
Oracle® Data Provider for .NET
Developer's Guide

21c
F32111-10
December 2023

Oracle Data Provider for .NET Developer's Guide, 21c

F32111-10

Copyright © 2002, 2023, Oracle and/or its affiliates.

Primary Author: Maitreyee Chaliha

Contributing Authors: Alex Keh, Janis Greenberg, Kiminari Akiyama, Sumit Jeloka, Sinclair Hsu, Shailendra
Jain, Riaz Ahmed, Ashish Shah, Lakshminarayanan Suriamoorthy, Steven Caminez, Naveen Doraiswamy,
Neeraj Gupta, Chithra Ramamurthy, Martha Woo, Arun Singh, Sujith Somanathan, Nishant Singh

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience lxxxiv

Documentation Accessibility lxxxiv

Related Documents lxxxv

Passwords in Code Examples lxxxvi

Conventions lxxxvi

 Changes in This Release for Oracle Data Provider for .NET

Changes in Oracle Data Provider for .NET Release 21c (21.12) lxxxvii

Changes in Oracle Data Provider for .NET Release 21c (21.8) lxxxviii

Changes in Oracle Data Provider for .NET Release 21c (21.7) lxxxviii

Changes in Oracle Data Provider for .NET Release 21c (21.6.1) lxxxix

Changes in Oracle Data Provider for .NET Release 21c (21.5) xc

Changes in Oracle Data Provider for .NET Release 21c (21.4.1) xc

Changes in Oracle Data Provider for .NET Release 21c (21.4) xci

Changes in Oracle Data Provider for .NET Release 21c (21.3) xci

Changes in Oracle Data Provider for .NET (21.1) xciii

Changes in Oracle Data Provider for .NET (19.15.1) xciv

Changes in Oracle Data Provider for .NET (19.10) xcv

Changes in Oracle Data Provider for .NET (19.9) xcvi

Changes in Oracle Data Provider for .NET ODAC Release 19c (19.3.2) xcvii

Changes in Oracle Data Provider for .NET (19.7) xcvii

Changes in Oracle Data Provider for .NET (19.6) xcviii

Changes in Oracle Data Provider for .NET (19.5) xcviii

Changes in Oracle Data Provider for .NET in ODAC Release 19c (19.3) xcix

Changes in Oracle Data Provider for .NET Release 19c (19.3) c

Changes in Oracle Data Provider for .NET in ODAC Release 18c (18.3) cii

Changes in Oracle Data Provider for .NET Release 18c (18.3) cii

Changes in Oracle Data Provider for .NET in ODAC 12.2c Release 1 ciii

Changes in Oracle Data Provider for .NET Release 12.2.0.1 civ

iii

1 Introducing Oracle Data Provider for .NET

.NET Data Access in Oracle: Products and Documentation 1-1

Oracle Data Provider for .NET (ODP.NET) 1-1

Oracle Developer Tools for Visual Studio 1-2

Oracle Database Extensions for .NET 1-2

Oracle Providers for ASP.NET 1-2

Oracle Services for Microsoft Transaction Server 1-3

Oracle TimesTen In-Memory Database 1-3

Overview of Oracle Data Provider for .NET (ODP.NET) 1-4

Oracle Data Provider for .NET Assemblies 1-5

Oracle Data Provider for .NET, Unmanaged Driver Assemblies 1-5

Oracle Data Provider for .NET, Managed Driver and ODP.NET Core Assemblies 1-5

Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Namespaces 1-6

Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client 1-6

Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations 1-15

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Namespaces 1-19

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Structures 1-19

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Exceptions 1-19

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes 1-20

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces 1-22

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Enumerations 1-22

Differences between the ODP.NET Drivers 1-23

Getting Started With Developing ODP.NET Applications 1-27

2 Installing and Configuring Oracle Data Provider for .NET

System Requirements 2-1

Entity Framework Requirements 2-3

Entity Framework Database First and Model First Requirements 2-3

Entity Framework Code First Requirements 2-3

Entity Framework Core System Requirements 2-3

Oracle Data Provider for .NET Versioning Scheme 2-4

Installing Oracle Data Provider for .NET, Unmanaged Driver 2-6

File Locations After Installation 2-7

Search Order for Unmanaged DLLs 2-7

Unmanaged ODP.NET and Dependent Unmanaged DLL Mismatch 2-7

Installing Oracle Data Provider for .NET, Managed Driver 2-8

Platform-Dependent Assemblies and Their Search Order 2-9

File Locations After Installation 2-10

Installing Oracle Data Provider for .NET Core 2-10

Entity Framework Assemblies and File Location 2-11

iv

Configuring Oracle Data Provider for .NET 2-12

Oracle Client Configuration File Automated Setup During Installation 2-13

Oracle Client Configuration File Settings 2-13

Configuring .NET Framework to Use ODP.NET 2-15

ODP.NET Intellisense for .NET Configuration Files 2-18

Oracle Data Provider for .NET, Unmanaged Driver Configuration 2-18

Supported Configuration Settings 2-19

Windows Registry 2-27

Configuration File Support 2-28

SQL Translation Framework Configuration 2-29

Specifying UDT Mappings with Unified Configuration for Unmanaged ODP.NET 2-32

Oracle Data Provider for .NET, Managed Driver Configuration 2-33

version Section 2-34

dataSources Section 2-35

settings section 2-38

LDAPsettings section 2-43

Lightweight Directory Access Protocol 2-44

implicitRefCursor section 2-44

distributedTransaction section 2-45

connectionPools section 2-45

edmMappings section 2-46

onsConfig section 2-46

ONS TCPS and Wallets 2-47

Client Side ONS Daemon Configuration 2-48

Relative Windows Path and Windows Environment Variable Configuration Settings 2-49

Oracle Data Provider for .NET Core Configuration 2-50

Configuration Differences among ODP.NET Drivers 2-53

Configuring for Entity Framework Code First 2-54

Entity Framework 6 Code-Based Registration 2-55

Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver 2-56

Configuring a Port to Listen for Database Notifications 2-57

General .NET Programming Recommendations and Tips for ODP.NET 2-58

3 Features of Oracle Data Provider for .NET

Base Classes and Provider Factory Classes 3-2

Code Access Security 3-3

Configuring OraclePermission 3-3

Configuring OraclePermission for Web Applications with High or Medium Trust Levels 3-4

Configuring OraclePermission for Windows Applications Running in a Partial Trust
Environment 3-5

Connecting to Oracle Database 3-5

v

Connecting to Oracle Autonomous Database 3-6

Using Azure Active Directory 3-14

Connection String Attributes 3-17

Connection String Builder 3-19

Specifying the Data Source Attribute 3-20

Using the TNS Alias 3-20

Using the Connect Descriptor 3-21

Easy Connect and Easy Connect Plus Naming Methods 3-21

Using LDAP 3-22

Data Source Enumerator 3-23

Using WebSocket 3-23

Using Transport Layer Security and Secure Sockets Layer 3-24

Secure Sockets Layer and Transport Layer Security Differences 3-24

ODP.NET Secure Sockets Layer Configuration Using Wallets 3-25

ODP.NET Secure Sockets Layer Configuration without Wallets 3-26

Inserting Public Keys into System Trusted Certificate Authority List 3-27

Troubleshooting TLS/SSL Setup 3-28

Using Secure External Password Store 3-30

Configuring Secure External Password Store (SEPS) 3-31

Using Kerberos 3-32

File Based Credential Cache and MSLSA 3-32

ODP.NET, Managed Driver Dependency on MIT Kerberos 3-33

Configuring Kerberos Authentication with ODP.NET 3-33

Using Windows Native Authentication (NTS) 3-36

Configuring Windows Native Authentication (NTS) for the ODP.NET Client 3-37

Operating System Authentication Credentials 3-37

Network Data Encryption and Integrity 3-39

Using Data Encryption 3-39

Using Data Integrity 3-39

Schema Discovery 3-40

User Customization of Metadata 3-41

Connection Pooling 3-41

Using Connection Pooling 3-42

Connection Pool Management 3-43

Connection Performance Counters 3-44

Registering Performance Counters 3-44

Enabling Performance Counters 3-45

Setting Performance Counters in .NET Configuration Files 3-46

Setting Performance Counters in Windows Registry 3-47

Publishing Performance Counters 3-47

Database Resident Connection Pooling 3-48

vi

Oracle Multitenant and Pluggable Databases 3-51

Edition-Based Redefinition 3-53

Privileged Connections 3-55

Connection Pooling with OracleCredential 3-56

Password Expiration 3-57

Proxy Authentication 3-59

Dynamic Distributed Transaction Enlistment 3-60

Client Identifier and End-to-End Tracing 3-60

Transparent Application Failover (TAF) Callback Support 3-61

TAF Notification 3-62

When Failover Occurs 3-62

Registering an Event Handler for Failover 3-62

Real Application Clusters and Global Data Services 3-64

Fast Application Notification 3-65

In-Band Fast Application Notification 3-66

Runtime Connection Load Balancing 3-67

Fast Connection Failover (FCF) 3-67

Using FCF Planned Outage to Minimize Service Disruption 3-68

Pool Behavior in an Oracle RAC Database 3-70

Using Transaction Guard to Prevent Logical Corruption 3-71

ODP.NET and Transaction Guard 3-71

Application Continuity 3-75

ODP.NET and Application Continuity 3-75

Database Sharding 3-76

ODP.NET Sharding 3-77

OracleCommand Object 3-78

Transactions 3-79

System.Transactions and Promotable Transactions 3-79

Implicit Transaction Enlistment Using TransactionScope 3-80

Explicit Transaction Enlistment Using CommittableTransaction 3-81

Distributed Transactions 3-82

Microsoft Distributed Transaction Coordinator Integration 3-83

ODP.NET, Managed Driver Setup 3-84

ODP.NET, Unmanaged Driver Setup 3-84

Parameter Binding 3-84

Command Timeouts 3-85

OracleDbType Enumeration Type 3-86

Inference of DbType, OracleDbType, and .NET Types 3-87

PL/SQL Associative Array Binding 3-91

Array Binding 3-94

Batch Processing 3-98

vii

Statement Caching 3-98

Statement Caching Connection String Attributes 3-98

Enabling Statement Caching through the Registry 3-99

Statement Caching Methods and Properties 3-99

Connections and Statement Caching 3-99

Pooling and Statement Caching 3-99

Self-Tuning 3-100

Self-Tuning Statement Caching 3-100

Enabling or Disabling Self-Tuning for Applications 3-101

Tracing Optimization Changes 3-102

Data Transmission Performance 3-102

ODP.NET Types Overview 3-103

GUIDs 3-106

Obtaining Data from an OracleDataReader Object 3-110

Typed OracleDataReader Accessors 3-110

.NET Type Accessors 3-110

ODP.NET Type Accessors 3-113

Obtaining LONG and LONG RAW Data 3-114

Setting InitialLONGFetchSize to Zero or a Value Greater than Zero 3-115

Setting InitialLONGFetchSize to -1 3-115

Obtaining LOB Data 3-116

Setting InitialLOBFetchSize to Zero 3-116

Setting InitialLOBFetchSize to a Value Greater than Zero 3-117

Setting InitialLOBFetchSize to -1 3-117

Performance Considerations Related to the InitialLOBFetchSize Property 3-119

Controlling the Number of Rows Fetched in One Database Round-Trip 3-119

Use of FetchSize 3-120

Fine-Tuning FetchSize 3-120

Using the RowSize Property 3-120

PL/SQL REF CURSOR and OracleRefCursor 3-121

Obtaining an OracleRefCursor Object 3-122

Obtaining a REF CURSOR Data Type 3-122

Populating an OracleDataReader from a REF CURSOR 3-122

Populating the DataSet from a REF CURSOR 3-122

Populating an OracleRefCursor from a REF CURSOR 3-123

Updating a DataSet Obtained from a REF CURSOR 3-123

Behavior of ExecuteScalar Method for REF CURSOR 3-123

Passing a REF CURSOR to a Stored Procedure 3-124

Implicit REF CURSOR Binding 3-125

Specifying REF CURSOR Bind and Metadata Information in the .NET Configuration
File 3-126

viii

Sample Configuration File and Application 3-129

Usage Considerations 3-132

CommandText Property Considerations 3-132

Bind Considerations 3-133

Overloaded Stored Procedures 3-133

Type Initialization Exceptions 3-133

Using Stored Functions with Function Import 3-133

LOB Support 3-134

Large Character and Large Binary Data Types 3-134

Oracle Data Provider for .NET LOB Objects 3-134

Updating LOBs Using a DataSet 3-136

Updating LOBs Using OracleCommand and OracleParameter 3-136

Updating LOBs Using ODP.NET LOB Objects 3-136

Temporary LOBs 3-137

Native JSON Support 3-137

ODP.NET XML Support 3-138

Supported XML Features 3-138

XQuery Support 3-139

OracleXmlType and Connection Dependency 3-140

Updating XMLType Data in the Database 3-140

Updating with DataSet, OracleDataAdapter, and OracleCommandBuilder 3-140

Updating with OracleCommand and OracleParameter 3-141

Updating XML Data in OracleXmlType 3-142

Characters with Special Meaning in XML 3-142

Retrieving Query Result Set as XML 3-143

Handling Date and Time Format 3-143

Characters with Special Meaning in Column Data 3-143

Characters in Table or View Name 3-144

Case-Sensitivity in Column Name to XML Element Name Mapping 3-144

Column Name to XML Element Name Mapping 3-145

Object-Relational Data 3-146

NULL Values 3-147

Data Manipulation Using XML 3-147

Handling Date and Time Format 3-147

Saving Changes Using XML 3-147

Characters with Special Meaning in Column Data 3-148

Characters with Special Meaning in Table or View Name 3-148

Case-Sensitivity in XML Element Name to Column Name Mapping 3-148

XML Element Name to Column Name Mapping 3-149

Saving Changes to a Table Using an XML Document 3-149

Object-Relational Data 3-150

ix

Multiple Tables 3-151

Commit Transactions 3-151

Oracle User-Defined Types (UDTs) and .NET Custom Types 3-151

Oracle User-Defined Types (UDTs) 3-152

Custom Types 3-152

Required Custom Type Implementations 3-153

Optional Custom Type Implementations 3-154

Specifying Custom Type Mappings 3-155

Using a Custom Type Factory to Specify Custom Type Mappings 3-156

Using XML in Configuration Files to Specify Custom Type Mappings 3-156

Using Custom Type Mappings 3-157

Converting Between Custom Types and Oracle UDTs 3-158

Oracle UDT Attribute Mappings 3-159

Oracle UDT Retrieval from OracleDataReader 3-160

Oracle UDT Metadata Retrieval from OracleDataReader 3-162

Oracle UDT Parameter Binding with OracleParameter 3-162

Guidelines for Binding UDT Input and Output Parameters 3-163

UDT Input Parameter Binding with OracleParameters 3-163

UDT Output Parameter Binding with OracleParameters 3-164

Populating the DataSet with Oracle UDTs 3-165

UDT Method Invocation 3-166

Configuration Settings for Oracle UDTs 3-167

StatementCacheWithUdts 3-167

UdtCacheSize 3-167

Using UDTs with Managed ODP.NET and ODP.NET Core 3-167

Migrating from Unmanaged ODP.NET to Managed or Core 3-170

Handling NULL Attribute Values in UDTs 3-170

Bulk Copy 3-171

Data Types Supported by Bulk Copy 3-171

Restrictions on Oracle Bulk Copy of a Single Partition 3-172

Integrity Constraints Affecting Oracle Bulk Copy 3-172

Database Insert Triggers 3-172

Field Defaults 3-173

Oracle Database Advanced Queuing Support 3-173

Using ODP.NET for Advanced Queuing 3-175

Enqueuing and Dequeuing Example 3-176

Continuous Query Notification Support 3-178

Client Initiated Continuous Query Notifications 3-180

Continuous Query Notification Classes 3-180

Supported Operations 3-181

Requirements of Notification Registration 3-182

x

Using Continuous Query Notification 3-183

Application Steps 3-183

Flow of Notification Process 3-183

Best Practice Guidelines and Performance Considerations 3-185

OracleDataAdapter Safe Type Mapping 3-186

Comparison Between Oracle Data Types and .NET Types 3-186

SafeMapping Property 3-188

Using Safe Type Mapping 3-188

OracleDataAdapter Requery Property 3-189

Guaranteeing Uniqueness in Updating DataSet to Database 3-190

What Constitutes Uniqueness in DataRow Objects? 3-191

Configuring PrimaryKey and Constraints Properties 3-191

Updating Without PrimaryKey and Constraints Configuration 3-192

Globalization Support 3-192

Globalization Settings 3-193

Client Globalization Settings 3-193

Session Globalization Settings 3-194

Thread-Based Globalization Settings 3-194

Globalization-Sensitive Operations 3-196

Operations Dependent on Client Computer's Globalization Settings 3-196

Operations Dependent on Thread Globalization Settings 3-196

Operations Sensitive to Session Globalization Parameters 3-197

ODP.NET Driver Globalization Differences 3-197

Debug Tracing 3-197

Database Application Migration: SQL Translation Framework 3-199

The SQL Translation Profile 3-200

4 ADO.NET Entity Framework and LINQ to Entities

Overview of Entity Framework 4-1

Language Integrated Query and Entity SQL 4-2

Mapping Oracle Data Types to EDM Types 4-3

EDM Type Facets 4-6

Oracle Number Default Data Type Mapping and Customization 4-14

Entity Framework 6 Mapping and Customization 4-14

New Default Mappings 4-15

Data Type Mapping and Customization Process 4-15

StoreGeneratedPattern Enumeration 4-16

Identity Attribute 4-16

Virtual Column 4-17

Resolving Compilation Errors When Using Custom Mapping 4-17

xi

Mapping Boolean and Guid Parameters in Custom INSERT, UPDATE, and DELETE
Stored Procedures 4-17

Migrating Existing Entity Framework 5 Applications to Entity Framework 6 4-17

Code First 4-18

Mapping of .NET Types to Oracle Types 4-19

Code First Migrations 4-22

Code First Migrations With No Supporting Code Migration File 4-23

Code First Database Initialization 4-23

Oracle Database Object Creation 4-24

Using the Default Connection Factory 4-26

Unsupported Entity Framework Features 4-27

5 Oracle Data Provider for .NET Entity Framework Core

Oracle Entity Framework Core 7 Features 5-1

Oracle Entity Framework Core 8 Features 5-4

Application Programming Interface 5-5

DatabaseFacade Class 5-6

DatabaseFacade.IsOracle 5-6

DatabaseFacade.EnsureCreated 5-6

DatabaseFacade.EnsureCreated(string[]) 5-7

DatabaseFacade.EnsureDeleted 5-8

DatabaseFacade.EnsureDeleted(string[]) 5-8

DbContextOptionsBuilder Class 5-9

DbContextOptionsBuilder.UseOracle 5-9

UseOracle(string connectionString) 5-10

UseOracle(DbContextOptionsBuilder, Action<OracleDbContextOptionsBuilder>
oracleOptionsAction = null) 5-10

UseOracleSQLCompatibility(string version) 5-11

UseOracleSQLCompatibility(enum version) 5-11

IQueryingEnumerable Interface 5-12

IQueryingEnumerable.ToQueryString Extension Method 5-12

MigrationBuilder Class 5-13

ModelBuilder Class 5-13

ModelBuilder UseIdentityColumn() and UseOracleIdentityColumn() 5-13

OracleSQLCompatibility Enumeration 5-14

Sample Code 5-14

Using ODP.NET Core Classes 5-15

Logging 5-16

Migrations 5-17

Scaffolding Or Reverse Engineering 5-20

Identifier Name Length and Uniqueness 5-23

xii

Using Large Character or Binary Data Types 5-24

Performance Considerations 5-24

Breaking Changes 5-25

6 Oracle Data Provider for .NET Stored Procedures

Introducing .NET Stored Procedure Execution Using ODP.NET 6-1

Limitations and Restrictions on ODP.NET Within .NET Stored Procedure 6-2

Implicit Database Connection 6-2

Transaction Support 6-3

Unsupported SQL Commands 6-6

Oracle User-Defined Type (UDT) Support 6-6

Porting Client Application to .NET Stored Procedure 6-6

7 Oracle Data Provider for .NET Classes

OracleAccessToken Class 7-2

OracleAccessToken Members 7-3

OracleAccessToken Constructors 7-4

OracleAccessToken(char) 7-4

OracleAccessToken(char, char) 7-5

RefreshAccessToken Event 7-5

OracleClientFactory Class 7-6

OracleClientFactory Members 7-7

OracleClientFactory Field 7-9

Instance 7-9

OracleClientFactory Constructor 7-10

OracleClientFactory Public Properties 7-10

CanCreateDataSourceEnumerator 7-11

OracleClientFactory Public Methods 7-11

CreateCommand 7-12

CreateCommandBuilder 7-12

CreateConnection 7-13

CreateConnectionStringBuilder 7-13

CreateDataAdapter 7-14

CreateDataSourceEnumerator 7-14

CreateParameter 7-15

CreatePermission 7-15

OracleCommand Class 7-16

OracleCommand Members 7-18

OracleCommand Constructors 7-21

xiii

OracleCommand() 7-21

OracleCommand(string) 7-22

OracleCommand(string, OracleConnection) 7-22

OracleCommand Static Methods 7-23

OracleCommand Properties 7-23

AddRowid 7-25

AddToStatementCache 7-26

ArrayBindCount 7-27

ArrayBindRowsAffected 7-28

BindByName 7-29

CommandText 7-30

CommandTimeout 7-31

CommandType 7-32

Connection 7-32

DesignTimeVisible 7-33

FetchSize 7-34

ImplicitRefCursors 7-35

InitialLOBFetchSize 7-35

InitialLONGFetchSize 7-36

Notification 7-37

NotificationAutoEnlist 7-38

Parameters 7-39

RowSize 7-40

Transaction 7-41

UpdatedRowSource 7-41

UseEdmMapping 7-42

XmlCommandType 7-43

XmlQueryProperties 7-43

XmlSaveProperties 7-44

OracleCommand Public Methods 7-45

Cancel 7-46

Clone 7-50

CreateParameter 7-51

Dispose 7-51

ExecuteNonQuery 7-52

ExecuteReader 7-54

ExecuteReader() 7-54

ExecuteReader(CommandBehavior) 7-56

ExecuteScalar 7-57

ExecuteStream 7-58

ExecuteToStream 7-59

xiv

ExecuteXmlReader 7-60

Prepare 7-61

OracleCommandBuilder Class 7-61

OracleCommandBuilder Members 7-64

OracleCommandBuilder Constructors 7-66

OracleCommandBuilder() 7-66

OracleCommandBuilder(OracleDataAdapter) 7-67

OracleCommandBuilder Static Methods 7-67

DeriveParameters 7-68

OracleCommandBuilder Properties 7-70

CaseSensitive 7-71

CatalogLocation 7-72

CatalogSeparator 7-72

ConflictOption 7-73

DataAdapter 7-73

QuotePrefix 7-74

QuoteSuffix 7-74

SchemaSeparator 7-75

OracleCommandBuilder Public Methods 7-76

GetDeleteCommand 7-77

GetDeleteCommand() 7-78

GetDeleteCommand(bool) 7-78

GetInsertCommand 7-79

GetInsertCommand() 7-80

GetInsertCommand(bool) 7-80

GetUpdateCommand 7-81

GetUpdateCommand() 7-82

GetUpdateCommand(bool) 7-82

QuoteIdentifier 7-83

RefreshSchema 7-84

UnquoteIdentifier 7-85

OracleCommandBuilder Events 7-86

OracleConfiguration Class 7-86

OracleConfiguration Members 7-89

OracleConfiguration Connection Properties 7-93

DatabaseEditionName 7-94

DisableOOB 7-95

DrcpConnectionClass 7-95

HostnameDefaultServiceIsHost 7-96

NamesDirectoryPath 7-96

OciCompartment 7-97

xv

OciDatabase 7-97

OciIamUrl 7-98

OciTenacy 7-98

OracleDataSources 7-99

TcpConnectTimeout 7-99

TnsAdmin 7-100

OracleConfiguration Secure Connection Properties 7-100

PasswordAuthentication 7-102

SqlNetAuthenticationServices 7-102

SqlNetCloudUser 7-103

SqlNetCryptoChecksumClient 7-103

SqlNetEncryptionClient 7-104

SqlNetEncryptionTypesClient 7-105

SqlNetCryptoChecksumTypesClient 7-105

SqlNetWalletOverride 7-106

SqlNetURI 7-106

SSLServerDNMatch 7-107

SSLVersion 7-108

TokenAuthentication 7-108

TokenLocation 7-109

WalletLocation 7-110

OracleConfiguration Command Properties 7-111

AddOracleTypesDeserialization 7-111

BindByName 7-112

CommandTimeout 7-113

GetDecimalRetainTrailingZeros 7-113

UseClientInitiatedCQN 7-114

OracleConfiguration Directories Properties 7-115

DefaultAdminContext 7-116

DirectoryServers 7-116

DirectoryServerType 7-117

LdapAdmin 7-118

NamesLdapAuthenticateBind 7-118

NamesLdapAuthenticateBindMethod 7-119

NamesLdapConnTimeout 7-120

OracleConfiguration High Availability Properties 7-121

ChunkMigrationConnectionTimeout 7-121

DbNotificationAddress 7-122

DbNotificationPort 7-123

HAEvents 7-123

OnsConfigFile 7-124

xvi

OnsMode 7-124

OnsProtocol 7-125

OnsWalletLocation 7-125

OracleOnsServers 7-126

ServiceRelocationConnectionTimeout 7-126

OracleConfiguration Performance Properties 7-127

FetchSize 7-128

LoadBalancing 7-128

MaxStatementCacheSize 7-129

PerformanceCounters 7-129

ReceiveBufferSize 7-130

SelfTuning 7-130

SendBufferSize 7-131

StatementCacheSize 7-131

TcpNoDelay 7-132

OracleConfiguration Debug Tracing Properties 7-132

TraceFileLocation 7-133

TraceFileMaxSize 7-133

TraceLevel 7-134

TraceOption 7-135

OracleConnection Class 7-135

OracleConnection Members 7-137

OracleConnection Constructors 7-142

OracleConnection() 7-143

OracleConnection(string) 7-144

OracleConnection(string, OracleCredential) 7-145

OracleConnection Static Properties 7-145

IsAvailable 7-146

OracleConnection Static Methods 7-147

ClearPool 7-148

ClearAllPools 7-149

OracleConnection Properties 7-150

AccessToken 7-153

ActionName 7-154

AllowCertificateSelectionUI 7-155

ChunkMigrationConnectionTimeout 7-156

ClientId 7-157

ClientInfo 7-158

ConnectionString 7-158

ConnectionTimeout 7-165

ConnectionType 7-166

xvii

Credential 7-166

Database 7-167

DatabaseDomainName 7-168

DatabaseEditionName 7-168

DatabaseName 7-169

DataSource 7-170

DRCPConnectionClass 7-170

DRCPPurity 7-171

HostName 7-172

InstanceName 7-172

KeepAlive 7-173

KeepAliveInterval 7-174

KeepAliveTime 7-174

ModuleName 7-175

OciCompartment 7-176

OciDatabase 7-176

OciIamUrl 7-177

OciTenacy 7-178

PasswordAuthentication 7-178

PDBName 7-179

ProviderVersion 7-180

ServerVersion 7-181

ServiceName 7-181

SqlNetAuthenticationServices 7-182

State 7-183

StatementCacheSize 7-184

SwitchedConnection 7-184

TnsAdmin 7-185

TokenAuthentication 7-186

TokenLocation 7-187

UseHourOffsetForUnsupportedTimezone 7-188

WalletLocation 7-190

OracleConnection Public Methods 7-190

BeginTransaction 7-192

BeginTransaction() 7-192

BeginTransaction(IsolationLevel) 7-193

ChangeDatabase 7-195

Clone 7-195

Close 7-196

CreateCommand 7-197

EnlistDistributedTransaction 7-198

xviii

EnlistTransaction 7-200

FlushCache 7-201

GetSchema 7-202

GetSchema() 7-203

GetSchema (string collectionName) 7-204

GetSchema (string collectionName, string[] restrictions) 7-206

GetSessionInfo 7-208

GetSessionInfo() 7-209

GetSessionInfo(OracleGlobalization) 7-210

Open 7-210

OpenWithNewPassword 7-211

OpenWithNewPassword(String) 7-212

OpenWithNewPassword(SecureString) 7-213

OpenWithNewToken(char[]) 7-214

OpenWithNewToken(char[], char[]) 7-215

PurgeStatementCache 7-216

SetSessionInfo 7-217

SetShardingKey(OracleShardingKey, OracleShardingKey) 7-218

OracleConnection Events 7-219

ConnectionOpen 7-220

Failover 7-221

HAEvent 7-222

InfoMessage 7-223

StateChange 7-224

OracleConnectionOpenEventArgs Class 7-225

OracleConnectionOpenEventArgs Members 7-225

OracleConnectionOpenEventArgs Properties 7-226

Connection 7-226

OracleConnectionOpenEventHandler Delegate 7-227

OracleConnectionStringBuilder Class 7-228

OracleConnectionStringBuilder Members 7-231

OracleConnectionStringBuilder Constructors 7-234

OracleConnectionStringBuilder() 7-234

OracleConnectionStringBuilder(string) 7-235

OracleConnectionStringBuilder Public Properties 7-235

ConnectionLifeTime 7-237

ConnectionTimeout 7-238

ContextConnection 7-239

DataSource 7-239

DBAPrivilege 7-240

DecrPoolSize 7-241

xix

Enlist 7-241

HAEvents 7-242

IncrPoolSize 7-242

IsFixedSize 7-243

Item 7-244

Keys 7-244

LoadBalancing 7-245

MaxPoolSize 7-245

MetadataPooling 7-246

MinPoolSize 7-246

Password 7-247

PersistSecurityInfo 7-248

Pooling 7-248

ProxyPassword 7-249

ProxyUserId 7-249

SelfTuning 7-250

StatementCachePurge 7-250

StatementCacheSize 7-251

TnsAdmin 7-252

TokenAuthentication 7-252

TokenLocation 7-253

UserID 7-253

ValidateConnection 7-254

Values 7-254

WalletLocation 7-255

OracleConnectionStringBuilder Public Methods 7-256

Clear 7-256

ContainsKey 7-257

Remove 7-257

TryGetValue 7-258

OracleCredential Class 7-259

OracleCredential Members 7-261

OracleCredential Constructors 7-262

OracleCredential(string, SecureString) 7-263

OracleCredential(string, SecureString, OracleDBAPrivilege) 7-263

OracleCredential(string, SecureString, string, SecureString) 7-264

OracleCredential Properties 7-265

DBAPrivilege 7-265

Password 7-266

ProxyPassword 7-266

ProxyUserId 7-267

xx

UserId 7-267

OracleDataAdapter Class 7-268

OracleDataAdapter Members 7-270

OracleDataAdapter Constructors 7-272

OracleDataAdapter() 7-273

OracleDataAdapter(OracleCommand) 7-273

OracleDataAdapter(string, OracleConnection) 7-274

OracleDataAdapter(string, string) 7-275

OracleDataAdapter Static Methods 7-276

OracleDataAdapter Properties 7-276

DeleteCommand 7-277

IdentityInsert 7-278

IdentityUpdate 7-279

InsertCommand 7-280

Requery 7-280

ReturnProviderSpecificTypes 7-281

SafeMapping 7-281

SelectCommand 7-282

SuppressGetDecimalInvalidCastException 7-283

UpdateBatchSize 7-284

UpdateCommand 7-285

OracleDataAdapter Public Methods 7-285

Fill 7-286

Fill(DataTable, OracleRefCursor) 7-287

Fill(DataSet, OracleRefCursor) 7-288

Fill(DataSet, string, OracleRefCursor) 7-289

Fill(DataSet, int, int, string, OracleRefCursor) 7-290

OracleDataAdapter Events 7-291

RowUpdated 7-291

RowUpdating 7-294

OracleDatabase Class 7-294

OracleDatabase Members 7-296

OracleDatabase Constructors 7-297

OracleDatabase Constructor(string) 7-298

OracleDatabase Constructor(string, OracleCredential) 7-299

OracleDatabase Properties 7-299

ServerVersion 7-300

OracleDatabase Public Methods 7-300

Dispose 7-301

ExecuteNonQuery 7-301

Shutdown 7-302

xxi

Shutdown() 7-302

Shutdown(OracleDBShutdownMode, bool) 7-303

Startup 7-305

Startup() 7-306

Startup(OracleDBStartupMode, string, bool) 7-307

OracleDataReader Class 7-308

OracleDataReader Members 7-311

OracleDataReader Static Methods 7-314

OracleDataReader Properties 7-315

Depth 7-316

FetchSize 7-316

FieldCount 7-317

HasRows 7-318

HiddenFieldCount 7-319

IsClosed 7-320

Item 7-321

Item [index] 7-321

Item [string] 7-322

InitialLOBFetchSize 7-323

InitialLONGFetchSize 7-323

RecordsAffected 7-324

RowSize 7-325

SuppressGetDecimalInvalidCastException 7-326

UseEdmMapping 7-327

VisibleFieldCount 7-327

OracleDataReader Public Methods 7-329

Close 7-331

Dispose 7-332

GetBoolean 7-332

GetByte 7-333

GetBytes 7-334

GetChar 7-335

GetChars 7-336

GetData 7-337

GetDataTypeName 7-337

GetDateTime 7-338

GetDateTimeOffset 7-339

GetDecimal 7-340

GetDouble 7-341

GetEnumerator 7-342

GetFieldType 7-342

xxii

GetFloat 7-343

GetGuid 7-344

GetInt16 7-345

GetInt32 7-346

GetInt64 7-347

GetName 7-348

GetOracleBFile 7-349

GetOracleBinary 7-350

GetOracleBlob 7-350

GetOracleBlobForUpdate 7-351

GetOracleBlobForUpdate(int) 7-352

GetOracleBlobForUpdate(int, int) 7-354

GetOracleClob 7-355

GetOracleClobForUpdate 7-356

GetOracleClobForUpdate(int) 7-357

GetOracleClobForUpdate(int, int) 7-359

GetOracleDate 7-360

GetOracleDecimal 7-361

GetOracleIntervalDS 7-362

GetOracleIntervalYM 7-363

GetOracleRef 7-364

GetOracleString 7-364

GetOracleTimeStamp 7-365

GetOracleTimeStampLTZ 7-366

GetOracleTimeStampTZ 7-367

GetOracleXmlType 7-368

GetOracleValue 7-368

GetOracleValues 7-369

GetOrdinal 7-370

GetProviderSpecificFieldType 7-371

GetProviderSpecificValue 7-372

GetProviderSpecificValues 7-373

GetSchemaTable 7-373

GetString 7-378

GetTimeSpan 7-379

GetValue 7-380

GetValues 7-381

GetXmlReader 7-382

IsDBNull 7-382

NextResult 7-383

Read 7-384

xxiii

OracleDataSourceCollection Class 7-385

OracleDataSourceCollection Members 7-387

OracleDataSourceCollection Methods 7-387

Add 7-388

Remove 7-389

OracleDataSourceCollection Properties 7-389

Count 7-390

This 7-390

OracleDataSourceEnumerator Class 7-391

OracleDataSourceEnumerator Members 7-392

OracleDataSourceEnumerator Constructor 7-393

OracleDataSourceEnumerator Public Methods 7-394

GetDataSources 7-394

OracleError Class 7-395

OracleError Members 7-397

OracleError Static Methods 7-398

OracleError Properties 7-398

ArrayBindIndex 7-399

DataSource 7-400

Message 7-400

Number 7-401

Procedure 7-401

Source 7-402

OracleError Methods 7-402

ToString 7-403

OracleErrorCollection Class 7-403

OracleErrorCollection Members 7-405

OracleErrorCollection Static Methods 7-406

OracleErrorCollection Properties 7-406

OracleErrorCollection Public Methods 7-407

OracleException Class 7-408

OracleException Members 7-409

OracleException Static Methods 7-411

OracleException Properties 7-411

DataSource 7-412

Errors 7-412

IsRecoverable 7-413

Message 7-414

Number 7-414

OracleLogicalTransaction 7-415

Procedure 7-416

xxiv

Source 7-416

OracleException Methods 7-417

GetObjectData 7-417

ToString 7-418

OracleInfoMessageEventArgs Class 7-419

OracleInfoMessageEventArgs Members 7-421

OracleInfoMessageEventArgs Static Methods 7-422

OracleInfoMessageEventArgs Properties 7-422

Errors 7-423

Message 7-423

Source 7-424

OracleInfoMessageEventArgs Public Methods 7-424

ToString 7-425

OracleInfoMessageEventHandler Delegate 7-425

OracleLogicalTransaction Class 7-426

OracleLogicalTransaction Members 7-427

OracleLogicalTransaction Public Read-Only Properties 7-428

Committed 7-429

ConnectionString 7-430

LogicalTransactionId 7-430

UserCallCompleted 7-431

OracleLogicalTransaction Methods 7-432

Dispose 7-432

GetOutcome 7-433

OracleOnsServerCollection Class 7-434

OracleOnsServerCollection Members 7-436

OracleOnsServerCollection Methods 7-436

Add 7-437

Remove 7-437

OracleOnsServerCollection Properties 7-438

Count 7-438

This 7-439

OracleParameter Class 7-439

OracleParameter Members 7-441

OracleParameter Constructors 7-443

OracleParameter() 7-444

OracleParameter(string, OracleDbType) 7-445

OracleParameter(string, object) 7-446

OracleParameter(string, OracleDbType, ParameterDirection) 7-447

OracleParameter(string, OracleDbType, object, ParameterDirection) 7-449

OracleParameter(string, OracleDbType, int) 7-450

xxv

OracleParameter(string, OracleDbType, int, string) 7-451

OracleParameter(string, OracleDbType, int, ParameterDirection, bool, byte, byte,
string, DataRowVersion, object) 7-452

OracleParameter(string, OracleDbType, int, object, ParameterDirection) 7-454

OracleParameter Static Methods 7-455

OracleParameter Properties 7-456

ArrayBindSize 7-457

ArrayBindStatus 7-459

CollectionType 7-460

DbType 7-460

Direction 7-461

IsNullable 7-462

Offset 7-462

OracleDbType 7-463

OracleDbTypeEx 7-464

ParameterName 7-465

Precision 7-465

Scale 7-466

Size 7-467

SourceColumn 7-468

SourceColumnNullMapping 7-469

SourceVersion 7-470

Status 7-470

UdtTypeName 7-471

Value 7-472

OracleParameter Public Methods 7-474

Clone 7-475

Dispose 7-476

ResetDbType 7-476

ResetOracleDbType 7-477

ToString 7-477

OracleParameterCollection Class 7-478

OracleParameterCollection Members 7-480

OracleParameterCollection Static Methods 7-481

OracleParameterCollection Properties 7-482

Count 7-483

Item 7-483

Item[int] 7-484

Item[string] 7-484

IsFixedSize 7-485

IsReadOnly 7-485

xxvi

IsSynchronized 7-486

SyncRoot 7-487

OracleParameterCollection Public Methods 7-487

Add 7-488

Add(object) 7-489

Add(OracleParameter) 7-490

Add(string, object) 7-490

Add(string, OracleDbType) 7-491

Add(string, OracleDbType, ParameterDirection) 7-492

Add(string, OracleDbType, object, ParameterDirection) 7-492

Add(string, OracleDbType, int, object, ParameterDirection) 7-494

Add(string, OracleDbType, int) 7-495

Add (string, OracleDbType, int, string) 7-496

Add(string, OracleDbType, int, ParameterDirection, bool, byte, byte, string,
DataRowVersion, object) 7-497

AddRange 7-498

Clear 7-498

Contains 7-499

Contains(object) 7-500

Contains(string) 7-501

CopyTo 7-502

GetEnumerator 7-503

IndexOf 7-503

IndexOf(object) 7-504

IndexOf(String) 7-505

Insert 7-505

Remove 7-506

RemoveAt 7-507

RemoveAt(int) 7-508

RemoveAt(String) 7-508

OraclePermission Class 7-509

OraclePermission Members 7-510

OraclePermission Constructor 7-512

OraclePermission Static Methods 7-512

OraclePermission Public Properties 7-513

OraclePermission Public Methods 7-513

Add 7-514

Copy 7-515

IsSubsetOf 7-516

OraclePermissionAttribute Class 7-517

OraclePermissionAttribute Members 7-518

xxvii

OraclePermissionAttribute Constructor 7-519

OraclePermissionAttribute Static Methods 7-520

OraclePermissionAttribute Public Properties 7-520

OraclePermissionAttribute Public Methods 7-521

CreatePermission 7-522

OracleRefreshAccessTokenEventArgs Class 7-522

OracleRefreshAccessTokenEventArgs Members 7-523

OracleRefreshAccessTokenEventArgs Properties 7-523

DbToken 7-524

PrivateKey 7-524

Token 7-525

OracleRowUpdatedEventArgs Class 7-525

OracleRowUpdatedEventArgs Members 7-526

OracleRowUpdatedEventArgs Constructor 7-528

OracleRowUpdatedEventArgs Static Methods 7-529

OracleRowUpdatedEventArgs Properties 7-529

Command 7-530

OracleRowUpdatedEventArgs Public Methods 7-530

OracleRowUpdatedEventHandler Delegate 7-531

OracleRowUpdatingEventArgs Class 7-532

OracleRowUpdatingEventArgs Members 7-533

OracleRowUpdatingEventArgs Constructor 7-534

OracleRowUpdatingEventArgs Static Methods 7-535

OracleRowUpdatingEventArgs Properties 7-535

Command 7-536

OracleRowUpdatingEventArgs Public Methods 7-536

OracleRowUpdatingEventHandler Delegate 7-537

OracleShardingKey Class 7-538

OracleShardingKey Members 7-539

OracleShardingKey Constructors 7-540

OracleShardingKey() 7-540

OracleShardingKey(OracleDbType, object) 7-541

OracleShardingKey Instance Methods 7-541

SetShardingKey(OracleDbType, object) 7-542

Dispose 7-543

OracleTransaction Class 7-543

OracleTransaction Members 7-546

OracleTransaction Static Methods 7-547

OracleTransaction Properties 7-547

IsolationLevel 7-548

Connection 7-549

xxviii

OracleTransaction Public Methods 7-549

Commit 7-550

Dispose 7-552

Rollback 7-552

Rollback() 7-553

Rollback(string) 7-554

Save 7-555

OracleConnectionType Enumeration 7-557

OracleCollectionType Enumeration 7-558

OracleDBAPrivilege Enumeration 7-559

OracleDBShutdownMode Enumeration 7-560

OracleDBStartupMode Enumeration 7-561

OracleDbType Enumeration 7-562

OracleDRCPPurity Enumeration 7-563

OracleIdentityType Enumeration 7-564

OracleParameterStatus Enumeration 7-565

OraclePasswordAuth Enumeration 7-566

OracleTokenAuth Enumeration 7-567

8 Oracle Data Provider for .NET XML-Related Classes

OracleXmlCommandType Enumeration 8-1

OracleXmlQueryProperties Class 8-2

OracleXmlQueryProperties Members 8-5

OracleXmlQueryProperties Constructor 8-6

OracleXmlQueryProperties Properties 8-7

MaxRows 8-7

RootTag 8-8

RowTag 8-9

Xslt 8-9

XsltParams 8-10

OracleXmlQueryProperties Public Methods 8-11

Clone 8-11

OracleXmlSaveProperties Class 8-11

OracleXmlSaveProperties Members 8-14

OracleXmlSaveProperties Constructor 8-15

OracleXmlSaveProperties Properties 8-16

KeyColumnsList 8-16

RowTag 8-17

Table 8-18

UpdateColumnsList 8-18

xxix

Xslt 8-19

XsltParams 8-20

OracleXmlSaveProperties Public Methods 8-20

Clone 8-21

OracleXmlStream Class 8-21

OracleXmlStream Members 8-22

OracleXmlStream Constructor 8-24

OracleXmlStream Static Methods 8-25

OracleXmlStream Instance Properties 8-25

CanRead 8-26

CanSeek 8-26

CanWrite 8-27

Connection 8-27

Length 8-28

Position 8-28

Value 8-29

OracleXmlStream Instance Methods 8-30

Clone 8-31

Close 8-31

Dispose 8-32

Flush 8-32

Read 8-33

Read(byte[], int, int) 8-33

Read(char[], int, int) 8-34

Seek 8-35

SetLength 8-36

Write 8-36

WriteLine 8-37

OracleXmlType Class 8-37

OracleXmlType Members 8-38

OracleXmlType Constructors 8-40

OracleXmlType(OracleClob) 8-41

OracleXmlType(OracleConnection, string) 8-42

OracleXmlType(OracleConnection, XmlReader) 8-42

OracleXmlType(OracleConnection, XmlDocument) 8-43

OracleXmlType Static Methods 8-44

OracleXmlType Static Fields 8-44

Null 8-45

OracleXmlType Instance Properties 8-45

Connection 8-46

IsEmpty 8-47

xxx

IsFragment 8-47

IsNull 8-48

IsSchemaBased 8-48

RootElement 8-49

Schema 8-50

SchemaUrl 8-50

Value 8-51

OracleXmlType Instance Methods 8-51

Clone 8-52

Dispose 8-53

Extract 8-53

Extract(string, string) 8-54

Extract(string, XmlNameSpaceManager) 8-55

GetStream 8-56

GetXmlDocument 8-56

GetXmlReader 8-57

IsExists 8-58

IsExists(string, string) 8-58

IsExists(string, XmlNameSpaceManager) 8-59

Transform 8-60

Transform(OracleXmlType, string) 8-61

Transform(string, string) 8-61

Update 8-62

Update(string, string, string) 8-63

Update(string, XmlNameSpaceManager, string) 8-64

Update(string, string, OracleXmlType) 8-65

Update(string, XmlNameSpaceManager, OracleXmlType) 8-66

Validate 8-67

9 Oracle Data Provider for .NET HA Event Classes

OracleHAEventArgs Class 9-1

OracleHAEventArgs Members 9-2

OracleHAEventArgs Properties 9-3

DatabaseDomainName 9-3

DatabaseName 9-4

DrainTimeout 9-4

HostName 9-5

InstanceName 9-6

Reason 9-6

ServiceName 9-7

xxxi

Source 9-7

Status 9-7

Time 9-8

OracleHAEventHandler Delegate 9-8

OracleHAEventSource Enumeration 9-9

OracleHAEventStatus Enumeration 9-10

10

Continuous Query Notification Classes

OracleDependency Class 10-1

OracleDependency Members 10-2

OracleDependency Constructors 10-4

OracleDependency () 10-5

OracleDependency(OracleCommand) 10-5

OracleDependency(OracleCommand, bool, int, bool) 10-7

OracleDependency Static Fields 10-8

Address 10-9

Port 10-9

OracleDependency Static Methods 10-10

GetOracleDependency 10-11

OracleDependency Properties 10-12

DataSource 10-12

HasChanges 10-13

Id 10-13

IsEnabled 10-14

QueryBasedNotification 10-15

RegisteredQueryIDs 10-16

RegisteredResources 10-16

RowidInfo 10-17

UserName 10-18

OracleDependency Methods 10-18

AddCommandDependency 10-19

RemoveRegistration 10-20

OracleDependency Events 10-21

OnChange 10-21

OracleNotificationRequest Class 10-22

OracleNotificationRequest Members 10-23

OracleNotificationRequest Static Methods 10-24

OracleNotificationRequest Properties 10-24

IsNotifiedOnce 10-25

IsPersistent 10-26

xxxii

Timeout 10-27

GroupingNotificationEnabled 10-27

GroupingType 10-28

GroupingInterval 10-29

OracleNotificationRequest Methods 10-29

OracleNotificationEventArgs Class 10-30

OracleNotificationEventArgs Members 10-31

OracleNotificationEventArgs Static Fields 10-32

OracleNotificationEventArgs Static Methods 10-33

OracleNotificationEventArgs Properties 10-33

Details 10-33

Info 10-35

ResourceNames 10-35

Source 10-36

Type 10-37

OracleNotificationEventArgs Methods 10-38

OnChangeEventHandler Delegate 10-38

OracleRowidInfo Enumeration 10-39

OracleNotificationType Enumeration 10-40

OracleNotificationSource Enumeration 10-41

OracleNotificationInfo Enumeration 10-42

11

Oracle Data Provider for .NET Globalization Classes

OracleGlobalization Class 11-1

OracleGlobalization Members 11-2

OracleGlobalization Static Methods 11-4

GetClientInfo 11-5

GetClientInfo() 11-5

GetClientInfo(OracleGlobalization) 11-6

GetThreadInfo 11-7

GetThreadInfo() 11-7

GetThreadInfo(OracleGlobalization) 11-8

SetThreadInfo 11-9

OracleGlobalization Properties 11-11

Calendar 11-12

ClientCharacterSet 11-12

Comparison 11-13

Currency 11-13

DateFormat 11-14

DateLanguage 11-15

xxxiii

DualCurrency 11-15

ISOCurrency 11-16

Language 11-16

LengthSemantics 11-17

NCharConversionException 11-18

NumericCharacters 11-18

Sort 11-19

Territory 11-20

TimeStampFormat 11-20

TimeStampTZFormat 11-21

TimeZone 11-21

OracleGlobalization Public Methods 11-22

Clone 11-23

Dispose 11-23

12

Oracle Data Provider for .NET Failover Classes

OracleFailoverEventArgs Class 12-1

OracleFailoverEventArgs Members 12-3

OracleFailoverEventArgs Static Methods 12-4

OracleFailoverEventArgs Properties 12-5

FailoverType 12-5

FailoverEvent 12-5

OracleFailoverEventArgs Public Methods 12-6

OracleFailoverEventHandler Delegate 12-6

FailoverEvent Enumeration 12-7

FailoverReturnCode Enumeration 12-9

FailoverType Enumeration 12-9

13

Oracle Database Advanced Queuing Classes

OracleAQAgent Class 13-1

OracleAQAgent Members 13-2

OracleAQAgent Constructors 13-3

OracleAQAgent (string) 13-3

OracleAQAgent (string, string) 13-4

OracleAQAgent Properties 13-5

Address 13-5

Name 13-6

OracleAQDequeueOptions Class 13-6

OracleAQDequeueOptions Members 13-7

xxxiv

OracleAQDequeueOptions Constructor 13-8

OracleAQDequeueOptions Properties 13-9

ConsumerName 13-9

Correlation 13-10

DeliveryMode 13-11

DequeueMode 13-11

MessageId 13-12

NavigationMode 13-13

ProviderSpecificType 13-13

Visibility 13-14

Wait 13-15

OracleAQDequeueOptions Public Methods 13-15

Clone 13-16

OracleAQEnqueueOptions Class 13-16

OracleAQEnqueueOptions Members 13-17

OracleAQEnqueueOptions Constructor 13-18

OracleAQEnqueueOptions Properties 13-19

DeliveryMode 13-19

Visibility 13-20

OracleAQEnqueueOptions Public Methods 13-20

Clone 13-21

OracleAQMessage Class 13-21

OracleAQMessage Members 13-23

OracleAQMessage Constructors 13-24

OracleAQMessage() 13-24

OracleAQMessage(Object) 13-25

OracleAQMessage Properties 13-25

Correlation 13-26

Delay 13-27

DeliveryMode 13-28

DequeueAttempts 13-28

EnqueueTime 13-29

ExceptionQueue 13-29

Expiration 13-30

MessageId 13-31

OriginalMessageId 13-31

Payload 13-32

Priority 13-32

Recipients 13-33

SenderId 13-34

State 13-34

xxxv

TransactionGroup 13-35

OracleAQMessageAvailableEventArgs Class 13-35

OracleAQMessageAvailableEventArgs Members 13-36

OracleAQMessageAvailableEventArgs Constructor 13-37

OracleAQMessageAvailableEventArgs Properties 13-38

AvailableMessages 13-39

ConsumerName 13-39

Correlation 13-40

Delay 13-40

DeliveryMode 13-41

EnqueueTime 13-41

ExceptionQueue 13-42

Expiration 13-42

MessageId 13-43

NotificationType 13-43

OriginalMessageId 13-44

Priority 13-44

QueueName 13-45

SenderId 13-45

State 13-46

OracleAQMessageAvailableEventHandler Delegate 13-46

OracleAQQueue Class 13-47

OracleAQQueue Members 13-48

OracleAQQueue Constructors 13-50

OracleAQQueue(string) 13-50

OracleAQQueue(string, OracleConnection) 13-51

OracleAQQueue(string, OracleConnection, OracleAQMessageType) 13-52

OracleAQQueue(string, OracleConnection, OracleAQMessageType, string) 13-53

OracleAQQueue Static Methods 13-54

Listen 13-54

Listen(OracleConnection, OracleAQAgent[]) 13-55

Listen(OracleConnection, OracleAQAgent[], int) 13-56

OracleAQQueue Properties 13-57

Connection 13-58

DequeueOptions 13-58

EnqueueOptions 13-59

MessageType 13-59

Name 13-61

Notification 13-61

NotificationConsumers 13-62

UdtTypeName 13-62

xxxvi

OracleAQQueue Public Methods 13-63

Dequeue 13-64

Dequeue() 13-64

Dequeue(OracleAQDequeueOptions) 13-65

DequeueArray 13-66

DequeueArray(int) 13-66

DequeueArray(int, OracleAQDequeueOptions) 13-67

Dispose 13-69

Enqueue 13-69

Enqueue(OracleAQMessage) 13-70

Enqueue(OracleAQMessage, OracleAQEnqueueOptions) 13-71

EnqueueArray 13-71

EnqueueArray(OracleAQMessage[]) 13-72

EnqueueArray(OracleAQMessage[], OracleAQEnqueueOptions) 13-73

Listen 13-74

Listen(string[]) 13-74

Listen (string[], int) 13-79

OracleAQQueue Events 13-80

MessageAvailable Event 13-80

OracleAQDequeueMode Enumeration 13-84

OracleAQMessageDeliveryMode Enumeration 13-85

OracleAQMessageState Enumeration 13-86

OracleAQMessageType Enumeration 13-87

OracleAQNavigationMode Enumeration 13-88

OracleAQNotificationGroupingType Enumeration 13-89

OracleAQNotificationType Enumeration 13-90

OracleAQVisibilityMode Enumeration 13-90

14

Oracle Data Provider for .NET Types Classes

OracleBFile Class 14-1

OracleBFile Members 14-3

OracleBFile Constructors 14-6

OracleBFile(OracleConnection) 14-6

OracleBFile(OracleConnection, string, string) 14-7

OracleBFile Static Fields 14-8

MaxSize 14-8

Null 14-9

OracleBFile Static Methods 14-9

OracleBFile Instance Properties 14-10

CanRead 14-10

xxxvii

CanSeek 14-11

CanWrite 14-11

Connection 14-12

DirectoryName 14-12

FileExists 14-13

FileName 14-14

IsEmpty 14-14

IsNull 14-15

IsOpen 14-15

Length 14-16

Position 14-16

Value 14-17

OracleBFile Instance Methods 14-18

Clone 14-19

Close 14-21

CloseFile 14-21

Compare 14-22

CopyTo 14-24

CopyTo(OracleBlob) 14-25

CopyTo(OracleBlob, Int64) 14-26

CopyTo(Int64, OracleBlob, Int64, Int64) 14-27

CopyTo(OracleClob) 14-28

CopyTo(OracleClob, Int64) 14-29

CopyTo(Int64, OracleClob, Int64, Int64) 14-30

Dispose 14-31

Flush 14-31

FlushAsync 14-32

IsEqual 14-32

OpenFile 14-33

Read 14-33

Search 14-35

Seek 14-37

SetLength 14-39

Write 14-39

OracleBlob Class 14-40

OracleBlob Members 14-42

OracleBlob Constructors 14-45

OracleBlob(OracleConnection) 14-45

OracleBlob(OracleConnection, bool) 14-46

OracleBlob Static Fields 14-47

MaxSize 14-47

xxxviii

Null 14-48

OracleBlob Static Methods 14-48

OracleBlob Instance Properties 14-49

CanRead 14-49

CanSeek 14-50

CanWrite 14-50

Connection 14-51

IsEmpty 14-51

IsInChunkWriteMode 14-52

IsNull 14-52

IsTemporary 14-53

Length 14-53

OptimumChunkSize 14-54

Position 14-54

Value 14-55

OracleBlob Instance Methods 14-56

Append 14-57

Append(OracleBlob) 14-58

Append(byte[], int, int) 14-58

BeginChunkWrite 14-60

Clone 14-60

Close 14-62

Compare 14-62

CopyTo 14-63

CopyTo(OracleBlob) 14-64

CopyTo(OracleBlob, Int64) 14-65

CopyTo(Int64, OracleBlob, Int64, Int64) 14-66

Dispose 14-68

EndChunkWrite 14-68

Erase 14-69

Erase() 14-69

Erase(Int64, Int64) 14-70

Flush 14-71

IsEqual 14-71

Read 14-72

Search 14-74

Seek 14-75

SetLength 14-76

Write 14-77

OracleClob Class 14-79

OracleClob Members 14-81

xxxix

OracleClob Constructors 14-84

OracleClob(OracleConnection) 14-85

OracleClob(OracleConnection, bool, bool) 14-85

OracleClob Static Fields 14-86

MaxSize 14-87

Null 14-87

OracleClob Static Methods 14-88

OracleClob Instance Properties 14-88

CanRead 14-89

CanSeek 14-90

CanWrite 14-90

Connection 14-91

IsEmpty 14-91

IsInChunkWriteMode 14-92

IsNClob 14-92

IsNull 14-92

IsTemporary 14-93

Length 14-93

OptimumChunkSize 14-94

Position 14-94

Value 14-95

OracleClob Instance Methods 14-96

Append 14-97

Append(OracleClob) 14-98

Append(byte [], int, int) 14-98

Append(char [], int, int) 14-99

BeginChunkWrite 14-101

Clone 14-101

Close 14-103

Compare 14-103

CopyTo 14-104

CopyTo(OracleClob) 14-105

CopyTo(OracleClob, Int64) 14-106

CopyTo(Int64, OracleClob, Int64, Int64) 14-107

Dispose 14-108

EndChunkWrite 14-109

Erase 14-109

Erase() 14-110

Erase(Int64, Int64) 14-110

Flush 14-111

GetHashCode 14-111

xl

IsEqual 14-112

Read 14-113

Read(byte [], int, int) 14-113

Read(char [], int, int) 14-114

Search 14-116

Search(byte[], Int64, Int64) 14-116

Search(char[], Int64, Int64) 14-118

Seek 14-119

SetLength 14-120

Write 14-121

Write(byte[], int, int) 14-121

Write(char[], int, int) 14-122

OracleRefCursor Class 14-124

OracleRefCursor Members 14-127

OracleRefCursor Static Methods 14-128

OracleRefCursor Static Fields 14-129

Null 14-129

OracleRefCursor Properties 14-130

Connection 14-130

FetchSize 14-131

IsNull 14-132

RowSize 14-132

OracleRefCursor Instance Methods 14-133

Dispose 14-134

GetDataReader 14-134

15

Oracle Data Provider for .NET Types Structures

OracleBinary Structure 15-1

OracleBinary Members 15-3

OracleBinary Constructor 15-5

OracleBinary Static Fields 15-6

Null 15-6

OracleBinary Static Methods 15-7

Concat 15-7

Equals 15-8

GetXsdType 15-9

GreaterThan 15-9

GreaterThanOrEqual 15-10

LessThan 15-11

LessThanOrEqual 15-12

xli

NotEquals 15-13

OracleBinary Static Operators 15-13

operator + 15-14

operator == 15-15

operator > 15-15

operator >= 15-17

operator != 15-17

operator < 15-18

operator <= 15-19

OracleBinary Static Type Conversion Operators 15-20

explicit operator byte[] 15-20

implicit operator OracleBinary 15-21

OracleBinary Properties 15-21

IsNull 15-22

Item 15-22

Length 15-23

Value 15-24

OracleBinary Instance Methods 15-24

CompareTo 15-25

Equals 15-26

GetHashCode 15-27

ToString 15-27

OracleBoolean Structure 15-28

OracleBoolean Members 15-29

OracleBoolean Constructors 15-33

OracleBoolean(bool) 15-33

OracleBoolean(int) 15-34

OracleBoolean Static Fields 15-34

False 15-35

Null 15-35

One 15-35

True 15-36

Zero 15-36

OracleBoolean Static Methods 15-37

And 15-38

Equals 15-38

GreaterThan 15-39

GreaterThanOrEquals 15-40

LessThan 15-40

LessThanOrEquals 15-41

NotEquals 15-42

xlii

OnesComplement 15-43

Or 15-43

Parse 15-44

Xor 15-45

OracleBoolean Static Operators 15-45

operator > 15-46

operator >= 15-47

operator < 15-48

operator <= 15-49

operator == 15-49

operator != 15-50

operator ! 15-51

operator ~ 15-51

operator false 15-52

operator true 15-53

operator & 15-53

operator | 15-54

operator ^ 15-55

OracleBoolean Static Type Conversions 15-56

implicit operator OracleBoolean 15-56

explicit operator bool 15-57

explicit operator OracleBoolean 15-57

explicit operator OracleBoolean(byte) 15-58

explicit operator OracleBoolean(Decimal) 15-58

explicit operator OracleBoolean(Double) 15-59

explicit operator OracleBoolean(Int16) 15-60

explicit operator OracleBoolean(int) 15-60

explicit operator OracleBoolean(Int64) 15-61

explicit operator OracleBoolean(Single) 15-61

explicit operator OracleBoolean(String) 15-62

OracleBoolean Properties 15-62

ByteValue 15-63

IsFalse 15-63

IsNull 15-64

IsTrue 15-64

Value 15-65

OracleBoolean Instance Methods 15-65

CompareTo 15-66

Equals 15-67

GetHashCode 15-68

ToString 15-68

xliii

OracleDate Structure 15-69

OracleDate Members 15-70

OracleDate Constructors 15-73

OracleDate(DateTime) 15-74

OracleDate(string) 15-74

OracleDate(int, int, int) 15-76

OracleDate(int, int, int, int, int, int) 15-77

OracleDate(byte []) 15-77

OracleDate Static Fields 15-78

MaxValue 15-79

MinValue 15-79

Null 15-79

OracleDate Static Methods 15-80

Equals 15-80

GreaterThan 15-81

GreaterThanOrEqual 15-82

LessThan 15-83

LessThanOrEqual 15-84

NotEquals 15-84

GetSysDate 15-85

Parse 15-86

OracleDate Static Operators 15-87

operator == 15-88

operator > 15-88

operator >= 15-89

operator != 15-90

operator < 15-91

operator <= 15-91

OracleDate Static Type Conversions 15-92

explicit operator DateTime 15-93

explicit operator OracleDate 15-93

explicit operator OracleDate(DateTime) 15-94

explicit operator OracleDate(OracleTimeStamp) 15-94

explicit operator OracleDate(string) 15-95

OracleDate Properties 15-96

BinData 15-97

Day 15-97

IsNull 15-98

Hour 15-98

Minute 15-99

Month 15-99

xliv

Second 15-100

Value 15-100

Year 15-101

OracleDate Methods 15-101

CompareTo 15-102

Equals 15-103

GetHashCode 15-104

GetDaysBetween 15-104

ToOracleTimeStamp 15-105

ToString 15-105

OracleDecimal Structure 15-107

OracleDecimal Members 15-109

OracleDecimal Constructors 15-114

OracleDecimal(byte []) 15-115

OracleDecimal(decimal) 15-116

OracleDecimal(double) 15-116

OracleDecimal(int) 15-117

OracleDecimal(float) 15-118

OracleDecimal(long) 15-118

OracleDecimal(string) 15-119

OracleDecimal(string, string) 15-120

OracleDecimal Static Fields 15-121

MaxPrecision 15-122

MaxScale 15-122

MaxValue 15-122

MinScale 15-123

MinValue 15-123

NegativeOne 15-124

Null 15-124

One 15-124

Pi 15-125

Zero 15-125

OracleDecimal Static (Comparison) Methods 15-126

Equals 15-126

GreaterThan 15-127

GreaterThanOrEqual 15-128

LessThan 15-129

LessThanOrEqual 15-129

NotEquals 15-130

OracleDecimal Static (Manipulation) Methods 15-131

Abs 15-132

xlv

Add 15-133

AdjustScale 15-133

Ceiling 15-135

ConvertToPrecScale 15-135

Divide 15-137

Floor 15-137

Max 15-138

Min 15-138

Mod 15-139

Multiply 15-140

Negate 15-140

Parse 15-141

Round 15-142

SetPrecision 15-143

Shift 15-144

Sign 15-145

Sqrt 15-145

Subtract 15-146

Truncate 15-147

OracleDecimal Static (Logarithmic) Methods 15-147

Exp 15-148

Log 15-149

Log(OracleDecimal) 15-149

Log(OracleDecimal, int) 15-150

Log(OracleDecimal, OracleDecimal) 15-151

Pow 15-152

Pow(OracleDecimal, int) 15-152

Pow(OracleDecimal, OracleDecimal) 15-153

OracleDecimal Static (Trigonometric) Methods 15-154

Acos 15-154

Asin 15-155

Atan 15-156

Atan2 15-156

Cos 15-157

Sin 15-158

Tan 15-158

Cosh 15-159

Sinh 15-160

Tanh 15-160

OracleDecimal Static (Comparison) Operators 15-161

operator + 15-162

xlvi

operator / 15-162

operator == 15-163

operator > 15-164

operator >= 15-165

operator != 15-165

operator < 15-166

operator <= 15-167

operator * 15-168

operator - 15-168

operator - 15-169

operator% 15-170

OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal) 15-170

implicit operator OracleDecimal 15-171

implicit operator OracleDecimal(decimal) 15-171

implicit operator OracleDecimal(int) 15-172

implicit operator OracleDecimal(long) 15-173

explicit operator OracleDecimal 15-173

explicit operator OracleDecimal(double) 15-174

explicit operator OracleDecimal(string) 15-174

OracleDecimal Static Operators (Conversion from OracleDecimal to .NET) 15-175

explicit operator byte 15-176

explicit operator decimal 15-176

explicit operator double 15-177

explicit operator short 15-178

explicit operator int 15-178

explicit operator long 15-179

explicit operator float 15-180

OracleDecimal Properties 15-180

BinData 15-181

Format 15-182

IsInt 15-182

IsNull 15-183

IsPositive 15-183

IsZero 15-184

Value 15-184

OracleDecimal Instance Methods 15-185

CompareTo 15-186

Equals 15-187

GetHashCode 15-188

ToByte 15-188

ToDouble 15-189

xlvii

ToInt16 15-189

ToInt32 15-190

ToInt64 15-190

ToSingle 15-191

ToString 15-191

OracleIntervalDS Structure 15-192

OracleIntervalDS Members 15-194

OracleIntervalDS Constructors 15-197

OracleIntervalDS(TimeSpan) 15-198

OracleIntervalDS(string) 15-199

OracleIntervalDS(double) 15-199

OracleIntervalDS(int, int, int, int, double) 15-200

OracleIntervalDS(int, int, int, int, int) 15-201

OracleIntervalDS(byte[]) 15-202

OracleIntervalDS Static Fields 15-202

MaxValue 15-203

MinValue 15-204

Null 15-204

Zero 15-205

OracleIntervalDS Static Methods 15-205

Equals 15-206

GreaterThan 15-207

GreaterThanOrEqual 15-207

LessThan 15-208

LessThanOrEqual 15-209

NotEquals 15-210

Parse 15-211

SetPrecision 15-211

OracleIntervalDS Static Operators 15-212

operator + 15-213

operator == 15-214

operator > 15-215

operator >= 15-216

operator != 15-216

operator < 15-217

operator <= 15-218

operator - 15-219

operator - 15-219

operator * 15-220

operator / 15-221

OracleIntervalDS Type Conversions 15-221

xlviii

explicit operator TimeSpan 15-222

explicit operator OracleIntervalDS 15-223

implicit operator OracleIntervalDS 15-224

OracleIntervalDS Properties 15-224

BinData 15-225

Days 15-226

Hours 15-226

IsNull 15-227

Milliseconds 15-227

Minutes 15-228

Nanoseconds 15-228

Seconds 15-229

TotalDays 15-229

Value 15-230

OracleIntervalDS Methods 15-230

CompareTo 15-231

Equals 15-232

GetHashCode 15-233

ToString 15-233

OracleIntervalYM Structure 15-234

OracleIntervalYM Members 15-235

OracleIntervalYM Constructors 15-238

OracleIntervalYM(long) 15-239

OracleIntervalYM(string) 15-240

OracleIntervalYM(double) 15-240

OracleIntervalYM(int, int) 15-241

OracleIntervalYM(byte[]) 15-242

OracleIntervalYM Static Fields 15-242

MaxValue 15-243

MinValue 15-243

Null 15-244

Zero 15-244

OracleIntervalYM Static Methods 15-245

Equals 15-245

GreaterThan 15-246

GreaterThanOrEqual 15-247

LessThan 15-248

LessThanOrEqual 15-248

NotEquals 15-249

Parse 15-250

SetPrecision 15-251

xlix

OracleIntervalYM Static Operators 15-252

operator + 15-253

operator == 15-253

operator > 15-254

operator >= 15-255

operator != 15-256

operator < 15-256

operator <= 15-257

operator - 15-258

operator - 15-259

operator * 15-259

operator / 15-260

OracleIntervalYM Type Conversions 15-261

explicit operator long 15-261

explicit operator OracleIntervalYM 15-262

implicit operator OracleIntervalYM 15-263

OracleIntervalYM Properties 15-263

BinData 15-264

IsNull 15-264

Months 15-265

TotalYears 15-265

Value 15-266

Years 15-266

OracleIntervalYM Methods 15-267

CompareTo 15-267

Equals 15-268

GetHashCode 15-269

ToString 15-270

OracleString Structure 15-270

OracleString Members 15-272

OracleString Constructors 15-275

OracleString(string) 15-276

OracleString(string, bool) 15-276

OracleString(byte [], bool) 15-277

OracleString(byte [], bool, bool) 15-277

OracleString(byte [], int, int, bool) 15-278

OracleString(byte [], int, int, bool, bool) 15-279

OracleString Static Fields 15-280

Null 15-280

OracleString Static Methods 15-281

Concat 15-281

l

Equals 15-282

GreaterThan 15-283

GreaterThanOrEqual 15-284

LessThan 15-285

LessThanOrEqual 15-285

NotEquals 15-286

OracleString Static Operators 15-287

operator + 15-287

operator == 15-288

operator > 15-289

operator >= 15-290

operator != 15-290

operator < 15-291

operator <= 15-292

OracleString Type Conversions 15-293

explicit operator string 15-293

implicit operator OracleString 15-294

OracleString Properties 15-294

IsCaseIgnored 15-295

IsNull 15-296

Item 15-296

Length 15-297

Value 15-297

OracleString Methods 15-298

Clone 15-299

CompareTo 15-299

Equals 15-300

GetHashCode 15-301

GetNonUnicodeBytes 15-302

GetUnicodeBytes 15-302

ToString 15-303

OracleTimeStamp Structure 15-303

OracleTimeStamp Members 15-305

OracleTimeStamp Constructors 15-309

OracleTimeStamp(DateTime) 15-310

OracleTimeStamp(string) 15-310

OracleTimeStamp(int, int, int) 15-312

OracleTimeStamp(int, int, int, int, int, int) 15-313

OracleTimeStamp(int, int, int, int, int, int, double) 15-314

OracleTimeStamp(int, int, int, int, int, int, int) 15-315

OracleTimeStamp(byte []) 15-316

li

OracleTimeStamp Static Fields 15-316

MaxValue 15-317

MinValue 15-317

Null 15-318

OracleTimeStamp Static Methods 15-318

Equals 15-319

GreaterThan 15-319

GreaterThanOrEqual 15-320

LessThan 15-321

LessThanOrEqual 15-322

NotEquals 15-323

GetSysDate 15-323

Parse 15-324

SetPrecision 15-325

OracleTimeStamp Static Operators 15-326

operator + 15-327

operator + (OracleTimeStamp, OracleIntervalDS) 15-327

operator + (OracleTimeStamp, OracleIntervalYM) 15-328

operator + (OracleTimeStamp, TimeSpan) 15-329

operator == 15-329

operator > 15-330

operator >= 15-331

operator != 15-332

operator < 15-333

operator <= 15-333

operator - 15-334

operator - (OracleTimeStamp, OracleIntervalDS) 15-335

operator - (OracleTimeStamp, OracleIntervalYM) 15-335

operator - (OracleTimeStamp, TimeSpan) 15-336

OracleTimeStamp Static Type Conversions 15-337

explicit operator OracleTimeStamp 15-337

explicit operator OracleTimeStamp(OracleTimeStampLTZ) 15-338

explicit operator OracleTimeStamp(OracleTimeStampTZ) 15-339

explicit operator OracleTimeStamp(string) 15-339

implicit operator OracleTimeStamp 15-341

implicit operator OracleTimeStamp(OracleDate) 15-341

implicit operator OracleTimeStamp(DateTime) 15-342

explicit operator DateTime 15-343

OracleTimeStamp Properties 15-343

BinData 15-344

Day 15-345

lii

IsNull 15-345

Hour 15-345

Millisecond 15-346

Minute 15-346

Month 15-347

Nanosecond 15-347

Second 15-348

Value 15-349

Year 15-349

OracleTimeStamp Methods 15-350

AddDays 15-351

AddHours 15-351

AddMilliseconds 15-352

AddMinutes 15-353

AddMonths 15-353

AddNanoseconds 15-354

AddSeconds 15-355

AddYears 15-355

CompareTo 15-356

Equals 15-357

GetHashCode 15-358

GetDaysBetween 15-358

GetYearsBetween 15-359

ToOracleDate 15-360

ToOracleTimeStampLTZ 15-360

ToOracleTimeStampTZ 15-361

ToString 15-361

OracleTimeStampLTZ Structure 15-363

OracleTimeStampLTZ Members 15-364

OracleTimeStampLTZ Constructors 15-368

OracleTimeStampLTZ(DateTime) 15-369

OracleTimeStampLTZ(string) 15-370

OracleTimeStampLTZ(int, int, int) 15-371

OracleTimeStampLTZ(int, int, int, int, int, int) 15-372

OracleTimeStampLTZ(int, int, int, int, int, int, double) 15-373

OracleTimeStampLTZ(int, int, int, int, int, int, int) 15-374

OracleTimeStampLTZ(byte []) 15-375

OracleTimeStampLTZ Static Fields 15-376

MaxValue 15-376

MinValue 15-377

Null 15-377

liii

OracleTimeStampLTZ Static Methods 15-378

Equals 15-378

GetLocalTimeZoneName 15-379

GetLocalTimeZoneOffset 15-380

GetSysDate 15-380

GreaterThan 15-380

GreaterThanOrEqual 15-381

LessThan 15-382

LessThanOrEqual 15-383

NotEquals 15-384

Parse 15-384

SetPrecision 15-386

OracleTimeStampLTZ Static Operators 15-387

operator + 15-387

operator + (OracleTimeStampLTZ, OracleIntervalDS) 15-388

operator + (OracleTimeStampLTZ, OracleIntervalYM) 15-389

operator + (OracleTimeStampLTZ, TimeSpan) 15-389

operator == 15-390

operator > 15-391

operator >= 15-392

operator != 15-393

operator < 15-393

operator <= 15-394

operator - 15-395

operator - (OracleTimeStampLTZ, OracleIntervalDS) 15-396

operator - (OracleTimeStampLTZ, OracleIntervalYM) 15-396

operator - (OracleTimeStampLTZ, TimeSpan) 15-397

OracleTimeStampLTZ Static Type Conversions 15-398

explicit operator OracleTimeStampLTZ 15-398

explicit operator OracleTimeStampLTZ(OracleTimeStamp) 15-399

explicit operator OracleTimeStampLTZ(OracleTimeStampTZ) 15-399

explicit operator OracleTimeStampLTZ(string) 15-400

implicit operator OracleTimeStampLTZ 15-402

implicit operator OracleTimeStampLTZ(OracleDate) 15-402

implicit operator OracleTimeStampLTZ(DateTime) 15-403

explicit operator DateTime 15-403

OracleTimeStampLTZ Properties 15-404

BinData 15-405

Day 15-405

IsNull 15-406

Hour 15-406

liv

Millisecond 15-407

Minute 15-407

Month 15-408

Nanosecond 15-408

Second 15-409

Value 15-409

Year 15-410

OracleTimeStampLTZ Methods 15-410

AddDays 15-411

AddHours 15-412

AddMilliseconds 15-413

AddMinutes 15-413

AddMonths 15-414

AddNanoseconds 15-415

AddSeconds 15-415

AddYears 15-416

CompareTo 15-417

Equals 15-418

GetHashCode 15-418

GetDaysBetween 15-419

GetYearsBetween 15-419

ToOracleDate 15-420

ToOracleTimeStamp 15-421

ToOracleTimeStampTZ 15-421

ToString 15-422

ToUniversalTime 15-423

OracleTimeStampTZ Structure 15-424

OracleTimeStampTZ Members 15-426

OracleTimeStampTZ Constructors 15-430

OracleTimeStampTZ(DateTime) 15-431

OracleTimeStampTZ(DateTime, string) 15-432

OracleTimeStampTZ(string) 15-433

OracleTimeStampTZ(int, int, int) 15-434

OracleTimeStampTZ(int, int, int, string) 15-435

OracleTimeStampTZ(int, int, int, int, int, int) 15-436

OracleTimeStampTZ(int, int, int, int, int, int, string) 15-437

OracleTimeStampTZ(int, int, int, int, int, int, double) 15-438

OracleTimeStampTZ(int, int, int, int, int, int, double, string) 15-439

OracleTimeStampTZ(int, int, int, int, int, int, int) 15-441

OracleTimeStampTZ(int, int, int, int, int, int, int, string) 15-442

OracleTimeStampTZ(byte []) 15-443

lv

OracleTimeStampTZ Static Fields 15-444

MaxValue 15-444

MinValue 15-445

Null 15-445

OracleTimeStampTZ Static Methods 15-446

Equals 15-446

GetSysDate 15-447

GreaterThan 15-448

GreaterThanOrEqual 15-448

LessThan 15-449

LessThanOrEqual 15-450

NotEquals 15-451

Parse 15-452

SetPrecision 15-453

OracleTimeStampTZ Static Operators 15-454

operator + 15-455

operator +(OracleTimeStampTZ, OracleIntervalDS) 15-455

operator +(OracleTimeStampTZ, OracleIntervalYM) 15-456

operator +(OracleTimeStampTZ, TimeSpan) 15-457

operator == 15-457

operator > 15-458

operator >= 15-459

operator != 15-460

operator < 15-461

operator <= 15-461

operator - 15-462

operator - (OracleTimeStampTZ, OracleIntervalDS) 15-463

operator - (OracleTimeStampTZ, OracleIntervalYM) 15-463

operator - (OracleTimeStampTZ value1, TimeSpan value2) 15-464

OracleTimeStampTZ Static Type Conversions 15-465

explicit operator OracleTimeStampTZ 15-465

explicit operator OracleTimeStampTZ(OracleTimeStamp) 15-466

explicit operator OracleTimeStampTZ(OracleTimeStampLTZ) 15-467

explicit operator OracleTimeStampTZ(string) 15-468

implicit operator OracleTimeStampTZ 15-469

implicit operator OracleTimeStampTZ(OracleDate) 15-469

implicit operator OracleTimeStampTZ(DateTime) 15-470

explicit operator DateTime 15-471

OracleTimeStampTZ Properties 15-472

BinData 15-473

Day 15-473

lvi

IsNull 15-474

Hour 15-474

Millisecond 15-475

Minute 15-475

Month 15-476

Nanosecond 15-476

Second 15-477

TimeZone 15-477

Value 15-478

Year 15-478

OracleTimeStampTZ Methods 15-479

AddDays 15-480

AddHours 15-481

AddMilliseconds 15-481

AddMinutes 15-482

AddMonths 15-483

AddNanoseconds 15-483

AddSeconds 15-484

AddYears 15-485

CompareTo 15-485

Equals 15-486

GetDaysBetween 15-487

GetHashCode 15-488

GetTimeZoneOffset 15-488

GetYearsBetween 15-489

ToLocalTime 15-489

ToOracleDate 15-490

ToOracleTimeStampLTZ 15-491

ToOracleTimeStamp 15-491

ToString 15-492

ToUniversalTime 15-493

INullable Interface 15-494

INullable Interface Members 15-495

INullable Interface Properties 15-495

IsNull 15-495

16

Oracle Data Provider for .NET Types Exceptions

OracleTypeException Class 16-1

OracleTypeException Members 16-2

OracleTypeException Constructors 16-3

lvii

OracleTypeException(string) 16-4

OracleTypeException(SerializationInfo, StreamingContext) 16-4

OracleTypeException Static Methods 16-5

OracleTypeException Properties 16-5

Message 16-6

Number 16-6

Source 16-7

OracleTypeException Methods 16-7

ToString 16-8

OracleNullValueException Class 16-8

OracleNullValueException Members 16-9

OracleNullValueException Constructors 16-11

OracleNullValueException() 16-11

OracleNullValueException(string) 16-12

OracleNullValueException Static Methods 16-12

OracleNullValueException Properties 16-13

OracleNullValueException Methods 16-13

OracleTruncateException Class 16-14

OracleTruncateException Members 16-15

OracleTruncateException Constructors 16-16

OracleTruncateException() 16-17

OracleTruncateException(string) 16-17

OracleTruncateException Static Methods 16-18

OracleTruncateException Properties 16-18

OracleTruncateException Methods 16-19

17

Oracle Data Provider for .NET UDT-Related Classes

OracleCustomTypeMappingAttribute Class 17-1

OracleCustomTypeMappingAttribute Members 17-3

OracleCustomTypeMappingAttribute Constructors 17-4

OracleCustomTypeMappingAttribute(string) 17-5

OracleCustomTypeMappingAttribute Static Methods 17-5

OracleCustomTypeMappingAttribute Properties 17-6

UdtTypeName 17-6

OracleCustomTypeMappingAttribute Methods 17-7

OracleObjectMappingAttribute Class 17-7

OracleObjectMappingAttribute Members 17-9

OracleObjectMappingAttribute Constructors 17-10

OracleObjectMappingAttribute(string) 17-11

OracleObjectMappingAttribute(int) 17-11

lviii

OracleObjectMappingAttribute Static Methods 17-12

OracleObjectMappingAttribute Properties 17-12

AttributeIndex 17-13

AttributeName 17-13

OracleObjectMappingAttribute Methods 17-14

OracleArrayMappingAttribute Class 17-14

OracleArrayMappingAttribute Members 17-16

OracleArrayMappingAttribute Constructors 17-17

OracleArrayMappingAttribute() 17-17

OracleArrayMappingAttribute Static Methods 17-18

OracleArrayMappingAttribute Properties 17-18

OracleArrayMappingAttribute Methods 17-19

IOracleCustomType Interface 17-19

IOracleCustomType Members 17-20

IOracleCustomType Interface Methods 17-21

FromCustomObject(OracleConnection, IntPtr) 17-21

FromCustomObject(OracleConnection, object) 17-22

ToCustomObject(OracleConnection, IntPtr) 17-23

ToCustomObject(OracleConnection, object) 17-24

IOracleCustomTypeFactory Interface 17-25

IOracleCustomTypeFactory Members 17-25

IOracleCustomTypeFactory Interface Methods 17-26

CreateObject 17-26

IOracleArrayTypeFactory Interface 17-27

IOracleArrayTypeFactory Members 17-28

IOracleArrayTypeFactory Interface Methods 17-28

CreateArray 17-29

CreateStatusArray 17-29

OracleUdt Class 17-30

OracleUdt Members 17-31

OracleUDT Static Methods 17-32

GetValue 17-32

GetValue(OracleConnection, IntPtr, string) 17-33

GetValue(OracleConnection, IntPtr, int) 17-34

GetValue(OracleConnection, IntPtr, string, out object) 17-36

GetValue(OracleConnection, IntPtr, int, out object) 17-37

GetValue(OracleConnection, object, string) 17-38

GetValue(OracleConnection, object, int) 17-40

GetValue(OracleConnection, object, string, out object) 17-41

GetValue(OracleConnection, object, int, out object) 17-42

IsDBNull 17-44

lix

IsDBNull(OracleConnection, IntPtr, string) 17-44

IsDBNull(OracleConnection, IntPtr, int) 17-45

IsDBNull(OracleConnection, object, string) 17-46

IsDBNull(OracleConnection, object, int) 17-47

SetValue 17-48

SetValue(OracleConnection, IntPtr, string, object) 17-49

SetValue(OracleConnection, IntPtr, int, object) 17-50

SetValue(OracleConnection, IntPtr, string, object, object) 17-51

SetValue(OracleConnection, IntPtr, int, object, object) 17-52

SetValue(OracleConnection, object, string, object) 17-53

SetValue(OracleConnection, object, int, object) 17-54

SetValue(OracleConnection, object, string, object, object) 17-55

SetValue(OracleConnection, object, int, object, object) 17-57

OracleRef Class 17-58

OracleRef Members 17-59

OracleRef Constructors 17-61

OracleRef(OracleConnection, string) 17-61

OracleRef(OracleConnection, string, string) 17-62

OracleRef Static Fields 17-63

Null 17-64

OracleRef Static Methods 17-64

OracleRef Instance Properties 17-65

Connection 17-65

HasChanges 17-66

IsLocked 17-66

IsNull 17-67

ObjectTableName 17-68

Value 17-68

Oracle Ref Instance Methods 17-69

Clone 17-70

Delete 17-70

Dispose 17-71

Flush 17-72

GetCustomObject 17-72

GetCustomObject(OracleUdtFetchOption) 17-73

GetCustomObject(OracleUdtFetchOption, int) 17-74

GetCustomObjectForUpdate 17-76

GetCustomObjectForUpdate(bool) 17-76

GetCustomObjectForUpdate(bool, int) 17-77

IsEqual 17-79

Lock 17-79

lx

Update 17-80

OracleUdtFetchOption Enumeration 17-82

OracleUdtStatus Enumeration 17-82

18

Oracle Data Provider for .NET Bulk Copy Classes

OracleBulkCopy Class 18-1

OracleBulkCopy Members 18-2

OracleBulkCopy Constructors 18-4

OracleBulkCopy(OracleConnection) 18-4

OracleBulkCopy(string) 18-5

OracleBulkCopy(OracleConnection, OracleBulkCopyOptions) 18-6

OracleBulkCopy(string, OracleBulkCopyOptions) 18-7

OracleBulkCopy Properties 18-8

BatchSize 18-8

BulkCopyOptions 18-10

BulkCopyTimeout 18-10

ColumnMappings 18-11

Connection 18-12

DestinationPartitionName 18-12

DestinationSchemaName 18-13

DestinationTableName 18-13

NotifyAfter 18-14

OracleBulkCopy Public Methods 18-15

Close 18-15

Dispose 18-16

WriteToServer 18-16

WriteToServer(DataRow[]) 18-17

WriteToServer(DataTable) 18-18

WriteToServer(IDataReader) 18-18

WriteToServer(DataTable, DataRowState) 18-19

WriteToServer(OracleRefCursor) 18-20

OracleBulkCopy Events 18-21

OracleRowsCopied 18-21

OracleBulkCopyColumnMapping Class 18-22

OracleBulkCopyColumnMapping Members 18-23

OracleBulkCopyColumnMapping Constructors 18-24

OracleBulkCopyColumnMapping() 18-25

OracleBulkCopyColumnMapping(int, int) 18-25

OracleBulkCopyColumnMapping(int, string) 18-26

OracleBulkCopyColumnMapping(string, int) 18-27

lxi

OracleBulkCopyColumnMapping(string, string) 18-27

OracleBulkCopyColumnMapping Methods 18-28

CompareTo 18-28

OracleBulkCopyColumnMapping Properties 18-29

DestinationColumn 18-29

DestinationOrdinal 18-30

SourceColumn 18-31

SourceOrdinal 18-31

OracleBulkCopyColumnMappingCollection Class 18-32

OracleBulkCopyColumnMappingCollection Members 18-33

OracleBulkCopyColumnMappingCollection Properties 18-34

Item[index] 18-35

OracleBulkCopyColumnMappingCollection Public Methods 18-35

Add 18-36

Add(OracleBulkCopyColumnMapping) 18-37

Add(int, int) 18-37

Add(int, string) 18-38

Add(string, int) 18-39

Add(string, string) 18-40

Clear 18-41

Contains 18-42

CopyTo 18-43

IndexOf 18-43

Insert 18-44

Remove 18-45

RemoveAt 18-45

OracleBulkCopyOptions Enumeration 18-46

OracleRowsCopiedEventHandler Delegate 18-47

OracleRowsCopiedEventArgs Class 18-48

OracleRowsCopiedEventArgs Members 18-49

OracleRowsCopiedEventArgs Constructors 18-50

OracleRowsCopiedEventArgs(long) 18-50

OracleRowsCopiedEventArgs Properties 18-51

Abort 18-51

RowsCopied 18-52

A Oracle Schema Collections

Common Schema Collections A-1

MetaDataCollections A-1

DataSourceInformation A-2

lxii

DataTypes A-3

Restrictions A-5

ReservedWords A-5

ODP.NET-Specific Schema Collection A-6

Tables A-6

Columns A-7

Views A-7

XMLSchema A-8

Users A-8

Synonyms A-9

Sequences A-9

Functions A-10

Procedures A-10

ProcedureParameters A-11

Arguments A-12

Packages A-13

PackageBodies A-14

JavaClasses A-14

Indexes A-15

IndexColumns A-18

PrimaryKeys A-18

ForeignKeys A-19

ForeignKeyColumns A-20

UniqueKeys A-20

B Mapping LINQ Canonical Functions and Oracle Functions

Glossary

Index

lxiii

List of Examples

2-1 Setting the profile which could be used for all connections 2-31

2-2 Setting the Profile for a Specific Data Source 2-32

2-3 Setting the Profile for a Specific User Id 2-32

2-4 Setting the Profile for a Specific Data Source and User Id' 2-32

2-5 Configuring Multiple Default Profile Entries 2-32

2-6 Code Sample 2-51

3-1 Using Database Resident Connection Pooling: Sample Code 3-50

3-2 Using Pluggable Database: Sample Code 3-52

3-3 Using Edition-Based Redefinition: Sample Code 3-53

3-4 Using Transaction Guard: Sample Code 3-73

3-5 Using the add Element with bindinfo 3-129

3-6 Using the add Element with metadata 3-129

lxiv

List of Tables

1-1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client 1-6

1-2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations 1-16

1-3 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Structures 1-19

1-4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Exceptions 1-20

1-5 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes 1-20

1-6 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces 1-22

1-7 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Enumerations 1-22

1-8 Application Programming Interfaces not supported in ODP.NET, Managed Driver and

ODP.NET Core 1-23

2-1 ODP.NET, Managed Driver Files with Descriptions 2-8

2-2 ODP.NET, Core Files with Descriptions 2-11

2-3 Configuration Attributes 2-20

2-4 Encryption Algorithms for ODP.NET, Managed Driver 2-41

2-5 Microsoft Active Directory: Encryption Types and Authentication Credentials For Connecting

and Binding 2-44

2-6 Oracle Internet Directory: Encryption Types and Authentication Credentials For Connecting

and Binding 2-44

2-7 Required ONS Configuration Parameters 2-48

2-8 Optional ONS Configuration Parameters 2-49

2-9 Configuration Differences among ODP.NET Core, ODP.NET, Unmanaged Driver and

ODP.NET, Managed Driver 2-54

3-1 ODP.NET Classes that Inherit from ADO.NET 2.0 Base Classes 3-2

3-2 ODP.NET Authentication using IAM and Signature Token 3-9

3-3 Supported Connection String Attributes 3-17

3-4 Performance Counters for Connection Pooling 3-45

3-5 Field Names of Performance Counters and Maximum Number of Characters 3-48

3-6 Configurations for ODP.NET Driver Types 3-65

3-7 Implication of Committed and UserCallCompleted Values 3-73

3-8 Supported ODP.NET Type and .NET Framework Version for Distributed Transaction 3-83

3-9 OracleDbType Enumeration Values 3-86

3-10 Inference of System.Data.DbType from OracleDbType 3-87

3-11 Inference of OracleDbType from DbType 3-88

3-12 Inference of DbType and OracleDbType from Value (.NET Datatypes) 3-89

3-13 Inference of DbType and OracleDbType from Value (ODP.NET Types) 3-90

3-14 OracleParameterStatus Members 3-97

lxv

3-15 Value Property Type of ODP.NET Type 3-103

3-16 .NET Type Accessors 3-110

3-17 ODP.NET Type Accessors 3-113

3-18 Supported OracleDataReader CLOB Methods for InitialLOBFetchSize of -1 and

LegacyEntireLobFetch of 1 3-118

3-19 Supported OracleDataReader BLOB Methods for InitialLOBFetchSize of -1 and

LegacyEntireLobFetch of 1 3-119

3-20 Allowed Parameters in Attributes List 3-128

3-21 ODP.NET LOB Objects 3-135

3-22 Characters with Special Meaning in XML 3-142

3-23 Attribute Mappings Between UDTs and Custom Object Types 3-159

3-24 Type and Value Returned from OracleDataReader Object 3-161

3-25 Values Returned from OracleDataReader Methods 3-162

3-26 Valid Ways to Bind Input Parameters for Oracle UDTs 3-164

3-27 Valid Ways to Bind Output Parameters for Oracle UDTs 3-165

3-28 Types that Populate the DataSet with ADO.NET 2.0 3-166

3-29 OracleRef class members 3-170

3-30 Mapping AQ Features with their ODP.NET Implementation 3-175

3-31 Oracle NUMBER to .NET Decimal Comparisons 3-186

3-32 Oracle Date to .NET DateTime Comparisons 3-187

3-33 Oracle TimeStamp to .NET DateTime Comparisons 3-187

3-34 Oracle INTERVAL DAY TO SECOND to .NET TimeSpan Comparisons 3-187

4-1 Mapping of Oracle Data Types and EDM Types 4-3

4-2 EDM Type Facets for Bfile 4-7

4-3 EDM Type Facets for Blob 4-7

4-4 EDM Type Facets for Char 4-7

4-5 EDM Type Facets for Clob 4-7

4-6 EDM Type Facets for Date 4-8

4-7 EDM Type Facets for Float 4-8

4-8 EDM Type Facets for Interval Day To Second 4-8

4-9 EDM Type Facets for Interval Year To Month 4-9

4-10 EDM Type Facets for Json 4-9

4-11 EDM Type Facets for Long 4-10

4-12 EDM Type Facets for Long Raw 4-10

4-13 EDM Type Facets for NChar 4-10

4-14 EDM Type Facets for NClob 4-11

4-15 EDM Type Facets for Number 4-11

lxvi

4-16 EDM Type Facets for NVarchar2 4-11

4-17 EDM Type Facets for Raw 4-12

4-18 EDM Type Facets for ROWID 4-12

4-19 EDM Type Facets for Timestamp 4-12

4-20 EDM Type Facets for Timestamp with Local Time Zone 4-13

4-21 EDM Type Facets for Timestamp with Time Zone 4-13

4-22 EDM Type Facets for UROWID 4-13

4-23 EDM Type Facets for Varchar2 4-13

4-24 EDM Type Facets for XMLType 4-14

4-25 Mapping of .NET Data Types to Oracle Data Types 4-19

4-26 Mapping of Data Annotations and the Code First Fluent APIs 4-21

5-1 ODP.NET Entity Framework Core Migrations Data Type Default Mappings 5-18

5-2 ODP.NET Entity Framework Core Reverse Engineering Data Type Default Mappings 5-20

5-3 Schema and Table Filter Mapping 5-22

6-1 API Support Comparison Between Client Application and .NET Stored Procedure 6-6

7-1 OracleAccessToken Constructor 7-3

7-2 RefreshAccessToken Event 7-3

7-3 OracleClientFactory Field 7-8

7-4 OracleClientFactory Constructor 7-8

7-5 OracleClientFactory Public Properties 7-8

7-6 OracleClientFactory Public Method 7-8

7-7 OracleClientFactory Field 7-9

7-8 OracleClientFactory Public Properties 7-10

7-9 OracleClientFactory Public Method 7-11

7-10 OracleCommand Constructors 7-18

7-11 OracleCommand Static Method 7-18

7-12 OracleCommand Properties 7-19

7-13 OracleCommand Public Methods 7-20

7-14 OracleCommand Static Method 7-23

7-15 OracleCommand Properties 7-23

7-16 OracleCommand Public Methods 7-45

7-17 OracleCommandBuilder Constructors 7-64

7-18 OracleCommandBuilder Static Methods 7-64

7-19 OracleCommandBuilder Properties 7-64

7-20 OracleCommandBuilder Public Methods 7-65

7-21 OracleCommandBuilder Events 7-66

7-22 OracleCommandBuilder Static Methods 7-67

lxvii

7-23 OracleCommandBuilder Properties 7-71

7-24 OracleCommandBuilder Public Methods 7-76

7-25 OracleCommandBuilder Event 7-86

7-26 OracleConfiguration Connection Properties 7-89

7-27 OracleConfiguration Secure Connection Properties 7-90

7-28 OracleConfiguration Command Properties 7-91

7-29 OracleConfiguration Directories Properties 7-91

7-30 OracleConfiguration High Availability Properties 7-92

7-31 OracleConfiguration Performance Properties 7-92

7-32 OracleConfiguration Debug Tracing Properties 7-93

7-33 OracleConfiguration Connection Properties 7-93

7-34 OracleConfiguration Secure Connection Properties 7-101

7-35 OracleTokenAuth Members 7-109

7-36 OracleConfiguration Command Properties 7-111

7-37 OracleConfiguration Directories Properties 7-115

7-38 OracleConfiguration High Availability Properties 7-121

7-39 OracleConfiguration Performance Properties 7-127

7-40 OracleConfiguration Debug Tracing Properties 7-132

7-41 OracleConnection Constructors 7-137

7-42 OracleConnection Static Property 7-137

7-43 OracleConnection Static Methods 7-137

7-44 OracleConnection Properties 7-138

7-45 OracleConnection Public Methods 7-140

7-46 OracleConnection Events 7-142

7-47 OracleConnection Static Property 7-146

7-48 OracleConnection Static Methods 7-147

7-49 OracleConnection Properties 7-150

7-50 Supported Connection String Attributes 7-160

7-51 OracleTokenAuth Members 7-186

7-52 OracleConnection Public Methods 7-190

7-53 OracleConnection Events 7-219

7-54 OracleConnectionOpenEventArgs Properties 7-226

7-55 OracleConnectionOpenEventArgs Properties 7-226

7-56 OracleConnectionStringBuilder Constructors 7-231

7-57 OracleConnectionStringBuilder Public Properties 7-231

7-58 OracleConnectionStringBuilder Public Methods 7-233

7-59 OracleConnectionStringBuilder Public Properties 7-235

lxviii

7-60 OracleConnectionStringBuilder Public Methods 7-256

7-61 OracleCredential Constructors 7-261

7-62 OracleCredential Properties 7-261

7-63 OracleCredential Public Methods 7-262

7-64 OracleCredential Properties 7-265

7-65 OracleDataAdapter Constructors 7-270

7-66 OracleDataAdapter Static Method 7-270

7-67 OracleDataAdapter Properties 7-270

7-68 OracleDataAdapter Public Methods 7-272

7-69 OracleDataAdapter Events 7-272

7-70 OracleDataAdapter Static Method 7-276

7-71 OracleDataAdapter Properties 7-276

7-72 OracleDataAdapter Public Methods 7-285

7-73 OracleDataAdapter Events 7-291

7-74 OracleDatabase Constructors 7-297

7-75 OracleDatabase Properties 7-297

7-76 OracleDatabase Public Methods 7-297

7-77 OracleDatabase Properties 7-299

7-78 OracleDatabase Public Methods 7-300

7-79 OracleDataReader Static Method 7-311

7-80 OracleDataReader Properties 7-311

7-81 OracleDataReader Public Methods 7-312

7-82 OracleDataReader Static Method 7-315

7-83 OracleDataReader Properties 7-315

7-84 OracleDataReader Public Methods 7-329

7-85 OracleDataReader SchemaTable 7-374

7-86 OracleDataSourceCollection Methods 7-387

7-87 OracleDataSourceCollection Properties 7-387

7-88 OracleDataSourceCollection Methods 7-388

7-89 OracleDataSourceCollection Properties 7-389

7-90 OracleDataSourceEnumerator Method 7-392

7-91 OracleDataSourceEnumerator Method 7-393

7-92 OracleDataSourceEnumerator Method 7-394

7-93 OracleError Static Method 7-397

7-94 OracleError Properties 7-397

7-95 OracleError Methods 7-398

7-96 OracleError Static Method 7-398

lxix

7-97 OracleError Properties 7-398

7-98 OracleError Methods 7-402

7-99 OracleErrorCollection Static Methods 7-405

7-100 OracleErrorCollection Properties 7-405

7-101 OracleErrorCollection Public Methods 7-406

7-102 OracleErrorCollection Static Method 7-406

7-103 OracleErrorCollection Properties 7-406

7-104 OracleErrorCollection Public Methods 7-407

7-105 OracleException Static Method 7-409

7-106 OracleException Properties 7-410

7-107 OracleException Methods 7-410

7-108 OracleException Static Method 7-411

7-109 OracleException Properties 7-411

7-110 OracleException Methods 7-417

7-111 OracleInfoMessageEventArgs Static Method 7-421

7-112 OracleInfoMessageEventArgs Properties 7-421

7-113 OracleInfoMessageEventArgs Public Methods 7-421

7-114 OracleInfoMessageEventArgs Static Method 7-422

7-115 OracleInfoMessageEventArgs Properties 7-422

7-116 OracleInfoMessageEventArgs Public Methods 7-424

7-117 OracleLogicalTransaction Public Read-Only Properties 7-427

7-118 OracleLogicalTransaction Methods 7-428

7-119 OracleLogicalTransaction Public Read-Only Properties 7-428

7-120 Outcome of OracleLogicalTransaction Committed and UserCallCompleted Properties 7-429

7-121 OracleLogicalTransaction Methods 7-432

7-122 OracleOnsServerCollection Methods 7-436

7-123 OracleOnsServerCollection Properties 7-436

7-124 OracleOnsServerCollection Methods 7-436

7-125 OracleOnsServerCollection Properties 7-438

7-126 OracleParameter Constructors 7-441

7-127 OracleParameter Static Methods 7-442

7-128 OracleParameter Properties 7-442

7-129 OracleParameter Public Methods 7-443

7-130 OracleParameter Static Method 7-455

7-131 OracleParameter Properties 7-456

7-132 OracleParameter Public Methods 7-474

7-133 OracleParameterCollection Static Methods 7-480

lxx

7-134 OracleParameterCollection Properties 7-480

7-135 OracleParameterCollection Public Methods 7-481

7-136 OracleParameterCollection Static Method 7-482

7-137 OracleParameterCollection Properties 7-482

7-138 OracleParameterCollection Public Methods 7-487

7-139 OraclePermission Constructor 7-510

7-140 OraclePermission Static Methods 7-510

7-141 OraclePermission Public Properties 7-511

7-142 OraclePermission Public Methods 7-511

7-143 OraclePermission Static Methods 7-512

7-144 OraclePermission Public Properties 7-513

7-145 OraclePermission Public Methods 7-513

7-146 OraclePermission Constructor 7-518

7-147 OraclePermissionAttribute Static Methods 7-518

7-148 OraclePermissionAttribute Public Properties 7-518

7-149 OraclePermissionAttribute Public Methods 7-519

7-150 OraclePermissionAttribute Static Methods 7-520

7-151 OraclePermissionAttribute Public Properties 7-520

7-152 OraclePermissionAttribute Public Methods 7-521

7-153 OracleRefreshAccessTokenEventArgs Properties 7-523

7-154 OracleRefreshAccessTokenEventArgs Properties 7-523

7-155 OracleRowUpdatedEventArgs Constructors 7-527

7-156 OracleRowUpdatedEventArgs Static Method 7-527

7-157 OracleRowUpdatedEventArgs Properties 7-527

7-158 OracleRowUpdatedEventArgs Public Methods 7-527

7-159 OracleRowUpdatedEventArgs Static Method 7-529

7-160 OracleRowUpdatedEventArgs Properties 7-529

7-161 OracleRowUpdatedEventArgs Public Methods 7-530

7-162 OracleRowUpdatingEventArgs Constructors 7-533

7-163 OracleRowUpdatingEventArgs Static Methods 7-533

7-164 OracleRowUpdatingEventArgs Properties 7-533

7-165 OracleRowUpdatingEventArgs Public Methods 7-534

7-166 OracleRowUpdatingEventArgs Static Method 7-535

7-167 OracleRowUpdatingEventArgs Properties 7-535

7-168 OracleRowUpdatingEventArgs Public Methods 7-537

7-169 OracleShardingKey Constructors 7-539

7-170 OracleShardingKey Instance Methods 7-540

lxxi

7-171 OracleShardingKey Instance Methods 7-542

7-172 OracleTransaction Static Method 7-546

7-173 OracleTransaction Properties 7-546

7-174 OracleTransaction Public Methods 7-546

7-175 OracleTransaction Static Method 7-547

7-176 OracleTransaction Properties 7-548

7-177 OracleTransaction Public Methods 7-549

7-178 OracleConnectionType Enumeration Values 7-557

7-179 OracleCollectionType Enumeration Values 7-558

7-180 OracleDBAPrivilege Enumeration Values 7-559

7-181 OracleDBShutdownMode Enumeration Values 7-560

7-182 OracleDBStartupMode Enumeration Values 7-561

7-183 OracleDbType Enumeration Values 7-562

7-184 OracleDRCPPurity Enumeration Values 7-563

7-185 OracleIdentityType Members 7-564

7-186 OracleParameterStatus Members 7-565

7-187 OraclePasswordAuth Members 7-566

7-188 OracleTokenAuth Members 7-567

8-1 OracleXmlCommandType Members 8-1

8-2 OracleXmlQueryProperties Constructors 8-5

8-3 OracleXmlQueryProperties Properties 8-6

8-4 OracleXmlQueryProperties Public Methods 8-6

8-5 OracleXmlQueryProperties Properties 8-7

8-6 OracleXmlQueryProperties Public Methods 8-11

8-7 OracleXmlSaveProperties Constructor 8-15

8-8 OracleXmlSaveProperties Properties 8-15

8-9 OracleXmlSaveProperties Public Methods 8-15

8-10 OracleXmlSaveProperties Properties 8-16

8-11 OracleXmlSaveProperties Public Methods 8-20

8-12 OracleXmlStream Constructors 8-22

8-13 OracleXmlStream Static Methods 8-23

8-14 OracleXmlStream Instance Properties 8-23

8-15 OracleXmlStream Instance Methods 8-23

8-16 OracleXmlStream Static Methods 8-25

8-17 OracleXmlStream Instance Properties 8-25

8-18 OracleXmlStream Instance Methods 8-30

8-19 OracleXmlType Constructors 8-38

lxxii

8-20 OracleXmlType Static Methods 8-38

8-21 OracleXmlType Static Field 8-39

8-22 OracleXmlType Instance Properties 8-39

8-23 OracleXmlType Instance Methods 8-39

8-24 OracleXmlType Static Methods 8-44

8-25 OracleXmlType Static Field 8-44

8-26 OracleXmlType Instance Properties 8-45

8-27 OracleXmlType Instance Methods 8-52

9-1 OracleHAEventArgs Properties 9-2

9-2 OracleHAEventArgs Properties 9-3

9-3 OracleHAEventSource Enumeration Member Values 9-9

9-4 OracleHAEventStatus Enumeration Values 9-10

10-1 OracleDependency Constructors 10-2

10-2 OracleDependency Static Fields 10-3

10-3 OracleDependency Static Methods 10-3

10-4 OracleDependency Properties 10-3

10-5 OracleDependency Methods 10-4

10-6 OracleDependency Events 10-4

10-7 OracleDependency Static Fields 10-8

10-8 OracleDependency Static Methods 10-10

10-9 OracleDependency Properties 10-12

10-10 OracleDependency Methods 10-19

10-11 OracleDependency Event 10-21

10-12 OracleNotificationRequest Static Method 10-23

10-13 OracleNotificationRequest Properties 10-23

10-14 OracleNotificationRequest Methods 10-24

10-15 OracleNotificationRequest Static Method 10-24

10-16 OracleNotificationRequest Properties 10-25

10-17 OracleNotificationRequest Methods 10-29

10-18 OracleNotificationEventArgs Static Field 10-31

10-19 OracleNotificationEventArgs Static Method 10-31

10-20 OracleNotificationEventArgs Properties 10-31

10-21 OracleNotificationEventArgs Methods 10-32

10-22 OracleNotificationEventArgs Static Field 10-32

10-23 OracleNotificationEventArgs Static Method 10-33

10-24 OracleNotificationEventArgs Properties 10-33

10-25 DataTable Object Column Data 10-34

lxxiii

10-26 OracleNotificationEventArgs Methods 10-38

10-27 OracleRowidInfo Members 10-40

10-28 OracleNotificationType Members 10-40

10-29 OracleNotificationSource Members 10-41

10-30 OracleNotificationInfo Members 10-42

11-1 OracleGlobalization Static Methods 11-3

11-2 OracleGlobalization Properties 11-3

11-3 OracleGlobalization Public Methods 11-4

11-4 OracleGlobalization Static Methods 11-4

11-5 OracleGlobalization Properties 11-11

11-6 OracleGlobalization Public Methods 11-22

12-1 OracleFailoverEventArgs Static Methods 12-3

12-2 OracleFailoverEventArgs Properties 12-3

12-3 OracleFailoverEventArgs Public Methods 12-4

12-4 OracleFailoverEventArgs Static Methods 12-4

12-5 OracleFailoverEventArgs Properties 12-5

12-6 OracleFailoverEventArgs Public Methods 12-6

12-7 FailoverEvent Enumeration Values 12-8

12-8 FailoverReturnCode Enumeration Values 12-9

12-9 FailoverType Enumeration Values 12-10

13-1 OracleAQAgent Constructors 13-2

13-2 OracleAQAgent Properties 13-2

13-3 OracleAQAgent Properties 13-5

13-4 OracleAQDequeueOptions Constructor 13-7

13-5 OracleAQDequeueOptions Properties 13-7

13-6 OracleAQDequeueOptions Public Methods 13-8

13-7 OracleAQDequeueOptions Properties 13-9

13-8 OracleAQDequeueOptions Public Methods 13-16

13-9 OracleAQEnqueueOptions Constructor 13-17

13-10 OracleAQEnqueueOptions Properties 13-18

13-11 OracleAQEnqueueOptions Public Methods 13-18

13-12 OracleAQEnqueueOptions Properties 13-19

13-13 OracleAQEnqueueOptions Public Methods 13-21

13-14 OracleAQMessage Constructors 13-23

13-15 OracleAQMessage Properties 13-23

13-16 OracleAQMessage Properties 13-26

13-17 OracleAQMessageAvailableEventArgs Constructor 13-36

lxxiv

13-18 OracleAQMessageAvailableEventArgs Properties 13-37

13-19 OracleAQMessageAvailableEventArgs Properties 13-38

13-20 OracleAQQueue Constructors 13-48

13-21 OracleAQQueue Static Methods 13-48

13-22 OracleAQQueue Properties 13-48

13-23 OracleAQQueue Public Methods 13-49

13-24 OracleAQQueue Events 13-49

13-25 OracleAQQueue Static Methods 13-54

13-26 OracleAQQueue Properties 13-57

13-27 Message Types and Payloads 13-60

13-28 Payload Types for Dequeued Messages 13-60

13-29 OracleAQQueue Public Methods 13-63

13-30 OracleAQQueue Events 13-80

13-31 OracleAQDequeueMode Members 13-84

13-32 OracleAQMessageDeliveryMode Members 13-85

13-33 OracleAQMessageState Members 13-86

13-34 OracleAQMessageType Members 13-87

13-35 OracleAQNavigationMode Members 13-88

13-36 OracleAQNotificationGroupingType Members 13-89

13-37 OracleAQNotificationType Members 13-90

13-38 OracleAQVisibilityMode Members 13-91

14-1 OracleBFile Constructors 14-3

14-2 OracleBFile Static Fields 14-4

14-3 OracleBFile Static Methods 14-4

14-4 OracleBFile Instance Properties 14-4

14-5 OracleBFile Instance Methods 14-5

14-6 OracleBFile Static Fields 14-8

14-7 OracleBFile Static Methods 14-9

14-8 OracleBFile Instance Properties 14-10

14-9 OracleBFile Instance Methods 14-18

14-10 OracleBlob Constructors 14-42

14-11 OracleBlob Static Fields 14-42

14-12 OracleBlob Static Methods 14-43

14-13 OracleBlob Instance Properties 14-43

14-14 OracleBlob Instance Methods 14-43

14-15 OracleBlob Static Fields 14-47

14-16 OracleBlob Static Methods 14-48

lxxv

14-17 OracleBlob Instance Properties 14-49

14-18 OracleBlob Instance Methods 14-56

14-19 OracleClob Constructors 14-81

14-20 OracleClob Static Fields 14-82

14-21 OracleClob Static Methods 14-82

14-22 OracleClob Instance Properties 14-82

14-23 OracleClob Instance Methods 14-83

14-24 OracleClob Static Fields 14-86

14-25 OracleClob Static Methods 14-88

14-26 OracleClob Instance Properties 14-88

14-27 OracleClob Instance Methods 14-96

14-28 OracleRefCursor Static Methods 14-127

14-29 OracleRefCursor Static Field 14-127

14-30 OracleRefCursor Properties 14-127

14-31 OracleRefCursor Instance Methods 14-128

14-32 OracleRefCursor Static Methods 14-128

14-33 OracleRefCursor Static Field 14-129

14-34 OracleRefCursor Properties 14-130

14-35 OracleRefCursor Instance Methods 14-133

15-1 OracleBinary Constructors 15-3

15-2 OracleBinary Static Fields 15-3

15-3 OracleBinary Static Methods 15-4

15-4 OracleBinary Static Operators 15-4

15-5 OracleBinary Static Type Conversion Operators 15-5

15-6 OracleBinary Properties 15-5

15-7 OracleBinary Instance Methods 15-5

15-8 OracleBinary Static Fields 15-6

15-9 OracleBinary Static Methods 15-7

15-10 OracleBinary Static Operators 15-14

15-11 OracleBinary Static Type Conversion Operators 15-20

15-12 OracleBinary Properties 15-21

15-13 OracleBinary Instance Methods 15-24

15-14 OracleBoolean Constructors 15-30

15-15 OracleBoolean Static Fields 15-30

15-16 OracleBoolean Static Methods 15-30

15-17 OracleBoolean Static Operators 15-31

15-18 OracleBoolean Static Type Conversions 15-32

lxxvi

15-19 OracleBoolean Properties 15-32

15-20 OracleBoolean Instance Methods 15-32

15-21 OracleBoolean Static Fields 15-34

15-22 OracleBoolean Static Methods 15-37

15-23 OracleBoolean Static Operators 15-46

15-24 OracleBoolean Static Type Conversions 15-56

15-25 OracleBoolean Properties 15-62

15-26 OracleBoolean Instance Methods 15-66

15-27 OracleDate Constructors 15-70

15-28 OracleDate Static Fields 15-71

15-29 OracleDate Static Methods 15-71

15-30 OracleDate Static Operators 15-71

15-31 OracleDate Static Type Conversions 15-72

15-32 OracleDate Properties 15-72

15-33 OracleDate Methods 15-73

15-34 OracleDate Static Fields 15-78

15-35 OracleDate Static Methods 15-80

15-36 OracleDate Static Operators 15-87

15-37 OracleDate Static Type Conversions 15-92

15-38 OracleDate Properties 15-96

15-39 OracleDate Methods 15-101

15-40 OracleDecimal Constructors 15-109

15-41 OracleDecimal Static Fields 15-109

15-42 OracleDecimal Static (Comparison) Methods 15-109

15-43 OracleDecimal Static (Manipulation) Methods 15-110

15-44 OracleDecimal Static (Logarithmic) Methods 15-111

15-45 OracleDecimal Static (Trigonometric) Methods 15-111

15-46 OracleDecimal Static (Comparison) Operators 15-112

15-47 OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal) 15-112

15-48 OracleDecimal Static Operators (Conversion from OracleDecimal to .NET) 15-113

15-49 OracleDecimal Properties 15-113

15-50 OracleDecimal Instance Methods 15-113

15-51 OracleDecimal Static Fields 15-121

15-52 OracleDecimal Static (Comparison) Methods 15-126

15-53 OracleDecimal Static (Manipulation) Methods 15-131

15-54 OracleDecimal Static (Logarithmic) Methods 15-148

15-55 OracleDecimal Static (Trigonometric) Methods 15-154

lxxvii

15-56 OracleDecimal Static (Comparison) Operators 15-161

15-57 OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal) 15-171

15-58 OracleDecimal Static Operators (Conversion from OracleDecimal to .NET) 15-175

15-59 OracleDecimal Properties 15-181

15-60 OracleDecimal Instance Methods 15-185

15-61 OracleIntervalDS Constructors 15-194

15-62 OracleIntervalDS Static Fields 15-194

15-63 OracleIntervalDS Static Methods 15-195

15-64 OracleIntervalDS Static Operators 15-195

15-65 OracleIntervalDS Type Conversions 15-196

15-66 OracleIntervalDS Properties 15-196

15-67 OracleIntervalDS Methods 15-197

15-68 OracleIntervalDS Static Fields 15-203

15-69 OracleIntervalDS Static Methods 15-205

15-70 OracleIntervalDS Static Operators 15-213

15-71 OracleIntervalDS Type Conversions 15-222

15-72 OracleIntervalDS Properties 15-225

15-73 OracleIntervalDS Methods 15-230

15-74 OracleIntervalYM Constructors 15-235

15-75 OracleIntervalYM Static Fields 15-236

15-76 OracleIntervalYM Static Methods 15-236

15-77 OracleIntervalYM Static Operators 15-236

15-78 OracleIntervalYM Type Conversions 15-237

15-79 OracleIntervalYM Properties 15-237

15-80 OracleIntervalYM Methods 15-238

15-81 OracleIntervalYM Static Fields 15-243

15-82 OracleIntervalYM Static Methods 15-245

15-83 OracleIntervalYM Static Operators 15-252

15-84 OracleIntervalYM Type Conversions 15-261

15-85 OracleIntervalYM Properties 15-263

15-86 OracleIntervalYM Methods 15-267

15-87 OracleString Constructors 15-272

15-88 OracleString Static Fields 15-272

15-89 OracleString Static Methods 15-273

15-90 OracleString Static Operators 15-273

15-91 OracleString Type Conversions 15-274

15-92 OracleString Properties 15-274

lxxviii

15-93 OracleString Methods 15-274

15-94 OracleString Static Fields 15-280

15-95 OracleString Static Methods 15-281

15-96 OracleString Static Operators 15-287

15-97 OracleString Type Conversions 15-293

15-98 OracleString Properties 15-294

15-99 OracleString Methods 15-298

15-100 OracleTimeStamp Constructors 15-305

15-101 OracleTimeStamp Static Fields 15-305

15-102 OracleTimeStamp Static Methods 15-306

15-103 OracleTimeStamp Static Operators 15-306

15-104 OracleTimeStamp Static Type Conversions 15-307

15-105 OracleTimeStamp Properties 15-307

15-106 OracleTimeStamp Methods 15-308

15-107 OracleTimeStamp Static Fields 15-316

15-108 OracleTimeStamp Static Methods 15-318

15-109 OracleTimeStamp Static Operators 15-326

15-110 OracleTimeStamp Static Type Conversions 15-337

15-111 OracleTimeStamp Properties 15-343

15-112 OracleTimeStamp Methods 15-350

15-113 OracleTimeStampLTZConstructors 15-364

15-114 OracleTimeStampLTZ Static Fields 15-365

15-115 OracleTimeStampLTZ Static Methods 15-365

15-116 OracleTimeStampLTZ Static Operators 15-366

15-117 OracleTimeStampLTZ Static Type Conversions 15-366

15-118 OracleTimeStampLTZ Properties 15-367

15-119 OracleTimeStampLTZ Methods 15-367

15-120 OracleTimeStampLTZ Static Fields 15-376

15-121 OracleTimeStampLTZ Static Methods 15-378

15-122 OracleTimeStampLTZ Static Operators 15-387

15-123 OracleTimeStampLTZ Static Type Conversions 15-398

15-124 OracleTimeStampLTZ Properties 15-404

15-125 OracleTimeStampLTZ Methods 15-410

15-126 OracleTimeStampTZ Constructors 15-426

15-127 OracleTimeStampTZ Static Fields 15-426

15-128 OracleTimeStampTZ Static Methods 15-426

15-129 OracleTimeStampTZ Static Operators 15-427

lxxix

15-130 OracleTimeStampTZ Static Type Conversions 15-427

15-131 OracleTimeStampTZ Properties 15-428

15-132 OracleTimeStampTZ Methods 15-429

15-133 OracleTimeStampTZ Static Fields 15-444

15-134 OracleTimeStampTZ Static Methods 15-446

15-135 OracleTimeStampTZ Static Operators 15-454

15-136 OracleTimeStampTZ Static Type Conversions 15-465

15-137 OracleTimeStampTZ Properties 15-472

15-138 OracleTimeStampTZ Methods 15-479

15-139 INullable Interface Properties 15-495

15-140 INullable Interface Properties 15-495

16-1 OracleTypeException Constructor 16-2

16-2 OracleTypeException Static Methods 16-2

16-3 OracleTypeException Properties 16-2

16-4 OracleTypeException Methods 16-3

16-5 OracleTypeException Static Methods 16-5

16-6 OracleTypeException Properties 16-5

16-7 OracleTypeException Methods 16-7

16-8 OracleNullValueException Constructors 16-10

16-9 OracleNullValueException Static Methods 16-10

16-10 OracleNullValueException Properties 16-10

16-11 OracleNullValueException Methods 16-10

16-12 OracleNullValueException Static Methods 16-12

16-13 OracleNullValueException Properties 16-13

16-14 OracleNullValueException Methods 16-13

16-15 OracleTruncateException Constructors 16-15

16-16 OracleTruncateException Static Methods 16-15

16-17 OracleTruncateException Properties 16-15

16-18 OracleTruncateException Methods 16-16

16-19 OracleTruncateException Static Methods 16-18

16-20 OracleTruncateException Properties 16-18

16-21 OracleTruncateException Methods 16-19

17-1 OracleCustomTypeMappingAttribute Constructors 17-3

17-2 OracleCustomTypeMappingAttribute Static Methods 17-3

17-3 OracleCustomTypeMappingAttribute Properties 17-3

17-4 OracleCustomTypeMappingAttribute Methods 17-4

17-5 OracleCustomTypeMappingAttribute Static Methods 17-5

lxxx

17-6 OracleCustomTypeMappingAttribute Properties 17-6

17-7 OracleCustomTypeMappingAttribute Methods 17-7

17-8 OracleObjectMappingAttribute Constructors 17-9

17-9 OracleObjectMappingAttribute Static Methods 17-9

17-10 OracleObjectMappingAttribute Properties 17-10

17-11 OracleObjectMappingAttribute Methods 17-10

17-12 OracleObjectMappingAttribute Static Method 17-12

17-13 OracleObjectMappingAttribute Properties 17-12

17-14 OracleObjectMappingAttribute Methods 17-14

17-15 OracleArrayMappingAttribute Constructors 17-16

17-16 OracleArrayMappingAttribute Static Methods 17-16

17-17 OracleArrayMappingAttribute Properties 17-16

17-18 OracleArrayMappingAttribute Methods 17-16

17-19 OracleArrayMappingAttribute Static Methods 17-18

17-20 OracleArrayMappingAttribute Properties 17-18

17-21 OracleArrayMappingAttribute Methods 17-19

17-22 IOracleCustomType Interface Methods 17-20

17-23 IOracleCustomType Interface Methods: Overload list 17-21

17-24 IOracleCustomTypeFactory Interface Methods 17-26

17-25 IOracleCustomTypeFactory Interface Methods 17-26

17-26 IOracleArrayTypeFactory Interface Methods 17-28

17-27 IOracleArrayTypeFactory Interface Methods 17-28

17-28 OracleUdt Static Methods 17-31

17-29 OracleUdt Static Methods 17-32

17-30 OracleRef Constructors 17-59

17-31 OracleRef Static Fields 17-59

17-32 OracleRef Static Methods 17-59

17-33 OracleRef Instance Properties 17-60

17-34 OracleRef Instance Methods 17-60

17-35 OracleRef Static Fields 17-63

17-36 OracleRef Static Methods 17-64

17-37 OracleRef Instance Properties 17-65

17-38 OracleRef Instance Methods 17-69

17-39 OracleUdtFetchOption Enumeration Values 17-82

17-40 OracleUdtStatus Enumeration Values 17-83

18-1 OracleBulkCopy Constructors 18-2

18-2 OracleBulkCopy Properties 18-3

lxxxi

18-3 OracleBulkCopy Public Methods 18-3

18-4 OracleBulkCopy Events 18-3

18-5 OracleBulkCopy Properties 18-8

18-6 OracleBulkCopy Public Methods 18-15

18-7 OracleBulkCopy Events 18-21

18-8 OracleBulkCopyColumnMapping Constructors 18-23

18-9 OracleBulkCopyColumnMapping Method 18-24

18-10 OracleBulkCopyColumnMapping Properties 18-24

18-11 OracleBulkCopyColumnMapping Method 18-28

18-12 OracleBulkCopyColumnMapping Properties 18-29

18-13 OracleBulkCopyColumnMappingCollection Properties 18-33

18-14 OracleBulkCopyColumnMappingCollection Public Methods 18-33

18-15 OracleBulkCopyColumnMappingCollection Properties 18-34

18-16 OracleBulkCopyColumnMappingCollection Public Methods 18-35

18-17 OracleBulkCopyOptions Enumeration Members 18-46

18-18 OracleRowsCopiedEventArgs Constructors 18-49

18-19 OracleRowsCopiedEventArgs Properties 18-50

18-20 OracleRowsCopiedEventArgs Properties 18-51

A-1 MetaDataCollections A-2

A-2 DataSource Information A-2

A-3 Data Types A-3

A-4 Restrictions A-5

A-5 ReservedWords A-6

A-6 Tables A-6

A-7 Columns A-7

A-8 Views A-7

A-9 XMLSchema A-8

A-10 Users A-8

A-11 Synonyms A-9

A-12 Sequences A-9

A-13 Functions A-10

A-14 Procedures A-11

A-15 ProcedureParameters A-11

A-16 Arguments A-12

A-17 Packages A-13

A-18 PackageBodies A-14

A-19 JavaClasses A-15

lxxxii

A-20 Indexes A-15

A-21 IndexColumns A-18

A-22 PrimaryKeys A-18

A-23 ForeignKeys A-19

A-24 ForeignKeyColumns A-20

A-25 UniqueKeys A-21

B-1 Mapping of Aggregate Canonical Functions and Oracle Functions B-1

B-2 Mapping of Math Canonical Functions and Oracle Functions B-1

B-3 Mapping of String Canonical Functions and Oracle Functions B-2

B-4 Mapping of Date And Time Canonical Functions and Oracle Functions B-2

B-5 Mapping of Bitwise Canonical Functions and Oracle Functions B-4

B-6 Mapping of Other Canonical Functions and Oracle Functions B-4

lxxxiii

Preface

This document is your primary source of introductory, installation, postinstallation
configuration, and usage information for Oracle Data Provider for .NET.

