDynamic(bndhp[2], errhp, (dvoid *) (dvoid *) &pos,
 insert_cbk, (dvoid *) 0, (OCICallbackOutBind) 0);

Chapter 7
Data Interface for LOBs in OCI

7-11

 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
} /* end insert_data() */

/* Inbind callback to specify input data. */
static sb4 insert_cbk(dvoid *ctxp, OCIBind *bindp, ub4 iter, ub4 index,
 dvoid **bufpp, ub4 *alenpp, ub1 *piecep, dvoid **indpp)
{
 static int a = 0;
 word j;
 ub4 inpos = *((ub4 *)ctxp);
 char buf[5000];

 switch(inpos)
 {
 case 3:
 memset((void *)buf, (int) 'A'+a, (size_t) 5000);
 *bufpp = (dvoid *) buf;
 *alenpp = 5000 ;
 a++;
 break;
 default: printf("ERROR: invalid position number: %d\n", inpos);
 }

 *indpp = (dvoid *) 0;
 *piecep = OCI_ONE_PIECE;
 if (inpos == 3)
 {
 if (a<=1)
 {
 *piecep = OCI_FIRST_PIECE;
 printf("Insert callback: 1st piece\n");
 }
 else if (a<3)
 {
 *piecep = OCI_NEXT_PIECE;
 printf("Insert callback: %d'th piece\n", a);
 }
 else {
 *piecep = OCI_LAST_PIECE;
 printf("Insert callback: %d'th piece\n", a);
 a = 0;
 }
 }
 return OCI_CONTINUE;
}

Chapter 7
Data Interface for LOBs in OCI

7-12

7.4.5.4 Performing Array INSERT and UPDATE Operations
To perform array INSERT or UPDATE operations using the data interface for LOBs, use any of the
techniques discussed in this section.

Use the INSERT or UPDATE operations in conjunction with OCIBindArrayOfStruct(), or by
specifying the number of iterations (iter), with iter value greater than 1, in the
OCIStmtExecute() call. Irrespective of whether the LOB data is inserted using single piece,
piecewise or callbacks, it is inserted in a single round trip for multiple rows when using array
binds.

The following example illustrates binding character data for LOB columns using an array
INSERT operation:

void array_insert()
{
 ub4 i;
 word buflen;
 word arrbuf1[5];
 word arrbuf2[5];
 text arrbuf3[5][5000];
 text *insstmt = (text *)"INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (:PID, :AID, :SRCTXT)";

 OCIStmtPrepare(stmthp, errhp, insstmt,
 (ub4)strlen((char *)insstmt), (ub4) OCI_NTV_SYNTAX,
 (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[0], errhp,
 (text *) ":PID", (sb4) strlen((char *) ":PID"),
 (dvoid *) &arrbuf1[0], (sb4) sizeof(arrbuf1[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[1], errhp,
 (text *) ":AID", (sb4) strlen((char *) ":AID"),
 (dvoid *) &arrbuf2[0], (sb4) sizeof(arrbuf2[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[2], errhp,
 (text *) ":SRCTXT", (sb4) strlen((char *) ":SRCTXT"),
 (dvoid *) arrbuf3[0], (sb4) sizeof(arrbuf3[0]), SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 OCIBindArrayOfStruct(bndhp[0], errhp sizeof(arrbuf1[0]),
 indsk, rlsk, rcsk);
 OCIBindArrayOfStruct(bndhp[1], errhp, sizeof(arrbuf2[0]),
 indsk, rlsk, rcsk);
 OCIBindArrayOfStruct(bndhp[2], errhp, sizeof(arrbuf3[0]),
 indsk, rlsk, rcsk);

 for (i=0; i<5; i++)
 {

Chapter 7
Data Interface for LOBs in OCI

7-13

 arrbuf1[i] = 2004;
 arrbuf2[i] = i+4;
 memset((void *)arrbuf3[i], (int)'A'+i, (size_t)5000);
 }
 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 5, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);

}

7.4.6 Using OCI Data Interface to Fetch LOB Data
This section discusses techniques you can use to fetch data from persistent or temporary
LOBs in OCI using the data interface.

• Performing Simple Fetch Operations in One Piece
Follow the steps listed in this section for performing a simple fetch operation on LOBs in
one piece, using the data interface for LOBs.

• Performing a Piecewise Fetch with Polling
Follow the steps listed in this section to perform a piecewise fetch operation on a LOB
column with polling, using the data interface for LOBs.

• Performing a Piecewise with Callback
Follow the steps listed in this section to perform a piecewise fetch operation on a LOB
column with callback, using the data interface for LOBs.

• Performing an Array Fetch Operation
Use any of the techniques discussed in this section to perform an array fetch operation in
OCI, using the data interface for LOBs.

7.4.6.1 Performing Simple Fetch Operations in One Piece
Follow the steps listed in this section for performing a simple fetch operation on LOBs in one
piece, using the data interface for LOBs.

1. Call OCIStmtPrepare() to prepare the SELECT statement in OCI_DEFAULT mode.

2. Call OCIDefineByPos() to define a select list position in OCI_DEFAULT mode to define a
LOB as character data or binary data.

3. Call OCIStmtExecute() to run the SELECT statement.

4. Call OCIStmtFetch() to do the actual fetch.

The following example illustrates selecting a persistent LOB or temporary LOB using a simple
fetch:

void simple_fetch()
{
 word retval;
 text buf[15000];
 /*
 This statement returns a persistent LOB, but can be modified to return a
temporary LOB
 using the query 'SELECT SUBSTR(Ad_sourcetext,5) FROM Print_media WHERE
Product_id = 2004'
 */
 text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE\

Chapter 7
Data Interface for LOBs in OCI

7-14

 Product_id = 2004";

 OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
 while (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 {
 OCIDefineByPos(stmthp, &defhp, errhp, (ub4) 1, (dvoid *) buf,
 (sb4) sizeof(buf), (ub2) SQLT_CHR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);
 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1,
 (ub4) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 if (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 printf("buf = %.*s\n", 15000, buf);
 }
}

7.4.6.2 Performing a Piecewise Fetch with Polling
Follow the steps listed in this section to perform a piecewise fetch operation on a LOB column
with polling, using the data interface for LOBs.

1. Call OCIStmtPrepare() to prepare the SELECT statement in OCI_DEFAULT mode.

2. Call OCIDefinebyPos() to define a select list position in OCI_DYNAMIC_FETCH mode to
define the LOB column as character data or binary data.

3. Call OCIStmtExecute() to run the SELECT statement.

4. Call OCIStmtFetch() in default mode. Optionally, you can use OCIServerDataLengthGet()
to get the LOB length and use it to allocate the buffer to hold the LOB data. Do each of the
following in a loop while the value returned from OCIStmtFetch() is OCI_NEED_DATA.
Terminate your loop when the value returned from OCIStmtFetch() is OCI_SUCCESS.

• Call OCIStmtGetPieceInfo() to retrieve information about the piece to be fetched.

• Call OCIStmtSetPieceInfo() to set information about piece to be fetched.

The following example illustrates selecting a LOB column into a character buffer using a
piecewise fetch with polling:

void piecewise_fetch()
{
 text buf[15000];
 ub4 buflen=5000;
 word retval;
 text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_media
 WHERE Product_id = 2004 AND Ad_id = 2";

 OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIDefineByPos(stmthp, &dfnhp, errhp, (ub4) 1,
 (dvoid *) NULL, (sb4) 100000, SQLT_LNG,

Chapter 7
Data Interface for LOBs in OCI

7-15

 (dvoid *) 0, (ub2 *) 0,
 (ub2 *) 0, (ub4) OCI_DYNAMIC_FETCH);

 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);

 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
 (ub2) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);

 while (retval != OCI_NO_DATA && retval != OCI_SUCCESS)
 {
 ub1 piece;
 ub4 iter;
 ub4 idx;

 genclr((void *)buf, 5000);
 switch(retval)
 {
 case OCI_NEED_DATA:
 OCIStmtGetPieceInfo(stmthp, errhp, &hdlptr, &hdltype,
 &in_out, &iter, &idx, &piece);
 buflen = 5000;
 OCIStmtSetPieceInfo(hdlptr, hdltype, errhp,
 (dvoid *) buf, &buflen, piece,
 (CONST dvoid *) &indp1, (ub2 *) 0);
 retval = OCI_NEED_DATA;
 break;
 default:
 printf("ERROR: piece-wise fetching, %d\n", retval);
 return;
 } /* end switch */
 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
 (ub2) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 printf("Data : %.5000s\n", buf);
 } /* end while */
}

7.4.6.3 Performing a Piecewise with Callback
Follow the steps listed in this section to perform a piecewise fetch operation on a LOB column
with callback, using the data interface for LOBs.

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIDefinebyPos() to define a select list position in OCI_DYNAMIC_FETCH mode to
define the LOB column as character data or binary data.

3. Call OCIStmtExecute() to run the SELECT statement.

4. Call OCIDefineDynamic() to specify the callback.

5. Call OCIStmtFetch() in default mode.

6. Inside the callback, you can optionally use OCIServerDataLengthGet() to get the LOB
length during the first fetch. You can use this value to allocate the buffer to hold LOB data

Chapter 7
Data Interface for LOBs in OCI

7-16

The following example illustrates selecting a LOB column into a LOB buffer when using a
piecewise fetch with callback:

char buf[5000];
void callback_fetch()
{
 word outpos = 1;
 text *sqlstmt = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE
 Product_id = 2004 AND Ad_id = 3";

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &dfnhp[0], errhp, (ub4) 1,
 (dvoid *) 0, (sb4)3 * sizeof(buf), SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) OCI_DYNAMIC_FETCH);

 OCIDefineDynamic(dfnhp[0], errhp, (dvoid *) &outpos,
 (OCICallbackDefine) fetch_cbk);

 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
 buf[4999] = '\0';
 printf("Select callback: Last piece: %s\n", buf);
}

/* -- */
/* Fetch callback to specify buffers. */
/* -- */
static sb4 fetch_cbk(dvoid *ctxp, OCIDefine *dfnhp, ub4 iter, dvoid **bufpp,
 ub4 **alenpp, ub1 *piecep, dvoid **indpp, ub2 **rcpp)
{
 static int a = 0;
 ub4 outpos = *((ub4 *)ctxp);
 ub4 len = 5000;
 switch(outpos)
 {
 case 1:
 a ++;
 *bufpp = (dvoid *) buf;
 *alenpp = &len;
 break;
 default:
 *bufpp = (dvoid *) 0;
 *alenpp = (ub4 *) 0;
 printf("ERROR: invalid position number: %d\n", outpos);
 }
 *indpp = (dvoid *) 0;
 *rcpp = (ub2 *) 0;

 buf[len] = '\0';
 if (a<=1)
 {
 *piecep = OCI_FIRST_PIECE;
 printf("Select callback: 0th piece\n");

Chapter 7
Data Interface for LOBs in OCI

7-17

 }
 else if (a<3)
 {
 *piecep = OCI_NEXT_PIECE;
 printf("Select callback: %d'th piece: %s\n", a-1, buf);
 }
 else {
 *piecep = OCI_LAST_PIECE;
 printf("Select callback: %d'th piece: %s\n", a-1, buf);
 a = 0;
 }
 return OCI_CONTINUE;
}

This example illustrates selecting a LOB column into a character buffer when using a
piecewise fetch with callback, along with fetching the length of LOB data.

#define MAX_BUF_SZ 1048576 /* Max allocation size = 1M */
char *buffer = NULL;
ub8 buf_len = 0;

/* Define callback function */
sb4 DefineCbk(void *cbctx, OCIDefine *defnhp, ub4 iter,
 void **bufp, ub4 **alenp, ub1 *piecep,
 void **indp, ub2 **rcodep)
{
 static sword piece = 1;
 boolean isValidLen = FALSE;
 buf_len = 0;

 if (piece == 1)
 {
 OCIServerDataLengthGet(defnhp, &isValidLen, (ub8 *) &buf_len,
 (OCIError *)cbctx, 0);

 if (buf_len > MAX_BUF_SZ)
 buf_len = MAX_BUF_SZ;

 buffer = (char *)malloc(buf_len);
 *bufp = buffer;
 *alenp = (ub4 *) &buf_len;
 }
 else
 {
 printf("Data = %s\n",buffer);
 buf_len = MAX_BUF_SZ;
 }
 piece++;
 return OCI_CONTINUE;
}

void define_callback()
{
 text *sqlstmt = (text *)"select lobcol from lob_table";

Chapter 7
Data Interface for LOBs in OCI

7-18

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen(sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp1, errhp, (ub4)1, (dvoid *)0,
 (sb4) (10 * MAX_BUF_SZ), SQLT_STR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4)OCI_DYNAMIC_FETCH);
 OCIDefineDynamic(defhp1,errhp, errhp,
 (OCICallbackDefine)DefineCbk);
 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (CONST OCISnapshot *) 0, (OCISnapshot *) 0,
 (ub4) OCI_DEFAULT);
 OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);

 buffer[buf_len] = '\0';
 printf(" Data = %s\n",buffer);
 if (buffer)
 free(buffer);
}

7.4.6.4 Performing an Array Fetch Operation
Use any of the techniques discussed in this section to perform an array fetch operation in OCI,
using the data interface for LOBs.

Use the techniques discussed below, in conjunction with OCIDefineArrayOfStruct(), or by
specifying the number of iterations (iter), with the value of iter greater than 1, in the
OCIStmtExecute() call. Irrespective of whether the LOB data is fetched using single piece,
piecewise or callbacks, it is fetched in a single round trip for multiple rows when using array
defines.

The following example illustrates selecting a LOB column into a character buffer using an array
fetch:

void array_fetch()
{
 word i;
 text arrbuf[5][5000];
 text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE
 Product_id = 2004 AND Ad_id >=4";

 OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT);

 OCIDefineByPos(stmthp, &defhp1, errhp, (ub4) 1,
 (dvoid *) arrbuf[0], (sb4) sizeof(arrbuf[0]),
 (ub2) SQLT_CHR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);

 OCIDefineArrayOfStruct(dfnhp1, errhp, sizeof(arrbuf[0]), indsk,
 rlsk, rcsk);

 retval = OCIStmtFetch(stmthp, errhp, (ub4) 5,
 (ub4) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);

Chapter 7
Data Interface for LOBs in OCI

7-19

 if (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 {
 printf("%.5000s\n", arrbuf[0]);
 printf("%.5000s\n", arrbuf[1]);
 printf("%.5000s\n", arrbuf[2]);
 printf("%.5000s\n", arrbuf[3]);
 printf("%.5000s\n", arrbuf[4]);
 }
}

7.4.7 PL/SQL and C Binds from OCI
Learn about PL/SQL and C Binds from OCI with respect to LOBs in this section.

When you call a PL/SQL procedure from OCI, and have an IN or OUT or IN OUT bind, you
should be able to:

• Bind a variable as SQLT_CHR or SQLT_LNG where the formal parameter of the PL/SQL
procedure is SQLT_CLOB, or

• Bind a variable as SQLT_BIN or SQLT_LBI where the formal parameter is SQLT_BLOB
The following two cases work:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner

Here is an example of calling PL/SQL out-binds in the "begin foo(:1); end;" Manner:

text *sqlstmt = (text *)"BEGIN get_lob(:c); END; " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner

Here is an example of calling PL/SQL out-binds in the "call foo(:1);" manner:

text *sqlstmt = (text *)"CALL get_lob(:c);" ;

In both these cases, the rest of the program has these statements:

OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 curlen = 0;
OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":c", (sb4) strlen((char *) ":c"),
 (dvoid *) buf5, (sb4) LONGLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 1, (ub4 *) &curlen, (ub4) OCI_DATA_AT_EXEC);

The PL/SQL procedure, get_lob(), is as follows:

procedure get_lob(c INOUT CLOB) is -- This might have been column%type
 BEGIN
 ... /* The procedure body could be in PL/SQL or C*/
 END;

Chapter 7
Data Interface for LOBs in OCI

7-20

8
Locator Interface for LOBs

The Locator Interface for LOBs refers to a set of APIs in different programmatic interfaces,
which enables you to perform operations on persistent and temporary LOBs using the LOB
locator.

These operations typically take an offset, or an amount parameter, or both, as input argument
to facilitate efficient random and piecewise operations on the LOB.

• Before You Begin
Learn about the concepts that you should know before using the programmatic interfaces
to work on LOBs, using the LOB locator.

• PL/SQL API for LOBs
The DBMS_LOB package enables you to access and make changes to LOBs in PL/SQL.

• JDBC API for LOBs
JDBC supports standard Java interfaces java.sql.Clob and java.sql.Blob for CLOBs and
BLOBs respectively.

• OCI API for LOBs
Oracle Call Interface (OCI) LOB functions enable you to access and make changes to
LOBs in C.

• ODP.NET API for LOBs
Oracle Data Provider for .NET (ODP.NET) is an ADO.NET provider for the Oracle
Database.

• OCCI API for LOBs
OCCI provides a seamless interface to manipulate objects of user-defined types as C++
class instances.

• Pro*C/C++ and Pro*COBOL API for LOBs
This section describes the mapping of Pro*C/C++ and Pro*COBOL locators to locator
pointers to access a LOB value.

See Also:

BFILE APIs for operations involving the BFILE data type.

8.1 Before You Begin
Learn about the concepts that you should know before using the programmatic interfaces to
work on LOBs, using the LOB locator.

• Getting a LOB Locator
All LOB APIs need a valid LOB locator to be passed as an input. This section discusses
various methods to populate LOB variables using a LOB locator.

8-1

• LOB Open and Close Operations
The LOB APIs include operations that enable you to explicitly open and close a LOB
instance.

• Read and Write at Chunk Boundaries
To improve performance, you should perform LOB reads and writes using offsets and
amount that are a multiple of the value returned by GETCHUNKSIZE function.

• Prefetching LOB Data and Length
In most clients like JDBC, OCI and ODP.NET, the number of server round trips can be
reduced by prefetching part of the data and metadata (length and chunk size) along with
the LOB locator during the fetch. This applies to persistent LOBs, temporary LOBs, and
BFILEs.

• Determining Character Set ID
Some LOB APIs such as DBMS_LOB.LOADCLOBFROMFILE, OCILobRead2() and
OCILobWrite2() take in a character set ID as an input. To determine the character set ID,
you must know the character set name.

• LOB APIs
Once a LOB variable is initialized with either a persistent or a temporary LOB locator,
subsequent read operations on the LOB can be performed using APIs such as the
DBMS_LOB package subprograms.

8.1.1 Getting a LOB Locator
All LOB APIs need a valid LOB locator to be passed as an input. This section discusses
various methods to populate LOB variables using a LOB locator.

All LOB APIs need a valid LOB locator to be passed as an input. Use one of the following
methods to populate a LOB variable in your application with a LOB locator:

• Persistent LOBs: First create a table with a LOB column, then insert a value into the LOB
column and select out the LOB locator. To modify an existing LOB using a LOB locator, you
must lock the row in the table in order to prevent other database users from writing to the
LOB during a transaction.

See Also:

– Persistent LOBs for information on how to create a a table with a LOB
column and populate it.

– Selecting a LOB into a LOB Variable for Read Operations for information on
how to select a LOB locator for LOB read operations.

– Selecting a LOB into a LOB Variable for Write Operations for information on
how to lock the row for LOB modify operations.

• Temporary LOBs: You can create a temporary LOB by using an API like
DBMS_LOB.CREATETEMPORARY or by invoking a SQL or PL/SQL function that returns a
temporary LOB.

See Also:

Temporary LOBs

Chapter 8
Before You Begin

8-2

8.1.2 LOB Open and Close Operations
The LOB APIs include operations that enable you to explicitly open and close a LOB instance.

You can open and close a persistent or temporary LOB instance of any type: BLOB, CLOB or
NCLOB. You open a LOB to achieve one or both of the following results:

• Open the LOB in read-only mode

This ensures that the LOB (both the LOB locator and LOB value) cannot be changed in
your session until you explicitly close the LOB. For example, you can open the LOB to
ensure that the LOB is not changed by some other part of your program while you are
using the LOB in a critical operation. After you perform the operation, you can then close
the LOB.

• Open the LOB in read-write mode

Opening a LOB in read-write mode defers any index maintenance on the LOB column until
you close the LOB. Opening a LOB in read-write mode is only useful if there is a functional
or domain index on the LOB column, and you do not want the database to perform index
maintenance every time you write to the LOB. This technique can improve the
performance of your application if you are doing several write operations on the LOB while
it is open. Note that any index on the LOB column is not valid until you explicitly close the
LOB.

If you do not explicitly open the LOB instance, then every modification to the LOB implicitly
opens and closes the LOB instance. The database performs index maintenance for any
functional and domain indexes on the LOB column on each implicit close of the LOB. This
means that the indexes on the LOB are updated as soon as any modification to the LOB
instance is made. These indexes are always valid and can be used at any time.

The open state of a LOB is associated with the LOB instance, not the LOB locator. The locator
does not save any information indicating whether the LOB instance that it points to is open.

You must close any LOB instance that you explicitly open in the following places:

• Between DML statements that start a transaction, including SELECT ... FOR UPDATE and
COMMIT.

• Within an autonomous transaction block.

• Before the end of a session (when there is no transaction in progress in the session).

If you do not explicitly close the LOB instance, then it is implicitly closed at the end of the
session and no index triggers are fired, which means that any indexes on the LOB column are
not updated. In this situation, you must rebuild your indexes on the LOB column.

Committing a transaction on the open LOB instance causes an error. When this error occurs,
the LOB instance is closed implicitly, any modifications to the LOB instance are saved, and the
transaction is committed, but any indexes on the LOB column are not updated. In this situation,
you must rebuild your indexes on the LOB column.

If you subsequently rollback the transaction, then the LOB instance is rolled back to its
previous state, but the LOB instance is no longer explicitly open.

Keep track of the open or closed state of LOBs that you explicitly open. The following actions
cause an error:

• Explicitly opening a LOB instance that has been explicitly open earlier.

• Explicitly closing a LOB instance that is has been explicitly closed earlier.

Chapter 8
Before You Begin

8-3

This occurs whether you access the LOB instance using the same locator or different locators.

8.1.3 Read and Write at Chunk Boundaries
To improve performance, you should perform LOB reads and writes using offsets and amount
that are a multiple of the value returned by GETCHUNKSIZE function.

If it is appropriate for your application, then you should batch reads and writes until you have
enough for an entire chunk instead of issuing several LOB read or write calls that operate on
the same LOB chunk.

8.1.4 Prefetching LOB Data and Length
In most clients like JDBC, OCI and ODP.NET, the number of server round trips can be reduced
by prefetching part of the data and metadata (length and chunk size) along with the LOB
locator during the fetch. This applies to persistent LOBs, temporary LOBs, and BFILEs.

For small to medium sized LOBs, Oracle recommends setting the prefetch length such that
about majority of your LOBs are smaller than the prefetch size.

LOB prefetch size can be set at the session level, and can be overwritten at the statement or
the column level.

8.1.5 Determining Character Set ID
Some LOB APIs such as DBMS_LOB.LOADCLOBFROMFILE, OCILobRead2() and OCILobWrite2()
take in a character set ID as an input. To determine the character set ID, you must know the
character set name.

A user can select from the V$NLS_VALID_VALUES view, which lists the names of the character
sets that are valid as database and national character sets. Then call the function
NLS_CHARSET_ID with the desired character set name as the one string argument. The
character set ID is returned as an integer.

Although UTF16 is not allowed as a database or national character set, LOB APIs support it for
database conversion purposes. Use character set ID = 1000 for UTF16, or in OCI, you can
use OCI_UTF16ID.

See Also:

• OCIUnicodeToCharSet() for information on the OCIUnicodeToCharSet() function
and details on OCI syntax in general.

• Overview of Globalization Support for detailed information about implementing
applications in different languages.

8.1.6 LOB APIs
Once a LOB variable is initialized with either a persistent or a temporary LOB locator,
subsequent read operations on the LOB can be performed using APIs such as the DBMS_LOB
package subprograms.

The operations supported on LOBs are divided into the following categories:

Chapter 8
Before You Begin

8-4

Table 8-1 Operations supported by LOB APIs

Category Operation Example function/procedure in
DBMS_LOB or OCILob

Sanity Checking Check if the LOB variable has
been initialized

OCILobLocatorIsInit

Find out if the BLOB or CLOB
locator is a SecureFile

ISSECUREFILE

Open/Close Open a LOB OPEN
Check is a LOB is open ISOPEN
Close the LOB CLOSE

Read Operations Get the length of the LOB GETLENGTH
Get the LOB storage limit for the
database configuration

GET_STORAGE_LIMIT

Get the optimum read or write
size

GETCHUNKSIZE

Read data from the LOB starting
at the specified offset

READ

Return part of the LOB value
starting at the specified offset
using SUBSTR

SUBSTR

Return the matching position of a
pattern in a LOB using INSTR

INSTR

Modify Operations Write data to the LOB at a
specified offset

WRITE

Write data to the end of the LOB WRITEAPPEND
Erase part of a LOB, starting at a
specified offset

ERASE

Trim the LOB value to the
specified shorter length

TRIM

Operations involving multiple
locators

Check whether the two LOB
locators are the same

OCILobIsEqual

Compare all or part of the value
of two LOBs

COMPARE

Append a LOB value to another
LOB

APPEND

Copy all or part of a LOB to
another LOB

COPY

Assign LOB locator src to LOB
locator dst

dst:=src,
OCILobLocatorAssign

Converts a BLOB to a CLOB or a
CLOB to a BLOB

CONVERTTOBLOB,
CONVERTTOCLOB

Load BFILE data into a LOB LOADCLOBFROMFILE,
LOADBLOBFROMFILE

Operations Specific to
SecureFiles

Returns options (deduplication,
compression, encryption) for
SecureFiles.

GETOPTIONS

Sets LOB features (deduplication
and compression) for SecureFiles

SETOPTIONS

Gets the content string for a
SecureFiles.

GETCONTENTTYPE

Chapter 8
Before You Begin

8-5

Table 8-1 (Cont.) Operations supported by LOB APIs

Category Operation Example function/procedure in
DBMS_LOB or OCILob

Sets the content string for a
SecureFiles.

SETCONTENTTYPE

Delete the data from the LOB at
the given offset for the given
length

FRAGMENT_DELETE

Insert the given data (<
32KBytes) into the LOB at the
given offset

FRAGMENT_INSERT

Move the given amount of bytes
from the given offset to the new
given offset

FRAGMENT_MOVE

Replace the data at the given
offset with the given data (<
32kBytes)

FRAGMENT_REPLACE

See Also:

• Temporary LOBs

• BFILEs

• Comparing the LOB Interfaces

Note:

The DBMS_LOB package provides a rich set of operations on LOBs. If you are using a
different programmatic interface, where some of these operations are not provided,
then call the corresponding PL/SQL procedure or function in DBMS_LOB package.

Most of the code examples in the following sections use the print_media table with the
following structure:

Chapter 8
Before You Begin

8-6

Figure 8-1 print_media table

8.2 PL/SQL API for LOBs
The DBMS_LOB package enables you to access and make changes to LOBs in PL/SQL.

See Also:

DBMS_LOB for more information on DBMS_LOB package.

Guidelines for Offset and Amount Parameters in DBMS_LOB Operations

The following guidelines apply to the offset and amount parameters used in the DBMS_LOB
PL/SQL package procedures:

Chapter 8
PL/SQL API for LOBs

8-7

• For character data in all formats, either in fixed-width or variable-width, the amount and
offset parameters are in characters. This applies to operations on CLOB and NCLOB data
types.

• For binary data, the offset and amount parameters are in bytes. This applies to operations
on BLOB data types.

• When using the DBMS_LOB.READ procedure, the amount parameter should be less than or
equal to the size of the buffer, which is limited to 32K. However, the amount parameter can
be larger than the size of the LOB data.

Table 8-2 DBMS_LOB functions and procedures for LOBs

Category Function/Procedure Description

Sanity Checking ISSECUREFILE Find out if the BLOB or CLOB
locator is a SecureFile

Open/Close OPEN Open a LOB

ISOPEN Check if a LOB is open

CLOSE Close the LOB

Read Operations GETLENGTH
GET_STORAGE_LIMIT
GETCHUNKSIZE
READ
SUBSTR
INSTR

Modify Operations WRITE Write data to the LOB at a
specified offset

WRITEAPPEND Write data to the end of the LOB

ERASE Erase part of a LOB, starting at a
specified offset

TRIM Trim the LOB value to the
specified shorter length

Operations involving multiple
locators

COMPARE Compare all or part of the value
of two LOBs

APPEND Append a LOB value to another
LOB

COPY Copy all or part of a LOB to
another LOB

dst := src Assign LOB locator src to LOB
locator dst

CONVERTTOBLOB,
CONVERTTOCLOB

Converts a BLOB to a CLOB or a
CLOB to a BLOB

LOADCLOBFROMFILE,LOADBLOBF
ROMFILE

Load BFILE data into a LOB

Operations specific to
SecureFiles

GETOPTIONS Returns options (deduplication,
compression, encryption) for
SecureFiles.

SETOPTIONS Sets LOB features (deduplication
and compression) for SecureFiles

GETCONTENTTYPE Gets the content string for a
SecureFiles.

Chapter 8
PL/SQL API for LOBs

8-8

Table 8-2 (Cont.) DBMS_LOB functions and procedures for LOBs

Category Function/Procedure Description

SETCONTENTTYPE Sets the content string for a
SecureFiles.

FRAGMENT_DELETE Delete the data from the LOB at
the given offset for the given
length

FRAGMENT_INSERT Insert the given data (<
32KBytes) into the LOB at the
given offset

FRAGMENT_MOVE Move the given amount of bytes
from the given offset to the new
given offset

FRAGMENT_REPLACE Replace the data at the given
offset with the given data (<
32kBytes)

Example 8-1 PL/SQL API for LOBs

DECLARE
 retval INTEGER;
 clob1 CLOB;
 clob2 CLOB;
 clob3 CLOB;
 blob1 BLOB;
 buf VARCHAR2(32767);
 buflen INTEGER := 32760;
 loblen1 INTEGER;

 -- Following are the variables that you need for the convertToBlob and
convertToClob functions
 amt NUMBER := 0;
 src NUMBER := 1 ;
 dst NUMBER := 1 ;
 lang NUMBER := 0;
 warn NUMBER;

 BEGIN
 SELECT ad_sourcetext INTO clob1 FROM print_media
 WHERE product_id = 1 AND ad_id = 1;

 -- the select statement is defined with FOR UPDATE so that we can write
to it
 SELECT ad_finaltext INTO clob2 FROM print_media
 WHERE product_id = 1 AND ad_id =1 FOR UPDATE;
 /* Note that all the writes to clob2 will get reflected in the column */

 /*--*/
 /*---------------------- Sanity Checking ---------------------------*/
 /*--*/
 if DBMS_LOB.ISSECUREFILE(clob1) = TRUE then
 DBMS_OUTPUT.PUT_LINE('CLOB1 is SECUREFILE');
 else

Chapter 8
PL/SQL API for LOBs

8-9

 DBMS_OUTPUT.PUT_LINE('CLOB1 is BASICFILE');
 end if;

 /*--*/
 /*----------------------- Open -------------------------------------*/
 /*--*/
 /* Open clob1 for READs and clob2 for WRITES */
 DBMS_LOB.OPEN(clob1, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN(clob2, DBMS_LOB.LOB_READWRITE);

 /*--*/
 /*-------------------- Reading from a LOB --------------------------*/
 /*--*/
 DBMS_OUTPUT.PUT_LINE('storage limit : ' ||
dbms_lob.get_storage_limit(clob1));
 DBMS_OUTPUT.PUT_LINE('chunk size : ' || dbms_lob.getchunksize(clob1));

 loblen1 := DBMS_LOB.GETLENGTH(clob1);
 DBMS_OUTPUT.PUT_LINE('length : ' || loblen1);

 DBMS_LOB.READ(clob1, buflen, 1, buf);
 DBMS_OUTPUT.PUT_LINE('read : LOB data : ' || buf);
 DBMS_OUTPUT.PUT_LINE('New buflen : ' || buflen);

 DBMS_OUTPUT.PUT_LINE('substr : ' || dbms_lob.substr(clob1, 30, 1));
 DBMS_OUTPUT.PUT_LINE('instr : ' ||
 DBMS_LOB.INSTR(clob1, 'review of the document', 1,
3));

 /*--*/
 /*-------------------- Modifying a LOB -----------------------------*/
 /*--*/
 DBMS_LOB.WRITE(clob2, buflen, 10, buf);
 DBMS_LOB.WRITEAPPEND(clob2, buflen, buf);
 buflen := 10;
 DBMS_LOB.ERASE(clob2, buflen, 10);
 DBMS_LOB.TRIM(clob2, 50);

 /* Print the LOB just modified */
 buflen := 32760;
 DBMS_LOB.READ(clob2, buflen, 1, buf);
 DBMS_OUTPUT.PUT_LINE('read : LOB data : ' || buf);
 DBMS_OUTPUT.PUT_LINE('New buflen : ' || buflen);

 /* Error because clob1 is open in READ mode */
 -- DBMS_LOB.WRITE(clob1, buflen, 10, buf);

 /*--*/
 /*------------- Operations involving 2 locators ---------------------*/
 /*--*/

 retval := DBMS_LOB.COMPARE(clob1, clob2, 100, 1, 1);
 if (retval < 0) then
 DBMS_OUTPUT.PUT_LINE('clob1 is smaller');
 elsif (retval = 0) then
 DBMS_OUTPUT.PUT_LINE('both clobs are equal');

Chapter 8
PL/SQL API for LOBs

8-10

 else
 DBMS_OUTPUT.PUT_LINE('clob1 is larger');
 end if;

 DBMS_OUTPUT.PUT_LINE('length before append: ' ||
DBMS_LOB.GETLENGTH(clob2));
 DBMS_LOB.APPEND(clob2, clob1);
 DBMS_OUTPUT.PUT_LINE('length after append: ' || DBMS_LOB.GETLENGTH(clob2));

 DBMS_OUTPUT.PUT_LINE('----------- LOB COPY operation --------');
 DBMS_LOB.COPY(clob2, clob1, loblen1, 100, 1);
 DBMS_OUTPUT.PUT_LINE('length after copy: ' || DBMS_LOB.GETLENGTH(clob2));

 /*--*/
 /*------------------- Convert CLOB to a BLOB -----------------------*/
 /*--*/
 DBMS_LOB.CREATETEMPORARY(blob1, false);
 dst := 1;
 src := 1;
 amt := 5;
 DBMS_LOB.CONVERTTOBLOB(blob1, clob2, amt, dst, src, DBMS_LOB.DEFAULT_CSID,
 lang, warn);
 DBMS_OUTPUT.PUT_LINE(' Source offset returned ' || src) ;
 DBMS_OUTPUT.PUT_LINE(' Destination offset returned ' || dst) ;
 DBMS_OUTPUT.PUT_LINE(' Length of CLOB ' ||
dbms_lob.getlength(clob2)) ;
 DBMS_OUTPUT.PUT_LINE(' Length of BLOB ' ||
dbms_lob.getlength(blob1)) ;
 DBMS_OUTPUT.PUT_LINE(' Warning returned ' || warn);
 DBMS_OUTPUT.PUT_LINE(' OUTPUT BLOB contents = ' || rawtohex(blob1));

 /*--*/
 /*-------------------- Convert BLOB to a CLOB ----------------------*/
 /*--*/
 DBMS_LOB.CREATETEMPORARY(clob3, false);
 dst := 1;
 src := 1;
 amt := 4;
 DBMS_LOB.CONVERTTOCLOB(clob3, blob1, amt, dst, src, DBMS_LOB.DEFAULT_CSID,
 lang, warn);
 DBMS_OUTPUT.PUT_LINE(' Source offset returned ' || src) ;
 DBMS_OUTPUT.PUT_LINE(' Destination offset returned ' || dst) ;
 DBMS_OUTPUT.PUT_LINE(' Length of BLOB ' ||
DBMS_LOB.GETLENGTH(blob1)) ;
 DBMS_OUTPUT.PUT_LINE(' Length of CLOB ' ||
DBMS_LOB.GETLENGTH(clob3)) ;
 DBMS_OUTPUT.PUT_LINE(' Warning returned ' || warn);
 DBMS_OUTPUT.PUT_LINE(' INPUT BLOB contents = ' || rawtohex(blob1));
 DBMS_OUTPUT.PUT_LINE(' OUTPUT CLOB contents = ' || clob3);

 /*--*/
 /*----------------------- Close ------------------------------------*/
 /*--*/
 DBMS_OUTPUT.PUT_LINE('------------- CLOSE ---------------');
 DBMS_LOB.CLOSE(clob2);

Chapter 8
PL/SQL API for LOBs

8-11

 if (DBMS_LOB.ISOPEN(clob1) = 1) then
 DBMS_LOB.CLOSE(clob1);
 END if;

 COMMIT;
END;
/

Example 8-2 PL/SQL APIs for SecureFile specific operations

conn pm/pm

-- alter the table to make lob storage as securefile
-- assume tablespace tbs_1 is ASSM
alter table print_media move
lob(ad_composite) store as securefile (deduplicate compress tablespace tbs_1)
lob(ad_sourcetext) store as securefile (compress tablespace tbs_1)
lob(ad_finaltext) store as securefile (compress tablespace tbs_1)
lob(ad_photo) store as securefile (tablespace tbs_1);

SET SERVEROUTPUT ON

DECLARE
 clob1 CLOB;
 blob1 BLOB;
 result BINARY_INTEGER;

 /* --- variables for setcontenttype, getcontenttype ----*/
 get_media_type VARCHAR2(128);
 set_media_type VARCHAR2(128);

 /* --- variables for delta operations --------*/
 amount INTEGER;
 offset INTEGER;
 buffer VARCHAR2(30);
 readbuf VARCHAR2(50);
 read_amt INTEGER;
 src_offset INTEGER;
 dest_offset INTEGER;
 amount_old INTEGER;
BEGIN
 -- fetch clob, blob values
 SELECT ad_sourcetext, ad_composite
 INTO clob1, blob1
 FROM print_media
 WHERE product_id = 2056 FOR UPDATE;

 /*--*/
 /*---------------------- Get Options -------------------------------*/
 /*--*/
 -- check whether compress option is enabled
 result := DBMS_LOB.GETOPTIONS(clob1, DBMS_LOB.OPT_COMPRESS);
 DBMS_OUTPUT.PUT_LINE('Get compress option on ad_sourcetext: '||result);

 -- check whether compress + deduplicate is enabled

Chapter 8
PL/SQL API for LOBs

8-12

 result := DBMS_LOB.GETOPTIONS(blob1, DBMS_LOB.OPT_DEDUPLICATE +
 DBMS_LOB.OPT_COMPRESS);
 DBMS_OUTPUT.PUT_LINE('Get compress + deduplicate option on ad_composite: '||
result);

 /*--*/
 /*---------------------- Set Options -------------------------------*/
 /*--*/
 -- turn off compression
 DBMS_LOB.SETOPTIONS(clob1, DBMS_LOB.OPT_COMPRESS, DBMS_LOB.COMPRESS_OFF);
 -- getoptions should be 0 now
 result := DBMS_LOB.GETOPTIONS(clob1, DBMS_LOB.OPT_COMPRESS);
 DBMS_OUTPUT.PUT_LINE('Compress option on clob1: '||result);

 -- turn off deduplication
 DBMS_LOB.SETOPTIONS(blob1, DBMS_LOB.OPT_DEDUPLICATE,
DBMS_LOB.DEDUPLICATE_OFF);
 -- getoptions should be 0 now
 result := DBMS_LOB.GETOPTIONS(blob1, DBMS_LOB.OPT_DEDUPLICATE);
 DBMS_OUTPUT.PUT_LINE('Deduplicate option on blob1: '||result);

 /*--*/
 /*----------- Getcontenttype, Setcontenttype -----------------------*/
 /*--*/
 -- get contenttype -- should be null as content type is not set yet
 DBMS_OUTPUT.PUT_LINE(CHR(10)||'clob1 contenttype: ' ||
dbms_lob.getcontenttype(clob1));

 set_media_type := 'text/plain';
 DBMS_LOB.SETCONTENTTYPE(clob1, set_media_type);

 DBMS_OUTPUT.PUT_LINE('Clob1 contenttype: ' ||
dbms_lob.getcontenttype(clob1));

 -- setcontenttype for blob
 DBMS_OUTPUT.PUT_LINE('blob1 contenttype: ' ||
dbms_lob.getcontenttype(blob1));
 set_media_type := 'photo/jpeg';
 DBMS_LOB.SETCONTENTTYPE(blob1, set_media_type);

 get_media_type := DBMS_LOB.GETCONTENTTYPE(blob1);
 DBMS_OUTPUT.PUT_LINE('Blob1 contenttype: ' || get_media_type);

 /*--*/
 /*---------------------- Fragment Operations -----------------------*/
 /*------------------ Print Before Fragment Operations --------------*/
 read_amt := 40;
 DBMS_LOB.READ(clob1, read_amt, 1, readbuf);
 DBMS_OUTPUT.PUT_LINE(CHR(10)||'Clob1 before fragment insert: '|| readbuf);
 DBMS_OUTPUT.PUT_LINE(CHR(10)||'Length of clob1 before fragment operations:
'|| dbms_lob.getlength(clob1));

 /*--------------------- Fragment Delete ----------------------------*/
 amount := 100;
 offset := 10;
 DBMS_LOB.FRAGMENT_DELETE(clob1, amount, offset);

Chapter 8
PL/SQL API for LOBs

8-13

 /*--------------------- Fragment Insert ----------------------------*/
 amount := 29;
 offset := 1;
 buffer := '#Verify lob Delta operations#';
 DBMS_LOB.FRAGMENT_INSERT(clob1, amount, offset, buffer);

 /*---------------------- Fragment Move -----------------------------*/
 amount := 29;
 src_offset := 100;
 dest_offset := 1;

 -- fragment move
 DBMS_LOB.FRAGMENT_MOVE(clob1, amount, src_offset, dest_offset);

 /*---------------------- Fragment Replace --------------------------*/
 amount := 25;
 amount_old := 29;
 offset := 100;
 buffer := '$Verify fragment replace$';

 DBMS_LOB.FRAGMENT_REPLACE(clob1, amount_old, amount, offset,buffer);

 COMMIT;

 /*------------------ Verify After Fragment Operations --------------*/
 read_amt := 40;
 DBMS_LOB.READ(clob1, read_amt, 1, readbuf);
 DBMS_OUTPUT.PUT_LINE(CHR(10)||'Clob1 after delta insert: '|| readbuf);
 DBMS_OUTPUT.PUT_LINE(CHR(10)||'Length of clob1 after fragment operations:
'|| dbms_lob.getlength(clob1));

EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

8.3 JDBC API for LOBs
JDBC supports standard Java interfaces java.sql.Clob and java.sql.Blob for CLOBs and
BLOBs respectively.

In JDBC, you do not deal with locators but instead use methods and properties in the Java
APIs to perform operations on LOBs.

When BLOB and CLOB objects are retrieved as a part of an ResultSet, these objects represent
LOB locators of the currently selected row. If the current row changes due to a move operation,
for example, rset.next(), then the retrieved locator still refers to the original LOB row. You
must call getBLOB(), getCLOB(), or getBFILE() on the ResultSet each time a move operation
is made depending on whether the instance is a BLOB, CLOB or BFILE.

Chapter 8
JDBC API for LOBs

8-14

See Also:

Working with LOBs and BFILEs

Prefetching of LOB Data

When using the JDBC client, the number of server round trips can be reduced by prefetching
part of the data and metadata (length and chunk size) along with the LOB locator during the
fetch. This applies to persistent LOBs, temporary LOBs, and BFILEs. For small to medium
sized LOBs, Oracle recommends setting the prefetch length such that about majority of your
LOBs are smaller than the prefetch size.

LOB prefetch size can be set at the session level, and can be overwritten at the statement or
the column level. The prefetch size values can be:

• -1 to disable prefetching

• 0 to enable prefetching for metadata only

• any value greater than 0 which represents the number of bytes for BLOBs and characters
for CLOBs, to be prefetched along with the locator during fetch operations.

Use prop.setProperty to set the prefetch size for the session. The default session prefetch
size is 32k for the JDBC Thin Driver.

prop.setProperty("oracle.jdbc.defaultLobPrefetchSize","64000");

You can overwrite the session level default prefetch size at the statement level as follows:

((OracleStatement)stmt).setLobPrefetchSize(100000);

You can use the following code snippet to fetch the prefetch size of a statement:

int pf = ((OracleStatement)stmt).getLobPrefetchSize() ;

You can overwrite the session level default prefetch size at the column level as follows:

((OracleStatement)stmt).defineColumnType(1, OracleTypes.CLOB, /
lobPrefetchSize/
 32000);

Note:

About Prefetching LOB Data

Table 8-3 JDBC methods for LOBs

Category Function / Procedure Description

Miscellaneous empty_lob() Creates an empty LOB

isSecureFile() Finds out if the BLOB or CLOB
locator is a SecureFile

Chapter 8
JDBC API for LOBs

8-15

Table 8-3 (Cont.) JDBC methods for LOBs

Category Function / Procedure Description

Open/Close open() Open a LOB

isOpen() Check if a LOB is open

close() Close the LOB

Read Operations length() Get the length of the LOB

getChunkSize() Get the optimum read/write size

getBytes() Read data from the BLOB
starting at the specified offset

getBinaryStream() Streams the BLOB as a binary
stream

getChars() Read data from the CLOB
starting at the specified offset

getCharacterStream() Streams the CLOB as a character
stream

getAsciiStream() Streams the CLOB as an ASCII
stream

getSubString() Return part of the LOB value
starting at the specified offset

position() Return the matching position of a
pattern in a LOB

Modify Operations setBytes() Write data to the BLOB at a
specified offset

setBinaryStream() Sets a binary stream that can be
used to write to the BLOB value

setString() Write data to the CLOB at a
specified offset

setCharacterStream() Sets a character stream that can
be used to write to the CLOB
value

setAsciiStream() Sets an ASCII stream that can be
used to write to the CLOB value

truncate() Trim the LOB value to the
specified shorter length

Operations involving multiple
locators

dst = src Assign LOB locator src to LOB
locator dst

Example 8-3 JDBC API for LOBs

static void jdbc_lob_apis() throws Exception {

 System.out.println("Persistent LOBs Test in JDBC "+ TYPE);
 try(
 Connection con = getConnection();
 Statement stmt = con.createStatement();
)
 {

 ResultSet rs = null;
 Clob c1 = null;

Chapter 8
JDBC API for LOBs

8-16

 Clob c2 = null;
 Reader in = null;
 long pos = 0;
 long len = 0;

 rs = stmt.executeQuery("select ad_sourcetext from print_media where
product_id = 1");
 rs.next();
 c1 = rs.getCLOB(1);
 OracleClob c11 = (OracleClob)c1;
 rs.close();

 /*--*/
 /*---------------------- Sanity Checking ---------------------------*/
 /*--*/
 if (c11.isSecureFile())
 System.out.println("C1 is a Securefile LOB");
 else
 System.out.println("C1 is a Basicfile LOB");

 /*--*/
 /*----------------------- Open/Close -------------------------------*/
 /*--*/

 /*----------------------- Opening a CLOB ---------------------------*/
 c11.open(LargeObjectAccessMode.MODE_READONLY);

 /*-------------- Determining Whether a CLOB Is Open ----------------*/
 if (c11.isOpen())
 System.out.println("C11 is open!");
 else
 System.out.println("C11 is not open");

 /*----------------------- Closing a CLOB ---------------------------*/
 c11.close();

 /*---*/
 /*-------------------- Reading from a LOB ---------------------------*/
 /*---*/

 /*------------------------ Get CLOB Length -------------------------*/
 len = c1.length();
 System.out.println("CLOB length = " + len);

 /*------------------------ Reading CLOB Data -----------------------*/
 char[] readBuffer = new char[6];
 in = c1.getCharacterStream();
 in.read(readBuffer,0,5);
 in.close();
 String lobContent = new String(readBuffer);
 System.out.println("Buffer with LOB contents: " + lobContent);

 /*----------------------- Substr of a CLOB -------------------------*/
 String subs = c1.getSubString(2, 5);
 System.out.println("LOB substring: " + subs);

Chapter 8
JDBC API for LOBs

8-17

 /*----------------------- Search for a pattern --------------------*/
 pos = c1.position("aaa", 1);
 System.out.println("Pattern matched at position = " + pos);

 /*--*/
 /*-------------------- Modifying a LOB -----------------------------*/
 /*--*/

 rs = stmt.executeQuery("select ad_sourcetext from print_media where
product_id = 1 for update");
 rs.next();
 c2 = rs.getClob(1);
 OracleClob c22 = (OracleClob)c2;

 /*-------------------- Write to a CLOB ----------------------------*/
 c22.open(LargeObjectAccessMode.MODE_READWRITE);
 c2.setString(3,"modified");
 String msubs = c2.getSubString(1, 15);
 System.out.println("Modified LOB substring: " + msubs);

 /*-------------------- Truncate a CLOB ----------------------------*/
 c2.truncate(20);
 len = c2.length();
 System.out.println("Truncated LOB len = " + len);
 c22.close();

 }
}

8.4 OCI API for LOBs
Oracle Call Interface (OCI) LOB functions enable you to access and make changes to LOBs in
C.

See Also:

LOB and BFILE Operations

Prefetching LOB Data in OCI

When using the OCI client, the number of server round trips can be reduced by prefetching
part of the data and metadata (length and chunk size) along with the LOB locator during the
fetch. This applies to persistent LOBs, temporary LOBs, and BFILEs. For small to medium
sized LOBs, Oracle recommends setting the prefetch length such that about majority of your
LOBs are smaller than the prefetch size.

LOB prefetch size can be set at the session level, and can be overwritten at the statement or
the column level.

Chapter 8
OCI API for LOBs

8-18

Use the OCIAttrSet() function to set the prefetch size for the session. The default session
prefetch size is 0.

default_lobprefetch_size = 32000;
OCIAttrSet(authp, OCI_HTYPE_SESSION, &default_lobprefetch_size , 0,
 OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE, errhp));

You can overwrite the session level default prefetch size at the column level. For this, you
should first set the column level attribute OCI_ATTR_LOBPREFETCH_LENGTH to TRUE and then set
the column level prefetch size attribute OCI_ATTR_LOBPREFETCH_SIZE in the define handle to
override the session level default lob prefetch size. The following code snippet demonstrates
how to set the prefetch size at session level:

prefetch_length = TRUE;
status = OCIAttrSet(defhp, OCI_HTYPE_DEFINE, &prefetch_length, 0,
OCI_ATTR_LOBPREFETCH_LENGTH, errhp);

lpf_size = 32000;
OCIAttrSet(defhp, OCI_HTYPE_DEFINE, &lpf_size, sizeof(ub4),
OCI_ATTR_LOBPREFETCH_SIZE, errhp);

You can use the following code snippet to get the prefetch size of a define:

ub4 get_lpf_size = 0;
OCIAttrGet(defhp, OCI_HTYPE_DEFINE,&get_lpf_size,
0,OCI_ATTR_LOBPREFETCH_SIZE, errhp);

See Also:

User Session Handle Attributes

Fixed-width and Varying-width Character Set Rules for OCI

In OCI, for fixed-width client-side character sets, the following rules apply:

• CLOBs and NCLOBs: offset and amount parameters are always in characters

• BLOBs and BFILEs: offset and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

• Offset parameter:

Regardless of whether the client-side character set is varying-width, the offset parameter is
always as follows:

– CLOBs and NCLOBs: in characters

– BLOBs and BFILEs: in bytes

• Amount parameter:

The amount parameter is always as follows:

– When referring to a server-side LOB: in characters

– When referring to a client-side buffer: in bytes

Chapter 8
OCI API for LOBs

8-19

• OCILobGetLength2():

Regardless of whether the client-side character set is varying-width, the output length is as
follows:

– CLOBs and NCLOBs: in characters

– BLOBs and BFILEs: in bytes

• OCILobRead2():

With client-side character set of varying-width, CLOBs and NCLOBs:

– Input amount is in characters. Input amount refers to the number of characters to read
from the server-side CLOB or NCLOB.

– Output amount is in bytes. Output amount indicates how many bytes were read into
the buffer bufp.

• OCILobWrite2(): With client-side character set of varying-width, CLOBs and NCLOBs:

– Input amount is in bytes. The input amount refers to the number of bytes of data in
the input buffer bufp.

– Output amount is in characters. The output amount refers to the number of characters
written into the server-side CLOB or NCLOB.

• Amount Operation for OCILob Operations: For operations such as OCILobCopy2(),
OCILobErase2(), OCILobLoadFromFile2(), and OCILobTrim2(), the amount parameter is in
characters for CLOBs and NCLOBs irrespective of the client-side character set because all
these operations refer to the amount of LOB data on the server.

See Also:

Overview of Globalization Support

Amount Parameter

When using the OCILobRead2() and OCILobWrite2() functions, in order to read or write the
entire LOB. you can set the input amount parameter as follows:

Table 8-4 Special Amount Parameter Setting to Read/Write the entire LOB

OCILobRead2 OCILobWrite2

piece = OCI_ONE_PIECE Set amount to UB8MAXVAL to
read the entire LOB

Streaming with Polling Set amount to 0 to read entire
data in a loop

Set amount to 0 to continue
writing buffer size amount until
OCI_LAST_PIECE

Streaming with Callback Set amount 0 to ensure that the
callback is called until the entire
data is read

Set amount to 0 to ensure that
the callback is called until
OCI_LAST_PIECE is returned by
the callback

Chapter 8
OCI API for LOBs

8-20

Table 8-5 OCI Attributes on the OCILobLocator

ATTRIBUTE OCIAttrSet OCIAttrGet

OCI_ATTR_LOBEMPTY Sets the descriptor to be empty
LOB

N/A

OCI_ATTR_LOB_REMOTE N/A set to TRUE if the lob locator is
from a remote database, set to
FALSE otherwise

OCI_ATTR_LOB_TYPE N/A holds the LOB type (CLOB /
BLOB / BFILE)

OCI_ATTR_LOB_IS_VALUE N/A set to TRUE if it is from a value
LOB, otherwiseFALSE

OCI_ATTR_LOB_IS_READONLY N/A set to TRUE if it is a read-only
LOB, otherwise FALSE

OCI_ATTR_LOBPREFETCH_LENGT
H

When set to TRUE the attribute
will enable prefetching and will
prefetch the LOB length and the
chunk size while performing
select operation of LOB locator

set to TRUE if prefetching is
turned on for the locator.

OCI_ATTR_LOBPREFETCH_SIZE Overrides the default prefetch
size for LOBs. Has a prerequisite
of the
OCI_ATTR_LOBPREFETCH_LENGT
H attribute to be set to TRUE.

Returns the prefetch size of the
locator.

Table 8-6 OCI Functions for LOBs

Category Function/Procedure Description

Sanity Checking OCILobLocatorIsInit() Checks whether a LOB locator is
initialized.

Open/Close OCILobOpen() Open a LOB

OCILobIsOpen() Check if a LOB is open

OCILobClose() Close the LOB

Read Operations OCILobGetLength2() Get the length of the LOB

OCILobGetStorageLimit() Get the LOB storage limit for the
database configuration

OCILobGetChunkSize() Get the optimum read / write size

OCILobRead2() Read data from the LOB starting
at the specified offset

OCILobArrayRead() Reads data using multiple
locators in one round trip.

OCILobCharSetId() Returns the character set ID of a
LOB.

OCILobCharSetForm() Returns the character set form of
a LOB.

Modify Operations OCILobWrite2() Write data to the LOB at a
specified offset

OCILobArrayWrite() Writes data using multiple
locators in one round trip.

OCILobWriteAppend2() Write data to the end of the LOB

Chapter 8
OCI API for LOBs

8-21

Table 8-6 (Cont.) OCI Functions for LOBs

Category Function/Procedure Description

OCILobErase2() Erase part of a LOB, starting at a
specified offset

OCILobTrim2() Trim the LOB value to the
specified shorter length

Operations involving multiple
locators

OCILobIsEqual() Checks whether two LOB
locators refer to the same LOB.

OCILobAppend() Append a LOB value to another
LOB

OCILobCopy2() Copy all or part of a LOB to
another LOB

OCILobLocatorAssign() Assign one LOB to another

OCILobLoadFromFile2() Load BFILE data into a LOB

Operations specific to
SecureFiles

OCILObGetOptions() Returns options (deduplication,
compression, encryption) for
SecureFiles.