Oracle Data Provider for .NET is an implementation of the Microsoft ADO.NET
interface.

This Preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Passwords in Code Examples

• Conventions

Audience
Oracle Data Provider for .NET Developer's Guide is intended for programmers who
are developing applications to access an Oracle database using Oracle Data Provider
for .NET. This documentation is also valuable to systems analysts, project managers,
and others interested in the development of database applications.

To use this document, you must be familiar with Microsoft .NET Framework classes
and ADO.NET and have a working knowledge of application programming using
Microsoft C#, Visual Basic .NET, or another .NET language.

Although the examples in the documentation and the samples in the sample directory
are written in C#, developers can use these examples as models for writing code in
other .NET languages.

Users should also be familiar with the use of Structured Query Language (SQL) to
access information in relational database systems.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Preface

lxxxiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents
For more information, see these Oracle resources:

• Oracle Database Installation Guide for Microsoft Windows

• Oracle Database Release Notes

• Oracle Database Administrator's Guide

• Oracle Database Development Guide

• Oracle Database SecureFiles and Large Objects Developer's Guide

• Oracle Real Application Clusters Administration and Deployment Guide

• Oracle Database New Features Guide

• Oracle Database Concepts

• Oracle Database Reference

• Oracle Database Extensions for .NET Developer's Guide for Microsoft Windows

• Oracle Database Object-Relational Developer's Guide

• Oracle Database SQL Language Reference

• Oracle Database Net Services Administrator's Guide

• Oracle Database Net Services Reference

• Oracle Call Interface Programmer's Guide

• Oracle Services for Microsoft Transaction Server Developer's Guide for Microsoft
Windows

• Oracle Database Globalization Support Guide

• Oracle XML DB Developer's Guide

• Oracle XML Developer's Kit Programmer's Guide

• Oracle Database Security Guide

• Oracle Spatial Developer's Guide

• Oracle Data Guard Concepts and Administration

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN). You must register online before using
OTN; registration is free and can be done at

http://www.oracle.com/technetwork/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://docs.oracle.com/database/122/index.htm

For additional information, see:

https://msdn.microsoft.com/en-us/default.aspx

and

Preface

lxxxv

http://msdn.microsoft.com/library

Passwords in Code Examples
For simplicity in demonstrating this product, code examples do not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide for
password management guidelines and other security recommendations.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

lxxxvi

Changes in This Release for Oracle Data
Provider for .NET

This section describes new features added for each ODP.NET release. A summary of these
new features by release are also available on Oracle's Web site.

• Changes in Oracle Data Provider for .NET Release 21c (21.12)

• Changes in Oracle Data Provider for .NET Release 21c (21.8)

• Changes in Oracle Data Provider for .NET Release 21c (21.7)

• Changes in Oracle Data Provider for .NET Release 21c (21.6.1)

• Changes in Oracle Data Provider for .NET Release 21c (21.5)

• Changes in Oracle Data Provider for .NET Release 21c (21.4.1)

• Changes in Oracle Data Provider for .NET Release 21c (21.4)

• Changes in Oracle Data Provider for .NET Release 21c (21.3)

• Changes in Oracle Data Provider for .NET (21.1)

• Changes in Oracle Data Provider for .NET (19.15.1)

• Changes in Oracle Data Provider for .NET (19.10)

• Changes in Oracle Data Provider for .NET (19.9)

• Changes in Oracle Data Provider for .NET ODAC Release 19c (19.3.2)

• Changes in Oracle Data Provider for .NET (19.7)

• Changes in Oracle Data Provider for .NET (19.6)

• Changes in Oracle Data Provider for .NET (19.5)

• Changes in Oracle Data Provider for .NET in ODAC Release 19c (19.3)

• Changes in Oracle Data Provider for .NET Release 19c (19.3)

• Changes in Oracle Data Provider for .NET in ODAC Release 18c (18.3)

• Changes in Oracle Data Provider for .NET Release 18c (18.3)

• Changes in Oracle Data Provider for .NET in ODAC 12.2c Release 1

• Changes in Oracle Data Provider for .NET Release 12.2.0.1

Changes in Oracle Data Provider for .NET Release 21c (21.12)
The following are the changes in Oracle Data Provider for .NET for Release 21c (21.12).

lxxxvii

https://www.oracle.com/database/technologies/new-dotnet-features.html#category-odp

New Features
The following features are new in this release:

• .NET 8 Runtime

ODP.NET Core is certified for .NET 8.

• Entity Framework Core 8

ODP.NET Entity Framework (EF) Core now supports Entity Framework Core 8
with Oracle databases. ODP.NET EF Core 21.12.1 or higher is required.

Changes in Oracle Data Provider for .NET Release 21c
(21.8)

The following are the changes in Oracle Data Provider for .NET for Release 21c
(21.8).

New Features
The following features are new in this release:

• .NET 7 Runtime

ODP.NET Core is certified for .NET 7.

• Entity Framework Core 7

ODP.NET Entity Framework (EF) Core now supports Entity Framework Core 7
with Oracle databases. Entity Framework Core is a cross-platform Microsoft
object-relational mapper that enables .NET developers to work with relational
databases using .NET objects.

Changes in Oracle Data Provider for .NET Release 21c
(21.7)

The following are the changes in Oracle Data Provider for .NET for Release 21c
(21.7).

New Features
The following feature is new in this release:

• Managed ODP.NET and ODP.NET Core -- Azure Active Directory

Managed ODP.NET and ODP.NET Core 21.7 support Azure Active Directory
(AAD) authentication when connecting to Oracle Database. ODP.NET will then use
an access token to authenticate instead of an username and password.

This feature benefits applications and services that use AAD for centralized user
authentication with Oracle database. Those services can include Azure and
Microsoft 365-based cloud services, such as Microsoft Power BI service, that rely
on AAD for user management.

Changes in This Release for Oracle Data Provider for .NET

lxxxviii

Using token-based authentication is more secure and simpler for the end user. It
becomes unnecessary to specify credentials each time the user accesses a resource.
Moreover, the resource never needs to handle and manage individual user credentials.

See Also:

Using Azure Active Directory

Changes in Oracle Data Provider for .NET Release 21c (21.6.1)
The following are the changes in Oracle Data Provider for .NET for Release 21c (21.6.1).

New Features
The following feature is new in this release:

• Managed ODP.NET and ODP.NET Core - Oracle Identity and Access Management Cloud
Service Enhancements

ODP.NET adds more support for Oracle Identity and Access Management (IAM) cloud
service for unified identity across Oracle cloud services for the managed and core
drivers. ODP.NET can use the same Oracle IAM credentials for authentication and
authorization.

This capability allows single sign-on and for identity to be propagated to all services
Oracle IAM supports. A unified identity makes user management and account
management easier for administrators and end users.

Managed ODP.NET adds support for IAM database password verifier, token, and
database alternate password for token authentication.

ODP.NET Core already has support for IAM database password verifier and token. This
new version adds database alternate password for token authentication in ODP.NET
Core.

See Also:

Connecting to Oracle Autonomous Database

• ODP.NET Core - Multi-Platform Secure External Password Store

The Secure External Password Store (SEPS) is the use of a client-side wallet for
securely storing the password credentials. ODP.NET Core can now be configured to use
the external password store on any operating system it supports beyond just Windows.

An Oracle wallet is a container that securely stores authentication and signing
credentials. Wallets can simplify large-scale deployments that rely on password
credentials for database connections. Applications no longer need embedded user
names and passwords, which reduces security risk.

Changes in This Release for Oracle Data Provider for .NET

lxxxix

See Also:

Using Secure External Password Store

Changes in Oracle Data Provider for .NET Release 21c
(21.5)

The following are the changes in Oracle Data Provider for .NET for Release 21c
(21.5).

New Features
The following feature is new in this release:

• Unmanaged ODP.NET – One-way TLS/SSL with Built-in Truspoints (Walletless)

Unmanaged ODP.NET now supports one-way Transport Layer Security/Secure
Sockets Layer without wallets. Not having to provide a wallet can simplify
database connectivity, such as with Oracle Autonomous Database.

Changes in Oracle Data Provider for .NET Release 21c
(21.4.1)

The following are the changes in Oracle Data Provider for .NET for Release 21c
(21.4.1).

New Features
The following features are new in this release:

• .NET 6 Runtime Certification

ODP.NET Core is certified for .NET 6.

• Entity Framework Core 6

ODP.NET Entity Framework (EF) Core now supports Entity Framework Core 6
with Oracle databases. Entity Framework Core is a cross-platform Microsoft
object-relational mapper that enables .NET developers to work with relational
databases using .NET objects.

• ODP.NET Core - Oracle Identity and Access Management Cloud Service

ODP.NET supports Oracle Identity and Access Management (IAM) cloud service
for unified identity across Oracle cloud services, including Oracle Cloud Database
Services, with the core driver. ODP.NET can use the same Oracle IAM credentials
for authentication and authorization.

This capability allows single sign-on and for identity to be propagated to all
services Oracle IAM supports. A unified identity makes user management and
account management easier for administrators and end users.

Changes in This Release for Oracle Data Provider for .NET

xc

See Also:

Connecting to Oracle Autonomous Database

Changes in Oracle Data Provider for .NET Release 21c (21.4)
The following are the changes in Oracle Data Provider for .NET for Release 21c (21.4).

New Features
The following features are new in this release:

• Managed ODP.NET and ODP.NET Core – One-way TLS/SSL with Built-in Truspoints
(Walletless)

ODP.NET core and managed now support one-way Transport Layer Security/Secure
Sockets Layer without wallets. Not having to provide a wallet can simplify database
connectivity, such as with Oracle Autonomous Database.

• ODP.NET Core -- Ubuntu and Debian Linux

ODP.NET Core add certification for additional Linux distributions: Ubuntu and Debian.

See Also:

System Requirements

Changes in Oracle Data Provider for .NET Release 21c (21.3)
The following are the changes in Oracle Data Provider for .NET for Release 21c (21.3).

New Features
The following feature is new in this release:

• Managed ODP.NET and ODP.NET Core – User-Defined Types

ODP.NET Core and managed providers now support user-defined types (UDT), including
Oracle Collections (VARRAY and nested tables), Oracle Objects, and references (REF)
to object types. These new features provide near-parity functionality with existing
ODP.NET, Unmanaged Driver UDT functionality. This new enhancement allows the vast
majority of unmanaged ODP.NET applications to migrate to managed ODP.NET or
ODP.NET Core easily with minimal code changes necessary.

See Also:

Oracle User-Defined Types (UDTs) and .NET Custom Types

• OracleConfiguration SqlnetURI Setting

Changes in This Release for Oracle Data Provider for .NET

xci

ODP.NET OracleConfiguration SqlnetURI property is being renamed to
SqlNetURI. This setting specifies the WebSocket universal resource identifier. The
change reflects improved adherence to .NET's PascalCasing capitalization
convention. If you currently use the property, then please modify your code
accordingly.

Deprecated Features
The following property and setting are deprecated in Oracle Data Provider for .NET for
Release 21c:

• OracleConfiguration DirectoryType property

• Configuration file DIRECTORY_TYPE setting

The OracleConfiguration DirectoryServerType property replaces the
DirectoryType property. The .NET configuration file DIRECTORY_SERVER_TYPE
setting replaces the DIRECTORY_TYPE setting. All these properties have identical
functionality. Oracle recommends developers to use and migrate to the new
properties. The DirectoryServerType and DIRECTORY_SERVER_TYPE names better
align with the ldap.ora parameter DIRECTORY_SERVER_TYPE, which provides
equivalent functionality.

• Deprecation of Oracle Database Extensions for .NET

See Also:

• Oracle Database Upgrade Guide for a complete list of deprecated
features.

Deprecation of Oracle Database Extensions for .NET
Oracle Database Extensions for .NET is deprecated in Oracle Database 21c. Oracle
recommends that you either place .NET code in the middle tier, or use the External
Procedures feature, or rewrite the code using PL/SQL or Java.

Oracle Database Extensions for .NET is a feature of Oracle Database on Microsoft
Windows that enables you to use stored procedures and functions written in a
language managed by .NET, such as C#.

Oracle Database hosts the Microsoft Common Language Runtime (CLR) in an
external process, outside of the Oracle Database process. Application developers can
write stored procedures and functions using any .NET compliant language, such as C#
and VB.NET, and use these .NET stored procedures in the database, in the same
manner as other PL/SQL or Java stored procedures. .NET stored procedures can be
called from PL/SQL packages, procedures, functions, and triggers; from SQL
statements; or from anywhere a PL/SQL procedure or function can be called.

Migration options include:

• Moving the .NET code (assemblies) into a middle tier

• Using the External Procedures feature to have the external process load and
execute the .NET assembly

Changes in This Release for Oracle Data Provider for .NET

xcii

• Rewriting the stored procedures using PL/SQL or Java

Changes in Oracle Data Provider for .NET (21.1)
The following are the changes in Oracle Data Provider for .NET (21.1).

New Features
The following features are new in this release:

• Entity Framework Core 5

ODP.NET Entity Framework (EF) Core now supports Entity Framework Core 5 with
Oracle databases. Entity Framework Core is a cross-platform Microsoft object-relational
mapper that enables .NET developers to work with relational databases using .NET
objects.

See Also:

Oracle Data Provider for .NET Entity Framework Core

• Oracle Database JSON Data Type

ODP.NET supports the native JavaScript Object Notation (JSON) data type in Oracle
Database. The new JSON data type is optimized for query and DML processing, yielding
database performance improvements processing JSON.

When using a .NET string or OracleString, JSON data can be bound as a parameter
using the OracleDbType.Json enumeration value. ODP.NET Core, managed, and
unmanaged all support these new JSON features.

• Client Initiated Continuous Query Notification

Client Initiated Continuous Query Notification (CICQN) is similar to the traditional
Continuous Query Notification (CQN) feature available in ODP.NET. In CQN, applications
receive client-side notifications when server side change occurs that would affect the
client’s query result set, the underlying schema objects, or the database state. This
notification is out of process, occurring without an existing ODP.NET connection.

CICQN uses in-process notifications. ODP.NET creates one separate connection per
pool for receiving notifications. The database server uses this specific connection to send
change notifications to ODP.NET. CICQN is useful when out of process communications
is not available between client and database server, such as in cloud deployments.

See Also:

Client Initiated Continuous Query Notifications

• Managed ODP.NET and ODP.NET Core – Sharding

ODP.NET Core and managed providers now support sharding. Oracle Sharding provides
the ability to horizontally partition the data across multiple independent Oracle databases
(shards). Based on a key specified in the connect string, ODP.NET can route the
database requests to a particular shard. Oracle Sharding is a shared-nothing architecture

Changes in This Release for Oracle Data Provider for .NET

xciii

that allows near-linear scaling of the database across low-cost commodity
database servers located in one or more local or global data centers. Other key
benefits include global data distribution (store particular data close to consumers)
and fault containment (failure of one shard does not affect the availability of other
shards). Global Data Services manages the location of data among the shards
and allows ODP.NET client requests to be routed to the appropriate shard in this
distributed database system.

In addition to the same sharding functionality that unmanaged ODP.NET supports,
ODP.NET managed and core also support pausing connection requests during
chunk migrations. Users will not experience a timeout without giving the chunk
migration sufficient times to move across shards.

See Also:

Database Sharding

• New Administrative Privileges

ODP.NET now supports assignment of task-specific and least-privileged
administrative privileges to enable database administrative duty separation. The
newly added privileges include SYSBACKUP for backup and recovery, SYSDG for
Oracle Data Guard, SYSKM for encryption key management, and SYSRAC for Oracle
Real Applications Clusters operations. Core, managed, and unmanaged ODP.NET
support all these administrative privileges.

See Also:

OracleDBAPrivilege Enumeration

• Managed ODP.NET and ODP.NET Core-- Debug Tracing Redaction

Managed ODP.NET and ODP.NET Core has introduced a new trace level, that can
exclude SQL statements and network packet contents from being included in the
trace file.

See Also:

Debug Tracing

Changes in Oracle Data Provider for .NET (19.15.1)
The following are the changes in Oracle Data Provider for .NET (19.15.1).

New Features
The following feature is new in this release:

• Azure Active Directory

Changes in This Release for Oracle Data Provider for .NET

xciv

Starting with ODP.NET 21.7 and 19.15.1, ODP.NET supports Azure Active Directory
(AAD) authentication when connecting to Oracle Database. ODP.NET will then use an
access token to authenticate instead of a username and password.

This feature benefits applications and services that use AAD for centralized user
authentication with Oracle database. Those services can include Azure and Microsoft
365-based cloud services, such as Microsoft Power BI service, that rely on AAD for user
management.

Using token-based authentication is more secure and simpler for the end user. It
becomes unnecessary to specify credentials each time the user accesses a resource.
Moreover, the resource never needs to handle and manage individual user credentials.

See Also:

Using Azure Active Directory.

Changes in Oracle Data Provider for .NET (19.10)
The following are the changes in Oracle Data Provider for .NET (19.10).

New Features
The following features are new in this release:

• .NET 5 Runtime Certification

ODP.NET Core is certified for .NET 5.

• Managed ODP.NET and ODP.NET Core -- Bulk Copy

ODP.NET Bulk Copy enables applications to efficiently load large amounts of data from a
table in one database to another table in a different database. Managed ODP.NET and
ODP.NET Core now support Bulk Copy and all its APIs.

ODP.NET Bulk Copy is the most optimized .NET solution when a large data set needs to
loaded into a table or between database tables in different databases.

See Also:

Bulk Copy

• Oracle Provider Types Deserialization into DataSet and DataTable

Due to a change in all .NET versions to enhance application security, the allowed
DataSet and DataTable data types that can be deserialized are now restricted. This
change applies to .NET 5, .NET Core, and .NET Framework with new updates. If
application DataSets and DataTables use ODP.NET data types with one of these
newer .NET versions, then they may encounter an ODP.NET type initializer exception. To
avoid this exception, developers can add ODP.NET-specific data types to the “allow” list
to permit deserialization into DataSet or DataTable.

To do this, call the OracleConfiguration AddOracleTypesDeserialization method or
add the types individually via a .NET configuration file.

Changes in This Release for Oracle Data Provider for .NET

xcv

See Also:

Deserializing ODP.NET Types into DataSet and DataTable

• ODP.NET Core -- KeepAlive on non-Windows platforms

KeepAlive is supported on non-Windows operating systems, such as Oracle
Linux. In previous releases, ODP.NET Core supported these KeepAlive properties
for Windows platforms only. The properties include KeepAlive,
KeepAliveInterval, and KeepAliveTime.

KeepAlive is used to prevent idle TCP connections from being closed, such as by
a firewall or load balancer. In some cloud deployments, this idle TCP connection
timeout cannot be changed. KeepAlive will keep the connection alive by
periodically sending a probe packet with no data in it and the ACK flag turned on.

See Also:

OracleConnection Properties

• Suppress GetDecimal Invalid Cast Exception

The SuppressGetDecimalInvalidCastException property has been added to the
OracleDataReader and OracleDataAdapter classes. When enabled and
GetDecimal is called on the OracleDataReader object explicitly by the application
or implicitly through the Fill() method on the OracleDataAdapter object, for
example, it suppresses the InvalidCastException and returns a rounded-off 28 or
29 precision .NET decimal value, that represents the Oracle NUMBER.

See Also:

SuppressGetDecimalInvalidCastException

• ODP.NET Core -- LDAP for Non-Windows Platforms

ODP.NET Core now supports connecting with net service names mapped to
connect descriptors in an LDAP-compliant directory server from all non-Windows
operating systems the provider supports, such as Oracle Linux and Red Hat
Enterprise Linux. Now ODP.NET Core apps on all platforms can use LDAP
authentication to connect to Oracle Database.

Changes in Oracle Data Provider for .NET (19.9)
The following are the changes in Oracle Data Provider for .NET (19.9).

New Features
The following feature is new in this release:

• In-Band Fast Application Notification

Changes in This Release for Oracle Data Provider for .NET

xcvi

In some scenarios, such as cloud deployments and when firewalls block notification
messages between the database and client, out of band messages and using Oracle
Notification Service may not be possible. ODP.NET can use in-band FAN notifications
instead in these scenarios. In-band notifications rely on existing ODP.NET connections to
communicate messages. ODP.NET will check for notifications every time a connection
makes a database round trip, is checked in, or checked out. When a DOWN notification
is received, ODP.NET will scan the pool for affected connections and close them.

This feature was introduced with managed ODP.NET and ODP.NET Core in 19.9. It was
introduced in unmanaged ODP.NET in 19.10.

See Also:

In-Band Fast Application Notification

Changes in Oracle Data Provider for .NET ODAC Release 19c
(19.3.2)

The following are the changes in Oracle Data Provider for .NET for ODAC Release 19c
(19.3.2).

New Features
The following features are new in this release:

• Entity Framework Core 3.1

ODP.NET Entity Framework (EF) Core now supports Entity Framework Core 3.1 with
Oracle databases. Entity Framework Core is a cross-platform Microsoft object-relational
mapper that enables .NET developers to work with relational databases using .NET
objects. This ODP.NET EF Core release adds support for relational views and
materialized views. These views can be read-only or updatable.

Oracle EF Core 3.1 developers can now create and migrate data models in the Oracle
Database. They can scaffold EF Core classes based on an Oracle Database schema
objects. They can migrate and scaffold with Oracle views. Oracle EF Core is integrated
with popular EF Core tools, such as the EF Core Package Manager Tools.

See Also:

Oracle Data Provider for .NET Entity Framework Core

Changes in Oracle Data Provider for .NET (19.7)
The following are the changes in Oracle Data Provider for .NET (19.7).

New Features
The following features are new in this release:

Changes in This Release for Oracle Data Provider for .NET

xcvii

• Managed ODP.NET and ODP.NET Core -- Administer Storage using SYSASM
Privilege

Oracle Automatic Storage Management (Oracle ASM) is a volume manager and a
file system for Oracle database files. SYSASM is a system privilege that enables
administrators to manage ASM instances. Managed ODP.NET and ODP.NET Core
can now connect using the SYSASM administrative privilege to perform storage
management of the Oracle Database.

ODP.NET can now perform database ASM administration when connecting with a
SYSASM privileged connection.

See Also:

OracleDBAPrivilege Enumeration

• WebSocket and WebSocket with SSL/TLS

WebSocket is a protocol that offers full-duplex communication channels over a
single TCP connection. WebSocket with SSL/TLS offers a secure WebSocket
connection. WebSocket is an extension to HTTP and is able to work with HTTP
proxies and intermediaries. ODP.NET Core, managed, and unmanaged providers
all support WebSocket and secure WebSocket protocols.

See Also:

Using WebSocket

Changes in Oracle Data Provider for .NET (19.6)
The following are the changes in Oracle Data Provider for .NET (19.6).

New Features
The following features are new in this release:

• .NET Core 3.1 Certification

ODP.NET Core is certified for .NET Core 3.1.

• Linux 8 Certification

ODP.NET Core is certified on Oracle Linux 8 and Red Hat Enterprise Linux 8.

• Entity Framework 6.4 Certification

Managed and unmanaged ODP.NET Entity Framework is certified for Entity
Framework 6.4.

Changes in Oracle Data Provider for .NET (19.5)
The following are the changes in Oracle Data Provider for .NET (19.5).

Changes in This Release for Oracle Data Provider for .NET

xcviii

New Features
The following features are new in this release:

• .NET Core 3 Certification

ODP.NET Core is certified for .NET Core 3.

• Entity Framework Core 2.1 Certification

ODP.NET Entity Framework Core is certified for EF Core 2.1.

Changes in Oracle Data Provider for .NET in ODAC Release
19c (19.3)

The following are the changes in Oracle Data Provider for .NET for ODAC Release 19c
(19.3).

New Features
The following features are new in this release:

• Entity Framework Core

ODP.NET Entity Framework (EF) Core is a database provider that allows Entity
Framework Core to be used with Oracle databases. Entity Framework Core is a cross-
platform Microsoft object-relational mapper that enables .NET developers to work with
relational databases using .NET objects.

Oracle EF Core developers can now create and migrate data models in the Oracle
Database. They can reverse engineer/scaffold EF Core classes based on an Oracle
Database schema. Oracle EF Core is integrated with popular EF Core tools, such as the
EF Core Package Manager Tools.

See Also:

Oracle Data Provider for .NET Entity Framework Core

• Managed ODP.NET and ODP.NET Core -- More Configuration Options with New
OracleConnection Properties

OracleConnection class introduces additional properties to configure ODP.NET
connections. The new properties are:

– KeepAlive, KeepAliveInterval, and KeepAliveTime - specifies whether and the
conditions under which to keep idle connections alive

– TnsAdmin - specifies the tnsnames.ora and sqlnet.ora directory

– WalletLocation - specifies the wallet directory location

Changes in This Release for Oracle Data Provider for .NET

xcix

Note:

OracleConnection Class

• Unmanaged ODP.NET -- Administer Storage using SYSASM Privilege

Oracle Automatic Storage Management (Oracle ASM) is a volume manager and a
file system for Oracle database files. SYSASM is a system privilege that enables
administrators to manage ASM instances. Unmanaged ODP.NET can now
connect using the SYSASM administrative privilege to perform storage
management of the Oracle Database.

ODP.NET can now perform database ASM administration when connecting with a
SYSASM privileged connection.

Note:

OracleDBAPrivilege Enumeration

• Dynamically Enabled Tracing and Size Limits

To improve diagnostics ease of use and productivity, ODP.NET trace output can
now be enabled and disabled at runtime using the
OracleConfiguration.TraceLevel property. To keep trace files down to a
manageable size, the TraceFileMaxSize property can be set.

Administrators can isolate tracing to only known times or events when problems
occur. This feature helps keep trace files down to the minimum size needed to
investigate issues. If a trace file does become large, ODP.NET will write to a new
trace file once the maximum file limit that is set in TraceFileMaxSize is reached.
These features are available with core, managed, and unmanaged providers.

See Also:

– Debug Tracing

– OracleConfiguration Debug Tracing Properties

Changes in Oracle Data Provider for .NET Release 19c
(19.3)

The following are the changes in Oracle Data Provider for .NET for Release 19c
(19.3).

New Features
The following features are new in this release:

• .NET Framework 4.8 Certification

Changes in This Release for Oracle Data Provider for .NET

c

ODP.NET Core, Managed, and Unmanaged Drivers are certified with .NET Framework
4.8.

• ODP.NET, Managed Driver -- Configuration as Code

Managed ODP.NET now supports OracleConfiguration, OracleDataSourceCollection,
and OracleOnsServerCollection classes.

These classes allow developers to configure managed ODP.NET within source code in
lieu of .NET configuration and Oracle configuration files.

• ODP.NET Core -- Lightweight Directory Access Protocol (LDAP)

ODP.NET Core can use connect identifiers mapped to connect descriptors in an LDAP-
compliant directory server, such as Oracle Internet Directory and Microsoft Active
Directory. The provider supports the same LDAP features and settings as managed
ODP.NET.

ODP.NET Core LDAP support is available on Windows operating systems only. It
requires the System.DirectoryServices namespace.

See Also:

OracleConfiguration Directories Properties

• ODP.NET Core -- Performance Counters

ODP.NET Core can publish key runtime connection counters to Windows Performance
Monitor or a file. The provider supports the same counters, setup process, and settings
as managed and unmanaged ODP.NET.

ODP.NET Core performance counters are available on Windows operating systems only.
They require System.Diagnostics namespace in using performance counters
programmatically.

See Also:

Connection Performance Counters

• Easy Connect Plus

Oracle Easy Connect Plus provides a simple way to configure TCP/IP connections to the
Oracle Database without having to use parameter files, such as tnsnames.ora, nor
environment variables. Easy Connect Plus includes support for:

– TCP/IP with SSL/TLS

– Any SQL*Net description level parameter can be used

– Multiple hosts and ports

– A straightforward name-value pair format

Easy Connect Plus supports more configurations and a wider breadth of ODP.NET
applications than traditional Easy Connect, including clustered or cloud databases.

Changes in This Release for Oracle Data Provider for .NET

ci

See Also:

Easy Connect and Easy Connect Plus Naming Methods

• More Secure Oracle Notification Service Connections

ODP.NET now enables Oracle Notification Service (ONS) communications to
occur over TCP/IP with SSL/TLS (TCPS), which is more secure than just TCP/IP.
As TCPS requires using a wallet for storing keys and certificates, ODP.NET can
use one wallet for both ONS and ODP.NET connections or have separate wallets
for each.

TCPS provides more secure ONS communication, gives administrators flexibility in
how to configure their wallets, and enables cloud database connections.

Changes in Oracle Data Provider for .NET in ODAC
Release 18c (18.3)

The following are the changes in Oracle Data Provider for .NET for ODAC Release
18c (18.3).

New Features
The following features are new in this release:

• .NET Core 2.1 Certification

ODP.NET Core is certified for .NET Core 2.1 and higher.

See Also Installing Oracle Data Provider for .NET Core

Changes in Oracle Data Provider for .NET Release 18c
(18.3)

The following are the changes in Oracle Data Provider for .NET for Release 18c
(18.3).

New Features
The following features are new in this release:

• .NET Framework 4.7.x Certification

ODP.NET, Managed and Unmanaged Drivers are certified for all versions of .NET
Framework 4.7.x, including 4.7.1 and 4.7.2.

• Secure Passwords with OracleCredential
ODP.NET OracleCredential class allows application developers to store user
names and passwords outside of the connection string without exposure in a
memory dump.

OracleCredential can be used with or without connection pooling.

Changes in This Release for Oracle Data Provider for .NET

cii

This feature is available in the terminal releases of ODP.NET 11.2, 12.1, and 12.2 and
with the first release of ODP.NET 18c.

See Also Connection Pooling with OracleCredential

Desupported Features
Some features previously described in this document are desupported in Oracle Database
18c (18.3). See Oracle Database Upgrade Guide for a complete list of desupported features.

The following feature is no longer supported by Oracle:

• Oracle.ManagedDataAccessDTC.dll

Changes in Oracle Data Provider for .NET in ODAC 12.2c
Release 1

The following are the changes in Oracle Data Provider for .NET for ODAC 12.2c Release 1.

New Features
The following features are new in this release:

• .NET Framework 4.7 Certification

ODP.NET, Managed and Unmanaged Drivers are certified for .NET Framework 4.7.

• Entity Framework 6.2 Certification

ODP.NET, Managed and Unmanaged Drivers are certified for Entity Framework 6.2.

• Database Resident Connection Pooling

Database Resident Connection Pooling (DRCP) optimizes resource usage by pooling
connections at the database server level. With DRCP, server connections can be shared
across application that are executed on different client machines, especially in the case
when connections are not always in use. DRCP can be used in conjunction with either
managed or unmanaged ODP.NET client side pooling to improve scalability and lower
resource usage at the database server level.

See also Database Resident Connection Pooling for more information.

• Multitenant and Pluggable Databases Connection Pooling

Oracle Multitenant is a database architecture that enables customers to easily
consolidate multiple pluggable databases without changing their application. This
architecture delivers all the benefits of managing many databases as one, yet retains the
isolation and resource prioritization of separate databases.

Managed and unmanaged ODP.NET now support hosting connections to multiple
pluggable databases from the same connection pool. This feature enhances application
performance and scalability, plus makes using multiple pluggable databases from the
same application easier.

See also Oracle Multitenant and Pluggable Databases for more information.

• Edition-Based Redefinition Connection Pooling

Changes in This Release for Oracle Data Provider for .NET

ciii

Edition-based redefinition enables applications to upgrade the database
component while it is in use, thereby minimizing or eliminating down time.
Managed and unmanaged ODP.NET now support using the same connection pool
to connect to multiple Editions. This feature enhances performance and scalability
while using different Editions from the same application, and also makes using
multiple Editions from the same application easier.

See also Edition-Based Redefinition for more information.

• Connection Configuration Upon Open

Managed and unmanaged ODP.NET introduce the ConnectionOpen event handler,
which allows developers to provide setup logic and change settings before
ODP.NET connections are dispensed from the Open() method invocation. This
feature is similar in concept to a logon trigger, but is most optimal for client side
initialization settings. It works with both pooled and non-pooled connections. The
event handler provides a centralized, standardized location for connection
initialization.

See also ConnectionOpen for more information.

Deprecated Features
The following feature is deprecated in ODAC 12.2c Release 1:

• Oracle.ManagedDataAccessDTC.dll

See Also:

• Microsoft Distributed Transaction Coordinator Integration

• Oracle Database Upgrade Guide for a complete list of deprecated
features.

Changes in Oracle Data Provider for .NET Release 12.2.0.1
The following are the changes in Oracle Data Provider for .NET for Release 12.2.0.1.

New Features
The following features are new in this release:

• .NET Framework 4.6.2 Certification

ODP.NET, Managed and Unmanaged Drivers are certified for .NET Framework
4.6.2.

See also System Requirements for more information.

• .NET Cloud Development and Deployment

ODP.NET, Managed and Unmanaged Drivers can be deployed easily to Oracle
Cloud, private clouds, and third-party cloud environments through Web Deploy. All
ODP.NET specific settings no longer require any operating system level
configuration. These settings can be made in the .NET configuration files.

Changes in This Release for Oracle Data Provider for .NET

civ

Managed and Unmanaged ODP.NET Drivers now share a unified configuration file
format.

• Application Continuity

Application Continuity recovers incomplete requests from an ODP.NET, Unmanaged
Driver perspective and masks many system failures, communication failures, hardware
failures, and storage outages from the user.

See also "Application Continuity" for more information.

• Sharding and ODP.NET Routing

Starting from Release 12.2.0.1, ODP.NET, Unmanaged Driver and Oracle Database
support sharding. Oracle Sharding provides the ability to horizontally partition the data
across multiple independent Oracle databases (shards). Based on a key specified in the
connect string, ODP.NET can route the database requests to a particular shard.

Oracle Sharding is a shared-nothing architecture that allows near-linear scaling of the
database across low-cost commodity database servers located in one or more local or
global data centers. Other key benefits include global data distribution (store particular
data close to consumers) and fault containment (failure of one shard does not affect the
availability of other shards). Global Data Services manages the location of data among
the shards and allows ODP.NET client requests to be routed to the appropriate shard in
this distributed database system.

See also "Database Sharding" for more information.

• Longer Schema Identifiers

Oracle Data Provider for .NET now supports schema object identifier names, such as
tables, columns, views, stored procedures, and functions, up to 128 characters in length.
This feature is available in both ODP.NET, Managed and Unmanaged Drivers.

• ODP.NET, Managed Driver – Data Integrity

ODP.NET, Managed Driver supports cryptographic hash functions to better ensure data
integrity between the database server and the client. The algorithms supported include
MD5, SHA-1, and SHA-2 (SHA-256, SHA-384, and SHA-512).

See also "settings section" and "Network Data Encryption and Integrity" for more
information.

• ODP.NET, Managed Driver -- Transport Layer Security (TLS)

ODP.NET, Managed Driver has added support for TLS 1.1 and 1.2 in addition to existing
support for TLS 1.0 and SSL 3.0.

• ODP.NET, Managed Driver -- Distinguished Name for SSL/TLS

ODP.NET, Managed Driver connections using SSL/TLS can ensure that the distinguished
name (DN) is correct for the database server that it is trying to connect to.

• ODP.NET, Managed Driver - Boolean Data Type

ODP.NET, Managed Driver now supports the OracleBoolean data type when using the
database's PL/SQL Boolean data type. The managed driver must be connected to Oracle
Database 12c Release 2 (12.2) or higher. Booleans store TRUE or FALSE values.

The ODP.NET OracleBoolean data type eases parameter binding and data type mapping
setup with Boolean values.

See also "OracleBoolean Structure" for more information.

Changes in This Release for Oracle Data Provider for .NET

cv

Desupported Features
Some features previously described in this document are desupported in Oracle
Database 12c Release 2 (12.2). See Oracle Database Upgrade Guide for a complete
list of desupported features in this release.

The following features are no longer supported by Oracle:

• OracleLogicalTransactionStatus class

• OracleConnection.GetLogicalTransactionStatus method

• OracleConnection.LogicalTransactionId property

• OracleConnection.OracleLogicalTransaction property

• OracleLogicalTransaction.DataSource property

• OracleLogicalTransaction.GetOutcome() method

• OracleLogicalTransaction.GetOutcome(sting, string, string) method

• OracleLogicalTransaction.UserId property

Changes in This Release for Oracle Data Provider for .NET

cvi

1
Introducing Oracle Data Provider for .NET

This chapter introduces Oracle Data Provider for .NET (ODP.NET), an implementation of
a .NET data provider for Oracle Database.

This chapter contains these topics:

• .NET Data Access in Oracle: Products and Documentation

• Overview of Oracle Data Provider for .NET (ODP.NET)

• Oracle Data Provider for .NET Assemblies

• Differences between the ODP.NET Drivers

• Getting Started With Developing ODP.NET Applications

.NET Data Access in Oracle: Products and Documentation
This section discusses Oracle Data Provider for .NET and Oracle Database components that
use Oracle Data Provider for .NET for data access. It briefly describes what each component
does and where to find additional documentation.

These Oracle products provide .NET integration on the Windows operating system:

Oracle Data Provider for .NET (ODP.NET)
Oracle Data Provider for .NET provides fast data access from .NET clients to Oracle
databases. ODP.NET enables .NET applications to take advantage of Oracle advanced
features, such as Oracle Real Application Clusters (Oracle RAC) and XML DB. It is
accessible through any .NET language, including C#, Visual Basic .NET, and C++ .NET.

ODP.NET consists of three drivers: ODP.NET, Managed Driver, ODP.NET, Unmanaged and
ODP.NET Core. ODP.NET, Managed Driver is a fully managed ADO.NET provider, consisting
of fewer DLLs and smaller install size than ODP.NET, Unmanaged Driver. The managed
driver has the same exact application programming interfaces (APIs) as ODP.NET,
Unmanaged Driver. However, the managed driver's APIs are a subset of the Unmanaged
Driver's APIs.

ODP.NET Core is a multi-platform provider for Microsoft .NET Core. In functionality, it is very
similar to ODP.NET, Managed Driver. However, ODP.NET Core has a subset of managed
ODP.NET's APIs.

This guide describes Oracle Data Provider for .NET features, their use, installation,
requirements, and classes. The guide distinguishes which classes and APIs are supported
for the managed driver, unmanaged driver, .NET stored procedures, and .NET clients.

Additionally, Oracle Data Provider for .NET Dynamic Help, which is context-sensitive online
help, contains the same reference sections available in Oracle Data Provider for .NET
Developer's Guide for Microsoft Windows, this guide.

Oracle Data Provider for .NET Dynamic Help is integrated with Visual Studio Dynamic Help.
With Dynamic Help, you can access Oracle Data Provider for .NET documentation within

1-1

Visual Studio by placing the cursor on an Oracle Data Provider for .NET keyword and
pressing the F1 function key.

Oracle Developer Tools for Visual Studio
Oracle Developer Tools is an add-in to Visual Studio that provides graphical user
interface (GUI) access to Oracle functionality. It provides improved developer
productivity and ease of use. Oracle Developer Tools provide the ability to build .NET
stored procedures using Visual Basic .NET, C#, and other .NET languages.

Oracle Developer Tools for Visual Studio Help describes Oracle Developer Tools. This
help is in the form of dynamic help, which installs as part of the product.

Additionally, the Oracle Developer Tools for Visual Studio Help includes the following
documentation:

• Oracle Database PL/SQL Language Reference

• Oracle Database SQL Language Reference

• Oracle Database Extensions for .NET Developer's Guide for Microsoft Windows

• Oracle Database Error Messages Reference

• Access to Oracle Data Provider for .NET Dynamic Help

• Access to Oracle Providers for ASP.NET Dynamic Help

Oracle Database Extensions for .NET
Oracle Database Extensions for .NET provides the following:

• Hosting of Microsoft Common Language Runtime (CLR) in an external process on
the server side, to execute .NET stored procedures.

• ODP.NET data access on the server side, from within the .NET stored procedure.

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows describes all
ODP.NET classes. Classes that are not supported by Oracle Database Extensions
for .NET are described as Not Supported in a .NET Stored Procedure.

See Also:

• Oracle Developer Tools for Visual Studio Help

• Oracle Database Extensions for .NET Developer's Guide for Microsoft
Windows for more information about Oracle Database Extensions
for .NET features, their use, installation, and requirements.

• "Oracle Data Provider for .NET Assemblies" for class listings

• Oracle Data Provider for .NET Stored Procedures

Oracle Providers for ASP.NET
Oracle Providers for ASP.NET offer ASP.NET developers an easy to use method to
store state common to web applications within an Oracle database. These providers

Chapter 1
.NET Data Access in Oracle: Products and Documentation

1-2

are modeled on existing Microsoft ASP.NET providers, sharing similar schema and
programming interfaces to provide .NET developers a familiar interface. Oracle supports the
following providers:

• Cache Dependency Provider

• Membership Provider

• Profile Provider

• Role Provider

• Session State Provider

• Site Map Provider

• Web Events Provider

• Web Parts Personalization Provider

Oracle Providers for ASP.NET classes, their use, installation, and requirements are described
in Oracle Providers for ASP.NET Developer's Guide for Microsoft Windows, which is also
provided as dynamic help.

Oracle Services for Microsoft Transaction Server
Oracle Services for Microsoft Transaction Server (OraMTS) permit Oracle databases to be
used as resource managers in Microsoft application coordinated transactions. OraMTS acts
as a proxy for the Oracle database to the Microsoft Distributed Transaction Coordinator
(MSDTC). As a result, OraMTS provides client-side connection pooling and allows client
components that leverage Oracle to participate in promotable and distributed transactions. In
addition, OraMTS can operate with Oracle databases running on any operating system, given
that the services themselves are run on Windows.

See Also:

Oracle Services for Microsoft Transaction Server Developer's Guide for Microsoft
Windows for description about OraMTS, which allows Oracle databases to be used
as resource managers in distributed transactions.

Oracle TimesTen In-Memory Database
ODP.NET support for Oracle TimesTen In-Memory Database (TimesTen) provides fast and
efficient ADO.NET data access for applications that require the highest performance.

You can use ODP.NET with any of the following TimesTen installations:

• TimesTen Data Manager only (for direct connections)

• TimesTen Client only (for client/server connections, assuming a TimesTen Data Manager
instance and TimesTen Server instance are accessible elsewhere)

• TimesTen Data Manager with TimesTen Server

For more information on ODP.NET features specific to a TimesTen environment, refer to the
Oracle Data Provider for .NET Oracle TimesTen In-Memory Database Support User's Guide.

Chapter 1
.NET Data Access in Oracle: Products and Documentation

1-3

Note:

TimesTen does not support ODP.NET, Managed Driver and ODP.NET Core.

Overview of Oracle Data Provider for .NET (ODP.NET)
Oracle Data Provider for .NET (ODP.NET) is an implementation of a .NET data
provider for Oracle Database, using and inheriting from classes and interfaces
available in the Microsoft .NET Framework Class Library.

Following the .NET Framework, ODP.NET uses the ADO.NET model, which allows
native providers to expose provider-specific features and data types. This is similar to
Oracle Provider for OLE DB, where ADO (ActiveX Data Objects) provides an
automation layer that exposes an easy programming model. ADO.NET provides a
similar programming model, but without the automation layer, for better performance.

Oracle Data Provider for .NET uses Oracle native APIs to offer fast and reliable access
to Oracle data and features from any .NET application. ODP.NET consists of three
drivers: ODP.NET, Managed Driver, ODP.NET, Unmanaged Driver, and ODP.NET
Core. ODP.NET, Managed Driver is a fully managed ADO.NET provider, consisting of
fewer DLLs and smaller install size than ODP.NET, Unmanaged Driver. The managed
driver has the same exact application programming interfaces (APIs) as ODP.NET,
Unmanaged Driver. However, the managed driver's APIs are a subset of the
Unmanaged Driver's APIs.

ODP.NET Core employs the same namespaces and application programming
interfaces (APIs) as ODP.NET, Managed Driver. This parallel eases migration and
developer learning curve from managed ODP.NET to ODP.NET Core. It does not
support all managed ODP.NET functionality. ODP.NET Core supports a subset of
managed ODP.NET APIs. These differences are listed later on in this documentation.

The ODP.NET classes described in this guide are contained in the
Oracle.DataAccess.dll and Oracle.ManagedDataAccess.dll assembly.

• Client Applications: All ODP.NET classes are available for use in client
applications.

As ODP.NET, Managed Driver does not support all classes and members in the
ODP.NET, Unmanaged Driver, the unsupported managed driver classes and
members will be labeled Not Supported in ODP.NET, Managed Driver.

ODP.NET Core does not support all classes and members in the ODP.NET,
Managed Driver. The unsupported managed driver classes and members will be
labeled Not Supported in ODP.NET Core.

• .NET Stored Procedures: Most ODP.NET classes can be used from within .NET
stored procedures and functions. Those classes which cannot, are labeled Not
Supported in a .NET Stored Procedure. Additionally, some classes contain
members which may not be supported, and this is so indicated in the member
tables that follow the class descriptions, and listed in Chapter 4 of this guide.

Chapter 1
Overview of Oracle Data Provider for .NET (ODP.NET)

1-4

See Also:

• Table 6-1

• "Oracle Data Provider for .NET Assemblies" for class lists

• Oracle Data Provider for .NET Stored Procedures

• Oracle Database Extensions for .NET Developer's Guide for Microsoft Windows
for more information about .NET stored procedures and functions

Oracle Data Provider for .NET Assemblies
This section contains the following topics:

• Oracle Data Provider for .NET, Unmanaged Driver Assemblies

• Oracle Data Provider for .NET, Managed Driver and ODP.NET Core Assemblies

• Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Namespaces

• Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Namespaces

Oracle Data Provider for .NET, Unmanaged Driver Assemblies
The Oracle.DataAccess.dll assembly provides two namespaces:

• The Oracle.DataAccess.Client namespace contains ODP.NET classes and
enumerations for the client-side provider.

• The Oracle.DataAccess.Types namespace contains the Oracle Data Provider for .NET
data types (ODP.NET Types).

To use Code First or Entity Framework 6 or higher with ODP.NET, Unmanaged Driver, add
Oracle.DataAccess.EntityFramework.dll as a project assembly reference. It contains the
namespace Oracle.DataAccess.EntityFramework.

Oracle Data Provider for .NET, Managed Driver and ODP.NET Core
Assemblies

The Oracle.ManagedDataAccess.dll assembly provides two namespaces:

• The Oracle.ManagedDataAccess.Client namespace contains ODP.NET classes and
enumerations for the client-side provider.

• The Oracle.ManagedDataAccess.Types namespace contains the Oracle Data Provider
for .NET data types (ODP.NET Types).

ODP.NET, Managed Driver contains additional assemblies. These assemblies are optional to
install if not using the specific functionality.

Applications do not need to explicitly add these assemblies to their project. ODP.NET,
Managed Driver will access these assemblies by default if installed.

The one exception is Oracle.ManagedDataAccess.EntityFramework.dll. That DLL must be
explicitly added to a project for its functionality to be used.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-5

• Oracle.ManagedDataAccess.EntityFramework.dll - Only required when using
Code First or Entity Framework 6 or higher. It contains the
Oracle.ManagedDataAccess.EntityFramework namespace.

• Oracle.ManagedDataAccessIOP.dll - Only required when using Kerberos. The
assembly has 32-bit and x64 versions depending on the .NET Framework's
bitness in which it runs. The assembly makes calls to unmanaged assemblies.
Applications do not need to explicitly add this assembly to their project as
ODP.NET is already configured to access this assembly by default.

Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces

The Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
namespaces contains implementations of core ADO.NET classes and enumerations
for ODP.NET, as well as ODP.NET specific classes.

The following tables list ODP.NET classes, enumerations, and types that are
supported by the Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
namespaces. The tables indicate which of them are not supported by ODP.NET,
Managed Driver, ODP.NET Core and/or by .NET stored procedures. All are supported
by ODP.NET, Unmanaged Driver.

Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Table 1-1 lists the Oracle.DataAccess.Client and
Oracle.ManagedDataAccess.Client classes and delegates.

Table 1-1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OnChangeEventHan
dler Delegate

- - No The
OnChangedEventHa
ndler event delegate
represents the
signature of the
method that handles
the notification.

OracleAQAgent
Class

No No - The OracleAQAgent
class represents
agents that may be
senders or recipients
of a message.

OracleAQDequeueO
ptions Class

No No - An
OracleAQDequeueO
ptions object
represents the
options available
when dequeuing a
message from an
OracleAQQueue
object.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-6

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OracleAQEnqueueO
ptions Class

No No - The
OracleAQEnqueueO
ptions class
represents the
options available
when enqueuing a
message to an
OracleAQQueue.

OracleAQMessage
Class

No No - An
OracleAQMessage
object represents a
message to be
enqueued and
dequeued.

OracleAQMessageAv
ailableEventArgs
Class

No No - The
OracleAQMessageA
vailableEventArg
s class provides
event data for the
OracleAQQueue.Me
ssageAvailable
event.

OracleAQMessageAv
ailableEventHandler
Delegate

No No - The
OracleAQMessageA
vailableEventHan
dler delegate
represents the
signature of the
method that handles
the
OracleAQQueue.Me
ssageAvailable
event.

OracleAQQueue
Class

No No - An OracleAQQueue
object represents a
queue.

OracleBulkCopy
Class

- - - An OracleBulkCopy
object efficiently bulk
loads or copies data
into an Oracle table
from another data
source.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-7

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OracleBulkCopyColu
mnMapping Class

- - - The
OracleBulkCopyCo
lumnMapping class
defines the mapping
between a column in
the data source and a
column in the
destination database
table.

OracleBulkCopyColu
mnMappingCollection
Class

- - - The
OracleBulkCopyCo
lumnMappingColle
ction class
represents a
collection of
OracleBulkCopyCo
lumnMapping
objects that are used
to map columns in
the data source to
columns in a
destination table.

OracleClientFactory
Class

- No - An
OracleClientFact
ory object allows
applications to
instantiate ODP.NET
classes in a generic
way.

OracleCommand
Class

- - - An OracleCommand
object represents a
SQL command, a
stored procedure or
function, or a table
name.

OracleCommandBuil
der Class

- - - An
OracleCommandBui
lder object provides
automatic SQL
generation for the
OracleDataAdapte
r when the database
is updated.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-8

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OracleConfiguration
Class

- - - An
OracleConfigurat
ionis a static class
for setting ODP.NET
Core configuration
data using a single
programming
interface.

OracleConnection
Class

- - - An
OracleConnection
object represents a
connection to Oracle
Database.

OracleConnectionOp
enEventArgs Class

- - - An
OracleConnection
OpenEventArgs
object provides
connection
information for the
OracleConnection
.Open() method.

OracleConnectionOp
enEventHandler
Delegate

- - - The
OracleConnection
OpenEventHandler
delegate represents
the signature of the
method that handles
OracleConnection
.ConnectionOpen
event.

OracleConnectionStri
ngBuilder Class

- - - An
OracleConnection
StringBuilder
object allows
applications to create
or modify connection
strings.

OracleCredential
Class

- - - OracleCredentialc
lass provides a
secure way to provide
password while
opening connection
with Oracle Database
using the ODP.NET
driver

Chapter 1
Oracle Data Provider for .NET Assemblies

1-9

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OracleDataAdapter
Class

- - - An
OracleDataAdapte
r object represents a
data provider object
that communicates
with the DataSet.

OracleDatabase
Class

No No - An OracleDatabase
object represents an
Oracle Database
instance.

OracleDataReader
Class

- - - An
OracleDataReader
object represents a
forward-only, read-
only, in-memory
result set.

OracleDataSourceCo
llection Class

- - - An
OracleDataSource
Collectionobject
supports adding and
deleting network
service name (i.e.
TNS) entries in the
OracleDataSource
Collection.

OracleDataSourceEn
umerator Class

- - - An
OracleDataSource
Enumerator object
allows applications to
generically obtain a
collection of data
sources to connect
to.

OracleDependency
Class

- - No An
OracleDependency
class represents a
dependency between
an application and an
Oracle database.

OracleError Class - - - The OracleError
object represents an
error reported by an
Oracle database.

OracleErrorCollection
Class

- - - An
OracleErrorColle
ction object
represents a
collection of
OracleErrors.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-10

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OracleException
Class

- - - The
OracleException
object represents an
exception that is
thrown when Oracle
Data Provider
for .NET encounters
an error.

OracleFailoverEvent
Args Class

No No No The
OracleFailoverEv
entArgs class
provides event data
for the
OracleConnection
.Failover event.

OracleFailoverEvent
Handler Delegate

No No No The
OracleFailoverEv
entHandler
represents the
signature of the
method that handles
the
OracleConnection
.Failover event.

OracleGlobalization
Class

- - - The
OracleGlobalizat
ion class is used to
obtain and set the
Oracle globalization
settings of the
session, thread, and
local computer (read-
only).

OracleHAEventArgs
Class

- - - The
OracleHAEventArg
s class provides
event data for the
OracleConnection
.HAEvent event.

OracleHAEventHandl
er Delegate

- - - The
OracleHAEventHan
dler delegate
represents the
signature of the
method that handles
the
OracleConnection
.HAEvent event.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-11

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OracleInfoMessageE
ventArgs Class

- - - The
OracleInfoMessag
eEventArgs object
provides event data
for the
OracleConnection
.InfoMessage
event.

OracleInfoMessageE
ventHandler Delegate

- - - The
OracleInfoMessag
eEventHandler
delegate represents
the signature of the
method that handles
the
OracleConnection
.InfoMessage
event.

OracleLogicalTransac
tion Class

- - - The
OracleLogicalTra
nsaction class
provides detailed
information about the
logical transaction
status.

OracleNotificationEve
ntArgs Class

- - - The
OracleNotificati
onEventArgs class
provides event data
for a notification.

OracleNotificationRe
quest Class

- - No An
OracleNotificati
onRequest class
represents a
notification request to
be subscribed in the
database.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-12

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OracleOnsServerColl
ection Class

- - - The
OracleOnsServerC
ollectionclass
supports adding to
and deleting from a
collection of logical
servers with their
corresponding list of
nodes where the
Oracle Notification
Service (ONS)
daemons are talking
to their remote
clients.

OracleParameter
Class

- - - An
OracleParameter
object represents a
parameter for an
OracleCommand.

OracleParameterColl
ection Class

- - - An
OracleParameterC
ollection object
represents a
collection of
OracleParameters.

OraclePermission
Class

- No - An
OraclePermission
object enables
ODP.NET to enforce
imperative security
and helps ensure that
a user has a security
level adequate for
accessing data.

OraclePermissionAttri
bute Class

- No - An
OraclePermission
Attribute object
enables ODP.NET to
enforce declarative
security and helps
ensure that a user
has a security level
adequate for
accessing data.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-13

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OracleRowsCopiedE
ventHandler Delegate

No No - The
OracleRowsCopied
EventHandler
delegate represents
the method that
handles the
OracleRowsCopied
event of an
OracleBulkCopy
object.

OracleRowsCopiedE
ventArgs Class

No No - The
OracleRowsCopied
EventArgs class
represents the set of
arguments passed as
part of event data for
the
OracleRowsCopied
event.

OracleRowUpdatedE
ventArgs Class

- - - The
OracleRowUpdated
EventArgs object
provides event data
for the
OracleDataAdapte
r.RowUpdated
event.

OracleRowUpdatedE
ventHandler Delegate

- - - The
OracleRowUpdated
EventHandler
delegate represents
the signature of the
method that handles
the
OracleDataAdapte
r.RowUpdated
event.

OracleRowUpdatingE
ventArgs Class

- - - The
OracleRowUpdatin
gEventArgs object
provides event data
for the
OracleDataAdapte
r.RowUpdating
event.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-14

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in the
ODP.NET Core

Supported in .NET
Stored Procedures

Description

OracleRowUpdatingE
ventHandler Delegate

- - - The
OracleRowUpdatin
gEventHandler
delegate represents
the signature of the
method that handles
the
OracleDataAdapte
r.RowUpdating
event.

OracleShardingKey
Class

- - - An
OracleShardingKe
y object can
represent either a
sharding key or a
super sharding key.

OracleTransaction
Class

- - No An
OracleTransactio
n object represents a
local transaction.

OracleXmlQueryProp
erties Class

- - - An
OracleXmlQueryPr
operties object
represents the XML
properties used by
the OracleCommand
class when the
XmlCommandType
property is Query.

OracleXmlSavePrope
rties Class

- - - An
OracleXmlSavePro
perties object
represents the XML
properties used by
the OracleCommand
class when the
XmlCommandType
property is Insert,
Update, or Delete.

Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations
Table 1-2 lists the client enumerations.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-15

Table 1-2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations

Enumeration Supported in the
ODP.NET,
Managed Driver
and ODP.NET
Core

Supported
in .NET Stored
Procedures

Description

FailoverEvent Enumeration No No FailoverEvent enumerated
values are used to specify the
state of the failover.

FailoverReturnCode Enumeration No No FailoverReturnCode
enumerated values are passed
back by the application to the
ODP.NET provider to request a
retry in case of a failover error,
or to continue in case of a
successful failover.

FailoverType Enumeration No No FailoverType enumerated
values are used to indicate the
type of failover event that was
raised.

OracleAQDequeueMode Enumeration No - The OracleAQDequeueMode
enumeration type specifies the
dequeue mode.

OracleAQMessageDeliveryMode
Enumeration

No - The
OracleAQMessageDeliveryMo
de enumeration type specifies
the delivery mode of the
message.

OracleAQMessageState Enumeration No - The OracleAQMessageState
enumeration type identifies the
state of the message at the time
of dequeue.

OracleAQMessageType Enumeration No - The OracleAQMessageType
enumeration type specifies the
message payload type.

OracleAQNavigationMode Enumeration No - The
OracleAQNavigationMode
enumeration type specifies the
navigation mode.

OracleAQNotificationGroupingType
Enumeration

No - The
OracleAQNotificationGroup
ingType enumeration type
specifies the notification
grouping type.

OracleAQNotificationType Enumeration No - The
OracleAQNotificationType
enumeration type specifies the
notification type of the received
notification.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-16

Table 1-2 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Enumerations

Enumeration Supported in the
ODP.NET,
Managed Driver
and ODP.NET
Core

Supported
in .NET Stored
Procedures

Description

OracleAQVisibilityMode Enumeration No - The
OracleAQVisibilityMode
enumeration type specifies
whether the enqueue or
dequeue operation is part of the
current transaction.

OracleBulkCopyOptions Enumeration No - The OracleBulkCopyOptions
enumeration specifies the
values that can be combined
with an instance of the
OracleBulkCopy class and
used as options to determine its
behavior and the behavior of the
WriteToServer methods for
that instance.

OracleCollectionType Enumeration - No OracleCollectionType
enumerated values specify
whether or not the
OracleParameter object
represents a collection, and if
so, specifies the collection type.

OracleConnectionType Enumeration No - OracleConnectionType
enumerated values specify
whether a particular connection
object is associated with an
Oracle database connection, a
TimesTen database connection,
or no physical connection at all.

OracleDBShutdownMode Enumeration No - OracleDBShutdownMode
enumerated values specify the
database shutdown options.

OracleDBStartupMode Enumeration No - OracleDBStartupMode
enumerated values specify the
database startup options.

OracleDbType Enumeration - - OracleDbType enumerated
values are used to explicitly
specify the OracleDbType of
an OracleParameter.

OracleDRCPPurity Enumeration - - OracleDRCPPurity
enumerated values specify the
session purity.

OracleHAEventSource Enumeration - - The OracleHAEventSource
enumeration indicates the
source of the HA event.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-17

Table 1-2 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Enumerations

Enumeration Supported in the
ODP.NET,
Managed Driver
and ODP.NET
Core

Supported
in .NET Stored
Procedures

Description

OracleHAEventStatus Enumeration - - The OracleHAEventStatus
enumeration indicates the status
of the HA event source.

OracleIdentityType Enumeration - - The OracleIdentityType
enumeration specifies how
Oracle identity column values
are generated.

OracleNotificationInfo Enumeration - No OracleNotificationInfo
enumerated values specify the
database event that causes the
notification.

OracleNotificationSource Enumeration - No OracleNotificationSource
enumerated values specify the
different sources that cause
notification.

OracleNotificationType Enumeration - No OracleNotificationType
enumerated values specify the
different types that cause the
notification.

OracleParameterStatus Enumeration - - The OracleParameterStatus
enumeration type indicates
whether a NULL value is fetched
from a column, or truncation has
occurred during the fetch, or a
NULL value is to be inserted into
a database column.

OracleRowidInfo Enumeration - - The OracleRowidInfo
enumeration values specify
whether ROWID information is
included as part of the
ChangeNotificationEventAr
gs or not

OracleXmlCommandType Enumeration - - The OracleXmlCommandType
enumeration specifies the
values that are allowed for the
OracleXmlCommandType
property of the OracleCommand
class.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-18

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces

The Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types namespaces
provides classes, structures, and exceptions for Oracle native types that can be used with
Oracle Data Provider for .NET.

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Structures
Table 1-3 lists the type structures.

Table 1-3 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Structures

Structure Description

OracleBinary Structure The OracleBinary structure represents a variable-length
stream of binary data.

OracleBoolean Structure The OracleBoolean structure represents a logical value that is
either TRUE or FALSE.

OracleDate Structure The OracleDate structure represents the Oracle DATE data
type.

OracleDecimal Structure The OracleDecimal structure represents an Oracle NUMBER in
the database or any Oracle numeric value.

OracleIntervalDS Structure The OracleIntervalDS structure represents the Oracle
INTERVAL DAY TO SECOND data type.

OracleIntervalYM Structure The OracleIntervalYM structure represents the Oracle
INTERVAL YEAR TO MONTH data type.

OracleString Structure The OracleString structure represents a variable-length
stream of characters.

OracleTimeStamp Structure The OracleTimeStamp structure represents the Oracle
TimeStamp data type.

OracleTimeStampLTZ Structure The OracleTimeStampLTZ structure represents the Oracle
TIMESTAMP WITH LOCAL TIME ZONE data type.

OracleTimeStampTZ Structure The OracleTimeStampTZ structure represents the Oracle
TIMESTAMP WITH TIME ZONE data type.

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Exceptions
Type Exceptions are thrown only by ODP.NET type structures. Table 1-4 lists the type
exceptions.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-19

Table 1-4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Exceptions

Exception Description

OracleTypeException Class The OracleTypeException object is the base exception
class for handling exceptions that occur in the ODP.NET
Types classes.

OracleNullValueException Class The OracleNullValueException represents an exception
that is thrown when trying to access an ODP.NET Types
structure that is null.

OracleTruncateException Class The OracleTruncateException class represents an
exception that is thrown when truncation in an ODP.NET
Types class occurs.

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes
Table 1-5 lists the type classes.

Table 1-5 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes

Class Description

OracleArrayMappingAttribute
Class

The
OracleArrayMappin
gAttribute class is
required to mark a
custom class field or
property with
information that
ODP.NET uses when
a custom type
represents an Oracle
Collection type.

OracleBFile Class An OracleBFile is
an object that has a
reference to BFILE
data. It provides
methods for
performing operations
on BFILE objects.

OracleBlob Class An OracleBlob
object is an object that
has a reference to
BLOB data. It provides
methods for
performing operations
on BLOB objects.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-20

Table 1-5 (Cont.) Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes

Class Description

OracleClob Class An OracleClob is an
object that has a
reference to CLOB
data. It provides
methods for
performing operations
on CLOB objects.

OracleCustomTypeMappingAttri
bute Class

The
OracleCustomTypeM
appingAttribute
class is used to mark
a custom type factory
class or struct with
information that is
used by ODP.NET
when a custom type is
used to represent an
Oracle UDT.

OracleObjectMappingAttribute
Class

The
OracleObjectMappi
ngAttribute class
marks custom class
fields or properties
with information that
ODP.NET uses when
a custom type
represents an Oracle
Object type.

OracleRef Class An OracleRef
instance represents an
Oracle REF, which
references a
persistent, standalone,
referenceable object
that resides in the
database. The
OracleRef object
provides methods to
insert, update, and
delete the Oracle REF.

OracleRefCursor Class An OracleRefCursor
object represents an
Oracle REF CURSOR.

OracleUdt Class The OracleUdt class
defines static methods
that are used when
converting between
Custom Types and
Oracle UDTs and vice-
versa.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-21

Table 1-5 (Cont.) Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes

Class Description

OracleXmlStream Class An OracleXmlStream
object represents a
sequential read-only
stream of XML data
stored in an
OracleXmlType
object.

OracleXmlType Class An OracleXmlType
object represents an
Oracle XmlType
instance.

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces
Table 1-6 lists the type interfaces.

Table 1-6 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces

Interface Description

IOracleArrayTypeFactory Interface The IOracleArrayTypeFactory interface is used by ODP.NET to create
arrays that represent Oracle Collections.

IOracleCustomType Interface IOracleCustomType is an interface for converting between a Custom Type
and an Oracle Object or Collection Type.

IOracleCustomTypeFactory
Interface

The IOracleCustomTypeFactory interface is used by ODP.NET to create
custom objects that represent Oracle Objects or Collections.

INullable Interface The INullable interface is used to determine whether or not an ODP.NET
type has a NULL value.

Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Enumerations

Table 1-7 lists the type enumerations.

Table 1-7 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Enumerations

Enumeration Description

OracleUdtFetchOption Enumeration OracleUdtFetchOption enumeration values specify how to retrieve a copy
of the referenceable object.

OracleUdtStatus Enumeration OracleUdtStatus enumeration values specify the status of an object
attribute or collection element. An object attribute or a collection element can
be a valid value or a null value.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-22

Differences between the ODP.NET Drivers
ODP.NET, Managed Driver, ODP.NET, Unmanaged Driver, and ODP.NET Core have a
number of configuration setting differences.

Table 1-8 Application Programming Interfaces not supported in ODP.NET, Managed Driver and
ODP.NET Core

Namespace Class/Enumeration/Interface Unsupported Method/Property/
Event

Oracle.ManagedDataAccess.Cli
ent

FailoverEvent enumeration All

Oracle.ManagedDataAccess.Cli
ent

FailoverReturnCode enumeration All

Oracle.ManagedDataAccess.Cli
ent

FailoverType enumeration All

Oracle.ManagedDataAccess.Cli
ent

OracleAQAgent class All

Oracle.ManagedDataAccess.Cli
ent

OracleAQDequeueuMode
enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleAQDequeueOptions class All

Oracle.ManagedDataAccess.Cli
ent

OracleAQEnqueueOptions class All

Oracle.ManagedDataAccess.Cli
ent

OracleAQMessage class All

Oracle.ManagedDataAccess.Cli
ent

OracleAQMessageAvailableEven
tArgs class

All

Oracle.ManagedDataAccess.Cli
ent

OracleAQMessageAvailableEven
tHandler class

All

Oracle.ManagedDataAccess.Cli
ent

OracleAQMessageDeliveryMode
enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleAQMessageState
enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleAQMessageType
enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleAQNavigationMode
enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleAQNotificationGrouping
Type enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleAQNotificationType
enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleAQQueue class All

Oracle.ManagedDataAccess.Cli
ent

OracleAQVisibilityMode
enumeration

All

Chapter 1
Differences between the ODP.NET Drivers

1-23

Table 1-8 (Cont.) Application Programming Interfaces not supported in ODP.NET, Managed
Driver and ODP.NET Core

Namespace Class/Enumeration/Interface Unsupported Method/Property/
Event

Oracle.ManagedDataAccess.Cli
ent

OracleClientFactory class Not supported in ODP.NET Core only

Oracle.ManagedDataAccess.Cli
ent

OracleCommand class ArrayBindRowsAffected property

Oracle.ManagedDataAccess.Cli
ent

OracleCommand class ImplicitRefCursors property

Oracle.ManagedDataAccess.Cli
ent

OracleConfiguration class Most members not supported in
ODP.NET, Unmanaged Driver only

Oracle.ManagedDataAccess.Cli
ent

OracleConnection class FlushCache() method

Oracle.ManagedDataAccess.Cli
ent

OracleConnection class Failover event

Oracle.ManagedDataAccess.Cli
ent

OracleConnection class ConnectionType property

Oracle.ManagedDataAccess.Cli
ent

OracleConnection class EnlistDistributedTransactio
n(ITransaction) method

Not supported in ODP.NET Core only

Oracle.ManagedDataAccess.Cli
ent

OracleConnection class ChunkMigrationConnectionTime
out, KeepAlive,
KeepAliveInterval,
KeepAliveTime, TnsAdmin, and
WalletLocation
Not supported in ODP.NET
Unmanaged Driver only

Oracle.ManagedDataAccess.Cli
ent

OracleConnectionType
enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleDataSourceCollection
class

Not supported in ODP.NET
Unmanaged Driver only

Oracle.ManagedDataAccess.Cli
ent

OracleDBShutdownMode
enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleDBStartupMode
enumeration

All

Oracle.ManagedDataAccess.Cli
ent

OracleDataReader class GetOracleBlobForUpdate()
method

If the method is called, then a
NotSupportedException is
thrown.

Oracle.ManagedDataAccess.Cli
ent

OracleDataReader class GetOracleClobForUpdate()
method

If the method is called, then a
NotSupportedException is
thrown.

Chapter 1
Differences between the ODP.NET Drivers

1-24

Table 1-8 (Cont.) Application Programming Interfaces not supported in ODP.NET, Managed
Driver and ODP.NET Core

Namespace Class/Enumeration/Interface Unsupported Method/Property/
Event

Oracle.ManagedDataAccess.Cli
ent

OracleDataReader class IsAutoIncrement and
IdentityType properties of the
GetSchemaTable

Oracle.ManagedDataAccess.Cli
ent

OracleDataAdapter class IdentityInsert property

Oracle.ManagedDataAccess.Cli
ent

OracleDataAdapter class IdentityUpdate property

Oracle.ManagedDataAccess.Cli
ent

OracleDataAdapter class SafeMapping property

Oracle.ManagedDataAccess.Cli
ent

OracleDatabase class All

Oracle.ManagedDataAccess.Cli
ent

OracleException class IsRecoverable property

Oracle.ManagedDataAccess.Cli
ent

OracleFailoverEventArgs class All

Oracle.ManagedDataAccess.Cli
ent

OracleFailoverEventHandler
class

All

Oracle.ManagedDataAccess.Cli
ent

OracleGlobalization class ClientCharacterSet property

Oracle.ManagedDataAccess.Cli
ent

OracleGlobalization class GetClientInfo() method

Oracle.ManagedDataAccess.Cli
ent

OracleGlobalization class GetThreadInfo() method

Oracle.ManagedDataAccess.Cli
ent

OracleGlobalization class SetThreadInfo() method

Oracle.ManagedDataAccess.Cli
ent

OracleIdentityType enumeration All

Oracle.ManagedDataAccess.Cli
ent

OracleNotificationRequest
class

GroupingInterval property

Oracle.ManagedDataAccess.Cli
ent

OracleNotificationRequest
class

GroupingNotificationEnabled
property

Oracle.ManagedDataAccess.Cli
ent

OracleNotificationRequest
class

GroupingType property

Oracle.ManagedDataAccess.Cli
ent

OracleOnsServerCollection
class

Not supported in ODP.NET
Unmanaged Driver only

Oracle.ManagedDataAccess.Cli
ent

OraclePermission class Not supported in ODP.NET Core only

Oracle.ManagedDataAccess.Cli
ent

OraclePermissionAttribute
class

Not supported in ODP.NET Core only

Chapter 1
Differences between the ODP.NET Drivers

1-25

Table 1-8 (Cont.) Application Programming Interfaces not supported in ODP.NET, Managed
Driver and ODP.NET Core

Namespace Class/Enumeration/Interface Unsupported Method/Property/
Event

Oracle.ManagedDataAccess.Cli
ent

OracleRowsCopiedEventArgs
class

All

Oracle.ManagedDataAccess.Cli
ent

OracleRowsCopiedEventHandler
class

All

Oracle.ManagedDataAccess.Cli
ent

IOracleCustomType interface Equivalent functionality available in
all providers with differences in
parameters.

Oracle.ManagedDataAccess.Typ
es

OracleRef class The following unmanaged ODP.NET
class members are not supported in
managed and core:

• Constructors
– OracleRef(OracleConne

ction conn, string
udtTypeName, string
objTableName)

– OracleRef(OracleConne
ction conn, string
hexStr)

• Methods
– Flush()
– GetCustomObject(Oracl

eUdtFetchOption
fetchOption, int
depthLevel)

– GetCustomObjectForUpd
ate(bool bWait)

– GetCustomObjectForUpd
ate(bool bWait, int
depthLevel)

– Lock(bool bWait)
• Properties

– HasChanges {get}
– ObjectTableName {get}

Oracle.ManagedDataAccess.Typ
es

OracleTimestampTZ structure OracleTimeStampTZ(DateTime
dt, string timeZone)
constructor. This constructor is
supported but the timeZone must be
an hour offset.

Oracle.ManagedDataAccess.Typ
es

OracleUdt class All providers have same APIs or
equivalent APIs with differences in
parameters.

Chapter 1
Differences between the ODP.NET Drivers

1-26

See Also:

Oracle Data Provider for .NET, Managed Driver Configuration and Configuration
Differences among ODP.NET Drivers for more information about ODP.NET,
Managed Driver .NET configuration settings.

Distributed Transactions for information about distributed transaction setup
difference.

Oracle Data Provider for .NET Core Configuration for more information about
configuring ODP.NET Core.

Getting Started With Developing ODP.NET Applications
Learn how to get started developing .NET applications for on-premises Oracle Database and
Oracle Autonomous Database from one of the following links. These tutorials show how to
create a simple .NET application that connects with either managed ODP.NET or ODP.NET
Core. They also show how to use ODP.NET from Visual Studio and Visual Studio Code.

• Developing .NET Applications for On-Premises Oracle Database

• Developing .NET Applications for Oracle Autonomous Database

• Additional ODP.NET sample code is available in Oracle's .NET GitHub site:

https://github.com/oracle/dotnet-db-samples

Chapter 1
Getting Started With Developing ODP.NET Applications

1-27

https://www.oracle.com/tools/technologies/quickstart-dotnet-for-oracle-database.html
https://www.oracle.com/database/technologies/appdev/dotnet/adbdotnetquickstarts.html
https://github.com/oracle/dotnet-db-samples

2
Installing and Configuring Oracle Data
Provider for .NET

This section describes installation and configuration requirements for Oracle Data Provider
for .NET.

This section contains these topics:

• System Requirements

• Entity Framework Requirements

• Entity Framework Core System Requirements

• Oracle Data Provider for .NET Versioning Scheme

• Installing Oracle Data Provider for .NET, Unmanaged Driver

• Installing Oracle Data Provider for .NET, Managed Driver

• Entity Framework Assemblies and File Location

• Configuring Oracle Data Provider for .NET

• Oracle Data Provider for .NET, Unmanaged Driver Configuration

• Oracle Data Provider for .NET, Managed Driver Configuration

• Oracle Data Provider for .NET Core Configuration

• Configuration Differences among ODP.NET Drivers

• Configuring for Entity Framework Code First

• Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver

• Configuring a Port to Listen for Database Notifications

• General .NET Programming Recommendations and Tips for ODP.NET

System Requirements
Oracle Data Provider for .NET, Unmanaged Driver requires the following:

• Windows operating system

– 64-bit: Windows Server 2012 R2 x64 (Standard, Datacenter, Essentials, and
Foundation Editions), Windows 10 x64 (Pro, Enterprise, and Education Editions),
Windows Server 2016 x64 (Standard, Datacenter, and Essentials Editions), or
Windows Server 2019 (Standard, Datacenter, and Essentials Editions). Windows
Server 2022 x64 (Standard, Datacenter, and Essentials Editions) and Windows 11
x64 (Pro, Enterprise, and Education Editions) are supported by ODP.NET 21.4 or
later.

Oracle supports 32-bit ODP.NET and 64-bit ODP.NET for Windows x64 on these
operating systems.

• Microsoft .NET

2-1

– ODP.NET for .NET Framework 4 is only supported with Microsoft .NET
Framework 4.8.

• Access to Oracle Database 12c (12.1.0.2) or later

• Oracle Client release 21c

This is automatically installed as part of the ODP.NET installation.

Promotable and distributed transactions may require Oracle Services for Microsoft
Transaction Server in whole or in part. Refer to the Distributed Transactions section for
more information.

Oracle Data Provider for .NET, Managed Driver requires the following:

• Same Windows operating system support as ODP.NET, Unmanaged Driver.

ODP.NET, Managed Driver is built with AnyCPU. It runs on either 32-bit or 64-bit
(x64) Windows and on either 32-bit or 64-bit (x64) .NET Framework.

• Microsoft .NET Framework 4.8.

• Access to Oracle Database 12c (12.1.0.2) or later

ODP.NET Core requires the following:

• Operating systems:

– Same Windows operating system support as managed and unmanaged
ODP.NET

– Oracle Linux 7

– Oracle Linux 8

– Red Hat Enterprise Linux 7

– Red Hat Enterprise Linux 8

– Ubuntu 20.04.1 or later (starting with ODP.NET Core 21.4)

– Debian Linux 10 (Buster) 4.19.171-2 or later (starting with ODP.NET Core
21.4)

• Microsoft .NET

– ODP.NET Core 21c will support .NET 6, 7, and 8.

* .NET 8 requires ODP.NET Core 21.12 or higher.

• Access to Oracle Database 12c (12.1.0.2) or later

ODP.NET Core is compatible with ASP.NET Core.

ODP.NET Core is built with AnyCPU. It supports 64-bit .NET and 32-bit .NET.

Chapter 2
System Requirements

2-2

See Also:

• Document 726240.1 on My Oracle Support (formerly OracleMetaLink) for
details on supported configuration for different ODP.NET versions. You can
access My Oracle Support from:

https://support.oracle.com
• https://msdn.microsoft.com/en-us/default.aspx

Entity Framework Requirements
This section contains the following topics:

• Entity Framework Database First and Model First Requirements

• Entity Framework Code First Requirements

Entity Framework Database First and Model First Requirements
Oracle's support for Entity Framework Database First and Model First has the following
version requirement:

• Microsoft Entity Framework 6.4

• Microsoft .NET Framework 4.8

• ODP.NET, Managed Driver

If using Visual Studio tools, then install Oracle Developer Tools for Visual Studio.

Entity Framework Code First Requirements
Oracle's support for Entity Framework Code First has the following version requirements:

• Microsoft Entity Framework 6.4

• Microsoft .NET Framework 4.8

Projects must set the target framework to a supported .NET Framework version. This can
be done by modifying the project's properties in Visual Studio.

• ODP.NET, Managed Driver

Entity Framework Core System Requirements
ODP.NET Entity Framework Core (EF Core) has the same system requirements as ODP.NET
Core. In addition, ODP.NET EF Core has the following dependencies:

• ODP.NET Core 21c

• Entity Framework Core 6, 7, or 8

• Microsoft.EntityFrameworkCore.Relational
Oracle EF Core supports new EF Core features, such as transaction savepoints.

Chapter 2
Entity Framework Requirements

2-3

Oracle Data Provider for .NET Versioning Scheme
Oracle Data Provider for .NET, Unmanaged Driver; ODP.NET, Managed Driver; and
ODP.NET Core each ship with their own set of binaries.

For example, 21c binaries would be the following:

• ODP.NET for .NET Framework 4

– Oracle.DataAccess.dll
* Built with .NET Framework 4

* Assembly version number: 4.x.x.x

– OraOps21.dll and Oracle Client

* Used by ODP.NET for .NET Framework

ODP.NET, Managed Driver follows a similar version model for its binaries.

ODP.NET for .NET Framework 4:

• Oracle.ManagedDataAccess.dll
– Built with .NET Framework 4

– Assembly version number: 4.x.x.x

ODP.NET Core for .NET (Core):

• Oracle.ManagedDataAccess.dll
– Built with .NET (Core) version

– Assembly version number: 3.x.x.x

The convention for managed and unmanaged ODP.NET assembly/DLL product
versioning is

n1.o1o2.o3.o4:o5

where

• n1 is the most significant .NET Framework version number.

• o1o2 once represented the first two digits of the ODP.NET 12.2 version number. It
remains "122" as modifying this version would not allow in place ODP.NET
upgrades without an application rebuild.

• o3 is the first digit of the ODP.NET product version number.

• o4 indicates whether the release is a production version (1) or beta/pre-release
version (0).

• o5 is the ODP.NET assembly build date.

For example, if the ODP.NET version number is 19.10, the corresponding managed
and unmanaged ODP.NET assembly product version is 4.122.19.1:20201106.

For ODP.NET Core, the convention is:

n1.n2.o1.o2:o3

Chapter 2
Oracle Data Provider for .NET Versioning Scheme

2-4

• n1 is the minimum .NET (Core) version number that this ODP.NET Core version
supports.

• n2 is the minimum minor .NET (Core) version that this ODP.NET Core version supports

• o1 is the first digit of the ODP.NET product version number.

• o2 indicates whether the release is a production version (1) or beta/pre-release version
(0).

• o3 is the ODP.NET assembly build date.

For example, if the ODP.NET Core version number is 19.10, the corresponding assembly
product version is 2.0.19.1:20201106.

The ODP.NET assembly version is distinct from the assembly product version. The assembly
version uses four sets of digits and the assembly product version uses five sets of digits. For
each ODP.NET release, the first four sets of digits of the assembly version and the assembly
product version will be the same. For example, if the ODP.NET Core assembly product
version is 2.0.19.1:20201106, then its assembly version is 2.0.19.1. In the case of managed
and unmanaged ODP.NET 4.122.19.1:20201106, the assembly version is 4.122.19.1.

The assembly product version identifies the precise ODP.NET version used. Since there are
multiple updates Oracle ships within a major release family, you would provide the ODP.NET
assembly product version in a support context.

The assembly version is used in more .NET-specific contexts. For example, the <version>
section of the .NET configuration file uses the four digit assembly version to identify which
ODP.NET version to use.

The assembly product version number can be found in the ODP.NET DLL "Product version"
property on Windows. The assembly version can be found in the ODP.NET DLL "File version"
property on Windows.

Note that the Oracle installer and documentation still refer to the ODP.NET product version
number and not the assembly/DLL version number.

Publisher Policy DLL is provided as before so that applications built with older versions of
ODP.NET are redirected to the newer ODP.NET assembly, even though the versioning
scheme has changed.

ODP.NET, Managed Driver Versioning

Starting with ODAC 12c Release 2, the ODP.NET, Managed Driver uses assembly manifest
attribute AssemblyInformationalVersionAttribute to uniquely identify assemblies with the
same AssemblyVersionAttribute attribute value. This value can be accessed via .NET
code, PowerShell, and other Windows applications to identify ODP.NET, Managed Driver
versions uniquely.

AssemblyInformationalVersionAttribute is set to the same version as the actual .NET
assembly version, except the fourth digit, which will no longer be 0. Instead, the version will
be unique for each ODP.NET, Managed Driver release by incrementing the fourth digit for
every subsequent release.

This value is accessible using .NET Framework
System.Diagnostics.FileVersionInfo.ProductVersion property. The returned value can be used
as a Version object or as a comparison String using comparison operators or methods.
Essentially, among a collection of ODP.NET, Managed Driver assemblies that have the same
assembly version, the newest ODP.NET, Managed Driver assembly will have the largest
fourth digit ProductVersion value than an older assembly.

Chapter 2
Oracle Data Provider for .NET Versioning Scheme

2-5

PowerShell Example: In this example, administrators uniquely distinguish the
assemblies between ODP.NET, Managed Driver versions from an old version of
ODP.NET, Managed Driver in c:\old and a more recent one in c:\new.

Script:

$VC1 = New-Object System.Version((Get-Command
C:\old\Oracle.ManagedDataAccess.dll).FileVersionInfo.ProductVersion)
$VC2 = New-Object System.Version((Get-Command
C:\new\Oracle.ManagedDataAccess.dll).FileVersionInfo.ProductVersion)
"Compare V1 to V2: " + $VC1.CompareTo($VC2)
"Compare V1 to V1: " + $VC1.CompareTo($VC1)
"Compare V2 to V1: " + $VC2.CompareTo($VC1)

Output:

Compare V1 to V2: -1
Compare V1 to V1: 0
Compare V2 to V1: 1

Note:

ProductVersion property comparisons will provide correct information on
which version is more recent than the other only for ODP.NET, Managed
Driver released from ODAC 12c Release 2 and later.

Installing Oracle Data Provider for .NET, Unmanaged Driver
Oracle Data Provider for .NET, Unmanaged Driver can be installed through Oracle
Database software or XCopy. The latter is an Oracle Data Access Components
(ODAC) software installation. Unmanaged ODP.NET software is available from
Oracle's website for download. This section provides details on unmanaged ODP.NET
installation

Administrators use XCopy to deploy Oracle Data Provider for .NET to large numbers
of computers for production deployments. The XCopy has a smaller installation size
and fine-grain control during installation and configuration than Oracle Universal
Installer.

Note:

This section describes non-ODAC installation using the Oracle Universal
Installer for database server or client. For installation and configuration using
the XCopy install, refer to the README.TXT file that is part of the XCopy
installation.

Additionally, Oracle Data Provider for .NET Dynamic Help is registered with Visual
Studio, providing context-sensitive online help that is seamlessly integrated with Visual
Studio Dynamic Help. With Dynamic Help, the user can access ODP.NET
documentation within the Visual Studio IDE by placing the cursor on an ODP.NET
keyword and pressing the F1 function key.

Chapter 2
Installing Oracle Data Provider for .NET, Unmanaged Driver

2-6

See Also:

Configuring for Entity Framework Code First

File Locations After Installation
The Oracle.DataAccess.dll assembly is installed to the following location:

.NET Framework 4:

ORACLE_HOME\odp.net\bin\4 directory

Search Order for Unmanaged DLLs
Unmanaged ODP.NET consists of managed and unmanaged binaries. Through the use of the
DllPath configuration parameter, each application can specify the ORACLE_HOME\bin location
that the dependent unmanaged Oracle Client binaries are loaded from. However, the
ORACLE_HOME must have the same unmanaged ODP.NET version installed as the version that
the application uses. Otherwise, a version mismatch exception is thrown.

The Oracle.DataAccess.dll searches for dependent unmanaged DLLs (such as Oracle
Client) based on the following order:

1. Directory of the application or executable.

2. DllPath setting specified by application config or web.config.

3. DllPath setting specified by machine.config.

4. DllPath setting specified by the Windows Registry.

HKEY_LOCAL_MACHINE\Software\Oracle\ODP.NET\version\DllPath
5. Directories specified by the Windows PATH environment variable.

Upon installation of unmanaged ODP.NET, Oracle Universal Installer sets the DllPath
Windows Registry value to the ORACLE_HOME\bin directory where the corresponding
dependent DLLs are installed. Developers must provide this configuration information on an
application-by-application basis.

Note:

Oracle.DataAccess.dll uses the unmanaged DLL, OraOps21.dll.

Unmanaged ODP.NET and Dependent Unmanaged DLL Mismatch
To enforce the usage of Oracle.DataAccess.dll assembly with the correct version of its
unmanaged DLLs, an exception is raised if Oracle.DataAccess.dll notices it has loaded a
mismatched version of a dependent unmanaged DLL.

Chapter 2
Installing Oracle Data Provider for .NET, Unmanaged Driver

2-7

Installing Oracle Data Provider for .NET, Managed Driver
Getting started with ODP.NET, Managed Driver

You can get started with ODP.NET Managed Driver by either using the Windows
Installer, XCopy, or NuGet.

If you are using XCopy: Download ODP.NET, Managed Driver .zip file to a directory
for staging the install. The .zip file contains a README file with XCopy installation
instructions.

Run the configure.bat script in one of the following directories:

• For 32-bit .NET Framework: OH\odp.net\managed\x86
• For 64-bit .NET Framework: OH\odp.net\managed\x64
Each directory contains an unconfigure.bat if ODP.NET, Managed Driver needs to be
unconfigured and removed from the machine.

If you are using NuGet: Download the ODP.NET NuGet package(s) and use NuGet
Package Manager to install.

The following NuGet packages are available:

• ODP.NET, Managed Driver

• Entity Framework assembly for Code First and Entity Framework 6 or higher use
with ODP.NET, Managed Driver

If you are using Windows Installer: Follow the VSIX or Microsoft Windows Installer
(MSI) steps to install ODP.NET, Managed Driver.

ODP.NET, Managed Driver Files

ODP.NET, Managed Driver consists of the following files:

Table 2-1 ODP.NET, Managed Driver Files with Descriptions

File Description

Oracle.ManagedDataAccess.dll Platform-independent (AnyCPU), fully-
managed ADO.NET provider

\Resources\<lang>\Oracle.ManagedData
Access.resources.dll

Platform-independent (AnyCPU), fully-
managed ADO.NET provider resource DLLs.

OraProvCfg.exe Platform-independent (AnyCPU) utility to
configure/unconfigure ODP.NET, Managed and
Unmanaged Drivers.

configure.bat Batch file to add managed ODP.NET Windows
Registry entries.

unconfigure.bat Batch file to remove managed ODP.NET
Windows Registry entries.

tnsnames.ora A sample configuration file that defines data
source aliases.

sqlnet.ora A sample configuration file that configures
network related settings.

Chapter 2
Installing Oracle Data Provider for .NET, Managed Driver

2-8

Table 2-1 (Cont.) ODP.NET, Managed Driver Files with Descriptions

File Description

Oracle.ManagedDataAccess.Client.Conf
iguration.Section.xsd

An XML schema file that defines the
configuration section for ODP.NET, Managed
Driver.

Oracle.ManagedDataAccess.EntityFrame
work.dll

Platform-independent (AnyCPU), fully-
managed assembly for Code First and Entity
Framework 6 higher

\x64\Oracle.ManagedDataAccessIOP.dll Platform-dependent (64-bit .NET Framework),
Managed Assembly for Kerberos support

\x86\Oracle.ManagedDataAccessIOP.dll Platform-dependent (32-bit .NET Framework),
Managed Assembly for Kerberos support

The OraProvCfg.exe utility can perform many different configuration tasks, such as GACing
ODP.NET or configuring ODP.NET in the machine.config file. To learn about how to use this
utility, run oraprovcfg.exe on the command line without any parameters, which will output
the documentation.

See Also:

Oracle Database Installation Guide for Microsoft Windows for installation
instructions

Platform-Dependent Assemblies and Their Search Order
ODP.NET, Managed Driver has one set of platform-dependent DLL:
Oracle.ManagedDataAccessIOP.dll, which has a 32-bit .NET version and a 64-bit .NET
version. While they consist of 100% managed code, they call APIs outside of .NET, which is
why they are platform dependent.

Oracle.ManagedDataAccessIOP.dll supports Kerberos. These assemblies are only needed
in your application if you are using Kerberos security.

These assemblies are not intended to be directly referenced by an application. Rather, they
will be referenced implicitly. ODP.NET, Managed Driver will reference the assemblies by using
the following search order:

1. Global Assembly Cache

2. The web application's bin directory or Windows application's EXE directory

3. The x86 or x64 subdirectory based on whether the application runs in 32-bit or 64-
bit .NET Framework. If the application is built using AnyCPU, then ODP.NET will use the
correct DLL bitness as long as the assembly is available. Oracle recommends using this
method of finding dependent assemblies if your application is AnyCPU.

For example, use the following steps for your application to use the 64-bit version of
Oracle.ManagedDataAccessIOP.dll:

1. Right click Visual Studio project, select Add, and then select New Folder.

Chapter 2
Installing Oracle Data Provider for .NET, Managed Driver

2-9

2. Name the folder x64.

3. Right-click the newly created x64 folder, select Add, and then select Existing
Item.

4. Browse to the folder where the DLL is located, which usually is
ORACLE_HOME\odp.net\managed\x64, and then select
Oracle.ManagedDataAccessIOP.dll.

5. Click Add.

6. Click the newly added Oracle.ManagedDataAccessIOP.dll in the x64 folder.

7. In the properties window, set Copy To Output Director to Copy Always.

For x86 targeted applications, name the folder x86 and add the assembly from the x86
directory.

To make your application platform independent even if it depends on
Oracle.ManagedDataAccessIOP.dll create both x64 and x86 folders with the
necessary assemblies added to them.

File Locations After Installation
In an Oracle Universal Installer based install, the Oracle.ManagedDataAccess.dll
assembly is installed to the following location:

.NET Framework 4:

ORACLE_HOME\ODP.NET\nuget directory

Managed ODP.NET is embedded within the
Oracle.ManagedDataAccess.<version>.nupkg file. This file is a NuGet package.
ODP.NET users can install this package using common Microsoft tools, such as NuGet
Package Manager and Visual Studio.

When Oracle Developer Tools for Visual Studio is installed, Oracle documentation is
installed in Visual Studio itself.

Samples are provided in GitHub:

https://github.com/oracle/dotnet-db-samples

Installing Oracle Data Provider for .NET Core

Getting started with ODP.NET Core

You can get started with ODP.NET Core on Windows by using the Windows Installer,
Oracle Universal Installer (OUI), or NuGet. Only NuGet can be used to install
ODP.NET Core on Linux.

If you are using Windows Installer: Follow the Oracle Developer Tools for Visual
Studio VSIX or Microsoft Windows Installer (MSI) steps. These installers will copy the
ODP.NET Core NuGet package to the machine

If you are using OUI: Follow the OUI steps to install ODP.NET Core. OUI will copy the
ODP.NET Core NuGet package to the machine.

Chapter 2
Installing Oracle Data Provider for .NET Core

2-10

https://github.com/oracle/dotnet-db-samples

If you are using NuGet: Download the ODP.NET Core NuGet package and use NuGet
Package Manager to install.

ODP.NET Core Files

ODP.NET Core consists of the following files:

Table 2-2 ODP.NET, Core Files with Descriptions

File Description

Oracle.ManagedDataAccess.dll Platform-independent (AnyCPU), operating
system independent, fully-managed ADO.NET
provider

File Locations After Installation

In an Oracle Universal Installer based install, the ODP.NET Core package is installed to the
following directory:

ORACLE_HOME\ODP.NET\nuget

ODP.NET Core is embedded within the Oracle.ManagedDataAccess.Core.<version>.nupkg
file. This file is a NuGet package. ODP.NET users can install this package using common
Microsoft tools, such as NuGet Package Manager and Visual Studio."

Samples are provided on our ODP.NET GitHub site:

https://github.com/oracle/dotnet-db-samples

Entity Framework Assemblies and File Location
ODP.NET ships with a separate assembly to support Code First and Entity Framework 6. This
model physically separates Entity Framework 6 functionality from ADO.NET functionality.

The managed ODP.NET assembly is Oracle.ManagedDataAccess.EntityFramework.dll.

Unmanaged ODP.NET discontinued Entity Framework support starting with ODP.NET 21c.
Unmanaged ODP.NET EF apps should migrate to managed ODP.NET.

When installed using the XCopy package, the Oracle Entity Framework assembly is found in
the following location after install:

%ORACLE_HOME%\odp.net4\odp.net\managed\common\EF6

where %ORACLE_HOME% represents the operating system path to the installation directory.

The assembly is fully managed code and is designed to be bin deployable meaning that the
assembly should be copied into the application's bin directory. As such the assembly is not
registered in the Global Assembly Cache (GAC) during installation.

In Oracle Universal Installer, the Oracle Entity Framework (Core) assemblies are now NuGet
packages located in:

%ORACLE_HOME%\ODP.NET\nuget

In that location, you will find managed ODP.NET Entity Framework 6 and ODP.NET Entity
Framework Core NuGet packages. ODP.NET users can install these packages using
common Microsoft tools, such as NuGet Package Manager and Visual Studio.

Chapter 2
Entity Framework Assemblies and File Location

2-11

https://github.com/oracle/dotnet-db-samples

Note:

If desired the Oracle Entity Framework 6 assemblies may be registered in
the GAC manually but Oracle recommends not doing so.

Configuring Oracle Data Provider for .NET
The settings for specific versions of ODP.NET, can be configured in several ways for
specific effects on precedence:

• The Windows registry entries are machine-wide settings for a particular version of
ODP.NET.

Windows registry based configuration is not supported for ODP.NET, Managed
Driver.

• The machine.config settings are .NET framework-wide settings that override the
Windows registry values.

• The application or web config file settings are application-specific settings that
override the machine.config settings and the Windows registry settings.

Note:

There is one exception to app/web/config settings overriding
machine.config. For oracle.manageddataaccess.client and
oracle.unmanageddataaccess.client sections, a machine.config with
a specific ODP.NET version subsection, that is, <version
number="4.121.2.0">, will override an app/web.config subsection that
references all versions generically, that is, <version number="*">. To
override the machine.config subsection, create a subsection for that
version in the app/web/config file, that is, <version
number="4.121.2.0">.

• Any attribute settings made in the ODP.NET application code override everything
else.

The application or web config file can be useful and sometimes essential in scenarios
where more than one application on a computer use the same version of ODP.NET,
but each application needs a different ODP.NET configuration. The Windows registry
value settings for a given version of ODP.NET affect all the applications that use that
version of ODP.NET. However, having ODP.NET configuration values in the application
or web config file assure that these settings are applied only for that application, thus
providing more granularities.

For example, if the application or web.config file has a StatementCacheSize
configuration setting of 100, this application-specific setting forces the version of
ODP.NET that is loaded by that application to use 100 for the StatementCacheSize and
overrides any setting in the machine.config and in the registry. Note that for any
setting that does not exist in a config file (machine.config or application/web config),

Chapter 2
Configuring Oracle Data Provider for .NET

2-12

the value in the registry for a loaded version of ODP.NET is used, as in previous releases.

Note that ODP.NET reads the machine.config files from the version of the .NET Framework
on which ODP.NET runs, not from the version of ODP.NET.

ODP.NET only reads the Windows Registry and the XML configuration file when it is loaded
into memory, thus any configuration changes made after that are not read or used until the
application is re-started.

All boolean attributes in ODP.NET .NET configuration settings accept true, false, 1, and 0 as
valid values. 1 is equivalent to true and 0 is equivalent to false.

Note:

ODP.NET Core does not support the Windows registry nor .NET configuration files.
ODP.NET Core configuration can be set using .NET Configuration API, sqlnet.ora
file, and tnsnames.ora file.

Oracle Client Configuration File Automated Setup During Installation
When installing Oracle Data Access Components (ODAC) in a new Oracle Home, Oracle
Universal Installer (OUI) automatically copies the Oracle local naming (tnsnames.ora), profile
(sqlnet.ora), and directory (ldap.ora) parameter files and settings from an existing Oracle
home into the newly installed ODAC home, as long as they share the same bitness. That is,
they are both 32-bit installations or they are both 64-bit installations.

Alternatively, existing *.ora files can be copied over from another existing Oracle home,
besides the last active one, to the new ODAC Oracle home. OUI provides location
information for these files from up to three other existing Oracle homes if they exist. The
*.ora files can be customized if the new Oracle home uses a different configuration from the
previous Oracle home from which the files were copied over.

If you install into an existing ODAC or RDBMS Oracle home, then no new *.ora files is
copied or created.

If you install onto a computer without any previous Oracle homes present, then OUI prompts
the user for the database connection alias information. OUI then automatically creates the
tnsnames.ora file. If no alias information is provided, then no tnsnames.ora file is created.
Even if the user does not have all the database connection information readily available,
Oracle recommends inserting placeholder values during the install process, then modifying
the tnsnames.ora file later with actual values to replace the placeholders.

Oracle Client Configuration File Settings
ODP.NET configuration file parameter values can be set in .NET configuration,
tnsnames.ora, sqlnet.ora, and ldap.ora files. The *.ora file location can be a location
different from the standard ORACLE_HOME/network/admin directory. The *.ora settings order
of precedence is similar to ODP.NET's settings order of precedence. The main difference is
that the *.ora files themselves are included in the search order. The tnsnames.ora and
sqlnet.ora precedence order is as follows.

Managed ODP.NET:

Chapter 2
Configuring Oracle Data Provider for .NET

2-13

1. OracleConfiguration.OracleDataSources
2. <dataSources> in .NET configuration file

3. Directory set in OracleConnection.TnsAdmin property

4. Directory set for the Tns_Admin connection string attribute

5. Directory set in OracleConfiguration.TnsAdmin property

6. TNS_ADMIN directory setting in .NET configuration file

7. Current working directory

8. TNS_ADMIN directory setting of the Windows environment variable or container
environment variable

Unmanaged ODP.NET:

1. <dataSources> and <settings> in .NET configuration file

2. TNS_ADMIN directory setting in .NET configuration file

3. Current working directory

4. TNS_ADMIN directory setting of the Windows environment variable or container
environment variable

5. TNS_ADMIN Windows Registry setting (HKLM\SOFTWARE\ORACLE\KEY_<Oracle
Version>HOME<#>\)

6. %ORACLE_HOME%\network\admin directory

The managed ODP.NET ldap.ora precedence order is as follows:

1. <LDAPsettings> and <settings> in .NET configuration file

2. Directory set in OracleConnection.TnsAdmin property

3. Directory set for the Tns_Admin connection string attribute

4. Directory set in OracleConfiguration.TnsAdmin property

5. Directory set in OracleConfiguration.LdapAdmin property

6. TNS_ADMIN directory setting in .NET configuration file

7. LDAP_ADMIN directory setting in .NET configuration file

8. Current working directory

9. TNS_ADMIN directory setting in the Windows environment variable

10. LDAP_ADMIN directory setting in the Windows environment variable

The unmanaged ODP.NET ldap.ora precedence order is as follows:

1. LDAP_ADMIN directory setting in the Windows environment variable

2. %ORACLE_HOME%\ldap\admin directory

3. TNS_ADMIN directory setting in the Windows environment variable

4. %ORACLE_HOME%\network\admin directory

Oracle recommends using an app.config or web.config file to store all these Oracle
Client configuration parameter settings.

Chapter 2
Configuring Oracle Data Provider for .NET

2-14

Once the first tnsnames.ora, sqlnet.ora, and ldap.ora are found and read, no additional
*.ora file lower in the precedence order is read. That means all Oracle Client configuration
settings must be made in the app.config, web.config, machine.config, or the first set of
*.ora files found. Additional parameter values set in *.ora files lower in the precedence
order will not be read.

Configuring .NET Framework to Use ODP.NET
Automatic ODP.NET machine-wide configuration upon installation is no longer available as of
ODAC 18c. This change improves compatibility when applications on the same machine use
different ODP.NET versions and/or depend on application-specific configuration settings
instead of machine-wide assembly registration and configuration.

Nonetheless, administrators can still manually place managed and unmanaged ODP.NET in
the Global Assembly Cache (GAC), as well as add configurations for section handler,
DbProviderFactories, TNS_ADMIN, LDAP_ADMIN, and assembly redirection (in place of policy
DLLs), into machine.config, if desired.

Most ODP.NET settings in machine.config can be overridden by local settings in app.config
or web.config. However, conflicts between the machine.config and, app.config or
web.config can prevent applications from running properly. Care should be taken when
configuring ODP.NET at both the machine.config level and application level using
app.config or web.config.

To avoid such issues, Oracle recommends ODP.NET application configuration settings reside
in the app.config or web.config. The following sections explore how to set up these
ODP.NET configuration sections and provide sample configuration sections and files.

Configuration Section Handler

In order for the application to read the ODP.NET configuration section, a section handler must
be configured. The following entry should be added to the .NET configuration file to enable
applications to add an oracle.manageddataaccess.client section for ODP.NET, Managed
Driver-specific configuration:

<configuration>
 <configSections>
 <section name="oracle.manageddataaccess.client"
type="OracleInternal.Common.ODPMSectionHandler, Oracle.ManagedDataAccess,
Version=4.122.19.1, Culture=neutral, PublicKeyToken=89b483f429c47342" />
 </configSections>
</configuration>

Note:

In all the examples in this section, the version of the ODP.NET assembly is
understood to be 4.122.19.1. This version number should be modified appropriately
if you are using another version.

The unmanaged ODP.NET equivalent section handler is as follows:

<configuration>
 <configSections>
 <section name="oracle.unmanageddataaccess.client"

Chapter 2
Configuring Oracle Data Provider for .NET

2-15

type="OracleInternal.Common.CustomSectionHandler, Oracle.DataAccess,
Version=4.122.19.1, Culture=neutral, PublicKeyToken=89b483f429c47342" />
 </configSections>
</configuration>

One of the configuration entries that either has to match between machine.config
and, app.config or web.config, or only exist in the app.config or web.config to
avoid any conflict is the configuration for the section handler. For example, if your
application is a web application and the above entry was added to a web.config and
the same configuration section handler for oracle.manageddataaccess.client also
exists in machine.config but the Version attribute values are different, an error
message of "There is a duplicate oracle.manageddataaccess.client section
defined." may be observed at runtime. To avoid this issue, the configuration section
handler entry in the machine.config for oracle.manageddataaccess.client has to be
removed from the machine.config or the ODP.NET config section handler entry in
machine.config and web.config has to match exactly. If there are other applications
on the machine that depend on this entry in the machine.config, then this section
handler entry will need to be moved to all local applications’ .NET configuration files.

DbProviderFactories

The following entry should be added in the app.config or web.config for applications
that use DbProviderFactories and DbProviderFactory classes. Also, any
DbProviderFactories entry for Oracle.ManagedDataAccess.Client in the
machine.config will be ignored due to the <remove> entry:

<configuration>
 <system.data>
 <DbProviderFactories>
 <remove invariant="Oracle.ManagedDataAccess.Client" />
 <add name="ODP.NET, Managed Driver"
invariant="Oracle.ManagedDataAccess.Client" description="Oracle Data Provider
for .NET, Managed Driver"
type="Oracle.ManagedDataAccess.Client.OracleClientFactory,
Oracle.ManagedDataAccess, Version=4.122.19.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 </DbProviderFactories>
 </system.data>
</configuration>

The equivalent for unmanaged ODP.NET is as follows:

<configuration>
 <system.data>
 <DbProviderFactories>
 <remove invariant="Oracle.DataAccess.Client" />
 <add name="Oracle Data Provider for .NET"
invariant="Oracle.DataAccess.Client" description="Oracle Data Provider for .NET"
type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess,
Version=4.122.191, Culture=neutral, PublicKeyToken=89b483f429c47342" />
 </DbProviderFactories>
 </system.data>
</configuration>

Dependent Assembly

For users accustomed to the policy DLLs that were registered automatically upon
installation, the same can be accomplished through configuration. The following is an
example configuration that redirects the application that depends on 4.122 version of

Chapter 2
Configuring Oracle Data Provider for .NET

2-16

ODP.NET and higher to be redirected to use ODP.NET 4.122.19.1. Note that in this example,
an entry is added to ignore policy ODP.NET DLLs that are registered in the GAC:

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <publisherPolicy apply="no" />
 <assemblyIdentity name="Oracle.ManagedDataAccess"
publicKeyToken="89b483f429c47342" culture="neutral" />
 <bindingRedirect oldVersion="4.122.0.0 - 4.65535.65535.65535"
newVersion="4.122.19.1" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

The equivalent for unmanaged ODP.NET is as follows:

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <publisherPolicy apply="no" />
 <assemblyIdentity name="Oracle.DataAccess" publicKeyToken="89b483f429c47342"
culture="neutral" />
 <bindingRedirect oldVersion="4.122.0.0 - 4.65535.65535.65535"
newVersion="4.122.19.1" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

The final .NET configuration section that includes a configuration section handler,
DbProviderFactories, dependent assembly, and provider configuration would look similar to
the following example:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <configSections>
 <section name="oracle.manageddataaccess.client"
 type="OracleInternal.Common.ODPMSectionHandler, Oracle.ManagedDataAccess,
Version=4.122.19.1, Culture=neutral, PublicKeyToken=89b483f429c47342"/>
 </configSections>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.7.1"/>
 </startup>
 <system.data>
 <DbProviderFactories>
 <remove invariant="Oracle.ManagedDataAccess.Client"/>
 <add name="ODP.NET, Managed Driver"
invariant="Oracle.ManagedDataAccess.Client" description="Oracle Data Provider
for .NET, Managed Driver"
type="Oracle.ManagedDataAccess.Client.OracleClientFactory, Oracle.ManagedDataAccess,
Version=4.122.19.1, Culture=neutral, PublicKeyToken=89b483f429c47342"/>
 </DbProviderFactories>
 </system.data>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>

Chapter 2
Configuring Oracle Data Provider for .NET

2-17

 <publisherPolicy apply="no"/>
 <assemblyIdentity name="Oracle.ManagedDataAccess"
publicKeyToken="89b483f429c47342" culture="neutral"/>
 <bindingRedirect oldVersion="4.121.0.0 - 4.65535.65535.65535"
newVersion="4.122.19.1"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
 <oracle.manageddataaccess.client>
 <version number="*">
 <dataSources>
 <dataSource alias="SampleDataSource"
descriptor="(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=localhost)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=ORCL))) "/>
 </dataSources>
 </version>
 </oracle.manageddataaccess.client>
</configuration>

ODP.NET Intellisense for .NET Configuration Files

When installing ODP.NET from a non-ODAC release, such as from a database server
installation, Intellisense for ODP.NET configuration files is not enabled by default as it
is with ODAC-based GUI installations. .xsd files are included in the
ORACLE_HOME\odp.net\managed\common directory to enable developers to modify
the .NET configuration file using IntelliSense. For Visual Studio to leverage the
supplied .xsd files, do the following:

1. Open the .NET config file (i.e. app.config, web.config, or machine.config) within
Visual Studio.

2. Within Visual Studio, navigate to XML, and then Schemas.

3. Enable the check mark under the Use column for:

Oracle.ManagedDataAccess.Client.Configuration.Section.xsd for managed
ODP.NET and

Oracle.UnmanagedDataAccess.Client.Configuration.Section.xsd for
unmanaged ODP.NET, respectively.

Oracle Data Provider for .NET, Unmanaged Driver
Configuration

The following sections explain how to configure ODP.NET, Unmanaged Driver.

ODP.NET can be configured using an XML file named web.config, app.config, or
machine.config. These config files contain sections specific to ODP.NET
configuration.

For unmanaged ODP.NET, developers use either the traditional
<oracle.dataaccess.client> section or the newer
<oracle.unmanageddataaccess.client> section. Oracle recommends applications
use <oracle.unmanageddataaccess.client> when possible. For managed ODP.NET,
developers use <oracle.manageddataaccess.client>.

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-18

<oracle.unmanageddataaccess.client> is a superset of
<oracle.manageddataaccess.client> as unmanaged ODP.NET supports some features not
available in the managed driver. For features both providers have in common, they share the
same structure, properties, and nearly all values. Programmers will find using either provider
interchangeably or migrating between unmanaged and managed ODP.NET is easier with the
shared format.

This documentation section covers unmanaged ODP.NET configuration settings in the
Windows registry, <oracle.dataaccess.client>, or unique
<oracle.unmanageddataaccess.client> settings. For shared settings with
<oracle.manageddataaccess.client>.

See Also:

Oracle Data Provider for .NET, Managed Driver Configuration

Supported Configuration Settings
ODP.NET, Unmanaged Driver supports the configuration of an attribute as follows:

• In the Windows registry.

• In an XML file.

• Through a different mechanism such as a connection string or programmatically through
an ODP.NET class, if applicable.

Table 2-3 describes each configurable attribute that is supported by ODP.NET. In the table,
the term Configuration Support is followed by the types of configuration support (Windows
registry, XML file, and so on) that are available for that attribute.

The table describes valid values as well as the default for each attribute.

Note:

The default values shown are the values used for an attribute if the registry key
does not exist or if it is not configured anywhere.

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-19

Table 2-3 Configuration Attributes

Attribute/Setting Name Description

CheckConStatus Specifies whether the status of the connection
is checked or not before putting the connection
back into the connection pool. This registry
entry is not created by the installation of
ODP.NET. However, the default value 1 is
used.

Configuration Support:

Windows Registry and XML file

Valid Values:

1: Check the status of the connection.

0: Do not check the status of the connection.

Default: 1
DbNotificationPort Specifies the port number which ODP.NET

listens to, for all notifications sent by the
database for change notification, HA, or RLB
features. ODP.NET does not throw any errors if
an invalid or used port number is specified.
The port can also be set to override the
Windows registry and XML configuration file by
setting the OracleDependency.Port static
field.

Configuration Support:

XML file, and ODP.NET class

Valid Values:

-1: Open a random unused port to listen to.

n > = 0: Listen on port n.

Default: -1
DemandOraclePermission Specifies whether ODP.NET demands

OraclePermission from the .NET application
that is trying to access the database using
ODP.NET.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Disables demands for OraclePermission.

1: Enables demands for OraclePermission
Default: 0

DllPath Specifies the location where dependent
unmanaged Oracle Client binaries load from.

Configuration Support: Windows Registry and
XML file

Valid Values:

The path where dependent unmanaged Oracle
Client binaries reside.

Default: ORACLE_BASE\\ORACLE_HOME\bin

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-20

Table 2-3 (Cont.) Configuration Attributes

Attribute/Setting Name Description

DynamicEnlistment Due to a behavior change with the ODAC 12c
Release 3 version of ODP.NET connection
string attribute enlist=dynamic,
DynamicEnlistment has no operation now.

FetchSize Specifies the total memory size, in bytes, that
ODP.NET allocates to cache the data fetched
from a database round-trip. This value can be
set on the OracleCommand and the
OracleDataReader FetchSize property as
well.

Configuration Support:

Windows Registry, XML file, and ODP.NET
class

Valid Values:

0 <= n <= int.MaxValue: n is the size of the
cache in bytes.

Default: 131072
LegacyEntireLobFetch Returns either OracleBlob and OracleClob

types or OracleBinary and OracleString
types from Oracle Database BLOB and CLOB
columns. This setting only applies when
InitialLobFetchSize is set to -1.

Valid Values:

0: Returns OracleBlob and OracleClob
1: Returns OracleBinary and
OracleString
Default: 0

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-21

Table 2-3 (Cont.) Configuration Attributes

Attribute/Setting Name Description

LegacyTransactionBindingBehavior Specifies when a database connection
detaches from a System.Transactions
transaction. By default, connections detach
from a transaction only when explicitly
unbound as is the case when the connection
closes or implicitly unbound when the
transaction is disposed. Alternatively, this
attribute can be set so that the connection
detaches whenever the transaction ends
(commits, aborts, or times out), the connection
closes, or the transaction is disposed.

In ODP.NET 11.2.0.3.20 and earlier releases,
the latter was the default behavior. Oracle
recommends using the current default
behavior.

In the earlier default behavior, when the
timeout elapses before the transaction
completes, the connection unbinds itself from
the transaction and all subsequent executions
on this connection execute in AutoCommit
mode. Any operations prior to the timeout roll
back, but operations performed after the
timeout commit.

In the current default setting, users receive an
exception when the transaction times out and
additional operations execute on the
connection.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Connections detach from transaction when
the connection closes or the transaction is
disposed.

1: Connections detach from transaction when
the connection closes, the transaction is
disposed, or the transaction completes
(commits, rolls back, times out).

Default: 0
MaxStatementCacheSize Specifies the maximum number of statements

that can be cached when self-tuning is
enabled.

Configuration Support:

Windows Registry and XML file

Valid Values:

0 to System.Int32.MaxValue.

Default: OPEN_CURSORS setting value of the
database

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-22

Table 2-3 (Cont.) Configuration Attributes

Attribute/Setting Name Description

MetaDataXml Specifies the name of the XML file that
customizes the queries to obtain the metadata
the ADO.NET 2.0 GetSchema method returns.
MetaDataXml can only be set in a
configuration file.

Configuration Support:

XML file only

Valid Values:

A complete file name for the XML file.

Default: none

PerformanceCounters Enables or disables publishing performance
counters for connection pooling. Multiple
performance counters can be obtained by
adding the valid values.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Not Enabled

1: Number of sessions being established with
Oracle Database every second.

2: Number of sessions being severed from
Oracle Database every second.

4: Number of active connections originating
from connection pools every second.

8: Number of active connections going back to
the connection pool every second.

16: Total number of active connections.

32: Number of inactive connection pools.

64: Total number of connections in use.

128: Total number of connections available for
use in all the connection pools.

256: Total number of pooled active and free
connections.

512: Number of non-pooled active connections

1024: Number of connections which were
garbage-collected implicitly.

2048: Number of connections that will be soon
available in the pool. User has closed these
connections, but they are currently awaiting
actions, such transaction completion, before
they can be placed back into the pool as free
connections.

4095: All the above

Default: 0

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-23

Table 2-3 (Cont.) Configuration Attributes

Attribute/Setting Name Description

SelfTuning Specifies whether self-tuning is enabled for an
ODP.NET application.

Configuration Support:

Windows Registry, XML file, and Self
Tuning connection string attribute

Valid Values:

0: Self Tuning is disabled. Used in the registry
or XML file.

false: Self Tuning is disabled. Used for the
Self Tuning connection string attribute.

1: Self Tuning is enabled. Used in the registry
or XML file.

true: Self Tuning is enabled. Used for the
Self Tuning connection string attribute.

Default: 1

StatementCacheSize Specifies the number of cursors or statements
to be cached on the database for each
connection. This setting corresponds to
Statement Cache Size attribute in the
connection string. A value greater than zero
also enables statement caching.

Configuration Support:

Windows Registry, XML file, and Statement
Cache Size connection string attribute

Valid Values:

0 <= n <= the value of OPEN_CURSORS
parameter set in init.ora database config
file.

n is the number to set.

Default: 0
StatementCacheWithUdts Specifies whether or not Oracle UDTs

retrieved by executing a SELECT statement are
cached along with the statement in the
statement cache. This setting affects the
memory usage and performance of the
application.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Oracle UDTs are not cached with
statements.

1: Oracle UDTs are cached along with
statements.

Default: 1

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-24

Table 2-3 (Cont.) Configuration Attributes

Attribute/Setting Name Description

ThreadPoolMaxSize Specifies the default maximum size of worker
threads for each available processor in a
process. This value may affect the
performance of ODP.NET connection creation,
command execution timeout, and external
procedures (extproc) that use the thread
pool. However, unnecessarily increasing
thread pool maximum size can also cause
performance problems.

Configuration Support:

Windows Registry and XML file

Valid Values:

0 <= n <= int.MaxValue: Allows ODP.NET
to reset thread pool maximum size with the
value n. The ODP.NET reset operation may be
ignored if the value is invalid. For example, if n
is less than the number of available processors
of the system. In this case, the result is the
same as the value -1.

-1: Leave the thread pool max size as is.

Default: -1 (this registry entry is not created by
default)

TraceFileLocation Trace file destination directory, for example,
D:\traces.

Configuration Support:

Windows Registry and XML file

Default: <Windows user temporary
folder>\ODP.NET\unmanaged\trace

TraceFileMaxSize Maximum file size of each trace file.

Configuration Support:

Windows Registry and XML file

Default: 100. Units are in megabytes (that is,
100 MB).

TraceFileName Specifies the file name to be used for logging
trace information.

Configuration Support:

Windows Registry and XML file

Valid Values:

Any valid directory location and file name.

Default: c:\odpnet2.trc (for .NET
Framework 2.0)

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-25

Table 2-3 (Cont.) Configuration Attributes

Attribute/Setting Name Description

TraceLevel Specifies the level of tracing in ODP.NET.
Because tracing all the entry and exit calls for
all the objects can be excessive, TraceLevel
is provided to limit tracing to certain areas of
the provider. Each valid value indicates a
possible tracing level. Compounded tracing
levels can be obtained by adding the valid
values.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: None

1: Entry, exit, and SQL statement information

2: Connection pooling statistics

4: Distributed transactions (enlistment and
delistment)

8: User-mode dump creation upon unmanaged
exception

16: HA Event Information

32: Load Balancing Information

64: Self Tuning Information

127: All the above

Default: 0

Note: ODP.NET does bit-wise checking on the
value. When tracing is enabled, logging to the
trace file can affect ODP.NET performance.

Note: The user-mode dump creation requires
dbghelp.dll version 5.1.2600.0 or later.

TraceOption Specifies whether to log trace information in
single or multiple files for different threads. If a
single trace file is specified, the file name
specified in TraceFileName is used. If the
multiple trace files option is requested, a
Thread ID is appended to the file name
provided to create a trace file for each thread.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Single trace file

1: Multiple trace files

Default: 0

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-26

Table 2-3 (Cont.) Configuration Attributes

Attribute/Setting Name Description

UdtCacheSize Specifies the size of the object cache for each
connection in kilobytes (KB) that ODP.NET
uses to retrieve and manipulate Oracle UDTs.

Configuration Support:

Windows Registry and XML file

Valid Values:

0 <= n <= 4194303, n is the number to set.

Default: 4096
UDT Mapping Specifies a mapping between a custom type

and an Oracle UDT in the database. The
mappings can be specified in configuration
files and custom type factories. However, if the
mapping is specified in both places, mappings
specified in the configuration files takes
precedence over mappings specified using
custom type factories.

Configuration Support:

XML file and Custom Type Factory Classes

Valid Values:

Any valid mapping.

Default: none

Windows Registry
Upon installation, ODP.NET creates entries for configuration and tracing within the Windows
Registry. Configuration and tracing registry values apply across all ODP.NET applications
running in that Oracle client installation. Individual ODP.NET applications can override some
of these values by configuring them within the ODP.NET application itself (for example,
FetchSize). Applications can also use the .NET configuration files to override some of the
ODP.NET Windows Registry values.

The ODP.NET registry values are located under
HKEY_LOCAL_MACHINE\Software\Oracle\ODP.NET\version\. There is one key for .NET
Framework 3.5, and one key for .NET Framework 4 and later.