OCILObSetOptions() Sets LOB features (deduplication
and compression) for SecureFiles

OCILobGetContentType() Gets the content string for a
SecureFiles

OCILobSetContentType() Sets a content string in a
SecureFiles

Example 8-4 OCI API for LOBs

/* Define SQL statements to be used in program. */
#define LOB_NUM_QUERIES 2

static text *selstmt[LOB_NUM_QUERIES] = {
 (text *) "select ad_sourcetext from print_media where product_id = 1", /*
0 */
 (text *) "select ad_sourcetext from print_media where product_id = 2 for
update",
};

sword run_query(ub4 index, ub2 dty)
{
 OCILobLocator *c1 = (OCILobLocator *)0;
 OCILobLocator *c2 = (OCILobLocator *)0;

 OCIStmt *stmthp;
 OCIDefine *defn1p = (OCIDefine *) 0;
 OCIDefine *defn2p = (OCIDefine *) 0;
 OCIBind *bndp1 = (OCIBind *) 0;
 OCIBind *bndp2 = (OCIBind *) 0;

 ub8 loblen;
 ub1 lbuf[128];
 ub1 inbuf[9] = "modified";
 ub1 inbuf_len = 8;
 ub8 amt = 15;

Chapter 8
OCI API for LOBs

8-22

 ub8 bamt = 0;
 ub4 csize = 0;
 ub8 slimit = 0;
 boolean flag = FALSE;
 boolean boolval = TRUE;
 ub4 id = 10;

 CHECK_ERROR (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /************** Allocate descriptors ***********************/
 CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &c1,
 (ub4)OCI_DTYPE_FILE, (size_t) 0,
 (dvoid **) 0));

 CHECK_ERROR (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &c2,
 (ub4)OCI_DTYPE_FILE, (size_t) 0,

 /********** Execute selstmt[0] to get c1 ***********************/
 CHECK_ERROR (OCIStmtPrepare(stmthp, errhp, selstmt[0],
 (ub4) strlen((char *) selstmt[0]),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 CHECK_ERROR (OCIDefineByPos(stmthp, &defn1p, errhp, (ub4) 1, (dvoid *) &c1,
 (sb4) -1, SQLT_CLOB, (dvoid *) 0, (ub2 *) 0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 CHECK_ERROR (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *)
NULL,
 OCI_DEFAULT));

 /********** Execute selstmt[1] to get c2 **********************/
 CHECK_ERROR (OCIStmtPrepare(stmthp, errhp, selstmt[1],
 (ub4) strlen((char *) selstmt[1]),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 CHECK_ERROR (OCIDefineByPos(stmthp, &defn1p, errhp, (ub4) 1, (dvoid *) &c2,
 (sb4) -1, SQLT_CLOB, (dvoid *) 0, (ub2 *) 0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 CHECK_ERROR (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *)
NULL,
 OCI_DEFAULT));

 /*--*/
 /*---------------------- Sanity Checking ---------------------------*/
 /*--*/

 CHECK_ERROR (OCILobLocatorIsInit(envhp, errhp, (OCILobLocator *) c1,
 &boolval));
 if (boolval)
 printf("LOB locator is initialized! \n");

Chapter 8
OCI API for LOBs

8-23

 else
 printf("LOB locator is NOT initialized \n");

 /*--*/
 /*----------------------- Open/Close -------------------------------*/
 /*--*/

 /*----------------------- Opening a CLOB ---------------------------*/
 CHECK_ERROR (OCILobOpen(svchp, errhp, c1, (ub1)OCI_LOB_READONLY));
 printf("OCILobOpen: Works\n");
 /*-------------- Determining Whether a CLOB Is Open ---------------*/
 CHECK_ERROR (OCILobIsOpen(svchp, errhp, c1, &boolval));
 printf("OCILobIsOpen: %s\n", (boolval)?"TRUE":"FALSE");

 /*----------------------- Closing a LOB ---------------------------*/
 CHECK_ERROR (OCILobClose(svchp, errhp, c1));
 printf("OCILobClose: Works\n");

 /*--*/
 /*-------------------- LOB Read Operations -------------------------*/
 /*--*/

 printf("OCILobFileOpen: Works\n");

 /*----------------- Getting the Length of a LOB --------------------*/
 CHECK_ERROR (OCILobGetLength2(svchp, errhp, c1, &loblen));
 printf("OCILobGetLength2: loblen: %d \n", loblen);

 /*----------------- Getting the Storage Limit of a LOB -------------*/
 CHECK_ERROR (OCILobGetStorageLimit(svchp, errhp, c1, &slimit));
 printf("OCILobGetStorageLimit: storage limit: %ld \n", slimit);

 /*----------------- Getting the Chunk Size of a LOB -----------------*/
 CHECK_ERROR (OCILobGetChunkSize(svchp, errhp, c1, &csize));
 printf("OCILobGetChunkSize: storage limit: %d \n", csize);

 /*------------------------ Reading LOB Data ------------------------*/
 CHECK_ERROR (OCILobRead2(svchp, errhp, c1, &amt,
 NULL, (oraub8)1, lbuf,
 (oraub8)sizeof(lbuf), OCI_ONE_PIECE ,(dvoid*)0,
 NULL, (ub2)0, (ub1)SQLCS_IMPLICIT));
 printf("OCILobRead2: buf: %.*s amt: %lu\n", amt, lbuf, amt);

 /*--*/
 /*-------------------- Modifying a LOB -----------------------------*/
 /*--*/

 /*---------------------- Writing Data to LOB -----------------------*/
 amt = 8;
 CHECK_ERROR (OCILobWrite2(svchp, errhp, c2, &bamt, &amt, 1,
 (dvoid *) inbuf, (ub8)inbuf_len, OCI_ONE_PIECE, (dvoid *)0,
 (OCICallbackLobWrite2)0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT));

 /*---------------------- Write Append to a LOB ---------------------*/

Chapter 8
OCI API for LOBs

8-24

 /* Append 8 characters */
 amt = 8;
 CHECK_ERROR (OCILobWriteAppend2(svchp, errhp, c2, &bamt, &amt,
 (dvoid *) inbuf, (ub8)inbuf_len, OCI_ONE_PIECE, (dvoid *)0,
 (OCICallbackLobWrite2)0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT));

 /*---------------------- Erase part of LOB contents ----------------*/
 /* Erase 5 characters */
 amt = 5;
 CHECK_ERROR (OCILobErase2(svchp, errhp, c2, &amt, 2));

 /*------------------------- Trim a LOB -----------------------------*/
 amt = 1000;
 CHECK_ERROR (OCILobTrim2(svchp, errhp, c2, amt));
 printf("OCILobTrim2 Works! \n");

 /*--*/
 /*------------- Operations involving 2 locators --------------------*/
 /*--*/

 /*--------------- Check Equality of LOB locators -------------------*/
 CHECK_ERROR (OCILobIsEqual(envhp, c1, c2, &boolval))
 printf("OCILobIsEqual %s\n", (boolval)?"TRUE":"FALSE");

 /*--------------- Append contents of a LOB to another LOB ----------*/
 CHECK_ERROR(OCILobAppend(svchp, errhp, c2, c1));
 printf("OCILobAppend: Works! \n");

 /*------------------------ LOB Copy --------------------------------*/
 /* Copy 10 characters from offset 1 of source to offset 2 of destination*/
 CHECK_ERROR (OCILobCopy2(svchp, errhp, c2, c1, 10, 2, 1));
 printf("OCILobCopy2: Works! \n");

 /*------------------- LOB Locator Assign ---------------------------*/
 CHECK_ERROR (OCILobLocatorAssign(svchp, errhp, c1, &c2));
 printf("OCILobLocatorAssign: Works! \n");

 /* Free the LOB descriptors which were allocated */
 OCIDescriptorFree((dvoid *) c1, (ub4) SQLT_CLOB);
 OCIDescriptorFree((dvoid *) c2, (ub4) SQLT_CLOB);

 CHECK_ERROR (OCIHandleFree((dvoid *) stmthp, OCI_HTYPE_STMT));
}

• Efficiently Reading LOB Data in OCI
This section describes how to read the contents of a LOB into a buffer.

• Efficiently Writing LOB Data in OCI
This section describes how to write the contents of a buffer to a LOB.

Chapter 8
OCI API for LOBs

8-25

8.4.1 Efficiently Reading LOB Data in OCI
This section describes how to read the contents of a LOB into a buffer.

Streaming Read in OCI

The most efficient way to read large amounts of LOB data is to use OCILobRead2() with the
streaming mechanism enabled using polling or callback. To do so, specify the starting point of
the read using the offset parameter as follows:

ub8 char_amt = 0;
ub8 byte_amt = 0;
ub4 offset = 1000;

OCILobRead2(svchp, errhp, locp, &byte_amt, &char_amt, offset, bufp, bufl,
 OCI_ONE_PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byte_amt parameter after each
OCILobRead2() call to see how many bytes were read into the buffer because the buffer may
not be entirely full.

When using callbacks, the lenp parameter, which is input to the callback, indicates how many
bytes are filled in the buffer. Be sure to check the lenp parameter during your callback
processing because the entire buffer may not be filled with data.

See Also:

Oracle Call Interface Programmer's Guide

LOB Array Read

This section describes how to read LOB data for multiple locators in one round trip, using
OCILobArrayRead().

For an OCI application example, assume that the program has a prepared SQL statement
such as:

SELECT lob1 FROM lob_table;

where lob1 is the LOB column and lob_array is an array of define variables corresponding to
a LOB column:

OCILobLocator * lob_array[10];

...
 for (i=0; i<10, i++) /* initialize array of locators */
 lob_array[i] = OCIDescriptorAlloc(..., OCI_DTYPE_LOB, ...);

...

OCIDefineByPos(..., 1, (dvoid *) lob_array, ... SQLT_CLOB, ...);

/* Execute the statement with iters = 10 to do an array fetch of 10 locators. */
OCIStmtExecute (<service context>, <statement handle>, <error handle>,
 10, /* iters */
 0, /* row offset */

Chapter 8
OCI API for LOBs

8-26

 NULL, /* snapshot IN */
 NULL, /* snapshot out */
 OCI_DEFAULT /* mode */);
...

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 1000; /* Single byte fixed width char set. */
 }

/* Read the 1st 1000 characters for all 10 locators in one
 * round trip. Note that offset and amount need not be
 * same for all the locators. */

OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_ONE_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);/* character set form */

 ...

for (i=0; i<10; i++)
 {
 /* Fill bufp[i] buffers with data to be written */
 strncpy (bufp[i], "Test Data------", 15);
 bufl[i] = 1000;
 offset[i] = 50;
 char_amtp[i] = 15; /* Single byte fixed width char set. */
 }

/* Write the 15 characters from offset 50 to all 10
 * locators in one round trip. Note that offset and
 * amount need not be same for all the locators. */
 */

OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_ONE_PIECE, /* piece information */

Chapter 8
OCI API for LOBs

8-27

 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);/* character set form */
...

LOB Array Read with Streaming

LOB array APIs can be used to read/write LOB data in multiple pieces. This can be done by
using polling method or a callback function.Here data is read/written in multiple pieces
sequentially for the array of locators. For polling, the API would return to the application after
reading/writing each piece with the array_iter parameter (OUT) indicating the index of the
locator for which data is read/written. With a callback, the function is called after reading/writing
each piece with array_iter as IN parameter.

Note that:

• It is possible to read/write data for a few of the locators in one piece and read/write data for
other locators in multiple pieces. Data is read/written in one piece for locators which have
sufficient buffer lengths to accommodate the whole data to be read/written.

• Your application can use different amount value and buffer lengths for each locator.

• Your application can pass zero as the amount value for one or more locators indicating
pure streaming for those locators. In the case of reading, LOB data is read to the end for
those locators. For writing, data is written until OCI_LAST_PIECE is specified for those
locators.

LOB Array Read with Callback

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte buffer size.
Each locator needs 10 pieces to read all the data. The callback function is called 100 (10*10)
times to return the pieces sequentially.

/* Fetch the locators */
...
 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 ctx, /* callback context */
 cbk_read_lob, /* callback function */

Chapter 8
OCI API for LOBs

8-28

 0, /* character set ID - default */
 SQLCS_IMPLICIT);
...
/* Callback function for LOB array read. */
sb4 cbk_read_lob(dvoid *ctxp, ub4 array_iter, CONST dvoid *bufxp, oraub8 len,
 ub1 piece, dvoid **changed_bufpp, oraub8 *changed_lenp)
{
 static ub4 piece_count = 0;
 piece_count++;
 switch (piece)
 {
 case OCI_LAST_PIECE:
 /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece(last piece) for %dth locator \n\n",
 piece_count, array_iter);
 piece_count = 0;
 break;
 case OCI_FIRST_PIECE:
 /*--- buffer processing code goes here ---*/
 (void) printf("callback read the 1st piece for %dth locator\n",
 array_iter);
 /* --Optional code to set changed_bufpp and changed_lenp if the buffer needs
 to be changed dynamically --*/
 break;
 case OCI_NEXT_PIECE:
 /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece for %dth locator\n",
 piece_count, array_iter);
 /* --Optional code to set changed_bufpp and changed_lenp if the buffer
 must be changed dynamically --*/
 break;
 default:
 (void) printf("callback read error: unkown piece = %d.\n", piece);
 return OCI_ERROR;
 }
 return OCI_CONTINUE;
}
...

LOB Array Read in Polling Mode

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte buffer size.
Each locator needs 10 pieces to read the complete data. OCILobArrayRead() must be called
100 (10*10) times to fetch all the data.First we call OCILobArrayRead() with OCI_FIRST_PIECE
as piece parameter. This call returns the first 1K piece for the first locator.Next
OCILobArrayRead() is called in a loop until the application finishes reading all the pieces for
the locators and returns OCI_SUCCESS. In this example it loops 99 times returning the pieces for
the locators sequentially.

/* Fetch the locators */
...

 /* array_iter parameter indicates the number of locators in the array read.
 * It is an IN parameter for the 1st call in polling and is ignored as IN
 * parameter for subsequent calls. As OUT parameter it indicates the locator
 * index for which the piece is read.
 */

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];

Chapter 8
OCI API for LOBs

8-29

 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 /* First piece for the first locator is read here.
 * bufp[0] => Buffer pointer into which data is read.
 * char_amtp[0] => Number of characters read in current buffer
 *
 */

 While (st == OCI_NEED_DATA)
 {
 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is read. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on.
 *
 * lob_array[array_iter - 1]=> Lob locator for which data is read.
 * bufp[array_iter - 1] => Buffer pointer into which data is read.
 * char_amtp[array_iter - 1] => Number of characters read in current buffer
 */

...
 /* Consume the data here */
...
 }

Chapter 8
OCI API for LOBs

8-30

8.4.2 Efficiently Writing LOB Data in OCI
This section describes how to write the contents of a buffer to a LOB.

Streaming Write in OCI

The most efficient way to write large amounts of LOB data is to use OCILobWrite2() with the
streaming mechanism enabled, and using polling or a callback. If you know how much data is
written to the LOB, then specify that amount when calling OCILobWrite2(). This ensures that
LOB data on the disk is contiguous. Apart from being spatially efficient, the contiguous
structure of the LOB data makes reads and writes in subsequent operations faster.

LOB Array Write with Callback

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer size. A
total of 100 pieces must be written (10 pieces for each locator). The first piece is provided by
the OCILobArrayWrite() call. The callback function is called 99 times to get the data for
subsequent pieces to be written.

/* Fetch the locators */
...

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 ctx, /* callback context */
 cbk_write_lob /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

...

/* Callback function for LOB array write. */
sb4 cbk_write_lob(dvoid *ctxp, ub4 array_iter, dvoid *bufxp, oraub8 *lenp,
 ub1 *piecep, ub1 *changed_bufpp, oraub8 *changed_lenp)
{
 static ub4 piece_count = 0;
 piece_count++;

Chapter 8
OCI API for LOBs

8-31

 printf (" %dth piece written for %dth locator \n\n", piece_count, array_iter);

 /*-- code to fill bufxp with data goes here. *lenp should reflect the size and
 * should be less than or equal to MAXBUFLEN -- */
 /* --Optional code to set changed_bufpp and changed_lenp if the buffer must
 * be changed dynamically --*/

 if (this is the last data buffer for current locator)
 *piecep = OCI_LAST_PIECE;
 else if (this is the first data buffer for the next locator)
 *piecep = OCI_FIRST_PIECE;
 piece_count = 0;
 else
 *piecep = OCI_NEXT_PIECE;

 return OCI_CONTINUE;
 }
...

LOB Array Write in Polling Mode

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer size.
OCILobArrayWrite() has to be called 100 (10 times 10) times to write all the data. The function
is used in a similar manner to OCILobWrite2().

/* Fetch the locators */
...

/* array_iter parameter indicates the number of locators in the array read.
 * It is an IN parameter for the 1st call in polling and is ignored as IN
 * parameter for subsequent calls. As an OUT parameter it indicates the locator
 * index for which the piece is written.
 */

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char_amtp[10];
oraub8 offset[10];
sword st;
int i, j;

for (i=0; i<10; i++)
{
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 /* Fill bufp here. */
...
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
}

for (i = 1; i <= 10; i++)
{
 /* Fill up bufp[i-1] here. The first piece for ith locator would be written from
 bufp[i-1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */

Chapter 8
OCI API for LOBs

8-32

 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 for (j = 2; j < 10; j++)
 {
 /* Fill up bufp[i-1] here. The jth piece for ith locator would be written from
 bufp[i-1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is being written. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on. Here i = array_iter.
 *
 * lob_array[array_iter - 1] => Lob locator for which data is written.
 * bufp[array_iter - 1] => Buffer pointer from which data is written.
 * char_amtp[array_iter - 1] => Number of characters written in
 * the piece just written
 */
}

/* Fill up bufp[i-1] here. The last piece for ith locator would be written from
 bufp[i -1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_LAST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);
}

...

Chapter 8
OCI API for LOBs

8-33

8.5 ODP.NET API for LOBs
Oracle Data Provider for .NET (ODP.NET) is an ADO.NET provider for the Oracle Database.

ODP.NET offers fast and reliable access to Oracle data and features from any .NET Core
or .NET Framework application. ODP.NET also uses and inherits classes and interfaces
available in the Microsoft .NET Class Library. The ODP.NET supports the following LOBs as
native data types with .NET: BLOB, CLOB, NCLOB, and BFILE.

See Also:

• LOB Support

• Obtaining LOB Data

Table 8-7 ODP.NET methods in OracleClob and OracleBlob classes

Category Function/Procedure Description

Open/Close BeginChunkWrite Open a LOB

EndChunkWrite Close a LOB

IsInChunkWriteMode Check if a LOB is open

Read Operations Length Get the length of the LOB

OptimumChunkSize Get the optimum read/write size

Value Returns the entire LOB data as a
string for CLOB and a byte array
for BLOB

Read Read data from the LOB starting
at the specified offset

Search Return the matching position of a
pattern in a LOB using INSTR

Modify Operations Write Write data to the LOB at a
specified offset

Erase Erase part of a LOB, starting at a
specified offset

SetLength Trim the LOB value to the
specified shorter length

Operations involving multiple
locators

Compare Compare all or part of the value
of two LOBs

IsEqual Check if two LOBs point to the
same LOB data

Append Append a LOB value to another
LOB, or append a byte array,
string, or character array to an
existing LOB

CopyTo Copy all or part of a LOB to
another LOB

Clone Assign LOB locator src to LOB
locator dst

Chapter 8
ODP.NET API for LOBs

8-34

8.6 OCCI API for LOBs
OCCI provides a seamless interface to manipulate objects of user-defined types as C++ class
instances.

Oracle C++ Call Interface (OCCI) is a C++ API for manipulating data in an Oracle database.
OCCI is organized as an easy-to-use set of C++ classes that enable a C++ program to connect
to a database, run SQL statements, insert/update values in database tables, retrieve results of
a query, run stored procedures in the database, and access metadata of database schema
objects.

Oracle C++ Call Interface (OCCI) is designed so that you can use OCI and OCCI together to
build applications.

The OCCI API provides the following advantages over JDBC and ODBC:

• OCCI encompasses more Oracle functionality than JDBC. OCCI provides all the
functionality of OCI that JDBC does not provide.

• OCCI provides compiled performance. With compiled programs, the source code is written
as close to the computer as possible. Because JDBC is an interpreted API, it cannot
provide the performance of a compiled API. With an interpreted program, performance
degrades as each line of code must be interpreted individually into code that is close to the
computer.

• OCCI provides memory management with smart pointers. You do not have to be
concerned about managing memory for OCCI objects. This results in robust higher
performance application code.

• Navigational access of OCCI enables you to intuitively access objects and call methods.
Changes to objects persist without writing corresponding SQL statements. If you use the
client side cache, then the navigational interface performs better than the object interface.

• With respect to ODBC, the OCCI API is simpler to use. Because ODBC is built on the C
language, OCCI has all the advantages C++ provides over C. Moreover, ODBC has a
reputation as being difficult to learn. The OCCI, by contrast, is designed for ease of use.

You can use OCCI to perform random and piecewise operations on LOBs, which means that
you specify the offset or amount of the operation to read or write a part of the LOB value.

OCCI provides these classes that allow you to use different types of LOB instances as objects
in your C++ application:

• Clob class to access and modify data stored in persistent CLOBs and NCLOBs

• Blob class to access and modify data stored in persistent BLOBs

See Also:

Syntax information on these classes and details on OCCI in general is available in
theOracle C++ Call Interface Programmer's Guide.

Clob Class

The Clob driver implements a CLOB object using an SQL LOB locator. This means that a CLOB
object contains a logical pointer to the SQL CLOB data rather than the data itself.

Chapter 8
OCCI API for LOBs

8-35

The CLOB interface provides methods for getting the length of an SQL CLOB value, for
materializing a CLOB value on the client, and getting a substring. Methods in the ResultSet and
Statement interfaces such as getClob() and setClob() allow you to access SQL CLOB values.

Blob Class

Methods in the ResultSet and Statement interfaces, such as getBlob() and setBlob(), allow
you to access SQL BLOB values. The Blob interface provides methods for getting the length of
a SQL BLOB value, for materializing a BLOB value on the client, and for extracting a part of the
BLOB.

Fixed-Width Character Set Rules

In OCCI, for fixed-width client-side character sets, these rules apply:

• Clob: offset and amount parameters are always in characters

• Blob: offset and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

• Offset parameter: Regardless of whether the client-side character set is varying-width, the
offset parameter is always as follows:

– Clob(): in characters

– Blob(): in bytes

• Amount parameter: The amount parameter is always as indicated:

– Clob: in characters, when referring to a server-side LOB

– Blob: in bytes, when referring to a client-side buffer

• length(): Regardless of whether the client-side character set is varying-width, the output
length is as follows:

– Clob.length(): in characters

– Blob.length(): in bytes

• Clob.read() and Blob.read(): With client-side character set of varying-width, CLOBs and
NCLOBs:

– Input amount is in characters. Input amount refers to the number of characters to read
from the server-side CLOB or NCLOB.

– Output amount is in bytes. Output amount indicates how many bytes were read into
the OCCI buffer parameter, buffer.

• Clob.write() and Blob.write(): With client-side character set of varying-width, CLOBs and
NCLOBs:

– Input amount is in bytes. Input amount refers to the number of bytes of data in the
OCCI input buffer, buffer.

– Output amount is in characters. Output amount refers to the number of characters
written into the server-side CLOB or NCLOB.

• Amount Parameter for Other OCCI Operations: For the OCCI LOB operations
Clob.copy(), Clob.erase(), Clob.trim() irrespective of the client-side character set, the
amount parameter is in characters for CLOBs and NCLOBs. All these operations refer to the
amount of LOB data on the server.

Chapter 8
OCCI API for LOBs

8-36

See also:

Oracle Database Globalization Support Guide

Table 8-8 OCCI Methods for LOBs

Category Function/Procedure Description

Sanity Checking Clob/Blob.isInitialized Checks whether a LOB locator is
initialized.

Open/Close Clob/Blob.Open() Open a LOB

Clob/Blob.isOpen() Check if a LOB is open

Clob/Blob.Close() Close the LOB

Read Operations Blob/Clob.length() Get the length of the LOB

Blob/Clob.getChunkSize() Get the optimum read or write
size

Blob/Clob.read() Read data from the LOB starting
at the specified offset

Clob.getCharSetId() Return the character set ID of a
LOB

Clob.getCharSetForm() Return the character set form of a
LOB.

Modify Operations Blob/Clob.write() Write data to the LOB at a
specified offset

Blob/Clob.trim() Trim the LOB value to the
specified shorter length

Operations involving multiple
locators

Clob/Blob.operator ==
and !=

Checks whether two LOB
locators refer to the same LOB.

Blob/Clob.append() Append a LOB value to another
LOB

Blob/Clob.copy() Copy all or part of a LOB to
another LOB, or load from a
BFILE into a LOB

Clob/Blob.operator = Assign one LOB to another

Operations specific to securefiles Blob/Clob.getOptions() Returns options (deduplication,
compression, encryption) for
SecureFiles.

Blob/Clob.setOptions() Sets LOB features (deduplication
and compression) for SecureFiles

Blob/Clob.getContentType() Gets the content string for a
SecureFiles

Blob/Clob.setContentType() Sets a content string in a
SecureFiles

8.7 Pro*C/C++ and Pro*COBOL API for LOBs
This section describes the mapping of Pro*C/C++ and Pro*COBOL locators to locator pointers
to access a LOB value.

Embedded SQL statements enable you to access data stored in BLOBs, CLOBs, and NCLOBs.

Chapter 8
Pro*C/C++ and Pro*COBOL API for LOBs

8-37

See Also:

Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer's Guide for detailed
documentation, including syntax, host variables, host variable types and example
code.

Unlike locators in PL/SQL, locators in Pro*C/C++ and Pro*COBOL are mapped to locator
pointers which are then used to refer to the LOB value. To successfully complete an embedded
SQL LOB statement you must do the following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the database
tablespaces or external file system before you run the statement.

2. SELECT a LOB locator into a LOB locator pointer variable.

3. Use this variable in the embedded SQL LOB statement to access and manipulate the LOB
value.

Table 8-9 Pro*C/C++ and Pro*COBOL Embedded SQL Statements for LOBs

Category Function/Procedure Description

Open/Close OPEN Open a LOB

DESCRIBE[ISOPEN] Check is a LOB is open

CLOSE Close the LOB

Read Operations DESCRIBE[LENGTH] Get the length of the LOB

DESCRIBE[CHUNKSIZE] Get the optimum read or write
size

READ Read data from the LOB starting
at a specified offset

Modify Operations WRITE Write data to the LOB at a
specified offset

WRITE APPEND Write data to the end of the LOB

ERASE Erase part of a LOB, starting at a
specified offset

TRIM Trim the LOB value to the
specified shorter length

Operations involving multiple
locators

APPEND Append a LOB value to another
LOB

COPY Copy all or part of a LOB to
another LOB

ASSIGN Assign one LOB to another

LOAD FROM FILE Load BFILE data into a LOB

Chapter 8
Pro*C/C++ and Pro*COBOL API for LOBs

8-38

9
Distributed LOBs

This section describes the ways in which you can work with LOB data in remote tables.

• Working with Remote LOBs in SQL and PL/SQL
This section describes the SQL and PL/SQL functions that are supported on remote LOBs.

• Using the Data Interface on Remote LOBs
The data interface enables you to bind and define a CHARACTER buffer for a CLOB column
and a RAW buffer for a BLOB column. This interface is supported for remote LOB columns
too.

• Working with Remote Locators
You can select a persistent LOB locator from a remote table into a local variable and this
can be done in any programmatic interface like PL/SQL, JDBC or OCI. The remote
columns can be of type BLOB, CLOB or NCLOB.

See Also:

Sharding with LOBs

9.1 Working with Remote LOBs in SQL and PL/SQL
This section describes the SQL and PL/SQL functions that are supported on remote LOBs.

SQL Functions

All the SQL built-in functions and user-defined functions that are supported on local LOBs and
BFILEs, are also supported on remote LOBs and BFILEs, as long as the final value returned
by the nested functions is not a LOB type. This includes functions for remote persistent and
temporary LOBs and for BFILEs.

Most of the examples in the following sections use print_media table. Following is the
structure of the table:

9-1

Built-in SQL functions, which are executed on a remote site, can be part of any SQL statement,
like SELECT, INSERT, UPDATE, and DELETE. For example:

SELECT LENGTH(ad_sourcetext) FROM print_media@remote_site -- CLOB
SELECT LENGTH(ad_fltextn) FROM print_media@remote_site; -- NCLOB
SELECT LENGTH(ad_composite) FROM print_media@remote_site; -- BLOB
SELECT product_id from print_media@remote_site WHERE LENGTH(ad_sourcetext) >
3;

UPDATE print_media@remote_site SET product_id = 2 WHERE LENGTH(ad_sourcetext)
> 3;

SELECT TO_CHAR(foo@dbs2(...)) FROM dual@dbs2;
-- where foo@dbs2 returns a temporary LOB

Chapter 9
Working with Remote LOBs in SQL and PL/SQL

9-2

PL/SQL functions

Built-in and user-defined PL/SQL functions that are executed on the remote site and operate
on remote LOBs and BFILEs are allowed, as long as the final value returned by nested
functions is not a LOB.

SELECT product_id FROM print_media@dbs2 WHERE foo@dbs2(ad_sourcetext, 'aa') >
0;
-- foo is a user-define function returning a NUMBER

DELETE FROM print_media@dbs2 WHERE DBMS_LOB.GETLENGTH@dbs2(ad_graphic) = 0;

Restrictions on Remote User Defined Functions

The SQL and PL/SQL functions fall under the following non-comprehensive list of categories:

• SQL functions that are not supported on LOBs
The SQL functions like the DECODE function, which are not supported for LOBs, are not
supported on remote LOBs as well.

• Functions that accept exactly one LOB argument (where all the other arguments are of
non-LOB data types) and does not return a LOB
The functions, like the LENGTH function, are supported. For example:

SELECT LENGTH(ad_composite) FROM print_media@remote_site;
SELECT LENGTH(ad_header.logo) FROM print_media@remote_site; -- LOB in
object
SELECT product_id from print_media@remote_site WHERE LENGTH(ad_sourcetext)
> 3;

• Functions that return a LOB

These functions may return the original LOB or produce a temporary LOB. These functions
can be performed on the remote site, as long as the result returned to the local site is not a
LOB.

– Functions returning a temporary LOB are: REPLACE, SUBSTR, CONCAT, ||, TRIM, LTRIM,
RTRIM, LOWER, UPPER, NLS_LOWER, NLS_UPPER, LPAD, and RPAD.

– Functions returning the original LOB locator are: NVL, DECODE, and CASE.

For example, the following statements are supported:

SELECT TO_CHAR(CONCAT(ad_sourcetext, ad_sourcetext)) FROM
print_media@remote_site;
SELECT TO_CHAR(SUBSTR(ad_fltextnfs, 1, 3)) FROM print_media@remote_site;

But the following statements are not supported:

SELECT CONCAT(ad_sourcetext, ad_sourcetext) FROM print_media@remote_site;
SELECT SUBSTR(ad_sourcetext, 1, 3) FROM print_media@remote_site;

• Functions that take in more than one LOB argument:

These are: INSTR, LIKE, REPLACE, CONCAT, ||, SUBSTR, TRIM, LTRIM, RTRIM, LPAD, and RPAD.
All these functions are relevant only for CLOBs and NCLOBs.

Chapter 9
Working with Remote LOBs in SQL and PL/SQL

9-3

These functions are supported only if all the LOB arguments are in the same dblink, and
the value returned is not a LOB. For example, the following is supported:

SELECT TO_CHAR(CONCAT(ad_sourcetext, ad_sourcetext)) FROM
print_media@remote_site; -- CLOB
SELECT TO_CHAR(CONCAT(ad_fltextn, ad_fltextn)) FROM
print_media@remote_site; -- NCLOB

But the following is not supported

SELECT TO_CHAR(CONCAT(a.ad_sourcetext, b.ad_sourcetext)) FROM
print_media@db1 a, print_media@db2 b WHERE a.product_id = b.product_id;

• PLSQL functions operating on LOBs:
A function in one dblink cannot operate on LOB data in another dblink. For example, the
following statement is not supported:

SELECT a.product_id FROM print_media@dbs1 a, print_media@dbs2 b WHERE
CONTAINS@dbs1(b.ad_sourcetext, 'aa') >0;

• Multiple LOBs in a query block:
One query block cannot contain tables and functions at different dblinks. For example, the
following statement is not supported

SELECT a.product_id FROM print_media@dbs2 a, print_media@dbs3 b
 WHERE CONTAINS@dbs2(a.ad_sourcetext, 'aa') > 0 AND
 foo@dbs3(b.ad_sourcetext) > 0;
-- foo is a user-defined function in dbs3

9.2 Using the Data Interface on Remote LOBs
The data interface enables you to bind and define a CHARACTER buffer for a CLOB column and a
RAW buffer for a BLOB column. This interface is supported for remote LOB columns too.

The advantage of using the data interface over using LOB locators is that it makes only one
round-trip to the remote server to fetch the LOB data. If used in as part of an array bind or
define, it will use only one round-trip for the entire array operation.

The examples discussed in the book use the print_media table created in the following two
schemas: dbs1 and dbs2. The CLOB column of the print_media table used in the examples
shown is ad_finaltext. The examples provided for PL/SQL, OCI, and Java in the following
sections use binds and defines for this one column, but multiple columns can also be
accessed. Following is the functionality supported:

• You can bind and define a CLOB as VARCHAR2 or LONG, and a BLOB as a RAW or a LONG or a
RAW.

• Array binds and defines are supported.

• PL/SQL

• JDBC

Chapter 9
Using the Data Interface on Remote LOBs

9-4

• OCI

• Remote LOBs

PL/SQL
This section describes how to use the remote data interface with LOBs in PL/SQL.

The data interface only supports data of size less than 32KB in PL/SQL. The following snippet
shows a PL/SQL example:

CONNECT pm/pm
declare
 my_ad varchar(6000) := lpad('b', 6000, 'b');
BEGIN
 INSERT INTO print_media@dbs2(product_id, ad_id, ad_finaltext)
 VALUES (10000, 10, my_ad);
 -- Reset the buffer value
 my_ad := 'a';
 SELECT ad_finaltext INTO my_ad FROM print_media@dbs2
 WHERE product_id = 10000;
END;
/

If ad_finaltext were a BLOB column instead of a CLOB, my_ad has to be of type RAW. If the LOB
is greater than 32KB - 1 in size, then PL/SQL raises a truncation error and the contents of the
buffer are undefined.

JDBC
This section demonstrates how to use the remote data interface with LOBs in JDBC.

The following code snippets work with all JDBC drivers:

Bind:

This is for the non-streaming mode:

...
String sql = "insert into print_media@dbs2 (product_id, ad_id, ad_final_text)" +
 " values (:1, :2, :3)";
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, 2);
 pstmt.setInt(2, 20);
 pstmt.setString(3, "Java string");
 int rows = pstmt.executeUpdate();
...

Note: Oracle supports the non-streaming mode for strings of size up to 2 GB. However, the
memory size of your computer may be a limiting factor.

For the streaming mode, the same code as the preceding works, except that the setString()
statement is replaced by one of the following:

pstmt.setCharacterStream(3, new LabeledReader(), 1000000);
pstmt.setAsciiStream(3, new LabeledAsciiInputStream(), 1000000);

Note: You can use the streaming interface to insert Gigabyte sized character and binary data
into a LOB column.

Chapter 9
Using the Data Interface on Remote LOBs

9-5

Here, LabeledReader() and LabeledAsciiInputStream() produce character and ASCII
streams respectively. If ad_finaltext were a BLOB column instead of a CLOB, then the
preceding example works if the bind is of type RAW:

pstmt.setBytes(3, <some byte[] array>);

pstmt.setBinaryStream(3, new LabeledInputStream(), 1000000);

Here, LabeledInputStream() produces a binary stream.

Define:

For non-streaming mode:

OracleStatement stmt = (OracleStatement)(conn.createStatement());
 stmt.defineColumnType(1, Types.VARCHAR);
 ResultSet rst = stmt.executeQuery("select ad_finaltext from print_media@dbs2");
 while(rst.next())
 {
 String s = rst.getString(1);
 System.out.println(s);
 }

Note: If the LOB size is greater than 32767 bytes, the data is truncated and no error is thrown.

For streaming mode:

OracleStatement stmt = (OracleStatement)(conn.createStatement());
 stmt.defineColumnType(1, Types.LONGVARCHAR);
 ResultSet rs = stmt.executeQuery("select ad_finaltext from print_media@dbs2");
 while(rs.next()) {
 Reader reader = rs.getCharacterStream(1);
 int data = 0;
 data = reader.read();
 while(-1 != data){
 System.out.print((char)(data));
 data = reader.read();
 }
 reader.close();
 }

Note: Specifying the datatype as LONGVARCHAR lets you select the entire LOB. If the define type
is set as VARCHAR instead of LONGVARCHAR, the data will be truncated at 32k.

If ad_finaltext were a BLOB column instead of a CLOB, then the preceding examples work if
the define is of type LONGVARBINARY:

...
 OracleStatement stmt = (OracleStatement)conn.createStatement();

 stmt.defineColumnType(1, Types.INTEGER);
 stmt.defineColumnType(2, Types.LONGVARBINARY);

 ResultSet rset = stmt.executeQuery("SELECT ID, LOBCOL FROM LOBTAB@MYSELF");

 while(rset.next())
 {
 /* using getBytes() */
 /*
 byte[] b = rset.getBytes("LOBCOL");
 System.out.println("ID: " + rset.getInt("ID") + " length: " + b.length);
 */

Chapter 9
Using the Data Interface on Remote LOBs

9-6

 /* using getBinaryStream() */
 InputStream byte_stream = rset.getBinaryStream("LOBCOL");
 byte [] b = new byte [100000];
 int b_len = byte_stream.read(b);
 System.out.println("ID: " + rset.getInt("ID") + " length: " + b_len);

 byte_stream.close();
 }
...

OCI
This section demonstrates how to use the remote data interface with LOBs in OCI.

The data interface only supports data of size less than 2 gigabytes (the maximum value
possible of a variable declared as sb4) for OCI. The following pseudocode can be enhanced to
be a part of an OCI program:

...
text *sql = (text *)"insert into print_media@dbs2
 (product_id, ad_id, ad_finaltext)
 values (:1, :2, :3)";
OCIStmtPrepare(...);
OCIBindByPos(...); /* Bind data for positions 1 and 2
 * which are independent of LOB */
OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) charbuf1, (sb4) len_charbuf1, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, 0, 0, OCI_DEFAULT);
OCIStmtExecute(...);

...

text *sql = (text *)"select ad_finaltext from print_media@dbs2
 where product_id = 10000";
OCIStmtPrepare(...);
OCIDefineByPos(stmthp, &dfnhp[2], errhp, (ub4) 1,
 (dvoid *) charbuf2, (sb4) len_charbuf2, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI_DEFAULT);
OCIStmtExecute(...);
...

For a BLOB column, you must use the SQLT_BIN type. For example, if you define the
ad_finaltext column as a BLOB column instead of a CLOB column, then you must bind and
define the column data using the SQLT_BIN type. If the LOB is greater than 2GB - 1 bytes in
size, then OCI raises a truncation error and the contents of the buffer are undefined.

Remote LOBs
This section discusses the restrictions on the usage of Data Interface on Remote LOBs.

Certain syntax is not supported for remote LOBs.

• Queries involving more than one database are not supported:

SELECT t1.lobcol, a2.lobcol FROM t1, t2.lobcol@dbs2 a2 WHERE
LENGTH(t1.lobcol) = LENGTH(a2.lobcol);

Neither is this query (in a PL/SQL block):

SELECT t1.lobcol INTO varchar_buf1 FROM t1@dbs1
UNION ALL
SELECT t2.lobcol INTO varchar_buf2 FROM t2@dbs2;

Chapter 9
Using the Data Interface on Remote LOBs

9-7

• Only binds and defines for data going into remote persistent LOB columns are supported,
so that parameter passing in PL/SQL where CHAR data is bound or defined for remote
LOBs is not allowed because this could produce a remote temporary LOB, which are not
supported. These statements all produce errors:

SELECT foo() INTO varchar_buf FROM table1@dbs2; -- foo returns a LOB

SELECT foo()@dbs INTO char_val FROM DUAL; -- foo returns a LOB

SELECT XMLType().getclobval INTO varchar_buf FROM table1@dbs2;
• If the remote object is a view such as

CREATE VIEW v AS SELECT foo() a FROM ... ; -- foo returns a LOB
/* The local database then tries to get the CLOB data and returns an error */
SELECT a INTO varchar_buf FROM v@dbs2;

This returns an error because it produces a remote temporary LOB, which is not
supported.

• RETURNING INTO does not support implicit conversions between CHAR and CLOB.

• PL/SQL parameter passing is not allowed where the actual argument is a LOB type and
the remote argument is a VARCHAR2, NVARCHAR2, CHAR, NCHAR, or RAW.

See Also:

• Oracle Database JDBC Developer's Guide

• Data Interface for LOBs

9.3 Working with Remote Locators
You can select a persistent LOB locator from a remote table into a local variable and this can
be done in any programmatic interface like PL/SQL, JDBC or OCI. The remote columns can be
of type BLOB, CLOB or NCLOB.

The following SQL statement is the basis for all the examples with remote LOB locator in this
chapter.

CREATE TABLE lob_tab (c1 NUMBER, c2 CLOB);

In the following example, the table lob_tab (with columns c2 of type CLOB and c1 of type
number) defined in the remote database is accessible using database link db2 and a local CLOB
variable lob_var1.

SELECT c2 INTO lob_var1 FROM lob_tab@db2 WHERE c1=1;
SELECT c2 INTO lob_var1 FROM lob_tab@db2 WHERE c1=1 for update;

Chapter 9
Working with Remote Locators

9-8

In PL/SQL, the function dbms_lob.isremote can be used to check if a particular LOB belongs
to a remote table. Similarly, in OCI, you can use the OCI_ATTR_LOB_REMOTE attribute of
OCILobLocator to check if a particular LOB belongs to a remote table. For example,

IF(dbms_lob.isremote(lob_var1)) THEN
dbms_output.put_line(‘LOB locator is remote)
ENDIF;

• Using Local and Remote Locators as Bind with Queries and DML on Remote Tables
This section discusses the bind values for queries and DML statements.

• Using Remote Locator
This section demonstrates the usage of remote locator in PL/SQL and with OCILOB API
with examples.

• Restrictions when using remote LOB locators
Remote LOB locators have the following restrictions:

See Also:

• ISREMOTE Function

• OCI_ATTR_LOB_REMOTE Attribute

9.3.1 Using Local and Remote Locators as Bind with Queries and DML on
Remote Tables

This section discusses the bind values for queries and DML statements.

For the Queries and DMLs (INSERT, UPDATE, DELETE) with bind values, the following four cases
are possible. The first case involves local tables and locators and is the standard LOB
functionality, while the other three cases are part of the distributed LOBs functionality and have
restrictions listed at the end of this section.

• Local table with local locator as bind value.

• Local table with remote locator as bind value

• Remote table with local locator as bind value

• Remote table with remote locator as bind value

Queries of the following form which use remote lob locator as bind value are supported:

SELECT name FROM lob_tab@db2 WHERE length(c1)=length(:lob_v1);
In the above query, c1 is an LOB column and lob_v1 is a remote locator.

DMLs of the following forms using a remote LOB locator will be supported. Here, the bind
values can be local or remote persistent LOB locators.

UPDATE lob_tab@db2 SET c1=:lob_v1;
INSERT into lob_tab@db2 VALUES (:1, :2);

Chapter 9
Working with Remote Locators

9-9

You can pass a remote locator to most built-in SQL functions such as LENGTH, INSTR, SUBSTR,
and UPPER. For example:

Var lob1 CLOB;
BEGIN
 SELECT c2 INTO lob1 FROM lob_tab@db2 WHERE c1=1;
END;
/
SELECT LENGTH(:lob1) FROM DUAL;

Note:

DMLs with returning clause are not supported on remote tables for both scalar and
LOB columns.

9.3.2 Using Remote Locator
This section demonstrates the usage of remote locator in PL/SQL and with OCILOB API with
examples.

• PL/SQL

• OCILOB API

PL/SQL
A remote locator can be passed as a parameter to built in PL/SQL functions like LENGTH, INSTR,
SUBSTR, UPPER and so on which accepts LOB as input. For example,

DECLARE
 substr_data VARCHAR2(4000);
 remote_loc CLOB;
BEGIN
 SELECT c2 into remote_loc
 FROM lob_tab@db2 WHERE c1=1;
 substr_data := substr(remote_loc, position, length)
END;

All DBMS_LOB APIs other than the APIs targeted for BFILEs support operations on remote LOB
locators.

The following example shows how to pass remote locator as input to dbms_lob operations.

DECLARE
 lob CLOB;
 buf VARCHAR2(120) := 'TST';
 amt NUMBER(2);
 len NUMBER(2);
BEGIN
 amt :=30;

Chapter 9
Working with Remote Locators

9-10

 SELECT c2 INTO lob FROM lob_tab@db2 WHERE c1=3 FOR UPDATE;
 DBMS_LOB.WRITE(lob, amt, 1, buf);
 amt :=30;
 DBMS_LOB.READ(lob, amt, 1, buf);
 len := DBMS_LOB.GETLENGTH(lob);
 DBMS_OUTPUT.PUT_LINE(buf);
 DBMS_OUTPUT.PUT_LINE(amt);
 DBMS_OUTPUT.PUT_LINE('get length output = ' || len);
END;
/

OCILOB API
Most OCILOB APIs support operations on remote LOB locators. The following list of OCILOB
functions returns an error when a remote LOB locator is passed to them:

• OCILobLocatorAssign
• OCILobArrayRead()
• OCILobArrayWrite()
• OCILobLoadFromFile2()
The following example shows how to pass a remote locator to OCILOB API.

void select_read_remote_lob()
{
 text *select_sql = (text *)"SELECT c2 lob_tab@dbs1 where c1=1";
 ub4 amtp = 10;
 ub4 nbytes = 0;
 ub4 loblen=0;
 OCILobLocator * one_lob;
 text strbuf[40];

 /* initialize single locator */
 OCIDescriptorAlloc(envhp, (dvoid **) &one_lob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0)

 OCIStmtPrepare(stmthp, errhp, select_sql, (ub4)strlen((char*)select_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIDefineByPos(stmthp, &defp, errhp, (ub4) 1,
 (dvoid *) &one_lob,
 (sb4) -1,
 (ub2) SQLT_CLOB,
 (dvoid *) 0, (ub2 *) 0,
 (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* fetch the remote locator into the local variable one_lob */
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *)0,
 (OCISnapshot *)0, OCI_DEFAULT);

 /* Get the length of the remote LOB */
 OCILobGetLength(svchp, errhp,
 (OCILobLocator *) one_lob, (ub4 *)&loblen)

Chapter 9
Working with Remote Locators

9-11

 printf("LOB length = %d\n", loblen);

 memset((void*)strbuf, (int)'\0', (size_t)40);

 / * Read the data from the remote LOB */
 OCILobRead(svchp, errhp, one_lob, &amtp,
 (ub4) 1, (dvoid *) strbuf, (ub4)& nbytes, (dvoid *)0,
 (OCICallbackLobRead) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT));
 printf("LOB content = %s\n", strbuf);

}

See Also:

OCI Programmer’s Guide, for the complete list of OCILOB APIs

9.3.3 Restrictions when using remote LOB locators
Remote LOB locators have the following restrictions:

• You cannot select a remote temporary LOB locator into a local variable using the SELECT
statement. For example,

select substr(c2, 3, 1) from lob_tab@db2 where c1=1
The preceding query returns an error.

• Remote LOB functionality is not supported for Index Organized tables (IOT). An attempt to
get a locator from a remote IOT table will result in an error.

• Both the local database and the remote database have to be of Database release 12.2 or
higher version.

• With distributed LOBs functionality, the tables that you use in the from clause or where
clause should be collocated on the same database. If you use emote locators as bind
variables in the where clauses, then they should belong to the same remote database. You
cannot have one locator from one database (say, DB1) and another locator from another
database (say, DB2) to be used as bind variables.

• Collocated tables or locators use the same database link. It is possible to have two
different DB Links pointing to the same database. In the following example, both dblink1
and dblink2 point to the same remote database, but with different authentication methods.
Oracle Database does not support such operations.

INSERT into tab1@dblink1 SELECT * from tab2@dblink2;
• Any DBMS_LOB or OCILob APIs that accept two locators must obtain both the LOB locators

through the same database link. Operations, as specified in the following example, are not
supported:

SELECT ad_sourcetext INTO clob1 FROM print_media@db1 WHERE product_id =
10011;

Chapter 9
Working with Remote Locators

9-12

SELECT ad_sourcetext INTO clob2 FROM print_media@db2 WHERE product_id =
10011;
DBMS_LOB.COPY(clob1, clob2, length(clob2));

• Bind values should be of the same LOB type as the column LOB type. For example, you
must bind NCLOB locators to NCLOB columns and CLOB locators to CLOB columns. Implicit
conversion between NCLOB and CLOB types is not supported in case of remote LOBs.

• DML statements with Array Binds are not supported when the bind operation involves a
remote locator, or if the table involved is a remote table.

• You cannot select a BFILE column from a remote table into a local variable.

Chapter 9
Working with Remote Locators

9-13

10
Performance Guidelines

This section discusses performance guidelines for applications that use LOB data types.

• LOB Performance Guidelines
This section provides performance guidelines while using LOBs through Data Interface or
LOB APIs.

• Moving Data to LOBs in a Threaded Environment
Learn about the recommended procedure to follow while moving data to LOBs in this
section.

• LOB Access Statistics
Three session-level statistics specific to LOBs are available to users: LOB reads, LOB
writes, and LOB writes unaligned.

10.1 LOB Performance Guidelines
This section provides performance guidelines while using LOBs through Data Interface or LOB
APIs.

LOBs can be accessed using the Data Interface or through the LOB APIs.

• All LOBs
Learn about the guidelines to achieve good performance while using LOBs in this section.

• Performance Guidelines While Using Persistent LOBs
In addition to the performance guidelines applicable to all LOBs described earlier, here are
some performace guidelines while using persistent LOBs.

• Temporary LOBs
In addition to the performance guidelines applicable to all LOBs described earlier, following
are some guidelines for using temporary LOBs:

10.1.1 All LOBs
Learn about the guidelines to achieve good performance while using LOBs in this section.

The following guidelines will help you get the the best performance when using LOBs, and
minimize the number of round trips to the server:

• To minimize I/O:

– Read and write data at block boundaries. This optimizes I/O in many ways, e.g., by
minimizing UNDO generation. For temporary LOBs and securefile LOBs, usable data
area of the tablespace block size is returned by the following APIs:
DBMS_LOB.GETCHUNKSIZE in PLSQL, and OCILobGetChunkSize() in OCI. When writing
in a loop, design your code so that one write call writes everything that needs to go in
a database block, thus ensuring that consecutive writes don't write to the same block.

– Read and write large pieces of data at a time.

10-1

– The 2 recommendations above can be combined by reading and writing in large whole
number multiples of database block size returned by the DBMS_LOB.GETCHUNKSIZE/
OCILobGetChunkSize() API.

• To minimize the number of round trips to the server:

– If you know the maximum size of your lob data, and you intend to read or write the
entire LOB, use the Data Interface as outlined below. You can allocate the entire size
of lob as a single buffer, or use piecewise / callback mechanisms.

* For read operations, define the LOB as character/binary type using the
OCIDefineByPos() function in OCI and the DefineColumnType() function in JDBC.

* For write operations, bind the LOB as character/binary type using the
OCIBindByPos() function in OCI and the setString() or setBytes() methods in
JDBC.

– Otherwise, use the LOB APIs as follows:

* Use LOB prefetching for reads. Define the LOB prefetch size such that it can
accommodate majority of the LOB values in the column.

* Use piecewise or callback mechanism while using OCILobRead2 or OCILobWrite2
operations to minimize the roundtrips to the server.

See Also:

Data Interface for Persistent LOBs

10.1.2 Performance Guidelines While Using Persistent LOBs
In addition to the performance guidelines applicable to all LOBs described earlier, here are
some performace guidelines while using persistent LOBs.

• Maximize writing to a single LOB in consecutive calls within a transaction. Frequently
switching across LOBs or having interleaving DML statements prevent caching from
reaching its maximum efficiency.

• Avoid taking savepoints or commiting too frequently. This neutralizes the advantage of
caching while writing.

Note:

Oracle recommends Securefile LOBs for storing persistent LOBs, hence this chapter
focuses only on Securefile storage. All mentions of "LOBs" in the persistent LOB
context is for Securefile LOBs unless otherwise mentioned.

Chapter 10
LOB Performance Guidelines

10-2

10.1.3 Temporary LOBs
In addition to the performance guidelines applicable to all LOBs described earlier, following are
some guidelines for using temporary LOBs:

• Temporary LOBs reside in the PGA memory or the temporary tablespace, depending on
the size. Please ensure that you have a large enough PGA memory and temporary
tablespace for the temporary LOBs used by your application.

• Use a separate temporary tablespace for temporary LOB storage instead of the default
system tablespace. This avoids device contention when copying data from persistent LOBs
to temporary LOBs.

If you use SQL or PL/SQL semantics for LOBs in your applications, then many temporary
LOBs are created silently. Ensure that PGA memory and temporary tablespace for storing
these temporary LOBs is large enough for your applications. In particular, these temporary
LOBs are silently created when you use the following:

– SQL functions on LOBs

– PL/SQL built-in character functions on LOBs

– Variable assignments from VARCHAR2/RAW to CLOBs/BLOBs, respectively.

– Perform a LONG-to-LOB migration

• Free up temporary LOBs returned from SQL queries and PL/SQL programs

In PL/SQL, C (OCI), Java and other programmatic interfaces, SQL query results or
PL/SQL program executions return temporary LOBs for operation/function calls on LOBs.
For example:

SELECT substr(CLOB_Column, 4001, 32000) FROM ...

If the query is executed in PL/SQL, then the returned temporary LOBs are automatically
freed at the end of a PL/SQL program block. You can also explicitly free the temporary
LOBs at any time. In OCI and Java, the returned temporary LOB must be explicitly freed.

Without proper deallocation of the temporary LOBs returned from SQL queries, you may
observe performance degradation.

• In PL/SQL, use NOCOPY to pass temporary LOB parameters by reference whenever
possible.

See Also:

Oracle Database PL/SQL Language Referencefor more information on passing
parameters by reference and parameter aliasing

• Temporary LOBs created with the CACHE parameter set to true move through the buffer
cache and avoid the disk access.

• Oracle provides v$temporary_lobs view to monitor the use of temporary LOBs across all
open sessions. Here is an example:

SQL> select * from v$temporary_lobs;

 SID CACHE_LOBS NOCACHE_LOBS ABSTRACT_LOBS CON_ID
---------- ---------- ------------ ------------- ----------

Chapter 10
LOB Performance Guidelines

10-3

 141 2 3 4 0
 146 0 0 1 0
 148 0 0 1 0

Following is the interpretation of output:

– The SID column is the session ID.

– The CACHE_LOBS column shows that session 141 currently has 2 temporary lobs in the
temporary tablespace with CACHE turned on.

– The NOCACHE_LOBS column shows that session 141 currently has 3 temporary lobs in
the temporary tablespace with CACHE turned off.

– The ABSTRACT_LOBS column shows that session 141 currently has 4 temporary lobs in
the PGA memory.

– The CON_ID column is the pluggable database container ID.

• For optimal performance, temporary LOBs use reference on read, copy on write
semantics. When a temporary LOB locator is assigned to another locator, the physical LOB
data is not copied. Subsequent READ operations using either of the LOB locators refer to
the same physical LOB data. On the first WRITE operation after the assignment, the
physical LOB data is copied in order to preserve LOB value semantics, that is, to ensure
that each locator points to a unique LOB value.

In PL/SQL, reference on read, copy on write semantics are illustrated as follows:

LOCATOR1 BLOB;
LOCATOR2 BLOB;
DBMS_LOB.CREATETEMPORARY (LOCATOR1,TRUE,DBMS_LOB.SESSION);

-- LOB data is not copied in this assignment operation:
LOCATOR2 := LOCATOR;
-- These read operations refer to the same physical LOB copy:
DBMS_LOB.READ(LOCATOR1, ...);
DBMS_LOB.GETLENGTH(LOCATOR2, ...);

-- A physical copy of the LOB data is made on WRITE:
DBMS_LOB.WRITE(LOCATOR2, ...);

In OCI, to ensure value semantics of LOB locators and data, OCILobLocatorAssign() is
used to copy temporary LOB locators and the LOB Data. OCILobLocatorAssign() does
not make a round trip to the server. The physical temporary LOB copy is made when LOB
updates happen in the same round trip as the LOB update API as illustrated in the
following:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOC1, ... TRUE,OCI_DURATION_SESSION);

/* No round-trip is incurred in the following call. */
OCILobLocatorAssign(... LOC1, LOC2);

/* Read operations refer to the same physical LOB copy. */
OCILobRead2(... LOC1 ...)

/* One round-trip is incurred to make a new copy of the
 * LOB data and to write to the new LOB copy.
 */

Chapter 10
LOB Performance Guidelines

10-4

OCILobWrite2(... LOC1 ...)

/* LOC2 does not see the same LOB data as LOC1. */
OCILobRead2(... LOC2 ...)

If LOB value semantics are not intended, then you can use C pointer assignment so that
both locators point to the same data as illustrated in the following code snippet:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOC1, ... TRUE,OCI_DURATION_SESSION);

/* Pointer is copied. LOC1 and LOC2 refer to the same LOB data. */
LOC2 = LOC1;

/* Write to LOC2. */
OCILobWrite2(...LOC2...)

/* LOC1 sees the change made to LOC2. */
OCILobRead2(...LOC1...)

• Use OCI_OBJECT mode for temporary LOBs

To improve the performance of temporary LOBs on LOB assignment, use OCI_OBJECT
mode for OCILobLocatorAssign(). In OCI_OBJECT mode, the database tries to minimize the
number of deep copies to be done. Hence, after OCILobLocatorAssign() is done on a
source temporary LOB in OCI_OBJECT mode, the source and the destination locators point
to the same LOB until any modification is made through either LOB locator.

10.2 Moving Data to LOBs in a Threaded Environment
Learn about the recommended procedure to follow while moving data to LOBs in this section.

There are two possible procedures that you can use to move data to LOBs in a threaded
environment, one of which should be avoided.

Recommended Procedure

The recommended procedure is as follows:

1. INSERT an empty LOB, RETURNING the LOB locator.

2. Move data into the LOB using this locator.

3. COMMIT. This releases the ROW locks and makes the LOB data persistent.

Alternatively, you can use Data Interface to insert character data or raw data directly for the
LOB columns or LOB attributes.

Procedure to Avoid

The following sequence requires a new connection when using a threaded environment,
adversely affects performance, and is not recommended:

1. Create an empty (non-NULL) LOB

2. Perform INSERT using the empty LOB

3. SELECT-FOR-UPDATE of the row just entered

4. Move data into the LOB

Chapter 10
Moving Data to LOBs in a Threaded Environment

10-5

5. COMMIT. This releases the ROW locks and makes the LOB data persistent.

10.3 LOB Access Statistics
Three session-level statistics specific to LOBs are available to users: LOB reads, LOB writes,
and LOB writes unaligned.

Session statistics are accessible through the V$MYSTAT, V$SESSTAT, and V$SYSSTAT dynamic
performance views. To query these views, the user must be granted the privileges
SELECT_CATALOG_ROLE, SELECT ON SYS.V_$MYSTAT view, and SELECT ON SYS.V_$STATNAME
view.

LOB reads is defined as the number of LOB API read operations performed in the session/
system. A single LOB API read may correspond to multiple physical/logical disk block reads.

LOB writes is defined as the number of LOB API write operations performed in the session/
system. A single LOB API write may correspond to multiple physical/logical disk block writes.

LOB writes unaligned is defined as the number of LOB API write operations whose start offset
or buffer size is not aligned to the LOB block boundary. Writes aligned to block boundaries are
the most efficient write operations. The usable LOB block size of a LOB is available through
the LOB API (for example, using PL/SQL, by DBMS_LOB.GETCHUNKSIZE()).

It is important to note that session statistics are aggregated across operations to all LOBs
accessed in a session; the statistics are not separated or categorized by objects (that is, table,
column, segment, object numbers, and so on). Oracle recommends that you reconnect to the
database for each demonstration to clear the V$MYSTAT. This enables you to see how the lob
statistics change for the specific operation you are testing, without the potentially obscuring
effect of past LOB operations within the same session.

See also:

Oracle Database Reference, appendix E, "Statistics Descriptions"

This example demonstrates how LOB session statistics are updated as the user performs read
or write operations on LOBs.

rem
rem Set up the user
rem

CONNECT / AS SYSDBA;
SET ECHO ON;
GRANT SELECT_CATALOG_ROLE TO pm;
GRANT SELECT ON sys.v_$mystat TO pm;
GRANT SELECT ON sys.v_$statname TO pm;

rem
rem Create a simplified view for statistics queries
rem

CONNECT pm/pm;
SET ECHO ON;

DROP VIEW mylobstats;
CREATE VIEW mylobstats

Chapter 10
LOB Access Statistics

10-6

AS
SELECT SUBSTR(n.name,1,20) name,
 m.value value
FROM v$mystat m,
 v$statname n
WHERE m.statistic# = n.statistic#
 AND n.name LIKE 'lob%';

rem
rem Create a test table
rem

DROP TABLE t;
CREATE TABLE t (i NUMBER, c CLOB)
 lob(c) STORE AS (DISABLE STORAGE IN ROW);

rem
rem Populate some data
rem
rem This should result in unaligned writes, one for
rem each row/lob populated.
rem

CONNECT pm/pm
SELECT * FROM mylobstats;
INSERT INTO t VALUES (1, 'a');
INSERT INTO t VALUES (2, rpad('a',4000,'a'));
COMMIT;
SELECT * FROM mylobstats;

rem
rem Get the lob length
rem
rem Computing lob length does not read lob data, no change
rem in read/write stats.
rem

CONNECT pm/pm;
SELECT * FROM mylobstats;
SELECT LENGTH(c) FROM t;
SELECT * FROM mylobstats;

rem
rem Read the lobs
rem
rem Lob reads are performed, one for each lob in the table.
rem

CONNECT pm/pm;
SELECT * FROM mylobstats;
SELECT * FROM t;
SELECT * FROM mylobstats;

rem
rem Read and manipulate the lobs (through temporary lobs)
rem
rem The use of complex operators like "substr()" results in
rem the implicit creation and use of temporary lobs. operations
rem on temporary lobs also update lob statistics.
rem

CONNECT pm/pm;

Chapter 10
LOB Access Statistics

10-7

SELECT * FROM mylobstats;
SELECT substr(c, length(c), 1) FROM t;
SELECT substr(c, 1, 1) FROM t;
SELECT * FROM mylobstats;

rem
rem Perform some aligned overwrites
rem
rem Only lob write statistics are updated because both the
rem byte offset of the write, and the size of the buffer
rem being written are aligned on the lob block size.
rem

CONNECT pm/pm;
SELECT * FROM mylobstats;
DECLARE
 loc CLOB;
 buf LONG;
 chunk NUMBER;
BEGIN
 SELECT c INTO loc FROM t WHERE i = 1
 FOR UPDATE;

 chunk := DBMS_LOB.GETCHUNKSIZE(loc);
 chunk = chunk * floor(32767/chunk); /* integer multiple of chunk */
 buf := rpad('b', chunk, 'b');

 -- aligned buffer length and offset
 DBMS_LOB.WRITE(loc, chunk, 1, buf);
 DBMS_LOB.WRITE(loc, chunk, 1+chunk, buf);
 COMMIT;
END;
/
SELECT * FROM mylobstats;

rem
rem Perform some unaligned overwrites
rem
rem Both lob write and lob unaligned write statistics are
rem updated because either one or both of the write byte offset
rem and buffer size are unaligned with the lob's chunksize.
rem

CONNECT pm/pm;
SELECT * FROM mylobstats;
DECLARE
 loc CLOB;
 buf LONG;
BEGIN
 SELECT c INTO loc FROM t WHERE i = 1
 FOR UPDATE;

 buf := rpad('b', DBMS_LOB.GETCHUNKSIZE(loc), 'b');

 -- unaligned buffer length
 DBMS_LOB.WRITE(loc, DBMS_LOB.GETCHUNKSIZE(loc)-1, 1, buf);

 -- unaligned start offset
 DBMS_LOB.WRITE(loc, DBMS_LOB.GETCHUNKSIZE(loc), 2, buf);

 -- unaligned buffer length and start offset
 DBMS_LOB.WRITE(loc, DBMS_LOB.GETCHUNKSIZE(loc)-1, 2, buf);

Chapter 10
LOB Access Statistics

10-8

 COMMIT;
END;
/
SELECT * FROM mylobstats;
DROP TABLE t;
DROP VIEW mylobstats;

CONNECT / AS SYSDBA
REVOKE SELECT_CATALOG_ROLE FROM pm;
REVOKE SELECT ON sys.v_$mystat FROM pm;
REVOKE SELECT ON sys.v_$statname FROM pm;

QUIT;

Chapter 10
LOB Access Statistics

10-9

11
Persistent LOBs: Advanced DDL

This chapter describes advanced LOB DDL features to make your application more scalable.

Note:

Unless otherwise stated, all features in this chapter apply to both SecureFile and
Basicfile LOBs. However, Oracle strongly recommends SecureFiles for storing and
managing LOBs.

• Creating a New LOB Column
You can provide the LOB storage characteristics when creating a LOB column using the
CREATE TABLE statement or the ALTER TABLE ADD COLUMN statement.

• Altering an Existing LOB Column
You can use the ALTER TABLE statement to change the storage characteristics of a LOB
column.

• Creating an Index on LOB Column
The contents of a LOB are often specific to the application, so an index on the LOB column
will usually deal with application logic. You can create a function-based or a domain index
on a LOB column to improve the performance of queries accessing data stored in LOB
columns. You cannot build a B-tree or bitmap index on a LOB column.

• LOBs in Partitioned Tables
Partitioning can simplify the manageability of large database objects. This section
discusses various aspects of LOBs in partitioned tables.

• LOBs in Index Organized Tables
Index Organized Tables (IOTs) support LOB and BFILE columns.

11.1 Creating a New LOB Column
You can provide the LOB storage characteristics when creating a LOB column using the
CREATE TABLE statement or the ALTER TABLE ADD COLUMN statement.

For most users, default values for these storage characteristics are sufficient. However, if you
want to fine-tune LOB storage, then consider the guidelines discussed in this section.

When defining LOBs in a table, you can explicitly indicate the tablespace and storage
characteristics for each persistent LOB column. It is common to use separate tablespaces for
large LOBs. SecureFiles is the default storage for LOBs, so the SECUREFILE keyword is
optional, but is shown for clarity in the following example. The example assumes that
TABLESPACE lobtbs1 is managed with ASSM, because SecureFile LOBs can only be created
in tablespaces managed with Automatic Segment Space Management (ASSM).:

CREATE TABLE lobtab1 (n NUMBER, c CLOB)
 lob (c) STORE AS SECUREFILE sfsegname
 (TABLESPACE lobtbs1
 ENABLE STORAGE IN ROW

11-1

 CACHE LOGGING
 RETENTION AUTO
 COMPRESS
 STORAGE (MAXEXTENTS 5)
);

To create a BasicFiles LOB, replace the SECUREFILE keyword with the BASICFILE keyword in
the preceding example, and remove the COMPRESS keyword, which is specific to SecureFiles.

The data dictionary views USER_LOBS, ALL_LOBS, and DBA_LOBS provide information specific to a
LOB column.

Note:

Oracle recommends Securefile LOBs for storing persistent LOBs, so this chapter
focuses only on Securefile storage. All mentions of LOBs in the persistent LOB
context is for Securefile LOBs, unless mentioned otherwise.

Note:

There are no tablespace or storage characteristics that you can specify for BFILEs as
they are not stored in the database.

Assigning a LOB Data Segment Name

As shown in the previous example, specifying a name for the LOB data segment (sfsegname in
the example) makes for a much more intuitive working environment. When querying the LOB
data dictionary views USER_LOBS, ALL_LOBS, and DBA_LOBS, you see the LOB data segment that
you chose instead of system-generated names.

• CREATE TABLE BNF
The CREATE TABLE statement works with LOB storage using parameters that are specific to
SecureFiles, BasicFiles LOB storage, or both.

• ENABLE or DISABLE STORAGE IN ROW
LOB columns store locators that reference the location of the actual LOB value. This
section describes how to enable or disable storage in a table row.

• CACHE, NOCACHE, and CACHE READS
This section discusses the guidelines to follow while creating tables that contain LOBs.

• LOGGING and FILESYSTEM_LIKE_LOGGING
You can apply the LOGGING parameter to LOBs in the same manner as you apply it for
other table operations.

• The RETENTION Parameter
The RETENTION parameter for SecureFile LOBs specifies how the database manages the
old versions of the LOB data blocks.

• SecureFiles Compression, Deduplication, and Encryption
This section discusses the features supported by SecureFiles in addition to those
supported by BasicFiles.

• BasicFile Specific Parameters
This section discusses the storage parameters specific to BasicFiles.

Chapter 11
Creating a New LOB Column

11-2

• Restriction on First Extent of a LOB Segment
This section discusses the first extent requirements on SecureFiles and BasicFiles.

• Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs
The table in this section summarizes the parameters of the CREATE TABLE statement that
relate to Securefile LOB storage.

11.1.1 CREATE TABLE BNF
The CREATE TABLE statement works with LOB storage using parameters that are specific to
SecureFiles, BasicFiles LOB storage, or both.

The following is the syntax for CREATE TABLE in Backus Naur (BNF) notation, parts of which
have been simplified to keep the focus on LOB-specific parameters.

See Also:

• Oracle Database SQL Language Reference

Example 11-1 BNF for CREATE TABLE

CREATE ... TABLE [schema.]table ...;

<column_definition> ::= column [datatype]...

<datatype> ::= ... | BLOB | CLOB | NCLOB | BFILE | ...

<column_properties> ::= ... | LOB_storage_clause | ... |
LOB_partition_storage |...

<LOB_storage_clause> ::=
 LOB
 { (LOB_item [, LOB_item]...)
 STORE AS [SECUREFILE | BASICFILE] (LOB_storage_parameters)
 | (LOB_item)
 STORE AS [SECUREFILE | BASICFILE]
 { LOB_segname (LOB_storage_parameters)
 | LOB_segname
 | (LOB_storage_parameters)
 }
 }
<LOB_storage_parameters> ::=
 { TABLESPACE tablespace
 | { LOB_parameters [storage_clause]
 }
 | storage_clause
 }
 [TABLESPACE tablespace
 | { LOB_parameters [storage_clause]
 }
]...
<LOB_parameters> ::=

Chapter 11
Creating a New LOB Column

11-3

 [{ ENABLE | DISABLE } STORAGE IN ROW
 | CHUNK integer
 | PCTVERSION integer
 | RETENTION [{ MAX | MIN integer | AUTO | NONE }]
 | FREEPOOLS integer
 | LOB_deduplicate_clause
 | LOB_compression_clause
 | LOB_encryption_clause
 | { CACHE | NOCACHE | CACHE READS } [logging_clause] } }
]
<LOB_retention_clause> ::=
 {RETENTION [MAX | MIN integer | AUTO | NONE]}
<LOB_deduplicate_clause> ::=
 { DEDUPLICATE
 | KEEP_DUPLICATES
 }
<LOB_compression_clause> ::=
 { COMPRESS [HIGH | MEDIUM | LOW]
 | NOCOMPRESS
 }
<LOB_encryption_clause> ::=
 { ENCRYPT [USING 'encrypt_algorithm']
 [IDENTIFIED BY password]
 | DECRYPT
 }
<LOB_partition_storage> ::=
 {PARTITION partition
 { LOB_storage_clause | varray_col_properties }...
 [(SUBPARTITION subpartition
 { LOB_partitioning_storage | varray_col_properties }...
)
]
 }
<LOB_partitioning_storage> ::=
 {LOB (LOB_item) STORE AS [BASICFILE | SECUREFILE]
 [LOB_segname [(TABLESPACE tablespace | TABLESPACE SET tablespace_set)]
 | (TABLESPACE tablespace | TABLESPACE SET tablespace_set)
]
 }

11.1.2 ENABLE or DISABLE STORAGE IN ROW
LOB columns store locators that reference the location of the actual LOB value. This section
describes how to enable or disable storage in a table row.

Actual LOB values are stored either in the table row (inline) or outside of the table row (out-of-
line), depending on the column properties you specify when you create the table, and
depending the size of the LOB. The ENABLE | DISABLE STORAGE IN ROW clause is used to
indicate whether the LOB should be stored inline (in the row) or out-of-line. The default is
ENABLE STORAGE IN ROW because it provides a performance benefit for small LOBs.

ENABLE STORAGE IN ROW

If ENABLE STORAGE IN ROW is set, the maximum amount of LOB data stored in the row is 4000
bytes. This includes the control information and the LOB value.

Chapter 11
Creating a New LOB Column

11-4

If the LOB is stored IN ROW,

• Exadata pushdown is enabled for LOBs, including when using securefile compression and
encryption.

• In-Memory is enabled for LOBs without securefile compression and encryption.

LOBs larger than approximately 4000 bytes are stored out-of-line. However, the control
information is still stored in the row, thus enabling us to read the out-of-line LOB data faster.

DISABLE STORAGE IN ROW

In some cases DISABLE STORAGE IN ROW is a better choice. This is because storing the LOB in
the row increases the size of the row. This impacts performance if you are doing a lot of base
table processing, such as full table scans, multi-row accesses (range scans), or many UPDATE/
SELECT to columns other than the LOB columns.

11.1.3 CACHE, NOCACHE, and CACHE READS
This section discusses the guidelines to follow while creating tables that contain LOBs.

Use the cache options according to the guidelines in the following table:

Table 11-1 Using CACHE, NOCACHE, and CACHE READS Options

Cache Mode Frequency of Read Buffer Cache Behavior

NOCACHE (default) Once or occasionally LOB values are never brought
into the buffer cache.

CACHE READS Frequently LOB values are brought into the
buffer cache only during read
operations and not during write
operations.

CACHE Read the LOB soon after write LOB pages are placed in the
buffer cache during both read and
write operations. For storing
semi-structured data consider
turning on CACHE option.

Caution:

If your application frequently writes to LOBs, then using the CACHE option can
potentially age other non-LOB pages out of the buffer cache prematurely.

11.1.4 LOGGING and FILESYSTEM_LIKE_LOGGING
You can apply the LOGGING parameter to LOBs in the same manner as you apply it for other
table operations.

The default value of this parameter is LOGGING. For SecureFiles, the FILESYSTEM_LIKE_LOGGING
parameter is equivalent to the NOLOGGING option.

If you set the LOGGING option, then Oracle Database determines the most efficient way to
generate the REDO and UNDO logs for the change. Oracle recommends that you keep the
LOGGING parameter turned on.

Chapter 11
Creating a New LOB Column

11-5

The FILESYSTEM_LIKE_LOGGING or the NOLOGGING option is useful for bulk loads and inserts.
When loading data into the LOB, if you do not care about the REDO logs and can restart a failed
load, then set the LOB data segment storage characteristics to FILESYSTEM_LIKE_LOGGING.
This provides good performance for the initial load of data. Once you have completed loading
data, Oracle recommends that you use the ALTER TABLE statement to modify the LOB storage
characteristics for the LOB data segment for normal LOB operations. For example, set the
cache option to CACHE or CACHE READS, along with the LOGGING option.

See Also:

Precedence of FORCE LOGGING Settings for more information about overriding the
logging behavior at the database level

Note:

For BasicFiles, specifying the CACHE NOLOGGING option results in an error.

11.1.5 The RETENTION Parameter
The RETENTION parameter for SecureFile LOBs specifies how the database manages the old
versions of the LOB data blocks.

Unlike other data types, the old versions of the LOB data blocks for SecureFile LOBs are
stored in the LOB segment itself and are used to support consistent read operations. Without
the corresponding old versions of the LOB data blocks, reading of a LOB at an earlier SCN
may fail with ORA-1555. Set the RETENTION parameter as per the following guidelines:

Table 11-2 RETENTION parameter behavior

RETENTION Parameter value Behavior

MAX Allows the old versions of the LOB data blocks to
fill the entire LOB segment. This minimizes the
likelihood of an ORA-1555, if space usage is not a
concern. With this setting, the old versions of the
LOB data blocks may cause the LOB segment to
grow. If you do not set the MAXSIZE attribute, then
MAX behaves like AUTO.

MIN Limits the retention of old versions of the LOB data
blocks to n seconds. With this setting, you must
also specify the retention duration in number of
seconds as n. The old versions of the LOB data
blocks may also cause the LOB segment to grow.

AUTO Oracle Database manages the space as efficiently
as possible, weighing both time and space needs.

NONE Set this value if no old version of the LOB data
blocks is required for consistent read purposes.
This is the most efficient setting in terms of space
utilization.

Chapter 11
Creating a New LOB Column

11-6

Table 11-2 (Cont.) RETENTION parameter behavior

RETENTION Parameter value Behavior

not set (sets to DEFAULT) Uses the UNDO_RETENTION setting can be set
dynamically or manually. If the UNDO_RETENTION
parameter is set to a positive value, then it is
equivalent to setting the RETENTION parameter to
MIN with the same value for retention duration. If
the UNDO_RETENTION parameter is set to zero (0),
then it is equivalent to setting the RETENTION
parameter to NONE.

The SHRINK feature for SecureFile LOBs partially deletes old versions of the LOB data blocks
to free extents, regardless of the RETENTION parameter setting. Therefore, it is recommended to
have the SHRINK feature only when the RETENTION parameter is set to NONE.

The following SQL code snippet helps you determine the RETENTION parameter for a LOB
segment.

SELECT RETENTION_TYPE, RETENTION_VALUE FROM USER_LOBs WHERE ...;

11.1.6 SecureFiles Compression, Deduplication, and Encryption
This section discusses the features supported by SecureFiles in addition to those supported by
BasicFiles.

SecureFiles LOB storage supports the following three features that are not available with the
BasicFiles LOB storage option:

• Compression

• Deduplication

• Encryption

Oracle recommends that you enable compression, deduplication, and encryption through the
CREATE TABLE statement.

Caution:

Enabling table or column level compression or encryption does not compress or
encrypt the LOB data. To compress or encrypt the LOB data, use SecureFiles
compression or encryption by specifying it in the LOB_storage_clause.

Chapter 11
Creating a New LOB Column

11-7

Note:

You can enable the compression, deduplication, and encryption features using the
ALTER TABLE statement. However, if you enable these features using the ALTER
TABLE statement, then all the data in the SecureFiles LOB storage is read, modified,
and written. This can cause the database to lock the table during a potentially lengthy
operation. There are online capabilities in the ALTER TABLE statement that can help
you avoid this issue.

Advanced LOB Compression

Advanced LOB Compression transparently analyzes and compresses SecureFiles LOB data to
save disk space and improve performance.

License Requirement: You must have a license for the Oracle Advanced Compression Option
to implement Advanced LOB Compression.

Consider the following issues when using the CREATE TABLE statement with Advanced LOB
Compression:

• Advanced LOB Compression is performed on the server and enables random reads and
writes to LOB data. Compression utilities on the client, like utl_compress, cannot provide
random access.

• Advanced LOB Compression does not enable table or index compression. Conversely,
table and index compression do not enable Advanced LOB Compression.

• The LOW, MEDIUM, and HIGH options provide varying degrees of compression. The higher
the compression, the higher the latency incurred. The HIGH setting incurs more work, but
compresses the data better. The default is MEDIUM.

The LOW compression option uses an extremely lightweight compression algorithm that
removes the majority of the CPU cost that is typical with file compression. Compressed
SecureFiles LOBs at the LOW level provide a very efficient choice for SecureFiles LOB
storage. SecureFiles LOBs compressed at LOW generally consume less CPU time and less
storage than BasicFiles LOBs, and typically help the application run faster because of a
reduction in disk I/O.

• Compression can be specified at the partition level. The CREATE TABLE
lob_storage_clause enables specification of compression for partitioned tables on a per-
partition basis.

• The DBMS_LOB.SETOPTIONS procedure can enable and disable compression on individual
SecureFiles LOBs.

The following examples demonstrate how to issue CREATE TABLE statements for specific
compression scenarios:

Example 11-2 Creating a SecureFiles LOB Column with LOW Compression

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE(
 COMPRESS LOW
 CACHE
 NOLOGGING
);

Chapter 11
Creating a New LOB Column

11-8

Example 11-3 Creating a SecureFiles LOB Column with MEDIUM (default)
Compression

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 COMPRESS
 CACHE
 NOLOGGING
);

Example 11-4 Creating a SecureFiles LOB Column with HIGH Compression

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 COMPRESS HIGH
 CACHE
);

Example 11-5 Creating a SecureFiles LOB Column with Disabled Compression

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 NOCOMPRESS
 CACHE
);

Example 11-6 Creating a SecureFiles LOB Column with Compression on One Partition

CREATE TABLE t1 (REGION VARCHAR2(20), a BLOB)
 LOB(a) STORE AS SECUREFILE (
 CACHE
)
 PARTITION BY LIST (REGION) (
 PARTITION p1 VALUES ('x', 'y')
 LOB(a) STORE AS SECUREFILE (
 COMPRESS
),
 PARTITION p2 VALUES (DEFAULT)
);

Advanced LOB Deduplication

Advanced LOB Deduplication enables Oracle Database to automatically detect duplicate LOB
data within a LOB column or partition, and conserve space by storing only one copy of the
data.

License Requirement: You must have a license for the Oracle Advanced Compression Option
to implement Advanced LOB Deduplication.

Consider these issues when using CREATE TABLE and Advanced LOB Deduplication.

• Identical LOBs are good candidates for deduplication. Copy operations can avoid data
duplication by enabling deduplication.

• Duplicate detection happens within a LOB segment. Duplicate detection does not span
partitions or subpartitions for partitioned and subpartitioned LOB columns.

• Deduplication can be specified at a partition level. The CREATE TABLE lob_storage_clause
enables specification for partitioned tables on a per-partition basis.

• The DBMS_LOB.SETOPTIONS procedure can enable or disable deduplication on individual
LOBs.

Chapter 11
Creating a New LOB Column

11-9

The following examples demonstrate how to issue CREATE TABLE statements for specific
deduplication scenarios:

Example 11-7 Creating a SecureFiles LOB Column with Deduplication

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 DEDUPLICATE
 CACHE
);

Example 11-8 Creating a SecureFiles LOB Column with Disabled Deduplication

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 KEEP_DUPLICATES
 CACHE
);

Example 11-9 Creating a SecureFiles LOB Column with Deduplication on One Partition

CREATE TABLE t1 (REGION VARCHAR2(20), a BLOB)
 LOB(a) STORE AS SECUREFILE (
 CACHE
)
PARTITION BY LIST (REGION) (
 PARTITION p1 VALUES ('x', 'y')
 LOB(a) STORE AS SECUREFILE (
 DEDUPLICATE
),
 PARTITION p2 VALUES (DEFAULT)
);

Example 11-10 Creating a SecureFiles LOB column with Deduplication Disabled on
One Partition

CREATE TABLE t1 (REGION VARCHAR2(20), ID NUMBER, a BLOB)
 LOB(a) STORE AS SECUREFILE (
 DEDUPLICATE
 CACHE
)
PARTITION BY RANGE (REGION)
 SUBPARTITION BY HASH(ID) SUBPARTITIONS 2 (
 PARTITION p1 VALUES LESS THAN (51)
 lob(a) STORE AS a_t2_p1
 (SUBPARTITION t2_p1_s1 lob(a) STORE AS a_t2_p1_s1,
 SUBPARTITION t2_p1_s2 lob(a) STORE AS a_t2_p1_s2),
 PARTITION p2 VALUES LESS THAN (MAXVALUE)
 lob(a) STORE AS a_t2_p2 (KEEP_DUPLICATES)
 (SUBPARTITION t2_p2_s1 lob(a) STORE AS a_t2_p2_s1,
 SUBPARTITION t2_p2_s2 lob(a) STORE AS a_t2_p2_s2)
);

SecureFiles Encryption

SecureFiles Encryption introduces a new encryption facility for LOBs. The data is encrypted
using Transparent Data Encryption (TDE), which allows the data to be stored securely, and still
allows for random read and write access.

License Requirement: You must have a license for the Oracle Advanced Security Option to
implement SecureFiles Encryption.

Chapter 11
Creating a New LOB Column

11-10

Consider the following issues when using CREATE TABLE statement with SecureFiles
Encryption:

• Securefile Encryption encrypts the data stored in the SecureFile LOB column, irrespective
of whether the data is stored in-row or out-of-line in the LOB segment. Note that table or
column level encryption will not encrypt the data stored out-of-line in the LOB segment.

• SecureFile Encryption relies on a wallet, or Hardware Security Model (HSM), to hold the
encryption key. The wallet setup is the same as that described for Transparent Data
Encryption (TDE) and Tablespace Encryption, so complete that before using SecureFile
encryption.

See Also:

"Oracle Database Advanced Security Guide for information about creating and
using Oracle wallet with TDE.

• The encrypt_algorithm indicates the name of the encryption algorithm. Valid algorithms
are: AES192 (default), AES128, and AES256.

• The column encryption key is derived from PASSWORD, if specified.

• The default for LOB encryption is SALT. NO SALT is not supported.

• SecureFile Encryption is only supported at the table level on a per-column basis, and not
at the per-partition level. Hence all partitions within a LOB column are encrypted.

• DECRYPT keeps the LOBs in clear text.

• Key management controls the ability to encrypt or decrypt.

• TDE is not supported by the traditional import and export utilities or by transportable-
tablespace-based export. Use the Data Pump expdb and impdb utilities with encrypted
columns instead.

The following examples demonstrate how to issue CREATE TABLE statements for specific
encryption scenarios:

Example 11-11 Creating a SecureFiles LOB Column with a Specific Encryption
Algorithm

CREATE TABLE t1 (a CLOB ENCRYPT USING 'AES128')
 LOB(a) STORE AS SECUREFILE (
 CACHE
);

Example 11-12 Creating a SecureFiles LOB column with encryption for all partitions

CREATE TABLE t1 (REGION VARCHAR2(20), a BLOB)
 LOB(a) STORE AS SECUREFILE (
 ENCRYPT USING 'AES128'
 NOCACHE
 FILESYSTEM_LIKE_LOGGING
)
PARTITION BY LIST (REGION) (
PARTITION p1 VALUES ('x', 'y'),
PARTITION p2 VALUES (DEFAULT)
);

Chapter 11
Creating a New LOB Column

11-11

Example 11-13 Creating a SecureFiles LOB Column with Encryption Based on a
Password Key

CREATE TABLE t1 (a CLOB ENCRYPT IDENTIFIED BY foo)
 LOB(a) STORE AS SECUREFILE (
 CACHE
);

The following example has the same result because the encryption option can be set in the
LOB_encryption_clause section of the statement:

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 CACHE
 ENCRYPT
 IDENTIFIED BY foo
);

Example 11-14 Creating a SecureFiles LOB Column with Disabled Encryption

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 CACHE DECRYPT
);

11.1.7 BasicFile Specific Parameters
This section discusses the storage parameters specific to BasicFiles.

The following storage parameters are specific to BasicFiles:

Caution:

Oracle strongly recommends that you use SecureFile LOBs for all your LOB needs.

PCTVERSION

When a BasicFiles LOB is modified, a new version of the BasicFiles LOB page is produced in
order to support consistent read operations of prior versions of the BasicFiles LOB value. The
PCTVERSION parameter is the percentage of all used BasicFiles LOB data space that can be
occupied by old versions of BasicFiles LOB data pages. As soon as old versions of BasicFiles
LOB data pages start to occupy more than the PCTVERSION amount of used BasicFiles LOB
space, Oracle Database tries to reclaim the old versions and reuse them. The PCTVERSION
parameter has the following preset values:

• Default: 10%

• Minimum: 0

• Maximum: 100

If your application requires several BasicFiles LOB updates that are concurrent with heavy
reads of BasicFiles LOB columns, then consider using a higher value for the PCTVERSION
parameter, such as 20%. If persistent BasicFiles LOB instances in your application are created
and written just once and are primarily read-only afterward, then updates are infrequent. In this
case, consider using a lower value for the PCTVERSION parameter, such as 5% or lower. If
existing BasicFiles LOBs are known to be read-only, then you can safely set the PCTVERSION
parameter to 0% because there will never be any pages needed for old versions of data.

Chapter 11
Creating a New LOB Column

11-12

Note:

The PCTVERSION parameter and the RETENTION parameter are mutually exclusive for
BasicFiles LOBs, that is, you can specify either the PCTVERSION parameter or the
RETENTION parameter, but not both.

CHUNK

A chunk is one or more Oracle blocks. You can specify the chunk size for the BasicFiles LOB
when creating the table that contains the LOB. This corresponds to the data size used by
Oracle Database when accessing or modifying the LOB value. Part of the chunk is used to
store system-related information and the rest stores the LOB value. The APIs that you use to
retrieve the chunk size, return the amount of space used in the LOB chunk to store the LOB
value. You can use the following APIs to retrieve the chunk size:

• The DBMS_LOB.GETCHUNKSIZE procedure in PL/SQL

• The OCILobGetChunkSize() function in OCI

Once you specify the value of the CHUNK parameter (when the LOB column is created), you
cannot change it without moving the LOB. You can set the CHUNK parameter to the data size
most frequently accessed or written. It is more efficient to access LOBs in big chunks. If you
explicitly specify storage characteristics for the LOB, then make sure that you set the INITIAL
parameter and the NEXT parameter for the LOB data segment storage to a size that is larger
than the CHUNK size.

For SecureFiles, the CHUNK size is an advisory size and is provided for backward compatibility
purposes.

FREEPOOLS

Specifies the number of FREELIST groups for BasicFiles LOBs, if the database is in automatic
undo mode. Under Release 12c compatibility, this parameter is ignored when SecureFiles
LOBs are created.

FREELISTS or FREELIST GROUPS

Specifies the number of process freelists or freelist groups, respectively, allocated to the
segment; NULL for partitioned tables. Under Release 12c compatibility, these parameters are
ignored when SecureFiles LOBs are created.

11.1.8 Restriction on First Extent of a LOB Segment
This section discusses the first extent requirements on SecureFiles and BasicFiles.

First Extent of a SecureFile LOB Segment

A SecureFile LOB segment can only be created in Locally Managed Tablespace with
Automatic Segment Space Management (ASSM). The number of blocks required in the first
extent depends on the release. Before 21c, the first extent requires at least 16 blocks. After
21c, the number is 32 if the compatible parameter is greater than or equal to 20.1.0.0.0.
Segments created in the previous release will continue to work in the new release. However,
they will not be automatically upgraded.

The actual size of the first extent depends on the database block_size. If the tablespace is
configured to use uniform extent, the extent must be bigger than the aforementioned number.

Chapter 11
Creating a New LOB Column

11-13

For example, with block_size = 8k, the uniform extent size must be at least 128K pre-21c, or
256K on 21c with compatible parameter set. If the tablespace is configured to use uniform
extent that is less than this number, the LOB segment creation will fail.

First Extent of a BasicFile LOB Segment

A BasicFile LOB segment can be created in Dictionary Managed or Locally Managed
Tablespaces. The segment requires at least 3 blocks in the first extent. This translates into
different extent sizes based on the database block_size. If the tablespace is configured to use
uniform extent that contains fewer than 3 blocks, the LOB segment creation will fail.

11.1.9 Summary of CREATE TABLE LOB Storage Parameters for Securefile
LOBs

The table in this section summarizes the parameters of the CREATE TABLE statement that relate
to Securefile LOB storage.

Table 11-3 Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description

SECUREFILE Specifies SecureFiles LOBs storage.

Starting with Oracle Database 12c, the SecureFiles LOB storage
type, specified by the parameter SECUREFILE, is the default.

A SecureFiles LOB can only be created in a tablespace managed
with Automatic Segment Space Management (ASSM).

BASICFILE Specifies BasicFiles LOB storage, the original architecture for
LOBs.

You must explicitly specify the parameter BASICFILE to use the
BasicFiles LOB storage type.

For BasicFiles LOBs, specifying any of the SecureFiles LOB
options results in an error.

RETENTION Specifies the retention policy for storing old versions of LOB data to
support consistent read. Possible values are: MAX, MIN, AUTO and
NONE.

MAXSIZE Specifies the upper limit of storage space that a LOB may use.

If this amount of space is consumed, new LOB data blocks are
taken from the pool of old versions of LOB data blocks as needed,
regardless of time requirements.

CACHE, NOCACHE, CACHE READS Specifies when the LOB data in brought into the buffer cache.

• NOCACHE: Never brought into buffer cache.

• CACHE READS: Only during reads.

• CACHE: During reads and writes.

The default is NOCACHE.

LOGGING, NOLOGGING, or
FILESYSTEM_LIKE_LOGGING

Specifies whether to generate REDO and UNDO for changes to the
LOB:

• LOGGING: Generate REDO and UNDO for the change

• FILESYSTEM_LIKE_LOGGING/NOLOGGING: Log only the
metadata.

The default is LOGGING.

Chapter 11
Creating a New LOB Column

11-14

Table 11-3 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description

COMPRESS or NOCOMPRESS The COMPRESS option turns on Advanced LOB Compression, and
NOCOMPRESS turns it off.

The default is NOCOMPRESS.

DEDUPLICATE or
KEEP_DUPLICATES

The DEDUPLICATE option enables Advanced LOB Deduplication; it
specifies that SecureFiles LOB data that is identical in two or more
rows in a LOB column, partition or subpartition must share the
same data blocks. The database combines SecureFiles LOBs with
identical content into a single copy, reducing storage and
simplifying storage management. The opposite of this option is
KEEP_DUPLICATES.

The default is KEEP_DUPLICATES.

ENCRYPT or DECRYPT The ENCRYPT option turns on SecureFiles Encryption, and encrypts
all SecureFiles LOB data using Oracle Transparent Data Encryption
(TDE). The DECRYPT options turns off SecureFiles Encryption.

The default is DECRYPT.

11.2 Altering an Existing LOB Column
You can use the ALTER TABLE statement to change the storage characteristics of a LOB
column.

• ALTER TABLE BNF
This section has the syntax for ALTER TABLE in Backus Naur (BNF) notation, parts of which
have been simplified to keep the focus on LOB-specific parameters.

• ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB
This section compares the storage characteristics while using ALTER TABLE MODIFY and
ALTER TABLE MOVE LOB.

• ALTER TABLE SecureFiles LOB Features
This section discusses the features of SecureFile LOBs that work with the ALTER TABLE
statement.

11.2.1 ALTER TABLE BNF
This section has the syntax for ALTER TABLE in Backus Naur (BNF) notation, parts of which
have been simplified to keep the focus on LOB-specific parameters.

See Also:

ALTER TABLE for more information on usage of ALTER TABLE statement.

ALTER TABLE [schema.]table ... [... | column_clauses | ... |
move_table_clause] ...;

<column_clauses> ::= ... | modify_LOB_storage_clause ...

Chapter 11
Altering an Existing LOB Column

11-15

<modify_LOB_storage_clause> ::= MODIFY LOB (LOB_item)
(modify_LOB_parameters)

<modify_LOB_parameters> ::=
{ storage_clause
 | PCTVERSION integer
 | FREEPOOLS integer
 | REBUILD FREEPOOLS
 | LOB_retention_clause
 | LOB_deduplicate_clause
 | LOB_compression_clause
 | { ENCRYPT encryption_spec | DECRYPT }
 | { CACHE
 | { NOCACHE | CACHE READS } [logging_clause]
 | allocate_extent_clause
 | shrink_clause
 | deallocate_unused_clause
}. . .
<move_table_clause> ::= MOVE ...[... | LOB_storage_clause | ...] ...

<LOB_storage_clause> ::=
 LOB
 { (LOB_item [, LOB_item]...)
 STORE AS [SECUREFILE | BASICFILE] (LOB_storage_parameters)
 | (LOB_item)
 STORE AS [SECUREFILE | BASICFILE]
 { LOB_segname (LOB_storage_parameters)
 | LOB_segname
 | (LOB_storage_parameters)
 }
 }

<LOB_storage_parameters> ::=
 { TABLESPACE tablespace
 | { LOB_parameters [storage_clause]
 }
 | storage_clause
 }
 [TABLESPACE tablespace
 | { LOB_parameters [storage_clause]
 }
]...

<LOB_parameters> ::=
 [{ ENABLE | DISABLE } STORAGE IN ROW
 | CHUNK integer
 | PCTVERSION integer
 | RETENTION [{ MAX | MIN integer | AUTO | NONE }]
 | FREEPOOLS integer
 | LOB_deduplicate_clause
 | LOB_compression_clause
 | LOB_encryption_clause
 | { CACHE | NOCACHE | CACHE READS } [logging_clause] } }
]

<LOB_retention_clause> ::=

Chapter 11
Altering an Existing LOB Column

11-16

 {RETENTION [MAX | MIN integer | AUTO | NONE]}

<LOB_deduplicate_clause> ::=
 { DEDUPLICATE
 | KEEP_DUPLICATES
 }

<LOB_compression_clause> ::=
 { COMPRESS [HIGH | MEDIUM | LOW]
 | NOCOMPRESS
 }

<LOB_encryption_clause> ::=
 { ENCRYPT [USING 'encrypt_algorithm']
 [IDENTIFIED BY password]
 | DECRYPT
 }

11.2.2 ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB
This section compares the storage characteristics while using ALTER TABLE MODIFY and ALTER
TABLE MOVE LOB.

There are two kinds of changes to existing storage characteristics:

1. Some changes to storage characteristics merely apply to the way the data is accessed and
do not require moving the entire existing LOB data. For such changes, use the ALTER
TABLE MODIFY LOB syntax, which uses the modify_LOB_storage_clause from the ALTER
TABLE BNF. Examples of changes that do not require moving the entire existing LOB data
are: RETENTION, PCTVERSION, CACHE, NOCACHELOGGING, NOLOGGING, or STORAGE settings,
shrinking the space used by the LOB data, and deallocating unused segments.

See Also:

ALTER TABLE

2. Some changes to storage characteristics require changes to the way the data is stored,
hence requiring movement of the entire existing LOB data. For such changes use the
ALTER TABLE MOVE LOB syntax instead of the ALTER TABLE MODIFY LOB syntax because
the former performs parallel operations on SecureFiles LOBs columns, making it a
resource-efficient approach. The ALTER TABLE MOVE LOB syntax can process any arbitrary
LOB storage clause represented by the LOB_storage_clause in the ALTER TABLE BNF, and
will move the LOB data to a new location.
Examples of changes that require moving the entire existing LOB data are: TABLESPACE,
ENABLE/DISABLE STORAGE IN ROW, CHUNK, COMPRESSION, DEDUPLICATION and ENCRYPTION
settings.

As an alternative to ALTER TABLE MOVE LOB, you can use online redefinition to enable one
or more of these features. As with ALTER TABLE, online redefinition of SecureFiles LOB
columns can be executed in parallel.

Chapter 11
Altering an Existing LOB Column

11-17

See Also:

• ALTER TABLE for more information about ALTER TABLE statement.

• DBMS_REDEFINITION for more information about DBMS_REDEFINITION package.

11.2.3 ALTER TABLE SecureFiles LOB Features
This section discusses the features of SecureFile LOBs that work with the ALTER TABLE
statement.

• ALTER TABLE with Advanced LOB Compression
When used with the ALTER TABLE statement, advanced LOB compression syntax alters the
compression mode of the LOB column. The examples in this section demonstrate how to
issue ALTER TABLE statements for specific compression scenarios.

• ALTER TABLE with Advanced LOB Deduplication
When used with the ALTER TABLE statement, advanced LOB deduplication syntax alters
the deduplication mode of the LOB column. The examples in this section demonstrate how
to issue ALTER TABLE statements for specific deduplication scenarios.

• ALTER TABLE with SecureFiles Encryption
The examples in this section demonstrate how to issue ALTER TABLE statements for to
enable SecureFiles encryption.

11.2.3.1 ALTER TABLE with Advanced LOB Compression
When used with the ALTER TABLE statement, advanced LOB compression syntax alters the
compression mode of the LOB column. The examples in this section demonstrate how to issue
ALTER TABLE statements for specific compression scenarios.

Example: Altering a SecureFiles LOB Column to Enable LOW Compression

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFILE(COMPRESS LOW)

Example: Altering a SecureFiles LOB Column to Disable Compression

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFILE(NOCOMPRESS)

Example: Altering a SecureFiles LOB Column to Enable HIGH Compression

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFILE(COMPRESS HIGH);

Example: Altering a SecureFiles LOB Column to Enable Compression on One partition

ALTER TABLE t1 MOVE PARTITION p1 LOB(a) STORE AS SECUREFILE(COMPRESS HIGH);

Chapter 11
Altering an Existing LOB Column

11-18

11.2.3.2 ALTER TABLE with Advanced LOB Deduplication
When used with the ALTER TABLE statement, advanced LOB deduplication syntax alters the
deduplication mode of the LOB column. The examples in this section demonstrate how to
issue ALTER TABLE statements for specific deduplication scenarios.

Example: Altering a SecureFiles LOB Column to Disable Deduplication

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFILE(KEEP_DUPLICATES);

Example: Altering a SecureFiles LOB Column to Enable Deduplication

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFILE(DEDUPLICATE);

Example: Altering a SecureFiles LOB Column to Enable Deduplication on One Partition

ALTER TABLE t1 MOVE PARTITION p1 LOB(a) STORE AS SECUREFILE(DEDUPLICATE);

11.2.3.3 ALTER TABLE with SecureFiles Encryption
The examples in this section demonstrate how to issue ALTER TABLE statements for to
enable SecureFiles encryption.

Consider the following points when using the ALTER TABLE statement with SecureFiles
Encryption:

• The ALTER TABLE statement enables and disables SecureFiles Encryption. Using the REKEY
option with the ALTER TABLE statement also enables you to encrypt LOB columns with a
new key or algorithm.

• The DECRYPT option converts encrypted columns to clear text form.

See Also:

'CREATE TABLE' Usage Notes for SecureFiles Encryption

Following examples demonstrate how to issue ALTER TABLE statements for specific encryption
scenarios:

Example: Altering a SecureFiles LOB Column by Encrypting Based on AES256 encryption

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFILE(ENCRYPT USING 'AES256');

Example: Altering a SecureFiles LOB Column by Encrypting Based on a Password Key

ALTER TABLE t1 MOVE LOB(a)
 STORE AS SECUREFILE(ENCRYPT USING 'AES256' IDENTIFIED BY foo);

Example: Altering a SecureFiles LOB Column by Regenerating the Encryption key

ALTER TABLE t1 REKEY USING 'AES256';

Chapter 11
Altering an Existing LOB Column

11-19

11.3 Creating an Index on LOB Column
The contents of a LOB are often specific to the application, so an index on the LOB column will
usually deal with application logic. You can create a function-based or a domain index on a
LOB column to improve the performance of queries accessing data stored in LOB columns.
You cannot build a B-tree or bitmap index on a LOB column.

Function-based and domain indexes are automatically updated when a DML operation is
performed on the LOB column, or when a LOB is updated using an API like DBMS_LOB.

You can use the LOB Open/Close API to defer index maintenance to after a bunch of write
operations. Opening a LOB in read-write mode defers any index maintenance on the LOB
column until you close the LOB. This is useful when you do not want the database to perform
index maintenance every time you write to the LOB. This technique can improve the
performance of your application if you are doing several write operations on the LOB while it is
open. Any index on the LOB column is not valid until you explicitly close the LOB.

• Function-Based Indexing on LOB Columns
A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the variety of
ways in which you can access data.

• Domain Indexing on LOB Columns
Indexes created by using Extensible Indexing interfaces are known as Domain indexes.

See Also:

Before You Begin

11.3.1 Function-Based Indexing on LOB Columns
A function-based index is an index built on an expression. It extends your indexing capabilities
beyond indexing on a column. A function-based index increases the variety of ways in which
you can access data.

See Also:

When to Use Function-Based Indexes

The following example demonstrates the creation of a function-based index on a LOB column
using a SQL function:

-- Function-Based Index using a SQL function
CREATE INDEX ad_sourcetext_idx_sql ON
print_media(to_char(substr(ad_sourcetext,1,10)));

Chapter 11
Creating an Index on LOB Column

11-20

The following example demonstrates the creation of a function-based index on a LOB column
using a PL/SQL function:

-- Function-Based Index using a PL/SQL function
-- LOB can be an input but cannot be the return type of hte function
CREATE OR REPLACE FUNCTION Ret1st2Char(CLobInput CLOB) RETURN CHAR
DETERMINISTIC IS
 First2Char CHAR(2) ;
 NoOfChar INTEGER ;
BEGIN
 NoOfChar := 2 ;
 DBMS_LOB.Read(CLobInput, NoOfChar, 1, First2Char) ;
 RETURN First2Char ;
END ;
/

CREATE INDEX ad_sourcetext_idx_plsql on
print_media(Ret1st2Char(ad_sourcetext));

11.3.2 Domain Indexing on LOB Columns
Indexes created by using Extensible Indexing interfaces are known as Domain indexes.

The database provides extensible indexing interfaces, a feature which enables you to define
new index types as required. This is based on the concept of cooperative indexing where a
data cartridge and the database build and maintain indexes for data types such as text and
spatial.

The cartridge is responsible for defining the index structure, maintaining the index content
during load and update operations, and searching the index during query processing. The
index structure can be stored in Oracle as heap-organized, or an index-organized table, or
externally as an operating system file.

To support this structure, the database provides an indextype. The purpose of an indextype is
to enable efficient search and retrieval functions for complex domains such as text, spatial,
image, and OLAP by means of a data cartridge. An indextype is analogous to the sorted or bit-
mapped index types that are built-in within the Oracle Server. The difference is that an
indextype is implemented by the data cartridge developer, whereas the Oracle kernel
implements built-in indexes. Once a new indextype has been implemented by a data cartridge
developer, end users of the data cartridge can use it just as they would built-in index types.

When the database system handles the physical storage of domain indexes, data cartridges:

• Define the format and content of an index. This enables cartridges to define an index
structure that can accommodate a complex data object. For instance, an inverted index for
text documents or a quad-tree for spatial features.

• Build, delete, and update a domain index. The cartridge handles building and maintaining
the index structures.

• Access and interpret the content of an index. This capability enables the data cartridge to
become an integral component of query processing. That is, the content-related clauses
for database queries are handled by the data cartridge.

By supporting domain indexes, the database significantly reduces the effort needed to develop
high-performance solutions that access complex data types such as LOBs.

Chapter 11
Creating an Index on LOB Column

11-21

• Extensible Optimizer
Extensible Optmizer enables collection of statistics on user-defined functions and domain
indexes.

• Text Indexes on LOB Columns
If the contents of your LOB column correspond to that of a document type, users are
allowed to index such a column using Oracle Text indexes.

See Also:

Oracle Database Data Cartridge Developer's Guide

11.3.2.1 Extensible Optimizer
Extensible Optmizer enables collection of statistics on user-defined functions and domain
indexes.

The SQL optimizer cannot collect statistics over LOB columns nor can it estimate the cost and
selectivity of predicates involving LOB columns. Instead, the Extensible Optimizer functionality
allows authors of user-defined functions and domain indexes to create statistics collection,
selectivity, and cost functions. This information is used by the optimizer in choosing a query
plan. The cost-based optimizer is thus extended to use the user-supplied information.

The Extensible Indexing interfaces enable you to define new operators, indextypes, and
domain indexes. For such user-defined operators and domain indexes, the Extensible
Optimizer interfaces allows users to control the three main components used by the optimizer
to select an execution plan: statistics, selectivity, and cost. This allows the cartridge developer
to tune the Extensible Optimizer for efficient execution of queries involving predicates or
indexes over complex data types such as LOBs.

See Also:

Extensible Optimizer

11.3.2.2 Text Indexes on LOB Columns
If the contents of your LOB column correspond to that of a document type, users are allowed to
index such a column using Oracle Text indexes.

For example, consider the following table DOCUMENT_TABLE storing text-based documents on a
CLOB column:

CREATE TABLE document_table (
 docno NUMBER,
 document CLOB);

You can index the contents of the DOCUMENT column with one of the Oracle Text indexing
options to speed up text-based queries. The following example will create a SEARCH index
used for text-search queries over the DOCUMENT column.

CREATE INDEX document_index ON document_table (document) INDEXTYPE IS
CTXSYS.CONTEXT;

Chapter 11
Creating an Index on LOB Column

11-22

CREATE SEARCH INDEX document_index ON document_table (document);

Note:

You can create an Oracle Text index on other formats as well. Examples of other
formats include PDF, JSON, or XML.

See Also:

Creating Oracle Text Indexes

11.4 LOBs in Partitioned Tables
Partitioning can simplify the manageability of large database objects. This section discusses
various aspects of LOBs in partitioned tables.

Very large tables and indexes can be decomposed into smaller and more manageable pieces
called partitions, which are entirely transparent to an application. You can partition tables that
contain LOB columns. All partitioning schemes supported by Oracle are fully supported on
LOBs.

See Also:

Partitions_ Views_ and Other Schema Objects
Partitioning for All Databases

LOBs can take advantage of all of the benefits of partitioning including the following:

• LOB segments can be spread between several tablespaces to balance I/O load and to
make backup and recovery more manageable.

• LOBs in a partitioned table become easier to maintain.

• LOBs can be partitioned into logical groups to speed up operations on LOBs that are
accessed as a group.

The following section describes some of the ways you can manipulate LOBs in partitioned
tables.

• Partitioning a Table Containing LOB Columns
All partitioning schemes supported by Oracle are fully supported on LOBs.This section
discusses the partitioning of tables with LOB columns.

• Default LOB Storage Attributes
This section discusses the default LOB storage attributes.

• Partition Maintenance Operation
This section discusses maintenance operations on partitioned tables with LOB columns.

Chapter 11
LOBs in Partitioned Tables

11-23

• Creating an Index on a Table Containing Partitioned LOB Columns
To improve the performance of queries, you can create local or global indexes on
partitioned LOB columns.

11.4.1 Partitioning a Table Containing LOB Columns
All partitioning schemes supported by Oracle are fully supported on LOBs.This section
discusses the partitioning of tables with LOB columns.

You can partition a table containing LOB columns using any of the following techniques:

• When the table is created using the PARTITION BY ... clause of the CREATE TABLE
statement.

• Adding a partition to an existing table using the ALTER TABLE ... ADD PARTITION clause.

The data dictionary views USER_LOB_PARTITIONS, ALL_LOB_PARTITIONS and
DBA_LOB_PARTITIONS provide partition specific information for a LOB column.

Example 11-15 A partitioned table with LOB columns:

CREATE TABLE print_media
 (product_id NUMBER(6),
 ad_id NUMBER(6),
 ad_sourcetext CLOB)
 LOB (ad_sourcetext) STORE AS SECUREFILE (TABLESPACE tbs_2)
 PARTITION BY RANGE(product_id)
 (PARTITION P1 VALUES LESS THAN (1000)
 LOB (ad_sourcetext) STORE AS BASICFILE (TABLESPACE tbs_1),
 PARTITION P2 VALUES LESS THAN (2000)
 LOB (ad_sourcetext) STORE AS (TABLESPACE tbs_2 COMPRESS HIGH),
 PARTITION P3 VALUES LESS THAN (3000));

See Also:

Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs

11.4.2 Default LOB Storage Attributes
This section discusses the default LOB storage attributes.

In the above example, the default storage attribute for LOB column ad_sourcetext is
mentioned as "STORE AS SECUREFILE (TABLESPACE tbs_2)". This means that if no LOB
storage clause is provided for any partition, this default will be used. In this example, partition
P3 uses tablespace tbs_2 since no LOB storage is specified. Similarly, SECUREFILE is the
default storage and is used by partitions P2 and P3, but partition P1 overrides it to specify
BasicFile storage.

The dictionary views USER_PART_LOBS, ALL_PART_LOBS and DBA_PART_LOBS provide information
on default LOB storage options for a LOB column in a table.

Chapter 11
LOBs in Partitioned Tables

11-24

The table level default LOB storage attribute can be changed, as shown in the example below:

ALTER TABLE print_media MODIFY DEFAULT ATTRIBUTES LOB (ad_sourcetext)
 (TABLESPACE tbs_1);

The change in the default attribute will not affect the existing partitions. Any new partitions
created without LOB storage clause will inherit the default values for that column.

11.4.3 Partition Maintenance Operation
This section discusses maintenance operations on partitioned tables with LOB columns.

All partitioning maintenance operations are supported with LOB columns. Here are some
examples:

Example 11-16 Adding Partition containing LOBs

ALTER TABLE print_media ADD PARTITION P4 VALUES LESS THAN (4000)
 LOB (ad_sourcetext) STORE AS SECUREFILE(TABLESPACE tbs_2);

Example 11-17 Modifying Partition Containing LOBs

ALTER TABLE print_media MODIFY PARTITION P3 LOB(ad_sourcetext)
 (RETENTION AUTO);

Example 11-18 Moving Partition Containing LOBs

ALTER TABLE print_media MOVE PARTITION P1 LOB(ad_sourcetext)
 STORE AS (TABLESPACE tbs_3 COMPRESS LOW);

The example above moves a LOB partition into a different tablespace, which can be useful if
the tablespace is no longer large enough to hold the partition. Move partition can also be used
to perform other operations that require moving the LOB data, such as performing a COMPRESS
operation on the LOB, or changing the ENABLE / DISABLE STORAGE IN ROW option.

Example 11-19 Splitting Partitions Containing LOBs

You can split a partition containing LOBs into two using the ALTER TABLE ... SPLIT
PARTITION clause. Doing so permits you to place one or both new partitions in a new
tablespace. For example:

ALTER TABLE print_media SPLIT PARTITION P1 AT(500) into
(PARTITION P1A LOB(ad_sourcetext) STORE AS (TABLESPACE tbs_1),
PARTITION P1B LOB(ad_sourcetext) STORE AS (TABLESPACE tbs_2)) UPDATE INDEXES;

Example 11-20 Merging Partitions Containing LOBs

Merging partitions is useful for reclaiming unused partition space. For example:

ALTER TABLE print_media MERGE PARTITIONS P1A, P1B INTO PARTITION P1;

Chapter 11
LOBs in Partitioned Tables

11-25

Example 11-21 Exchange Partition containing LOB column with non-partitioned table

Exchanging partitions with a table that has partitioned LOB columns using the ALTER
TABLE ... EXCHANGE PARTITION clause. Exchange partition is a powerful tool to change new
data / partitions to a newer storage format without the costly operation of migrating old data.
You can exchange partition with LOB data having different storage option, e.g. partition p1 of
BasicFile data in Example 11-15 can be exchanged with non-partitioned table with LOB column
stored in SecureFile Compressed form:

CREATE TABLE print_media_nonpart
 (product_id NUMBER(6),
 ad_id NUMBER(6),
 ad_sourcetext CLOB)
 LOB (ad_sourcetext) STORE AS SECUREFILE (COMPRESS HIGH);

ALTER TABLE print_media EXCHANGE PARTITION p1 WITH TABLE print_media_nonpart;

11.4.4 Creating an Index on a Table Containing Partitioned LOB Columns
To improve the performance of queries, you can create local or global indexes on partitioned
LOB columns.

Only function-based and domain indexes are supported on LOB columns. Other types of
indexes, such as unique indexes are not supported with LOBs.

For example:

CREATE INDEX ad_sourcetext_idx_sql on print_media
(to_char(substr(ad_sourcetext,1,10)))
 GLOBAL;

CREATE INDEX ad_sourcetext_idx_sql on print_media
(to_char(substr(ad_sourcetext,1,10)))
 LOCAL;

11.5 LOBs in Index Organized Tables
Index Organized Tables (IOTs) support LOB and BFILE columns.

For the most part, SQL DDL, DML, and piecewise operations on LOBs in IOTs produce the
same results as those for normal tables. The only exception is the default semantics of LOBs
during creation. The main differences are:

• Tablespace Mapping: By default, or unless specified otherwise, the LOB data and index
segments are created in the tablespace in which the primary key index segments of the
index organized table are created.

• Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index organized
table created without an overflow segment are stored out of line. In other words, if an index
organized table is created without an overflow segment, then the LOBs in this table have
their default storage attributes as DISABLE STORAGE IN ROW. If you forcibly try to specify an
ENABLE STORAGE IN ROW clause for such LOBs, then SQL raises an error.

On the other hand, if an overflow segment has been specified, then LOBs in index
organized tables exactly mimic their semantics in conventional tables.

Chapter 11
LOBs in Index Organized Tables

11-26

Example of Index Organized Table (IOT) with LOB Columns

Consider the following example:

CREATE TABLE iotlob_tab (c1 INTEGER PRIMARY KEY, c2 BLOB, c3 CLOB, c4
VARCHAR2(20))
 ORGANIZATION INDEX
 TABLESPACE iot_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
 PCTTHRESHOLD 50 INCLUDING c2
 OVERFLOW
 TABLESPACE ioto_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
 STORE AS lobseg (TABLESPACE lob_ts DISABLE STORAGE IN ROW
 CHUNK 16384 PCTVERSION 10 CACHE STORAGE (INITIAL 2M)
 INDEX lobidx_c1 (TABLESPACE lobidx_ts STORAGE (INITIAL 4K)));

Executing these statements results in the creation of an index organized table iotlob_tab with
the following elements:

• A primary key index segment in the tablespace iot_ts,

• An overflow data segment in tablespace ioto_ts
• Columns starting from column C3 being explicitly stored in the overflow data segment

• BLOB (column C2) data segments in the tablespace lob_ts
• BLOB (column C2) index segments in the tablespace lobidx_ts
• CLOB (column C3) data segments in the tablespace iot_ts
• CLOB (column C3) index segments in the tablespace iot_ts
• CLOB (column C3) stored in line by virtue of the IOT having an overflow segment

• BLOB (column C2) explicitly forced to be stored out of line

Note:

If no overflow had been specified, then both C2 and C3 would have been stored
out of line by default.

LOBs in Partitioned Index-Organized Tables

LOB columns and attributes can be stored in partitioned index-organized tables.

Index-organized tables can have LOBs stored as follows; however, partition maintenance
operations, such as MOVE, SPLIT, and MERGE are not supported with:

• VARRAY data types stored as LOB data types.

• Abstract data types with LOB attributes.

• Nested tables with LOB types.

Chapter 11
LOBs in Index Organized Tables

11-27

Restrictions on Index Organized Tables with LOB Columns

The ALTER TABLE MOVE operation cannot be performed on an index organized table with a
LOB column in parallel. Instead, use the NOPARALLEL clause to move the LOB column for such
tables. For example:

ALTER TABLE t1 MOVE LOB(a) STORE AS (<tablespace users>) NOPARALLEL;

Chapter 11
LOBs in Index Organized Tables

11-28

12
Advanced Design Considerations

This section discusses the design considerations for more advanced application development
issues.

• Read-Consistent Locators
Oracle Database provides the same read consistency mechanisms for LOBs as for all
other database reads and updates of scalar quantities.

• LOB Locators and Transaction Boundaries
LOB locators can be used in both transactions as well as transaction IDs.

• LOBs in the Object Cache
When you copy one object to another in the object cache with a LOB locator attribute, only
the LOB locator is copied.

• Guidelines for Creating Terabyte sized LOBs
To create terabyte LOBs in supported environments, use the following guidelines to make
use of all available space in the tablespace for LOB storage.

12.1 Read-Consistent Locators
Oracle Database provides the same read consistency mechanisms for LOBs as for all other
database reads and updates of scalar quantities.

Read consistency has some special applications to LOB locators that you must understand.
The following sections discuss read consistency and include examples which should be looked
at in relationship to each other.

• A Selected Locator Becomes a Read-Consistent Locator
A read-consistent locator contains the snapshot environment as of the point in time of the
SELECT operation.

• Example of Updating LOBs and Read-Consistency
Read-consistent locators provide the same LOB value regardless of when the SELECT
occurs. The following example demonstrates the relationship between read-consistency
and UPDATE operation.

• Example of Updating LOBs Through Updated Locators
Learn about updating LOBs through Locators in this section.

• Example of Updating a LOB Using SQL DML and DBMS_LOB
Using the print_media table in the following example, a CLOB locator is created as
clob_selected.

• Example of Using One Locator to Update the Same LOB Value
You may avoid many pitfalls if you use only one locator to update a given LOB value.
Learn about it in this section.

• Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
Learn about updating a LOB with a PL/SQL bind variable in this section.

• Example of Deleting a LOB Using Locator
Learn about deleting a LOB with a PL/SQL bind variable in this section.

12-1

• Ensuring Read Consistency
This script in this section can be used to ensure that hot backups can be taken of tables
that have NOLOGGING or FILESYSTEM_LIKE_LOGGING LOBs and have a known recovery point
without read inconsistencies.

See Also:

• Oracle Database Concepts for general information about read consistency

12.1.1 A Selected Locator Becomes a Read-Consistent Locator
A read-consistent locator contains the snapshot environment as of the point in time of the
SELECT operation.

A selected locator, regardless of the existence of the FOR UPDATE clause, becomes a read-
consistent locator, and remains a read-consistent locator until the LOB value is updated
through that locator.

This has some complex implications. Suppose you have created a read-consistent locator (L1)
by way of a SELECT operation. In reading the value of the persistent LOB through L1, note the
following:

• The LOB is read as of the point in time of the SELECT statement even if the SELECT
statement includes a FOR UPDATE.

• If the LOB value is updated through a different locator (L2) in the same transaction, then L1
does not see the L2 updates.

• L1 does not see committed updates made to the LOB through another transaction.

• If the read-consistent locator L1 is copied to another locator L2 (for example, by a PL/SQL
assignment of two locator variables — L2:= L1), then L2 becomes a read-consistent
locator along with L1 and any data read is read as of the point in time of the SELECT for L1.

You can use the existence of multiple locators to access different transformations of the LOB
value. However, in doing so, you must keep track of the different values accessed by different
locators.

12.1.2 Example of Updating LOBs and Read-Consistency
Read-consistent locators provide the same LOB value regardless of when the SELECT occurs.
The following example demonstrates the relationship between read-consistency and UPDATE
operation.

Using the print_media table and PL/SQL, three CLOB instances are created as potential
locators: clob_selected, clob_update, and clob_copied.

Observe these progressions in the code, from times t1 through t6:

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob_selected.

• In the second operation (at t2), the value in ad_sourcetext is associated with the locator
clob_updated. Because there has been no change in the value of ad_sourcetext between
t1 and t2, both clob_selected and clob_updated are read-consistent locators that

Chapter 12
Read-Consistent Locators

12-2

effectively have the same value even though they reflect snapshots taken at different
moments in time.

• The third operation (at t3) copies the value in clob_selected to clob_copied. At this
juncture, all three locators see the same value. The example demonstrates this with a
series of DBMS_LOB.READ() calls.

• At time t4, the program uses DBMS_LOB.WRITE() to alter the value in clob_updated, and a
DBMS_LOB.READ() reveals a new value.

• However, a DBMS_LOB.READ() of the value through clob_selected (at t5) reveals that it is a
read-consistent locator, continuing to refer to the same value as of the time of its SELECT.

• Likewise, a DBMS_LOB.READ() of the value through clob_copied (at t6) reveals that it is a
read-consistent locator, continuing to refer to the same value as clob_selected.