Note:

32-bit applications running on an x64-based version of Windows use the registry
subkey, HKEY_LOCAL_MACHINE\Software\WOW6432node in place of
HKEY_LOCAL_MACHINE\Software. If such applications use Oracle Data Provider
for .NET (32-bit), then the ODP.NET registry values are located under
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Oracle\ODP.NET\version\.

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-27

Configuration File Support
For customers who have numerous applications on a computer that depends on a
single version of ODP.NET, the Windows Registry settings for a given version of
ODP.NET may not necessarily be applicable for all applications that use that version of
ODP.NET. To provide more granular control, ODP.NET Configuration File Support
allows developers to specify ODP.NET configuration settings in an application config,
web.config, or a machine.config file.

If a computer does not require granular control beyond configuration settings at the
ODP.NET version level, there is no need to specify ODP.NET configuration settings
through configuration files.

The following is an example of a web.config file for .NET Framework:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DllPath" value="C:\oracle\bin"/>
 <add name="FetchSize" value="131072"/>
 <add name="StatementCacheSize" value="10"/>
 <add name="TraceFileName" value="D:\odpnet2.trc"/>
 <add name="TraceLevel" value="63"/>
 <add name="TraceOption" value="1"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

The following is an example of app.config for ODP.NET, Unmanaged Driver
using .NET Framework, which sets some additional attributes as well as two UDT type
mappings:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DbNotificationPort" value="-1"/>
 <add name="DllPath" value="C:\app\user\product\21.3.0\client_1\bin"/>
 <add name="DynamicEnlistment" value="0"/>
 <add name="FetchSize" value="131072"/>
 <add name="MetaDataXml" value="CustomMetaData.xml"/>
 <add name="PerformanceCounters" value="4095"/>
 <add name="StatementCacheSize" value="50"/>
 <add name="ThreadPoolMaxSize" value="30"/>
 <add name="TraceFileName" value="D:\odpnet2.trc"/>
 <add name="TraceLevel" value="0"/>
 <add name="TraceOption" value="0"/>
 <add name="Person" value="udtMapping factoryName='PersonFactory, Sample,
 Version=0.0.0.0, Culture=neutral, PublicKeyToken=null' typeName='PERSON'
 schemaName='HR' dataSource='oracle'"/>
 <add name="Student" value="udtMapping factoryName='StudentFactory, Sample,
 Version=0.0.0.0, Culture=neutral, PublicKeyToken=null' typeName='STUDENT'
 schemaName='HR'"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-28

ODP.NET, Unmanaged Driver now has the option of using the same configuration file format
as ODP.NET, Managed Driver. The format simplifies configuration by using a single unified
scheme. To utilize this format, the existing unmanaged ODP.NET configuration section should
be renamed from <oracle.dataaccess.client> to <oracle.unmanageddataaccess.client>.
The existing unmanaged ODP.NET elements and values are supported within the new
section using the same format as with ODP.NET, Managed Driver. To see how to set the
elements and values, see "Oracle Data Provider for .NET, Managed Driver Configuration" for
more information.

For example, converting the FetchSize element and value from the traditional to the new
format would be done as follows:

<oracle.dataaccess.client>
 <settings>
 <add name="FetchSize" value="131072" />
 </settings>
</oracle.dataaccess.client>

<oracle.unmanageddataaccess.client>
 <version number="*">
 <settings>
 <setting name="FetchSize" value="131072" />
 </settings>
 </version>
</oracle.unmanageddataaccess.client>

The traditional ODP.NET, Unmanaged Driver configuration file format will continue to be
supported.

SQL Translation Framework Configuration

Configuring the SQL Translation Profile

The default SQL Translation Profile can be set in the .NET config file, either for all
connections across the application, or it is also possible to limit the scope of a profile based
on optional dataSource and userId XML attributes. Please note that these dataSource and
userId XML attributes directly correspond to the Data Source and User Id attributes in the
connection string used to open a database connection.

Note:

SQL Translation Profile settings are only supported in the
<oracle.unmanageddataaccess.client> section. It is not supported in the
<oracle.dataaccess.client> section nor the
<oracle.manageddataaccess.client> section.

This would be used for all connections to the Data Sources and User Ids.

This would be used for all connections to the specified Data Source.

This would be used for all connections to the specified User Id.

This would be used for all connections to the specified Data Source and User Id.

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-29

It is possible to configure multiple default profile entries which allow configuring default
profiles for different dataSource and userId attributes, but while selecting a profile, the
profile with maximum matching attributes will be selected.

In case there are 2 matching entries, one with dataSource only and the other with
userId only then the entry with matching the userId would be given priority over the
entry with matching dataSource.

With the above configuration, if we try to connect with a connection string which has
stf_ds for Data Source and stf_user for User Id attributes, then both the entries
given above will match and in such cases, we will give priority to the entry with a
matching User Id attribute which means profile_user will be selected as the default
profile.

Configuring the Error Mapping

Applications can configure the connection related error mapping in their application
configuration file. The error mapping can also be scoped based on Data Source name,
User Id and the profile name itself.

Here is an example of providing error mapping with all three attributes.

<configuration>
 <oracle.unmanageddataaccess.client>
 <version number="*">
 <sqlTranslation>
 <defaultProfiles>
 <defaultProfile dataSource="stf_ds" userId="stf_user" profile=" Profile4"/>
 </defaultProfiles>
 <ErrorMappings>
 <ErrorMapping dataSource="stf_ds" userId="stf_user" profile="Profile4">
 <add oracleErrorNumber="1017" translatedErrorCode="222" />
 <add oracleErrorNumber="1005" translatedErrorCode="888" />
 </ErrorMapping>
 </ErrorMappings>
 </sqlTranslation>
 </version>
 </oracle.unmanageddataaccess.client>
</configuration>

Please note that dataSource and userId attributes are optional but can be used to
scope the mapping.

It is also possible to provide an error mapping which could be used for all profiles.
Here is an example:

<ErrorMappings>
 <ErrorMapping profile="*">
 <add oracleErrorNumber="1017" translatedErrorCode="222" />
 <add oracleErrorNumber="1018" translatedErrorCode="888" />
 </ErrorMapping>
</ErrorMappings>

Configuring the Default Error Mapping Profile

The default error mapping profile can be configured through the
defaultErrorMappingProfile setting. This is to be used to specify the default error
mapping profile, especially in scenarios when the default profile is not specified
through the .NET configuration file, but specified on the server side. In this case, if

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-30

connectivity related errors occur, then ODP.NET will be able to properly use error mappings
specified in the .NET configuration file for the profile specified by the
defaultErrorMappingProfile setting.

Here is an example to configure the default error mapping profile:

<sqlTranslation>
 <settings>
 <add name="defaultErrorMappingProfile" value="error_mapping_profile" />
 <settings>
</sqlTranslation>

Configuring the SQL Translation Framework Statement Cache Size

Client can configure the number of translated statements that ODP.NET can cache internally
to avoid translations, which can be an expensive operation.

Here is an example to configure default error mapping profile:

<sqlTranslation>
 <settings>
 <add name="translatedStatementCacheSize" value="50" />
 <settings>
</sqlTranslation>

Sample SQL Translation Framework configuration file

Here is a sample configuration file with all possible elements that can be used:

<sqlTranslation>
 <settings>
 <add name="translatedStatementCacheSize" value="50" />
 <add name="defaultErrorMappingProfile" value="def_Profile" />
 <settings>
 <defaultProfiles>
 <defaultProfile profile="STF.NO_DS_NO_USERID"/>
 <defaultProfile userId="stf" profile="STF_NO_DS"/>
 <defaultProfile dataSource="stf_inst" profile="STF_NO_USERID"/>
 <defaultProfile dataSource="stf_inst" userId="stf" profile="STF.STF_X"/>
 </defaultProfiles>
 <ErrorMappings>
 <ErrorMapping profile="def_profile">
 <add oracleErrorNumber="1017" translatedErrorCode="444" />
 </ErrorMapping>
 <ErrorMapping dataSource="stf_inst" userId="stf" profile=" STF.STF_X ">
 <add oracleErrorNumber="1018" translatedErrorCode="88888" />
 </ErrorMapping>
 </ErrorMappings>
</sqlTranslation>

Example 2-1 Setting the profile which could be used for all connections

<configuration>
 <oracle.unmanageddataaccess.client>
 <version number="*">
 <sqlTranslation>
 <defaultProfiles>
 <defaultProfile profile="Profile1"/>
 </defaultProfiles>
 </sqlTranslation>
 </version>

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-31

 </oracle.unmanageddataaccess.client>
</configuration>

Example 2-2 Setting the Profile for a Specific Data Source

<defaultProfiles>
 <defaultProfile dataSource="stf_ds" profile="Profile2"/>
</defaultProfiles>

Example 2-3 Setting the Profile for a Specific User Id

<defaultProfiles>
 <defaultProfile userId="stf_user" profile="Profile3"/>
</defaultProfiles>

Example 2-4 Setting the Profile for a Specific Data Source and User Id'

<defaultProfiles>
 <defaultProfile dataSource="stf_ds" userId="stf_user" profile="Profile4"/>
</defaultProfiles>

Example 2-5 Configuring Multiple Default Profile Entries

<defaultProfiles>
 <defaultProfile dataSource="stf_ds" profile="profile_ds"/>
 <defaultProfile userId="stf_user" profile="profile_user"/>
</defaultProfiles>

Specifying UDT Mappings with Unified Configuration for Unmanaged ODP.NET
As UDT mapping is not currently supported by ODP.NET, Managed Driver, a new
section within the <version> section is used to support custom UDT mappings for
unmanaged ODP.NET in the unified configuration format. This new section is identified
as <udtmappings> and each mapping is identified using a <udtmapping> element. The
following attributes may be specified for each udtMapping element:

• typeName (required)

• factoryName (required)

• dataSource (optional)

• schemaName (optional)

These elements retain the same name and meaning as when used with the traditional
configuration format.

Example of converting traditional format to unified format:

<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="Person" value="udtMapping factoryName='PersonFactory, Sample,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=null' typeName='PERSON'
schemaName='SCOTT' dataSource='oracle'" />
 </settings>
 </oracle.dataaccess.client>
</configuration>

<configuration>
 <oracle.unmanageddataaccess.client>
 <udtmappings>

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-32

 <udtmapping typename="PERSON" factoryname="PersonFactory, Sample,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=null" schemaname="SCOTT"
datasource="oracle" />
 </udtmappings>
 </oracle.unmanageddataaccess.client>
</configuration>

See Also:

Oracle User-Defined Types (UDTs) and .NET Custom Types

Oracle Data Provider for .NET, Managed Driver Configuration
ODP.NET, Managed Driver supports .NET configuration file-based settings in
machine.config, app.config, and web.config. It does not support Windows registry based
configuration. ODP.NET, Managed Driver settings in .NET configuration files are similar to
ODP.NET, Unmanaged Driver settings to make porting easier.

The ODP.NET, Managed Driver configuration file section name is
<oracle.manageddataaccess.client>. The <oracle.manageddataaccess.client> settings
and values are also supported in unmanaged ODP.NET configuration file:
<oracle.unmanageddataaccess.client>. While this documentation section discusses
managed ODP.NET configuration, it is also applicable to
<oracle.unmanageddataaccess.client>. The <oracle.unmanageddataaccess.client>
share numerous common settings with <oracle.manageddataaccess.client>. Differences
between the two are noted on this page. The <oracle.unmanageddataaccess.client>
settings not available in managed ODP.NET are documented in "Oracle Data Provider
for .NET, Unmanaged Driver Configuration". A typical .NET config that uses ODP.NET,
Managed Driver has some or all of the following subsections nested within a <version>
subsection under <oracle.manageddataaccess.client> section. Note the tag names are
case sensitive, while the attribute names are case insensitive.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.manageddataaccess.client>
 <version number="*">
 <dataSources>
 ...
 ...
 </dataSources>
 <settings>
 ...
 ...
 </settings>
 <LDAPsettings>
 ...
 ...
 </LDAPsettings>
 <implicitRefCursor>
 ...
 ...
 </implicitRefCursor>
 <edmMappings>
 ...
 ...

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-33

 <edmMappings>
 </version>
 <version number="4.121.2.0">
 <dataSources>
 ...
 ...
 </dataSources>
 <settings>
 ...
 ...
 </settings>
 <LDAPsettings>
 ...
 ...
 </LDAPsettings>
 <implicitRefCursor>
 ...
 ...
 </implicitRefCursor>
 <edmMappings>
 ...
 ...
 <edmMappings>
 </version>
 </oracle.manageddataaccess.client>
</configuration>

The ODP.NET, Managed Driver configuration and settings are described in the
following sections. Many of the attributes are the same as ODP.NET, Unmanaged
Driver. See Table 2-3 for detailed attribute descriptions.

version Section
All the information required by an application should be grouped under the version
subsections. Each <version number="X"> section contains parameters applicable for
version X of the ODP.NET, Managed Driver. For example, <version
number="4.121.2.0"> section parameters will be applicable only for those applications
using ODP.NET, Managed Driver assembly 4.121.2.0.

Apart from version specific sections, there can also be a generic section <version
number="*">. This section's parameters are applicable for all ODP.NET, Managed
Driver versions. Parameters in the version specific section take precedence over the
parameters of the generic section. The following is an example of a version section:

<oracle.manageddataaccess.client>
 <version number="*">
 <settings>
 <setting name="TraceOption" value="1"/>
 <setting name="PerformanceCounters" value="0" />
 </settings>
 </version>
 <version number="4.121.2.0">
 <settings>
 <setting name="PerformanceCounters" value="4095" />
 </settings>
 </version>
</oracle.manageddataaccess.client>

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-34

An application referencing ODP.NET, Managed Driver 4.121.2.0 has the following values set:

• TraceOption = 1
• PerformanceCounters= 4095

dataSources Section
This section can appear only under a <version> section. The mapping between the different
data source aliases and corresponding data descriptors should appear in this section. This
section is supported by managed ODP.NET only. The following is an example.

<dataSources>
 <dataSource alias="inst1" descriptor="(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=sales-server)......)))"/>
 <dataSource alias="inst2" descriptor="(DESCRIPTION=)))"/>
</dataSources>

Note:

The data source connection string attribute can alternatively be set to a full
descriptor or Easy Connect syntax rather than a data source alias.

Requirements for connecting to a local database without specifying "data source" connection
string attribute:

• The listener must be up and running.

• ORACLE_SID environment variable must be set appropriately.

Note:

When data source connection string attribute is not specified, protocol defaults to
'tcp' and port defaults to '1521'.

The ODP.NET managed driver reads and caches all the alias entries from the app.config,
web.config, machine.config, and from a tnsnames.ora file that is found at application start-
up time. However, aliases that are defined in LDAP servers are resolved and cached on
demand. This means for each unique alias that is used by the application, an alias resolution
query is executed against an LDAP server and the full descriptor associated with the alias will
be cached once it is fetched.

For developers that need to change or add alias settings while developing applications, one
may consider using OracleDataSourceEnumerator.GetDataSources() rather than restarting
the application. Invoking this method will first wipe out existing cache entries that were read
from the tnsnames.ora file and all aliases obtained from the LDAP Server. Then, the
tnsnames.ora is re-parsed and all its entries will be cached again. Please note that the
app.config, web.config, and machine.config entries are read only once at application start-
up time and thus their contents are maintained and not re-parsed even if
OracleDataSourceEnumerator.GetDataSources() is invoked.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-35

The OracleDataSourceEnumerator.GetDataSources() method invocation has an
impact on the connection pool. This is because a connection pool, which is created for
each unique connection string, will cache the resolved full descriptor information after
the first connection is created for a given connection pool. After that, the connection
pool uses the cached full descriptor information for all subsequent connection
creations. Thus, for applications that have their tnsnames.ora or LDAP entries
modified during the execution of an application where an alias points to a different
database than before, one should call the
OracleDataSourceEnumerator.GetDataSources() method to remove old cached
entries. This should be followed by the invocation of the
ClearPool(OracleConnection) instance method or the ClearAllPools() static
method to remove existing connections and also have it obtain a new full descriptor
value that was read by the invocation of
OracleDataSourceEnumerator.GetDataSources(). Following this scheme will assure
that all the connections in the connection pool uses the new full descriptor that is now
associated with the alias and all connections in a connection pool is established to the
same database.

The following keywords are supported within the descriptor setting:

• ADDRESS
• ADDRESS_LIST (Note: only failover supported)

Oracle recommends using SCAN listener and Runtime Load Balancing to balance
the load when connecting to an Oracle RAC database.

• DESCRIPTION
• DESCRIPTION_LIST (Note: Failover supported; Address_list load balancing not

supported)

• HOST (Note: <hostname>, <IPv6 literal>, and <IPv4 literal> are supported)

• HTTPS_PROXY
• HTTPS_PROXY_PORT
• IP (Note: "loopback" is supported)

• PROTOCOL (Note: tcp and tcps are supported. In addition, WS and WSS are also
supported.)

• RETRY_COUNT: Specifies the number of times an ADDRESS list is traversed before the
connection attempt is terminated and times out.

• RETRY_DELAY: Specifies the delay in seconds between subsequent retries for a
connection.

RETRY_COUNT and RETRY_DELAY are timeout parameters that work at the Oracle
networking layer. They are intended to be used in conjunction with each other.
When these parameters are used, ODP.NET will attempt to connect with one of
the addresses in the ADDRESS_LIST. If there is no successful connection after going
through the entire list, then ODP.NET will wait for the number of seconds specified
by RETRY_DELAY before traversing the address list again. It will repeat this behavior
until there is a successful connection or the RETRY_COUNT limit is hit.

For example, let's assume RETRY_COUNT=2 and RETRY_DELAY=4 when ODP.NET
cannot successfully connect to any address on the list. The following sequence is
triggered:

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-36

1. Traverse address list to connect.

2. Wait four seconds for next set of retry attempts.

3. Traverse the address list again. This is first set of retry attempts.

4. Wait four seconds for the next retry attempt.

5. Traverse the address list again. This is the second and final set of retry attempts.

6. Timeout

These timeout parameters function independent of ODP.NET application timeouts, such
as the Connection Timeout connection string attribute. If the Connection Timeout is set
to a low value, then it may trigger before the RETRY_COUNT and RETRY_DELAY attempt cycle
completes.

• Session Data Unit size supports from 256 to 2097152 in bytes.

• SECURITY: SSL_VERSION (Note: overrides sqlnet.ora:ssl_version)

• TRANSPORT_CONNECT_TIMEOUT (Note: overrides tcp.connect_timeout)

Note:

• SSL is now supported via method MCS and FILE.

• Both Kerberos5 and NTS authentication are supported. RADIUS is not
supported.

• Only NTS authentication is supported. No RADIUS nor Kerberos5
authentication.

• Only Net Services, Easy Connect naming, and LDAP (namely, Active Directory
and Oracle Internet Directory) are supported.

• No bequeath (beq) support. Default address is instead TCP loopback with port
1521 and Oracle service name from environment (ORACLE_SID)

See Also:

Oracle Database Net Services Reference for a detailed description of the attributes.

Though managed ODP.NET does not support TNS descriptor based load balancing, it does
support failover through both an ADDRESS_LIST and DESCRIPTION_LIST.

Note that you need not specify either the LOAD_BALANCE or the FAILOVER directive, because
only failover is supported. The directives are ignored.

The following examples demonstrate TNS descriptors utilizing failover:

(DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=host1)(PORT=1630))
 (ADDRESS=(PROTOCOL=tcp)(HOST=host2)(PORT=1630))
 (ADDRESS=(PROTOCOL=tcp)(HOST=host3)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=Sales.us.example.com)))

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-37

(DESCRIPTION_LIST=
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales1a-svr)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales1b-svr)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=sales1.example.com)))
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales2a-svr)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales2b-svr)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=sales2.us.example.com))))

settings section
This section can appear only under a <version> section. Any ODP.NET, Managed
Driver specific settings should appear in this section. The following is an example of a
settings section:

<settings>
 <setting name="TraceLevel" value="7" />
 <setting name="TraceOption" value="1"/>
 <setting name="TNS_ADMIN" value="C:\oracle\work"/>
</settings>

A new default behavior has been introduced for ODP.NET Release 12.1.0.2 and later
when InitialLobFetchSize is set to -1. The new default value is
LegacyEntireLOBFetch = 0. To use the old behavior, set LegacyEntireLobFetch = 1
in the ODP.NET configuration. Refer to "Setting InitialLONGFetchSize to -1" for more
information.

ODP.NET, Managed Driver configuration settings that are supported:

• BindByName
• CPVersion: Determines whether ODP.NET, Unmanaged Driver uses the traditional

connection pool implementation (Default=1.0) or the more modern connection
pool implementation with better high availability support (2.0). In addition, the
more modern connection pool (2.0) is required if the application uses Database
Resident Connection Pooling (DRCP), or hosts multiple pluggable databases or
editions in the same pool. Possible values: 1.0 or 2.0.

ODP.NET, Managed Driver only uses the more modern connection pool
implementation. This setting can only be used for ODP.NET, Unmanaged Driver
for .NET Framework 4 and higher. It cannot be used for earlier versions of
unmanaged ODP.NET, which will always use the traditional connection pool
implementation.

If CPVersion is set explicitly, then that setting will be used across processes for all
connection strings.

If CPVersion is left unmodified (or contains an invalid value) and an application's
first unmanaged ODP.NET established connection for a given connection string
uses DRCP, pluggable databases, or editions by modifying one these features'
properties or configuration settings, then CPVersion will be implicitly modified to
use the newer connection pool implementation (2.0).

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-38

If a CPVersion 1.0 pool attempts to use DRCP, pluggable database, or edition settings,
then ODP.NET will raise an exception when the application attempts to open a
connection.

When CPVersion 2.0 is used explicitly or implicitly and the "proxy user id" is not specified
in the connection string, then a proxy connection will not be created, even if "proxy
password" is supplied.

When CPVersion 2.0 is used by ODP.NET, Unmanaged Driver, the connection pool
behavior will be the same as the more modern connection pool as implementation that
ODP.NET, Managed Driver uses.

• DbNotificationPort
• DemandOraclePermission
• Disable_Oob: Interrupts database query execution via either TCP/IP urgent data or

normal TCP/IP data, called out of band data (default) or in band data, respectively.
(Default=off).

All Oracle database clients support interrupting database query execution, such as
through an ODP.NET command timeout. Windows-based database servers only support
in band breaks, whereas all other (predominantly UNIX-based) database servers can
support out of band (OOB) or in band breaks. ODP.NET, Managed Driver uses OOB
breaks by default with database servers that support it. For certain network topologies,
the routers or firewalls involved in the route to the database may have been configured to
drop urgent data or in band the data. If the routers or firewalls can not be changed to
handle urgent data appropriately, then the ODP.NET, Managed Driver can be configured
to utilize in band breaks by setting the .NET configuration parameter Disable_Oob to on.

• DllPath: (Unmanaged ODP.NET only) Specifies the directory location dependent
unmanaged Oracle Client binaries are loaded from.

See Search Order for Unmanaged DLLs for more information.

• DRCPConnectionClass: Specifies a logical name that identifies the DRCP connection pool
that the ODP.NET connection will use. It will be used as a default if the
DRCPConnectionClass property on the OracleConnection object is not set. It will be
ignored for non-DRCP connections.

Valid Values: the connection class name is string at max 1024 characters. The default is
null.

• FetchSize
• GetDecimalRetainTrailingZeros: (Managed ODP.NET only) Specifies whether to retain

trailing zeros from an Oracle NUMBER in a .NET Decimal.

See OracleConfiguration GetDecimalRetainTrailingZeros for more information.

• LDAP_ADMIN: Specifies the ldap.ora location. The LDAP_ADMIN setting works in
conjunction with the TNS_ADMIN setting to set ldap.ora search order.

See Oracle Client Configuration File Settings for ldap.ora search order.

• LegacyEntireLOBFetch
• MaxStatementCacheSize
• MetaDataXml

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-39

• NAMES.DIRECTORY_PATH: The default search order is TNSNAMES and EZCONNECT.
TNSNAMES, LDAP, and EZCONNECT are the only name resolution methods supported,
but their order of precedence can be modified.

• NAMES.LDAP_AUTHENTICATE_BIND
• NAMES.LDAP_AUTHENTICATE_BIND_METHOD
• NAMES.LDAP_CONN_TIMEOUT
• NODELAY
• ORA_DEBUG_JDWP: Allows Oracle PL/SQL Debugger and database to connect

automatically without application code changes. Value is set as host=<IP_address
or host_name>;port=<debugging port number>. Ex. host=localhost;port=1234

• ORACLE_SID
• PerformanceCounters
• RECEIVE_BUF_SIZE: Sets TCP SO_RECVBUF, the total buffer space associated with

the local side of a TCP socket

• SelfTuning
• SEND_BUF_SIZE: Sets TCP SO_SENDBUF, the total buffer space associated with the

local side of a TCP socket

• ServiceRelocationConnectionTimeout
In seconds. (Default = 90).

Whenever a database service becomes unavailable, such as due to a service
being relocated, an application can encounter numerous connectivity errors during
this time. To avoid unnecessary connection attempts to an unavailable service
which will result in an error, ODP.NET blocks any connection attempts until the
service is up or until this property's specified time limit expires from the time when
the service DOWN event was received, whichever comes first. Once the specified
time elapses, all the connection attempts to the specific service which is known to
be down will no longer be blocked. Those requests will be sent to the server.
ServiceRelocationConnectionTimeout is only operational in conjunction with
Oracle Fast Connection Failover (HA Events = true). Once Fast Connection
Failover is enabled for the .NET application, Service Relocation Connection
Timeout is automatically enabled. It will use its default value if no
ServiceRelocationConnectionTimeout value has been explicitly set. It works with
planned and unplanned outages.

When connecting to Oracle Data Guard in Oracle Database 12c Release 2 or
later, database administrators can set their own timeout value, drain_timeout, to
indicate the number of seconds allowed for resource draining to be completed.
This setting can be optionally used by the ODP.NET
ServiceRelocationConnectionTimeout value as the intent behind drain_timeout
and ServiceRelocationConnectionTimeout are the same.

If ServiceRelocationConnectionTimeout and drain_timeout are not set, then the
default ServiceRelocationConnectionTimeout value is used (90 seconds). If only
drain_timeout is set, then that value will be used for the service relocation
connection timeout. If only drain_timeout is set and is set to 0, then also default
ServiceRelocationConnectionTimeout value is used (90 seconds). If both are
set, then the value of ServiceRelocationConnectionTimeout will override the
value of drain_timeout.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-40

ServiceRelocationConnectionTimeout itself can be set based upon the value of
drain_timeout. For example, if ODP.NET administrators desire the service relocation
connection timeout to be drain_timeout plus 50 seconds, then they would set
ServiceRelocationConnectionTimeout in the following manner:

<setting name="ServiceRelocationConnectionTimeout" value="drain_timeout +
50"/>

Service Relocation Connection Timeout is not supported in pools that connect to more
than one pluggable database.

• SQLNET.AUTHENTICATION_SERVICES: Supported values are ALL, Kerberos5, NTS, TCPS, or
NONE.

Managed ODP.NET supports NTS, Kerberos5, and TCPS external authentication methods.
This setting should be set based on the desired database authentication method. If
internal database authentication is desired, then the setting should be set to NONE. Default
value is NONE. The value(s) must be enclosed in parentheses. Example settings made in
sqlnet.ora are:

SQLNET.AUTHENTICATION_SERVICES = (TCPS)
SQLNET.AUTHENTICATION_SERVICES = (NTS)
SQLNET.AUTHENTICATION_SERVICES = (Kerberos5, NTS)
SQLNET.AUTHENTICATION_SERVICES = (NONE)

Note:

The NTS external authentication methodology is only supported on a Windows-
based client and server.

SQLNET.AUTHENTICATION_SERVICES default values are different for managed
ODP.NET and unmanaged ODP.NET. Managed ODP.NET defaults to NONE and
unmanaged defaults to ALL when no value is set.

• SQLNET.CLOUD_USER
• SQLNET.CRYPTO_CHECKSUM_CLIENT: Specifies the desired data integrity behavior when this

client connects to a server. Supported values are accepted, rejected, requested, or
required. Default = accepted.

• SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT: Specifies the data integrity algorithms that this
client uses. Supported values are SHA512, SHA384, SHA256, and SHA1.

• SQLNET.ENCRYPTION_CLIENT = Negotiates whether to turn on encryption. Supported
values are accepted, rejected, requested, or required.

• SQLNET.ENCRYPTION_TYPES_CLIENT = Encryption algorithm(s) to use.

The following table lists the valid encryption algorithms for ODP.NET, Managed Driver.

Table 2-4 Encryption Algorithms for ODP.NET, Managed Driver

Algorithm Name Legal Value

AES 128-bit key AES128

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-41

Table 2-4 (Cont.) Encryption Algorithms for ODP.NET, Managed Driver

Algorithm Name Legal Value

AES 192-bit key AES192

AES 256-bit key AES256

2-key 3DES 3DES112

3-key 3DES 3DES168

For more information on data encryption settings, refer to the Oracle Database
Security Guide.

• SQLNET.EXPIRE_TIME: Specifies a time interval to send a new set of probes to
verify the connection remains active. This setting is equivalent to the
OracleConnection.KeepAliveTime property.
OracleConnection.KeepAliveInterval is fixed at 6 seconds for
SQLNET.EXPIRE_TIME. Default is 0 (off). By default the value is specified in minutes.
However the value can be specified in seconds (sec) and milliseconds (ms), such
as the following example:

<setting name=" SQLNET.EXPIRE_TIME" value="30 sec" />
• SQLNET.URI
• SQLNET.USE_HTTPS_PROXY
• SQLNET.WALLET_OVERRIDE
• StatementCacheSize
• SSL_SERVER_DN_MATCH: To enforce the distinguished name (DN) for the database

server matches its service name. (Default=no).

If you enforce the match verification, then SSL/TLS ensures that the certificate is
from the server. If you select to not enforce the match verification, then SSL/TLS
performs the check but allows the connection, regardless if there is a match. Not
enforcing the match allows the server to potentially fake its identify.

Supported values: yes | on | true to enforce a match.

Supported values: no | off | false to not enforce a match.

SSL_SERVER_DN_MATCH is often used together with SSL_SERVER_CERT_DN.
SSL_SERVER_CERT_DN specifies the distinguished name (DN) of the database
server. It can be set in the connect descriptor.

net_service_name=
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales1-svr)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales2-svr)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=sales.us.acme.com))
 (SECURITY=

(SSL_SERVER_CERT_DN="cn=sales,cn=OracleContext,dc=us,dc=acme,dc=com")))

The client uses this information to obtain the list of DNs it expects for each of the
servers, enforcing the database server DN to match its service name. Use this
parameter with SSL_SERVER_DN_MATCH to enable server DN matching.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-42

• SSL_VERSION: Sets the version of the SSL/TLS connection. By default, all supported
versions are enabled, in the order 3.0, 1.0, 1.1, and 1.2.

The client and server negotiate to the highest version among the common conversions
specified in their configurations. The versions from lowest to highest are: 3.0 (lowest),
1.0, 1.1, and 1.2 (highest).

To specify more than one version, use the or keyword between values. For example, 1.2
or 1.1 or 3.0.

• TNS_ADMIN: Location where either one or more of tnsnames.ora, ldap.ora, and
sqlnet.ora are located. Locations can consist of either absolute or relative directory
paths.

• TOKEN_AUTH: This attribute specifies the access token authentication type. Possible
values are OCITOKEN, OAUTH, or DISABLED. Only supported for managed ODP.NET and
ODP.NET Core.

• TOKEN_LOCATION: This attribute is the file-based token location. The value can be a
directory where a file named "token" is or it can be the file's full path specification. Only
supported for managed ODP.NET and ODP.NET Core.

• TraceFileLocation: Trace file destination directory, for example, D:\traces. The default
TraceFileLocation is <Windows user temporary folder>\ODP.NET\managed\trace.

• TraceFileMaxSize: Maximum file size of each trace file. Default is 100 MB
(100,000,000). The default value is 100. The unit of measure is megabytes (i.e. 100 MB).

• TraceLevel: 1 = public APIs; 2 = private APIs; 4 = network APIs/data; 8 = disables writing
SQL statements and network packet contents. These values can be ORed. To enable
everything, set TraceLevel to 7. Errors will always be traced.

• TraceOption
• TCP.CONNECT_TIMEOUT
• TOKEN_AUTH
• TOKEN_LOCATION
• UseClientInitiatedCQN
• WALLET_LOCATION: Microsoft Certificate Store (MCS) and file system wallets are

supported.

See Also:

Oracle Database Net Services Reference

LDAPsettings section
This section can appear only under a <version> section. Any ODP.NET, Managed Driver
specific LDAP settings should appear in this section. This section is supported by managed
ODP.NET only. The following is an example of a <LDAPsetting> subsection under the
<LDAPsettings> section:

<LDAPsettings>
 <LDAPsetting name="DIRECTORY_SERVER_TYPE" value="AD" />

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-43

 <LDAPsetting name="DEFAULT_ADMIN_CONTEXT" value="dc=Oracle,dc=com"/>
</LDAPsettings>

Lightweight Directory Access Protocol
ODP.NET, Managed Driver supports TNS alias resolution through a LDAP server/
service, specifically Microsoft Active Directory and Oracle Internet Directory (OID).
TNS alias resolution occurs when using the LDAPsettings section or ldap.ora file
settings. The LDAPsettings section settings take precedence over ldap.ora settings.

For Active Directory, only the DIRECTORY_SERVER_TYPE and DEFAULT_ADMIN_CONTEXT
parameters are required in ldap.ora. When the DIRECTORY_SERVERS parameter is
missing or has no value, the default LDAP server for the current domain will be used.

For OID, all ldap.ora parameters must be set with valid values to complete
configuration.

ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver support the same level
of security when using LDAP for name resolution.

Table 2-5 Microsoft Active Directory: Encryption Types and Authentication
Credentials For Connecting and Binding

No Encryption SSL Encryption

Anonymous authentication Anonymous authentication

Domain User authentication Domain User authentication

Table 2-6 Oracle Internet Directory: Encryption Types and Authentication
Credentials For Connecting and Binding

No Encryption SSL Encryption

Anonymous authentication Anonymous authentication

- Wallet based authentication

Note: Wallet based authentication for Oracle Internet
Directory is not supported for this release

See Also:

• Oracle Database Net Services Reference for more information on
Directory Usage Parameters.

• Oracle Database Net Services Administrator's Guide for more
information on Managing Network Address.

implicitRefCursor section
This section can appear only under a <version> section. Any information about REF
CURSOR parameters that need to be bound implicitly should appear in this section. The
following is an example of an <implicitRefCursor> section:

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-44

<implicitRefCursor>
 <storedProcedure schema="USERREFCUR" name="TestProc1">
 <refCursor name="Param3">
 <bindInfo mode="Output"/>
 <metadata columnOrdinal="0" columnName="DEPTNO" baseColumnName="DEPTNO"
baseSchemaName="USERREFCUR" baseTableName="DEPT" nativeDataType="number"
providerType="Int32" dataType="System.Int16" columnSize="2" allowDBNull="true" />
 <metadata columnOrdinal="1" columnName="DNAME" baseColumnName="DNAME"
baseSchemaName="USERREFCUR" baseTableName="DEPT" nativeDataType="varchar2"
providerDBType="String" columnSize="30" />
 </refCursor>
 <refCursor name="param2">
 <bindInfo mode="Output"/>
 <metadata columnOrdinal="0" columnName="EMPNO" baseColumnName="EMPNO"
baseSchemaName="USERREFCUR" baseTableName="EMP" nativeDataType="number"
providerType="Int32" dataType="System.Int16" columnSize="4" allowDBNull="false" />
 </refCursor>
 </storedProcedure>

 <!--Next stored procedure information-->
 <storedProcedure name="TestProc2">
 ...
 ...
 </storedProcedure>
</implicitRefCursor>

distributedTransaction section
This section can appear only under a <version> section. Any information about distributed
transactions should appear in this section. The following is an example of a
distributedTransaction section:

<distributedTransaction>
 <setting name="OMTSRECO_IP_ADDRESS" value="my-pc" />
 <setting name="OMTSRECO_PORT" value="2040" />
 <setting name="ORAMTS_SESS_TXNTIMETOLIVE" value="240" />
</distributedTransaction>

• OMTSRECO_IP_ADDRESS: Specifies the machine name (or IP address) that the OraMTS
Recovery service will be running on to resolve database in-doubt transactions. The
default is the local machine name.

• OMTSRECO_PORT: Specifies the port that the OraMTS Recovery service will be listening on
to resolve database in-doubt transactions. The default is 2030.

• ORAMTS_SESS_TXNTIMETOLIVE : Specifies the time in seconds that the transaction can
remain inactive after it has been detached or delisted from the database. Once this time
expires, the transaction is automatically terminated by the provider. The default is 120
seconds.

• UseOraMTSManaged: When set to true and using .NET Framework 4.5.2 or higher,
ODP.NET uses managed code for distributed transactions. If set to false, ODP.NET uses
Oracle Services for Microsoft Transaction Server to support distributed transactions.
Boolean (Default = false) for ODP.NET, Unmanaged Driver only.

connectionPools section

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-45

This section can appear only under a <version> section. This section allows setting a
string identifier for each set of monitored connection counters. Refer to Connection
Performance Counters documentation section for more details.

edmMappings section
This section can appear only under a <version> section. Any information related to
EDM mappings should appear in this section. Refer to Oracle Number Default Data
Type Mapping and Customization for more examples on edmMappings section.

onsConfig section
Oracle Notification Service (ONS) can be configured using either local or remote
configuration using the <onsConfig> section. The <onsConfig> section is available
only for managed ODP.NET. Remote configuration is the preferred configuration for
standalone client applications. For releases earlier than Oracle Database 12c, this
section is mandatory for ODP.NET to receive ONS notifications. With Oracle Database
12c and later, this section is optional and the information about the ONS daemons is
received from the server itself. However, ODP.NET will also listen for events from any
<host:port> pairs that is provided by the user in this section in addition to the
<host:port> pairs received from the server.

For local configuration, please ensure that ONS is configured and available on the
node where ODP.NET is running, so that ODP.NET can receive events directly from
the local ONS daemon. The following is a sample format for the local configuration:

<onsConfig configFile="C:\temp\test.config" mode="local">
</onsConfig>

Note:

The configFile specified in .NET config should contain the same localport
and remoteport values as specified in the ons.config used by the local
ONS daemon. This will enable the application to receive events from the
local ONS daemon.

Remote configuration is used in scenarios where the application directly receives ONS
events from the ONS daemons running on remote machines. One of the advantages
of this configuration is that no ONS daemon is needed on the client end and, therefore,
there is no need to manage this process.

The following is a sample format for remote configuration:

 <onsConfig mode="remote">
 <ons database="db1">
 <add name="nodeList" value="racnode1:4100, racnode2:4200" />
 </ons>
 <ons database="db2">
 <add name="nodeList" value=" racnode3:4100, racnode4:4200" />
 </ons>
 </onsConfig>

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-46

In case of remote configuration, the application has to specify the <host>:<port> values for
every potential database that it can connect to. The <host>:<port> value pairs represent the
ports on the the different Oracle RAC nodes where the ONS daemons are talking to their
remote clients.

See Also:

Client Side ONS Daemon Configurationfor information about client side ONS
daemon configuration

ONS TCPS and Wallets
ODP.NET enables ONS communications to occur over TCP/IP with SSL/TLS (TCPS), which
is more secure than just TCP/IP. As TCPS requires using a wallet for storing keys and
certificates, ODP.NET can use one wallet for both ONS and ODP.NET connections or have
separate wallets for each.

TCPS provides more secure ONS communication, gives administrators flexibility in how to
configure their wallets, and enables cloud database connections.

oracle.manageddataaccess.client configuration section sample

<oracle.manageddataaccess.client>
 <version number="*">
 <onsConfig mode="remote">
 <settings>
 <setting name="Protocol" value="TCPS" />
 <setting name="WALLET_LOCATION" value="D:\user\ONS_SSLWallet" />
 </settings>
 <ons database="acdb183">
 <add name="nodeList" value="slcai611:6205,slcai610:6205,slcai612:6205" />
 </ons>
 </onsConfig>
 <settings>
 <setting name="WALLET_LOCATION" value=" D:\user\DBWallet" />
 </settings>
 </version>
</oracle.manageddataaccess.client>

The protocol and wallet location properties are often used together.

If an ONS wallet location is set, ODP.NET will use the wallet for ONS to connect via TCP/IP
with SSL/TLS regardless of the protocol setting.

If the protocol is set to “TCPS”, ODP.NET first tries to use the wallet in the ONS configuration
wallet location to connect via TCP/IP with SSL/TLS. If no wallet is present, ODP.NET next
tries to use the wallet from the database wallet location. If no wallet is found, the connection
fails.

Administrators can choose between having the ONS connection use its own independent
wallet or share the database’s wallet for ease of use.

If the protocol is set to “TCP” and no ONS wallet location is set, ODP.NET ONS will connect
with TCP/IP.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-47

ODP.NET ONS TCPS works with any Oracle Database version that supports ONS
TCPS on the server side.

Client Side ONS Daemon Configuration
ONS configuration is controlled by the ONS configuration file, ORACLE_HOME/opmn/
conf/ons.config. This file tells the ONS daemon how it should behave. The SRVCTL
utility can be used to start and stop the ONS daemon. It is installed on each node by
default during server install.

Configuration information within ons.config is defined in simple name and value pairs.
An example of ONS.config is given below

This is an example ons.config file
#
The first three values are required
localport=4100
remoteport=4200
nodes=racnode1.example.com:4200,racnode2.example.com:4200

Some parameters in the ons.config file are required and some are optional. Table
Table 2-7 lists the required ONS configuration parameters and Table 2-8 lists the
optional ONS configuration parameters.

Table 2-7 Required ONS Configuration Parameters

Parameter Explanation

localport The port that ONS binds to on the local host interface to talk to
local clients.

For example, localport=4100
remoteport The port that ONS binds to on all interfaces for talking to other

ONS daemons.

For example, remoteport=4200
nodes A list of other ONS daemons to talk to. Node values are given as

a comma-delimited list of either host names or IP addresses plus
ports. The port value that is given is the remote port that each
ONS instance is listening on. In order to maintain an identical file
on all nodes, the host:port of the current ONS node can also
be listed in the nodes list. It will be ignored when reading the list.

For example,
nodes=myhost.example.com:4200,123.123.123.123:4200
The nodes listed in the nodes line correspond to the individual
nodes in the Oracle RAC instance. Listing the nodes ensures
that the middle-tier node can communicate with the Oracle RAC
nodes. At least one middle-tier node and one node in the Oracle
RAC instance must be configured to see one another. As long as
one node on each side is aware of the other, all nodes are
visible. You need not list every single cluster and middle-tier
node in the ONS configuration file of each Oracle RAC node. In
particular, if one ONS configuration file cluster node is aware of
the middle tier, then all nodes in the cluster are aware of it.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-48

Table 2-8 Optional ONS Configuration Parameters

Parameter Description

loglevel The level of messages that should be logged by ONS. This value is an
integer that ranges from 1, which indicates least messages logged, to
9, which indicates most messages logged. The default value is 3.

For example, loglevel=3
logfile A log file that ONS should use for logging messages. The default

value for log file is $ORACLE_HOME/opmn/logs/ons.log.

For example,
logfile=C:\app\user\product\12.1.0\opmn\logs\myons.log

walletfile The wallet file used by the Oracle Secure Sockets Layer (SSL) to
store SSL certificates. If a wallet file is specified to ONS, then it uses
SSL when communicating with other ONS instances and require SSL
certificate authentication from all ONS instances that try to connect to
it. This means that if you want to turn on SSL for one ONS instance,
then you must turn it on for all instances that are connected. This
value should point to the directory where your ewallet.p12 file is
located.

For example,
walletfile=C:\app\user\product\12.1.0\opmn\conf\ssl.wl
t\default

useocr The value, reserved for use on the server-side, to indicate ONS
whether it should store all Oracle RAC nodes and port numbers in
Oracle Cluster Registry (OCR) instead of the ONS configuration file or
not. A value of useocr=on is used to store all Oracle RAC nodes and
port numbers in Oracle Cluster Registry (OCR).

Do not use this option on the client-side.

The ons.config file allows blank lines and comments on lines that begin with the number
sign (#).

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for more
information about the SRVCTL utility.

Relative Windows Path and Windows Environment Variable Configuration
Settings

The following managed ODP.NET configuration settings support relative Windows path and
environment variables:

• TraceFileLocation
• WALLET_LOCATION
File locations for the above config parameters can now be set using relative Windows paths.
The "." notation informs ODP.NET to use the current working directory. Sub-directories can

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-49

be added by appending them. For example, .\mydir refers to the sub-directory mydir
in the current working directory. To navigate to a parent directory, use the ".." notation.

For web applications, the current working directory is the application directory. For
Windows applications, the .EXE location is the current working directory.

Windows paths can also be set using Windows environment variable names within "%"
characters.

For example, %tns_admin%, c:\%dir%\my_app_location, c:\%top_level_dir%\
%bottom_level_dir% etc.

Note:

• If the environment variable that is used by the configuration parameter is
not set to anything, then an exception will be thrown.

• A directory name cannot partially be using an environment variable. For
example, c:\my_app_%id%

• Multiple variables can used in given directory location. For example, c:\
%top_level_dir%\%bottom_level_dir%.

See Also:

Oracle Database Net Services Reference chapters covering sqlnet.ora
parameters, tnsnames.ora local naming parameters, and listener.ora
Oracle Net Listener parameters, for more information about these Oracle
client settings.

Oracle Data Provider for .NET Core Configuration
ODP.NET Core developers can assign application settings in .NET Configuration API,
sqlnet.ora file, and tnsnames.ora file.

.NET Configuration API

.NET Core does not support application configuration via .NET configuration files, that
is, web.config. Instead, it uses .NET Configuration API in lieu of a configuration file.
ODP.NET Core supports Configuration API via the static class, OracleConfiguration,
for application level provider settings. The OracleDataSourceCollection class
supports adding and deleting net services names, that is, TNS entries. The
OracleOnsServerCollection class supports adding to and deleting from a list of
nodes where the Oracle Notification Service (ONS) daemons are talking to their
remote clients.

All configurations settings through OracleConfiguration should be done before
opening any connection in the application. Once a connection is opened, any updates
to configuration properties will result in InvalidOperationException; with only
exception of trace settings that are still allowed to change during application runtime.

Chapter 2
Oracle Data Provider for .NET Core Configuration

2-50

Example 2-6 Code Sample

using System;
using Oracle.ManagedDataAccess.Client;

namespace ODP_Core_Config_API
{
 class odp_core_config
 {
 static void Main(string[] args)
 {
 // This sample demonstrates how to use ODP.NET Core Configuration API

 // Add connect descriptors and net service names entries.
 OracleConfiguration.OracleDataSources.Add("orclpdb",
"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<hostname or IP>)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=<service name>)(SERVER=dedicated)))");
 OracleConfiguration.OracleDataSources.Add("orcl",
"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<hostname or IP>)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=<service name>)(SERVER=dedicated)))");

 // Set default statement cache size to be used by all connections.
 OracleConfiguration.StatementCacheSize = 25;

 // Disable self tuning by default.
 OracleConfiguration.SelfTuning = false;

 // Bind all parameters by name.
 OracleConfiguration.BindByName = true;

 // Set default timeout to 60 seconds.
 OracleConfiguration.CommandTimeout = 60;

 // Set default fetch size as 1 MB.
 OracleConfiguration.FetchSize = 1024 * 1024;

 // Set tracing options
 OracleConfiguration.TraceOption = 1;
 OracleConfiguration.TraceFileLocation = @"D:\traces";
 // Uncomment below to generate trace files
 //OracleConfiguration.TraceLevel = 7;

 // Set network properties
 OracleConfiguration.SendBufferSize = 8192;
 OracleConfiguration.ReceiveBuffereSize = 8192;
 OracleConfiguration.DisableOOB = true;

 OracleConnection orclCon = null;

 try
 {
 // Open a connection
 orclCon = new OracleConnection("user id=hr; password=<password>; data
source=orclpdb");
 orclCon.Open();

 // Execute simple select statement that returns first 10 names from
EMPLOYEES table
 OracleCommand orclCmd = orclCon.CreateCommand();
 orclCmd.CommandText = "select first_name from employees where rownum

Chapter 2
Oracle Data Provider for .NET Core Configuration

2-51

<= 10 ";
 OracleDataReader rdr = orclCmd.ExecuteReader();

 while (rdr.Read())
 Console.WriteLine("Employee Name: " + rdr.GetString(0));

 Console.ReadLine();

 rdr.Dispose();
 orclCmd.Dispose();
 }
 finally
 {
 // Close the connection
 if (null != orclCon)
 orclCon.Close();
 }
 }
 }
}

Oracle Configuration Files

ODP.NET Core supports the sqlnet.ora and tnsnames.ora parameters below. These
settings can be used in conjunction with .NET Configuration API.

• BindByName
• DbNotificationPort
• Disable_Oob – sqlnet.ora
• DRCPConnectionClass
• FetchSize
• MaxStatementCacheSize
• NAMES.DIRECTORY_PATH – sqlnet.ora
• NODELAY – sqlnet.ora
• RETRY_COUNT
• RETRY_DELAY
• RECEIVE_BUF_SIZE – sqlnet.ora or tnsnames.ora
• SelfTuning

• SEND_BUF_SIZE – sqlnet.ora or tnsnames.ora
• ServiceRelocationConnectionTimeout
• SQLNET.AUTHENTICATION_SERVICES – sqlnet.ora
• SQLNET.CRYPTO_CHECKSUM_CLIENT – sqlnet.ora
• SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT – sqlnet.ora
• StatementCacheSize
• SSL_SERVER_DN_MATCH – sqlnet.ora
• SSL_VERSION – sqlnet.ora

Chapter 2
Oracle Data Provider for .NET Core Configuration

2-52

• TNS_ADMIN
• TOKEN_AUTH
• TOKEN_LOCATION
• TraceFileLocation
• TraceLevel
• TraceOption
• TCP.CONNECT_TIMEOUT – sqlnet.ora
• SQLNET.ENCRYPTION_CLIENT – sqlnet.ora
• SQLNET.ENCRYPTION_TYPES_CLIENT – sqlnet.ora
ODP.NET Core will look for sqlnet.ora and tnsnames.ora files in the following precedence
order:

1. OracleConfiguration.OracleDataSources
2. Directory set in OracleConnection.TnsAdmin property

3. Directory set for the Tns_Admin connection string attribute

4. Directory set in OracleConfiguration.TnsAdmin property

5. Current working directory

6. TNS_ADMIN directory setting of the OS environment variable or container environment
variable

ODP.NET Core will look for ldap.ora files in the following precedence order:

1. Directory set in OracleConnection.TnsAdmin
2. Directory set for the Tns_Admin connection string attribute

3. Directory set in OracleConfiguration.TnsAdmin property

4. Directory set in OracleConfiguration.LdapAdmin property

5. Current working directory

6. TNS_ADMIN directory setting in the environment

7. LDAP_ADMIN directory setting in the environment

See Also:

• OracleConfiguration Class

• OracleDataSourceCollection Class

Configuration Differences among ODP.NET Drivers
Table 2-9 lists other configuration differences among ODP.NET Core, ODP.NET, Managed
Driver and ODP.NET, Unmanaged Driver..

Chapter 2
Configuration Differences among ODP.NET Drivers

2-53

Table 2-9 Configuration Differences among ODP.NET Core, ODP.NET, Unmanaged Driver and
ODP.NET, Managed Driver

Feature Category Difference compared to ODP.NET, Unmanaged Driver

Configuration The older, traditional ODP.NET, Unmanaged Driver configuration file format is
different. The new format allows both providers to share the same format. See
"Oracle Data Provider for .NET, Managed Driver Configuration."

Configuration Windows Registry based configuration is not supported

Configuration Parameter Edition is not supported.

Configuration Parameter CheckConStatus is not supported.

Configuration Parameter DllPath is not supported.

Configuration Parameter StatementCacheWithUdts is not supported.

Configuration Parameter ThreadPoolMaxSize is not supported.

Configuration Parameter TraceFileName is not supported.

Configuration Parameter UdtCacheSize is not supported.

Configuration Parameter UDT Mapping is not supported.

Configuration Parameter UseOraMTSManaged is not supported.

Connection String Context Connection is not supported.

Connection String LegacyTransactionBindingBehavior setting will be ignored. It will always
be set to the default value of 1.

Connection String Statement Cache Purge is not supported.

Connection String Tns_Admin is supported in managed ODP.NET and ODP.NET Core, but not in
unmanaged ODP.NET.

Connection String Wallet_Location is supported in managed ODP.NET and ODP.NET Core,
but not in unmanaged ODP.NET.

Connectivity Connection to Oracle Times Ten Database is not supported.

Performance Monitor NumberOfStatisConnections performance counter is not supported.

Performance Monitor Performance monitor category name is "ODP.NET, Managed Driver"

Provider Types Provider Types accept (via constructors) and generate (via ToString()
methods) only culture-invariant strings

Tracing Dynamic tracing is enabled by changing the TraceLevel setting in the app/
web/machine.config. NOTE: For ASP.NET applications, doing so will recycle
the application domain.

Configuring for Entity Framework Code First
Developers must configure applications to use the Oracle Entity Framework
functionality. This consists of creating two entries in the app.config or web.config file
and adding an assembly reference:

• Add entries in the .NET config file

– Connection string

A standard ADO.NET connection string is used rather than the Entity
Framework connection string used by Database First or Model First paths. The

Chapter 2
Configuring for Entity Framework Code First

2-54

connection string name should match the application context name. The connection
string entry is an element of the connectionStrings section in the configuration file.

– Provider registration

Entity Framework uses the provider registration to determine the assembly to use for
Oracle Entity Framework functionality. The provider registration is an element of the
providers section within the entityFramework section in the application
configuration file.

• Add Assembly reference

Add Oracle Entity Framework assembly to the project references.

Note:

When using the official ODP.NET, NuGet installation, these preceding sections are
created automatically, if they do not already exist. After the NuGet install, the
ODP.NET connection string will need to be customized to the application's specific
settings.

When using the Oracle Universal Installer or xcopy install, the preceding sections
must all be configured manually.

Examples of connection strings are as follows:

• ODP.NET, Unmanaged Driver

<add name="TestContext" providerName="Oracle.DataAccess.Client"
connectionString="User Id=test;Password=testpassword;Data Source=eftest" />

• ODP.NET, Managed Driver

<add name="TestContext" providerName="Oracle.ManagedDataAccess.Client"
connectionString="User Id=test;Password=testpassword;Data Source=eftest" />

Examples of Oracle provider registration are as follows:

• ODP.NET, Unmanaged Driver

<provider invariantName="Oracle.DataAccess.Client"
type="Oracle.DataAccess.EntityFramework.EFOracleProviderServices,
Oracle.DataAccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

• ODP.NET, Managed Driver

<provider invariantName="Oracle.ManagedDataAccess.Client"
type="Oracle.ManagedDataAccess.EntityFramework.EFOracleProviderServices,
Oracle.ManagedDataAccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

Entity Framework 6 Code-Based Registration
Entity Framework 6 allows an application to register with an Entity Framework provider
without using any configuration file. With ODP.NET, Managed Driver, the code will look as
follows:

// C#
using Oracle.ManagedDataAccess.EntityFramework;

Chapter 2
Configuring for Entity Framework Code First

2-55

...
public class ModelConfiguration : DbConfiguration
{
 public ModelConfiguration()
 {
 SetProviderServices("Oracle.ManagedDataAccess.Client",
EFOracleProviderServices.Instance);
 }
}

For ODP.NET, Unmanaged Driver, replace occurrences of ManagedDataAccess with
DataAccess in the preceding code.

If you are using code-based registration, then the configuration file should not include
the registration. The configuration file based registration overrides the code-based
registration.

Migrating from ODP.NET, Unmanaged Driver to ODP.NET,
Managed Driver

To ease migration, the APIs of ODP.NET, Managed Driver are a complete subset of the
APIs of ODP.NET, Unmanaged Driver. As long as the existing unmanaged ODP.NET
applications use currently available managed ODP.NET APIs, migration is
straightforward and simple.

In future versions, the managed driver will support more APIs of ODP.NET,
Unmanaged Driver. Both drivers will continue to be enhanced to support the latest
Oracle Database and .NET Framework features.

To migrate from unmanaged to managed ODP.NET, perform the following steps:

1. Add a Reference to Oracle.ManagedDataAccess.dll in the .NET project.

2. Change the existing ODP.NET, Unmanaged Driver namespace references to
ODP.NET, Managed Driver references.

// C#
using Oracle.ManagedDataAccess.Client;
using Oracle.ManagedDataAccess.Types;

// VB
Imports Oracle.ManagedDataAccess.Client
Imports Oracle.ManagedDataAccess.Types

3. Some provider configuration settings may need to be migrated because ODP.NET,
Managed Driver supports very few Windows Registry settings and a different .NET
configuration setting format.

See Also:

Configuring Oracle Data Provider for .NET for more information.

Chapter 2
Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver

2-56

Configuring a Port to Listen for Database Notifications
Oracle Data Provider for .NET opens a port to listen for database notifications when the
following features are used:

• HA Events

• Load Balancing

• Continuous Query Notification

• AQ Notifications

All these features share the same port, which can be configured centrally by setting the db
notifications port in an application or web configuration file.

If the configuration file does not exist or the db notification port is not specified, ODP.NET
uses a valid, random port number. The configuration file may also request for a random port
by specifying a db notification port value of -1. To specify a particular port in ODP.NET,
Unmanaged Driver, for example, 1200, an application or web configuration file can be used as
follows:

<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DbNotificationPort" value="1200"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

To specify a particular port in ODP.NET, Managed Driver, an application or web configuration
file can be used as follows:

<configuration>
 <oracle.manageddataaccess.client>
 <version number="*">
 <settings>
 <setting name="DbNotificationPort" value="1200"/>
 </settings>
 </version>
 </oracle.manageddataaccess.client>
</configuration>

The port number should be unique for each process running on a computer. Thus, the port
number should be set uniquely for each application either programmatically or through an
application config file. Note that if the specified port number is already in use or invalid,
ODP.NET does not provide any errors.

When the process using ODP.NET starts, the application reads the db notification port
number and listens on that port. Once the port is opened, the port number cannot be
changed during the lifetime of the process.

Chapter 2
Configuring a Port to Listen for Database Notifications

2-57

See Also:

• "Fast Application Notification"

• "Runtime Connection Load Balancing"

• "Continuous Query Notification Support "

• "Oracle Database Advanced Queuing Support"

General .NET Programming Recommendations and Tips for
ODP.NET

• Thread.Abort() should not be used, as unmanaged resources may remain
unreleased, which can potentially cause memory leaks and hangs.

• To optimize resource usage, ODP.NET objects, such as OracleConnection and
OracleCommand, should be explicitly closed or disposed, or both, when they are no
longer needed. This should be done rather than relying on the .NET Framework
garbage collector to reclaim resources. Many users have found that under stress
conditions, explicit Close or Dispose calls result in much lower resource usage.

• It is recommended not to proceed with application execution if the application
encounters exceptions that are associated with possible memory corruption, such
as System.AccessViolationException and
System.Runtime.InteropServices.SEHException.

• If the HKEY_LOCAL_MACHINE\Software\Oracle\NLS_LANG registry entry is set to NA,
ODP.NET encounters ORA-12705 errors. To eliminate this problem, remove the
HKEY_LOCAL_MACHINE\Software\Oracle\NLS_LANG registry entry.

• .NET requires certain special characters, such as backslash \ and double
quotation mark ", to be escaped when used within a string. In a connection string
or a class property, .NET requires using the escape character, backslash, before
the special character. To represent a backslash in a string, use a double backslash
\\. To represent a double quotation mark in a string, use a backslash followed by
a double quotation mark \". Alternatively, use the at sign @ to mark the entire
string as a verbatim string literal, in which case .NET ignores special characters.

Chapter 2
General .NET Programming Recommendations and Tips for ODP.NET

2-58

3
Features of Oracle Data Provider for .NET

This section describes Oracle Data Provider for .NET provider-specific features and how to
use them to develop .NET applications.

This section contains the following topics:

• Base Classes and Provider Factory Classes

• Code Access Security

• Connecting to Oracle Database

• Real Application Clusters and Global Data Services

• Using Transaction Guard to Prevent Logical Corruption

• Application Continuity

• Database Sharding

• OracleCommand Object

• ODP.NET Types Overview

• GUIDs

• Obtaining Data from an OracleDataReader Object

• PL/SQL REF CURSOR and OracleRefCursor

• Implicit REF CURSOR Binding

• LOB Support

• Native JSON Support

• ODP.NET XML Support

• Oracle User-Defined Types (UDTs) and .NET Custom Types

• Bulk Copy

• Oracle Database Advanced Queuing Support

• Continuous Query Notification Support

• OracleDataAdapter Safe Type Mapping

• OracleDataAdapter Requery Property

• Guaranteeing Uniqueness in Updating DataSet to Database

• Globalization Support

• Debug Tracing

• Database Application Migration: SQL Translation Framework

3-1

Base Classes and Provider Factory Classes
With ADO.NET, data classes derive from the base classes defined in the
System.Data.Common namespace. Developers can create provider-specific instances
of these base classes using provider factory classes.

Provider factory classes allow generic data access code to access multiple data
sources with a minimum of data source-specific code. This reduces much of the
conditional logic currently used by applications accessing multiple data sources.

Using Oracle Data Provider for .NET, the OracleClientFactory class can be returned
and instantiated, enabling an application to create instances of the following ODP.NET
classes that inherit from the base classes:

Table 3-1 ODP.NET Classes that Inherit from ADO.NET 2.0 Base Classes

ODP.NET Classes Inherited from ADO.NET 2.0 Base Class

OracleClientFactory DbProviderFactory
OracleCommand DbCommand
OracleCommandBuilder DbCommandBuilder
OracleConnection DbConnection
OracleConnectionStringBuilder DbConnectionStringBuilder
OracleDataAdapter DbDataAdapter
OracleDataReader DbDataReader
OracleDataSourceEnumerator DbDataSourceEnumerator
OracleException DbException
OracleParameter DbParameter
OracleParameterCollection DbParameterCollection
OracleTransaction DbTransaction

In general, applications still require Oracle-specific connection strings, SQL or stored
procedure calls, and declare that a factory from ODP.NET is used.

Note:

ODP.NET Core does not support factory classes.

See Also:

OracleClientFactory Class

Chapter 3
Base Classes and Provider Factory Classes

3-2

Code Access Security
ODP.NET implements code access security through the OraclePermission class. This
ensures that application code trying to access the database has the requisite permission to
do so.

When a .NET assembly tries to access Oracle Database through ODP.NET, ODP.NET
demands OraclePermission. The .NET runtime security system checks to see whether the
calling assembly, and all other assemblies in the call stack, have OraclePermission granted
to them. If all assemblies in the call stack have OraclePermission granted to them, then the
calling assembly can access the database. If any one of the assemblies in the call stack does
not have OraclePermission granted to it, then a security exception is thrown.

Note:

ODP.NET Core does not support Code Access Security.

Configuring OraclePermission
The DemandOraclePermission configuration attribute is used to enable or disable
OraclePermission demand for an ODP.NET API. The DemandOraclePermission value can be
specified in the Windows registry for unmanaged ODP.NET only, or an individual application
configuration file for both unmanaged and managed ODP.NET.

The following Windows registry key is used to configure the DemandOraclePermission
configuration attribute:

HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly_Version\DemandOraclePermission

Here Assembly_Version is the full assembly version number of Oracle.DataAccess.dll. The
DemandOraclePermission key is of type REG_SZ. It can be set to either 1 (enabled) or 0
(disabled).

You can also enable OraclePermission demand for an individual application using its
application configuration file. The following example enables the DemandOraclePermission
property in an application configuration file for ODP.NET, Unmanaged Driver:

<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DemandOraclePermission" value="1"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

Similarly, you can use DemandOraclePermission to configure ODP.NET, Managed Driver
under the settings section for managed provider configuration. See also "settings section" for
more information.

An application or assembly can successfully access the database if OraclePermission has
been added to the permission set associated with the assembly's code group. A system

Chapter 3
Code Access Security

3-3

administrator can modify the appropriate permission set manually or by using the
Microsoft .NET configuration tool (Mscorcfg.msc).

Administrators may also use an appropriate .NET Framework Tool, such as the Code
Access Security Policy Tool (Caspol.exe), to modify security policy at the machine,
user, and enterprise levels for including OraclePermission.

OracleConnection makes security demands using the OraclePermission object when
OraclePermission demand has been enabled using DemandOraclePermission
configuration attribute. Application developers should make sure that their code has
sufficient permission before using OracleConnection.

See Also:

• "OraclePermission Class"

• "OraclePermissionAttribute Class"

Configuring OraclePermission for Web Applications with High or
Medium Trust Levels

For Web applications operating under high or medium trust, OraclePermission needs
to be configured in the appropriate web_TrustLevel.config file, so that the application
does not encounter any security errors.

OraclePermission can be configured using the OracProvCfg tool. OraProvCfg.exe
adds appropriate entries to the web_hightrust.config and web_mediumtrust.config
files associated with the specified .NET framework version.The following example
illustrates using the OraProvCfg tool for configuring OraclePermission in a .NET 2.0
Web application:

OraProvCfg.exe /action:config /product:odp /component:oraclepermission
 /frameworkversion:v2.0.50727
 /providerpath:full_path_of_Oracle.DataAccess.dll

On running the preceding command, the following entry is added to the
web_hightrust.config and web_mediumtrust.config files under the ASP.NET
permission set:

<IPermission class="Oracle.DataAccess.Client.OraclePermission, Oracle.DataAccess,
Version=2.112.2.0, Culture=neutral, PublicKeyToken=89b483f429c47342" version="1"
Unrestricted="true" />

OraProvCfg can also be used to remove these entries from the .config files when
required. The following example illustrates this:

OraProvCfg.exe /action:unconfig /product:odp /component:oraclepermission
 /frameworkversion:v2.0.50727
 /providerpath:full_path_of_Oracle.DataAccess.dll

Chapter 3
Code Access Security

3-4

Configuring OraclePermission for Windows Applications Running in a
Partial Trust Environment

For Windows applications operating in a partial trust environment, the OraclePermission
entry should be specified under the appropriate permission set in the security.config file.
The security.config file is available in the %windir%\Microsoft.NET\Framework\{version}
\CONFIG folder.

The following example specifies the OraclePermission entry for a .NET 2.0 Windows
application:

<IPermission class="Oracle.DataAccess.Client.OraclePermission, Oracle.DataAccess,
 Version=2.112.2.0, Culture=neutral, PublicKeyToken=89b483f429c47342" version="1"
 Unrestricted="true" />

Connecting to Oracle Database
Oracle Data Provider for .NET can connect to Oracle Database in a number of ways, such as
using a user name and password, Windows Native Authentication, Kerberos, and Transport
Layer Security/Secure Sockets Layer. This section describes OracleConnection provider-
specific features, including:

• Connecting to Oracle Autonomous Database

• Using Azure Active Directory

• Connection String Attributes

• Connection String Builder

• Specifying the Data Source Attribute

• Using WebSocket

• Using Transport Layer Security and Secure Sockets Layer

• Using Secure External Password Store

• Using Kerberos

• Using Windows Native Authentication (NTS)

• Network Data Encryption and Integrity

• Schema Discovery

• Connection Pooling

• Connection Pool Management

• Connection Performance Counters

• Database Resident Connection Pooling

• Oracle Multitenant and Pluggable Databases

• Edition-Based Redefinition

• Privileged Connections

• Connection Pooling with OracleCredential

• Password Expiration

Chapter 3
Connecting to Oracle Database

3-5

• Proxy Authentication

• Dynamic Distributed Transaction Enlistment

• Client Identifier and End-to-End Tracing

• Transparent Application Failover (TAF) Callback Support

Connecting to Oracle Autonomous Database

Oracle Autonomous Database includes several deployment options:

• Oracle Autonomous Database on Shared Exadata Infrastructure (ADB-S)

• Oracle Autonomous Database on Dedicated Exadata Infrastructure (ADB-D)

• Oracle Autonomous Database on Exadata Cloud@Customer (ADBC@C)

TLS/SSL must be used to connect to ADB-S. For ADB-D and ADBC@C, use of TLS is
optional. Currently, only ADB-S can be used with Oracle Identity and Access
Management.

This documentation section focuses on how to connect to ADB-S.

Unmanaged ODP.NET 19.14 and 21.5 and higher supports TLS connections without a
wallet.

ODP.NET core and managed drivers 19.13 and 21.4 and higher support TLS
connections without a wallet.

ODP.NET Core 19.13.1 or 21.4.1 and higher support token based authentication with
Oracle Identity and Access Management (IAM).

Managed ODP.NET 21.6.1 now supports token based authentication with IAM.

Oracle recommends using the latest 19c or 21c-based ODP.NET driver version
available on NuGet Gallery or Oracle website when connecting to Oracle ADB-S.

Connecting with a Wallet

The following quick start link has instructions how to download, install, and configure
ODP.NET and Oracle Developer Tools for Visual Studio when using a wallet:

Quick Start: Developing .NET Applications for Oracle Autonomous Database

Connecting without a Wallet

When you connect to Oracle ADB-S with ODP.NET, you do not need to deploy the
Oracle wallet or the Oracle network configuration files sqlnet.ora or tnsnames.ora with
your application. Instead, you supply the data source attribute, a TLS connection
string, with the configuration information in the ODP.NET connection.

To use ODP.NET TLS connections, do the following:

1. Obtain managed ODP.NET or ODP.NET Core versions 19.13 or 21.4 or above. For
unmanaged ODP.NET, versions 19.14 and 21.5 can be obtained. Lower level
versions do not support TLS connections without wallets.

2. Enable TLS connections on your Autonomous Database instance. See Update
your Autonomous Database Instance to Allow both TLS and mTLS Authentication
for details.

Chapter 3
Connecting to Oracle Database

3-6

https://www.oracle.com/database/technologies/appdev/dotnet/adbdotnetquickstarts.html

3. After you enable TLS connections, supply a TLS connection string in the ODP.NET data
source to connect to your Autonomous Database instance. See View TNS Names and
Connection Strings for an Autonomous Database Instance for details on viewing or
copying TLS connection strings.

Note:

The TLS connection string uses quotation marks around the distinguished name. If
you store the TLS connection string in a .NET string, add a backslash escape
sequence before each quotation mark (for example, \"). This allows .NET to
recognize the quotation mark as part of the TLS connection string.

Connecting with Oracle Identity and Access Management

Oracle identity and access management (IAM) solutions provide secure access to enterprise
applications for both cloud and on-premises deployments. Oracle IAM cloud service supports
a unified identity across Oracle cloud services, including Oracle ADB-S. This capability allows
identity to be propagated to all services Oracle IAM supports. A unified identity makes user
management and account management easier for administrators and end users.

IAM users can connect to the Oracle Autonomous Database instance by using either an IAM
database password verifier, an IAM token, or a database alternate password for token
authentication.

Using the IAM database password verifier is similar to the Oracle Database password
authentication process. However, instead of the password verifier (encrypted hash of the
password) being stored in the Oracle Autonomous Database, the verifier is instead stored as
part of the Oracle Cloud Infrastructure (OCI) IAM user attributes. This option is supported by
all ODP.NET clients.

The second connection method, the use of an IAM token for the database, is more modern.
The use of token-based access is a better fit for Cloud resources such as Oracle
Autonomous Database. The token is based on the strength that the IAM endpoint can
enforce. This can be multi-factor authentication, which is stronger than the use of passwords
alone. Starting with versions 19.13.1 and 21.4.1, ODP.NET Core supports this new
connection method. This functionality was added to managed ODP.NET in version 21.6.1.
This will utilize native OCI Authentication primitive, specifically OCI supported tokens for
authenticating OCI users when they logon to a database. By integrating with OCI IAM for
authentication, Oracle databases in OCI will provide seamless identity integration with OCI
services.

The third connection method is the database password for IAM token authentication. This
method is different from using the IAM database password verifier since it is using a database
alternate password for token authentication. This connection method is also called token-
based authentication using password. ODP.NET Core and Managed ODP.NET support this
feature starting with version 21.6.1.

See also Use Identity and Access Management (IAM) Authentication with Autonomous
Database in Using Oracle Autonomous Database on Shared Exadata Infrastructure.

Configuring a Client Connection Using an IAM Database Password Verifier

After you have configured the authorization needed for the IAM user, this user can log in
without additional configuration.

Chapter 3
Connecting to Oracle Database

3-7

The application provides the IAM user name and IAM database password, not the
Oracle Cloud Infrastructure (OCI) console password, using any ODP.NET driver type.
The only constraint is that the ODP.NET driver must have support for Oracle Database
12c passwords verifiers. Earlier password verifiers are not supported with IAM. No
special client or tool configuration is needed for the IAM user to connect to the Oracle
Autonomous Database instance.

Configuring a Client Connection Using Token

ODP.NET supports the IAM token, which is a Signature token represented in standard
JSON Web Token (JWT). Signature Token – also called Proof of Possession (PoP)
token – is associated with a private key known to the client. The client sends a
signature and token to the protected resource. The protected resource verifies the
signature along with the token itself.

For passing IAM token to Oracle Autonomous Database, the following options are
supported:

• Use of token file: For existing applications, use Oracle Cloud Infrastructure (OCI)
command line interface (CLI) to request and store the database token in the file
system, and configure ODP.NET to use the token file.

• Use of API: Modify application to request database token from IAM and pass the
database token to the database client through ODP.NET API.

ODP.NET presents the database token when connecting to a database. The database
requests the public key from IAM and the database validates the database token. If the
token is valid, the database requests the IAM groups that the user is a member. The
database reviews the local schema mappings to find which global schema the IAM
user will have access to, exclusive or shared. If no schema mapping exists, the user
will not be allowed to access the database.

Configuring Client Connection to use Token File

The OCI CLI is available to request database tokens from IAM. When the OCI CLI tool
is used to request tokens, it copies the token and private key to the default directory on
the local machine or a custom directory can be specified. On Windows operating
systems, the default directory is based on the USERPROFILE environment variable
(i.e. $USERPROFILE/.oci/db-token). On Linux and macOS operating systems, the
default directory is based on the HOME environment variable (i.e. $HOME/.oci/db-
token).

To use token file for authentication:

1. Set ODP.NET User Id to “/” in the connection string and leave the password empty.

2. Set TOKEN_AUTH parameter to OCI_TOKEN. This parameter can be configured at
various levels like TNS descriptor, EZConnect string, sqlnet.ora file or application
configuration file. This can also be configured programmatically either at
connection level through the OracleConnection.TokenAuthentication property or
at process level through the OracleConfiguration.TokenAuthentication
property.

3. If using a non-default token location, set the token file directory. More details on
setting a specific token file location is discussed in the “Use of ODP.NET API to
pass the Token” section.

When database token usage is enabled, all other external authentication methods,
such as Kerberos, Windows authentication, and TLS cannot be used. However, TLS to

Chapter 3
Connecting to Oracle Database

3-8

encrypt the client-server connection can be used – and must be used when using IAM
tokens.

See Also:

• Authenticating and Authorizing IAM Users for Oracle Autonomous Databases
for all the steps needed to get the token file.

• OCI Command Line Interface

Use of ODP.NET API to pass the Token

Applications can use OCI SDK to get database token for IAM user and pass the database
token along with private key to ODP.NET through the API.

The database token has attributes within the token, some of which are worth noting, which
will be covered in more detail later:

• exp attribute within the token represents the expiry time of the token.

• sub attribute within the token represents the IAM user of the token.

The OracleConnection.AccessToken property can be set to the OracleAccessToken object.
The OracleAccessToken object can be constructed by providing both the signature token and
private key, which are required to connect via IAM.

If OracleConnection.AccessToken property is not supplied by the application and the
TOKEN_AUTH parameter is set to OCI_TOKEN, then ODP.NET will look for the signature token
and private key files in the default directory. Applications can override this default directory by
setting the TOKEN_LOCATION parameter. This parameter can also be configured at various
levels like TNS descriptor, EZConnect string, sqlnet.ora file, or application configuration file.
This parameter can also be configured programmatically either at the ODP.NET connection
level through the OracleConnection.TokenLocation property or at process level through the
OracleConfiguration.TokenLocation property.

The following table shows how ODP.NET will use IAM when a signature token is supplied and
when TOKEN_AUTH / TokenAuthentication property is set.

Table 3-2 ODP.NET Authentication using IAM and Signature Token

Application Supplied
Oracle Access Token

TOKEN_AUTH /
TokenAuthentation
Setting

PASSWORD_AUTH /
PasswordAuthentati
on Setting

ODP.NET
Authentication

Yes OCI_TOKEN /
OracleTokenAuth.Oci
Token

NOT SET /
OraclePasswordAuth.
PasswordVerifier
(Default)

IAM via application
SUPPLIED TOKEN

Yes NOT SET /
OracleTokenAuth.Dis
abled (default)

NOT SET /
OraclePasswordAuth.
PasswordVerifier
(default)

IAM via application
SUPPLIED TOKEN

Chapter 3
Connecting to Oracle Database

3-9

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/cliconcepts.htm

Table 3-2 (Cont.) ODP.NET Authentication using IAM and Signature Token

Application Supplied
Oracle Access Token

TOKEN_AUTH /
TokenAuthentation
Setting

PASSWORD_AUTH /
PasswordAuthentati
on Setting

ODP.NET
Authentication

No (default) OCI_TOKEN /
OracleTokenAuth.Oci
Token

NOT SET /
OraclePasswordAuth.
PasswordVerifier
(Default)

IAM via file SUPPLIED
TOKEN

No (default) NOT SET /
OracleTokenAuth.Dis
abled (default)

NOT SET /
OraclePasswordAuth.
PasswordVerifier
(Default)

External Authentication,
such as Kerberos,
Windows, and TLS/SSL

Yes OCI_TOKEN /
OracleTokenAuth.Oci
Token

OCI_TOKEN /
OraclePasswordAuth.
OciToken

IAM via application
SUPPLIED TOKEN

Yes NOT SET /
OracleTokenAuth.Dis
abled (default)

OCI_TOKEN /
OraclePasswordAuth.
OciToken

IAM via application
SUPPLIED TOKEN

No (default) OCI_TOKEN /
OracleTokenAuth.Oci
Token

OCI_TOKEN /
OraclePasswordAuth.
OciToken

If userid=/, IAM via file
supplied token. Else if
TokenAuthentication
set programmatically,
then error. In all other
cases, token from REST
service.

No (default) NOT SET /
OracleTokenAuth.Dis
abled (default)

OCI_TOKEN /
OraclePasswordAuth.
OciToken

Token From REST
Service if userid/
password set or
userid= / with SEPS
enabled. In all other
cases, External
Authentication.

ODP.NET applications using the API to provide signature token and private key are
recommended to register with the RefreshAccessToken event exposed on the
OracleAccessToken object to receive a callback when token is about to expire.
The .NET event provides a convenient way for applications to “refresh” the signature
token and the private key before they expire.

ODP.NET triggers the token refresh callback 60 seconds before it expires. It is the
application’s responsibility to ensure that ODP.NET always has a valid token for
authentication when creating new connections to the database. Please note that the
callback will be called only once for an authenticated token.

After the callback provides the refreshed token and private key, all new connections
start using the refreshed token for authentication. However, the token expiry has no
impact on existing connections checked out from or within the connection pool. If for
some reason, applications fail to provide a valid refreshed token and private key
through the callback, it can use OracleConnection object’s OpenWithNewToken()
method to open a connection by passing a new signature token and private key.

Chapter 3
Connecting to Oracle Database

3-10

It’s important to note that already established idle connections will be dispensed even when
the token has expired. The newly supplied signature token will be used only to create new
connections. If the supplied signature token is invalid or expired, applications will receive an
error during the Open() method invocation on the OracleConnection object.

IAM Token Functionality Requirements

With ODP.NET Core NuGet packages, applications must target .NET 5.0 or higher to use IAM
tokens.

Managed ODP.NET does not have any unique .NET assembly version dependencies to use
IAM tokens.

Sample Code

Here is ODP.NET sample code showing how to use OracleAccessToken to establish a
connection and how to propagate the refreshed token through the
OracleRefreshAccessTokenEventArgs class. This sample code works with managed
ODP.NET and ODP.NET Core.

// C#
using System;
using System.IO;
using Oracle.ManagedDataAccess.Client;

class RefreshDbTokenSample
{
 // Update this path based from where token and private key would be read.
 private static string tokenPath = @"C:\token_dir";

 static void Main(string[] args)
 {
 // Create token and private key file path.
 string tokenFile = Path.Combine(tokenPath, "token");
 string privateKeyFile = Path.Combine(tokenPath, "oci_db_key.pem");

 // Read token and private key contents.
 char[] dbToken = File.OpenText(tokenFile).ReadToEnd().ToCharArray();
 char[] privateKey = File.OpenText(privateKeyFile).ReadToEnd().ToCharArray();

 // Create OracleAccessToken
 OracleAccessToken accessToken = new OracleAccessToken(dbToken, privateKey);

 // Set the token refresh call back
 accessToken.RefreshAccessToken += new
OracleRefreshAccessTokenEventHandler(OnRefreshAccessToken);

 // establish a connection
 string constr = "user id=/;data source=oracle";

 // Create connection object
 OracleConnection con = new OracleConnection(constr);

 // Set accessToken to the connection before opening connection.
 con.AccessToken = accessToken;

 // Open connection now.
 con.Open();

Chapter 3
Connecting to Oracle Database

3-11

 Console.WriteLine("Connected using DB Token Authentication");

 con.Dispose();
 }

 public static void OnRefreshAccessToken(
 OracleRefreshAccessTokenEventArgs eventArgs)
 {
 // Application code to get Refreshed DB token and private key
 RefreshToken(out char[] refreshedToken, out char[] refreshedPrivateKey);

 // Set the refreshed DB token and private key to eventArgs
 eventArgs.DbToken = refreshedToken;
 eventArgs.PrivateKey = refreshedPrivateKey;
 }

 public static void RefreshToken(out char[] refreshedToken, out char[]
refreshedPrivateKey)
 {
 refreshedToken = null;
 refreshedPrivateKey = null;

 // TODO: Add code to refresh the token.
 }
}

Configuring a Client Connection Using Database Alternate Password for Token
Authentication

The database alternate password connection method uses a username and password
specific for IAM token-based authentication. This set of credentials is separate from
the more common database username and password.

To use this feature, the PASSWORD_AUTH parameter must be set to OCI_TOKEN.

IAM exposes a REST endpoint for clients to request database bearer tokens.
ODP.NET makes calls to request tokens from the endpoint via TLS 1.2 or higher. The
driver specifies a username, password, tenant Oracle Cloud Identifier (OCID), a
database compartment identifier (optional), and a database identifier (optional) in the
request. If a database identifier is specified, then the database compartment identifier
becomes mandatory. A bearer token is returned to ODP.NET in the response. The
driver then sends the returned bearer token to authenticate with the database.

ODP.NET caches the token for reuse when additional connection requests occur. It
holds onto the token until its expiration. The application will need to refresh the token
before it expires to be able to make connections.

ODP.NET alternate password credentials can be stored securely in a Secure External
Password Store (SEPS) wallet for application use.

Comparing IAM Token Authentication Methods

The following table identifies the differences and similarities among the IAM token
authentication options.

Chapter 3
Connecting to Oracle Database

3-12

App provides Database Token
and Private Key

Database Token and Private
Key through File

Alternate User Credentials for
Token Authentication

Username must be set to “/” in
the connection string.

Username must be set to “/” in
the connection string.

Username and Password in
ODP.NET connection string
represent alternate credentials.

- - SEPS can store credentials.
When SEPS is enabled, the
username and password is
retrieved first. Then, the
parameter, PASSWORD_AUTH,
determines whether database
access occurs via username/
password or token-based
authentication.

Setting OracleCredential
results in an error when opening
a connection.

Setting OracleCredential
results in an error when opening
a connection.

OracleCredential can be set
with alternate username and
password.

The username/password is
provided through the connection
string or OracleCredential.

No configuration parameter TOKEN_AUTH=OCI_TOKEN PASSWORD_AUTH=OCI_TOKEN
No configuration parameter TOKEN_LOCATION can also be

set to override default directory
location of token and private file.

You can set both TOKEN_AUTH
and PASSWORD_AUTH to
OCI_TOKEN on the same
connection. In this scenario, if
the username is set to “/”, then
file-based token authentication is
used. Otherwise, alternate
password is used.

OCI_IAM_URL and
OCI_TENANCY must be set.
OCI_COMPARTMENT and
OCI_DATABASE can be set to
provide specific compartment
identifier and database identifier,
respectively. If OCI_DATABASE is
set, then, OCI_COMPARTMENT is
mandatory.

You can set both TOKEN_AUTH
and PASSWORD_AUTH to
OCI_TOKEN on the same
connection. In this scenario, if
the username is set to “/”, then
file-based token authentication is
used. Otherwise, alternate
password is used.

OracleAccessToken must be
set on connection with proper
database token and private key
before opening.

- -

Database token provided by the
application must be Signature
token.

Database token read from the file
must be Signature token.

Database token received from
IAM is bearer token.

Chapter 3
Connecting to Oracle Database

3-13

App provides Database Token
and Private Key

Database Token and Private
Key through File

Alternate User Credentials for
Token Authentication

ODP.NET sends the following
information to the database upon
opening a connection:

• database token
• header
• Signature generated by

signing the header using
private key

ODP.NET reads the database
token and private key from the
files and sends the following
information to the database for
authentication upon opening a
connection;

• database token
• header
• Signature generated by

signing the header using
private key

Upon opening a connection,
ODP.NET uses the username/
password to request the
database token from IAM and
then sends that token to the
database for authentication.

See Also:

• Developing .NET Applications for Oracle Autonomous Database

• Developing .NET Applications for Oracle Database as a Service

• Autonomous Database Cloud Services Documentation

• Oracle Database Cloud Services Documentation

Using Azure Active Directory

Starting with ODP.NET 21.7 and 19.15.1, ODP.NET supports Azure Active Directory
(AAD) authentication when connecting to Oracle Database. ODP.NET will then use an
access token to authenticate instead of a username and password.

This feature benefits applications and services that use AAD for centralized user
authentication with Oracle database. Those services can include Azure and Microsoft
365-based cloud services, such as Microsoft Power BI service, that rely on AAD for
user management.

Using token-based authentication is more secure and simpler for the end user. It
becomes unnecessary to specify credentials each time the user accesses a resource.
Moreover, the resource never needs to handle and manage individual user credentials.

AAD follows the OAuth 2.0 user authorization standard. OAuth 2.0 provides a means
of obtaining an access token, then using that access token for accessing resources,
such as Oracle database.

AAD is supported in the core, managed, and unmanaged ODP.NET drivers. It requires
Oracle Autonomous Database or Oracle Database 19.16 or higher.

Managed and unmanaged ODP.NET require NET Framework 4.5.2 or higher for Azure
Active Directory support. ODP.NET Core does not have a runtime requirement more
specific than the general component system requirements to support Azure Active
Directory.

Chapter 3
Connecting to Oracle Database

3-14

https://www.oracle.com/technetwork/topics/dotnet/tech-info/default-5032178.html
https://www.oracle.com/technetwork/topics/dotnet/dotnetdbaas-3208838.html
https://docs.oracle.com/en/database/autonomous-database-cloud-services.html
https://docs.oracle.com/en/database/database-cloud-services.html

Configuring a Client Connection Using AAD

For an ODP.NET application using the managed or core provider to authenticate with AAD
using a file-based access token, the TOKEN_AUTH parameter or
OracleConfiguration.TokenAuthentication property must be set to OAUTH. The token’s
location is then specified in the TOKEN_LOCATION parameter or TokenLocation property. The
token location must be specified explicitly when using OAUTH. Otherwise, an error will occur.
For OAUTH, this location can be the directory where the file “token” is, or the full path that
includes a file name.

For an ODP.NET application to authenticate with AAD with an access token, none of these
configuration steps is necessary. The access token is provided through ODP.NET APIs.

Developers construct an OracleAccessToken object to provide the access token via the
OracleConnection.AccessToken property. If the application sets up a RefreshAccessToken
event handler, ODP.NET will invoke it 60 seconds before the access token expires. The
OracleRefreshAccessTokenEventArgs parameter provides a refreshed access token in the
callback method.

The OracleAccessToken token can only be updated by calling OpenWithNewToken method or
by setting the OracleRefreshAccessTokenEventArgs.Token property upon a .NET callback
invocation.

For ODP.NET connection pooling, the OracleAccessToken object will be used to distinguish
connection pools, not the actual token as they can expire and be refreshed. Only new
connections need to use a refreshed access token. Existing pooled connections do not
depend on the access token and will continue to work. Applications should always specify the
same OracleAccessToken object on OracleConnection to ensure the same connection pool
is used.

TOKEN_AUTH and TOKEN_LOCATION can also be set in the tnsnames.ora and sqlnet.ora files.
To use OAuth with unmanaged ODP.NET, set your token values in these files as there are no
equivalent unmanaged ODP.NET APIs.

Sample Code: Using ODP.NET Azure Active Directory Authentication

// This is a simple ODP.NET, Core Driver application that connects to an Oracle
Autonomous Database
// using a token obtained from Azure Active Directory (Azure AD).

// Azure.Identity can be obtained through NuGet Gallery.
// It will include the Azure.Core and Azure.Identity namespaces.
using System;
using System.Threading;
using Azure.Core;
using Azure.Identity;
using Oracle.ManagedDataAccess.Client;

namespace ConnectToOracleUsingAccessToken
{
 class Program
 {
 static void Main()
 {
 try
 {
 // Retrieve an access token from Azure AD.

Chapter 3
Connecting to Oracle Database

3-15

 string token = GetAccessToken();

 // Create an instance of an OracleAccessToken. The access token needs to
 // be passed to the OracleAccessToken constructor as array of characters.
 var oracleAccessToken = new OracleAccessToken(token.ToCharArray());

 // Create an instance of an OracleConnection object.
 // The developer must provide the appropriate data source setting.
 var connection = new OracleConnection("User Id=/;Data Source=<oracle>");

 // tnsnames.ora, sqlnet.ora, and cwallet.sso must reside in the same
 // directory as the application executable. These files can be
downloaded
 // from Oracle Cloud for the Oracle Autonomous DB instance.
 connection.TnsAdmin = @".\";

 // Assign the OracleAccessToken to the AccessToken property on the
 // OracleConnection object.
 connection.AccessToken = oracleAccessToken;

 // Open the connection.
 connection.Open();

 // If Open() fails, it will throw an exception.
 Console.WriteLine("Open success.");

 // Dispose the OracleConnection object.
 connection.Dispose();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 }
 }

 // Retrieves an Azure AD access token through the
 // Service Principal Auth flow using a client secret.
 static string GetAccessToken()
 {
 // The developer must configure the Azure AD parameters below.
 string clientId = "<client Id of app registration in Azure AD>";
 string tenantId = "<tenant Id of Azure AD>";
 string clientSecret = "<secret value of app registration in Azure AD>";
 string scope = "<scope of DB registration in Azure AD>";

 // Create a TokenRequestContext object.
 var tokenRequestContext = new TokenRequestContext(new[] { scope });

 // Create a ClientSecretCredential object.
 var credentials = new ClientSecretCredential(tenantId, clientId,
clientSecret);

 // Get the access token from Azure AD.
 AccessToken accessToken = credentials.GetToken(tokenRequestContext,
default(CancellationToken));

 // Return the access token.
 return accessToken.Token;
 }
 }
}

Chapter 3
Connecting to Oracle Database

3-16

See Also:

More Azure Active Directory ODP.NET sample code can be found on Oracle .NET
GitHub site:

https://github.com/oracle/dotnet-db-samples/tree/master/samples/azure-active-
directory

Connection String Attributes
Table 3-3 lists the supported connection string attributes.

Table 3-3 Supported Connection String Attributes

Connection String Attribute Description Default Value

Application Continuity Enables database requests to automatically
replay transactional or non-transactional
operations in a non-disruptive and rapid
manner in the event of a severed database
session, which results in a recoverable
error.

Not Available in ODP.NET, Managed Driver
and ODP.NET Core

true

Connection Lifetime Minimum life time (in seconds) of the
connection.

0

Connection Timeout The time to wait (in seconds) for a new
connection or an idle connection from the
connection pool before a connection time
out error can occur.

15

Context Connection Returns an implicit database connection if
set to true.

Supported in a .NET stored procedure only

false

Data Source Oracle Net Services Name, Connect
Descriptor, or an easy connect naming that
identifies the database to which to connect.

empty string

DBA Privilege Administrative privileges: SYSDBA, SYSASM,
SYSOPER, SYSBACKUP, SYSDG, SYSKM, or
SYSRAC.

empty string

Decr Pool Size Number of connections that are closed
when an excessive amount of established
connections are unused.

1

Enlist Controls the enlistment behavior and
capabilities of a connection in context of
COM+ transactions or
System.Transactions.

true

Chapter 3
Connecting to Oracle Database

3-17

https://github.com/oracle/dotnet-db-samples/tree/master/samples/azure-active-directory
https://github.com/oracle/dotnet-db-samples/tree/master/samples/azure-active-directory

Table 3-3 (Cont.) Supported Connection String Attributes

Connection String Attribute Description Default Value

HA Events Enables ODP.NET connection pool to
proactively remove connections from the
pool when an Oracle database service,
service member, instance, or node goes
down. Works with Oracle Global Data
Services, including Oracle RAC, Data
Guard, GoldenGate, and some single
instance deployments.

true

Load Balancing Enables ODP.NET connection pool to
balance work requests across Oracle
database instances based on the load
balancing advisory and service goal. Works
with Oracle Global Data Services, including
Oracle RAC, Active Data Guard, and
GoldenGate.

true

Incr Pool Size Number of new connections to be created
when all connections in the pool are in use.

5

Max Pool Size Maximum number of connections in a pool. 100
Metadata Pooling Caches metadata information. True
Min Pool Size Minimum number of connections in a pool. 1
Password Password for the user specified by User Id. empty string

Persist Security Info Retrieval of the password in the connection
string.

false

Pooling Connection pooling. true
Proxy User Id User name of the proxy user. empty string

Proxy Password Password of the proxy user. empty string

Self Tuning Enables or disables self-tuning for a
connection.

true

Statement Cache Purge Statement cache purged when the
connection goes back to the pool.

false

Statement Cache Size Statement cache enabled and cache size,
that is, the maximum number of statements
that can be cached.

0

Tns_Admin Directory where ODP.NET can find its
sqlnet.ora and tnsnames.ora
configuration files.

Not available in ODP.NET, Unmanaged
Driver.

empty string

Token_Auth This attribute specifies the access token
authentication type. Possible values are
OCITOKEN, OAUTH, or DISABLED.

Only supported for managed ODP.NET and
ODP.NET Core.

DISABLED

Chapter 3
Connecting to Oracle Database

3-18

Table 3-3 (Cont.) Supported Connection String Attributes

Connection String Attribute Description Default Value

Token_Location This attribute is the file-based token
location. The value can be a directory
where a file named "token" is or it can be
the file's full path specification.

Only supported for managed ODP.NET and
ODP.NET Core.

Varies depending
on token
authentication
type

User Id Oracle user name. empty string

Validate Connection Validation of connections coming from the
pool.

false

Wallet_Location ODP.NET wallet directory.

Not available in ODP.NET, Unmanaged
Driver

empty string

The following example uses connection string attributes to connect to Oracle Database:

// C#

using System;
using Oracle.DataAccess.Client;

class ConnectionSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 //using connection string attributes to connect to Oracle Database
 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
}

See Also:

• "OracleConnection Properties" for detailed information on connection attributes

• "OracleCommand Object" for detailed information on statement caching

Connection String Builder
The OracleConnectionStringBuilder class makes creating connection strings less error-
prone and easier to manage.

Chapter 3
Connecting to Oracle Database

3-19

Using this class, developers can employ a configuration file to provide the connection
string and/or dynamically set the values though the key/value pairs. One example of a
configuration file entry follows:

<configuration>
 <connectionStrings>
<add name="Publications" providerName="Oracle.DataAccess.Client"
 connectionString="User Id=scott;Password=tiger;Data Source=inst1" />
 </connectionStrings>
</configuration>

Connection string information can be retrieved by specifying the connection string
name, in this example, Publications. Then, based on the providerName, the
appropriate factory for that provider can be obtained. This makes managing and
modifying the connection string easier. In addition, this provides better security against
string injection into a connection string.

See Also:

OracleConnectionStringBuilder Class

Specifying the Data Source Attribute
This section describes different ways of specifying the data source attribute.

The following example shows a connect descriptor mapped to a TNS alias called
sales in the tnsnames.ora file:

sales=
 (DESCRIPTION=
 (ADDRESS= (PROTOCOL=tcp)(HOST=sales-server)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=sales.us.acme.com)))

The connection pool will maintain the full descriptor of an alias so that subsequent
connection requests with the same connection string will not need to resolve the alias
again. This applies to tnsnames.ora, .NET config data sources, and LDAP aliases. To
flush out the cached full descriptor maintained by the connection pool, invoke
OracleDataSourceEnumerator.GetDataSources() followed by
OracleConnection.ClearPool() or OracleConnection.ClearAllPools().

If connection pooling is not used, the alias will need to be resolved to the full descriptor
for each request. In the case of LDAP, the LDAP server is contacted for each
connection request.

Using the TNS Alias
To connect as scott/tiger using the TNS Alias, a valid connection appears as
follows:

"user id=scott;password=tiger;data source=sales";

Chapter 3
Connecting to Oracle Database

3-20

Using the Connect Descriptor
ODP.NET also allows applications to connect without the use of the tnsnames.ora file. To do
so, the entire connect descriptor can be used as the "data source".

The connection string appears as follows:

"user id=scott;password=tiger;data source=" +
 "(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)" +
 "(HOST=sales-server)(PORT=1521))(CONNECT_DATA="+
 "(SERVICE_NAME=sales.us.acme.com)))"

Easy Connect and Easy Connect Plus Naming Methods
The Easy Connect and Easy Connect Plus naming methods enable clients to connect to a
database without any configuration.

With this enabled, ODP.NET allows applications to specify the Data Source attribute in the
form of:

//host:[port]/[service_name]

Using the same example, some valid connection strings follow:

"user id=scott;password=tiger;data source=//sales-server:1521/sales.us.acme.com"
"user id=scott;password=tiger;data source=//sales-server/sales.us.acme.com"
"user id=scott;password=tiger;data source=sales-server/sales.us.acme.com"

If the port number is not specified, 1521 is used by default.

Easy Connect has been enhanced in ODP.NET 19c to support a wider application breadth,
including clustered or cloud databases, and for ease of use. These improvements are called
Easy Connect Plus and its features include:

• TCP/IP with SSL/TLS

• Any SQL*Net description level parameter can be used

• Multiple hosts and ports

• A straightforward name-value pair format

The syntax uses the question mark symbol ? to indicate the name-value pairs start and the
ampersand symbol & to delimit each name-value pair. The entire connect string must be
specified as a single string. Leading and trailing white spaces are ignored within parameter
values. If whitespace is required as part of the value, it should be placed within double-
quotes.

Easy Connect Plus syntax:

[[protocol:]//]host1{,host12}[:port1]{,host2:port2}[/service_name][:server][/
instance_name][?parameter_name=value{¶meter_name=value}]

Easy Connect Plus samples:

• tcps://salesserver1:1521/sales.us.example.com
• salesserver1:1521,salesserver2,salesserver3:1522/sales.us.example.com
• tcps://salesserver1:1521/sales.us.example.com?wallet_location=D:/oracle

Chapter 3
Connecting to Oracle Database

3-21

• tcps://salesserver1:1521/sales.us.example.com?
ssl_server_cert_dn=cn=sales,cn=OracleContext,dc=us,dc=example,dc=com

• tcps://salesserver1:1521/sales.us.example.com?https_proxy=www-
proxy.mycompany.com&https_proxy_port=80

• salesserver1:1521/sales.us.example.com?
connect_timeout=60&transport_connect_timeout=30&retry_count=3

See Also:

Oracle Database Net Services Administrator's Guide for details and
requirements in the section Using Easy Connect Naming Method

Using LDAP
ODP.NET can connect with connect identifiers mapped to connect descriptors in an
LDAP-compliant directory server, such as Oracle Internet Directory and Microsoft
Active Directory.

To configure LDAP for ODP.NET, Unmanaged Driver, follow these Oracle
documentation instructions in Configuring the Directory Naming Method in Oracle
Database Net Services Administrator's Guide.

To configure LDAP for ODP.NET, Managed Driver, follow the instructions in "settings
section" and "LDAPsettings section."

To configure LDAP for ODP.NET Core, use the OracleConfiguration class directory
properties settings. ODP.NET Core LDAP support is available on Windows operating
systems. It requires the System.DirectoryServices and
System.DirectoryServices.Protocols version 4.5 or higher as dependencies.

Starting with version 19.10, ODP.NET Core supports LDAP on non-Windows operating
systems. This feature requires System.DirectoryServices and
System.DirectoryServices.Protocols 5.0 or higher versions as project
dependencies.

Beginning with Oracle Database release 18c, version 18.1, organizations can use
centrally managed users (CMUs) with Active Directory. This feature is designed for
organizations who prefer to use Active Directory as their centralized identity
management solution. Organizations can use Kerberos, PKI, or password
authentication with CMU and Active Directory.

LDAP channel binding and LDAP signing are ways to enhance the communication
security between LDAP clients and Active Directory domain controllers. Beginning with
version 19, managed ODP.NET and ODP.NET Core LDAP Naming adapters fully
comply with the Microsoft LDAP hardening guidance.

Chapter 3
Connecting to Oracle Database

3-22

See Also:

• Oracle Database Net Services Administrator's Guide and Oracle Database
Security Guide for details and requirements in the section Using LDAP

• Microsoft Guidance for Enabling LDAP Channel Binding and LDAP Signing

Data Source Enumerator
The data source enumerator enables the application to generically obtain a collection of the
Oracle data sources that the application can connect to.

See Also:

"OracleDataSourceEnumerator Class"

Using WebSocket
Websocket is a protocol that offers full-duplex communication channels over a single TCP
connection. WebSocket with SSL/TLS offers a secure WebSocket connection. WebSocket is
an extension to HTTP and is able to work with HTTP proxies and intermediaries.

ODP.NET Core, managed, and unmanaged providers all support Websocket and secure
WebSocket protocols in Oracle Database 19c and higher.

ODP.NET WebSocket Configuration

WebSocket and secure WebSocket can be set through the connect descriptor by setting
PROTOCOL to WS for WebSocket or WSS for secure WebSocket in tnsnames.ora, .NET
configuration file, or OracleDataSourceCollection Class.

The WebSocket uniform resource identifier (URI) can be set in tnsnames.ora,
sqlnet.ora, .NET configuration file, and OracleConfiguration class.

ODP.NET Configuration File WebSocket URI Setting Sample:

<oracle.manageddataaccess.client>
 <version number="*">
 <settings>
 <setting name="SQLNET.URI" value="<WebSocket URI>"/>
 </settings>
 </version>
</oracle.manageddataaccess.client>

OracleConfiguration WebSocket URI Setting C# Sample:

OracleConfiguration.SqlNetURI = <WebSocket URI>;

When setting the URI in unmanaged ODP.NET, it cannot begin with a forward slash
character. For managed ODP.NET, the forward slash at the beginning of the URI is optional.

Chapter 3
Connecting to Oracle Database

3-23

https://msrc.microsoft.com/update-guide/en-us/vulnerability/ADV190023

Using Transport Layer Security and Secure Sockets Layer
Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are
industry standard protocols for securing network connections.

ODP.NET core, managed, and unmanaged versions support one-way and two-way
TLS/SSL with wallets for database and transport authentication. ODP.NET core,
managed, and unmanaged also support one-way TLS without wallets. Not having to
provide a wallet can simplify database connectivity, such as with Oracle Autonomous
Database.

Secure Sockets Layer and Transport Layer Security Differences
Although SSL was primarily developed by Netscape Communications Corporation, the
Internet Engineering Task Force (IETF) took over development of it, and renamed it
Transport Layer Security (TLS).

Essentially, TLS is an incremental improvement to SSL version 3.0.

Managed ODP.NET and ODP.NET Core support TLS 1.0, 1.1, and 1.2. ODP.NET,
Unmanaged Driver supports the same SSL and TLS versions as the Oracle Database
Client version it is certified with.

The SSL/TLS client can ensure that the distinguished name (DN) is correct for the
database server it is trying to connect to. Parameters for DN Matching are
SSL_SERVER_DN_MATCH (sqlnet.ora) and SSL_SERVER_CERT_DN (tnsnames.ora), which
can be defined in the .NET config file as well.

To turn DN Match on, set SSL_SERVER_DN_MATCH to True (or On or Yes).
SSL_SERVER_CERT_DN is optional. It allows the administrator to specify exactly the DN
they want to match. If the SSL_SERVER_CERT_DN is not set, then HOSTNAME based DN
matching will be done.

See Also:

• The TLS Protocol Version 1.0 [RFC 2246] at the IETF Web site, which
can be found at:

http://www.ietf.org
• SSL_VERSION in the "settings section."

Note:

To simplify the discussion, this section uses the term SSL where either SSL
or TLS may be appropriate because SSL is the most widely recognized term.
However, where distinctions occur between how you use or configure these
protocols, this section specifies what is appropriate for either SSL or TLS.

Chapter 3
Connecting to Oracle Database

3-24

ODP.NET Secure Sockets Layer Configuration Using Wallets
When you configure Secure Sockets Layer on the client, you must confirm that the wallet is
created and use TCP/IP with SSL on the client. Optionally, you can perform additional steps
to enhance the configuration.

Note:

ODP.NET supports auto login wallets, but not the local auto login wallet option.

SSL Configuration Topics:

• Step 1: Confirm Client Wallet Creation

• Step 2: Use TCP/IP with SSL on the Client

• Step 3: Specify Required Client SSL Configuration (Wallet Location)

• Step 4: Set the SSL Version on the Client (Optional)

• Step 5: Set SSL as an Authentication Service on the Client (Optional)

Step 1: Confirm Client Wallet Creation

Before proceeding to the next step, you must confirm that a wallet has been created on the
client and that the client has a valid certificate.

ODP.NET, managed and core drivers support file and Microsoft Certificate Store (MCS)
based wallets.

• For file-based wallets, use Oracle Wallet Manager to check that the wallet has been
created. See Step 1A: Confirm Wallet Creation on the Server in Oracle Database
Security Guide for information about checking a wallet.

• For MCS, ODP.NET will retrieve the credentials from the MY or Personal certificate store.
Use Microsoft tools or the orapki utility to create certificates, then load the certificates
into MCS for use.

Step 2: Use TCP/IP with SSL on the Client

The ODP.NET Data Source must be modified to use SSL. Specifically, the transport protocol
must be changed to use TCP/IP with SSL or what Oracle calls "tcps". An example ODP.NET
Data Source for use with SSL is:

finance = (DESCRIPTION=
 (ADDRESS = (PROTOCOL=tcps) (HOST=finance_server) (PORT=1575))
 (CONNECT_DATA = (SERVICE_NAME=Finance.us.example.com)))

Step 3: Specify Required Client SSL Configuration (Wallet Location)

Edit the sqlnet.ora or .NET application configuration to specify the wallet location.

• An example of setting the SSL wallet location for file based wallets, where
<wallet_location> is the specified location where the client wallet is stored:

wallet_location = (SOURCE=(METHOD= File)
 (METHOD_DATA=(DIRECTORY=<wallet_location>)))

Chapter 3
Connecting to Oracle Database

3-25

• An example of setting the SSL wallet location for MCS based wallets is:

wallet_location = (SOURCE=(METHOD= MCS))

Step 4: Set the SSL Version on the Client (Optional)

The SSL_VERSION parameter can be set through the sqlnet.ora or the .NET
application.config, web.config, or machine.config file. Normally, it is not
necessary to set this parameter. The default setting for this parameter is any, which
allows the database server to apply any necessary restrictions to the SSL version
accepted. An example setting in the sqlnet.ora is:

SSL_VERSION=1.2

Step 5: Set SSL as an Authentication Service on the Client (Optional)

If TCPS is to be used as both a transport and as an external database authentication,
set the SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora or
application.config, web.config, or machine.config file.

Note that SSL can be used as just a transport encryption vehicle. Hence, the "optional"
designation for this setting.

If SSL/TLS is to be used as an external database authentication method, then an
externally authenticated database user matching the client certificate must be created.

An example setting allowing SSL external authentication in the sqlnet.ora is:

SQLNET.AUTHENTICATION_SERVICES = (TCPS)

Note:

Prior to ODAC 12c Release 4, ODP.NET, Managed Driver SSL connections
would be redirected to dynamic (ephemeral) port on the database server
machine. With ODAC 12c Release 4 and later, managed ODP.NET SSL
connections will now continue to the original socket connection to the Oracle
Listener. Hence, firewalls will now only need to allow access to the Oracle
Listener's port (e.g., 1521).

See Also:

• Enabling Secure Sockets Layer in Oracle Database Security Guide for
more information about TLS/SSL and configuration with Oracle
database.

• Creating a User Who Is Authenticated Externally in Oracle Database
Security Guide for more information about creating externally identified
database users.

ODP.NET Secure Sockets Layer Configuration without Wallets

Chapter 3
Connecting to Oracle Database

3-26

Starting with versions 19.13 and 21.4, ODP.NET managed and core drivers support SSL
without wallets. Unmanaged ODP.NET introduced SSL support without wallets from versions
19.14 and 21.5. With one-way TLS, the client certificate is not required. A client wallet for the
trusted Certificate Authority (CA) can be provided for ODP.NET authentication of the server.
Without a wallet, the trusted CA will come from the local host's default trustpoints. Connection
configuration is simpler without wallet files.

One-way TLS can be used in one of two ways:

• If the database server uses a certificate/wallet signed by a Windows-trusted certificate
authority, then no client changes are required besides un-setting the Oracle wallet
location if it is already set.

• If the database server uses a self-signed certificate/wallet, then the self-signed root
certificate (public key) for the server certificate/wallet must be inserted into the root
certificate store (root/localmachine) of the client machine.

ODP.NET will attempt to connect with one-way TLS when TCPS protocol is specified and
either:

• no wallet location setting is present, or,

• wallet location is set to system.

ODP.NET essentially ignores existing static wallet configuration when system is specified as
the wallet location. This wallet location property can be set in any one of the following:

• TNS connect descriptor

– WALLET_LOCATION or MY_WALLET_DIRECTORY
• Easy Connect Plus

– WALLET_LOCATION
• ODP.NET connection string

– Wallet_Location
• ODP.NET OracleConnection property

– WalletLocation
These options allow administrators to specify at different granularities connections using a
client certificate or SEPS and connections not using a wallet.

By default, Oracle Autonomous Database credentials use the WALLET_LOCATION in
sqlnet.ora. To disable the wallet requirement, remove the sqlnet.ora WALLET_LOCATION
setting completely or set one of the wallet location settings to system.

Inserting Public Keys into System Trusted Certificate Authority List

The Certificate Authority (CA) public key is stored in the CA certificate. This certificate is
stored in the local trust store on the client system. Here are typical commands to install root
certificate in different platform.

Windows:

Base64/PEM format:

Chapter 3
Connecting to Oracle Database

3-27

 openssl pkcs12 -in ewallet.p12 -clcerts -nokeys -out rootca.pem
 certutil -addstore -enterprise -f -v root rootca.pem

Linux (Oracle and Red Hat):

Create PEM certificate from PKCS #12 file:

openssl pkcs12 -in ewallet.p12 -clcerts -nokeys -out rootca.pem -password
pass:<password>
sudo cp rootca.pem /etc/pki/ca-trust/source/anchors
sudo update-ca-trust

On Linux, the administrator can manually edit the root PEM file by adding the PEM file
contents resulting from the OPENSSL command shown above. The root PEM file on
Linux is located in /etc/pki/tls/cert.pem, which is a link to /etc/pki/ca-trust/
extracted/pem/tls-ca-bundle.pem.

Linux (Ubuntu):

Change the PEM (.pem) or CER (.cer) file extension to a CRT extension (.crt). Then,
execute the following two commands:

sudo cp rootca.crt /usr/local/share/ca-certificates/rootca.crt
sudo update-ca-certificates

macOS:

Base64 format:

sudo security add-trusted-cert -d -r trustRoot -k "/Library/Keychains/
System.keychain" "<directory>/rootca.cer "

PEM format:

sudo security add-trusted-cert -d -r trustRoot -k "/Library/Keychains/
System.keychain" "<directory>/rootca.pem"

Troubleshooting TLS/SSL Setup
This section discusses commonly encountered issues and their typical resolution
steps.

Common TLS/SSL Wallet Errors

Microsoft Windows now restricts wallets from using the MD5 algorithm. Oracle wallets
may have been generated with this algorithm as that was the default option in Oracle
Public Key Infrastructure (orapki) utility 12.1 and earlier.

orapki can be found in the ORACLE_HOME\bin directory of the database server
installation or Oracle client administrator install. It is not included with Oracle Instant
Client. The utility is only needed to setup up the wallet; it is not necessary to deploy it
with the wallet.

When you setup TLS/SSL and encounter an "ORA-0052: Failure during SSL
handshake" error combined with a 0x80004005 error code and first inner exception "A
SSPI-call failed" and second inner exception "A token sent to the function is invalid",

Chapter 3
Connecting to Oracle Database

3-28

then it is very likely that Microsoft Security Support Provider Interface (SSPI) rejected your
Oracle Wallet, such as when MD5 is used. This is a failure on the handshake. You can
resolve this error by using the SHA-2 algorithm instead.

If the second inner exception instead indicates "The credentials supplied to the package were
not recognized", it is possible the user certificate was generated without a certificate authority
(CA). You can resolve this error by using orapki to generate a CA/root certificate and then
regenerating your user wallet/certificate to point to this new CA/root certificate.

The steps below will regenerate your Oracle Wallet using orapki and SHA-2. Any orapki
version can be used to generate the wallet with these instructions.

1. Create root wallet, for example, a CA wallet.

orapki wallet create -wallet ./root -pwd <password>

2. Add a self-signed certificate (CA certificate) to the root wallet.

orapki wallet add -wallet ./root -dn 'CN=<my root>' -keysize 1024 -
self_signed -validity 3650 -pwd <password> -sign_alg sha512

3. Export the self-signed certificate from the wallet.

orapki wallet export -wallet ./root -dn 'CN=<my root>' -cert ./root/
b64certificate.txt -pwd <password>

4. Create a user wallet, for example, a customer wallet.

orapki wallet create -wallet ./user -pwd <password> -auto_login

5. Add a certificate request.

orapki wallet add -wallet ./user -dn 'CN=<client's hostname>' -keysize
1024 -pwd <password> -sign_alg sha512

6. Export the certificate request.

orapki wallet export -wallet ./user -dn 'CN=<client's hostname>' -
request ./user/creq.txt -pwd <password>

7. Create a certificate issued by a CA.

orapki cert create -wallet ./root -request ./user/creq.txt -cert ./user/
cert.txt -validity 3650 -pwd <password> -sign_alg sha512

8. Add a trusted certificate (CA certificate) to the wallet. This example assumes the same
CA for both the client and server wallets.

orapki wallet add -wallet ./user -trusted_cert -cert ./root/
b64certificate.txt -pwd <password>

Chapter 3
Connecting to Oracle Database

3-29

9. Add a user certificate.

orapki wallet add -wallet ./user -user_cert -cert ./user/cert.txt -
pwd <password> -sign_alg sha512

10. Display contents of user wallet.

orapki wallet display -wallet ./user -pwd <password>

11. Create a server wallet.

orapki wallet create -wallet ./server -pwd <password> -auto_login

12. Add a server certificate request.

orapki wallet add -wallet ./server -dn 'CN=<server's hostname>' -
keysize 1024 -pwd <password> -sign_alg sha512

13. Export the certificate request.

orapki wallet export -wallet ./server -dn 'CN=<server's hostname>' -
request ./server/creq.txt -pwd <password>

14. Create a server certificate issued by a CA.

orapki cert create -wallet ./root -request ./server/creq.txt -
cert ./server/cert.txt -validity 3650 -pwd <password> -sign_alg
sha512

15. Add a trusted certificate (CA certificate) to the server wallet. This example
assumes the same CA for both the client and server wallets.

orapki wallet add -wallet ./server -trusted_cert -cert ./root/
b64certificate.txt -pwd <password>

16. Add an user_cert certificate for the server wallet.

orapki wallet add -wallet ./server -user_cert -cert ./server/
cert.txt -pwd <password> -sign_alg sha512

17. Display contents of server wallet.

orapki wallet display -wallet ./server -pwd <password>

Using Secure External Password Store
The Secure External Password Store (SEPS) is the use of a client-side wallet for
securely storing the password credentials. All ODP.NET driver types can be configured
to use the external password store.

An Oracle wallet is a container that securely stores authentication and signing
credentials. Wallets can simplify large-scale deployments that rely on password

Chapter 3
Connecting to Oracle Database

3-30

credentials for database connections. Applications no longer need embedded user names
and passwords, which reduces security risk.

Using SEPS with ODP.NET Core requires the NuGet package,
System.Security,Cryptography.Pkcs version 4.7 or higher, as a dependency for your
application project.

Configuring Secure External Password Store (SEPS)
Steps for configuring SEPS:

• Step 1. Create the wallet file

• Step 2. Point the configuration to the client wallet

• Step 3. Turn on SEPS

Step 1. Create the wallet file

Use the mkstore utility to create the wallet file and insert the credentials.

Step 1a. Create a wallet on the client by using the following syntax at the command line:

mkstore -wrl wallet_location -create

For example:

mkstore -wrl c:\oracle\product\12.1.0\db_1\wallets -create
Enter password: password

Step 1b. Create database connection credentials in the wallet by using the following syntax
at the command line:

mkstore -wrl wallet_location -createCredential db_connect_string username
Enter password: password

For example:

mkstore -wrl c:\oracle\product\12.1.0\db_1\wallets -createCredential orcl system
Enter password: password

Step 2. Point the configuration to the client wallet

In the client sqlnet.ora file, enter the WALLET_LOCATION parameter and set it to the directory
location of the wallet you created in Step 1.

For example, if you created the wallet in $ORACLE_HOME/network/admin and your Oracle
home is set to C:\app\client\<user>\product\<version>\client_1\, then you need to
enter the following into your client sqlnet.ora file:

WALLET_LOCATION =
 (SOURCE =(METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY =
C:\app\client\<user>\product\<version>\client_1\Network\Admin)))

Step 3. Turn on SEPS

Enable SEPS in your application by setting the wallet override setting to true in the
OracleConfiguration.SqlNetWalletOverride property or SQLNET.WALLET_OVERRIDE setting
in sqlnet.ora or .NET configuration file.

Chapter 3
Connecting to Oracle Database

3-31

SQLNET.WALLET_OVERRIDE = TRUE

This setting causes all CONNECT /@db_connect_string statements to use the
information in the wallet at the specified location to authenticate to databases.

When external authentication is in use, an authenticated user with such a wallet can
use the CONNECT /@db_connect_string syntax to access the previously specified
databases without providing a user name and password. Note however, that the wallet
file needs to be kept up to date with the database credentials. If the database
credentials change, but the wallet file is not changed appropriately, then the
connections will fail.

See Also:

• Oracle Data Provider for .NET, Managed Driver Configuration for more
details about the wallet settings.

• Managing the Secure External Password Store for Password Credentials
in Oracle Database Security Guide for more information about secure
external password store and configuration with Oracle database.

Using Kerberos
Kerberos is a network authentication service for security in distributed environments.
ODP.NET applications can use Kerberos for single sign-on and centralized user
authentication. ODP.NET, Unmanaged Driver and Managed Driver both support
Kerberos for external authentication to the database server.

Note:

• ODP.NET Core does not support Kerberos.

• Managed ODP.NET does not support Kerberos constrained delegation.

• Managed ODP.NET also does not support Kerberos5Pre authentication
adapter.

File Based Credential Cache and MSLSA
ODP.NET supports both a file-based Kerberos client credential cache (CC) and the
ability to use Windows logon credentials as Kerberos client credentials. The latter is
called MSLSA-based Kerberos authentication.

In order to utilize a file based Kerberos client credential cache (CC), the following
executables associated with the full Oracle Call Interface (OCI) install are needed:

• okinit.exe
• oklist.exe
• okdstry.exe

Chapter 3
Connecting to Oracle Database

3-32

The executables are required in order to acquire the Kerberos5 credentials and store them in
the file based credential cache (CC). However, after credential cache creation, as long as the
credentials remain valid, the above executables are then unneeded by the ODP.NET
application at run-time.

ODP.NET, Managed Driver Dependency on MIT Kerberos
To use Kerberos5 database authentication in conjunction with ODP.NET, Managed Driver,
download and install MIT Kerberos for Windows 4.0.1 on the same machine as ODP.NET,
Managed Driver from the following location:

http://web.mit.edu/kerberos/dist/

See Also:

Configuring Kerberos Authentication in Oracle Database Security Guide for more
information about Kerberos and configuration with Oracle database.

Configuring Kerberos Authentication with ODP.NET
Please reference the following "key" when viewing the below Kerberos configuration
examples:

• oracleclient = Kerberos/Windows Domain user ID used by the Oracle database client
program to represent the Oracle Client user on the domain

• oracleserver = Kerberos/Windows Domain user ID used by the Oracle database server

• DOMAIN.COMPANY.COM = Kerberos/Windows domain

• dbhost.company.com = Oracle database server machine hostname

• kerberos_service_name = Kerberos service name

• dc.company.com = hostname for Kerberos Key Distribution Center (KDC) and Windows
Domain Controller

Configuring Kerberos Authentication Topics:

• Step 1. Update Windows services file to include a "kerberos5" entry

• Step 2. Create client and server Kerberos users (Windows domain users for MSLSA)

• Step 3. Associate the DB server's Kerberos principal name with the DB server's Kerberos
Service (SPN mapping) and generate the server keytab file

• Step 4. Confirm the mapping of server user to service principal

• Step 5. Setup server sqlnet.ora to point to the keytab file generated in step 2

• Step 6. Create a kerberos configuration file that points to the Kerberos KDC (Windows
Domain Controller for MSLSA)

• Step 7. Configure the Oracle database client and server sqlnet.ora or .NET config to point
to the above Kerberos configuration file

• Step 8. Point the client sqlnet.ora or .NET config to a credential cache file or to MSLSA

Chapter 3
Connecting to Oracle Database

3-33

• Step 9. Set the client and server authentication services in the sqlnet.ora or .NET
config to Kerberos5

• Step 10. Setup an externally authenticated database user that matches the
Kerberos client user setup in step 1 (note the case)

• Step 11. Login to the client machine via the Windows Domain client user (for
MSLSA) or perform an okinit to authenticate the client Kerberos user (for file
based CC):

• Step 12. Run the ODP.NET application

Step 1. Update Windows services file to include a "kerberos5" entry

Change the Kerberos entry in the Windows service file
(C:\windows\system32\drivers\etc\services) from:

kerberos 88/tcp krb5 kerberos-sec #Kerberos

to:

kerberos 88/tcp kerberos5 krb5 kerberos-sec #Kerberos

Step 2. Create client and server Kerberos users (Windows domain users for
MSLSA)

As noted in the above "key", we will use oracleclient and oracleserver as our client
and server Kerberos user IDs, respectively.