Example 12-1

INSERT INTO print_media VALUES (2056, 20020, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:
 SELECT ad_sourcetext INTO clob_selected
 FROM Print_media
 WHERE ad_id = 20020;

 -- At time t2:
 SELECT ad_sourcetext INTO clob_updated
 FROM Print_media
 WHERE ad_id = 20020
 FOR UPDATE;

 -- At time t3:
 clob_copied := clob_selected;
 -- After the assignment, both the clob_copied and the
 -- clob_selected have the same snapshot as of the point in time
 -- of the SELECT into clob_selected

 -- Reading from the clob_selected and the clob_copied does
 -- return the same LOB value. clob_updated also sees the same
 -- LOB value as of its select:
 read_amount := 10;
 read_offset := 1;
 DBMS_LOB.READ(clob_selected, read_amount, read_offset, buffer);
 DBMS_OUTPUT.PUT_LINE('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 DBMS_LOB.READ(clob_copied, read_amount, read_offset, buffer);

Chapter 12
Read-Consistent Locators

12-3

 DBMS_OUTPUT.PUT_LINE('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 DBMS_LOB.READ(clob_updated, read_amount, read_offset, buffer);
 DBMS_OUTPUT.PUT_LINE('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t4:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 DBMS_LOB.WRITE(clob_updated, write_amount, write_offset, buffer);

 read_amount := 10;
 DBMS_LOB.READ(clob_updated, read_amount, read_offset, buffer);
 DBMS_OUTPUT.PUT_LINE('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t5:
 read_amount := 10;
 DBMS_LOB.READ(clob_selected, read_amount, read_offset, buffer);
 DBMS_OUTPUT.PUT_LINE('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t6:
 read_amount := 10;
 DBMS_LOB.READ(clob_copied, read_amount, read_offset, buffer);
 DBMS_OUTPUT.PUT_LINE('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

12.1.3 Example of Updating LOBs Through Updated Locators
Learn about updating LOBs through Locators in this section.

When you update the value of the persistent LOB through the LOB locator (L1), L1 is updated
to contain the current snapshot environment.

This snapshot is as of the time after the operation was completed on the LOB value through
locator L1. L1 is then termed an updated locator. This operation enables you to see your own
changes to the LOB value on the next read through the same locator, L1.

Note:

The snapshot environment in the locator is not updated if the locator is used to
merely read the LOB value. It is only updated when you modify the LOB value
through the locator using the PL/SQL DBMS_LOB package or the OCI LOB APIs.

Any committed updates made by a different transaction are seen by L1 only if your transaction
is a read-committed transaction and if you use L1 to update the LOB value after the other
transaction committed.

Chapter 12
Read-Consistent Locators

12-4

Note:

When you update a persistent LOB value, the modification is always made to the
most current LOB value.

Updating the value of the persistent LOB through any of the available methods, such as OCI
LOB APIs or PL/SQL DBMS_LOB package, updates the LOB value and then reselects the locator
that refers to the new LOB value.

Note:

Once you have selected out a LOB locator by whatever means, you can read from
the locator but not write into it.

Note that updating the LOB value through SQL is merely an UPDATE statement. It is
up to you to do the reselect of the LOB locator or use the RETURNING clause in the
UPDATE statement so that the locator can see the changes made by the UPDATE
statement. Unless you reselect the LOB locator or use the RETURNING clause, you
may think you are reading the latest value when this is not the case. For this reason
you should avoid mixing SQL DML with OCI and DBMS_LOB piecewise operations.

See Also:

Oracle Database PL/SQL Language Reference

12.1.4 Example of Updating a LOB Using SQL DML and DBMS_LOB
Using the print_media table in the following example, a CLOB locator is created as
clob_selected.

Note the following progressions in the example, from times t1 through t3:

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob_selected.

• In the second operation (at t2), the value in ad_sourcetext is modified through the SQL
UPDATE statement, without affecting the clob_selected locator. The locator still sees the
value of the LOB as of the point in time of the original SELECT. In other words, the locator
does not see the update made using the SQL UPDATE statement. This is illustrated by the
subsequent DBMS_LOB.READ() call.

• The third operation (at t3) re-selects the LOB value into the locator clob_selected. The
locator is thus updated with the latest snapshot environment which allows the locator to
see the change made by the previous SQL UPDATE statement. Therefore, in the next
DBMS_LOB.READ(), an error is returned because the LOB value is empty, that is, it does not
contain any data.

Chapter 12
Read-Consistent Locators

12-5

INSERT INTO Print_media VALUES (3247, 20010, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN

 -- At time t1:
 SELECT ad_sourcetext INTO clob_selected
 FROM Print_media
 WHERE ad_id = 20010;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 UPDATE Print_media SET ad_sourcetext = empty_clob()
 WHERE ad_id = 20010;
 -- although the most current LOB value is now empty,
 -- clob_selected still sees the LOB value as of the point
 -- in time of the SELECT

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 SELECT ad_sourcetext INTO clob_selected FROM Print_media WHERE
 ad_id = 20010;
 -- the SELECT allows clob_selected to see the most current
 -- LOB value

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 -- ERROR: ORA-01403: no data found
END;
/

12.1.5 Example of Using One Locator to Update the Same LOB Value
You may avoid many pitfalls if you use only one locator to update a given LOB value. Learn
about it in this section.

Note:

Avoid updating the same LOB with different locators.

Chapter 12
Read-Consistent Locators

12-6

In the following example, using table print_media, two CLOBs are created as potential locators:
clob_updated and clob_copied.

Note these progressions in the example at times t1 through t5:

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob_updated.

• The second operation (at time t2) copies the value in clob_updated to clob_copied. At
this time, both locators see the same value. The example demonstrates this with a series
of DBMS_LOB.READ() calls.

• At time t3, the program uses DBMS_LOB.WRITE() to alter the value in clob_updated, and a
DBMS_LOB.READ() reveals a new value.

• However, a DBMS_LOB.READ() of the value through clob_copied (at time t4) reveals that it
still sees the value of the LOB as of the point in time of the assignment from clob_updated
(at t2).

• It is not until clob_updated is assigned to clob_copied (t5) that clob_copied sees the
modification made by clob_updated.

INSERT INTO PRINT_MEDIA VALUES (2049, 20030, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

-- At time t1:
 SELECT ad_sourcetext INTO clob_updated FROM PRINT_MEDIA
 WHERE ad_id = 20030
 FOR UPDATE;

 -- At time t2:
 clob_copied := clob_updated;
 -- after the assign, clob_copied and clob_updated see the same
 -- LOB value

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 write_amount := 3;
 write_offset := 5;

Chapter 12
Read-Consistent Locators

12-7

 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 clob_copied := clob_updated;

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcdefg'
END;
/

12.1.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind
Variable

Learn about updating a LOB with a PL/SQL bind variable in this section.

When a LOB locator is used as the source to update another persistent LOB (as in a SQL
INSERT or UPDATE statement, the DBMS_LOB.COPY routine, and so on), the snapshot environment
in the source LOB locator determines the LOB value that is used as the source.

If the source locator (for example L1) is a read-consistent locator, then the LOB value as of the
time of the SELECT of L1 is used. If the source locator (for example L2) is an updated locator,
then the LOB value associated with the L2 snapshot environment at the time of the operation is
used.

In the following example, three CLOBs are created as potential locators: clob_selected,
clob_updated, and clob_copied.

Note these progressions in the example at times t1 through t5:

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob_updated.

• The second operation (at t2) copies the value in clob_updated to clob_copied. At this
juncture, both locators see the same value.

• Then (at t3), the program uses DBMS_LOB.WRITE() to alter the value in clob_updated, and
a DBMS_LOB.READ() reveals a new value.

• However, a DBMS_LOB.READ() of the value through clob_copied (at t4) reveals that
clob_copied does not see the change made by clob_updated.

• Therefore (at t5), when clob_copied is used as the source for the value of the INSERT
statement, the value associated with clob_copied (for example, without the new changes

Chapter 12
Read-Consistent Locators

12-8

made by clob_updated) is inserted. This is demonstrated by the subsequent
DBMS_LOB.READ() of the value just inserted.

INSERT INTO PRINT_MEDIA VALUES (2056, 20020, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

 -- At time t1:
 SELECT ad_sourcetext INTO clob_updated FROM PRINT_MEDIA
 WHERE ad_id = 20020
 FOR UPDATE;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 clob_copied := clob_updated;

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset, buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'
 -- note that clob_copied does not see the write made before
 -- clob_updated

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 -- the insert uses clob_copied view of the LOB value which does
 -- not include clob_updated changes
 INSERT INTO PRINT_MEDIA VALUES (2056, 20022, EMPTY_BLOB(),
 clob_copied, EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL)
 RETURNING ad_sourcetext INTO clob_selected;

Chapter 12
Read-Consistent Locators

12-9

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

12.1.7 Example of Deleting a LOB Using Locator
Learn about deleting a LOB with a PL/SQL bind variable in this section.

The following example illustrates that LOB content through a locator selected at a given point
of time is available even though the LOB is deleted in the same transaction.

In the following example, using table print_media, two CLOBs are created as potential
locators:clob_selected and clob_copied.

Note these progressions in the example at times t1 through t3:

• At the time of the first SELECT INTO (at t1), the value inad_sourcetext for ad_id value
20020 is associated with the locator clob_selected. The value in ad_sourcetext for ad_id
value 20021 is associated with the locator clob_copied.

• The second operation (at t2) deletes the row with ad_id value 20020. However, a
DBMS_LOB.READ() of the value through clob_selected (at t1) reveals that it is a read-
consistent locator, continuing to refer to the same value as of the time of its SELECT.

• The third operation (at t3), copies the LOB data read through clob_selected into the LOB
clob_copied. DBMS_LOB.READ() of the value through clob_selected and clob_copied are
now the same and refer to the same value as of the time of SELECT of clob_selected.

INSERT INTO PRINT_MEDIA VALUES (2056, 20020, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

INSERT INTO PRINT_MEDIA VALUES (2057, 20021, EMPTY_BLOB(),
 'cdef', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

DECLARE
 clob_selected CLOB;
 clob_copied CLOB;
 buffer VARCHAR2(20);
 read_amount INTEGER := 20;
 read_offset INTEGER := 1;

BEGIN
 -- At time t1:
 SELECT ad_sourcetext INTO clob_selected
 FROM PRINT_MEDIA
 WHERE ad_id = 20020
 FOR UPDATE;

 SELECT ad_sourcetext INTO clob_copied
 FROM PRINT_MEDIA
 WHERE ad_id = 20021
 FOR UPDATE;

 dbms_lob.read(clob_selected, read_amount, read_offset,buffer);
 dbms_output.put_line(buffer);
 -- Produces the output 'abcd'

 dbms_lob.read(clob_copied, read_amount, read_offset,buffer);

Chapter 12
Read-Consistent Locators

12-10

 dbms_output.put_line(buffer);
 -- Produces the output 'cdef'

 -- At time t2: Delete the CLOB associated with clob_selected
 DELETE FROM PRINT_MEDIA WHERE ad_id = 20020;

 dbms_lob.read(clob_selected, read_amount, read_offset,buffer);
 dbms_output.put_line(buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 -- Copy using clob_selected
 dbms_lob.copy(clob_copied, clob_selected, 4000, 1, 1);
 dbms_lob.read(clob_copied, read_amount, read_offset,buffer);
 dbms_output.put_line(buffer);
 -- Produces the output 'abcd'

END;
/

12.1.8 Ensuring Read Consistency
This script in this section can be used to ensure that hot backups can be taken of tables that
have NOLOGGING or FILESYSTEM_LIKE_LOGGING LOBs and have a known recovery point without
read inconsistencies.

ALTER DATABASE FORCE LOGGING;
SELECT CHECKPOINT_CHANGE# FROM V$DATABASE; --Start SCN

SCN (System Change Number) is a stamp that defines a version of the database at the time
that a transaction is committed.

Perform the backup.

Run the next script:

ALTER SYSTEM CHECKPOINT GLOBAL;
SELECT CHECKPOINT_CHANGE# FROM V$DATABASE; --End SCN
ALTER DATABASE NO FORCE LOGGING;

Back up the archive logs generated by the database. At the minimum, archive logs between
start SCN and end SCN (including both SCN points) must be backed up.

To restore to a point with no read inconsistency, restore to end SCN as your incomplete
recovery point. If recovery is done to an SCN after end SCN, there can be read inconsistency
in the NOLOGGING LOBs.

For SecureFiles, if a read inconsistency is found during media recovery, the database treats
the inconsistent blocks as holes and fills BLOBs with 0's and CLOBs with fill characters.

12.2 LOB Locators and Transaction Boundaries
LOB locators can be used in both transactions as well as transaction IDs.

• About LOB Locators and Transaction Boundaries
Learn about LOB locators and transaction boundaries in this section.

Chapter 12
LOB Locators and Transaction Boundaries

12-11

• Read and Write Operations on a LOB Using Locators
You can always read LOB data using the locator irrespective of whether or not the locator
contains a transaction ID. Learn about various aspects of it in this section.

• Selecting the Locator Outside of the Transaction Boundary
This section has two scenarios that describe techniques for using locators in non-
serializable transactions when the locator is selected outside of a transaction.

• Selecting the Locator Within a Transaction Boundary
This section has two scenarios that describe techniques for using locators in non-
serializable transactions when the locator is selected within a transaction.

• LOB Locators Cannot Span Transactions
LOB locators that are used to write data cannot span transactions. However, the locator
can be used to read the LOB value unless you are in a serializable transaction.

• Example of Locator Not Spanning a Transaction
The example of locator not spanning a transaction uses the print_media table.

See Also:

Locator Interface for LOBs for more information about LOB locators

12.2.1 About LOB Locators and Transaction Boundaries
Learn about LOB locators and transaction boundaries in this section.

Note the following regarding LOB locators and transactions:

• Locators contain transaction IDs when:

You Begin the Transaction, Then Select Locator: If you begin a transaction and
subsequently select a locator, then the locator contains the transaction ID. Note that you
can implicitly be in a transaction without explicitly beginning one. For example, SELECT...
FOR UPDATE implicitly begins a transaction. In such a case, the locator contains a
transaction ID.

• Locators Do Not Contain Transaction IDs When...

– You are Outside the Transaction, Then Select Locator: By contrast, if you select a
locator outside of a transaction, then the locator does not contain a transaction ID.

– When Selected Prior to DML Statement Execution: A transaction ID is not assigned
until the first DML statement executes. Therefore, locators that are selected prior to
such a DML statement do not contain a transaction ID.

12.2.2 Read and Write Operations on a LOB Using Locators
You can always read LOB data using the locator irrespective of whether or not the locator
contains a transaction ID. Learn about various aspects of it in this section.

• Cannot Write Using Locator:

If the locator contains a transaction ID, then you cannot write to the LOB outside of that
particular transaction.

• Can Write Using Locator:

Chapter 12
LOB Locators and Transaction Boundaries

12-12

If the locator does not contain a transaction ID, then you can write to the LOB after
beginning a transaction either explicitly or implicitly.

• Cannot Read or Write Using Locator With Serializable Transactions:

If the locator contains a transaction ID of an older transaction, and the current transaction
is serializable, then you cannot read or write using that locator.

• Can Read, Not Write Using Locator With Non-Serializable Transactions:

If the transaction is non-serializable, then you can read, but not write outside of that
transaction.

The examples Selecting the Locator Outside of the Transaction Boundary, Selecting the
Locator Within a Transaction Boundary, LOB Locators Cannot Span Transactions, and
Example of Locator Not Spanning a Transaction show the relationship between locators and
non-serializable transactions

12.2.3 Selecting the Locator Outside of the Transaction Boundary
This section has two scenarios that describe techniques for using locators in non-serializable
transactions when the locator is selected outside of a transaction.

First Scenario:

1. Select the locator with no current transaction. At this point, the locator does not contain a
transaction id.

2. Begin the transaction.

3. Use the locator to read data from the LOB.

4. Commit or rollback the transaction.

5. Use the locator to read data from the LOB.

6. Begin a transaction. The locator does not contain a transaction id.

7. Use the locator to write data to the LOB. This operation is valid because the locator did not
contain a transaction id prior to the write. After this call, the locator contains a transaction
id.

Second Scenario:

1. Select the locator with no current transaction. At this point, the locator does not contain a
transaction id.

2. Begin the transaction. The locator does not contain a transaction id.

3. Use the locator to read data from the LOB. The locator does not contain a transaction id.

4. Use the locator to write data to the LOB. This operation is valid because the locator did not
contain a transaction id prior to the write. After this call, the locator contains a transaction
id. You can continue to read from or write to the LOB.

5. Commit or rollback the transaction. The locator continues to contain the transaction id.

6. Use the locator to read data from the LOB. This is a valid operation.

7. Begin a transaction. The locator contains the previous transaction id.

8. Use the locator to write data to the LOB. This write operation fails because the locator
does not contain the transaction id that matches the current transaction.

Chapter 12
LOB Locators and Transaction Boundaries

12-13

12.2.4 Selecting the Locator Within a Transaction Boundary
This section has two scenarios that describe techniques for using locators in non-serializable
transactions when the locator is selected within a transaction.

First Scenario:

1. Select the locator within a transaction. At this point, the locator contains the transaction id.

2. Begin the transaction. The locator contains the previous transaction id.

3. Use the locator to read data from the LOB. This operation is valid even though the
transaction id in the locator does not match the current transaction.

See Also:

"Read-Consistent Locators" for more information about using the locator to read
LOB data.

4. Use the locator to write data to the LOB. This operation fails because the transaction id in
the locator does not match the current transaction.

Second Scenario:

1. Begin a transaction.

2. Select the locator. The locator contains the transaction id because it was selected within a
transaction.

3. Use the locator to read from or write to the LOB. These operations are valid.

4. Commit or rollback the transaction. The locator continues to contain the transaction id.

5. Use the locator to read data from the LOB. This operation is valid even though there is a
transaction id in the locator and the transaction was previously committed or rolled back.

6. Use the locator to write data to the LOB. This operation fails because the transaction id in
the locator is for a transaction that was previously committed or rolled back.

12.2.5 LOB Locators Cannot Span Transactions
LOB locators that are used to write data cannot span transactions. However, the locator can be
used to read the LOB value unless you are in a serializable transaction.

Modifying a persistent LOB value through the LOB locator using DBMS_LOB, OCI, or SQL
INSERT or UPDATE statements changes the locator from a read-consistent locator to an updated
locator.

The INSERT or UPDATE statement automatically starts a transaction and locks the row. Once this
has occurred, the locator cannot be used outside the current transaction to modify the LOB
value. In other words, LOB locators that are used to write data cannot span transactions.
However, the locator can be used to read the LOB value unless you are in a serializable
transaction.

In the following code example, a CLOB locator called clob_updated is created and following
operations are performed:

Chapter 12
LOB Locators and Transaction Boundaries

12-14

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob_updated.

• The second operation (at t2), uses the DBMS_LOB.WRITE function to alter the value in
clob_updated, and a DBMS_LOB.READ reveals a new value.

• The commit statement (at t3) ends the current transaction.

• Therefore (at t4), the subsequent DBMS_LOB.WRITE operation fails because the
clob_updated locator refers to a different (already committed) transaction. This is noted by
the error returned. You must re-select the LOB locator before using it in further DBMS_LOB
(and OCI) modify operations.

12.2.6 Example of Locator Not Spanning a Transaction
The example of locator not spanning a transaction uses the print_media table.

INSERT INTO PRINT_MEDIA VALUES (2056, 20010, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:
 SELECT ad_sourcetext
 INTO clob_updated
 FROM PRINT_MEDIA
 WHERE ad_id = 20010
 FOR UPDATE;
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcd'

 -- At time t2:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset, buffer);
 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcdefg'

 -- At time t3:
 COMMIT;

 -- At time t4:
 dbms_lob.write(clob_updated , write_amount, write_offset, buffer);
 -- ERROR: ORA-22990: LOB locators cannot span transactions

Chapter 12
LOB Locators and Transaction Boundaries

12-15

END;
/

12.3 LOBs in the Object Cache
When you copy one object to another in the object cache with a LOB locator attribute, only the
LOB locator is copied.

This means that the LOB attribute in these two different objects contain exactly the same
locator that refers to one and the same LOB value. Only when you flush the target LOB, a
separate physical copy of the LOB value is made, which is distinct from the source LOB value.

See Also:

Example of Updating LOBs and Read-Consistency for a description of what version
of the LOB value is seen by each object if a write operation is performed through one
of the locators.

Therefore, in cases where you want to modify the LOB that was the target of the copy, you
must flush the target object, refresh the target object, and then write to the LOB through the
locator attribute.

Consider the following object cache issues for LOB and BFILE attributes:

• Persistent LOB attributes: Creating an object in the object cache, sets the LOB attribute to
empty.

When you create an object in the object cache that contains a persistent LOB attribute, the
LOB attribute is implicitly set to empty. You may not use this empty LOB locator to write
data to the LOB. You must first flush the object, thereby inserting a row into the table and
creating an empty LOB, that is, a LOB with zero (0) length. Once you refresh the object in
the object cache, using the OCI_PIN_LATEST function, the real LOB locator is read into the
attribute, and you can then call the OCI LOB APIs to write data to the LOB.

• BFILE attributes: Creating an object in the object cache, sets the BFILE attribute to NULL.

When creating an object with a BFILE attribute, the BFILE is set to NULL. You must update it
with a valid DIRECTORY object name and file name before reading from the BFILE.

12.4 Guidelines for Creating Terabyte sized LOBs
To create terabyte LOBs in supported environments, use the following guidelines to make use
of all available space in the tablespace for LOB storage.

• Single Data File Size Restrictions:

There are restrictions on the size of a single data file for each operating system. Hence,
add more data files to the tablespace when the LOB grows larger than the maximum
allowed file size of the operating system on which your Oracle Database runs.

• Set MAXEXTENTS to a Suitable Value or UNLIMITED:

The MAXEXTENTS parameter limits the number of extents allowed for the LOB column. A
large number of extents are created incrementally as the LOB size grows. Therefore, the
parameter should be set to a value that is large enough to hold all the LOBs for the
column. Alternatively, you could set it to UNLIMITED.

Chapter 12
LOBs in the Object Cache

12-16

• Use a Large Extent Size:

For every new extent created, Oracle generates undo information for the header and other
metadata for the extent. If the number of extents is large, then the rollback segment can be
saturated. To get around this, choose a large extent size, say 100 megabytes, to reduce
the frequency of extent creation, or commit the transaction more often to reuse the space
in the rollback segment.

• Creating a Tablespace and Table to Store Terabyte LOBs
The following example illustrates how to create a tablespace and table to store terabyte
LOBs.

12.4.1 Creating a Tablespace and Table to Store Terabyte LOBs
The following example illustrates how to create a tablespace and table to store terabyte LOBs.

CREATE TABLESPACE lobtbs1 DATAFILE '/your/own/data/directory/lobtbs_1.dat'
SIZE 2000M REUSE ONLINE NOLOGGING DEFAULT STORAGE (MAXEXTENTS UNLIMITED);
ALTER TABLESPACE lobtbs1 ADD DATAFILE
'/your/own/data/directory/lobtbs_2.dat' SIZE 2000M REUSE;

CREATE TABLE print_media_backup
 (product_id NUMBER(6),
 ad_id NUMBER(6),
 ad_composite BLOB,
 ad_sourcetext CLOB,
 ad_finaltext CLOB,
 ad_fltextn NCLOB,
 ad_textdocs_ntab textdoc_tab,
 ad_photo BLOB,
 ad_graphic BLOB,
 ad_header adheader_typ)
 NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab5
 LOB(ad_sourcetext) STORE AS (TABLESPACE lobtbs1 CHUNK 32768 PCTVERSION 0
 NOCACHE NOLOGGING
 STORAGE(INITIAL 1000M NEXT 1000M MAXEXTENTS
 UNLIMITED));

Chapter 12
Guidelines for Creating Terabyte sized LOBs

12-17

13
Managing LOBs: Database Administration

You must perform various administrative tasks to set up, maintain, and use a database that
contains LOBs.

Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to Relocating a
PDB Using CREATE PLUGGABLE DATABASE.

• Initialization Parameter for SecureFiles LOBs
As a database administrator, you can configure the conditions that control or allow creation
of SecureFiles LOBs or BasicFiles LOBs. Typically, you set up the DB_SECUREFILE
parameter in the init.ora file for this purpose.

• Database Character Set Considerations
The database character set cannot be changed from a single-byte to a multibyte character
set if there are populated user-defined CLOB columns in the database tables.

• Database Utilities for Loading Data into LOBs
Certain utilities are recommended for bulk loading data into LOB columns as part of the
database set up or maintenance tasks.

• LOB Migration with Data Pump

• BFILEs Management
This section describes various administrative tasks to manage databases that contain
BFILEs.

• Managing LOB Signatures
This section describes how to configure LOB signatures.

13.4 LOB Migration with Data Pump
See Migrating LOBs with Data Pump.

13.1 Initialization Parameter for SecureFiles LOBs
As a database administrator, you can configure the conditions that control or allow creation of
SecureFiles LOBs or BasicFiles LOBs. Typically, you set up the DB_SECUREFILE parameter in
the init.ora file for this purpose.

The DB_SECUREFILE initialization parameter is dynamic and can be modified with the ALTER
SYSTEM statement in the following way:

ALTER SYSTEM SET DB_SECUREFILE = 'ALWAYS';

13-1

The valid values for this parameter are described in the following table:

Value Description

NEVER Prevents SecureFiles LOBs from being created. If
NEVER is specified, then any LOBs that are
specified as SecureFiles LOBs are created as
BasicFiles LOBs. If storage options are not
specified, then the BasicFiles LOB defaults are
used. All SecureFiles LOB-specific storage options
and features such as compress, encrypt, and
deduplicate throw an exception.

IGNORE Always create BasicFile LOBs, and ignore any
errors that the SecureFile LOB options might
cause. If IGNORE is specified, then the
SECUREFILE keyword and all SecureFiles LOB
options are ignored.

PERMITTED Allows SecureFiles LOBs to be created, if specified
by users. Otherwise, BasicFiles LOBs are created.

PREFERRED(default) Attempts to create a SecureFiles LOB unless
BasicFiles LOB is explicitly specified for the LOB or
the parent LOB (if the LOB is in a partition or sub-
partition).

ALWAYS Attempts to create SecureFiles LOBs, but creates
any LOBs not in ASSM tablespaces as BasicFiles
LOBs, unless the SECUREFILE parameter is
explicitly specified. Any BasicFiles LOB storage
options specified are ignored, and the SecureFiles
LOB defaults are used for all storage options not
specified.

FORCE Attempts to create all LOBs as SecureFiles LOBs
even if users specify BASICFILE. This option is not
recommended. Instead, PREFERRED or ALWAYS
should be used.

13.2 Database Character Set Considerations
The database character set cannot be changed from a single-byte to a multibyte character set
if there are populated user-defined CLOB columns in the database tables.

The national character set cannot be changed between AL16UTF16 and UTF8 if there are
populated user-defined NCLOB columns in the database tables.

See Also:

Choosing a Character Set

13.3 Database Utilities for Loading Data into LOBs
Certain utilities are recommended for bulk loading data into LOB columns as part of the
database set up or maintenance tasks.

Chapter 13
Database Character Set Considerations

13-2

The following utilities are recommended for bulk loading data into LOB columns as part of
database setup or maintenance tasks:

• SQL*Loader

• External Tables

• Oracle Data Pump

• Loading LOBs with SQL*Loader
Learn about conventional and direct-path loads, when Oracle recommends that you use
direct-path loads, and what rules and guidelines you should follow to avoid issues.

• Loading BFILEs with SQL*Loader
This section describes how to load data from files in the file system into a BFILE column
using SQL*Loader.

• Loading LOBs with External Tables
External tables are particularly useful for loading large numbers of records from a single
file, so that each record appears in its own row in the table.

13.3.1 Loading LOBs with SQL*Loader
Learn about conventional and direct-path loads, when Oracle recommends that you use direct-
path loads, and what rules and guidelines you should follow to avoid issues.

There are two options for loading large object (LOB) data:

A conventional path load executes SQL INSERT statements to populate tables in an Oracle
Database.

A direct-path load eliminates much of the Oracle Database overhead by formatting Oracle
data blocks, and writing the data blocks directly to the database files. Additionally, a direct-path
load does not compete with other users for database resources, so it can usually load data at
near disk speed. Be aware that there are also other restrictions, security, and backup
implications for direct path loads, which you should review.

For each of these options of loading large object data (LOBs), you can use the following
techniques to load data into LOBs:

• Loading LOB data from primary data files.

When you load data from a primary data file, the data for the LOB column is part of the
record in the file that you are loading.

• Loading LOB data from a secondary data file using LOB files.

When you load data from a secondary data file, the data for a LOB column is in a different
file from the primary data file. Instead of the data itself, the primary data file contains
information about the location of the content of the LOB data in other files.

Recommendations for Using SQL*Loader to Load LOBs

Oracle recommends that you keep the following guidelines and rules in mind when loading
LOBs using SQL*Loader:

• Tables that you want to load must already exist in the database. SQL*Loader never creates
tables. It loads existing tables that either contain data, or are empty.

• When you load data from LOB files, specify the maximum length of the field corresponding
to a LOB-type column. If the maximum length is specified, then SQL*Loader uses this
length as a hint to help optimize memory usage. You should ensure that the maximum
length you specify does not underestimate the true maximum length.

Chapter 13
Database Utilities for Loading Data into LOBs

13-3

• If you use conventional path loads, then be aware that failure to load a particular LOB does
not result in the rejection of the record containing that LOB; instead, the record ends up
containing an empty LOB.

• If you use direct-path loads, then be aware that loading LOBs can take up substantial
memory. If the message SQL*Loader 700 (out of memory) appears when loading LOBs,
then internal code is probably batching up more rows in each load call than can be
supported by your operating system and process memory. One way to work around this
problem is to use the ROWS option to read a smaller number of rows in each data save.

Only use direct path loads to load XML documents that are known to be valid into XMLtype
columns that are stored as CLOBS. Direct path load does not validate the format of XML
documents as the are loaded as CLOBs.

With direct-path loads, errors can be critical. In direct-path loads, the LOB could be empty
or truncated. LOBs are sent in pieces to the server for loading. If there is an error, then the
LOB piece with the error is discarded and the rest of that LOB is not loaded. As a result, if
the entire LOB with the error is contained in the first piece, then that LOB column is either
empty or truncated.

You can also use the Direct Path API to load LOBs.

Privileges Required for Using SQL*Loader to Load LOBs

The following privileges are required for using SQL*Loader to load LOBs:

• You must have INSERT privileges on the table that you want to load.

• You must have DELETE privileges on the table that you want to load, if you want to use the
REPLACE or TRUNCATE option to empty out the old data before loading the new data in its
place.

Example 13-1 Loading LOB from a primary data file using Delimited Fields

Review this example to see how to load LOB data in delimited fields. Note the callouts "1" and
"2" in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat' "str '|'"
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(25),
1 "RESUME" CHAR(507) ENCLOSED BY '<startlob>' AND '<endlob>')

Data File (sample.dat)

Julia Nayer,<startlob> Julia Nayer
 500 Example Parkway
 jnayer@example.com ... <endlob>
2 |Bruce Ernst,

Chapter 13
Database Utilities for Loading Data into LOBs

13-4

Note:

The callouts, in bold, to the left of the example correspond to the following notes:

1. <startlob> and <endlob> are the enclosure strings. With the default byte-length
semantics, the maximum length for a LOB that can be read using CHAR(507) is
507 bytes. If character-length semantics were used, then the maximum would be
507 characters. For more information, refer to character-length semantics.

2. If the record separator '|' had been placed right after <endlob> and followed
with the newline character, then the newline would have been interpreted as part
of the next record. An alternative would be to make the newline part of the record
separator (for example, '|\n' or, in hexadecimal notation, X'7C0A').

Example 13-2 Loading a LOB from secondary data file, using Delimited Fields:

In this example, note the callout "1" in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT 'jqresume') CHAR(2000)
 TERMINATED BY "<endlob>\n")

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ... <endlob>
 Speed Racer
 400 Oracle Parkway
 ... <endlob>

Chapter 13
Database Utilities for Loading Data into LOBs

13-5

Note:

The callout, in bold, to the left of the example corresponds to the following note:

1. Because a maximum length of 2000 is specified for CHAR, SQL*Loader knows
what to expect as the maximum length of the field, which can result in memory
usage optimization. If you choose to specify a maximum length, then you should
be sure not to underestimate its value. The TERMINATED BY clause specifies the
string that terminates the LOBs. Alternatively, you can use the ENCLOSED BY
clause. The ENCLOSED BY clause allows a bit more flexibility with the relative
positioning of the LOBs in the LOBFILE, because the LOBs in the LOBFILE do not
need to be sequential.

Related Topics

• Oracle Call Interface Direct Path Load Interface

• Loading Objects, LOBs, and Collections with SQL*Loader

13.3.2 Loading BFILEs with SQL*Loader
This section describes how to load data from files in the file system into a BFILE column using
SQL*Loader.

Note:

• The BFILE data type stores unstructured binary data in operating system files
outside the database. A BFILE column or attribute stores a file locator that points
to a server-side external file containing the data.

• A particular file to be loaded as a BFILE does not have to actually exist at the
time of loading. SQL*Loader assumes that the necessary DIRECTORY objects
have been created.

See Also:

DIRECTORY Objects for more information

A control file field corresponding to a BFILE column consists of the column name followed by
the BFILE directive.

The BFILE directive takes as arguments a DIRECTORY object name followed by a BFILE name.
Both of these can be provided as string constants, or they can be dynamically sourced through
some other field.

See Also:

Oracle Database Utilities for details on SQL*Loader syntax

Chapter 13
Database Utilities for Loading Data into LOBs

13-6

The following two examples illustrate the loading of BFILEs.

Note:

You need to set up the following data structures for certain examples to work:

CONNECT pm/pm
CREATE OR REPLACE DIRECTORY adgraphic_photo as '/tmp';
CREATE OR REPLACE DIRECTORY adgraphic_dir as '/tmp';

In the following example, only the file name is specified dynamically. The directory name,
adgraphic_photo, is in quotation marks. Therefore, the string is used as is, and is not
capitalized.

Control file:

LOAD DATA
INFILE sample9.dat
INTO TABLE Print_media
FIELDS TERMINATED BY ','
(product_id INTEGER EXTERNAL(6),
 FileName FILLER CHAR(30),
 ad_graphic BFILE(CONSTANT "adgraphic_photo", FileName))

Data file:

007, modem_2268.jpg,
008, monitor_3060.jpg,
009, keyboard_2056.jpg,

In the following example, the BFILE and the DIRECTORY objects are specified dynamically.

Control file:

LOAD DATA
INFILE sample10.dat
INTO TABLE Print_media
FIELDS TERMINATED BY ','
(
 product_id INTEGER EXTERNAL(6),
 ad_graphic BFILE (DirName, FileName),
 FileName FILLER CHAR(30),
 DirName FILLER CHAR(30)
)

Data file:

007,monitor_3060.jpg,ADGRAPHIC_PHOTO,
008,modem_2268.jpg,ADGRAPHIC_PHOTO,
009,keyboard_2056.jpg,ADGRAPHIC_DIR,

13.3.3 Loading LOBs with External Tables
External tables are particularly useful for loading large numbers of records from a single file, so
that each record appears in its own row in the table.

Chapter 13
Database Utilities for Loading Data into LOBs

13-7

Note:

Loading LOBs with External Tables

• Overview of LOBs and External Tables
Learn the benefits of using external tables with your database to read and write data, and
to understand how to create them.

13.3.3.1 Overview of LOBs and External Tables
Learn the benefits of using external tables with your database to read and write data, and to
understand how to create them.

External tables enable you to treat the contents of external files as if they are rows in a table in
your Oracle Database. After you create an external table, you can then use SQL statements to
read rows from the external table, and insert them into another table.

To perform these operations, Oracle Database uses one of the following access drivers:

• The ORACLE_LOADER access driver reads text files and other file formats, similar to SQL
Loader.

• The ORACLE_DATAPUMP access driver creates binary files that store data returned by a
query. It also returns rows from files in binary format.

When you create an external table, you specify column and data types for the external table.
The access driver has a list of columns in the data file, and maps the contents of the field in the
data file to the column with the same name in the external table. The access driver takes care
of finding the fields in the data source, and converting these fields to the appropriate data type
for the corresponding column in the external table. After you create an external table, you can
load the target table by using an INSERT AS SELECT statement.

One of the advantages of using external tables to load data over SQL Loader is that external
tables can load data in parallel. The easiest way to do this is to specify the PARALLEL clause as
part of CREATE TABLE for both the external table and the target table.

Example 13-3

This example creates a table, CANDIDATE, that can be loaded by an external table. When it is
loaded, it then creates an external table, CANDIDATE_XT. Next, it executes an INSERT statement
to load the table. The INSERT statement includes the +APPEND hint, which uses direct load to
insert the rows into the table CANDIDATES. The PARALLEL parameter tells SQL that the tables
can be accessed in parallel.

The PARALLEL parameter setting specifies that there can be four (4) parallel query processes
reading from CANDIDATE_XT, and four parallel processes inserting into CANDIDATE. Note that
LOBs that are stored as BASICFILE cannot be loaded in parallel. You can only load SECUREFILE
LOBS in parallel. The variable additional-external-table-info indicates where additional
external table information can be inserted.

CREATE TABLE CANDIDATES

 (candidate_id NUMBER,

 first_name VARCHAR2(15),

Chapter 13
Database Utilities for Loading Data into LOBs

13-8

 last_name VARCHAR2(20),

 resume CLOB,

 picture BLOB

) PARALLEL 4;

CREATE TABLE CANDIDATE_XT

 (candidate_id NUMBER,

 first_name VARCHAR2(15),

 last_name VARCHAR2(20),

 resume CLOB,

 picture BLOB

) PARALLEL 4;

ORGANIZATION EXTERNAL additional-external-table-info PARALLEL 4;

INSERT /*+APPEND*/ INTO CANDIDATE SELECT * FROM CANDIDATE_XT;

File Locations for External Tables Created By Access Drivers

All files created or read by ORACLE_LOADER and ORACLE_DATAPUMP reside in directories pointed
to by directory objects. Either the DBA or a user with the CREATE DIRECTORY privilege can
create a directory object that maps a new to a path on the file system. These users can grant
READ, WRITE or EXECUTE privileges on the created directory object to other users. A user granted
READ privilege on a directory object can use external tables to read files from directory for the
directory object. Similarly, a user with WRITE privilege on a directory object can use external
tables to write files to the directory for the directory object.

Example 13-4 Creating Directory Object

The following example shows how to create a directory object and grant READ and WRITE
access to user HR:

create directory HR_DIR as /usr/hr/files/exttab;

grant read, write on directory HR_DIR to HR;

Note:

When using external tables in an Oracle Real Application Clusters (Oracle RAC)
environment, you must make sure that the directory pointed to by the directory object
maps to a directory that is accessible from all nodes.

Chapter 13
Database Utilities for Loading Data into LOBs

13-9

13.5 BFILEs Management
This section describes various administrative tasks to manage databases that contain BFILEs.

• Guidelines for DIRECTORY Usage
Learn about the guidelines for efficient management of DIRECTORY objects.

• Rules for Using Directory Objects and BFILEs
You can create a directory object or BFILE objects if these conditions are met.

• Setting Maximum Number of Open BFILEs
Only limited number of BFILEs can be open simultaneously in each session. Learn to
define this number in this section.

13.5.1 Guidelines for DIRECTORY Usage
Learn about the guidelines for efficient management of DIRECTORY objects.

The main goal of the DIRECTORY feature is to enable a simple, flexible, non-intrusive, yet secure
mechanism for the DBA to manage access to large files in the server file system. But to realize
this goal, it is very important that the DBA follow these guidelines when using DIRECTORY
objects:

• Do not map a DIRECTORY object to a data file directory. A DIRECTORY object should not be
mapped to physical directories that contain Oracle data files, control files, log files, and
other system files. Tampering with these files (accidental or otherwise) could corrupt the
database or the server operating system.

• Only the DBA should have system privileges. The system privileges such as CREATE ANY
DIRECTORY or DROP ANY DIRECTORY(granted to the DBA initially) should be used carefully
and not granted to other users indiscriminately. In most cases, only the database
administrator should have these privileges.

• Use caution when granting the DIRECTORY privilege. Privileges on DIRECTORY objects
should be granted to different users carefully. The same holds for the use of the WITH
GRANT OPTION clause when granting privileges to users.

• Do not drop or replace DIRECTORY objects when database is in operation. If this were to
happen, then operations from all sessions on all files associated with this DIRECTORY object
fail. Further, if a DROP or REPLACE command is executed before these files could be
successfully closed, then the references to these files are lost in the programs, and system
resources associated with these files are not be released until the session(s) is shut down.

The only recourse left to PL/SQL users, for example, is to either run a program block that
calls DBMS_LOB.FILECLOSEALL and restart their file operations, or exit their sessions
altogether. Hence, it is imperative that you use these commands with prudence, and
preferably during maintenance downtimes.

• Use caution when revoking a user's privilege on DIRECTORY objects. Revoking a user's
privilege on a DIRECTORY object using the REVOKE statement causes all subsequent
operations on dependent files from the user's session to fail. The user must either re-
acquire the privileges to close the file, or run a FILECLOSEALL in the session and restart the
file operations.

In general, using DIRECTORY objects for managing file access is an extension of system
administration work at the operating system level. With some planning, files can be logically
organized into suitable directories that have READ privileges for the Oracle process.

Chapter 13
BFILEs Management

13-10

DIRECTORY objects can be created with READ privileges that map to these physical directories,
and specific database users granted access to these directories.

See Also:

Security on Directory Objects

13.5.2 Rules for Using Directory Objects and BFILEs
You can create a directory object or BFILE objects if these conditions are met.

When you create a directory object or BFILE objects, ensure that the following conditions are
met:

• The operating system file must not be a symbolic or hard link.

• The operating system directory path named in the Oracle DIRECTORY object must be an
existing operating system directory path.

• The operating system directory path named in the Oracle DIRECTORY object should not
contain any symbolic links in its components.

13.5.3 Setting Maximum Number of Open BFILEs
Only limited number of BFILEs can be open simultaneously in each session. Learn to define
this number in this section.

The initialization parameter, SESSION_MAX_OPEN_FILES, defines an upper limit on the number of
simultaneously open files in a session.

The default value for this parameter is 10. Using this default, you can open a maximum of 10
files at the same time in each session. To alter this limit, the database administrator must
change the parameter value in the init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files reaches the SESSION_MAX_OPEN_FILES value, then you cannot
open additional files in the session. To close all open files, use the DBMS_LOB.FILECLOSEALL
call.

See Also:

DIRECTORY Objects

13.6 Managing LOB Signatures
This section describes how to configure LOB signatures.

You can configure signature-based security for large object (LOB) locators using the
LOB_SIGNATURE_ENABLE initialization parameter.

Chapter 13
Managing LOB Signatures

13-11

• To enable signature, set the LOB_SIGNATURE_ENABLE initialization parameter at init.ora, or
using the following ALTER SYSTEM command. Also ensure that you have set the
compatibility to 12.2.0.2 or above.

ALTER SYSTEM SET LOB_SIGNATURE_ENABLE = [TRUE|FALSE];
• The following ALTER statement helps to encrypt, re-key, and delete the signature keys.

ALTER DATABASE DICTIONARY [ENCRYPT|REKEY|DELETE] CREDENTIALS;
For more information, refer to the Oracle Database Security Guide.

See Also:

Oracle Database Security Guide

Chapter 13
Managing LOB Signatures

13-12

14
Migrating Columns to SecureFile LOBs

Oracle recommends that you migrate your existing columns that use the LONG or LONG RAW
datatype or BasicFile LOB storage to the SecureFile LOB storage. This chapter covers various
techniques to help with this migration.

Note:

All discussions in this chapter are valid for migrating the LONG datatype to CLOB or
NCLOB, and the LONG RAW datatype to BLOB. Most of the text in this chapter talks just
about the LONG datatype for brevity.

• Migration Considerations
This section discusses various factors to be considered while migrating LOB data types or
storage.

• Migration Methods
This section describes various methods you can use to migrate LONG or BasicFile LOB
data to SecureFile storage.

• Other Considerations While Migrating LONG Columns to LOBs
This section describes some more considerations when migrating LONG columns to LOBs.

14.1 Migration Considerations
This section discusses various factors to be considered while migrating LOB data types or
storage.

Space requirements

Most migration techniques copy the contents of the table into a new space, and free the old
space at the end of the operation. This temporarily doubles the space requirements. If space is
limited, then you can perform the BasicFile to SecureFile migration one partition at a time.

Preventing Generation of REDO Data When Migrating

Migrating LONG datatype or BasicFiles LOB columns to SecureFile generates redo data, which
can slow down the performance during the migration.

Redo changes for a column being converted to SecureFiles LOB are logged only if the storage
characteristics of the LOB column indicate LOGGING. The logging setting (LOGGING or
NOLOGGING) for the LOB column is inherited from the tablespace in which the LOB is created.

You can prevent redo space generation during migration to SecureFiles LOB by following the
following steps:

1. Specify the NOLOGGING storage parameter for any new SecureFiles LOB columns.

2. Turn LOGGING on when the migration is complete.

14-1

3. Make a backup of the tablespaces containing the table and the LOB column.

14.2 Migration Methods
This section describes various methods you can use to migrate LONG or BasicFile LOB data
to SecureFile storage.

• Migrating LOBs with Online Redefinition
Online redefinition is the recommended method for migrating LONG or BasicFile LOB data
to SecureFile storage. While online redefinition for LONG to LOB migration must be
performed at the table level, BasicFile to SecureFile migration can be performed at the
table or partition level.

• Migrating LOBs with Data Pump
Oracle Data Pump can either recreate tables as they are in your source database, or
recreate LOB columns as SecureFile LOBs.

14.2.1 Migrating LOBs with Online Redefinition
Online redefinition is the recommended method for migrating LONG or BasicFile LOB data to
SecureFile storage. While online redefinition for LONG to LOB migration must be performed at
the table level, BasicFile to SecureFile migration can be performed at the table or partition
level.

Online Redefintion Advantages

• No need not take the table or partition offline

• Can be done in parallel.
To set up parallel execution of online redefinition, run:

ALTER SESSION FORCE PARALLEL DML;

Online Redefinition Disadvantages

• Additional storage equal to the entire table or partition required and all LOB segments must
be available

• Global indexes must be rebuilt

Example 14-1 Online Redefinition for Migrating Tables from BasicFiles LOB storage to
SecureFile LOB storage

REM Grant privileges required for online redefinition.
GRANT EXECUTE ON DBMS_REDEFINITION TO pm;
GRANT ALTER ANY TABLE TO pm;
GRANT DROP ANY TABLE TO pm;
GRANT LOCK ANY TABLE TO pm;
GRANT CREATE ANY TABLE TO pm;
GRANT SELECT ANY TABLE TO pm;
REM Privileges required to perform cloning of dependent objects.
GRANT CREATE ANY TRIGGER TO pm;
GRANT CREATE ANY INDEX TO pm;
CONNECT pm/pm

-- This forces the online redefinition to execute in parallel
ALTER SESSION FORCE parallel dml;

Chapter 14
Migration Methods

14-2

DROP TABLE cust;
CREATE TABLE cust(c_id NUMBER PRIMARY KEY,
 c_zip NUMBER,
 c_name VARCHAR(30) DEFAULT NULL,
 c_lob CLOB
);
INSERT INTO cust VALUES(1, 94065, 'hhh', 'ttt');
-- Creating Interim Table
-- There is no requirement to specify constraints because they are
-- copied over from the original table.
CREATE TABLE cust_int(c_id NUMBER NOT NULL,
 c_zip NUMBER,
 c_name VARCHAR(30) DEFAULT NULL,
 c_lob CLOB
) LOB(c_lob) STORE AS SECUREFILE (NOCACHE FILESYSTEM_LIKE_LOGGING);
DECLARE
 col_mapping VARCHAR2(1000);
BEGIN
-- map all the columns in the interim table to the original table
 col_mapping :=
 'c_id c_id , '||
 'c_zip c_zip , '||
 'c_name c_name, '||
 'c_lob c_lob';
DBMS_REDEFINITION.START_REDEF_TABLE('pm', 'cust', 'cust_int', col_mapping);
END;
/
DECLARE
 error_count pls_integer := 0;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS('pm', 'cust', 'cust_int',
 1, TRUE,TRUE,TRUE,FALSE, error_count);
 DBMS_OUTPUT.PUT_LINE('errors := ' || TO_CHAR(error_count));
END;
/
EXEC DBMS_REDEFINITION.FINISH_REDEF_TABLE('pm', 'cust', 'cust_int');
-- Drop the interim table
DROP TABLE cust_int;
DESC cust;
-- The following insert statement fails. This illustrates
-- that the primary key constraint on the c_id column is
-- preserved after migration.
INSERT INTO cust VALUES(1, 94065, 'hhh', 'ttt');
SELECT * FROM cust;

Example 14-2 Online Redefinition for Migrating Tables from the LONG datatype to a
SecureFile LOB

The steps for LONG to LOB migration are:

• Create an empty interim table. This table holds the migrated data when the redefinition
process is done. In the interim table:

– Define a CLOB or NCLOB column for each LONG column in the original table that you are
migrating.

Chapter 14
Migration Methods

14-3

– Define a BLOB column for each LONG RAW column in the original table that you are
migrating.

• Start the redefinition process. To do so, call DBMS_REDEFINITION.START_REDEF_TABLE and
pass the column mapping using the TO_LOB operator as follows:

DBMS_REDEFINITION.START_REDEF_TABLE(
 'schema_name',
 'original_table',
 'interim_table',
 'TO_LOB(long_col_name) lob_col_name',
 'options_flag',
 'orderby_cols');

where long_col_name is the name of the LONG or LONG RAW column that you are converting
in the original table and lob_col_name is the name of the LOB column in the interim table.
This LOB column holds the converted data.

• Call the DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS procedure as described in the
related documentation.

• Call the DBMS_REDEFINITION.FINISH_REDEF_TABLE procedure as described in the related
documentation.

The following example demonstrates online redefinition for LONG to LOB migration.

REM Grant privileges required for online redefinition.
GRANT execute ON DBMS_REDEFINITION TO pm;
GRANT ALTER ANY TABLE TO pm;
GRANT DROP ANY TABLE TO pm;
GRANT LOCK ANY TABLE TO pm;
GRANT CREATE ANY TABLE TO pm;
GRANT SELECT ANY TABLE TO pm;

REM Privileges required to perform cloning of dependent objects.
GRANT CREATE ANY TRIGGER TO pm;
GRANT CREATE ANY INDEX TO pm;

CONNECT pm/pm

-- This forces the online redefinition to execute in parallel
ALTER SESSION FORCE parallel dml;

DROP TABLE cust;
CREATE TABLE cust(c_id NUMBER PRIMARY KEY,
 c_zip NUMBER,
 c_name VARCHAR(30) DEFAULT NULL,
 c_long LONG
);
INSERT INTO cust VALUES(1, 94065, 'hhh', 'ttt');

-- Creating Interim Table
-- There is no requirement to specify constraints because they are
-- copied over from the original table.
CREATE TABLE cust_int(c_id NUMBER NOT NULL,
 c_zip NUMBER,
 c_name VARCHAR(30) DEFAULT NULL,

Chapter 14
Migration Methods

14-4

 c_long CLOB
);

DECLARE
 col_mapping VARCHAR2(1000);
BEGIN
-- map all the columns in the interim table to the original table
 col_mapping :=
 'c_id c_id , '||
 'c_zip c_zip , '||
 'c_name c_name, '||
 'to_lob(c_long) c_long';

DBMS_REDEFINITION.START_REDEF_TABLE('pm', 'cust', 'cust_int', col_mapping);
END;
/

DECLARE
 error_count PLS_INTEGER := 0;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS('pm', 'cust', 'cust_int',
 1, true, true, true, false,
 error_count);

 DBMS_OUTPUT.PUT_LINE('errors := ' || to_char(error_count));
END;
/

EXEC DBMS_REDEFINITION.FINISH_REDEF_TABLE('pm', 'cust', 'cust_int');

-- Drop the interim table
DROP TABLE cust_int;

DESC cust;

-- The following insert statement fails. This illustrates
-- that the primary key constraint on the c_id column is
-- preserved after migration.

INSERT INTO cust VALUES(1, 94065, 'hhh', 'ttt');

SELECT * FROM cust;

14.2.2 Migrating LOBs with Data Pump
Oracle Data Pump can either recreate tables as they are in your source database, or recreate
LOB columns as SecureFile LOBs.

When Oracle Data Pump recreates tables, by default, it recreates them as they existed in the
source database. Therefore, if a LOB column was a BasicFiles LOB in the source database,
Oracle Data Pump attempts to recreate it as a BasicFile LOB in the imported database.
However, you can force creation of LOBs as SecureFile LOBs in the recreated tables by using
a TRANSFORM parameter for the command line, or by using a LOB_STORAGE parameter for the
DBMS_DATAPUMP and DBMS_METADATA packages.

Chapter 14
Migration Methods

14-5

Example:

impdp system/manager directory=dpump_dir schemas=lobuser dumpfile=lobuser.dmp
 transform=lob_storage:securefile

Note:

The transform name is not valid in transportable import.

See Also:

TRANSFORM for using TRANSFORM parameter to convert to SecureFile LOBs

Restrictions on Migrating LOBs with Data Pump

You can't use SecureFile LOBs in non-ASSM tablespace. If the source database contains LOB
columns in a tablespace that does not support ASSM, then you'll see an error message when
you use Oracle Data Dump to recreate the tables using the securefile clause for LOB columns.

To import non-ASSM tables with LOB columns, run another import for these tables without
using TRANSFORM=LOB_STORAGE:SECUREFILE.

Example:

impdp system/manager directory=dpump_dir schemas=lobuser dumpfile=lobuser.dmp

14.3 Other Considerations While Migrating LONG Columns to
LOBs

This section describes some more considerations when migrating LONG columns to LOBs.

• Migrating Applications from LONGs to LOBs
Most APIs that work with LONG data types in the PL/SQL, JDBC and OCI environments are
enhanced to also work with LOB data types.

• Alternate Methods for LOB Migration
Online Redefinition is the preferred way for migrating LONG data types to LOBs. However, if
keeping the application online during the migration is not your primary concern, then you
can also use one of the following ways to migrate LONG data to LOBs.

14.3.1 Migrating Applications from LONGs to LOBs
Most APIs that work with LONG data types in the PL/SQL, JDBC and OCI environments are
enhanced to also work with LOB data types.

These APIs are collectively referred to as the data interface for LOBs. Among other things, the
data interface provides the following benefits:

• Changes needed are minimal in PL/SQL, JDBC and OCI applications that use tables with
columns converted from LONG to LOB data types.

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

14-6

• You can work with LOB data types in your application without having to deal with LOB
locators.

See Also:

• Data Interface for LOBs for details on JDBC and OCI APIs included in the data
interface.

• SQL Semantics and LOBs for details on SQL syntax supported for LOB data
types.

• PL/SQL Semantics for LOBs for details on PL/SQL syntax supported for LOB
data types.

Note:

You can use various techniques to do either of the following:

• Convert columns of type LONG to either CLOB or NCLOB columns

• Convert columns of type LONG RAW to BLOB type columns

Unless otherwise noted, discussions in this chapter regarding LONG to LOB
conversions apply to both of these data type conversions.

However, there are differences between LONG and LOB data types that may impact your
application migration plans or require you to modify your application.

Identify Application Rewrite Using utldtree.sql

When you migrate your table from LONG to LOB column types, certain parts of your PL/SQL
application may require rewriting. You can use the utility, rdbms/admin/utldtree.sql, to
determine which parts.

The utldtree.sql utility enables you to recursively see all objects that are dependent on a
given object. For example, you can see all objects which depend on a table with a LONG
column. You can only see objects for which you have permission.

Instructions on how to use utldtree.sql are documented in the file itself. Also, utldtree.sql
is only needed for PL/SQL. For SQL and OCI, you have no requirement to change your
applications.

SQL Differences

• Indexes: LONG and LOB data types only support domain and functional indexes.

– Any domain index on a LONG column must be dropped before converting the LONG
column to LOB column. This index may be manually recreated after the migration.

– Any function-based index on a LONG column is unusable during the conversion process
and must be rebuilt after converting. Application code that uses function-based
indexing should work without modification after the rebuild.
To rebuild an index after converting, use the following steps:

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

14-7

1. Select the index from your original table as follows:

SELECT index_name FROM user_indexes WHERE table_name='LONG_TAB';

Note:

The table name must be capitalized in this query.

2. For each selected index, use the command:

ALTER INDEX <index> REBUILD

• Constraints: The only constraint allowed on LONG columns are NULL and NOT NULL. All
constraints of the LONG columns are maintained for the new LOB columns. To alter the
constraints for these columns, or alter any other columns or properties of this table, you
have to do so in a subsequent ALTER TABLE statement.

• Default Values: If you do not specify a default value, then the default value for the LONG
column becomes the default value of the LOB column.

• Triggers: Most of the existing triggers on your table are still usable. However, you cannot
have LOB columns in the UPDATE OF list of an AFTER UPDATE OF trigger. For example, the
following create trigger statement is not valid:

CREATE TABLE t(lobcol CLOB);
CREATE TRIGGER trig AFTER UPDATE OF lobcol ON t ...;

LONG columns are allowed in such triggers. So, you must drop the AFTER UPDATE OF
triggers on any LONG columns before migrating to LOBs.

• Clustered tables: LOB columns are not allowed in clustered tables, whereas LONGs are
allowed. If a table is a part of a cluster, then any LONG or LONG RAW column cannot be
changed to a LOB column.

Empty LOBs Compared to NULL and Zero Length LONGs

A LOB column can hold an empty LOB. An empty LOB is a LOB locator that is fully initialized,
but not populated with data. Because LONG data types do not use locators, the empty concept
does not apply to LONG data types.

Both LOB column values and LONG column values, inserted with an initial value of NULL or an
empty string literal, have a NULL value. Therefore, application code that uses NULL or zero-
length values in a LONG column functions exactly the same after you convert the column to a
LOB type column.

In contrast, a LOB initialized to empty has a non-NULL value as illustrated in the following
example:

CREATE TABLE long_tab(id NUMBER, long_col LONG);
CREATE TABLE lob_tab(id NUMBER, lob_col CLOB);

REM A zero length string inserts a NULL into the LONG column:
INSERT INTO long_tab values(1, '');

REM A zero length string inserts a NULL into the LOB column:

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

14-8

INSERT INTO lob_tab values(1, '');

REM Inserting an empty LOB inserts a non-NULL value:
INSERT INTO lob_tab values(1, empty_clob());

DROP TABLE long_tab;
DROP TABLE lob_tab;

Overloading with Anchored Types

For applications using anchored types, some overloaded variables resolve to different targets
during the conversion to LOBs. For example, given the procedure p overloaded with
specifications 1 and 2:

procedure p(l long) is ...; -- (specification 1)
procedure p(c clob) is ...; -- (specification 2)

and the procedure call:

declare
 var longtab.longcol%type;
 BEGIN
 ...
 p(var);
 ...
END;

Prior to migrating from LONG to LOB columns, this call would resolve to specification 1. Once
longtab is migrated to LOB columns this call resolves to specification 2. Note that this would
also be true if the parameter type in specification 1 were a CHAR, VARCHAR2, RAW, LONG RAW.

If you have migrated you tables from LONG columns to LOB columns, then you must manually
examine your applications and determine whether overloaded procedures must be changed.

Some applications that included overloaded procedures with LOB arguments before migrating
may still break. This includes applications that do not use LONG anchored types. For example,
given the following specifications (1 and 2) and procedure call for procedure p:

procedure p(n number) is ...; -- (1)
procedure p(c clob) is ...; -- (2)

p('123'); -- procedure call

Before migrating, the only conversion allowed was CHAR to NUMBER, so specification 1 would be
chosen. After migrating, both conversions are allowed, so the call is ambiguous and raises an
overloading error.