ODP.NET supports MSLSA using Windows domain users which have the following
attributes:

• "Kerberos DES" unchecked

• "Kerberos AES 128 bit" checked

• "Kerberos AES 256 bit" checked

• "Kerberos preauthentication not required" checked

Step 3. Associate the DB server's Kerberos principal name with the DB server's
Kerberos Service (SPN mapping) and generate the server keytab file

Run the following commands on the Kerberos KDC (Windows Domain Controller for
MSLSA) as an administrator:

> ktpass -princ kerberos_service_name/dbhost.company.com@DOMAIN.COMPANY.COM /
crypto all /mapuser oracleserver@DOMAIN.COMPANY.COM /pass <oracleserver
password> /out v5srvtab

> setspn -A kerberos_service_name/dbhost.company.com@DOMAIN.COMPANY.COM
oracleserver

Step 4. Confirm the mapping of server user to service principal

Also on the Kerberos KDC, run the following command, noting the output:

> setspn -L oracleserver

Registered ServicePrincipalNames for
CN=oracleserver,CN=Users,DC=domain,DC=company,DC=com:
 kerberos_service_name/dbhost.company.com
kerberos_service_name/dbhost.company.com@DOMAIN.COMPANY.COM

Chapter 3
Connecting to Oracle Database

3-34

Step 5. Setup server sqlnet.ora to point to the keytab file generated in step 2

Add the following line to the server sqlnet.ora:

sqlnet.kerberos5_keytab = c:\krb\v5srvtab

Step 6. Create a kerberos configuration file that points to the Kerberos KDC (Windows
Domain Controller for MSLSA)

An example kerberos configuration file (krb.conf):

[libdefaults]
default_realm = DOMAIN.COMPANY.COM

[realms]
DOMAIN.COMPANY.COM = {
 kdc = dc.company.com
 }

[domain_realm]
.domain.company.com = DOMAIN.COMPANY.COM
domain.company.com = DOMAIN.COMPANY.COM
.DOMAIN.COMPANY.COM = DOMAIN.COMPANY.COM
DOMAIN.COMPANY.COM = DOMAIN.COMPANY.COM

Step 7. Configure the Oracle database client and server sqlnet.ora or .NET config to
point to the above Kerberos configuration file

Edit the client or server sqlnet.ora to include:

sqlnet.kerberos5_conf = C:\krb\krb.conf

Or edit the client application config to include (in the settings section):

<setting name="sqlnet.kerberos5_conf" value="C:\krb\krb.conf" />

Step 8. Point the client sqlnet.ora or .NET config to a credential cache file or to MSLSA

Example pointing to Credential Cache file:

sqlnet.kerberos5_cc_name = c:\krb\krb.cc

Example pointing to MSLSA:

sqlnet.kerberos5_cc_name = MSLSA:

Step 9. Set the client and server authentication services in the sqlnet.ora or .NET
config to Kerberos5

sqlnet.authentication_services=(Kerberos5)

Step 10. Setup an externally authenticated database user that matches the Kerberos
client user setup in step 1 (note the case)

create user "ORACLECLIENT@DOMAIN.COMPANY.COM" identified externally;
grant connect, create session to "ORACLECLIENT@DOMAIN.COMPANY.COM";

Step 11. Login to the client machine via the Windows Domain client user (for MSLSA)
or perform an okinit to authenticate the client Kerberos user (for file based CC):

okinit oracleclient

Chapter 3
Connecting to Oracle Database

3-35

Step 12. Run the ODP.NET application

Set the ODP.NET connection string to User Id=/ and leave the Password blank.

Note:

• After configuring the client and server, the last 2 steps are the only steps
required on an ongoing basis to run the ODP.NET application.

• A Microsoft Visual C Run-Time Library (MSVCRT.DLL) bug can cause
ODP.NET, Managed Driver's setting of the Kerberos5 configuration to be
ignored by the Microsoft run-time. In such a case, you will encounter the
error message:

OracleInternal.Network.NetworkException (0x80004005): NA Kerberos5:
Authentication handshake failure at stage: krb5_sname_to_principal:
default realm not found. Please set SQLNET.Kerberos5_conf.

To workaround this error, manually set KRB5_CONFIG in the ODP.NET
application's run-time environment to point to the Kerberos5
configuration file pointed to by SQLNET.Kerberos5_conf. For example,

set KRB5_CONFIG=c:\oracle\network\admin\krb5.ini

See Also:

Configuring Kerberos Authentication in Oracle Database Security Guide for
more information about Kerberos and configuration with Oracle database.

Using Windows Native Authentication (NTS)
With the Windows native authentication adapter, Oracle users can authenticate to the
database using just their Windows user login credentials. It provides a way to enable
single sign-on and to simplify user and role credential management. Windows native
authentication is also known as Windows Native authentication (NTS).

Note:

• ODP.NET Core supports Windows Native Authentication on Windows
only

• Due to a limitation in the Microsoft .NET APIs, ODP.NET, Managed
Driver only supports Windows Native authentication (NTS) via Microsoft
NT LAN Manager (NTLM) instead of Kerberos-based credentials.
Normally, this limitation would be invisible to the ODP.NET, Managed
Driver application, since the Windows domain and the Oracle database
server will transparently support both NTLM and Kerberos domain
credentials by default.

Chapter 3
Connecting to Oracle Database

3-36

Configuring Windows Native Authentication (NTS) for the ODP.NET Client
Steps in configuring the NTS for the ODP.NET Client:

• Step 1. Ensure OSAUTH_PREFIX_DOMAIN is set correctly

• Step 2. Setup the externally identified database user

• Step 3. Setup the client configuration to utilize NTS as the authentication methodology

Step 1. Ensure OSAUTH_PREFIX_DOMAIN is set correctly

Make sure OSAUTH_PREFIX_DOMAIN is set appropriately. If you desire the externally identified
user ID to include the domain, set it to true, otherwise false. The parameter is a registry
setting that can be found at HKLM/software/oracle/HOME<ORACLE_SID>. For example, if your
ORACLE_SID is r1, it is located at HKLM/software/oracle/HOMEr1.

Step 2. Setup the externally identified database user

If you set the parameter to true in Step 1, use the following commands to setup the externally
identified database user associated with the desired Windows domain user:

create user "MYDOMAIN\MYUSER" identified externally;
grant connect, create session to "MYDOMAIN\MYUSER";

Step 3. Setup the client configuration to utilize NTS as the authentication methodology

Edit the client sqlnet.ora or app config to add NTS to the sqlnet.authentication_services.
For example.

sqlnet.authentication_services = (NTS)

Note:

After configuring the client and server, the last 2 steps are the only steps required
on an ongoing basis to run the ODP.NET application.

See Also:

Authenticating Database Users with Windows in Oracle Database Platform Guide
for Microsoft Windows for Windows for more information about Windows native
authentication.

Operating System Authentication Credentials
Oracle Database can use Windows user login credentials to authenticate database users. To
open a connection using Windows user login credentials, the User Id connection string
attribute must be set to a slash (/). If the Password attribute is provided, it is ignored.

Chapter 3
Connecting to Oracle Database

3-37

Note:

Operating system authentication is not supported in a .NET stored
procedure.

ODP.NET Core supports operating system authentication for Windows only.

All ODP.NET, Unmanaged Driver connections, including those using operating system
authentication, can be pooled. ODP.NET, Managed Driver supports operating system
authentication, except when the Windows domain is constrained to only support
Kerberos-based domain authentication. Connections are pooled by default, and no
configuration is required, as long as pooling is enabled.

The following example shows the use of operating system authentication:

/* Create an OS-authenticated user in the database
 Assume init.ora has OS_AUTHENT_PREFIX set to "" and <OS_USER>
 is any valid OS or DOMAIN user.

 create user <OS_USER> identified externally;
 grant connect, resource to <OS_USER>;

 Login through OS Authentication and execute the sample. See Oracle
 documentation for details on how to configure an OS-Authenticated user
*/

// C#

using System;
using Oracle.DataAccess.Client;

class OSAuthenticationSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 //Establish connection using OS Authentication
 con.ConnectionString = "User Id=/;Data Source=oracle;";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
}

See Also:

Oracle Database Administrator’s Reference for Microsoft Windows for
information on how to set up Oracle Database to authenticate database
users using Windows user login credentials

Chapter 3
Connecting to Oracle Database

3-38

Network Data Encryption and Integrity
ODP.NET enables data encryption and integrity over a network for both intranet and cloud
deployments. This ensures that data is disguised to all, except authorized users, and
guarantees the original message contents are not altered. In earlier releases, these features
were known as Oracle Advanced Security Option (ASO) encryption. Starting with Oracle
Database 12c, Oracle ASO is not required to use network data encryption and data integrity.

Using Data Encryption
Managed and unmanaged ODP.NET support the following encryption standards and
algorithms:

• Advanced Encryption Standard (AES)

– AES 128-bit

– AES 192-bit

– AES 256-bit

• Triple-DES (3DES)

– 112-bit

– 168-bit

ODP.NET, Managed Driver uses the following settings to configure network encryption:

• SQLNET.ENCRYPTION_CLIENT
• SQLNET.ENCRYPTION_TYPES_CLIENT

See Also:

settings section for definition and information on usage.

Using Data Integrity
Managed and unmanaged ODP.NET support the following data integrity algorithms:

• SHA-1

• SHA-2

– SHA-256

– SHA-384

– SHA-512

Chapter 3
Connecting to Oracle Database

3-39

See Also:

• For more information on network encryption and integrity or configuring
them for ODP.NET, Unmanaged Driver, refer to the Oracle Database
Security Guide.

• To configure network encryption or data integrity in ODP.NET, Managed
Driver, refer to the SQLNET.CRYPTO_CHECKSUM_CLIENT and
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT settings in "Oracle Data
Provider for .NET, Managed Driver Configuration." On the database
server machine, you will likely have to configure the
SQLNET.CRYPTO_CHECKSUM_SERVER and
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER parameters in the sqlnet.ora
file.

Schema Discovery
ADO.NET exposes five different types of metadata collections through the
OracleConnection.GetSchema API. This permits application developers to customize
metadata retrieval on an individual-application basis, for any Oracle data source. Thus,
developers can build a generic set of code to manage metadata from multiple data
sources.

The following types of metadata are exposed:

• MetaDataCollections
A list of metadata collections that is available from the data source, such as tables,
columns, indexes, and stored procedures.

• Restrictions
The restrictions that apply to each metadata collection, restricting the scope of the
requested schema information.

• DataSourceInformation
Information about the instance of the database that is currently being used, such
as product name and version.

• DataTypes
A set of information about each data type that the database supports.

• ReservedWords
Reserved words for the Oracle query language.

See Also:

Oracle Schema Collections

Chapter 3
Connecting to Oracle Database

3-40

User Customization of Metadata
ODP.NET provides a comprehensive set of database schema information. Developers can
extend or customize the metadata that is returned by the GetSchema method on an individual
application basis.

To do this, developers must create a customized metadata file and provide the file name to
the application as follows:

1. Create a customized metadata file and put it in the CONFIG subdirectory where the .NET
framework is installed. This is the directory that contains machine.config and the
security configuration settings.

This file must contain the entire set of schema configuration information, not just the
changes. Developers provide changes that modify the behavior of the schema retrieval to
user-specific requirements. For instance, a developer can filter out internal database
tables and just retrieve user-specific tables

2. Add an entry in the app.config file of the application, similar to the following, to provide
the name of the metadata file, in name-value pair format.

<oracle.dataaccess.client>
 <settings>
 <add name="MetaDataXml" value="CustomMetaData.xml" />
 </settings>
</oracle.dataaccess.client>

When the GetSchema method is called, ODP.NET checks the app.config file for the name of
the customized metadata XML file. First, the GetSchema method searches for an entry in the
file with a element named after the provider, in this example, oracle.dataaccess.client. In
this XML element, the value that corresponds to the name MetaDataXml is the name of the
customized XML file, in this example, CustomMetaData.xml.

If the metadata file is not in the correct directory, then the application loads the default
metadata XML file, which is part of ODP.NET.

See Also:

"GetSchema"

Connection Pooling
ODP.NET connection pooling is enabled and disabled using the Pooling connection string
attribute. By default, connection pooling is enabled. The following are ConnectionString
attributes that control the behavior of the connection pooling service:

• Connection Lifetime
• Connection Timeout
• Decr Pool Size
• HA Events
• Incr Pool Size

Chapter 3
Connecting to Oracle Database

3-41

• Load Balancing
• Max Pool Size
• Min Pool Size
• Pooling
• Validate Connection

Connection Pooling Example

The following example opens a connection using ConnectionString attributes related
to connection pooling.

// C#

using System;
using Oracle.DataAccess.Client;

class ConnectionPoolingSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 //Open a connection using ConnectionString attributes
 //related to connection pooling.
 con.ConnectionString =
 "User Id=scott;Password=tiger;Data Source=oracle;" +
 "Min Pool Size=10;Connection Lifetime=100000;Connection Timeout=60;" +
 "Incr Pool Size=5; Decr Pool Size=2";
 con.Open();
 Console.WriteLine("Connection pool successfully created");

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Connection is placed back into the pool.");
 }
}

Using Connection Pooling
When connection pooling is enabled (the default), the Open and Close methods of the
OracleConnection object implicitly use the connection pooling service, which is
responsible for pooling and returning connections to the application.

The connection pooling service creates connection pools by using the
ConnectionString property as a signature, to uniquely identify a pool.

In managed and Core versions of ODP.NET, connection strings themselves must be
an exact match in their entirety. If keywords are supplied in a different order or a space
is added to the connection string, a new pool is created. If a pool already exists with
the requested signature, a connection is returned to the application from that pool.

In unmanaged ODP.NET, a new pool is created only when connection string attribute
values change. Extra spaces or changing keyword order do not create a new pool.

Chapter 3
Connecting to Oracle Database

3-42

When a connection pool is created, the connection pooling service initially creates the
number of connections defined by the Min Pool Size attribute of the ConnectionString
property. This number of connections is always maintained by the connection pooling service
for the connection pool, except when Fast Connection Failover removes invalid connections
is exceeded. In this case, the connection number could drop below the Min Pool Size.
ODP.NET would then attempt to restore the minimum pool size level upon the next
connection request.

At any given time, these connections are in use by the application or are available in the pool.

The Incr Pool Size attribute of the ConnectionString property defines the number of new
connections to be created by the connection pooling service when more connections are
needed in the connection pool.

When the application closes a connection, the connection pooling service determines
whether or not the connection lifetime has exceeded the value of the Connection Lifetime
attribute. If so, the connection pooling service destroys the connection; otherwise, the
connection goes back to the connection pool. The connection pooling service enforces the
Connection Lifetime only when Close() or Dispose() is invoked.

The Max Pool Size attribute of the ConnectionString property sets the maximum number of
connections for a connection pool. If a new connection is requested, but no connections are
available and the limit for Max Pool Size has been reached, then the connection pooling
service waits for the time defined by the Connection Timeout attribute. If the Connection
Timeout time has been reached, and there are still no connections available in the pool, the
connection pooling service raises an exception indicating that the connection pool request
has timed-out. Upon a connection timeout, ODP.NET distinguishes whether the timeout
occurred due to the database server failing to deliver a connection in the allotted time or no
connection being available in the pool due to the maximum pool size having been reached.
The exception text returned will either be "Connection request timed out" in the case of the
former or "Pooled connection request timed out" in the case of the latter.

The Validate Connection attribute validates connections coming out of the pool. This
attribute should be used only when absolutely necessary, because it causes a round-trip to
the database to validate each connection immediately before it is provided to the application.
If invalid connections are uncommon, developers can create their own exception/error
handler to retrieve and validate a new connection, rather than using the Validate Connection
attribute. This generally provides better performance.

The connection pooling service closes connections when they are not used; connections are
closed every 3 minutes. The Decr Pool Size attribute of the ConnectionString property
provides connection pooling service for the maximum number of connections that can be
closed every 3 minutes.

Enabling connection pooling by setting "pooling=true" in the connection string (which is the
case by default) will also pool operating system authenticated connections.

Connection Pool Management
ODP.NET connection pool management provides explicit connection pool control to ODP.NET
applications. Applications can explicitly clear connections in a connection pool.

Using connection pool management, applications can do the following:

Chapter 3
Connecting to Oracle Database

3-43

Note:

These APIs are not supported in a .NET stored procedure.

• Clear connections from connection pools using the ClearPool method.

• Clear connections in all the connection pools in an application domain, using the
ClearAllPools method.

See Also:

• "ClearPool"

• "ClearAllPools"

Connection Performance Counters
Installing Oracle Data Provider for .NET creates a set of performance counters on the
target system. All ODP.NET provider types (Core, managed, and unmanaged) publish
these performance counters for each of their client applications. These performance
counters can be viewed using Windows Performance Monitor (Perfmon) or the
PerformanceCounter class in the System.Diagnostics namespace version 4.5.0 or
higher.

Note:

ODP.NET performance counters are available on Windows platforms only.

As ODP.NET performance counters are not enabled nor registered after installation,
administrators must register the counters, then enable the specific counters of interest
before being able to monitor them.

Registering Performance Counters
After installation, ODP.NET performance counters must be registered so that tools,
such as Perfmon, can consume them. Registration requires running a PowerShell
script for the respective provider.

ODP.NET installs six scripts for counters that must be run from PowerShell to take
effect

• register_odpc_perfmon_counters.ps1 – Registers ODP.NET Core counters

• register_odpm_perfmon_counters.ps1 – Registers managed ODP.NET counters

• register_odpu_perfmon_counters.ps1 – Registers unmanaged ODP.NET
counters

• unregister_odpc_perfmon_counters.ps1 – Unregisters ODP.NET Core counters

Chapter 3
Connecting to Oracle Database

3-44

• unregister_odpm_perfmon_counters.ps1 – Unregisters managed ODP.NET counters

• unregister_odpu_perfmon_counters.ps1 – Unregisters unmanaged ODP.NET counters

These scripts are located in the ORACLE_HOME\odp.net\PerfCounters directory for Oracle
Universal Installer and NuGet deployments, in the
<INSTALLATION_DIRECTORY>\odp.net\PerfCounters directory for xcopy deployments, and
<VISUAL_STUDIO_SOLUTION_DIRECTORY>\packages\Oracle.ManagedDataAccess.<VERSION>\P
erfCounters directory for MSI deployments.

Windows Administrator privileges are required when running these PowerShell scripts.

To unregister, run the unregister PowerShell script that matches the ODP.NET provider type
you wish to unregister.

Previously, the OraProvCfg.exe utility was included with ODP.NET for registering and
unregistering counters. These PowerShell scripts replace the utility. If you registered
ODP.NET counters with this utility, then unregister with the same OraProvCfg.exe version.

Enabling Performance Counters
ODP.NET enables monitoring many different connection counters, including pooled and non-
pooled connections. These counters can be monitored individually or together. Developers
can set which counters to monitor prior to application startup using the PerformanceCounters
setting in the <settings> section of the .NET config file, which is available in managed and
unmanaged ODP.NET, or Windows Registry, which is available in unmanaged ODP.NET only.
For ODP.NET Core, developers can set the OracleConfiguration.PerformanceCounters
property.

Table 3-4 lists the connection performance counters with their setting values.

Table 3-4 Performance Counters for Connection Pooling

Performance Counter Valid Values Description

None 0 Not enabled (Default)

HardConnectsPerSecond 1 Number of sessions being
established with the Oracle
Database every second.

HardDisconnectsPerSecond 2 Number of sessions being
severed from the Oracle
Database every second.

SoftConnectsPerSecond 4 Number of active connections
originating from connection pools
every second.

SoftDisconnectsPerSecond 8 Number of active connections
going back to the connection
pool every second.

NumberOfActiveConnectionP
ools

16 Total number of active
connection pools.

NumberOfInactiveConnectio
nPools

32 Number of inactive connection
pools.

NumberOfActiveConnections 64 Total number of connections in
use.

Chapter 3
Connecting to Oracle Database

3-45

Table 3-4 (Cont.) Performance Counters for Connection Pooling

Performance Counter Valid Values Description

NumberOfFreeConnections 128 Total number of connections
available for use in all the
connection pools.

NumberOfPooledConnections 256 Total number of pooled active
and free connections.

NumberOfNonPooledConnecti
ons

512 Number of non-pooled active
connections.

NumberOfReclaimedConnecti
ons

1024 Number of connections which
were garbage-collected implicitly.

NumberOfStasisConnections 2048 No operation. This counter is no
longer supported.

These settings are bitwise ORed in order to monitor more than one counter. For
example, to collect counters for SoftConnectsPerSecond (4), Soft
DisconnectsPerSecond (8), and NumberOfActiveConnectionPools (16), set
PerformanceCounters to 28 (i.e. 4 + 8 + 12).

Setting Performance Counters in .NET Configuration Files
Performance counters can be set using an .NET configuration file, such as web.config
or app.config, in managed and unmanaged ODP.NET only. Since .NET configuration
entries take precedence over Windows Registry settings, they can be used for a
specific application.

As earlier described, populating the PerformanceCounters setting in the <settings>
section enables individual performance counters to be monitored. Windows Perfmon
uses very long and not easily human readable application instance names. To make
identifying each application easier administrators can assign an identifier name in the
<connectionPools> section of the .NET configuration file. This section supports the
following settings:

• connectionString: This setting identifies the connections or pool to monitor using
the connection string as the unique identifier. The connection string entered here
must match the target connection string to be monitored, but without the password
attribute.

• poolName (optional): Connection strings can be very long and hard to read with
many that look similar. poolName allows using an arbitrary string to easily identify
which pool is being monitored.

The following examples show how to use these settings.

ODP.NET, Managed Driver

<oracle.manageddataaccess.client>
 <version number="*">
 <connectionPools>
 .
 .
 <connectionPool connectionString="[connection string without password]"
poolName="[Pool Name]"> </connectionPool>

Chapter 3
Connecting to Oracle Database

3-46

 .
 .
 </connectionPools>
 </version>
</oracle.manageddataaccess.client>

ODP.NET, Unmanaged Driver can use the same pool name setting and format as listed
above by replacing the <oracle.manageddataaccess.client> tags with
<oracle.unmanageddataaccess.client> tags. Alternatively, the legacy
<oracle.dataaccess.client> format is available for unmanaged ODP.NET.

ODP.NET, Unmanaged Driver

<configuration>
 <oracle.dataaccess.client>
 <settings>
 .
 .
 <add name="[connection string without password]" value="connectionPool
name='[Pool Name]'"/>
 .
 .
 </settings>
 </oracle.dataaccess.client>
</configuration>

Setting Performance Counters in Windows Registry
Publication of individual unmanaged ODP.NET performance counters is enabled or disabled
using the Windows Registry value PerformanceCounters of type REG_SZ. This registry value
is under:

HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly_Version
where Assembly_Version is the full assembly version number of Oracle.DataAccess.dll.

Similarly to the .NET config file, multiple performance counters can be obtained by adding the
valid values. For example, if PerformanceCounters is set to 3, then both
HardConnectsPerSecond and HardDisconnectsPerSecond are enabled.

Publishing Performance Counters
Commonly, ODP.NET performance counters are monitored using Perfmon. The counters are
published under the following Category Names:

• ODP.NET, Core Driver

• ODP.NET, Managed Driver

• ODP.NET, Unmanaged Driver

Administrators can choose the individual ODP.NET counters to monitor after selecting one or
more of these categories. PerfMon shows all ODP.NET counters, but only the explicitly
enabled counters generate statistics.

After choosing the counters to monitor, administrators then select the running instance(s) to
monitor. ODP.NET instances must be actively running for them to appear in PerfMon.
Otherwise, no instances will appear available to monitor. After instance selection occurs, they
are added to PerfMon as counters to monitor.

Chapter 3
Connecting to Oracle Database

3-47

Performance counters can monitor at the application domain, pool, or database
instance level. Database instance level monitoring only applies if load balancing or
Fast Connection Failover features are enabled.

The instance name format is as follows:

<Application Domain Name> [<Process Id>, <Application Domain Id>]
[<Connection String/Pool Name>][<Instance Name>]. The entry is limited to 127
characters. There is a restriction length on every field in the instance name. The
following table shows the maximum number of characters allocated for each field:

Table 3-5 Field Names of Performance Counters and Maximum Number of
Characters

Field Name Maximum Number of Characters

Application Domain 40

Pool Name/Connection String 70

Database Instance Name 16

When the length of a field value exceeds the length limit, the string is truncated and
appended with "..." to fit within the length limit and indicate the continuation. For
example, for a given application called Program.exe with a connection string user
id=hr;Password=<password>;data source=inst1;max pool size=125;min pool
size=50, one may see the following similar to the following for a process that has two
application domains:

• Program.exe [123, 1]
• Program.exe [123, 1][user id=hr;data source=inst1;max pool siz...]
• Program.exe [123, 1][user id=hr;data source=inst1;max pool siz...]

[instA]
• Domain 2[123, 2]
• Domain 2[123, 2][user id=hr;data source=inst1;max pool siz...]
• Domain 2[123, 2][user id=hr;data source=inst1;max pool siz...]

[instB]
• Domain 2[123, 2][user id=hr;data source=inst1;max pool siz...]

[instC]
Since connection pool attributes can be similar in their first 70 characters, applications
can set a Pool Name to uniquely identify each one in the monitoring tool. For example,
when using Pool Name, the process will show up as follows:

Domain 2[123, 2][Pool Name][instC]

Database Resident Connection Pooling

Client side connection pooling can be very efficient for middle tier machines. However,
it can consume a great deal of database server resources if there are numerous
middle tier servers with idle connections. While the intent is to keep the number of idle
connections to a minimum, it becomes difficult as the number of middle tier servers

Chapter 3
Connecting to Oracle Database

3-48

increase, each possibly having idle connections that cannot be shared across applications.

Database Resident Connection Pooling (DRCP) is intended to optimize resource usage by
pooling connections at the database server level, which can then be shared across many
applications. The benefit is better scalability and lower resource usage at the database server
level.

Managed and unmanaged ODP.NET have been enhanced to support DRCP, which allows it
to dispense and release DRCP connections to better utilize database server resources.

About DRCP

DRCP pools server processes, each of which is the equivalent to a dedicated server process
and database session combined. These are called pooled servers. Pooled servers can be
shared by multiple applications running on the same or multiple hosts.

When DRCP is configured for Oracle Database Real Application Clusters (Oracle RAC), the
pool configuration is applied to each database instance. Starting or stopping the pool on one
instance starts or stops the pool on all instances.

DRCP and ODP.NET

DRCP is a server side pool that complements ODP.NET client side pooling. These two pools
can be used together.

In a typical dedicated server mode, client side connection pooling saves both on server round
trips and socket/session creation. In a connection open/close sequence, a server round trip is
involved only upon the first Open(). For subsequent open/close sequences on the same
connection, no client to server interaction is required because the connection is pooled locally
in the client address space.

With DRCP enabled, when the client creates a connection, the connection is assigned a
pooled server when needed. When the connection is closed, the database server releases
the DRCP server session back to the server side pool, effectively making the DRCP server
session available for reuse. This server session can be reused by the same pool or a different
pool on the same or different middle tier hosts.

Configuring DRCP and ODP.NET

The following section describe how DRCP can be configured on the client side and the server
side.

• Configuring DRCP on the Client Side

ODP.NET developers can enable DRCP on the client side by using (SERVER=POOLED) in
the connect descriptor.

Sample Descriptor:

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=myhost)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=sales.example.com)(SERVER=POOLED)))

• Configuring DRCP on the Server Side

Oracle database includes a default connection pool called
SYS_DEFAULT_CONNECTION_POOL. By default, this pool is created, but not started. To
enable database resident connection pooling, you must explicitly start the connection
pool.

Chapter 3
Connecting to Oracle Database

3-49

You must be a database administrator (DBA) and must log on as SYSDBA to start
and end a pool.

SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL();

For DRCP connections to be shared across multiple client-side ODP.NET
connection pools, then set the OracleConnection.DRCPConnectionClass property
to a string value before opening the ODP.NET connection. ODP.NET will first try to
obtain an idle connection with the same DRCP connection class property value. If
it does not find one, then it will create a new connection instead.

Example 3-1 Using Database Resident Connection Pooling: Sample Code

// This application uses the following connect descriptor:
// oracle = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=<hostname>)
(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=<service name>)
(SERVER=POOLED)))

using System;
using Oracle.ManagedDataAccess.Client;

class DRCP
{
 static void Main()
 {
 string constr = “user id=hr;password=hr;data
source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.DRCPConnectionClass = "GroupA";
 con.Open();

 con.Dispose();

 }
}

Note:

To use DRCP with ODP.NET, Unmanaged Driver,:

• the .NET configuration setting, CPVersion, must be set to 2.0, or,

• have CPVersion not set at all, but have (SERVER=POOLED) in the TNS full
descriptor that is used by the application.

Refer to settings section for more information.

Chapter 3
Connecting to Oracle Database

3-50

See Also:

Oracle Database Administrator’s Guide for more information on configuring the
default connection pool or end pool.

DRCP for Oracle Multitenant

DRCP cannot be created on the PDB. DRCP can only be created on the CDB and is shared
among all the PDBs.

ODP.NET has one DRCP for the entire CDB and it can be configured and managed (start,
stop, or reconfigure) only by connecting to root container.

To configure, set a session to point to the CDB and start the DRCP pool. For example:

alter session set container = cdb$root;
execute dbms_connection_pool.configure_pool('SYS_DEFAULT_CONNECTION_POOL');
execute dbms_connection_pool.start_pool();

DRCP for Oracle Real Application Clusters (RAC)

In an Oracle Real Application Clusters (RAC) environment, when a user creates a DRCP on
an instance, that DRCP is replicated on all the instances of an Oracle RAC database and you
can use any instance to manage the connection pool. Any changes you make to the pool
configuration are applicable on all Oracle RAC instances.

DRCP Restrictions for ODP.NET

ODP.NET does not support the following features with DRCP:

• Open the proxy connection with end user authentication

• Open the sysoper connection

• Open using OpenWithNewPassword
• Set the SQLNET.AUTHENTICATION_SERVICES parameter value to nts, which enables

Microsoft Windows native operating system authentication

• .NET Framework versions earlier than .NET Framework 4

Oracle Multitenant and Pluggable Databases
Oracle Database 12c introduced Oracle Multitenant, which enables an Oracle database to
contain a portable collection of schemas, schema objects, and nonschema objects that
appears to ODP.NET as a separate database. This self-contained collection is called a
pluggable database (PDB).

Oracle Multitenant is a database architecture that enables customers to easily consolidate
multiple pluggable databases without changing their application. This architecture delivers all
the benefits of managing many databases as one, yet retains the isolation and resource
prioritization of separate databases. In addition, Oracle Multitenant enables rapid provisioning
and upgrades, and fully complements other Oracle database options.

Managed and unmanaged ODP.NET fully support Oracle Multitenant. In addition to being
able to connect to individual pluggable databases, ODP.NET has been enhanced so that

Chapter 3
Connecting to Oracle Database

3-51

applications can request and obtain connections to specific PDBs from the same
connection pool. The application can connect to any of the PDBs that are part of the
same container database (CDB) and they must have the same common user.
Moreover, if connections span multiple instances, such as with Oracle Real Application
Clusters, then every instance must uniformly have the same exact PDBs and services
for the common user to connect to. If these conditions are met, then ODP.NET will be
able to connect to or implicitly switch connections from one PDB to another within the
same pool in a highly performant manner.

To obtain a connection to a specific PDB (as a common user) set the
OracleConnections properties, PDBName and ServiceName, and then call
OracleConnection.Open() to obtain the a connection to the specified PDB and
Service name. PDBName and ServiceName identify the PDB and service that the
connection needs to be established to or switched to if using an existing idle
connection from the connection pool. They are the pluggable database name and
database service name, respectively. If only the PDBName property is set and the
service name is not set by the user, then the provider will return a connection that uses
the default (administrative) service.

Note:

For ODP.NET, Unmanaged Driver to be able to switch PDB connections
within the same pool:

• the .NET configuration setting, CPVersion, must be set to 2.0, or,

• have CPVersion not set at all, but set PDBName and/or ServiceName to a
non-null/non-empty value for the first connection request for a given
connection string.

Refer to settings section for more information.

Example 3-2 Using Pluggable Database: Sample Code

// C#
using System;
using Oracle.ManagedDataAccess.Client;

class PDB
{
 static void Main()
 {
 string constr = “user id=hr;password=hr;data
source=oracle”;
 OracleConnection con = new OracleConnection(constr);
 con.PDBName = "pdb1";
 con.ServiceName = "db1.company.com";
 con.Open();
 con.Close();
 }
}

Chapter 3
Connecting to Oracle Database

3-52

ODP.NET keeps track of the PDBName and ServiceName to which the pooled connections are
established to. Upon the application requesting for a connection with a specified PDBName and
ServiceName, ODP.NET will return a connections that matches that request. However, if a
matching connection is not found, ODP.NET will create a new connection and/or alter the
session to switch to the requested PDBName and ServiceName. If the PDBName and/or
ServiceName has been altered, then the SwitchedConnection property will return true if called
with the Open() method invocation.

ODP.NET does not support usage of the ALTER SESSION statement to modify the container
database during the lifetime of a process. If using PDBs with Oracle Continuous Query
Notification, you must connect to Oracle Database 12c Release 2 or higher. Hosting
connections to multiple PDBs from the same pool requires ODP.NET for .NET Framework 4
or higher.

Note:

When the connection is implicitly being switched from one PDB/Service to another,
Service Relocation Connection Timeout(SRCT) will not take effect.

See Also:

Managing Pluggable Databases in Oracle Database Administrator's Guide

Edition-Based Redefinition
Edition-based redefinition enables you to upgrade the database component of an application
even while the application is being used. This minimizes or eliminates downtime for the
application.

ODP.NET does not support usage of the ALTER SESSION statement to modify the Edition
during the lifetime of a process.

Managed and unmanaged ODP.NET can connect to a database edition, and also have the
ability to host connections to multiple Editions from within the same pool. An ODP.NET
application can obtain a connection that is associated with a specified database edition by
setting the OracleConnection.DatabaseEditionName property to the name of the database
edition that the connection should be associated with. To use a single pool, the same user
must be able to connect to both Editions. Applications will perform better and more efficiently
when using Editions because ODP.NET can use the same connection pool and even share
the same OracleConnection object by only changing Edition-specific properties.

Example 3-3 Using Edition-Based Redefinition: Sample Code

using System;
using Oracle.ManagedDataAccess.Client;

class Editions
{
 static void Main()
 {
 // Create a connection

Chapter 3
Connecting to Oracle Database

3-53

 string constr = “user id=hr;password=hr;data
source=oracle”;
 OracleConnection con = new OracleConnection(constr);

 // Obtain a connection associated with EditionX
 con.DatabaseEditionName = "EditionX";
 con.Open();

 // Obtain a connection associated with EditionY
 con.Close();
 con.DatabaseEditionName = "EditionY";
 con.Open();
 con.Dispose();
 }
}

Changing the edition name through DatabaseEditionName while the connection is
open is not allowed. It must be changed while the connection is in a closed state.

ODP.NET supports Editions when connecting to Oracle Database 11g Release 2 or
later. Hosting multiple Editions in the same pool is available only in ODP.NET for .NET
Framework 4 and above.

Note:

To use this Edition-Based Redefinition feature with unmanaged ODP.NET
connection pools:

• the .NET configuration setting, CPVersion, must be set to 2.0, or,

• have CPVersion not set at all, but set the DatabaseEditionName property
to a non-null/non-empty value for the first connection request for a given
connection string.

Refer to settings section for more information.

Applications can specify an Edition at deployment time using the registry or
configuration file. An application can create the following registry entry of type REG_SZ:

HKLM\Software\Oracle\ODP.NET\version\Edition

Here version is the version of ODP.NET, and Edition is a valid Edition string value.

An application can alternatively use the web.config or application.config
configuration file to specify the Edition at deployment time. The machine.config
configuration file can be used to specify the Edition for all applications that use a
particular version of the .NET framework.

The following example sets the Edition to E1 in a .NET configuration file for ODP.NET,
Unmanaged Driver:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>

Chapter 3
Connecting to Oracle Database

3-54

 <add name="Edition" value="E1"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

To summarize, the Edition name can be set by the DatabaseEditionName property, in
the .NET configuration file, or in the Windows Registry. If DatabaseEditionName is set, then it
takes precedence over the other two settings. If the .NET configuration file has an Edition set,
then it takes precedence over the registry.

See Also:

For more information on Editions refer to the Oracle Database Administrator’s
Guide and Oracle Database Development Guide

Privileged Connections
Oracle allows database administrators to connect to Oracle Database with various privileges,
such as SYSDBA, SYSASM, and SYSOPER. This is done through the DBA Privilege attribute of the
ConnectionString property.

The following example connects scott/tiger as SYSDBA:

// C#

using System;
using Oracle.DataAccess.Client;

class PrivilegedConnectionSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 //Connect scott/tiger as SYSDBA
 con.ConnectionString = "User Id=scott;Password=tiger;" +
 "DBA Privilege=SYSDBA;Data Source=oracle;";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
}

See Also:

DBA Privilege "Table 7-50" for further information on privileged connections in the
database

Chapter 3
Connecting to Oracle Database

3-55

Connection Pooling with OracleCredential
To better secure passwords, all ODP.NET applications can use OracleCredential to
store user names and passwords outside of the connection string. OracleCredential
mitigates the possibility of exposing user credentials in a page file swap or in a crash
dump.

OracleCredential can be used with or without connection pooling.

When using the OracleCredential object, one should be aware of the connection pool
algorithm that has been modified to take this new feature into consideration, when
opening connection to the Oracle database. With earlier implementations of ODP.NET
connection pool algorithm, the uniqueness of connection string attribute values were
used to decide if a new connection pool needs to be created or an existing connection
pool can be used to dispense connections. But with the introduction of
OracleCredential, the reference of this object is also used to decide which
connection pool that OracleConnection object is associated with.

The decision to create a new connection pool now depends on two factors, first is the
uniqueness of connection string (as in earlier releases) and the second is the
reference comparison of the OracleCredential provided to the OracleConnection
object while opening a new connection. If either of these is different, a separate pool is
used. In order to keep re-using the same connection pool and not create additional
connection pools while using the OracleCredential object, simply create one
OracleCredential object per database user and re-use the same object when
opening connections.

Here is an example to clarify the new algorithm:

using System;
using System.Security;
using Oracle.ManagedDataAccess.Client;
//using Oracle.DataAccess.Client;

class Test
{
 static void Main()
 {
 string connStr1 = "user id=hr; password=hr; data source=oracle";
 string connStr2 = "data source=oracle";

 SecureString secPwd = new SecureString();
 secPwd.AppendChar('h');
 secPwd.AppendChar('r');
 secPwd.MakeReadOnly();

 OracleCredential oc1 = new OracleCredential("hr", secPwd);
 OracleCredential oc2 = new OracleCredential("hr", secPwd);
 OracleCredential oc3 = new OracleCredential("hr", secPwd);

 // con1 and con2 are associated with the same connection pool since both are
using the same
 // connection string and OracleCredential remains null in both cases.
 OracleConnection con1 = new OracleConnection(connStr1);
 OracleConnection con2 = new OracleConnection(connStr1, null);

Chapter 3
Connecting to Oracle Database

3-56

 // con3 and con4 use the same connection string but different OracleCredential
objects
 // (although same contents) so they are associated with different connection pools.
 OracleConnection con3 = new OracleConnection(connStr2, oc1);
 OracleConnection con4 = new OracleConnection(connStr2, oc2);

 // con5 and con6 use the same connection string and same OracleCredential object
 // so they are associated with the same connection pool.
 OracleConnection con5 = new OracleConnection(connStr2, oc3);
 OracleConnection con6 = new OracleConnection(connStr2, oc3);

 // Open the connections
 con1.Open();
 con2.Open();
 con3.Open();
 con4.Open();
 con5.Open();
 con6.Open();

 // Please note that con1 and con2 use the same connection pool.
 // In addition, con3 and con4 use different connection pools
 // And lastly con5 and con6 use the same connection pool.
 // Thus, in the end, there will be 4 different connection pools created in total.
 }
}

Note:

OracleCredential does not support double quotes around a SecureString
password. Double quotes can be used within a password, however.

See Also:

OracleCredential Class

Password Expiration
Oracle allows users passwords to expire. ODP.NET lets applications handle the password
expiration by providing a new method, OpenWithNewPassword, that opens the connection with
a new password.

The following example uses the OracleConnection OpenWithNewPassword method to connect
with a new password of panther:

/* Database Setup
connect / as sysdba;
drop user testexpire cascade;
-- create user "testexpire" with password "testexpire"
grant connect , resource to testexpire identified by testexpire;
alter user testexpire password expire;
*/

Chapter 3
Connecting to Oracle Database

3-57

// C#

using System;
using Oracle.DataAccess.Client;

class PasswordExpirationSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 try
 {
 con.ConnectionString =
 "User Id=testexpire;Password=testexpire;Data Source=oracle";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);
 }
 catch (OracleException ex)
 {
 Console.WriteLine(ex.Message);

 //check the error number
 //ORA-28001 : the password has expired
 if (ex.Number == 28001)
 {
 Console.WriteLine("\nChanging password to panther");
 con.OpenWithNewPassword("panther");
 Console.WriteLine("Connected with new password.");
 }
 }
 finally
 {
 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
 }
}

Note:

• The OpenWithNewPassword method should be used only when the user
password has expired, not for changing the password.

• If connection pooling is enabled, then invoking the OpenWithNewPassword
method also clears the connection pool. This closes all idle connections
created with the old password.

See Also:

"OpenWithNewPassword(String)"

Chapter 3
Connecting to Oracle Database

3-58

Proxy Authentication
With proper setup in the database, proxy authentication enables middle-tier applications to
control the security by preserving database user identities and privileges, and auditing
actions taken on behalf of these users. This is accomplished by creating and using a proxy
database user that connects and authenticates against the database on behalf of a database
user (that is, the real user) or database users.

Proxy authentication can then be used to provide better scalability with connection pooling.
When connection pooling is used in conjunction with proxy authentication, the proxy
authenticated connections can be shared among different real users. This is because only the
connection and session established for the proxy is cached. An additional session is created
for the real user when a proxy authenticated connection is requested, but it will be destroyed
appropriately when the proxy authenticated connection is placed back into the pool. This
design enables the application to scale well without sacrificing security.

ODP.NET applications can use proxy authentication by setting the "Proxy User Id" and
"Proxy Password" attributes in the connection string. The real user is specified by the "User
Id" attribute. Optionally, to enforce greater security, the real user's password can be provided
through the "Password" connection string attribute. When using distributed transactions in
conjunction with proxy authentication, the real user's password is no longer optional, and it
must be supplied.

The following example illustrates the use of ODP.NET proxy authentication:

/* Log on as DBA (SYS or SYSTEM) that has CREATE USER privilege.
 Create a proxy user and modified scott to allow proxy connection.

 create user appserver identified by eagle;
 grant connect, resource to appserver;
 alter user scott grant connect through appserver;
*/

// C#

using System;
using Oracle.DataAccess.Client;

class ProxyAuthenticationSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 // Connecting using proxy authentication
 con.ConnectionString = "User Id=scott;Password=tiger;" +
 "Data Source=oracle;Proxy User Id=appserver;Proxy Password=eagle; ";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
}

Chapter 3
Connecting to Oracle Database

3-59

See Also:

• Oracle Database SQL Language Reference for the description and
syntax of the proxy clause for the ALTER USER statement

• Oracle Database Security Guide for information about how auditing
works for SQL statements and privileges in a multitier environment

Dynamic Distributed Transaction Enlistment
For those applications that dynamically enlist in distributed transactions through the
EnlistDistributedTransaction of the OracleConnection object, the "Enlist"
connection string attribute must be set to a value of "true". If "Enlist=true", the
connection enlists in a transaction when the Open method is called on the
OracleConnection object, if it is within the context of a COM+ transaction or a
System.Transactions. If not, the OracleConnection object does not enlist in a
distributed transaction, but it can later enlist explicitly using the
EnlistDistributedTransaction or the EnlistTransaction method. If "Enlist" is
equal to "false" or "dynamic", the connection cannot enlist in the transaction.
ODP.NET, Unmanaged Driver in ODAC 12c Release 3 first introduced this new
behavior for "Enlist=dynamic".

See Also:

• "Connection String Attributes "

• "EnlistDistributedTransaction"

Client Identifier and End-to-End Tracing
The client identifier is a predefined attribute from the Oracle application context
namespace USERENV. It is similar to proxy authentication because it can enable
tracking of user identities. However, client identifier does not require the creation of
two sessions (one for the proxy user and another for the end user) as proxy
authentication does. In addition, the client identifier does not have to be a database
user. It can be set to any string. But most importantly, by using client identifier,
ODP.NET developers can use application context and Oracle Label Security, and
configure Oracle Virtual Private Database (VPD) more easily. To set the client
identifier, ODP.NET applications can set the ClientId property on the
OracleConnection object after opening a connection. If connection pooling is enabled
in unmanaged ODP.NET, then the ClientId is reset to null whenever a connection is
placed back into the pool. In managed ODP.NET, the ClientId is reset to null
(assuming no new value is provided) upon the first database round trip after a
connection is placed back into the pool.

The client identifier can also be used for end-to-end application tracing. End-to-end
tracing simplifies the process of diagnosing performance problems in multitier
environments. In multitier environments, a request from an end client is routed to

Chapter 3
Connecting to Oracle Database

3-60

different database sessions by the middle tier making it difficult to track a client across
different database sessions. End-to-end tracing uses the client identifier to uniquely trace a
specific end-client through all tiers to the database server.

ODP.NET exposes the ActionName, ClientId, ClientInfo, and ModuleName write-only
properties on the OracleConnection object. These properties correspond to the following
end-to-end tracing attributes:

• ActionName - Specifies an action, such as an INSERT or UPDATE operation, in a module

• ClientId - Specifies an end user based on the logon ID, such as HR.HR
• ClientInfo - Specifies user session information

• ModuleName - Specifies a functional block, such as Accounts Receivable or General
Ledger, of an application

See Also:

• "OracleConnection Properties"

• Oracle Database SQL Tuning Guide for an overview of End-to-End Application
Tracing

• Oracle Database Security Guide

Transparent Application Failover (TAF) Callback Support
Transparent Application Failover (TAF) is a feature in Oracle Database that provides high
availability.

Note:

ODP.NET, Managed Driver and ODP.NET Core do not support TAF nor TAF
callbacks.

TAF enables an application connection to automatically reconnect to another database
instance if the connection gets severed. Active transactions roll back, but the new database
connection, made by way of a different node, is identical to the original. This is true
regardless of how the connection fails.

With TAF, a client notices no loss of connection as long as there is one instance left serving
the application. The database administrator controls which applications run on which
instances, and also creates a failover order for each application.

When a session fails over to another database, the NLS settings that were initially set on the
original session are not carried over to the new session. Therefore, it is the responsibility of
the application to set these NLS settings on the new session.

Chapter 3
Connecting to Oracle Database

3-61

TAF Notification
Given the delays that failovers can cause, applications may wish to be notified by a
TAF callback. ODP.NET supports the TAF callback function through the Failover
event of the OracleConnection object, which allows applications to be notified
whenever a failover occurs. To receive TAF callbacks, an event handler function must
be registered with the Failover event.

When Failover Occurs
When a failover occurs, the Failover event is raised and the registered event handler
is invoked several times during the course of reestablishing the connection to another
Oracle instance.

The first call to the event handler occurs when Oracle Database first detects an
instance connection loss. This allows the application to act accordingly for the
upcoming delay for the failover.

If the failover is successful, the Failover event is raised again when the connection is
reestablished and usable. At this time, the application can resynchronize the
OracleGlobalization session setting and inform the application user that a failover
has occurred. No significant database operation should occur immediately after a
FailoverEvent.Begin event. SQL and major database operations should wait until the
FailoverEvent.End event. FailoverEvent.Begin is primarily used to reject failover or
to trace it. FailoverEvent.Begin can also be used for non-database application
operations, such as informing the end user a failover is in progress and to wait until it
completes before proceeding. Transactions can be used in the FailoverEvent.End
callback phase, such as to file fault tickets or audit. These transactions must be
committed before the callback completes.

If failover is unsuccessful, the Failover event is raised to inform the application that a
failover did not take place.

The application can determine whether or not the failover is successful by checking
the OracleFailoverEventArgs object that is passed to the event handler.

Registering an Event Handler for Failover
The following example registers an event handler method called OnFailover:

// C#

using System;
using Oracle.DataAccess.Client;

class TAFCallBackSample
{
 public static FailoverReturnCode OnFailover(object sender,
 OracleFailoverEventArgs eventArgs)
 {
 switch (eventArgs.FailoverEvent)
 {
 case FailoverEvent.Begin :
 Console.WriteLine(
 " \nFailover Begin - Failing Over ... Please standby \n");
 Console.WriteLine(

Chapter 3
Connecting to Oracle Database

3-62

 " Failover type was found to be " + eventArgs.FailoverType);
 break;

 case FailoverEvent.Abort :
 Console.WriteLine(" Failover aborted. Failover will not take place.\n");
 break;

 case FailoverEvent.End :
 Console.WriteLine(" Failover ended ...resuming services\n");
 break;

 case FailoverEvent.Reauth :
 Console.WriteLine(" Failed over user. Resuming services\n");
 break;

 case FailoverEvent.Error :
 Console.WriteLine(" Failover error gotten. Sleeping...\n");
 return FailoverReturnCode.Retry;

 default :
 Console.WriteLine("Bad Failover Event: %d.\n", eventArgs.FailoverEvent);
 break;
 }
 return FailoverReturnCode.Success;
 } /* OnFailover */

 static void Main()
 {
 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();
 con.Failover += new OracleFailoverEventHandler(OnFailover);
 Console.WriteLine("Event Handler is successfully registered");

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 }
}

The Failover event invokes only one event handler. If multiple Failover event handlers are
registered with the Failover event, only the event handler registered last is invoked.

Note:

Distributed transactions are not supported in an environment where failover is
enabled.

Chapter 3
Connecting to Oracle Database

3-63

See Also:

• Oracle Database Net Services Administrator's Guide

• "OracleFailoverEventHandler Delegate"

• "OracleFailoverEventArgs Class"

Real Application Clusters and Global Data Services
This section discusses optimizations for the following products:

• Oracle Real Application Clusters (Oracle RAC) is a cluster database with a shared
cache architecture that overcomes the limitations of traditional shared-nothing and
shared-disk approaches to provide highly scalable and available database
solutions for business applications.

• Oracle Data Guard provides one or more standby databases to protect Oracle
data from failures, disasters, human error, and data corruptions for high availability
in mission critical applications.

• Oracle GoldenGate replicates data among heterogeneous data environments. It
enables high availability solutions, real-time data integration, transactional change
data capture, data replication, transformations, and verification between
operational and analytical enterprise systems.

• Global Data Services (GDS), new in Oracle Database 12c, provides database
workload management features across replicated databases, such as Data Guard
and GoldenGate.

ODP.NET supports Oracle Real Application Clusters (Oracle RAC), Data Guard, and
GoldenGate transparently, meaning you do not need to change ODP.NET code to use
these Oracle components. To further take advantage of these technologies, ODP.NET
offers connection pooling optimization features for achieving better application high
availability and performance. You can do this through configuring ODP.NET to receive,
respond, and send database status messages to .NET applications.

These optimization configurations include the use of features such as Fast Application
Notification (FAN), Runtime Connection Load Balancing, and Fast Connection Failover
(FCF).

These connection pooling optimizations can improve high availability and performance
for Oracle Real Application Clusters and Global Data Services products:

• Fast Application Notification

• In-Band Fast Application Notification

• Runtime Connection Load Balancing

• Fast Connection Failover (FCF)

Chapter 3
Real Application Clusters and Global Data Services

3-64

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide.

• Oracle Data Guard Concepts and Administration.

Fast Application Notification
Fast Application Notification (FAN) is a high availability and load balancing notification
mechanism that Oracle RAC, Data Guard, and GoldenGate use to notify ODP.NET
applications about cluster configuration and service-level information, including status
changes such as UP or DOWN events and server load. FAN UP and DOWN events can
apply to instances, services, and nodes. Based on information received, ODP.NET can adjust
its connection pool accordingly to improve application availability and performance.

With out-of-band FAN, Oracle RAC, Data Guard, and GoldenGate use one of two Oracle
messaging infrastructures to send notifications to ODP.NET applications:

• Oracle Notification Service (ONS)

• Oracle Database Advanced Queueing (AQ).

Table 3-6 describes when each messaging system is used and the ODP.NET-related client
configuration.

Table 3-6 Configurations for ODP.NET Driver Types

ODP.NET
Driver Type

Database
Server Version

FAN
Infrastructure

Configuration Manual ONS Configuration
Locations

Core and
managed

12.1 and later ONS Automatic or
Manual

Either of these two files:

• .NET configuration file
• ONS configuration file

Core and
managed

11.2 and earlier ONS Manual Either of these two files:

• .NET configuration file
• ONS configuration file

unmanaged 12.1 and later ONS Automatic or
Manual

oraaccess.xml file

unmanaged 11.2 and earlier AQ Automatic N/A

For automatic ONS configuration, developers can add more nodes and ports for ODP.NET to
listen to, in addition to the nodes and ports that ODP.NET obtains from the database
automatically.

ODP.NET applications do not require code changes to migrate from the AQ to ONS FAN
infrastructure. However, some ODP.NET client configuration changes may be necessary
when migrating to ONS, a newer database server version, or from ODP.NET, Unmanaged
Driver to the managed driver, as documented above.

On the database server side, FAN must be set up and configured for out-of-band messages.

Using out-of-band FAN from the database, ODP.NET can do the following:

Chapter 3
Real Application Clusters and Global Data Services

3-65

• With Runtime Connection Load Balancing, ODP.NET load balances connections
among Oracle RAC nodes, services, and service members and GDS resources.
This feature improves ODP.NET response time and ensures better resource
allocation of server resources.

• With the Fast Connection Failover (FCF) feature, Oracle RAC, Data Guard, and
GoldenGate can inform the ODP.NET connection pool if database nodes, services,
service members, or the databases have gone down. These DOWN messages
indicate which connections in the pool are invalid and must be removed.

See Also:

• onsConfig section to configure the .NET configuration file.

• Client Side ONS Daemon Configuration to configure the ONS
configuration file.

• Configuring a Port to Listen for Database Notifications for more
information on AQ configuration for FAN.

• Runtime Connection Load Balancing

• Oracle Real Application Clusters Administration and Deployment Guide
for more information about FAN.

• Oracle Call Interface Programmer's Guide to configure oraaccess.xml.

• Oracle Database Development Guide

In-Band Fast Application Notification

Oracle recommends using out of band notifications when possible as they support
more high availability event types than in band and can be more reliable. In some
scenarios, such as cloud deployments and when firewalls block notification messages
between the database and client, out of band messages and using ONS may not be
possible. ODP.NET can use in-band FAN notifications instead in these scenarios. In-
band FAN notifications support the following usage scenarios:

• Pluggable database relocation

• Database service relocation

• Database rolling upgrade

• Connection Manager planned maintenance

In-band notifications rely on existing ODP.NET connections to communicate messages
and for connection pooling to be enabled. ODP.NET will check for notifications every
time a connection makes a database round trip, is checked in, or checked out. When a
DOWN notification is received, ODP.NET will scan the pool for affected connections
and close them. Applications should not see any errors as long as connections are
returned to the pool prior to the drain timeout.

To use in-band notifications, no database server nor ODP.NET configuration changes
are required. They are enabled automatically in ODP.NET Core and managed 19.9
and unmanaged ODP.NET 19.10 or higher versions. On the server side, in-band
notifications are automatically enabled in Oracle Database 18c or higher versions.

Chapter 3
Real Application Clusters and Global Data Services

3-66

As an HA best practice, out of band notifications should be enabled along with the default in-
band notifications when possible.

Runtime Connection Load Balancing
With Runtime Connection Load Balancing, Oracle Data Provider for .NET balances work
requests across Oracle RAC instances based on the load balancing advisory and service
goal. Because workloads can constantly change, load balancing occurs when the application
requests a new connection. Thus, ODP.NET optimizes service levels by connecting users to
the least loaded nodes in real-time.

In Oracle Database 12c, Runtime Connection Load Balancing has been extended to Oracle
Data Guard and Oracle GoldenGate so that ODP.NET 12c connections can be load balanced
with these two database services as part of Global Data Services. No ODP.NET applications
require code changes to use Global Data Services if they are already using Runtime
Connection Load Balancing.

When Runtime Connection Load Balancing is enabled:

• The ODP.NET connection pool dispenses connections based on the load balancing
advisory and service goal.

• The ODP.NET connection pool also balances the number of connections to each service
member providing the service, based on the load balancing advisory and service goal.

By default, ODP.NET is enabled to receive Runtime Connection Load Balancing FAN
messages from the server. The feature has been enabled via the "Load Balancing=true" and
"pooling=true" settings in the connection string, which are the default values. This feature
can only be used if "pooling=true". In order to use Runtime Connection Load Balancing,
specific Oracle server configurations must be set.

The following connection string example enables Runtime Connection Load Balancing:

"user id=scott;password=tiger;data source=erp;load balancing=true;"

See Also:

• Table 3-3

• "Configuring a Port to Listen for Database Notifications"

• Oracle Database Net Services Administrator's Guide to set up the Oracle Net
configuration that Runtime Connection Load Balancing requires

• Oracle Real Application Clusters Administration and Deployment Guide for the
required Oracle RAC configuration

• Oracle Database Global Data Services Concepts and Administration Guide

Fast Connection Failover (FCF)
When an Oracle RAC service, service member, node, or a Data Guard database fails, the
severed ODP.NET connection objects may continue to exist in the application. If users
attempt to use these invalid connections, they will encounter errors. FCF enables ODP.NET

Chapter 3
Real Application Clusters and Global Data Services

3-67

to free these severed connections proactively and quickly. Users then will be able to
use the application after a server side failure without manual intervention from an
administrator.

In Oracle Database 12c, FCF has been extended to Oracle Data Guard and Oracle
GoldenGate for ODP.NET 12c connections through Global Data Services. No
ODP.NET applications require code changes to use Global Data Services if they
already use FCF.

ODP.NET applications can enable FCF through the High Availability Events, "HA
Events", connection string attribute. When HA Events are enabled:

• ODP.NET connection pool proactively removes connections from the pool when a
Global Data Service or Oracle RAC service, service member, node, or database
goes down.

• ODP.NET proactively forces threads waiting for responses from the downed
database to exit out from the existing call to avoid any hangs. When such a
connection is then returned to the pool, any resource associated with that
connection is freed.

• ODP.NET establishes connections to existing Oracle instances if the removal of
severed connections brings the total number of connections below the "min pool
size", upon the next connection request.

By default, ODP.NET is enabled to receive FCF FAN messages from the server. This
feature have been enabled via the HA Events=true and pooling=true settings in the
connection string, which are the default values.

The following connection string example enables HA Events:

"user id=scott;password=tiger;data source=erp;HA events=true;"

See Also:

• Table 3-3

• Configuring a Port to Listen for Database Notifications

• Oracle Database Net Services Administrator's Guide to set up the Oracle
Net configuration that FCF requires

• Oracle Real Application Clusters Administration and Deployment Guide
for the required Oracle RAC configuration

• Oracle Database Global Data Services Concepts and Administration
Guide

Using FCF Planned Outage to Minimize Service Disruption
FCF not only provides high availability services for unplanned outages, such as node
failures, but also for planned outages, such as server repairs, upgrades, and changes,
to minimize service disruption to ODP.NET application users.

When a database service is set to be stopped or relocated, a FAN message is
published with a planned reason code. A FCF-aware ODP.NET connection pool (HA

Chapter 3
Real Application Clusters and Global Data Services

3-68

Events=true) receives the notification and commences to close idle connections, no longer
allowing new connections to that specific database service. Active connections to that
specific database service remain until users complete their tasks and the connection is
returned to the pool. Thus, no users must stop work mid-stream due to a planned outage.

Eventually, all users complete their tasks and no connections remain to that database
service. The database administrator can then stop the service for the planned outage task.
This feature allows the database service to be stopped as quickly as possible without end
user disruption.

Oracle planned outage support works with Oracle Real Application Clusters (Oracle RAC),
Oracle Data Guard, and some single instance scenarios.

Oracle RAC Planned Outage

A typical planned outage scenario for Oracle RAC follows below. Note that the database
server commands apply to Oracle RAC 12c Release 2 or higher. Commands for earlier
releases may be different.

1. There is a need to upgrade, patch, or repair a software or hardware issue on a database
server. Stop the instance gracefully such that existing users experience no to few errors.
You can wait until all users complete their work before doing so. Business requirements
will dictate whether you wait for all users to log out or begin the planned outage after a
set time. An administrator could issue the following command line operation using Oracle
Server Control Utility (srvctl):

srvctl relocate service –database <unique database name> –service <service name> –
drain_timeout 120 –stopoption IMMEDIATE –oldinst <existing instance>

This command relocates the database service from the existing instance to any instance
it is configured to run on. Oracle Cluster Ready Services (CRS) will choose this instance,
as the command line specifies no target. CRS will wait 120 seconds (–drain_timeout
120) for any active sessions to drain, after which any sessions remaining on the existing
instance will be forcibly disconnected (–stopoption IMMEDIATE). If Application Continuity
is used in conjunction with planned outage, an attempt is made to recover these killed
sessions, masking the outage from end users.

The relocate operation starts the service in the new location prior to stopping the service
in its existing location. Immediate relocation allows draining with no brownout. If the
service cannot be started, it is not stopped at the original location to maintain availability.

2. Meanwhile in the connection pool, the FAN planned DOWN event clears idle sessions for
the instance being shutdown from the ODP.NET connection pool immediately and marks
that instance’s active sessions to be released at the next check-in. These FAN actions
drain the sessions from this instance without disrupting the users.

Existing connections on other instances remain usable, and new connections can be
opened to these other instances.

3. Not all sessions will check their connections into the pool immediately. The timeout period
specified by –drain_timeout after which the instance is forcibly shut down, evicting any
remaining client connections. Administrators can check whether any active sessions to
the instance remain by querying the v$session table.

4. Once the upgrade, patch, or repair is complete, restart the instance and the service on
the original node. The FAN UP event will inform the ODP.NET pool that it can now use
the original machine again.

Chapter 3
Real Application Clusters and Global Data Services

3-69

Oracle Data Guard Planned Outage

Oracle Data Guard performs switchovers from primary databases to standby
databases in planned failover scenarios. During the switchover, administrators will
want to limit end user disruptions. In Oracle Database 12c Release 2 and higher, these
administrators can use the Data Guard command-line interface (DGMGRL) command to
switch roles between primary and standby databases:

SWITCHOVER TO <database name> [WAIT <timeout in seconds>];

The WAIT option specifies to wait for sessions to drain before proceeding with the
switchover.

Similar to the Oracle RAC scenario, FAN informs the ODP.NET to remove idle
connections from the pool. Connections subsequently checked in are destroyed until
no active connections remain to that primary database, which will allow the switchover
to begin.

When switchover to the standby completes, a FAN UP event informs ODP.NET that it
can start creating connections to the standby instance.

During the Data Guard service relocation process, new incoming connection requests
will not be accepted until the service has fully relocated. Incoming connection requests
arriving during the interim, such as in the middle of an Oracle Data Guard switchover,
will receive connectivity errors.

To prevent these errors, ODP.NET can pause connection attempts until the new
database service is available. ODP.NET blocks any connection attempts until the
service is up or until the configured time limit expires from the time when the service
DOWN event was received. This feature is useful for planned outages and service
relocations. It works with Oracle RAC and Oracle Data Guard.

This time limit is the ServiceRelocationConnectionTimeout setting, which can be set
in the .NET configuration file.

See Also:

ServiceRelocationConnectionTimeout

Pool Behavior in an Oracle RAC Database
When connection pools are created for a single-instance database, pool size attributes
are applied to the single service. Similarly, when connection pools are created for an
Oracle RAC database, the pool size attributes are applied to a service and not to
service members. For example, if "Min Pool Size" is set to N, then ODP.NET does not
create N connections for each service member. Instead, it creates, at minimum, N
connections for the entire service, where N connections are distributed among the
service members.

The following pool size connection string attributes are applied to a service.

• Min Pool Size
• Max Pool Size

Chapter 3
Real Application Clusters and Global Data Services

3-70

• Incr Pool Size
• Decr Pool Size
ODP.NET connects to the same Oracle RAC node when required by a distributed transaction
that has already begun on a particular node, by an Oracle runtime connection load balancing
advisory, or by Oracle RAC load balancing gravitation in which connections will gravitate to
an under utilized node. If the connection pool has no idle connections to this particular node,
then ODP.NET will create a new connection to this node. Node affinity is honored even when
the connection pool runs out of idle connections to dispense.

Using Transaction Guard to Prevent Logical Corruption
Transaction Guard allows managed and unmanged ODP.NET applications to use at-most-
once execution in case of planned and unplanned outages and repeated submissions.
Without Transaction Guard, applications that attempt to retry operations following outages
can cause logical corruption by committing duplicate transactions.

After an outage, one of the traditional problems for recovering applications had been the non-
durable commit message sent back to the client. If there is a break between the client and the
server, the client sees an error message indicating that the communication failed, also known
as a recoverable error. This error does not inform the application if the submission executed
any commit operations, or if a procedural call ran to completion while executing all expected
commits. The error also does not indicate session state changes or intermittent failures. The
client is left wondering if the transaction committed and if it fully completed.

These recoverable errors may require end users or applications to attempt replay by issuing
duplicate transaction submissions or other forms of logical corruption. The transaction cannot
be validly resubmitted if the non-transactional state is incorrect or if it is committed.
Continuing to process a committed but not completed call can result in the application using a
database session that is in the wrong state.

ODP.NET and Transaction Guard
Transaction Guard allows ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver to
eliminate duplicate transactions automatically and transparently, and in a manner that scales.

When a failure occurs, such as a node, network, or database failure, ODP.NET applications
can deterministically conclude whether the transaction committed by querying its status, if the
database service is up. Oracle retains the transaction status automatically, even after one of
these failures.

In ODAC 12c Release 4, using Transaction Guard application development has been
streamlined, reducing the application logic needed to determine the transaction outcome.
Moreover, these benefits are available to both managed and unmanaged ODP.NET.

When a recoverable error is raised by a Transaction Guard enabled database service upon a
database commit or upon a SQL or PL/SQL execution, which could have called a commit,
then an ODP.NET OracleException is created with an OracleLogicalTransaction instance.
OracleLogicalTransaction is always non-null. The database maintains the outcome of the
logical transaction for the retention period specified by the administrator. ODP.NET
automatically queries the database on behalf of the application when a recoverable error
occurs so that the OracleLogicalTransaction object instance on the OracleException
object can indicate whether the transaction has committed or not and whether the user call
has completed or not.

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

3-71

If the status is committed, then the transaction has completed successfully. No other
action is likely needed by the administrator.

If not committed, then ODP.NET applications can learn the current transaction state,
whether it is recoverable, and whether it can be retried using
OracleLogicalTransaction. If the error is recoverable, then the transaction is safe to
re-submit. If the error is not recoverable, the application will need to determine the
transaction outcome using an alternative mechanism.

Note:

Transaction Guard supports only local transactions. It does not support
distributed transactions.

The Transaction Guard feature is enabled or disabled through the Oracle service-level
configuration through the COMMIT_OUTCOME setting. By default, it is not enabled. This
setting can be changed without bringing down the database. Only new connections
created against the service will use the new setting.

Here's an example of setting the COMMIT_OUTCOME using SRVCTL:

srvctl modify service -d orcl -s GOLD -commit_outcome TRUE

Note:

Grant the EXECUTE privilege on the DBMS_APP_CONT package to the database
users that retrieve the transaction status:

GRANT EXECUTE ON DBMS_APP_CONT TO <user name> ;

The following is an example ODP.NET Transaction Guard application scenario:

An ODP.NET application receives a Fast Application Notification (FAN) down event or
error. FAN automatically aborts the dead session and the application receives an
OracleException. A Transaction Guard application built to handle errors transparently
would do the following:

1. OracleException.OracleLogicalTransaction.LogicalTransactionId property

The value returned by this property will be non-null if

• Transaction Guard is enabled,

• Transparent Application Failover (TAF) is not enabled on the connection, and

• ODP.NET was not able to determine the outcome of the transaction.

For a given OracleException object, if OracleLogicalTransaction.Committed
and OracleLogicalTransaction.UserCallCompleted return all nulls, then the
error is either a non-recoverable error, Transaction Guard is not enabled, or TAF is
enabled on the connection. In any of these cases, the application should rollback
then re-submit the transaction.

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

3-72

The LogicalTransactionId property will return null even if Transaction Guard is enabled
and a recoverable error happens, if OracleLogicalTransaction.Committed is true or
false.

2. OracleException.OracleLogicalTransaction.Committed property

This property returns true or false, depending on whether the transaction has been
committed or not. If it returns null, then

• ODP.NET could not determine the outcome of the transaction,

• Error is not recoverable,

• Transaction Guard was not enabled, or

• TAF is enabled on the connection.

3. OracleException.OracleLogicalTransaction.UserCallCompleted property

This property returns true if the user call has completed, else it returns false. This
property returns null if

• Transaction Guard was not enabled,

• Error is not recoverable,

• TAF is enabled on the connection, or

• ODP.NET is not able to determine if the user call has completed or not.

See the following table for the implications of what Committed and UserCallCompleted
values mean.

Table 3-7 Implication of Committed and UserCallCompleted Values

Committed Value UserCallCompleted Value Outcome

True True The transaction was successful.
The result can be returned to the
application.

False False The transaction was not
successful. The application can
resubmit the transaction again.

True False The transaction committed, but
there may be additional state,
such as row counts or nested
PL/SQL logic, that prevents the
application from continuing as
expected.

Example 3-4 Using Transaction Guard: Sample Code

using System;
using Oracle.DataAccess.Client;
//alternatively can use using Oracle.ManagedDataAccess.Client;

class TransactionGuardSample
{
 static void Main()
 {
 bool bReadyToCommit = false;

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

3-73

 string constr = "user id=hr;password=hr;data source=oracle";
 OracleConnection con = new OracleConnection(constr);
 OracleTransaction txn = null;
 OracleCommand cmd = null;

 try
 {
 string sql = " update employees set salary=10000 where
employee_id=103";
 con.Open();
 txn = con.BeginTransaction();
 cmd = new OracleCommand(con, sql);
 cmd.ExecuteNonQuery();
 bReadyToCommit = true;
 }
 catch (Exception ex)
 {
 // rollback here as the SQL execution is unsuccessful
 txn.Rollback();
 Console.WriteLine(ex.ToString());
 }

 try
 {
 if (bReadyToCommit)
 txn.Commit();
 }
 catch (Exception ex)
 {
 if (ex is OracleException)
 {
 // It's safe to re-submit the work if the error is
recoverable and the transaction has not been committed
 if (ex.IsRecoverable &&
ex.OracleLogicalTransaction.Committed == false)
 {
 // safe to re-submit work
 }
 else
 {
 // do not re-submit work
 }
 }
 }
 finally
 {
 // dispose all objects
 txn.Dispose();
 cmd.Dispose();
 con.Dispose(); // place the connection back to the
connection pool
 }
 }
}

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

3-74

Transaction Guard is not supported when Transparent Application Failover (TAF) is enabled
for the service. As such, when TAF is enabled, the LogicalTransactionId will always be null
and the transaction outcome will not be determined.

See Also:

• "OracleLogicalTransaction Class"

• Oracle Database Development Guide for more information on Transaction
Guard

Application Continuity
Oracle Application Continuity enables database requests to automatically replay transactional
or non-transactional operations in a non-disruptive and rapid manner in the event of a
severed database session, which results in a recoverable error. Application Continuity
improves end-user experience by masking planned and unplanned related errors.
Applications can be developed without complex logic to handle exceptions, while
automatically replaying database operations upon a recoverable error.

Without Application Continuity, it is almost impossible to mask outages in a safe and reliable
manner. Common issues encountered include:

• The client state remains at present time, with entered data, returned data, and variables
cached, while the database state changes are lost.

• If a transaction commit has occurred, the commit message is not durable. Moreover,
checking a lost request does not guarantee that it will not commit after being checked.

• Non-transactional database session state is lost.

• If the request can continue, the database and the client session must be synchronized.

Application Continuity is a feature available with the Oracle Real Application Clusters (RAC),
Oracle RAC One Node, Oracle Active Data Guard, and Oracle Autonomous Database in both
Shared and Dedicated Infrastructure.

In Oracle Database 18c, Application Continuity improves transparent session and
transactional state tracking and recording of the database session to enable recovery
following recoverable outages. This enhancement is called Transparent Application
Continuity (TAC). TAC has no reliance on application knowledge or application code changes,
allowing it to be enabled for your applications. ODP.NET application transparency and failover
are achieved by consuming the state-tracking information that captures and categorizes the
session state usage as the application issues user calls.

ODP.NET and Application Continuity
ODP.NET, Unmanaged Driver first supported Application Continuity with version 12.2. While
Application Continuity was first introduced in Oracle Database 12c Release 1 (12.1),
ODP.NET requires a minimum of Oracle Database 12c Release 2 (12.2) server.

Chapter 3
Application Continuity

3-75

Note:

ODP.NET, Managed Driver and ODP.NET Core do not support Application
Continuity and TAC.

With Application Continuity or TAC enabled, ODP.NET ensures all the application's
executed statements are logged appropriately so that they can be replayed upon a
recoverable error. This applies for all application SQL and PL/SQL, as well as any
internal ODP.NET operations.

On the client side, Application Continuity or TAC is enabled by setting the ODP.NET
connection string attribute, Application Continuity=true.

If Application Continuity is set to true, but the database server does not enable
Application Continuity or TAC, then ODP.NET will still create new connections.
However, these connections will not be Application Continuity enabled.

See Also:

• Oracle Call Interface Programmer's Guide

• Oracle Real Application Clusters Administration and Deployment Guide

Database Sharding
Sharding is a data tier architecture, where data is horizontally partitioned across
independent databases. Each database in such a configuration is called a shard. All
shards together make up a single logical database, which is referred to as a sharded
database. Sharding is a shared-nothing database architecture. The independent
physical databases do not share CPU, memory, or storage devices. However, from the
perspective of an application, the collection of physical databases looks like a single
logical database.

Sharding uses Global Data Services (GDS), where GDS routes a client request to an
appropriate database based on parameters such as availability, load, network latency,
and replication lag. A GDS pool is a set of replicated databases that offers the same
global service. The databases in a GDS pool can be located in multiple data centers
across different regions. A sharded GDS pool contains all shards of a sharded
database and their replicas, and appears as a single sharded database to database
clients.

Applications can connect to multiple databases (shards) where data is partitioned
based on one or more sharding strategies. The strategy can be hash based, range
based, or list based. Each time a database operation is required, the application needs
to determine which shard it must connect to.

A sharding key provides the partitioning key that determines in which shard a row of
data is stored. A table can be partitioned using a sharding key.

A super sharding key is a collection of shard chunks, where only those chunks, which
have a specific value of the super shard key identifier, are stored. A super sharding

Chapter 3
Database Sharding

3-76

key is used for distributing data across database groups. Specifying super sharding keys are
a way through which user-controlled data partitioning is possible.

ODP.NET Sharding
Starting from version 12.2, unmanaged ODP.NET and Oracle Database both support
sharding. Managed ODP.NET and ODP.NET Core started supporting sharding with version
21. All three providers support the same sharding features with the exception that
unmnanaged ODP.NET does not support the chunk migration connection timeout property.

ODP.NET applications must provide the sharding key and super sharding key information
before opening the database connection for single shard queries. These sharding values
cannot be set or changed after opening the connection. If any of the shard key values need to
be modified, a new connection must be created with the new values and then opened.

If shard keys are set after the connection has been opened, the ODP.NET connection will not
use these new shard key values until after the next OracleConnection.Open() call.

The OracleShardingKey object stores one or more key values. Multiple keys can be set to
create a composite key. ODP.NET recognizes the sharding key(s) specified and connects to
the correct shard and chunk.

Sharding is supported with or without connection pooling. The ODP.NET connection pool
maintains connections to different shards and chunks of the sharded GDS database within
the same shared pool.

The shard key (SHARD_KEY) and super sharding key (GROUP_KEY) can be specified in the TNS
connect descriptor, rather than in the application code. The .NET developer then chooses the
connect descriptor applicable to the shard that the application will use.

The data distribution across the shards and chunks in the database is transparent to the end
user. ODP.NET minimizes the end user impact of chunk resharding within GDS.

To perform cross-shard queries, no ODP.NET shard APIs are used. Instead, applications
connect to the GDS catalog service, allowing access to all the sharded databases. The SQL
query is specifically constructed to iterate over all the necessary shards. For example, the
non-shard database query select count(*) from employees is equivalent to the cross-
shard query select sum(c) from (Iterator(select count(*) c from employees(i)).

ODP.NET Single Shard Query Example

using System;
using Oracle.DataAccess.Client;

class Sharding
{
 static void Main()
 {
 OracleConnection con = new OracleConnection("user id=hr;password=hr;Data
Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32, 123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection

Chapter 3
Database Sharding

3-77

 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query
 }
}

By default, ODP.NET only dispenses connections to shards with chunks with read and
write privileges available. If some chunks in a shard are read-only, ODP.NET will not
dispense a connection to that shard unless READONLY_CHUNK_OK is set to TRUE in the
CONNECT_DATA section of the connect descriptor. Connect descriptors are generally
stored in tnsnames.ora files. Enabling READONLY_CHUNK_OK just means that both read/
write and read-only connections can be dispensed. It does not specify only read-only
connections are dispensed.

Shards are made read-only when chunks are migrating from one shard to another,
usually to re-balance data or workload across shards.

Here's an example using READONLY_CHUNK_OK in a connect descriptor:

SHARDDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = tcp)(HOST = myhost)(PORT = 1521))
 (CONNECT_DATA =
 (SERVICE_NAME = myservicename)
 (READONLY_CHUNK_OK=true)
)
)

See Also:

• OracleShardingKey Class

• SetShardingKey(OracleShardingKey, OracleShardingKey)

OracleCommand Object
The OracleCommand object represents SQL statements or stored procedures executed
on Oracle Database.

Note:

Optimizer hint syntax in the form --+ ... is not supported. ODP.NET
supports this syntax: /*+ ... */.

This section includes the following topics:

• Transactions

• System.Transactions and Promotable Transactions

• Distributed Transactions

Chapter 3
OracleCommand Object

3-78

• Parameter Binding

• Batch Processing

• Statement Caching

• Self-Tuning

Transactions
Oracle Database starts a transaction only in the context of a connection. Once a transaction
starts, all the successive command execution on that connection run in the context of that
transaction. Transactions can be started only on an OracleConnection object, and the read-
only Transaction property on the OracleCommand object is implicitly set by the
OracleConnection object. Therefore, the application cannot set the Transaction property,
nor does it need to.

Note:

Transactions are not supported in a .NET stored procedure.

Explicit transactions are required with SQL statements containing "FOR UPDATE" and
"RETURNING" clauses. This is not necessary if global transactions are used.

System.Transactions and Promotable Transactions
ODP.NET supports System.Transactions. A local transaction is created for the first
connection opened in the System.Transactions scope to Oracle Database. When a second
connection is opened, this transaction is automatically promoted to a distributed transaction.
This functionality provides enhanced performance and scalability.

Connections created within a transaction context, such as TransactionScope or
ServicedComponent, can be established to different versions of Oracle Database. However, in
order to enable the local transaction to be promotable, the following must be true:

• The first connection in the transaction context must be established to an Oracle
Database.

• Promoting local transactions requires Oracle Services for Microsoft Transaction Server. If
this requirement is not met, then a second connection request in the same transaction
context throws an exception.

Transaction promotion will throw an ORA-24797 error when the database transaction is
already distributed due to the use of database links.

If applications use System.Transactions, it is required that the enlist connection string
attribute is set to either true (default) or dynamic. However, enlist=dynamic cannot be used
with TransactionScope because auto-enlistment requires enlist=true.

ODP.NET supports the following System.Transactions programming models for applications
using distributed transactions.

• Implicit Transaction Enlistment Using TransactionScope

• Explicit Transaction Enlistment Using CommittableTransaction .

Chapter 3
OracleCommand Object

3-79

Note:

ODP.NET Core does not support distributed transactions

Implicit Transaction Enlistment Using TransactionScope
The TransactionScope class provides a mechanism to write transactional applications
where the applications do not need to explicitly enlist in transactions.To accomplish
this, the application uses the TransactionScope object to define the transactional
code. Connections created within this transactional scope will enlist in a local
transaction that can be promoted to a distributed transaction.

Note that the application must call the Complete method on the TransactionScope
object to commit the changes. Otherwise, the transaction is aborted by default.

// C#

using System;
using Oracle.DataAccess.Client;
using System.Data;
using System.Data.Common;
using System.Transactions;

class psfTxnScope
{
 static void Main()
 {
 int retVal = 0;
 string providerName = "Oracle.DataAccess.Client";
 string constr =
 @"User Id=scott;Password=tiger;Data Source=oracle;enlist=true";

 // Get the provider factory.
 DbProviderFactory factory = DbProviderFactories.GetFactory(providerName);

 try
 {
 // Create a TransactionScope object, (It will start an ambient
 // transaction automatically).
 using (TransactionScope scope = new TransactionScope())
 {
 // Create first connection object.
 using (DbConnection conn1 = factory.CreateConnection())
 {
 // Set connection string and open the connection. this connection
 // will be automatically enlisted in a promotable local transaction.
 conn1.ConnectionString = constr;
 conn1.Open();

 // Create a command to execute the sql statement.
 DbCommand cmd1 = factory.CreateCommand();
 cmd1.Connection = conn1;
 cmd1.CommandText = @"insert into emp (empno, ename, job) values
 (1234, 'emp1', 'dev1')";

 // Execute the SQL statement to insert one row in DB.
 retVal = cmd1.ExecuteNonQuery();

Chapter 3
OracleCommand Object

3-80

 Console.WriteLine("Rows to be affected by cmd1: {0}", retVal);

 // Close the connection and dispose the command object.
 conn1.Close();
 conn1.Dispose();
 cmd1.Dispose();
 }

 // The Complete method commits the transaction. If an exception has
 // been thrown or Complete is not called then the transaction is
 // rolled back.
 scope.Complete();
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
}

Explicit Transaction Enlistment Using CommittableTransaction
The instantiation of the CommittableTransaction object and the EnlistTransaction method
provides an explicit way to create and enlist in a transaction. Note that the application must
call Commit or Rollback on the CommittableTransaction object.

// C#

using System;
using Oracle.DataAccess.Client;
using System.Data;
using System.Data.Common;
using System.Transactions;

class psfEnlistTransaction
{
 static void Main()
 {
 int retVal = 0;
 string providerName = "Oracle.DataAccess.Client";
 string constr =
 @"User Id=scott;Password=tiger;Data Source=oracle;enlist=dynamic";

 // Get the provider factory.
 DbProviderFactory factory = DbProviderFactories.GetFactory(providerName);

 try
 {
 // Create a committable transaction object.
 CommittableTransaction cmtTx = new CommittableTransaction();

 // Open a connection to the DB.
 DbConnection conn1 = factory.CreateConnection();
 conn1.ConnectionString = constr;
 conn1.Open();

 // enlist the connection with the commitable transaction.
 conn1.EnlistTransaction(cmtTx);

Chapter 3
OracleCommand Object

3-81

 // Create a command to execute the sql statement.
 DbCommand cmd1 = factory.CreateCommand();
 cmd1.Connection = conn1;
 cmd1.CommandText = @"insert into emp (empno, ename, job) values
 (1234, 'emp1', 'dev1')";

 // Execute the SQL statement to insert one row in DB.
 retVal = cmd1.ExecuteNonQuery();
 Console.WriteLine("Rows to be affected by cmd1: {0}", retVal);

 // commit/rollback the transaction.
 cmtTx.Commit(); // commits the txn.
 //cmtTx.Rollback(); // rolls back the txn.

 // close and dispose the connection
 conn1.Close();
 conn1.Dispose();
 cmd1.Dispose();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
}

See Also:

"EnlistTransaction"

Distributed Transactions
A distributed transaction includes one or more statements that, individually or as a
group, update data on two or more distinct nodes of a distributed database.

ODP.NET, Managed and Unmanaged Drivers integrate with Microsoft Distributed
Transaction Coordinator (MSDTC) and Oracle databases. MSDTC coordinates with all
the resource managers that are enlisted to the same System.Transactions object, to
perform a 2-phrase commit or rollback atomically. With that, Oracle distributed
transactions can then be committed or rolled back across networks properly.

ODP.NET only supports the read committed isolation level for distributed transactions.

Note:

ODP.NET Core does not support Distributed Transactions.

Chapter 3
OracleCommand Object

3-82

Microsoft Distributed Transaction Coordinator Integration
Managed ODP.NET includes a native fully managed implementation that supports integration
with MSDTC for distributed transactions enlistments, commits, and rollbacks.

For unmanaged ODP.NET, Oracle Services for Microsoft Transaction (OraMTS) provides
MSDTC integration that allows client components to participate in Oracle database
distributed transactions. OraMTS act as a proxy for the Oracle database to MSDTC to ensure
that Oracle distributed database transactions commit or rollback together with the rest of the
distributed transaction.

Unmanaged ODP.NET can use either a managed or unmanaged OraMTS implementation.
Oracle recommends using the managed OraMTS for applications requiring high availability
from Oracle RAC or Data Guard.

If a failure occurs in a distributed transaction, such as a network failure or server hardware
failure, then it can leave an in-process transaction in-doubt. Both managed and unmanaged
ODP.NET use the OraMTS recovery service to resolve these in-doubt transactions. This
recovery service runs as a Windows service. Administrators must install and configure the
OraMTS Windows recovery service to manage recovery scenarios whether they use
managed or unmanaged ODP.NET. Only one recovery service is needed per machine.

It is required to install the OraMTS Recovery Service on all the client machines where
ODP.NET is running and participating in MSDTC. As a machine may have multiple IP
addresses, administrators for managed ODP.NET applications can specify the host machine
name or IP address that has the running recovery service in the application's .NET
configuration file. ODP.NET, Unmanaged Driver resolves the IP/machine name for the
recovery service automatically.

Table 3-8 Supported ODP.NET Type and .NET Framework Version for Distributed
Transaction

ODP.NET Type .NET Framework
Version

Distributed Transaction Support

Managed 4.x .NET Framework's native managed implementation for
distributed transactions.

Unmanaged 4.x OraMTS (default) or managed OraMTS
implementation. Oracle recommends using managed
OraMTS for unmanaged ODP.NET applications
requiring high availability from Oracle RAC or Data
Guard.

See Also:

Manually Creating an Oracle MTS Recovery Service in Oracle Services for
Microsoft Transaction Server Developer's Guide for Microsoft Windows.

Chapter 3
OracleCommand Object

3-83

ODP.NET, Managed Driver Setup
This section explains the setup and configuration steps required for using distributed
transactions with ODP.NET, Managed Driver. Follow these steps to configure
distributed transactions in these .NET Framework versions:

1. Create and setup the OraMTS recovery service or make sure an existing recovery
service is running.

2. Set the value of OMTSRECO_PORT in the .NET configuration to specify the port
number that the OraMTS recovery service is running.

ODP.NET, Unmanaged Driver Setup
This section explains the setup and configuration steps required for using distributed
transactions with ODP.NET, Unmanaged Driver.

For .NET Framework 4.x, ODP.NET, Unmanaged Driver includes managed OraMTS in
its assembly. OraMTS is the default option for ODP.NET, Unmanaged Driver, to ensure
implementation continuity during upgrades. However, Oracle recommends the
managed OraMTS option when using any high availability FAN operations (HA Events
= true) with Oracle Real Application Clusters or Oracle Data Guard. The managed
OraMTS option support high availability functionality, while the traditional OraMTS
does not.

Applications can set OraMTS (default) or managed OraMTS usage through
the UseOraMTSManaged parameter in the .NET configuration file.

Install and configure OraMTS, including its recovery service to use traditional OraMTS
implementation for ODP.NET, Unmanaged Driver.

To set managed OraMTS up, perform the following steps:

1. Set UseOraMTSManaged to true in the .NET configuration file.

2. Create and setup the OraMTS recovery service or make sure an existing recovery
service is running.

See Also:

distributedTransaction section for more information about .NET configuration
setup

Parameter Binding
When the DbType property of an OracleParameter object is set, the OracleDbType
property of the OracleParameter object changes accordingly, or vice versa. The
parameter set last prevails.An application can bind the data and have ODP.NET infer
both the DbType and OracleDbType properties from the .NET type of the parameter
value.ODP.NET allows applications to obtain an output parameter as either a .NET
Framework type or an ODP.NET type. The application can specify which type to return
for an output parameter by setting the DbType property of the output parameter (.NET
type) or the OracleDbType property (ODP.NET type) of the OracleParameter object.

Chapter 3
OracleCommand Object

3-84

For example, if the output parameter is set as a DbType.String type by setting the DbType
property, the output data is returned as a .NET String type. On the other hand, if the
parameter is set as an OracleDbType.Char type by setting the OracleDbType property, the
output data is returned as an OracleString type. If both DbType and OracleDbType properties
are set before the command execution, the last setting takes affect.

ODP.NET populates InputOutput, Output, and ReturnValue parameters with the Oracle
data, through the execution of the following OracleCommand methods:

• ExecuteReader
• ExecuteNonQuery
• ExecuteScalar
An application should not bind a value for output parameters; it is the responsibility of
ODP.NET to create the value object and populate the OracleParameter Value property with
the object.

When binding by position (default) to a function, ODP.NET expects the return value to be
bound first, before any other parameters.

This section describes the following:

• OracleDbType Enumeration Type

• Inference of DbType, OracleDbType, and .NET Types

• PL/SQL Associative Array Binding

• Array Binding

See Also:

"OracleDbType Enumeration"

Command Timeouts
The OracleCommand CommandTimeout property limits how long a command is allowed to
execute before terminating with an exception. This setting prevents long running commands
from consuming excessive resources or from blocking other necessary operations from
occurring.

The database server can be interrupted via either TCP/IP urgent data or normal TCP/IP data,
called out of band (OOB) or in band data, respectively. Windows-based database servers
only support in band breaks, whereas all other (predominantly UNIX-based) database servers
can support OOB or in band breaks.

ODP.NET, Managed Driver uses OOB breaks by default with database servers that support it.
For certain network topologies, the routers or firewalls involved in the route to the database
may have been configured to drop urgent data or in band the data. If the routers or firewalls
can not be changed to handle urgent data appropriately, then the ODP.NET, Managed Driver
can be configured to utilize in band breaks by setting the .NET configuration parameter
Disable_Oob to on.

Chapter 3
OracleCommand Object

3-85

See Also:

settings section in the Oracle Data Provider for .NET, Managed Driver
Configuration section for more information.

OracleDbType Enumeration Type
OracleDbType enumerated values are used to explicitly specify the OracleDbType
value of an OracleParameter object.

Table 3-9 lists all the OracleDbType enumeration values with a description of each
enumerated value.

Table 3-9 OracleDbType Enumeration Values

Member Name Description

Array Oracle Collection (VArray or Nested Table)

Not Available in ODP.NET, Managed Driver and ODP.NET Core

BFile Oracle BFILE type

BinaryFloat Oracle BINARY_FLOAT type

BinaryDouble Oracle BINARY_DOUBLE type

Blob Oracle BLOB type

Boolean Oracle BOOLEAN type

Byte byte type

Char Oracle CHAR type

Clob Oracle CLOB type

Date Oracle DATE type

Decimal Oracle NUMBER type

Double 8-byte FLOAT type

Int16 2-byte INTEGER type

Int32 4-byte INTEGER type

Int64 8-byte INTEGER type

IntervalDS Oracle INTERVAL DAY TO SECOND type

IntervalYM Oracle INTERVAL YEAR TO MONTH type

Json Oracle JSON type

Long Oracle LONG type

LongRaw Oracle LONG RAW type

NChar Oracle NCHAR type

Object Oracle Object type

Not Available in ODP.NET, Managed Driver and ODP.NET Core

NClob Oracle NCLOB type

NVarchar2 Oracle NVARCHAR2 type

Chapter 3
OracleCommand Object

3-86

Table 3-9 (Cont.) OracleDbType Enumeration Values

Member Name Description

Raw Oracle RAW type

Ref Oracle REF type

Not Available in ODP.NET, Managed Driver and ODP.NET Core

RefCursor Oracle REF CURSOR type

Single 4-byte FLOAT type

TimeStamp Oracle TIMESTAMP type

TimeStampLTZ Oracle TIMESTAMP WITH LOCAL TIME ZONE type

TimeStampTZ Oracle TIMESTAMP WITH TIME ZONE type

Varchar2 Oracle VARCHAR2 type

XmlType Oracle XMLType type

Note:

PL/SQL LONG, LONG RAW, RAW, and VARCHAR data types can be bound with a size
up to 32512 bytes.

Inference of DbType, OracleDbType, and .NET Types
This section explains the inference from the System.Data.DbType, OracleDbType, and Value
properties in the OracleParameter class.

In the OracleParameter class, DbType, OracleDbType, and Value properties are linked.
Specifying the value of any of these properties infers the value of one or more of the other
properties.

Inference of DbType from OracleDbType
In the OracleParameter class, specifying the value of OracleDbType infers the value of
DbType as shown in Table 3-10.

Table 3-10 Inference of System.Data.DbType from OracleDbType

OracleDbType System.Data.DbType

Array Object
BFile Object
Blob Object
BinaryFloat Single
BinaryDouble Double
Boolean Boolean
Byte Byte

Chapter 3
OracleCommand Object

3-87

Table 3-10 (Cont.) Inference of System.Data.DbType from OracleDbType

OracleDbType System.Data.DbType

Char StringFixedLength
Clob Object
Date Date
Decimal Decimal
Double Double
Int16 Int16
Int32 Int32
Int64 Int64
IntervalDS Object
IntervalYM Int64
Json String
Long String
LongRaw Binary
NChar StringFixedLength
NClob Object
NVarchar2 String
Object Object
Raw Binary
Ref Object
RefCursor Object
Single Single
TimeStamp DateTime
TimeStampLTZ DateTime
TimeStampTZ DateTimeOffset
Varchar2 String
XmlType String

Inference of OracleDbType from DbType
In the OracleParameter class, specifying the value of DbType infers the value of
OracleDbType as shown in Table 3-11.

Table 3-11 Inference of OracleDbType from DbType

System.Data.DbType OracleDbType

Binary Raw
Boolean Boolean
Byte Byte

Chapter 3
OracleCommand Object

3-88

Table 3-11 (Cont.) Inference of OracleDbType from DbType

System.Data.DbType OracleDbType

Currency Not Supported

Date Date
DateTime TimeStamp
DateTimeOffset TimeStampTZ
Decimal Decimal
Double Double
Guid Blob
Int16 Int16
Int32 Int32
Int64 Int64
Object Object
Sbyte Not Supported

Single Single
String Varchar2
StringFixedLength Char
Time TimeStamp
UInt16 Not Supported

UInt32 Not Supported

Uint64 Not Supported

VarNumeric Not Supported

Inference of DbType and OracleDbType from Value
In the OracleParameter class, Value is an object type that can be of any .NET Framework
data type or ODP.NET type. If the OracleDbType and DbType properties of the
OracleParameter class are not specified, the OracleDbType property is inferred from the type
of the Value property.

Table 3-12 shows the inference of DbType and OracleDbType properties from the Value
property when the type of Value is one of the .NET Framework data types.

Table 3-12 Inference of DbType and OracleDbType from Value (.NET Datatypes)

Value (.NET Datatypes) System.Data.DbType OracleDbType

Boolean Boolean Boolean
Byte Byte Byte
Byte[] Binary Raw
Char / Char [] String Varchar2
DateTime DateTime TimeStamp

Chapter 3
OracleCommand Object

3-89

Table 3-12 (Cont.) Inference of DbType and OracleDbType from Value (.NET
Datatypes)

Value (.NET Datatypes) System.Data.DbType OracleDbType

DateTimeOffset DateTimeOffset TimeStampTZ
Decimal Decimal Decimal
Double Double Double
Float Single Single
Guid Guid Blob
Int16 Int16 Int16
Int32 Int32 Int32
Int64 Int64 Int64
IOracleCustomType Object Object
Single Single Single
String String Varchar2
TimeSpan Object IntervalDS

Note:

Using other .NET Framework data types as values for the OracleParameter
class without specifying either the DbType or the OracleDbType properties
raises an exception because inferring DbType and OracleDbType properties
from other .NET Framework data types is not supported.

Table 3-13 shows the inference of DbType and OracleDbType properties from the Value
property when type of Value is one of Oracle.DataAccess.Types.

Table 3-13 Inference of DbType and OracleDbType from Value (ODP.NET Types)

Value
(Oracle.DataAccess.Types)

System.Data.DbType OracleDbType

OracleBFile Object BFile
OracleBinary Binary Raw
OracleBlob Object Blob
OracleBoolean Boolean Boolean
OracleClob Object Clob
OracleDate Date Date
OracleDecimal Decimal Decimal
OracleIntervalDS Object IntervalDS
OracleIntervalYM Int64 IntervalYM
OracleRef Object Ref

Chapter 3
OracleCommand Object

3-90

Table 3-13 (Cont.) Inference of DbType and OracleDbType from Value (ODP.NET
Types)

Value
(Oracle.DataAccess.Types)

System.Data.DbType OracleDbType

OracleRefCursor Object RefCursor
OracleString String Varchar2
OracleTimeStamp DateTime TimeStamp
OracleTimeStampLTZ DateTime TimeStampLTZ
OracleTimeStampTZ DateTimeOffset TimeStampTZ
OracleXmlType String XmlType

PL/SQL Associative Array Binding
ODP.NET supports PL/SQL Associative Arrays (formerly known as PL/SQL Index-By Tables)
binding.

An application can bind an OracleParameter object, as a PL/SQL Associative Array, to a
PL/SQL stored procedure. The following OracleParameter properties are used for this
feature:

• CollectionType
This property must be set to OracleCollectionType.PLSQLAssociativeArray to bind a
PL/SQL Associative Array.

• ArrayBindSize
This property is ignored for the fixed-length element types (such as Int32).

For variable-length element types (such as Varchar2), each element in the
ArrayBindSize property specifies the size of the corresponding element in the Value
property.

For Output parameters, InputOutput parameters, and return values, this property must
be set for variable-length variables.

If the database server supports up to 32 KB VARCHAR2, then each ODP.NET array
element can store up to 32 KB characters or binary data. If the database server supports
up to 4 KB VARCHAR2, then each ODP.NET array element can store up to 4 KB characters
or 2 KB binary data.

• ArrayBindStatus
This property specifies the execution status of each element in the
OracleParameter.Value property.

• Size
This property specifies the maximum number of elements to be bound in the PL/SQL
Associative Array.

• Value
This property must be set to an array of values, null, or the DBNull.Value property.

Chapter 3
OracleCommand Object

3-91

ODP.NET supports binding parameters of PL/SQL Associative Arrays which contain
the following data types.

• BINARY_FLOAT
• CHAR
• DATE
• NCHAR
• NUMBER
• NVARCHAR2
• RAW
• ROWID
• UROWID
• VARCHAR2
Using unsupported data types with associative arrays can cause an ORA-600 error.

Example of PL/SQL Associative Arrays

This example binds three OracleParameter objects as PL/SQL Associative Arrays:
Param1 as an In parameter, Param2 as an InputOutput parameter, and Param3 as an
Output parameter.

PL/SQL Package: MYPACK

/* Setup the tables and required PL/SQL:

 connect scott/tiger@oracle
 CREATE TABLE T1(COL1 number, COL2 varchar2(20));

 CREATE or replace PACKAGE MYPACK AS
 TYPE AssocArrayVarchar2_t is table of VARCHAR(20) index by BINARY_INTEGER;
 PROCEDURE TestVarchar2(
 Param1 IN AssocArrayVarchar2_t,
 Param2 IN OUT AssocArrayVarchar2_t,
 Param3 OUT AssocArrayVarchar2_t);
 END MYPACK;
/

 CREATE or REPLACE package body MYPACK as
 PROCEDURE TestVarchar2(
 Param1 IN AssocArrayVarchar2_t,
 Param2 IN OUT AssocArrayVarchar2_t,
 Param3 OUT AssocArrayVarchar2_t)
 IS
 i integer;
 BEGIN
 -- copy a few elements from Param2 to Param1\n
 Param3(1) := Param2(1);
 Param3(2) := NULL;
 Param3(3) := Param2(3);
 -- copy all elements from Param1 to Param2\n
 Param2(1) := Param1(1);
 Param2(2) := Param1(2);
 Param2(3) := Param1(3);
 -- insert some values to db\n

Chapter 3
OracleCommand Object

3-92

 FOR i IN 1..3 LOOP
 insert into T1 values(i,Param2(i));
 END LOOP;
 END TestVarchar2;
 END MYPACK;
/
 */

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class AssociativeArraySample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 OracleCommand cmd = new OracleCommand(
 "begin MyPack.TestVarchar2(:1, :2, :3); end;", con);

 OracleParameter Param1 = cmd.Parameters.Add("1", OracleDbType.Varchar2);
 OracleParameter Param2 = cmd.Parameters.Add("2", OracleDbType.Varchar2);
 OracleParameter Param3 = cmd.Parameters.Add("3", OracleDbType.Varchar2);

 Param1.Direction = ParameterDirection.Input;
 Param2.Direction = ParameterDirection.InputOutput;
 Param3.Direction = ParameterDirection.Output;

 // Specify that we are binding PL/SQL Associative Array
 Param1.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
 Param2.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
 Param3.CollectionType = OracleCollectionType.PLSQLAssociativeArray;

 // Setup the values for PL/SQL Associative Array
 Param1.Value = new string[3] {
 "First Element", "Second Element ", "Third Element "
 };
 Param2.Value = new string[3] {
 "First Element", "Second Element ", "Third Element "
 };
 Param3.Value = null;

 // Specify the maximum number of elements in the PL/SQL Associative Array
 Param1.Size = 3;
 Param2.Size = 3;
 Param3.Size = 3;

 // Setup the ArrayBindSize for Param1
 Param1.ArrayBindSize = new int[3] { 13, 14, 13 };

 // Setup the ArrayBindStatus for Param1
 Param1.ArrayBindStatus = new OracleParameterStatus[3] {
 OracleParameterStatus.Success, OracleParameterStatus.Success,
 OracleParameterStatus.Success};

Chapter 3
OracleCommand Object

3-93

 // Setup the ArrayBindSize for Param2
 Param2.ArrayBindSize = new int[3] { 20, 20, 20 };

 // Setup the ArrayBindSize for Param3
 Param3.ArrayBindSize = new int[3] { 20, 20, 20 };

 // execute the cmd
 cmd.ExecuteNonQuery();

 //print out the parameter's values
 Console.WriteLine("parameter values after executing the PL/SQL block");
 for (int i = 0; i < 3; i++)
 Console.WriteLine("Param2[{0}] = {1} ", i,
 (cmd.Parameters[1].Value as Array).GetValue(i));

 for (int i = 0; i < 3; i++)
 Console.WriteLine("Param3[{0}] = {1} ", i,
 (cmd.Parameters[2].Value as Array).GetValue(i));

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
}

Array Binding
The array bind feature enables applications to bind arrays of a type using the
OracleParameter class. Using the array bind feature, an application can insert multiple
rows into a table in a single database round-trip.

The following example inserts three rows into the Dept table with a single database
round-trip. The OracleCommand ArrayBindCount property defines the number of
elements of the array to use when executing the statement.

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();
 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();
 Console.WriteLine("Connected successfully");

 int[] myArrayDeptNo = new int[3] { 10, 20, 30 };
 OracleCommand cmd = new OracleCommand();

 // Set the command text on an OracleCommand object
 cmd.CommandText = "insert into dept(deptno) values (:deptno)";
 cmd.Connection = con;

 // Set the ArrayBindCount to indicate the number of values

Chapter 3
OracleCommand Object

3-94

 cmd.ArrayBindCount = 3;

 // Create a parameter for the array operations
 OracleParameter prm = new OracleParameter("deptno", OracleDbType.Int32);

 prm.Direction = ParameterDirection.Input;
 prm.Value = myArrayDeptNo;

 // Add the parameter to the parameter collection
 cmd.Parameters.Add(prm);

 // Execute the command
 cmd.ExecuteNonQuery();
 Console.WriteLine("Insert Completed Successfully");

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 }
}

See Also:

"Value " for more information

OracleParameter Array Bind Properties
The OracleParameter class provides two properties for granular control when using the array
bind feature:

• ArrayBindSize
The ArrayBindSize property is an array of integers specifying the maximum size for each
corresponding value in an array. The ArrayBindSize property is similar to the Size
property of an OracleParameter object, except the ArrayBindSize property specifies the
size for each value in an array.

Before the execution, the application must populate the ArrayBindSize property; after the
execution, ODP.NET populates it.

The ArrayBindSize property is used only for parameter types that have variable length
such as Clob, Blob, and Varchar2. The size is represented in bytes for binary data types,
and characters for the Unicode string types. The count for string types does not include
the terminating character. The size is inferred from the actual size of the value, if it is not
explicitly set. For an output parameter, the size of each value is set by ODP.NET. The
ArrayBindSize property is ignored for fixed-length data types.

The maximum ArrayBindSize size is 2 GB for both character and binary data.

• ArrayBindStatus
The ArrayBindStatus property is an array of OracleParameterStatus values that specify
the status of each corresponding value in an array for a parameter. This property is
similar to the Status property of the OracleParameter object, except that the
ArrayBindStatus property specifies the status for each array value.

Chapter 3
OracleCommand Object

3-95

Before the execution, the application must populate the ArrayBindStatus property.
After the execution, ODP.NET populates the property. Before the execution, an
application using the ArrayBindStatus property can specify a NULL value for the
corresponding element in the array for a parameter. After the execution, ODP.NET
populates the ArrayBindStatus property, indicating whether the corresponding
element in the array has a null value, or if data truncation occurred when the
value was fetched.

Error Handling for Array Binding
If an error occurs during an array bind execution, it can be difficult to determine which
element in the Value property caused the error. ODP.NET provides a way to determine
the row where the error occurred, making it easier to find the element in the row that
caused the error.

When an OracleException object is thrown during an array bind execution, the
OracleErrorCollection object contains one or more OracleError objects. Each of
these OracleError objects represents an individual error that occurred during the
execution, and contains a provider-specific property, ArrayBindIndex, which indicates
the row number at which the error occurred.

The following example demonstrates error handling for array binding:

/* Database Setup
connect scott/tiger@oracle
drop table depttest;
create table depttest(deptno number(2));
*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindExceptionSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();
 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();

 OracleCommand cmd = new OracleCommand();

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(IsolationLevel.ReadCommitted);

 try
 {
 int[] myArrayDeptNo = new int[3] { 10, 200000, 30 };
 // int[] myArrayDeptNo = new int[3]{ 10,20,30};

 // Set the command text on an OracleCommand object
 cmd.CommandText = "insert into depttest(deptno) values (:deptno)";
 cmd.Connection = con;

 // Set the ArrayBindCount to indicate the number of values
 cmd.ArrayBindCount = 3;

Chapter 3
OracleCommand Object

3-96

 // Create a parameter for the array operations
 OracleParameter prm = new OracleParameter("deptno", OracleDbType.Int32);

 prm.Direction = ParameterDirection.Input;
 prm.Value = myArrayDeptNo;

 // Add the parameter to the parameter collection
 cmd.Parameters.Add(prm);

 // Execute the command
 cmd.ExecuteNonQuery();
 }
 catch (OracleException e)
 {
 Console.WriteLine("OracleException {0} occured", e.Message);
 if (e.Number == 24381)
 for (int i = 0; i < e.Errors.Count; i++)
 Console.WriteLine("Array Bind Error {0} occured at Row Number {1}",
 e.Errors[i].Message, e.Errors[i].ArrayBindIndex);

 txn.Commit();
 }
 cmd.Parameters.Clear();
 cmd.CommandText = "select count(*) from depttest";

 decimal rows = (decimal)cmd.ExecuteScalar();

 Console.WriteLine("{0} row have been inserted", rows);
 con.Close();
 con.Dispose();
 }
}

See Also:

"ArrayBindIndex " for more information

OracleParameterStatus Enumeration Types
Table 3-14 lists OracleParameterStatus enumeration values.

Table 3-14 OracleParameterStatus Members

Member Names Description

Success For input parameters, indicates that the input value has been assigned
to the column.

For output parameters, indicates that the provider assigned an intact
value to the parameter.

NullFetched Indicates that a NULL value has been fetched from a column or an OUT
parameter.

NullInsert Indicates that a NULL value is to be inserted into a column.

Chapter 3
OracleCommand Object

3-97

Table 3-14 (Cont.) OracleParameterStatus Members

Member Names Description

Truncation Indicates that truncation has occurred when fetching the data from the
column.

Batch Processing
The OracleDataAdapter UpdateBatchSize property enables batch processing when
the OracleDataAdapter.Update method is called. UpdateBatchSize is a numeric
property that indicates how many DataSet rows to update the Oracle database for
each round-trip.

This enables the developer to reduce the number of round-trips to the database.

See Also:

"UpdateBatchSize"

Statement Caching
Statement caching eliminates the need to parse each SQL or PL/SQL statement
before execution by caching server cursors created during the initial statement
execution. Subsequent executions of the same statement can reuse the parsed
information from the cursor, and then execute the statement without reparsing, for
better performance.

In order to see performance gains from statement caching, Oracle recommends
caching only those statements that will be repeatedly executed. Furthermore, SQL or
PL/SQL statements should use parameters rather than literal values. Doing so takes
full advantage of statement caching, because parsed information from parameterized
statements can be reused even if the parameter values change in subsequent
executions. However, if the literal values in the statements are different, the parsed
information cannot be reused unless the subsequent statements also have the same
literal values.

Statement Caching Connection String Attributes
The following connection string attributes control the behavior of the ODP.NET
statement caching feature:

• Statement Cache Size
This attribute enables or disables ODP.NET statement caching. By default, this
attribute is set to 0 (disabled). If it is set to a value greater than 0, ODP.NET
statement caching is enabled and the value specifies the maximum number of
statements that can be cached for a connection. Once a connection has cached
up to the specified maximum cache size, the least recently used cursor is freed to
make room to cache the newly created cursor.

Chapter 3
OracleCommand Object

3-98

If self tuning is enabled, then statement caching is enabled as well. The Statement Cache
Size is configured automatically in such cases.

• Statement Cache Purge
This attribute provides a way for connections to purge all statements that are cached
when a connection is closed or placed back into the connection pool. By default, this
attribute is set to false, which means that cursors are not freed when connections are
placed back into the pool.

Enabling Statement Caching through the Registry
To enable statement caching by default for all ODP.NET applications running in a system,
without changing the application, set the registry key of
HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly_Version \StatementCacheSize
to a value greater than 0. This value specifies the number of cursors that are to be cached on
the server.

The default value for the system can be overridden at the connection pool level. The
Statement Cache Size attribute can be set to a different size than the registry value or it can
be turned off. The Statement Cache Size can also be configured through an XML
configuration file.

See Also:

Configuring Oracle Data Provider for .NET for more details.

Statement Caching Methods and Properties
The following property and method are relevant only when statement caching is enabled:

• OracleCommand.AddToStatementCache property

If statement caching is enabled, having this property set to true (default) adds
statements to the cache when they are executed. If statement caching is disabled or if
this property is set to false, the executed statement is not cached.

• OracleConnection.PurgeStatementCache method

This method purges all the cached statements by closing all open cursors on the
database that are associated with the particular connection. Note that statement caching
remains enabled after this call.

Connections and Statement Caching
Statement caching is managed separately for each connection. Therefore, executing the
same statement on different connections requires parsing once for each connection and
caching a separate cursor for each connection.

Pooling and Statement Caching
Pooling and statement caching can be used in conjunction. If connection pooling is enabled
and the Statement Cache Purge attribute is set to false, statements executed on each
separate connection are cached throughout the lifetime of the pooled connection.

Chapter 3
OracleCommand Object

3-99

If the Statement Cache Purge attribute is set to true, all the cached cursors are freed
when the connection is placed back into the pool. When connection pooling is
disabled, cursors are cached during the lifetime of the connection, but the cursors are
closed when the OracleConnection object is closed or disposed of.

Self-Tuning
ODP.NET applications can be self-tuned for performance optimization. ODP.NET
dynamically monitors application queries during runtime.

Note:

Self-tuning for applications does not take place if the Pooling connection
string attribute is set to false. Self-tuning is also not supported inside .NET
stored procedures.

The statement cache size (StatementCacheSize) is tuned automatically by monitoring
the statements that are executed by the application. The following sections discuss
self-tuning in applications:

• Self-Tuning Statement Caching

• Enabling or Disabling Self-Tuning for Applications

• Tracing Optimization Changes

Self-Tuning Statement Caching
Statement caching helps improve performance by eliminating the need to re-parse
each SQL or PL/SQL statement before execution.

If self-tuning is enabled for an application, then ODP.NET continuously monitors
application behavior in order to determine the optimum value for the statement cache
size. Any statement cache size value specified in the connection string, configuration
file, or registry is ignored.

When the application first initializes, it uses the default value of statement cache size.
As the application executes statements, ODP.NET collects statistics that are used to
self-tune the value of statement cache size. Self-tuning of statement cache size results
in increased performance.

Note:

To take full advantage of statement caching, you should not dynamically
generate statements, with different inline values, for every statement
execution. Instead, use parameterized commands to minimize the number of
unique statements that need to be executed and cached. This is because
only one statement needs to be cached for every unique command text,
regardless of the parameter values and the number of times that the
statement is executed.

Chapter 3
OracleCommand Object

3-100

The maximum number of statements that can be cached per connection is determined by the
MaxStatementCacheSize configuration attribute. The MaxStatementCacheSize value can be
specified in the Windows registry or XML configuration file.

The MaxStatementCacheSize setting is useful in limiting the number of cached statements, as
well as the number of open cursors. This is because a cached statement equates to a cursor
being opened on the server. For this reason, you should not set MaxStatementCacheSize to a
value that is greater than the database OPEN_CURSORS setting.

The following Windows registry key is used to configure the MaxStatementCacheSize
configuration attribute:

HKLM\Software\Oracle\ODP.NET\version\MaxStatementCacheSize

The MaxStatementCacheSize key is of type REG_SZ. It can be set to an integer value between
0 and System.Int32.MaxValue.

The following example sets the MaxStatementCacheSize property in an ADO.NET 2.0, or
above, configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="MaxStatementCacheSize" value="300"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

If self-tuning is disabled for an application, then the value of statement cache size is
determined by the settings in the connection string, configuration file, or the registry. If
statement cache size is not specified in any of these sources, then the default value of
statement cache size is set to 0. To have ODP.NET configured with the same default settings
as previous releases of ODP.NET, disable self-tuning and set the StatementCacheSize value
to 10.

See Also:

"Statement Caching"

Enabling or Disabling Self-Tuning for Applications
Self-tuning for ODP.NET applications is enabled by default. An application can enable or
disable self-tuning using one of the following methods:

• Self-Tuning Connection String Attribute

An application can modify the Self Tuning connection string attribute to enable or
disable self-tuning for a particular connection pool. The default value for Self Tuning is
true.

• Windows Registry

An application can enable or disable self-tuning for a particular version of ODP.NET by
modifying the following registry entry:

Chapter 3
OracleCommand Object

3-101

HKLM\Software\Oracle\ODP.NET\version\SelfTuning

The SelfTuning key is of type REG_SZ. It can be set to either 1 (enabled) or 0
(disabled).

• Configuration File

An ODP.NET application can modify the application configuration file (app.config)
or Web configuration file (web.config) to enable or disable self-tuning.

The following example shows how to enable self-tuning in an ADO.NET 2.0
application configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="SelfTuning" value="1"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

Note:

If the optimal statement cache size is known for an application, then you
can disable self-tuning and set StatementCacheSize to its optimum value
in the registry, configuration file, or the application. If self-tuning is
disabled and StatementCacheSize is not set at all, then the default value
of 0 is used for StatementCacheSize.

Tracing Optimization Changes
Applications can trace optimization changes made by self-tuning. All changes to
StatementCacheSize are traced. Errors, if any, are also traced.

The TraceLevel used for tracing self-tuning is 64 for unmanaged ODP.NET. Managed
ODP.NET and ODP.NET Core uses TraceLevel to 7.

See Also:

Table 2-3 for details on TraceLevel values

Data Transmission Performance
ODP.NET data transmission performance can be optimized via the Session Data Unit
(SDU) size setting. The SDU is a buffer that Oracle uses to place data before
transmitting it across the network. Oracle sends the data in the buffer either when
requested or when it is full.

Adjusting the size of the SDU buffers relative to the amount of data to send at any one
time can improve performance, network utilization, and memory consumption. When
large amounts of data are being transmitted, increasing the SDU size can improve

Chapter 3
OracleCommand Object

3-102

performance and network throughput. SDU size can be adjusted lower or higher to achieve
higher throughput for a specific deployment. A larger SDU size allows more data to be sent
per buffer, reducing number of database round trips for large amounts of data. To
accommodate the larger buffer, more memory consumption occurs.

This buffer size can be set on either the ODP.NET client side or database server side.
ODP.NET supports SDU sizes between 256 and 2,097,152 bytes. In ODP.NET, this can be
set in the .NET configuration file (.NET Framework), tnsnames.ora, or sqlnet.ora.

For managed ODP.NET and ODP.NET Core, if the application does not provide a client side
SDU value, then connections will use the database server’s SDU size. If the client side SDU
size is set, then connections will compare it against the DB server’s SDU size, and then
choose the lower of the two values for the SDU size to use.

Unmanaged ODP.NET SDU setting behavior is the same as the Oracle database client’s.

See Also:

Optimizing Performance in Oracle Database Net Services Administrator's Guide for
more SDU details.

ODP.NET Types Overview
ODP.NET types represent Oracle native data types and PL/SQL data types as a structure or
as a class. ODP.NET type structures follow value semantics, while ODP.NET type classes
follow reference semantics. ODP.NET types provide safer and more efficient ways of
obtaining Oracle native data and PL/SQL data types in a .NET application than .NET types.
For example, an OracleDecimal structure holds up to 38 digits of precision, while a .NET
Decimal only holds up to 28.

Table 3-15 lists data types supported by ODP.NET and their corresponding ODP.NET types:
data types in the first column refer to both Oracle native data types and PL/SQL data types of
that name. Those data types that exist only in PL/SQL are indicated by (PL/SQL only) after
the data type name. The entries for the PL/SQL data types also represent the subtypes of the
data types, if any. The third column lists the .NET Framework data type that corresponds to
the Value property of each ODP.NET type.

Table 3-15 Value Property Type of ODP.NET Type

Oracle Native Data Type or PL/SQL Data
Type

ODP.NET Type .NET Framework Data
Types

BFILE OracleBFile class System.Byte[]
BINARY_DOUBLE OracleDecimal structure System.Decimal
BINARY_FLOAT OracleDecimal structure System.Decimal
BINARY_INTEGER (PL/SQL only) OracleDecimal structure System.Decimal
BLOB OracleBlob class System.Byte[]
BOOLEAN (PL/SQL only) OracleBoolean structure System.Boolean
CHAR OracleString structure System.String
CLOB OracleClob class System.String

Chapter 3
ODP.NET Types Overview

3-103

Table 3-15 (Cont.) Value Property Type of ODP.NET Type

Oracle Native Data Type or PL/SQL Data
Type

ODP.NET Type .NET Framework Data
Types

DATE OracleDate structure System.DateTime
INTERVAL DAY TO SECOND OracleIntervalDS

structure
System.TimeSpan

INTERVAL YEAR TO MONTH OracleIntervalYM
structure

System.Int64

JSON OracleString structure System.String
LONG OracleString structure System.String
LONG RAW OracleBinary structure System.Byte[]
NCHAR OracleString structure System.String
NCLOB OracleClob class System.String
NUMBER OracleDecimal structure System.Decimal
NVARCHAR2 OracleString structure System.String
PLS_INTEGER (PL/SQL only) OracleDecimal Structure System.Decimal
RAW OracleBinary structure System.Byte[]
REF OracleRef class System.String
REF CURSOR (PL/SQL only) OracleRefCursor class Not Applicable

ROWID OracleString structure System.String
TIMESTAMP OracleTimeStamp

structure
System.DateTime

TIMESTAMP WITH LOCAL TIME ZONE OracleTimeStampLTZ
structure

System.DateTime

TIMESTAMP WITH TIME ZONE OracleTimeStampTZ
structure

System.DateTimeOffset

UROWID OracleString structure System.String
VARCHAR2 OracleString structure System.String
XMLType OracleXmlType class System.String

Deserializing ODP.NET Types into DataSet and DataTable

Due to a change in all .NET versions to enhance application security, the allowed
DataSet and DataTable data types that can be deserialized are now restricted. This
change applies to .NET 5, plus .NET Core and .NET Framework updates. If your
DataSets and DataTables use Oracle data types with one of these new .NET versions,
then you will have to add ODP.NET-specific data types to the “allow” list so that they
can be deserialized into DataSet or DataTable. If an attempt is made to deserialize
ODP.NET-specific types without adding them to the allow list, an ODP.NET type
initializer exception will be encountered.

The most straightforward way to add all ODP.NET data types to the allow list to call the
OracleConfiguration AddOracleTypesDeserialization method in your application.

Chapter 3
ODP.NET Types Overview

3-104

Alternatively, in .NET Framework 4, the specific ODP.NET data types can be added
individually to the application .NET configuration file. Here's a sample configuration file for
adding all managed ODP.NET 21c data types to the allow list.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <sectionGroup name="system.data.dataset.serialization"
type="System.Data.SerializationSettingsSectionGroup, System.Data, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <section name="allowedTypes" type="System.Data.AllowedTypesSectionHandler,
System.Data, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 </sectionGroup>
 </configSections>
 <system.data.dataset.serialization>
 <allowedTypes>
 <!-- <add type="assembly qualified type name" /> -->
 <add type="Oracle.ManagedDataAccess.Types.OracleBinary,
Oracle.ManagedDataAccess, Version=4.122.21.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleBlob, Oracle.ManagedDataAccess,
Version=4.122.21.1, Culture=neutral, PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleClob, Oracle.ManagedDataAccess,
Version=4.122.21.1, Culture=neutral, PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleDate, Oracle.ManagedDataAccess,
Version=4.122.21.1, Culture=neutral, PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleDecimal,
Oracle.ManagedDataAccess, Version=4.122.21.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleIntervalDS,
Oracle.ManagedDataAccess, Version=4.122.21.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleIntervalYM,
Oracle.ManagedDataAccess, Version=4.122.21.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleRef, Oracle.ManagedDataAccess,
Version=4.122.21.1, Culture=neutral, PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleString,
Oracle.ManagedDataAccess, Version=4.122.21.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleTimeStamp,
Oracle.ManagedDataAccess, Version=4.122.21.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleTimeStampLTZ,
Oracle.ManagedDataAccess, Version=4.122.21.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleTimeStampTZ,
Oracle.ManagedDataAccess, Version=4.122.21.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 <add type="Oracle.ManagedDataAccess.Types.OracleXmlType,
Oracle.ManagedDataAccess, Version=4.122.21.1, Culture=neutral,
PublicKeyToken=89b483f429c47342" />
 <!-- additional <add /> elements as needed -->
 </allowedTypes>
 </system.data.dataset.serialization>
</configuration>

With the .NET configuration file, developers can enable specific ODP.NET data types to allow,
rather than enable all of them with AddOracleTypesDeserialization method.

Chapter 3
ODP.NET Types Overview

3-105

See Also:

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/dataset-
datatable-dataview/security-guidance

GUIDs
ODP.NET does support GUIDs. GUIDs can be inserted into a RAW(16) column which is
big enough to hold any GUID value. But caution needs to be taken in order to handle
GUIDs appropriately. This is due to the fact that as the .NET Guid structure flips the
byte values in reverse order for the integer-based parts of the GUID values when
Guid(byte[]) constructor is used and when the ToByteArray() method on the Guid
struct is invoked.

When the Guid is provided to ODP.NET as an input parameter, for example, ODP.NET
invokes the ToByteArray() method before passing the values to the Oracle Database
as raw bytes. This means that if the Guid originally has a sequence of bytes of

9D4E51F764A940E4854D667F0DD61093

then the byte[] representation of the GUID would be changed to

F7514E9DA964E440854D667F0DD61093

after the ToByteArray() method invocation that is invoked by ODP.NET internally
before it's inserted into the RAW(16) column.

And when the same column value is then retrieved from the Oracle database, the
value that is obtained is

F7514E9DA964E440854D667F0DD61093

which is how it was stored in the database. When the GetGuid() method is invoked on
the OracleDataReader object, ODP.NET constructs the Guid structure using the
Guid(byte[]) constructor, which flips it back to the original sequence of bytes:

9D4E51F764A940E4854D667F0DD61093

This means that the sequence of bytes of the GUID in the application is not in the
exact same order as how it is stored in the database. In other words, if the application
executes a SQL using literal byte values, such as

select * from ... where <raw/guid_column> = '9D4E51F764A940E4854D667F0DD61093';

there will be no rows returned. The same GUID was inserted into the table as:

F7514E9DA964E440854D667F0DD61093

The application will be able to query for the row with the matching GUID if the
application

• binds the guid value using Guid structure as an input parameter

• constructs the byte literal value that is to be used in the SQL from the byte[]
returned from the ToByteArray() method invocation on the Guid structure.