Some Implicit Conversions Are Not Supported for LOB Data Types

PL/SQL permits implicit conversion from NUMBER, DATE, ROW_ID, BINARY_INTEGER, and
PLS_INTEGER data types to a LONG; however, implicit conversion from these data types to a LOB
is not allowed.

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

14-9

If your application uses these implicit conversions, then you have to explicitly convert these
types using the TO_CHAR operator for character data or the TO_RAW operator for binary data. For
example, if your application has an assignment operation such as:

number_var := long_var; -- The RHS is a LOB variable after converting.

then you must modify your code as follows:

number_var := TO_CHAR(long_var);
-- Assuming that long_var is of type CLOB after conversion

The following conversions are not supported for LOB types:

• BLOB to VARCHAR2, CHAR, or LONG
• CLOB to RAW or LONG RAW
This applies to all operations where implicit conversion takes place. For example if you have a
SELECT statement in your application as follows:

SELECT long_raw_column INTO my_varchar2 VARIABLE FROM my_table

and long_raw_column is a BLOB after converting your table, then the SELECT statement
produces an error. To make this conversion work, you must use the TO_RAW operator to
explicitly convert the BLOB to a RAW as follows:

SELECT TO_RAW(long_raw_column) INTO my_varchar2 VARIABLE FROM my_table

The same holds for selecting a CLOB into a RAW variable, or for assignments of CLOB to RAW and
BLOB to VARCHAR2.

14.3.2 Alternate Methods for LOB Migration
Online Redefinition is the preferred way for migrating LONG data types to LOBs. However, if
keeping the application online during the migration is not your primary concern, then you can
also use one of the following ways to migrate LONG data to LOBs.

See Also:

Migration Considerations

Using ALTER TABLE to Convert LONG Columns to LOB Columns

You can use the ALTER TABLE statement in SQL to convert a LONG column to a LOB column.

To do so, use the following syntax:

ALTER TABLE [<schema>.]<table_name>
 MODIFY (<long_column_name> { CLOB | BLOB | NCLOB }
 [DEFAULT <default_value>]) [LOB_storage_clause];

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

14-10

For example, if you had a table that was created as follows:

CREATE TABLE Long_tab (id NUMBER, long_col LONG);

then you can change the column long_col in table Long_tab to data type CLOB using following
ALTER TABLE statement:

ALTER TABLE Long_tab MODIFY (long_col CLOB);

Note:

The ALTER TABLE statement copies the contents of the table into a new space, and
frees the old space at the end of the operation. This temporarily doubles the space
requirements.

Note that when using the ALTER TABLE statement to convert a LONG column to a LOB column,
only the following options are allowed:

• DEFAULT option, which enables you to specify a default value for the LOB column.

• The LOB_storage_clause, which enables you to specify the LOB storage characteristics for
the converted column. This clause can be specified in the MODIFY clause.

Other ALTER TABLE options are not allowed when converting a LONG column to a LOB type
column.

Copying a LONG to a LOB Column Using the TO_LOB Operator

You can use the CREATE TABLE AS SELECT statement or the INSERT AS SELECT statement with the
TO_LOB operator to copy data from a LONG column to a CLOB or NCLOB column, or from a LONG
RAW column to a BLOB column. For example, if you have a table with a LONG column that was
created as follows:

CREATE TABLE Long_tab (id NUMBER, long_col LONG);

then you can do the following to copy the column to a LOB column:

CREATE TABLE Lob_tab (id NUMBER, clob_col CLOB);
INSERT INTO Lob_tab SELECT id, TO_LOB(long_col) FROM long_tab;
COMMIT;

If the INSERT statement returns an error because of lack of undo space, then you can
incrementally migrate LONG data to the LOB column using the WHERE clause. After you ensure
that the data is accurately copied, you can drop the original table and create a view or
synonym for the new table using one of the following sequences:

DROP TABLE Long_tab;
CREATE VIEW Long_tab (id, long_col) AS SELECT * from Lob_tab;

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

14-11

or

DROP TABLE Long_tab;
CREATE SYNONYM Long_tab FOR Lob_tab;

This series of operations is equivalent to changing the data type of the column Long_col of
table Long_tab from LONG to CLOB. With this technique, you have to re-create any constraints,
triggers, grants, and indexes on the new table.

Use of the TO_LOB operator is subject to the following limitations:

• You can use TO_LOB to copy data to a LOB column, but not to a LOB attribute of an object
type.

• You cannot use TO_LOB with a remote table. For example, the following statements do not
work:

INSERT INTO tb1@dblink (lob_col) SELECT TO_LOB(long_col) FROM tb2;
INSERT INTO tb1 (lob_col) SELECT TO_LOB(long_col) FROM tb2@dblink;
CREATE TABLE tb1 AS SELECT TO_LOB(long_col) FROM tb2@dblink;

• You cannot use the TO_LOB operator in the CREATE TABLE AS SELECT statement to convert a
LONG or LONG RAW column to a LOB column when creating an index organized table.

To work around this limitation, create the index organized table, and then do an INSERT AS
SELECT of the LONG or LONG RAW column using the TO_LOB operator.

• You cannot use TO_LOB inside any PL/SQL block.

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

14-12

15
Introducing the Database File System

This chapter describes the Database File System in details.

• Why a Database File System?
Conceptually, a database file system is a file system interface placed on top of files and
directories that are stored in database tables.

• What Is Database File System (DBFS)?
Database File System (DBFS) creates a standard file system interface using a server and
clients.

15.1 Why a Database File System?
Conceptually, a database file system is a file system interface placed on top of files and
directories that are stored in database tables.

Applications commonly use the standard SQL data types, BLOBs and CLOBs, to store and
retrieve files in the Oracle Database, files such as medical images, invoice images,
documents, videos, and other files. Oracle Database provides much better security, availability,
robustness, transactional capability, and scalability than traditional file systems. Files stored in
the database along with relational data are automatically backed up, synchronized to the
disaster recovery site using Data Guard, and recovered together.

Database File System (DBFS) is a feature of Oracle Database that makes it easier for users to
access and manage files stored in the database. With this interface, access to files in the
database is no longer limited to programs specifically written to use BLOB and CLOB
programmatic interfaces. Files in the database can now be transparently accessed using any
operating system (OS) program that acts on files. For example, ETL (extraction,
transformation, and loading) tools can transparently store staging files in the database and file-
based applications can benefit from database features such as Maximum Availability
Architecture (MAA) without any changes to the applications.

15.2 What Is Database File System (DBFS)?
Database File System (DBFS) creates a standard file system interface using a server and
clients.

• About DBFS
DBFS is similar to NFS in that it provides a shared network file system that looks like a
local file system and has both a server component and a client component.

• DBFS Server
An implementation of a file system in the database is called a DBFS content store, for
example, the DBFS SecureFiles Store. A DBFS content store allows each database user
to create one or more file systems that can be mounted by clients. Each file system has its
own dedicated tables that hold the file system content. In DBFS, the file server is the
Oracle Database.

• DBFS Client Access Methods
Learn about various methods to access DBFS in this section.

15-1

15.2.1 About DBFS
DBFS is similar to NFS in that it provides a shared network file system that looks like a local
file system and has both a server component and a client component.

At the core of DBFS is the DBFS Content API, a PL/SQL interface in the Oracle Database. It
connects to the DBFS Content SPI, a programmatic interface which allows for the support of
different types of storage.

At the programming level, the client calls the DBFS Content API to perform a specific function,
such as delete a file. The DBFS Content API deletefile function then calls the DBFS Content
SPI to perform that function.

Figure 15-1 Database File System (DBFS)

DatabaseDBFS Content API

Cloud�
Storage

DBFS�
SecureFile�

Store

DBFS�
Hierarchical�

Store

DBFS Content SPI

User�
Defined�
Store

File System�
Mount�

Interface

DBFS�
Command�

Line Interface�
Client

DBFS�
PL/SQL�
Client PL/SQL�

LOB�
Interface

Java�
LOB�

Interface

OCI�
LOB�

Interface

DBFS�
Links

15.2.2 DBFS Server
An implementation of a file system in the database is called a DBFS content store, for
example, the DBFS SecureFiles Store. A DBFS content store allows each database user to
create one or more file systems that can be mounted by clients. Each file system has its own
dedicated tables that hold the file system content. In DBFS, the file server is the Oracle
Database.

Chapter 15
What Is Database File System (DBFS)?

15-2

At the core of DBFS is the DBFS Content API, a PL/SQL interface in the Oracle Database. It
connects to the DBFS Content Store Provider Interface, a programmatic interface which allows
for the support of different types of storage.

Following are the different types of stores supported by the DBFS Content SPI:

• DBFS SecureFiles Store: A DBFS content store that uses a table with a SecureFiles LOB
column to store the file system data. It implements POSIX-like file system capabilities.

• DBFS Hierarchical Store: A DBFS content store that allows files to be written to any tape
storage units supported by Oracle Recovery Manager (RMAN) or to a cloud storage
system.

• User-defined Store: A content store defined by the user. This allows users to program their
own filesystems inside Oracle Database without writing any OS code.

See Also:

• Creating Your Own DBFS Store

• DBFS Content API

• DBFS Hierarchical Store

15.2.3 DBFS Client Access Methods
Learn about various methods to access DBFS in this section.

The Database File System offers several access methods.

• PL/SQL Client Interface

Database applications can access files in the DBFS store directly, through the DBFS
Content API PL/SQL interface. The PL/SQL interface allows database transactions and
read consistency to span relational and file data.

• DBFS Client Command-Line Interface

A client command-line interface named dbfs_client runs on each file system client
computer. dbfs_client allows users to copy files in and out of the database from any host
on the network. It implements simple file system commands such as list and copy in a
manner that is similar to shell utilities ls and cp. The command interface creates a direct
connection to the database without requiring an OS mount of DBFS.

• File System Mount Interface

On Linux and Solaris, the dbfs_client also includes a mount interface that uses the
Filesystem in User Space (FUSE) kernel module to implement a file-system mount point
with transparent access to the files stored in the database. This does not require any
changes to the Linux or Solaris kernels. It receives standard file system calls from the FUSE
kernel module and translates them into OCI calls to the PL/SQL procedures in the DBFS
content store.

• DBFS Links

DBFS Links, Database File System Links, are references from SecureFiles LOB locators to
files stored outside the database.

DBFS Links can be used to migrate SecureFiles from existing tables to other storage.

Chapter 15
What Is Database File System (DBFS)?

15-3

See Also:

• Using DBFS

• DBFS Mounting Interface (Linux and Solaris Only)

• Database File System Links for information about using DBFS Links

• PL/SQL Packages for LOBs and DBFS for lists of useful DBMS_LOB constants and
methods

Chapter 15
What Is Database File System (DBFS)?

15-4

16
DBFS SecureFiles Store

There are certain procedures for setting up and using a DBFS SecureFiles Store.

• Setting Up a SecureFiles Store
This section shows how to set up a SecureFiles Store.

• Using a DBFS SecureFiles Store File System
The DBFS Content API provides methods to access and manage a SecureFiles Store file
system.

• About DBFS SecureFiles Store Package, DBMS_DBFS_SFS
The SecureFiles Store provider is a default implementation of the DBFS Content API (and
is a standard example of a store provider that conforms to the Provider SPI) .

• Database File System (DBFS)— POSIX File Locking
Starting from Oracle Database 12c Release 2(12.2), Oracle supports the Database File
system POSIX File locking feature.

16.1 Setting Up a SecureFiles Store
This section shows how to set up a SecureFiles Store.

• About Managing Permissions
You must be a non-SYS database user for all operational access to the Content API and
stores.

• Creating or Setting Permissions
You must grant the DBFS_ROLE role to any user that needs to use the DBFS content API.

• Creating a SecureFiles File System Store

• Accessing SecureFiles Store
You should never directly access tables that hold data for a SecureFiles Store file systems.

• Reinitializing SecureFiles Store File Systems
You can truncate and re-initialize tables associated with an SecureFiles Store.

• Comparison of SecureFiles LOBs to BasicFiles LOBs
SecureFiles LOBs are only available in Oracle Database 11g Release 1 and higher. They
are not available in earlier releases.

16.1.1 About Managing Permissions
You must be a non-SYS database user for all operational access to the Content API and
stores.

Do not use SYS or SYSTEM users or SYSDBA or SYSOPER system privileges. For better security and
separation of duty, only allow specific trusted users to access DBFS Content API.

You must grant each user the DBFS_ROLE role. Otherwise, the user is not authorized to use the
DBFS Content API. A user with suitable administrative privileges (or SYSDBA) can grant the
role to additional users as needed.

16-1

The CREATEFILESYSTEM procedure auto-commits before and after its execution (like a DDL).
The method CREATESTORE is a wrapper around CREATEFILESYSTEM.

See Also:

Oracle Database PL/SQL Packages and Types Reference for DBMS_DBFS_SFS syntax
details

16.1.2 Creating or Setting Permissions
You must grant the DBFS_ROLE role to any user that needs to use the DBFS content API.

1. Create or determine DBFS Content API target users.

This example uses this user and password: sfs_demo/password
At minimum, this database user must have the CREATE SESSION, CREATE RESOURCE, and
CREATE VIEW privileges.

2. Grant the DBFS_ROLE role to the user.

CONNECT / as sysdba
GRANT dbfs_role TO sfs_demo;

This sets up the DBFS Content API for any database user who has the DBFS_ROLE role.

16.1.3 Creating a SecureFiles File System Store

The CREATEFILESYSTEM procedure auto-commits before and after its execution (like a DDL).
The method CREATESTORE is a wrapper around CREATEFILESYSTEM.

See Also:

Oracle Database PL/SQL Packages and Types Reference for DBMS_DBFS_SFS syntax
details

To create a SecureFiles File System Store:

1. Create a Store:

connect sfs_demo/<password>
DECLARE
 BEGIN
 DBMS_DBFS_SFS.CREATEFILESYSTEM(
 store_name => 'FS1',
 tbl_name => 'T1',
 tbl_tbs => null,
 use_bf => false
);

Chapter 16
Setting Up a SecureFiles Store

16-2

 END;
/

where:

• store_name is a case-sensitive, user-unique name.

• tbl_name is a valid table name, created in the current schema.

• tbl_tbs is a valid ASSM tablespace name for SecureFile Store used for the store
table and its dependent segments, such as indexes, LOBs, or nested tables. The
default is NULL and specifies a tablespace of the current schema.

• use_bf specifies that BasicFiles LOBs should be used, if true, and if false it should
be ASSM tablespace.

Note:

The CREATEFILESYSTEM procedure auto-commits before and after its execution
(like a DDL). The method CREATESTORE is a wrapper around CREATEFILESYSTEM.

2. Register the Store.

CONNECT sfs_demo
Enter password:password
DECLARE
 BEGIN
 DBMS_DBFS_CONTENT.REGISTERSTORE(
 store_name => 'FS1',
 provider_name => 'secure_file_store',
 provider_package => 'dbms_dbfs_sfs'
);
 COMMIT;
 END;
/

where:

• store_name is SecureFiles Store FS1, which uses table SFS_DEMO.T1.

• provider_name is ignored.

• provider_package is DBMS_DBFS_SFS, for SecureFiles Store reference provider.

This operation associates the SecureFiles Store FS1 with the DBMS_DBFS_SFS provider.

3. Mount the store.

CONNECT sfs_demo
Enter password: password
DECLARE
 BEGIN
 DBMS_DBFS_CONTENT.MOUNTSTORE(
 store_name => 'FS1',
 store_mount => 'mnt1'
);
 COMMIT;

Chapter 16
Setting Up a SecureFiles Store

16-3

 END;
/

where:

• store_name is the name of the store we want to mount. In this case the SFS store is
FS1, which is already created and uses table SFS_DEMO.T1.

• store_mount is the mount point.

4. [Optional] To see the results of the preceding steps, you can use the following statements.

• To verify SecureFiles Store tables and file systems:

SELECT * FROM TABLE(DBMS_DBFS_SFS.LISTTABLES);
SELECT * FROM TABLE(DBMS_DBFS_SFS.LISTFILESYSTEMS);

• To verify ContentAPI Stores and mounts:

SELECT * FROM TABLE(DBMS_DBFS_CONTENT.LISTSTORES);
SELECT * FROM TABLE(DBMS_DBFS_CONTENT.LISTMOUNTS);

• To verify SecureFiles Store features:

var fs1f NUMBER;
exec :fs1f := DBMS_DBFS_CONTENT.GETFEATURESBYNAME('FS1');
select * from table(DBMS_DBFS_CONTENT.DECODEFEATURES(:fs1f));

• To verify resource and property views:

SELECT * FROM DBFS_CONTENT;
SELECT * FROM DBFS_CONTENT_PROPERTIES;

16.1.4 Accessing SecureFiles Store
You should never directly access tables that hold data for a SecureFiles Store file systems.

This is the correct way to access the file systems.

• For procedural operations: Use the DBFS Content API (DBMS_DBFS_CONTENT methods).

• For SQL operations: Use the resource and property views (DBFS_CONTENT and
DBFS_CONTENT_PROPERTIES).

16.1.5 Reinitializing SecureFiles Store File Systems
You can truncate and re-initialize tables associated with an SecureFiles Store.

• Use the procedure INITFS().

The procedure executes like a DDL, auto-committing before and after its execution.

The following example uses file system FS1 and table SFS_DEMO.T1, which is associated with
the SecureFiles Store store_name.

CONNECT sfs_demo;
Enter password: password
EXEC DBMS_DBFS_SFS.INITFS(store_name => 'FS1');

Chapter 16
Setting Up a SecureFiles Store

16-4

16.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs
SecureFiles LOBs are only available in Oracle Database 11g Release 1 and higher. They are
not available in earlier releases.

You must use BasicFiles LOB storage for LOB storage in tablespaces that are not managed
with Automatic Segment Space Management (ASSM).

Compatibility must be at least 11.1.0.0 to use SecureFiles LOBs.

Additionally, you need to specify the following in DBMS_DBFS_SFS.CREATEFILESYSTEM:
• To use SecureFiles LOBs (the default), specify use_bf => false.
• To use BasicFiles LOBs, specify use_bf => true.

16.2 Using a DBFS SecureFiles Store File System
The DBFS Content API provides methods to access and manage a SecureFiles Store file
system.

• DBFS Content API Working Example
You can create new file and directory elements to populate a SecureFiles Store file
system.

• Dropping SecureFiles Store File Systems
You can use the unmountStore method to drop SecureFiles Store file systems.

16.2.1 DBFS Content API Working Example
You can create new file and directory elements to populate a SecureFiles Store file system.

If you have executed the steps in "Setting Up a SecureFiles Store", set the DBFS Content API
permissions, created at least one SecureFiles Store reference file system, and mounted it
under the mount point /mnt1, then you can create a new file and directory elements as
demonstrated in Example 16-1.

Example 16-1 Working with DBFS Content API

CONNECT tjones
Enter password: <password>

DECLARE
 ret INTEGER;
 b BLOB;
 str VARCHAR2(1000) := '' || chr(10) ||
 '#include <stdio.h>' || chr(10) ||
 '' || chr(10) ||
 'int main(int argc, char** argv)' || chr(10) ||
 '{' || chr(10) ||
 ' (void) printf("hello world\n");' || chr(10) ||
 ' RETURN 0;' || chr(10) ||
 '}' || chr(10) ||
 '';
 properties DBMS_DBFS_CONTENT.PROPERTIES_T;

Chapter 16
Using a DBFS SecureFiles Store File System

16-5

BEGIN
 properties('posix:mode') := DBMS_DBFS_CONTENT.propNumber(16777);
 -- drwxr-xr-x --
 properties('posix:uid') := DBMS_DBFS_CONTENT.propNumber(0);
 properties('posix:gid') := DBMS_DBFS_CONTENT.propNumber(0);
 DBMS_DBFS_CONTENT.createDirectory(
 '/mnt1/FS1',
 properties);

 properties('posix:mode') := DBMS_DBFS_CONTENT.propNumber(33188);
 -- -rw-r--r-- --
 DBMS_DBFS_CONTENT.createFile(
 '/mnt1/FS1/hello.c',
 properties,
 b);

 DBMS_LOB.writeappend(b, length(str), utl_raw.cast_to_raw(str));
 COMMIT;
END;
/
SHOW ERRORS;

-- verify newly created directory and file

SELECT pathname, pathtype, length(filedata),
 utl_raw.cast_to_varchar2(filedata)
 FROM dbfs_content
 WHERE pathname LIKE '/mnt1/FS1%'
 ORDER BY pathname;

The file system can be populated and accessed from PL/SQL with DBMS_DBFS_CONTENT. The
file system can be accessed read-only from SQL using the dbfs_content and
dbfs_content_properties views.

The file system can also be populated and accessed using regular file system APIs and UNIX
utilities when mounted using FUSE, or by the standalone dbfs_client tool (in environments
where FUSE is either unavailable or not set up).

See Also:

DBFS Client Access Methods

16.2.2 Dropping SecureFiles Store File Systems
You can use the unmountStore method to drop SecureFiles Store file systems.

This method removes all stores referring to the file system from the metadata tables, and drops
the underlying file system table. The procedure executes like a DDL, auto-committing before
and after its execution.

1. Unmount the store.

CONNECT sfs_demo/<password>

Chapter 16
Using a DBFS SecureFiles Store File System

16-6

DECLARE
 BEGIN
 DBMS_DBFS_CONTENT.UNMOUNTSTORE(
 store_name => 'FS1',
 store_mount => 'mntl';
);
 COMMIT;
END;
/

where:

• store_name is FS1, a case-sensitive unique username.

• store_mount is the mount point.

2. Unregister the stores.

CONNECT sfs_demo/<password>
EXEC DBMS_DBFS_CONTENT.UNREGISTERSTORE(store_name => 'FS1');
COMMIT;

where store_name is SecureFiles Store FS1, which uses table SFS_DEMO.T1.

3. Drop the store.

CONNECT sfs_demo/<password>;
EXEC DBMS_DBFS_SFS.DROPFILESYSTEM(store_name => 'FS1');
COMMIT;

where store_name is SecureFiles Store FS1, which uses table SFS_DEMO.T1.

16.3 About DBFS SecureFiles Store Package,
DBMS_DBFS_SFS

The SecureFiles Store provider is a default implementation of the DBFS Content API (and is a
standard example of a store provider that conforms to the Provider SPI) .

To use the DBMS_DBFS_SFS package, you must be granted the DBFS_ROLE role.

The SecureFiles Store provider is a default implementation of the DBFS Content API (and is a
standard example of a store provider that conforms to the Provider SPI) . This enables existing
applications to easily add PL/SQL provider implementations and provide access through the
DBFS Content API without changing their schemas or their business logic.

See Also:

• See Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_DBFS_SFS package.

• Creating Your Own DBFS Store and Oracle Database PL/SQL Packages and
Types Reference for more information about the Provider SPI defined in
DBMS_DBFS_CONTENT_SPI.

• Introduction to Large Objects and SecureFiles for advanced features of
SecureFiles LOBs.

Chapter 16
About DBFS SecureFiles Store Package, DBMS_DBFS_SFS

16-7

16.4 Database File System (DBFS)— POSIX File Locking
Starting from Oracle Database 12c Release 2(12.2), Oracle supports the Database File system
POSIX File locking feature.

The DBFS provides file locking support for the following types of applications:

• POSIX applications using DBFS_CLIENT (in mount mode) as a front-end interface to DBFS.

See Also:

DBFS Client Access Methods

• Applications using PL/SQL as an interface to DBFS.

Note:

Oracle supports only Full-file locks in DBFS. Full-file lock implies locking the entire
file from byte zero offset to the end of file.

• About Advisory Locking
Advisory locking is a file locking mechanism that locks the file for a single process.

• About Mandatory Locking
Mandatory locking is a file locking mechanism that takes support from participating
processes.

• File Locking Support
Enabling the file locking mechanism helps applications to block files for various file system
operations.

• Compatibility and Migration Factors of Database Filesystem—File Locking
The Database Filesystem File Locking feature does not impact the compatibility of DBFS
and SFS store provider with RDBMS.

• Examples of Database File System—File Locking
These examples illustrate the advisory locking and the locking functions available on UNIX
based systems.

• DBFS Locking Behavior
This section describes the DBFS locking behavior.

• Scheduling File Locks
DBFS File Locking feature supports lock scheduling.

16.4.1 About Advisory Locking
Advisory locking is a file locking mechanism that locks the file for a single process.

File locking mechanism cannot independently enforce any form of locking and requires support
from the participating processes. For example, if a process P1 has a write lock on file F1, the
locking API or the operating system does not perform any action to prevent any other process
P2 from issuing a read or write system call on the file F1. This behavior of file locking
mechanism is also applicable to other file system operations. The processes that are involved

Chapter 16
Database File System (DBFS)— POSIX File Locking

16-8

(in file locking mechanism) must follow a lock or unlock protocol provided in a suitable API form
by the user-level library. File locking semantics are guaranteed to work as per POSIX
standards.

16.4.2 About Mandatory Locking
Mandatory locking is a file locking mechanism that takes support from participating processes.

Mandatory locking is an enforced locking scheme that does not rely on the participating
processes to cooperate and/or follow the locking API. For example, if a process P1 has taken a
write lock on file F1 and if a different process P2 attempts to issue a read/write system call (or
any other file system operation) on file F1 , the request is blocked because the concerned file is
exclusively locked by process P1.

16.4.3 File Locking Support
Enabling the file locking mechanism helps applications to block files for various file system
operations.

The fcntl(), lockf(), and flock() system calls in UNIX and LINUX provide file locking
support. These system calls enable applications to use the file locking facility through
dbfs_client-FUSE callback interface. File Locks provided by fcntl() are widely known as
POSIX file locks and the file locks provided by flock() are known as BSD file locks. The
semantics and behavior of POSIX and BSD file locks differ from each other. The locks placed
on the same file through fcntl() and flock() are orthogonal to each other. The semantics of
file locking functionality designed and implemented in DBFS is similar to POSIX file locks. In
DBFS, semantics of file locks placed through flock() system call will be similar to POSIX file
locks (such as fcntl()) and not BSD file locks. lockf() is a library call that is implemented as
a wrapper over fcntl() system call on most of the UNIX systems, and hence, it provides
POSIX file locking semantics. In DBFS, file locks placed through fcntl(), flock(), and
lockf() system-calls provide same kind of behavior and semantics of POSIX file locks.

Note:

BSD file locking semantics are not supported.

16.4.4 Compatibility and Migration Factors of Database Filesystem—File
Locking

The Database Filesystem File Locking feature does not impact the compatibility of DBFS and
SFS store provider with RDBMS.

DBFS_CLIENT is a standalone OCI Client and uses OCI calls and DBMS_FUSE API.

Note:

This feature will be compatible with OraSDK/RSF .

Chapter 16
Database File System (DBFS)— POSIX File Locking

16-9

16.4.5 Examples of Database File System—File Locking
These examples illustrate the advisory locking and the locking functions available on UNIX
based systems.

The following example uses two running processes — Process A and Process B.

Example 16-2 No locking

Process A opens file:

file_desc = open(“/path/to/file”, O_RDONLY);
/* Reads data into bufffers */
read(fd, buf1, sizeof(buf));
read(fd, buf2, sizeof(buf));
close(file_desc);

Subjected to OS scheduling, process B can enter any time and issue a write system call
affecting the integrity of file data.

Example 16-3 Advisory locking used but process B does not follow the protocol

Process A opens file:

file_desc = open(“/path/to/file”, O_RDONLY);
ret = AcquireLock(file_desc, RD_LOCK);
if(ret)
{
 read(fd, buf1, sizeof(buf));
 read(fd, buf2, sizeof(buf));
 ReleaseLock(file_desc);
}
close(file_desc);

Subjected to OS scheduling, process B can come in any time and still issue a write system
call ignoring that process A already holds a read lock.

Process B opens file:

file_desc1 = open(“/path/to/file”, O_WRONLY);
write(file_desc1, buf, sizeof(buf));
close(file_desc1);

The above code is executed and leads to inconsistent data in the file.

Example 16-4 Advisory locking used and processes are following the protocol

Process A opens file:

file_desc = open(“/path/to/file”, O_RDONLY);
ret = AcquireLock(file_desc, RD_LOCK);
if(ret)
{
 read(fd, buf1, sizeof(buf));
 read(fd, buf2, sizeof(buf));

Chapter 16
Database File System (DBFS)— POSIX File Locking

16-10

 ReleaseLock(file_desc);
}
close(file_desc);

Process B opens file:

file_desc1 = open(“/path/to/file”, O_WRONLY);
ret = AcquireLock(file_desc1, WR_LOCK);
/* The above call will take care of checking the existence of a lock */
if(ret)
{
 write(file_desc1, buf, sizeof(buf));
 ReleaseLock(file_desc1);
} close(file_desc1);

Process B follows the lock API and this API makes sure that the process does not write to the
file without acquiring a lock.

16.4.6 DBFS Locking Behavior
This section describes the DBFS locking behavior.

The DBFS File Locking feature exhibits the following behaviors:

• File locks in DBFS are implemented with idempotent functions. If a process issues “N” read
or write lock calls on the same file, only the first call will have an effect, and the
subsequent “N-1” calls will be treated as redundant and returns No Operation (NOOP).

• File can be unlocked exactly once. If a process issues “N” unlock calls on the same file,
only the first call will have an effect, and the subsequent “N-1” calls will be treated as
redundant and returns NOOP.

• Lock conversion is supported only from read to write. If a process P holds a read lock on
file F (and P is the only process holding the read lock), then a write lock request by P on
file F will convert the read lock to exclusive/write lock.

16.4.7 Scheduling File Locks
DBFS File Locking feature supports lock scheduling.

This facility is implemented purely on the DBFS client side. Lock request scheduling is required
when client application uses blocking call semantics in their fcntl(), lockf(), and flock()
calls.

There are two types of scheduling:

• Greedy Scheduling

• Fair Scheduling

Oracle provides the following command line option to switch the scheduling behavior.

Mount -o lock_sched_option = lock_sched_option Value;

Chapter 16
Database File System (DBFS)— POSIX File Locking

16-11

Table 16-1 lock_sched_option Value Description

Value Description

1 Sets the scheduling type to Greedy Scheduling. (Default)

2 Sets the scheduling type to Fair Scheduling.

Note:

Lock Request Scheduling works only on per DBFS_CLIENT mount basis. For example,
lock requests are not scheduled across multiple mounts of the same file system.

• Greedy Scheduling
In this scheduling technique, the file lock requests does not follow any guaranteed order.

• Fair Scheduling
The fair scheduling technique is implemented using a queuing mechanism on per file
basis.

16.4.7.1 Greedy Scheduling
In this scheduling technique, the file lock requests does not follow any guaranteed order.

Note:

This is the default scheduling option provided by DBFS_CLIENT.

 If a file F is read locked by process P1, and if processes P2 and P3 submit blocking write lock
requests on file F, the processes P2 and P3 will be blocked (using a form of spin lock) and
made to wait for its turn to acquire the lock. During the wait, if a process P4 submits a read lock
request (blocking call or a non-blocking call) on file F, P4 will be granted the read lock even if
there are two processes (P2 and P3) waiting to acquire the write lock. Once both P1 and P4
release their respective read locks, one of P2 and P3 will succeed in acquiring the lock. But, the
order in which processes P2 and P3 acquire the lock is not determined. It is possible that
process P2 would have requested first, but the process P3’s request might get unblocked and
acquire the lock and the process P2 must wait for P3 to release the lock.

16.4.7.2 Fair Scheduling
The fair scheduling technique is implemented using a queuing mechanism on per file basis.

For example, if a file F is read locked by process P1, and processes P2 and P3 submit blocking
write lock requests on file F, these two processes will be blocked (using a form of spin lock)
and will wait to acquire the lock. The requests will be queued in the order received by the
DBFS client. If a process P4 submits a read lock request (blocking call or a non-blocking call)
on file F, this request will be queued even though a read lock can be granted to this process.

DBFS Client ensures that after P1 releases its read lock, the order in which lock requests are
honored is P2->P3 -> P4.

Chapter 16
Database File System (DBFS)— POSIX File Locking

16-12

This implies that P2 will be the first one to get the lock. Once P2 releases its lock, P3 will get the
lock and so on.

Chapter 16
Database File System (DBFS)— POSIX File Locking

16-13

17
Using DBFS

The DBFS File System implementation includes creating and accessing the file system and
managing it.

• Installing DBFS
DBFS is a part of the Oracle Database installation.

• Creating a DBFS File System
You can create a partitioned or non-partitioned DBFS File system.

• Accessing DBFS File System
This section describes the various interfaces through which you can access the DBFS File
System.

• Maintaining DBFS
DBFS administration includes tools that perform diagnostics, manage failover, perform
backup, and so on.

• Shrinking and Reorganizing DBFS Filesystems
DBFS uses Online File system Reorganization to shrink itself, enabling the release of
allocated space back to the containing tablespace.

• Dropping a File System
You can drop a file system by running DBFS_DROP_FILESYSTEM.SQL.

17.6 Dropping a File System
You can drop a file system by running DBFS_DROP_FILESYSTEM.SQL.

Caution:

When you drop a file system, it deletes all the files and associated metadata. You
won't be able to access the files.

1. Log in to the database instance:

$ sqlplus dbfs_user/@db_server
2. Enter the following command:

@$ORACLE_HOME/rdbms/admin/dbfs_drop_filesystem.sql file_system_name
When you drop a file system, it deletes all the files and associated metadata. You won't be able
to access the files. If you want to access the file system after dropping a DBFS, you can
restore the file system from a database backup or file system backup.

Depending on the backup policy in your organization, you may have a database backup or file
system backup. To restore from a database backup, you'll have to restore the entire database
and then use the restored file system. To restore the file system from a file system backup,
create a new DBFS and restore the file system from the file system backup.

17-1

17.1 Installing DBFS
DBFS is a part of the Oracle Database installation.

$ORACLE_HOME/rdbms/admin contains these DBFS utility packages:

• Content API (CAPI)

• SecureFiles Store (SFS)

$ORACLE_HOME/bin contains:

• dbfs_client executable

$ORACLE_HOME/rdbms/admin contains:

• SQL (.plb extension) scripts for the content store

17.2 Creating a DBFS File System
You can create a partitioned or non-partitioned DBFS File system.

For both partitioned and non-partitioned DBFS, you can specify one or more of the following
storage properties to specify how your files are stored in DBFS: compression and
deduplication.

For example, you can configure DBFS as a compressed file system with partitioning. At the
time of creating a DBFS file system, you must specify the set of features that you want to
enable for the file system.

After creating a DBFS, you can track the usage of the DBFS. If you want to change the storage
properties of the DBFS, you can reorganize the DBFS. You can update the metadata of the
DBFS by changing the values for parameters, such as deduplicate, compress, and partition.
For example, you may have created a DBFS to store all the files in the compressed format. If
you want to change this property, you can reorganize the DBFS.

• About the Create File System Command
Use this command to quickly create, register, and mount a file system.

• Privileges Required to Create a DBFS File System
Database users must certain privileges to create a file system.

• Creating a Non-Partitioned File System
You can create a file system by running DBFS_CREATE_FILESYSTEM.SQL while logged in as a
user with DBFS administrator privileges.

• Creating a Partitioned File System
Files in DBFS are hash partitioned. Partitioning creates multiple physical segments in the
database, and files are distributed randomly in these partitions.

• Enabling Advanced SecureFiles LOB Features for DBFS
Using the @dbfs_create_filesystem.sql command, you can create a partitioned or non-
partitioned file system with the compression and deduplicate options. If you want to specify
additional options while creating the file system, use the
DBMS_DBFS_SFS.CREATEFILESYSTEM procedure.

Chapter 17
Installing DBFS

17-2

17.2.1 About the Create File System Command
Use this command to quickly create, register, and mount a file system.

Syntax

$ sqlplus @dbfs_create_filesystem.sql tablespace_name file_system_name
 [compress-high | compress-medium | compress-low | nocompress]
 [deduplicate | nodeduplicate]
 [partition | non-partition | partition-by-itemname | partition-by-guid | partition-by-
path]

Where the mandatory parameters are:

• tablespace_name is the tablespace in which you want to create a file system.

• file_system_name is the unique name of the file system that you want to create.

The optional parameters are:

• compress: when you use this option DBFS compresses the files, and then stores the files.
Use this option to reduce the storage space consumed by the files. Note that it takes more
time to read and write to compressed files as the files have to be decompressed before
you can read or write to the file.
You can specify one of the following options: compress, compress-high, compress-medium,
compress-low. When you specify compress or compress-medium, the compression level is
medium.

Generally, the compression level compress-low performs best and still provides a good
compression ratio. Compression levels compress-high and compress-medium provide
significantly better compression ratios, but compression times can be correspondingly
longer. Oracle recommends using NONE or LOW when write performance is critical, such
as when files in the DBFS store are updated frequently. If space is critical and the best
possible compression ratio is desired, use compress-high or compress-medium. Files are
compressed as they are paged out of the cache into the staging area. Therefore,
compression also benefits by storing smaller files in the staging area and effectively
increasing the total available capacity of the staging area.

If you don't specify any option to compress the files, nocompress is the default value.

• deduplicate: when you use this option, DBFS maintains a single copy of the file to save
storage space even if you have multiple copies of the file in different folders. Let's consider
that 100 users in an e-commerce company require access to the postal zip codes. Using
deduplication, even if all 100 users store the file in different folders, the DBFS maintains a
single copy of the file that contains the postal ZIP codes and the DBFS doesn't store
multiple copies of the file. The reduction of duplication saves space. If user A updates the
file containing postal zip codes, the updated file is stored as a separate copy in the DBFS.
The next time user A wants to access the file, user A is pointed to the updated copy of the
file while the remaining users are still pointed to the original file. Note that it takes more
time to update and write to the DBFS when you use the deduplicate option.
nodeduplicate is the default value.

• partition: use this option to create a partitioned file system, and then specify any one of
the following values as the hash key.

– partition and partition-by-itemname: uses the item name as the partition key. The
item name is the last component in the path name. Use this option to partition files
based on the last component in the file path. For example, if /directory1/
subdirectory2/filename.txt is the entire path, then filename.txt is the last

Chapter 17
Creating a DBFS File System

17-3

component in the path and filename.txt is used as the partition key. If you use the
partition option, then the file system is partitioned using the item name as the
partition key.

– partition-by-guid: uses the globally unique identifier (GUID) assigned to the file by
DBFS as the partition key. DBFS assigns a GUID to each file. Use this option to
partition the files based on the internally-generated GUID.

– partition-by-path: uses the entire path of the file as the partition key. For example, if
the file is /directory1/subdirectory2/filename.txt, then the entire /directory1/
subdirectory2/filename.txt is considered as the partition key.

If you specify only the partition option, then it defaults to partition-by-itemname, where
item name refers to the name of the file or directory.

Using the @dbfs_create_filesystem.sql command, you can create a file system with the
options described in this section. If you want to specify additional options while creating the file
system, you can use the DBMS_DBFS_SFS.CREATEFILESYSTEM procedure.

See Also:

• CREATEFILESYSTEM Procedure in PL/SQL Packages and Types Reference.

• Persistent LOBs and Creating a Partitioned File System for more information
about the features of SecureFiles LOBs.

17.2.2 Privileges Required to Create a DBFS File System
Database users must certain privileges to create a file system.

Following is the minimum set of privileges required for a database user to create a file system:

• GRANT CONNECT
• CREATE SESSION
• RESOURCE, CREATE TABLE
• CREATE PROCEDURE
• DBFS_ROLE

17.2.3 Creating a Non-Partitioned File System
You can create a file system by running DBFS_CREATE_FILESYSTEM.SQL while logged in as a
user with DBFS administrator privileges.

Before you begin, ensure that you create the file system in an ASSM tablespace to support
SecureFile store. For information about creating an ASSM tablespace, see Creating a
SecureFiles File System Store.

To create a non-partitioned file system:

1. Log in to the database instance as a user with DBFS administrator privileges.

$ sqlplus dbfs_user/@db_server
2. Enter the following command to create the file system.

Chapter 17
Creating a DBFS File System

17-4

Syntax

@$ORACLE_HOME/rdbms/admin/dbfs_create_filesystem.sql tablespace_name
 file_system_name
 [compress-high | compress-medium | compress-low | nocompress]
 [deduplicate | nodeduplicate]
 non-partition

Example

For example, to create a file system called staging_area in an existing ASSM tablespace
dbfs_tbspc:

$ sqlplus dbfs_user/db_server
 @$ORACLE_HOME/rdbms/admin/dbfs_create_filesystem.sql
 dbfs_tbspc staging_area nocompress nodeduplicate non-partition

17.2.4 Creating a Partitioned File System
Files in DBFS are hash partitioned. Partitioning creates multiple physical segments in the
database, and files are distributed randomly in these partitions.

You can create a partitioned file system by running DBFS_CREATE_FILESYSTEM.SQL while logged
in as a user with DBFS administrator privileges.

The tablespace in which you create the file system should be an ASSM tablespace to support
Securefile store. Before you begin, ensure that you create the file system in an ASSM
tablespace to support SecureFile store. For information about creating an ASSM tablespace,
see Creating a SecureFiles File System Store.

1. Log in to the database instance:

$ sqlplus dbfs_user/@db_server
2. Enter one of the following commands to create the file system based on your requirement.

Syntax

@$ORACLE_HOME/rdbms/admin/dbfs_create_filesystem_advanced.sql tablespace_name
 file_system_name [compress-high | compress-medium | compress-low |
nocompress]
 [deduplicate | nodeduplicate]
 [partition | partition-by-itemname | partition-by-guid | partition-by-path]

Examples

• For example, to create a partitioned file system called staging_area in an existing
ASSM tablespace dbfs_tbspc:

$ sqlplus dbfs_user/@db_server
 @$ORACLE_HOME/rdbms/admin/dbfs_create_filesystem_advanced.sql dbfs_tbspc
 staging_area nocompress nodeduplicate partition

• For example, to create a partitioned file system called staging_area in an existing
ASSM tablespace dbfs_tbspc with the storage properties compress and deduplicate.

$ sqlplus dbfs_user/@db_server
 @$ORACLE_HOME/rdbms/admin/dbfs_create_filesystem_advanced.sql dbfs_tbspc
 staging_area compress-medium deduplicate partition

Chapter 17
Creating a DBFS File System

17-5

17.2.5 Enabling Advanced SecureFiles LOB Features for DBFS
Using the @dbfs_create_filesystem.sql command, you can create a partitioned or non-
partitioned file system with the compression and deduplicate options. If you want to specify
additional options while creating the file system, use the DBMS_DBFS_SFS.CREATEFILESYSTEM
procedure.

For information about all the additional options that you can use with the
DBMS_DBFS_SFS.CREATEFILESYSTEM procedure, see CREATEFILESYSTEM Procedure in
PL/SQL Packages and Types Reference.

Use the @dbfs_create_filesystem.sql command to quickly create, register, and mount a file
system. When you use the DBMS_DBFS_SFS.CREATEFILESYSTEM procedure to enable additional
options while creating a file system, you must additionally run commands to register and mount
the file system that you create.

Let's use the DBMS_DBFS_SFS.CREATEFILESYSTEM procedure to create a file system with the
encryption option.

Before you begin, ensure that you have created a wallet with the encryption key. See
Administer Key Management in SQL Language Reference.

To create a file system with the encryption option:

1. Run the following command.
Syntax

exec
dbms_dbfs_sfs.createFilesystem('store_name',tbl_tbs=>'tablespace_name',do_e
ncrypt=> true | false,encryption=> encryption_type, do_dedup=> true |
false,do_compress=>true | false);

For reference information about the command options, see CREATEFILESYSTEM
Procedure in PL/SQL Packages and Types Reference.

Example

For example, to create a file system in Test3 store in the test_fs1 tablespace with the
default encryption, compression, and deduplicate options:

exec dbms_dbfs_sfs.createFilesystem('test_fs1', tbl_tbs=>'Test3',
do_encrypt=>true, encryption=>dbms_dbfs_sfs.ENCRYPTION_DEFAULT,
do_dedup=>true, do_compress=>true);

The file system is created with the option you have specified.

2. Run the following command to register the file system that you have created.

Syntax

dbms_dbfs_content.registerStore(store_name => 'filesystem_name',
provider_name => 'posix',provider_package => 'dbms_dbfs_sfs') ;

Example

Chapter 17
Creating a DBFS File System

17-6

For example, run the following command to register the test_fs1 file system.

dbms_dbfs_content.registerStore(store_name => 'test_fs1', provider_name =>
'posix', provider_package => 'dbms_dbfs_sfs') ;

3. Run the following command to mount the file system that you have created.

Syntax

dbms_dbfs_content.mountStore(store_name => 'filesystem_name', store_mount
=> 'filesystem_name');

Example

For example, run the following command to mount the test_fs1 file system.

dbms_dbfs_content.mountStore(store_name => 'test_fs1', store_mount =>
'test_fs1');

17.3 Accessing DBFS File System
This section describes the various interfaces through which you can access the DBFS File
System.

• DBFS Client Prerequisites
The DBFS File System client side application, which is named dbfs_client, runs on each
system that will access to DBFS.

• Multiple Mount Points on DBFS Client
Starting from Oracle Database Release 21c, a single Database File System (DBFS) client
instance can mount multiple DBFS, owned by different database users across different
database instances.

• Manager File System
The Manager File System is the interface between the OS user and the DBFS Client. The
OS user can communicate with the Client through limited File System commands.

• DBFS Client Command-Line Interface Operations
The DBFS client command-line interface allows you to directly access files stored in DBFS.

• DBFS Mounting Interface (Linux and Solaris Only)
You can mount DBFS using the dbfs_client in Linux and Solaris only.

• File System Security Model
The database manages security in DBFS. It does not use the operating system security
model.

• HTTP, WebDAV, and FTP Access to DBFS
Components that enable HTTP, WebDAV, and FTP access to DBFS over the Internet use
various XML DB server protocols.

17.3.1 DBFS Client Prerequisites
The DBFS File System client side application, which is named dbfs_client, runs on each
system that will access to DBFS.

The prerequisites for the DBFS File System Client, dbfs_client, are:

Chapter 17
Accessing DBFS File System

17-7

• The dbfs_client host must have the Oracle client libraries installed.

• The dbfs_client can be used as a direct RDBMS client using the DBFS Command
Interface on Linux, Linux.X64, Solaris, Solaris64, AIX, HPUX and Windows platforms.

• The dbfs_client can only be used as a mount client on Linux, Linux.X64, and Solaris 11
platforms. The dbfs_client host must have the FUSE Linux package or the Solaris libfuse
package installed.

See Also:

DBFS Mounting Interface (Linux and Solaris Only) for further details.

The DBFS client command-line interface allows you to perform many pre-defined commands,
such as copy files in and out of the DBFS filesystem from any host on the network.

The command-line interface has slightly better performance than the DBFS client mount
interface because it does not mount the file system, thus bypassing the user space file system.
However, it is not transparent to applications.

The DBFS client mount interface allows DBFS to be mounted through a file system mount
point thus providing transparent access to files stored in DBFS with generic file system
operations.

To run DBFS commands, specify --command to the DBFS client.

17.3.2 Multiple Mount Points on DBFS Client
Starting from Oracle Database Release 21c, a single Database File System (DBFS) client
instance can mount multiple DBFS, owned by different database users across different
database instances.

To enable access to multiple database users, the DBFS client has to manage multiple mount
points. Each mount point enables one database user to access DBFS.

When the DBFS client provides access to a single database user through a single mount point,
it is termed as Single User Mount Version (SUMV) mode and when the DBFS client provides
access to multiple database users through multiple mount points, it is termed as Multi User
Mount Version (MUMV) mode.

You can start a DBFS client in either of these modes. However, once you start the client in any
mode, you cannot switch to the other mode without restarting the client. If a DBFS client is
started in the MUMV mode, then the client creates a pseudo file system called Manager File
System (MFS), which acts as an interface between the OS user and the DBFS client.

You can start the MUMV mode in two variants, one that can mount DBFS across multiple
container databases or one that can mount only DBFS belonging to different pluggable
databases of a single container database. The MUMV variant that mounts DBFS from multiple
databases is termed as the Cross-Database variant and the one that mounts DBFS for multiple
PDBs of a single container database as the CDB variant. Both the variants are started by
specifying only the MFS mount points during start up. The DBFS mounts are added by setting
extended attributes on the MFS mount point.

• MUMV for CDB Variant
The CDB variant of the Multi User Mount Version (MUMV) mode manages the mount
points of Database File System (DBFS) that belong to different pluggable databases
(PDBs) of a single container database (CDB).

Chapter 17
Accessing DBFS File System

17-8

• MUMV for Cross-Database Variant
The Cross-Database variant of the Multi User Mount Version (MUMV) mode manages
mount points for Database File System (DBFS) in multiple databases.

17.3.2.1 MUMV for CDB Variant
The CDB variant of the Multi User Mount Version (MUMV) mode manages the mount points of
Database File System (DBFS) that belong to different pluggable databases (PDBs) of a single
container database (CDB).

Remember the following points while working with the CDB variant of the MUMV mode:

• The DBFS client, managing multiple DBFS mount points of a single container, should be
provided with the credentials to connect to a common user of the CDB at CDB$ROOT. The
DBFS to be mounted, should be created in or exported to this common user in the PDBs.

• A mount point must be specified for the DBFS in every PDB in the given container. The
DBFS client connects to the CDB$ROOT, using common user credentials, and then switches
to the required PDB to access the DBFS through the specified mount point.

17.3.2.2 MUMV for Cross-Database Variant
The Cross-Database variant of the Multi User Mount Version (MUMV) mode manages mount
points for Database File System (DBFS) in multiple databases.

Remember the following points while working with the Cross-Database variant of the MUMV
mode:

• The DBFS client must have the credentials of a database user on each database to
manage the respective DBFS mount points.

• A DBFS mount point must be specified for each database user and a DBFS must be
created in their respective schemas.

17.3.3 Manager File System
The Manager File System is the interface between the OS user and the DBFS Client. The OS
user can communicate with the Client through limited File System commands.

The Manager File System (MFS) is enabled only in the Multi User Mount Version (MUMV)
mode. It treats the various mount points managed by the DBFS Client as files. The MFS
provides an easy interface for the OS users to manage multiple mount points.

The MFS does not create or store files on the disk. Only a limited file system operations are
allowed on the MFS mount point.

No OS user can create files or directories under the MFS.

• Adding a DBFS Mount Point
You can add DBFS mount points by specifying extended attributes on the MFS mount
points.

• Listing DBFS Mount Points
Each DBFS mount point has a corresponding file under the MFS directory, /mnt/mfs. So,
you can use the standard Linux command ls to list the DBFS mount points.

• Unmounting a DBFS Mount Point
The procedure to unmount a DBFS mount point is the same for both the CDB variant and
the Cross-Database variant of the MUMV mode.

Chapter 17
Accessing DBFS File System

17-9

• Configuration Parameters of DBFS Client
All configuration parameters of DBFS client in Single User Mount Version (SUMV) mode
can also be used with the DBFS client in Multi User Mount Version (MUMV) mode at the
time of start up.

• Diagnosability of DBFS Client
Starting from Oracle Database Release 21c, the DBFS Client writes an alert file in the
client trace directory of the configured Automatic Diagnostic Repository (ADR) base.

17.3.3.1 Adding a DBFS Mount Point
You can add DBFS mount points by specifying extended attributes on the MFS mount points.

Note:

The MUMV mode works only in wallet mode, even if you do not specify the -o
wallet option. As there is no way to provide passwords in the DBFS commend-line
interface, you must add all the credentials required by the DBFS client in the wallet.

While using a CDB variant of the MUMV mode, add the mount points for each of the PDB in
the CDB by setting the extended attribute on the /mnt/mfs directory, where /mnt/mfs is the
MFS mount point.

Defining the Mount Points in a CDB Variant

Perform the following steps to define the mount points in a CDB variant of the MUMV mode:

1. Start the DBFS client to connect to the common user at the CDB$ROOT, specifying the MFS
mount point and the wallet alias at the start up:

% dbfs_client -o mfs_mount=/mnt/mfs -o cdb=inst_cdb

Where, /mnt/mfs is the MFS mount point. It can be any empty directory of your choice.
inst_cdb is the alias insert into the wallet that can connect to the common user in
CDB$ROOT.

2. Add a DBFS mount point by setting an extended attribute in the following way:

% setfattr -n mount_pdb -v " pdb1 /mnt/mp1" /mnt/mfs/

Where:

• mount_pdb is the name of the extended attribute to mount a DBFS mount point in CDB
variant

• pdb1 is the name of the PDB in the particular CDB, which is pointed to by inst_cdb
• /mnt/mp1 is the mount directory, where the DBFS present in the common user in the

PDB pdb1, should be mounted

• /mnt/mfs is the MFS mount directory that was used during the start up of the
dbfs_client command

Chapter 17
Accessing DBFS File System

17-10

3. (Optional) Add more DBFS mount points by setting the same extended attribute with
different arguments in the following way:

 % setfattr -n mount_pdb -v " pdb2 /mnt/mp2" /mnt/mfs
 % setfattr -n mount_pdb -v " pdb3 /mnt/mp3" /mnt/mfs

Where, pdb2 and pdb3 are the actual names of the PDBs in the container.

Defining the Mount Points in a Cross-Database Variant

Perform the following steps to define the mount points in a Cross-Database variant of the
MUMV mode:

1. Start the DBFS client in MUMV Cross-Database variant by specifying the MFS mount point
at the start up in the following way:

% dbfs_client -o mfs_mount=/mnt/mfs

Where, /mnt/mfs is the MFS mount point. It can be any empty directory of your choice

2. Add a DBFS mount point by setting an extended attribute in the following way:

% setfattr -n mount -v " inst1 /mnt/mp1" /mnt/mfs/

Where,

• mount is the name of the extended attribute to mount a DBFS mount in Cross-
Database variant

• inst1 is the wallet alias that connects to the DB user, for which DBFS needs to be
mounted

• /mnt/mp1 is the mount directory, where the DBFS should be mounted

• /mnt/mfs is the MFS mount directory that was used during the start up of the
dbfs_client command

3. (Optional) Add more DBFS mount points by setting the same extended attribute with
different arguments in the following way:

% setfattr -n mount -v "inst2 /mnt/mp2" /mnt/mfs/
% setfattr -n mount -v "inst3 /mnt/mp3" /mnt/mfs/

Where, inst2 and inst3 are aliases that must exist in the wallet. The DBFS client must
have the credentials to connect to the user in the database and they should have at least
one DBFS created in their schema.

17.3.3.2 Listing DBFS Mount Points
Each DBFS mount point has a corresponding file under the MFS directory, /mnt/mfs. So, you
can use the standard Linux command ls to list the DBFS mount points.

The following code snippet shows how to list all the DBFS mount points:

% ls -l /mnt/mfs

Chapter 17
Accessing DBFS File System

17-11

The content of each file under the /mnt/mfs directory, provides details about the parameters
used in the corresponding mount point.

The MFS is a read-only file system. You cannot create any file or directory within it using any
application, apart from the DBFS Client. Anything that appears as a file or a directory under the
MFS, is defined by the DBFS Client.

17.3.3.3 Unmounting a DBFS Mount Point
The procedure to unmount a DBFS mount point is the same for both the CDB variant and the
Cross-Database variant of the MUMV mode.

You must unmount a mount point using the FUSE executable file, fusermount. The following
code snippet shows how to drop a DBFS mount point:

% fusermount –u /mnt/mp1

17.3.3.4 Configuration Parameters of DBFS Client
All configuration parameters of DBFS client in Single User Mount Version (SUMV) mode can
also be used with the DBFS client in Multi User Mount Version (MUMV) mode at the time of
start up.

All the command-line options passed to the DBFS client in the MUMV mode are inherited by all
the DBFS mount points that may be added later. For example, for the following dbfs_client
command, the DBFS mounted at the /mnt/mp1 mount point automatically inherits the
spool_max value as 32 and the max_threads value as 16:

% dbfs_client -o mfs_mount=/mnt/mfs -o spool_max=32 -o max_threads=16
% setfattr -n mount -v "inst1 /mnt/mp1" /mnt/mfs

If you want to configure a mount point differently than the DBFS client, then use the setfattr
command in the following way:

% sefattr -n mount -v "inst2 /mnt/mp2 -o trace_file=/tmp/
clnt.trc,trace_level=1" /mnt/mfs

The preceding command enables only the trace for the DBFS client at the /mnt/mp2 mount
point, but does not inherit the spool_max and max_threads arguments that were specified at
the time of start up. The values specified with the setfattr command overwrite the values
specified during start up.

17.3.3.5 Diagnosability of DBFS Client
Starting from Oracle Database Release 21c, the DBFS Client writes an alert file in the client
trace directory of the configured Automatic Diagnostic Repository (ADR) base.

The alert files are generated for every instance of the DBFS client and can be found under the
clients/DBFS/DBFS/trace directory of the ADR base. The file name is of the format
dbfs_alert_<client_pid>.trc.

The alert file is different from the trace file. It is always enabled and only important activities of
the DBFS clients are written to the alert file.

Chapter 17
Accessing DBFS File System

17-12

17.3.4 DBFS Client Command-Line Interface Operations
The DBFS client command-line interface allows you to directly access files stored in DBFS.

• About the DBFS Client Command-Line Interface
The DBFS client command-line interface allows you to perform many pre-defined
commands, such as copy files in and out of the DBFS filesystem from any host on the
network.

• Listing a Directory
You can use the ls command to list the contents of a directory.

• Copying Files and Directories
You can use the cp command to copy files or directories from the source location to the
destination location.

• Removing Files and Directories
You can use the command rm to delete a file or directory.

17.3.4.1 About the DBFS Client Command-Line Interface
The DBFS client command-line interface allows you to perform many pre-defined commands,
such as copy files in and out of the DBFS filesystem from any host on the network.

The command-line interface has slightly better performance than the DBFS client mount
interface because it does not mount the file system, thus bypassing the user space file system.
However, it is not transparent to applications.

The DBFS client mount interface allows DBFS to be mounted through a file system mount
point thus providing transparent access to files stored in DBFS with generic file system
operations.

To run DBFS commands, specify --command to the DBFS client.

All DBFS content store paths , in command-line interface ,must be preceded by dbfs: .This is
an example: dbfs:/staging_area/file1. All database path names specified must be absolute
paths.

dbfs_client db_user@db_server--command command [switches] [arguments]

where:

• command is the executable command, such as ls, cp, mkdir, or rm.

• switches are specific for each command.

• arguments are file names or directory names, and are specific for each command.

Note that dbfs_client returns a nonzero value in case of failure.

17.3.4.2 Listing a Directory
You can use the ls command to list the contents of a directory.

Use this syntax:

dbfs_client db_user@db_server --command ls [switches] target

where

Chapter 17
Accessing DBFS File System

17-13

• target is the listed directory.

• switches is any combination of the following:

– -a shows all files, including '.' and '..'.

– -l shows the long listing format: name of each file, the file type, permissions, and size.

– -R lists subdirectories recursively.

For example:

$ dbfs_client ETLUser@DBConnectString --command ls dbfs:/staging_area/dir1

or

$ dbfs_client ETLUser@DBConnectString --command ls -l -a -R dbfs:/staging_area/dir1

17.3.4.3 Copying Files and Directories
You can use the cp command to copy files or directories from the source location to the
destination location.

The cp command also supports recursive copy of directories.

dbfs_client db_user@db_server --command cp [switches] source destination

where:

• source is the source location.

• destination is the destination location.

• switches is either -R or -r, the options to recursively copy all source contents into the
destination directory.

The following example copies the contents of the local directory, 01-01-10-dump recursively
into a directory in DBFS:

$ dbfs_client ETLUser@DBConnectString --command cp -R 01-01-10-dump dbfs:/staging_area/

The following example copies the file hello.txt from DBFS to a local file Hi.txt:

$ dbfs_client ETLUser@DBConnectString --command cp dbfs:/staging_area/hello.txt Hi.txt

17.3.4.4 Removing Files and Directories
You can use the command rm to delete a file or directory.

The command rm also supports recursive delete of directories.

dbfs_client db_user@db_server --command rm [switches] target

where:

• target is the listed directory.

• switches is either -R or -r, the options to recursively delete all contents.