Chapter 3
GUIDs

3-106

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/dataset-datatable-dataview/security-guidance
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/dataset-datatable-dataview/security-guidance

The application developer should be cautious and mindful as to when the Guid(byte[])
constructor and the ToByteArray() method of the Guid structure is called, which can alter the
sequence of the bytes. A simple program below demonstrates how the integer-based parts of
the GUID values are flipped when Guid(byte[]) constructor and when the ToByteArray()
method are invoked.

using System;
using System.Text;
using System.Data;
using Oracle.ManagedDataAccess.Client;

class T
{
 static string ByteToString(byte[] data)
 {
 StringBuilder sb = new StringBuilder(16);
 foreach (var b in data)
 sb.Append($"{b:X2}");
 return sb.ToString();
 }

 static void Main()
 {
 try
 {
 OracleConnection con = new OracleConnection("user id=<user
id>;password=<password>;data source=<data source>");
 con.Open();

 //
 // Generate a new GUID
 //
 Guid guid = Guid.NewGuid();
 string original = guid.ToString().ToUpper().Replace("-", "");
 Console.WriteLine("Original Guid : " + original);

 //
 // Drop the table
 //
 OracleCommand cmd = new OracleCommand("drop table test_guid_table", con);
 try { cmd.ExecuteNonQuery(); } catch {}

 //
 // Create the table
 //
 cmd.CommandText = "create table test_guid_table (col1 RAW(16), col2
VARCHAR2(64))";
 cmd.ExecuteNonQuery();

 //
 // Insert the newly generated GUID to the DB
 //
 cmd.CommandText = "insert into test_guid_table values (:1, 'new guid')";
 cmd.Parameters.Add(string.Empty, OracleDbType.Raw);
 cmd.Parameters[0].Value = guid;
 cmd.ExecuteNonQuery();

 //
 // Query from the test table
 //

Chapter 3
GUIDs

3-107

 cmd.CommandText = "select * from test_guid_table";
 OracleDataReader reader = cmd.ExecuteReader();

 while (reader.Read())
 {
 //
 // Get the RAW data as byte[]
 //
 byte[] guid_byte_array = (byte[])reader.GetValue(0);
 Console.WriteLine("GetValue() as byte[] / as-is in DB: " +
ByteToString(guid_byte_array));
 Console.WriteLine();

 //
 // Get the RAW data as Guid then convert to byte[]
 //
 Guid retrieved_guid = (Guid)reader.GetGuid(0);
 byte[] retrieved_guid_byte_array = retrieved_guid.ToByteArray();
 Console.WriteLine("GetGuid() then Guid.ToString() : " +
retrieved_guid_byte_array.ToString());
 Console.WriteLine("GetGuid() then Guid.ToByteArray() : " +
ByteToString(retrieved_guid.ToByteArray()));
 }

 //
 // Find a matching row by binding the original GUID as-is
 //
 cmd.Parameters.Clear();
 Console.WriteLine("\nGuid Input Parameter : " +
ByteToString(guid.ToByteArray()));
 cmd.CommandText = "select count(*) from test_guid_table where col1 = :1";
 cmd.Parameters.Add(string.Empty, OracleDbType.Raw);
 cmd.Parameters[0].Value = guid;
 reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 Console.WriteLine("Rows found by binding GUID : " +
(decimal)reader.GetValue(0));
 }

 //
 // Find a matching row by binding a byte[] from the original GUID
 //
 byte[] byte_array_param = guid.ToByteArray();
 Console.WriteLine("\nbyte[] Input Parameter : " +
ByteToString(byte_array_param));
 cmd.CommandText = "select count(*) from test_guid_table where col1 = :1";
 cmd.Parameters.Clear();
 cmd.Parameters.Add(string.Empty, OracleDbType.Raw);
 cmd.Parameters[0].Value = byte_array_param;
 reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 Console.WriteLine("Rows found by binding byte[] : " +
(decimal)reader.GetValue(0));
 }

 //
 // Find a matching row by matching the binary/raw data (inline) using
Guid.ToByteArray()
 //

Chapter 3
GUIDs

3-108

 cmd.CommandText = "select count(*) from test_guid_table where col1 = '" +
ByteToString(guid.ToByteArray()) + "'";
 Console.WriteLine("\nLiteral RAW (from byte array) : " +
ByteToString(guid.ToByteArray()));
 cmd.Parameters.Clear();
 reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 Console.WriteLine("Rows found by inlined data : " +
(decimal)reader.GetValue(0));
 }

 //
 // Find a matching row by matching the binary/raw data (inline) using
Guid.ToString()
 //
 cmd.CommandText = "select count(*) from test_guid_table where col1 = '" +
original + "'";
 Console.WriteLine("\nLiteral RAW (from string) : " + original);
 cmd.Parameters.Clear();
 reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 Console.WriteLine("Rows found by inlined data : " +
(decimal)reader.GetValue(0));
 }
 } catch (Exception ex) { Console.WriteLine(ex); }
 }
}

A sample output from the sample code could be:

Original Guid : D54909F4169541CFA919F6752414909F
GetValue() as byte[] / as-is in DB: F40949D59516CF41A919F6752414909F

GetGuid() then Guid.ToString() : System.Byte[]
GetGuid() then Guid.ToByteArray() : F40949D59516CF41A919F6752414909F

Guid Input Parameter : F40949D59516CF41A919F6752414909F
Rows found by binding GUID : 1

byte[] Input Parameter : F40949D59516CF41A919F6752414909F
Rows found by binding byte[] : 1

Literal RAW (from byte array) : F40949D59516CF41A919F6752414909F
Rows found by inlined data : 1

Literal RAW (from string) : D54909F4169541CFA919F6752414909F
Rows found by inlined data : 0

Note:

Every execution of the test generates a new or different GUID.

Chapter 3
GUIDs

3-109

Obtaining Data from an OracleDataReader Object
The ExecuteReader method of the OracleCommand object returns an OracleDataReader
object, which is a read-only, forward-only result set.

This section provides the following information about the OracleDataReader object:

• Typed OracleDataReader Accessors

• Obtaining LONG and LONG RAW Data

• Obtaining LOB Data

• Controlling the Number of Rows Fetched in One Database Round-Trip

Typed OracleDataReader Accessors
The OracleDataReader class provides two types of typed accessors:

• .NET Type Accessors

• ODP.NET Type Accessors

.NET Type Accessors
Table 3-16 lists all the Oracle native database types that ODP.NET supports, and the
corresponding .NET types that can represent the Oracle native type. If more than
one .NET type can be used to represent an Oracle native type, the first entry is
the .NET type that best represents the Oracle native type. The third column indicates
the valid typed accessor that can be invoked for an Oracle native type to be obtained
as a .NET type. If an invalid typed accessor is used for a column, an
InvalidCastException is thrown. Oracle native data types depend on the version of
the database; therefore, some data types are not available in earlier versions of Oracle
Database.

See Also:

• "OracleDataAdapter Class "

• "OracleDataReader Class"

Table 3-16 .NET Type Accessors

Oracle Native Data Type .NET Type Typed Accessor

BFILE System.Byte[]
System.Guid

GetBytes
GetGuid1

BINARY_DOUBLE System.Double
System.Boolean
System.String

GetDouble
GetBoolean1

GetString1

Chapter 3
Obtaining Data from an OracleDataReader Object

3-110

Table 3-16 (Cont.) .NET Type Accessors

Oracle Native Data Type .NET Type Typed Accessor

BINARY_FLOAT System.Single
System.Boolean
System.String

GetFloat
GetBoolean1

GetString1

BLOB System.Byte[]
System.Guid

GetBytes
GetGuid1

BOOLEAN System.Boolean GetBoolean
CHAR System.String

System.Char[]
GetString
GetChars

CLOB System.String
System.Char[]

GetString
GetChars

DATE System.DateTime
System.String

GetDateTime
GetString1

INTERVAL DAY TO SECOND System.Timespan
System.String
System.Decimal

GetTimeSpan
GetString1

GetDecimal2

INTERVAL YEAR TO MONTH System.Int64
System.String
System.Decimal

GetInt64
GetString1

GetDecimal2

LONG System.String
System.Char[]

GetString
GetChars

LONG RAW System.Byte[]
System.Guid

GetBytes
GetGuid1

NCHAR System.String
System.Char[]

GetString
GetChars

NCLOB System.String
System.Char[]

GetString
GetChars

NUMBER System.Decimal
System.Byte
System.Int16
System.Int32
System.Int64
System.Single
System.Double
System.Boolean
System.String

GetDecimal
GetByte
GetInt16
GetInt32
GetInt64
GetFloat
GetDouble
GetBoolean1

GetString1

NVARCHAR2 System.String
System.Char[]

GetString
GetChars

RAW System.Byte[]
System.Guid

GetBytes
GetGuid1

Chapter 3
Obtaining Data from an OracleDataReader Object

3-111

Table 3-16 (Cont.) .NET Type Accessors

Oracle Native Data Type .NET Type Typed Accessor

REF System.String GetString
ROWID System.String

System.Char[]
GetString
GetChars

TIMESTAMP System.DateTime
System.String

GetDateTime
GetString1

TIMESTAMP WITH LOCAL TIME ZONE System.DateTime
System.String

GetDateTime
GetString1

TIMESTAMP WITH TIME ZONE System.DateTimeOffset
System.String

GetDateTimeOffs
et
GetString1

UROWID System.String
System.Char[]

GetString
GetChars

VARCHAR2 System.String
System.Char[]

GetString
GetChars

XMLType System.String
System.Xml.XmlReader

GetString
GetXmlReader

• Superscript 1: The typed accessor is available in managed ODP.NET and
ODP.NET Core only. The GetString accessors were added starting in ODP.NET
19.10.

• Superscript 2: The typed accessor is available in unmanaged ODP.NET only.

Certain methods and properties of the OracleDataReader object require ODP.NET to
map a NUMBER column to a .NET type based on the precision and scale of the column.
These members are:

• Item property

• GetFieldType method

• GetValue method

• GetValues method

ODP.NET determines the appropriate .NET type by considering the following .NET
types in order, and selecting the first .NET type from the list that can represent the
entire range of values of the column:

• System.Byte
• System.Int16
• System.Int32
• System.Int64
• System.Single
• System.Double

Chapter 3
Obtaining Data from an OracleDataReader Object

3-112

• System.Decimal
If no .NET type exists that can represent the entire range of values of the column, then an
attempt is made to represent the column values as a System.Decimal type. If the value in the
column cannot be represented as System.Decimal, then an exception is raised.

For example, consider two columns defined as NUMBER(4,0) and NUMBER(10,2). The
first .NET types from the previous list that can represent the entire range of values of the
columns are System.Int16 and System.Double, respectively. However, consider a column
defined as NUMBER(20,10). In this case, there is no .NET type that can represent the entire
range of values on the column, so an attempt is made to return values in the column as a
System.Decimal type. If a value in the column cannot be represented as a System.Decimal
type, then an exception is raised.

The Fill method of the OracleDataAdapter class uses the OracleDataReader object to
populate or refresh a DataTable or DataSet with .NET types. As a result, the .NET type used
to represent a NUMBER column in the DataTable or DataSet also depends on the precision and
scale of the column.

See Also:

• "OracleDataReader Class"

• "OracleDataAdapter Class "

• "Item "

• "GetFieldType "

• "GetValues "

• "GetValue "

ODP.NET Type Accessors
ODP.NET exposes provider-specific types that natively represent the data types in the
database. In some cases, these ODP.NET types provide better performance and functioning
than the corresponding .NET types. The ODP.NET types can be obtained from the
OracleDataReader object by calling their respective typed accessor.

Table 3-17 lists the valid type accessors that ODP.NET uses to obtain ODP.NET types for an
Oracle native type.

Table 3-17 ODP.NET Type Accessors

Oracle Native Data Type ODP.NET Type Typed Accessor

BFILE OracleBFile GetOracleBFile
BINARY_DOUBLE OracleDecimal GetOracleDecimal
BINARY_FLOAT OracleDecimal GetOracleDecimal
BLOB OracleBlob

OracleBlob
OracleBinary

GetOracleBlob
GetOracleBlobForUpdate
GetOracleBinary

Chapter 3
Obtaining Data from an OracleDataReader Object

3-113

Table 3-17 (Cont.) ODP.NET Type Accessors

Oracle Native Data Type ODP.NET Type Typed Accessor

BOOLEAN OracleBoolean GetOracleBoolean
CHAR OracleString GetOracleString
CLOB OracleClob

OracleClob
OracleString

GetOracleClob
GetOracleClobForUpdate
GetOracleString

DATE OracleDate GetOracleDate
INTERVAL DAY TO SECOND OracleIntervalDS GetOracleIntervalDS
INTERVAL YEAR TO MONTH OracleIntervalYM GetOracleIntervalYM
LONG OracleString GetOracleString
LONG RAW OracleBinary GetOracleBinary
NCHAR OracleString GetOracleString
NCLOB OracleString GetOracleString
NUMBER OracleDecimal GetOracleDecimal
NVARCHAR2 OracleString GetOracleString
RAW OracleBinary GetOracleBinary
REF OracleRef GetOracleRef
ROWID OracleString GetOracleString
TIMESTAMP OracleTimeStamp GetOracleTimeStamp
TIMESTAMP WITH LOCAL TIME
ZONE

OracleTimeStampLTZ GetOracleTimeStampLTZ

TIMESTAMP WITH TIME ZONE OracleTimeStampTZ GetOracleTimeStampTZ
UROWID OracleString GetOracleString
VARCHAR2 OracleString GetOracleString
XMLType OracleString

OracleXmlType
GetOracleString
GetOracleXmlType

See Also:

"ODP.NET Types Overview" for a list of all ODP.NET types

Obtaining LONG and LONG RAW Data
ODP.NET fetches and caches rows from the database during the Read method
invocations on the OracleDataReader object. The amount of LONG and LONG RAW
column data that is retrieved from this operation is determined by
InitialLONGFetchSize. The different behaviors observed when
InitialLONGFetchSize is set to 0, greater than 0, and -1 are explained in the following
sections.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-114

Note:

ODP.NET does not support the CommandBehavior.SequentialAccess enumeration
value. Therefore, LONG and LONG RAW data can be fetched randomly.

Setting InitialLONGFetchSize to Zero or a Value Greater than Zero
The specified amount of InitialLONGFetchSize characters or bytes for LONG or LONG RAW
column data is retrieved into the cache during the Read method invocations on the
OracleDataReader object.

By default, InitialLONGFetchSize is set to 0. In this case, ODP.NET does not fetch any LONG
or LONG RAW column data during the Read method invocations on the OracleDataReader
object. The LONG or LONG RAW data is fetched when the typed accessor method is explicitly
invoked for the LONG or LONG RAW column, which incurs a database round-trip because no data
is cached.

If InitialLONGFetchSize is set to a value greater than 0, that amount of specified data is
cached by ODP.NET during the Read method invocations on the OracleDataReader object. If
the application requests an amount of data less than or equal to the InitialLONGFetchSize
through the typed accessor methods, no database round-trip is incurred. However, an
additional database round-trip is required to fetch data beyond InitialLONGFetchSize.

To obtain data beyond the InitialLONGFetchSize characters or bytes, one of the following
must be in the select list:

• Primary key

• ROWID
• Unique columns - (defined as a set of columns on which a unique constraint has been

defined or a unique index has been created, where at least one of the columns in the set
has a NOT NULL constraint defined on it)

To be able to fetch the entire LONG or LONG RAW data without having a primary key column, a
ROWID, or unique columns in the select list, set the size of the InitialLONGFetchSize property
on the OracleCommand object to equal or greater than the number of characters or bytes
needed to be retrieved.

The LONG or LONG RAW data is returned when the appropriate typed accessor method
(GetChars, GetOracleString, or GetString for LONG or GetOracleBinary or GetBytes for
LONG RAW) is called on the OracleDataReader object.

Setting InitialLONGFetchSize to -1
By setting InitialLONGFetchSize to -1, it is possible to fetch the entire LONG or LONG RAW data
from the database for a select query, without requiring a primary key, ROWID, or unique column
in the select list.

When InitialLONGFetchSize is set to -1, the entire LONG or LONG RAW data is retrieved and
cached during Read method invocations on the OracleDataReader object. Calls to GetString,
GetOracleString, GetChars, GetBytes, or GetOracleBinary in the OracleDataReader return
the entire column data.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-115

Obtaining LOB Data
ODP.NET fetches and caches rows from the database during the Read method
invocations on the OracleDataReader object. The amount of LOB column data that is
retrieved from this operation is determined by InitialLOBFetchSize.

The following is a complete list of typed accessor methods that an application can call
for the CLOB and BLOB columns, if InitialLOBFetchSize is set to 0, greater than 0, or
-1:

• Methods callable for BLOB column

– GetBytes
– GetValue
– GetValues
– GetOracleBinary
– GetOracleBlob
– GetOracleBlobForUpdate
– GetOracleValue
– GetOracleValues

• Methods callable for CLOB column

– GetChars
– GetString
– GetValue
– GetValues
– GetOracleString
– GetOracleClob
– GetOracleClobForUpdate
– GetOracleValue
– GetOracleValues

The following sections explain the different behaviors observed when
InitialLOBFetchSize is set to 0, greater than 0, and -1.

Setting InitialLOBFetchSize to Zero
By default, the InitialLOBFetchSize property is 0. This value dictates to ODP.NET
that any LOBs selected will have their client LOB data fetches deferred until after the
OracleDataReader Read, such as when using the an accessor. Each LOB value is
retrieved only at the point it is individually accessed.

The advantage of using this retrieval strategy is that it conserves client memory and
bandwidth. If the LOBs selected are either very large or not necessary to be
immediately consumed by the end user, or both, then the application can perform
better if LOBs are retrieved as needed, rather than all at once.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-116

Setting InitialLOBFetchSize to a Value Greater than Zero
If InitialLOBFetchSize is set to a value greater than 0, ODP.NET caches LOB data up to
InitialLOBFetchSize characters or bytes for each LOB selected during the Read method
invocations on the OracleDataReader object. The maximum value is 2,147,483,647 (2GB). If
the total size of a selected LOB is less than this number, the entire LOB data will be read.

By pre-fetching all LOB entries in one or more database round trips, applications can perform
faster by reducing round trips. This approach is most advantageous when most LOBs are
either small in size, or consumed by the end user almost immediately, or both. The down side
of a large fetch size is higher memory consumption.

This section discusses the ways to fetch beyond the InitialLOBFetchSize characters or
bytes that are cached.

The remaining LOB data is returned when a typed accessor is invoked, regardless of the
value set to the InitialLOBFetchSize property. Primary key, ROWID, or unique columns are
not required to be in the query select list to obtain data beyond the specified
InitialLOBFetchSize.

The GetOracleBlob, GetOracleClob, GetOracleBlobForUpdate, and
GetOracleClobForUpdate methods can now be invoked even if InitialLOBFetchSize is
greater than 0.

Setting InitialLOBFetchSize to -1
To fetch all LOB data selected during the read operation and not be bound by a set limit per
LOB, set InitialLOBFetchSize to -1. A new default behavior has been introduced for
ODP.NET Release 12.1.0.2 and higher when InitialLobFetchSize is set to -1.

When LegacyEntireLOBFetch = 0, which is the default value, the following operations are
invoked for a LOB column:

• OracleDataReader.GetOracleClob(): returns OracleClob object

• OracleDataReader.GetOracleBlob() : returns OracleBlob object

• OracleDataReader.GetOracleClobForUpdate(): returns OracleClob object

• OracleDataReader.GetOracleBlobForUpdate(): returns OracleBlob object

• OracleDataReader.GetOracleValue(): returns OracleClob object for a CLOB column

• OracleDataReader.GetOracleValue(): returns OracleBlob object for a BLOB column

• OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleClob for a CLOB column

• OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleBlob for a BLOB column

To use the old behavior, set LegacyEntireLobFetch = 1 in the ODP.NET configuration.

When LegacyEntireLobFetch = 1 and InitialLOBFetchSize = -1, GetOracleClob,
GetOracleClobForUpdate, GetOracleBlob, and GetOracleBlobForUpdate methods are not
supported. The following operations are invoked for a LOB column in this scenario:

• OracleDataReader.GetOracleClob(): throws InvalidCastException()

Chapter 3
Obtaining Data from an OracleDataReader Object

3-117

• OracleDataReader.GetOracleBlob(): throws InvalidCastException()
• OracleDataReader.GetOracleClobForUpdate(): throws InvalidCastException()
• OracleDataReader.GetOracleBlobForUpdate(): throws InvalidCastException()
• OracleDataReader.GetOracleValue(): returns OracleString object for a CLOB

column

• OracleDataReader.GetOracleValue(): returns OracleBinary object for a BLOB
column

• OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates
DataTable with OracleString for a CLOB column

• OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates
DataTable with OracleBinary for a BLOB column

For releases prior to ODP.NET 12.1.0.2, by setting InitialLOBFetchSize to -1, it is
possible to fetch the entire LOB data from the database for a select query, without
requiring a primary key, ROWID, or unique column in the select list. When
InitialLOBFetchSize is set to -1, the entire LOB column data is fetched and cached
during the Read method invocations on the OracleDataReader object. Calls to
GetString, GetOracleString, GetChars, GetBytes, or GetOracleBinary in the
OracleDataReader allow retrieving all data.

Methods Supported for InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1
This section lists supported and not supported methods for the CLOB and BLOB data
types when the InitialLOBFetchSize property is set to -1 and LegacyEntireLobFetch
property is set to 1.

Table 3-18 lists supported and not supported methods for the CLOB data types.

Table 3-18 Supported OracleDataReader CLOB Methods for
InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1

OracleDataReader CLOB Methods Supported

GetChars Yes

GetString Yes

GetValue Yes

GetValues Yes

GetOracleString Yes

GetOracleValue Yes

GetOracleValues Yes

GetOracleClob No

GetOracleClobForUpdate No

Table 3-19 lists supported and not supported methods for the BLOB data types.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-118

Table 3-19 Supported OracleDataReader BLOB Methods for InitialLOBFetchSize of -1
and LegacyEntireLobFetch of 1

OracleDataReader BLOB Methods Supported

GetBytes Yes

GetValue Yes

GetValues Yes

GetOracleBinary Yes

GetOracleValue Yes

GetOracleValues Yes

GetOracleBlob No

GetOracleBlobForUpdate No

Performance Considerations Related to the InitialLOBFetchSize Property
This section discusses the advantages and disadvantages of the various
InitialLOBFetchSize property settings in different situations.

An application does not have to choose between performance and OracleBlob and
OracleClob functionality. Setting the InitialLOBFetchSize property results in a performance
boost and still gives the flexibility to use the OracleBlob and OracleClob objects.

If the size of the LOB data is unknown or if the LOB data size varies irregularly, then it is
better to leave the InitialLOBFetchSize property to its default value of 0. This still gives
better performance in most cases.

Setting the InitialLOBFetchSize property to a size equal to or greater than the LOB data
size for most rows improves performance. It is generally recommended that the
InitialLOBFetchSize property be set to a value larger than the size of the LOB data for
more than 80% of the rows returned by the query. For example, if the size of the LOB data is
less than 1 KB in 80% of the rows, and more than 1 MB for 20% of the rows, set the
InitialLOBFetchSize property to 1 KB.

See Also:

• "LOB Support"

• "InitialLOBFetchSize"

• "InitialLONGFetchSize"

Controlling the Number of Rows Fetched in One Database Round-Trip
Application performance depends on the number of rows the application needs to fetch, and
the number of database round-trips that are needed to retrieve them.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-119

Use of FetchSize
The FetchSize property represents the total memory size in bytes that ODP.NET
allocates to cache the data fetched from a database round-trip.

The FetchSize property can be set on the OracleCommand, OracleDataReader, or
OracleRefCursor object, depending on the situation. It controls the fetch size for filling
a DataSet or DataTable using an OracleDataAdapter.

If the FetchSize property is set on the OracleCommand object, then the newly created
OracleDataReader object inherits the FetchSize property of the OracleCommand object.
This inherited FetchSize value can be left as is, or modified to override the inherited
value. The FetchSize property of the OracleDataReader object can be changed before
the first Read method invocation, which allocates memory specified by the FetchSize
property. All subsequent fetches from the database use the same cache allocated for
that OracleDataReader object. Therefore, changing the FetchSize value after the first
Read method invocation has no effect.

Fine-Tuning FetchSize
By fine-tuning the FetchSize property, applications can control memory usage and the
number of rows fetched in one database round-trip for better performance.

For example, if a query returns 100 rows and each row takes 1024 bytes, then setting
the FetchSize property to 102400 takes just one database round-trip to fetch 100
rows. For the same query, if the FetchSize property is set to 10240, it takes 10
database round-trips to retrieve 100 rows. If the application requires all the rows to be
fetched from the result set, the first scenario is faster than the second. However, if the
application requires just the first 10 rows from the result set, the second scenario can
perform better because it fetches only 10 rows, not 100 rows. When the next 10 rows
are fetched, then the memory allocated for rows 1-10 is reused for rows 11-20.

The larger the FetchSize, the more system memory is used. Developers should not
set large fetch sizes if their client systems have limited memory resources.

Using the RowSize Property
The RowSize property of the OracleCommand or OracleRefCursor object is populated
with the row size (in bytes) after an execution of a SELECT statement. The FetchSize
property can then be set to a value relative to the RowSize property by setting it to the
result of multiplying the RowSize value times the number of rows to fetch for each
database round-trip.

For example, setting the FetchSize to RowSize * 10 forces the OracleDataReader
object to fetch exactly 10 rows for each database round-trip. Note that the RowSize
value does not change due to the data length in each individual column. Instead, the
RowSize value is determined strictly from the metadata information of the database
table(s) that the SELECT statement is executed against.

The RowSize property can be used to set the FetchSize property at design time or at
run time, as described in the following sections.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-120

Setting FetchSize Value in the Registry
The HKLM\Software\Oracle\ODP.NET\ version\FetchSize registry entry can be set to
specify the default result set fetch size (in bytes) for all applications that use that particular
version of ODP.NET or the FetchSize attribute in the application configuration or web.config
file can specify the default value for a given application. By default, the fetch size is 131072
bytes. This value can be overridden programmatically by having the applications set the
FetchSize property on either the OracleCommand or the OracleDataReader at run time.

Setting FetchSize Value at Design Time
If the row size for a particular SELECT statement is already known from a previous execution,
the FetchSize value of the OracleCommand object can be set at design time to the result of
multiplying that row size times the number of rows the application wishes to fetch for each
database round-trip. The FetchSize value set on the OracleCommand object is inherited by the
OracleDataReader object that is created by the ExecuteReader method invocation on the
OracleCommand object. Rather than setting the FetchSize value on the OracleCommand object,
the FetchSize value can also be set on the OracleDataReader object directly. In either case,
the FetchSize value is set at design time, without accessing the RowSize property value at
run time.

Setting FetchSize Value at Run Time
Applications that do not know the row size at design time can use the RowSize property of the
OracleCommand object to set the FetchSize property of the OracleDataReader object. The
RowSize property provides a dynamic way of setting the FetchSize property based on the
size of a row.

After an OracleDataReader object is obtained by invoking the ExecuteReader method on the
OracleCommand object, the RowSize property is populated with the size of the row (in bytes).
By using the RowSize property, the application can dynamically set the FetchSize property of
the OracleDataReader object to the product of the RowSize property value multiplied by the
number of rows the application wishes to fetch for each database round-trip. In this scenario,
the FetchSize property is set by accessing the RowSize property at run time.

PL/SQL REF CURSOR and OracleRefCursor
The REF CURSOR is a data type in the Oracle PL/SQL language. It represents a cursor or a
result set in Oracle Database. The OracleRefCursor object is a corresponding ODP.NET type
for the REF CURSOR type.

This section discusses the following aspects of using the REF CURSOR data type and
OracleRefCursor objects:

• Obtaining an OracleRefCursor Object

• Obtaining a REF CURSOR Data Type

• Populating an OracleDataReader from a REF CURSOR

• Populating the DataSet from a REF CURSOR

• Populating an OracleRefCursor from a REF CURSOR

• Updating a DataSet Obtained from a REF CURSOR

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

3-121

• Behavior of ExecuteScalar Method for REF CURSOR

• Passing a REF CURSOR to a Stored Procedure

Obtaining an OracleRefCursor Object
There are no constructors for OracleRefCursor objects. They can be acquired only as
parameter values from PL/SQL stored procedures, stored functions, or anonymous
blocks.

An OracleRefCursor object is a connected object. The connection used to execute the
command returning an OracleRefCursor object is required for its lifetime. Once the
connection associated with an OracleRefCursor object is closed, the
OracleRefCursor object cannot be used.

Obtaining a REF CURSOR Data Type
A REF CURSOR data type can be obtained as an OracleDataReader, DataSet, or
OracleRefCursor object. If the REF CURSOR data type is obtained as an
OracleRefCursor object, it can be used to create an OracleDataReader object or
populate a DataSet from it. When accessing a REF CURSOR data type, always bind it as
an OracleDbType.RefCursor parameter.

Populating an OracleDataReader from a REF CURSOR
A REF CURSOR data type can be obtained as an OracleDataReader object by calling the
ExecuteReader method of the OracleCommand object. The output parameter with the
OracleDbType property set is bound to OracleDbType.RefCursor. None of the output
parameters of type OracleDbType.RefCursor is populated after the ExecuteReader
method is invoked.

If there are multiple output REF CURSOR parameters, use the NextResult method of the
OracleDataReader object to access the next REF CURSOR data type. The
OracleDataReader NextResult method provides sequential access to the REF CURSOR
data types; only one REF CURSOR data type can be accessed at a given time.

The order in which OracleDataReader objects are created for the corresponding REF
CURSOR data types depends on the order in which the parameters are bound. If a
PL/SQL stored function returns a REF CURSOR data type, then it becomes the first
OracleDataReader object and all the output REF CURSOR data types follow the order in
which the parameters are bound.

Populating the DataSet from a REF CURSOR
For the Fill method to populate the DataSet properly, the SelectCommand property of
the OracleDataAdapter class must be bound with an output parameter of type
OracleDbType.RefCursor. If the Fill method is successful, the DataSet is populated
with a DataTable that represents a REF CURSOR data type.

If the command execution returns multiple REF CURSOR data types, the DataSet is
populated with multiple DataTable objects.

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

3-122

With Oracle Data Provider for .NET release 11.1.0.6.20, the extended property,
REFCursorName, has been introduced on the DataTable, to identify the REF CURSOR that
populates the DataTable.

This property is particularly useful when a DataSet is being populated with more than one REF
CURSOR, one or more of which is NULL. For example, if a DataSet is populated by executing a
stored procedure that returns three REF CURSORs and the second REF CURSOR is NULL, the
REFCursorName property value for the first DataTable is REFCursor and for the second
DataTable, REFCursor2 . No DataTable is populated for the NULL REF CURSOR.

Populating an OracleRefCursor from a REF CURSOR
When the ExecuteNonQuery method is invoked on a command that returns one or more REF
CURSOR data types, each of the OracleCommand parameters that are bound as an
OracleDbType.RefCursor gets a reference to an OracleRefCursor object.

To create an OracleDataReader object from an OracleRefCursor object, invoke the
GetDataReader method from the OracleRefCursor object. Subsequent calls to the
GetDataReader method return a reference to the same OracleDataReader object.

To populate a DataSet with an OracleRefCursor object, the application can invoke a Fill
method of the OracleDataAdapter class that takes an OracleRefCursor object. Similar to the
OracleDataReader object, an OracleRefCursor object is forward-only. Therefore, once a row
is read from an OracleRefCursor object, that same row cannot be obtained again from it
unless it is populated again from a query.

When multiple REF CURSOR data types are returned from a command execution as
OracleRefCursor objects, the application can choose to create an OracleDataReader object
or populate a DataSet with a particular OracleRefCursor object. All the OracleDataReader
objects or DataSet objects created from the OracleRefCursor objects are active at the same
time, and can be accessed in any order.

Updating a DataSet Obtained from a REF CURSOR
REF CURSOR types cannot be updated. However, data that is retrieved into a DataSet can be
updated. Therefore, the OracleDataAdapter class requires a custom SQL statement to flush
any REF CURSOR data updates to the database.

The OracleCommandBuilder object cannot be used to generate SQL statements for REF
CURSOR updates.

Behavior of ExecuteScalar Method for REF CURSOR
The ExecuteScalar method returns the value of the first column of the first row of the REF
CURSOR if it is one of the following:

• A return value of a stored function execution

• The first bind parameter of a stored procedure execution

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

3-123

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guidefor more
information

Passing a REF CURSOR to a Stored Procedure
An application can retrieve a REF CURSOR type from a PL/SQL stored procedure or
function and pass it to another stored procedure or function. This feature is useful in
scenarios where a stored procedure or a function returns a REF CURSOR type to
the .NET application, and based on the application logic, the application passes this
REF CURSOR to another stored procedure for processing. Note that if you retrieve the
data from a REF CURSOR type in the .NET application, you cannot pass it back to
another stored procedure.

The following example demonstrate passing a REF CURSOR:

/*
connect scott/tiger@oracle
create table test (col1 number);
insert into test(col1) values (1);
commit;

create or replace package testPkg as type empCur is REF Cursor;
end testPkg;
/

create or replace procedure testSP(param1 IN testPkg.empCur, param2 OUT NUMBER)
as
begin
FETCH param1 into param2;
end;
/
*/

// C#

using System;
using Oracle.DataAccess.Client;
using System.Data;

class InRefCursorParameterSample
{
 static void Main()
 {
 OracleConnection conn = new OracleConnection
 ("User Id=scott; Password=tiger; Data Source=oracle");

 conn.Open(); // Open the connection to the database

 // Command text for getting the REF Cursor as OUT parameter
 String cmdTxt1 = "begin open :1 for select col1 from test; end;";

 // Command text to pass the REF Cursor as IN parameter
 String cmdTxt2 = "begin testSP (:1, :2); end;";

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

3-124

 // Create the command object for executing cmdTxt1 and cmdTxt2
 OracleCommand cmd = new OracleCommand(cmdTxt1, conn);

 // Bind the Ref cursor to the PL/SQL stored procedure
 OracleParameter outRefPrm = cmd.Parameters.Add("outRefPrm",
 OracleDbType.RefCursor, DBNull.Value, ParameterDirection.Output);

 cmd.ExecuteNonQuery(); // Execute the anonymous PL/SQL block

 // Reset the command object to execute another anonymous PL/SQL block
 cmd.Parameters.Clear();
 cmd.CommandText = cmdTxt2;

 // REF Cursor obtained from previous execution is passed to this
 // procedure as IN parameter
 OracleParameter inRefPrm = cmd.Parameters.Add("inRefPrm",
 OracleDbType.RefCursor, outRefPrm.Value, ParameterDirection.Input);

 // Bind another Number parameter to get the REF Cursor column value
 OracleParameter outNumPrm = cmd.Parameters.Add("outNumPrm",
 OracleDbType.Int32, DBNull.Value, ParameterDirection.Output);

 cmd.ExecuteNonQuery(); //Execute the stored procedure

 // Display the out parameter value
 Console.WriteLine("out parameter is: " + outNumPrm.Value.ToString());
 }
}

Implicit REF CURSOR Binding
ODP.NET enables applications to run stored procedures with REF CURSOR parameters without
using explicit binding for these parameters in the .NET code. ODP.NET unmanaged and
managed drivers support REF CURSOR implicit binding through configuration done in .NET
configuration files.

For a read-only result set, such as a REF CURSOR using OracleDataReader, REF CURSOR
schema information is retrieved automatically.

For some scenarios, such as when updateable REF CURSORs or Entity Framework is used,
developers need to define the REF CURSOR schema information so that the application can
bind the implicit REF CURSOR. Entity Framework applications use implicit REF CURSOR binding
to instantiate complex types from REF CURSOR data. Applications must specify REF CURSOR
bind and metadata information in the app.config, web.config, or machine.config .NET
configuration file.

The attributes supplied in the .NET configuration file are also used when the application
requests for schema information from the OracleDataReader object that represents a REF
CURSOR. This means that for REF CURSORs that are created using a SELECT from a single table,
the application can update that table through the use of OracleDataAdapter and
OracleCommandBuilder.

When using the Entity Framework, function imports can return an implicitly-bound REF
CURSOR. The REF CURSOR can be returned as a collection of complex types or entity types. To
return a complex type collection, the .NET configuration file needs to define the REF CURSOR
bind and metadata information. To return an entity type collection, only the bind information
needs to be defined in the .NET configuration file.

Chapter 3
Implicit REF CURSOR Binding

3-125

This section contains the following topics:

• Specifying REF CURSOR Bind and Metadata Information in the .NET
Configuration File

• Sample Configuration File and Application

• Usage Considerations

Specifying REF CURSOR Bind and Metadata Information in the .NET
Configuration File

Specify the REF CURSOR information in the oracle.dataacccess.client configuration
section of the .NET configuration file. Use an <add> element for each piece of
information. The add element uses name-value attributes to specify REF CURSOR
information. Use the following format to specify bind information:

<add
name="SchemaName.PackageName.StoredProcedureName.RefCursor.RefCursorParameterPosi
tionOrName"
value="implicitRefCursor bindinfo='mode=InputOutput|Output|ReturnValue'" />

Use the following format to specify metadata information:

<add
name="SchemaName.PackageName.StoredProcedureName.RefCursorMetaData.RefCursorParam
eterPositionorName.Column.ColumnOrdinal"
value="implicitRefCursor metadata=AttributesList" />

Each REF CURSOR column needs to have an add element defined for it. For example, if
you have a REF CURSOR returning five columns, then you need to define five add
elements in the config file.

Each add element contains the name and value attributes. The value attribute must
begin with the word implicitRefCursor followed by the bindinfo or metadata
attribute for specifying bind or metadata information.

The bindinfo information is used by ODP.NET for binding REF CURSOR parameters.
The metadata information is used by ODP.NET to associate the schema information
with the appropriate REF CURSOR. The metadata comprises of an attributes list that
includes parameters together with their values.

The SchemaName, PackageName, and StoredProcedureName are case-sensitive. In order
to run a stored procedure with implicit REF CURSOR binding, the
SchemaName.PackageName.StoredProcedureName portion of the name attribute must
exactly match the name specified in the data dictionary for that stored procedure.

Note:

If the application uses implicit REF CURSOR binding feature outside of Entity
Framework, then the .NET configuration file and OracleCommand
CommandText do not require the schema name concatenated before the
stored procedure name.

Chapter 3
Implicit REF CURSOR Binding

3-126

If any schema, package, or stored procedure name in the database contains lowercase
characters, then it must be enclosed within double quotation marks (") in the config file to
preserve the case. Double quotation marks are used within the name attribute by using "
when needed. For example, if the schema name is HrSchema, the package name is
HrPackage, and the stored procedure name is HrStoredProcedure in the database, the config
file should use the following:

<add
name=""HrSchema"."HrPackage"."HrStoredProcedure".RefCurso
rMetaData . . . />

By default, Oracle Database stores these names as uppercase characters. ODP.NET
assumes default behavior, and converts all names to uppercase characters unless you
explicitly preserve the case by using double quotation marks.

Note:

The SchemaName, PackageName, StoredProcedureName, or ParameterName cannot
contain a period (".") in the name. For example, P.0 is an unacceptable parameter
name.

Depending on whether the application uses bind-by-name or bind-by-position, the
RefCursorParameterPositionOrName portion of the name attribute must be set with the
correct parameter position (for bind by position) or parameter name (for bind by name). For
functions, the position is 0-based, where the position 0 represents the return value. For
procedures, the position is 1-based, as there are no return values for procedures. For
example, if a stored procedure accepts five parameters, returning only two REF CURSORs in
the third and fifth parameter positions, then the .NET config REF CURSOR bind information
should contain one entry for position 3 and one entry for position 5.

If bind-by-name is used, the attribute name is used to identify the REF CURSOR parameter. The
name should use the same name and case as the one specified in the data dictionary for that
stored procedure.

For bindinfo, the mode specifies the parameter direction of the parameter. The mode must be
either InputOutput, Output, or ReturnValue.

Note:

Implicit REF CURSOR binding for an input REF CURSOR parameter is not supported.

An exception is thrown at runtime if the .NET configuration file contains an entry for
a REF CURSOR whose mode is set to Input.

For metadata, The AttributesList contains the list of parameters. Table 3-20 describes the
parameters that can be included in the AttributesList.

Example 3-5 shows a sample add element that uses bindinfo. Here, the schema name is
SCOTT and the stored procedure name is TESTPROC. The parameter name is parameter1. The
mode is output.

Chapter 3
Implicit REF CURSOR Binding

3-127

Example 3-6 shows a sample add element that uses metadata.

Table 3-20 Allowed Parameters in Attributes List

Name Type Required/Optional
for Entity
Framework

Description

ColumnName System.String Required The name of the column.

ProviderType Oracle.DataAcce
ss.Client.Oracl
eDbType

Required The database column type
(OracleDbType) of the column

NativeDataType System.String Required The Oracle type. For example,
NCLOB.

BaseColumnName System.String Optional The name of the column in the
database if an alias is used for
the column.

BaseSchemaName System.String Optional The name of the schema in the
database that contains the
column.

BaseTableName System.String Optional The name of the table or view in
the database that contains the
column.

ColumnSize System.Int64 Optional The maximum possible length
of a value in the column

NumericPrecisi
on

System.Int16 Optional The maximum precision of the
column, if the column is a
numeric data type.

NumericScale System.Int16 Optional The maximum scale of the
column, if the column is a
numeric data type.

IsUnique System.Boolean Optional Indicates whether or not the
column is unique.

IsKey System.Boolean Optional Indicates whether or not the
column is a key column. For a
table to be updated with the REF
CURSOR information, at least
one of the columns in the REF
CURSOR metadata should have
this value set to true

IsRowID System.Boolean Optional true if the column is a ROWID,
otherwise false.

DataType System.RuntimeT
ype

Optional Maps to the common language
runtime type.

AllowDBNull System.Boolean Optional true if null values are allowed,
otherwise false

IsAliased System.Boolean Optional true if the column is an alias;
otherwise false.

Chapter 3
Implicit REF CURSOR Binding

3-128

Table 3-20 (Cont.) Allowed Parameters in Attributes List

Name Type Required/Optional
for Entity
Framework

Description

IsByteSemantic System.Boolean Optional IsByteSemantic is:

• true if the ColumnSize
value uses bytes semantics

• false if ColumnSize uses
character semantics

IsExpression System.Boolean Optional true if the column is an
expression, else false.

IsHidden System.Boolean Optional true if the column is hidden,
else false.

IsReadOnly System.Boolean Optional true if the column is read-only,
else false

IsLong System.Boolean Optional true if the column is of LONG,
LONG RAW, BLOB, CLOB, or

BFILE type, else false.

UdtTypeName System.String Optional The type name of the UDT.

ProviderDBType System.Data.DbT
ype

Optional System.Data.DbType

ObjectName System.String Optional Represents the name of the
object.

Some of the attributes, listed in Table 3-20, automatically have their values set using the
result set's metadata. Developers can override these default values by setting a value
explicitly.

You may have to explicitly define some attributes listed as optional for certain operations. For
example, updateable REF CURSOR requires the developer to define key information.

Example 3-5 Using the add Element with bindinfo

<add name="SCOTT.TESTPROC.RefCursor.parameter1" value="implicitRefCursor
 bindinfo='mode=Output'" />

Example 3-6 Using the add Element with metadata

<add name="scott.TestProc.RefCursorMetaData.parameter1.Column.0"
value="implicitRefCursor metadata='ColumnName=EMPNO;BaseColumnName=EMPNO;
BaseSchemaName=SCOTT;BaseTableName=EMP;NativeDataType=number;
ProviderType=Int32;DataType=System.Int32;ColumnSize=4;AllowDBNull=false;
IsKey=true'" />

Sample Configuration File and Application
This section builds a sample application to illustrate implicit REF CURSOR binding. It contains
the following topics:

• Sample Stored Procedure and Function

• Sample Application Configuration File

Chapter 3
Implicit REF CURSOR Binding

3-129

• Sample Application That Uses the Configuration File

Sample Stored Procedure and Function

CREATE OR REPLACE FUNCTION GETEMP (
 EMPID IN NUMBER) return sys_refcursor is
 emp sys_refcursor;
BEGIN
 OPEN emp FOR SELECT empno, ename FROM emp where empno = EMPID;
 return emp;
END;
/

CREATE OR REPLACE PROCEDURE "GetEmpAndDept" (
 EMPS OUT sys_refcursor,
 DEPTS OUT sys_refcursor) AS
BEGIN
 OPEN EMPS for SELECT empno, ename from emp;
 OPEN DEPTS for SELECT deptno, dname from dept;
END;
/

Sample Application Configuration File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <oracle.dataaccess.client>
 <settings>

 <!-- The following is for SCOTT.GETEMP -->
 <add name="SCOTT.GETEMP.RefCursor.0"
 value="implicitRefCursor bindinfo='mode=ReturnValue'" />

 <!-- The following is for SCOTT.GETEMP's REF CURSOR metadata -->
 <add name="SCOTT.GETEMP.RefCursorMetaData.0.Column.0"
 value="implicitRefCursor metadata='ColumnName=EMPNO;
 BaseColumnName=EMPNO;BaseSchemaName=SCOTT;BaseTableName=EMP;
 NativeDataType=number;ProviderType=Int32;ProviderDBType=Int32;
 DataType=System.Int32;ColumnSize=4;NumericPrecision=10;
 NumericScale=3;AllowDBNull=false;IsKey=true'" />

 <add name="SCOTT.GETEMP.RefCursorMetaData.0.Column.1"
 value="implicitRefCursor metadata='ColumnName=ENAME;
 BaseColumnName=ENAME;BaseSchemaName=SCOTT;BaseTableName=EMP;
 NativeDataType=varchar2;ProviderType=Varchar2;
 ProviderDBType=String;DataType=System.String;
 ColumnSize=10;AllowDBNull=true'" />

 <!-- The following is for "SCOTT"."GetEmpAndDept" -->
 <add name="SCOTT."GetEmpAndDept".RefCursor.EMPS"
 value="implicitRefCursor bindinfo='mode=Output'" />

 <!-- The following is for SCOTT.GETEMP's EMPS REF CURSOR metadata -->
 <add name="SCOTT."GetEmpAndDept"
 .RefCursorMetaData.EMPS.Column.0"
 value="implicitRefCursor metadata='ColumnName=EMPNO;
 BaseColumnName=EMPNO;BaseSchemaName=SCOTT;BaseTableName=EMP;
 NativeDataType=number;ProviderType=Int32;ProviderDBType=Int32;
 DataType=System.Int32;ColumnSize=4;NumericPrecision=10;
 NumericScale=3;AllowDBNull=false;IsKey=true'" />

Chapter 3
Implicit REF CURSOR Binding

3-130

 <add name="SCOTT."GetEmpAndDept"
 .RefCursorMetaData.EMPS.Column.1"
 value="implicitRefCursor metadata='ColumnName=ENAME;
 BaseColumnName=ENAME;BaseSchemaName=SCOTT;BaseTableName=EMP;
 NativeDataType=varchar2;ProviderType=Varchar2;
 ProviderDBType=String;DataType=System.String;
 ColumnSize=10;AllowDBNull=true'" />

 <!-- The following is for SCOTT.GETEMP's DEPTS REF CURSOR metadata -->
 <add name="SCOTT."GetEmpAndDept".RefCursor.DEPTS"
 value="implicitRefCursor bindinfo='mode=Output'" />

 <add name="SCOTT."GetEmpAndDept"
 .RefCursorMetaData.DEPTS.Column.0"
 value="implicitRefCursor metadata='ColumnName=DEPTNO;
 BaseColumnName=DEPTNO;BaseSchemaName=SCOTT;BaseTableName=DEPT;
 NativeDataType=number;ProviderType=Int32;ProviderDBType=Int32;
 DataType=System.Int32;ColumnSize=4;NumericPrecision=10;
 NumericScale=3;AllowDBNull=false;IsKey=true'" />

 <add name="SCOTT."GetEmpAndDept"
 .RefCursorMetaData.DEPTS.Column.1"
 value="implicitRefCursor metadata='ColumnName=DNAME;
 BaseColumnName=DNAME;BaseSchemaName=SCOTT;BaseTableName=DEPT;
 NativeDataType=varchar2;ProviderType=Varchar2;
 ProviderDBType=String;DataType=System.String;
 ColumnSize=10;AllowDBNull=true'" />
 </settings>
 </oracle.dataaccess.client>
</configuration>

Sample Application That Uses the Configuration File

using System;
using System.Data;
using Oracle.DataAccess.Client;

class Program
{
 static void Main(string[] args)
 {
 try
 {
 // Open a connection
 string constr =
 "User Id=scott;Password=tiger;Data Source=inst1";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Use implicit REF CURSOR binding
 // to execute SCOTT.GETEMP function
 // Use bind by position as configured
 // in app.config for SCOT.GETEMP
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "SCOTT.GETEMP";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.BindByName = false;
 OracleParameter empid = cmd.Parameters.Add("empid",
 OracleDbType.Int32, ParameterDirection.Input);
 empid.Value = 7654;

Chapter 3
Implicit REF CURSOR Binding

3-131

 // Populate the DataSet
 OracleDataAdapter adapter = new OracleDataAdapter(cmd);
 DataSet ds = new DataSet();
 adapter.Fill(ds);
 Console.WriteLine("Retrieved {0} row from EMP",
 ds.Tables[0].Rows.Count);

 // Use implicit REF CURSOR binding
 // to execute "SCOTT"."GetEmpAndDept" procedure
 // Use bind by name as configured
 // in app.config for "SCOTT"."GetEmpAndDept"
 cmd = con.CreateCommand();
 cmd.CommandText = "\"SCOTT\".\"GetEmpAndDept\"";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.BindByName = true;
 adapter = new OracleDataAdapter(cmd);
 adapter.Fill(ds);
 Console.WriteLine("Retrieved {0} rows from DEPT",
 ds.Tables[1].Rows.Count);
 }
 catch (Exception ex)
 {
 // Output the message
 Console.WriteLine(ex.Message);
 if (ex.InnerException != null)
 {
 // If any details are available regarding
 // errors in the app.config, print them out
 Console.WriteLine(ex.InnerException.Message);
 if (ex.InnerException.InnerException != null)
 {
 Console.WriteLine(
 ex.InnerException.InnerException.Message);
 }
 }
 }
 }
}

Usage Considerations
This section discusses the following usage considerations when using implicit REF
CURSOR:

• CommandText Property Considerations

• Bind Considerations

• Overloaded Stored Procedures

• Type Initialization Exceptions

• Using Stored Functions with Function Import

CommandText Property Considerations
ODP.NET applications should ensure that the stored procedure name and the
OracleCommand CommandText match exactly. Let's take a scenario where the stored
procedure name in the database is SCOTT.TESTPROC. Now, if the CommandText uses
TESTPROC, ODP.NET will look for entries matching TESTPROC only. The current schema

Chapter 3
Implicit REF CURSOR Binding

3-132

name will not be automatically appended to TESTPROC. So, the correct CommandText to use in
this scenario would be SCOTT.TESTPROC.

Also, the CommandText is case-sensitive and must use the same case as the stored procedure
name in the database. So if the stored procedure name in the database is SCOTT.Testproc,
then the CommandText must use SCOTT.Testproc.

Bind Considerations
If information about a REF CURSOR parameter has been added to the configuration file, then
applications should not try to explicitly bind the REF CURSOR parameter to OracleCommand.
ODP.NET automatically binds the REF CURSOR parameter at the appropriate locations based
on the information provided in the configuration file. If the application stored procedure also
has non-REF CURSOR parameters, then these parameters must still be explicitly bound to
OracleCommand.

If the information specified in the configuration file for a stored procedure identifies the REF
CURSOR parameter by name, then all the other non-REF CURSOR parameters should also be
bound by name. Also the BindByName property for the OracleCommand object should be set to
true in this case. Entity Framework always uses BindByName to run stored procedures.
Your .NET configuration file parameter names must use the same case that was used when
creating the stored procedure in the database.

If the OracleCommand BindByName property is set to false (default), then ODP.NET assumes
that the parameters have been bound based on their position, and all parameters have been
specified in the correct order. For such cases, the parameters specified in the configuration
file are bound in the same order in which they appear in the configuration file.

Overloaded Stored Procedures
ODP.NET does not support multiple stored procedures with the same name inside the
configuration file. If an ODP.NET application uses an overloaded stored procedure, the
application can store only one overloaded stored procedure information in the configuration
file.

Type Initialization Exceptions
Type initialization exceptions can be caused by invalid .NET configuration file entries.
Evaluate the exception that is caught as well as its inner exceptions to determine the .NET
configuration file entry or the attribute setting that is causing the exception.

ODP.NET tracing logs the valid and invalid .NET configuration file entries that ODP.NET has
parsed. To look for .NET configuration file related entries, set the TraceLevel to the Entry,
exit, and SQL statement information level setting. Trace entries related to implicit REF CURSOR
binding have a (REFCURSOR) entry along with (ERROR), if any errors are encountered.

Using Stored Functions with Function Import
Function Import only supports stored procedures, and does not support functions. When
using the Add Function Import dialog for the Entity Data Model that you have created, the
Get Column Information button does not return the metadata information for the REF CURSOR
that is being returned by a stored function, even if it is configured properly in the .NET
configuration file.

Chapter 3
Implicit REF CURSOR Binding

3-133

LOB Support
ODP.NET provides an easy and optimal way to access and manipulate large object
(LOB) data types.

Note:

SecureFiles can be used with existing ODP.NET LOB classes.

This section includes the following topics:

• Large Character and Large Binary Data Types

• Oracle Data Provider for .NET LOB Objects

• Updating LOBs Using a DataSet

• Updating LOBs Using OracleCommand and OracleParameter

• Updating LOBs Using ODP.NET LOB Objects

• Temporary LOBs

Large Character and Large Binary Data Types
Oracle Database supports large character and large binary data types.

Large Character Data Types

• CLOB - Character data can store up to 4 gigabytes.

• NCLOB - Unicode National character set data can store up to 4 gigabytes.

Large Binary Data Types

• BLOB - Unstructured binary data can store up to 4 gigabytes.

• BFILE - Binary data stored in external file can store up to 4 gigabytes.

Note:

LONG and LONG RAW data types are made available for backward
compatibility in Oracle9i, but should not be used in new applications.

Oracle Data Provider for .NET LOB Objects
ODP.NET provides three objects for manipulating LOB data: OracleBFile,
OracleBlob, and OracleClob.

Table 3-21 shows the proper ODP.NET object to use for a particular Oracle LOB type.

Chapter 3
LOB Support

3-134

Table 3-21 ODP.NET LOB Objects

Oracle LOB Type ODP.NET LOB Object

BFILE OracleBFile
BLOB OracleBlob
CLOB OracleClob
NCLOB OracleClob

The ODP.NET LOB objects can be obtained by calling the proper typed accessor on the
OracleDataReader object, or by calling the proper typed accessor as an output parameter on
a command execution with the proper bind type.

All ODP.NET LOB objects inherit from the .NET Stream class to provide generic Stream
operations. The LOB data (except for BFILE types) can be updated using the ODP.NET LOB
objects by using methods such as Write. Data is not cached in the LOB objects when read
and write operations are carried out. Therefore, each read or write request incurs a database
round-trip. The OracleClob object overloads the Read method, providing two ways to read
data from a CLOB. The Read method that takes a byte[] as the buffer populates it with CLOB
data as Unicode byte array. The Read method that takes a char[] as the buffer populates it
with Unicode characters.

Additional methods can also be found on the OracleBFile object. An OracleBFile object
must be explicitly opened using the OpenFile method before any data can be read from it. To
close a previously opened BFILE, use the CloseFile method.

Every ODP.NET LOB object is a connected object and requires a connection during its
lifetime. If the connection associated with a LOB object is closed, then the LOB object is not
usable and should be disposed of.

If an ODP.NET LOB object is obtained from an OracleDataReader object through a typed
accessor, then its Connection property is set with a reference to the same OracleConnection
object used by the OracleDataReader object. If a LOB object is obtained as an output
parameter, then its Connection property is set with a reference to the same
OracleConnection property used by the OracleCommand object. If a LOB object is obtained by
invoking an ODP.NET LOB object constructor to create a temporary LOB, the Connection
property is set with a reference to the OracleConnection object provided in the constructor.

The ODP.NET LOB object Connection property is read-only and cannot be changed during
its lifetime. In addition, the ODP.NET LOB types object can be used only within the context of
the same OracleConnection referenced by the ODP.NET LOB object. For example, the
ODP.NET LOB Connection property must reference the same connection as the
OracleCommand object if the ODP.NET LOB object is a parameter of the OracleCommand. If
that is not the case, ODP.NET raises an exception when the command is executed.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guidefor complete
information about Oracle Database 10g LOBs and how to use them

Chapter 3
LOB Support

3-135

Updating LOBs Using a DataSet
BFILE and BLOB data are stored in the DataSet as byte arrays while CLOB and NCLOB
data are stored as strings. In a similar manner to other types, an OracleDataAdapter
object can be used to fill and update LOB data changes along with the use of the
OracleCommandBuilder object for automatically generating SQL.

Note that an Oracle LOB column can store up to 4 GB of data. When the LOB data is
fetched into the DataSet, the actual amount of LOB data the DataSet can hold for a
LOB column is limited to the maximum size of a .NET string type, which is 2 GB.
Therefore, when fetching LOB data that is greater than 2 GB, ODP.NET LOB objects
must be used to avoid any data loss.

Updating LOBs Using OracleCommand and OracleParameter
To update LOB columns, LOB data can be bound as a parameter for SQL statements,
anonymous PL/SQL blocks, or stored procedures. The parameter value can be set as
a NET Framework type, ODP.NET type, or as an ODP.NET LOB object type. For
example, when inserting .NET string data into a LOB column in an Oracle9i database
or later, that parameter can be bound as OracleDbType.Varchar2. For a parameter
whose value is set to an OracleClob object, the parameter should be bound as
OracleDbType.Clob.

Updating LOBs Using ODP.NET LOB Objects
Oracle BFILEs cannot be updated; therefore, OracleBFile objects do not allow
updates to BFILE columns.

Two requirements must be met to update LOB data using ODP.NET LOB objects:

1. A transaction must be started before a LOB column is selected.

The transaction must be started using the BeginTransaction method on the
OracleConnection object before the command execution, so that the lock can be
released when the OracleTransaction Commit or Rollback method is invoked.

2. The row in which the LOB column resides must be locked; as part of an entire
result set, or on a row-by-row basis.

a. Locking the entire result set

Add the FOR UPDATE clause to the end of the SELECT statement. After execution
of the command, the entire result set is locked.

b. Locking the row - there are two options:

• Invoke one of the OracleDataReader typed accessors
(GetOracleClobForUpdate or GetOracleBlobForUpdate) on the
OracleDataReader object to obtain an ODP.NET LOB object, while also
locking the current row.

This approach requires a primary key, unique column(s), or a ROWID in the
result set because the OracleDataReader object must uniquely identify the
row to re-select it for locking.

Chapter 3
LOB Support

3-136

• Execute an INSERT or an UPDATE statement that returns a LOB in the RETURNING
clause.

Temporary LOBs
Temporary LOBs can be instantiated for BLOB, CLOB, and NCLOB objects. To instantiate an
ODP.NET LOB object that represents a temporary LOB, the OracleClob or the OracleBlob
constructor can be used.

Temporary ODP.NET LOB objects can be used for the following purposes:

• To initialize and populate a LOB column with empty or non-empty LOB data.

• To pass a LOB type as an input parameter to a SQL statement, an anonymous PL/SQL
block, or a stored procedure.

• To act as the source or the destination of data transfer between two LOB objects as in the
CopyTo operation.

Note:

Temporary LOBs are not transaction aware. Commit and rollback operations do
not affect the data referenced by a temporary LOB.

Native JSON Support
Oracle Database 20c adds a native JavaScript Object Notation (JSON) data type. ODP.NET
Core, managed, and unmanaged drivers support this native JSON data type starting with
version 21.

In ODP.NET, the database JSON data type can be retrieved or passed to the database.
When using a .NET string or OracleString, it can be bound as a parameter using the
OracleDbType.Json enumeration value. This enumeration value directs ODP.NET to perform
decoding from and encoding to the native Oracle Database JSON binary format, OSON, on
the client side, offloading the task from the server side.

Alternatively, JSON data can be bound as parameters to other ODP.NET and .NET data
types or not use the OracleDbType.Json enumeration value. Oracle Database will then
implicitly encode to and decode from OSON to the desired data type format instead of the
client in these cases. In DataSet, the Oracle JSON type is converted to and stored as either
a .NET string or OracleString.

Managed ODP.NET and ODP.NET Core JSON features require the System.Text.Json
assembly be included as a project dependency. ODP.NET does not add the
System.Text.Json package as a dependency itself. In many cases, .NET Core 3.1 and
higher does automatically include this assembly with the .NET runtime, while .NET
Framework 4.8 does not.

Unmanaged ODP.NET does not have a requirement for System.Text.Json.

JSON Numeric Values

For managed ODP.NET and ODP.NET Core, JSON documents bound as OracleDbType.Json
input parameters have a 28 precision upper limit for numeric values. In all other cases, up to

Chapter 3
Native JSON Support

3-137

38 precision will be retained for JSON numeric values when sent to or retrieved from
the database.

Unmanaged ODP.NET supports JSON numeric values with a maximum precision of
38, as does the database.

If a JSON document bound as OracleDbType.Json contains numeric values with
higher precision than can be retained, then ODP.NET will round the value to the
maximum supported precision. If more precision must be retained than the maximum,
then store the numeric value as a string by placing double quotes around the JSON
value before binding the JSON document as an input parameter.

ODP.NET XML Support
ODP.NET allows the extraction of data from relational and object-relational tables and
views as XML documents. The use of XML documents for insert, update, and delete
operations to the database is also allowed. Oracle Database supports XML natively in
the database, through Oracle XML DB, a distinct group of technologies related to high-
performance XML storage and retrieval. Oracle XML DB is an evolution of the
database that encompasses both SQL and XML data models in a highly interoperable
manner, providing native XML support.

ODP.NET, Managed Driver follows XPath 1.0 specification and hence it does not
support default XML namespaces. XML namespaces must be explicitly added to
search or update nodes. This behavior differs from ODP.NET, Unmanaged Driver.

For samples related to ODP.NET XML support in ODAC installations done using
Oracle Universal Installer, see the following directory:

ORACLE_BASE\ORACLE_HOME\ODACsamples

This section includes these topics:

• Supported XML Features

• OracleXmlType and Connection Dependency

• Updating XMLType Data in the Database

• Updating XML Data in OracleXmlType

• Characters with Special Meaning in XML

• Retrieving Query Result Set as XML

• Data Manipulation Using XML

Supported XML Features
XML support in ODP.NET provides the ability to do the following:

• Store XML data natively in the database as the Oracle database native type,
XMLType.

• Access relational and object-relational data as XML data from an Oracle Database
instance into the Microsoft .NET environment, and process the XML using the
Microsoft .NET Framework.

• Save changes to the database using XML data.

• Execute XQuery statements.

Chapter 3
ODP.NET XML Support

3-138

For the .NET application developer, these features include the following:

• Enhancements to the OracleCommand, OracleConnection, and OracleDataReader
classes.

• The following XML-specific classes:

– OracleXmlType
OracleXmlType objects are used to retrieve Oracle native XMLType data.

– OracleXmlStream
OracleXmlStream objects are used to retrieve XML data from OracleXmlType objects
as a read-only .NET Stream object.

– OracleXmlQueryProperties
OracleXmlQueryProperties objects represent the XML properties used by the
OracleCommand class when the XmlCommandType property is Query.

– OracleXmlSaveProperties
OracleXmlSaveProperties objects represent the XML properties used by the
OracleCommand class when the XmlCommandType property is Insert, Update, or
Delete.

See Also:

– "XQuery Support"

– "OracleCommand Class"

– "OracleXmlType Class"

– "OracleXmlStream Class"

– "OracleXmlQueryProperties Class"

– "OracleXmlSaveProperties Class"

– Oracle XML DB Developer’s Guide

XQuery Support
ODP.NET supports the XQuery language through a native implementation of SQL/XML
functions, XMLQuery and XMLTable. When executing XQuery statements, Oracle XML DB
generally evaluates XQuery expressions by compiling them into the same underlying
structures as relational queries. Queries are optimized, leveraging both relational-database
and XQuery-specific optimization technologies, so that Oracle XML DB serves as a native
XQuery engine.The treatment of all XQuery expressions, whether natively compiled or
evaluated functionally, is transparent: programmers do not need to change their code to take
advantage of XQuery optimizations.

Chapter 3
ODP.NET XML Support

3-139

See Also:

Oracle XML DB Developer's Guide to learn more about Oracle's XQuery
support

OracleXmlType and Connection Dependency
The read-only Connection property of the OracleXmlType class holds a reference to
the OracleConnection object used to instantiate the OracleXmlType class.

How the OracleXmlType object obtains a reference to an OracleConnection object
depends on how the OracleXmlType class is instantiated:

• Instantiated from an OracleDataReader class using the GetOracleXmlType,
GetOracleValue, or GetOracleValues method:

The Connection property is set with a reference to the same OracleConnection
object used by the OracleDataReader object.

• Instantiated by invoking an OracleXmlType constructor with one of the parameters
of type OracleConnection:

The Connection property is set with a reference to the same OracleConnection
object provided in the constructor.

• Instantiated by invoking an OracleXmlType(OracleClob) constructor:

The Connection property is set with a reference to the OracleConnection object
used by the OracleClob object.

An OracleXmlType object that is associated with one connection cannot be used with a
different connection. For example, if an OracleXmlType object is obtained using
OracleConnection A, that OracleXmlType object cannot be used as an input parameter
of a command that uses OracleConnection B. By checking the Connection property of
the OracleXmlType objects, the application can ensure that OracleXmlType objects are
used only within the context of the OracleConnection referenced by its connection
property. Otherwise, ODP.NET raises an exception.

Updating XMLType Data in the Database
Updating XMLType columns does not require a transaction. However, encapsulating the
entire database update process within a transaction is highly recommended. This
allows the updates to be rolled back if there are any errors.

XMLType columns in the database can be updated using Oracle Data Provider for .NET
in a few ways:

• Updating with DataSet, OracleDataAdapter, and OracleCommandBuilder

• Updating with OracleCommand and OracleParameter

Updating with DataSet, OracleDataAdapter, and OracleCommandBuilder
If the XMLType column is fetched into the DataSet, the XMLType data is represented as
a .NET String.

Chapter 3
ODP.NET XML Support

3-140

Modifying XMLType data in the DataSet does not require special treatment. XMLType data can
be modified in the same way as any data that is stored in the DataSet. When a change is
made and the OracleDataAdapter.Update method is invoked, the OracleDataAdapter object
ensures that the XMLType data is handled properly. The OracleDataAdapter object uses any
custom SQL INSERT, UPDATE, or DELETE statements that are provided. Otherwise, valid SQL
statements are generated by the OracleCommandBuilder object as needed to flush the
changes to the database.

Updating with OracleCommand and OracleParameter
The OracleCommand class provides a powerful way of updating XMLType data, especially with
the use of an OracleParameter object. To update columns in a database table, the new value
for the column can be passed as an input parameter of a command.

Input Binding
To update an XMLType column in the database, a SQL statement can be executed using static
values. In addition, input parameters can be bound to SQL statements, anonymous PL/SQL
blocks, or stored procedures to update XMLType columns. The parameter value can be set
as .NET Framework Types, ODP.NET Types, or OracleXmlType objects.

While XMLType columns can be updated using an OracleXmlType object, having an instance
of an OracleXmlType class does not guarantee that the XMLType column in the database can
be updated.

Setting XMLType Column to NULL Value
Applications can set an XMLType column in the database to a NULL value, with or without input
binding, as follows:

• Setting NULL values in an XMLType column with input binding

To set the XMLType column to NULL, the application can bind an input parameter whose
value is DBNull.Value. This indicates to the OracleCommand object that a NULL value is to
be inserted.

Passing in a null OracleXmlType object as an input parameter does not insert a NULL
value into the XMLType column. In this case, the OracleCommand object raises an
exception.

• Setting NULL Values in an XMLType Column without input binding

The following example demonstrates setting NULL values in an XMLType column without
input binding:

// Create a table with an XMLType column in the database
CREATE TABLE XML_TABLE(NUM_COL number, XMLTYPE_COL xmltype);

An application can set a NULL value in the XMLType column by explicitly inserting a NULL
value or by not inserting anything into that column as in the following examples:

insert into xml_table(xmltype_col) values(NULL);

update xml_table t set t.xmltype_col=NULL;

Chapter 3
ODP.NET XML Support

3-141

Setting XMLType Column to Empty XML Data
The XMLType column can be initialized with empty XML data, using a SQL statement:

// Create a table with an XMLType column in the database
CREATE TABLE XML_TABLE(NUM_COL number, XMLTYPE_COL xmltype);

INSERT INTO XML_TABLE (NUM_COL, XMLTYPE_COL) VALUES (4,
 XMLType.createxml('<DOC/>'));

Updating XML Data in OracleXmlType
The following are ways that XML data can be updated in an OracleXmlType object.

• The XML data can be updated by passing an XPATH expression and the new
value to the Update method on the OracleXmlType object.

• The XML data can be retrieved on the client side as the .NET Framework
XmlDocument object using the GetXmlDocument method on the OracleXmlType
object. This XML data can then be manipulated using suitable .NET Framework
classes. A new OracleXmlType can be created with the updated XML data from
the .NET Framework classes. This new OracleXmlType is bound as an input
parameter to an update or insert statement.

Characters with Special Meaning in XML
The following characters in Table 3-22 have special meaning in XML. For more
information, refer to the XML 1.0 specifications

Table 3-22 Characters with Special Meaning in XML

Character Meaning in XML Entity Encoding

< Begins an XML tag <

> Ends an XML tag >

" Quotation mark "

' Apostrophe or single quotation
mark

'

& Ampersand &

When these characters appear as data in an XML element, they are replaced with
their equivalent entity encoding.

Also certain characters are not valid in XML element names. When SQL identifiers
(such as column names) are mapped to XML element names, these characters are
converted to a sequence of hexadecimal digits, derived from the Unicode encoding of
the character, bracketed by an introductory underscore, a lowercase x and a trailing
underscore. A blank space is not a valid character in an XML element name. If a SQL
identifier contains a space character, then in the corresponding XML element name,
the space character is replaced by _x0020_, which is based on Unicode encoding of
the space character.

Chapter 3
ODP.NET XML Support

3-142

Retrieving Query Result Set as XML
This section discusses retrieving the result set from a SQL query as XML data.

Handling Date and Time Format
The generated XML DATE and TIMESTAMP formats are based on the standard XML Schema
formats.

See Also:

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
datatypes.html#isoformats for more information on the XML Schema
specification.

Characters with Special Meaning in Column Data
If the data in any of the select list columns in the query contains any characters with special
meaning in XML (see Table 3-22), these characters are replaced with their corresponding
entity encoding in the result XML document.

The following examples demonstrate how ODP.NET handles the angle bracket characters in
the column data:

/* Database Setup
connect scott/tiger@oracle
drop table specialchars;
create table specialchars ("id" number, name varchar2(255));
insert into specialchars values (1, '<Jones>');
commit;
*/

// C#

using System;
using System.Data;
using System.Xml;
using Oracle.DataAccess.Client;

class QueryResultAsXMLSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();

 // Create the command
 OracleCommand cmd = new OracleCommand("", con);

 // Set the XML command type to query.
 cmd.XmlCommandType = OracleXmlCommandType.Query;

Chapter 3
ODP.NET XML Support

3-143

 // Set the SQL query
 cmd.CommandText = "select * from specialchars";

 // Set command properties that affect XML query behavior.
 cmd.BindByName = true;

 // Set the XML query properties
 cmd.XmlQueryProperties.MaxRows = -1;

 // Get the XML document as an XmlReader.
 XmlReader xmlReader = cmd.ExecuteXmlReader();
 XmlDocument xmlDocument = new XmlDocument();

 xmlDocument.PreserveWhitespace = true;
 xmlDocument.Load(xmlReader);
 Console.WriteLine(xmlDocument.OuterXml);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 }
}

The following XML document is generated for that table: The XML entity encoding that
represents the angle brackets appears in bold.

<?xml version = '1.0'?>
<ROWSET>
 <ROW>
 <id>1</id >
 <NAME><Jones></NAME>
 </ROW>
</ROWSET>

Characters in Table or View Name
If a table or view name has any non-alphanumeric characters other than an
underscore (_), the table or view name must be enclosed in quotation marks.

For example, to select all entries from a table with the name test'ing, the
CommandText property of the OracleCommand object must be set to the following string:

"select * from \"test'ing\"";

Case-Sensitivity in Column Name to XML Element Name Mapping
The mapping of SQL identifiers (column names) to XML element names is case-
sensitive, and the element names are in exactly the same case as the column names
of the table or view.

However, the root tag and row tag names are case-insensitive. The following example
demonstrates case-sensitivity in this situation:

//Create the following table
create table casesensitive_table ("Id" number, NAME varchar2(255));

//insert name and id
insert into casesensitive_table values(1, 'Smith');

Chapter 3
ODP.NET XML Support

3-144

The following XML document is generated:

<?xml version = '1.0'?>
 <ROWSET>
 <ROW>
 <Id>1</Id>
 <NAME>Smith</NAME>
 </ROW>
 </ROWSET>

Note that the element name for the Id column matches the case of the column name.

Column Name to XML Element Name Mapping
For each row generated by the SQL query, the SQL identifier (column name) maps to an XML
element in the generated XML document, as shown in the following example:

// Create the following table
create table emp_table (EMPLOYEE_ID NUMBER(4), LAST_NAME varchar2(25));
// Insert some data
insert into emp_table values(205, 'Higgins');

The SQL query, SELECT * FROM EMP_TABLE, generates the following XML document:

<?XML version="1.0"?>
 <ROWSET>
 <ROW>
 <EMPLOYEE_ID>205</EMPLOYEE_ID>
 <LAST_NAME>Higgins</LAST_NAME>
 </ROW>
 </ROWSET>

The EMPLOYEE_ID and LAST_NAME database columns of the employees table map to the
EMPLOYEE_ID and LAST_NAME elements of the generated XML document.

This section demonstrates how Oracle database handles the mapping of SQL identifiers to
XML element names, when retrieving query results as XML from the database. The
demonstration uses the specialchars table involving the some id column.

// Create the specialchars table
create table specialchars ("some id" number, name varchar2(255));

Note that the specialchars table has a column named some id that contains a blank space
character. The space character is not allowed in an XML element name.

When retrieving the query results as XML, the SQL identifiers in the query select list can
contain characters that are not valid in XML element names. When these SQL identifiers
(such as column names) are mapped to XML element names, each of these characters is
converted to a sequence of hexadecimal digits, derived from the Unicode encoding of the
characters, bracketed by an introductory underscore, a lowercase x, and a trailing
underscore.

Thus, the SQL query in the following example can be used to get a result as an XML
document from the specialchars table:

select "some id", name from specialchars;

Chapter 3
ODP.NET XML Support

3-145

See Also:

"Characters with Special Meaning in XML"

Improving Default Mapping
You can improve the default mapping of SQL identifiers to XML element names by
using the following techniques:

• Modify the source. Create an object-relational view over the source schema, and
make that view the new source.

• Use cursor subqueries and cast-multiset constructs in the SQL query.

• Create an alias for the column or attribute names in the SQL query. Prefix the
aliases with an at sign (@) to map them to XML attributes instead of XML
elements.

• Modify the XML document. Use Extensible Stylesheet Language Transformation
(XSLT) to transform the XML document. Specify the XSL document and
parameters. The transformation is done automatically after the XML document is
generated from the relational data. Note that this may have an impact on
performance.

• Specify the name of the root tag and row tag used in the XML document.

Object-Relational Data
ODP.NET can generate an XML document for data stored in object-relational columns,
tables, and views, as shown in the following example:

// Create the following tables and types
CREATE TYPE "EmployeeType" AS OBJECT (EMPNO NUMBER, ENAME VARCHAR2(20));
/
CREATE TYPE EmployeeListType AS TABLE OF "EmployeeType";
/
CREATE TABLE mydept (DEPTNO NUMBER, DEPTNAME VARCHAR2(20),
 EMPLIST EmployeeListType)
 NESTED TABLE EMPLIST STORE AS EMPLIST_TABLE;
INSERT INTO mydept VALUES (1, 'depta',
 EmployeeListType("EmployeeType"(1, 'empa')));

The following XML document is generated for the table:

<?xml version = "1.0"?>
<ROWSET>
 <ROW>
 <DEPTNO>1</DEPTNO>
 <DEPTNAME>depta</DEPTNAME>
 <EMPLIST>
 <EmployeeType>
 <EMPNO>1</EMPNO>
 <ENAME>empa</ENAME>
 </EmployeeType>
 </EMPLIST>
 </ROW>
</ROWSET>

Chapter 3
ODP.NET XML Support

3-146

ODP.NET encloses each item in a collection element, with the database type name of the
element in the collection. The mydept table has a collection in the EMPLIST database column
and each item in the collection is of type EmployeeType. Therefore, in the XML document,
each item in the collection is enclosed in the type name EmployeeType, which appears in bold
in the example.

NULL Values
If any database row has a column with a NULL value, then that column does not appear for
that row in the generated XML document.

Data Manipulation Using XML
This section discusses making changes to the database data using XML.

Handling Date and Time Format
The generated XML DATE and TIMESTAMP formats are based on the standard XML Schema
formats.

See Also:

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
datatypes.html#isoformats for more information on the XML Schema
specification.

Saving Changes Using XML
Changes can be saved to database tables and views using XML data. However, insert,
update, and delete operations cannot be combined in a single XML document. ODP.NET
cannot accept a single XML document and determine which are insert, update, or delete
changes.

The insert change must be in an XML document containing only rows to be inserted, the
update changes only with rows to be updated, and the delete changes only with rows to be
deleted.

For example, using the employees table that comes with the HR sample schema, you can
specify the following query:

select employee_id, last_name from employees where employee_id = 205;

The following XML document is generated:

<?xml version = '1.0'?>
<ROWSET>
 <ROW>
 <EMPLOYEE_ID>205</EMPLOYEE_ID>
 <LAST_NAME>Higgins</LAST_NAME>
 </ROW>
</ROWSET>

Chapter 3
ODP.NET XML Support

3-147

To change the name of employee 205 from Higgins to Smith, specify the employees
table and the XML data containing the changes as follows:

<?xml version = '1.0'?>
<ROWSET>
 <ROW>
 <EMPLOYEE_ID>205</EMPLOYEE_ID>
 <LAST_NAME>Smith</LAST_NAME>
 </ROW>
</ROWSET>

Characters with Special Meaning in Column Data
If the data in any of the elements in the XML document contains characters that have
a special meaning in XML (see Table 3-22), these characters must be replaced with
appropriate entity encoding, or be preceded by an escape character in the XML
document, so that the data is stored correctly in the database table column. Otherwise,
ODP.NET throws an exception.

The following example demonstrates how ODP.NET handles the angle bracket special
characters in the column data, using entity encoding:

// Create the following table
create table specialchars ("id" number, name varchar2(255));

The following XML document can be used to insert values (1, '<Jones>') into the
specialchars table. The XML entity encoding that represents the angle brackets
appears in bold.

<?xml version = '1.0'?>
 <ROWSET>
 <ROW>
 <id>1</id >
 <NAME><Jones></NAME>
 </ROW>
 </ROWSET>

Characters with Special Meaning in Table or View Name
If a table or view name has any non-alphanumeric characters other than an
underscore (_), the table or view name must be enclosed in quotation marks.

For example, to save changes to a table with the name test'ing, the
OracleCommand.XmlSaveProperties.TableName property must be set to
"\"test'ing\"".

Case-Sensitivity in XML Element Name to Column Name Mapping
For each XML element that represents a row of data in the XML document, the child
XML elements map to database column names. The mapping of the child element
name to the column name is always case-sensitive, but the root tag and row tag
names are case-insensitive. The following example demonstrates this case-sensitivity:

//Create the following table
create table casesensitive_table ("Id" number, NAME varchar2(255));

The following XML document can be used to insert values (1, Smith) into the
casesensitive_table:

Chapter 3
ODP.NET XML Support

3-148

<?xml version = '1.0'?>
 <ROWSET>
 <ROW>
 <Id>1</Id>
 <NAME>Smith</NAME>
 </ROW>
 </ROWSET>

Note that the element name for the Id column matches the case of the column name.

XML Element Name to Column Name Mapping
This section describes how Oracle database handles the mapping of XML element names to
column names when using XML for data manipulation in the database. The following
specialchars table involving the some id column demonstrates this handling.

// Create the specialchars table
create table specialchars ("some id" number, name varchar2(255));

Note that the specialchars table has a column named some id that contains a blank space
character. The space character is not allowed in an XML element name.

Saving Changes to a Table Using an XML Document
When an XML document is used to save changes to a table or view, the
OracleCommand.XmlSaveProperties.UpdateColumnsList property is used to specify the list
of columns to update or insert.

When an XML document is used to save changes to a column in a table or view, and the
corresponding column name contains any of the characters that are not valid in an XML
element name, the escaped column name must be specified in the UpdateColumnsList
property as in the following example.

The following XML document can be used to insert values (2, <Jones>) into the specialchars
table:

<?xml version = '1.0'?>
 <ROWSET>
 <ROW>
 <some_x0020_id>2</some_x0020_id>
 <NAME><Jones></NAME>
 </ROW>
 </ROWSET>

The following example specifies the list of columns to update or insert:

/* Database Setup
connect scott/tiger@oracle
drop table specialchars;
create table specialchars ("some id" number, name varchar2(255));
insert into specialchars values (1, '<Jones>');
commit;
*/

// C#

using System;
using System.Data;
using System.Xml;

Chapter 3
ODP.NET XML Support

3-149

using Oracle.DataAccess.Client;

class InsertUsingXmlDocSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();
 Console.WriteLine("Connected Successfully");

 // Create the command
 OracleCommand cmd = new OracleCommand("", con);

 // Set the XML command type to query.
 cmd.XmlCommandType = OracleXmlCommandType.Insert;

 // Set the XML document
 cmd.CommandText = "<?xml version = '1.0'?>\n" + "<ROWSET>\n" + "<ROW>\n" +
 "<some_x0020_id>2</some_x0020_id>\n" + "<NAME><Jones></NAME>\n" +
 "</ROW>\n" + "</ROWSET>\n";
 cmd.XmlSaveProperties.Table = "specialchars";

 string[] ucols = new string[2];

 ucols[0] = "some_x0020_id";
 ucols[1] = "NAME";
 cmd.XmlSaveProperties.UpdateColumnsList = ucols;

 // Insert rows
 int rows = cmd.ExecuteNonQuery();

 Console.WriteLine("Number of rows inserted successfully : {0} ", rows);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 }
}

Improving Default Mapping
You can improve the default mapping by using the following techniques:

• Modify the target. Create an object-relational view over the target schema, and
make the view the new target.

• Modify the XML document. Use XSLT to transform the XML document. Specify the
XSL document and parameters. The transformation is done before the changes
are saved. Note that this is may have an impact on performance.

• Specify the name of the row tag used in the XML document.

Object-Relational Data
Changes in an XML document can also be saved to object-relational data. Each item
in a collection can be specified in one of the following ways in the XML document:

• By enclosing the database type name of the item as the XML element name.

Chapter 3
ODP.NET XML Support

3-150

• By enclosing the name of the database column holding the collection with _ITEM
appended as the XML element name.

Multiple Tables
Oracle Database does not save changes to multiple relational tables that have been joined
together. Oracle recommends that you create a view on those relational tables, and then
update that view. If the view cannot be updated, triggers can be used instead.

See Also:

Oracle Database SQL Language Reference for the description and syntax of the
CREATE VIEW statement

Commit Transactions
When the changes in an XML document are made, either all the changes are committed, or if
an error occurs, all changes are rolled back.

Oracle User-Defined Types (UDTs) and .NET Custom Types
ODP.NET has the ability to represent Oracle UDTs found in the database as custom types
in .NET applications. UDTs are useful in representing complex entities as a single object that
can be shared among applications. Oracle products, such as Oracle Spatial and Oracle XML
DB, use their own complex types frequently.

To represent Oracle UDTs as .NET custom types, applications must apply .NET attributes to
custom classes and structs, and to their public fields and properties.

To convert between UDTs and custom types, ODP.NET uses custom interfaces.

Starting with version 21.2, managed ODP.NET and ODP.NET Core support Oracle UDTs
and .NET custom types. These providers are near-parity with unmanaged ODP.NET UDT
APIs and features, which makes migrating to managed or core more straightforward for
developers. Only a few code changes may be needed.

This section discusses the ODP.NET UDT topics below. All the topics, except Using UDTs
with Managed ODP.NET and ODP.NET Core and Migrating from Unmanaged ODP.NET to
Managed or Core, discuss unmanaged ODP.NET UDT features and Oracle UDTs generally.
These two topics contrast unmanaged ODP.NET UDTs with managed ODP.NET and
ODP.NET Core UDTs.

• Oracle User-Defined Types (UDTs)

• Custom Types

• Specifying Custom Type Mappings

• Converting Between Custom Types and Oracle UDTs

• Oracle UDT Attribute Mappings

• Oracle UDT Retrieval from OracleDataReader

• Oracle UDT Metadata Retrieval from OracleDataReader

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-151

• Oracle UDT Parameter Binding with OracleParameter

• Populating the DataSet with Oracle UDTs

• UDT Method Invocation

• Configuration Settings for Oracle UDTs

• Using UDTs with Managed ODP.NET and ODP.NET Core

• Migrating from Unmanaged ODP.NET to Managed or Core

• Handling NULL Attribute Values in UDTs

Oracle User-Defined Types (UDTs)
Oracle Data Provider for .NET supports Oracle object types or user-defined types
(UDTs), which are defined in the Oracle database.

There are two kinds of UDTs:

• Object types (Oracle Object)

• Collection types (which can be VARRAY types or nested table types)

Additionally, ODP.NET supports references (REF) to object types.

The term UDT is used interchangeably with Oracle object types and abstract data
types (ADTs).

The name of the Oracle UDT is case-sensitive and must be in the form
schema_name.type_name.

See Also:

• OracleRef Class

• Oracle Database Object-Relational Developer's Guide for complete
descriptions of object types

• UDT samples are available online on GitHub in the UDT directory:

https://github.com/oracle/dotnet-db-samples/tree/master/
samples

Custom Types
Oracle Data Provider for .NET supports UDTs by representing Oracle UDTs defined in
the database as .NET types, that is, custom types. For every Oracle UDT that the
application wishes to fetch and manipulate, one custom type factory and one custom
type are needed. The custom factory class is solely responsible for instantiating the
custom type. ODP.NET uses the interfaces implemented on the custom factory classes
to instantiate custom types at run time. Custom types define the mapping between the
Oracle UDT attributes or elements to the .NET members. ODP.NET uses the
interfaces implemented on the custom type instances to transfer values between the
Oracle UDT and the custom type at run time.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-152

https://github.com/oracle/dotnet-db-samples/tree/master/samples
https://github.com/oracle/dotnet-db-samples/tree/master/samples

Custom types can be .NET classes or structures. They can represent either Oracle Objects
or Oracle Collections. Custom types can be implemented manually by the application
developer or generated through an ODP.NET code generation tool.

Once the factory class and the custom type are defined and meet the implementation
requirements, the application may set ODP.NET to automatically discover the mapping
between the Oracle UDT and the custom type. This discovery process is based on the
attribute that is applied on the custom factory class. Alternatively, the application can provide
an explicit mapping through a configuration file.

Oracle Collections can be represented as an array of .NET Types. For example, an Oracle
Collection type of NUMBER can be mapped to an int[]. Moreover, an Oracle Collection type of
an Oracle UDT can be mapped to an array of the custom type.

Custom types must adhere to certain requirements in order for ODP.NET to represent Oracle
UDTs as custom types. These requirements are as follows:

Required Custom Type Implementations
This section lists the required implementations for a custom .NET class or structure.

• Oracle.DataAcess.Types.IOracleCustomType interface implementation

This interface is used for conversions between custom types and Oracle UDTs.

The interface methods are implemented using the static methods of the OracleUdt class.

• Custom Type Factories

A custom type factory is used to create an instance of a custom type. A custom type
factory is an implementation of either the IOracleCustomTypeFactory interface, the
IOracleArrayTypeFactory interface, or both interfaces, as follows:

– To create a custom type that represents an Oracle Object, the custom type or a
separate custom type factory class must implement the
Oracle.DataAccess.Types.IOracleCustomTypeFactory interface.

– To create a custom type that represents an Oracle Collection, the custom type or a
separate custom type factory class must implement the
Oracle.DataAccess.Types.IOracleCustomTypeFactory interface and the
Oracle.DataAccess.Types.IOracleArrayTypeFactory interface.

– To create an array type that represents an Oracle Collection, a custom type factory
class must implement the Oracle.DataAccess.Types.IOracleArrayTypeFactory
interface.

• Custom Type Member Mapping Attributes

The custom type member mapping attributes specify the mapping between custom type
members and either Oracle object attributes or Oracle collection elements.

There are two types of custom type member mapping attributes:

– OracleObjectMappingAttribute
This attribute specifies the mapping between custom type members and Oracle
object attributes for custom types that represent Oracle objects. This attribute must
be applied to each custom type member (either field or property) that represents an
Oracle Object attribute.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-153

Note:

Not all Oracle object attributes need to be mapped to custom type
members. If there is no OracleObjectMappingAttribute for a
particular object attribute, ODP.NET ignores that object attribute
when converting between Oracle objects and custom types.

– OracleArrayMappingAttribute
This attribute specifies the custom type member that stores the elements of an
Oracle collection for custom types representing Oracle collections.The
attribute must be specified on only one of the custom type members.

• Oracle.DataAcess.Types.INullable interface implementation

This interface is used to determine if an instance of a custom type represents a
null UDT. The IsNull property of the interface enables applications and ODP.NET
to determine whether or not the UDT is null.

• Static Null field

The public static Null property is used to return a null UDT. This property returns a
custom type with an IsNull property that returns true.

Optional Custom Type Implementations
The following are optional:

• IXMLSerializable
The IXMLSerializable interface is used in the .NET 2.0 framework to enable
conversion between the custom type and its XML representation.This interface is
only used if the serialization and deserialization of a custom type is needed in the
DataSet.

• Static Parse and Public ToString methods

These methods enable conversion between the custom type and its string
representation.

These methods are invoked when a DataGrid control is used to accept changes
and display instance values.

• Type Inheritance

Type Inheritance refers to the process of deriving an Oracle UDT in the database
from a super type.

If the custom type represents an Oracle UDT that is derived from a super type, the
custom class should follow the same type hierarchy, that is, the custom class
should be derived from another custom class that represents the super type
defined in the database.

• OracleCustomTypeMappingAttribute
The OracleCustomTypeMappingAttribute object specifies the mapping between a
custom type (or an array type) and an Oracle UDT.

There must be a unique custom type factory for each Oracle UDT used by the
application as follows:

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-154

– Oracle Object Types:

The custom type factory must return a custom type that only represents the specified
Oracle Object Type.

– Oracle Collection Types:

The custom type factory may return a custom type that can be used by other Oracle
Collection Types. This is common when an array type is used to represent an Oracle
Collection, for example, when an int[] is used to represent a collection of NUMBERs.

If the OracleCustomTypeMappingAttribute is not specified, then custom type mappings
must be specified through XML configuration files, that is, machine.config, and either
app.config for Windows applications or web.config for web applications.

See Also:

• "IOracleCustomType Interface"

• "OracleRef Class"

• "IOracleCustomTypeFactory Interface"

Specifying Custom Type Mappings
After creating a custom type, the application must specify a custom type mapping that maps
the custom type to an Oracle UDT in the database. This can be done using a custom type
factory or XML in configuration files.

Using XML to specify custom type mappings has priority, if both techniques have been
implemented. At run time, if ODP.NET finds custom type mappings specified in configuration
files, it ignores any custom type mappings specified through the
OracleCustomTypeMappingAttribute object. If a .NET application dynamically loads .NET
assemblies, which contain .NET classes that Oracle UDTs are mapped to, then the mapping
between .NET classes and Oracle UDTs must be configured using a .NET config file.

Custom type mappings cannot be specified using synonyms, regardless of whether or not the
mapping is provided through the OracleCustomTypeMappingAttribute object or the XML
configuration file.

See Also:

Oracle Developer Tools for Visual Studio help sections on User-Defined Types
Node under Server Explorer in Visual Studio for further information on UDT
mapping.

This section contains these topics:

• "Using a Custom Type Factory to Specify Custom Type Mappings"

• "Using XML in Configuration Files to Specify Custom Type Mappings"

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-155

Using a Custom Type Factory to Specify Custom Type Mappings
The application can specify a custom type mapping using a custom type factory. The
application supplies the name of the Oracle UDT, in the format
schema_name.type_name, to an OracleCustomTypeMappingAttribute object and
applies the name to the corresponding custom type factory. A custom type factory is a
class or struct that implements either or both the IOracleCustomTypeFactory and
IOracleArrayTypeFactory interfaces.

Note that for each Oracle UDT used by the application, there must be a unique custom
type factory. Additionally, for Oracle Object Types, the custom type factory must return
a custom type that uniquely represents the specified Oracle Object Type. For Oracle
Collection Types, the custom type factory returns a custom type that can be used by
other Oracle Collection Types. This is common when an custom type that is an array
type represents an Oracle Collection, that is, when an int[] is used to represent a
collection of NUMBERs.

At run time, using reflection programming, ODP.NET discovers all the custom type
mappings specified by the application through the
OracleCustomTypeMappingAttribute object.

Note:

The UDT name that is specified in the OracleCustomTypeMappingAttribute
may not contain a period.

Using XML in Configuration Files to Specify Custom Type Mappings
The application can specify a custom type mapping with XML in configuration files, for
example: using machine.config, and either app.config for Windows applications or
web.config for web applications.

The custom type mappings must be specified in the oracle.dataaccess.client
configuration section group. Each custom type mapping must be added to the
collection of custom type mappings using the XML element <add>.

Each custom type mapping is consists of a name attribute and a value attribute. The
name attribute may be any user-specified name that represents the custom type
mapping. The value attribute must begin with udtMapping and be followed by the
required and optional attributes listed below.

Required Attributes

• factoryName
The case-sensitive assembly qualified name of the custom type factory class or
struct.

If the assembly that defines the custom type factory does not have a strong name,
then a partial assembly name consisting of just the assembly name is sufficient. In
the case of strongly named assemblies, a complete assembly name is required. It
must include the assembly name, the Version, Culture, PublicKeyToken.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-156

• typeName
The case-sensitive name of the UDT defined in the database. By default all UDTs are
created in the database with upper case names

• schemaName
The case-sensitive schema in which the UDT is defined in the database. By default all
schemas are created in the database with upper case names

Optional Attributes

• dataSource
If specified, indicates that the custom type mapping applies only to Oracle UDTs defined
in the database that the application connects to, as specified by the TNS name alias.

The Data Source is case-insensitive.

The following is an example of the format of the XML that can be specified in the
configuration file for .NET 2.0:

 <oracle.dataaccess.client>
 <settings>
 <add name="Person" value="udtMapping factoryName='Sample.PersonFactory,
 Sample, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null'
 typeName='PERSON' schemaName='SCOTT' dataSource='oracle'"/>
 <add name="Student" value="udtMapping factoryName='Sample.StudentFactory,
 Sample, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null'
 typeName='STUDENT' schemaName='SCOTT'"/>
 </settings>
 </oracle.dataaccess.client>

Using Custom Type Mappings
During data retrieval, the application uses the custom type mappings to convert an Oracle
UDT to a custom type. When data is provided back to the database through an input or input/
output parameter, or by an update through an Oracle REF, the application uses the mappings
to convert the custom type to an Oracle UDT.

In the case of input and input/output parameters, the application must also set the
OracleParameter UdtTypeName property to the user-defined type name of the parameter.

In certain cases, where Oracle UDTs are part of a type hierarchy, the custom type must be
instantiated as a specific type in the type hierarchy. The Oracle UDT provided by the custom
type mapping must a subtype of the Oracle UDT specified by the OracleParameter
UdtTypeName property.

For example, the parameter for a stored procedure is of type, SCOTT.PERSON and has a
subtype, SCOTT.STUDENT. The application has a custom class instance that represents
SCOTT.STUDENT. The UdtTypeName is set to SCOTT.PERSON, but the custom type mapping
indicates that the custom class is mapped to SCOTT.STUDENT and overrides the UdtTypeName
when it instantiates the Oracle UDT. Thus, ODP.NET instantiates and binds Oracle UDTs
appropriately when the custom object represents an Oracle UDT that is a subtype of the
parameter type.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-157

Converting Between Custom Types and Oracle UDTs
ODP.NET can convert between Oracle UDTs and custom types, if the proper attribute
mappings are specified and the custom types are defined properly.

ODP.NET performs a conversion whenever an Oracle UDT is fetched as:

• In, out, in/out parameters bound for SQL or PL/SQL execution

The DbType property of OracleParameter must be set to DbType.Object or the
OracleDbType property must be set to OracleDbType.Object or
OracleDbType.Array.

For parameters that are user-defined types, the UdtTypeName property of the
OracleParameter object must be always set to the parameter type.

Note: The UdtTypeName may differ from the Oracle UDT specified in the custom
type mapping. This is the case when the parameter type is a super type of the
Oracle UDT that the custom type represents.

• Column value retrieved from an OracleDataReader object

If the application requests for the value either through the GetValue, GetValues,
GetOracleValue, GetOracleValues, GetProviderSpecificValue, or
GetProviderSpecificValues methods or the Item[] property for a UDT column,
ODP.NET finds the corresponding custom type that represents the Oracle UDT
and carries out the proper conversion.

• Part of a Resultset that populates the DataSet
If the application populates the DataSet with a result that contains UDTs using the
Fill method on the OracleDataAdapter, the DataSet is populated with custom
types that represent Oracle UDTs. With ADO.NET 2.0, the DataSet is populated
with custom types for UDT columns regardless of whether the
ReturnProviderSpecificTypes on the OracleDataAdapter is set to true or false.

• A Object referenced through a REF
When an Object referenced by a REF is retrieved, the custom type that represents
the Oracle UDT is returned.

The application can use the OracleUdtFetchOption method to control the copy of
the Object that is returned as follows:

– If the OracleUdtFetchOption.Cache option is specified and a cached copy of
the object exists, the cached copy is immediately returned. If no cached copy
exists, the latest object copy from the database is cached and returned.

– If the OracleUdtFetchOption.Server option is specified, the latest object copy
from the database is cached and returned. If the object is already cached, the
latest object copy overwrites the existing one.

– If the OracleUdtFetchOption.TransactionCache option is specified, there are
two possibilities within the same transaction:

* If the object copy was previously retrieved using the Server or
TransactionCache option, the TransactionCache option behavior
becomes equivalent to the Cache option behavior.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-158

* If the object copy was not previously retrieved using the Server or
TransactionCache option, the TransactionCache option behavior becomes
equivalent to the Server option behavior.

Oracle UDT Attribute Mappings
Table 3-23 lists valid mappings of attributes (for objects) and elements (for collections),
between Oracle UDT types and custom object types which can be either .NET types or
Oracle provider-specific types (ODP.NET types).

Oracle collections do not have to map to a custom class. They can map to arrays of a specific
type. Table 3-23 indicates those collections with elements of a specified Oracle type that can
map to arrays of a .NET Type or a provider-specific type. For example, if an Oracle Collection
is a VARRAY of NUMBER(8), it can map to a typeof(int[]). This eliminates the need to
construct a class that only holds an int[].

For .NET 2.0, Oracle Collections can be mapped to Nullable types. This allows .NET 2.0
applications to obtain a nullable int[] which can hold null values in the int[].

Note that Oracle UDT attributes and elements cannot be mapped to object or object[].

Table 3-23 Attribute Mappings Between UDTs and Custom Object Types

Type of UDT Attribute or Element .NET Type ODP.NET Type

BFILE System.Byte[] OracleBFile
BINARY FLOAT System.Byte,

System.Int16,
System.Int32,
System.Int64,
System.Single,
System.Double,
System.Decimal

OracleDecimal

BINARY DOUBLE System.Byte,
System.Int16,
System.Int32,
System.Int64,
System.Single,
System.Double,
System.Decimal

OracleDecimal

BLOB System.Byte[] OracleBlob
CHAR System.Char[],

System.String
OracleString

CLOB System.Char[],
System.String

OracleClob

DATE System.DateTime OracleDate
INTERVAL DAY TO SECOND System.TimeSpan, OracleIntervalDS
INTERVAL YEAR TO MONTH System.Int64 OracleIntervalYM
LONG RAW System.Byte[] OracleBinary
NCHAR System.Char[],

System.String
OracleString

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-159

Table 3-23 (Cont.) Attribute Mappings Between UDTs and Custom Object Types

Type of UDT Attribute or Element .NET Type ODP.NET Type

NCLOB System.Char[],
System.String

OracleClob

Nested Table custom type, .NET
type[], or custom
type[]

ODP Type[]

NUMBER System.Byte,
System.Int16,
System.Int32,
System.Int64,
System.Single,
System.Double,
System.Decimal

OracleDecimal

NVARCHAR2 System.Char[],
System.String

OracleString

Object Type custom type N/A

RAW System.Byte[] OracleBinary
REF System.String OracleRef
TIMESTAMP System.DateTime OracleTimeStamp
TIMESTAMP WITH LOCAL TIME ZONE System.DateTime OracleTimeStampLTZ
TIMESTAMP WITH TIME ZONE System.DateTime OracleTimeStampTZ
VARCHAR2 System.Char[],

System.String
OracleString

VARRAY custom type, .NET
type[], or custom
type[]

ODP Type[]

XMLTYPE System.Char[],
System.String

OracleXmlType

Notes:

1. Conversion from a System.Byte[] to a BFILE is not supported, and therefore,
System.Byte[] only represents a BFILE in read-only scenarios.

Oracle UDT Retrieval from OracleDataReader
In order to retrieve Oracle UDTs from the OracleDataReader, an application must
specify a custom type mapping that determines the type that will represent the Oracle
UDT. Once a custom type mapping has been specified and any necessary custom
types have been created, the application can retrieve Oracle UDTs.

Table 3-24 shows the type and value returned from an OracleDataReader object based
on the method invoked, the column type, and whether or not there is a valid Custom
type mapping.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-160

Note:

PS Object refers to a provider-specific object.

Table 3-24 Type and Value Returned from OracleDataReader Object

OracleDataReader method/
property invocation

Column Data
Type

Custom Type
Mapping

Value Returned for
Oracle UDT

NULL Value
Returned for
Oracle UDT

Item[index], Item[name],
GetValue(), GetValues()

Object,
Collection

none Exception thrown Exception thrown

Item[index], Item[name],
GetValue(), GetValues()

Object schema.type custom object DBNull.Value

Item[index], Item[name],
GetValue(), GetValues()

Collection schema.type custom object |
custom object[]
| .NET Type[] | PS
object[]

DBNull.Value

Item[index], Item[name],
GetValue(), GetValues()

REF none | schema.type string (HEX) DBNull.Value

GetString() REF none | schema.type string (HEX) Exception thrown

GetProviderSpecificVal
ue(),
GetProviderSpecificVal
ues(), GetOracleValue(),
GetOracleValues()

Object,
Collection

schema.type custom object custom
type.Null

GetProviderSpecificVal
ue(),
GetProviderSpecificVal
ues(), GetOracleValue(),
GetOracleValues()

Collection schema.type custom object[]
| .NET Type[] | PS
object[]

null

GetProviderSpecificVal
ue(),
GetProviderSpecificVal
ues(), GetOracleValue(),
GetOracleValues(),
GetOracleRef()

REF none | schema.type OracleRef OracleRef.Null

GetOracleString() REF none | schema.type OracleString
(HEX)

OracleString.N
ull

See Also:

"Obtaining Data from an OracleDataReader Object"

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-161

Oracle UDT Metadata Retrieval from OracleDataReader
An OracleDataReader object can return metadata used to determine the custom type
that represents an Oracle UDT when a .NET Type or Provider-Specific Type accessor
is invoked. The same custom type is used when populating the DataSet using the
OracleDataAdapter.Fill method.

Table 3-25 shows the values returned from the OracleDataReader GetFieldType and
GetProviderSpecificFieldType methods that specify the .NET type of the column.

Table 3-25 Values Returned from OracleDataReader Methods

OracleDataReader
Method/Property
invocation

Column Data
Type

Custom Type
Mapping

Return Value

GetFieldType(index) Object,
Collection

none Exception thrown

GetFieldType(index) Object schema.type typeof(custom type)
GetFieldType(index) Collection schema.type typeof(custom type) |

typeof(custom type[])) |
typeof(.NET type[])) |
typeof(PS type[])

GetFieldType(index) REF none |
schema.type

typeof(string)

GetProviderSpecificFie
ldType(index)

Object,
Collection

none Exception thrown

GetProviderSpecificFie
ldType(index)

Object, schema.type typeof(custom type)

GetProviderSpecificFie
ldType(index)

Collection schema.type typeof(custom type) |
typeof(custom type[])) |
typeof(.NET type[])) |
typeof(PS type[])

GetProviderSpecificFie
ldType(index)

REF none |
schema.type

typeof(OracleRef)

Oracle UDT Parameter Binding with OracleParameter
This section discusses using UDT output and input parameter bindings with an
OracleParameter object.

See Also:

"Parameter Binding"

This section contains these topics:

• Guidelines for Binding UDT Input and Output Parameters

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-162

• UDT Input Parameter Binding with OracleParameters

• UDT Output Parameter Binding with OracleParameters

Guidelines for Binding UDT Input and Output Parameters
Developers must consider the following when using UDT parameter bindings with an
OracleParameter object.

• The UdtTypeName property must be set. Binding is based on the UdtTypeName property
regardless of the parameter direction.

Note:

The UdtTypeName may differ from the Oracle UDT specified in the custom type
mapping. This occurs when the parameter type is a super type of the Oracle
UDT that the custom type represents.

• In case of Input/Output binding, the behavior is the same as Input and Output
parameters.

• For Input parameter values, the bind value is converted to the UDT specified by the
custom type mapping.

• For Output parameters:

– If the value being returned is an Oracle Object or Collection, it is converted to a
custom type or array type as specified by the custom type mapping. The value
returned is always a custom type or an array type, regardless of whether the property
most recently set was DbType or OracleDbType.

– If the value being returned is a REF, then no custom type mapping is required.

UDT Input Parameter Binding with OracleParameters
Only certain combinations of these OracleParameter property values, DbType, OracleDbType,
and UdtTypeName, can exist on the OracleParameter object. OracleParameter objects cannot
be set to combinations that are not listed.

Table 3-26 describes the valid ways of binding input parameters for Oracle UDTs.

The last column indicates the Oracle type that ODP.NET converts the OracleParameter value
to before binding.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-163

Table 3-26 Valid Ways to Bind Input Parameters for Oracle UDTs

OracleParameter.
Value

OracleParameter.
DbType or
OracleParameter.
OracleDbType

OracleParameter
. UdtTypeName

Custom Type
Mappings

Oracle Type converted to
before Binding

custom object |
custom object[]
|.NET object[] |
PS object[] |
String (HEX) |
OracleString(HE
X) | OracleRef

DbType.Object |
OracleDbType.Object |
OracleDbType.Array |
OracleDbType.Ref |

not set none |
schema.type

Exception thrown

custom object[]
|.NET object[] |
PS object[]

DbType.Object |
OracleDbType.Object |
OracleDbType.Array

schema.type none Exception thrown

custom object DbType.Object schema.type schema.type Specified UDT is
instantiated. Value is
bound as Object or
Collection, based on the
UdtTypeName property

custom object OracleDbType.Object schema.type schema.type Specified UDT is
instantiated. schema.type
must represent an object.

custom object OracleDbType.Array schema.type schema.type Specified UDT is
instantiated. schema.type
must represent a
collection.

.NET object[] |
PS object[] |
custom object[]

DbType.Object |
OracleDbType.Array

schema.type schema.type UDT specified by
OracleParameter.UdtTy
peName is instantiated.

.NET object[] |
PS object[] |
custom object[]

OracleDbType.Object schema.type none |
schema.type

Exception thrown

custom object
|.NET object[] |
PS object[]
custom object[]

OracleDbType.Ref schema.type none |
schema.type

Exception thrown

String (HEX) |
OracleString
(HEX) | OracleRef

DbType.Object |
OracleDbType.Object |
OracleDbType.Array

schema.type none |
schema.type

Exception thrown

Char[] (HEX) |
String (HEX) |
OracleString
(HEX) | OracleRef

OracleDbType.Ref schema.type none |
schema.type

A REF

UDT Output Parameter Binding with OracleParameters
Only certain combinations of these OracleParameter property values, DbType,
OracleDbType, and UdtTypeName, can exist on the OracleParameter object.
OracleParameter objects cannot be set to combinations that are not listed.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-164

Table 3-27 shows the supported ODP.NET output parameter bindings of Oracle database
objects.

The last column indicates the type that ODP.NET converts the OracleParameter value to
before binding.

Table 3-27 Valid Ways to Bind Output Parameters for Oracle UDTs

Type returned
from Oracle

OracleParameter. DbType OracleParame
ter.
UdtTypeName

Custom Type
Mappings

Type converted to

Object/
Collection/REF

DbType.Object |
OracleDbType.Object |
OracleDbType.Array |
OracleDbType.Ref

not set none | schema.type Exception thrown

Object/
Collection

DbType.Object |
OracleDbType.Object |
OracleDbType.Array

schema.type none Exception thrown

Object DbType.Object |
OracleDbType.Object

schema.type schema.type custom object

Object OracleDbType.Array |
OracleDbType.Ref

schema.type none | schema.type Exception thrown

Collection OracleDbType.Array |
DbType.Object

schema.type schema.type custom object |
custom object[]
| .NET object[] | PS
object[]

Collection OracleDbType.Ref |
OracleDbType.Object

schema.type none | schema.type Exception thrown

REF DbType.Object |
OracleDbType.Object |
OracleDbType.Array

schema.type none | schema.type Exception thrown

REF OracleDbType.Ref schema.type none | schema.type OracleRef

See Also:

• "Parameter Binding"

• "Typed OracleDataReader Accessors"

Populating the DataSet with Oracle UDTs
The DataSet is a disconnected result set. With ADO.NET 2.0, both .NET types and provider-
specific types can be used to populate the DataSet. This section describes the types used to
populate the DataSet when the column is an Oracle UDT.

Table 3-28 lists the types that populate the DataSet column, based on the Oracle column
type, the ReturnProviderSpecificTypes property of the DataAdapter, the existence of a
custom type mapping, the DataSet column type, the DataSet column value, and the DataSet
column null value.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-165

Table 3-28 Types that Populate the DataSet with ADO.NET 2.0

Oracle
Column
Type

ReturnProvider-
SpecificTypes
Property

Custom Type
Mappings

DataSet Column Type DataSet Column
Value

DataSet
Column Null
Value

Object /
Collection

False/True none Exception thrown Exception thrown Exception
thrown

Object /
Collection

False schema.type typeof(custom
type)

custom object DbNull.Val
ue

Object /
Collection

True schema.type typeof(custom
type)

custom object custom
object.Nul
l

Collection False schema.type typeof(custom
type[])|
typeof(.NET
type[]) | typeof(PS
type[])

.NET type[] | PS
object[] | custom
object[]

DbNull.Val
ue

Collection True schema.type typeof(custom
type[])|
typeof(.NET
type[]) | typeof(PS
type[])

.NET type[] | PS
object[] | custom
object[]

null

REF False none |
schema.type

typeof(string) string/HEX DbNull.Val
ue

REF True none |
schema.type

typeof(OracleRef) OracleRef OracleRef.
Null

UDT Method Invocation
ODP.NET supports invocation of methods defined for a UDT on the database. This can
be accomplished by doing the following:

1. Set the CommandType as CommandType.StoredProcedure.

2. Set the CommandText as "type_name.procedure_name"
3. Execute the command using any of the Execute methods on the OracleCommand

object.

For instance functions, the parameters are as follows:

• The first parameter must be the return value.

• The second parameter must be the UDT instance on which the instance method is
invoked, which is the instance of the .NET custom object.

• Subsequent parameters are for the function.

For instance procedures, the first parameter must be the UDT instance.

For static methods, the UDT instance is not needed.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-166

Configuration Settings for Oracle UDTs
ODP.NET exposes two configuration settings to determine how ODP.NET handles Oracle
UDTs.

• StatementCacheWithUdts

• UdtCacheSize

These configuration settings can be specified as machine-wide settings for a particular
version of ODP.NET, using the registry key with the name that exists under
HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly_Version. The configuration
settings specified in the registry can be overridden if an entry is created in the
machine.config for .NET framework-wide settings, or in the app.config or web.config for
application-specific settings.

See Also:

Configuring Oracle Data Provider for .NET for details on configuring ODP.NET.

StatementCacheWithUdts
StatementCacheWithUdts specifies whether or not ODP.NET caches Oracle UDTs retrieved
by a SELECT statement along with the statement when it is returned to the statement cache.
Possible values are 1 - Yes (the default) or 0 - No.

For the value of 1, the Oracle UDTs are cached along with the statements. Therefore, the
memory that contained the UDTs can be re-used; subsequent executions of the same
statement do not require additional memory. This may result in an overall higher
performance.

For the value of 0, ODP.NET frees the memory for the retrieved Oracle UDTs before the
statement is returned to the statement cache. This may result in poorer performance because
subsequent executions will require new memory allocations.

UdtCacheSize
UdtCacheSize specifies the size of the object cache for each connection that ODP.NET uses
when retrieving and manipulating Oracle UDTs. The value for this setting must be specified in
kilobytes (KB) with the default 4096KB, equivalent to 4 MB.

This configuration setting is used to determine how frequently the objects in the object cache
will be purged (using an LRU approach) as the limit of the object cache size approaches.

Using UDTs with Managed ODP.NET and ODP.NET Core
Managed ODP.NET and ODP.NET Core support the same or similar UDT APIs and features
as unmanaged ODP.NET. The differences are listed in this documentation section.

Managed ODP.NET and ODP.NET Core UDT features require connecting to Oracle Database
12.1 or higher versions.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-167

XML Configuration Files Not Supported

Managed ODP.NET and ODP.NET Core do not support Oracle custom type mapping
via XML configuration files, such as in app.config or web.config. For these
providers, custom type mapping occurs through using the OracleCustomTypeMapping
attribute.

OracleUdt FromCustomObject and ToCustomObject Method Changes

The unmanaged ODP.NET OracleUdt FromCustomObject and ToCustomObject method
declarations are as follows:

• FromCustomObject(OracleConnection con, IntPtr pObject)
• ToCustomObject(OracleConnection con, IntPtr pObject)
For managed ODP.NET and ODP.NET Core, the declarations are, respectively:

• FromCustomObject(OracleConnection con, object pObject)
• ToCustomObject(OracleConnection con, object pObject)
The second parameter is an object instead of a pointer.

OracleUdt Static Methods

OracleUdt static methods, GetValue, IsDBNull, and SetValue, and their overloads all
have one InPtr parameter. For managed ODP.NET and ODP.NET Core, the InPtr is
replaced with an object that represents the UDT. In unmanaged ODP.NET, the static
methods are as follows:

• GetValue
– GetValue(OracleConnection con, IntPtr pUdt, string attrName)
– GetValue(OracleConnection con, IntPtr pUdt, int attrIndex)
– GetValue(OracleConnection con, IntPtr pUdt, string attrName, out

object statusArray)
– GetValue(OracleConnection con, IntPtr pUdt, int attrIndex, out

object statusArray)
• IsDBNull

– IsDBNull(OracleConnection con, IntPtr pUdt, string attrName)
– IsDBNull(OracleConnection con, IntPtr pUdt, int attrIndex)

• SetValue
– SetValue(OracleConnection con, IntPtr pUdt, string attrName, object

value)
– SetValue(OracleConnection con, IntPtr pUdt, int attrIndex, object

value)
– SetValue(OracleConnection con, IntPtr pUdt, string attrName, object

value, object statusArray)
– SetValue(OracleConnection con, IntPtr pUdt, int attrIndex, object

value, object statusArray)

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-168

The managed ODP.NET and ODP.NET Core static methods are, respectively:

• GetValue
– GetValue(OracleConnection con, object udt, string attrName)
– GetValue(OracleConnection con, object udt, int attrIndex)
– GetValue(OracleConnection con, object udt, string attrName, out object

statusArray)
– GetValue(OracleConnection con, object udt, int attrIndex, out object

statusArray)
• IsDBNull

– IsDBNull(OracleConnection con, object udt, string attrName)
– IsDBNull(OracleConnection con, object udt, int attrIndex)

• SetValue
– SetValue(OracleConnection con, object udt, string attrName, object value)
– SetValue(OracleConnection con, object udt, int attrIndex, object value)
– SetValue(OracleConnection con, object udt, string attrName, object value,

object statusArray)
– SetValue(OracleConnection con, object udt, int attrIndex, object value,

object statusArray)

OracleConnection Class Changes

Managed ODP.NET and ODP.NET Core do not support the following OracleConnection
method:

• FlushCache()

OracleRef Class Changes

Managed ODP.NET and ODP.NET Core do not support object caches and other functionality
without a managed code implementation. Thus, the following unmanaged ODP.NET class
members are not supported in managed and core:

• Constructors
– OracleRef(OracleConnection conn, string udtTypeName, string objTableName)
– OracleRef(OracleConnection conn, string hexStr)

• Methods
– Flush()
– GetCustomObject(OracleUdtFetchOption fetchOption, int depthLevel)
– GetCustomObjectForUpdate(bool bWait)
– GetCustomObjectForUpdate(bool bWait, int depthLevel)
– Lock(bool bWait)

• Properties
– HasChanges {get}

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-169

– ObjectTableName {get}
The following OracleRef class members are supported in a modified manner:

Table 3-29 OracleRef class members

Method in Unmanaged Equivalent Core/Managed
Method

Core/Managed Behavior

Delete(bool bFlush) Delete() Equivalent to Delete(true)
in unmanaged ODP.NET.

GetCustomObject(OracleU
dtFetchOption
fetchOption)

GetCustomObject() Always retrieves object from
database. No object cache.

Update(object
customObject, bool
bFlush)

Update(object
customObject)

Equivalent to
Update(customObject,
true) in unmanaged
ODP.NET.

Migrating from Unmanaged ODP.NET to Managed or Core

The following changes are required to migrate UDT applications from unmanaged
ODP.NET to either managed ODP.NET or ODP.NET Core:

• Assembly: Reference managed ODP.NET or ODP.NET Core assembly (i.e.
Oracle.ManagedDataAccess.dll) in your .NET project.

• Namespace: Use the Oracle.ManagedDataAccess.* namespace in your source
files.

• Configuration: Use OracleCustomTypeMapping attribute to define the custom type
mapping.

• API: Use the managed/core OracleUdt FromCustomObject and ToCustomObject
methods in the custom class.

• API: Use the managed/core OracleUdt static methods.

• API: Change OracleRef class invocation, including constructors, properties, and
methods, to the members managed/core OracleRef class use.

Handling NULL Attribute Values in UDTs
A UDT attribute can be mapped to either a .NET type or to a provider-specific type.

To be able to properly represent NULL UDT attribute values as .NET types within
the .NET custom classes, they can be defined as nullable .NET types. For example, if
the UDT has a DATE attribute that can be NULL, then it can be mapped to a DateTime?
nullable type rather than DateTime. This is due to fact that DateTime cannot be used
to represent NULL values.

But when it comes to mapping UDT attributes as provider-specific types, then
the .NET custom classes should simply have the non-nullable provider-specific type,
for example, OracleDate. Each provider type can represent a NULL value through the
provider-specific type's Null static field, for example, OracleDate.Null.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-170

Bulk Copy
ODP.NET provides a Bulk Copy feature which enables applications to efficiently load large
amounts of data from a table in one database to another table in the same or a different
database.

The ODP.NET Bulk Copy feature uses a direct path load approach, which is similar to, but not
the same as Oracle SQL*Loader. Using direct path load is faster than conventional loading
(using conventional SQL INSERT statements). Conventional loading formats Oracle data
blocks and writes the data blocks directly to the data files. Bulk Copy eliminates considerable
processing overhead.

The ODP.NET Bulk Copy feature can load data into older Oracle databases.

The ODP.NET Bulk Copy feature is subject to the same basic restrictions and integrity
constraints for direct path loads, as discussed in the next few sections.

ODP.NET Bulk Copy supports local transactions.

See Also:

"System Requirements" to learn which versions of the Oracle Database ODP.NET
interoperates with

Data Types Supported by Bulk Copy
Bulk Copy supports the following Oracle database data types:

• NUMBER
• BINARY_DOUBLE
• BINARY_FLOAT
• CHAR
• JSON
• NCHAR
• VARCHAR2
• NVARCHAR2
• LONG
• CLOB
• BLOB
• DATE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE

Chapter 3
Bulk Copy

3-171

• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND
Bulk copy does not support overwrites.

Restrictions on Oracle Bulk Copy of a Single Partition
• The table that contains the partition cannot have any global indexes defined on it.

• The tables that the partition is a member of cannot have referential and check
constraints enabled.

• Enabled triggers are not allowed.

Integrity Constraints Affecting Oracle Bulk Copy
During a Oracle bulk copy, some integrity constraints are automatically enabled or
disabled, as follows:

Enabled Constraints

During an Oracle bulk copy, the following constraints are automatically enabled by
default:

• NOT NULL
• UNIQUE
• PRIMARY KEY (unique-constraints on not-null columns)

NOT NULL constraints are checked at column array build time. Any row that violates the
NOT NULL constraint is rejected.

UNIQUE constraints are verified when indexes are rebuilt at the end of the load. The
index is left in an Index Unusable state if it violates a UNIQUE constraint.

Disabled Constraints

During an Oracle bulk copy, the following constraints are automatically disabled by
default:

• CHECK constraints

• Referential constraints (FOREIGN KEY)

If the EVALUATE CHECK_CONSTRAINTS clause is specified, then CHECK constraints are not
automatically disabled. The CHECK constraints are evaluated during a direct path load
and any row that violates the CHECK constraint is rejected.

Database Insert Triggers
Table insert triggers are disabled when a direct path load begins. After the rows are
loaded and indexes rebuilt, any triggers that were disabled are automatically
reenabled. The log file lists all triggers that were disabled for the load. There should be
no errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table when
they are enabled. As a result, insert triggers do not fire for any rows loaded on the

Chapter 3
Bulk Copy

3-172

direct path. When using the direct path, the application must ensure that any behavior
associated with insert triggers is carried out for the new rows.

Field Defaults
Default column specifications defined in the database are not available with direct path
loading. Fields for which default values are desired must be specified with the DEFAULTIF
clause. If a DEFAULTIF clause is not specified and the field is NULL, then a null value is
inserted into the database.

See Also:

Oracle Data Provider for .NET Bulk Copy Classes

Oracle Database Advanced Queuing Support
Oracle Database Advanced Queuing (AQ) provides database-integrated message queuing
functionality. Oracle Database AQ leverages the functions of Oracle Database so that
messages can be stored persistently, propagated between queues on different computers
and databases, and transmitted using Oracle Net Services and HTTP(S).

Note:

ODP.NET, Managed Driver and ODP.NET Core do not support the AQ .NET
classes.

As Oracle Database AQ is implemented in database tables, all operational benefits of high
availability, scalability, and reliability are also applicable to queue data. Oracle Database AQ
supports standard database features such as recovery, restart, and security.

The following items discuss Oracle Database AQ concepts:

• Queues and Queue Tables

Messages enqueued in a queue are stored in a queue table. A queue table must be
created before creating a queue based on it. Use the DBMS_AQADM PL/SQL package or
Oracle Developer Tools for Visual Studio to create and administer queue tables and
queues.

Queues are represented by OracleAQQueue objects.

• Single-Consumer and Multiple-Consumer Queues

A single-consumer queue is created based on a single consumer queue table. Messages
enqueued in a single-consumer queue can be dequeued by only a single consumer.

A multiple-consumer queue is based on a multiple-consumer queue table. This queue
supports queue subscribers and message recipients.

• Message Recipients

Chapter 3
Oracle Database Advanced Queuing Support

3-173

A message producer can submit a list of recipients when enqueuing a message.
This allows for a unique set of recipients for each message in the queue. The
recipient list associated with the message overrides the subscriber list, if any,
associated with the queue. The recipients need not be in the subscriber list.
However, recipients can be selected from among the subscribers.The Recipients
property of an OracleAQMessage can be used to specify the recipients to a specific
message in terms of OracleAQAgent objects.

• Enqueue

Messages are enqueued when producer applications push the messages into a
queue. This is accomplished by calling the Enqueue method on an OracleAQQueue
object. Multiple messages can be enqueued using the EnqueueArray method.

• Dequeue

Messages are dequeued when consumer applications pull the messages from a
queue. This is accomplished by calling the Dequeue method on an OracleAQQueue
object. Multiple messages can be dequeued using the DequeueArray method.

• Listen

Subscriber applications can use a Listen call to monitor multiple queues for
subscriptions on different queues. This is a more scalable solution for cases where
a subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.This is accomplished by calling the
Listen method of the OracleAQQueue class, passing the list of subscriptions in
form of an array.

• Notification

Subscriber applications can utilize the notification mechanism to get notifications
about message availability in a queue. The applications can decide to skip or
dequeue the message from the queue based on the information received.

A subscriber application must register for event notification on the queues from
which it wants to receive notifications. This is represented by the
MessageAvailable event on OracleAQQueue. The event is triggered when
messages matching the subscriptions arrive.

Notifications can be registered as regular or grouping notifications. A time out
value for these notifications can also be specified. Various notification options can
be set using the OracleAQQueue.Notification property. Notifications set on an
OracleAQQueue object gets cancelled automatically when the object gets disposed.

• Buffered Messaging

In buffered messaging, messages reside in a shared memory area. This makes it
faster than persistent messaging. The messages are written to disk only when the
total memory consumption of buffered messages approaches the available shared
memory limit. Buffered messaging is ideal for applications that do not require the
reliability and transaction support of Oracle Database AQ persistent messaging.

Buffered and persistent messages use the same single-consumer or multi-
consumer queues, and the same administrative and operational interfaces. They
are distinguished from each other by a delivery mode parameter. When an
application enqueues a message to an Oracle Database AQ queue, it sets the
delivery mode parameter as well.

Chapter 3
Oracle Database Advanced Queuing Support

3-174

The delivery mode parameter can be set on OracleAQMessage by modifying the
DeliveryMode property. Buffered messaging is supported in all queue tables created with
compatibility 8.1 or higher.

See Also:

• "OracleAQQueue Class"

• "Recipients"

• "OracleAQAgent Class"

• "Enqueue"

• "EnqueueArray"

• "Dequeue"

• "DequeueArray"

• "Listen"

• "MessageAvailable Event"

• "Notification"

• "DeliveryMode"

• Oracle Database Advanced Queuing User's Guide

Using ODP.NET for Advanced Queuing
.NET applications can use ODP.NET to access all the operational features of AQ such as
Enqueuing, Dequeuing, Listen, and Notification.

Table 3-30 maps the AQ features to their corresponding ODP.NET implementation.

Table 3-30 Mapping AQ Features with their ODP.NET Implementation

Functionality ODP.NET Implementation

Create a Message Create an OracleAQMessage object

Enqueue a single message Specify the message as OracleAQMessage, queue as
OracleAQQueue and enqueue options on OracleAQQueue, call
OracleAQQueue.Enqueue

Enqueue multiple messages Specify the messages as an OracleAQMessage array in
OracleAQQueue.EnqueueArray

Dequeue a single message Specify dequeue options on OracleAQQueue and call
OracleAQQueue.Dequeue

Dequeue multiple messages Call OracleAQQueue.DequeueArray

Listen for messages on
Queue(s)

Call OracleAQQueue.Listen.To listen on multiple queues use static
Listen method of OracleAQQueue

Message Notifications Use OracleAQQueue.MessageAvailable Event along with the
NotificationConsumers property

Chapter 3
Oracle Database Advanced Queuing Support

3-175

Note:

AQ samples are provided in the
ORACLE_BASE\ORACLE_HOME\ODP.NET\Samples directory in ODAC installations
done using Oracle Universal Installer.

Enqueuing and Dequeuing Example
The following example demonstrates enqueuing and dequeuing messages using a
single consumer queue. The first part of the example performs the requisite database
setup for the database user, SCOTT. The second part of the example demonstrates
enqueuing and dequeuing messages.

-- Part I: Database setup required for this demo

--
-- SQL to grant appropriate privilege to database user, SCOTT
--
SQL> ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY Pwd4Sct;
User altered.
SQL> GRANT ALL ON DBMS_AQADM TO scott;

--
-- PL/SQL to create queue-table and queue and start queue for SCOTT
--
BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table=>'scott.test_q_tab',
 queue_payload_type=>'RAW',
 multiple_consumers=>FALSE);

 DBMS_AQADM.CREATE_QUEUE(
 queue_name=>'scott.test_q',
 queue_table=>'scott.test_q_tab');

 DBMS_AQADM.START_QUEUE(queue_name=>'scott.test_q');
END;
/

--
-- PL/SQL to stop queue and drop queue & queue-table from SCOTT
--
BEGIN
 DBMS_AQADM.STOP_QUEUE('scott.test_q');

 DBMS_AQADM.DROP_QUEUE(
 queue_name => 'scott.test_q',
 auto_commit => TRUE);

 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'scott.test_q_tab',
 force => FALSE,
 auto_commit => TRUE);
END;
/
-- End of Part I, database setup.

Chapter 3
Oracle Database Advanced Queuing Support

3-176

//Part II: Enqueuing and dequeuing messages
//C#
using System;
using System.Text;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

namespace ODPSample
{
 /// <summary>
 /// Demonstrates Enqueuing and Dequeuing raw message
 /// using a single consumer queue
 /// </summary>
 class EnqueueDequeue
 {
 static void Main(string[] args)
 {
 // Create connection
 string constr = "user id=scott;password=Pwd4Sct;data source=oracle";
 OracleConnection con = new OracleConnection(constr);

 // Create queue
 OracleAQQueue queue = new OracleAQQueue("scott.test_q", con);

 try
 {
 // Open connection
 con.Open();

 // Begin txn for enqueue
 OracleTransaction txn = con.BeginTransaction();

 // Set message type for the queue
 queue.MessageType = OracleAQMessageType.Raw;

 // Prepare message and RAW payload
 OracleAQMessage enqMsg = new OracleAQMessage();
 byte[] bytePayload = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 enqMsg.Payload = bytePayload;

 // Prepare to Enqueue
 queue.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;

 // Enqueue message
 queue.Enqueue(enqMsg);

 Console.WriteLine("Enqueued Message Payload : "
 + ByteArrayToString(enqMsg.Payload as byte[]));
 Console.WriteLine("MessageId of Enqueued Message : "
 + ByteArrayToString(enqMsg.MessageId));

 // Enqueue txn commit
 txn.Commit();

 // Begin txn for Dequeue
 txn = con.BeginTransaction();

 // Prepare to Dequeue
 queue.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 queue.DequeueOptions.Wait = 10;

Chapter 3
Oracle Database Advanced Queuing Support

3-177

 // Dequeue message
 OracleAQMessage deqMsg = queue.Dequeue();

 Console.WriteLine("Dequeued Message Payload : "
 + ByteArrayToString(deqMsg.Payload as byte[]));
 Console.WriteLine("MessageId of Dequeued Message : "
 + ByteArrayToString(deqMsg.MessageId));

 // Dequeue txn commit
 txn.Commit();
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 finally
 {
 // Close/Dispose objects
 queue.Dispose();
 con.Close();
 con.Dispose();
 }
 }

 // Function to convert byte[] to string
 static private string ByteArrayToString(byte[] byteArray)
 {
 StringBuilder sb = new StringBuilder();
 for (int n = 0; n < byteArray.Length; n++)
 {
 sb.Append((int.Parse(byteArray[n].ToString())).ToString("X"));
 }
 return sb.ToString();
 }
 }
}

Continuous Query Notification Support
Oracle Data Provider for .NET provides a notification framework that supports
Continuous Query Notification, enabling applications to receive client-side notifications
when there is a change in a query result set, schema objects, or the state of the
database, even if no Oracle Data Provider for .NET database connection exists. Using
Continuous Query Notification, an application can maintain the validity of the client-
side cache (for example, the ADO.NET DataSet) easily. Continuous Query Notification
was previously known as Database Change Notification.

Note:

Continuous Query Notification is not supported in a .NET stored procedure.

Using the notification framework, applications can specify a query result set as a
registered query for notification request on the database, and create this notification
registration to maintain the validity of the query result set. When there is a change on

Chapter 3
Continuous Query Notification Support

3-178

the database that could affect the client-side cache's query results, the notification framework
notifies the application.

Note:

The content of a change notification is referred to as an invalidation message. It
indicates that the query result set is now invalid and provides information about the
changes.

Based on the information provided by the invalidation message, the application can then act
accordingly. For example, the application might need to refresh its own copy of the data for
the registered query that is stored locally in the application.

Note:

If a registered object is dropped from the database and a new one is created with
the same name in the same schema, re-registration is required to receive
notifications for the newly created object.

Firewalls, such as Windows Firewall, may be set up to block TCP network ports, which blocks
incoming database notifications. Ensure the firewall is configured so that database
applications can use the designated port for Continuous Query Notification. If the firewall
configuration cannot be changed to allow notifications be sent to the client, consider enabling
Client Initiated Continuous Query Notifications.

Continuous Query Notification queries can be query-based (default) or object-based. The
query-based registrations allow ODP.NET to notify applications when the selected rows have
changed in the database. The object-based registrations allow ODP.NET to notify
applications for any changes that occur in the table(s) containing the selected rows.

Query-based registrations have two modes: guaranteed mode and best-effort mode. In
guaranteed mode, any continuous query notification ensures that a change occurred to
something contained in the queried result set. However, if a query is complex, then it cannot
be registered in guaranteed mode. Best-effort mode is used in such cases.

Best-effort mode simplifies the query for query-based registration. No notifications are lost
from the simplification. However, the simplification may cause false positives, as the simpler
version's query result could change when the original query result would not.There still
remain some restrictions on which queries can have best-effort mode query-based
registrations. In such cases, developers can use object-based registrations, which can
register most query types. Object-based registrations generate notifications when the query
object changes, even if the actual query result does not. This also means that object-based
registrations are more prone to false positives than query-based registrations. Developers
should be aware of the relative strengths and weaknesses of each continuous query
notification option and choose the one that best suits their requirements.

If a large number of rows are modified at once, consuming significant shared pool resources,
the application will not receive any change notifications with specific row information that had
undergone changes. Rather, it will receive a notification with
OracleNotificationEventArgs.Info property set to OracleNotificationInfo.Error.

Chapter 3
Continuous Query Notification Support

3-179

This section contains the following topics:

• Client Initiated Continuous Query Notifications

• Continuous Query Notification Classes

• Supported Operations

• Requirements of Notification Registration

• Using Continuous Query Notification

• Continuous Query Notification Support

• Best Practice Guidelines and Performance Considerations

See Also:

• Configuring a Port to Listen for Database Notifications

• Oracle Database Administrator’s Reference for Microsoft Windows for
details on configuring the Windows Firewall

• Oracle Database Development Guide for more information on
Continuous Query Notification

Client Initiated Continuous Query Notifications

ODP.NET 21c introduces support for Client Initiated Continuous Query Notifications
(CICQN). Traditional Continuous Query Notification (CQN) communicates database
change notifications back to clients using a listening end point, a client’s IP/hostname
and a port. In cloud deployments or when firewalls between the database server and
client cannot be configured to permit messages to the listening end point, these
notifications will be blocked.

CICQN uses a dedicated connection instead of the listening end point. This connection
aggregates all the database change notifications for the pool’s users. ODP.NET
attempts to always keep this connection open. It does not count toward Min Pool Size
and Max Pool Size limits.

ODP.NET CICQN requires Oracle Database 21c or higher. It can be enabled by setting
the OracleConfiguration.UseClientInitiatedCQN static Boolean property or .NET
Framework configuration file UseClientInitiatedCQN setting to true. By default, it is
false.

For most on-premises deployments, traditional CQN is recommended.

Continuous Query Notification Classes
The following classes are associated with Continuous Query Notification Support:

• OracleDependency
Represents a dependency between an application and an Oracle database based
on the database events which the application is interested in. It contains
information about the dependency and provides the mechanism to notify the

Chapter 3
Continuous Query Notification Support

3-180

application when specified database events occurs. The OracleDependency class is also
responsible for creating the notification listener to listen for database notifications. There
is only one database notification listener for each application domain. This notification
listener terminates when the application process terminates.

The dependency between the application and the database is not established when the
OracleDependency object is created. The dependency is established when the command
that is associated with this OracleDependency object is executed. That command
execution creates a continuous query notification registration in the database.

When a change has occurred in the database, the HasChanges property of the
OracleDependency object is set to true. Furthermore, if an event handler was registered
with the OnChange event of the OracleDependency object, the registered event handler
function will be invoked.

• OracleNotificationRequest
Represents a notification request to be registered in the database. It contains information
about the request and the properties of the notification.

• OracleNotificationEventArgs
Represents the invalidation message generated for a notification when a specified
database event occurs and contains details about that database event.

See Also:

– "OracleDependency Class"

– "OracleNotificationRequest Class"

– "OracleNotificationEventArgs Class"

Supported Operations
The ODP.NET notification framework in conjunction with Continuous Query Notification
supports the following activities:

• Creating a notification registration by:

– Creating an OracleDependency instance and binding it to an OracleCommand instance.

• Grouping multiple notification requests into one registration by:

– Using the OracleDependency.AddCommandDependency method.

– Setting the OracleCommand.Notification request using the same
OracleNotificationRequest instance.

• Registering for Continuous Query Notification by:

– Executing the OracleCommand. If either the notification property is null or
NotificationAutoEnlist is false, the notification will not be made.

• Removing notification registration by:

– Using the OracleDependency.RemoveRegistration method.

– Setting the Timeout property in the OracleNotificationRequest instance before the
registration is created.

Chapter 3
Continuous Query Notification Support

3-181

– Setting the IsNotifiedOnce property to true in the
OracleNotificationRequest instance before the registration is created. The
registration is removed once a database notification is sent.

• Ensuring Change Notification Persistence by:

– Specifying whether or not the invalidation message is queued persistently in
the database before delivery. If an invalidation message is to be stored
persistently in the database, then the change notification is guaranteed to be
sent. If an invalidation message is stored in an in-memory queue, the change
notification can be received faster, however, it could be lost upon database
shutdown or crashes.

• Retrieving notification information including:

– The changed object name.

– The schema name of the changed object.

– Database events that cause the notification, such as insert, delete, and so on.

– The RowID of the modified object row.

In Oracle SQL, the ROWIDTOCHAR(ROWID) and ROWIDTONCHAR(ROWID) functions
convert a ROWID value to VARCHAR2 and NVARCHAR data types, respectively. If
these functions are used within a SQL statement, ROWIDs are not returned in
the OracleNotificationEventArgs object that is passed to the continuous
query notification callback.

• Defining the listener port number.

By default, the static OracleDependency.Port property is set to -1. This indicates
that the ODP.NET listens on a port that is randomly picked when ODP.NET
registers a continuous query notification request for the first time during the
execution of an application.

ODP.NET creates only one listener that listens on one port within an application
domain. Once ODP.NET starts the listener, the port number cannot be changed;
Changes to the static OracleDependency.Port property will generate an error if a
listener has already been created.

See Also:

• "OracleCommand Class"

• "Notification"

• "NotificationAutoEnlist"

• "OracleDependency Class"

• "OracleNotificationEventArgs Class"

Requirements of Notification Registration
The connected user must have the CHANGE NOTIFICATION privilege to create a
notification registration.

This SQL statement grants the CHANGE NOTIFICATION privilege:

Chapter 3
Continuous Query Notification Support

3-182

grant change notification to user name

This SQL statement revokes the CHANGE NOTIFICATION privilege:

revoke change notification from user name

Using Continuous Query Notification
This section describes what the application should do, and the flow of the process, when an
application uses Continuous Query Notification to receive notifications for any changes in the
registered query result set.

Application Steps
The application should do the following:

1. Create an OracleDependency instance.

2. Assign an event handler to the OracleDependency.OnChange event property if the
application wishes to have an event handler invoked when database changes are
detected. Otherwise, the application can choose to poll on the HasChanges property of the
OracleDependency object. This event handler is invoked when the change notification is
received.

3. Set the port number for the listener to listen on. The application can specify the port
number for one notification listener to listen on. If the application does not specify a port
number, a random one is used by the listener.

4. Bind the OracleDependency instance to an OracleCommand instance that contains the
actual query to be executed. Internally, the Continuous Query Notification request (an
OracleNotificationRequest instance) is created and assigned to the
OracleCommand.Notification property.

Flow of Notification Process
1. When the command associated with the notification request is executed, the notification

registration is created in the database. The command execution must return a result set,
or contain one or more REF cursors for a PL/SQL stored procedure.

2. ODP.NET starts the application listener on the first successful notification registration.

3. When a change related to the registration occurs in the database, the application is
notified through the event delegate assigned to the OracleDependency.OnChange event
property, or the application can poll the OracleDependency.HasChanges property.

The following example demonstrates the continuous query notification feature.

// Database Setup
// NOTE: unless the following SQL command is executed,
// ORA-29972 will be obtained from running this sample
/*
grant change notification to scott;
*/
using System;
using System.Threading;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

Chapter 3
Continuous Query Notification Support

3-183

//This sample shows the continuous query notification feature in ODP.NET.
//Application specifies to get a notification when emp table is updated.
//When emp table is updated, the application will get a notification
//through an event handler.
namespace NotificationSample
{
 public class MyNotificationSample
 {
 public static bool IsNotified = false;

 public static void Main(string[] args)
 {
 //To Run this sample, make sure that the change notification privilege
 //is granted to scott.
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = null;
 OracleDependency dep = null;

 try
 {
 con = new OracleConnection(constr);
 OracleCommand cmd = new OracleCommand("select * from emp", con);
 con.Open();

 // Set the port number for the listener to listen for the notification
 // request
 OracleDependency.Port = 1005;

 // Create an OracleDependency instance and bind it to an OracleCommand
 // instance.
 // When an OracleDependency instance is bound to an OracleCommand
 // instance, an OracleNotificationRequest is created and is set in the
 // OracleCommand's Notification property. This indicates subsequent
 // execution of command will register the notification.
 // By default, the notification request is using the Database Change
 // Notification.
 dep = new OracleDependency(cmd);

 // Add the event handler to handle the notification. The
 // OnMyNotification method will be invoked when a notification message
 // is received from the database
 dep.OnChange +=
 new OnChangeEventHandler(MyNotificationSample.OnMyNotificaton);

 // The notification registration is created and the query result sets
 // associated with the command can be invalidated when there is a
 // change. When the first notification registration occurs, the
 // notification listener is started and the listener port number
 // will be 1005.
 cmd.ExecuteNonQuery();

 // Updating emp table so that a notification can be received when
 // the emp table is updated.
 // Start a transaction to update emp table
 OracleTransaction txn = con.BeginTransaction();
 // Create a new command which will update emp table
 string updateCmdText =
 "update emp set sal = sal + 10 where empno = 7782";
 OracleCommand updateCmd = new OracleCommand(updateCmdText, con);
 // Update the emp table
 updateCmd.ExecuteNonQuery();

Chapter 3
Continuous Query Notification Support

3-184

 //When the transaction is committed, a notification will be sent from
 //the database
 txn.Commit();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }

 con.Close();
 // Loop while waiting for notification
 while(MyNotificationSample.IsNotified == false)
 {
 Thread.Sleep(100);
 }
 }

 public static void OnMyNotificaton(object src,
 OracleNotificationEventArgs arg)
 {
 Console.WriteLine("Notification Received");
 DataTable changeDetails = arg.Details;
 Console.WriteLine("Data has changed in {0}",
 changeDetails.Rows[0]["ResourceName"]);
 MyNotificationSample.IsNotified = true;
 }
 }
}

Best Practice Guidelines and Performance Considerations
This section provides guidelines for working with Continuous Query Notification and the
ODP.NET notification framework, and discusses the performance impacts.Every change
notification registration consumes database memory, storage or network resources, or some
combination thereof. The resource consumption further depends on the volume and size of
the invalidation message. In order to scale well with a large number of mid-tier clients, Oracle
recommends that the client implement these best practices:

• Few and mostly read-only tables

There should be few registered objects, and these should be mostly read-only, with very
infrequent invalidations. If an object is extremely volatile, then a large number of
invalidation notifications are sent, potentially requiring a lot of space (in memory or on
disk) in the invalidation queue. This is also true if a large number of objects are
registered.

• Few rows updated for each table

Transactions should update (or insert or delete) only a small number of rows within the
registered tables. Depending on database resources, a whole table could be invalidated if
too many rows are updated within a single transaction, for a given table.

This policy helps to contain the size of a single invalidation message, and reduces disk
storage for the invalidation queue.

Chapter 3
Continuous Query Notification Support

3-185

OracleDataAdapter Safe Type Mapping
The ODP.NET OracleDataAdapter class provides the Safe Type Mapping feature to
ensure that the following Oracle data types do not lose data when converted to their
closely related .NET types in the DataSet:

• NUMBER
• DATE
• TimeStamp (refers to all TimeStamp objects)

• INTERVAL DAY TO SECOND

Note:

ODP.NET, Managed Driver and ODP.NET do not support Safe Type
Mapping.

This section includes the following topics:

• Comparison Between Oracle Data Types and .NET Types

• SafeMapping Property

Comparison Between Oracle Data Types and .NET Types
The following sections provide more details about the differences between the Oracle
data types and the corresponding .NET types. In general, the Oracle data types allow
a greater degree of precision than the .NET types do.

Oracle NUMBER Type to .NET Decimal Type

The Oracle data type NUMBER can hold up to 38 precision, and the .NET Decimal type
can hold up to 28 precision. If a NUMBER data type that has more than 28 precision is
retrieved into a .NET Decimal type, it loses precision.

Table 3-31 lists the maximum and minimum values for Oracle NUMBER and .NET
Decimal types.

Table 3-31 Oracle NUMBER to .NET Decimal Comparisons

Value
Limits

Oracle NUMBER .NET Decimal

Maximum 9.99999999999999999999999999999999
99999 e125

79,228,162,514,264,337,593,543,950,
335

Minimum -9.9999999999999999999999999999999
999999 e125

-79,228,162,514,264,337,593,543,950,
335

Chapter 3
OracleDataAdapter Safe Type Mapping

3-186

Oracle Date Type to .NET DateTime Type

The Oracle data type DATE can represent dates in BC whereas the .NET DateTime type
cannot. If a DATE that goes to BC get retrieved into a .NET DateTime type, it loses data.

Table 3-32 lists the maximum and minimum values for Oracle Date and .NET DateTime types.

Table 3-32 Oracle Date to .NET DateTime Comparisons

Value
Limits

Oracle Date .NET DateTime

Maximum Dec 31, 9999 AD Dec 31, 9999 AD 23:59:59.9999999

Minimum Jan 1, 4712 BC Jan 1, 0001 AD 00:00:00.0000000

Oracle TimeStamp Type to .NET DateTime Type

Similar to the DATE data type, the Oracle TimeStamp data type can represent a date in BC,
and a .NET DateTime type cannot. If a TimeStamp that goes to BC is retrieved into a.NET
DateTime type, it loses data. The Oracle TimeStamp type can represent values in units of e-9;
the .NET DateTime type can represent only values in units of e-7. The Oracle TimeStamp with
time zone data type can store time zone information, and the .NET DateTime type cannot.

Table 3-33 lists the maximum and minimum values for Oracle TimeStamp and .NET DateTime
types.

Table 3-33 Oracle TimeStamp to .NET DateTime Comparisons

Value
Limits

Oracle TimeStamp .NET DateTime

Maximum Dec 31, 9999 AD 23:59:59.999999999 Dec 31, 9999 AD 23:59:59.9999999

Minimum Jan 1, 4712 BC 00:00:00.000000000 Jan 1, 0001 AD 00:00:00.0000000

Oracle INTERVAL DAY TO SECOND to .NET TimeSpan

The Oracle data type INTERVAL DAY TO SECOND can hold up to 9 precision, and the .NET
TimeSpan type can hold up to 7 precision. If an INTERVAL DAY TO SECOND data type that has
more than 7 precision is retrieved into a .NET TimeSpan type, it loses precision. The Oracle
INTERVAL DAY TO SECOND type can represent values in units of e-9, and the .NET TimeSpan
type can represent only values in units of e-7.

Table 3-34 lists the maximum and minimum values for Oracle INTERVAL DAY TO SECOND
and .NET DateTime types.

Table 3-34 Oracle INTERVAL DAY TO SECOND to .NET TimeSpan Comparisons

Value
Limits

Oracle INTERVAL DAY TO SECOND .NET TmeSpan

Maximum +999999999 23:59:59.999999999 +10675199 02:48:05.4775807

Minimum -999999999 23:59:59.999999999 -10675199 02:48:05.4775808

Chapter 3
OracleDataAdapter Safe Type Mapping

3-187

SafeMapping Property
The OracleDataAdapter Safe Type Mapping feature prevents data loss when
populating Oracle data for any of these types into a .NET DataSet. By setting the
SafeMapping property appropriately, these types can be safely represented in the
DataSet, as either of the following:

• .NET byte[] in Oracle format

• .NET String
By default, Safe Type Mapping is disabled.

Using Safe Type Mapping
To use the Safe Type Mapping feature, the OracleDataAdapter.SafeMapping property
must be set with a hash table of key-value pairs. The key-value pairs must map
database table column names (of type string) to a .NET type (of type Type).
ODP.NET supports Safe Type Mapping to byte[] and String types. Any other type
mapping causes an exception.

In situations where the column names are not known at design time, an asterisk ("*")
can be used to map all occurrences of database types to a safe .NET type. If both the
valid column name and the asterisk are present, the column name is used.

Note:

• Database table column names are case-sensitive.

• Column names in the hash table that correspond to invalid column
names are ignored.

Safe Type Mapping as a string is more readable without further conversion. Converting
certain Oracle data types to a string requires extra conversion, which can be slower
than converting it to a byte[]. Conversion of .NET strings back to ODP.NET types
relies on the formatting information of the session.

SafeTyping Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class SafeMappingSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";

 // In this SELECT statement, EMPNO, HIREDATE and SALARY must be
 // preserved using safe type mapping.
 string cmdstr = "SELECT EMPNO, ENAME, HIREDATE, SAL FROM EMP";

Chapter 3
OracleDataAdapter Safe Type Mapping

3-188

 // Create the adapter with the selectCommand txt and the connection string
 OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

 // Get the connection from the adapter
 OracleConnection connection = adapter.SelectCommand.Connection;

 // Create the safe type mapping for the adapter
 // which can safely map column data to byte arrays, where
 // applicable. By executing the following statement, EMPNO, HIREDATE AND
 // SALARY columns will be mapped to byte[]
 adapter.SafeMapping.Add("*", typeof(byte[]));

 // Map HIREDATE to a string
 // If the column name in the EMP table is case-sensitive,
 // the safe type mapping column name must be case-sensitive.
 adapter.SafeMapping.Add("HIREDATE", typeof(string));

 // Map EMPNO to a string
 // If the column name in the EMP table is case-sensitive,
 // the safe type mapping column name must also be case-sensitive.
 adapter.SafeMapping.Add("EMPNO", typeof(string));
 adapter.SafeMapping.Add("SAL", typeof(string));

 // Create and fill the DataSet using the EMP
 DataSet dataset = new DataSet();
 adapter.Fill(dataset, "EMP");

 // Get the EMP table from the dataset
 DataTable table = dataset.Tables["EMP"];

 // Get the first row from the EMP table
 DataRow row = table.Rows[0];

 // Print out the row info
 Console.WriteLine("EMPNO Column: type = " + row["EMPNO"].GetType() +
 "; value = " + row["EMPNO"]);
 Console.WriteLine("ENAME Column: type = " + row["ENAME"].GetType() +
 "; value = " + row["ENAME"]);
 Console.WriteLine("HIREDATE Column: type = " + row["HIREDATE"].GetType()+
 "; value = " + row["HIREDATE"]);
 Console.WriteLine("SAL Column: type = " + row["SAL"].GetType() +
 "; value = " + row["SAL"]);
 }
}

See Also:

"SafeMapping"

OracleDataAdapter Requery Property
The OracleDataAdapter Requery property controls whether or not queries are reexecuted for
OracleDataAdapter Fill calls after the initial Fill call.

Chapter 3
OracleDataAdapter Requery Property

3-189

The OracleDataAdapter Fill method allows appending or refreshing data in the
DataSet. When appending the DataSet using the same query with subsequent Fill
calls, reexecuting the query may not be desirable.

When the Requery property is set to true, each subsequent Fill call reexecutes the
query and fills the DataSet. This is an expensive operation, and if the reexecution is
not required, set Requery to false. If any of the SelectCommand properties or
associated parameters must be changed, Requery must be set to true.

When the Requery property is set to false, the DataSet has all the data as a snapshot
at a particular time. The query is executed only for the first Fill call; subsequent Fill
calls fetch the data from a cursor opened with the first execution of the query. This
feature is supported only for forward-only fetches. Fill calls that try to fetch rows
before the last fetched row raise an exception. The connection used for the first Fill
call must be available for subsequent Fill calls.

When filling a DataSet with an OracleRefCursor object, the Requery property can be
used in a similar manner. When the Requery property is set to false, both the
connection used for the first Fill call and the OracleRefCursor object must be
available for the subsequent Fill calls.

See Also:

• "Requery"

• "SelectCommand"

Guaranteeing Uniqueness in Updating DataSet to Database
This section describes how the OracleDataAdapter object configures the PrimaryKey
and Constraints properties of the DataTable object which guarantee uniqueness
when the OracleCommandBuilder object is updating DataSet changes to the database.

Using the OracleCommandBuilder object to dynamically generate DML statements to
be executed against the database is one of the ways to reconcile changes made in a
single DataTable object with the database.

In this process, the OracleCommandBuilder object must not be allowed to generate
DML statements that may affect (update or delete) more that a single row in the
database when reconciling a single DataRow change. Otherwise the
OracleCommandBuilder could corrupt data in the database.

To guarantee that each DataRow object change affects only a single row, there must be
a set of DataColumn objects in the DataTable for which all rows in the DataTable have
a unique set of values. The set of DataColumn objects indicated by the properties
DataTable.PrimaryKey and DataTable.Constraints meets this requirement. The
OracleCommandBuilder object determines uniqueness in the DataTable by checking if
the DataTable.PrimaryKey is not a null value or if there exists a UniqueConstraint
object in the DataTable.Constraints collection.

Chapter 3
Guaranteeing Uniqueness in Updating DataSet to Database

3-190

This discussion first explains what constitutes uniqueness in DataRow objects and then
explains how to maintain that uniqueness while updating, through the DataTable property
configuration.

This section includes the following topics:

• What Constitutes Uniqueness in DataRow Objects?

• Configuring PrimaryKey and Constraints Properties

• Updating Without PrimaryKey and Constraints Configuration

What Constitutes Uniqueness in DataRow Objects?
This section describes the minimal conditions that must be met to guarantee uniqueness of
DataRow objects. The condition of uniqueness must be guaranteed before the
DataTable.PrimaryKey and DataTable.Constraints properties can be configured, as
described in the next section.

Uniqueness is guaranteed in a DataTable object if any one of the following is true:

• All the columns of the primary key are in the select list of the
OracleDataAdapter.SelectCommand property.

• All the columns of a unique constraint are in the select list of the
OracleDataAdapter.SelectCommand property, with at least one involved column having a
NOT NULL constraint defined on it.

• All the columns of a unique index are in the select list of the
OracleDataAdapter.SelectCommand property, with at least one of the involved columns
having a NOT NULL constraint defined on it.

• A ROWID is present in the select list of the OracleDataAdapter.SelectCommand property.

Note:

A set of columns, on which a unique constraint has been defined or a unique index
has been created, requires at least one column that cannot be null for the following
reason: if all the columns of the column set can be null, then multiple rows could
exist that have a NULL value for each column in the column set. This would violate
the uniqueness condition that each row has a unique set of values for the column
set.

Configuring PrimaryKey and Constraints Properties
If the minimal conditions described in "What Constitutes Uniqueness in DataRow Objects?"
are met, then the DataTable.PrimaryKey or DataTable.Constraints properties can be set.

After these properties are set, the OracleCommandBuilder object can determine uniqueness
in the DataTable by checking the DataTable.PrimaryKey property or the presence of a
UniqueConstraint object in the DataTable.Constraints collection. Once uniqueness is
determined, the OracleCommandBuilder object can safely generate DML statements to
update the database.

Chapter 3
Guaranteeing Uniqueness in Updating DataSet to Database

3-191

The OracleDataAdapter.FillSchema method attempts to set these properties
according to this order of priority:

1. If the primary key is returned in the select list, it is set as the
DataTable.PrimaryKey property.

2. If a set of columns that meets the following criteria is returned in the select list, it is
set as the DataTable.PrimaryKey property.

Criteria: The set of columns has a unique constraint defined on it or a unique index
created on it, with each column having a NOT NULL constraint defined on it.

3. If a set of columns that meets the following criteria is returned in the select list, a
UniqueConstraint object is added to the DataTable.Constraints collection, but
the DataTable.PrimaryKey property is not set.

Criteria: The set of columns has a unique constraint defined on it or a unique index
created on it, with at least one column having a NOT NULL constraint defined on it.

4. If a ROWID is part of the select list, it is set as the DataTable.PrimaryKey property.

Additionally, the OracleDataAdapter.FillSchema method performs as follows:

• Setting the DataTable.PrimaryKey property implicitly creates a UniqueConstraint
object.

• If a column is part of the DataTable.PrimaryKey property or the UniqueConstraint
object, or both, it will be repeated for each occurrence of the column in the select
list.

Updating Without PrimaryKey and Constraints Configuration
If the DataTable.PrimaryKey or Constraints properties have not been configured, for
example, if the application has not called the OracleDataAdapter.FillSchema method,
the OracleCommandBuilder object directly checks the select list of the
OracleDataAdapter.SelectCommand property to determine if it guarantees uniqueness
in the DataTable. However this check results in a database round-trip to retrieve the
metadata for the SELECT statement of the OracleDataAdapter.SelectCommand.

Note that OracleCommandBuilder object cannot update a DataTable created from
PL/SQL statements because they do not return any key information in their metadata.

Globalization Support
ODP.NET globalization support enables applications to manipulate culture-sensitive
data appropriately. This feature ensures proper string format, date, time, monetary,
numeric, sort order, and calendar conventions depending on the Oracle globalization
settings.

Chapter 3
Globalization Support

3-192

Note:

• ODP.NET, Managed Driver and ODP.NET Core are not NLS_LANG sensitive.
They are only .NET locale sensitive.

• ODP.NET, Managed Driver and ODP.NET Core do not support thread-based
globalization.

See Also:

"OracleGlobalization Class"

This section includes the following:

• Globalization Settings

• Globalization-Sensitive Operations

Globalization Settings
An OracleGlobalization object can be used to represent the following:

• Client Globalization Settings

• Session Globalization Settings

• Thread-Based Globalization Settings

Client Globalization Settings
Client globalization settings are derived from the Oracle globalization setting (NLS_LANG) in
the Windows registry of the local computer. The client globalization parameter settings are
read-only and remain constant throughout the lifetime of the application. These settings can
be obtained by calling the OracleGlobalization.GetClientInfo static method.

The following example retrieves the client globalization settings:

// C#

using System;
using Oracle.DataAccess.Client;

class ClientGlobalizationSample
{
 static void Main()
 {
 OracleGlobalization ClientGlob = OracleGlobalization.GetClientInfo();

 Console.WriteLine("Client machine language: " + ClientGlob.Language);
 Console.WriteLine("Client characterset: " + ClientGlob.ClientCharacterSet);
 }
}

Chapter 3
Globalization Support

3-193

The properties of the OracleGlobalization object provide the Oracle globalization
value settings.

Session Globalization Settings
Session globalization parameters are initially identical to client globalization settings.
Unlike client settings, session globalization settings can be updated. However, they
can be obtained only after establishing a connection against the database. The
session globalization settings can be obtained by calling the GetSessionInfo method
on the OracleConnection object. Invoking this method returns an instance of an
OracleGlobalization class whose properties represent the globalization settings of
the session.

When the OracleConnection object establishes a connection, it implicitly opens a
session whose globalization parameters are initialized with those values specified by
the client computer's Oracle globalization (or (NLS)) registry settings. The session
settings can be updated and can change during its lifetime.

The following example changes the date format setting on the session:

// C#

using System;
using Oracle.DataAccess.Client;

class SessionGlobalizationSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();

 OracleGlobalization SessionGlob = con.GetSessionInfo();

 // SetSessionInfo updates the Session with the new value
 SessionGlob.DateFormat = "YYYY/MM/DD";
 con.SetSessionInfo(SessionGlob);
 Console.WriteLine("Date Format successfully changed for the session");

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 }
}

Thread-Based Globalization Settings
Thread-based globalization parameter settings are specific to each thread. Initially,
these settings are identical to the client globalization parameters, but they can be
changed as specified by the application. When ODP.NET Types are converted to and
from strings, the thread-based globalization parameters are used, if applicable.

Thread-based globalization parameter settings are obtained by invoking the
GetThreadInfo static method of the OracleGlobalization class. The SetThreadInfo
static method of the OracleGlobalization class can be called to set the thread's
globalization settings.

Chapter 3
Globalization Support

3-194

ODP.NET classes and structures rely solely on the OracleGlobalization settings when
manipulating culture-sensitive data. They do not use .NET thread culture information. If the
application uses only .NET types, OracleGlobalization settings have no effect. However,
when conversions are made between ODP.NET types and .NET types, OracleGlobalization
settings are used where applicable.

Note:

Changes to the System.Threading.Thread. CurrentThread.CurrentCulture
property do not impact the OracleGlobalization settings of the thread or the
session, or the reverse.

The following example shows how the thread's globalization settings are used by the
ODP.NET Types:

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ThreadBasedGlobalizationSample
{
 static void Main(string[] args)
 {
 // Set the thread's DateFormat for the OracleDate constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleDate from a string using the DateFormat specified.
 OracleDate date = new OracleDate("1999-DEC-01");

 // Set a different DateFormat for the thread
 info.DateFormat = "MM/DD/YYYY";
 OracleGlobalization.SetThreadInfo(info);

 // Print "12/01/1999"
 Console.WriteLine(date.ToString());
 }
}

The OracleGlobalization object validates property changes made to it. If an invalid value is
used to set a property, an exception is thrown. Note that changes made to the Territory and
Language properties change other properties of the OracleGlobalization object implicitly.

See Also:

Oracle Database Globalization Support Guide for more information on the
properties affected by Territory and Language globalization settings

Chapter 3
Globalization Support

3-195

Globalization-Sensitive Operations
This section lists ODP.NET types and operations that are dependent on or sensitive to
globalization settings.

Operations Dependent on Client Computer's Globalization Settings
The OracleString structure depends on the OracleGlobalization settings of the
client computer. The client character set of the local computer is used when it converts
a Unicode string to a byte[] in the GetNonUnicode method and when it converts a
byte[] of ANSI characters to Unicode in the OracleString constructor that accepts a
byte[].

Operations Dependent on Thread Globalization Settings
The thread globalization settings are used by ODP.NET types whenever they are
converted to and from .NET string types, where applicable. Specific thread
globalization settings are used in most cases, depending on the ODP.NET type, by the
following:

• The ToString method

• The Parse static method

• Constructors that accept .NET string data

• Conversion operators to and from .NET strings

For example, the OracleDate type uses the DateFormat property of the thread
globalization settings when the ToString method is invoked on it. This returns a DATE
as a string in the format specified by the thread's settings.

The thread globalization settings also affect data that is retrieved into the DataSet as a
string using Safe Type Mapping. If the type is format-sensitive, the strings are always
in the format specified by the thread globalization settings.

For example, INTERVAL DAY TO SECOND data is not affected by thread settings because
no format is applicable for this type. However, the DateFormat and NumericCharacters
properties can impact the string representation of DATE and NUMBER types, respectively,
when they are retrieved as strings into the DataSet through Safe Type Mapping.

See Also:

• The remarks in OracleGlobalization Class for more details on the
ODP.NET type methods that convert between ODP.NET types and .NET
string types, and to identify which thread globalization settings are used
for that particular method.

• OracleDataAdapter Safe Type Mapping

• Oracle Data Provider for .NET Types Structures

Chapter 3
Globalization Support

3-196

Operations Sensitive to Session Globalization Parameters
Session globalization settings affect any data that is retrieved from or sent to the database as
a string.

For example, if a DATE column is selected with the TO_CHAR function applied on it, the DATE
column data will be a string in the date format specified by the DateFormat property of the
session globalization settings. Transmitting data in the other direction, the string data that is
to be inserted into the DATE column, must be in the format specified by the DateFormat
property of the session globalization settings.

ODP.NET Driver Globalization Differences
Default Session Time Zone

ODP.NET drivers set the default session time zone differently. While the session time zone
for unmanaged ODP.NET uses an hour offset, managed ODP.NET and ODP.NET Core use
the region identifier for setting their respective session time zone. As a result, managed and
Core ODP.NET is sensitive to daylight savings in scenarios where the timestamp LTZ values
have to be converted from or to the session time zone.

There are two methods to resolve this difference if needed. For ODP.NET, Unmanaged
Driver, the application explicitly sets the region identifier with the environment variable
ORA_SDTZ. For example, set ORA_SDTZ = <Region ID>. If ORA_SDTZ variable is set, Oracle
Client considers this value as the session time zone. The second method is to execute an
alter session command to set the session time zone property to the region identifier.

.NET Culture Info

As noted earlier, ODP.NET, Managed Driver and ODP.NET Core do not support thread-based
globalization. ODP.NET, Unmanaged Driver does. As a result, managed ODP.NET and
ODP.NET Core strings are insensitive to .NET culture information. As such, invoking the
ToString() method on date/time related Oracle provider types (i.e. OracleDate,
OracleTimestamp, etc.) will generate a string in the format of MM/dd/yyyy
HH:mm:ss[.fffffffff] [timezone]. Whether the outputted string contains a fractional
second and/or the timezone will depend on the Oracle provider type being used.

Debug Tracing
All ODP.NET providers include debug tracing support, which allows logging of all the
ODP.NET activities into a trace file. Different levels of tracing are available.

Tracing can record the following information and more:

• Entry and exit information for the ODP.NET public methods

• User-provided SQL statements as well as SQL statements modified by the provider

• Connection pooling statistics such as enlistment and delistment

• Thread ID (entry and exit)

• HA Events and Load Balancing information

• Distributed Transactions

• Self-tuning information

Chapter 3
Debug Tracing

3-197

• User-mode dumps upon unmanaged exceptions

The following properties enable and configure tracing for all ODP.NET providers:

• TraceLevel – specifies which ODP.NET details to write to the trace file

• TraceFileLocation – specifies the directory to write the trace to

• TraceFileMaxSize – specifies the maximum file size of each trace file

• TraceOption – specifies whether to use a separate trace file for each thread

By default, tracing is turned off (TraceLevel = 0). To enable tracing, set TraceLevel to
the trace level you wish.

Managed ODP.NET and ODP.NET Core have the following trace levels:

• 1 = public APIs

• 2 = private APIs

• 4 = network APIs/data

• 8 = disables writing SQL statements and network packet contents

These values can be bitwise ORed. To enable all traces, set TraceLevel to 7.

Unmanaged ODP.NET has the following trace levels:

• 1 = Entry, exit, and SQL statement information

• 2 = Connection pooling statistics

• 4 = Distributed transactions (enlistment and delistment)

• 8 = User-mode dump creation upon unmanaged exception

• 16 = HA Event Information

• 32 = Load Balancing Information

• 64 = Self Tuning Information

These values can be bitwise ORed. To enable all traces, set TraceLevel to 127.

TraceFileLocation writes to a temporary operating system folder if no value is set.

• ODP.NET Core

– Windows: <Windows user temporary folder>\ODP.NET\core\trace
– Linux: <current user temporary folder>/ODP.NET/core/trace
– macOS: <macOS temporary folder>\ODP.NET\core\trace

• ODP.NET, Managed Driver: <Windows user temporary
folder>\ODP.NET\managed\trace

• ODP.NET, Unmanaged Driver: <Windows user temporary
folder>\ODP.NET\unmanaged\trace

The Windows user temporary folder is determined by your local Windows settings,
such as your Windows TMP or TEMP environment variable. Typically, it can be C:\temp
or C:\Users\<user name>\AppData\Local\Temp.

TraceFileMaxSize defaults to 100 MB if no value is set. Administrators can use this
setting to keep trace files down to a manageable size.

Chapter 3
Debug Tracing

3-198

TraceOption will write all threads to a single trace file at a time by default (TraceOption=0).

ODP.NET will create an entry in the Windows event log where the trace was created anytime
it creates a new trace file. An event log entry will be added every time in cases when
TraceFileLocation changes, trace file size exceeds TraceFileMaxSize, TraceLevel
changes, and TraceOption changes. In each of these cases, ODP.NET creates a new file
and starts writing traces in the newly created file. ODP.NET Core does not support writing to
the Windows event log.

To enable ODP.NET tracing, these trace properties must be set appropriately either in the
OracleConfiguration class (all providers), in the .NET configuration file (managed and
unmanaged ODP.NET), or in the Windows Registry (unmanaged ODP.NET).

ODP.NET begins writing to the trace file only after the OracleConnection.Open() call occurs.

Dynamic Tracing

Starting with ODAC 19c, applications can change ODP.NET OracleConfiguration class
trace settings during runtime. Most commonly, this feature would permit enabling and
disabling tracing dynamically while applications continue to run. Dynamic tracing is useful for
errors that occur after applications are run for a considerable time. Customers can avoid
collecting extremely large trace files and Oracle Support will find it easier to diagnose
problems from more targeted trace files.

ODP.NET Core, managed, and unmanaged all support dynamic tracing.

To enable tracing at runtime, set OracleConfiguration.TraceLevel to the trace level
desired. To disable tracing dynamically, set OracleConfiguration.TraceLevel to zero.

Only OracleConfiguration tracing properties can alter runtime tracing behavior. Windows
Registry and .NET configuration file settings are only read when an application starts up.

As a general matter, tracing is not recommended for production use because writing to trace
files affects performance. However, if a problem only occurs during production, use dynamic
tracing to enable and disable tracing during the problem period to capture diagnostics for
identifying the root cause.

See Also:

• "Configuring Oracle Data Provider for .NET" for further details

• OracleConfiguration Debug Tracing Properties

• settings section

Database Application Migration: SQL Translation Framework
A key part of migrating non-Oracle database applications to an Oracle Database requires
converting non-Oracle SQL statements to SQL statements that can be processed by an
Oracle Database. SQL conversion is generally a manual and laborious process. To minimize
the effort, Oracle Database 12c introduces SQL Translation Framework which takes non-
Oracle SQL statements from client applications and then translates them at run-time for the
Oracle Database to execute.

Chapter 3
Database Application Migration: SQL Translation Framework

3-199

The SQL Translation Framework can be used to map non-Oracle stored procedure to
Oracle stored procedures to ensure successful execution of those stored procedures
when migrating to Oracle Database.

Currently, SQL Translation Framework is available for Sybase Adaptive Server
Enterprise and Microsoft SQL Server. There is limited support for IBM DB2.

Note:

SQL Translation Framework is only supported by ODP.NET, Unmanaged
Driver. ODP.NET, Managed Driver and ODP.NET Core do not support this
feature.

The SQL Translation Profile
The SQL Translation Profile is a database object that contains the set of captured non-
Oracle SQL statements, and their translations or translation errors. The SQL
Translation Profile is used to review, approve, and modify translations. A profile is
associated to a single translator. However, a translator can be used in one or more
SQL Translation Profiles. Typically, there is one SQL Translation Profile per
application, otherwise applications can share translated queries. You can export
profiles among various databases.

1. Configuring the SQL Translation Profile Name

The default translation profile name for SQL Translation Framework can be
configured through the app/web/machine .NET configuration file. If configured,
connections, by default will automatically be set to the specified profile when the
connection is initially created.

2. Changing the SQL Translation Profile Name

ODP.NET supports setting the profile name through the .NET config file, logon
trigger, or database service. ODP.NET does not support using ALTER SESSION from
an application to set the profile name.

3. Forcing Translation

Applications are strictly prohibited to execute the following SQL which forces
translation of all SQL's on the database:

ALTER SESSION SET events = '10601 trace name context forever, level 32'
4. Connection Related Error Mapping

Connection Related Error Mapping can be configured through the .NET
configuration file. Please note that this error mapping strictly applies to errors
which could be thrown before the connection is successfully established. Once the
database connection is established successfully, then these error mapping will be
completely ignored and further error translation will be provided through the error
mapping configured in the database.

The rules to choose an error mapping section in the configuration file are as
follows:

a. ODP.NET uses the error mapping section which matches the configured
userId, dataSource, and profile, where userId and dataSource matches the

Chapter 3
Database Application Migration: SQL Translation Framework

3-200

corresponding values in the connection string and profile matches the
defaultProfile configuration setting.

b. If no error mapping section is found from 4.a.), then ODP.NET uses the error
mapping section which matches the userId, dataSource, and profile similar to 4.a.),
but with the profile that matches with the defaultErrorMappingProfile configuration
setting.

c. If still no error mapping section is found, then ODP.NET uses the global mapping,
that is, <ErrorMapping profile="*">, if configured.

5. Stored Procedure Mapping.

Application must map their native stored procedure names to the corresponding Oracle
stored procedure names on the translation profile in the database. The following
procedure can be used to setup the mapping in the database.

DBMS_SQL_TRANSLATOR.REGISTER_SQL_TRANSLATION(
 PROFILE_NAME VARCHAR2 IN
 SQL_TEXT CLOB IN
 TRANSLATED_TEXT CLOB IN DEFAULT
 ENABLE BOOLEAN IN DEFAULT)

Example of stored procedure mapping:

DBMS_SQL_TRANSLATOR.REGISTER_SQL_TRANSLATION('profile_name',
 'native_sp_name',
 'oracle_sp_name');

See Also:

Chapter 2, SQL Translation Framework Overview and Architecture, of the Oracle
Database Migration Guide for more information.

Chapter 3
Database Application Migration: SQL Translation Framework

3-201

4
ADO.NET Entity Framework and LINQ to
Entities

This section describes ADO.NET Entity Framework and LINQ to Entities. Entity Framework is
a framework for providing object-relational mapping service on data models.

This section contains these topics:

• Overview of Entity Framework

• Language Integrated Query and Entity SQL

• Mapping Oracle Data Types to EDM Types

• Oracle Number Default Data Type Mapping and Customization

• Migrating Existing Entity Framework 5 Applications to Entity Framework 6

• Code First

• Unsupported Entity Framework Features

Note:

ADO.NET Entity Framework and LINQ to Entities is not supported by ODP.NET
Core.

Overview of Entity Framework
ODP.NET includes support for the ADO.NET Entity Framework and LINQ to Entities.
ODP.NET also supports Entity SQL.

Entity Framework is a framework for providing object-relational mapping service on data
models. Entity Framework addresses the impedance mismatch between the relational
database format and the client's preferred object format.

Entity Framework and LINQ provides productivity benefits for the .NET developer. It abstracts
the database's data model from the application's data model. Working with object-relational
data becomes easier with Entity Framework's tools. Oracle's integration with Entity
Framework and LINQ enables Oracle .NET developers to take advantage of all these
productivity benefits.

4-1

Note:

• Entity Framework and LINQ to Entities support is included in ODP.NET
for .NET Framework 4. ODP.NET for .NET Framework 2.0 does not
support the ADO.NET Entity Framework and LINQ to Entities.

• Binding scalar parameters is supported with ODP.NET and Entity
Framework. In Entity Framework, parameter binding by name is
supported. Binding by position is not supported.

Entity data models can be generated from Oracle database schemas. Schemas can
be generated from entity data models. These Oracle entity data models can be
queried and manipulated using Visual Studio and ODP.NET. Oracle supports Code
First, Database First, and Model First modeling approaches. Specifying filters on the
Visual Studio Server Explorer data connection enables the Entity Data Model Wizard
to also filter Oracle database objects that are fetched and displayed.

LINQ to Entities can perform queries on the Oracle Database using ODP.NET,
including using LINQ to Entities built-in functions. INSERTs, UPDATEs, and DELETEs can
be executed using Oracle stored procedures, or by using the ObjectContext
SaveChanges method.

ODP.NET supports function import of Oracle stored procedures that Entity Framework
can then execute. These Oracle function imports can return a collection of scalar,
complex, and entity types, including returning an Oracle implicit result set as an entity
type. Implicit result set binding is supported using Oracle REF CURSOR.

See Also:

• Implicit REF CURSOR Binding.

• For a tutorial on how to use Entity Framework, Language Integrated
Query (LINQ), and generate Data Definition Language (DDL) scripts
using Model First, refer to:

Entity Framework, LINQ and Model-First for the Oracle Database

Language Integrated Query and Entity SQL
Language Integrated Query (LINQ) defines a set of operators that can be used to
query, project, and filter data in arrays, enumerable classes, XML, relational
databases, and other data sources. One form of LINQ, LINQ to Entities, allows
querying of Entity Framework data sources. ODP.NET supports Entity Framework
such that the Oracle database can participate in object-relational modeling and LINQ
to Entities queries.

Entity SQL is a language that enables querying of Entity Framework conceptual
models. It allows querying Entity Framework entities and relationships in a format that
is similar to SQL. ODP.NET supports querying Oracle databases through Entity SQL.

LINQ and Entity SQL syntax are generally data source neutral.

Chapter 4
Language Integrated Query and Entity SQL

4-2

https://www.oracle.com/webfolder/technetwork/tutorials/obe/db/dotnet/2015/entityframework_linq_modelfirst/Entity%20Framework%20LINQ%20and%20Model%20First.html

Mapping Oracle Data Types to EDM Types
The ODP.NET manifest file describes the primitive types, such as VARCHAR2 and Number, and
the Entity Data Model (EDM) types, such as string and Int32, that they map to. It also
includes the facets for each EDM type.

ODP.NET does not support Time literals and canonical functions related to the Time type.

Oracle considers both NULL and empty strings to be NULL strings and are considered to be
equal. Operations, such as Equals(), Length(), and Trim() on such strings will result in a
NULL string.

Table 4-1 maps the Oracle data types to their corresponding EDM types. The table also
includes details about provider type attributes and the EDM type facets associated with each
Oracle data type.

Table 4-1 Mapping of Oracle Data Types and EDM Types

Oracle Data Types EDM Types
(Primitive-TypeKind)

Provider Type Attributes:
Name and Value

EDM Type Facets

Bfile Binary • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets for
Bfile

Binary_Double Double • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Binary_Float Single • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Binary_Integer Int32 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Blob Binary • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets for
Blob

Char String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Char

Clob String • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets for
Clob

Chapter 4
Mapping Oracle Data Types to EDM Types

4-3

Table 4-1 (Cont.) Mapping of Oracle Data Types and EDM Types

Oracle Data Types EDM Types
(Primitive-TypeKind)

Provider Type Attributes:
Name and Value

EDM Type Facets

Date DateTime • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Date

Float Decimal • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Float

Int Int32 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Interval Day To
Second

Decimal • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Interval Day To
Second

Interval Year
To Month

Decimal • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Interval Year To
Month

Long String • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets for
Long

Json String • Equal Comparable:
True

• Order Comparable:
True

EDM Types Facets for
JSON

Long Raw Binary • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets for
Long Raw

NChar String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
NChar

NClob String • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets for
NClob

Nested Table Not Applicable Not Applicable and
Not Supported

Chapter 4
Mapping Oracle Data Types to EDM Types

4-4

Table 4-1 (Cont.) Mapping of Oracle Data Types and EDM Types

Oracle Data Types EDM Types
(Primitive-TypeKind)

Provider Type Attributes:
Name and Value

EDM Type Facets

Number(1,0)
Number(2,0)
Number(3,0)
Number(4,0)
Number(5,0)

Int16 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Number(6,0)
Number(7,0)
Number(8,0)
Number(9,0)
Number(10,0)

Int32 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Number(11,0)
Number(12,0)
Number(13,0)
Number(14,0)
Number(15,0)
Number(16,0)
Number(17,0)
Number(18,0)
Number(19,0)

Int64 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Number
(all other cases)

Decimal • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Number

NVarchar2 String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
NVarchar2

Object Not Applicable Not Applicable and
Not Supported

Raw Binary • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Raw

Raw(16) Guid • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Ref Not Applicable Not Applicable and
Not Supported

Chapter 4
Mapping Oracle Data Types to EDM Types

4-5

Table 4-1 (Cont.) Mapping of Oracle Data Types and EDM Types

Oracle Data Types EDM Types
(Primitive-TypeKind)

Provider Type Attributes:
Name and Value

EDM Type Facets

ROWID String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
ROWID

Smallint Int16 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Timestamp DateTime • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Timestamp

Timestamp with
Local Time Zone

DateTime • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Timestamp with Local
Time Zone

Timestamp with
Time Zone

DateTimeOffset • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Timestamp with Time
Zone

UROWID
(size)

Binary • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
UROWID

Varchar2 String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets for
Varchar2

VArray Not Applicable Not Applicable and
Not Supported

XMLType String • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets for
XMLType

EDM Type Facets
The following sections enumerate the EDM type facets for the preceding Oracle data
types. The first column of each table displays the EDM type facet names for the Oracle
data type. Subsequent columns list the facet attribute names and displays their
respective values.

Chapter 4
Mapping Oracle Data Types to EDM Types

4-6

EDM Type Facets for Bfile

Table 4-2 EDM Type Facets for Bfile

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483648
Constant: True

FixedLength DefaultValue: False
Constant: True

EDM Type Facets for Blob

Table 4-3 EDM Type Facets for Blob

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483648
Constant: True

FixedLength DefaultValue: False
Constant: True

EDM Type Facets for Char

Table 4-4 EDM Type Facets for Char

Facet Name Attributes Name and Value

MaxLength Minimum: 1
Maximum: 2000
DefaultValue: 2000
Constant: False

Unicode DefaultValue: False
Constant: True

FixedLength DefaultValue: True
Constant: True

EDM Type Facets for Clob

Table 4-5 EDM Type Facets for Clob

Facet Name Attributes Name and Value

MaxLength DefaultValue: 2147483647
Constant: True

Chapter 4
Mapping Oracle Data Types to EDM Types

4-7

Table 4-5 (Cont.) EDM Type Facets for Clob

Facet Name Attributes Name and Value

Unicode DefaultValue: False
Constant: True

FixedLength DefaultValue: False
Constant: True

EDM Type Facets for Date

Table 4-6 EDM Type Facets for Date

Facet Name Attributes Name and Value

Precision Constant: True
DefaultValue: 0

EDM Type Facets for Float

Table 4-7 EDM Type Facets for Float

Facet name Attributes Name and Value

Precision Minimum: 0
Maximum: 126
DefaultValue: 0
Constant: False

Scale Minimum: 0
Maximum: 38
DefaultValue: 0
Constant: False

EDM Type Facets for Interval Day To Second

Table 4-8 EDM Type Facets for Interval Day To Second

Facet name Attributes Name and Value

Precision Minimum: 1
Maximum: 251
DefaultValue: 251
Constant: False

Chapter 4
Mapping Oracle Data Types to EDM Types

4-8

Table 4-8 (Cont.) EDM Type Facets for Interval Day To Second

Facet name Attributes Name and Value

Scale Minimum: 0
Maximum: 9
DefaultValue: 0
Constant: False

Note:

EDM types do not support TimeSpan.

Use Decimal to represent the total number of seconds. An application can obtain a
TimeSpan by using the TimeSpan.FromSeconds static method.

EDM Type Facets for Interval Year To Month

Table 4-9 EDM Type Facets for Interval Year To Month

Facet name Attributes Name and Value

Precision Minimum: 1
Maximum: 250
DefaultValue: 250
Constant: False

Scale Minimum: 0
Maximum: 9
DefaultValue: 0
Constant: False

EDM Type Facets for JSON

Table 4-10 EDM Type Facets for Json

Facet name Attributes Name and Value

MaxLength DefaultValue: 33,554,432 (32M)
Constant: True

Unicode DefaultValue: True
Constant: True

FixedLength DefaultValue: False
Constant: True

EDM Type Facets for Long

Chapter 4
Mapping Oracle Data Types to EDM Types

4-9

Table 4-11 EDM Type Facets for Long

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483647
Constant: True

Unicode DefaultValue: False
Constant: True

FixedLength DefaultValue: False
Constant: True

EDM Type Facets for Long Raw

Table 4-12 EDM Type Facets for Long Raw

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483647
Constant: True

FixedLength DefaultValue: False
Constant: True

EDM Type Facets for NChar

Table 4-13 EDM Type Facets for NChar

Facet name Attributes Name and Value

MaxLength Minimum: 1
Maximum: 1000
DefaultValue: 1000
Constant: False

Unicode DefaultValue: True
Constant: True

FixedLength DefaultValue: True
Constant: True

Note:

For NChar, the actual data is subject to the maximum byte limit of 2000.

The value of 1000 for Maximum and DefaultValue allows the EDM wizard to
display columns of NCHAR(1000), where 1000 is the maximum number of
characters allowed in DDL.

Chapter 4
Mapping Oracle Data Types to EDM Types

4-10

EDM Type Facets for NClob

Table 4-14 EDM Type Facets for NClob

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483647
Constant: True

Unicode DefaultValue: True
Constant: True

FixedLength DefaultValue: False
Constant: True

EDM Type Facets for Number

Table 4-15 EDM Type Facets for Number

Facet name Attributes Name and Value

Precision Minimum: 1
Maximum: 38
DefaultValue: 38
Constant: False

Scale Minimum: 0
Maximum: 38
DefaultValue: 0
Constant: False

EDM Type Facets for NVarchar2

Table 4-16 EDM Type Facets for NVarchar2

Facet name Attributes Name and Value

MaxLength Minimum: 1
Maximum: 2000
DefaultValue: 2000
Constant: False

Unicode DefaultValue: True
Constant: True

FixedLength DefaultValue: False
Constant: True

Chapter 4
Mapping Oracle Data Types to EDM Types

4-11

Note:

For NVARCHAR2, the actual data is subject to the maximum byte limit of 4000.

The value of 2000 for Maximum and DefaultValue allows the EDM wizard to
display columns of NVARCHAR2(2000), where 2000 is the maximum number of
characters allowed in DDL.

EDM Type Facets for Raw

Table 4-17 EDM Type Facets for Raw

Facet name Attributes Name and Value

MaxLength Minimum: 1
Maximum: 2000
Constant: False

FixedLength DefaultValue: False
Constant: True

EDM Type Facets for ROWID

Table 4-18 EDM Type Facets for ROWID

Facet name Attributes Name and Value

MaxLength DefaultValue: 18
Constant: True

Unicode DefaultValue: False
Constant: True

FixedLength DefaultValue: True
Constant: True

EDM Type Facets for Timestamp

Table 4-19 EDM Type Facets for Timestamp

Facet name Attributes Name and Value

Precision Minimum: 0
Maximum: 9
DefaultValue: 6
Constant: False

EDM Type Facets for Timestamp with Local Time Zone

Chapter 4
Mapping Oracle Data Types to EDM Types

4-12

Table 4-20 EDM Type Facets for Timestamp with Local Time Zone

Facet name Attributes Name and Value

Precision Minimum: 0
Maximum: 9
DefaultValue: 6
Constant: False

EDM Type Facets for Timestamp with Time Zone

Table 4-21 EDM Type Facets for Timestamp with Time Zone

Facet name Attributes Name and Value

Precision Minimum: 0
Maximum: 9
DefaultValue: 6
Constant: False

EDM Type Facets for UROWID

Table 4-22 EDM Type Facets for UROWID

Facet name Attributes Name and Value

MaxLength DefaultValue: 4000
Constant: True

FixedLength DefaultValue: True
Constant: True

EDM Type Facets for Varchar2

Table 4-23 EDM Type Facets for Varchar2

Facet name Attributes Name and Value

MaxLength Minimum: 1
Maximum: 4000
DefaultValue: 4000
Constant: False

Unicode DefaultValue: False
Constant: True

FixedLength DefaultValue: False
Constant: True

Chapter 4
Mapping Oracle Data Types to EDM Types

4-13

EDM Type Facets for XMLType

Table 4-24 EDM Type Facets for XMLType

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483647
Constant: True

Unicode DefaultValue: True
Constant: True

FixedLength DefaultValue: False
Constant: True

Oracle Number Default Data Type Mapping and
Customization

This section describes the default number mapping behavior and how to customize it
for your application. You can configure a custom mapping in the .NET configuration file
to override the default mapping for each Oracle NUMBER(p,0), which represents integer
values.

Oracle NUMBER data types that represent integers do not have a matching .NET integer
data type with exactly the same range of acceptable values. ODP.NET uses a default
mapping that ensures any .NET integer type values can be stored within the Oracle
database without requiring custom data type mapping. However, it is possible that
Oracle NUMBER(p,0) column data can be larger than what a .NET data type can hold
when retrieving values from the database.

For example, in Entity Framework 6, Oracle NUMBER(3,0) has a default mapping
to .NET Byte. Oracle NUMBER(3,0) can store a value up to 999, while a .NET BYTE can
store up to the value of 255. If you expect the Oracle data to exceed 255, modify the
mapping to a larger numeric data type, such as a .NET Int16. Setting up this custom
mapping allows you to consume the data in .NET without encountering an error. When
such a custom mapping is used, be cautious not to insert a .NET Int16 value beyond
what an Oracle NUMBER(3,0) column can hold. Trying to insert Int16.MaxValue (i.e.
32,767) into a NUMBER(3,0) column will cause an Oracle Database error.

Entity Framework 6 Mapping and Customization
Managed and unmanaged ODP.NET Entity Framework 6 applications can set up
custom data type mapping using a .NET configuration file. The mapping works with
Code First, Database First, and Model First use cases. This format improves on the
older version as it unifies how managed and unmanaged ODP.NET set their
configuration values and supports auto-completion.

The following is an example of an edmMappings section for ODP.NET, Managed Driver:

<oracle.manageddataaccess.client>
 <version number="*">
 <edmMappings>

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4-14

 <edmNumberMapping>
 <add NETType="bool" MinPrecision="1" MaxPrecision="1" DBType="Number" />
 <add NETType="byte" MinPrecision="2" MaxPrecision="3" DBType="Number" />
 <add NETType="int16" MinPrecision="4" MaxPrecision="5" DBType="Number" />
 <add NETType="int32" MinPrecision="6" MaxPrecision="10" DBType="Number" />
 <add NETType="int64" MinPrecision="11" MaxPrecision="19" DBType="Number" />
 </edmNumberMapping>
 </edmMappings>
 </version>
</oracle.manageddataaccess.client>

Where:

• DBType is the Oracle Database data type

• NETType is the .NET data type that the Oracle data type maps to

• MinPrecision is the minimum range the Oracle data type will map to the .NET type

• MaxPrecision is the maximum range the Oracle data type will map to the .NET type

The following is an example of an edmmappings section for ODP.NET, Unmanaged Driver. It is
exactly same format as the managed driver with the exception of the opening and closing
tags.

<oracle.unmanageddataaccess.client>
 <version number="*">
 <edmMappings>
 <edmNumberMapping>
 <add NETType="bool" MinPrecision="1" MaxPrecision="1" DBType="Number" />
 <add NETType="byte" MinPrecision="2" MaxPrecision="3" DBType="Number" />
 <add NETType="int16" MinPrecision="4" MaxPrecision="5" DBType="Number" />
 <add NETType="int32" MinPrecision="6" MaxPrecision="10" DBType="Number" />
 <add NETType="int64" MinPrecision="11" MaxPrecision="19" DBType="Number" />
 </edmNumberMapping>
 </edmMappings>
 </version>
</oracle.unmanageddataaccess.client>

New Default Mappings
For Entity Framework 6, ODP.NET 12.1.0.2 introduces new default mappings that apply to
Code First, Database First, and Model First scenarios. These changes were necessary to
support Code First interoperability.

• .NET Booleans map to Oracle Number(1,0) and vice-versa by default

• .NET Bytes map to Oracle Number(2,0) and Number(3,0) and vice-versa by default

This default behavior can be changed by providing an alternative data type mapping by
configuring the section of the .NET config file.

Data Type Mapping and Customization Process
To enable custom mapping, add the mapping information to the .NET config file prior to EDM
creation.

If the EDM was created already before providing the mapping information, then you can
modify the mappings either through the Visual Studio tools or manually. Using Visual Studio,
go to the EDM Model Browser page. Right-click on the table(s) requiring new data type

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4-15

mapping and select Table Mapping from the pop-up menu. The Mapping Details
window will appear usually at the bottom of your screen. Update Column Mappings
as desired.

If you need to add or delete mappings, find the Type values in the CSDL mapping
section of your project's existing EDMX file. Add or delete those Type values to
the .NET data types you want the application to use. In the example below, the
property name types for BOOLCOL and BYTECOL are added to the CSDL and mapped to
Boolean and Byte, respectively.

Example Mapping Before CSDL Customization:

<Property Name="INT16COL" Type="Int16" Nullable="false" />

Example Mapping After CSDL Customization:

<Property Name="BOOLCOL" Type="Boolean" Nullable="false" />
<Property Name="BYTECOL" Type="Byte" Nullable="false" />
<Property Name="INT16COL" Type="Int16" Nullable="false" />

You can employ combinations of these customization possibilities depending on your
planned mapping changes. If many tables and many columns require mapping
changes, it is most efficient to delete the EDMX file and regenerate the data model. If a
few tables and many columns require changes, then delete the affected tables, save
the EDMX file, and select Update Model from Database... to include those tables
again. If only a single table and one or two columns require changes, then modify the
EDMX either manually or by using the Mapping Details window.

Note:

When using the EDM wizard to create a complex type from a function import,
any custom EDM type mappings specified will not be applied automatically.
The EDM wizard uses the default type mappings. Developers must then
manually edit the resulting complex type. Developers begin this process after
the complex type is generated. Any type declaration (field, property,
constructor parameter, etc.) in the complex object which has an undesired
type mapping, such as Decimal rather than Boolean, should be manually
edited to the desired type.

StoreGeneratedPattern Enumeration
The following sections describe the Identity attribute and the Virtual column.

Identity Attribute
Oracle Database 12c (12.1) and later versions support table or view Identity attribute
columns. Oracle has three Identity attribute types. When the EDM wizard generates a
data model from an Oracle Identity attribute-containing table or view, ODP.NET will set
the value of StoreGeneratedPattern to Identity in the .edmx file for any of three
Oracle Identity types. The Identity attribute-associated column will use the server-
generated value during INSERT: hence, application developers no longer need to
create a sequence nor trigger. If the .NET application attempts to set the Identity
attribute itself, this value will be ignored.

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4-16

For Oracle Database 11g Release 2 (11.2) and earlier versions that do not support Identity
columns, application developers can manually set StoreGeneratedPattern to Identity in
columns through the entity model designer Properties after model generation, then create an
INSERT trigger. Depending on the data type, a sequence may not be necessary if a server
function, such as sys_guid(), can generate the value for the column.

Virtual Column
Oracle Database versions can store expressions directly in base tables as Virtual columns,
also known as Generated columns. Virtual columns cannot be inserted into or updated.
ODP.NET will not automatically set StoreGeneratedPattern to Computed in the EF model for
Virtual columns. To avoid errors, application developers need to add or change the value of
StoreGeneratedPattern to Computed for Virtual columns after the model generation. Once
done, Virtual columns are excluded from INSERTs and UPDATEs upon calling SaveChanges().

Resolving Compilation Errors When Using Custom Mapping
If the custom mapping in a .NET configuration file has changed, then regenerate the data
model to solve compilation errors introduced by the changes.

Under certain scenarios, custom mapping may cause compilation errors when a project that
uses custom mapping is loaded by Visual Studio. One specific scenario is when Visual Studio
opens a project with an existing custom mapping that now generates errors when those
errors did not exist before. You may use the following workaround for such scenarios:

1. Open Visual Studio Help, About Microsoft Visual Studio. Click OK to exit the dialog box.

Alternatively, open the to-be-used connection in Server Explorer.

2. Compile the project again to eliminate the compilation errors.

Mapping Boolean and Guid Parameters in Custom INSERT, UPDATE, and
DELETE Stored Procedures

When using your custom INSERT, UPDATE, or DELETE stored procedure in Stored Procedure
Mapping, the following error might occur:

Error 2042: Parameter Mapping specified is not valid.
This can happen if a Number parameter has been mapped to a Boolean attribute, or if a RAW
parameter has been mapped to a Guid attribute.

The solution is to manually add Precision="1" for the Number parameter, and
MaxLength="16" for the RAW parameter of your stored procedure in the SSDL.

Migrating Existing Entity Framework 5 Applications to Entity
Framework 6

To migrate existing Database First Entity Framework 5 applications to Entity Framework 6,
use the following instructions. The first four steps are generic to all Entity Framework
applications. The last four steps are specific to Oracle deployments.

1. Uninstall Entity Framework 5 in Visual Studio Package Manager Console. For example,

Chapter 4
Migrating Existing Entity Framework 5 Applications to Entity Framework 6

4-17

Uninstall-Package EntityFramework
2. Install Entity Framework 6 in Package Manager Console. For example,

Install-Package EntityFramework -Version 6.0.2
This step adds Entity Framework 6 to the configSections entry and adds a new
section called entityFramework.

3. Delete the following namespaces from your application:

// C#
using System.Data.EntityClient;
using System.Data.Objects;

4. Add the following namespaces to your application:

// C#
using System.Data.Entity.Core.EntityClient;
using System.Data.Entity.Core.Objects;

5. Add the Oracle Entity Framework 6 provider configuration information to the .NET
config file in the providers section. Modify the ODP.NET version if using a version
besides 6.121.2.0. If you installed the ODP.NET NuGet package, you can skip this
step as the NuGet install has already added made this change.

<provider invariantName="Oracle.DataAccess.Client"
type="Oracle.DataAccess.EntityFramework.EFOracleProviderServices,Oracle.DataA
ccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

<provider invariantName="Oracle.ManagedDataAccess.Client"
type="Oracle.ManagedDataAccess.EntityFramework.EFOracleProviderServices,Oracl
e.ManagedDataAccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

6. Add the Oracle.ManagedDataAccess.EntityFramework or
Oracle.DataAccess.EntityFramework assembly as a reference to the project.

7. Modify the Oracle data type to .NET data type mappings as required by your
application. See "Entity Framework 6 Mapping and Customization" for more
details.

8. Rebuild the application.

Code First
Using the Entity Framework Code First modeling path, developers define the
application domain model using source code rather than working directly with a
designer or an XML-based configuration file. The classes defined within the source
code become the model. The Code First model path offers an alternative to the
existing Entity Framework Database First and Model First paths. Within Code First, the
classes defined in code that comprise the model are known as Plain Old CLR Objects
(POCOs). This name derives from the fact that these classes have no dependency
upon Entity Framework itself and are independent of it.

Oracle's support for the Code First modeling path enables .NET developers to take
advantage of Oracle Database benefits.

Chapter 4
Code First

4-18

See Also:

Configuring for Entity Framework Code First

Mapping of .NET Types to Oracle Types
When using the Code First path, the model is defined by the application's classes and
properties. The property data types need to be mapped to the Oracle Database table data
types. The following table lists the default mapping of supported .NET types to Oracle types
as well as how to map a String property to non-default Oracle types:

Table 4-25 Mapping of .NET Data Types to Oracle Data Types

.NET Data Type Oracle Data Type Mapping Method

Boolean number(1, 0) Use EDM Mapping

Note: Requires use of EDM
Mapping configuration.
Reference the EDM Mapping
sections in the documentation for
additional information.

Byte number(3, 0) Use EDM Mapping

Note: Requires use of EDM
Mapping configuration.
Reference the EDM Mapping
sections in the documentation for
additional information.

Byte[] blob Default

Int16 number(5, 0) Default

Note: The default mapping of
integer types may be specified in
the EDM Mapping configuration.
Reference the EDM Mapping
sections in the documentation for
additional information.

Int32 number(10, 0) Default

Note: The default mapping of
integer types may be specified in
the EDM Mapping configuration.
Reference the EDM Mapping
sections in the documentation for
additional information.

Int64 number(19, 0) Default

Note: The default mapping of
integer types may be specified in
the EDM Mapping configuration.
Reference the EDM Mapping
sections in the documentation for
additional information.

Decimal number(18, 2) Default

Single binary_float Default

Chapter 4
Code First

4-19

Table 4-25 (Cont.) Mapping of .NET Data Types to Oracle Data Types

.NET Data Type Oracle Data Type Mapping Method

Double binary_double Default

Guid raw(16) Default

DateTime date Default

DateTimeOffset timestamp with time zone Default

String nclob Default

String clob Set Unicode to false using
IsUnicode() fluent API

String nvarchar2 Set Max Length to <= 2000
using HasMaxLength() fluent
API or MaxLength data
annotation

String varchar2 Set Max Length to <= 4000
using HasMaxLength() fluent
API or MaxLength data
annotation and set Unicode to
false using IsUnicode() fluent
API

String nchar Set Max Length to <= 1000
using HasMaxLength() fluent API
or MaxLength annotation and
Set Column Type to NCHAR using
HasColumnType() fluent API or
Column data annotation

String char Set Max Length to <= 2000
using HasMaxLength() fluent
API or MaxLength annotation
and Set Column Type to CHAR
using HasColumnType() fluent
API or Column data annotation

String Long Set Column Type to LONG using
HasColumnType() fluent API or
Column data annotation

Note: The long data type is
deprecated and not
recommended.

String rowid Set Column Type to ROWID using
HasColumnType() fluent API or
Column data annotation

String urowid Set Column Type to UROWID
using HasColumnType() fluent
API or Column data annotation

Chapter 4
Code First

4-20

Note:

The character based columns, namely, CHAR, NCHAR, VARCHAR2, NVARCHAR2 will be
created using character semantics to be able to store the specified Max Length
amount of characters. However, due to the Oracle database limit, these columns
can store only up to 4000 bytes. As such, these columns may not be able to store
4000 characters even if Max Length is set to 4000 characters since one character
may require multiple number of bytes of storage, depending on the data and the
database character set. If the character data can be longer than 4000 bytes, it may
be more appropriate to use CLOB or NCLOB column.

Influencing the Oracle Data Type Characteristics

The type mappings listed in the previous table represent the mappings that occur by default
or what is known as convention in Entity Framework. As illustrated with the String type, you
can influence the resulting Oracle Data Type for a property as well as characteristics of that
data type. There are two Entity Framework methods to influence the resulting Oracle Data
Type: Data Annotations and the Code First Fluent API. Data Annotations permit you to
explicitly mark a class property with one or more attributes, whereas the Code First Fluent
API permits you to use code rather than attributes to achieve the same goal. For additional
information regarding the use of Data Annotations and the Code First Fluent API refer to the
MSDN Entity Framework documentation.

The following table illustrates the available functionality:

Table 4-26 Mapping of Data Annotations and the Code First Fluent APIs

Data Annotation Fluent API Purpose Applies To

Key HasKey Set a property as the
Primary Key.

All Scalar Types

Required IsRequired Set the database
column as NOT NULL.

All

MaxLength HasMaxLength Specifies the maximum
length of the property.

String

NotMapped Ignore Indicates the property is
not mapped to a
database column.

All

Chapter 4
Code First

4-21

Table 4-26 (Cont.) Mapping of Data Annotations and the Code First Fluent APIs

Data Annotation Fluent API Purpose Applies To

ConcurrencyCheck IsConcurrencyToken Indicates the column
should be used for
optimistic concurrency
checking.

Note: Do not use with
an unbounded (no
maximum length
specified) string
property as this will
create a LOB column.
Use of a LOB column in
the concurrency check
will result in an
ORA-00932:
inconsistent
datatypes error.

All

TimeStamp IsRowVersion Indicates to create the
column as a
rowversion column.

Not Supported

Column HasColumnType Indicates the provider-
specific type to use for
the database column.

Note: Must be a legal
compatible type. For
example a Date
property is not legal to
map to a number
column. Use the
TypeName property with
the Column Data
Annotation to specify
the type.

All

N/A IsUnicode Indicates to create the
column as an N-type,
that is, nvarchar2 or
nclob. Default is true.

Note: There is no Data
Annotation equivalent
for IsUnicode.

String

N/A HasPrecision Indicates the precision
and scale for a decimal
property.

Note: There is no Data
Annotation equivalent
for HasPrecision.

Decimal

Code First Migrations
The Oracle Data Provider for .NET supports Code First Migrations functionality. The
use of Code First Migrations with Oracle Database is supported through the Package

Chapter 4
Code First

4-22

Manager Console window migrations commands. For information on these commands, refer
to the MSDN Code First Migrations documentation:

https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/migrations/
Code First Migrations utilizes a table known as the Migration History table for tracking
migration operations as well as model changes. ODP.NET creates this table, by default, in the
user schema specified in the context connection string. This table is named
__MigrationHistory.

This table can be created in another user schema besides the user specified in the context
connection string. This is accomplished through a process known as Migration History Table
Customization, which is described in the following MSDN documentation.

https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/migrations/history-
customization

Note:

• Changing the user schema for the table is the only supported customization.

• Code First Automatic Migrations is limited to working with the dbo schema only.
Due to this limitation it is recommended to use code-based migrations, that is,
add explicit migrations through the Add-Migration command.

Code First Migrations With No Supporting Code Migration File
When using Code First Migrations with ODP.NET, the migration history table may be dropped
if no supporting code migration file existed prior to updating the database. Developers should
ensure the supporting code migration file has been added prior to updating the database.

The following steps can remove the migration history table:

1. Execute application to create database objects

2. Enable-Migrations in the Package Manager Console

3. Make code change to POCO

4. Update-Database in the Package Manager Console

The following steps ensure the code migration file is created:

1. Execute application to create database objects

2. Enable-Migrations in the Package Manager Console

3. Make code change to POCO

4. Add-Migration in the Package Manager Console. This step will create the necessary
code migration file.

5. Update-Database in the Package Manager Console

Code First Database Initialization
ODP.NET supports the following Code First Database Initializer methods:

Chapter 4
Code First

4-23

https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/migrations/
https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/migrations/history-customization
https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/migrations/history-customization

• CreateDatabaseIfNotExists (default if none specified)

• DropCreateDatabaseAlways
• DropCreateDatabaseIfModelChanges
• NullDatabaseInitializer
• MigrateDatabaseToLatestVersion
These methods are documented on MSDN.

Due to differences in how Oracle and SQL Server define a database, database
initialization actions work on all of the Oracle objects in the model. An Oracle
Database is not created or dropped, rather the objects that compose the model are
considered to be the database for these operations.

Oracle Database Object Creation
In order to support the client application, ODP.NET will create and maintain the
required database objects. The following are the database objects created and
maintained by the provider:

• Table

• Table Column

• Primary Key

• Foreign Key

• Index

• Sequence

• Trigger

Note:

Sequences and triggers may be created in Oracle Database 11g Release 2
and earlier databases to support identity columns.

For objects which directly relate to a client application object, namely, a table which
represents an application class and a table column which represents a class property,
the object names used are those provided by the client. These object names must
conform to the object identifier length limits for Oracle Database. For example, if a
class name length exceeds the valid object identifier length in Oracle Database then
the ORA-00972: identifier is too long exception will be raised at object creation
time.

For the remaining objects, ODP.NET utilizes a name generation algorithm if the
supplied name length exceeds the database identifier length limit. If the supplied name
length does not exceed the database limit the name is used as-is. In all cases, the
object name is created as a quoted identifier in order to preserve case and any special
characters which may be part of the identifier.

In cases where the provider generates a name to comply with database identifier
length limits, the name is composed of the following underscore separated elements:

Chapter 4
Code First

4-24

• A substring of the original name (from the first character)

• A numeric suffix value calculated from the original name

The following example illustrates the results of the name generation algorithm using a simple
POCO in the client application:

public class LongSamplePocoTestClassName
{
 [Key]
 public int Id { get; set; }

 [MaxLength(64)]
 public string Name { get; set; }
}

The default name for the Primary Key for the resulting table will be:

PK_LongSamplePocoTestClassNames

As this name contains 31 characters (single byte per character), it violates the database
identifier restrictions. The rewritten Primary Key name will resemble the following value:

PK_LongSamplePocoTes_730795129

The algorithm is designed to utilize as many characters as possible from the original name
such that the new name does not violate the identifier length restrictions.

Controlling Table Name and Owner

Through the use of Data Annotations or the Entity Framework Fluent API you may control the
table name, as well as the table owner. For example, you may choose to explicitly set the
table name to conform to your organization's naming standards or if you do not wish to, use
the name Entity Framework provides. The Table Data Annotation is used to control both the
table name and the owner. When using the Fluent API, the ToTable method is used to control
the table name and the owner within the OnModelCreating override in your class which
derives from DbContext.

The following examples use an incomplete class definition to illustrate these actions.

Setting the table name using a Data Annotation:

[Table("Employee")]
public class Employee

Setting the table name using the Fluent API:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Entity<Employee>().ToTable("Employee");
}

Setting the table name and the owner using a Data Annotation:

[Table("Employee ", Schema="TESTUSER")]
public class Employee

Setting the table name and the owner using the Fluent API:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{

Chapter 4
Code First

4-25

 modelBuilder.Entity<Employee>().ToTable("Employee", "TESTUSER");
}

Note:

When using Data Annotations or the Fluent API as above to set the owner, it
is required to also set the name.

Setting the Default Table Owner

Rather than set the table owner for each user table, Entity Framework 6 and higher
allows you to set the default owner to be used. This is done by invoking the
HasDefaultSchema method within the OnModelCreating override in your class, which
derives from DbContext.

For example, the following code will cause all user tables to be created within the
TESTUSER schema by default:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.HasDefaultSchema("TESTUSER");
}

Note:

The owner name is case-sensitive.

See Also:

Oracle Database Administrator’s Guide.

Using the Default Connection Factory
The default connection factory allows ODP.NET connections to be created by
providing an Oracle connection string to the DbContext constructor. For example, the
following entry could be used to configure the ODP.NET, Managed Driver default
connection factory:

<defaultConnectionFactory
type="Oracle.ManagedDataAccess.EntityFramework.OracleConnectionFactory,
Oracle.ManagedDataAccess.EntityFramework,
Version=6.121.2.0,
Culture=neutral,
PublicKeyToken=89b483f429c47342" />

When using the default connection factory, the application supplies an Oracle
connection string to the DbContext base constructor as follows:

public class TestContext : DbContext
{

Chapter 4
Code First

4-26

 public TestContext()
 : base("<connection string>")
 {
 }
}

Where <connection string> is the ODP.NET connection string. This allows the application
to connect to the database using code similar to the following:

using (var ctx = new TestContext())
{
 ...
}

For additional information please see the MSDN documentation for the
IDbConnectionFactory interface:

https://docs.microsoft.com/en-us/dotnet/api/
system.data.entity.infrastructure.idbconnectionfactory

Unsupported Entity Framework Features
The following items are not supported by the current release of the provider:

• Mapping Code First Insert, Update, Delete operations to Stored Procedures

• TimeStamp/RowVersion properties

• Custom Configuration

• Spatial Types

• Table-valued functions

• Asynchronous Query and Save

• Connection Resiliency

• Oracle synonyms

Chapter 4
Unsupported Entity Framework Features

4-27

https://docs.microsoft.com/en-us/dotnet/api/system.data.entity.infrastructure.idbconnectionfactory
https://docs.microsoft.com/en-us/dotnet/api/system.data.entity.infrastructure.idbconnectionfactory

5
Oracle Data Provider for .NET Entity
Framework Core

Oracle Data Provider for .NET (ODP.NET) Entity Framework (EF) Core is a database
provider that allows Entity Framework Core to be used with Oracle databases.

Entity Framework Core is a cross-platform Microsoft object-relational mapper that
enables .NET developers to work with relational databases using .NET objects.

ODP.NET EF Core consists of a single 100% managed code dynamic-link library,
Oracle.EntityFrameworkCore.dll, available via a NuGet package.

Note:

ODP.NET EF Core does not support Oracle UDTs, REFs, and Object Tables.

This section contains these topics:

• Oracle Entity Framework Core 7 Features

• Application Programming Interface

• Sample Code

• Using ODP.NET Core Classes

• Logging

• Migrations

• Scaffolding Or Reverse Engineering

• Identifier Name Length and Uniqueness

• Using Large Character or Binary Data Types

• Performance Considerations

• Breaking Changes

Oracle Entity Framework Core 7 Features
Oracle Entity Framework Core 7 supports .NET 6 and 7 runtimes. It supports connecting to
Oracle Database 12.2 and higher.

Oracle supports the EF Core 7 features described on this page. This page notes the
differences from standard EF Core 7 functionality and Oracle’s support. More details about
each of these features standard functionality are described on the What's New in EF Core 7.0
web page.

5-1

https://learn.microsoft.com/en-us/ef/core/what-is-new/ef-core-7.0/whatsnew
https://learn.microsoft.com/en-us/ef/core/what-is-new/ef-core-7.0/whatsnew

Stored Procedure Mapping

Using Oracle PL/SQL stored procedures to perform entity insert, update, and delete
operations are supported. Table 5-2 lists the supported parameter data types. Oracle
PL/SQL packages and functions are not currently supported.

Note:

The HasRowsAffectedReturnValue() API is not supported.

Query Enhancements

Oracle EF Core improves the following LINQ query translations:

• GroupBy as final operator

• GroupJoin as final operator

• GroupBy entity type

• Subqueries don't reference ungrouped columns from outer query

• Read-only collections can be used for Contains
• Translations of string aggregate functions, string.Join and string.Concat
• Translation of string.IndexOf
• Translation of GetType for entity types

• Filtered Include on hidden navigations

Model Building Conventions

Oracle EF Core now supports model building that allow applications to remove or
replace any model building conventions and to add new conventions.

Model Building Enhancements

New enhancements in model building are supported with the following features and
limitations:

• Mapping attribute for composite keys

• DeleteBehavior mapping attribute

• Properties mapped to different column names

• Unidirectional many-to-many relationships

• Entity splitting

• Descending Indexes are only supported for code first, and not for scaffolding.

• ITableIndex.IsDescending property, which returns a Boolean indicating whether
the index is descending or not, is not supported.

Chapter 5
Oracle Entity Framework Core 7 Features

5-2

Custom Reverse Engineering Templates

Oracle EF Core 7 provider supports scaffolding customization of a generated EF model.

New and Improved Interceptors and Events

Enhancements to interceptors which enable interception, modification, and/or suppression of
EF Core operations are supported. These new improvements include interception for:

• New entity instance creation and population

• LINQ expression tree modification before query compilation

• Handling optimistic concurrency

• Connections before checking the connection string is populated

• After the result set has been consumed, but before the result set is closed

• DbConnection creation

• DbCommand after initialization

The new events include:

• Right before an entity is tracked or changes state

• Before and after changes are detected to entities and properties

DbContext API and Behavior Enhancements

Improvements to DbContext and related classes are supported.

• Suppressor for uninitialized DbSet properties

• Distinguish cancellation from failure in logs

• New IProperty and INavigation overloads for EntityEntry methods

• EntityEntry for shared-type entity types

• ContextInitialized is now logged as Debug
• IEntityEntryGraphIterator is publicly usable

Improved Value Generation

Improvements to the automatic generation of values for key properties are supported.

• Value generation for domain-driven design guarded types

• Sequence-based key generation

For sequence-based key generation, Oracle EF Core 7 provider introduces a new fluent API,
UseSequence(), which can configure the default values of a key property to be generated
using a database sequence.

Migrations Tooling Improvements

Improvements when using the EF Core Migrations command-line tools are supported.

This includes the UseOracle() method which now accepts a null connection string so that the
connection string can be assigned at a later time without encountering an exception. It also
includes being able to detect when migration tools are running.

Chapter 5
Oracle Entity Framework Core 7 Features

5-3

First-Class Windows Forms Data Binding

The new data binding experiences introduced in Windows Forms which integrates well
with EF Core are supported by the Oracle EF Core 7 provider.

Not Supported Features

The following features are not supported by the Oracle EF Core 7 provider.

• Mapping to and from JSON columns

• Bulk updates

• Faster SaveChanges

• TPC inheritance mapping

• Performance enhancements for proxies

Oracle Entity Framework Core 8 Features
Oracle supports the EF Core 8 features described on this page. This page notes the
differences from standard EF Core 8 functionality and Oracle's support.

More details about each of these features standard functionality are described on the
What's New in EF Core 8.0 web page.

JSON Columns

Oracle database includes comprehensive JSON document and column support,
including binary JSON storage and JSON Relational Duality.

EF Core provides support for JSON columns that allows the mapping and modifying of
aggregates built from .NET types to JSON documents. LINQ queries can act upon the
aggregates, which will translate to the necessary query constructs to perform
operations on the JSON.

Oracle EF Core 8 JSON column support includes:

• JSON column mapping

• Queries into JSON columns

• JSON column data updates

• Translate element access into JSON arrays

Oracle Database 21c and higher support JSON columns. Oracle EF Core 8 will map
aggregate types to NCLOB columns instead of JSON columns when connected to
earlier Oracle database versions.

Math Translations

Concrete .NET types, such as double and float, recently introduced generic math
interfaces. They mirrored existing functionality in .NET Math and MathF classes.

Oracle EF Core 8 translates calls to these generic math APIs in LINQ using existing
Oracle SQL translations for Math and MathF. Developers can choose between math
APIs, such as either Math.Sin or double.Sin.

Chapter 5
Oracle Entity Framework Core 8 Features

5-4

https://learn.microsoft.com/en-us/ef/core/what-is-new/ef-core-8.0/whatsnew

Oracle EF Core support all math translations except for DegreesToRadians and
RadiansToDegrees.

Value Objects Using Complex Types

Oracle EF Core 8 support complex types, also known as object types. They are structured to
hold multiple values, such as an address.

Complex types must be configured in the model using either mapping attributes
"[ComplexType]" or by calling the "ComplexProperty" API in OnModelCreating.

Complex types do not map to their own tables. Instead, they are saved inline to the table
columns. This matches the table sharing behavior of owned types.

Model Building - Discriminator Columns Maximum Length

In Oracle EF Core 8, string discriminator columns in table-per-hierarchy inheritance mapping
are now configured with a maximum length. This length is calculated as the smallest
Fibonacci number covering all defined discriminator values.

Raw SQL Queries for Unmapped Types

Oracle EF Core 8 has added raw SQL queries returning any mappable CLR type, without
including that type in the EF model. Queries using unmapped types are executed using
SqlQuery or SqlQueryRaw.

Lazy-Loading Enhancements

Oracle EF Core 8 adds the following lazy-loading features:

• Lazy-loading for no-tracking queries

• Explicit loading from untracked entities

• Opt-out of lazy-loading for specific navigations

Access to Tracked Entities

Oracle EF Core 8 supports new APIs for applications to lookup tracked entities by their
primary, alternate, or foreign key. These APIs are accessed through the LocalView<TEntity>
of the entity type.

Not Supported Features

The following feature is not supported by the Oracle EF Core 8 provider:

• Primitive Collections

Application Programming Interface
ODP.NET EF Core supports standard EF Core application programming interfaces. The
provider contains additional extension methods specific to the provider.

• DatabaseFacade Class

• DbContextOptionsBuilder Class

• IQueryingEnumerable Interface

• MigrationBuilder Class

Chapter 5
Application Programming Interface

5-5

• ModelBuilder Class

• OracleSQLCompatibility Enumeration

DatabaseFacade Class

ODP.NET EF Core contains additional extension methods and changes to method
default behavior for the DatabaseFacade class.

• DatabaseFacade.IsOracle

• DatabaseFacade.EnsureCreated

• DatabaseFacade.EnsureCreated(string[])

• DatabaseFacade.EnsureDeleted

• DatabaseFacade.EnsureDeleted(string[])

DatabaseFacade.IsOracle

This method returns true if ODP.NET is the currently used database provider.

// C#
public static bool IsOracle()

Returns a bool value.

Note:

The provider is only known after the provider is set in the DbContext.

DatabaseFacade.EnsureCreated

This property ensures that the tables for the schema defined in the current context
exists.

Declaration

// C#
public static bool EnsureCreated()

Return Value

A bool

Remarks

If any of the tables in the schema exist, then no action is taken. Pre-existing tables are
not checked for compatibility with the EF Core context model.

If none of the tables in the schema exist, then all the defined context model objects are
created.

Chapter 5
Application Programming Interface

5-6

If the user/schema specified in the connection string does not exist, then an error is thrown
and no action is taken to create the user/schema. The administrator must create the user/
schema and assign the appropriate privileges prior to using this method.

The return value is true if all the objects defined in the context are created. It is false if any
of the tables for the schema already exist.

Exception

NotSupportedException() is thrown when a non-existent user/schema is specified in the
connection string.

Type: NotSupportedException()
Message: Required user does not exist or invalid user name/password provided

DatabaseFacade.EnsureCreated(string[])

This property ensures that the tables for the specified schemas in the string array exist.

Declaration

// C#
public static bool EnsureCreated (string[] schemas)

Parameters

• schemas – List of schemas to check for the EF Core context’s pre-existing tables.
Schema names are case-sensitive.

Return Value

A bool

Remarks

If any of the tables in the string array schema list exists, then no action is taken. Pre-existing
tables are not checked for compatibility with the EF Core context model.

If none of the tables in the string array schema list exist, then all the defined context model
objects are created.

If the user/schema specified in the connection string does not exist, then an error is thrown
and no action is taken to create the user/schema. The administrator must create the user/
schema and assign the appropriate privileges prior to using this method.

If the schemas passed to this method does not include the user/schema specified in the
connection string, then that schema is implicitly added to the array of schemas.

If the array of schemas is null or length zero, then the DatabaseFacade.EnsureCreated() API
is called.

The return value is true if all the objects defined in the context are created. It is false if any
of the tables for the schema already exist.

Exception

NotSupportedException() is thrown when a non-existent user/schema is specified in the
connection string.

Type: NotSupportedException()

Chapter 5
Application Programming Interface

5-7

Message: Required user does not exist or invalid user name/password provided

Sample Code

using (var db = DbContext())
{
 db.Database.EnsureCreated(new string[]{"SCOTT", "HR", "EFUser"});
}

DatabaseFacade.EnsureDeleted

This property ensures that all the schema user's created objects are deleted.

Declaration

// C#
public static bool EnsureDeleted()

Return Value

A bool

Remarks

If none of the EF Core context model objects exist, no action is taken. If any of the
objects exist, then all the user/schema objects are dropped, except for Oracle data
dictionary objects.

Warning: The dropped objects include schema objects outside of the EF Core context
model, as long as the user/schema has privileges to drop those objects.

If the schema defined in the current context does not exist, then no action is taken.

The return value is true if an attempt is made to drop all user created objects related
to the schema in the current context. It is false if the schema specified in the
connection string does not exist.

DatabaseFacade.EnsureDeleted(string[])

This property ensures that the user/schema objects for the specified schemas in the
string array are deleted.

Declaration

// C#
public static bool EnsureCreated (string[] schemas)

Parameters

• schemas – List of schemas to drop user generated objects. Schema names are
case-sensitive.

Return Value

A bool

Remarks

If any of the objects exist, then all the user/schema objects are dropped, except for
Oracle data dictionary objects. If none of the EF Core context model objects exist, no

Chapter 5
Application Programming Interface

5-8

action is taken. If the schemas passed to this method does not include the user/schema
specified in the connection string, then that schema is implicitly added to the array of
schemas.

Warning: The dropped objects include schema objects outside of the EF Core context model,
as long as the user/schema has privileges to drop those objects.

If the specified schemas do not exist, then no action is taken.

The return value is true if an attempt is made to drop all user created objects that the user
has privilege to in the specified schemas. It is false if the schema specified in the connection
string does not exist.

Sample Code

using (var db = DbContext())
{
 db.Database.EnsureDeleted(new string[]{"SCOTT", "HR", "EFUser"});
}

DbContextOptionsBuilder Class

ODP.NET EF Core contains additional extension methods and changes to method default
behavior for the DbContextOptionsBuilder class.

• DbContextOptionsBuilder.UseOracle

• UseOracle(string connectionString)

• UseOracle(DbContextOptionsBuilder, Action<OracleDbContextOptionsBuilder>
oracleOptionsAction = null)

• UseOracleSQLCompatibility(string version)

• UseOracleSQLCompatibility(enum version)

DbContextOptionsBuilder.UseOracle

This extension method sets the provider and database connection configuration to connect to
Oracle Database. Developers can set any connection string attributes that are available in
ODP.NET Core. The available method overloads that can be called are as follows:

• UseOracle(string connectionString)
• UseOracle(string connectionString, Action<OracleDbContextOptionsBuilder>

oracleOptionsAction = null)
• UseOracle(DbConnection connection, Action<OracleDbContextOptionsBuilder>

oracleOptionsAction = null)
• DbContextOptionsBuilder<TContext> UseOracle<TContext>(string connectionString,

Action<OracleDbContextOptionsBuilder> oracleOptionsAction = null)
• DbContextOptionsBuilder<TContext> UseOracle<TContext>(DbConnection

connection,Action<OracleDbContextOptionsBuilder> oracleOptionsAction = null)
• UseOracle(DbContextOptionsBuilder, Action<OracleDbContextOptionsBuilder>

oracleOptionsAction = null)

Chapter 5
Application Programming Interface

5-9

UseOracle(string connectionString)

This extension method sets the provider and database connection configuration.
Developers can set any connection string attributes that are available in ODP.NET
Core.

Declaration

// C#
optionsBuilder.UseOracle(@"User Id=blog;Password=<password>;Data
Source=pdborcl;");

UseOracle(DbContextOptionsBuilder, Action<OracleDbContextOptionsBuilder>
oracleOptionsAction = null)

The following extension configures the EF Core context to connect to an Oracle
database without initially setting any DbConnection nor connection string. The
DbConnection or connection string must be set before the DbContext attempts to
connect to a database. To set the connection using, use
RelationalDatabaseFacadeExtensions.SetDbConnection or
RelationalDatabaseFacadeExtensions.SetConnectionString.

Declaration

// C#
public static DbContextOptionsBuilder UseOracle(this DbContextOptionsBuilder,
Action<OracleDbContextOptionsBuilder>)

Parameters

• DbContextOptionsBuilder - The builder being used to configure the context

• Action<OracleDbContextOptionsBuilder> - An optional action to allow additional
Oracle specific configuration

Return Value

The options builder so that further configuration can be chained.

Sample Code

// C# - Setting up the DB context
protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder) =>
optionsBuilder.UseOracle();
// Using the DB context
using (var context = new DbContext())
{
context.Database.SetDbConnection(new OracleConnection(<connection string>));
}

Chapter 5
Application Programming Interface

5-10

Note:

• optionsBuilder is of type DbContextOptionsBuilder.

• Do not use Oracle built-in accounts to store Entity Framework Migrations.

UseOracleSQLCompatibility(string version)

This extension method specifies the database version generated SQL should be compatible
with.

Note:

• This method is deprecated. Oracle EF Core 8 and ODP.NET 23c will use the
method UseOracleSQLCompatibility(enum version) to set the Oracle
database compatibility version.

• This extension method exists for EF Core 6 and 7 only.

This method uses the value "12" as the default. The generated SQL is compatible with
database version 12 and higher. No other value changes the method's behavior.

// C#
optionsBuilder.UseOracle("User Id=hr;Password=<password>;Data Source = inst1", b =>
b.UseOracleSQLCompatibility("12"));

Note:

optionsBuilder is of type DbContextOptionsBuilder.

UseOracleSQLCompatibility(enum version)

This extension method specifies the database version generated SQL and functionality to be
compatible with.

With Oracle EF Core 21.12.1 and higher, UseOracleSQLCompatibility extension method
now takes an enumeration type as an argument rather than a string value.

The valid enum values that can be used are:

• OracleSQLCompatibility.DatabaseVersion19
• OracleSQLCompatibility.DatabaseVersion21
• OracleSQLCompatibility.DatabaseVersion23
By default, the SQL compatibility value will be OracleSQLCompatibility.DatabaseVersion21.
So generated SQL will be compatible with database version 21. If using Oracle EF Core 8

Chapter 5
Application Programming Interface

5-11

with OracleSQLCompatibility.DatabaseVersion21, JSON database columns are
supported. Otherwise, aggregate types will map to NCLOB columns in the database
instead of JSON.

Using OracleSQLCompatibility.DatabaseVersion23, the .NET bool type will map to
Oracle BOOLEAN column type rather than NUMBER(1) by default. To map .NET bools to
NUMBER(1) by default, use OracleSQLCompatibility.DatabaseVersion21 or lower.

The default enumeration value matches the ODP.NET version. For ODP.NET 21c, the
default is OracleSQLCompatibility.DatabaseVersion21.

The following example shows how to set UseOracleSQLCompatibility.

// C#
optionsBuilder.UseOracle("User Id=hr;Password=<password>;Data Source = inst1", b
=>
b.UseOracleSQLCompatibility(OracleSQLCompatibility.DatabaseVersion19));

Note:

• optionsBuilder is of type DbContextOptionsBuilder.

• This extension method exists for EF Core 8 only.

IQueryingEnumerable Interface

This section includes:

• IQueryingEnumerable.ToQueryString Extension Method

IQueryingEnumerable.ToQueryString Extension Method

A string representation of the Oracle SQL query used. This extension method will
generate SQL that can be run in Oracle Database and Oracle Autonomous Database.

To execute the generated SQL programmatically, developers can adapt the following
C# pseudo-code for their specific requirements. The pseudo-code demonstrates how
to generate the script using ToQueryString() on a sample LINQ query, and then how
to execute the script with an OracleCommand, depending on the database version
backing the application.

using System.Data;
using Microsoft.EntityFrameworkCore;
using Oracle.ManagedDataAccess.Client;

class ToQueryStringPseudoCode
{
 static void Main(string[] args)
 {
 using (ModelContext db = new ModelContext())
 {
 //sample LINQ to convert query string from
 string name = "Name";

Chapter 5
Application Programming Interface

5-12

 var query = db.Set<Instructor>().Where(c => c.Name == name);
 string sqltext = query.ToQueryString();

 //’sqltext’ can be used directly with OracleCommand
 OracleConnection con = new OracleConnection("<Connection String>");
 con.Open();
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = sqltext;
 OracleDataReader reader;
 reader = cmd.ExecuteReader();

 //verifying the result set
 while (reader.Read())
 {
 Console.WriteLine($"{reader[0]}, {reader[1]}, {reader[2]},
{reader[3]}");
 }
 con.Close();
 }
 }
}

MigrationBuilder Class

MigrationBuilder.IsOracle Extension Method

Returns true if the MigrationBuilder object uses ODP.NET as its database provider.

Declaration

public static bool IsOracle(this MigrationBuilder)

Parameters

• MigrationBuilder object

Return Value

A bool.

Sample Code

var migrationBuilder = new MigrationBuilder("Oracle.EntityFrameworkCore");
bool b_oracle = migrationBuilder.IsOracle(); //returns true for ODP.NET

ModelBuilder Class

ODP.NET EF Core contains additional extension methods and changes to method default
behavior for the ModelBuilder class.

• ModelBuilder UseIdentityColumn() and UseOracleIdentityColumn()

ModelBuilder UseIdentityColumn() and UseOracleIdentityColumn()

This extension method specifies whether the column is an identity column or have it
associated with a sequence and a trigger to have a server generated column value,

Chapter 5
Application Programming Interface

5-13

depending on the value passed to UseOracleSQLCompatibility(). By default,
columns do not have this extension method enabled.

// C #
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Blog>().Property(p => p.Id).UseIdentityColumn();
}

For EF Core 3.1 and higher versions, use UseIdentityColumn. For EF Core 3.1 Core
and lower versions, you can use UseOracleIdentityColumn. Starting with EF Core 5,
UseOracleIdentityColumn is no longer available to use with Oracle EF Core. These
two methods have identical functionality. For the remainder of this section, the term
UseIdentityColumn is synonymous with UseOracleIdentityColumn.

OracleSQLCompatibility Enumeration
The OracleSQLCompatibility enum is used to specify database version the
generated SQL should be compatible with. It is also used to determine the type
mappings for .NET types.

There are currently 3 possible values of SQLCompatibility that can be set in the
application using UseOracleSQLCompatibility() API.

• OracleSQLCompatibility.DatabaseVersion19
• OracleSQLCompatibility.DatabaseVersion21
• OracleSQLCompatibility.DatabaseVersion23
If using Oracle EF Core 8 with OracleSQLCompatibility.DatabaseVersion21, JSON
database columns are supported. Otherwise, aggregate types will map to NCLOB
columns in the database instead of JSON.

Using OracleSQLCompatibility.DatabaseVersion23, the .NET bool type will map to
Oracle BOOLEAN column type rather than NUMBER(1) by default. To map .NET bools to
NUMBER(1) by default, use OracleSQLCompatibility.DatabaseVersion21 or lower.

The default enumeration value matches the ODP.NET version. For ODP.NET 21c, the
default is OracleSQLCompatibility.DatabaseVersion21.

Sample Code
This code sample demonstrates code necessary to create a blogging context of Blogs
and Posts objects.

EF Core will create database schema tables mapping to these two objects. When the
application is run, it will add a new blog entry to the Blogs table, then retrieve that entry
back to the application.

// C#
using Oracle.EntityFrameworkCore;
using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;

namespace OracleBlog
{
 class Program

Chapter 5
Sample Code

5-14

 {
 public class BloggingContext : DbContext
 {
 public DbSet<Blog> Blogs { get; set; }
 public DbSet<Post> Posts { get; set; }
 protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)
 {
 optionsBuilder.UseOracle(@"User Id=blog;Password=<password>;Data
Source=pdborcl;");
 }
 }
 public class Blog
 {
 public int BlogId { get; set; }
 public string Url { get; set; }
 public List<Post> Posts { get; set; }
 }
 public class Post
 {
 public int PostId { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public int BlogId { get; set; }
 public Blog Blog { get; set; }
 }
 static void Main(string[] args)
 {
 using (var db = new BloggingContext())
 {
 var blog = new Blog { Url = "https://blogs.example.com" };
 db.Blogs.Add(blog);
 db.SaveChanges();
 }
 using (var db = new BloggingContext())
 {
 var blogs = db.Blogs;
 }
 }
 }
}

Additional ODP.NET EF Core sample code is available on GitHub, including stored procedure
and dependency injection examples.

https://github.com/oracle/dotnet-db-samples/tree/master/samples/dotnet-core/ef-core

Using ODP.NET Core Classes
Developers can use the OracleConfiguration class and other ODP.NET Core classes in
Entity Framework Core to access ODP.NET Core-specific functionality, such as the TNS
ADMIN location or tracing settings.

The ODP.NET Core assembly will already be part of any Oracle EF Core project since it is a
dependency of Oracle.EntityFrameworkCore. Most commonly, developers will add the
ODP.NET Core namespace to the project:

// C#
using Oracle.ManagedDataAccess.Client;

Chapter 5
Using ODP.NET Core Classes

5-15

https://github.com/oracle/dotnet-db-samples/tree/master/samples/dotnet-core/ef-core

Then, add the desired OracleConfiguration property settings. These properties
should be set prior to any EF Core code as OracleConfiguration settings must be
made prior to opening an ODP.NET connection. The below example turns on tracing
and sets a TNS ADMIN location which should contain the application's tnsnames.ora
and sqlnet.ora files:

// C#
static void Main(string[] args)
{
 OracleConfiguration.TraceFileLocation = @"D:\traces";
 OracleConfiguration.TraceLevel = 7;
 OracleConfiguration.TnsAdmin = @"D:\tnsadmin";

 <Start Entity Framework Core code>
}

Oracle EF Core applications can use all the properties and behavior available in
ODP.NET Core.

Logging
Oracle EF Core integrates directly with EF Core logging mechanisms. Oracle EF Core
logs are filtered using DbLoggerCategory class and LogLevel enumeration.

The following DbLoggerCategory properties can be used to filter the logs:

• Database
• Database.Command
• Database.Connection
• DbLoggerCategory.Infrastructure
• Migrations
• Model
• Model.Validation
• Query
• Scaffolding
• Update
The following LogLevel properties are available:

• Debug: Displays entry and exit traces. Also displays key Oracle EF Core activities
and metadata, such as SQL executed, table and column metadata, and mappings.

• Error: Displays error related information, including the stack trace.

• None
To setup logging using DebugLoggerProvider, include the
Microsoft.Extensions.Logging.Debug.dll assembly in your project. Similarly to
setup logging using ConsoleLoggerProvider, include the
Microsoft.Extensions.Logging.Console.dll assembly in your project. Next, add the
following namespace in your project:

using Microsoft.Extensions.Logging;

Chapter 5
Logging

5-16

Next, configure the DbContext to use the logger factory.

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
 optionsBuilder.UseOracle(@<connection string>)
 .UseLoggerFactory(_myLoggerFactory);
}

Finally, set the DbLoggerCategory and LogLevel properties that you would like to be written to
the log. In an EnsureCreated scenario, you can create the following LoggerFactory:

public static readonly ILoggerFactory _myLoggerFactory
 = LoggerFactory.Create(builder =>
 {
 builder
 .AddFilter((category, level) =>
 category == DbLoggerCategory.Database.Name &&
// Filter the logs based on DbLoggerCategory. Comment this line above if you do not
want to filter logs based on DbLoggerCategory.
 level >= LogLevel.Trace
// Filter the logs based on LogLevel. All levels greater than or equal to "Trace" will
be enabled. Comment this line above if you do not want to filter logs based on
LogLevel.
)
 .AddDebug();
 });

In a migrations scenario, you can create the following LoggerFactory:

public static readonly ILoggerFactory _myLoggerFactory
 = LoggerFactory.Create(builder =>
 {
 builder
 .AddFilter((category, level) =>
 category == DbLoggerCategory.Database.Command.Name &&
// Filter the logs based on DbLoggerCategory. Comment this line above if you do not
want to filter logs based on DbLoggerCategory.
 level >= LogLevel.Trace
// Filter the logs based on LogLevel. All levels greater than or equal to "Trace" will
be enabled. Comment this line above if you do not want to filter logs based on
LogLevel.
)
 .AddConsole();
 });

In Scaffolding scenario, use the -verbose option to generate traces.

Scaffold-DbContext .. -verbose

Migrations
By convention, ODP.NET EF Core maps an appropriate database data type based on
the .NET data type and its characteristics. This table shows the default mappings. Fluent
APIs/Annotations can be used to map the .NET types to any valid Oracle data type.

This table shows the default mappings. Fluent APIs and Data Annotations can be used to
map the .NET types to any valid Oracle data type.

Chapter 5
Migrations

5-17

Table 5-1 ODP.NET Entity Framework Core Migrations Data Type Default
Mappings

.NET Type Alias .NET Data Type Required Fluent
API(s)*

Oracle Database
Data Type

bool System.Boolean None BOOLEAN or

NUMBER(1)
sbyte System.Sbyte None NUMBER(3)
byte System.Byte None NUMBER(3)
short/int16 System.Int16 None NUMBER(5)
ushort/uint16 System.UInt16 None NUMBER(5)
int/int32 System.Int32 None NUMBER(10)
uint32 System.UInt32 None NUMBER(10)
decimal System.Decimal None NUMBER(18,2)
long/int64 System.Int64 None NUMBER(19)
uint64 System.UInt64 None NUMBER(20)
float System.Float None BINARY_FLOAT
double System.Double None BINARY_DOUBLE
DateTime System.DateTime None TIMESTAMP(7)
DateTimeOffset System.DateTimeOf

fset
None TIMESTAMP(7) WITH

TIME ZONE
TimeSpan System.TimeSpan None INTERVAL DAY(8)

TO SECOND(7)
char System.Char None NVARCHAR2(1)
byte[] System.Byte[] None RAW(2000)
byte[] System.Byte[] HasMaxLength(x <=

2000)
RAW(x)

byte[] System.Byte[] HasMaxLength(x >
2000)

BLOB

string System.String None NVARCHAR2(2000)
string System.String IsUnicode(false)

&&
IsFixedLength(fal
se) &&
HasMaxLength(x >
4000)

CLOB

string System.String IsUnicode(true)
&&
IsFixedLength(fal
se) &&
HasMaxLength(x >
2000)

NCLOB

Chapter 5
Migrations

5-18

Table 5-1 (Cont.) ODP.NET Entity Framework Core Migrations Data Type Default
Mappings

.NET Type Alias .NET Data Type Required Fluent
API(s)*

Oracle Database
Data Type

string System.String IsUnicode(false)
&&
IsFixedLength(fal
se) &&
HasMaxLength(x <=
4000)

VARCHAR2(size)

string System.String IsUnicode(true)
&&
IsFixedLength(fal
se) &&
HasMaxLength(x <=
2000)

NVARCHAR2(size)

string System.String IsUnicode(false)
&&
IsFixedLength(tru
e) &&
HasMaxLength(x <
2000)

CHAR(size)

string System.String IsUnicode(true)
&&
IsFixedLength(tru
e) &&
HasMaxLength(x <
1000)

NCHAR(size)

guid System.Guid None RAW(16)

* Corresponding data annotations can also be used instead of the specified fluent APIs.

NCHAR and NVARCHAR2 use character length semantics. The number of characters for columns
with one of these data types depend on the character set, NLS_NCHAR_CHARACTERSET.
ODP.NET Entity Framework Core defaults to a 2-byte character set, which allows a maximum
of 2000 characters for NCHAR and NVARCHAR2 columns. If a [Maxlength(4000)] data annotation
or fluent API equivalent is used for a string entity property, ODP.NET will map the property to
an NCLOB type because the specified length is greater than 2000 characters.

For example, if a NVARCHAR2(4000) column on the database NLS_NCHAR_CHARACTERSET or if
the NVARCHAR2 column has a maximum 32 KB length (i.e. MAX_STRING_SIZE = EXTENDED), the
string entity property can use the [Column] data annotation or a fluent API equivalent to map
to an N-character data type, rather than mapping to the default NCLOB. Here's an example of
using such an annotation:

[Column("Name", TypeName = "NVARCHAR2(4000)")]
string EmployeeName

Applications may prefer N-character data types over NCLOBs as they require no additional
server roundtrips to fetch and update data.

Chapter 5
Migrations

5-19

Synonyms

EF Core migrations can generate arbitrary Oracle schema objects using the
RelationalDatabaseFacadeExtensions class, such as using the ExecuteSqlRaw
method to perform DDL on those objects. For example, to create a synonym for the
Blogs table sample, the following code snippet can be used:

 private static void SetupDatabase()
 {
 using (var db = new BloggingContext())
 {
 db.Database.EnsureDeleted();
 if (db.Database.EnsureCreated())
 {

 //other code

 #region Synonym
 db.Database.ExecuteSqlRaw(
 " create synonym s for \"Blogs\";");
 #endregion

 db.SaveChanges();
 }
 }
 }

Scaffolding Or Reverse Engineering
ODP.NET EF Core supports scaffolding the following tables and views:

• Relational tables and views

• Materialized views

By convention, ODP.NET EF Core maps an appropriate .NET data type based on the
Oracle Database data type and its characteristics.

When scaffolding, developers may wish to change the default data type mappings
between Oracle Database and .NET. When modifying .NET CLR types of the generated
entity's property, remove the auto-generated HasColumnType() Fluent API in the
model. For example, an Oracle NUMBER(4) is scaffolded to a .NET Byte data type by
default. If the .NET CLR data type is changed to .NET Short or Int16 data type, then
an invalid cast exception at runtime may occur until the HasColumnType("NUMBER(4)")
has been removed.

Data Type Mapping

This table shows the default mappings.

Table 5-2 ODP.NET Entity Framework Core Reverse Engineering Data Type Default Mappings

Oracle Database Data Type .NET Type Alias .NET Data Type

NUMBER(1) bool System.Boolean

Chapter 5
Scaffolding Or Reverse Engineering

5-20

Table 5-2 (Cont.) ODP.NET Entity Framework Core Reverse Engineering Data Type Default
Mappings

Oracle Database Data Type .NET Type Alias .NET Data Type

NUMBER(2) to NUMBER(4) byte System.Byte
NUMBER(5) short/int16 System.Int16
NUMBER(6) to NUMBER(10) int/int32 System.Int32
NUMBER(11) to NUMBER(19) long/int64 System.Int64
NUMBER(>19) decimal System.Decimal
NUMBER(p,s) decimal System.Decimal
NUMBER decimal System.Decimal
BINARY_FLOAT float System.Float
BINARY_DOUBLE double System.Double
BOOLEAN bool System.Boolean
TIMESTAMP DateTime System.DateTime
TIMESTAMP WITH TIMEZONE DateTimeOffset System.DateTimeOffset
TIMESTAMP WITH LOCAL
TIMEZONE

DateTimeOffset System.DateTimeOffset

DATE DateTime System.DateTime
INTERVAL DAY TO SECOND TimeSpan System.TimeSpan
INTERVAL YEAR TO MONTH string System.String
VARCHAR2 string System.String
JSON string System.String
NVARCHAR2 string System.String
CHAR string System.String
NCHAR string System.String
CLOB string System.String
NCLOB string System.String
RAW byte[] System.Byte[]
BLOB byte[] System.Byte[]
XMLTYPE string System.String
ROWID string System.String
UROWID string System.String
LONG string System.String
BFILE byte[] System.Byte[]
LONG RAW byte[] System.Byte[]

Chapter 5
Scaffolding Or Reverse Engineering

5-21

Scaffolding Tables from Another Schema

Developers can scaffold tables from other schemas other than the user/schema they
are connected with. The connected user requires privileges to access the other
schema's objects. Once these privileges are granted, developers can use the Package
Manager Console (PMC) tools for Entity Framework Core to perform the scaffolding
operation. For example:

Scaffold-DbContext "User Id=scott;Password=<password>;Data Source=myhost:1521/
mydb;"
Oracle.EntityFrameworkCore -Schemas HR -Tables EMPLOYEES

Developers can use the –Schemas and –Tables parameters to specify which schemas
and tables/views to scaffold for an Entity Framework Core model. If connecting with
one user/schema to create tables from a second schema, the user must have at least
SELECT privileges for that second schema.

The following table displays the ODP.NET Entity Framework Core behavior when the –
Schemas and/or –Tables parameter is specified or left as default while scaffolding a
pre-existing model using the Package Manager Console command, Scaffold-
DbContext. All sample command excerpts below use Scaffold-DbContext syntax.
Similar functionality is available using the EF Core tools command, dotnet ef
dbcontext scaffold.

Table 5-3 Schema and Table Filter Mapping

Mapping of Schema and
Table Filters

No Schema Filter Schema Filter

No Table Filter Generates all tables/views
within current user/schema

Box 1

Generates all tables/views in
specified user(s)/schema(s)

Box 2

Table Filter Generates specified tables/
views within current user/
schema

Box 3

Generates specified tables/
views within current schema
and all tables/views in
specified user(s)/schema(s)

Filtered results include
combined Box 2 and Box 3
results.

It is possible to scaffold tables/views in other schemas by appending the schema
name in front: -Tables <schema>.<table/view>
For example, the following snippet would scaffold three tables in three different
schemas:

-Tables SCHEMA1.TABLEA, SCHEMA2.TABLEB, SCHEMA3.TABLEC

If the schema or table name contains any special characters, such as a period, then
use brackets to delimit the schema and table names when using the –Tables option.

-Tables [SCHEMA1].[TABLEA]

Chapter 5
Scaffolding Or Reverse Engineering

5-22

Scaffolding Views

Oracle supports scaffolding database relational and materialized views only. These views can
be either read-only or updatable. Use the -Tables parameter to specify the views to scaffold.
If the parameter is left blank (default), all the user tables, relational views, and materialized
views will be scaffolded.

Identifier Name Length and Uniqueness
Oracle Database prior to version 12.2 limit identifier names, such as table names, column
names, and primary key names, to 30 characters. Oracle Database 12.2 and higher have a
default limit of 128 characters.

In Entity Framework Core Migrations, these identifier lengths should be constrained to
prevent creating identifier names longer than what the Oracle Database version supports.
Attempting to create an identifier longer than the database can support generally results in an
"ORA-00972: IDENTIFIER IS TOO LONG" error.