For example:

$ dbfs_client ETLUser@DBConnectString --command rm dbfs:/staging_area/srcdir/hello.txt

or

$ dbfs_client ETLUser@DBConnectString --command rm -R dbfs:/staging_area/dir1

Chapter 17
Accessing DBFS File System

17-14

17.3.5 DBFS Mounting Interface (Linux and Solaris Only)
You can mount DBFS using the dbfs_client in Linux and Solaris only.

The instructions indicate the different requirements for the Linux and Solaris platforms.

• Installing FUSE on Solaris 11 SRU7 and Later
You can use dbfs_client as a mount client in Solaris 11 SRU7 and later, if you install FUSE

• Solaris-Specific Privileges
On Solaris, the user must have the Solaris privilege PRIV_SYS_MOUNT to perform mount and
unmount operations on DBFS filesystems.

• About the Mount Command for Solaris and Linux
The dbfs_client mount command for Solaris and Linux uses specific syntax.

• Mounting a File System with a Wallet
You can mount a file system with a wallet after configuring various environment variables.

• Mounting a File System with Password at Command Prompt
You must enter a password at the command prompt to mount a file system using
dbfs_client.

• Unmounting a File System
In Linux, you can run fusermount to unmount file systems.

• Mounting DBFS Through fstab Utility for Linux
In Linux, you can configure fstab utility to use dbfs_client to mount a DBFS filesystem.

• Mounting DBFS Through the vfstab Utility for Solaris
On Solaris, file systems are commonly configured using the vfstab utility.

• Restrictions on Mounted File Systems
DBFS supports most file system operations with exceptions.

• Restrictions on Types of Files Stored at DBFS Mount Points
DBFS should be avoided in scenarios that can cause a file operation on the DBFS files
resulting in more data to be written back to the DBFS.

17.3.5.1 Installing FUSE on Solaris 11 SRU7 and Later
You can use dbfs_client as a mount client in Solaris 11 SRU7 and later, if you install FUSE
Install FUSE to use dbfs_client as a mount client in Solaris 11 SRU7 and later.

• Run the following package as root.

pkg install libfuse

17.3.5.2 Solaris-Specific Privileges
On Solaris, the user must have the Solaris privilege PRIV_SYS_MOUNT to perform mount and
unmount operations on DBFS filesystems.

Give the user the Solaris privilege PRIV_SYS_MOUNT .

1. Edit /etc/user_attr.

2. Add or modify the user entry (assuming the user is Oracle) as follows:

Chapter 17
Accessing DBFS File System

17-15

oracle::::type=normal;project=group.dba;defaultpriv=basic,priv_sys_mount;;auth
s=solaris.smf.*

17.3.5.3 About the Mount Command for Solaris and Linux
The dbfs_client mount command for Solaris and Linux uses specific syntax.

Syntax:

dbfs_client db_user@db_server [-o option_1 -o option_2 ...] mount_point

where the mandatory parameters are:

• db_user is the name of the database user who owns the DBFS content store file system.

• db_server is a valid connect string to the Oracle Database server, such as
hrdb_host:1521/hrservice or an alias specified in the tnsnames.ora.

• mount_point is the path where the Database File System is mounted. Note that all file
systems owned by the database user are visible at the mount point.

The options are:

• direct_io: To bypass the OS page cache and provide improved performance for large
files. Programs in the file system cannot be executed with this option. Oracle recommends
this option when DBFS is used as an ETL staging area.

• wallet: To run the DBFS client in the background. The Wallet must be configured to get its
credentials.

• failover: To fail over the DBFS client to surviving database instances without data loss.
Expect some performance cost on writes, especially for small files.

• allow_root: To allow the root user to access the filesystem. You must set the
user_allow_other parameter in the /etc/fuse.conf configuration file.

• allow_other: To allow other users to access the filesystem. You must set the
user_allow_other parameter in the /etc/fuse.conf configuration file.

• rw: To mount the filesystem as read-write. This is the default setting.

• ro: To mount the filesystem as read-only. Files cannot be modified.

• trace_level=n sets the trace level. Trace levels are:

– 1 DEBUG
– 2 INFO
– 3 WARNING
– 4 ERROR: The default tracing level. It outputs diagnostic information only when an error

happens. It is recommended that this tracing level is always enabled.

– 5 CRITICAL
• trace_file=STR: Specifies the tracing log file, where STR can be either a file_name or

syslog.

• trace_size=trcfile_size: Specifies size of the trace file in MB. By default, dbfs_client
rotates tracing output between two 10MB files. Specifying 0 for trace_size sets the
maximum size of the trace file to unlimited.

Chapter 17
Accessing DBFS File System

17-16

17.3.5.4 Mounting a File System with a Wallet
You can mount a file system with a wallet after configuring various environment variables.

You must first configure the LD_LIBRARY_PATH, ORACLE_HOME environment variables and
sqlnet.ora correctly before mounting a file system with a wallet.

1. Login as admin user.

2. Mount the DBFS store. (Oracle recommends that you do not perform this step as root
user.)

% dbfs_client @/dbfsdb -o wallet,rw,user,direct_io /mnt/dbfs
3. [Optional] To test if the previous step was successful, as admin user, list the dbfs directory.

$ ls /mnt/tdbfs

Using the wallet option runs the dbfs_client in the background

See Also:

Using Oracle Wallet with DBFS Client

17.3.5.5 Mounting a File System with Password at Command Prompt
You must enter a password at the command prompt to mount a file system using dbfs_client.

• Execute the following command at the command prompt and provide the password:

$ dbfs_client ETLUser@DBConnectString /mnt/dbfs
 password: xxxxxxx

The dbfs_client runs in the foreground after the password is provided at the command
prompt.

17.3.5.6 Unmounting a File System
In Linux, you can run fusermount to unmount file systems.

• Linux

• Solaris

Linux
To run fusermount in Linux, do the following:

• Run the following:

 $ fusermount -u <mount point>

Chapter 17
Accessing DBFS File System

17-17

Solaris
In Solaris, you can run umount to unmount file systems.

• Run the following:

 $ umount -u <mount point>

17.3.5.7 Mounting DBFS Through fstab Utility for Linux
In Linux, you can configure fstab utility to use dbfs_client to mount a DBFS filesystem.

To mount DBFS through /etc/fstab, you must use Oracle Wallet for authentication.

1. Login as root user.

2. Change the user and group of dbfs_client to user root and group fuse.

chown root.fuse $ORACLE_HOME/bin/dbfs_client
3. Set the setuid bit on dbfs_client and restrict execute privileges to the user and group

only.

chmod u+rwxs,g+rx-w,o-rwx dbfs_client
4. Create a symbolic link to dbfs_client in /sbin as "mount.dbfs".

$ ln -s $ORACLE_HOME/bin/dbfs_client /sbin/mount.dbfs
5. Create a new Linux group called "fuse".

6. Add the Linux user that is running the DBFS Client to the fuse group.

7. Add the following line to /etc/fstab:

/sbin/mount.dbfs#db_user@db_server mount_point fuse rw,user,noauto 0 0

For example:

/sbin/mount.dbfs#/@DBConnectString /mnt/dbfs fuse rw,user,noauto 0 0
8. The Linux user can mount the DBFS file system using the standard Linux mount command.

For example:

$ mount /mnt/dbfs

Note that FUSE does not currently support automount.

17.3.5.8 Mounting DBFS Through the vfstab Utility for Solaris
On Solaris, file systems are commonly configured using the vfstab utility.

1. Create a mount shell script mount_dbfs.sh to use to start dbfs_client. All the
environment variables that are required for Oracle RDBMS must be exported. These
environment variables include TNS_ADMIN, ORACLE_HOME, and LD_LIBRARY_PATH. For
example:

#!/bin/ksh
export TNS_ADMIN=/export/home/oracle/dbfs/tnsadmin
export ORACLE_HOME=/export/home/oracle/11.2.0/dbhome_1
export DBFS_USER=dbfs_user
export DBFS_PASSWD=/tmp/passwd.f

Chapter 17
Accessing DBFS File System

17-18

export DBFS_DB_CONN=dbfs_db
export O=$ORACLE_HOME
export LD_LIBRARY_PATH=$O/lib:$O/rdbms/lib:/usr/lib:/lib:$LD_LIBRARY_PATH
export NOHUP_LOG=/tmp/dbfs.nohup

(nohup $ORACLE_HOME/bin/dbfs_client $DBFS_USER@$DBFS_DB_CONN < $DBFS_PASSWD
 2>&1 &) &

2. Add an entry for DBFS to /etc/vfstab. Specify the mount_dbfs.sh script for the
device_to_mount. Specify uvfs for the FS_type. Specify no formount_at_boot. Specify
mount options as needed. For example:

/usr/local/bin/mount_dbfs.sh - /mnt/dbfs uvfs - no rw,allow_other
3. User can mount the DBFS file system using the standard Solaris mount command. For

example:

$ mount /mnt/dbfs
4. User can unmount the DBFS file system using the standard Solaris umount command. For

example:

$ umount /mnt/dbfs

17.3.5.9 Restrictions on Mounted File Systems
DBFS supports most file system operations with exceptions.

The exceptions are:

• ioctl
• range locking (file locking is supported)

• asynchronous I/O through libaio
• O_DIRECT file opens

• hard links

• other special file modes

Memory-mapped files are supported except in shared-writable mode. For performance
reasons, DBFS does not update the file access time every time file data or the file data
attributes are read.

You cannot run programs which user Memory mapped files from a DBFS-mounted file system
if the direct_io option is specified.

Oracle does not support exporting DBFS file systems using NFS or Samba.

17.3.5.10 Restrictions on Types of Files Stored at DBFS Mount Points
DBFS should be avoided in scenarios that can cause a file operation on the DBFS files
resulting in more data to be written back to the DBFS.

The following scenarios are not exhaustive but provide examples of operations that can make
the DBFS and the database interdependent and hence should be avoided:

• Sample Scenario 1: DBFS is the destination for the trace files generated by the same
database that is hosting the DBFS.
For example: The act of writing the trace file into the DBFS could generate more trace data
to be written back into DBFS.

Chapter 17
Accessing DBFS File System

17-19

• Sample Scenario 2: The trail file of a database replication is in a DBFS and the DBFS is
in the SAME database that is being replicated.
For example: The act of writing into the trail by the replication process generates redo. This
redo could feed back into the replication.

• Sample Scenario 3: DBFS is the destination of any database files of the same database.
For example: The data files, control files, redo log files could make the DBFS and the
database inter dependent.

17.3.6 File System Security Model
The database manages security in DBFS. It does not use the operating system security model.

• About the File System Security Model
DBFS operates under a security model where all file systems created by a user are private
to that user, by default.

• Enabling Shared Root Access
As an operating system user who mounts the file system, you can allow root access to the
file system by specifying the allow_root option.

• About DBFS Access Among Multiple Database Users
DBFS allows multiple users to share a subset of the filesystem state.

• Establishing DBFS Access Sharing Across Multiple Database Users
Learn about sharing access of DBFS to multiple database users in this section.

17.3.6.1 About the File System Security Model
DBFS operates under a security model where all file systems created by a user are private to
that user, by default.

Oracle recommends maintaining this model. Because operating system users and Oracle
Database users are different, it is possible to allow multiple operating system users to mount a
single DBFS filesystem. These mounts may potentially have different mount options and
permissions. For example, OS user1 may mount a DBFS filesystem as READ ONLY, and OS
user2 may mount it as READ WRITE. However, Oracle Database views both users as having the
same privileges because they would be accessing the filesystem as the same database user.

Access to a database file system requires a database login as a database user with privileges
on the tables that underlie the file system.The database administrator grants access to a file
system to database users, and different database users may have different READ or UPDATE
privileges to the file system. The database administrator has access to all files stored in the
DBFS file system.

On each client computer, access to a DBFS mount point is limited to the operating system user
that mounts the file system. This, however, does not limit the number of users who can access
the DBFS file system, because many users may separately mount the same DBFS file system.

DBFS only performs database privilege checking. Linux performs operating system file-level
permission checking when a DBFS file system is mounted. DBFS does not perform this check
either when using the command interface or when using the PL/SQL interface directly.

Chapter 17
Accessing DBFS File System

17-20

17.3.6.2 Enabling Shared Root Access
As an operating system user who mounts the file system, you can allow root access to the file
system by specifying the allow_root option.

This option requires that the /etc/fuse.conf file contain the user_allow_other field, as
demonstrated in Example 17-1.

Example 17-1 Enabling Root Access for Other Users

Allow users to specify the 'allow_root' mount option.
user_allow_other

17.3.6.3 About DBFS Access Among Multiple Database Users
DBFS allows multiple users to share a subset of the filesystem state.

A Single filesystem may be accessed by multiple database users. For example, the database
user that owns the filesystem may be a privileged user and sharing its user credentials may
pose a security risk. To mitigate this, DBFS allows multiple database users to share a subset of
the filesystem state.

While DBFS registrations and mounts made through the DBFS Content API are private to each
user, the underlying filesystem and the tables on which they rely may be shared across users.
After this is done, the individual filesystems may be independently mounted and used by
different database users, either through SQL/PLSQL, or through dbfs_client.

17.3.6.4 Establishing DBFS Access Sharing Across Multiple Database Users
Learn about sharing access of DBFS to multiple database users in this section.

In the following example, user user1 is able to modify the filesystem, and user user2 can see
these changes. Here, user1 is the database user that creates a filesystem, and user2 is the
database user that eventually uses dbfs_client to mount and access the filesystem. Both
user1 and user2 must have the DBFS_ROLE privilege.

1. Connect as the user who creates the filesystem.

sys@tank as sysdba> connect user1
Connected.

2. Create the filesystem user1_FS, register the store, and mount it as user1_mt.

user1@tank> exec dbms_dbfs_sfs.createFilesystem('user1_FS');
user1@tank> exec dbms_dbfs_content.registerStore('user1_FS', 'posix',
'DBMS_DBFS_SFS');
user1@tank> exec dbms_dbfs_content.mountStore('user1_FS', 'user1_mnt');
user1@tank> commit;

3. [Optional] You may check that the previous step has completed successfully by viewing all
mounts.

user1@tank> select * from table(dbms_dbfs_content.listMounts);

STORE_NAME | STORE_ID|PROVIDER_NAME
---------------------|- ---------|--
PROVIDER_PKG	PROVIDER_ID	PROVIDER_VERSION	STORE_FEATURES
STORE_GUID

Chapter 17
Accessing DBFS File System

17-21

STORE_MOUNT
--
CREATED
--
MOUNT_PROPERTIES(PROPNAME, PROPVALUE, TYPECODE)
--
user1_FS | 1362968596|posix
"DBMS_DBFS_SFS" | 3350646887|0.5.0 | 12714135 141867344
user1_mnt
01-FEB-10 09.44.25.357858 PM
DBMS_DBFS_CONTENT_PROPERTIES_T(
 DBMS_DBFS_CONTENT_PROPERTY_T('principal', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('owner', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('acl', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('asof', (null), 187),
 DBMS_DBFS_CONTENT_PROPERTY_T('read_only', '0', 2))

4. [Optional] Connect as the user who will use the dbfs_client.

user1@tank> connect user2
Connected.

5. [Optional] Note that user2 cannot see user1's DBFS state, as he has no mounts.

user2@tank> select * from table(dbms_dbfs_content.listMounts);
6. While connected as user1, export filesystem user1_FS for access to any user with

DBFS_ROLE privilege.

user1@tank> exec dbms_dbfs_sfs.exportFilesystem('user1_FS');
user1@tank> commit;

7. Connect as the user who will use the dbfs_client.

user1@tank> connect user2
Connected.

8. As user2, view all available tables.

user2@tank> select * from table(dbms_dbfs_sfs.listTables);

SCHEMA_NAME	TABLE_NAME	PTABLE_NAME
VERSION#
--------------------------------CREATED

FORMATTED

PROPERTIES(PROPNAME, PROPVALUE, TYPECODE)

user1 |SFS$_FST_11 |SFS$_FSTP_11
0.5.0
01-FEB-10 09.43.53.497856 PM
01-FEB-10 09.43.53.497856 PM
(null)

9. As user2, register and mount the store, but do not re-create the user1_FS filesystem.

user2@tank> exec dbms_dbfs_sfs.registerFilesystem(
 'user2_FS', 'user1', 'SFS$_FST_11');
user2@tank> exec dbms_dbfs_content.registerStore(
 'user2_FS', 'posix', 'DBMS_DBFS_SFS');
user2@tank> exec dbms_dbfs_content.mountStore(
 'user2_FS', 'user2_mnt');
user2@tank> commit;

Chapter 17
Accessing DBFS File System

17-22

10. [Optional] As user2, you may check that the previous step has completed successfully by
viewing all mounts.

user2@tank> select * from table(dbms_dbfs_content.listMounts);

STORE_NAME | STORE_ID|PROVIDER_NAME
---------------------|- ---------|--
PROVIDER_PKG	PROVIDER_ID	PROVIDER_VERSION	STORE_FEATURES
STORE_GUID

STORE_MOUNT
--
CREATED
--
MOUNT_PROPERTIES(PROPNAME, PROPVALUE, TYPECODE)
--
user2_FS | 1362968596|posix
"DBMS_DBFS_SFS" | 3350646887|0.5.0 | 12714135 141867344
user1_mnt
01-FEB-10 09.46.16.013046 PM
DBMS_DBFS_CONTENT_PROPERTIES_T(
 DBMS_DBFS_CONTENT_PROPERTY_T('principal', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('owner', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('acl', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('asof', (null), 187),
 DBMS_DBFS_CONTENT_PROPERTY_T('read_only', '0', 2))

11. [Optional] List path names for user2 and user1. Note that another mount, user2_mnt,for
store user2_FS, is available for user2. However, the underlying filesystem data is the
same for user2 as for user1.

user2@tank> select pathname from dbfs_content;

PATHNAME

/user2_mnt
/user2_mnt/.sfs/tools
/user2_mnt/.sfs/snapshots
/user2_mnt/.sfs/content
/user2_mnt/.sfs/attributes
/user2_mnt/.sfs/RECYCLE
/user2_mnt/.sfs

user2@tank> connect user1
Connected.

user1@tank> select pathname from dbfs_content;

PATHNAME

/user1_mnt
/user1_mnt/.sfs/tools
/user1_mnt/.sfs/snapshots
/user1_mnt/.sfs/content
/user1_mnt/.sfs/attributes
/user1_mnt/.sfs/RECYCLE
/user1_mnt/.sfs

Chapter 17
Accessing DBFS File System

17-23

12. In filesystem user1_FS, user1 creates file xxx.

user1@tank> declare
 data blob;
 properties dbms_dbfs_content.properties_t;
 begin
 properties('posix:mode') :=
dbms_dbfs_content.propNumber(33188);
 dbms_dbfs_content.createFile('/user1_mnt/xxx', properties
=> properties, content => data);
 end;
 /

13. [Optional] Write to file xxx, created in the previous step.

user1@tank> var buf varchar2(100);
user1@tank> exec :buf := 'hello world';
user1@tank> exec dbms_lob.writeappend(:data, length(:buf),
utl_raw.cast_to_raw(:buf));
user1@tank> commit;

14. [Optional] Show that file xxx exists, and contains the appended data.

user1@tank> select pathname, utl_raw.cast_to_varchar2(filedata)
 from dbfs_content where filedata is not null;

PATHNAME

UTL_RAW.CAST_TO_VARCHAR2(FILEDATA)

/user1_mnt/xxx
hello world

15. User user2 sees the same file in their own DBFS-specific path name and mount prefix.

user1@tank> connect user2
Connected.

user2@tank> select pathname, utl_raw.cast_to_varchar2(filedata) from
 dbfs_content where filedata is not null;

PATHNAME

UTL_RAW.CAST_TO_VARCHAR2(FILEDATA)

/user2_mnt/xxx
hello world

After the export and register pairing completes, both users behave as equals with regard to
their usage of the underlying tables. The exportFilesystem() procedure manages the
necessary grants for access to the same data, which is shared between schemas. After user1
calls exportFilesystem(), filesystem access may be granted to any user with DBFS_ROLE. Note
that a different role can be specified to exportFilesystem.

Subsequently, user2 may create a new DBFS filesystem that shares the same underlying
storage as the user1_FS filesystem, by invoking dbms_dbfs_sfs.registerFilesystem(),
dbms_dbfs_sfs.registerStore(), and dmbs_dbfs_sfs.mountStore() procedure calls.

When multiple database users share a filesystem, they must ensure that all database users
unregister their interest in the filesystem before the owner (here, user1) drops the filesystem.

Chapter 17
Accessing DBFS File System

17-24

Oracle does not recommend that you run the DBFS as root.

17.3.7 HTTP, WebDAV, and FTP Access to DBFS
Components that enable HTTP, WebDAV, and FTP access to DBFS over the Internet use
various XML DB server protocols.

• Internet Access to DBFS Through XDB
To provide database users who have DBFS authentication with a hierarchical file system-
like view of registered and mounted DBFS stores, stores are displayed under the path /
dbfs.

• Web Distributed Authoring and Versioning (WebDAV) Access
WebDAV is an IETF standard protocol that provides users with a file-system-like interface
to a repository over the Internet.

• FTP Access to DBFS
FTP access to DBFS uses the standard FTP clients found on most Unix-based
distributions. FTP is a file transfer mechanism built on client-server architecture with
separate control and data connections.

• HTTP Access to DBFS
Users have read-only access through HTTP/HTTPS protocols.

17.3.7.1 Internet Access to DBFS Through XDB
To provide database users who have DBFS authentication with a hierarchical file system-like
view of registered and mounted DBFS stores, stores are displayed under the path /dbfs.

The /dbfs folder is a virtual folder because the resources in its subtree are stored in DBFS
stores, not the XDB repository. XDB issues a dbms_dbfs_content.list() command for the
root path name "/" (with invoker rights) and receives a list of store access points as subfolders
in the /dbfs folder. The list is comparable to store_mount parameters passed to
dbms_dbfs_content.mountStore(). FTP and WebDAV users can navigate to these stores,
while HTTP and HTTPS users access URLs from browsers.

Note that features implemented by the XDB repository, such as repository events, resource
configurations, and ACLs, are not available for the /dbfs folder.

DBFS Content API for guidelines on DBFS store creation, registration, deregistration, mount,
unmount and deletion

17.3.7.2 Web Distributed Authoring and Versioning (WebDAV) Access
WebDAV is an IETF standard protocol that provides users with a file-system-like interface to a
repository over the Internet.

WebDAV server folders are typically accessed through Web Folders on Microsoft Windows
(2000/NT/XP/Vista/7, and so on). You can access a resource using its fully qualified name, for
example, /dbfs/sfs1/dir1/file1.txt, where sfs1 is the name of a DBFS store.

You need to set up WebDAV on Windows to access the DBFS filesystem.

Chapter 17
Accessing DBFS File System

17-25

See Also:

Oracle XML DB Developer's Guide

The user authentication required to access the DBFS virtual folder is the same as for the XDB
repository.

When a WebDAV client connects to a WebDAV server for the first time, the user is typically
prompted for a username and password, which the client uses for all subsequent requests.
From a protocol point-of-view, every request contains authentication information, which XDB
uses to authenticate the user as a valid database user. If the user does not exist, the client
does not get access to the DBFS store or the XDB repository. Upon successful authentication,
the database user becomes the current user in the session.

XDB supports both basic authentication and digest authentication. For security reasons, it is
highly recommended that HTTPS transport be used if basic authentication is enabled.

17.3.7.3 FTP Access to DBFS
FTP access to DBFS uses the standard FTP clients found on most Unix-based distributions.
FTP is a file transfer mechanism built on client-server architecture with separate control and
data connections.

FTP users are authenticated as database users. The protocol, as outlined in RFC 959, uses
clear text user name and password for authentication. Therefore, FTP is not a secure protocol.

The following commands are supported for DBFS:

• USER: Authentication username

• PASS: Authentication password

• CWD: Change working directory

• CDUP: Change to Parent directory

• QUIT: Disconnect

• PORT: Specifies an address and port to which the server should connect

• PASV: Enter passive mode

• TYPE: Sets the transfer mode, such as, ASCII or Binary

• RETR: Transfer a copy of the file

• STOR: Accept the data and store the data as a file at the server site

• RNFR: Rename From

• RNTO: Rename To

• DELE: Delete file

• RMD: Remove directory

• MKD: Make a directory

• PWD: Print working directory

• LIST: Listing of a file or directory. Default is current directory.

Chapter 17
Accessing DBFS File System

17-26

• NLST: Returns file names in a directory

• HELP: Usage document

• SYST: Return system type

• FEAT: Gets the feature list implemented by the server

• NOOP: No operation (used for keep-alives)

• EPRT: Extended address (IPv6) and port to which the server should connect

• EPSV: Enter extended passive mode (IPv6)

17.3.7.4 HTTP Access to DBFS
Users have read-only access through HTTP/HTTPS protocols.

Users point their browsers to a DBFS store using the XDB HTTP server with a URL such as
https://hostname:port/dbfs/sfs1 where sfs1 is a DBFS store name.

17.4 Maintaining DBFS
DBFS administration includes tools that perform diagnostics, manage failover, perform backup,
and so on.

• Using Oracle Wallet with DBFS Client
Learn about using Oracle Wallet in this section.

• DBFS Diagnostics
The dbfs_client program supports multiple levels of tracing to help diagnose problems.

• Preventing Data Loss During Failover Events
The dbfs_client program can failover to one of the other existing database instances if
one of the database instances in an Oracle RAC cluster fails.

• Bypassing Client-Side Write Caching
The sharing and caching semantics for dbfs_client are similar to NFS in using the close-
to-open cache consistency behavior.

• Backing up DBFS
You have two alternatives for backing up DBFS.

• Small File Performance of DBFS
Like any shared file system, the performance of DBFS for small files lags the performance
of a local file system.

17.4.1 Using Oracle Wallet with DBFS Client
Learn about using Oracle Wallet in this section.

An Oracle Wallet allows the DBFS client to mount a DBFS store without requiring the user to
enter a password.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for more information
about creation and management of wallets

Chapter 17
Maintaining DBFS

17-27

1. Create a directory for the wallet. For example:

mkdir $ORACLE_HOME/oracle/wallet
2. Create an auto-login wallet.

mkstore -wrl $ORACLE_HOME/oracle/wallet -create
3. Add the wallet location in the client's sqlnet.ora file:

WALLET_LOCATION = (SOURCE = (METHOD = FILE) (METHOD_DATA = (DIRECTORY =
 $ORACLE_HOME/oracle/wallet)))

4. Add the following parameter in the client's sqlnet.ora file:

SQLNET.WALLET_OVERRIDE = TRUE
5. Create credentials:

mkstore -wrl wallet_location -createCredential db_connect_string username password

For example:

mkstore -wrl $ORACLE_HOME/oracle/wallet -createCredential DBConnectString scott
password

6. Add the connection alias to your tnsnames.ora file.

7. Use dbfs_client with Oracle Wallet.

For example:

$ dbfs_client -o wallet /@DBConnectString /mnt/dbfs

17.4.2 DBFS Diagnostics
The dbfs_client program supports multiple levels of tracing to help diagnose problems.

The dbfs_client can either output traces to a file or to /var/log/messages using the syslog
daemon on Linux.

When you trace to a file, the dbfs_client program keeps two trace files on disk. dbfs_client,
rotates the trace files automatically, and limits disk usage to 10 MB.

By default, tracing is turned off except for critical messages which are always logged
to /var/log/messages.

If dbfs_client cannot connect to the Oracle Database, enable tracing using the trace_level
and trace_file options. Tracing prints additional messages to log file for easier debugging.

DBFS uses Oracle Database for storing files. Sometimes Oracle server issues are propagated
to dbfs_client as errors. If there is a dbfs_client error, please view the Oracle server logs to
see if that is the root cause.

17.4.3 Preventing Data Loss During Failover Events
The dbfs_client program can failover to one of the other existing database instances if one of
the database instances in an Oracle RAC cluster fails.

For dbfs_client failover to work correctly, you must modify the Oracle database service and
specify failover parameters. Run the DBMS_SERVICE.MODIFY_SERVICE procedure to modify the
service as shown Example 17-2

Chapter 17
Maintaining DBFS

17-28

Example 17-2 Enabling DBFS Client Failover Events

exec DBMS_SERVICE.MODIFY_SERVICE(service_name => 'service_name',
 aq_ha_notifications => true,
 failover_method => 'BASIC',
 failover_type => 'SELECT',
 failover_retries => 180,
 failover_delay => 1);

Once you have completed the prerequisite, you can prevent data loss during a failover of the
DBFS connection after a failure of the back-end Oracle database instance. In this case,
cached writes may be lost if the client loses the connection. However, back-end failover to
other Oracle RAC instances or standby databases does not cause lost writes.

• Specify the -o failover mount option:

$ dbfs_client database_user@database_server -o failover /mnt/dbfs

17.4.4 Bypassing Client-Side Write Caching
The sharing and caching semantics for dbfs_client are similar to NFS in using the close-to-
open cache consistency behavior.

This allows multiple copies of dbfs_client to access the same shared file system. The default
mode caches writes on the client and flushes them after a timeout or after the user closes the
file. Also, writes to a file only appear to clients that open the file after the writer closed the file.

You can bypass client-side write caching.

• Specify O_SYNC when the file is opened.

To force writes in the cache to disk call fsync.

17.4.5 Backing up DBFS
You have two alternatives for backing up DBFS.

You can back up the tables that underlie the file system at the database level or use a file
system backup utility, such as Oracle Secure Backup, through a mount point.

Topics:

• DBFS Backup at the Database Level
An advantage of backing up the tables at the database level is that the files in the file
system are always consistent with the relational data in the database.

• DBFS Backup Through a File System Utility
The advantage of backing up the file system using a file system backup utility is that
individual files can be restored from backup more easily.

17.4.5.1 DBFS Backup at the Database Level
An advantage of backing up the tables at the database level is that the files in the file system
are always consistent with the relational data in the database.

A full restore and recover of the database also fully restores and recovers the file system with
no data loss. During a point-in-time recovery of the database, the files are recovered to the
specified time. As usual with database backup, modifications that occur during the backup do
not affect the consistency of a restore. The entire restored file system is always consistent with
respect to a specified time stamp.

Chapter 17
Maintaining DBFS

17-29

17.4.5.2 DBFS Backup Through a File System Utility
The advantage of backing up the file system using a file system backup utility is that individual
files can be restored from backup more easily.

Any changes made to the restored files after the last backup are lost.

Specify the allow_root mount option if backups are scheduled using the Oracle Secure
Backup Administrative Server.

17.4.6 Small File Performance of DBFS
Like any shared file system, the performance of DBFS for small files lags the performance of a
local file system.

Each file data or metadata operation in DBFS must go through the FUSE user mode file system
and then be forwarded across the network to the database. Therefore, each operation that is
not cached on the client takes a few milliseconds to run in DBFS.

For operations that involve an input/output (IO) to disk, the time delay overhead is masked by
the wait for the disk IO. Naturally, larger IOs have a lower percentage overhead than smaller
IOs. The network overhead is more noticeable for operations that do not issue a disk IO.

When you compare the operations on a few small files with a local file system, the overhead is
not noticeable, but operations that affect thousands of small files incur a much more noticeable
overhead. For example, listing a single directory or looking at a single file produce near
instantaneous response, while searching across a directory tree with many thousands of files
results in a larger relative overhead. Oracle recommends direct_io option in dbfs_client for
optimal performance for reads and writes.

17.5 Shrinking and Reorganizing DBFS Filesystems
DBFS uses Online File system Reorganization to shrink itself, enabling the release of allocated
space back to the containing tablespace.

• About Changing DBFS File Systems
DBFS file systems, like other database segments, grow dynamically with the addition or
enlargement of files and directories.

• Advantages of Online Filesystem Reorganization
DBFS Online Filesystem Reorganization is a powerful data movement facility with these
certain advantages.

• Determining Availability of Online Filesystem Reorganization
DBFS for Oracle Database 12c and later supports online filesystem reorganization. Some
earlier versions also support the facility.

• Required Permissions for Online Filesystem Reorganization
Database users must have the following set of privileges for Online Filesystem
Reorganizaton.

• Invoking Online Filesystem Reorganization
You can perform an Online Filesystem Reorganization by creating a temporary DBFS
filesystem.

Chapter 17
Shrinking and Reorganizing DBFS Filesystems

17-30

17.5.1 About Changing DBFS File Systems
DBFS file systems, like other database segments, grow dynamically with the addition or
enlargement of files and directories.

Growth occurs with the allocation of space from the tablespace that holds the DBFS file system
to the various segments that make up the file system.

However, even if files and directories in the DBFS file system are deleted, the allocated space
is not released back to the containing tablespace, but continues to exist and be available for
other DBFS entities. A process called Online Filesystem Reorganization solves this problem by
shrinking the DBFS Filesystem.

The DBFS Online Filesystem Reorganization utility internally uses the Oracle Database online
redefinition facility, with the original file system and a temporary placeholder corresponding to
the base and interim objects in the online redefinition model.

See Also:

Oracle Database Administrator's Guide for further information about online
redefinition

17.5.2 Advantages of Online Filesystem Reorganization
DBFS Online Filesystem Reorganization is a powerful data movement facility with these
certain advantages.

These are:

• It is online: When reorganization is taking place, the filesystem remains fully available for
read and write operations for all applications.

• It can reorganize the structure: The underlying physical structure and organization of the
DBFS filesystem can be changed in many ways, such as:

– A non-partitioned filesystem can be converted to a partitioned filesystem and vice-
versa.

– Special SecureFiles LOB properties can be selectively enabled or disabled in any
combination, including the compression, encryption, and deduplication properties.

– The data in the filesystem can be moved across tablespaces or within the same
tablespace.

• It can reorganize multiple filesystems concurrently: Multiple different filesystems can
be reorganized at the same time, if no temporary filesystems have the same name and the
tablespaces have enough free space, typically, twice the space requirement for each
filesystem being reorganized.

Chapter 17
Shrinking and Reorganizing DBFS Filesystems

17-31

17.5.3 Determining Availability of Online Filesystem Reorganization
DBFS for Oracle Database 12c and later supports online filesystem reorganization. Some
earlier versions also support the facility.

To determine if your version does, query for a specific function in the DBFS PL/SQL packages,
as shown below:

• Query for a specific function in the DBFS PL/SQL packages.

$ sqlplus / as sysdba
SELECT * FROM dba_procedures
WHERE owner = 'SYS'
 and object_name = 'DBMS_DBFS_SFS'
 and procedure_name = 'REORGANIZEFS';

If this query returns a single row similar to the one in this output, the DBFS installation supports
Online Filesystem Reorganization. If the query does not return any rows, then the DBFS
installation should either be upgraded or requires a patch for bug-10051996.

OWNER
--
OBJECT_NAME
--
PROCEDURE_NAME
--
OBJECT_ID	SUBPROGRAM_ID	OVERLOAD	OBJECT_TYPE	AGG	PIP
IMPLTYPEOWNER
--
IMPLTYPENAME
--
PAR	INT	DET	AUTHID
SYS
DBMS_DBFS_SFS
REORGANIZEFS
 11424| 52|(null) |PACKAGE |NO |NO
(null)
(null)
NO |NO |NO |CURRENT_USER

17.5.4 Required Permissions for Online Filesystem Reorganization
Database users must have the following set of privileges for Online Filesystem Reorganizaton.

Users must have these privileges:

• ALTER ANY TABLE
• DROP ANY TABLE
• LOCK ANY TABLE
• CREATE ANY TABLE
• SELECT ANY TABLE
• REDEFINE ANY TABLE
• CREATE ANY TRIGGER

Chapter 17
Shrinking and Reorganizing DBFS Filesystems

17-32

• CREATE ANY INDEX
• CREATE TABLE
• CREATE MATERIALIZED VIEW
• CREATE TRIGGER

17.5.5 Invoking Online Filesystem Reorganization
You can perform an Online Filesystem Reorganization by creating a temporary DBFS
filesystem.

Note:

Ensure that you don't create the temporary DBFS filesystem in the SYS schema.
DBFS Online Filesystem Reorganization will not work if you create the temporary
DBFS filesystem in the SYS schema.

1. Create a temporary DBFS filesystem with the desired new organization and structure:
including the desired target tablespace (which may be the same tablespace as the
filesystem being reorganized), desired target SecureFiles LOB storage properties
(compression, encryption, or deduplication), and so on.

2. Invoke the PL/SQL procedure to reorganize the DBFS filesystem using the newly-created
temporary filesystem for data movement.

3. Once the reorganization procedure completes, drop the temporary filesystem.

The example below reorganizes DBFS filesystem FS1 in tablespace TS1 into a new tablespace
TS2, using a temporary filesystem named TMP_FS, where all filesystems belong to database
user dbfs_user:

$ cd $ORACLE_HOME/rdbms/admin
$ sqlplus dbfs_user/***

@dbfs_create_filesystem TS2 TMP_FS
EXEC DBMS_DBFS_SFS.REORGANIZEFS('FS1', 'TMP_FS');
@dbfs_drop_filesystem TMP_FS
QUIT;

where:

• TMP_FS can have any valid name. It is intended as a temporary placeholder and can be
dropped (as shown in the example above) or retained as a fully materialized point-in-time
snapshot of the original filesystem.

• FS1 is the original filesystem and is unaffected by the attempted reorganization. It remains
usable for all DBFS operations, including SQL, PL/SQL, and dbfs_client mounts and
commandline, during the reorganization. At the end of the reorganization, FS1 has the new
structure and organization used to create TMP_FS and vice versa (TMP_FS will have the
structure and organization originally used for FS1). If the reorganization fails for any reason,
DBFS attempts to clean up the internal state of FS1.

• TS2 needs enough space to accommodate all active (non-deleted) files and directories in
FS1.

• TS1 needs at least twice the amount of space being used by FS1 if the filesystem is moved
within the same tablespace as part of a shrink.

Chapter 17
Shrinking and Reorganizing DBFS Filesystems

17-33

18
DBFS Hierarchical Store

The DBFS Hierarchical Store and related store wallet management work together to store less
frequently used data.

• About the Hierarchical Store Package DBMS_DBFS_HS
The Oracle DBFS Hierarchical Store package (DBMS_DBFS_HS) is a store provider for
DBMS_DBFS_CONTENT that supports hierarchical storage for DBFS content.

• Setting up the Store
You can create, register, and mount a hierarchical Store.

• Using the Hierarchical Store
You can use the Hierarchical Store as an independent file system or as an archive solution
for SecureFile LOBs.

• The DBMS_DBFS_HS Package
The DBMS_DBFS_HS package is a service provider that enables use of tape or Amazon S3
Web service as storage for data.

• Views for DBFS Hierarchical Store
The DBFS Hierarchical Stores have several types of views.

18.1 About the Hierarchical Store Package DBMS_DBFS_HS
The Oracle DBFS Hierarchical Store package (DBMS_DBFS_HS) is a store provider for
DBMS_DBFS_CONTENT that supports hierarchical storage for DBFS content.

The package stores content in external storage devices like tape and Amazon S3 web service,
and associated metadata (or properties) in the database. The DBFS HS may cache frequently
accessed content in database tables to improve performance.

The DBMS_DBFS_HS package provides you the ability to use tape as a storage tier when
implementing Information Lifecycle Management (ILM) for database tables or content. The
data on tape or Amazon S3 is part of the Oracle Database and all standard APIs can access it,
but only through the database.

DBMS_DBFS_HS has additional interfaces needed to manage the external storage device and the
cache associated with each store.

To use the package DBMS_DBFS_HS, you must be granted the DBFS_ROLE role.

18.2 Setting up the Store
You can create, register, and mount a hierarchical Store.

• Creating, Registering, and Mounting the Store
Setting up a hierarchical file system store requires creating, registering, and mounting the
store.

18-1

18.2.1 Creating, Registering, and Mounting the Store
Setting up a hierarchical file system store requires creating, registering, and mounting the
store.

Creating, registering, and mounting the store.

1. Call CREATESTORE.

See Also:

CREATESTORE Procedure for more information on CREATESTORE procedure.

Note:

You create a wallet with the credentials of the Amazon S3 accounts if Amazon S3
is used as the external storage.

2. Set mandatory and optional properties using DBMS_DBFS_HS.SETSTOREPROPERTY.

See Also:

SETSTOREPROPERTY Procedure for more information on SETSTOREPROPERTY
procedure.

3. Register the store using DBMS_DBFS_CONTENT.REGISTERSTORE.

See Also:

REGISTERSTORE Procedure for more information on REGISTERSTORE
procedure.

4. Mount the store using DBMS_DBFS_CONTENT.MOUNTSTORE.

See Also:

MOUNTSTORE Procedure for more information on MOUNTSTORE procedure.

18.3 Using the Hierarchical Store
You can use the Hierarchical Store as an independent file system or as an archive solution for
SecureFile LOBs.

• Using Hierarchical Store as a File System
Use the DBMS_DBFS_CONTENT package to create, update, read, and delete file system
entries in the store.

Chapter 18
Using the Hierarchical Store

18-2

• Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
Use the DBMS_LOB package to archive SecureFiles LOBs in a tape or an S3 store.

• Dropping a Hierarchical Store
You can drop a hierarchical store.

• Compression to Use with the Hierarchical Store
The DBFS hierarchical store can store its files in compressed forms.

• Program Example Using Tape
This example program configures and uses a tape store.

• Program Example Using Amazon S3
This example program configures and uses an Amazon S3 store.

18.3.1 Using Hierarchical Store as a File System
Use the DBMS_DBFS_CONTENT package to create, update, read, and delete file system entries in
the store.

See Also:

DBFS Content API

18.3.2 Using Hierarchical Store as an Archive Solution For SecureFiles
LOBs

Use the DBMS_LOB package to archive SecureFiles LOBs in a tape or an S3 store.

The DBMS_LOB package archives SecureFiles LOBs in a tape or an S3 store. Use the following
method to free space in the cache or to force cache resident contents to be written to an
external storage device:

DBMS_DBFS_HS.storePush(store_name);

18.3.3 Dropping a Hierarchical Store
You can drop a hierarchical store.

To drop a hierarchical store, call:

DBMS_DBFS_HS.dropStore(store_name, opt_flags);

18.3.4 Compression to Use with the Hierarchical Store
The DBFS hierarchical store can store its files in compressed forms.

The DBFS hierarchical store has the ability to store its files in compressed form using the
SETPROPERTY method and the property PROPNAME_COMPRESSLVL to specify the compression
level.

Valid values are:

• PROPVAL_COMPLVL_NONE: No compression

Chapter 18
Using the Hierarchical Store

18-3

• PROPVAL_COMPLVL_LOW: LOW compression

• PROPVAL_COMPLVL_MEDIUM: MEDIUM compression

• PROPVAL_COMPLVL_HIGH: HIGH compression

Generally, the compression level LOW performs best and still provides a good compression
ratio. Compression levels MEDIUM and HIGH provide significantly better compression ratios, but
compression times can be correspondingly longer. Oracle recommends using NONE or LOW
when write performance is critical, such as when files in the DBFS HS store are updated
frequently. If space is critical and the best possible compression ratio is desired, use MEDIUM or
HIGH.

Files are compressed as they are paged out of the cache into the staging area (before they are
subsequently pushed into the back end tape or S3 storage). Therefore, compression also
benefits by storing smaller files in the staging area and effectively increasing the total available
capacity of the staging area.

18.3.5 Program Example Using Tape
This example program configures and uses a tape store.

In the example, you must substitute valid values in some places, as indicated by <...>, for the
program to run successfully.

See Also:

Oracle Database PL/SQL Packages and Types Reference DBMS_DBFS_HS
documentation for complete details about the methods and their parameters

Rem Example to configure and use a Tape store.
Rem
Rem hsuser should be a valid database user who has been granted
Rem the role dbfs_role.

connect hsuser/hsuser

Rem The following block sets up a STORETYPE_TAPE store with
Rem DBMS_DBFS_HS acting as the store provider.

declare
storename varchar2(32) ;
tblname varchar2(30) ;
tbsname varchar2(30) ;
lob_cache_quota number := 0.8 ;
cachesz number ;
ots number ;
begin
cachesz := 50 * 1048576 ;
ots := 1048576 ;
storename := 'tapestore10' ;
tblname := 'tapetbl10' ;
tbsname := '<TBS_3>' ; -- Substitute a valid tablespace name

-- Create the store.
-- Here tbsname is the tablespace used for the store,
-- tblname is the table holding all the store entities,

Chapter 18
Using the Hierarchical Store

18-4

-- cachesz is the space used by the store to cache content
-- in the tablespace,
-- lob_cache_quota is the fraction of cachesz allocated
-- to level-1 cache and
-- ots is minimum amount of content that is accumulated
-- in level-2 cache before being stored on tape
dbms_dbfs_hs.createStore(
 storename,
 dbms_dbfs_hs.STORETYPE_TAPE,
 tblname, tbsname, cachesz,
 lob_cache_quota, ots) ;

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_SBTLIBRARY,
 '<ORACLE_HOME/work/libobkuniq.so>') ;
 -- Substitute your ORACLE_HOME path

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_MEDIAPOOL,
 '<0>') ; -- Substitute valid value

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_COMPRESSLEVEL,
 'NONE') ;

-- Please refer to DBMS_DBFS_CONTENT documentation
-- for details about this method
dbms_dbfs_content.registerstore(
 storename,
 'tapeprvder10',
 'dbms_dbfs_hs') ;

-- Please refer to DBMS_DBFS_CONTENT documentation
-- for details about this method
dbms_dbfs_content.mountstore(storename, 'tapemnt10') ;
end ;
/

Rem The following code block does file operations
Rem using DBMS_DBFS_CONTENT on the store configured
Rem in the previous code block

connect hsuser/hsuser

declare
 path varchar2(256) ;
 path_pre varchar2(256) ;
 mount_point varchar2(32) ;
 store_name varchar2(32) ;
 prop1 dbms_dbfs_content_properties_t ;
 prop2 dbms_dbfs_content_properties_t ;
 mycontent blob := empty_blob() ;
 buffer varchar2(1050) ;
 rawbuf raw(1050) ;
 outcontent blob := empty_blob() ;
 itemtype integer ;
 pflag integer ;
 filecnt integer ;
 iter integer ;

Chapter 18
Using the Hierarchical Store

18-5

 offset integer ;
 rawlen integer ;
begin

 mount_point := '/tapemnt10' ;
 store_name := 'tapestore10' ;
 path_pre := mount_point ||'/file' ;

-- We create 10 empty files in the following loop
 filecnt := 0 ;
 loop
 exit when filecnt = 10 ;
 path := path_pre || to_char(filecnt) ;
 mycontent := empty_blob() ;
 prop1 := null ;

 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.createFile(
 path, prop1, mycontent) ; -- Create the file

 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- We populate the newly created files with content
 -- in the following loop
 pflag := dbms_dbfs_content.prop_data +
 dbms_dbfs_content.prop_std +
 dbms_dbfs_content.prop_opt ;

 buffer := 'Oracle provides an integrated management ' ||
 'solution for managing Oracle database with '||
 'a unique top-down application management ' ||
 'approach. With new self-managing ' ||
 'capabilities, Oracle eliminates time-' ||
 'consuming, error-prone administrative ' ||
 'tasks, so database administrators can ' ||
 'focus on strategic business objectives ' ||
 'instead of performance and availability ' ||
 'fire drills. Oracle Management Packs for ' ||
 'Database provide signifiCant cost and time-'||
 'saving capabilities for managing Oracle ' ||
 'Databases. Independent studies demonstrate '||
 'that Oracle Database is 40 percent easier ' ||
 'to manage over DB2 and 38 percent over ' ||
 'SQL Server.';

 rawbuf := utl_raw.cast_to_raw(buffer) ;
 rawlen := utl_raw.length(rawbuf) ;
 offset := 1 ;
 filecnt := 0 ;
 loop
 exit when filecnt = 10 ;
 path := path_pre || to_char(filecnt) ;
 prop1 := null;

 -- Append buffer to file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.putpath(

Chapter 18
Using the Hierarchical Store

18-6

 path, prop1, rawlen,
 offset, rawbuf) ;

 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Clear out level 1 cache
 dbms_dbfs_hs.flushCache(store_name) ;
 commit ;

 -- Do write operation on even-numbered files.
 -- Do read operation on odd-numbered files.
 filecnt := 0 ;
 loop
 exit when filecnt = 10;
 path := path_pre || to_char(filecnt) ;
 if mod(filecnt, 2) = 0 then
 -- Get writable file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.getPath(
 path, prop2, outcontent, itemtype,
 pflag, null, true) ;

 buffer := 'Agile businesses want to be able to ' ||
 'quickly adopt new technologies, whether '||
 'operating systems, servers, or ' ||
 'software, to help them stay ahead of ' ||
 'the competition. However, change often ' ||
 'introduces a period of instability into '||
 'mission-critical IT systems. Oracle ' ||
 'Real Application Testing-with Oracle ' ||
 'Database 11g Enterprise Edition-allows ' ||
 'businesses to quickly adopt new ' ||
 'technologies while eliminating the ' ||
 'risks associated with change. Oracle ' ||
 'Real Application Testing combines a ' ||
 'workload capture and replay feature ' ||
 'with an SQL performance analyzer to ' ||
 'help you test changes against real-life '||
 'workloads, and then helps you fine-tune '||
 'the changes before putting them into' ||
 'production. Oracle Real Application ' ||
 'Testing supports older versions of ' ||
 'Oracle Database, so customers running ' ||
 'Oracle Database 9i and Oracle Database ' ||
 '10g can use it to accelerate their ' ||
 'database upgrades. ';

 rawbuf := utl_raw.cast_to_raw(buffer) ;
 rawlen := utl_raw.length(rawbuf) ;

 -- Modify file content
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_lob.write(outcontent, rawlen, 10, rawbuf);
 commit ;
 else
 -- Read the file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method

Chapter 18
Using the Hierarchical Store

18-7

 dbms_dbfs_content.getPath(
 path, prop2, outcontent, itemtype, pflag) ;
 end if ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Delete the first 2 files
 filecnt := 0;

 loop
 exit when filecnt = 2 ;
 path := path_pre || to_char(filecnt) ;
 -- Delete file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.deleteFile(path) ;
 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Move content staged in database to the tape store
 dbms_dbfs_hs.storePush(store_name) ;
 commit ;

end ;
/

18.3.6 Program Example Using Amazon S3
This example program configures and uses an Amazon S3 store.

Valid values must be substituted in some places, indicated by <...>, for the program to run
successfully.

See Also:

Oracle Database PL/SQL Packages and Types Reference DBMS_DBFS_HS
documentation for complete details about the methods and their parameters

Rem Example to configure and use an Amazon S3 store.
Rem
Rem hsuser should be a valid database user who has been granted
Rem the role dbfs_role.

connect hsuser/hsuser

Rem The following block sets up a STORETYPE_AMAZONS3 store with
Rem DBMS_DBFS_HS acting as the store provider.

declare
storename varchar2(32) ;
tblname varchar2(30) ;
tbsname varchar2(30) ;
lob_cache_quota number := 0.8 ;
cachesz number ;
ots number ;
begin

Chapter 18
Using the Hierarchical Store

18-8

cachesz := 50 * 1048576 ;
ots := 1048576 ;
storename := 's3store10' ;
tblname := 's3tbl10' ;
tbsname := '<TBS_3>' ; -- Substitute a valid tablespace name

-- Create the store.
-- Here tbsname is the tablespace used for the store,
-- tblname is the table holding all the store entities,
-- cachesz is the space used by the store to cache content
-- in the tablespace,
-- lob_cache_quota is the fraction of cachesz allocated
-- to level-1 cache and
-- ots is minimum amount of content that is accumulated
-- in level-2 cache before being stored in AmazonS3
dbms_dbfs_hs.createStore(
 storename,
 dbms_dbfs_hs.STORETYPE_AMAZONS3,
 tblname, tbsname, cachesz,
 lob_cache_quota, ots) ;

dbms_dbfs_hs.setstoreproperty(storename,
 dbms_dbfs_hs.PROPNAME_SBTLIBRARY,
 '<ORACLE_HOME/work/libosbws11.so>');
 -- Substitute your ORACLE_HOME path

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_S3HOST,
 's3.amazonaws.com') ;

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_BUCKET,
 'oras3bucket10') ;

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_WALLET,
 'LOCATION=file:<ORACLE_HOME>/work/wlt CREDENTIAL_ALIAS=a_key') ;
 -- Substitute your ORACLE_HOME path

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_LICENSEID,
 '<xxxxxxxxxxxxxxxx>') ; -- Substitute a valid SBT license id

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_HTTPPROXY,
 '<http://www-proxy.mycompany.com:80/>') ;
 -- Substitute valid value. If a proxy is not used,
 -- then this property need not be set.

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_COMPRESSLEVEL,
 'NONE') ;

dbms_dbfs_hs.createbucket(storename) ;

-- Please refer to DBMS_DBFS_CONTENT documentation

Chapter 18
Using the Hierarchical Store

18-9

-- for details about this method
dbms_dbfs_content.registerstore(
 storename,
 's3prvder10',
 'dbms_dbfs_hs') ;

-- Please refer to DBMS_DBFS_CONTENT documentation
-- for details about this method
dbms_dbfs_content.mountstore(
 storename,
 's3mnt10') ;
end ;
/

Rem The following code block does file operations
Rem using DBMS_DBFS_CONTENT on the store configured
Rem in the previous code block

connect hsuser/hsuser

declare
path varchar2(256) ;
path_pre varchar2(256) ;
mount_point varchar2(32) ;
store_name varchar2(32) ;
prop1 dbms_dbfs_content_properties_t ;
prop2 dbms_dbfs_content_properties_t ;
mycontent blob := empty_blob() ;
buffer varchar2(1050) ;
rawbuf raw(1050) ;
outcontent blob := empty_blob() ;
itemtype integer ;
pflag integer ;
filecnt integer ;
iter integer ;
offset integer ;
rawlen integer ;
begin

 mount_point := '/s3mnt10' ;
 store_name := 's3store10' ;
 path_pre := mount_point ||'/file' ;

 -- We create 10 empty files in the following loop
 filecnt := 0 ;
 loop
 exit when filecnt = 10 ;
 path := path_pre || to_char(filecnt) ;
 mycontent := empty_blob() ;
 prop1 := null ;

 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.createFile(
 path, prop1, mycontent) ; -- Create the file

 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- We populate the newly created files with content
 -- in the following loop

Chapter 18
Using the Hierarchical Store

18-10

 pflag := dbms_dbfs_content.prop_data +
 dbms_dbfs_content.prop_std +
 dbms_dbfs_content.prop_opt ;

 buffer := 'Oracle provides an integrated management ' ||
 'solution for managing Oracle database with '||
 'a unique top-down application management ' ||
 'approach. With new self-managing ' ||
 'capabilities, Oracle eliminates time-' ||
 'consuming, error-prone administrative ' ||
 'tasks, so database administrators can ' ||
 'focus on strategic business objectives ' ||
 'instead of performance and availability ' ||
 'fire drills. Oracle Management Packs for ' ||
 'Database provide signifiCant cost and time-'||
 'saving capabilities for managing Oracle ' ||
 'Databases. Independent studies demonstrate '||
 'that Oracle Database is 40 percent easier ' ||
 'to manage over DB2 and 38 percent over ' ||
 'SQL Server.';

 rawbuf := utl_raw.cast_to_raw(buffer) ;
 rawlen := utl_raw.length(rawbuf) ;
 offset := 1 ;
 filecnt := 0 ;
 loop
 exit when filecnt = 10 ;
 path := path_pre || to_char(filecnt) ;
 prop1 := null;

 -- Append buffer to file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.putpath(
 path, prop1, rawlen,
 offset, rawbuf) ;

 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Clear out level 1 cache
 dbms_dbfs_hs.flushCache(store_name) ;
 commit ;

 -- Do write operation on even-numbered files.
 -- Do read operation on odd-numbered files.
 filecnt := 0 ;
 loop
 exit when filecnt = 10;
 path := path_pre || to_char(filecnt) ;
 if mod(filecnt, 2) = 0 then
 -- Get writable file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.getPath(
 path, prop2, outcontent, itemtype,
 pflag, null, true) ;

 buffer := 'Agile businesses want to be able to ' ||
 'quickly adopt new technologies, whether '||
 'operating systems, servers, or ' ||

Chapter 18
Using the Hierarchical Store

18-11

 'software, to help them stay ahead of ' ||
 'the competition. However, change often ' ||
 'introduces a period of instability into '||
 'mission-critical IT systems. Oracle ' ||
 'Real Application Testing-with Oracle ' ||
 'Database 11g Enterprise Edition-allows ' ||
 'businesses to quickly adopt new ' ||
 'technologies while eliminating the ' ||
 'risks associated with change. Oracle ' ||
 'Real Application Testing combines a ' ||
 'workload capture and replay feature ' ||
 'with an SQL performance analyzer to ' ||
 'help you test changes against real-life '||
 'workloads, and then helps you fine-tune '||
 'the changes before putting them into' ||
 'production. Oracle Real Application ' ||
 'Testing supports older versions of ' ||
 'Oracle Database, so customers running ' ||
 'Oracle Database 9i and Oracle Database ' ||
 '10g can use it to accelerate their ' ||
 'database upgrades. ';

 rawbuf := utl_raw.cast_to_raw(buffer) ;
 rawlen := utl_raw.length(rawbuf) ;

 -- Modify file content
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_lob.write(outcontent, rawlen, 10, rawbuf);
 commit ;
 else
 -- Read the file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.getPath(
 path, prop2, outcontent, itemtype, pflag) ;
 end if ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Delete the first 2 files
 filecnt := 0;

 loop
 exit when filecnt = 2 ;
 path := path_pre || to_char(filecnt) ;
 -- Delete file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.deleteFile(path) ;
 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Move content staged in database to Amazon S3 store
 dbms_dbfs_hs.storePush(store_name) ;
 commit ;

end ;
/

Chapter 18
Using the Hierarchical Store

18-12

18.4 The DBMS_DBFS_HS Package
The DBMS_DBFS_HS package is a service provider that enables use of tape or Amazon S3 Web
service as storage for data.

• Constants for DBMS_DBFS_HS Package
The DBMS_DBFS_HS PL/SQL package constants are very detailed.

• Methods for DBMS_DBFS_HS Package
There are many methods in the DBMS_DBFS_HSpackage.

18.4.1 Constants for DBMS_DBFS_HS Package
The DBMS_DBFS_HS PL/SQL package constants are very detailed.

See Also:

See Oracle Database PL/SQL Packages and Types Reference for details of
constants used by DBMS_DBFS_HS PL/SQL package

18.4.2 Methods for DBMS_DBFS_HS Package
There are many methods in the DBMS_DBFS_HSpackage.

Table 18-1 summarizes the DBMS_DBFS_HS PL/SQL package methods.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Table 18-1 Methods of the DBMS_DBFS_HS PL/SQL Packages

Method Description

CLEANUPUNUSEDBACKUPFILES Removes files that are created on the external storage device if they
have no current content.

Oracle Database PL/SQL Packages and Types Reference

CREATEBUCKET Creates an AWS bucket, for use with the STORETYPE_AMAZON3 store.

Oracle Database PL/SQL Packages and Types Reference

CREATESTORE Creates a DBFS HS store.

Oracle Database PL/SQL Packages and Types Reference

DEREGSTORECOMMAND Removes a command (message) that was associated with a store.

Oracle Database PL/SQL Packages and Types Reference

DROPSTORE Deletes a previously created DBFS HS store.

Oracle Database PL/SQL Packages and Types Reference

Chapter 18
The DBMS_DBFS_HS Package

18-13

Table 18-1 (Cont.) Methods of the DBMS_DBFS_HS PL/SQL Packages

Method Description

FLUSHCACHE Flushes out level 1 cache to level 2 cache, increasing space in level 1.

Oracle Database PL/SQL Packages and Types Reference

GETSTOREPROPERTY Retrieves the values of a property of a store in the database.

Oracle Database PL/SQL Packages and Types Reference

RECONFIGCACHE Reconfigures the parameters of the database cache used by the store.

Oracle Database PL/SQL Packages and Types Reference

REGISTERSTORECOMMAND Registers commands (messages) for a store so they are sent to the
Media Manager of an external storage device.

Oracle Database PL/SQL Packages and Types Reference .

SENDCOMMAND Sends a command (message) to the Media Manager of an external
storage device.

Oracle Database PL/SQL Packages and Types Reference

SETSTOREPROPERTY Associates name/value properties with a registered Hierarchical Store.

Oracle Database PL/SQL Packages and Types Reference

STOREPUSH Pushes locally cached data to an archive store.

Oracle Database PL/SQL Packages and Types Reference

18.5 Views for DBFS Hierarchical Store
The DBFS Hierarchical Stores have several types of views.

• DBA Views
There are several views available for DBFS Hierarchical Store.

• User Views
There are several views available for the DBFS Hierarchical Store.

See Also:

Oracle Database Reference for the columns and data types of these views

18.5.1 DBA Views
There are several views available for DBFS Hierarchical Store.

Following are the views available for DBFS Hierarchical Store:

• DBA_DBFS_HS
This view shows all Database File System (DBFS) hierarchical stores

• DBA_DBFS_HS_PROPERTIES
This view shows modifiable properties of all Database File System (DBFS) hierarchical
stores.

• DBA_DBFS_HS_FIXED_PROPERTIES

Chapter 18
Views for DBFS Hierarchical Store

18-14

This view shows non-modifiable properties of all Database File System (DBFS)
hierarchical stores.

• DBA_DBFS_HS_COMMANDS
This view shows all the registered store commands for all Database File System (DBFS)
hierarchical stores.

18.5.2 User Views
There are several views available for the DBFS Hierarchical Store.

• USER_DBFS_HS
This view shows all Database File System (DBFS) hierarchical stores owned by the current
user.

• USER_DBFS_HS_PROPERTIES
This view shows modifiable properties of all Database File System (DBFS) hierarchical
stores owned by current user.

• USER_DBFS_HS_FIXED_PROPERTIES
This view shows non-modifiable properties of all Database File System (DBFS)
hierarchical stores owned by current user.

• USER_DBFS_HS_COMMANDS
This view shows all the registered store commands for all Database File system (DBFS)
hierarchical stores owned by current user.

• USER_DBFS_HS_FILES
This view shows files in the Database File System (DBFS) hierarchical store owned by the
current user and their location on the backend device.

Chapter 18
Views for DBFS Hierarchical Store

18-15

19
Database File System Links

Database File System Links enable storing SecureFiles LOBs in a different location than usual.

• About Database File System Links
DBFS Links allows storing SecureFiles LOBs transparently in a location separate from the
segment where the LOB is normally stored. Instead, you store a link to the LOB in the
segment.

• Ways to Create Database File System Links
Database File System Links require the creation of a Database File System through the
use of the DBFS Content package, DBMS_DBFS_CONTENT.

• Database File System Links Copy
The API DBMS_LOB.COPY_DBFS_LINK(DSTLOB, SRCLOB, FLAGS) provides the ability to copy a
linked SecureFiles LOB.

• The DBMS_LOB Package Used with DBFS
The DBMS_LOB package provides subprograms to operate on, or access and manipulate
specific parts of a LOB or complete LOBs.

• DBMS_LOB Constants Used with DBFS
Certain constants support DBFS link interfaces.

• DBMS_LOB Subprograms Used with DBFS
You should note that some changes have been made to the DBMS_LOB subprograms over
time.

• Copying a Linked LOB Between Tables
You can copy DBFS links from source tables to destination tables.

• Online Redefinition and DBFS Links
Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in the
table being redefined.

• Transparent Read
DBFS Links can read from a linked SecureFiles LOB even if the data is not cached in the
database.

19.1 About Database File System Links
DBFS Links allows storing SecureFiles LOBs transparently in a location separate from the
segment where the LOB is normally stored. Instead, you store a link to the LOB in the
segment.

The link in the segment must reference a path that uses DBFS Content API to locate the LOB
when accessed. This means that the LOB could be stored on another file system, on a tape
system, in the cloud, or any other location that can be accessed using DBFS Content API.

When a user or application tries to access a SecureFiles LOB that has been stored outside the
segment using a DBFS Link, the behavior can vary depending on the attempted operation and
the characteristics of the DBFS store that holds the LOB:

• Read:

19-1

If the LOB is not already cached in a local area in the database, then it can be read directly
from the DBFS content store that holds it, if the content store allows streaming access
based on the setting of the PROPNAME_STREAMABLE parameter. If the content store does not
allow streaming access, then the entire LOB will first be read into a local area in the
database, where it will be stored for a period of time for future access.

• Write:

If the LOB is not already cached in a local area in the database, then it will first be read into
the database, modified as needed, and then written back to the DBFS content store
defined in the DBFS Link for the LOB in question.

• Delete:

When a SecureFiles LOB that is stored through a DBFS Link is deleted, the DBFS Link is
deleted from the table, but the LOB itself is NOT deleted from the DBFS content store. Or it
is more complex, based on the characteristics/settings, of the DBFS content store in
question.

DBFS Links enable the use of SecureFiles LOBs to implement Hierarchical Storage
Management (HSM) in conjunction with the DBFS Hierarchical Store (DBFS HS). HSM is a
process by which the database moves rarely used or unused data from faster, more expensive,
and smaller storage to slower, cheaper, and higher capacity storage.

Figure 19-1 Database File System Link

Cloud�
Storage

LOB

Content�
API

LOB

SecureFiles LOB column

/table1/lob1

/table1

OR OR

DBFS Link

Chapter 19
About Database File System Links

19-2

19.2 Ways to Create Database File System Links
Database File System Links require the creation of a Database File System through the use of
the DBFS Content package, DBMS_DBFS_CONTENT.

Oracle provides several methods for creating a DBFS Link:

• Move SecureFiles LOB data into a specified DBFS pathname and store the reference to
the new location in the LOB.

Call DBMS_LOB.MOVE_TO_DBFS_LINK()with LOB and DBFS path name arguments, and the
system creates the specified DBFS HSM Store if it does not exist, copies data from the
SecureFiles LOB into the specified DBFS HSM Store, removes data from the SecureFiles
LOB, and stores the file path name for subsequent access through this LOB.

• Copy or create a reference to an existing file.

Call DBMS_LOB.COPY_DBFS_LINK() to copy a link from an existing DBFS Link. If there is any
data in the destination SecureFiles LOB, the system removes this data and stores a copy
of the reference to the link in the destination SecureFiles LOB.

• Call DBMS_LOB.SET_DBFS_LINK(), which assumes that the data for the link is stored in the
specified DBFS path name.

The system removes data in the specified SecureFiles LOB and stores the link to the
DBFS path name.

Creating a DBFS Link impacts which operations may be performed and how. Any DBMS_LOB
operations that modify the contents of a LOB will throw an exception if the underlying LOB has
been moved into a DBFS Link. The application must explicitly replace the DBFS Link with a
LOB by calling DBMS_LOB.COPY_FROM_LINK() before making these calls.

When it is completed, the application can move the updated LOB back to DBFS using
DBMS_LOB.MOVE_TO_DBFS_LINK(), if needed. Other DBMS_LOB operations that existed before
Oracle Database 11g Release 2 work transparently if the DBFS Link is in a file system that
supports streaming. Note that these operations fail if streaming is either not supported or
disabled.

If the DBFS Link file is modified through DBFS interfaces directly, the change is reflected in
subsequent reads of the SecureFiles LOB. If the file is deleted through DBFS interfaces, then
an exception occurs on subsequent reads.

For the database, it is also possible that a DBA may not want to store all of the data stored in a
SecureFiles LOB HSM during export and import. Oracle has the ability to export and import
only the Database File System Links. The links are fully qualified identifiers that provide access
to the stored data, when entered into a SecureFiles LOB or registered on a SecureFiles LOB in
a different database. This ability to export and import a link is similar to the common file system
functionality of symbolic links.

The newly imported link is only available as long as the source, the stored data, is available, or
until the first retrieval occurs on the imported system. The application is responsible for stored
data retention. If the application system removes data from the store that still has a reference
to it, the database throws an exception when the referencing SecureFiles LOB(s) attempt to
access the data. Oracle also supports continuing to keep the data in the database after
migration out to a DBFS store as a cached copy. It is up to the application to purge these
copies in compliance with its retention policies.

Chapter 19
Ways to Create Database File System Links

19-3

19.3 Database File System Links Copy
The API DBMS_LOB.COPY_DBFS_LINK(DSTLOB, SRCLOB, FLAGS) provides the ability to copy a
linked SecureFiles LOB.

sBy default, the LOB is not obtained from the DBFS HSM Store during this operation; this is a
copy-by-reference operation that exports the DBFS path name (at source side) and imports it
(at destination side). The flags argument can dictate that the destination has a local copy in
the database and references the LOB data in the DBFS HSM Store.

19.4 The DBMS_LOB Package Used with DBFS
The DBMS_LOB package provides subprograms to operate on, or access and manipulate
specific parts of a LOB or complete LOBs.

The DBMS_LOB package applies to both SecureFiles LOB and BasicFiles LOB.

DBMS_LOB Constants Used with SecureFiles LOBs and DBFS and DBMS_LOB
Subprograms Used with SecureFiles LOBs and DBFS describe modifications made to the
DBMS_LOB constants and subprograms with the addition of SecureFiles LOB and Database File
System (DBFS).

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS_LOB package

• Introducing the Database File System

19.5 DBMS_LOB Constants Used with DBFS
Certain constants support DBFS link interfaces.

Table 19-1 lists constants that support DBFS Link interfaces.

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete information
about constants used in the PL/SQL DBMS_LOB package

Table 19-1 DBMS_LOB Constants That Support DBFS Link Interfaces

Constant Description

DBFS_LINK_NEVER DBFS link state value

DBFS_LINK_YES DBFS link state value

Chapter 19
Database File System Links Copy

19-4

Table 19-1 (Cont.) DBMS_LOB Constants That Support DBFS Link Interfaces

Constant Description

DBFS_LINK_NO DBFS link state value

DBFS_LINK_CACHE Flag used by COPY_DBFS_LINK() and MOVE_DBFS_LINK().

DBFS_LINK_NOCACHE Flag used by COPY_DBFS_LINK() and MOVE_DBFS_LINK().

DBFS_LINK_PATH_MAX_SIZE The maximum length of DBFS path names; 1024.

CONTENTTYPE_MAX_SIZE The maximum 1-byte ASCII characters for content type; 128.

19.6 DBMS_LOB Subprograms Used with DBFS
You should note that some changes have been made to the DBMS_LOB subprograms over time.

Table 19-2 summarizes changes made to PL/SQL package DBMS_LOB subprograms.

Be aware that some of the DBMS_LOB operations that existed before Oracle Database 11g
Release 2 throw an exception error if the LOB is a DBFS link. To remedy this problem, modify
your applications to explicitly replace the DBFS link with a LOB by calling the
DBMS_LOB.COPY_FROM_LINK procedure before they make these calls. When the call completes,
then the application can move the updated LOB back to DBFS using the
DBMS_LOB.MOVE_TO_DBFS_LINK procedure, if necessary.

Other DBMS_LOB operations that existed before Oracle Database 11g Release 2 work
transparently if the DBFS Link is in a file system that supports streaming. Note that these
operations fail if streaming is either not supported or disabled.

Table 19-2 DBMS_LOB Subprograms

Subprogram Description

COPY_DBFS_LINK Copies an existing DBFS link into a new LOB

See Also:

Oracle Database PL/SQL Packages and
Types Reference

Chapter 19
DBMS_LOB Subprograms Used with DBFS

19-5

Table 19-2 (Cont.) DBMS_LOB Subprograms

Subprogram Description

COPY_FROM_DBFS_LINK Copies the specified LOB data from DBFS HSM Store into the
database

See Also:

Oracle Database PL/SQL Packages and
Types Reference

DBFS_LINK_GENERATE_PATHN
AME

Returns a unique file path name for creating a DBFS Link

See Also:

Oracle Database PL/SQL Packages and
Types Reference

GET_DBFS_LINK Returns the DBFS path name for a LOB

See Also:

Oracle Database PL/SQL Packages and
Types Reference

GET_DBFS_LINK_STATE Returns the linking state of a LOB

See Also:

Oracle Database PL/SQL Packages and
Types Reference

MOVE_TO_DBFS_LINK Moves the specified LOB data from the database into DBFS HSM
Store

See Also:

Oracle Database PL/SQL Packages and
Types Reference

Chapter 19
DBMS_LOB Subprograms Used with DBFS

19-6

Table 19-2 (Cont.) DBMS_LOB Subprograms

Subprogram Description

SET_DBFS_LINK Links a LOB with a DBFS path name

See Also:

Oracle Database PL/SQL Packages and
Types Reference

19.7 Copying a Linked LOB Between Tables
You can copy DBFS links from source tables to destination tables.

Use the following code to copy any DBFS Links that are stored in any SecureFiles LOBs in the
source table to the destination table.

CREATE TABLE ... AS SELECT (CTAS) and INSERT TABLE ... AS SELECT (ITAS)

19.8 Online Redefinition and DBFS Links
Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in the table
being redefined.

19.9 Transparent Read
DBFS Links can read from a linked SecureFiles LOB even if the data is not cached in the
database.

You can read data from the content store where the data is currently stored and stream that
data back to the user application as if it were being read from the SecureFiles LOB segment.
This allows seamless access to the DBFS Linked data without the prerequisite first call to
DBMS_LOB.COPY_FROM_DBFS_LINK().

Whether or not transparent read is available for a particular SecureFiles LOB is determined by
the DBFS_CONTENT store where the data resides. This feature is always enabled for DBFS_SFS
stores, and by default for DBFS_HS stores. To disable transparent read for DBFS_HS store, set the
PROPNAME_STREAMABLE parameter to FALSE.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Chapter 19
Copying a Linked LOB Between Tables

19-7

20
DBFS Content API

You can enable applications to use the Database File System (DBFS) in several different
programming environments.

• Overview of DBFS Content API
You can enable applications to use DBFS using the DBFS Content API
(DBMS_DBFS_CONTENT), which is a client-side programmatic API package. You can write
applications in SQL, PL/SQL, JDBC, OCI, and other programming environments.

• Stores and DBFS Content API
The DBFS Content API aggregates the path namespace of one or more stores into a
single unified namespace.

• Getting Started with DBMS_DBFS_CONTENT Package
DBMS_DBFS_CONTENT is part of the Oracle Database, starting with Oracle Database 11g
Release 2, and does not need to be installed.

• Administrative and Query APIs
Administrative clients and content providers are expected to register content stores with
the DBFS Content API. Additionally, administrative clients are expected to mount stores
into the top-level namespace of their choice.

• Querying DBFS Content API Space Usage
You can query file system space usage statistics.

• DBFS Content API Session Defaults
Normal client access to the DBFS Content API executes with an implicit context that
consists of certain objects.

• DBFS Content API Interface Versioning
To allow for the DBFS Content API itself to evolve, an internal numeric API version
increases with each change to the public API.

• DBFS Content API Creation Operations
You must implement the provider SPI so that when clients invoke the DBFS Content API, it
causes the SPI to create directory, file, link, and reference elements (subject to store
feature support).

• DBFS Content API Deletion Operations
You must implement the provider SPI so that when clients invoke the DBFS Content API, it
causes the SPI to delete directory, file, link, and reference elements (subject to store
feature support).

• DBFS Content API Path Get and Put Operations
You can query existing path items or update them using simple GETXXX() and PUTXXX()
methods.

• DBFS Content API Rename and Move Operations
You can rename or move path names, possibly across directory hierarchies and mount
points, but only within the same store.

• Directory Listings
Directory listings are handled several different ways.

20-1

• DBFS Content API Directory Navigation and Search
Clients of the DBFS Content API can list or search the contents of directory path names,
with optional modes.

• DBFS Content API Locking Operations
DBFS Content API clients can apply user-level locks,depending on certain criteria.

• DBFS Content API Access Checks
The DBFS Content API checks the access of specific path names by operations.

• DBFS Content API Abstract Operations
All of the operations in the DBFS Content API are represented as abstract opcodes.

• DBFS Content API Path Normalization
There is a process for performing API path normalization.

• DBFS Content API Statistics Support
DBFS provides support to reduce the expense of collecting DBFS Content API statistics.

• DBFS Content API Tracing Support
Any DBFS Content API user (both clients and providers) can use DBFS Content API
tracing, a generic tracing facility.

• Resource and Property Views
You can see descriptions of Content API structure and properties in certain views.

20.1 Overview of DBFS Content API
You can enable applications to use DBFS using the DBFS Content API (DBMS_DBFS_CONTENT),
which is a client-side programmatic API package. You can write applications in SQL, PL/SQL,
JDBC, OCI, and other programming environments.

The DBFS Content API is a collection of methods that provide a file system-like abstraction. It
is backed by one or more DBFS Store Providers. The Content in the DBFS Content interface
refers to a file, including metadata, and it can either map to a SecureFiles LOB (and other
columns) in a table or be dynamically created by user-written plug-ins in Java or PL/SQL that
run inside the database. The plug-in form is referred to as a provider.

Note:

The DBFS Content API includes the SecureFiles Store Provider, DBMS_DBFS_SFS, a
default implementation that enables applications that already use LOBs as columns
in their schema, to access the LOB columns as files.

See Also:

DBFS SecureFiles Store

Examples of possible providers include:

• Packaged applications that want to expose data through files.

• Custom applications developers use to leverage the file system interface, such as an
application that stores medical images.

Chapter 20
Overview of DBFS Content API

20-2

20.2 Stores and DBFS Content API
The DBFS Content API aggregates the path namespace of one or more stores into a single
unified namespace.

The first component of the path name is used to disambiguate the namespace and then
present it to client applications. This allows clients to access the underlying documents using
either a full absolute path name represented by a single string, as shown in the following code
snippet:

/store-name/store-specific-path-name

The DBFS Content API then takes care of correctly dispatching various operations on path
names to the appropriate store provider .

Store providers must conform to the store provider interface (SPI) as declared by the package
DBMS_DBFS_CONTENT_SPI.

• Creating Your Own DBFS Store

• Oracle Database PL/SQL Packages and Types Reference for DBMS_DBFS_CONTENT
package syntax reference

20.3 Getting Started with DBMS_DBFS_CONTENT Package
DBMS_DBFS_CONTENT is part of the Oracle Database, starting with Oracle Database 11g Release
2, and does not need to be installed.

• DBFS Content API Role
Access to the content operational and administrative API (packages, types, tables, and so
on) is available through DBFS_ROLE.

• Path Name Constants and Types
Path name constants are modeled after their SecureFiles LOBs store counterparts.

• Path Properties
Every path name in a store is associated with a set of properties.

• Content IDs
Content IDs are unique identifiers that represent a path in the store.

• Path Name Types
Stores can store and provide access to eight types of entities.

• Store Features
In order to provide a common programmatic interface to as many different types of stores
as possible, the DBFS Content API leaves some of the behavior of various operations to
individual store providers to define and implement.

• Lock Types
Stores that support locking should implement three types of locks.

• Standard Properties
Standard properties are well-defined, mandatory properties associated with all content
path names, which all stores must support, in the manner described by the DBFS Content
API.

Chapter 20
Stores and DBFS Content API

20-3

• Optional Properties
Optional properties are well-defined but non-mandatory properties associated with all
content path names that all stores are free to support (but only in the manner described by
the DBFS Content API).

• User-Defined Properties
You can define your own properties for use in your application.

• Property Access Flags
DBFS Content API methods to get and set properties can use combinations of property
access flags to fetch properties from different namespaces in a single API call.

• Exceptions
DBFS Content API operations can raise any one of the top-level exceptions.

• Property Bundles
Property bundles are discussed as property_t record type and properties_t.

• Store Descriptors
Store descriptors are discussed as store_t and mount_t records.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information

20.3.1 DBFS Content API Role
Access to the content operational and administrative API (packages, types, tables, and so on)
is available through DBFS_ROLE.

The DBFS_ROLE can be granted to all users as needed.

20.3.2 Path Name Constants and Types
Path name constants are modeled after their SecureFiles LOBs store counterparts.

See Also:

DBMS_DBFS_CONTENT Constants for path name constants and their types

20.3.3 Path Properties
Every path name in a store is associated with a set of properties.

For simplicity and generality, each property is identified by a string name, has a string value
(possibly null if not set or undefined or unsupported by a specific store implementation), and a
value typecode, a numeric discriminant for the actual type of value held in the value string.

Coercing property values to strings has the advantage of making the various interfaces uniform
and compact (and can even simplify implementation of the underlying stores), but has the
potential for information loss during conversions to and from strings.

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

20-4

It is expected that clients and stores use well-defined database conventions for these
conversions and use the typecode field as appropriate.

PL/SQL types path_t and name_t are portable aliases for strings that can represent
pathnames and component names,

A typecode is a numeric value representing the true type of a string-coerced property value.
Simple scalar types (numbers, dates, timestamps, etc.) can be depended on by clients and
must be implemented by stores.

Since standard RDBMS typecodes are positive integers, the DBMS_DBFS_CONTENT interface
allows negative integers to represent client-defined types by negative typecodes. These
typecodes do not conflict with standard typecodes, are maintained persistently and returned to
the client as needed, but need not be interpreted by the DBFS content API or any particular
store. Portable client applications should not use user-defined typecodes as a back door way
of passing information to specific stores.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT constants and properties and the
DBMS_DBFS_CONTENT_PROPERTY_T package

20.3.4 Content IDs
Content IDs are unique identifiers that represent a path in the store.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT Content ID constants and properties

20.3.5 Path Name Types
Stores can store and provide access to eight types of entities.

The entities are:

• type_file
• type_directory
• type_link
• type_reference
• type_scoket
• type_character
• type_block
• type_fifo

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

20-5

Not all stores must implement all directories, links, or references.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT constants and path name types

20.3.6 Store Features
In order to provide a common programmatic interface to as many different types of stores as
possible, the DBFS Content API leaves some of the behavior of various operations to
individual store providers to define and implement.

The DBFS Content API remains rich and conducive to portable applications by allowing
different store providers (and different stores) to describe themselves as a feature set. A
feature set is a bit mask indicating the supported features and the ones that are not supported.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the store
features and constants

20.3.7 Lock Types
Stores that support locking should implement three types of locks.

The three types of locks are: lock_read_only, lock_write_only, lock_read_write.

User locks (any of these types) can be associated with user-supplied lock_data. The store
does not interpret the data, but client applications can use it for their own purposes (for
example, the user data could indicate the time at which the lock was placed, and the client
application might use this later to control its actions.

In the simplest locking model, a lock_read_only prevents all explicit modifications to a path
name (but allows implicit modifications and changes to parent/child path names). A
lock_write_only prevents all explicit reads to the path name, but allows implicit reads and
reads to parent/child path names. A lock_read_write allows both.

All locks are associated with a principal user who performs the locking operation; stores that
support locking are expected to preserve this information and use it to perform read/write lock
checking (see opt_locker).

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the lock
types and constants.

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

20-6

20.3.8 Standard Properties
Standard properties are well-defined, mandatory properties associated with all content path
names, which all stores must support, in the manner described by the DBFS Content API.

Stores created against tables with a fixed schema may choose reasonable defaults for as
many of these properties as needed, and so on.

All standard properties informally use the std namespace. Clients and stores should avoid
using this namespace to define their own properties to prevent conflicts in the future.

See Also:

See Oracle Database PL/SQL Packages and Types Reference for details of the
standard properties and constants

20.3.9 Optional Properties
Optional properties are well-defined but non-mandatory properties associated with all content
path names that all stores are free to support (but only in the manner described by the DBFS
Content API).

Clients should be prepared to deal with stores that support none of the optional properties.

All optional properties informally use the opt namespace. Clients and stores must avoid using
this namespace to define their own properties to prevent conflicts in the future.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the optional
properties and constants

20.3.10 User-Defined Properties
You can define your own properties for use in your application.

Ensure that the namespace prefixes do not conflict with each other or with the DBFS standard
or optional properties.

20.3.11 Property Access Flags
DBFS Content API methods to get and set properties can use combinations of property access
flags to fetch properties from different namespaces in a single API call.

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

20-7

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the property
access flags and constants

20.3.12 Exceptions
DBFS Content API operations can raise any one of the top-level exceptions.

Clients can program against these specific exceptions in their error handlers without worrying
about the specific store implementations of the underlying error signalling code.

Store service providers, should try to trap and wrap any internal exceptions into one of the
exception types, as appropriate.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
Exceptions

20.3.13 Property Bundles
Property bundles are discussed as property_t record type and properties_t.

• The property_t record type describes a single (value, typecode) property value tuple; the
property name is implied.

• properties_t is a name-indexed hash table of property tuples. The implicit hash-table
association between the index and the value allows the client to build up the full
dbms_dbfs_content_property_t tuples for a properties_t.

There is an approximate correspondence between dbms_dbfs_content_property_t and
property_t. The former is a SQL object type that describes the full property tuple, while the
latter is a PL/SQL record type that describes only the property value component.

There is an approximate correspondence between dbms_dbfs_content_properties_t and
properties_t. The former is a SQL nested table type, while the latter is a PL/SQL hash table
type.

Dynamic SQL calling conventions force the use of SQL types, but PL/SQL code may be
implemented more conveniently in terms of the hash-table types.

DBFS Content API provides convenient utility functions to convert between
dbms_dbfs_content_properties_t and properties_t.

The function DBMS_DBFS_CONTENT.PROPERTIEST2H converts a
DBMS_DBFS_CONTENT_PROPERTIES_T value to an equivalent properties_t value, and the
function DBMS_DBFS_CONTENT.PROPERTIESH2T converts a properties_t value to an equivalent
DBMS_DBFS_CONTENT_PROPERTIES_T value.

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

20-8

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
PROPERTY_T record type

20.3.14 Store Descriptors
Store descriptors are discussed as store_t and mount_t records.

• A store_t is a record that describes a store registered with, and managed by the DBFS
Content API .

• A mount_t is a record that describes a store mount point and its properties.

Clients can query the DBFS Content API for the list of available stores, determine which store
handles accesses to a given path name, and determine the feature set for the store.

See Also:

• Administrative and Query APIs

• Oracle Database PL/SQL Packages and Types Reference for details of the
STORE_T record type

20.4 Administrative and Query APIs
Administrative clients and content providers are expected to register content stores with the
DBFS Content API. Additionally, administrative clients are expected to mount stores into the
top-level namespace of their choice.

The registration and unregistration of a store is separated from the mount and unmount of a
store because it is possible for the same store to be mounted multiple times at different mount
points (and this is under client control).

• Registering a Content Store
You can register a new store that is backed by a provider that uses the provider_package
procedure as the store service provider.

• Unregistering a Content Store
You can unregister a previously registered store, which invalidates all mount points
associated with it.

• Mounting a Registered Store
You can mount a registered store and bind it to the mount point.

• Unmounting a Previously Mounted Store
You can unmount a previously mounted store, either by name or by mount point.

• Listing all Available Stores and Their Features
You can list all the available stores.

• Listing all Available Mount Points
You can list all available mount points, their backing stores, and the store features.

Chapter 20
Administrative and Query APIs

20-9

• Looking Up Specific Stores and Their Features
You can look up the path name, store name, or mount point of a store.

See Also:

Oracle Database PL/SQL Packages and Types Reference for the summary of
DBMS_DBFS_CONTENT package methods

20.4.1 Registering a Content Store
You can register a new store that is backed by a provider that uses the provider_package
procedure as the store service provider.

The method of registration conforms to the DBMS_DBFS_CONTENT_SPI package signature.

• Use the REGISTERSTORE() procedure.

This method is designed for use by service providers after they have created a new store.
Store names must be unique.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
REGISTERSTORE() method

20.4.2 Unregistering a Content Store
You can unregister a previously registered store, which invalidates all mount points associated
with it.

Once the store is unregistered, access to the store and its mount points is no longer
guaranteed, although a consistent read may provide a temporary illusion of continued access.

• Use the UNREGISTERSTORE() procedure.

If the ignore_unknown argument is true, attempts to unregister unknown stores do not raise an
exception.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNREGISTERSTORE() method

20.4.3 Mounting a Registered Store
You can mount a registered store and bind it to the mount point.

• Use the MOUNTSTORE()procedure.

Chapter 20
Administrative and Query APIs

20-10

After you mount the store, access to the path names in the form /store_mount/xyz is redirected
to store_name and its content provider.

Store mount points must be unique, and a syntactically valid path name component (that is, a
name_t with no embedded /).

If you do not specify a mount point and therefore, it is null, the DBFS Content API attempts to
use the store name itself as the mount point name (subject to the uniqueness and syntactic
constraints).

The same store can be mounted multiple times, obviously at different mount points.

You can use mount properties to specify the DBFS Content API execution environment, that is,
the default values of the principal, owner, ACL, and asof, for a particular mount point. You can
also use mount properties to specify a read-only store.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
MOUNTSTORE() method

20.4.4 Unmounting a Previously Mounted Store
You can unmount a previously mounted store, either by name or by mount point.

Attempting to unmount a store by name unmounts all mount points associated with the store.

• Use the UNMOUNTSTORE() procedure.

Once unmounted, access to the store or mount-point is no longer guaranteed to work although
a consistent read may provide a temporary illusion of continued access. If the ignore_unknown
argument is true, attempts to unmount unknown stores does not raise an exception.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNMOUNTSTORE method

20.4.5 Listing all Available Stores and Their Features
You can list all the available stores.

The store_mount field of the returned records is set to null because mount points are
separate from stores themselves.

• Use the LISTSTORES() function.

Chapter 20
Administrative and Query APIs

20-11

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LISTSTORES Function

20.4.6 Listing all Available Mount Points
You can list all available mount points, their backing stores, and the store features.

A single mount returns a single row, with the store_mount field set to null.

• Use the LISTMOUNTS() function.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LISTMOUNTS() method

20.4.7 Looking Up Specific Stores and Their Features
You can look up the path name, store name, or mount point of a store.

• Use GETSTOREBYXXX() or GETFEATUREBYXXX() functions.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.5 Querying DBFS Content API Space Usage
You can query file system space usage statistics.

Providers are expected to support this method for their stores and to make a best effort
determination of space usage, especially if the store consists of multiple tables, indexes, LOBs,
and so on.

• Use the SPACEUSAGE() method

where:

• blksize is the natural tablespace block size that holds the store; if multiple tablespaces
with different block sizes are used, any valid block size is acceptable.

• tbytes is the total size of the store in bytes, and fbytes is the free or unused size of the
store in bytes. These values are computed over all segments that comprise the store.

Chapter 20
Querying DBFS Content API Space Usage

20-12

• nfile, ndir, nlink, and nref count the number of currently available files, directories,
links, and references in the store.

Database objects can grow dynamically, so it is not easy to estimate the division between free
space and used space.

A space usage query on the top level root directory returns a combined summary of the space
usage of all available distinct stores under it. If the same store is mounted multiple times, it is
counted only once.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
SPACEUSAGE() method

20.6 DBFS Content API Session Defaults
Normal client access to the DBFS Content API executes with an implicit context that consists
of certain objects.

• The principal invoking the current operation.

• The owner for all new elements created (implicitly or explicitly) by the current operation.

• The ACL for all new elements created (implicitly or explicitly) by the current operation.

• The ASOF timestamp at which the underlying read-only operation (or its read-only sub-
components) execute.

All of this information can be passed in explicitly through arguments to the various DBFS
Content API method calls, allowing the client fine-grained control over individual operations.

The DBFS Content API also allows clients to set session duration defaults for the context that
are automatically inherited by all operations for which the defaults are not explicitly overridden.

All of the context defaults start out as null and can be cleared by setting them to null.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.7 DBFS Content API Interface Versioning
To allow for the DBFS Content API itself to evolve, an internal numeric API version increases
with each change to the public API.

Chapter 20
DBFS Content API Session Defaults

20-13

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
GETVERSION() method

20.8 DBFS Content API Creation Operations
You must implement the provider SPI so that when clients invoke the DBFS Content API, it
causes the SPI to create directory, file, link, and reference elements (subject to store feature
support).

All of the creation methods require a valid path name and can optionally specify properties to
be associated with the path name as it is created. It is also possible for clients to fetch back
item properties after the creation completes, so that automatically generated properties, such
as std_creation_time, are immediately available to clients. The exact set of properties
fetched back is controlled by the various prop_xxx bit masks in prop_flags.

Links and references require an additional path name associated with the primary path name.
File path names can optionally specify a BLOB value to initially populate the underlying file
content, and the provided BLOB may be any valid LOB, either temporary or permanent. On
creation, the underlying LOB is returned to the client if prop_data is specified in prop_flags.

Non-directory path names require that their parent directory be created first. Directory path
names themselves can be recursively created. This means that the path name hierarchy
leading up to a directory can be created in one call.

Attempts to create paths that already exist produce an error, except for path names that are
soft-deleted. In these cases, the soft-deleted item is implicitly purged, and the new item
creation is attempted.

Stores and their providers that support contentID-based access accept an explicit store name
and a NULL path to create a new content element. The contentID generated for this element is
available by means of the OPT_CONTENT_ID property. The PROP_OPT property in the prop_flags
parameter automatically implies contentID-based creation.

The newly created element may also have an internally generated path name if the
FEATURE_LAZY_PATH property is not supported and this path is available by way of the
STD_CANONICAL_PATH property.

Only file elements are candidates for contentID-based access.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT() methods, DBMS_DBFS_CONTENT()Constants - Optional
Properties, and DBMS_DBFS_CONTENT Constants - Standard Properties

Chapter 20
DBFS Content API Creation Operations

20-14

20.9 DBFS Content API Deletion Operations
You must implement the provider SPI so that when clients invoke the DBFS Content API, it
causes the SPI to delete directory, file, link, and reference elements (subject to store feature
support).

By default, the deletions are permanent, and remove successfully deleted items on transaction
commit. However, repositories may also support soft-delete features. If requested by the client,
soft-deleted items are retained by the store. They are not, however, typically visible in normal
listings or searches. Soft-deleted items may be restored or explicitly purged.

Directory path names may be recursively deleted; the path name hierarchy below a directory
may be deleted in one call. Non-recursive deletions can be performed only on empty
directories. Recursive soft-deletions apply the soft-delete to all of the items being deleted.

Individual path names or all soft-deleted path names under a directory may be restored or
purged using the RESTOREXXX() and PURGEXXX() methods.

Providers that support filtering can use the provider filter to identify subsets of items to delete;
this makes most sense for bulk operations such as deleteDirectory(), RESTOREALL(), and
PURGEALL(), but all of the deletion-related operations accept a filter argument.

Stores and their providers that support contentID-based access can also allow deleting file
items by specifying their contentID.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT() methods

20.10 DBFS Content API Path Get and Put Operations
You can query existing path items or update them using simple GETXXX() and PUTXXX()
methods.

All path names allow their metadata to be read and modified. On completion of the call, the
client can request that specific properties be fetched through prop_flags.

File path names allow their data to be read and modified. On completion of the call, the client
can request a new BLOB locator through the prop_data bit masks in prop_flags; these may be
used to continue data access.

Files can also be read and written without using BLOB locators, by explicitly specifying logical
offsets, buffer amounts, and a suitably sized buffer.

Update accesses must specify the forUpdate flag. Access to link path names may be implicitly
and internally dereferenced by stores, subject to feature support, if the deref flag is specified.
Oracle does not recommend this practice because symbolic links are not guaranteed to
resolve.

The read method GETPATH() where forUpdate is false accepts a valid asof timestamp
parameter that can be used by stores to implement flashback-style queries.

Chapter 20
DBFS Content API Deletion Operations

20-15

Mutating versions of the GETPATH() and the PUTPATH() methods do not support asof modes of
operation.

The DBFS Content API does not have an explicit COPY() operation because a copy is easily
implemented as a combination of a GETPATH() followed by a CREATEXXX() with appropriate
data or metadata transfer across the calls. This allows copies across stores, while an
internalized copy operation cannot provide this facility.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.11 DBFS Content API Rename and Move Operations
You can rename or move path names, possibly across directory hierarchies and mount points,
but only within the same store.

Non-directory path names previously accessible by oldPath can be renamed as a single item
subsequently accessible by newPath, assuming that newPath does not exist.

If newPath exists and is not a directory, the rename implicitly deletes the existing item before
renaming oldPath. If newPath exists and is a directory, oldPath is moved into the target
directory.

Directory path names previously accessible by oldPath can be renamed by moving the
directory and all of its children to newPath (if it does not exist) or as children of newPath (if it
exists and is a directory).

Because the semantics of rename and move is complex with respect to non-existent or
existent and non-directory or directory targets, clients may choose to implement complex
rename and move operations as sequences of simpler moves or copies.

Stores and their providers that support contentID-based access and lazy path name binding
also support the Oracle Database PL/SQL Packages and Types Reference SETPATH procedure
that associates an existing contentID with a new "path".

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT.RENAMEPATH() methods

20.12 Directory Listings
Directory listings are handled several different ways.

• A list_item_t is a tuple of path name, component name, and type representing a single
element in a directory listing.

Chapter 20
DBFS Content API Rename and Move Operations

20-16

• A path_item_t is a tuple describing a store, mount qualified path in a content store, with all
standard and optional properties associated with it.

• A prop_item_t is a tuple describing a store, mount qualified path in a content store, with all
user-defined properties associated with it, expanded out into individual tuples of name,
value, and type.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of data
structures

20.13 DBFS Content API Directory Navigation and Search
Clients of the DBFS Content API can list or search the contents of directory path names, with
optional modes.

Optional Modes:

• searching recursively in sub-directories

• seeing soft-deleted items

• using flashback asof a provided timestamp

• filtering items in and out within the store based on list or search predicates.

The DBFS Content API currently only returns list items; clients explicitly use one of the
getPath() methods to access the properties or content associated with an item, as
appropriate.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.14 DBFS Content API Locking Operations
DBFS Content API clients can apply user-level locks,depending on certain criteria.

Clients of the DBFS Content API can apply user-level locks to any valid path name, subject to
store feature support, associate the lock with user data, and subsequently unlock these path
names. The status of locked items is available through various optional properties.

If a store supports user-defined lock checking, it is responsible for ensuring that lock and
unlock operations are performed in a consistent manner.

Chapter 20
DBFS Content API Directory Navigation and Search

20-17

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.15 DBFS Content API Access Checks
The DBFS Content API checks the access of specific path names by operations.

Function CHECKACCESS() checks if a given path name (path, pathtype, store_name) can be
manipulated by an operation, such as the various op_xxx opcodes) by principal, as described
in "DBFS Content API Locking Operations"

This is a convenience function for the client; a store that supports access control still internally
performs these checks to guarantee security.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.16 DBFS Content API Abstract Operations
All of the operations in the DBFS Content API are represented as abstract opcodes.

Clients can useopcodes to directly and explicitly invoke the CHECKACCESS() method which
verifies if a particular operation can be invoked by a given principal on a particular path name.

An op_acl() is an implicit operation invoked during an op_create() or op_put() call, which
specifies a std_acl property. The operation tests to see if the principal is allowed to set or
change the ACL of a store item.

op_delete() represents the soft-deletion, purge, and restore operations.

The source and destination operations of a rename or move operation are separated, although
stores are free to unify these opcodes and to also treat a rename as a combination of delete
and create.

op_store is a catch-all category for miscellaneous store operations that do not fall under any of
the other operational APIs.

See Also:

• DBFS Content API Access Checks

• Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS_DBFS_CONTENT Constants - Operation Codes.

Chapter 20
DBFS Content API Access Checks

20-18

20.17 DBFS Content API Path Normalization
There is a process for performing API path normalization.

Function NORMALIZEPATH() performs the following steps:

1. Verifies that the path name is absolute (starts with a /).

2. Collapses multiple consecutive /s into a single /.

3. Strips trailing /s.

4. Breaks store-specific normalized path names into two components: the parent path name
and the trailing component name.

5. Breaks fully qualified normalized path names into three components: store name, parent
path name, and trailing component name.

Note that the root path / is special: its parent path name is also /, and its component name is
null. In fully qualified mode, it has a null store name unless a singleton mount has been
created, in which case the appropriate store name is returned.

The return value is always the completely normalized store-specific or fully qualified path
name.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT.RENAMEPATH() methods

20.18 DBFS Content API Statistics Support
DBFS provides support to reduce the expense of collecting DBFS Content API statistics.

DBFS Content API statistics are expensive to collect and maintain persistently. DBFS has
support for buffering statistics in memory for a maximum of flush_time centiseconds or a
maximum of flush_count operations, whichever limit is reached first), at which time the buffers
are implicitly flushed to disk.

Clients can also explicitly invoke a flush using flushStats. An implicit flush also occurs when
statistics collection is disabled.

setStats is used to enable and disable statistics collection; the client can optionally control the
flush settings by specifying non-null values for the time and count parameters.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

Chapter 20
DBFS Content API Path Normalization

20-19

20.19 DBFS Content API Tracing Support
Any DBFS Content API user (both clients and providers) can use DBFS Content API tracing, a
generic tracing facility.

The DBFS Content API dispatcher itself uses the tracing facility.

Trace information is written to the foreground trace file, with varying levels of detail as specified
by the trace level arguments. The global trace level consists of two components: severity and
detail. These can be thought of as additive bit masks.

The severity component allows the separation of top-level as compared to low-level tracing of
different components, and allows the amount of tracing to be increased as needed. There are
no semantics associated with different levels, and users are free to set the trace level at any
severity they choose, although a good rule of thumb would be to use severity 1 for top-level
API entry and exit traces, severity 2 for internal operations, and severity 3 or greater for very
low-level traces.

The detail component controls how much additional information the trace reports with each
trace record: timestamps, short-stack, and so on.

See Also:

• Example 20-1 for more information about how to enable tracing using the DBFS
Content APIs.

• Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

Example 20-1 DBFS Content Tracing

function getTrace
 return integer;
 procedure setTrace(
 trclvl in integer);
 function traceEnabled(
 sev in integer)
 return integer;
 procedure trace(
 sev in integer,
 msg0 in varchar2,
 msg1 in varchar default '',
 msg2 in varchar default '',
 msg3 in varchar default '',
 msg4 in varchar default '',
 msg5 in varchar default '',
 msg6 in varchar default '',
 msg7 in varchar default '',
 msg8 in varchar default '',
 msg9 in varchar default '',
 msg10 in varchar default '');

Chapter 20
DBFS Content API Tracing Support

20-20

20.20 Resource and Property Views
You can see descriptions of Content API structure and properties in certain views.

Certain views describe the structure and properties of Content API.

See Also:

• Oracle Database Reference for more information about DBFS_CONTENT views

• Oracle Database Reference for more information about
DBFS_CONTENT_PROPERTIES views

Chapter 20
Resource and Property Views

20-21

21
Creating Your Own DBFS Store

You can create your own DBFS Store using DBFS Content Store Provider Interface
(DBMS_DBFS_CONTENT_SPI).

• Overview of DBFS Store Creation and Use
In order to customize a DBFS store, you must implement the DBFS Content SPI
(DBMS_DBFS_CONTENT_SPI). It is the basis for existing stores such as the DBFS SecureFiles
Store and the DBFS Hierarchical Store, as well as any user-defined DBFS stores that you
create.

• DBFS Content Store Provider Interface (DBFS Content SPI)
The DBFS Content SPI (Store Provider Interface) is a specification only and has no
package body.

• Creating a Custom Store Provider
You can use this example store provider for DBFS, TaBleFileSystem Store Provider
("tbfs"), as a skeleton for custom providers or as a learning tool, to become familiar with
the DBFS and its SPI.

21.1 Overview of DBFS Store Creation and Use
In order to customize a DBFS store, you must implement the DBFS Content SPI
(DBMS_DBFS_CONTENT_SPI). It is the basis for existing stores such as the DBFS SecureFiles
Store and the DBFS Hierarchical Store, as well as any user-defined DBFS stores that you
create.

Client-side applications, such the PL/SQL interface, invoke functions and procedures in the
DBFS Content API. The DBFS Content API then invokes corresponding subprograms in the
DBFS Content SPI to create stores and perform other related functions.

Once you create your DBFS store, you use it much the same way that you would a
SecureFiles Store.

See Also:

• DBFS Content API

• DBFS SecureFiles Store

21-1

Figure 21-1 Database File System (DBFS)

DatabaseDBFS Content API

Cloud�
Storage

DBFS�
SecureFile�

Store

DBFS�
Hierarchical�

Store

DBFS Content SPI

User�
Defined�
Store

File System�
Mount�

Interface

DBFS�
Command�

Line Interface�
Client

DBFS�
PL/SQL�
Client PL/SQL�

LOB�
Interface

Java�
LOB�

Interface

OCI�
LOB�

Interface

DBFS�
Links

21.2 DBFS Content Store Provider Interface (DBFS Content SPI)
The DBFS Content SPI (Store Provider Interface) is a specification only and has no package
body.

You must implement the package body in order to respond to calls from the DBFS Content
API. In other words, DBFS Content SPI is a collection of required program specifications which
you must implement using the method signatures and semantics indicated.

You may add additional functions and procedures to the DBFS Content SPI package body as
needed. Your implementation may implement other methods and expose other interfaces, but
the DBFS Content API will not use these interfaces.

The DBFS Content SPI references various elements such as constants, types, and exceptions
defined by the DBFS Content API (package DBMS_DBFS_CONTENT).

Chapter 21
DBFS Content Store Provider Interface (DBFS Content SPI)

21-2

Note that all path name references must be store-qualified, that is, the notion of mount points
and full absolute path names has been normalized and converted to store-qualified path
names by the DBFS Content API before it invokes any of the Provider SPI methods.

Because the DBFS Content API and SPI implementation is a one-to-many pluggable
architecture, the DBFS Content API uses dynamic SQL to invoke methods in the SPI
implementation; this may lead to run time errors if your SPI implementation does not follow the
specification of SPI implementation given in this document.

There are no explicit initial or final methods to indicate when the DBFS Content API plugs and
unplugs a particular SPI implementation. SPI implementations must be able to auto-initialize
themselves at any SPI entry point.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for syntax of the
DBMS_DBFS_CONTENT_SPI package

• See the file $ORACLE_HOME/rdbms/admin/dbmscapi.sql for more information

21.3 Creating a Custom Store Provider
You can use this example store provider for DBFS, TaBleFileSystem Store Provider ("tbfs"), as
a skeleton for custom providers or as a learning tool, to become familiar with the DBFS and its
SPI.

This example store provider for DBFS, exposes a relational table containing a BLOB column as
a flat, non-hierarchical filesystem, that is, a collection of named files.

To use this example, it is assumed that you have installed the Oracle Database 12c and are
familiar with DBFS concepts, and have installed and used dbfs_client and FUSE to mount and
access filesystems backed by the standard SFS store provider.

The TaBleFileSystem Store Provider ("tbfs") does not aim to be feature-rich or even complete,
it does however provide a sufficient demonstration of what it takes for users of DBFS to write
their own custom providers that expose their table(s) through dbfs_client to traditional
filesystem programs.

• Installation and Setup
You will need certain files for installation and setup of the DBFS TaBleFileSystem Store
Provider ("tbfs").

• TBFS Use
Once the example store provider for DBFS, TaBleFileSystem Store Provider ("tbfs") is
installed, files can be added or removed in several different ways and other changes can
be made to the TBFS.

• TBFS Internals
The TBFS is simple because its primary purpose is to serve as a teaching and learning
example.

• Example Scripts
This section describes some example SQL scripts.

Chapter 21
Creating a Custom Store Provider

21-3

21.3.1 Installation and Setup
You will need certain files for installation and setup of the DBFS TaBleFileSystem Store
Provider ("tbfs").

The TBFS consists of the following SQL files:

tbfs.sql top-level driver script

tbl.sql script to create a test user, tablespace, the table backing the filesystem, and so
on.

spec.sql the SPI specification of the tbfs

body.sql the SPI implementation of the tbfs

capi.sql DBFS register/mount script

To install the TBFS, just run tbfs.sql as SYSDBA, in the directory that contains all of the above
files. tbfs.sql will load the other SQL files in the proper sequence.

Ignoring any name conflicts, all of the SQL files should load without any compilation errors. All
SQL files should also load without any run time errors, depending on the value of the
"plsql_warnings" init.ora parameter, you may see various innocuous warnings.

If there are any name conflicts (tablespace name TBFS, datafile name"tbfs.f", user name
TBFS, package name TBFS), the appropriate references in the various SQL files must be
changed consistently.

21.3.2 TBFS Use
Once the example store provider for DBFS, TaBleFileSystem Store Provider ("tbfs") is installed,
files can be added or removed in several different ways and other changes can be made to the
TBFS.

A dbfs_client connected as user TBFS will see a simple, non-hierarchical, filesystem backed
by an RDBMS table (TBFS.TBFST).

Files can be added or removed from this filesystem through SQL (that is, through DML on the
underlying table), through Unix utilities (mediated by dbfs_client), or through PL/SQL (using
the DBFS APIs).

Changes to the filesystem made through any of the access methods will be visible, in a
transactionally consistent manner (that is, at commit/rollback boundaries) to all of the other
access methods.

21.3.3 TBFS Internals
The TBFS is simple because its primary purpose is to serve as a teaching and learning
example.

However, the implementation shows the path towards a robust, production-quality custom SPI
that can plug into the DBFS, and expose existing relational data as Unix filesystems.

The TBFS makes various simplifications in order to remain concise (however, these should not
be taken as inviolable limitations of DBFS or the SPI):

Chapter 21
Creating a Custom Store Provider

21-4

• The TBFS SPI package handles only a single table with a hard-coded name
(TBFS.TBFST). It is possible to use dynamic SQL and additional configuration information
to have a single SPI package support multiple tables, each as a separate filesystem (or
even to unify data in multiple tables into a single filesystem).

• The TBFS does not support filesystem hierarchies; it imposes a flat namespace: a
collection of files, identified by a simple item name, under a virtual "/" root directory.
Implementing directory hierarchies is significantly more complex because it requires the
store provider to manage parent/child relationships in a consistent manner.

Moreover, existing relational data (the kind of data that TBFS is attempting to expose as a
filesystem) does not typically have inter-row relationships that form a natural directory/file
hierarchy.

• Because the TBFS supports only a flat namespace, most methods in the SPI are
unimplemented, and the method bodies raise a
dbms_dbfs_content.unsupported_operation exception. This exception is also a good
starting point for you to write your own custom SPI. You can start with a simple SPI
skeleton cloned from the DBMS_DBFS_CONTENT_SPI package, default all method bodies to
ones that raise this exception, and subsequently fill in more realistic implementations
incrementally.

• The table underlying the TBFS is close to being the simplest possible structure (a key/
name column and a LOB column). This means that various properties used or expected by
DBFS and dbfs_client must be generated dynamically (the TBFS implementation shows
how this is done for the std:guid property).

Other properties (such as Unix-style timestamps) are not implemented at all. This still
allows a surprisingly functional filesystem to be implemented, but when you write your own
custom SPIs, you can easily incorporate support for additional DBFS properties by
expanding the structure of their underlying table(s) to include additional columns as
needed, or by using existing columns in their existing tables to provide the values for these
DBFS properties.

• The TBFS does not implement a rename/move method; adding support for this (a suitable
UPDATE statement in the renamePath method) is left as an exercise for the user.

• The TBFS example uses the string "tbfs" in multiple places (tablespace, datafile, user,
package, and even filesystem name). All these uses of "tbfs" belong in different
namespaces—identifying which namespace corresponds to a specific occurrence of the
string. "tbfs" in these examples is also a good learning exercise to make sure that the
DBFS concepts are clear in your mind.

21.3.4 Example Scripts
This section describes some example SQL scripts.

• Driver Script
The TBFS.SQL script is the top level driver script.

• Creating a Test User, Tablespace and Table to Backup Filesystem
The TBL.SQL script creates a test user, a tablespace, the table that backs the filesystem
and so on.

• Providing SPI Specification
The spec.sql script provide the SPI specification of the tbfs.

• SPI Implementation of tbfs
The body.sql script provides the SPI implementation of the tbfs.

Chapter 21
Creating a Custom Store Provider

21-5

• Registering and Mounting the DBFS
The capi.sql script registers and mounts the DBFS.

21.3.4.1 Driver Script
The TBFS.SQL script is the top level driver script.

The TBFS.SQL script:

set echo on;

@tbl
@spec
@body
@capi

quit;

21.3.4.2 Creating a Test User, Tablespace and Table to Backup Filesystem
The TBL.SQL script creates a test user, a tablespace, the table that backs the filesystem and
so on.

The TBL.SQL script :

connect / as sysdba

create tablespace tbfs datafile 'tbfs.f' size 100m
 reuse autoextend on
 extent management local
 segment space management auto;

create user tbfs identified by tbfs;
alter user tbfs default tablespace tbfs;
grant connect, resource, dbfs_role to tbfs;

connect tbfs/tbfs;

drop table tbfst;
purge recyclebin;

create table tbfst(
 key varchar2(256)
 primary key
 check (instr(key, '/') = 0),
 data blob)
 tablespace tbfs
 lob(data)
 store as securefile
 (tablespace tbfs);

grant select on tbfst to dbfs_role;
grant insert on tbfst to dbfs_role;
grant delete on tbfst to dbfs_role;
grant update on tbfst to dbfs_role;

21.3.4.3 Providing SPI Specification
The spec.sql script provide the SPI specification of the tbfs.

Chapter 21
Creating a Custom Store Provider

21-6

The spec.sql script:

connect / as sysdba;

create or replace package tbfs
 authid current_user
as

 /*
 * Lookup store features (see dbms_dbfs_content.feature_XXX). Lookup
 * store id.
 *
 * A store ID identifies a provider-specific store, across
 * registrations and mounts, but independent of changes to the store
 * contents.
 *
 * I.e. changes to the store table(s) should be reflected in the
 * store ID, but re-initialization of the same store table(s) should
 * preserve the store ID.
 *
 * Providers should also return a "version" (either specific to a
 * provider package, or to an individual store) based on a standard
 * <a.b.c> naming convention (for <major>, <minor>, and <patch>
 * components).
 *
 */

 function getFeatures(
 store_name in varchar2)
 return integer;

 function getStoreId(
 store_name in varchar2)
 return number;

 function getVersion(
 store_name in varchar2)
 return varchar2;

 /*
 * Lookup pathnames by (store_name, std_guid) or (store_mount,
 * std_guid) tuples.
 *
 * If the underlying "std_guid" is found in the underlying store,
 * this function returns the store-qualified pathname.
 *
 * If the "std_guid" is unknown, a "null" value is returned. Clients
 * are expected to handle this as appropriate.
 *
 */

 function getPathByStoreId(
 store_name in varchar2,
 guid in integer)
 return varchar2;

Chapter 21
Creating a Custom Store Provider

21-7

 /*
 * DBFS SPI: space usage.
 *
 * Clients can query filesystem space usage statistics via the
 * "spaceUsage()" method. Providers are expected to support this
 * method for their stores (and to make a best effort determination
 * of space usage---esp. if the store consists of multiple
 * tables/indexes/lobs, etc.).
 *
 * "blksize" is the natural tablespace blocksize that holds the
 * store---if multiple tablespaces with different blocksizes are
 * used, any valid blocksize is acceptable.
 *
 * "tbytes" is the total size of the store in bytes, and "fbytes" is
 * the free/unused size of the store in bytes. These values are
 * computed over all segments that comprise the store.
 *
 * "nfile", "ndir", "nlink", and "nref" count the number of
 * currently available files, directories, links, and references in
 * the store.
 *
 * Since database objects are dynamically growable, it is not easy
 * to estimate the division between "free" space and "used" space.
 *
 */

 procedure spaceUsage(
 store_name in varchar2,
 blksize out integer,
 tbytes out integer,
 fbytes out integer,
 nfile out integer,
 ndir out integer,
 nlink out integer,
 nref out integer);

 /*
 * DBFS SPI: notes on pathnames.
 *
 * All pathnames used in the SPI are store-qualified, i.e. a 2-tuple
 * of the form (store_name, pathname) (where the pathname is rooted
 * within the store namespace).
 *
 *
 * Stores/providers that support contentID-based access (see
 * "feature_content_id") also support a form of addressing that is
 * not based on pathnames. Items are identified by an explicit store
 * name, a "null" pathname, and possibly a contentID specified as a
 * parameter or via the "opt_content_id" property.
 *
 * Not all operations are supported with contentID-based access, and
 * applications should depend only on the simplest create/delete
 * functionality being available.
 *
 */

 /*
 * DBFS SPI: creation operations

Chapter 21
Creating a Custom Store Provider

21-8

 *
 * The SPI must allow the DBFS API to create directory, file, link,
 * and reference elements (subject to store feature support).
 *
 *
 * All of the creation methods require a valid pathname (see the
 * special exemption for contentID-based access below), and can
 * optionally specify properties to be associated with the pathname
 * as it is created. It is also possible for clients to fetch-back
 * item properties after the creation completes (so that
 * automatically generated properties (e.g. "std_creation_time") are
 * immediately available to clients (the exact set of properties
 * fetched back is controlled by the various "prop_xxx" bitmasks in
 * "prop_flags").
 *
 *
 * Links and references require an additional pathname to associate
 * with the primary pathname.
 *
 * File pathnames can optionally specify a BLOB value to use to
 * initially populate the underlying file content (the provided BLOB
 * may be any valid lob: temporary or permanent). On creation, the
 * underlying lob is returned to the client (if "prop_data" is
 * specified in "prop_flags").
 *
 * Non-directory pathnames require that their parent directory be
 * created first. Directory pathnames themselves can be recursively
 * created (i.e. the pathname hierarchy leading up to a directory
 * can be created in one call).
 *
 *
 * Attempts to create paths that already exist is an error; the one
 * exception is pathnames that are "soft-deleted" (see below for
 * delete operations)---in these cases, the soft-deleted item is
 * implicitly purged, and the new item creation is attempted.
 *
 *
 * Stores/providers that support contentID-based access accept an
 * explicit store name and a "null" path to create a new element.
 * The contentID generated for this element is available via the
 * "opt_content_id" property (contentID-based creation automatically
 * implies "prop_opt" in "prop_flags").
 *
 * The newly created element may also have an internally generated
 * pathname (if "feature_lazy_path" is not supported) and this path
 * is available via the "std_canonical_path" property.
 *
 * Only file elements are candidates for contentID-based access.
 *
 */

 procedure createFile(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content in out nocopy blob,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure createLink(
 store_name in varchar2,
 srcPath in varchar2,

Chapter 21
Creating a Custom Store Provider

21-9

 dstPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure createReference(
 store_name in varchar2,
 srcPath in varchar2,
 dstPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure createDirectory(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: deletion operations
 *
 * The SPI must allow the DBFS API to delete directory, file, link,
 * and reference elements (subject to store feature support).
 *
 *
 * By default, the deletions are "permanent" (get rid of the
 * successfully deleted items on transaction commit), but stores may
 * also support "soft-delete" features. If requested by the client,
 * soft-deleted items are retained by the store (but not typically
 * visible in normal listings or searches).
 *
 * Soft-deleted items can be "restore"d, or explicitly purged.
 *
 *
 * Directory pathnames can be recursively deleted (i.e. the pathname
 * hierarchy below a directory can be deleted in one call).
 * Non-recursive deletions can be performed only on empty
 * directories. Recursive soft-deletions apply the soft-delete to
 * all of the items being deleted.
 *
 *
 * Individual pathnames (or all soft-deleted pathnames under a
 * directory) can be restored or purged via the restore and purge
 * methods.
 *
 *
 * Providers that support filtering can use the provider "filter" to
 * identify subsets of items to delete---this makes most sense for
 * bulk operations (deleteDirectory, restoreAll, purgeAll), but all
 * of the deletion-related operations accept a "filter" argument.
 *
 *
 * Stores/providers that support contentID-based access can also
 * allow file items to be deleted by specifying their contentID.
 *
 */

Chapter 21
Creating a Custom Store Provider

21-10

 procedure deleteFile(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 soft_delete in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure deleteContent(
 store_name in varchar2,
 contentID in raw,
 filter in varchar2,
 soft_delete in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure deleteDirectory(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 soft_delete in integer,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure restorePath(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t);

 procedure purgePath(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t);

 procedure restoreAll(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t);

 procedure purgeAll(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: path get/put operations.
 *
 * Existing path items can be accessed (for query or for update) and
 * modified via simple get/put methods.
 *
 * All pathnames allow their metadata (i.e. properties) to be
 * read/modified. On completion of the call, the client can request
 * (via "prop_flags") specific properties to be fetched as well.
 *
 * File pathnames allow their data (i.e. content) to be
 * read/modified. On completion of the call, the client can request
 * (via the "prop_data" bitmaks in "prop_flags") a new BLOB locator
 * that can be used to continue data access.