Use RelationalModelAnnotations MaxIdentifierLength property (EF Core 2.x) or
ModelBuilder HasAnnotation method (EF Core 3.x) to set the maximum identifier length the
target database version can handle. For example, if Oracle Database 12.1.0.2 is used, it
needs to be set to 30 (or less). Once set, Entity Framework Core will automatically truncate
identifier names that are too long to the specified length. This prevents both the user and
Entity Framework Core from creating identifiers beyond the maximum character limit of the
Oracle Database version you are connecting to.

// C# Sample Code: Setting maximum identifier length to 30 characters; By default,
it's set to 128.
modelBuilder.Model.Relational().MaxIdentifierLength = 30;

Entity Framework Core 2.x has a known issue in which identifier names longer than the
maximum identifier length are merely truncated, but not made unique. Also, the
MaxIdentifierLength has no impact on controlling the length of table names that are created
based on the entity class names. These issues have been resolved in Entity Framework Core
3.x.

In the meantime, either rename the class names, property names, etc. to work around this
issue or use the ToTable()/HasColumnName() fluent APIs or their equivalent data annotations
to specify a shorter and/or unique names for the tables/columns that are to be created in the
Oracle database.

If the identifiers use multi-byte characters, the MaxIdentifierLength may need to be set with
character expansion ratio in mind to assure that all identifiers can be created in the Oracle
database. For example, if the Oracle database character set is UTF8, a single character may
require up to 4 bytes. Thus, to guarantee that all identifiers can be created in an Oracle
database that does not support long identifiers, the MaxIdentifierLength should be set to 7
characters (i.e. 30 characters divided by 4).

If your EF Core model does not use identifier names longer than what your database version
supports, you should still set MaxIdentifierLength. ODP.NET and Entity Framework Core
auto-generate schema object names from models. They may, on occasion, append additional
characters to the names, which could exceed the maximum number of characters the
database version permits. By setting the MaxIdentifierLength, you prevent EF Core from
causing the ORA-00972 inadvertently.

Chapter 5
Identifier Name Length and Uniqueness

5-23

Using Large Character or Binary Data Types
By default, .NET byte[] maps to RAW(2000) and .NET string maps to NVARCHAR(2000).
But if your application deals with data that larger than 2000 bytes, you can use the
Column or the MaxLength data annotations or the associated fluent API to create BLOB
and CLOB columns in the database, respectively.

// This annotation will force a BLOB column to be created.
[Column("BLOB_COLUMN", TypeName = "BLOB")]
public byte[] BYTE_TYPE { get; set; }

// This annotations will force a NCLOB column to be created.
[MaxLength(65536)]
public string NCLOB_TYPE { get; set; }

Without these annotations, you may hit errors, such as “ORA-01460: unimplemented
or unreasonable conversion requested” or “ORA-12899: value too large for column”
when modifying the data.

Performance Considerations
EF Core application performance is most optimal for binding character-based data
when the .NET String entity property bind data type and the database column data
type Unicode support match. If the mapping is done properly, then the application will
bind the string entity property value properly as NVARCHAR2 for a NVARCHAR2 column or
bind it as VARCHAR2 for a VARCHAR2 column. If the types are mismatched, then
additional processing is incurred on the server side, slowing down performance.

To avoid performance related issues due to this mismatch, one of the following can be
done:

• If the table already exists, use scaffolding to generate the entity classes
corresponding to the relational database tables. Doing so generates the correct
fluent API for each table column.

• If the entity classes exist without the corresponding database tables, use
migrations to generate the corresponding database columns for the string entity
properties, which will honor the IsUnicode() or HasColumnType() fluent APIs that
are invoked.

• If manually creating the entity classes corresponding to the database tables,
correctly map each string entity property to the NVARCHAR2 or VARCHAR2
column type using the appropriate IsUnicode() or HasColumnType() fluent API to
avoid mismatches.

Other considerations:

• If both IsUnicode() and HasColumnType() fluent APIs are used, then the
HasColumnType() fluent API takes precedence.

• For migrations, the .NET String entity property maps to NVARCHAR2 by default.
For scaffolding, both VARCHAR2 and NVARCHAR2 columns map to .NET string.

• If the database column type is VARCHAR2, then the IsUnicode(false) or
HasColumnType(“VARCHAR2(<length>)”) fluent API should be used to correctly

Chapter 5
Using Large Character or Binary Data Types

5-24

map the string entity property to the VARCHAR2 column. This avoids the performance
degradation problem.

• If a string entity property is associated with a NVARCHAR2 column, no invocations of
IsUnicode() nor HasColumnType() fluent APIs are needed. Alternatively, IsUncode(true)
or HasColumnType("NVARCHAR2(<length>)") fluent APIs can be invoked to bind the
data as NVARCHAR2.

• In Oracle.EntityFrameworkCore 2.19.70 and earlier versions, string entity property values
were always bound as VARCHAR2 while executing LINQ queries. The behavior changed
starting with Oracle EF Core 2.19.80. The string entity property values are now bound
based on the mapping specified for entity string property. An application that performed
optimally with Oracle EF Core 2.19.70 can degrade in performance when upgrading to a
later Oracle EF Core version.

• If you encounter a new performance problem after an Oracle EF Core upgrade, verify the
string entity properties associated with VARCHAR2 columns have not set either
IsUnicode(false) nor HasColumnType("VARCHAR2(<length>)") fluent APIs nor equivalent
data annotations. If so, add one of these fluent API so that the character-based data are
bound using the correct type.

Breaking Changes

Application Programming Interface Changes

• Oracle EF Core UseUseOracleSQLCompatibility extension method

In EF Core 6 and higher versions with Oracle EF Core 21.12.1,
UseOracleSQLCompatibility extension method now takes an enumeration type as an
argument rather than a string value.

See Also:

UseOracleSQLCompatibility(enum version)

Desupported APIs

The desupported APIs are as follows:

• ModelBuilder.UseOracleIdentityColumn Extension Method

Starting with EF Core 5, ODP.NET EF Core desupports UseOracleIdentityColumn.
Developers should call the ModelBuilder.UseIdentityColumn extension method instead,
which provides identical functionality. UseOracleIdentityColumn remains supported for
EF Core 3.1 and earlier releases.

• ModelBuilder and PropertyBuilder ForOracleUseSequenceHiLo Extension Method

Starting with EF Core 5, ODP.NET EF Core desupports ForOracleUseSequenceHiLo.
Developers should call the ModelBuilder.UseHiLo extension method instead, which
provides identical functionality. ForOracleUseSequenceHiLo remains supported for EF
Core 3.1 and earlier releases.

• Oracle.EntityFrameworkCore.Migrations.Operations.OracleCreateUserOperation
Class

Chapter 5
Breaking Changes

5-25

Starting with Oracle EF Core 21c, the OracleCreateUserOperation class is
desupported. Developers should call the MigrationBuilder.Sql method instead
with a CREATE USER SQL statement to create a user if they are using the
desupported API directly.

• Oracle.EntityFrameworkCore.Migrations.Operations.OracleDropUserOperati
on Class

Starting with Oracle EF Core 21c, the OracleDropUserOperation class is
desupported. Developers should call the MigrationBuilder.Sql method instead
with a DROP USER SQL statement to drop a user if they are using the desupported
API directly.

Chapter 5
Breaking Changes

5-26

6
Oracle Data Provider for .NET Stored
Procedures

This section discusses server-side features provided by Oracle Data Provider for .NET.

With the support for .NET stored procedures in Oracle Databases for Windows that Oracle
Database Extensions for .NET provides, ODP.NET can be used to access Oracle data
through the implicit database connection that is available from the context of the .NET stored
procedure execution. Explicit user connections can also be created to establish connections
to the database that hosts the .NET stored procedure or to other Oracle Databases.

See Also:

Oracle Database Extensions for .NET Developer's Guide for Microsoft Windows

This section contains these topics:

• Introducing .NET Stored Procedure Execution Using ODP.NET

• Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

• Porting Client Application to .NET Stored Procedure

Introducing .NET Stored Procedure Execution Using ODP.NET
Oracle Data Provider for .NET classes and APIs provide data access to the Oracle Database
from a .NET client application and from .NET stored procedures and functions.

However, some limitations and restrictions exist when Oracle Data Provider for .NET is used
within a .NET stored procedure. These are discussed in the next section.

The following is a simple .NET stored procedure example.

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

public class CLRLibrary1
{
 // .NET Stored Function returning the DEPTNO of the employee whose
 // EMPNO is 'empno'
 public static uint GetDeptNo(uint empno)
 {
 uint deptno = 0;

 // Create and open a context connection
 OracleConnection conn = new OracleConnection();
 if(OracleConnection.IsAvailable == true)
 {

6-1

 conn.ConnectionString = "context connection=true";
 }
 else
 {
 //set connection string for a normal client connection
 conn.ConnectionString = "user id=scott;password=tiger;" +
 "data source=oracle";
 }
 conn.Open();

 // Create and execute a command
 OracleCommand cmd = conn.CreateCommand();
 cmd.CommandText = "SELECT DEPTNO FROM EMP WHERE EMPNO = :1";
 cmd.Parameters.Add(":1",OracleDbType.Int32,empno,
 System.Data.ParameterDirection.Input);
 OracleDataReader rdr = cmd.ExecuteReader();
 if (rdr.Read())
 deptno = (uint)rdr.GetInt32(0);
 rdr.Close();
 cmd.Dispose();
 conn.Close();
 return deptno;
 } // GetDeptNo
} // CLRLibrary1

See Also:

• Oracle Database Extensions for .NET Developer's Guide for Microsoft
Windows for more information about how to create .NET Stored
procedures

• Table 6-1

Limitations and Restrictions on ODP.NET Within .NET
Stored Procedure

This section covers important concepts that apply when Oracle Data Provider for .NET
is used within a .NET stored procedure.

Note:

ODP.NET, Managed Driver and ODP.NET Core do not support .NET stored
procedures.

Implicit Database Connection
Within a .NET stored procedure, an implicit database connection is available for use to
access Oracle data. This implicit database connection should be used rather than
establishing a user connection because the implicit database connection is already

Chapter 6
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

6-2

established by the caller of the .NET stored procedure, thereby minimizing resource usage.

To obtain an OracleConnection object in a .NET stored procedure that represents the implicit
database connection, set the ConnectionString property of the OracleConnection object to
"context connection=true" and invoke the Open method. No connection string attributes can
be used with "context connection=true", except the Statement Cache Size attribute.

The availability of the implicit database connection can be checked at run time through the
static OracleConnection.IsAvailable property. This property always returns true when
Oracle Data Provider for .NET is used within a .NET stored procedure. Otherwise, false is
returned.

Note:

DBLinks are not supported in .NET stored procedures.

Only one implicit database connection is available within a .NET stored procedure invocation.
To establish more connections in addition to the implicit database connection, an explicit
connection must be created. When the Close method is invoked on the OracleConnection
that represents the implicit database connection, the connection is not actually closed.
Therefore, the Open method of the same or another OracleConnection object can be invoked
to obtain the connection that represents the implicit database connection.

The implicit database connection can only be acquired by the Open method invocation by a
native Oracle thread that initially invokes the .NET stored procedure. However, threads
spawned from the native Oracle thread can use implicit database connections that are
obtained by the native Oracle thread.

See Also:

"IsAvailable"

Transaction Support
The .NET stored procedure execution automatically inherits the current transaction on the
implicit database connection. No explicit transaction can be started, committed, or rolled back
inside a .NET stored procedure on a Context connection. However, explicit transaction can
be started, committed, or rolled back inside a .NET stored procedure on a Client connection.

For example, OracleConnection.BeginTransaction is not allowed inside a .NET stored
procedure for a context connection, but is allowed for a client connection. .NET stored
procedures do not support distributed transactions. If you have enlisted a client connection in
a distributed transaction and call a .NET stored procedure or function, an error occurs.

If a .NET stored procedure or function performs operations on the database that are required
to be part of a transaction, the transaction must be started prior to calling the .NET stored
procedure. Any desired commit or rollback must be performed after returning from the .NET
stored procedure or function.

The following example consists of a client application and a .NET stored procedure,
InsertRecordSP, that inserts an employee record into an EMP table.

Chapter 6
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

6-3

Example (.NET Stored Procedure)

using System;
using System.Data;
using Oracle.DataAccess.Client;
// This class represents an Oracle .NET stored procedure that inserts
// an employee record into an EMP table of SCOTT schema.
public class InsertRecordSP
{
 // This procedure will insert a row into the emp database
 // For simplicity we are using only two parameters, the rest are hard coded
 public static void InsertRecord(int EmpNo, string EmpName)
 {
 if(OracleConnection.IsAvailable == true)
 {
 OracleConnection conn = new OracleConnection(
 "context connection=true");
 conn.Open();
 // Create new command object from connection context
 OracleCommand Cmd = conn.CreateCommand();
 Cmd.CommandText = "INSERT INTO EMP(EMPNO, ENAME, JOB," +
 "MGR, HIREDATE, SAL, COMM, DEPTNO) " +
 "VALUES (:1, :2, 'ANALYST', 7566, " +
 "'06-DEC-04', 5000, 0, 20)";
 Cmd.Parameters.Add(":1", OracleDbType.Int32,
 EmpNo, ParameterDirection.Input);
 Cmd.Parameters.Add(":2", OracleDbType.Varchar2,
 EmpName, ParameterDirection.Input);
 Cmd.ExecuteNonQuery();
 }
 }
}

Example (Client Application)

The example enters new employee, Bernstein, employee number 7950, into the EMP
table.

// C#
// This sample demonstrates how to start the transaction with ODP.NET client
// application and execute an Oracle .NET stored procedure that performs
// a DML operation. Since .NET stored procedure inherits the current
// transaction from the implicit database connection, DML operation
// in .NET stored procedure will not be in auto-committed mode.
// Therefore, it is up to the client application to do a COMMIT or ROLLBACK
// after returning from .NET stored procedure
using System;
using System.Data;
using Oracle.DataAccess.Client;
// In this class we are starting a transaction on the client side and
// executing a .NET stored procedure, which inserts a record into EMP
// table and then verifies record count before and after COMMIT statement
class TransactionSample
{
 static void Main(string[] args)
 {
 OracleConnection Conn = null;
 OracleTransaction Txn = null;
 OracleCommand Cmd = null;
 try

Chapter 6
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

6-4

 {
 Console.WriteLine("Sample: Open DB connection in non auto-committed "
 + "mode," +
 "DML operation performed by .NET stored " +
 "procedure doesn't have an effect before COMMIT " +
 "is called.");
 // Create and Open oracle connection
 Conn = new OracleConnection();
 Conn.ConnectionString = "User Id=scott;Password=tiger;" +
 "Data Source=oracle;";
 Conn.Open();
 // Start transaction
 Txn = Conn.BeginTransaction(IsolationLevel.ReadCommitted);
 // Create command object
 Cmd = new OracleCommand();
 Cmd.Connection = Conn;
 Cmd.CommandType = CommandType.StoredProcedure;
 Cmd.CommandText = "InsertRecord"; // .NET Stored procedure
 // Parameter settings
 OracleParameter EmpNoPrm = Cmd.Parameters.Add(
 "empno", OracleDbType.Int32);
 EmpNoPrm.Direction = ParameterDirection.Input;
 EmpNoPrm.Value = 7950;
 OracleParameter EmpNamePrm = Cmd.Parameters.Add(
 "ename", OracleDbType.Varchar2, 10);
 EmpNamePrm.Direction = ParameterDirection.Input;
 EmpNamePrm.Value = "Bernstein";
 // Execute .NET stored procedure
 Cmd.ExecuteNonQuery();
 Console.WriteLine("Number of record(s) before COMMIT {0}",
 RecordCount());
 Txn.Commit();
 Console.WriteLine("Number of record(s) after COMMIT {0}",
 RecordCount());
 }
 catch(OracleException OE)
 {
 Console.WriteLine(OE.Message);
 }
 finally
 {
 // Cleanup objects
 if(null != Txn)
 Txn.Dispose();
 if(null != Cmd)
 Cmd.Dispose();
 if(null != Conn && Conn.State == ConnectionState.Open)
 Conn.Close();
 }
 }
 static int RecordCount()
 {
 int EmpCount = 0;
 OracleConnection Conn = null;
 OracleCommand Cmd = null;
 try
 {
 Conn = new OracleConnection("User Id=scott;Password=tiger;" +
 "Data Source=oracle;");
 Conn.Open();
 Cmd = new OracleCommand("SELECT COUNT(*) FROM EMP", Conn);

Chapter 6
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

6-5

 Object o = Cmd.ExecuteScalar();
 EmpCount = Convert.ToInt32(o.ToString());
 }
 catch(OracleException OE)
 {
 Console.WriteLine(OE.Message);
 }
 finally
 {
 if(null != Cmd)
 Cmd.Dispose();
 }
 return EmpCount;
 }
 }

Unsupported SQL Commands
Transaction controls commands such as COMMIT, ROLLBACK, and SAVEPOINT are not
supported in a .NET stored procedure.

Data definition commands such as CREATE and ALTER are not supported with an implicit
database connection, but they are supported with an explicit user connection in a .NET
stored procedure.

Oracle User-Defined Type (UDT) Support
UDTs are not supported within a context connection but they are supported with a
client connection. UDTs are not supported as parameters to .NET stored procedures.

Porting Client Application to .NET Stored Procedure
All classes and class members provide the same functionality for both client
applications and .NET stored procedures, unless it is otherwise stated.

Table 6-1 lists those classes or class members that have different behavior depending
on whether or not they are used in a client application or in a .NET stored procedure.

Column Headings

The column headings for this table are:

Client application: The client application.

Implicit connection: The implicit database connections in a .NET stored procedure.

Explicit connection: The explicit user connections in a .NET stored procedure.

Table 6-1 API Support Comparison Between Client Application and .NET
Stored Procedure

Class or Class Members Client Application Implicit Connection/Explicit
Connection

OnChangeEventHandler
Delegate

-all members

Yes No/No

Chapter 6
Porting Client Application to .NET Stored Procedure

6-6

Table 6-1 (Cont.) API Support Comparison Between Client Application
and .NET Stored Procedure

Class or Class Members Client Application Implicit Connection/Explicit
Connection

OracleDependency Class

-all members

Yes No/No

OracleNotificationEventArgs
Class

-all members

Yes No/No

OracleNotificationRequest
Class

-all members

Yes No/No

OracleFailoverEventArgs
Class

-all members

Yes No/No

OracleFailoverEventHandler
Delegate

-all members

Yes No/No

OracleTransaction Class

-all members

Yes No/No

OracleCommand Class

-Transaction Property

Yes No: Always returns null /No:
Always returns null.

OracleConnection Class

-ConnectionTimeout Property

-DataSource Property

-BeginTransaction Method

-ChangeDatabase Method

-Clone Method

-EnlistDistributedTransaction
Method

-
OpenWithNewPassword(Strin
g) Method

-Failover Event

-OracleFailoverEventHandler
Delegate

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes: Implicit database
connection always returns
0/Yes

Yes: Implicit database
connection always returns an
empty string/Yes

No/Yes

No/No

No/Yes

No/No

No/Yes

No/No

No/No

ODP.NET Enumerations

-FailoverEvent Enumeration

-FailoverReturnCode
Enumeration

-FailoverType Enumeration

-OracleNotificationInfo
Enumeration

-OracleNotificationSource
Enumeration

-OracleNotificationType
Enumeration

Yes

Yes

Yes

Yes

Yes

Yes

No/No

No/No

No/No

No/No

No/No

No/No

Chapter 6
Porting Client Application to .NET Stored Procedure

6-7

7
Oracle Data Provider for .NET Classes

This chapter describes the following Oracle Data Provider for .NET classes.

• OracleAccessToken Class

• OracleClientFactory Class

• OracleCommand Class

• OracleCommandBuilder Class

• OracleConnection Class

• OracleConfiguration Class

• OracleConnectionOpenEventArgs Class

• OracleConnectionOpenEventHandler Delegate

• OracleConnectionStringBuilder Class

• OracleCredential Class

• OracleDataAdapter Class

• OracleDatabase Class

• OracleDataReader Class

• OracleDataSourceCollection Class

• OracleDataSourceEnumerator Class

• OracleError Class

• OracleErrorCollection Class

• OracleException Class

• OracleInfoMessageEventArgs Class

• OracleInfoMessageEventHandler Delegate

• OracleLogicalTransaction Class

• OracleOnsServerCollection Class

• OracleParameter Class

• OracleParameterCollection Class

• OraclePermission Class

• OracleRefreshAccessTokenEventArgs Class

• OraclePermissionAttribute Class

• OracleRefreshAccessTokenEventArgs Class

• OracleRowUpdatedEventArgs Class

• OracleRowUpdatedEventHandler Delegate

• OracleRowUpdatingEventArgs Class

7-1

• OracleRowUpdatingEventHandler Delegate

• OracleShardingKey Class

• OracleTransaction Class

• OracleConnectionType Enumeration

• OracleCollectionType Enumeration

• OracleDBAPrivilege Enumeration

• OracleDBShutdownMode Enumeration

• OracleDBStartupMode Enumeration

• OracleDbType Enumeration

• OracleDRCPPurity Enumeration

• OracleIdentityType Enumeration

• OracleParameterStatus Enumeration

• OraclePasswordAuth Enumeration

• OracleTokenAuth Enumeration

OracleAccessToken Class
An OracleAccessToken object stores Oracle Identity and Access Management
information required for token authentication.

Class Inheritance

System.Object
 Oracle.DataAccess.OracleAccessToken

Declaration

// C#
public sealed class OracleAccessToken

Requirements

Provider ODP.NET, Managed Driver ODP.NET Core

Assembly Oracle.ManagedDataAcces
s.dll

Oracle.ManagedDataAcces
s.dll

Namespace Oracle.ManagedDataAcces
s.Client

Oracle.ManagedDataAcces
s.Client

.NET Framework 4.8 -

.NET (Core) - See System Requirements

Example

// C#
public class OracleAccessToken
{
// Constructor
public OracleAccessToken(char[] dbToken, char[] privateKey);

Chapter 7
OracleAccessToken Class

7-2

// Event to get refreshed token before expiry
public event OracleRefreshAccessTokenEventHandler RefreshAccessToken;
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAccessToken Members

• OracleAccessToken(char, char)

• RefreshAccessToken Event

OracleAccessToken Members
OracleAccessToken members are listed in the following tables.

OracleAccessToken Constructor

OracleAccessToken constructors are listed in OracleAccessToken Constructors.

Table 7-1 OracleAccessToken Constructor

Constructor Description

OracleAccessToken Constructors OracleAccessToken constructors instantiate new instances
of OracleAccessToken class.

RefreshAccessToken Event

OracleAccessToken event is listed in RefreshAccessToken Event.

Table 7-2 RefreshAccessToken Event

Event Description

RefreshAccessToken Event Triggered 60 seconds before the signature token expiration
time so that application can provide a refreshed token

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAccessToken Class

Chapter 7
OracleAccessToken Class

7-3

OracleAccessToken Constructors
OracleAccessToken constructors instantiate new instances of OracleAccessToken
class.

Overload List:

• OracleAccessToken(char)

This constructor creates an OracleAccessToken object with the access token
provided by the application.

• OracleAccessToken(char, char)

This constructor creates an OracleAccessToken object with the signature token
and private key provided by the application. Only Signature token type will be
supported through this class.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAccessToken Class

• OracleAccessToken Members

OracleAccessToken(char)
This constructor creates an OracleAccessToken object with the access token provided
by the application.

Declaration

// C#
public OracleAccessToken(char[] token);

Exceptions

ArgumentNullException is raised if token is passed in as null.

Description

The char[] passed by the application for the access token will be cleared by
ODP.NET. Applications should not depend on this char[] once this constructor is
called.

Chapter 7
OracleAccessToken Class

7-4

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAccessToken Class

• OracleAccessToken Members

OracleAccessToken(char, char)
This constructor creates an OracleAccessToken object with the signature token and private
key provided by the application. Only Signature token type will be supported through this
class.

Declaration

// C#
public OracleAccessToken(char[] dbToken, char[] privateKey);

Exceptions

• ArgumentNullException is raised if any parameters are passed in as null.

• Argument exception is thrown if the provided token is invalid.

Description

The char[] passed by the application for the signature token and private key will be cleared
by ODP.NET. Applications should not depend on these char[] once this constructor is called.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAccessToken Class

• OracleAccessToken Members

RefreshAccessToken Event
This event is triggered 60 seconds before the database token expiration time so that
application can provide a refreshed token.

Declaration

// C#
public event OracleRefreshAccessTokenEventHandler RefreshAccessToken;

Chapter 7
OracleAccessToken Class

7-5

Description

The event handler receives an OracleRefreshAccessTokenEventArgs object in which
the application should set the refreshed database token and private key, or access
token. The event handler is not called unless a connection has been made with the
token, and the token has been found to be valid.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAccessToken Class

• OracleAccessToken Members

OracleClientFactory Class
An OracleClientFactory object allows applications to instantiate ODP.NET classes in
a generic way.

Class Inheritance

System.Object
 System.Data.Common.DbProviderFactory
 Oracle.DataAccess.Client.OracleClientFactory

Declaration

// C#
public sealed class OracleClientFactory : DbProviderFactory

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll
Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Cli

ent
.NET Framework 4.8 4.8

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;

Chapter 7
OracleClientFactory Class

7-6

using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class FactorySample
{
 static void Main()
 {
 string constr = "user id=scott;password=tiger;data source=oracle";

 DbProviderFactory factory =
 DbProviderFactories.GetFactory("Oracle.DataAccess.Client");

 DbConnection conn = factory.CreateConnection();

 try
 {
 conn.ConnectionString = constr;
 conn.Open();

 DbCommand cmd = factory.CreateCommand();
 cmd.Connection = conn;
 cmd.CommandText = "select * from emp";

 DbDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 Console.WriteLine(reader["EMPNO"] + " : " + reader["ENAME"]);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Members

• OracleClientFactory Field

• OracleClientFactory Constructor

• OracleClientFactory Public Properties

• OracleClientFactory Public Methods

OracleClientFactory Members
OracleClientFactory members are listed in the following tables.

OracleClientFactory Field

The OracleClientFactory field is listed in Table 7-3

Chapter 7
OracleClientFactory Class

7-7

Table 7-3 OracleClientFactory Field

Property Description

Instance Gets an instance of the OracleClientFactory
class

OracleClientFactory Constructor

The OracleClientFactory constructor is listed in Table 7-4

Table 7-4 OracleClientFactory Constructor

Property Description

OracleClientFactory Constructor Instantiates a new instance of
OracleClientFactory class

OracleClientFactory Public Properties

The OracleClientFactory public properties are listed in Table 7-5.

Table 7-5 OracleClientFactory Public Properties

Property Description

CanCreateDataSourceEnumerator Indicates whether or not the
CreateDataSourceEnumerator method is
supported

OracleClientFactory Public Methods

OracleClientFactory Public Methods are listed in Table 7-6.

Table 7-6 OracleClientFactory Public Method

Method Description

CreateCommand Returns a DbCommand object that represents an
OracleCommand object

CreateCommandBuilder Returns a DbCommandBuilder object that
represents an OracleCommandBuilder object

CreateConnection Returns a DbConnection object that represents an
OracleConnection object

CreateConnectionStringBuilder Returns a DbConnectionStringBuilder object
that represents an
OracleConnectionStringBuilder object

CreateDataAdapter Returns a DbDataAdapter object that represents
an OracleDataAdapter object

CreateDataSourceEnumerator Returns a DbDataSourceEnumerator object that
represents an OracleDataSourceEnumerator
object

Chapter 7
OracleClientFactory Class

7-8

Table 7-6 (Cont.) OracleClientFactory Public Method

Method Description

CreateParameter Returns a DbParameter object that represents an
OracleParameter object

CreatePermission Returns a CodeAccessPermission object that
represents an OraclePermission object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

OracleClientFactory Field
The OracleClientFactory field is listed in Table 7-7

Table 7-7 OracleClientFactory Field

Property Description

Instance Gets an instance of the OracleClientFactory class

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

Instance
The Instance field gets an instance of the OracleClientFactory class. This can be used to
retrieve strongly typed data objects.

Declaration

// C#
public static readonly OracleClientFactory Instance

Chapter 7
OracleClientFactory Class

7-9

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

OracleClientFactory Constructor
The OracleClientFactory constructor creates a new instances of the
OracleClientFactory class.

Declaration

// C#
public OracleClientFactory();

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

OracleClientFactory Public Properties
The OracleClientFactory public properties are listed in Table 7-8.

Table 7-8 OracleClientFactory Public Properties

Property Description

CanCreateDataSourceEnumerator Indicates whether or not the
CreateDataSourceEnumerator method is
supported

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

Chapter 7
OracleClientFactory Class

7-10

CanCreateDataSourceEnumerator
This property indicates whether or not the CreateDataSourceEnumerator method is
supported.

Declaration

// C#
public override bool CanCreateDataSourceEnumerator { get; }

Property Value

Returns true.

Remarks

ODP.NET supports the OracleDataSourceEnumerator object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

OracleClientFactory Public Methods
The OracleClientFactory public method is listed in Table 7-9.

Table 7-9 OracleClientFactory Public Method

Method Description

CreateCommand Returns a DbCommand object that represents an
OracleCommand object

CreateCommandBuilder Returns a DbCommandBuilder object that represents an
OracleCommandBuilder object

CreateConnection Returns a DbConnection object that represents an
OracleConnection object

CreateConnectionStringBuilder Returns a DbConnectionStringBuilder object that
represents an OracleConnectionStringBuilder
object

CreateDataAdapter Returns a DbDataAdapter object that represents an
OracleDataAdapter object

CreateDataSourceEnumerator Returns a DbDataSourceEnumerator object that
represents an OracleDataSourceEnumerator object

Chapter 7
OracleClientFactory Class

7-11

Table 7-9 (Cont.) OracleClientFactory Public Method

Method Description

CreateParameter Returns a DbParameter object that represents an
OracleParameter object

CreatePermission Returns a CodeAccessPermission object that
represents an OraclePermission object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

CreateCommand
This method returns a DbCommand object that represents an OracleCommand object.

Declaration

// C#
public override DbCommand CreateCommand();

Return Value

A DbCommand object that represents an OracleCommand object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

CreateCommandBuilder
This method returns a DbCommandBuilder object that represents an
OracleCommandBuilder object.

Declaration

// C#
public override DbCommandBuilder CreateCommandBuilder();

Chapter 7
OracleClientFactory Class

7-12

Return Value

A DbCommandBuilder object that represents an OracleCommandBuilder object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

CreateConnection
This method returns a DbConnection object that represents an OracleConnection object.

Declaration

// C#
public override DbConnection CreateConnection();

Return Value

A DbConnection object that represents an OracleConnection object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

CreateConnectionStringBuilder
This method returns a DbConnectionStringBuilder object that represents an
OracleConnectionStringBuilder object.

Declaration

// C#
public override DbConnectionStringBuilder CreateConnectionStringBuilder();

Return Value

A DbConnectionStringBuilder object that represents an OracleConnectionStringBuilder
object.

Chapter 7
OracleClientFactory Class

7-13

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

CreateDataAdapter
This method returns a DbDataAdapter object that represents an OracleDataAdapter
object.

Declaration

// C#
public override DbDataAdapter CreateDataAdapter();

Return Value

A DbDataAdapter object that represents an OracleDataAdapter object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

CreateDataSourceEnumerator
This method returns a DbDataSourceEnumerator object that represents an
OracleDataSourceEnumerator object.

Declaration

// C#
public override DbDataSourceEnumerator CreateDataSourceEnumerator();

Return Value

A DbDataSourceEnumerator object that represents an OracleDataSourceEnumerator
object.

Chapter 7
OracleClientFactory Class

7-14

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

• "OracleDataSourceEnumerator Class"

CreateParameter
This method returns a DbParameter object that represents an OracleParameter object.

Declaration

// C#
public override DbParameter CreateParameter();

Return Value

A DbParameter object that represents an OracleParameter object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

CreatePermission
This method returns a CodeAccessPermission object that represents an OraclePermission
object.

Declaration

// C#
public override System.Security.CodeAccessPermission CreatePermission(
 System.Security.Permissions.PermissionState state);

Parameter

• state

A PermissionState object.

Chapter 7
OracleClientFactory Class

7-15

Return Value

A CodeAccessPermission object that represents an OraclePermission object.

Remarks

This method enables users, writing provider-independent code, to get a
CodeAccessPermission instance that represents an OraclePermission object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleClientFactory Class

• OracleClientFactory Members

OracleCommand Class
An OracleCommand object represents a SQL command, a stored procedure, or a table
name. The OracleCommand object is responsible for formulating the request and
passing it to the database. If results are returned, OracleCommand is responsible for
returning results as an OracleDataReader, a .NET XmlReader, a .NET Stream, a scalar
value, or as output parameters.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.ComponentModel.Component
 System.Data.Common.DbCommand
 Oracle.DataAccess.Client.OracleCommand

Declaration

// C#
public sealed class OracleCommand : DbCommand, ICloneable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

Chapter 7
OracleCommand Class

7-16

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Remarks

The execution of any transaction-related statements from an OracleCommand is not
recommended because it is not reflected in the state of the OracleTransaction object
represents the current local transaction, if one exists.

ExecuteXmlReader, ExecuteStream, and ExecuteToStream methods are only supported for
XML operations.

ExecuteReader and ExecuteScalar methods are not supported for XML operations.

To minimize the number of open server cursors, OracleCommand objects should be explicitly
disposed.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleCommandSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 string cmdQuery = "select ename, empno from emp";

 // Create the OracleCommand
 OracleCommand cmd = new OracleCommand(cmdQuery);

 cmd.Connection = con;
 cmd.CommandType = CommandType.Text;

 // Execute command, create OracleDataReader object
 OracleDataReader reader = cmd.ExecuteReader();

 while (reader.Read())
 {
 // output Employee Name and Number
 Console.WriteLine("Employee Name : " + reader.GetString(0) + " , " +
 "Employee Number : " + reader.GetDecimal(1));
 }

Chapter 7
OracleCommand Class

7-17

 // Clean up
 reader.Dispose();
 cmd.Dispose();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Members

• OracleCommand Constructors

• OracleCommand Static Methods

• OracleCommand Properties

• OracleCommand Public Methods

OracleCommand Members
OracleCommand members are listed in the following tables.

OracleCommand Constructors

OracleCommand constructors are listed in Table 7-10.

Table 7-10 OracleCommand Constructors

Constructor Description

OracleCommand Constructors Instantiates a new instance of OracleCommand class
(Overloaded)

OracleCommand Static Methods

The OracleCommand static method is listed in Table 7-11.

Table 7-11 OracleCommand Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleCommand Properties

OracleCommand properties are listed in Table 7-12.

Chapter 7
OracleCommand Class

7-18

Table 7-12 OracleCommand Properties

Property Description

AddRowid Adds the ROWID as part of the select list

AddToStatementCache Causes executed statements to be cached, when the
property is set to true and statement caching is enabled

ArrayBindCount Specifies if the array binding feature is to be used and also
specifies the maximum number of array elements to be bound
in the Value property

ArrayBindRowsAffected Returns the number of affected rows for each iteration while
executing a DML using array binding

BindByName Specifies the binding method in the collection

CommandText Specifies the SQL statement or stored procedure to run
against the Oracle database or the XML data used to store
changes to the Oracle database

CommandTimeout Specifies the number of seconds the command is allowed to
execute before terminating the execution with an exception

CommandType Specifies the command type that indicates how the
CommandText property is to be interpreted

Connection Specifies the OracleConnection object that is used to
identify the connection to execute a command

Container Inherited from System.ComponentModel.Component
DesignTimeVisible Specifies whether or not the OracleCommand object is visible

on designer controls.

FetchSize Specifies the size of OracleDataReader's internal cache to
store result set data

ImplicitRefCursors Specifies an array of OracleRefCursors mapped to an
implicit resultset returned by the stored procedure.

Not Available in the ODP.NET, Managed Driver and ODP.NET
Core

InitialLOBFetchSize Specifies the amount of data that the OracleDataReader
initially fetches for LOB columns

InitialLONGFetchSize Specifies the amount of data that the OracleDataReader
initially fetches for LONG and LONG RAW columns

Notification Indicates that there is a notification request for the command

NotificationAutoEnlist Indicates whether or not to register for a continuous query
notification with the database automatically when the
command is executed

Parameters Specifies the parameters for the SQL statement or stored
procedure

RowSize Specifies the amount of memory needed by the
OracleDataReader internal cache to store one row of data

Site Inherited from System.ComponentModel.Component
Transaction Specifies the OracleTransaction object in which the

OracleCommand executes

Not supported in a .NET stored procedure

Chapter 7
OracleCommand Class

7-19

Table 7-12 (Cont.) OracleCommand Properties

Property Description

UpdatedRowSource Specifies how query command results are applied to the row
being updated

Not supported in a .NET stored procedure

UseEdmMapping Indicates whether or not the command object utilizes the
Entity Data Model mapping configuration values

XmlCommandType Specifies the type of XML operation on the OracleCommand
XmlQueryProperties Specifies the properties that are used when an XML

document is created from the result set of a SQL query
statement

XmlSaveProperties Specifies the properties that are used when an XML
document is used to save changes to the database

OracleCommand Public Methods

OracleCommand public methods are listed in Table 7-13.

Table 7-13 OracleCommand Public Methods

Public Method Description

Cancel Attempts to cancels a command that is currently
executing on a particular connection

Clone Creates a copy of OracleCommand object

CreateObjRef Inherited from System.MarshalByRefObject
CreateParameter Creates a new instance of OracleParameter class

Dispose Releases any resources or memory allocated by the
object

Equals Inherited from System.Object (Overloaded)

ExecuteNonQuery Executes a SQL statement or a command using the
XmlCommandType and CommandText properties and
returns the number of rows affected

ExecuteReader Executes a command (Overloaded)

ExecuteScalar Returns the first column of the first row in the result set
returned by the query

ExecuteStream Executes a command using the XmlCommandType and
CommandText properties and returns the results in a
new Stream object

ExecuteToStream Executes a command using the XmlCommandType and
CommandText properties and appends the results as an
XML document to the existing Stream

ExecuteXmlReader Executes a command using the XmlCommandType and
CommandText properties and returns the result as an
XML document in a .NET XmlTextReader object

GetHashCode Inherited from System.Object

Chapter 7
OracleCommand Class

7-20

Table 7-13 (Cont.) OracleCommand Public Methods

Public Method Description

GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
Prepare This method is a no-op

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

OracleCommand Constructors
OracleCommand constructors instantiate new instances of OracleCommand class.

Overload List:

• OracleCommand()

This constructor instantiates a new instance of OracleCommand class.

• OracleCommand(string)

This constructor instantiates a new instance of OracleCommand class using the supplied
SQL command or stored procedure, and connection to the Oracle database.

• OracleCommand(string, OracleConnection)

This constructor instantiates a new instance of OracleCommand class using the supplied
SQL command or stored procedure, and connection to the Oracle database.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

OracleCommand()
This constructor instantiates a new instance of OracleCommand class.

Chapter 7
OracleCommand Class

7-21

Declaration

// C#
public OracleCommand();

Remarks

Default constructor.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

OracleCommand(string)
This constructor instantiates a new instance of OracleCommand class using the supplied
SQL command or stored procedure, and connection to the Oracle database.

Declaration

// C#
public OracleCommand(string cmdText);

Parameters

• cmdText

The SQL command or stored procedure to be executed.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

OracleCommand(string, OracleConnection)
This constructor instantiates a new instance of OracleCommand class using the supplied
SQL command or stored procedure, and connection to the Oracle database.

Declaration

// C#
public OracleCommand(string cmdText, OracleConnection OracleConnection);

Chapter 7
OracleCommand Class

7-22

Parameters

• cmdText

The SQL command or stored procedure to be executed.

• OracleConnection

The connection to the Oracle database.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

OracleCommand Static Methods
The OracleCommand static method is listed in Table 7-14.

Table 7-14 OracleCommand Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

OracleCommand Properties
OracleCommand properties are listed in Table 7-15.

Table 7-15 OracleCommand Properties

Property Description

AddRowid Adds the ROWID as part of the select list

AddToStatementCache Causes executed statements to be cached, when the property
is set to true and statement caching is enabled

Chapter 7
OracleCommand Class

7-23

Table 7-15 (Cont.) OracleCommand Properties

Property Description

ArrayBindCount Specifies if the array binding feature is to be used and also
specifies the maximum number of array elements to be bound
in the Value property

ArrayBindRowsAffected Returns the number of affected rows for each iteration while
executing a DML using array binding

BindByName Specifies the binding method in the collection

CommandText Specifies the SQL statement or stored procedure to run
against the Oracle database or the XML data used to store
changes to the Oracle database

CommandTimeout Specifies the number of seconds the command is allowed to
execute before terminating the execution with an exception

CommandType Specifies the command type that indicates how the
CommandText property is to be interpreted

Connection Specifies the OracleConnection object that is used to
identify the connection to execute a command

Container Inherited from System.ComponentModel.Component
DesignTimeVisible Specifies whether or not the OracleCommand object is visible

on designer controls.

FetchSize Specifies the size of OracleDataReader's internal cache to
store result set data

ImplicitRefCursors Specifies an array of OracleRefCursors mapped to an
implicit resultset returned by the stored procedure.

Not Available in the ODP.NET, Managed Driver and ODP.NET
Core

InitialLOBFetchSize Specifies the amount of data that the OracleDataReader
initially fetches for LOB columns

InitialLONGFetchSize Specifies the amount that of data the OracleDataReader
initially fetches for LONG and LONG RAW columns

Notification Indicates that there is a notification request for the command

NotificationAutoEnlist Indicates whether or not to register for a continuous query
notification with the database automatically when the
command is executed

Parameters Specifies the parameters for the SQL statement or stored
procedure

RowSize Specifies the amount of memory needed by the
OracleDataReader internal cache to store one row of data

Site Inherited from System.ComponentModel.Component
Transaction Specifies the OracleTransaction object in which the

OracleCommand executes

Not supported in a .NET stored procedure

UpdatedRowSource Specifies how query command results are applied to the row
being updated

Not supported in a .NET stored procedure

Chapter 7
OracleCommand Class

7-24

Table 7-15 (Cont.) OracleCommand Properties

Property Description

UseEdmMapping Indicates whether or not the command object utilizes the Entity
Data Model mapping configuration values

XmlCommandType Specifies the type of XML operation on the OracleCommand
XmlQueryProperties Specifies the properties that are used when an XML document

is created from the result set of a SQL query statement

XmlSaveProperties Specifies the properties that are used when an XML document
is used to save changes to the database

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

AddRowid
This property adds the ROWID as part of the select list.

Declaration

// C#
public bool AddRowid {get; set;}

Property Value

bool

Remarks

Default is false.

This ROWID column is hidden and is not accessible by the application. To gain access to the
ROWIDs of a table, the ROWID must explicitly be added to the select list without the use of this
property.

Chapter 7
OracleCommand Class

7-25

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "LOB Support" for further information on how this property used with
LOBs

AddToStatementCache
This property causes executed statements to be cached when the property is set to
true and statement caching is enabled. If statement caching is disabled or if this
property is set to false, the executed statement is not cached.

Declaration

// C#
public bool AddToStatementCache{get; set;}

Return Value

Returns bool value. A value of true indicates that statements are being added to the
cache, false indicates otherwise.

Property Value

A bool value that indicates that the statements will be cached when they are executed,
if statement caching is enabled.

Remarks

Default is true.

AddToStatementCache is ignored if statement caching is disabled. Statement caching
is enabled by setting the Statement Cache Size connection string attribute to a value
greater than 0.

When statement caching is enabled, however, this property provides a way to
selectively add statements to the cache.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class AddToStatementCacheSample
{
 static void Main()
 {

Chapter 7
OracleCommand Class

7-26

 string constr = "User Id=scott;Password=tiger;Data Source=oracle;" +
 "statement cache size=10";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand("select * from emp", con);

 if (cmd.AddToStatementCache)
 Console.WriteLine("Added to the statement cache:" + cmd.CommandText);
 else
 Console.WriteLine("Not added to the statement cache:" + cmd.CommandText);

 // The execution of "select * from emp" will be added to the statement cache
 // because statement cache size is greater than 0 and OracleCommand's
 // AddToStatementCache is true by default.
 OracleDataReader readerEmp = cmd.ExecuteReader();

 // Do not add "select * from dept" to the statement cache
 cmd.CommandText = "select * from dept";
 cmd.AddToStatementCache = false;

 if (cmd.AddToStatementCache)
 Console.WriteLine("Added to the statement cache:" + cmd.CommandText);
 else
 Console.WriteLine("Not added to the statement cache:" + cmd.CommandText);

 // The execution of "select * from dept" will not be added to the
 // statement cache because AddToStatementCache is set to false.
 OracleDataReader readerDept = cmd.ExecuteReader();

 // Clean up
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "Statement Caching"

• ConnectionString

ArrayBindCount
This property specifies if the array binding feature is to be used and also specifies the
number of array elements to be bound in the OracleParameter Value property.

Declaration

// C#
public int ArrayBindCount {get; set;}

Chapter 7
OracleCommand Class

7-27

Property Value

An int value that specifies number of array elements to be bound in the
OracleParameter Value property.

Exceptions

ArgumentException - The ArrayBindCount value specified is invalid.

Remarks

Default = 0.

If ArrayBindCount is equal to 0, array binding is not used; otherwise, array binding is
used and OracleParameter Value property is interpreted as an array of values. The
value of ArrayBindCount must be specified to use the array binding feature.

If neither DbType nor OracleDbType is set, it is strongly recommended that you set
ArrayBindCount before setting the OracleParameter Value property so that inference
of DbType and OracleDbType from Value can be correctly done.

Array binding is not used by default.

If the XmlCommandType property is set to any value other than None, this property is
ignored.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "Array Binding"

• "Value "

ArrayBindRowsAffected
This property returns the number of affected rows for each iteration while executing a
DML using array binding.

Declaration

// C#
public long[] ArrayBindRowsAffected ;

Property Value

A long type

Chapter 7
OracleCommand Class

7-28

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "Array Binding"

• "Value "

BindByName
This property specifies the binding method in the collection.

Declaration

// C#
public bool BindByName {get; set;}

Property Value

Returns true if the parameters are bound by name; returns false if the parameters are
bound by position.

Remarks

Default = false.

BindByName is ignored under the following conditions:

• The value of the XmlCommandType property is Insert, Update, or Delete.

• The value of the XmlCommandType property is Query, but there are no parameters set on
the OracleCommand.

If the XmlCommandType property is OracleXmlCommandType.Query and any parameters are set
on the OracleCommand, the BindByName property must be set to true. Otherwise, the following
OracleCommand methods throw an InvalidOperationException.

• ExecuteNonQuery
• ExecuteXmlReader
• ExecuteStream
• ExecuteToStream

Chapter 7
OracleCommand Class

7-29

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "Array Binding"

• "Value "

CommandText
This property specifies the SQL statement or stored procedure to run against the
Oracle database or the XML data used to store changes to the Oracle database.

Declaration

// C#
public override string CommandText {get; set;}

Property Value

A string.

Implements

IDbCommand

Remarks

The default is an empty string.

When the CommandType property is set to StoredProcedure, the CommandText property
is set to the name of the stored procedure. The command calls this stored procedure
when an Execute method is called.

The effects of XmlCommandType values on CommandText are:

• XmlCommandType = None.

CommandType property determines the contents of CommandText.

• XmlCommandType = Query.

CommandText must be a SQL query. The SQL query should be a select statement.
CommandType property is ignored.

• XmlCommandType property is Insert, Update, or Delete.

CommandText must be an XML document. CommandType property is ignored.

Chapter 7
OracleCommand Class

7-30

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

CommandTimeout
This property specifies the minimum number of seconds that the command is allowed to
execute before terminating with an exception.

Declaration

// C#
public override int CommandTimeout {get; set;}

Property Value

int

Implements

IDbCommand.CommandTimeout

Exceptions

InvalidArgument - The specified value is less than 0.

Remarks

Default is 0 seconds, which enforces no time limit.

When the specified timeout value expires before a command execution finishes, ODP.NET
will begin the process of canceling the command. If cancellation is successful, then an
exception is thrown with the message ORA-01013: user requested cancel of current
operation. Other possible exceptions thrown after a command timeout expiration occurs
include ORA-00936 and ORA-00604. If the command is executed in time without any errors,
then no exceptions are thrown.

ODP.NET does not guarantee a command will be cancelled at the exact moment the timeout
value is reached. The timeout value is the minimum time to allow a command to complete
before the cancellation process begins. It is possible for commands to complete after the
timeout value expires.

In a situation where multiple OracleCommand objects use the same connection, the timeout
expiration on one of the OracleCommand objects may terminate any of the executions on the
single connection. To make the timeout expiration of a OracleCommand cancel only its own
command execution, simply use one OracleCommand for each connection if that
OracleCommand sets the CommandTimeout property to a value greater than 0.

Chapter 7
OracleCommand Class

7-31

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• http://msdn.microsoft.com/library for detailed information about this
Microsoft .NET Framework feature

CommandType
This property specifies the command type that indicates how the CommandText property
is to be interpreted.

Declaration

// C#
public override CommandType CommandType {get; set;}

Property Value

A CommandType.

Exceptions

ArgumentException - The value is not a valid CommandType such as:
CommandType.Text, CommandType.StoredProcedure, CommandType.TableDirect.

Remarks

Default = CommandType.Text
If the value of the XmlCommandType property is not None, then the CommandType property
is ignored.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

Connection
This property specifies the OracleConnection object that is used to identify the
connection to execute a command.

Chapter 7
OracleCommand Class

7-32

http://msdn.microsoft.com/library

Declaration

// C#
public OracleConnection Connection {get; set;}

Property Value

An OracleConnection object.

Implements

IDbCommand

Remarks

Default = null

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

DesignTimeVisible
This property specifies whether or not the OracleCommand object is visible on designer
controls.

Declaration

// C#
public override bool DesignTimeVisible { get; set; }

Property Value

A value that indicate whether or not OracleCommand object is visible in a control. The default is
true.

Remarks

This property is used by developers to indicate whether or not OracleCommand object is visible
in a control.

Chapter 7
OracleCommand Class

7-33

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

FetchSize
This property specifies the size of OracleDataReader's internal cache to store result
set data.

Declaration

// C#
public long FetchSize {get; set;}

Property Value

A long that specifies the size (in bytes) of the OracleDataReader's internal cache.

Exceptions

ArgumentException - The FetchSize value specified is invalid.

Remarks

Default = 131072.

The FetchSize property is inherited by the OracleDataReader that is created by a
command execution returning a result set. The FetchSize property on the
OracleDataReader object determines the amount of data the OracleDataReader
fetches into its internal cache for each database round-trip.

If the XmlCommandType property is set to any value other than None, this property is
ignored.

The RowSize and FetchSize properties handle UDT and XMLType data differently than
other scalar data types. Because only a reference to the UDT and XMLType data is
stored in the ODP.NET's internal cache, the RowSize property accounts for only the
memory needed for the reference (which is very small) and not the actual size of the
UDT and XMLType data. Thus, applications can inadvertently fetch a large number of
UDT or XMLType instances from the database in a single database round-trip. This is
because the actual size of UDT and XMLType data do not count against the FetchSize,
and it would require numerous UDT and XMLType references to fill up the default cache
size of 131072 bytes. Therefore, when fetching UDT or XMLType data, the FetchSize
property must be appropriately configured to control the number of UDT and XMLType
instances that are to be fetched, rather than the amount of the actual UDT and
XMLType data to be fetched.

NOTE: For LOB and LONG data types, only the sizes specified in the
InitialLOBFetchSize and InitialLONGFetchSize properties are accounted for by the

Chapter 7
OracleCommand Class

7-34

RowSize property in addition to the metadata and reference information that is maintained by
the cache for each LOB in the select list.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• OracleDataReader "FetchSize "

ImplicitRefCursors
This property returns an array of OracleRefCursors, where each OracleRefCursor maps to
an implicit resultset returned by the stored procedure.

Declaration

// C#
public OracleRefCursor[] ImplicitRefCursors {get; set;}

Property Value

An array of OracleRefCursors.

Remarks

This property is populated only when the stored procedure is executed through
ExecuteNonQuery and it does not get populated in any other scenarios.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

InitialLOBFetchSize
This property specifies the amount of data that the OracleDataReader initially fetches for LOB
columns.

Declaration

// C#
public int InitialLOBFetchSize {get; set;}

Chapter 7
OracleCommand Class

7-35

Property Value

An int specifying the number of characters or bytes to fetch initially.

Exceptions

ArgumentException - The InitialLOBFetchSize value specified is invalid.

Remarks

The value of InitialLOBFetchSize specifies the initial amount of LOB data that is
immediately fetched by the OracleDataReader. The property value specifies the
number of characters for CLOB and NCLOB data, and the number of bytes for BLOB data.

The InitialLOBFetchSize value is used to determine the length of the LOB column
data to fetch, if the LOB column is in the select list. If the select list does not contain a
LOB column, the InitialLOBFetchSize value is ignored.

When InitialLOBFetchSize is set to -1, the entire LOB data is prefetched and stored
in the fetch array.

Default = 0.

The maximum value supported for InitialLOBFetchSize is 2 GB.

GetOracleBlob and GetOracleClob methods can be used to retrieve any LOBs no
matter the InitialLOBFetchSize value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "Obtaining LOB Data" for more information on setting
InitialLOBFetchSize values

InitialLONGFetchSize
This property specifies the amount of data that the OracleDataReader initially fetches
for LONG and LONG RAW columns.

Declaration

// C#
public int InitialLONGFetchSize {get; set;}

Property Value

An int specifying the amount.

Chapter 7
OracleCommand Class

7-36

Exceptions

ArgumentException - The InitialLONGFetchSize value specified is invalid.

Remarks

The maximum value supported for InitialLONGFetchSize is 32767. If this property is set to a
higher value, the provider resets it to 32767.

The value of InitialLONGFetchSize specifies the initial amount of LONG or LONG RAW data that
is immediately fetched by the OracleDataReader. The property value specifies the number of
characters for LONG data and the number of bytes for LONG RAW. To fetch more than the
specified InitialLONGFetchSize amount, one of the following must be in the select list:

• Primary key

• ROWID
• Unique columns - (defined as a set of columns on which a unique constraint has been

defined or a unique index has been created, where at least one of the columns in the set
has a NOT NULL constraint defined on it)

The InitialLONGFetchSize value is used to determine the length of the LONG and LONG RAW
column data to fetch if one of the two is in the select list. If the select list does not contain a
LONG or a LONG RAW column, the InitialLONGFetchSize value is ignored.

When InitialLONGFetchSize is set to -1, the entire LONG or LONG RAW data is prefetched and
stored in the fetch array. Calls to GetString, GetChars, or GetBytes in OracleDataReader
allow retrieving the entire data.

Default = 0.

Setting this property to 0 defers the LONG and LONG RAW data retrieval entirely until the
application specifically requests it.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "Obtaining LONG and LONG RAW Data" for further information

Notification
This instance property indicates that there is a notification request for the command.

Declaration

// C#
public OracleNotificationRequest Notification {set; get;}

Chapter 7
OracleCommand Class

7-37

Property Value

A notification request for the command.

Remarks

When a changed notification is first registered, the client listener is started in order to
receive any database notification. The listener uses the port number defined in the
OracleDependency.Port static field. Subsequent change notification registrations use
the same listener in the same client process and do not start another listener.

When Notification is set to an OracleNotificationRequest instance, a notification
registration is created (if it has not already been created) when the command is
executed. Once the registration is created, the properties of the
OracleNotificationRequest instance cannot be modified. If the notification
registration has already been created, the result set that is associated with the
command is added to the existing registration.

When Notification is set to null, subsequent command executions do not require a
notification request. If a notification request is not required, set the Notification
property to null, or set the NotificationAutoEnlist property to false.

For Continuous Query Notification, a notification request can be used for multiple
command executions. In that case, any query result set associated with different
commands can be invalidated within the same registration.

When the OracleDependency.OnChange event is fired, if the ROWID column is explicitly
included in the query (or AddRowid property is set to true), then the Rowid column
contains ROWID values in the DataTable referenced by the
OracleNotificationEventArgs.Details property. This behavior can be overridden by
explicitly requesting for an inclusion and exclusion of ROWID values in the
OracleNotificationEventArgs by setting the OracleDependency.RowidInfo to
OracleRowidInfo.Include or OracleRowidInfo.Exclude, respectively.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "Continuous Query Notification Support "

• Continuous Query Notification Classes

NotificationAutoEnlist
This instance property indicates whether or not to register for a continuous query
notification with the database automatically when the command is executed.

Chapter 7
OracleCommand Class

7-38

Declaration

// C#
public bool NotificationAutoEnlist {set; get;}

Property Value

A bool value indicating whether or not to make a continuous query notification request
automatically, when the command is executed. If NotificationAutoEnlist is set to true,
and the Notification property is set appropriately, a continuous query notification request is
registered automatically; otherwise, no continuous query notification registration is made.

Default value: true

Remarks

A notification request can be used for multiple command executions using the same
OracleCommand instance. In that case, set the NotificationAutoEnlist property to true.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "Continuous Query Notification Support "

• Continuous Query Notification Classes

Parameters
This property specifies the parameters for the SQL statement or stored procedure.

Declaration

// C#
public OracleParameterCollection Parameters {get;}

Property Value

OracleParameterCollection

Implements

IDbCommand

Remarks

Default value = an empty collection

The number of the parameters in the collection must be equal to the number of parameter
placeholders within the command text, or an error is raised.

Chapter 7
OracleCommand Class

7-39

If the command text does not contain any parameter tokens (such as,:1,:2), the
values in the Parameters property are ignored.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

RowSize
This property specifies the amount of memory needed by the OracleDataReader
internal cache to store one row of data.

Declaration

// C#
public long RowSize {get;}

Property Value

A long that indicates the amount of memory (in bytes) that an OracleDataReader
needs to store one row of data for the executed query.

Remarks

Default value = 0
The RowSize property is set to a nonzero value after the execution of a command that
returns a result set. This property can be used at design time or dynamically during
runtime, to set the FetchSize, based on number of rows. For example, to enable the
OracleDataReader to fetch N rows for each database round-trip, the OracleDataReader
FetchSize property can be set dynamically to RowSize * N. Note that for the
FetchSize to take effect appropriately, it must be set after
OracleCommand.ExecuteReader() but before OracleDataReader.Read().

ODP.NET now supports values up to 32K for VARCHAR2, NVARCHAR2 or RAW type
columns in its calculation of RowSize value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• OracleDataReader "FetchSize"

Chapter 7
OracleCommand Class

7-40

Transaction
This property specifies the OracleTransaction object in which the OracleCommand executes.

Declaration

// C#
public OracleTransaction Transaction {set; get;}

Property Value

OracleTransaction

Implements

IDbCommand

Remarks

Default value = null
Transaction returns a reference to the transaction object associated with the OracleCommand
connection object. Thus the command is executed in whatever transaction context its
connection is currently in.

Note:

When this property is accessed through an IDbCommand reference, its set accessor
method is not operational.

Remarks (.NET Stored Procedure)

Always returns null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

UpdatedRowSource
This property specifies how query command results are applied to the row to be updated.

Declaration

// C#
public override UpdateRowSource UpdatedRowSource {get; set;}

Chapter 7
OracleCommand Class

7-41

Property Value

An UpdateRowSource.

Implements

IDbCommand

Exceptions

ArgumentException - The UpdateRowSource value specified is invalid.

Remarks

Always returns UpdateRowSource,

Set accessor throws an ArgumentException if the value is other than
UpdateRowSource.None.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

UseEdmMapping
This property Indicates whether or not the OracleCommand object utilizes the Entity
Data Model mapping configuration values.

Declaration

// C#
public bool UseEdmMapping

Property Value

A bool.

Remarks

Default is false.

The UseEdmMapping property allows user to explicitly specify that the OracleCommand
object should use the Entity Data Model mapping configuration values. This enables
use of Entity Framework Multiple Result Sets feature.

Chapter 7
OracleCommand Class

7-42

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

XmlCommandType
This property specifies the type of XML operation on the OracleCommand.

Declaration

// C#
public OracleXmlCommandType XmlCommandType {get; set;}

Property Value

An OracleXmlCommandType.

Remarks

Default value is None.

XmlCommandType values and usage:

• None - The CommandType property specifies the type of operation.

• Query - CommandText property must be set to a SQL select statement. The query is
executed, and the results are returned as an XML document. The SQL select statement
in the CommandText and the properties specified by the XmlQueryProperties property are
used to perform the operation. The CommandType property is ignored.

• Insert, Update, or Delete - CommandText property is an XML document containing the
changes to be made. The XML document in the CommandText and the properties specified
by the XmlSaveProperties property are used to perform the operation. The CommandType
property is ignored.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

XmlQueryProperties
This property specifies the properties that are used when an XML document is created from
the result set of a SQL query statement.

Chapter 7
OracleCommand Class

7-43

Declaration

// C#
public OracleXmlQueryProperties XmlQueryProperties {get; set;}

Property Value

OracleXmlQueryProperties.

Remarks

When a new instance of OracleCommand is created, an instance of
OracleXmlQueryProperties is automatically available on the OracleCommand instance
through the OracleCommand.XmlQueryProperties property.

A new instance of OracleXmlQueryProperties can be assigned to an OracleCommand
instance. Assigning an instance of OracleXmlQueryProperties to the
XmlQueryProperties of an OracleCommand instance creates a new instance of the
given OracleXmlQueryProperties instance for the OracleCommand. This way each
OracleCommand instance has its own OracleXmlQueryProperties instance.

Use the default constructor to get a new instance of OracleXmlQueryProperties.

Use the OracleXmlQueryProperties.Clone() method to get a copy of an
OracleXmlQueryProperties instance.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

XmlSaveProperties
This property specifies the properties that are used when an XML document is used to
save changes to the database.

Declaration

// C#
public OracleXmlSaveProperties XmlSaveProperties {get; set;}

Property Value

OracleXmlSaveProperties.

Remarks

When a new instance of OracleCommand is created, an instance of
OracleXmlSaveProperties is automatically available on the OracleCommand instance
through the OracleCommand.XmlSaveProperties property.

Chapter 7
OracleCommand Class

7-44

A new instance of OracleXmlSaveProperties can be assigned to an OracleCommand instance.
Assigning an instance of OracleXmlSaveProperties to the XmlSaveProperties of an
OracleCommand instance creates a new instance of the given OracleXmlSaveProperties
instance for the OracleCommand. This way each OracleCommand instance has its own
OracleXmlSaveProperties instance.

Use the default constructor to get a new instance of OracleXmlSaveProperties.

Use the OracleXmlSaveProperties.Clone() method to get a copy of an
OracleXmlSaveProperties instance.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

OracleCommand Public Methods
OracleCommand public methods are listed in Table 7-16.

Table 7-16 OracleCommand Public Methods

Public Method Description

Cancel Attempts to cancels a command that is currently
executing on a particular connection

Clone Creates a copy of OracleCommand object

CreateObjRef Inherited from System.MarshalByRefObject
CreateParameter Creates a new instance of OracleParameter class

Dispose Releases any resources or memory allocated by the
object

Equals Inherited from System.Object (Overloaded)

ExecuteNonQuery Executes a SQL statement or a command using the
XmlCommandType and CommandText properties and
returns the number of rows affected

ExecuteReader Executes a command (Overloaded)

ExecuteScalar Returns the first column of the first row in the result set
returned by the query

ExecuteStream Executes a command using the XmlCommandType and
CommandText properties and returns the results in a
new Stream object

ExecuteToStream Executes a command using the XmlCommandType and
CommandText properties and appends the results as an
XML document to the existing Stream

Chapter 7
OracleCommand Class

7-45

Table 7-16 (Cont.) OracleCommand Public Methods

Public Method Description

ExecuteXmlReader Executes a command using the XmlCommandType and
CommandText properties and returns the result as an
XML document in a .NET XmlTextReader object

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
Prepare This method is a no-op

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

Cancel
This method attempts to cancel a command that is currently executing on a particular
connection.

Declaration

// C#
public override void Cancel();

Implements

IDbCommand.Cancel

Remarks

If cancellation of the command succeeds, an exception is thrown. If cancellation is not
successful, no exception is thrown. If there is no command being executed at the time
of the Cancel invocation, Cancel does nothing. Invoking the Cancel method does not
guarantee that the command executing at the time will always be cancelled. The
execution may complete before it can be terminated. In such cases, no exception is
thrown.

Commands cancellation will stop the command execution stage or results fetching
stage if it is a query. If these stages have completed, Cancel does nothing.

Chapter 7
OracleCommand Class

7-46

ODP.NET sends a cancellation message to the database server when the Cancel method is
invoked. There may be a delay when cancelling a running PL/SQL program. This delay is
specific to PL/SQL's design in how it handles command cancellations.

When managed ODP.NET or ODP.NET Core invokes Cancel, it is deterministic. That means
the command executed by the OracleCommand object is the only command that could be
canceled. Unmanaged ODP.NET Cancel is non-deterministic.

Non-determinism in unmanaged ODP.NET means that when multiple OracleCommand objects
share the same connection, only one command can be executed on that connection at any
one time. When it is invoked, the Cancel method attempts to cancel the statement currently
running on the connection that the OracleCommand object is using to execute the command.
However, when multiple OracleCommand objects execute statements on the same connection
simultaneously, issuing a Cancel method invocation may cancel any of the issued
commands. This is because the command designated for cancellation may complete before
the Cancel invocation is effective. If this happens, a command executed by a different
OracleCommand could be cancelled instead.

There are several ways to avoid this non-deterministic situation that the Cancel method can
cause:

• The application can create just one OracleCommand object for each connection. Doing so
assures that the Cancel invocation only cancels commands executed by the
OracleCommand object using a particular connection.

• Command executions in the application are synchronized between OracleCommand
objects that use the same connection.

These suggestions do not apply if Cancel is not used in the application.

Because the termination on the currently running execution is non-deterministic, it is
recommended that any non-atomic SQL or PL/SQL execution be started within a transaction.
When the command execution successfully terminates with an exception of ORA-01013: user
requested cancel of current operation, the transaction can be rolled back for data integrity.
Other possible exceptions thrown after a command cancellation occurs include ORA-00936
and ORA-00604. Examples of non-atomic execution are collections of DML command
executions that are executed one-by-one and multiple DML commands that are part of a
PL/SQL stored procedure or function.

Example

// C#

// This example shows how command executions can be cancelled in a
// deterministic way even if multiple commands are executed on a single
// connection. This is accomplished by synchronizing threads through events.
// Since the Cancel method terminates the currently running operation on the
// connection, threads must be serialized if multiple threads are using the
// same connection to execute server round-trip incurring operations.
// Furthermore, the example shows how the execution and cancel threads should
// be synchronized so that nth iteration of the command execution does not
// inappropriately cancel the (n+1)th command executed by the same thread.

using System;
using System.Data;
using Oracle.DataAccess.Client;
using System.Threading;

class CancelSample

Chapter 7
OracleCommand Class

7-47

{
 private OracleCommand cmd;
 Thread t1, t2;
 // threads signal following events when assigned operations are completed

 private AutoResetEvent ExecuteEvent = new AutoResetEvent(false);
 private AutoResetEvent CancelEvent = new AutoResetEvent(false);
 private AutoResetEvent FinishedEvent = new AutoResetEvent(false);
 AutoResetEvent[] ExecuteAndCancel = new AutoResetEvent[2];

 // Default constructor
 CancelSample()
 {
 cmd = new OracleCommand("select * from all_objects",
 new OracleConnection("user id=scott;password=tiger;data source=oracle"));
 ExecuteAndCancel[0] = ExecuteEvent;
 ExecuteAndCancel[1] = CancelEvent;
 }

 // Constructor that takes a particular command and connection
 CancelSample(string command, OracleConnection con)
 {
 cmd = new OracleCommand(command, con);
 ExecuteAndCancel[0] = ExecuteEvent;
 ExecuteAndCancel[1] = CancelEvent;
 }

 // Execution of the command
 public void Execute()
 {
 OracleDataReader reader = null;
 try
 {
 Console.WriteLine("Execute.");
 reader = cmd.ExecuteReader();
 Console.WriteLine("Execute Done.");
 reader.Close();
 }
 catch(Exception e)
 {
 Console.WriteLine("The command has been cancelled.", e.Message);
 }
 Console.WriteLine("ExecuteEvent.Set()");
 ExecuteEvent.Set();
 }

 // Canceling of the command
 public void Cancel()
 {
 try
 {
 // cancel query if it takes longer than 100 ms to finish execution
 System.Threading.Thread.Sleep(100);
 Console.WriteLine("Cancel.");
 cmd.Cancel();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 Console.WriteLine("Cancel done.");

Chapter 7
OracleCommand Class

7-48

 Console.WriteLine("CancelEvent.Set()");
 CancelEvent.Set();
 }

 // Execution of the command with a potential of cancelling
 public void ExecuteWithinLimitedTime()
 {
 for (int i = 0; i < 5; i++)
 {
 Monitor.Enter(typeof(CancelSample));
 try
 {
 Console.WriteLine("Executing " + this.cmd.CommandText);
 ExecuteEvent.Reset();
 CancelEvent.Reset();
 t1 = new Thread(new ThreadStart(this.Execute));
 t2 = new Thread(new ThreadStart(this.Cancel));
 t1.Start();
 t2.Start();
 }
 finally
 {
 WaitHandle.WaitAll(ExecuteAndCancel);
 Monitor.Exit(typeof(CancelSample));
 }
 }
 FinishedEvent.Set();
 }
 [MTAThread]
 static void Main()
 {
 try
 {
 AutoResetEvent[] ExecutionCompleteEvents = new AutoResetEvent[3];

 // Create the connection that is to be used by three commands
 OracleConnection con = new OracleConnection("user id=scott;" +
 "password=tiger;data source=oracle");
 con.Open();

 // Create instances of CancelSample class
 CancelSample test1 = new CancelSample("select * from all_objects", con);
 CancelSample test2 = new CancelSample("select * from all_objects, emp",
 con);
 CancelSample test3 = new CancelSample("select * from all_objects, dept",
 con);

 // Create threads for each CancelSample object instance
 Thread t1 = new Thread(new ThreadStart(test1.ExecuteWithinLimitedTime));
 Thread t2 = new Thread(new ThreadStart(test2.ExecuteWithinLimitedTime));
 Thread t3 = new Thread(new ThreadStart(test3.ExecuteWithinLimitedTime));

 // Obtain a handle to an event from each object
 ExecutionCompleteEvents[0] = test1.FinishedEvent;
 ExecutionCompleteEvents[1] = test2.FinishedEvent;
 ExecutionCompleteEvents[2] = test3.FinishedEvent;

 // Start all threads to execute three commands using a single connection
 t1.Start();
 t2.Start();
 t3.Start();

Chapter 7
OracleCommand Class

7-49

 // Wait for all three commands to finish executing/canceling before
 //closing the connection
 WaitHandle.WaitAll(ExecutionCompleteEvents);
 con.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• http://msdn.microsoft.com/library for detailed information about this
Microsoft .NET Framework feature

Clone
This method creates a copy of an OracleCommand object.

Declaration

// C#
public object Clone();

Return Value

An OracleCommand object.

Implements

ICloneable

Remarks

The cloned object has the same property values as that of the object being cloned.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

Chapter 7
OracleCommand Class

7-50

http://msdn.microsoft.com/library

CreateParameter
This method creates a new instance of OracleParameter class.

Declaration

// C#
public OracleParameter CreateParameter();

Return Value

A new OracleParameter with default values.

Implements

IDbCommand

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The Dispose method also closes the OracleCommand object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

Chapter 7
OracleCommand Class

7-51

ExecuteNonQuery
This method executes a SQL statement or a command using the XmlCommandType and
CommandText properties and returns the number of rows affected.

Declaration

// C#
public override int ExecuteNonQuery();

Return Value

The number of rows affected.

Implements

IDbCommand

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

ExecuteNonQuery returns the number of rows affected, for the following:

• If the command is UPDATE, INSERT, or DELETE and the XmlCommandType property is
set to OracleXmlCommandType.None.

• If the XmlCommandType property is set to OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, OracleXmlCommandType.Delete.

For all other types of statements, the return value is -1.

ExecuteNonQuery is used for either of the following:

• Catalog operations (for example, querying the structure of a database or creating
database objects such as tables).

• Changing the data in a database without using a DataSet, by executing UPDATE,
INSERT, or DELETE statements.

• Changing the data in a database using an XML document.

Although ExecuteNonQuery does not return any rows, it populates any output
parameters or return values mapped to parameters with data.

If the XmlCommandType property is set to OracleXmlCommandType.Query then
ExecuteNonQuery executes the select statement in the CommandText property, and if
successful, returns -1. The XML document that is generated is discarded. This is
useful for determining if the operation completes successfully without getting the XML
document back as a result.

If the XmlCommandType property is set to OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, or OracleXmlCommandType.Delete, then the value of
the CommandText property is an XML document. ExecuteNonQuery saves the changes
in that XML document to the table or view that is specified in the XmlSaveProperties
property. The return value is the number of rows that are processed in the XML

Chapter 7
OracleCommand Class

7-52

document. Also, each row in the XML document could affect multiple rows in the database,
but the return value is still the number of rows in the XML document.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteNonQuerySample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand(
 "select sal from emp where empno=7934", con);

 object sal = cmd.ExecuteScalar();
 Console.WriteLine("Employee sal before update: " + sal);

 cmd.CommandText = "update emp set sal = sal + .01 where empno=7934";

 // Auto-commit changes
 int rowsUpdated = cmd.ExecuteNonQuery();

 if (rowsUpdated > 0)
 {
 cmd.CommandText = "select sal from emp where empno=7934";
 sal = cmd.ExecuteScalar();
 Console.WriteLine("Employee sal after update: " + sal);
 }

 // Clean up
 cmd.Dispose();
 con.Dispose();
 }
}

Requirements

For XML support, this method requires Oracle9i XML Developer's Kits (Oracle XDK) or later,
to be installed in the database. Oracle XDK can be downloaded from Oracle Technology
Network (OTN).

Chapter 7
OracleCommand Class

7-53

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• http://www.oracle.com/technetwork/index.html

ExecuteReader

Overload List:

ExecuteReader executes a command specified in the CommandText.

• ExecuteReader()

This method executes a command specified in the CommandText and returns an
OracleDataReader object.

• ExecuteReader(CommandBehavior)

This method executes a command specified in the CommandText and returns an
OracleDataReader object, using the specified CommandBehavior value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

ExecuteReader()
This method executes a command specified in the CommandText and returns an
OracleDataReader object.

Declaration

// C#
public OracleDataReader ExecuteReader();

Return Value

An OracleDataReader.

Implements

IDbCommand

Chapter 7
OracleCommand Class

7-54

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

When the CommandType property is set to CommandType.StoredProcedure, the CommandText
property should be set to the name of the stored procedure.

The specified command executes this stored procedure when ExecuteReader is called. If
parameters for the stored procedure consist of REF CURSOR objects, behavior differs
depending on whether ExecuteReader() or ExecuteNonQuery() is called. If ExecuteReader()
is invoked, REF CURSOR objects can be accessed through the OracleDataReader that is
returned.If more than one REF CURSOR is returned from a single execution, subsequent REF
CURSOR objects can be accessed sequentially by the NextResult method on the
OracleDataReader. If the ExecuteNonQuery method is invoked, the output parameter value
can be cast to a OracleRefCursor type and the OracleRefCursor object then can be used to
either populate a DataSet or create an OracleDataReader object from it. This approach
provides random access to all the REF CURSOR objects returned as output parameters.

The value of 100 is used for the FetchSize. If 0 is specified, no rows are fetched. For further
information, see "Obtaining LONG and LONG RAW Data".

If the value of the XmlCommandType property is set to OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, OracleXmlCommandType.Delete, or
OracleXmlCommandType.Query then the ExecuteReader method throws an
InvalidOperationException.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteReaderSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand("select ename from emp", con);

 OracleDataReader reader = cmd.ExecuteReader();

 while (reader.Read())
 {
 Console.WriteLine("Employee Name : " + reader.GetString(0));
 }

 // Clean up
 reader.Dispose();
 cmd.Dispose();
 con.Dispose();

Chapter 7
OracleCommand Class

7-55

 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "OracleRefCursor Class"

ExecuteReader(CommandBehavior)
This method executes a command specified in the CommandText and returns an
OracleDataReader object, using the specified behavior.

Declaration

// C#
public OracleDataReader ExecuteReader(CommandBehavior behavior);

Parameters

• behavior

The expected behavior.

Return Value

An OracleDataReader.

Implements

IDbCommand

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

A description of the results and the effect on the database of the query command is
indicated by the supplied behavior that specifies command behavior.

For valid CommandBehavior values and for the command behavior of each
CommandBehavior enumerated type, read the .NET Framework documentation.

When the CommandType property is set to CommandType.StoredProcedure, the
CommandText property should be set to the name of the stored procedure. The
command executes this stored procedure when ExecuteReader() is called.

If the stored procedure returns stored REF CURSORs, read the section on
OracleRefCursors for more details. See "OracleRefCursor Class".

Chapter 7
OracleCommand Class

7-56

The value of 100 is used for the FetchSize. If 0 is specified, no rows are fetched. For more
information, see "Obtaining LONG and LONG RAW Data".

If the value of the XmlCommandType property is set to OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, OracleXmlCommandType.Delete, or
OracleXmlCommandType.Query then the ExecuteReader method throws an
InvalidOperationException.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• "OracleRefCursor Class"

ExecuteScalar
This method executes the query using the connection, and returns the first column of the first
row in the result set returned by the query.

Declaration

// C#
public override object ExecuteScalar();

Return Value

An object which represents the value of the first row, first column.

Implements

IDbCommand

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

Extra columns or rows are ignored. ExecuteScalar retrieves a single value (for example, an
aggregate value) from a database. This requires less code than using the ExecuteReader()
method, and then performing the operations necessary to generate the single value using the
data returned by an OracleDataReader.

If the query does not return any row, it returns null.

The ExecuteScalar method throws an InvalidOperationException, if the value of the
XmlCommandType property is set to one of the following OracleXmlCommandType values:
Insert, Update, Delete, Query.

Chapter 7
OracleCommand Class

7-57

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteScalarSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand("select count(*) from emp", con);

 object count = cmd.ExecuteScalar();

 Console.WriteLine("There are {0} rows in table emp", count);

 // Clean up
 cmd.Dispose();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

ExecuteStream
This method executes a command using the XmlCommandType and CommandText
properties and returns the result as an XML document in a new Stream object.

Declaration

// C#
public Stream ExecuteStream();

Return Value

A Stream.

Remarks

The behavior of ExecuteStream varies depending on the XmlCommandType property
value:

Chapter 7
OracleCommand Class

7-58

• XmlCommandType = OracleXmlCommandType.None
ExecuteStream throws an InvalidOperationException.

• XmlCommandType = OracleXmlCommandType.Query
ExecuteStream executes the select statement in the CommandText property, and if
successful, returns an OracleClob object containing the XML document that was
generated. OracleClob contains Unicode characters.

If the SQL query does not return any rows, then ExcecuteStream returns an OracleClob
object containing an empty XML document.

• XmlCommandType = OracleXmlCommandType.Insert, OracleXmlCommandType.Update, or
OracleXmlCommandType.Delete.

The value of the CommandText property is an XML document. ExecuteStream saves the
data in that XML document to the table or view that is specified in the XmlSaveProperties
property and an empty OracleClob is returned.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• Oracle XML DB Developer’s Guide

• http://www.oracle.com/technetwork/index.html

ExecuteToStream
This method executes a command using the XmlCommandType and CommandText properties
and appends the result as an XML document to the existing Stream provided by the
application.

Declaration

// C#
public void ExecuteToStream(Stream outputStream);

Parameters

• outputStream

A Stream.

Remarks

The behavior of ExecuteToStream varies depending on the XmlCommandType property value:

• XmlCommandType = OracleXmlCommandType.None
ExecuteToStream throws an InvalidOperationException.

Chapter 7
OracleCommand Class

7-59

• XmlCommandType = OracleXmlCommandType.Query
ExecuteToStream executes the select statement in the CommandText property, and
if successful, appends the XML document that was generated to the given Stream.

If the SQL query does not return any rows, then nothing is appended to the given
Stream. The character set of the appended data is Unicode.

• XmlCommandType = OracleXmlCommandType.Insert, OracleXmlCommandType.Update,
or OracleXmlCommandType.Delete
The value of the CommandText property is an XML document. ExecuteToStream
saves the changes in that XML document to the table or view that is specified in
the XmlSaveProperties property. Nothing is appended to the given Stream.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• Oracle XML DB Developer’s Guide

• http://www.oracle.com/technetwork/index.html

ExecuteXmlReader
This method executes the command using the XmlCommandType and CommandText
properties and returns the result as an XML document in a .NET XmlTextReader
object.

Declaration

// C#
public XmlReader ExecuteXmlReader();

Return Value

An XmlReader.

Remarks

The behavior of ExecuteXmlReader varies depending on the XmlCommandType property
value:

• XmlCommandType = OracleXmlCommandType.None
ExecuteStream throws an InvalidOperationException.

• XmlCommandType = OracleXmlCommandType.Query
ExecuteXmlReader executes the select statement in the CommandText property, and
if successful, returns a .NET XmlTextReader object containing the XML document
that was generated.

Chapter 7
OracleCommand Class

7-60

If the XML document is empty, which can happen if the SQL query does not return any
rows, then an empty .NET XmlTextReader object is returned.

• XmlCommandType = OracleXmlCommandType.Insert, OracleXmlCommandType.Update, or
OracleXmlCommandType.Delete.

The value of the CommandText property is an XML document, and ExecuteXmlReader
saves the changes in that XML document to the table or view that is specified in the
XmlSaveProperties property. An empty .NET XmlTextReader object is returned.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

• Oracle XML DB Developer’s Guide

• http://www.oracle.com/technetwork/index.html

Prepare
This method is not supported.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommand Class

• OracleCommand Members

OracleCommandBuilder Class
An OracleCommandBuilder object provides automatic SQL generation for the
OracleDataAdapter when updates are made to the database.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.ComponentModel.Component
 System.Data.Common.DbCommandBuilder
 OracleDataAccess.Client.OracleCommandBuilder

Chapter 7
OracleCommandBuilder Class

7-61

Declaration

// C#
public sealed class OracleCommandBuilder : DbCommandBuilder

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleCommandBuilder automatically generates SQL statements for single-table
updates when the SelectCommand property of the OracleDataAdapter is set. An
exception is thrown if the DataSet contains multiple tables. The
OracleCommandBuilder registers itself as a listener for RowUpdating events whenever
its DataAdapter property is set. Only one OracleDataAdapter object and one
OracleCommandBuilder object can be associated with each other at one time.

To generate INSERT, UPDATE, or DELETE statements, the OracleCommandBuilder uses
ExtendedProperties within the DataSet to retrieve a required set of metadata. If the
SelectCommand is changed after the metadata is retrieved (for example, after the first
update), the RefreshSchema method should be called to update the metadata.

OracleCommandBuilder first looks for the metadata from the ExtendedProperties of
the DataSet; if the metadata is not available, OracleCommandBuilder uses the
SelectCommand property of the OracleDataAdapter to retrieve the metadata.

Example

The following example performs an update on the EMP table. It uses the
OracleCommandBuilder object to create the UpdateCommand for the OracleDataAdapter
object when OracleDataAdapter.Update() is called.

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleCommandBuilderSample
{
 static void Main()

Chapter 7
OracleCommandBuilder Class

7-62

 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 string cmdstr = "SELECT empno, sal from emp";

 // Create the adapter with the selectCommand txt and the
 // connection string
 OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

 // Create the builder for the adapter to automatically generate
 // the Command when needed
 OracleCommandBuilder builder = new OracleCommandBuilder(adapter);

 // Create and fill the DataSet using the EMP
 DataSet dataset = new DataSet();
 adapter.Fill(dataset, "EMP");

 // Get the EMP table from the dataset
 DataTable table = dataset.Tables["EMP"];

 // Indicate DataColumn EMPNO is unique
 // This is required by the OracleCommandBuilder to update the EMP table
 table.Columns["EMPNO"].Unique = true;

 // Get the first row from the EMP table
 DataRow row = table.Rows[0];

 // Update the salary
 double sal = double.Parse(row["SAL"].ToString());
 row["SAL"] = sal + .01;

 // Now update the EMP using the adapter
 // The OracleCommandBuilder will create the UpdateCommand for the
 // adapter to update the EMP table
 adapter.Update(dataset, "EMP");

 Console.WriteLine("Row updated successfully");
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Members

• OracleCommandBuilder Constructors

• OracleCommandBuilder Static Methods

• OracleCommandBuilder Properties

• OracleCommandBuilder Public Methods

• OracleCommandBuilder Events

Chapter 7
OracleCommandBuilder Class

7-63

OracleCommandBuilder Members
OracleCommandBuilder members are listed in the following tables.

OracleCommandBuilder Constructors

OracleCommandBuilder constructors are listed in Table 7-17.

Table 7-17 OracleCommandBuilder Constructors

Constructor Description

OracleCommandBuilder
Constructors

Instantiates a new instance of OracleCommandBuilder
class (Overloaded)

OracleCommandBuilder Static Methods

OracleCommandBuilder static methods are listed in Table 7-18.

Table 7-18 OracleCommandBuilder Static Methods

Method Description

DeriveParameters Queries for the parameters of a stored procedure or
function, represented by a specified OracleCommand, and
populates the OracleParameterCollection of the
command with the return values

Equals Inherited from System.Object (Overloaded)

OracleCommandBuilder Properties

OracleCommandBuilder properties are listed in Table 7-19.

Table 7-19 OracleCommandBuilder Properties

Property Description

Container Inherited from System.ComponentModel.Component
CaseSensitive Indicates whether or not double quotes are used around Oracle object

names when generating SQL statements

CatalogLocation Not Supported

CatalogSeparator Not Supported

ConflictOption Not Supported

DataAdapter Indicates the OracleDataAdapter for which the SQL statements are
generated

QuotePrefix Specifies the beginning character or characters used to specify
database objects whose names contain special characters such as
spaces or reserved words

QuoteSuffix Specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or
reserved words

Chapter 7
OracleCommandBuilder Class

7-64

Table 7-19 (Cont.) OracleCommandBuilder Properties

Property Description

SchemaSeparator Specifies the character to be used for the separator between the
schema identifier and other identifiers

Site Inherited from System.ComponentModel.Component

OracleCommandBuilder Public Methods

OracleCommandBuilder public methods are listed in Table 7-20.

Table 7-20 OracleCommandBuilder Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from System.ComponentModel.Component
Equals Inherited from System.Object (Overloaded)

GetDeleteCommand Gets the automatically generated OracleCommand object that
has the SQL statement (CommandText) perform deletions on
the database (Overloaded)

GetHashCode Inherited from System.Object
GetInsertCommand Gets the automatically generated OracleCommand object that

has the SQL statement (CommandText) perform insertions on
the database (Overloaded)

GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
GetUpdateCommand Gets the automatically generated OracleCommand object that

has the SQL statement (CommandText) perform updates on the
database (Overloaded)

InitializeLifetimeService Inherited from System.MarshalByRefObject
QuoteIdentifier Returns the correct quoted form of the provided unquoted

identifier, with any embedded quotes in the identifier properly
escaped

RefreshSchema Refreshes the database schema information used to generate
INSERT, UPDATE, or DELETE statements

UnquoteIdentifier Returns the correct unquoted form of the provided quoted
identifier, removing any escape notation for quotes embedded
in the identifier

ToString Inherited from System.Object

OracleCommandBuilder Events

The OracleCommandBuilder event is listed in Table 7-21.

Chapter 7
OracleCommandBuilder Class

7-65

Table 7-21 OracleCommandBuilder Events

Event Name Description

Disposed Inherited from System.ComponentModel.Component

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

OracleCommandBuilder Constructors
OracleCommandBuilder constructors create new instances of the
OracleCommandBuilder class.

Overload List:

• OracleCommandBuilder()

This constructor creates an instance of the OracleCommandBuilder class.

• OracleCommandBuilder(OracleDataAdapter)

This constructor creates an instance of the OracleCommandBuilder class and sets
the DataAdapter property to the provided OracleDataAdapter object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

OracleCommandBuilder()
This constructor creates an instance of the OracleCommandBuilder class.

Declaration

// C#
public OracleCommandBuilder();

Remarks

Default constructor.

Chapter 7
OracleCommandBuilder Class

7-66

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

OracleCommandBuilder(OracleDataAdapter)
This constructor creates an instance of the OracleCommandBuilder class and sets the
DataAdapter property to the provided OracleDataAdapter object.

Declaration

// C#
public OracleCommandBuilder(OracleDataAdapter da);

Parameters

• da

The OracleDataAdapter object provided.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

OracleCommandBuilder Static Methods
OracleCommandBuilder static methods are listed in Table 7-22.

Table 7-22 OracleCommandBuilder Static Methods

Method Description

DeriveParameters Queries for the parameters of a stored procedure or function,
represented by a specified OracleCommand, and populates the
OracleParameterCollection of the command with the return
values

Equals Inherited from System.Object (Overloaded)

Chapter 7
OracleCommandBuilder Class

7-67

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

DeriveParameters
This method queries for the parameters of a stored procedure or function, represented
by a specified OracleCommand, and populates the OracleParameterCollection of the
command with the return values.

Declaration

// C#
public static void DeriveParameters(OracleCommand command);

Parameters

• command

The command that represents the stored procedure or function for which
parameters are to be derived.

Exceptions

InvalidOperationException - The CommandText is not a valid stored procedure or
function name, the CommandType is not CommandType.StoredProcedure, or the
Connection.State is not ConnectionState.Open.

Remarks

When DeriveParameters is used to populate the Parameter collection of an
OracleCommand Object that represents a stored function, the return value of the
function is bound as the first parameter (at position 0 of the
OracleParameterCollection).

DeriveParameters can only be used for stored procedures or functions, not for
anonymous PL/SQL blocks.

DeriveParameters incurs a database round-trip to retrieve parameter metadata prior to
executing the stored procedure/function. It should only be used during design time. To
avoid unnecessary database round-trips in a production environment, the
DeriveParameters method itself should be replaced with the explicit parameter
settings that were returned by the DeriveParameters method at design time.

DeriveParameters can only preserve the case of the stored procedure or function
name if it is encapsulated by double-quotes. For example, if the stored procedure in
the database is named GetEmployees with mixed-case, the CommandText property on
the OracleCommand object must be set appropriately as in the following example:

cmd.CommandText = "\"GetEmployees\"";

Chapter 7
OracleCommandBuilder Class

7-68

Stored procedures and functions in a package must be provided in the following format:

<package name>.<procedure or function name>

For example, to obtain parameters for a stored procedure named GetEmployees (mixed-case)
in a package named EmpProcedures (mixed-case), the name provided to the OracleCommand
is:

"\"EmpProcedures\".\"GetEmployees\""

DeriveParameters cannot be used for object type methods.

The derived parameters contain all the metadata information that is needed for the stored
procedure to execute properly. The application must provide the value of the parameters
before execution, if required. The application may also modify the metadata information of the
parameters before execution. For example, the Size property of the OracleParameter may
be modified for PL/SQL character and string types to optimize the execution of the stored
procedure.

The output values of derived parameters return as .NET Types by default. To obtain output
parameters as provider types, the OracleDbType property of the parameter must be set
explicitly by the application to override this default behavior. One quick way to do this is to set
the OracleDbType to itself for all output parameters that should be returned as provider types.

The BindByName property of the supplied OracleCommand is left as is, but the application can
change its value.

If the specified stored procedure or function is overloaded, the first overload is used to
populate the parameters collection.

// Database Setup
/*
connect scott/tiger@oracle
CREATE OR REPLACE PROCEDURE MyOracleStoredProc (arg_in IN VARCHAR2,
 arg_out OUT VARCHAR2) IS
BEGIN
 arg_out := arg_in;
END;
/
*/

// C#
using System;
using System.Data;
using Oracle.DataAccess.Client;

class DeriveParametersSample
{
 static void Main()
 {
 // Create the PL/SQL Stored Procedure MyOracleStoredProc as indicated in
 // the preceding Database Setup

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand
 OracleCommand cmd = new OracleCommand("MyOracleStoredProc", con);
 cmd.CommandType = CommandType.StoredProcedure;

Chapter 7
OracleCommandBuilder Class

7-69

 // Derive Parameters
 OracleCommandBuilder.DeriveParameters(cmd);
 Console.WriteLine("Parameters Derived");

 // Prints "Number of Parameters for MyOracleStoredProc = 2"
 Console.WriteLine("Number of Parameters for MyOracleStoredProc = {0}",
 cmd.Parameters.Count);

 // The PL/SQL stored procedure MyOracleStoredProc has one IN and
 // one OUT parameter. Set the Value for the IN parameter.
 cmd.Parameters[0].Value = "MyText";

 // The application may modify the other OracleParameter properties also
 // This sample uses the default Size for the IN parameter and modifies
 // the Size for the OUT parameter

 // The default size for OUT VARCHAR2 is 4000
 // Prints "cmd.Parameters[1].Size = 4000"
 Console.WriteLine("cmd.Parameters[1].Size = " + cmd.Parameters[1].Size);

 // Set the Size for the OUT parameter
 cmd.Parameters[1].Size = 6;

 // Execute the command
 cmd.ExecuteNonQuery();

 // Prints "cmd.Parameters[1].Value = MyText"
 Console.WriteLine("cmd.Parameters[1].Value = " + cmd.Parameters[1].Value);

 con.Close();
 con.Dispose();
 }
}

Example

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

• OracleCommand Class

• OracleParameter Class

• OracleParameterCollection Class

• http://msdn.microsoft.com/library for detailed information about this
Microsoft .NET Framework feature

OracleCommandBuilder Properties
OracleCommandBuilder properties are listed in Table 7-23.

Chapter 7
OracleCommandBuilder Class

7-70

http://msdn.microsoft.com/library

Table 7-23 OracleCommandBuilder Properties

Property Description

Container Inherited from System.ComponentModel.Component
CaseSensitive Indicates whether or not double quotes are used around Oracle object names

when generating SQL statements

CatalogLocation Not Supported

CatalogSeparator Not Supported

ConflictOption Not Supported

DataAdapter Indicates the OracleDataAdapter for which the SQL statements are
generated

QuotePrefix Specifies the beginning character or characters used to specify database
objects whose names contain special characters such as spaces or reserved
words

QuoteSuffix Specifies the ending character or characters used to specify database objects
whose names contain special characters such as spaces or reserved words

SchemaSeparator Specifies the character to be used for the separator between the schema
identifier and other identifiers

Site Inherited from System.ComponentModel.Component

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

CaseSensitive
This property indicates whether or not double quotes are used around Oracle object names
(for example, tables or columns) when generating SQL statements.

Declaration

// C#
bool CaseSensitive {get; set;}

Property Value

A bool that indicates whether or not double quotes are used.

Remarks

Default = false

Chapter 7
OracleCommandBuilder Class

7-71

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

CatalogLocation
This property is not supported.

Declaration

// C#
public override CatalogLocation CatalogLocation {get; set;}

Exceptions

NotSupportedException - This property is not supported.

Remarks

This property is not supported.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

CatalogSeparator
This property is not supported.

Declaration

// C#
public override string CatalogSeparator {get; set;}

Exceptions

NotSupportedException - This property is not supported.

Remarks

This property is not supported.

Chapter 7
OracleCommandBuilder Class

7-72

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

ConflictOption
This property is not supported.

Declaration

// C#
public override string ConflictOption {get; set;}

Exceptions

NotSupportedException - This property is not supported.

Remarks

This property is not supported.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

DataAdapter
This property indicates the OracleDataAdapter object for which the SQL statements are
generated.

Declaration

// C#
OracleDataAdapter DataAdapter{get; set;}

Property Value

An OracleDataAdapter object.

Remarks

Default = null

Chapter 7
OracleCommandBuilder Class

7-73

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

QuotePrefix
This property specifies the beginning character or characters used to specify database
objects whose names contain special characters such as spaces or reserved words.

Declaration

// C#
public override string QuotePrefix {get; set;}

Property Value

The beginning character or characters to use. The default value is "\"".

Remarks

This property is independent of any OracleConnection or OracleCommand objects.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

QuoteSuffix
This property specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or reserved words.

Declaration

// C#
public override string QuoteSuffix {get; set;}

Property Value

The ending character or characters to use. The default value is "\"".

Remarks

This property is independent of any OracleConnection or OracleCommand objects.

Chapter 7
OracleCommandBuilder Class

7-74

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

SchemaSeparator
This property specifies the character to be used for the separator between the schema
identifier and other identifiers.

Declaration

// C#
public override string SchemaSeparator {get; set; }

Property Value

The character to be used as the schema separator.

Exceptions

NotSupportedException - The input value is not a dot (.).

Remarks

The default schema separator is a dot (.). The only acceptable value for this property is a dot
(.).

This property is independent of any OracleConnection or OracleCommand objects.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class SchemaSeperatorSample
{
 static void Main(string[] args)
 {
 try
 {
 OracleCommandBuilder cmdBuilder = new OracleCommandBuilder();

 //schemaSeparator is dot(.)
 Console.WriteLine("schemaSeparator is {0}",
 cmdBuilder.SchemaSeparator);

 //set the schemaseparator, only '.' is allowed.
 cmdBuilder.SchemaSeparator = ".";

Chapter 7
OracleCommandBuilder Class

7-75

 // the only acceptable value for this property is a dot (.)
 // Hence the following line will throw NotSupportedException
 cmdBuilder.SchemaSeparator = "!";
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

OracleCommandBuilder Public Methods
OracleCommandBuilder public methods are listed in Table 7-24.

Table 7-24 OracleCommandBuilder Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from System.ComponentModel.Component
Equals Inherited from System.Object (Overloaded)

GetDeleteCommand Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
deletions on the database (Overloaded)

GetHashCode Inherited from System.Object
GetInsertCommand Gets the automatically generated OracleCommand object

that has the SQL statement (CommandText) perform
insertions on the database (Overloaded)

GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
GetUpdateCommand Gets the automatically generated OracleCommand object

that has the SQL statement (CommandText) perform
updates on the database (Overloaded)

InitializeLifetimeService Inherited from System.MarshalByRefObject
QuoteIdentifier Returns the correct quoted form of the provided unquoted

identifier, with any embedded quotes in the identifier
properly escaped

Chapter 7
OracleCommandBuilder Class

7-76

Table 7-24 (Cont.) OracleCommandBuilder Public Methods

Public Method Description

RefreshSchema Refreshes the database schema information used to
generate INSERT, UPDATE, or DELETE statements

UnquoteIdentifier Returns the correct unquoted form of the provided quoted
identifier, removing any escape notation for quotes
embedded in the identifier

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

GetDeleteCommand
Gets the automatically generated OracleCommand object that has the SQL statement
(CommandText) perform deletions on the database

Overload List

• GetDeleteCommand()

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform deletions on the database when an application calls
Update() on the OracleDataAdapter.

• GetDeleteCommand(bool)

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform deletions on the database when an application calls
Update() on the OracleDataAdapter.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

Chapter 7
OracleCommandBuilder Class

7-77

GetDeleteCommand()
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform deletions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetDeleteCommand();

Return Value

An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property
is null, or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

GetDeleteCommand(bool)
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform deletions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetDeleteCommand(bool useColumnsForParameterNames);

Parameters

• useColumnsForParameterNames
If true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

Return Value

An OracleCommand.

Chapter 7
OracleCommandBuilder Class

7-78

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

Remarks

If the bool is true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

GetInsertCommand
Gets the automatically generated OracleCommand object that has the SQL statement
(CommandText) perform insertions on the database

Overload List

• GetInsertCommand()

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform insertions on the database when an application calls
Update() on the OracleDataAdapter.

• GetInsertCommand(bool)

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform insertions on the database when an application calls
Update() on the OracleDataAdapter.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

Chapter 7
OracleCommandBuilder Class

7-79

GetInsertCommand()
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform insertions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetInsertCommand();

Return Value

An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property
is null, or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

GetInsertCommand(bool)
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform insertions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetInsertCommand(bool useColumnsForParameterNames);

Parameters

• useColumnsForParameterNames
If true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

Return Value

An OracleCommand.

Chapter 7
OracleCommandBuilder Class

7-80

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

Remarks

If the bool is true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

GetUpdateCommand
Gets the automatically generated OracleCommand object that has the SQL statement
(CommandText) perform updates on the database

Overload List

• GetUpdateCommand()

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform updates on the database when an application calls
Update() on the OracleDataAdapter.

• GetUpdateCommand(bool)

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform updates on the database when an application calls
Update() on the OracleDataAdapter.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

Chapter 7
OracleCommandBuilder Class

7-81

GetUpdateCommand()
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform updates on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetUpdateCommand();

Return Value

An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property
is null, or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

GetUpdateCommand(bool)
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform updates on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetUpdateCommand(bool useColumnsForParameterNames);

Parameters

• useColumnsForParameterNames
If true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

Return Value

An OracleCommand.

Chapter 7
OracleCommandBuilder Class

7-82

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

Remarks

If the bool is true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

QuoteIdentifier
This method returns the correct quoted form of the provided unquoted identifier, with any
embedded quotes in the identifier properly escaped.

Declaration

// C#
public override string QuoteIdentifier(string unquotedIdentifier);

Parameters

• UnquotedIdentifier

An unquoted identifier string.

Return Value

The quoted version of the identifier. Embedded quotes within the identifier are properly
escaped.

Exceptions

ArgumentNullException - The input parameter is null.

Remarks

This method is independent of any OracleConnection or OracleCommand objects.

Example

// C#

Chapter 7
OracleCommandBuilder Class

7-83

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class QuoteIdentifierSample
{
 static void Main(string[] args)
 {
 OracleCommandBuilder builder = new OracleCommandBuilder();
 string quoteIdentifier = builder.QuoteIdentifier("US\"ER");

 //quoteIdentifier for "US\"ER" is (\"US\"\"ER\")
 Console.WriteLine("quoteIdentifier is {0}" , quoteIdentifier);
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

RefreshSchema
This method refreshes the database schema information used to generate INSERT,
UPDATE, or DELETE statements.

Declaration

// C#
public override void RefreshSchema();

Remarks

An application should call RefreshSchema whenever the SelectCommand value of the
OracleDataAdapter object changes.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

Chapter 7
OracleCommandBuilder Class

7-84

UnquoteIdentifier
This method returns the correct unquoted form of the provided quoted identifier, removing
any escape notation for quotes embedded in the identifier.

Declaration

// C#
public override string UnquoteIdentifier(string quotedIdentifier);

Parameters

• quotedIdentifier

The quoted string identifier.

Return Value

The unquoted identifier, with escape notation for any embedded quotes removed.

Exceptions

ArgumentNullException - The input parameter is null.

ArgumentException - The input parameter is empty.

Remarks

This method is independent of any OracleConnection or OracleCommand objects.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class UnQuoteIdentifierSample
{
 static void Main(string[] args)
 {
 //create an OracleCommandBuilder object.
 OracleCommandBuilder builder = new OracleCommandBuilder();

 string identifier = "US\"ER";
 Console.WriteLine("Identifier is {0}", identifier);

 // quote the identifier
 string quoteIdentifier = builder.QuoteIdentifier(identifier);

 //quoteIdentifier of "US\"ER" is (\"US\"\"ER\")
 Console.WriteLine("QuotedIdentifier is {0}" , quoteIdentifier);
 string unquoteIdentifier = builder.UnquoteIdentifier(quoteIdentifier);

 //And its unquoteIdentifier is US\"ER
 Console.WriteLine("UnquotedIdentifier is {0}" , unquoteIdentifier);

Chapter 7
OracleCommandBuilder Class

7-85

 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

OracleCommandBuilder Events
The OracleCommandBuilder event is listed in Table 7-25.

Table 7-25 OracleCommandBuilder Event

Event Name Description

Disposed Inherited from System.ComponentModel.Component

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCommandBuilder Class

• OracleCommandBuilder Members

OracleConfiguration Class
An OracleConfiguration is a static class for setting ODP.NET configuration data
using a single programming interface.

Class Inheritance

System.Object
Oracle.ManagedDataAccess.Client.OracleConfiguration

Declaration

// C#
public sealed class OracleConfiguration

Chapter 7
OracleConfiguration Class

7-86

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Note:

Unmanaged ODP.NET implements the OracleConfiguration debug tracing
properties only.

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Example

// C#

using System;
using Oracle.ManagedDataAccess.Client;

namespace ODP_Core_Config_API
{
 class odp_core_config
 {
 static void Main(string[] args)
 {
 // This sample demonstrates how to use ODP.NET Core Configuration API

 // Add connect descriptors and net service names entries.
 OracleConfiguration.OracleDataSources.Add("orclpdb",
"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<hostname or IP>)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=<service name>)(SERVER=dedicated)))");
 OracleConfiguration.OracleDataSources.Add("orcl",
"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<hostname or IP>)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=<service name>)(SERVER=dedicated)))");

 // Set default statement cache size to be used by all connections.
 OracleConfiguration.StatementCacheSize = 25;

 // Disable self tuning by default.
 OracleConfiguration.SelfTuning = false;

 // Bind all parameters by name.

Chapter 7
OracleConfiguration Class

7-87

 OracleConfiguration.BindByName = true;

 // Set default timeout to 60 seconds.
 OracleConfiguration.CommandTimeout = 60;

 // Set default fetch size as 1 MB.
 OracleConfiguration.FetchSize = 1024 * 1024;

 // Set tracing options
 OracleConfiguration.TraceOption = 1;
 OracleConfiguration.TraceFileLocation = @"D:\traces";
 // Uncomment below to generate trace files
 //OracleConfiguration.TraceLevel = 7;

 // Set network properties
 OracleConfiguration.SendBufferSize = 8192;
 OracleConfiguration.ReceiveBufferSize = 8192;
 OracleConfiguration.DisableOOB = true;

 OracleConnection orclCon = null;

 try
 {
 // Open a connection
 orclCon = new OracleConnection("user id=hr; password=<password>;
data source=orclpdb");
 orclCon.Open();

 // Execute simple select statement that returns first 10 names
from EMPLOYEES table
 OracleCommand orclCmd = orclCon.CreateCommand();
 orclCmd.CommandText = "select first_name from employees where
rownum <= 10 ";
 OracleDataReader rdr = orclCmd.ExecuteReader();

 while (rdr.Read())
 Console.WriteLine("Employee Name: " + rdr.GetString(0));

 Console.ReadLine();

 rdr.Dispose();
 orclCmd.Dispose();
 }
 finally
 {
 // Close the connection
 if (null != orclCon)
 orclCon.Close();
 }
 }
 }
}

Chapter 7
OracleConfiguration Class

7-88

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Members

• OracleConfiguration Connection Properties

• OracleConfiguration Secure Connection Properties

• OracleConfiguration Command Properties

• OracleConfiguration High Availability Properties

• OracleConfiguration Performance Properties

• OracleConfiguration Debug Tracing Properties

OracleConfiguration Members
OracleConfiguration members are listed in the following tables.

OracleConfiguration Connection Properties

OracleConfiguration Connection properties are listed in Table 7-26.

Table 7-26 OracleConfiguration Connection Properties

Property Description

DatabaseEditionName Specifies the Oracle edition name for the connection object

DisableOOB Specifies whether to enable Oracle Net Services to send or
receive out-of-band break messages using urgent data
provided by the underlying protocol

DrcpConnectionClass Specifies a logical name that identifies the DRCP
connection pool that the ODP.NET connection will use

HostnameDefaultServiceIsHost Specifies whether to default the service name to the
hostname in Oracle Easy Connect Naming so that the
service name does not need to be specified

NamesDirectoryPath Specifies the naming method order used for client name
resolution lookups

OciCompartment Gets or sets the Oracle Cloud Identifier (OCID) of the target
database's compartment at the process level

OciDatabase Gets or sets the target database's Oracle Cloud Identifier
(OCID) at the process level

OciIamUrl Gets or sets the URL end point at the process level for
getting the database token

OciTenacy Gets or sets the Oracle Cloud Identifier (OCID) of the IAM
user's cloud tenancy at the process level for retrieving the
database token

OracleDataSources Returns a collection of TNS entries added through
OracleConfiguration

Chapter 7
OracleConfiguration Class

7-89

Table 7-26 (Cont.) OracleConfiguration Connection Properties

Property Description

TcpConnectTimeout Specifies the time, in seconds, for a client to establish a
TCP connection (PROTOCOL=tcp in the TNS connect
address) to the database server before it can time out

TnsAdmin Specifies the tnsnames.ora and/or sqlnet.ora directory
location

OracleConfiguration Secure Connection Properties

OracleConfiguration Secure Connection Properties are listed in Table 7-27.

Table 7-27 OracleConfiguration Secure Connection Properties

Property Description

PasswordAuthentication Sets the process level PASSWORD_AUTH parameter
value

SqlNetAuthenticationServices Enables one or more authentication services, such as
TCP/IP with SSL

SqlNetCloudUser Specifies an user name for web server HTTP basic
authentication

SqlNetCryptoChecksumClient Specifies the checksum client behavior

SqlNetCryptoChecksumTypesClient Specifies the crypto-checksum algorithms the client can
use

SqlNetEncryptionClient Specifies the encryption client behavior

SqlNetEncryptionTypesClient Specifies encryption algorithms that the client can use

SqlNetWalletOverride Specifies whether the client overrides the strong
authentication credential with the stored wallet
password credential for the database connection

SqlNetURI Specifies the WebSocket universal resource identifier

SSLServerDNMatch Enforces the database server distinguished name (DN)
matches its service name

SSLVersion Enforces the connection to use a specific SSL/TLS
version

TokenAuthentication Sets the value for TOKEN_AUTH parameter at the
process level

TokenLocation Gets or sets the token location directory at the process
level where the access token , or database token and
private key files, are present for ODP.NET token
authentication.

WalletLocation Specifies the location of wallets

OracleConfiguration Command Properties

OracleConfiguration Command properties are listed in Table 7-28.

Chapter 7
OracleConfiguration Class

7-90

Table 7-28 OracleConfiguration Command Properties

Property Description

AddOracleTypesDeserialization Adds ODP.NET-specific data types to the “allow” list to
permit deserialization into DataSet or DataTable

BindByName Specifies whether the binding method used for the
parameter collection is by name or by position

CommandTimeout Specifies the number of seconds the command is allowed to
execute before terminating the execution with an exception

GetDecimalRetainTrailingZeros Specifies whether to retain trailing zeros from an Oracle
NUMBER in a .NET Decimal

UseClientInitiatedCQN Specifies whether to use Client Initiated Continuous Query
Notification (CICQN) or traditional Continuous Query
Notification (CQN) that does not rely on a persistent
connection

OracleConfiguration Directories Properties

OracleConfiguration Directories properties are listed in Table 7-29.

Table 7-29 OracleConfiguration Directories Properties

Property Description

DefaultAdminContext Specifies the default directory entry that contains a LDAP
Oracle Context from which connect identifiers can be
created, modified, or looked up

DirectoryServers Lists the host names and port numbers of the primary and
alternate LDAP directory servers

DirectoryServerType Specifies the directory server type used, such as Oracle
Internet Directory or Microsoft Active Directory

LdapAdmin Specifies the ldap.ora directory location

NamesLdapAuthenticateBind Specifies whether the LDAP naming adapter should attempt
to authenticate using a specified wallet when it connects to
the LDAP directory to resolve the name in the connect string

NamesLdapAuthenticateBindMethod Specifies the authentication method the client LDAP naming
adapter should use while connecting to the LDAP directory
to resolve connect string names

NamesLdapConnTimeout specifies the non-blocking connection timeout to the LDAP
server

OracleConfiguration High Availability Properties

OracleConfiguration High Availability properties are listed in Table 7-30.

Chapter 7
OracleConfiguration Class

7-91

Table 7-30 OracleConfiguration High Availability Properties

Property Description

DbNotificationAddress Specifies the address that the provider listens to for all
notifications sent by the database for continuous query
notification feature.

DbNotificationPort Specifies the port number that the provider listens to for
all notifications sent by the database for continuous
query notification, Fast Connection Failover, and/or
Runtime Connection Load Balancing features

HAEvents Enables the application to receive Fast Connection
Failover events for maintaining application high
availability

OnsConfigFile Specifies the configuration file to define Oracle
Notification Service (ONS) behavior

OnsMode Specifies the ONS daemon mode as either local or
remote

OnsProtocol Defines whether the ONS connection uses TCP/IP or
TCP/IP with SSL/TLS

OnsWalletLocation Specifies the directory location of the ONS wallets

OracleOnsServers Returns a collection of logical ONS servers added
through OracleConfiguration

ServiceRelocationConnectionTimeou
t

Specifies the time to wait before retrying connecting to
a service that becomes unavailable.

OracleConfiguration Performance Properties

OracleConfiguration Performance properties are listed in Table 7-31.

Table 7-31 OracleConfiguration Performance Properties

Property Description

FetchSize Specifies the total memory size, in bytes, that the
provider allocates to cache data fetched in one
database round-trip

LoadBalancing Enables the application to receive runtime connection
load balancing information

MaxStatementCacheSize Specifies the maximum number of statements that can
be cached when self-tuning is enabled

PerformanceCounters Specifies the ODP.NET connection performance
counters to publish so that they can be monitored

ReceiveBufferSize Specifies the buffer space limit for receive operations of
sessions

SelfTuning Specifies whether self-tuning is enabled for an
ODP.NET application

SendBufferSize Specifies the buffer space limit for send operations of
sessions

Chapter 7
OracleConfiguration Class

7-92

Table 7-31 (Cont.) OracleConfiguration Performance Properties

Property Description

StatementCacheSize Specifies the number of cursors or statements to be
cached for each database connection

TcpNoDelay Preempts delays in buffer flushing within the TCP/IP
protocol stack

OracleConfiguration Debug Tracing Properties

OracleConfiguration Debug Tracing properties are listed in Table 7-32.

Table 7-32 OracleConfiguration Debug Tracing Properties

Property Description

TraceFileLocation Specifies the destination directory to output provider traces

TraceFileMaxSize Specifies the maximum file size of each trace file

TraceLevel Specifies the generated trace level to trace ODP.NET calls
and diagnose provider issues

TraceOption Specifies whether to generate a single trace file or multiple
trace files for multithreaded applications

OracleConfiguration Connection Properties
OracleConfiguration Connection properties are listed in Table 7-33.

Table 7-33 OracleConfiguration Connection Properties

Property Description

DatabaseEditionName Specifies the Oracle edition name for the connection object

DisableOOB Specifies whether to enable Oracle Net Services to send or
receive out-of-band break messages using urgent data
provided by the underlying protocol

DrcpConnectionClass Specifies a logical name that identifies the DRCP
connection pool that the ODP.NET connection will use

HostnameDefaultServiceIsHost Specifies whether to default the service name to the
hostname in Oracle Easy Connect Naming so that the
service name does not need to be specified

NamesDirectoryPath Specifies the naming method order used for client name
resolution lookups

OciCompartment Gets or sets the Oracle Cloud Identifier (OCID) of the target
database's compartment at the process level

OciDatabase Gets or sets the target database's Oracle Cloud Identifier
(OCID) at the process level

OciIamUrl Gets or sets the URL end point at the process level for
getting the database token

Chapter 7
OracleConfiguration Class

7-93

Table 7-33 (Cont.) OracleConfiguration Connection Properties

Property Description

OciTenacy Gets or sets the Oracle Cloud Identifier (OCID) of the IAM
user's cloud tenancy at the process level for retrieving the
database token

OracleDataSources Returns a collection of TNS entries added through
OracleConfiguration

TcpConnectTimeout Specifies the time, in seconds, for a client to establish a
TCP connection (PROTOCOL=tcp in the TNS connect
address) to the database server before it can time out

TnsAdmin Specifies the tnsnames.ora and/or sqlnet.ora directory
location

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

DatabaseEditionName
This property specifies the Oracle edition name for the connection object. This
property is used with the Oracle Edition-Based Redefinition feature.

Declaration

// C#
public static string DatabaseEditionName { get; set; }

Property Type

System.String

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

Chapter 7
OracleConfiguration Class

7-94

DisableOOB
This property specifies whether to enable Oracle Net Services to send or receive out-of-band
break messages using urgent data provided by the underlying protocol. Default is false.

Declaration

// C#
public static bool DisableOOB { get; set; }

Property Type

System.Boolean

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

DrcpConnectionClass
This property specifies a logical name that identifies the DRCP connection pool that the
ODP.NET connection will use. It will be used as a default if the DRCPConnectionClass
property on the OracleConnection object is not set. It will be ignored for non-DRCP
connections. Default value is null.

Declaration

// C#
public static string DrcpConnectionClass { get; set; }

Property Type

System.String

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

Chapter 7
OracleConfiguration Class

7-95

HostnameDefaultServiceIsHost
This property specifies whether to default the service name to the hostname in Oracle
Easy Connect Naming so that the service name does not need to be specified.

Declaration

// C#
public static bool HostnameDefaultServiceIsHost { get; set; }

Property Type

System.Boolean

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

NamesDirectoryPath
This property specifies the naming method order used for client name resolution
lookups.

Declaration

// C#
public static string NamesDirectoryPath { get; set; }

Property Type

System.String

Example

C#
OracleConfiguration.NamesDirectoryPath = "(tnsnames, ldap)";

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

Chapter 7
OracleConfiguration Class

7-96

OciCompartment
This property gets or sets the Oracle Cloud Identifier (OCID) of the target database's
compartment at the process level.

Declaration

// C#
public static string OciCompartment { get; set; }

Property Type

System.String

Remarks

This property is optional by default. This property is mandatory if the OciDatabase property is
set.

If OciCompartment is not set, then ODP.NET requests access to all the cloud tenancy's
databases identified in the OciTenancy property.

There is no default value for this property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OciDatabase
This property gets or sets the target database's Oracle Cloud Identifier (OCID) at the process
level.

Declaration

// C#
public static string OciCompartment { get; set; }

Property Type

System.String

Remarks

This property is optional.

If it is not set, then ODP.NET requests access to all the cloud compartment's databases
identified in the OciCompartment property. If OciCompartment property is also not set, then
ODP.NET requests access to all the tenancy's databases specified in the OciTenancy
property.

Chapter 7
OracleConfiguration Class

7-97

There is no default value for this property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OciIamUrl
This property gets or sets the URL end point at the process level for getting the
database token.

Declaration

// C#
public static string OciIamUrl { get; set; }

Property Type

System.String

Remarks

This is a mandatory property for IAM alternate password use. If not set in that usage
scenario, ODP.NET raises an error.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OciTenacy
This property gets or sets the Oracle Cloud Identifier (OCID) of the IAM user's cloud
tenancy at the process level for retrieving the database token.

Declaration

// C#
public static string OciTenacy { get; set; }

Property Type

System.String

Chapter 7
OracleConfiguration Class

7-98

Remarks

This is a mandatory property for IAM alternate password use. If not set in that usage
scenario, ODP.NET raises an error.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OracleDataSources
This property returns a collection of TNS entries added through OracleConfiguration.

Declaration

// C#
public static OracleDataSourceCollection OracleDataSources

Property

Type:Oracle.ManagedDataAccess.Client.OracleDataSourceCollection
Returns a static OracleDataSourceCollection object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

• OracleDataSourceCollection Class

TcpConnectTimeout
This property specifies the time, in seconds, for a client to establish a TCP connection
(PROTOCOL=tcp in the TNS connect address) to the database server before it can time out.
Default value is 60 seconds.

Declaration

// C#
public static string TcpConnectTimeout { get; set; }

Chapter 7
OracleConfiguration Class

7-99

Property Type

System.String

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

TnsAdmin
This property specifies the tnsnames.ora and/or sqlnet.ora directory location.

Declaration

// C#
public static string TnsAdmin { get; set; }

Property Type

System.String
The backslash (\) is a special character in .NET that represents the beginning of an
escape sequence. To specify a directory location, use any one of the following formats
in .NET so that backslashes are correctly represented in a directory location:

// C#
OracleConfiguration.TnsAdmin = "D:\\oracle\\client\\admin";
OracleConfiguration.TnsAdmin = @"D:\oracle\client\admin";
OracleConfiguration.TnsAdmin = "D:/oracle/client/admin";

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OracleConfiguration Secure Connection Properties
OracleConfigurationSecure Connection properties are listed in Table 7-34.

Chapter 7
OracleConfiguration Class

7-100

Table 7-34 OracleConfiguration Secure Connection Properties

Property Description

OciCompartment Gets or sets the Oracle Cloud Identifier (OCID) of the target
database's compartment at the process level

OciDatabase Gets or sets the target database's Oracle Cloud Identifier
(OCID) at the process level

OciIamUrl Gets or sets the URL end point at the process level for
getting the database token

OciTenacy Gets or sets the Oracle Cloud Identifier (OCID) of the IAM
user's cloud tenancy at the process level for retrieving the
database token

PasswordAuthentication Sets the process level PASSWORD_AUTH parameter value

SqlNetAuthenticationServices Enables one or more authentication services, such as
TCP/IP with SSL

SqlNetCloudUser Specifies an user name for web server HTTP basic
authentication

SqlNetCryptoChecksumClient Specifies the checksum client behavior

SqlNetCryptoChecksumTypesClient Specifies the crypto-checksum algorithms the client can use

SqlNetEncryptionClient Specifies the encryption client behavior

SqlNetEncryptionTypesClient Specifies encryption algorithms that the client can use

SqlNetWalletOverride Specifies whether the client overrides the strong
authentication credential with the stored wallet password
credential for the database connection

SqlNetURI Specifies the WebSocket universal resource identifier

SSLServerDNMatch Enforces the database server distinguished name (DN)
matches its service name

SSLVersion Enforces the connection to use a specific SSL/TLS version

TokenAuthentication Sets the value for TOKEN_AUTH parameter at the process
level

TokenLocation Gets or sets the token location directory at the process level
where the access token , or database token and private key
files, are present for ODP.NET token authentication.

WalletLocation Specifies the location of wallets

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

Chapter 7
OracleConfiguration Class

7-101

PasswordAuthentication
This property sets the process level PASSWORD_AUTH parameter value. The possible
values are OciToken and PasswordVerifier. The default value is PasswordVerifier,
which indicates the typical database username and password can be used for
authentication.

Declaration

// C#
public static OraclePasswordAuth PasswordAuthentication { get; set; }

Property Type

An OraclePasswordAuth enumeration

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SqlNetAuthenticationServices
This property enables one or more authentication services, such as TCP/IP with SSL.

Declaration

// C#
public static string SqlNetAuthenticationServices { get; set; }

Property Type

System.String
Default value is NONE.

Valid Values: All, Kerberos5, NTS, TCPS, or NONE.

Note:

ODP.NET Core does not currently support the Kerberos5 value.

Example

//C#
con.SqlNetAuthenticationServices = "(nts, tcps)";

Chapter 7
OracleConfiguration Class

7-102

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SqlNetCloudUser
This property specifies an user name for web server HTTP basic authentication.

Declaration

// C#
public static string SqlNetCloudUser { get; set; }

Property Type

System.String
Default: none

Remarks

When you use a secure websocket protocol, the client uses this user as the user name for
authentication. The password for this user should be stored in a wallet using mkstore utility
commands.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SqlNetCryptoChecksumClient
This property specifies the checksum client behavior.

Declaration

// C#
public static string SqlNetCryptoChecksumClient { get; set; }

Property Type

System.String
Default value is accepted.

Chapter 7
OracleConfiguration Class

7-103

Valid Values:

• accepted - to enable the security service if required or requested by the database.

• rejected - to disable the security service, even if required by the database.

• requested - to enable the security service if the database allows it.

• required - to enable the security service and disallow the connection if the
database is not enabled for the security service.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SqlNetEncryptionClient
This property specifies the encryption client behavior.

Declaration

// C#
public static string SqlNetEncryptionClient { get; set; }

Property Type

System.String
Default value is accepted.

Valid Values:

• accepted - to enable the security service if required or requested by the database.

• rejected - to disable the security service, even if required by the database.

• requested - to enable the security service if the database allows it.

• required - to enable the security service and disallow the connection if the
database is not enabled for the security service.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

Chapter 7
OracleConfiguration Class

7-104

SqlNetEncryptionTypesClient
This property specifies encryption algorithms that the client can use.

Declaration

// C#
public static string SqlNetEncryptionTypesClient { get; set; }

Property Type

System.String
Valid Values:

• AES128
• AES192
• AES256
• 3DES112
• 3DES168

Example

C#
OracleConfiguration.SqlNetEncryptionTypesClient = "(aes128, aes192)";

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SqlNetCryptoChecksumTypesClient
This property specifies the crypto-checksum algorithms the client can use.