Chapter 21
Creating a Custom Store Provider

21-11

 *
 * Files can also be read/written without using BLOB locators, by
 * explicitly specifying logical offsets/buffer-amounts and a
 * suitably sized buffer.
 *
 *
 * Update accesses must specify the "forUpdate" flag. Access to link
 * pathnames can be implicitly and internally deferenced by stores
 * (subject to feature support) if the "deref" flag is
 * specified---however, this is dangerous since symbolic links are
 * not always resolvable.
 *
 *
 * The read methods (i.e. "getPath" where "forUpdate" is "false"
 * also accepts a valid "asof" timestamp parameter that can be used
 * by stores to implement "as of" style flashback queries. Mutating
 * versions of the "getPath" and the "putPath" methods do not
 * support as-of modes of operation.
 *
 *
 * "getPathNowait" implies a "forUpdate", and, if implemented (see
 * "feature_nowait"), allows providers to return an exception
 * (ORA-54) rather than wait for row locks.
 *
 */

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 forUpdate in integer,
 deref in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure getPathNowait(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 deref in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in out number,
 offset in number,
 buffer out nocopy raw,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in out number,

Chapter 21
Creating a Custom Store Provider

21-12

 offset in number,
 buffers out nocopy dbms_dbfs_content_raw_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content in out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in number,
 offset in number,
 buffer in raw,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 written out number,
 offset in number,
 buffers in dbms_dbfs_content_raw_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: rename/move operations.
 *
 * Pathnames can be renamed or moved, possibly across directory
 * hierarchies and mount-points, but within the same store.
 *
 *
 * Non-directory pathnames previously accessible via "oldPath" are
 * renamed as a single item subsequently accessible via "newPath";
 * assuming that "newPath" does not already exist.
 *
 * If "newPath" exists and is not a directory, the rename implicitly
 * deletes the existing item before renaming "oldPath". If "newPath"
 * exists and is a directory, "oldPath" is moved into the target
 * directory.
 *
 *
 * Directory pathnames previously accessible via "oldPath" are
 * renamed by moving the directory and all of its children to
 * "newPath" (if it does not already exist) or as children of
 * "newPath" (if it exists and is a directory).
 *
 *
 * Stores/providers that support contentID-based access and lazy
 * pathname binding also support the "setPath" method that
 * associates an existing "contentID" with a new "path".

Chapter 21
Creating a Custom Store Provider

21-13

 *
 */

 procedure renamePath(
 store_name in varchar2,
 oldPath in varchar2,
 newPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 ctx in dbms_dbfs_content_context_t);

 procedure setPath(
 store_name in varchar2,
 contentID in raw,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: directory navigation and search.
 *
 * The DBFS API can list or search the contents of directory
 * pathnames, optionally recursing into sub-directories, optionally
 * seeing soft-deleted items, optionally using flashback "as of" a
 * provided timestamp, and optionally filtering items in/out within
 * the store based on list/search predicates.
 *
 */

 function list(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 return dbms_dbfs_content_list_items_t
 pipelined;

 function search(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 return dbms_dbfs_content_list_items_t
 pipelined;

 /*
 * DBFS SPI: locking operations.
 *
 * Clients of the DBFS API can apply user-level locks to any valid
 * pathname (subject to store feature support), associate the lock
 * with user-data, and subsequently unlock these pathnames.
 *
 * The status of locked items is available via various optional
 * properties (see "opt_lock*" above).
 *
 *
 * It is the responsibility of the store (assuming it supports

Chapter 21
Creating a Custom Store Provider

21-14

 * user-defined lock checking) to ensure that lock/unlock operations
 * are performed in a consistent manner.
 *
 */

 procedure lockPath(
 store_name in varchar2,
 path in varchar2,
 lock_type in integer,
 lock_data in varchar2,
 ctx in dbms_dbfs_content_context_t);

 procedure unlockPath(
 store_name in varchar2,
 path in varchar2,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: access checks.
 *
 * Check if a given pathname (store_name, path, pathtype) can be
 * manipulated by "operation (see the various
 * "dbms_dbfs_content.op_xxx" opcodes) by "principal".
 *
 * This is a convenience function for the DBFS API; a store that
 * supports access control still internally performs these checks to
 * guarantee security.
 *
 */

 function checkAccess(
 store_name in varchar2,
 path in varchar2,
 pathtype in integer,
 operation in varchar2,
 principal in varchar2)
 return integer;
end;
/
show errors;

create or replace public synonym tbfs
 for sys.tbfs;

grant execute on tbfs
 to dbfs_role;

21.3.4.4 SPI Implementation of tbfs
The body.sql script provides the SPI implementation of the tbfs.

The body.sql script:

connect / as sysdba;

create or replace package body tbfs
as

Chapter 21
Creating a Custom Store Provider

21-15

 /*
 * Lookup store features (see dbms_dbfs_content.feature_XXX). Lookup
 * store id.
 *
 * A store ID identifies a provider-specific store, across
 * registrations and mounts, but independent of changes to the store
 * contents.
 *
 * I.e. changes to the store table(s) should be reflected in the
 * store ID, but re-initialization of the same store table(s) should
 * preserve the store ID.
 *
 * Providers should also return a "version" (either specific to a
 * provider package, or to an individual store) based on a standard
 * <a.b.c> naming convention (for <major>, <minor>, and <patch>
 * components).
 *
 */

 function getFeatures(
 store_name in varchar2)
 return integer
 is
 begin
 return dbms_dbfs_content.feature_locator;
 end;

 function getStoreId(
 store_name in varchar2)
 return number
 is
 begin
 return 1;
 end;

 function getVersion(
 store_name in varchar2)
 return varchar2
 is
 begin
 return '1.0.0';
 end;

 /*
 * Lookup pathnames by (store_name, std_guid) or (store_mount,
 * std_guid) tuples.
 *
 * If the underlying "std_guid" is found in the underlying store,
 * this function returns the store-qualified pathname.
 *
 * If the "std_guid" is unknown, a "null" value is returned. Clients
 * are expected to handle this as appropriate.
 *
 */

 function getPathByStoreId(
 store_name in varchar2,
 guid in integer)
 return varchar2
 is

Chapter 21
Creating a Custom Store Provider

21-16

 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: space usage.
 *
 * Clients can query filesystem space usage statistics via the
 * "spaceUsage()" method. Providers are expected to support this
 * method for their stores (and to make a best effort determination
 * of space usage---esp. if the store consists of multiple
 * tables/indexes/lobs, etc.).
 *
 * "blksize" is the natural tablespace blocksize that holds the
 * store---if multiple tablespaces with different blocksizes are
 * used, any valid blocksize is acceptable.
 *
 * "tbytes" is the total size of the store in bytes, and "fbytes" is
 * the free/unused size of the store in bytes. These values are
 * computed over all segments that comprise the store.
 *
 * "nfile", "ndir", "nlink", and "nref" count the number of
 * currently available files, directories, links, and references in
 * the store.
 *
 * Since database objects are dynamically growable, it is not easy
 * to estimate the division between "free" space and "used" space.
 *
 */

 procedure spaceUsage(
 store_name in varchar2,
 blksize out integer,
 tbytes out integer,
 fbytes out integer,
 nfile out integer,
 ndir out integer,
 nlink out integer,
 nref out integer)
 is
 nblks number;
 begin
 select count(*) into nfile
 from tbfs.tbfst;
 ndir := 0;
 nlink := 0;
 nref := 0;

 select sum(bytes) into tbytes
 from user_segments;
 select sum(blocks) into nblks
 from user_segments;
 blksize := tbytes/nblks;
 fbytes := 0; /* change as needed */
 end;

 /*
 * DBFS SPI: notes on pathnames.

Chapter 21
Creating a Custom Store Provider

21-17

 *
 * All pathnames used in the SPI are store-qualified, i.e. a 2-tuple
 * of the form (store_name, pathname) (where the pathname is rooted
 * within the store namespace).
 *
 *
 * Stores/providers that support contentID-based access (see
 * "feature_content_id") also support a form of addressing that is
 * not based on pathnames. Items are identified by an explicit store
 * name, a "null" pathname, and possibly a contentID specified as a
 * parameter or via the "opt_content_id" property.
 *
 * Not all operations are supported with contentID-based access, and
 * applications should depend only on the simplest create/delete
 * functionality being available.
 *
 */

 /*
 * DBFS SPI: creation operations
 *
 * The SPI must allow the DBFS API to create directory, file, link,
 * and reference elements (subject to store feature support).
 *
 *
 * All of the creation methods require a valid pathname (see the
 * special exemption for contentID-based access below), and can
 * optionally specify properties to be associated with the pathname
 * as it is created. It is also possible for clients to fetch-back
 * item properties after the creation completes (so that
 * automatically generated properties (e.g. "std_creation_time") are
 * immediately available to clients (the exact set of properties
 * fetched back is controlled by the various "prop_xxx" bitmasks in
 * "prop_flags").
 *
 *
 * Links and references require an additional pathname to associate
 * with the primary pathname.
 *
 * File pathnames can optionally specify a BLOB value to use to
 * initially populate the underlying file content (the provided BLOB
 * may be any valid lob: temporary or permanent). On creation, the
 * underlying lob is returned to the client (if "prop_data" is
 * specified in "prop_flags").
 *
 * Non-directory pathnames require that their parent directory be
 * created first. Directory pathnames themselves can be recursively
 * created (i.e. the pathname hierarchy leading up to a directory
 * can be created in one call).
 *
 *
 * Attempts to create paths that already exist is an error; the one
 * exception is pathnames that are "soft-deleted" (see below for
 * delete operations)---in these cases, the soft-deleted item is
 * implicitly purged, and the new item creation is attempted.
 *
 *
 * Stores/providers that support contentID-based access accept an
 * explicit store name and a "null" path to create a new element.
 * The contentID generated for this element is available via the

Chapter 21
Creating a Custom Store Provider

21-18

 * "opt_content_id" property (contentID-based creation automatically
 * implies "prop_opt" in "prop_flags").
 *
 * The newly created element may also have an internally generated
 * pathname (if "feature_lazy_path" is not supported) and this path
 * is available via the "std_canonical_path" property.
 *
 * Only file elements are candidates for contentID-based access.
 *
 */

 procedure createFile(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content in out nocopy blob,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 guid number;
 begin
 if (path = '/') then
 raise dbms_dbfs_content.invalid_path;
 end if;

 if content is null then
 content := empty_blob();
 end if;

 begin
 insert into tbfs.tbfst values (substr(path,2), content)
 returning data into content;
 exception
 when dup_val_on_index then
 raise dbms_dbfs_content.path_exists;
 end;

 select ora_hash(path) into guid from dual;

 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',
 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure createLink(
 store_name in varchar2,
 srcPath in varchar2,
 dstPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

Chapter 21
Creating a Custom Store Provider

21-19

 procedure createReference(
 store_name in varchar2,
 srcPath in varchar2,
 dstPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure createDirectory(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: deletion operations
 *
 * The SPI must allow the DBFS API to delete directory, file, link,
 * and reference elements (subject to store feature support).
 *
 *
 * By default, the deletions are "permanent" (get rid of the
 * successfully deleted items on transaction commit), but stores may
 * also support "soft-delete" features. If requested by the client,
 * soft-deleted items are retained by the store (but not typically
 * visible in normal listings or searches).
 *
 * Soft-deleted items can be "restore"d, or explicitly purged.
 *
 *
 * Directory pathnames can be recursively deleted (i.e. the pathname
 * hierarchy below a directory can be deleted in one call).
 * Non-recursive deletions can be performed only on empty
 * directories. Recursive soft-deletions apply the soft-delete to
 * all of the items being deleted.
 *
 *
 * Individual pathnames (or all soft-deleted pathnames under a
 * directory) can be restored or purged via the restore and purge
 * methods.
 *
 *
 * Providers that support filtering can use the provider "filter" to
 * identify subsets of items to delete---this makes most sense for
 * bulk operations (deleteDirectory, restoreAll, purgeAll), but all
 * of the deletion-related operations accept a "filter" argument.
 *
 *
 * Stores/providers that support contentID-based access can also
 * allow file items to be deleted by specifying their contentID.

Chapter 21
Creating a Custom Store Provider

21-20

 *
 */

 procedure deleteFile(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 soft_delete in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 if (path = '/') then
 raise dbms_dbfs_content.invalid_path;
 end if;

 if ((soft_delete <> 0) or
 (filter is not null)) then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 delete from tbfs.tbfst t
 where ('/' || t.key) = path;

 if sql%rowcount <> 1 then
 raise dbms_dbfs_content.invalid_path;
 end if;
 end;

 procedure deleteContent(
 store_name in varchar2,
 contentID in raw,
 filter in varchar2,
 soft_delete in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure deleteDirectory(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 soft_delete in integer,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure restorePath(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure purgePath(

Chapter 21
Creating a Custom Store Provider

21-21

 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure restoreAll(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure purgeAll(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: path get/put operations.
 *
 * Existing path items can be accessed (for query or for update) and
 * modified via simple get/put methods.
 *
 * All pathnames allow their metadata (i.e. properties) to be
 * read/modified. On completion of the call, the client can request
 * (via "prop_flags") specific properties to be fetched as well.
 *
 * File pathnames allow their data (i.e. content) to be
 * read/modified. On completion of the call, the client can request
 * (via the "prop_data" bitmaks in "prop_flags") a new BLOB locator
 * that can be used to continue data access.
 *
 * Files can also be read/written without using BLOB locators, by
 * explicitly specifying logical offsets/buffer-amounts and a
 * suitably sized buffer.
 *
 *
 * Update accesses must specify the "forUpdate" flag. Access to link
 * pathnames can be implicitly and internally deferenced by stores
 * (subject to feature support) if the "deref" flag is
 * specified---however, this is dangerous since symbolic links are
 * not always resolvable.
 *
 *
 * The read methods (i.e. "getPath" where "forUpdate" is "false"
 * also accepts a valid "asof" timestamp parameter that can be used
 * by stores to implement "as of" style flashback queries. Mutating
 * versions of the "getPath" and the "putPath" methods do not

Chapter 21
Creating a Custom Store Provider

21-22

 * support as-of modes of operation.
 *
 *
 * "getPathNowait" implies a "forUpdate", and, if implemented (see
 * "feature_nowait"), allows providers to return an exception
 * (ORA-54) rather than wait for row locks.
 *
 */

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 forUpdate in integer,
 deref in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 guid number;
 begin
 if (deref <> 0) then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 select ora_hash(path) into guid from dual;

 if (path = '/') then
 if (forUpdate <> 0) then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 content := null;
 item_type := dbms_dbfs_content.type_directory;
 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));

 return;
 end if;

 begin
 if (forUpdate <> 0) then
 select t.data into content from tbfs.tbfst t
 where ('/' || t.key) = path
 for update;
 else
 select t.data into content from tbfs.tbfst t
 where ('/' || t.key) = path;
 end if;
 exception
 when no_data_found then
 raise dbms_dbfs_content.invalid_path;
 end;

 item_type := dbms_dbfs_content.type_file;
 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',

Chapter 21
Creating a Custom Store Provider

21-23

 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure getPathNowait(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 deref in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in out number,
 offset in number,
 buffer out nocopy raw,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 content blob;
 guid number;
 begin
 if (path = '/') then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 begin
 select t.data into content from tbfs.tbfst t
 where ('/' || t.key) = path;
 exception
 when no_data_found then
 raise dbms_dbfs_content.invalid_path;
 end;

 select ora_hash(path) into guid from dual;
 dbms_lob.read(content, amount, offset, buffer);

 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',
 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure getPath(

Chapter 21
Creating a Custom Store Provider

21-24

 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in out number,
 offset in number,
 buffers out nocopy dbms_dbfs_content_raw_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content in out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 guid number;
 begin
 if (path = '/') then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 if content is null then
 content := empty_blob();
 end if;

 update tbfs.tbfst t
 set t.data = content
 where ('/' || t.key) = path
 returning t.data into content;

 if sql%rowcount <> 1 then
 raise dbms_dbfs_content.invalid_path;
 end if;

 select ora_hash(path) into guid from dual;

 item_type := dbms_dbfs_content.type_file;
 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',
 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in number,
 offset in number,
 buffer in raw,

Chapter 21
Creating a Custom Store Provider

21-25

 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 content blob;
 guid number;
 begin
 if (path = '/') then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 begin
 select t.data into content from tbfs.tbfst t
 where ('/' || t.key) = path
 for update;
 exception
 when no_data_found then
 raise dbms_dbfs_content.invalid_path;
 end;

 select ora_hash(path) into guid from dual;
 dbms_lob.write(content, amount, offset, buffer);

 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',
 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 written out number,
 offset in number,
 buffers in dbms_dbfs_content_raw_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: rename/move operations.
 *
 * Pathnames can be renamed or moved, possibly across directory
 * hierarchies and mount-points, but within the same store.
 *
 *
 * Non-directory pathnames previously accessible via "oldPath" are
 * renamed as a single item subsequently accessible via "newPath";
 * assuming that "newPath" does not already exist.
 *
 * If "newPath" exists and is not a directory, the rename implicitly
 * deletes the existing item before renaming "oldPath". If "newPath"

Chapter 21
Creating a Custom Store Provider

21-26

 * exists and is a directory, "oldPath" is moved into the target
 * directory.
 *
 *
 * Directory pathnames previously accessible via "oldPath" are
 * renamed by moving the directory and all of its children to
 * "newPath" (if it does not already exist) or as children of
 * "newPath" (if it exists and is a directory).
 *
 *
 * Stores/providers that support contentID-based access and lazy
 * pathname binding also support the "setPath" method that
 * associates an existing "contentID" with a new "path".
 *
 */

 procedure renamePath(
 store_name in varchar2,
 oldPath in varchar2,
 newPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure setPath(
 store_name in varchar2,
 contentID in raw,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: directory navigation and search.
 *
 * The DBFS API can list or search the contents of directory
 * pathnames, optionally recursing into sub-directories, optionally
 * seeing soft-deleted items, optionally using flashback "as of" a
 * provided timestamp, and optionally filtering items in/out within
 * the store based on list/search predicates.
 *
 */

 function list(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 return dbms_dbfs_content_list_items_t
 pipelined
 is
 begin
 for rws in (select * from tbfs.tbfst)

Chapter 21
Creating a Custom Store Provider

21-27

 loop
 pipe row(dbms_dbfs_content_list_item_t(
 '/' || rws.key, rws.key, dbms_dbfs_content.type_file));
 end loop;
 end;

 function search(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 return dbms_dbfs_content_list_items_t
 pipelined
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: locking operations.
 *
 * Clients of the DBFS API can apply user-level locks to any valid
 * pathname (subject to store feature support), associate the lock
 * with user-data, and subsequently unlock these pathnames.
 *
 * The status of locked items is available via various optional
 * properties (see "opt_lock*" above).
 *
 *
 * It is the responsibility of the store (assuming it supports
 * user-defined lock checking) to ensure that lock/unlock operations
 * are performed in a consistent manner.
 *
 */

 procedure lockPath(
 store_name in varchar2,
 path in varchar2,
 lock_type in integer,
 lock_data in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure unlockPath(
 store_name in varchar2,
 path in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: access checks.

Chapter 21
Creating a Custom Store Provider

21-28

 *
 * Check if a given pathname (store_name, path, pathtype) can be
 * manipulated by "operation (see the various
 * "dbms_dbfs_content.op_xxx" opcodes) by "principal".
 *
 * This is a convenience function for the DBFS API; a store that
 * supports access control still internally performs these checks to
 * guarantee security.
 *
 */

 function checkAccess(
 store_name in varchar2,
 path in varchar2,
 pathtype in integer,
 operation in varchar2,
 principal in varchar2)
 return integer
 is
 begin
 return 1;
 end;
end;
/
show errors;

21.3.4.5 Registering and Mounting the DBFS
The capi.sql script registers and mounts the DBFS.

The capi.sql script:

connect tbfs/tbfs;

exec dbms_dbfs_content.registerStore('MY_TBFS', 'table', 'TBFS');
exec dbms_dbfs_content.mountStore('MY_TBFS', singleton => true);
commit;

Chapter 21
Creating a Custom Store Provider

21-29

22
DBFS Access Using OFS

You can access Database File System (DBFS) using the Oracle File Server (OFS) process.

This chapter provides details about how OFS uses OFSD, a dedicated background process, to
manage DBFS. It also provides details about how you can access and manage DBFS.

To access a newly created DBFS across multiple nodes where there are no Oracle Client
installations, use OFS to NFS mount the file system. In the absence of an Oracle Client
installation, use OFS to mount the newly created DBFS to NFS and use it across multiple
nodes. All file system requests are served by threads in the OFS background process.

• About OFS
Oracle File Server (OFS) addresses the need to store PDB specific scripts, logs, trace files
and other files produced by running an application in the database.

• About Oracle File Server Process
OFS manages the database file system using a non-fatal and dedicated background
process called Oracle File Server Deamon (OFSD).

• OFS Configuration Parameters
The following table specifies all the parameters that enable NFS access in the database.

• OFS Client Interface
The OFS interface includes views and procedures that support OFS operations.

• Managing DBFS Locally Using FUSE
Understand how you can manage DBFS using Filesystem in User Space (FUSE).

• Accessing DBFS and OFS with an NFS Account
NFS is a widely used protocol to access any local file system across network. OFS makes
use of this protocol and enables access to any DBFS file system that is mounted on the
compute node.

22.1 About OFS
Oracle File Server (OFS) addresses the need to store PDB specific scripts, logs, trace files and
other files produced by running an application in the database.

Additionally, you can use OFS for the following tasks:

• As a staging area where you can host the source data before it is loaded into database
tables.

• To store import or export files from Oracle Data Pump process.

Ensure that you do not place core database files such as data, redo, archive log files, and
database trace file on OFS as this can produce a dependency cycle and cause the system to
hang. Similarly, the diagnostic_dest initialization parameter that sets the location of the
automatic diagnostic repository should not point to a directory inside OFS.

OFS provides methods and procedures to allow you to create a Database file system using
storage that is part of the PDB. You can mount the created file system, unmount it like any
other Unix file system using PL/SQL procedures, and destroy the file system when it is no

22-1

longer in use. When the PDB is destroyed, the file system is also destroyed, which frees up the
underlying storage space.

22.2 About Oracle File Server Process
OFS manages the database file system using a non-fatal and dedicated background process
called Oracle File Server Deamon (OFSD).

For more information about background process, see Background Processes in the Database
Reference guide.

When an instance starts, the OFSD process gets spawned on operating system platforms,
such as Linux, where OFS is supported. OFSD is multi-threaded and non-fatal. It serves both
file system management requests and file requests from each mounted file system.

The centralized server background process model of OFS allows multiple file systems to be
mounted and accessed using a limited set of server threads. It allows better resource sharing
and a linear scalability with new file server threads created on demand. Both memory and CPU
used by these threads are controlled through system wide parameters set in the RDBMS
instance.

OFSD process starts two types of threads: receiver thread and worker thread. The receiver
thread receives requests from the mounted file system. The name of this thread name is
similar to of01. The requests received by this thread are placed in a submit queue which is
served by different worker threads. The submit queue is hash partitioned to efficiently distribute
the incoming requests across all the worker threads. By default, OFSD starts 3 worker threads.
You can update the value of the OFS_THREADS parameter to increase the number of worker
thread.

Chapter 22
About Oracle File Server Process

22-2

OFSD supports these 2 types of file systems: DBFS and OFS.

Use the DBMS_FS PL/SQL procedures to create, mount, and work with the file systems
managed by the OFSD process.

OFSD uses a pool of worker threads to serve requests from multiple file systems that are
mounted on the instance. Use V$OFSMOUNT to query the mounted file systems. The response
that is returned is specific to each PDB. It lists only the file systems that are mounted in the
specified PDB.

22.4 OFS Client Interface
The OFS interface includes views and procedures that support OFS operations.

• DBMS_FS Package
The DBMS_FS package enables users to perform operations on Oracle file system (make,
mount, unmount and destroy) in the Oracle database.

• Views for OFS
The views that support OFS operations start with V$OFS .

22.4.1 DBMS_FS Package
The DBMS_FS package enables users to perform operations on Oracle file system (make,
mount, unmount and destroy) in the Oracle database.

Chapter 22
OFS Client Interface

22-3

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
Oracle OFS procedures.

The following example illustrates the use of DBMS_FS package.

BEGIN
 DBMS_FS.MAKE_ORACLE_FS (
 fstype => 'dbfs',
 fsname => 'dbfs_fs1',
 mount_options => 'TABLESPACE=dbfs_fs1_tbspc');
END;
/
BEGIN
 DBMS_FS.MOUNT_ORACLE_FS (
 fstype => 'dbfs',
 fsname => 'dbfs_fs1',
 mount_point => '/oracle/dbfs/testfs',
 mount_options => 'default_permissions, allow_other, persist');
END;
/
/************** Now you can access the file system. All the FS operations go
here ***************/

BEGIN
 DBMS_FS.UNMOUNT_ORACLE_FS (
 fsname => 'dbfs_fs1',
 mount_point => '/oracle/dbfs/testfs',
 mount_options => 'force');
END;
/
BEGIN
 DBMS_FS.DESTROY_ORACLE_FS (
 fstype => 'dbfs',
 fsname => 'dbfs_fs1');
END;
/

22.4.2 Views for OFS
The views that support OFS operations start with V$OFS .

See Also:

Oracle Database Reference for the columns and data types of these views.

Chapter 22
OFS Client Interface

22-4

22.5 Managing DBFS Locally Using FUSE
Understand how you can manage DBFS using Filesystem in User Space (FUSE).

The FUSE interface in the Linux kernel makes the file systems available to the operating
system processes. After mounting the file system, you can export it, and then NFS mount it on
other nodes where client applications can access this file system.

• Configuring FUSE
OFSD exposes the database file system through FUSE. Before using OFSD to mount the
database file systems, you must install and configure the FUSE module.

• Accessing OFS in Cloud
To access files from an OFS mounted on any Cloud environment, you must perform
additional steps to configure the environment.

22.5.1 Configuring FUSE
OFSD exposes the database file system through FUSE. Before using OFSD to mount the
database file systems, you must install and configure the FUSE module.

If you are running your database instance in a Compute node, configure the FUSE module in
that node. The file system gets mounted and is visible through a mounted path on the compute
node. In a RAC configuration, configure FUSE in each node, so that the OFS file systems can
be mounted independently in each node.

To configure the FUSE module in Cloud or on-premises environment, where the database
instance is running:

1. Set read and execute permissions for an Oracle user to use the FUSE executable file,
fusermount.

sudo chmod o+rx /usr/bin/fusermount

Use the fusermount file to mount and unmount the FUSE user mode file systems.

2. Set the setuid bit on the fusermount file to permit an Oracle user to mount file systems.

sudo chmod u+s /usr/bin/fusermount

3. Permit other users to access the mounted file system.

sudo sh -c ''echo user_allow_other >> /etc/fuse.conf''

4. Optional. By default, the maximum number of file systems that you can mount using FUSE
is 1000. If you are running a large number of PDBs and need to configure a separate file
system for each PDB, then run the following command to increase the number of file
systems that can be mounted using FUSE. The following command increases the number
of file systems that can be mounted using FUSE to 4000.

sudo sh -c ''echo mount_max=4000 >> /etc/fuse.conf''

Chapter 22
Managing DBFS Locally Using FUSE

22-5

5. Allow all users to read the fuse.conf file, so that the Oracle process can read this file at
run time.

sudo chmod a+r /etc/fuse.conf

22.5.2 Accessing OFS in Cloud
To access files from an OFS mounted on any Cloud environment, you must perform additional
steps to configure the environment.

To access files in an OFS mount in the Cloud environment, you may need to perform additional
configuration. It may not be possible to export the OFS mount point from database node to
client node due to security reasons. This may hinder client applications from accessing the
OFS files through operating system commands and utilities and the OFS mount path may not
be available to access using system calls. In such situations, Oracle recommends that you use
the utl_file package to access files in the OFS mount. For information about UTL file
package, see Summary of UTL_FILE Subprograms in PL/SQL Packages and Types
Reference.

To configure the environment so that client applications in Cloud can access files in an OFS:

1. Create a directory object using the OFS mount path.

The following sample code displays how you can create a directory object called
pdb1_ofsdir when /u03/dbfs/<pdbid>/data is the OFS mount directory on the db node.

CREATE DIRECTORY pdb1_ofsdir AS '/u03/dbfs/<pdbid>/data/';

2. Grant access to the user to access the directory object.

For more information on creating a directory object and setting access permissions on it,
see CREATE DIRECTORY in PL/SQL Packages and Types Reference.

Do not access the OFS files by directly querying or modifying the DBFS tables. Do not use
dbfs_client when the DBFS file system is mounted through OFS or else it could lead to
metadata and data inconsistency. To access the OFS files, use the UTL_FILE package in
addition to the procedures listed in the DBMS_FS package. See FS_EXISTS and LIST_FILES in
PL/SQL Packages and Types Reference.

22.3 OFS Configuration Parameters
The following table specifies all the parameters that enable NFS access in the database.

Table 22-1 OFS Configuration Parameters

Parameter Name Description

OFS_THREADS This parameter is used to set the number of OFS
worker threads to handle OFS requests.

Possible values:

• An integer value in the range of 2–128
• Default value is 4

Chapter 22
OFS Configuration Parameters

22-6

22.6 Accessing DBFS and OFS with an NFS Account
NFS is a widely used protocol to access any local file system across network. OFS makes use
of this protocol and enables access to any DBFS file system that is mounted on the compute
node.

NFS enables the compute node to be accessible across all nodes that are authorized to
access the file system.

• Accessing OFS with an NFS Account
You can export an OFS mount to a specified list of nodes and NFS mount it on them. This
allows users to access the contents of an OFS mount point from a node where the
database is not running. The NFS exports may not work in cloud environments due to
security reasons, but you can use it in on-premise environments.

• Prerequisites to Access Storage Through NFS Server
Learn about the prerequisites to access storage through NFS server.

• NFS Security
OFS uses the OS authentication model to authorize NFS client users. If the user is
accessing a local node (where the Oracle instance is running), the access to each file in
the file system is controlled through Unix Access Control List set for each object.

22.6.1 Accessing OFS with an NFS Account
You can export an OFS mount to a specified list of nodes and NFS mount it on them. This
allows users to access the contents of an OFS mount point from a node where the database is
not running. The NFS exports may not work in cloud environments due to security reasons, but
you can use it in on-premise environments.

NFS v3 is a stateless protocol because of which it encapsulates each readdir request
between opendir and releasedir calls. This may lead to poor performance when you want to
list directories that have a large number of files. Therefore, OFS maintains a directory cache
which persists across the opendir and releasedir calls. Do not use the no_rbt_cache mount
option to avoid inconsistent directory cache listing and to utilize the benefits of directory cache.

22.6.2 Prerequisites to Access Storage Through NFS Server
Learn about the prerequisites to access storage through NFS server.

Following are the prerequisites:

• DBFS file system must be created before using OFS.

• You should be able to mount the file systems exported by the database.

• NFS server must be configured with KERNEL module.

Note:

The KERNEL module is supported through FUSE driver for Linux.

Chapter 22
Accessing DBFS and OFS with an NFS Account

22-7

22.6.3 NFS Security
OFS uses the OS authentication model to authorize NFS client users. If the user is accessing a
local node (where the Oracle instance is running), the access to each file in the file system is
controlled through Unix Access Control List set for each object.

On Linux, OFS uses FUSE to receive file system requests from the OS kernel or NFS client.
This requires user_allow_other parameter to be set in /etc/fuse.conf configuration file if an
OS user other than the root user and oracle user need to access the file system.

Note:

Users can also be configured with an Oracle password to log into Oracle client tools
like SQL* Plus to execute SQL statements.

If the network is not secure, the customer is advised to setup Kerberos to authenticate the user
using OS NFS.

Note:

• The Kerberos authentication is available from NFS version 4 onwards. If the OFS
is exported via NFS version 3, then the authentication is performed using
AUTH_SYS.

• For local node, the authentication is performed using AUTH_SYS irrespective of
how the OFS is exported (NFS version 3 or NFS version 4).

• About Kerberos
Kerberos uses encryption technology, Key Distribution Center (KDC), and an arbitrator to
perform secure authentication on open networks.

• Configuring Kerberos Server
To configure a Kerberos Server in a Linux system:

22.6.3.1 About Kerberos
Kerberos uses encryption technology, Key Distribution Center (KDC), and an arbitrator to
perform secure authentication on open networks.

Kerberos is the widely used security mechanism that provides all three flavors of security:

• Authentication

• Integrity check

• Privacy

Kerberos Infrastructure consists of Kerberos software, secured authentication servers,
centralized account and password store, and systems configured to authenticate through the
Kerberos protocol. The OS NFS server handles the complete authentication and integrity
checks by using kerberos principal name as the user name. Once the authentication is

Chapter 22
Accessing DBFS and OFS with an NFS Account

22-8

performed, the requests passed to the Oracle kernel are handled based on the user name
passed through the VFS I/O request.

22.6.3.2 Configuring Kerberos Server
To configure a Kerberos Server in a Linux system:

1. Install Kerberos software in the Linux system.

2. Check if the daemons are running using the following commands.

/sbin/chkconfig krb5kdc on
/sbin/chkconfig kadmin on

3. If the daemons are not running use the following commands to start the daemons
manually:

/etc/rc.d/init.d/krb5kdc start
/etc/rc.d/init.d/kadmin start

4. Add user principal using the kadmin.local command.

Example:

kadmin.local: addprinc <scott>

Chapter 22
Accessing DBFS and OFS with an NFS Account

22-9

A
Comparing the LOB Interfaces

The following tables compare the eight LOB programmatic interfaces by listing their functions
and methods used to operate on LOBs. The tables are split in two only to accommodate all
eight interfaces.

APIs for BLOBs and CLOBs

Table A-1 APIs for BLOBs and CLOBs (PL/SQL, JDBC, OCI, OCCI)

PL/SQL: DBMS_LOB
(dbmslob.sql)

JDBC (Java) interfaces
java.sql.Clob and
java.sql.Blob

OCI (C/ocip.h) OCCI (C++/occiData.h)
classes: Clob and Blob

OCILobLocatorIsIni
t()

isInitialized()

ISSECUREFILE isSecureFile()
OPEN open() OCILobOpen() Open()
ISOPEN isOpen() OCILobIsOpen() isOpen()
CLOSE close() OCILobClose() Close()
CREATETEMPORARY createTemporary OCILobCreateTempora

ry()
FREETEMPORARY freeTemporary OCILobFreeTemporar

y()
ISTEMPORARY isTemporary OCILobIsTemporary()
GETLENGTH length() OCIGetLobLength2() length()
GET_STORAGE_LIMIT OCILobGetStorageLim

it()
GETCHUNKSIZE getChunkSize() OCILobGetChunkSize(

)
getChunkSize()

READ Blob: getBytes()
getBinaryStream()

OciLobRead2()
OCILobArrayRead()

read()

Clob: getChars()
getCharacterStream(
) getAsciiStream()

SUBSTR getSubString
INSTR position

OCILobCharSetId() getCharSetId()
(Clob only)

OCILobCharSetForm() getCharSetForm
(Clob only)

WRITE Blob: setBytes()
setBinaryStream()

OCILobWrite2()
OCILobArrayWrite()

write

Clob: setString()
setCharacterStream(
)

A-1

Table A-1 (Cont.) APIs for BLOBs and CLOBs (PL/SQL, JDBC, OCI, OCCI)

PL/SQL: DBMS_LOB
(dbmslob.sql)

JDBC (Java) interfaces
java.sql.Clob and
java.sql.Blob

OCI (C/ocip.h) OCCI (C++/occiData.h)
classes: Clob and Blob

WRITEAPPEND use length() and then
putString() or
putBytes()

OCILobWriteAppend2(
)

ERASE OCILobErase2()
TRIM truncate() OCILobTrim2() trim

equal OCILobIsEqual() Use operators
== / !=

COMPARE Use DBMS_LOB
APPEND Use length() and then

putString() or
putBytes()

OCILobWriteAppend2(
)

COPY Use read and write OCILobCopy2() copy()
Use operator := Use operator = OCILobLocatorAssig

n()
use operator =

CONVERTTOBLOB
CONVERTTOCLOB

closeStream()
GETOPTIONS OCILobGetOptions() getOptions()
SETOPTIONS OCILobSetOptions() setOptions()
GETCONTENTTYPE OciLobGetContentTyp

e()
getContentType()

SETCONTENTTYPE OciLobSetContentTyp
e()

setContentType()

FRAGMENT_DELETE
FRAGMENT_INSERT
FRAGMENT_MOVE
FRAGMENT_REPLACE

Table A-2 APIs for BLOB and CLOB (PL/SQL, .NET, Pro*C/C++, Pro COBOL)

PL/SQL: DBMS_LOB
(dbmslob.sql)

ODP.NET Classes: OracleClob
and OracleBlob

Pro*C/C++ and Pro*COBOL

OPEN BeginChunkWrite OPEN
ISOPEN IsInChunkWriteMode DESCRIBE [ISOPEN]
CLOSE EndChunkWrite CLOSE
CREATETEMPORARY Add() CREATE TEMPORARY
FREETEMPORARY Dispose() and Close() FREE TEMPORARY
ISTEMPORARY IsTemporary() DESCRIBE [ISTEMPORARY]
GETLENGTH Length() DESCRIBE [LENGTH]
GETCHUNKSIZE OptimumChunkSize() DESCRIBE [CHUNKSIZE]
READ Value Read READ
INSTR Search

Appendix A

A-2

Table A-2 (Cont.) APIs for BLOB and CLOB (PL/SQL, .NET, Pro*C/C++, Pro COBOL)

PL/SQL: DBMS_LOB
(dbmslob.sql)

ODP.NET Classes: OracleClob
and OracleBlob

Pro*C/C++ and Pro*COBOL

WRITE Write WRITE
WRITEAPPEND Append WRITE APPEND
ERASE Erase ERASE
TRIM SetLength TRIM

IsEqual
COMPARE Compare
APPEND Append APPEND
COPY CopyTo COPY
Use operator := Clone ASSIGN

APIs for BFILEs

Table A-3 APIs for BFILEs (PL/SQL, JDBC, OCI, OCCI)

PL/SQL: DBMS_LOB
(dbmslob.sql)

JDBC (Java) interface
oracle.jdbc.OracleBfile

OCI (C/ociap.h) OCCI (C++/occiData.h)
class: Bfile

FILEEXISTS fileExists OciLobFileExist() fileExists()
FILEGETNAME getDirAlias,

getName
OCILobFileGetName() getDirAlias()getFil

eName()
SQL BFILENAME
operator

SQL BFILENAME
operator

OCILobFileSetName() setName()

OPEN openFile OCILobOpen() open()
ISOPEN isFileOpen() OCILobIsOpen() isOpen()
CLOSE closeFile OCILobClose() close()
FILECLOSEALL Use DBMS_LOB OCILobFileCloseAll(

)
GETLENGTH length OCILobGetLength2() length()
READ getBytes()getBinary

Stream()
OCILobRead()OCILobA
rrayRead()

read

SUBSTR getBytes
INSTR position
Use operator := Use operator = OCILobLocatorAssig

n()
Use operator =

LOADCLOBFROMFILE
LOADBLOBFROMFILE

OCILobLoadFromFile
2()

Blob.copy() or
Clob.copy()

COMPARE N/A

N/A equal OCILobIsEqual() Use operators ==/!=

Appendix A

A-3

Table A-4 APIs for BFILEs (PL/SQL, ODP.NET, Pro*C/C++ and Pro*COBOL)

PL/SQL: DBMS_LOB
(dbmslob.sql)

ODP.NET Class: OracleBfile Pro*C/C++ and Pro*COBOL

FILEEXISTS FileExists DESCRIBE [FILEEXISTS]
FILEGETNAME DirectoryName, Filename DESCRIBE [DIRECTORY,

FILENAME]
SQL BFILENAME operator DirectoryName, Filename FILE SET
OPEN OpenFile OPEN
ISOPEN IsOpen() DESCRIBE [ISOPEN]
CLOSE CloseFile CLOSE
FILECLOSEALL N/A FILE CLOSE ALL
GETLENGTH Length DESCRIBE [LENGTH]
READ Value,Read READ
SUBSTR
INSTR Search
Use operator :=
LOADCLOBFROMFILE
LOADBLOBFROMFILE
COMPARE Compare
N/A IsEqual

Appendix A

A-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Large Objects and SecureFiles
	1.1 Changes in Oracle Database
	1.1.1 Updates to Oracle Database Security 21c

	1.2 What Are Large Objects?
	1.3 Where Should We Use LOBs?
	1.4 LOB Classifications
	1.4.1 Large Object Data Types
	1.4.2 Types of LOBs
	1.4.3 LOBs in Object Data Types
	1.4.4 Oracle Data Types Stored in LOBs

	1.5 LOB Locator and LOB Value
	1.5.1 Using LOBs Without Locators
	1.5.2 Using LOBs with Locators

	1.6 LOB Restrictions
	1.7 How to Navigate This Book

	2 Persistent LOBs
	2.1 Creating a Table with LOB Columns
	2.2 Inserting and Updating LOB Values in Tables
	2.2.1 Inserting and Updating with a Buffer
	2.2.2 Inserting and Updating by Selecting a LOB From Another Table
	2.2.3 Inserting and Updating with a NULL or Empty LOB
	2.2.4 Inserting and Updating with a LOB Locator
	2.2.4.1 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
	2.2.4.2 JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable
	2.2.4.3 OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable
	2.2.4.4 Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
	2.2.4.5 Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable

	2.3 Selecting LOB Values from Tables
	2.3.1 Selecting a LOB into a Character Buffer or a Raw Buffer
	2.3.2 Selecting a LOB into a LOB Variable for Read Operations
	2.3.3 Selecting a LOB into a LOB Variable for Write Operations

	2.4 Performing DML and Query Operations on LOBs in Nested Tables
	2.5 Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations on LOBs
	2.6 Sharding with LOBs

	3 Temporary LOBs
	3.1 Before You Begin
	3.1.1 Creating Temporary LOBs
	3.1.2 Handling Temporary LOBs on the Client Side

	3.2 Temporary LOB APIs in Different Programmatic Interfaces
	3.2.1 PL/SQL APIs for Temporary LOBs
	3.2.2 JDBC API for Temporary LOBs
	3.2.3 OCI APIs for Temporary LOBs
	3.2.4 ODP.NET API for Temporary LOBs
	3.2.5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs

	4 BFILEs
	4.1 DIRECTORY Objects
	4.1.1 DIRECTORY Name Specification
	4.1.2 Security on Directory Objects

	4.2 BFILE Locators
	4.3 BFILE APIs
	4.3.1 Sanity Checking
	4.3.2 Opening and Closing a BFILE
	4.3.3 Reading from a BFILE
	4.3.4 Working with Multiple BFILE Locators

	4.4 BFILE APIs in Different Programmatic Interfaces
	4.4.1 PL/SQL APIs for BFILEs
	4.4.2 JDBC API for BFILEs
	4.4.3 OCI API for BFILEs
	4.4.4 ODP.NET API for BFILEs
	4.4.5 OCCI API for BFILEs
	4.4.6 Pro*C/C++ and Pro*COBOL API for BFILEs

	5 SQL Semantics for LOBs
	5.1 SQL Functions and Operators Supported for Use with LOBs
	5.2 Detailed Semantics of SQL Operations on LOBs
	5.2.1 Return Datatype for SQL Operations on LOBs
	5.2.2 NULL vs EMPTY LOB: Semantic Difference between LOBs and VARCHAR2
	5.2.3 WHERE Clause Usage with LOBs
	5.2.4 CLOBs and NCLOBs Do Not Follow Session Collation Settings
	5.2.5 Codepoint Semantics

	5.3 Restrictions on SQL Operations on LOBs

	6 PL/SQL Semantics for LOBs
	6.1 Implicit Conversion with LOBs
	6.1.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL
	6.1.2 Implicit Conversions Between CLOB and VARCHAR2
	6.1.3 Implicit Conversions Between BLOB and RAW
	6.1.4 Guidelines and Restrictions for Implicit Conversions with LOBs
	6.1.5 Detailed Examples for Implicit Conversions with LOBs

	6.2 Explicit Data Type Conversion Functions
	6.3 Temporary LOBs Created by SQL and PL/SQL Built-in Functions

	7 Data Interface for LOBs
	7.1 Overview of the Data Interface for LOBs
	7.2 Benefits of Using the Data Interface for LOBs
	7.3 Data Interface for LOBs in Java
	7.4 Data Interface for LOBs in OCI
	7.4.1 Binding a LOB in OCI
	7.4.2 Defining a LOB in OCI
	7.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs
	7.4.4 Getting LOB Length
	7.4.5 Using OCI Functions to Perform INSERT or UPDATE on LOB Columns
	7.4.5.1 Performing Simple INSERT or UPDATE Operations in One Piece
	7.4.5.2 Using Piecewise INSERT and UPDATE Operations with Polling
	7.4.5.3 Performing Piecewise INSERT and UPDATE Operations with Callback
	7.4.5.4 Performing Array INSERT and UPDATE Operations

	7.4.6 Using OCI Data Interface to Fetch LOB Data
	7.4.6.1 Performing Simple Fetch Operations in One Piece
	7.4.6.2 Performing a Piecewise Fetch with Polling
	7.4.6.3 Performing a Piecewise with Callback
	7.4.6.4 Performing an Array Fetch Operation

	7.4.7 PL/SQL and C Binds from OCI

	8 Locator Interface for LOBs
	8.1 Before You Begin
	8.1.1 Getting a LOB Locator
	8.1.2 LOB Open and Close Operations
	8.1.3 Read and Write at Chunk Boundaries
	8.1.4 Prefetching LOB Data and Length
	8.1.5 Determining Character Set ID
	8.1.6 LOB APIs

	8.2 PL/SQL API for LOBs
	8.3 JDBC API for LOBs
	8.4 OCI API for LOBs
	8.4.1 Efficiently Reading LOB Data in OCI
	8.4.2 Efficiently Writing LOB Data in OCI

	8.5 ODP.NET API for LOBs
	8.6 OCCI API for LOBs
	8.7 Pro*C/C++ and Pro*COBOL API for LOBs

	9 Distributed LOBs
	9.1 Working with Remote LOBs in SQL and PL/SQL
	9.2 Using the Data Interface on Remote LOBs
	9.3 Working with Remote Locators
	9.3.1 Using Local and Remote Locators as Bind with Queries and DML on Remote Tables
	9.3.2 Using Remote Locator
	9.3.3 Restrictions when using remote LOB locators

	10 Performance Guidelines
	10.1 LOB Performance Guidelines
	10.1.1 All LOBs
	10.1.2 Performance Guidelines While Using Persistent LOBs
	10.1.3 Temporary LOBs

	10.2 Moving Data to LOBs in a Threaded Environment
	10.3 LOB Access Statistics

	11 Persistent LOBs: Advanced DDL
	11.1 Creating a New LOB Column
	11.1.1 CREATE TABLE BNF
	11.1.2 ENABLE or DISABLE STORAGE IN ROW
	11.1.3 CACHE, NOCACHE, and CACHE READS
	11.1.4 LOGGING and FILESYSTEM_LIKE_LOGGING
	11.1.5 The RETENTION Parameter
	11.1.6 SecureFiles Compression, Deduplication, and Encryption
	11.1.7 BasicFile Specific Parameters
	11.1.8 Restriction on First Extent of a LOB Segment
	11.1.9 Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs

	11.2 Altering an Existing LOB Column
	11.2.1 ALTER TABLE BNF
	11.2.2 ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB
	11.2.3 ALTER TABLE SecureFiles LOB Features
	11.2.3.1 ALTER TABLE with Advanced LOB Compression
	11.2.3.2 ALTER TABLE with Advanced LOB Deduplication
	11.2.3.3 ALTER TABLE with SecureFiles Encryption

	11.3 Creating an Index on LOB Column
	11.3.1 Function-Based Indexing on LOB Columns
	11.3.2 Domain Indexing on LOB Columns
	11.3.2.1 Extensible Optimizer
	11.3.2.2 Text Indexes on LOB Columns

	11.4 LOBs in Partitioned Tables
	11.4.1 Partitioning a Table Containing LOB Columns
	11.4.2 Default LOB Storage Attributes
	11.4.3 Partition Maintenance Operation
	11.4.4 Creating an Index on a Table Containing Partitioned LOB Columns

	11.5 LOBs in Index Organized Tables

	12 Advanced Design Considerations
	12.1 Read-Consistent Locators
	12.1.1 A Selected Locator Becomes a Read-Consistent Locator
	12.1.2 Example of Updating LOBs and Read-Consistency
	12.1.3 Example of Updating LOBs Through Updated Locators
	12.1.4 Example of Updating a LOB Using SQL DML and DBMS_LOB
	12.1.5 Example of Using One Locator to Update the Same LOB Value
	12.1.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
	12.1.7 Example of Deleting a LOB Using Locator
	12.1.8 Ensuring Read Consistency

	12.2 LOB Locators and Transaction Boundaries
	12.2.1 About LOB Locators and Transaction Boundaries
	12.2.2 Read and Write Operations on a LOB Using Locators
	12.2.3 Selecting the Locator Outside of the Transaction Boundary
	12.2.4 Selecting the Locator Within a Transaction Boundary
	12.2.5 LOB Locators Cannot Span Transactions
	12.2.6 Example of Locator Not Spanning a Transaction

	12.3 LOBs in the Object Cache
	12.4 Guidelines for Creating Terabyte sized LOBs
	12.4.1 Creating a Tablespace and Table to Store Terabyte LOBs

	13 Managing LOBs: Database Administration
	13.4 LOB Migration with Data Pump
	13.1 Initialization Parameter for SecureFiles LOBs
	13.2 Database Character Set Considerations
	13.3 Database Utilities for Loading Data into LOBs
	13.3.1 Loading LOBs with SQL*Loader
	13.3.2 Loading BFILEs with SQL*Loader
	13.3.3 Loading LOBs with External Tables
	13.3.3.1 Overview of LOBs and External Tables

	13.5 BFILEs Management
	13.5.1 Guidelines for DIRECTORY Usage
	13.5.2 Rules for Using Directory Objects and BFILEs
	13.5.3 Setting Maximum Number of Open BFILEs

	13.6 Managing LOB Signatures

	14 Migrating Columns to SecureFile LOBs
	14.1 Migration Considerations
	14.2 Migration Methods
	14.2.1 Migrating LOBs with Online Redefinition
	14.2.2 Migrating LOBs with Data Pump

	14.3 Other Considerations While Migrating LONG Columns to LOBs
	14.3.1 Migrating Applications from LONGs to LOBs
	14.3.2 Alternate Methods for LOB Migration

	15 Introducing the Database File System
	15.1 Why a Database File System?
	15.2 What Is Database File System (DBFS)?
	15.2.1 About DBFS
	15.2.2 DBFS Server
	15.2.3 DBFS Client Access Methods

	16 DBFS SecureFiles Store
	16.1 Setting Up a SecureFiles Store
	16.1.1 About Managing Permissions
	16.1.2 Creating or Setting Permissions
	16.1.3 Creating a SecureFiles File System Store
	16.1.4 Accessing SecureFiles Store
	16.1.5 Reinitializing SecureFiles Store File Systems
	16.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs

	16.2 Using a DBFS SecureFiles Store File System
	16.2.1 DBFS Content API Working Example
	16.2.2 Dropping SecureFiles Store File Systems

	16.3 About DBFS SecureFiles Store Package, DBMS_DBFS_SFS
	16.4 Database File System (DBFS)— POSIX File Locking
	16.4.1 About Advisory Locking
	16.4.2 About Mandatory Locking
	16.4.3 File Locking Support
	16.4.4 Compatibility and Migration Factors of Database Filesystem—File Locking
	16.4.5 Examples of Database File System—File Locking
	16.4.6 DBFS Locking Behavior
	16.4.7 Scheduling File Locks
	16.4.7.1 Greedy Scheduling
	16.4.7.2 Fair Scheduling

	17 Using DBFS
	17.6 Dropping a File System
	17.1 Installing DBFS
	17.2 Creating a DBFS File System
	17.2.1 About the Create File System Command
	17.2.2 Privileges Required to Create a DBFS File System
	17.2.3 Creating a Non-Partitioned File System
	17.2.4 Creating a Partitioned File System
	17.2.5 Enabling Advanced SecureFiles LOB Features for DBFS

	17.3 Accessing DBFS File System
	17.3.1 DBFS Client Prerequisites
	17.3.2 Multiple Mount Points on DBFS Client
	17.3.2.1 MUMV for CDB Variant
	17.3.2.2 MUMV for Cross-Database Variant

	17.3.3 Manager File System
	17.3.3.1 Adding a DBFS Mount Point
	17.3.3.2 Listing DBFS Mount Points
	17.3.3.3 Unmounting a DBFS Mount Point
	17.3.3.4 Configuration Parameters of DBFS Client
	17.3.3.5 Diagnosability of DBFS Client

	17.3.4 DBFS Client Command-Line Interface Operations
	17.3.4.1 About the DBFS Client Command-Line Interface
	17.3.4.2 Listing a Directory
	17.3.4.3 Copying Files and Directories
	17.3.4.4 Removing Files and Directories

	17.3.5 DBFS Mounting Interface (Linux and Solaris Only)
	17.3.5.1 Installing FUSE on Solaris 11 SRU7 and Later
	17.3.5.2 Solaris-Specific Privileges
	17.3.5.3 About the Mount Command for Solaris and Linux
	17.3.5.4 Mounting a File System with a Wallet
	17.3.5.5 Mounting a File System with Password at Command Prompt
	17.3.5.6 Unmounting a File System
	17.3.5.7 Mounting DBFS Through fstab Utility for Linux
	17.3.5.8 Mounting DBFS Through the vfstab Utility for Solaris
	17.3.5.9 Restrictions on Mounted File Systems
	17.3.5.10 Restrictions on Types of Files Stored at DBFS Mount Points

	17.3.6 File System Security Model
	17.3.6.1 About the File System Security Model
	17.3.6.2 Enabling Shared Root Access
	17.3.6.3 About DBFS Access Among Multiple Database Users
	17.3.6.4 Establishing DBFS Access Sharing Across Multiple Database Users

	17.3.7 HTTP, WebDAV, and FTP Access to DBFS
	17.3.7.1 Internet Access to DBFS Through XDB
	17.3.7.2 Web Distributed Authoring and Versioning (WebDAV) Access
	17.3.7.3 FTP Access to DBFS
	17.3.7.4 HTTP Access to DBFS

	17.4 Maintaining DBFS
	17.4.1 Using Oracle Wallet with DBFS Client
	17.4.2 DBFS Diagnostics
	17.4.3 Preventing Data Loss During Failover Events
	17.4.4 Bypassing Client-Side Write Caching
	17.4.5 Backing up DBFS
	17.4.5.1 DBFS Backup at the Database Level
	17.4.5.2 DBFS Backup Through a File System Utility

	17.4.6 Small File Performance of DBFS

	17.5 Shrinking and Reorganizing DBFS Filesystems
	17.5.1 About Changing DBFS File Systems
	17.5.2 Advantages of Online Filesystem Reorganization
	17.5.3 Determining Availability of Online Filesystem Reorganization
	17.5.4 Required Permissions for Online Filesystem Reorganization
	17.5.5 Invoking Online Filesystem Reorganization

	18 DBFS Hierarchical Store
	18.1 About the Hierarchical Store Package DBMS_DBFS_HS
	18.2 Setting up the Store
	18.2.1 Creating, Registering, and Mounting the Store

	18.3 Using the Hierarchical Store
	18.3.1 Using Hierarchical Store as a File System
	18.3.2 Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
	18.3.3 Dropping a Hierarchical Store
	18.3.4 Compression to Use with the Hierarchical Store
	18.3.5 Program Example Using Tape
	18.3.6 Program Example Using Amazon S3

	18.4 The DBMS_DBFS_HS Package
	18.4.1 Constants for DBMS_DBFS_HS Package
	18.4.2 Methods for DBMS_DBFS_HS Package

	18.5 Views for DBFS Hierarchical Store
	18.5.1 DBA Views
	18.5.2 User Views

	19 Database File System Links
	19.1 About Database File System Links
	19.2 Ways to Create Database File System Links
	19.3 Database File System Links Copy
	19.4 The DBMS_LOB Package Used with DBFS
	19.5 DBMS_LOB Constants Used with DBFS
	19.6 DBMS_LOB Subprograms Used with DBFS
	19.7 Copying a Linked LOB Between Tables
	19.8 Online Redefinition and DBFS Links
	19.9 Transparent Read

	20 DBFS Content API
	20.1 Overview of DBFS Content API
	20.2 Stores and DBFS Content API
	20.3 Getting Started with DBMS_DBFS_CONTENT Package
	20.3.1 DBFS Content API Role
	20.3.2 Path Name Constants and Types
	20.3.3 Path Properties
	20.3.4 Content IDs
	20.3.5 Path Name Types
	20.3.6 Store Features
	20.3.7 Lock Types
	20.3.8 Standard Properties
	20.3.9 Optional Properties
	20.3.10 User-Defined Properties
	20.3.11 Property Access Flags
	20.3.12 Exceptions
	20.3.13 Property Bundles
	20.3.14 Store Descriptors

	20.4 Administrative and Query APIs
	20.4.1 Registering a Content Store
	20.4.2 Unregistering a Content Store
	20.4.3 Mounting a Registered Store
	20.4.4 Unmounting a Previously Mounted Store
	20.4.5 Listing all Available Stores and Their Features
	20.4.6 Listing all Available Mount Points
	20.4.7 Looking Up Specific Stores and Their Features

	20.5 Querying DBFS Content API Space Usage
	20.6 DBFS Content API Session Defaults
	20.7 DBFS Content API Interface Versioning
	20.8 DBFS Content API Creation Operations
	20.9 DBFS Content API Deletion Operations
	20.10 DBFS Content API Path Get and Put Operations
	20.11 DBFS Content API Rename and Move Operations
	20.12 Directory Listings
	20.13 DBFS Content API Directory Navigation and Search
	20.14 DBFS Content API Locking Operations
	20.15 DBFS Content API Access Checks
	20.16 DBFS Content API Abstract Operations
	20.17 DBFS Content API Path Normalization
	20.18 DBFS Content API Statistics Support
	20.19 DBFS Content API Tracing Support
	20.20 Resource and Property Views

	21 Creating Your Own DBFS Store
	21.1 Overview of DBFS Store Creation and Use
	21.2 DBFS Content Store Provider Interface (DBFS Content SPI)
	21.3 Creating a Custom Store Provider
	21.3.1 Installation and Setup
	21.3.2 TBFS Use
	21.3.3 TBFS Internals
	21.3.4 Example Scripts
	21.3.4.1 Driver Script
	21.3.4.2 Creating a Test User, Tablespace and Table to Backup Filesystem
	21.3.4.3 Providing SPI Specification
	21.3.4.4 SPI Implementation of tbfs
	21.3.4.5 Registering and Mounting the DBFS

	22 DBFS Access Using OFS
	22.1 About OFS
	22.2 About Oracle File Server Process
	22.4 OFS Client Interface
	22.4.1 DBMS_FS Package
	22.4.2 Views for OFS

	22.5 Managing DBFS Locally Using FUSE
	22.5.1 Configuring FUSE
	22.5.2 Accessing OFS in Cloud

	22.3 OFS Configuration Parameters
	22.6 Accessing DBFS and OFS with an NFS Account
	22.6.1 Accessing OFS with an NFS Account
	22.6.2 Prerequisites to Access Storage Through NFS Server
	22.6.3 NFS Security
	22.6.3.1 About Kerberos
	22.6.3.2 Configuring Kerberos Server

	A Comparing the LOB Interfaces