Declaration

// C#
public static string SqlNetCryptoChecksumTypesClient { get; set; }

Property Type

System.String
Valid Values:

• SHA1
• SHA256

Chapter 7
OracleConfiguration Class

7-105

• SHA384
• SHA512

Example

C#
OracleConfiguration.SqlNetCryptoChecksumTypesClient = "(SHA1, SHA256, SHA512)";

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SqlNetWalletOverride
This property specifies whether the client overrides the strong authentication credential
with the stored wallet password credential for the database connection.

Declaration

// C#
public static bool SqlNetWalletOverride { get; set; }

Property Type

System.Boolean

Description

Default is false. By setting this value to true, ODP.NET uses the stored wallet
password credential to connect.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SqlNetURI
This property specifies the WebSocket universal resource identifier.

Chapter 7
OracleConfiguration Class

7-106

Declaration

// C#
public static string SqlNetURI { get; set; }

Property Type

System.String
This property is Request-URI of the HTTP GET method. It identifies the endpoint of the
WebSocket connection, both to allow multiple domains to be served from one IP address and
to allow multiple WebSocket endpoints to be served by a single server.

When setting the URI in unmanaged ODP.NET, it cannot begin with a forward slash
character. For managed ODP.NET and ODP.NET Core, the forward slash at the beginning of
the URI is optional.

Default value is sqlnet.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SSLServerDNMatch
This property enforces the database server distinguished name (DN) matches its service
name. Default value is false.

Declaration

// C#
public static bool SSLServerDNMatch { get; set; }

Property Type

System.Boolean
Valid Values:

• true - to enforce a match. If the DN matches the service name, then the connection
succeeds. If the DN does not match the service name, then the connection fails.

• false - to not enforce a match. If the DN does not match the service name, then the
connection is successful, but an error is logged to the sqlnet.log file.

Chapter 7
OracleConfiguration Class

7-107

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SSLVersion
This property enforces the connection to use a specific SSL/TLS version. The default
value is an undetermined version.

Declaration

// C#
public static string SSLVersion { get; set; }

Property Type

System.String

Description

Supported values are: undetermined | 3.0 | 1.0 | 1.1 | 1.2. To specify more than one
SSL/TLS version allowed, use the or keyword between values. For example, 1.2 or
1.1 or 3.0.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

TokenAuthentication
This property sets the value for TOKEN_AUTH parameter at the process level. The
possible values for this property can be OracleTokenAuth.OciToken,
OracleTokenAuth.Disabled, or OracleTokenAuth.OAuth.

Declaration

// C#
public static OracleTokenAuth TokenAuthentication { get; set; }

Chapter 7
OracleConfiguration Class

7-108

Table 7-35 OracleTokenAuth Members

Member Name Description

Disabled Default value. Token authentication is DISABLED.

OciToken Token authentication is enabled for Oracle Identity and Access
Management.

OAuth Token authentication enabled for Azure Active Directory.

Note:

Only managed ODP.NET and ODP.NET Core can use this property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

TokenLocation
This property gets or sets the token location directory at the process level where the access
token, or database token and private key files, are present for ODP.NET token authentication.
The file names do not need to be specified.

Declaration

// C#
public static string TokenLocation { get; set; }

Property Value

A directory location.

Exceptions

None.

Description

This property is mandatory for OAuth file-based access tokens, but optional for database
tokens.

In the access token case, this property can be the directory where the file “token” is, or the
full-path specification of the token file.

Chapter 7
OracleConfiguration Class

7-109

For OCI IAM PoP tokens, a file’s full-path specification can be specified if it does not
have the standard name, “token”. A file name does not need to be specified when it
uses this standard, fixed name. Bearer token default token location is an empty string.

Note:

Only managed ODP.NET and ODP.NET Core can use this property.

Remarks

Applications can override the default location of signature token and private key by
setting a new custom location through this property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

WalletLocation
This property specifies the location of wallets. Wallets are certificates, keys, and
trustpoints processed by SSL/TLS.

Declaration

// C#
public static string WalletLocation { get; set; }

Property Type

System.String

Remarks

Microsoft Certificate Store (MCS) and file system wallets are supported.

Note:

MCS wallets are supported only on Windows operating systems.

Chapter 7
OracleConfiguration Class

7-110

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OracleConfiguration Command Properties
OracleConfiguration Command properties are listed in Table 7-36.

Table 7-36 OracleConfiguration Command Properties

Property Description

AddOracleTypesDeserialization Adds ODP.NET-specific data types to the “allow” list to
permit deserialization into DataSet or DataTable

BindByName Specifies whether the binding method used for the
parameter collection is by name or by position

CommandTimeout Specifies the number of seconds the command is allowed to
execute before terminating the execution with an exception

GetDecimalRetainTrailingZeros Specifies whether to retain trailing zeros from an Oracle
NUMBER in a .NET Decimal

UseClientInitiatedCQN Specifies whether to use Client Initiated Continuous Query
Notification (CICQN) or traditional Continuous Query
Notification (CQN) that does not rely on a persistent
connection

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

AddOracleTypesDeserialization
This static method adds ODP.NET-specific data types to the “allow” list to permit
deserialization into DataSet or DataTable.

Declaration

// C#
public static void AddOracleTypesDeserialization();

Chapter 7
OracleConfiguration Class

7-111

Remarks

In newer .NET versions, the allowed DataSet and DataTable data types that can be
deserialized are now restricted for security reasons. This change applies to .NET 5,
plus .NET Core and .NET Framework updates. If application DataSets and
DataTables use Oracle data types with one of these new .NET versions, use the
AddOracleTypesDeserialization method to add ODP.NET-specific data types to the
“allow” list so that they can be deserialized. If an attempt is made to deserialize
ODP.NET-specific types without adding them to the “allow” list, an ODP.NET type
initializer exception will be encountered.

If other software that is part of the application adds data types to the allow list as well,
be careful not to overwrite the ODP.NET allowed types. Be sure to only append to the
allow list, not overwrite it. If overwriting does occur, call
AddOracleTypesDeserialization method afterwards to add the ODP.NET types back
to the list.

The ODP.NET AddOracleTypesDeserialization method call itself appends to the
allow list. It does not overwrite existing entries.

This property is available in ODP.NET 19.10 and higher. It has also been backported to
the latest ODP.NET 18c, 12.2, and 12.1 patches.

Example

// C#
// Sample demonstrating loading an XML file with Oracle data types into DataSet

using System.Data;
using Oracle.ManagedDataAccess.Client;

class OracleTypeDeserializationSample
{
 static void Main()
 {
 OracleConfiguration.AddOracleTypesDeserialization();
 DataSet ds = new DataSet();
 ds.ReadXml("dsch1.xml");
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

BindByName
This property specifies whether the binding method used for the parameter collection
is by name or by position. Default value (false) is bind by position.

Chapter 7
OracleConfiguration Class

7-112

Declaration

// C#
public static bool BindByName { get; set; }

Property Type

System.Boolean

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

CommandTimeout
This property specifies the number of seconds the command is allowed to execute before
terminating the execution with an exception. Default value is 0 seconds, which results in no
time limit.

Declaration

// C#
public static int CommandTimeout { get; set; }

Property Type

System.Int32.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

GetDecimalRetainTrailingZeros
This property specifies whether to retain trailing zeros from an Oracle NUMBER in a .NET
Decimal.

Declaration

// C#
public static bool GetDecimalRetainTrailingZeros { get; set; }

Chapter 7
OracleConfiguration Class

7-113

Property Type

System.Boolean

Remarks

Starting with ODP.NET 19.11, Oracle NUMBER column values retrieved as .NET
Decimals retain a trailing zero if the number of digits on the right hand side of the
decimal point is odd in number when this property is set to true.

The default value is false.

This property can be used whenever retrieving data into a .NET Decimal, including the
following scenarios:

• OracleDataReader.GetDecimal();
• OracleDecimal.Value
• Parameter output value of type Decimal
• JSON data with Decimal in it

• UDT with Decimal attribute

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

UseClientInitiatedCQN
This property specifies whether to use Client Initiated Continuous Query Notification
(CICQN) or traditional Continuous Query Notification (CQN) that does not rely on a
persistent connection.

Declaration

// C#
public static bool UseClientInitiatedCQN {get; set;}

Remarks

When set to true, ODP.NET creates and uses a separate connection to receive
server-initiated database change notifications. This is known as CICQN. This single
connection aggregates all notifications for the pool, but the connection does not count
toward the Min Pool Size nor the Max Pool Size limits. For managed ODP.NET, if there
are five connection pools using CICQN, then ODP.NET will then have five additional
connections, one per pool.

Chapter 7
OracleConfiguration Class

7-114

If false (default), then ODP.NET will use traditional CQN to receive the database change
notifications. The client creates a listening end point (i.e. IP address and port) that does not
rely on a database connection to continuously exist.

CICQN is commonly used in cloud scenarios or if firewalls between the database and client
do not allow access to the client port. Otherwise, traditional CQN is used.

ODP.NET CICQN requires Oracle Database 21c or higher.

UseClientInitiatedCQN must be set to its intended value prior to opening a database
connection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OracleConfiguration Directories Properties
OracleConfiguration Directories properties are listed in Table 7-37 .

Table 7-37 OracleConfiguration Directories Properties

Property Description

DefaultAdminContext Specifies the default directory entry that contains a LDAP
Oracle Context from which connect identifiers can be
created, modified, or looked up

DirectoryServers Lists the host names and port numbers of the primary and
alternate LDAP directory servers

DirectoryServerType Specifies the directory server type used, such as Oracle
Internet Directory or Microsoft Active Directory

LdapAdmin Specifies the ldap.ora directory location

NamesLdapAuthenticateBind Specifies whether the LDAP naming adapter should attempt
to authenticate using a specified wallet when it connects to
the LDAP directory to resolve the name in the connect string

NamesLdapAuthenticateBindMethod Specifies the authentication method the client LDAP naming
adapter should use while connecting to the LDAP directory
to resolve connect string names

NamesLdapConnTimeout specifies the non-blocking connection timeout to the LDAP
server

Chapter 7
OracleConfiguration Class

7-115

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

DefaultAdminContext
This property specifies the default directory entry that contains a LDAP Oracle Context
from which connect identifiers can be created, modified, or looked up.

Declaration

// C#
public static string DefaultAdminContext { get; set; }

Property Type

System.String

Values

Valid distinguished name

Example

// C#
OracleConfiguration.DefaultAdminContext=@"o=OracleSoftware,c=US";

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

DirectoryServers
This property lists the host names and port numbers of the primary and alternate
LDAP directory servers.

Declaration

// C#
public static string DirectoryServers { get; set; }

Chapter 7
OracleConfiguration Class

7-116

Property Type

System.String
Use the following format to list the host names and port numbers:

<HOST>:<PORT>[:<TLS/SSL PORT>]

Example

// C#
OracleConfiguration.DirectoryServers="(ldap-server1:389, ldap-server2:400:636)";

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

DirectoryServerType
This property specifies the directory server type used, such as Oracle Internet Directory or
Microsoft Active Directory.

Declaration

// C#
public static string DirectoryServerType { get; set; }

Property Type

System.String

Values

• oid for Oracle Internet Directory

• ad for Microsoft Active Directory

Example

// C#
OracleConfiguration.DirectoryServerType=@"oid";

Chapter 7
OracleConfiguration Class

7-117

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

LdapAdmin
This property specifies the ldap.ora directory location.

Declaration

// C#
public static string LdapAdmin { get; set; }

Property Type

System.String
The LdapAdmin setting works in conjunction with the TnsAdmin setting to determine the
ldap.ora search order.

Example

// C#
OracleConfiguration.LdapAdmin=@"D:\user\ldap\";

Remarks

ODP.NET will search for ldap.ora using the location search order as listed in Oracle
Configuration Files for ODP.NET Core and in Oracle Client Configuration File Settings
for managed ODP.NET.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

NamesLdapAuthenticateBind
This property specifies whether the LDAP naming adapter should attempt to
authenticate using a specified wallet when it connects to the LDAP directory to resolve
the name in the connect string.

Chapter 7
OracleConfiguration Class

7-118

Declaration

// C#
public static bool NamesLdapAuthenticateBind { get; set; }

Property Type

System.Boolean
If the parameter is set to true, then the LDAP connection is authenticated using a wallet
whose location must be specified in the OracleConfiguration.WalletLocation property.

If the parameter is set to false, then the LDAP connection is established using an
anonymous bind.

Default value is false.

Example

// C#
OracleConfiguration.NamesLdapAuthenticateBind = true;

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

NamesLdapAuthenticateBindMethod
This property specifies the authentication method the client LDAP naming adapter should use
while connecting to the LDAP directory to resolve connect string names.

Declaration

// C#
public static string NamesLdapAuthenticateBindMethod { get; set; }

Property Type

System.String

Remarks

The simple authentication method over LDAPS (LDAP over TLS connection) is supported.

Store the directory entry distinguished name and password in an Oracle wallet. When the
client connects to the LDAP server, it is authenticated using the credentials stored in this
wallet. The wallet must contain client certificates. Its trust store must contain the certificates
issued by the certificate authority of the LDAP server.

The parameter value is a string (ldaps_simple_auth).

Chapter 7
OracleConfiguration Class

7-119

The LDAP naming adapter uses the oracle.ldap.client.dn and
oracle.ldap.client.password entries from the wallet for authenticating to the LDAP
server. If these entries are not present, then the client attempts an anonymous
authentication using TLS or LDAPS.

Default

none

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

NamesLdapConnTimeout
This property specifies the non-blocking connection timeout to the LDAP server.

Declaration

// C#
public static Int32 NamesLdapConnTimeout { get; set; }

Property Type

System.Int32
This property sets the time to wait (in seconds) for a LDAP server connection before a
time out error can occur.

The minimum value is -1, which indicates no connection timeout. The default value is
15 seconds.

Example

// C#
OracleConfiguration.NamesLdapConnTimeout = -1;

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

Chapter 7
OracleConfiguration Class

7-120

OracleConfiguration High Availability Properties
OracleConfiguration High Availability properties are listed in Table 7-38.

Table 7-38 OracleConfiguration High Availability Properties

Property Description

ChunkMigrationConnectionTimeout This setting pauses the connection request until the
migration completes or fails to migrate in the specified time,
then connect to the correct shard with the data requested.

Not Available in ODP.NET, Unmanaged Driver

DbNotificationAddress Specifies the address that the provider listens to for all
notifications sent by the database for continuous query
notification feature

DbNotificationPort Specifies the port number that the provider listens to for all
notifications sent by the database for continuous query
notification, Fast Connection Failover, and/or Runtime
Connection Load Balancing features

HAEvents Enables the application to receive Fast Connection Failover
events for maintaining application high availability

OnsConfigFile Specifies the configuration file to define Oracle Notification
Service (ONS) behavior

OnsMode Specifies the ONS daemon mode as either local or
remote

OnsProtocol Defines whether the ONS connection uses TCP/IP or
TCP/IP with SSL/TLS

OnsWalletLocation Specifies the directory location of the ONS wallets

OracleOnsServers Returns a collection of logical ONS servers added through
OracleConfiguration

ServiceRelocationConnectionTimeout Specifies the time to wait before retrying connecting to a
service that becomes unavailable.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

ChunkMigrationConnectionTimeout
In sharding, a connection request to a specific shard can occur while data is migrating from
the original shard to a new one. This setting will pause the connection request until the
migration completes or fails to migrate in the specified time, then connect to the correct shard
with the data requested.

Chapter 7
OracleConfiguration Class

7-121

Declaration

// C#
public static int ChunkMigrationConnectionTimeout {get;set;}

Property Value

The minimum time, in seconds, for a pooled connection request to pause waiting for a
chunk migration.

Remarks

Default is 120 seconds. This setting requires connection pooling to be enabled.

ODP.NET reads the chunk migration connection timeout setting only upon pool
creation. A new timeout setting will not be used until a new pool is created.

If the connection requires only read-only access, then this setting will not be used. This
setting is in effect for connections with chunk write access.

During chunk migration, an ODP.NET connection request obeys only the chunk
migration connection timeout. All other connection timeout values, such as
OracleConnection.ConnectionTimeout are ignored and not used.

Oracle recommends setting the ODP.NET chunk migration connection timeout value to
a value greater than the chunk movement server timeout. One way to set this server
timeout is using the Global Data Services Control Utility (GDSCTL) move chunk
command's timeout option.

The OracleConnection ChunkMigrationConnectionTimeout property inherits from the
OracleConfiguration ChunkMigrationConnectionTimeout property. The
OracleConnection property can be separately set to override the property set in the
OracleConfiguration class.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

DbNotificationAddress
This property specifies the address that the provider listens to for all notifications sent
by the database for continuous query notification feature.

Declaration

// C#
public static string DbNotificationAddress { get; set; }

Chapter 7
OracleConfiguration Class

7-122

Property Type

System.String

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

DbNotificationPort
This property specifies the port number that the provider listens to for all notifications sent by
the database for continuous query notification, Fast Connection Failover, and/or Runtime
Connection Load Balancing features. A value of -1 allows directs the provider to use a
random port.

Declaration

// C#
public static int DbNotificationPort { get; set; }

Property Type

System.Int32.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

HAEvents
This property enables the application to receive Fast Connection Failover events for
maintaining application high availability. Default is true.

Declaration

// C#
public static bool HAEvents { get; set; }

Property Type

System.Boolean

Chapter 7
OracleConfiguration Class

7-123

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OnsConfigFile
This property specifies the configuration file to define Oracle Notification Service
(ONS) behavior. The file specified should contain the same local port and remote port
values as specified in the ons.config file used by the local ONS daemon. This will
enable the application to receive events from the local ONS daemon.

Declaration

// C#
public static string OnsConfigFile { get; set; }

Property Type

System.String

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OnsMode
This property specifies the ONS daemon mode as either "local" or "remote".

For local configuration, configure and make available ONS on the node where
ODP.NET is running so that ODP.NET can receive events directly from the local ONS
daemon.

Remote configuration is used when the application directly receives ONS events from
the ONS daemons running on remote machines. One of the advantages of this
configuration is that no ONS daemon is needed on the client end and; therefore, there
is no need to manage this process.

Declaration

// C#
public static OnsConfigMode OnsMode { get; set; }

Chapter 7
OracleConfiguration Class

7-124

Property Type

System.String

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OnsProtocol
This property defines whether the ONS connection uses TCP/IP or TCP/IP with SSL/TLS.

Declaration

// C#
public static string OnsProtocol { get; set; }

Property Type

System.String

Usage Notes

Valid values are TCP or TCPS. Default value is TCP.

Example

OracleConfiguration.OnsProtocol=TCPS

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OnsWalletLocation
This property specifies the directory location of the ONS wallets. Wallets are certificates,
keys, and trustpoints processed by SSL/TLS.

Declaration

// C#
public static string OnsWalletLocation { get; set; }

Chapter 7
OracleConfiguration Class

7-125

Property Type

System.String

Usage Notes

Default value is none.

Example

OracleConfiguration.OnsWalletLocation=@”D:\user\wallets\”

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OracleOnsServers
This property returns a collection of logical ONS servers added through
OracleConfiguration.

Declaration

// C#
public static OracleOnsServerCollection OracleOnsServers

Property

Type:Oracle.ManagedDataAccess.Client.OracleOnsServerCollection
Returns a static OracleOnsServerCollection object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

• OracleDataSourceCollection Class

ServiceRelocationConnectionTimeout
This property specifies the time to wait before retrying connecting to a service that
becomes unavailable. Default value is 90 seconds. Whenever a database service

Chapter 7
OracleConfiguration Class

7-126

becomes unavailable, such as due to a service being relocated, an application can encounter
numerous connectivity errors during this time. To avoid unnecessary connection attempts to
an unavailable service which will result in an error, the driver will block any connection
attempts until the service is up or until this property's specified time limit expires from the time
when the service DOWN event was received, whichever comes first.

Declaration

// C#
public static string ServiceRelocationConnectionTimeout { get; set; }

Property Type

System.String

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OracleConfiguration Performance Properties
OracleConfiguration Performance properties are listed in Table 7-39.

Table 7-39 OracleConfiguration Performance Properties

Property Description

FetchSize Specifies the total memory size, in bytes, that the provider
allocates to cache data fetched in one database round-trip

LoadBalancing Enables the application to receive runtime connection load
balancing information

MaxStatementCacheSize Specifies the maximum number of statements that can be
cached when self-tuning is enabled

PerformanceCounters Specifies the ODP.NET connection performance counters to
publish so that they can be monitored

ReceiveBufferSize Specifies the buffer space limit for receive operations of
sessions

SelfTuning Specifies whether self-tuning is enabled for an ODP.NET
application

SendBufferSize Specifies the buffer space limit for send operations of
sessions

StatementCacheSize Specifies the number of cursors or statements to be cached
for each database connection

TcpNoDelay Preempts delays in buffer flushing within the TCP/IP
protocol stack

Chapter 7
OracleConfiguration Class

7-127

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

FetchSize
This property specifies the total memory size, in bytes, that the provider allocates to
cache data fetched in one database round-trip. Default value is 131072.

Declaration

// C#
public static int FetchSize { get; set; }

Property Type

System.Int32

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

LoadBalancing
This property enables the application to receive runtime connection load balancing
information. Default is true.

Declaration

// C#
public static bool LoadBalancing { get; set; }

Property Type

System.Boolean

Chapter 7
OracleConfiguration Class

7-128

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

MaxStatementCacheSize
This property specifies the maximum number of statements that can be cached when self-
tuning is enabled. Default value is 100.

Declaration

// C#
public static int MaxStatementCacheSize { get; set; }

Property Type

System.Int32

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

PerformanceCounters
This property specifies the ODP.NET connection performance counters to publish so that they
can be monitored.

Declaration

// C#
public static Int64 PerformanceCounters { get; set; }

Property Type

System.Int64

Remarks

ODP.NET enables monitoring many different connection counters, including pooled and non-
pooled connections. These counters can be monitored individually or together. Developers
can set which counters to monitor prior to application startup using the PerformanceCounters
property.

Chapter 7
OracleConfiguration Class

7-129

By default, performance counters are not enabled.

See Also:

• Connection Performance Counters for more information on setting up
and configuring counters.

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

ReceiveBufferSize
This property specifies the buffer space limit for receive operations of sessions.

Declaration

// C#
public static int ReceiveBufferSize{get; set; }

Property Type

System.Int32

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SelfTuning
This property specifies whether self-tuning is enabled for an ODP.NET application. By
default, self-tuning (true) is enabled.

Declaration

// C#
public static bool SelfTuning { get; set; }

Property Type

System.Boolean

Chapter 7
OracleConfiguration Class

7-130

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

SendBufferSize
This property specifies the buffer space limit for send operations of sessions.

Declaration

// C#
public static int SendBufferSize { get; set; }

Property Type

System.Int32

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

StatementCacheSize
This property specifies the number of cursors or statements to be cached for each database
connection. This setting corresponds to the connection string Statement Cache Size attribute.
A value greater than zero enables statement caching. Default value is zero.

Declaration

// C#
public static int StatementCacheSize { get; set; }

Property Type

System.Int32

Chapter 7
OracleConfiguration Class

7-131

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

TcpNoDelay
This property preempts delays in buffer flushing within the TCP/IP protocol stack.
Default value is true.

Declaration

// C#
public static bool TcpNoDelay { get; set; }

Property Type

System.Boolean

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OracleConfiguration Debug Tracing Properties
OracleConfiguration Debug Tracing properties are listed in Table 7-40.

Table 7-40 OracleConfiguration Debug Tracing Properties

Property Description

TraceFileLocation Specifies the destination directory to output provider
traces

TraceFileMaxSize Specifies the maximum file size of each trace file

TraceLevel Specifies the generated trace level to trace ODP.NET
calls and diagnose provider issues

TraceOption Specifies whether to generate a single trace file or
multiple trace files for multithreaded applications

Chapter 7
OracleConfiguration Class

7-132

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

TraceFileLocation
This property specifies the destination directory to output provider traces.

Declaration

// C#
public static string TraceFileLocation { get; set; }

Property Type

System.String

Remarks

On Windows, the default TraceFileLocation is <Windows user temporary
folder>\ODP.NET\core\trace. On Linux, the default is <current user temporary folder>/
ODP.NET/core/trace. If you modify the trace file location, then do not use a write-protected
directory, such as C:\ on Windows. Write-protection may prevent ODP.NET from being able
to write a trace file to that particular directory location.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

TraceFileMaxSize
This property specifies the maximum file size of each trace file.

Declaration

// C#
public static int TraceFileMaxSize { get; set; }

Property Type

System.Int32

Chapter 7
OracleConfiguration Class

7-133

Remarks

Administrators can maintain reasonably sized trace files by using this property to
enforce a maximum size that any individual ODP.NET trace file can be. The
TraceFileMaxSize value is in megabytes. If no value is set, TraceFileMaxSize
defaults to a value of 100, which is 100 megabytes (MB).

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

TraceLevel
This property specifies the generated trace level to trace ODP.NET calls and diagnose
provider issues. Errors will always be traced. Default value is 0 indicating tracing is
disabled.

Declaration

// C#
public static int TraceLevel { get; set; }

Property Type

System.Int32
Valid Values:

• 1 = public APIs

• 2 = private APIs

• 4 = network APIs/data

• 8 = disables writing SQL statements and network packet contents

These values can be bitwise ORed. To enable all traces, set TraceLevel to 7. Use
TraceLevel 8 if you require SQL statements and network packet contents to be
excluded from the trace.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

Chapter 7
OracleConfiguration Class

7-134

TraceOption
This property specifies whether to generate a single trace file or multiple trace files for
multithreaded applications. Default value is 0 indicating single trace file for all application
threads.

Declaration

// C#
public static int TraceOption { get; set; }

Property Type

System.Int32

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConfiguration Class

• OracleConfiguration Members

OracleConnection Class
An OracleConnection object represents a connection to an Oracle database.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.ComponentModel.Component
 System.Data.Common.DbConnection
 Oracle.DataAccess.Client.OracleConnection

Declaration

// C#
public sealed class OracleConnection : DbConnection, IDbConnection, ICloneable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Chapter 7
OracleConnection Class

7-135

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleConnectionSample
{
 static void Main()
 {
 // Connect
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Execute a SQL SELECT
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "select * from emp";
 OracleDataReader reader = cmd.ExecuteReader();

 // Print all employee numbers
 while (reader.Read())
 Console.WriteLine(reader.GetInt32(0));

 // Clean up
 reader.Dispose();
 cmd.Dispose();
 con.Dispose();
 }
}

Chapter 7
OracleConnection Class

7-136

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Members

• OracleConnection Constructors

• OracleConnection Static Properties

• OracleConnection Static Methods

• OracleConnection Properties

• OracleConnection Public Methods

• OracleConnection Events

OracleConnection Members
OracleConnection members are listed in the following tables.

OracleConnection Constructors

OracleConnection constructors are listed in Table 7-41.

Table 7-41 OracleConnection Constructors

Constructor Description

OracleConnection Constructors Instantiates a new instance of the OracleConnection
class (Overloaded)

OracleConnection Static Properties

The OracleConnection static property is listed in Table 7-43.

Table 7-42 OracleConnection Static Property

Property Description

IsAvailable Indicates whether or not the implicit database connection
is available for use

OracleConnection Static Methods

The OracleConnection static methods are listed in Table 7-43.

Table 7-43 OracleConnection Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

Chapter 7
OracleConnection Class

7-137

Table 7-43 (Cont.) OracleConnection Static Methods

Method Description

ClearPool Clears the connection pool that is associated with the
provided OracleConnection object

Not supported in a .NET stored procedure

ClearAllPools Clears all connections from all the connection pools

Not supported in a .NET stored procedure

OracleConnection Properties

OracleConnection properties are listed in Table 7-44.

Table 7-44 OracleConnection Properties

Property Description

AccessToken Used to get or set OracleAccessToken on
the connection

ActionName Specifies the action name for the connection

AllowCertificateSelectionUI Indicates whether to allow the user to select a
specific TLS/SSL certificate via a graphical
interface for their database connection when
using a MCS wallet location

Not Available in ODP.NET, Unmanaged Driver

ChunkMigrationConnectionTimeout This setting pauses the connection request
until the migration completes or fails to migrate
in the specified time, then connect to the
correct shard with the data requested.

Not Available in ODP.NET, Unmanaged Driver

ClientId Specifies the client identifier for the connection

ClientInfo Specifies the client information for the
connection

ConnectionString Specifies connection information used to
connect to an Oracle database

ConnectionTimeout Indicates the maximum amount of time that
the Open method can take to obtain a pooled
connection before the request is terminated

ConnectionType Determines whether a particular connection
object is associated with a TimesTen database
connection, an Oracle database connection,
or no physical connection

Not Available in ODP.NET, Managed Driver
and ODP.NET Core

Container Inherited from
System.ComponentModel.Component

Credential Used to get or set an OracleCredential
object on the connection

Database Not Supported

Chapter 7
OracleConnection Class

7-138

Table 7-44 (Cont.) OracleConnection Properties

Property Description

DatabaseDomainName Specifies the name of the database domain to
which the connection is set

DatabaseEditionName Sets or gets the edition name for the
OracleConnection object

DatabaseName Specifies the name of the database to which
the connection is set

DataSource Specifies the Oracle Net Services Name,
Connect Descriptor, or an easy connect
naming that identifies the database to which to
connect

DRCPConnectionClass Specifies a logical name that identifies the
DRCP connection pool that the ODP.NET
connection will use

DRCPPurity Specifies whether an application can reuse a
pooled session (Pooled) or must use a new
session (New)

HostName Specifies the name of the host to which the
connection is set

InstanceName Specifies the name of the instance to which
the connection is set

KeepAlive Specifies whether to keep an idle connection
alive.

Not Available in ODP.NET, Unmanaged Driver

KeepAliveInterval Specifies the time interval after an
unacknowledged probe before a new probe is
sent.

Not Available in ODP.NET, Unmanaged Driver

KeepAliveTime Specifies the idle time before a keepalive
probe is sent.

Not Available in ODP.NET, Unmanaged Driver

ModuleName Specifies the module name for the connection

OciCompartment Gets or sets the Oracle Cloud Identifier
(OCID) of the target database's compartment

OciDatabase Gets or sets the target database's Oracle
Cloud Identifier (OCID)

OciIamUrl Gets or sets the URL end point for getting the
database token

OciTenacy Gets or sets the Oracle Cloud Identifier
(OCID) of the IAM user’s cloud tenancy to
retrieve the database token

PasswordAuthentication Sets the connection PASSWORD_AUTH
parameter value

PDBName Used to set and get the name of the pluggable
database to which the session is connected to

ProviderVersion Specifies the ODP.NET assembly version

Chapter 7
OracleConnection Class

7-139

Table 7-44 (Cont.) OracleConnection Properties

Property Description

ServerVersion Specifies the version number of the Oracle
database to which the OracleConnection
has established a connection

ServiceName Specifies the name of the service to which the
connection is set

Site Inherited from
System.ComponentModel.Component

SqlNetAuthenticationServices Enables one or more authentication services,
such as TCP/IP with SSL.

State Specifies the current state of the connection

StatementCacheSize Specifies the current size of the statement
cache associated with this connection

SwitchedConnection If the returned pooled connection changed its
service name (ServiceName) or pluggable
database (PDBName) in order to connect to the
desired pluggable database, then this property
will consider the connection switched

TnsAdmin Specifies the directory location of
tnsnames.ora or sqlnet.ora, or both

Not Available in ODP.NET, Unmanaged Driver

TokenAuthentication Sets the value for TOKEN_AUTH parameter for
the connection

TokenLocation Gets or sets the token location path for the
connection where the signature token and
private key files are located

UseHourOffsetForUnsupportedTimezone Specifies whether the hour offset can be used
for the session time zone, when the Oracle
time zone region name that is associated with
the .NET locale is not supported by the Oracle
database being used

Not Available in ODP.NET, Unmanaged Driver

WalletLocation Specifies the location of wallets. Wallets are
certificates, keys, and trustpoints processed
by SSL/TLS

Not Available in ODP.NET, Unmanaged Driver

OracleConnection Public Methods

OracleConnection public methods are listed in Table 7-45.

Table 7-45 OracleConnection Public Methods

Public Method Description

BeginTransaction Begins a local transaction (Overloaded)

Not supported in a .NET stored procedure for context
connection

Chapter 7
OracleConnection Class

7-140

Table 7-45 (Cont.) OracleConnection Public Methods

Public Method Description

ChangeDatabase Not Supported

Clone Creates a copy of an OracleConnection object

Not supported in a .NET stored procedure

Close Closes the database connection

CreateCommand Creates and returns an OracleCommand object
associated with the OracleConnection object

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from System.ComponentModel.Component
EnlistDistributedTransaction Enables applications to explicitly enlist in a specified

distributed transaction

Not supported in a .NET stored procedure and .NET
Core

EnlistTransaction Enables applications to enlist in a specified distributed
transaction

Not supported in a .NET stored procedure

Equals Inherited from System.Object (Overloaded)

FlushCache Flushes all updates and deletes made through REF
objects retrieved using this connection

Not Available in ODP.NET, Managed Driver and
ODP.NET Core

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetSchema Returns schema information for the data source of the

OracleConnection
GetSessionInfo Returns or refreshes the property values of the

OracleGlobalization object that represents the
globalization settings of the session (Overloaded)

GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
Open Opens a database connection with the property

settings specified by the ConnectionString
OpenWithNewPassword Opens a new connection with the new password

(Overloaded)

Not supported in a .NET stored procedure for context
connection

OpenWithNewToken(char[]) This method can be used to open a new connection by
providing the refreshed/updated access token directly
to ODP.NET instead of through the token refresh call
back.

OpenWithNewToken(char[], char[]) Used by the application to open a new connection by
providing the refreshed/updated signature token and
private key directly to ODP.NET instead of through the
token refresh call back

Chapter 7
OracleConnection Class

7-141

Table 7-45 (Cont.) OracleConnection Public Methods

Public Method Description

PurgeStatementCache Flushes the Statement Cache by closing all open
cursors on the database, when statement caching is
enabled

SetSessionInfo Alters the session's globalization settings with the
property values provided by the
OracleGlobalization object

SetShardingKey(OracleShardingKey,
OracleShardingKey)

Enables applications to set the sharding key and super
sharding key before requesting a connection

ToString Inherited from System.Object

OracleConnection Events

OracleConnection events are listed in Table 7-46.

Table 7-46 OracleConnection Events

Event Name Description

ConnectionOpen This event is triggered upon the
OracleConnection.Open() method

Disposed Inherited from
System.ComponentModel.Component

Failover An event that is triggered when an Oracle failover
occurs

Not supported in a .NET stored procedure

Not Available in ODP.NET, Managed Driver and
ODP.NET Core

HAEvent An event that is triggered when an HA event occurs

InfoMessage An event that is triggered for any message or
warning sent by the database

StateChange An event that is triggered when the connection state
changes

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

OracleConnection Constructors
OracleConnection constructors instantiate new instances of the OracleConnection
class.

Chapter 7
OracleConnection Class

7-142

Overload List:

• OracleConnection()

This constructor instantiates a new instance of the OracleConnection class using default
property values.

• OracleConnection(string)

This constructor instantiates a new instance of the OracleConnection class with the
provided connection string.

• OracleConnection(string, OracleCredential)

This constructor instantiates a new OracleConnection class instance using the provided
connection string and OracleCredential class.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OracleConnection()
This constructor instantiates a new instance of the OracleConnection class using default
property values.

Declaration

// C#
public OracleConnection();

Remarks

The properties for OracleConnection are set to the following default values:

• ConnectionString = empty string

• ConnectionTimeout = 15 (default value of 0 is used for the implicit database connection)

• DataSource = empty string

• ServerVersion = empty string

Chapter 7
OracleConnection Class

7-143

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OracleConnection(string)
This constructor instantiates a new instance of the OracleConnection class with the
provided connection string.

Declaration

// C#
public OracleConnection(string connectionString);

Parameters

• connectionString

The connection information used to connect to the Oracle database.

Remarks

The ConnectionString property is set to the supplied connectionString. The
ConnectionString property is parsed and an exception is thrown if it contains invalid
connection string attributes or attribute values.

The properties of the OracleConnection object default to the following values unless
they are set by the connection string:

• ConnectionString = empty string

• ConnectionTimeout = 15 (default value of 0 is used for the implicit database
connection)

• DataSource = empty string

• ServerVersion = empty string

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-144

OracleConnection(string, OracleCredential)
This constructor instantiates a new OracleConnection class instance using the provided
connection string and OracleCredential class.

Declaration

// C#
public OracleConnection(string connectionString, OracleCredential orclCredential);

Parameters

• connectionString

connection string that does not contain any of user id, password, DBA Privilege, proxy
user id, nor proxy password.

• orclCredential

OracleCredential object containing user credentials. If this parameter is passed as null
then the behavior of OracleConnection will be same as OracleConnection with normal
connection string.

Remarks

Use this constructor to create a new OracleConnection object with an OracleCredential
object containing user credentials and a connection string that does not contain any of user
id, password, DBA Privilege, proxy user id, nor proxy password.

Exceptions

InvalidOperationException is raised when non-null OracleCredential object is used with a
connection string containing any of user id, password, DBA Privilege, proxy user id, or
proxy password.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OracleConnection Static Properties
The OracleConnection static property is listed in Table 7-47.

Chapter 7
OracleConnection Class

7-145

Table 7-47 OracleConnection Static Property

Property Description

IsAvailable Indicates whether or not the implicit database
connection is available for use

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

IsAvailable
This property indicates whether or the implicit database connection is available for
use.

Declaration

// C#
public static bool IsAvailable {get;}

Property Value

Returns true if the implicit database connection is available for use.

Remarks

The availability of the implicit database connection can be checked at runtime through
this static property. When Oracle Data Provider for .NET is used within a .NET stored
procedure, this property always returns true. Otherwise, false is returned.

To obtain an OracleConnection object in a .NET stored procedure that represents the
implicit database connection, set the ConnectionString property of the
OracleConnection object to "context connection=true" and invoke the Open method.

Note that not all features that are available for an explicit user connection are available
for an implicit database connection. See "Implicit Database Connection" for details.

Example

// C# (Library/DLL)
using System;
using Oracle.DataAccess.Client;

public class IsAvailableSample
{
 static void MyStoredProcedure()
 {
 OracleConnection con = new OracleConnection();

Chapter 7
OracleConnection Class

7-146

 if (OracleConnection.IsAvailable)
 {
 // This function is invoked as a stored procedure
 // Obtain the implicit database connection by setting
 // "context connection=true" in the connection string
 con.ConnectionString = "context connection=true";
 }
 else
 {
 // This function is not invoked as a stored procedure
 // Set the connection string for a normal client connection
 con.ConnectionString = "user id=scott;password=tiger;data source=oracle";
 }

 con.Open();
 Console.WriteLine("connected!");
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OracleConnection Static Methods
The OracleConnection static methods are listed in Table 7-48.

Table 7-48 OracleConnection Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

ClearPool Clears the connection pool that is associated with the provided
OracleConnection object.

Not supported in a .NET stored procedure

ClearAllPools Clears all connections from all the connection pools

Not supported in a .NET stored procedure

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-147

ClearPool
This method clears the connection pool that is associated with the provided
OracleConnection object.

Declaration

// C#
public static void ClearPool(OracleConnection connection);

Remarks

When this method is invoked, all idle connections are closed and freed from the pool.
Currently used connections are not discarded until they are returned to the pool.

ClearPool does not automatically repopulate the pool with new connections. This
prevents the pool from being repopulated with invalid connections if client remains
unable to connect with the database server. Developers programmatically control
when the pool is repopulated by calling OracleConnection.Open(), which will
repopulate the pool with at least the Min Pool Size number of connections.

Connections created after this method invocation are not cleared unless another
invocation is made.

Starting with ODP.NET 21c, ClearPool will now clear the pool even if ODP.NET is in
the process of populating the pool to the Min Pool Size number of connections.

This method can be invoked with an OracleConnection object before opening the
connection as well as after, provided the ConnectionString is properly set.

Exceptions

InvalidOperationException – Either the connection pool cannot be found or the
provided connection string is invalid.

Example

// C#
// Sample demonstrating the use of ClearPool API in OracleConnection class

using System;
using Oracle.DataAccess.Client;

class ClearPoolSample
{
 static void Main()
 {
 Console.WriteLine("Running ClearPool sample...");
 // Set the connection string
 string strConn = "User Id=scott;Password=tiger;Data Source=oracle;" +
 "Min pool size=5;";
 OracleConnection conn = new OracleConnection(strConn);

 // Open the connection
 conn.Open();

 // Clears the connection pool associated with connection 'conn'
 OracleConnection.ClearPool (conn);

Chapter 7
OracleConnection Class

7-148

 // This connection will be placed back into the pool
 conn.Close ();

 // Open the connection again to create additional connections in the pool
 conn.Open();

 // Create a new connection object
 OracleConnection connNew = new OracleConnection(strConn);

 // Clears the pool associated with Connection 'connNew'
 // Since the same connection string is set for both the connections,
 // connNew and conn, they will be part of the same connection pool.
 // We need not do an Open() on the connection object before calling
 // ClearPool
 OracleConnection.ClearPool (connNew);

 // cleanup
 conn.Close();
 Console.WriteLine("Done!");
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ClearAllPools
This method clears all connections from all the connection pools.

Declaration

// C#
public static void ClearAllPools();

Remarks

This call is analogous to calling ClearPool for all the connection pools that are created for the
application.

Exceptions

InvalidOperationException – No connection pool could be found for the application.

Example

// C#
// Sample demonstrating the use of ClearAllPools API in OracleConnection class

using System;
using Oracle.DataAccess.Client;

Chapter 7
OracleConnection Class

7-149

class ClearAllPoolsSample
{
 static void Main()
 {
 Console.WriteLine("Running ClearAllPools sample...");
 // Set the connection string
 string strConn = "User Id=scott;Password=tiger;Data Source=oracle;" +
 "Min pool size=5;";
 OracleConnection conn = new OracleConnection(strConn);

 // Create another connection object with a different connection string
 string strConnNew = "User Id=scott;Password=tiger;Data Source=oracle;";
 OracleConnection connNew = new OracleConnection(strConnNew);

 // Open the connections. Separate pools are created for conn and connNew
 conn.Open();
 connNew.Open();

 // Clears the pools associated with conn and connNew
 OracleConnection.ClearAllPools ();

 // cleanup
 conn.Close();
 connNew.Close();
 Console.WriteLine("Done!");
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "ClearPool"

OracleConnection Properties
OracleConnection properties are listed in Table 7-49

Table 7-49 OracleConnection Properties

Property Description

AccessToken Used to get or set OracleAccessToken on
the connection

ActionName Specifies the action name for the connection

Chapter 7
OracleConnection Class

7-150

Table 7-49 (Cont.) OracleConnection Properties

Property Description

AllowCertificateSelectionUI Indicates whether to allow the user to select a
specific TLS/SSL certificate via a graphical
interface for their database connection when
using a MCS wallet location

Not Available in ODP.NET, Unmanaged Driver

ChunkMigrationConnectionTimeout This setting pauses the connection request
until the migration completes or fails to migrate
in the specified time, then connect to the
correct shard with the data requested.

Not Available in ODP.NET, Unmanaged Driver

ClientId Specifies the client identifier for the connection

ClientInfo Specifies the client information for the
connection

ConnectionString Specifies connection information used to
connect to an Oracle database

ConnectionTimeout Indicates the maximum amount of time that
the Open method can take to obtain a pooled
connection before the request is terminated

ConnectionType Determines whether a particular connection
object is associated with a TimesTen database
connection, an Oracle database connection,
or no physical connection

Not Available in ODP.NET, Managed Driver
and ODP.NET Core

Container Inherited from
System.ComponentModel.Component

Credential Used to get or set an OracleCredential
object on the connection

Database Not Supported

DatabaseDomainName Specifies the name of the database domain to
which the connection is set

DatabaseEditionName Sets or gets the edition name for the
OracleConnection object

DatabaseName Specifies the name of the database to which
the connection is set

DataSource Specifies the Oracle Net Services Name,
Connect Descriptor, or an easy connect
naming that identifies the database to which to
connect

DRCPConnectionClass Specifies a logical name that identifies the
DRCP connection pool that the ODP.NET
connection will use

DRCPPurity Specifies whether an application can reuse a
pooled session (Pooled) or must use a new
session (New)

Chapter 7
OracleConnection Class

7-151

Table 7-49 (Cont.) OracleConnection Properties

Property Description

HostName Specifies the name of the host to which the
connection is set

InstanceName Specifies the name of the instance to which
the connection is set

KeepAlive Specifies whether to keep an idle connection
alive.

Not Available in ODP.NET, Unmanaged Driver

KeepAliveInterval Specifies the time interval after an
unacknowledged probe before a new probe is
sent.

Not Available in ODP.NET, Unmanaged Driver

KeepAliveTime Specifies the idle time before a keepalive
probe is sent.

Not Available in ODP.NET, Unmanaged Driver

ModuleName Specifies the module name for the connection

OciCompartment Gets or sets the Oracle Cloud Identifier
(OCID) of the target database's compartment

OciDatabase Gets or sets the target database's Oracle
Cloud Identifier (OCID)

OciIamUrl Gets or sets the URL end point for getting the
database token

OciTenacy Gets or sets the Oracle Cloud Identifier
(OCID) of the IAM user’s cloud tenancy to
retrieve the database token

PasswordAuthentication Sets the connection PASSWORD_AUTH
parameter value

PDBName Used to set and get the name of the pluggable
database to which the session is connected to

ProviderVersion Specifies the ODP.NET assembly version

ServerVersion Specifies the version number of the Oracle
database to which the OracleConnection
has established a connection

ServiceName Specifies the name of the service to which the
connection is set

Site Inherited from
System.ComponentModel.Component

SqlNetAuthenticationServices Enables one or more authentication services,
such as TCP/IP with SSL.

State Specifies the current state of the connection

StatementCacheSize Specifies the current size of the statement
cache associated with this connection

Chapter 7
OracleConnection Class

7-152

Table 7-49 (Cont.) OracleConnection Properties

Property Description

SwitchedConnection If the returned pooled connection changed its
service name (ServiceName) or pluggable
database (PDBName) in order to connect to the
desired pluggable database, then this property
will consider the connection switched.

TnsAdmin Specifies the directory location of
tnsnames.ora or sqlnet.ora, or both

Not Available in ODP.NET, Unmanaged Driver

TokenAuthentication Sets the value for TOKEN_AUTH parameter for
the connection

TokenLocation Gets or sets the token location path for the
connection where the signature token and
private key files are located

UseHourOffsetForUnsupportedTimezone Specifies whether the hour offset can be used
for the session time zone, when the Oracle
time zone region name that is associated with
the .NET locale is not supported by the Oracle
database being used

Not Available in ODP.NET, Unmanaged Driver

WalletLocation Specifies the location of wallets. Wallets are
certificates, keys, and trustpoints processed
by SSL/TLS

Not Available in ODP.NET, Unmanaged Driver

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

AccessToken
This property is used to get or set OracleAccessToken on the connection.

Declaration

// C#
public OracleAccessToken AccessToken { get; set; }

Property Value

An OracleAccessToken object containing a database token and private key, or an access
token, used for opening a connection.

Chapter 7
OracleConnection Class

7-153

Exceptions

• An InvalidOperationException will be raised if

– the connection is already open,

– the value of the TokenAuthentication property is not compatible with the type
of token being set. This is applicable for managed ODP.NET and ODP.NET
Core only,

– TokenAuthentication has been set by the application as disabled, or the
TokenLocation property is set. This is applicable for managed ODP.NET and
ODP.NET Core only.

– The Credential property is set.

– Or, the user or proxy information in the connection string is not compatible with
token authentication.

• ArgumentNullException if any argument is null.

• OracleException if Credential is set.

• OracleException if user id value is other than /.

• OracleException if password, proxy user id and proxy password is set.

Description

If the token represents the same identity, then the same OracleAccessToken object
should be set on the OracleConnection. The OracleAccessToken object, not the
token, is used to identify the connection pool.

If an access token has expired, then OracleConnection.OpenWithNewToken must be
called to open a new connection. Since the OracleAccessToken object cannot be
modified, it is not possible to specify a refreshed access token on the AccessToken
property. However, existing connections can still be dispensed, even after the access
token has expired.

In unmanaged ODP.NET, if CPVersion is not set to any value, AccessToken property is
set by the application, and Open() method is invoked, then the connection will set the
value of CPVersion to 2.0. CPVersion cannot be set to 1.0 in this scenario. Doing so
will result in an exception.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ActionName
This property specifies the action name for the connection.

Chapter 7
OracleConnection Class

7-154

Declaration

// C#
public string ActionName {set;}

Property Value

The string to be used as the action name.

Remarks

The default value is null.

Using the ActionName property allows the application to set the action name in the application
context for a given OracleConnection object.

In unmanaged ODP.NET, the ActionName property is reset to null when the Close or Dispose
method is called on the OracleConnection object. In managed ODP.NET, it is reset to null
(assuming no new value is assigned) upon the next database round trip following a Close or
Dispose method call on the OracleConnection object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "Client Identifier and End-to-End Tracing"

• Oracle Database Security Guide

AllowCertificateSelectionUI
This property indicates whether to allow the user to select a specific TLS/SSL certificate via a
graphical interface for their database connection when using a MCS wallet location.

Declaration

// C#
public Boolean AllowCertificateSelectionUI { get; set; }

Property Type

System.Boolean

Remarks

The property default value is false.

This property generates a pop up window for the end user to select a TLS/SSL certificate
only when all of the following conditions are met:

• AllowCertificateSelectionUI is set to true

Chapter 7
OracleConnection Class

7-155

• App is running on Windows operating system

• App has specified a Microsoft Certificate Store (MCS) wallet location

• The connection uses mutual TLS

• There is more than one private key containing certificates in the MY/CurrentUser
MCS

If AllowCertificateSelectionUI is false and configuration-based certificate
selection is not set (e.g. thumbprint is not set), then ODP.NET will choose the first
certificate with a private key in the MCS.

If enabling this property, set its value to true prior to opening the ODP.NET
connection.

ODP.NET will filter out trusted certificates (public key only) from the end user display to
simplify their selection process.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ChunkMigrationConnectionTimeout
In sharding, a connection request to a specific shard can occur while data is migrating
from the original shard to a new one. This setting will pause the connection request
until the migration completes or fails to migrate in the specified time, then connect to
the correct shard with the data requested.

Declaration

// C#
public int ChunkMigrationConnectionTimeout {get;set;}

Property Value

The minimum time, in seconds, for a pooled connection request to pause waiting for a
chunk migration.

Remarks

Default is 120 seconds. This setting requires connection pooling to be enabled.

ODP.NET reads the chunk migration connection timeout setting only upon pool
creation. Modifying the timeout setting A new timeout setting will not be used until a
new pool is created.

If the connection requires only read-only access, then this setting will not be used. This
setting is in effect for connections with chunk write access.

Chapter 7
OracleConnection Class

7-156

During chunk migration, an ODP.NET connection request obeys only the chunk migration
connection timeout. All other connection timeout values, such as
OracleConnection.ConnectionTimeout are ignored and not used.

Oracle recommends setting the ODP.NET chunk migration connection timeout value to a
value greater than the chunk movement server timeout. One way to set this server timeout is
using the Global Data Services Control Utility (GDSCTL) move chunk command's timeout
option.

The OracleConnection ChunkMigrationConnectionTimeout property inherits from the
OracleConfiguration ChunkMigrationConnectionTimeout property. The OracleConnection
property can be separately set to override the property set in the OracleConfiguration class.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ClientId
This property specifies the client identifier for the connection.

Declaration

// C#
public string ClientId {set;}

Property Value

The string to be used as the client identifier.

Remarks

The default value is null.

Using the ClientId property allows the application to set the client identifier in the application
context for a given OracleConnection object.

In unmanaged ODP.NET, the ClientId property is reset to null when the Close or Dispose
method is called on the OracleConnection object. In managed ODP.NET, it is reset to null
(assuming no new value is assigned) upon the next database round trip following a Close or
Dispose method call on the OracleConnection object.

Chapter 7
OracleConnection Class

7-157

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "Client Identifier and End-to-End Tracing"

• Oracle Database Security Guide

ClientInfo
This property specifies the client information for the connection.

Declaration

// C#
public string ClientInfo {set;}

Property Value

The string to be used as the client information.

Remarks

The default value is null.

Using the ClientInfo property allows the application to set the client information in the
application context for a given OracleConnection object.

In unmanaged ODP.NET, the ClientInfo property is reset to null when the Close or
Dispose method is called on the OracleConnection object. In managed ODP.NET, it is
reset to null (assuming no new value is assigned) upon the next database round trip
following a Close or Dispose method call on the OracleConnection object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "Client Identifier and End-to-End Tracing"

• Oracle Database Security Guide

ConnectionString
This property specifies connection information used to connect to an Oracle database.

Chapter 7
OracleConnection Class

7-158

Declaration

// C#
public override string ConnectionString{get; set;}

Property Value

If the connection string is supplied through the constructor, this property is set to that string.

Implements

IDbConnection

Exceptions

ArgumentException - An invalid syntax is specified for the connection string.

InvalidOperationException - ConnectionString is being set while the connection is open.

Remarks

The default value is an empty string.

ConnectionString must be a string of attribute name and value pairings, separated by a
semi-colon, for example:

"User Id=scott;password=tiger;data source=oracle"

If the ConnectionString is not in a proper format, an exception is thrown. All spaces are
ignored unless they are within double quotes.

When the ConnectionString property is set, the OracleConnection object immediately
parses the string for errors. An ArgumentException is thrown if the ConnectionString
contains invalid attributes or invalid values. Attribute values for User Id, Password, Proxy User
Id, Proxy Password, and Data Source (if provided) are not validated until the Open method is
called.

The connection must be closed to set the ConnectionString property. When the
ConnectionString property is reset, all previously set values are reinitialized to their default
values before the new values are applied.

Starting with ODP.NET 11.1, password and proxy password connection string attribute values
are accepted as case-sensitive strings. Thus, they are passed to the database for
authentication in the case provided in the connection string. Therefore, if the database is
configured to support case-sensitive passwords, passwords must be passed in the correct
case.

If a connection string attribute is set more than once, the last setting takes effect and no
exceptions are thrown.

Boolean connection string attributes can be set to either true, false, yes, or no.

Remarks (.NET Stored Procedure)

To obtain an OracleConnection object in a .NET stored procedure that represents the implicit
database connection, set the ConnectionString property of the OracleConnection object to
"context connection=true" and invoke the Open method. Other connection string attributes
cannot be used in conjunction with "context connection" when it is set to true.

Chapter 7
OracleConnection Class

7-159

Supported Connection String Attributes

Table 7-50 lists the supported connection string attributes.

Table 7-50 Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Application
Continuity

Enables database requests to automatically
replay transactional or non-transactional
operations in a non-disruptive and rapid manner
in the event of a severed database session,
which results in a recoverable error.

Not Available in ODP.NET, Managed Driver and
ODP.NET Core

true

Connection Lifetime Minimum life time (in seconds) of the connection.

This attribute specifies the lifetime of the
connection in seconds. Before the Connection
is placed back into the pool upon a Close() or
Dispose() call, the lifetime of the connection is
checked. If the lifetime of the connection
exceeds this property value and the number of
connections will not fall below Min Pool Size,
then the connection is destroyed. If this property
value is 0, then the connection lifetime is never
checked.

0

Connection Timeout The time to wait (in seconds) for a new
connection or an idle connection from the
connection pool before a connection time out
error can occur.

This attribute specifies the minimum amount of
time (in seconds) that the Open() method must
take to obtain a pooled connection before it
terminates the request. This value comes into
effect only if no free connection is available from
the connection pool and the Max Pool Size is
reached. If a free connection is not available
within the specified time, an exception is thrown.
Connection Timeout does not limit the time
required to open new connections.

This attribute value takes effect for pooled
connection requests and not for new connection
requests.

(The default value is 0 for the implicit database
connection in a .NET stored procedure.)

15

Context Connection Returns an implicit database connection if set to
true.

An implicit database connection can only be
obtained from within a .NET stored procedure.
Other connection string attributes cannot be
used in conjunction with "context
connection" when it is set to true.

Supported in a .NET stored procedure only

false

Chapter 7
OracleConnection Class

7-160

Table 7-50 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Data Source Oracle Net Services Name, Connect Descriptor,
or an easy connect naming that identifies the
database to which to connect.

empty string

DBA Privilege Administrative privileges.

This connection string attribute accepts SYSASM,
SYSBACKUP, SYSDBA, SYSDG, SYSKM, SYSOPER,
and SYSRAC as the attribute value. It is case-
insensitive.

empty string

Decr Pool Size Number of connections that are closed when an
excessive amount of established connections
are unused.

This connection string attribute controls the
maximum number of unused connections that
are closed when the pool regulator makes
periodic checks. The regulator thread is
spawned every 3 minutes and closes up to Decr
Pool Size amount of pooled connections if they
are not used. The pool regulator never takes the
total number of connections below the Min Pool
Size by closing pooled connections.

1

Enlist Controls the enlistment behavior and capabilities
of a connection in context of COM+ transactions
or System.Transactions.

If this attribute is set to true, the connection is
automatically enlisted in the thread's transaction
context. If this attribute is false, no enlistments
are made. If this attribute is set to dynamic,
applications can dynamically enlist in distributed
transactions. This attribute can be set to true,
false, yes, no, or dynamic.

true

HA Events Enables ODP.NET connection pool to proactively
remove connections from the pool when an
Oracle database service, service member, or
node goes down.

This feature can be used with Global Data
Services, including Oracle RAC, Data Guard,
GoldenGate, and single instance deployments.
"pooling=true" must also be set

This attribute can be set to true, false, yes, or
no.

true

Chapter 7
OracleConnection Class

7-161

Table 7-50 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Load Balancing Enables ODP.NET connection pool to balance
work requests across Oracle database instances
based on the load balancing advisory and
service goal.

This feature can be used with Global Data
Services, including Oracle RAC, Active Data
Guard, and GoldenGate. "pooling=true" must
also be set.

This attribute can be set to true, false, yes, or
no.

true

Incr Pool Size Number of new connections to be created when
all connections in the pool are in use.

This connection string attribute determines the
number of new connections that are established
when a pooled connection is requested, but no
unused connections are available and Max Pool
Size is not reached. If new connections have
been created for a pool, the regulator thread
skips a cycle and does not have an opportunity
to close any connections for 6 minutes. Note,
however, that some connections can be still be
closed during this time if their lifetime has been
exceeded.

5

Max Pool Size Maximum number of connections in a pool.

This attribute specifies the maximum number of
connections allowed in the particular pool used
by that OracleConnection. Simply changing
this attribute in the connection string does not
change the Max Pool Size restriction on a
currently existing pool. Doing so simply creates a
new pool with a different Max Pool Size
restriction. This attribute must be set to a value
greater than the Min Pool Size. This value is
ignored unless Pooling is turned on.

100

Metadata Pooling Caches metadata information.

This attribute indicates whether or not metadata
information for executed queries are cached for
improved performance.

True

Min Pool Size Minimum number of connections in a pool.

This attribute specifies the minimum number of
connections to be maintained by the pool during
its entire lifetime. Simply changing this attribute
in the connection string does not change the Min
Pool Size restriction on a currently existing
pool. Doing so simply creates a new pool with a
different Min Pool Size restriction. This value is
ignored unless Pooling is turned on.

1

Chapter 7
OracleConnection Class

7-162

Table 7-50 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Password Password for the user specified by User Id.

This attribute specifies an Oracle user's
password. Password is case-sensitive by default
for Oracle Database 11g release 1 (11.1) and
later.

empty string

Persist Security
Info

Retrieval of the password in the connection
string.

If this attribute is set to false, the Password
value setting is not returned when the
application requests the ConnectionString
after the connection is successfully opened by
the Open() method. This attribute can be set to
either true, false, yes, or no.

false

Pooling Connection pooling.

This attribute specifies whether or not
connection pooling is to be used. Pools are
created using an attribute value matching
algorithm. This means that connection strings
which only differ in the number of spaces in the
connection string use the same pool. If two
connection strings are identical except that one
sets an attribute to a default value while the
other does not set that attribute, both requests
obtain connections from the same pool. This
attribute can be set to either true, false, yes,
or no.

true

Proxy User Id User name of the proxy user.

This connection string attribute specifies the
middle-tier user, or the proxy user, who
establishes a connection on behalf of a client
user specified by the User Id attribute.
ODP.NET attempts to establish a proxy
connection if either the Proxy User Id or the
Proxy Password attribute is set to a non-empty
string.

For the proxy user to connect to an Oracle
database using operating system authentication,
the Proxy User Id must be set to "/". The
Proxy Password is ignored in this case. The
User Id cannot be set to "/" when establishing
proxy connections. The case of this attribute
value is preserved.

empty string

Chapter 7
OracleConnection Class

7-163

Table 7-50 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Proxy Password Password of the proxy user.

This connection string attribute specifies the
password of the middle-tier user or the proxy
user. This user establishes a connection on
behalf of a client user specified by the User Id
attribute. ODP.NET attempts to establish a proxy
connection if either the Proxy User Id or the
Proxy Password attribute is set to a non-empty
string.

The case of this attribute value is preserved if it
is surrounded by double quotes.

empty string

Statement Cache
Purge

Statement cache purged when the connection
goes back to the pool.

If statement caching is enabled, setting this
attribute to true purges the Statement Cache
when the connection goes back to the pool.

false

Statement Cache Size Statement cache enabled and cache size set
size, that is, the maximum number of statements
that can be cached.

A value greater than zero enables statement
caching and sets the cache size to itself. This
value should not be greater than the value of the
OPEN_CURSORS parameter set in the init.ora
database configuration file.

0

Self Tuning Enables or disables self-tuning for the
connection.

If self-tuning is enabled, then the
StatementCacheSize settings in the registry,
configuration files, and connection string are
ignored.

If self-tuning is disabled, then a
StatementCacheSize value of 0 is used unless
StatementCachSize is specified in the registry,
configuration file, or connection string.

true

Tns_Admin Directory where ODP.NET can find its
sqlnet.ora and tnsnames.ora configuration
files.

Not available in ODP.NET, Unmanaged Driver

empty string

Token_Auth This attribute specifies the access token
authentication type. Possible values are
OCITOKEN, OAUTH, or DISABLED.

Only supported for managed ODP.NET and
ODP.NET Core.

DISABLED

Chapter 7
OracleConnection Class

7-164

Table 7-50 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Token_Location This attribute is the file-based token location.
The value can be a directory where a file named
"token" is or it can be the file's full path
specification.

Only supported for managed ODP.NET and
ODP.NET Core.

Varies depending
on token
authentication
type

User Id Oracle user name.

This attribute specifies the Oracle user name.
The case of this attribute value is preserved if it
is surrounded by double quotes. For the user to
connect to an Oracle database using operating
system authentication, set the User Id to "/".
Any Password attribute setting is ignored in this
case.

empty string

Validate Connection Validation of connections coming from the pool.

Validation causes a round-trip to the database
for each connection. Therefore, it should only be
used when necessary.

false

Wallet_Location ODP.NET wallet directory

Not available in ODP.NET, Unmanaged Driver

empty string

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ConnectionTimeout
This property indicates the minimum amount of time that the Open method can take to obtain
a pooled connection before the request is terminated.

Declaration

// C#
public override int ConnectionTimeout {get;}

Property Value

The minimum time allowed for a pooled connection request, in seconds.

Implements

IDbConnection

Chapter 7
OracleConnection Class

7-165

Remarks

This property indicates the connection timeout that has been set using the
ConnectionString attribute Connection TimeOut.

This property is read-only.

Remarks (.NET Stored Procedure)

There is no connection string specified by the application and a connection on the
implicit database is always available, therefore, this property is set to 0.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ConnectionType
This property enables an ODP.NET application to determine whether a particular
connection object is associated with an Oracle database connection, a TimesTen
database connection, or no physical connection at all.

Declaration

// C#
public OracleConnectionType ConnectionType {get;}

Property Value

The OracleConnectionType that this connection object is associated with.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• OracleConnectionType Enumeration

Credential
This property is used to get or set an OracleCredential object on the connection.

Chapter 7
OracleConnection Class

7-166

Declaration

// C#
public OracleCredential Credential { get; set; }

Property Value

An OracleCredential object to be used for opening connection.

Exceptions

An InvalidOperationException will be raised in following scenarios:

• If connection is already open.

• If connection string has already been set on this connection and it contains any of user id,
password, DBA Privilege, proxy user id or proxy password.

• The AccessToken property is set.

• The TokenLocation properties is set. This is aplicable for managed ODP.NET and
ODP.NET Core only.

• TokenAuthentication is set to something other than disabled. This is aplicable for
managed ODP.NET and ODP.NET Core only.

Remarks

To obtain the OracleCredential object through the property getter, "persist security info"
must be set to true in the connection string.

If "Persist security info" is set to false in the Connection String, then the OracleCredential
object is not returned through the property getter after the password has been validated.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• OracleConnectionType Enumeration

Database
This property is not supported.

Declaration

// C#
public override string Database {get;}

Property Value

A string.

Chapter 7
OracleConnection Class

7-167

Implements

IDbConnection.Database

Remarks

This property is not supported. It always returns an empty string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

DatabaseDomainName
This property specifies the name of the database domain that this connection is
connected to.

Declaration

// C#
public string DatabaseDomainName {get;}

Property Value

The database domain that this connection is connected to.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

DatabaseEditionName
DatabaseEditionName property sets or gets the edition name for the
OracleConnection object.

Declaration

// C#
public string DatabaseEditionName{get;set;}

Chapter 7
OracleConnection Class

7-168

Property Value

A string to be used as the edition name for the OracleConnection object.

Exceptions

• InvalidOperationException() - if the connection is already open.

• InvalidOperationException() - If CPVersion is set to 1.0 when the connection is
opened. DatabaseEditionName property is supported only with CPVersion of 2.0 or
higher.

Remarks

Property must be set before opening a connection or after closing a connection.

The edition name for the connection to use can be set in one of three places:
DatabaseEditionName in the application code, Edition in the .NET configuration file, or
Edition in the Windows Registry. The .NET configuration value overrides the Registry value
and the DatabaseEditionName property value overrides the .NET configuration value.

DatabaseEditionName property value is case sensitive.

Only supported for .NET Framework 4 and higher.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

DatabaseName
This property specifies the name of the database that this connection is connected to.

Declaration

// C#
public string DatabaseName {get;}

Property Value

The database that this connection is connected to.

Chapter 7
OracleConnection Class

7-169

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

DataSource
This property specifies the Oracle Net Services Name, Connect Descriptor, or an easy
connect naming that identifies the database to which to connect

Declaration

// C#
public override string DataSource {get;}

Property Value

Oracle Net Services Name, Connect Descriptor, or an easy connect naming that
identifies the database to which to connect.

Remarks (.NET Stored Procedure)

The value of this property is always an empty string for the implicit database
connection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

DRCPConnectionClass
This property specifies a logical name that identifies the DRCP connection pool that
the ODP.NET connection will use.

Declaration

// C#
public string DRCPConnectionClass {get; set;}

Property Value

The string to be used that uniquely identifies the DRCP server side connection pool for
the ODP.NET application to use.

Chapter 7
OracleConnection Class

7-170

Exceptions

• InvalidOperationException() - if CPVersion=1.0 and the DRCPConnectionClass is set
to a non-null / non-empty string. Applies to unmanaged ODP.NET only.

• InvalidOperationException() - if the DRCPConnectionClass is set to a non-null / non-
empty string after opening a connection.

• InvalidOperationException() - if DRCP is not enabled and the DRCPConnectionClass
is set to a non-null / non-empty string.

Remarks

A different client-side connection pool will be created for each unique DRCPConnectionClass
property value. Each of these pools will use the same DRCP.

The default value is null. The character limit is 1024 minus the number of characters in the
user id.

If this property is used, it must be set prior to opening the connection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

DRCPPurity
Session purity specifies whether an application can reuse a pooled session (Pooled) or must
use a new session (New).

Declaration

// C#
public OracleDRCPPurity DRCPPurity {get; set;}

Property Value

OracleDRCPPurity Enumeration values.

Exceptions

• InvalidOperationException() - if CPVersion=1.0 and the DRCPPurity is set to a non-
null / non-empty string. Applies to unmanaged ODP.NET only.

• InvalidOperationException() - if the DRCPPurity is set to a non-null / non-empty string
after opening a connection.

• InvalidOperationException() - if DRCP is not enabled and the DRCPPurity is set to a
non-null / non-empty string.

Chapter 7
OracleConnection Class

7-171

Remarks

The default value is Pooled.

If set to New, then ODP.NET will dispense a new DRCP connection, rather than try to
find an existing connection from the DRCP. In general, this property is used by
applications that want a connection without any preexisting session state set.

If set to Pooled, then ODP.NET will first attempt to use a preexisting connection, that
already exists in the DRCP pool.

Using this property will not cause a new DRCP to be created, just a new connection
from an existing DRCP.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• OracleDRCPPurity Enumeration

HostName
This property specifies the name of the host that this connection is connected to.

Declaration

// C#
public string HostName {get;}

Property Value

The host that this connection is connected to.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

InstanceName
This property specifies the name of the instance that this connection is connected to.

Chapter 7
OracleConnection Class

7-172

Declaration

// C#
public string InstanceName {get;}

Property Value

The instance that this connection is connected to.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

KeepAlive
This property specifies whether to keep an idle connection alive.

Declaration

// C#
public static Boolean KeepAlive { get; set; }

Property Type

System.Boolean

Remarks

Turn KeepAlive on to prevent an idle TCP connection from being killed, such as a by a
firewall. KeepAlive will keep the connection alive by periodically sending a probe packet with
no data in it and the ACK flag turned on.

This setting is used in conjunction with KeepAliveInterval and KeepAliveTime.

The KeepAlive default is false.

Starting in ODP.NET Core 19.10, KeepAlive is supported on non-Windows operating
systems, such as Oracle Linux. For these non-Windows operating systems, .NET Core 3 or
higher is required.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-173

KeepAliveInterval
This property specifies the time interval after an unacknowledged probe before a new
probe is sent.

Declaration

// C#
public static int KeepAliveInterval { get; set; }

Property Type

System.Int32

Remarks

In seconds. The interval default is 6 seconds between unacknowledged probes.

When keepalive probes are sent, they are normally acknowledged by the remote TCP.
If the connection remains idle, but TCP does see the probe acknowledgements, then
TCP will send the probes at a rate of once every KeepAliveTime duration.

When these probes are not acknowledged, the probes are then sent at intervals set by
KeepAliveInterval. Probes will continue to be sent at the KeepAliveInterval until
the server acknowledges the probe, independent connection activity occurs, or 10
consecutive unacknowledged probes have been sent.

After a probe is acknowledged, future probes will be sent again at the KeepAliveTime
interval.

If 10 probes are sent without acknowledgement, the connection is deemed EOF/
Reset.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

KeepAliveTime
This property specifies the idle time before a keepalive probe is sent.

Declaration

// C#
public static int KeepAliveTime { get; set; }

Property Type

System.Int32

Chapter 7
OracleConnection Class

7-174

Remarks

In seconds. The default is 60 seconds.

KeepAliveTime specifies the idle time to wait until sending a probe to verify the connection
remains active and to keep that connection active. If the remote TCP sends back an
acknowledgement of receiving the probe, then no further probe is sent until another
KeepAliveTime idle period has elapsed.

Whenever independent connection activity occurs, KeepAliveTime is reset. When that activity
ends, the KeepAliveTime starts its countdown to sending a probe.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ModuleName
This property specifies the module name for the connection.

Declaration

// C#
public string ModuleName {set;}

Property Value

The string to be used as the module name.

Remarks

The default value is null.

Using the ModuleName property allows the application to set the module name in the
application context for a given OracleConnection object.

In unmanaged ODP.NET, the ModuleName property is reset to null when the Close or Dispose
method is called on the OracleConnection object. In managed ODP.NET, it is reset to null
(assuming no new value is assigned) upon the next database round trip following a Close or
Dispose method call on the OracleConnection object.

Chapter 7
OracleConnection Class

7-175

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "Client Identifier and End-to-End Tracing"

• Oracle Database Security Guide

OciCompartment
This property gets or sets the Oracle Cloud Identifier (OCID) of the target database's
compartment.

Declaration

// C#
public string OciCompartment { get; set; }

Property Type

System.String

Remarks

This property is optional by default. This property is mandatory if the OciDatabase
property is set.

If OciCompartment is not set, then ODP.NET requests access to all the cloud tenancy's
databases identified in the OciTenancy property.

There is no default value for this property.

The value of this property will be part of pool manager identification so different value
for this property will result in different connection pools.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OciDatabase
This property gets or sets the target database's Oracle Cloud Identifier (OCID).

Chapter 7
OracleConnection Class

7-176

Declaration

// C#
public string OciDatabase { get; set; }

Property Type

System.String

Remarks

This property is optional.

If it is not set, then ODP.NET requests access to all the cloud compartment's databases
identified in the OciCompartment property. If OciCompartment property is also not set, then
ODP.NET requests access to all the tenancy's databases specified in the OciTenancy
property.

There is no default value for this property.

The value of this property will be part of pool manager identification so different value for this
property will result in different connection pools.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OciIamUrl
This property gets or sets the URL end point for getting the database token.

Declaration

// C#
public string OciIamUrl { get; set; }

Property Type

System.String

Remarks

This is a mandatory property for IAM alternate password use. If not set in that usage
scenario, ODP.NET raises an error.

The property value is part of the connection pool manager identification. Different property
values result in different connection pools.

Chapter 7
OracleConnection Class

7-177

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OciTenacy
This property gets or sets the Oracle Cloud Identifier (OCID) of the IAM user’s cloud
tenancy to retrieve the database token.

Declaration

// C#
public string OciTenacy { get; set; }

Property Type

System.String

Remarks

This is a mandatory property for IAM alternate password use. If not set in that usage
scenario, ODP.NET raises an error.

The property value is part of the connection pool manager identification. Different
property values result in different connection pools.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

PasswordAuthentication
This property sets the connection PASSWORD_AUTH parameter value. The possible
parameter values are OciToken and PasswordVerifier. The default value is
PasswordVerifier, which indicates the typical database username and password can
be used for authentication.

Declaration

// C#
public OraclePasswordAuth PasswordAuthentication { get; set; }

Chapter 7
OracleConnection Class

7-178

Property Type

An OraclePasswordAuth enumeration

Remarks

The property value is part of the connection pool manager identification. Different property
values result in different connection pools.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

PDBName
This property is used to set and get the name of the pluggable database to which the session
is connected to.

Declaration

// C#
public string PDBName{ get; set; }

Property Value

PDBName returns a string specifying the pluggable database name for the connection.

Exceptions

• InvalidOperationException() - if the connection is already open.

• InvalidOperationException() - if the CPVersion is set to 1.0 and the PDBName property
is set. Applicable only to ODP.NET, Unmanaged Driver.

• InvalidOperationException() - If PDBName value is retrieved when CPVersion is set to
1.0. Applicable only to ODP.NET, Unmanaged Driver.

Remarks

Pluggable databases are available in Oracle Database 12c and higher. The ServiceName and
PDBName properties can be used to connect to the specified Service that is running on a
particular PDB.

Property must be set before opening the connection so that a connection with requested
pluggable database name is returned.

If the PDBName property is set before connection is opened, then the connection's pluggable
database name will be the same as PDBName when OracleConnection.Open() is successfully
executed.

Chapter 7
OracleConnection Class

7-179

If only the PDBName property is set, then the default service of the pluggable database
is used as the ServiceName for this connection.

In unmanaged ODP.NET, if the PDBName property is set and if the .NET configuration
setting, CPVersion, is not set, then the CPVersion attribute will be automatically set to
2.0.

PDBName property's value is case insensitive.

The PDBName property can be used to retrieve the session's pluggable database name
after the connection has been opened. If it is used to get the pluggable database name
before the connection is opened, then it just returns the pluggable database name
provided by the application, if any.

Only supported for .NET Framework 4 and higher.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ProviderVersion
This property specifies the ODP.NET assembly version.

Declaration

// C#
public static string ProviderVersion { get; }

Property Type

System.String

Property Values

The first ODP.NET Core 19c release has a ProviderVersion of 2.0.19.1. Managed and
managed ODP.NET have version 4.122.19.1.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-180

ServerVersion
This property specifies the version number of the Oracle database to which the
OracleConnection has established a connection.

Declaration

// C#
public override string ServerVersion {get;}

Property Value

The version of the Oracle database.

Exceptions

InvalidOperationException - The connection is closed.

Remarks

The default is an empty string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ServiceName
This property is used to set and get the database service name to which the session will be
connected to when connecting to a pluggable database.

Declaration

// C#
public string ServiceName{ get; set;}

Property Value

ServiceName returns a string specifying the service name of the connection.

Exceptions

InvalidOperationException() - the connection is already open.

InvalidOperationException() - if the CPVersion is set to 1.0 and the ServiceName property
is set. Applicable only to ODP.NET, Unmanaged Driver.

Chapter 7
OracleConnection Class

7-181

Remarks

Pluggable databases are available in Oracle Database 12c and higher. The
ServiceName and PDBName properties can be used to connect to the specified Service
that is running on a particular PDB.

ServiceName must be set before opening the connection so that the correct service is
used for the connection.

PDBName property must be set when the ServiceName property is set. Otherwise, an
exception is thrown when the connection is opened.

If the ServiceName property is specified before connection is opened, then the
connection's service will be the same as the specified ServiceName when the
connection is opened.

If the service name is not changed before the connection is next opened, then the
connection will continue using the ServiceName value that had been previously set.

In unmanaged ODP.NET, if the ServiceName property is set and if the CPVersion
attribute is not set, then the CPVersion attribute will be automatically set to 2.0.

ServiceName property's value is case insensitive.

The ServiceName property can also be used to retrieve the session service name after
opening the connection. If retrieved before opening the connection, then ServiceName
returns the service name provided by the application, if any.

Only supported for .NET Framework 4 and higher.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

SqlNetAuthenticationServices
This property enables one or more authentication services, such as TCP/IP with SSL.

Declaration

// C#
public string SqlNetAuthenticationServices { get; set; }

Property Type

System.String
Valid values are: All, Kerberos5, NTS, TCPS, or NONE.

Chapter 7
OracleConnection Class

7-182

Note:

ODP.NET Core does not currently support the Kerberos5 value.

Example

//C#
con.SqlNetAuthenticationServices = "(nts, tcps)";

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

State
This property specifies the current state of the connection.

Declaration

// C#
public override ConnectionState State {get;}

Property Value

The ConnectionState of the connection.

Implements

IDbConnection

Remarks

ODP.NET supports ConnectionState.Closed and ConnectionState.Open for this property.
The default value is ConnectionState.Closed.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-183

StatementCacheSize
This property specifies the current size of the statement cache associated with this
connection.

Declaration

// C#
public int StatementCacheSize{get;}

Property Value

An integer value indicating the size of the statement cache.

Remarks

If self tuning is not enabled, then the default value of this property depends upon the
statement cache size specified in the connection string, application configuration file,
or the registry. If none of these values are specified, then a default value of 0 is used.

If self tuning is enabled, then the property value is adjusted automatically. Any values
specified in the connection string, application configuration file, or the registry are
ignored.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

SwitchedConnection
This property applies to pluggable database connections. Upon an
OracleConnection.Open(), if the connection returned from the pool had to change its
service name (ServiceName) or pluggable database (PDBName) in order to connect to
the desired pluggable database, then the connection is considered switched. Thus,
SwitchedConnection will then return TRUE. In all other cases, it will return FALSE.

Declaration

// C#
public bool SwitchedConnection { get; }

Remarks

Applications should use this property carefully when using DRCPConnectionClass
values that are common across PDBs/Services. If the same DRCPConnectionClass
values are used across PDBs/Services, but their semantics are different, then this
property value can help determine if the requested connection is returned or not.

Chapter 7
OracleConnection Class

7-184

For example, in a scenario where the same DRCPConnectionClass that is used across PDBs/
Services has a different semantic, the application should first check to see if the session has
been switched or not. If it has switched between PDBs/Services, then the application should
consider that the connection with a matching DRCPConnectionClass was not dispensed.

Only supported for .NET Framework 4 and higher.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

TnsAdmin
This property specifies the directory location of tnsnames.ora or sqlnet.ora, or both.

Declaration

// C#
public static string TnsAdmin { get; set; }

Property Type

System.String

Remarks

The backslash (\) is a special character in .NET that represents the beginning of an escape
sequence. To specify a directory location, use any one of the following formats in .NET so
that backslashes are correctly represented in a directory location:

// C#
OracleConnection con = new OracleConnection();
con.TnsAdmin = "D:\\oracle\\client\\admin";
con.TnsAdmin = @"D:\oracle\client\admin";
con.TnsAdmin = "D:/oracle/client/admin";

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-185

TokenAuthentication
This property sets the value for TOKEN_AUTH parameter for the connection. The
possible values for this property can be OracleTokenAuth.OciToken,
OracleTokenAuth.Disabled, or OracleTokenAuth.OAuth.

Declaration

// C#
public OracleTokenAuth TokenAuthentication { get; set; }

Remarks

The value of this property will be part of connection pool manager identification so
different values for this property will result in different connection pools.

Table 7-51 OracleTokenAuth Members

Member Name Description

Disabled Default value. Token authentication is DISABLED.

OciToken Token authentication is enabled for Oracle Identity and Access
Management.

OAuth Token authentication enabled for Azure Active Directory.

Exceptions

• An InvalidOperationException will be raised if

– the connection is already open,

– the value of the AccessToken property is not compatible with the type of token
authentication being set,

– TokenAuthentication is set to disabled and the AccessToken or
TokenLocation properties are set,

– or, TokenAuthentication is set to a value other than disabled, and the
Credential property is set.

– It can also be raised if the user or proxy information in the connection string is
not compatible with token authentication.

• OracleException if Credential is set.

• OracleException if user id value is other than /.

• OracleException if password, proxy user id and proxy password is set.

Note:

Only managed ODP.NET and ODP.NET Core can use this property.

Chapter 7
OracleConnection Class

7-186

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

TokenLocation
This property gets or sets the token location path for the connection where the access token,
or database token and private key files, are present for ODP.NET token authentication. The
file names do not need to be specified.

Declaration

// C#
public string TokenLocation { get; set; }

Property Value

A directory location.

Remarks

The value of this property will be part of connection pool manager identification so different
values for this property will result in different connection pools.

Expections

• An InvalidOperationException will be raised if

– the connection is already open,

– the AccessToken or Credential properties are set,

– or if TokenAuthentication has been set to disabled by the application.

– It can also be raised if the user or proxy information in the connection string is not
compatible with token authentication.

• OracleException if Credential is set.

• OracleException if user id value is other than /.

• OracleException if password, proxy user id and proxy password is set.

Description

This property is mandatory for OAuth file-based access tokens, but optional for database
tokens.

In the access token case, this property can be the directory where the file "token" is, or the
full-path specification of the token file.

For OCI IAM PoP tokens, a file's full-path specification can be specified if it does not have the
standard name, "token". A file name does not need to be specified when it uses this
standard, fixed name. Bearer token default token location is an empty string.

Chapter 7
OracleConnection Class

7-187

Note:

Only managed ODP.NET and ODP.NET Core can use this property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

UseHourOffsetForUnsupportedTimezone
This property specifies whether the hour offset can be used for the session time zone,
when the Oracle time zone region name that is associated with the .NET locale is not
supported by the Oracle Database being used.

Declaration

// C#
public bool UseHourOffsetForUnsupportedTimezone { get; set; }

Property Type

System.Boolean

Exceptions

InvalidOperationException – This exception will be thrown if this property is set
when the Connection is in an Open state.

Remarks

ODP.NET is built to support the latest available time zones the Oracle database client
supports. However, older Oracle database server versions may not have the latest
time zone files that support all the same time zones the client supports. Thus, the
client could request a connection time zone the Oracle database does not support. In
these situations, the connection request returns an “ORA-01882: timezone region
not found” error.

When the UseHourOffsetForUnsupportedTimezone property is set to true, then
ODP.NET will initialize the connection/session time zone using a "hour offset"
instead of a time zone region name only if the Oracle Database cannot support the
Oracle time zone associated with the .NET locale. ODP.NET can then successfully
connect and avoid the ORA-01882 error. This also means if the Oracle Database does
support the Oracle time zone associated with the .NET locale, then the connection/
session will be initialized with an Oracle time zone region name, regardless of the
UseHourOffsetForUnsupportedTimezone property setting.

By default, the UseHourOffsetForUnsupportedTimezone property is set to false.

Chapter 7
OracleConnection Class

7-188

Oracle does not recommend using the hour offset since datetimes with time zone values will
not be daylight savings time sensitive. Even when the hour offset is enabled, ODP.NET first
attempts to use the Oracle time zone region name associated with the .NET locale. Only
when the ORA-01882 error is encountered will ODP.NET use the hour offset as the session
time zone during a second connection attempt. Thus, there can be two connection requests if
the first connection attempt fails with the ORA-01882 error.

The UseHourOffsetForUnsupportedTimezone property value specified for the first
successfully created connection is used for all subsequent connections in that pool. When
pooling is not used, the property’s value will be specific for the particular
OracleConnection.Open() invocation.

Oracle recommends resolving ORA-01882 errors by upgrading the Oracle database with the
latest time zone/DST files. Oracle also recommends using the time zone region name for the
session time zone so that datetime conversions with time zone values are daylight savings
time sensitive.

If the Oracle Database time zone / DST files cannot be upgraded, the application should then
set the UseHourOffsetForUnsupportedTimezone property to true.

Sample Code

using System;
using Oracle.ManagedDataAccess.Client;

class Test
{
 static void Main(string[] args)
 {
 string constr = "user id=hr;password=<password>;data source=oracle;”

 OracleConnection con = new OracleConnection(constr);

 // Have the connection created with the ‘hour offset’ being used as the session
time zone
 // if the Oracle Database does not support the Oracle Time Zone associated with
the
 // .NET application’s locale
 con.UseHourOffsetForUnsupportedTimezone = true;

 // Establish a connection to Oracle
 con.Open();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-189

WalletLocation
This property specifies the location of wallets. Wallets are certificates, keys, and
trustpoints processed by SSL/TLS.

Declaration

// C#
public static string WalletLocation { get; set; }

Property Type

System.String

Remarks

Microsoft Certificate Store (MCS) and file system wallets are supported.

The backslash (\) is a special character in .NET that represents the beginning of an
escape sequence. To specify a directory location, use any one of the following formats
in .NET so that backslashes are correctly represented in a directory location:

// C#
OracleConnection con = new OracleConnection();
con.WalletLocation = "D:\\oracle\\client\\wallets";
con.WalletLocation = @"D:\oracle\client\wallets";
con.WalletLocation = "D:/oracle/client/wallets";

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OracleConnection Public Methods
OracleConnection public methods are listed in Table 7-52.

Table 7-52 OracleConnection Public Methods

Public Method Description

BeginTransaction Begins a local transaction (Overloaded)

Not supported in a .NET stored procedure for context
connection

ChangeDatabase Not Supported

Clone Creates a copy of an OracleConnection object

Not supported in a .NET stored procedure

Close Closes the database connection

Chapter 7
OracleConnection Class

7-190

Table 7-52 (Cont.) OracleConnection Public Methods

Public Method Description

CreateCommand Creates and returns an OracleCommand object
associated with the OracleConnection object

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from System.ComponentModel.Component
EnlistDistributedTransaction Enables applications to explicitly enlist in a specified

distributed transaction

Not supported in a .NET stored procedure and
ODP.NET Core

EnlistTransaction Enables applications to enlist in a specified distributed
transaction

Not supported in a .NET stored procedure

Equals Inherited from System.Object (Overloaded)

FlushCache Flushes all updates and deletes made through REF
objects retrieved using this connection

Not Available in ODP.NET, Managed Driver and
ODP.NET Core

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetSchema Returns schema information for the data source of the

OracleConnection
GetSessionInfo Returns or refreshes the property values of the

OracleGlobalization object that represents the
globalization settings of the session (Overloaded)

GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
Open Opens a database connection with the property

settings specified by the ConnectionString
OpenWithNewPassword Opens a new connection with the new password

(Overloaded)

Not supported in a .NET stored procedure for context
connection

OpenWithNewToken(char[]) This method can be used to open a new connection by
providing the refreshed/updated access token directly
to ODP.NET instead of through the token refresh call
back.

OpenWithNewToken(char[], char[]) Used by the application to open a new connection by
providing the refreshed/updated signature token and
private key directly to ODP.NET instead of through the
token refresh call back

PurgeStatementCache Flushes the Statement Cache by closing all open
cursors on the database, when statement caching is
enabled

Chapter 7
OracleConnection Class

7-191

Table 7-52 (Cont.) OracleConnection Public Methods

Public Method Description

SetSessionInfo Alters the session's globalization settings with the
property values provided by the
OracleGlobalization object

SetShardingKey(OracleShardingKey,
OracleShardingKey)

Enables applications to set the sharding key and super
sharding key before requesting a connection

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

BeginTransaction
BeginTransaction methods begin local transactions.

Overload List

• BeginTransaction()

This method begins a local transaction.

• BeginTransaction(IsolationLevel)

This method begins a local transaction with the specified isolation level.

BeginTransaction()
This method begins a local transaction.

Declaration

// C#
public OracleTransaction BeginTransaction();

Return Value

An OracleTransaction object representing the new transaction.

Implements

IDbConnection

Exceptions

InvalidOperationException - A transaction has already been started.

Chapter 7
OracleConnection Class

7-192

Remarks

The transaction is created with its isolation level set to its default value of
IsolationLevel.ReadCommitted. All further operations related to the transaction must be
performed on the returned OracleTransaction object.

Remarks (.NET Stored Procedure)

Using this method in a .NET stored procedure for context connection causes a Not Supported
exception.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

BeginTransaction(IsolationLevel)
This method begins a local transaction with the specified isolation level.

Declaration

// C#
public OracleTransaction BeginTransaction(IsolationLevel isolationLevel);

Parameters

• isolationLevel

The isolation level for the new transaction.

Return Value

An OracleTransaction object representing the new transaction.

Implements

IDbConnection

Exceptions

InvalidOperationException - A transaction has already been started.

ArgumentException - The isolationLevel specified is invalid.

Remarks

The following isolation levels are supported: IsolationLevel.ReadCommitted and
IsolationLevel.Serializable.

Chapter 7
OracleConnection Class

7-193

Although the BeginTransaction method supports the IsolationLevel.Serializable
isolation level, serializable transactions are not supported when using
System.Transactions and TransactionScope.

Requesting other isolation levels causes an exception.

Remarks (.NET Stored Procedure)

Using this method in a .NET stored procedure for context connection causes a Not
Supported exception.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class BeginTransactionSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(IsolationLevel.ReadCommitted);

 // Update EMP table
 cmd.CommandText = "update emp set sal = sal + 100";
 cmd.ExecuteNonQuery();

 // Rollback transaction
 txn.Rollback();
 Console.WriteLine("Transaction rolledback");

 // Clean up
 txn.Dispose();
 cmd.Dispose();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-194

ChangeDatabase
This method is not supported.

Declaration

// C#
public override void ChangeDatabase(string databaseName);

Parameters

• databaseName

The name of the database that replaces the current database name.

Implements

IDbConnection.ChangeDatabase

Exceptions

NotSupportedException - Method not supported.

Remarks

This method is not supported and throws a NotSupportedException if invoked.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Clone
This method creates a copy of an OracleConnection object.

Declaration

// C#
public object Clone();

Return Value

An OracleConnection object.

Implements

ICloneable

Chapter 7
OracleConnection Class

7-195

Remarks

The cloned object has the same property values as that of the object being cloned.

Remarks (.NET Stored Procedure)

This method is not supported for an implicit database connection.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class CloneSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Need a proper casting for the return value when cloned
 OracleConnection clonedCon = (OracleConnection)con.Clone();

 // Cloned connection is always closed, regardless of its source,
 // But the connection string should be identical
 clonedCon.Open();
 if (clonedCon.ConnectionString.Equals(con.ConnectionString))
 Console.WriteLine("The connection strings are the same.");
 else
 Console.WriteLine("The connection strings are different.");

 // Close and Dispose OracleConnection object
 clonedCon.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Close
This method closes the connection to the database.

Declaration

// C#
public override void Close();

Chapter 7
OracleConnection Class

7-196

Implements

IDbConnection

Remarks

Performs the following:

• Rolls back any pending local transactions that are not yet committed. Distributed
transactions will rely on the distributed transaction coordinator on whether roll back is
necessary.

• Places the connection to the connection pool if connection pooling is enabled. Even if
connection pooling is enabled, the connection can be closed if it exceeds the connection
lifetime specified in the connection string. If connection pooling is disabled, the
connection is closed.

• Closes the connection to the database.

The connection can be reopened using Open().

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

CreateCommand
This method creates and returns an OracleCommand object associated with the
OracleConnection object.

Declaration

// C#
public OracleCommand CreateCommand();

Return Value

The OracleCommand object.

Implements

IDbConnection

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

Chapter 7
OracleConnection Class

7-197

class CreateCommandSample
{
 static void Main()
 {
 // Connect
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Execute a SQL SELECT
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "select * from emp";
 OracleDataReader reader = cmd.ExecuteReader();

 // Print all employee numbers
 while (reader.Read())
 Console.WriteLine(reader.GetInt32(0));

 // Clean up
 reader.Dispose();
 cmd.Dispose();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

EnlistDistributedTransaction
This method enables applications to explicitly enlist in a specific distributed transaction
after a connection has been opened.

Declaration

// C#
public void EnlistDistributedTransaction(ITransaction transaction);

Parameters

• transaction

An ITransaction interface.

Exceptions

InvalidOperationException - The connection is part of a local transaction or the
connection is closed.

Chapter 7
OracleConnection Class

7-198

Remarks

EnlistDistributedTransaction enables objects to enlist in a specific transaction that is
passed to the method. The ITransaction interface can be obtained by applying an
(ITransaction) cast to the ContexUtil.Transaction property within the component that
started the distributed transaction.

The connection must be open before calling this method or an InvalidOperationException
is thrown.

If a connection is part of a local transaction that was started implicitly or explicitly while
attempting to enlist in a distributed transaction, the local transaction is rolled back and an
exception is thrown.

By default, distributed transactions roll back, unless the method-level AutoComplete
declaration is set.

Invoking the commit on the ITranasction raises an exception.

Invoking the rollback on the ITransaction method and calling ContextUtil.SetComplete on
the same distributed transaction raises an exception.

Remarks (.NET Stored Procedure)

Using this method causes a Not Supported exception.

Example

Application:

// C#

/* This is the class that will utilize the Enterprise Services
 component. This module needs to be built as an executable.

 The Enterprise Services Component DLL must be built first
 before building this module.
 In addition, the DLL needs to be referenced appropriately
 when building this application.
*/

using System;
using System.EnterpriseServices;
using DistribTxnSample;

class DistribTxnSample_App
{
 static void Main()
 {
 DistribTxnSample_Comp comp = new DistribTxnSample_Comp();
 comp.DoWork();
 }
}

Component:

// C#

/* This module needs to be
 1) built as a component DLL/Library

Chapter 7
OracleConnection Class

7-199

 2) built with a strong name

 This library must be built first before the application is built.
*/

using System;
using System.Data;
using Oracle.DataAccess.Client;
using System.EnterpriseServices;

namespace DistribTxnSample
{
 [Transaction(TransactionOption.RequiresNew)]
 public class DistribTxnSample_Comp : ServicedComponent
 {
 public void DoWork()
 {
 string constr =
 "User Id=scott;Password=tiger;Data Source=oracle;enlist=false";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Enlist in a distrubuted transaction
 con.EnlistDistributedTransaction((ITransaction)ContextUtil.Transaction);

 // Update EMP table
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "UPDATE emp set sal = sal + .01";
 cmd.ExecuteNonQuery();

 // Commit
 ContextUtil.SetComplete();

 // Dispose OracleConnection object
 con.Dispose();
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "EnlistTransaction"

• http://msdn.microsoft.com/library for detailed information about this
Microsoft .NET Framework feature

EnlistTransaction
This method enlists the connection to the specified transaction.

Chapter 7
OracleConnection Class

7-200

http://msdn.microsoft.com/library

Declaration

// C#
public override void EnlistTransaction(Transaction transaction)

Parameters

• transaction

A System.Transactions.Transaction object.

Exceptions

InvalidOperationException - The connection is part of a local transaction or the connection
is closed.

Remarks

Invocation of this method immediately enlists the connection to a transaction that is specified
by the provided transaction parameter.

If OracleConnection is still associated with a distributed transaction that has not completed
from a previous EnlistTransaction method invocation, calling this method will cause an
exception to be thrown.

In general, for transaction enlistments to succeed, the "enlist" connection string attribute
must be set to "true" before invoking the Open method. Setting the "enlist" connection
string attribute to "true" will implicitly enlist the connection when the Open method is called, if
the connection is within a transaction context. The "enlist" attribute should be set to
"false" or "dynamic" only if the connection will never enlist in a transaction.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "System.Transactions and Promotable Transactions"

• "EnlistDistributedTransaction"

FlushCache
This method flushes all updates and deletes made through REF objects retrieved using this
connection.

Declaration

// c#
public void FlushCache();

Chapter 7
OracleConnection Class

7-201

Exceptions

InvalidOperationException - The specified connection is not open.

Remarks

Before flushing objects, it is required that the application has explicitly started a
transaction by executing the BeginTransaction method on the OracleConnection
object. This is because if the object being flushed has not already been locked by the
application, an exclusive lock is obtained implicitly for the object. The lock is only
released when the transaction commits or rollbacks.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

GetSchema
GetSchema methods return schema information for the data source of the
OracleConnection.

Overload List

• GetSchema()

This method returns schema information for the data source of the
OracleConnection.

• GetSchema (string collectionName)

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name.

• GetSchema (string collectionName, string[] restrictions)

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name and the
specified string array for the restriction values.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-202

GetSchema()
This method returns schema information for the data source of the OracleConnection.

Declaration

// C#
public override DataTable GetSchema();

Return Value

A DataTable object.

Exceptions

InvalidOperationException – The connection is closed.

Remarks

This method returns a DataTable object that contains a row for each metadata collection
available from the database.

The method is equivalent to specifying the String value "MetaDataCollections" when using
the GetSchema(String) method.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class GetSchemaSample
{
 static void Main(string[] args)
 {
 string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
 string ProviderName = "Oracle.DataAccess.Client";

 DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

 using (DbConnection conn = factory.CreateConnection())
 {
 try
 {
 conn.ConnectionString = constr;
 conn.Open();

 //Get all the schema collections and write to an XML file.
 //The XML file name is Oracle.DataAccess.Client_Schema.xml
 DataTable dtSchema = conn.GetSchema();
 dtSchema.WriteXml(ProviderName + "_Schema.xml");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);

Chapter 7
OracleConnection Class

7-203

 Console.WriteLine(ex.StackTrace);
 }
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

GetSchema (string collectionName)
This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name.

Declaration

// C#
public override DataTable GetSchema (string collectionName);

Parameters

collectionName

Name of the collection for which metadata is required.

Return Value

A DataTable object.

Exceptions

ArgumentException – The requested collection is not defined.

InvalidOperationException – The connection is closed.

InvalidOperationException – The requested collection is not supported by current
version of Oracle database.

InvalidOperationException – No population string is specified for requested
collection.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class GetSchemaSample

Chapter 7
OracleConnection Class

7-204

{
 static void Main(string[] args)
 {
 string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
 string ProviderName = "Oracle.DataAccess.Client";

 DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

 using (DbConnection conn = factory.CreateConnection())
 {
 try
 {
 conn.ConnectionString = constr;
 conn.Open();

 //Get MetaDataCollections and write to an XML file.
 //This is equivalent to GetSchema()
 DataTable dtMetadata =
 conn.GetSchema(DbMetaDataCollectionNames.MetaDataCollections);
 dtMetadata.WriteXml(ProviderName + "_MetaDataCollections.xml");

 //Get Restrictions and write to an XML file.
 DataTable dtRestrictions =
 conn.GetSchema(DbMetaDataCollectionNames.Restrictions);
 dtRestrictions.WriteXml(ProviderName + "_Restrictions.xml");

 //Get DataSourceInformation and write to an XML file.
 DataTable dtDataSrcInfo =
 conn.GetSchema(DbMetaDataCollectionNames.DataSourceInformation);
 dtDataSrcInfo.WriteXml(ProviderName + "_DataSourceInformation.xml");

 //data types and write to an XML file.
 DataTable dtDataTypes =
 conn.GetSchema(DbMetaDataCollectionNames.DataTypes);
 dtDataTypes.WriteXml(ProviderName + "_DataTypes.xml");

 //Get ReservedWords and write to an XML file.
 DataTable dtReservedWords =
 conn.GetSchema(DbMetaDataCollectionNames.ReservedWords);
 dtReservedWords.WriteXml(ProviderName + "_ReservedWords.xml");

 //Get all the tables and write to an XML file.
 DataTable dtTables = conn.GetSchema("Tables");
 dtTables.WriteXml(ProviderName + "_Tables.xml");

 //Get all the views and write to an XML file.
 DataTable dtViews = conn.GetSchema("Views");
 dtViews.WriteXml(ProviderName + "_Views.xml");

 //Get all the columns and write to an XML file.
 DataTable dtColumns = conn.GetSchema("Columns");
 dtColumns.WriteXml(ProviderName + "_Columns.xml");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
 }
}

Chapter 7
OracleConnection Class

7-205

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

GetSchema (string collectionName, string[] restrictions)
This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name and the specified string array for the
restriction values.

Declaration

// C#
public override DataTable GetSchema (string collectionName,
 string[] restrictions);

Parameters

• collectionName

The name of the collection of metadata being retrieved.

• restrictions

An array of restrictions that apply to the metadata being retrieved.

Return Value

A DataTable object.

Exception

• ArgumentException – The requested collection is not defined.

• InvalidOperationException – One of the following conditions exist:

– The connection is closed.

– The requested collection is not supported by the current version of Oracle
database.

– More restrictions were provided than the requested collection supports.

– No population string is specified for requested collection.

Remarks

This method takes the name of a metadata collection and an array of String values
that specify the restrictions for filtering the rows in the returned DataTable. This returns
a DataTable that contains only rows from the specified metadata collection that match
the specified restrictions.

Chapter 7
OracleConnection Class

7-206

For example, if the Columns collection has three restrictions (owner, tablename, and
columnname), to retrieve all the columns for the EMP table regardless of schema, the
GetSchema method must pass in at least these values: null, EMP.

If no restriction value is passed in, default values are used for that restriction, which is the
same as passing in null. This differs from passing in an empty string for the parameter value.
In this case, the empty string ("") is considered the value for the specified parameter.

collectionName is not case-sensitive, but restrictions (string values) are.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class GetSchemaSample
{
 static void Main(string[] args)
 {
 string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
 string ProviderName = "Oracle.DataAccess.Client";

 DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

 using (DbConnection conn = factory.CreateConnection())
 {
 try
 {
 conn.ConnectionString = constr;
 conn.Open();

 //Get Restrictions
 DataTable dtRestrictions =
 conn.GetSchema(DbMetaDataCollectionNames.Restrictions);

 DataView dv = dtRestrictions.DefaultView;

 dv.RowFilter = "CollectionName = 'Columns'";
 dv.Sort = "RestrictionNumber";

 for (int i = 0; i < dv.Count; i++)
 Console.WriteLine("{0} (default) {1}" ,
 dtRestrictions.Rows[i]["RestrictionName"],
 dtRestrictions.Rows[i]["RestrictionDefault"]);

 //Set restriction string array
 string[] restrictions = new string[3];

 //Get all columns from all tables owned by "SCOTT"
 restrictions[0] = "SCOTT";
 DataTable dtAllScottCols = conn.GetSchema("Columns", restrictions);

 // clear collection
 for (int i = 0; i < 3; i++)
 restrictions[i] = null;

 //Get all columns from all tables named "EMP" owned by any

Chapter 7
OracleConnection Class

7-207

 //owner/schema
 restrictions[1] = "EMP";
 DataTable dtAllEmpCols = conn.GetSchema("Columns", restrictions);

 // clear collection
 for (int i = 0; i < 3; i++)
 restrictions[i] = null;

 //Get columns named "EMPNO" from tables named "EMP",
 //owned by any owner/schema
 restrictions[1] = "EMP";
 restrictions[2] = "EMPNO";
 DataTable dtAllScottEmpCols = conn.GetSchema("Columns", restrictions);

 // clear collection
 for (int i = 0; i < 3; i++)
 restrictions[i] = null;

 //Get columns named "EMPNO" from all
 //tables, owned by any owner/schema
 restrictions[2] = "EMPNO";
 DataTable dtAllEmpNoCols = conn.GetSchema("Columns", restrictions);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.Source);
 }
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

GetSessionInfo
GetSessionInfo returns or refreshes an OracleGlobalization object that represents
the globalization settings of the session.

Overload List:

• GetSessionInfo()

This method returns a new instance of the OracleGlobalization object that
represents the globalization settings of the session.

• GetSessionInfo(OracleGlobalization)

This method refreshes the provided OracleGlobalization object with the
globalization settings of the session.

Chapter 7
OracleConnection Class

7-208

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

GetSessionInfo()
This method returns a new instance of the OracleGlobalization object that represents the
globalization settings of the session.

Declaration

// C#
public OracleGlobalization GetSessionInfo();

Return Value

The newly created OracleGlobalization object.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class GetSessionInfoSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Get session info from connection object
 OracleGlobalization info = con.GetSessionInfo();

 // Update session info
 info.DateFormat = "YYYY-MM-DD";
 con.SetSessionInfo(info);

 // Execute SQL SELECT
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "select TO_CHAR(hiredate) from emp";
 Console.WriteLine("Hire Date ({0}): {1}",
 info.DateFormat, cmd.ExecuteScalar());

 // Clean up
 cmd.Dispose();
 con.Dispose();
 }
}

Chapter 7
OracleConnection Class

7-209

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

GetSessionInfo(OracleGlobalization)
This method refreshes the provided OracleGlobalization object with the globalization
settings of the session.

Declaration

// C#
public void GetSessionInfo(OracleGlobalization oraGlob);

Parameters

• oraGlob

The OracleGlobalization object to be updated.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Open
This method opens a connection to an Oracle database.

Declaration

// C#
public overide void Open();

Implements

IDbConnection

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The connection is already opened or the connection
string is null or empty.

Chapter 7
OracleConnection Class

7-210

OracleException – For token authentication, errors include “ORA-25707: The token is
invalid.”, and “ORA-25708: The token has expired.”

Remarks

The connection is obtained from the pool if connection pooling is enabled. Otherwise, a new
connection is established.

It is possible that the pool does not contain any unused connections when the Open() method
is invoked. In this case, a new connection is established.

If no connections are available within the specified connection timeout value, when the Max
Pool Size is reached, an OracleException is thrown.

For client-side validation of an access token:

• The access token must be 16KB bytes or less.

• There needs to be two periods, ".".

• It must be valid base 64.

• It must be valid JSON.

• There must be "sub" and "exp" claims.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OpenWithNewPassword
OpenWithNewPassword opens a new connection with the new password.

Overload List:

• OpenWithNewPassword(String)

OpenWithNewPassword opens a new connection with the new password.

• OpenWithNewPassword(SecureString)

OpenWithNewPassword opens a new connection with the new password. This method will
also update the password in the OracleCredential instance that was passed using the
OracleConnection constructor or through the OracleConnection Credential property.

Chapter 7
OracleConnection Class

7-211

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OpenWithNewPassword(String)
This method opens a new connection with the new password.

Declaration

// C#
public void OpenWithNewPassword(string newPassword);

Parameters

• newPassword

A string that contains the new password.

Remarks

This method uses the ConnectionString property settings to establish a new
connection. The old password must be provided in the connection string as the
Password attribute value.

This method can only be called on an OracleConnection in the closed state.

Remarks (.NET Stored Procedure)

This method is not supported in a .NET stored procedure for context connection.

Note:

If connection pooling is enabled, then invoking the OpenWithNewPassword
method also clears the connection pool. This closes all idle connections
created with the old password.

Chapter 7
OracleConnection Class

7-212

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "Password Expiration"

OpenWithNewPassword(SecureString)
This method opens a new connection with the new password.

Declaration

// C#
public void OpenWithNewPassword(SecureString newSecurePassword)

Parameters

• newSecurePassword

The SecureString object that contains the new password for a user id.

Remarks

Use this method to change the password for a user id. This method can only be used if an
OracleCredential instance was passed using the OracleConnection constructor or through
the OracleConnection Credential property.

This method will also update the password in the OracleCredential instance that was
passed using the OracleConnection constructor or through the OracleConnection
Credential property.

OracleCredential does not support double quotes around a SecureString password.
Double quotes can be used within a password, however.

Exceptions

ArgumentNullException is raised if newSecurePassword is NULL or is not read only.

InvalidOperationException is raised if OracleCredential is not already set on the
OracleConnection either through the OracleConnection constructor or through the
Credential property of the OracleConnection.

InvalidOperationException is raised if the OracleConnection is already in the open state.

InvalidOperationException is raised of the connection string is NULL or of length 0.

InvalidOperationException is raised if the user id, proxy user id, password, proxy
password, DBA privilege is set using the connection string.

Chapter 7
OracleConnection Class

7-213

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "Password Expiration"

OpenWithNewToken(char[])
This method can be used to open a new connection by providing the refreshed/
updated access token directly to ODP.NET instead of through the token refresh call
back. It is recommended to be used only in cases the application is unable or fails to
provide the refreshed/updated access token through the token refresh call back.

Declaration

// C#
public void OpenWithNewToken(char[] token)

Exceptions

• ArgumentNullException is raised if token is passed in as null.

• InvalidOperationException - The connection is already opened, or there is not
an OracleAccessToken object set on the connection.

• OracleException – For token authentication, errors include “ORA-25707: The
token is invalid.”, and “ORA-25708: The token has expired.”

Description

ODP.NET uses the provided access token to open a new database connection. If the
new connection is opened successfully, then the underlying OracleAccessToken object
is updated with the new access token. If the driver fails to open the new connection,
then an exception is thrown and the access token is ignored.

The char[] passed for the access token will be cleared ODP.NET for security reasons.
The application should not depend on the char[] once this method is called.

For client-side validation of an access token:

• The access token must be 16KB bytes or less.

• There needs to be two periods, ".".

• It must be valid base 64.

• It must be valid JSON.

• There must be "sub" and "exp" claims.

Chapter 7
OracleConnection Class

7-214

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

OpenWithNewToken(char[], char[])
This method can be used by the application to open a new connection by providing the
refreshed/updated signature token and private key directly to ODP.NET instead of through the
token refresh call back. It is recommended to be used only in cases the application is unable
or fails to provide the refreshed/updated token and private key through the token refresh call
back.

Declaration

// C#
public void OpenWithNewToken(char[] dbToken, char[] privateKey)

Exceptions

• ArgumentNullException is raised if any parameters are passed in as null.

• Exception if connection is already open.

• Exception if the ‘sub’ value of the new token does not match the ‘sub’ value of the current
token.

Description

The ‘sub’ value of the new token must be the same as the ‘sub’ value of the current token.
ODP.NET will use the application provided signature token and private key to open a new
connection to the database. If the new connection can be opened successfully, then the
underlying OracleAccessToken object will be updated with these new token and private key. If
ODP.NET fails to open the new connection, then an exception will be thrown to the
application and the OracleAccessToken object will not be updated with the new token and
private key.

The char[] passed by the application for DB token and private key will be cleared by
ODP.NET. Applications should not depend on these char[] once this constructor is called.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

Chapter 7
OracleConnection Class

7-215

PurgeStatementCache
This method flushes the statement cache by closing all open cursors on the database,
when statement caching is enabled.

Declaration

// C#
public void PurgeStatementCache();

Remarks

Flushing the statement cache repetitively results in decreased performance and may
negate the performance benefit gained by enabling the statement cache.

Statement caching remains enabled after the call to PurgeStatementCache.

Invocation of this method purges the cached cursors that are associated with the
OracleConnection. It does not purge all the cached cursors in the database.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class PurgeStatementCacheSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle;" +
 "Statement Cache Size=20";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand("select * from emp", con);
 cmd.CommandType = CommandType.Text;
 OracleDataReader reader = cmd.ExecuteReader();

 // Purge Statement Cache
 con.PurgeStatementCache();

 // Close and Dispose OracleConnection object
 Console.WriteLine("Statement Cache Flushed");
 con.Close();
 con.Dispose();
 }
}

Chapter 7
OracleConnection Class

7-216

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "Statement Caching"

• ConnectionString

SetSessionInfo
This method alters the session's globalization settings with all the property values specified in
the provided OracleGlobalization object.

Declaration

// C#
public void SetSessionInfo(OracleGlobalization oraGlob);

Parameters

• oraGlob

An OracleGlobalization object.

Remarks

Calling this method is equivalent to calling an ALTER SESSION SQL on the session.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class SetSessionInfoSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Get session info from connection object
 OracleGlobalization info = con.GetSessionInfo();

 // Execute SQL SELECT
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "select TO_CHAR(hiredate) from emp";
 Console.WriteLine("Hire Date ({0}): {1}",
 info.DateFormat, cmd.ExecuteScalar());

 // Update session info

Chapter 7
OracleConnection Class

7-217

 info.DateFormat = "MM-DD-RR";
 con.SetSessionInfo(info);

 // Execute SQL SELECT again
 Console.WriteLine("Hire Date ({0}): {1}",
 info.DateFormat, cmd.ExecuteScalar());

 // Clean up
 cmd.Dispose();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

SetShardingKey(OracleShardingKey, OracleShardingKey)
This instance method enables applications to set the sharding key and the super
sharding key before requesting a connection.

Declaration

// C#
public void SetShardingKey(OracleShardingKey shardKey, OracleShardingKey
superShardingKey);

Exceptions

InvalidArgumentException – An invalid Oracle sharding key is supplied.

InvalidOperationException – The method is invoked when the connection is in an
Open state.

Remarks

This method sets the sharding key and the super sharding key that is to be used for
returning the proper connection upon the Open method invocation.

This method can only be invoked when the connection is in a Closed state.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class Sharding
{
 static void Main()

Chapter 7
OracleConnection Class

7-218

 {
 OracleConnection con = new OracleConnection("user id=hr;password=hr;Data
Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32, 123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection
 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• OracleShardingKey Class

OracleConnection Events
OracleConnection events are listed in Table 7-53.

Table 7-53 OracleConnection Events

Event Name Description

ConnectionOpen This event is triggered upon the OracleConnection.Open() method

Disposed Inherited from System.ComponentModel.Component
Failover An event that is triggered when an Oracle failover occurs

Not supported in a .NET stored procedure

Not Available in ODP.NET, Managed Driver and ODP.NET Core

HAEvent An event that is triggered when an HA event occurs

InfoMessage An event that is triggered for any message or warning sent by the
database

StateChange An event that is triggered when the connection state changes

Chapter 7
OracleConnection Class

7-219

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

ConnectionOpen
This event is triggered upon the OracleConnection.Open() method.

Declaration

// C#
public event OracleConnectionOpenEventHandler ConnectionOpen;

Event Data

The event handler receives a OracleConnectionOpenEventArgs object which exposes
the following property containing information about the ConnectionOpen event.

• Connection
OracleConnection object on which Open() is called.

Exceptions

• InvalidOperationException() - if CPVersion=1.0 and the ConnectionOpen event
is used. Applies to unmanaged ODP.NET only.

• InvalidOperationException() - if the ConnectionOpen event is set after opening
a connection.

Remarks

This feature requires CPVersion=2.0 to be used.

In order to configure the connection before it is dispensed, the application should
register the callback to the ConnectionOpen event before Open() is called.

Only supported for .NET Framework 4 and higher.

Example

// C#
// NOTE: The sample below requires CPVersion=2.0 to be configured in
the .NET configuration
using System;
using Oracle.ManagedDataAccess.Client;

class ConOpenEventSample
{
 public static void ConOpenCallback(OracleConnectionOpenEventArgs

Chapter 7
OracleConnection Class

7-220

eventArgs)
 {
 OracleCommand cmd = new OracleCommand("ALTER SESSION SET
NLS_LANGUAGE='GERMAN'", eventArgs.Connection);
 cmd.ExecuteNonQuery();
 cmd.Dispose();
 }

 static void Main(string[] args)
 {
 // Establish a connection
 string constr = "user id=hr;password=hr;data source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.ConnectionOpen += ConOpenCallback;
 con.Open();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• OracleConnectionOpenEventArgs Properties

• OracleConnectionOpenEventHandler Delegate

Failover
This event is triggered when an Oracle failover occurs.

Declaration

// C#
public event OracleFailoverEventHandler Failover;

Event Data

The event handler receives an OracleFailoverEventArgs object which exposes the following
properties containing information about the event.

• FailoverType
Indicates the type of the failover.

• FailoverEvent
Indicates the state of the failover.

Chapter 7
OracleConnection Class

7-221

Remarks

The Failover event is raised when a connection to an Oracle instance is unexpectedly
severed. The client should create an OracleFailoverEventHandler delegate to listen
to this event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "OracleFailoverEventArgs Properties"

• "OracleFailoverEventHandler Delegate"

HAEvent
This event is triggered when an HA event occurs.

Declaration

// C#
public static event OracleHAEventHandler HAEvent;

Event Data

The event handler receives an OracleHAEventArgs object which exposes the following
properties containing information about the event.

• Source
Indicates the source of the event.

• Status
Indicates the status of the event.

• DatabaseName
Indicates the database name affected by this event.

• DatabaseDomainName
Indicates the database domain name affected by this event.

• HostName
Indicates the host name affected by this event.

• InstanceName
Indicates the instance name affected by this event.

• ServiceName
Indicates the service name affected by this event.

Chapter 7
OracleConnection Class

7-222

• Time
Indicates the time of the event.

Remarks

The HAEvent is static, which means that any HA Events that happen within the application
domain can trigger this event. Note that in order to receive HA event notifications,
OracleConnection objects that establish connections within the application domain must
have "ha events=true" in the application. Otherwise, the application never receives any HA
Events.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "OracleHAEventArgs Properties"

• "OracleHAEventHandler Delegate"

InfoMessage
This event is triggered for any message or warning sent by the database.

Declaration

// C#
public event OracleInfoMessageEventHandler InfoMessage;

Event Data

The event handler receives an OracleInfoMessageEventArgs object which exposes the
following properties containing information about the event.

• Errors
The collection of errors generated by the data source.

• Message
The error text generated by the data source.

• Source
The name of the object that generated the error.

Remarks

In order to respond to warnings and messages from the database, the client should create an
OracleInfoMessageEventHandler delegate to listen to this event.

Chapter 7
OracleConnection Class

7-223

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• "OracleInfoMessageEventArgs Properties"

• "OracleInfoMessageEventHandler Delegate"

StateChange
This event is triggered when the connection state changes.

Declaration

// C#
public override event StateChangeEventHandler StateChange;

Event Data

The event handler receives a StateChangeEventArgs object which exposes the
following properties containing information about the event.

• CurrentState
The new state of the connection.

• OriginalState
The original state of the connection.

Remarks

The StateChange event is raised after a connection changes state, whenever an
explicit call is made to Open, Close or Dispose.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnection Class

• OracleConnection Members

• Microsoft ADO.NET documentation for a description of
StateChangeEventHandler

Chapter 7
OracleConnection Class

7-224

OracleConnectionOpenEventArgs Class
The OracleConnectionOpenEventArgs class provides connection information for the
OracleConnection.Open() method. When a connection is opened, the callback registered
using ConnectionOpen is triggered along with the OracleConnectionOpenEventArgs object.

Class Inheritance

System.Object
 System.EventArgs
 Oracle.DataAccess.Client.OracleConnectionOpenEventArgs

Declaration

// C#
public sealed class OracleConnectionOpenEventArgs

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionOpenEventArgs Members

• OracleConnectionOpenEventArgs Properties

OracleConnectionOpenEventArgs Members
OracleConnectionOpenEventArgs members are listed in the following tables.

OracleConnectionOpenEventArgsProperties

OracleConnectionOpenEventArgs properties are listed in Table 7-54.

Chapter 7
OracleConnectionOpenEventArgs Class

7-225

Table 7-54 OracleConnectionOpenEventArgs Properties

Property Description

Connection Specifies the OracleConnection on which connection open
event has occurred

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionOpenEventArgs Class

OracleConnectionOpenEventArgs Properties
OracleConnectionOpenEventArgs properties are listed in Table 7-55.

Table 7-55 OracleConnectionOpenEventArgs Properties

Property Description

Connection Specifies the OracleConnection on which connection open event
has occurred

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionOpenEventArgs Class

• OracleConnectionOpenEventArgs Members

Connection
This property specifies the OracleConnection on which connection open event has
occurred.

Declaration

// C#
public Connection{ get;}

Property Value

Returns a OracleConnection object on which Open() is called.

Chapter 7
OracleConnectionOpenEventArgs Class

7-226

Remarks

Only supported for .NET Framework 4 and higher.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionOpenEventArgs Class

• OracleConnectionOpenEventArgs Members

OracleConnectionOpenEventHandler Delegate
The OracleConnectionOpenEventHandler delegate represents the signature of the method
that handles OracleConnection.ConnectionOpen event.

Declaration

// C#
public delegate void OracleConnectionOpenEventHandler (OracleConnectionOpenEventArgs
eventArgs);

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Parameters

• eventArgs

The OracleConnectionOpenEventArgs object that contains the connection data.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• ConnectionOpen

Chapter 7
OracleConnectionOpenEventHandler Delegate

7-227

OracleConnectionStringBuilder Class
An OracleConnectionStringBuilder object allows applications to create or modify
connection strings.

Class Inheritance

System.Object
 System.Data.Common.DbConnectionStringBuilder
 Oracle.DataAccess.Client.OracleConnectionStringBuilder

Declaration

// C#
public sealed class OracleConnectionStringBuilder : DbConnectionStringBuilder

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The following rules must be followed for setting values with reserved characters:

1. Values containing characters enclosed within single quotes

If the value contains characters that are enclosed within single quotation marks,
then the entire value must be enclosed within double quotation marks.

For example, password = "'scoTT'" where the value is 'scoTT'.

2. Values containing characters enclosed within double quotes

Values should be enclosed in double quotation marks to preserve the case and to
avoid the upper casing of values.

If the value contains characters enclosed in double quotation marks, then it must
be enclosed in single quotation marks.

For example, password = '"scoTT"' where the value is "scoTT".

3. Values containing characters enclosed in both single and double quotes

Chapter 7
OracleConnectionStringBuilder Class

7-228

If the value contains characters enclosed in both single and double quotation marks, the
quotation mark used to enclose the value must be doubled each time it occurs within the
value.

For example, password = '"sco''TT"' where the value is "sco'TT".

4. Values containing spaces

All leading and trailing spaces are ignored, but the spaces between the value are
recognized. If the value needs to have leading or trailing spaces then it must be enclosed
in double quotation marks.

For example, User ID = Sco TT where the value is <Sco TT>.

For example, User ID = "Sco TT " where the value is <Sco TT>.

5. Keywords occurring multiple times in a connection string

If a specific keyword occurs multiple times in a connection string, the last occurrence
listed is used in the value set.

For example, with "User ID = scott; password = tiger; User ID = david"
connection string, User ID value is david.

To limit malicious access, the APIs of OracleConnectionStringBuilder, Add and Item, insert
double quotes around connection string attributes that use special characters. Using special
characters in strings can be a format string attack method. Adding double quotes for
attributes will not affect database access in most cases. However, there are attributes that
require exact string matching, such as passwords. OracleConnectionStringBuilder's
addition of double quotes to a password with special characters may result in a generation of
a connection string that fails to authenticate against the database.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;
using System.Collections;

class ConnectionStringBuilderSample
{
static void Main(string[] args)
 {
 bool bRet = false;

 // Create an instance of OracleConnectionStringBuilder
 OracleConnectionStringBuilder connStrBuilder =
 new OracleConnectionStringBuilder();

 // Add new key/value pairs to the connection string
 connStrBuilder.Add("User Id", "scott");
 connStrBuilder.Add("Password", "tiger");
 connStrBuilder.Add("Data Source", "oracle");
 connStrBuilder.Add("pooling", false);

 // Modify the existing value
 connStrBuilder["Data source"] = "inst1";

 // Remove an entry from the connection string

Chapter 7
OracleConnectionStringBuilder Class

7-229

 bRet = connStrBuilder.Remove("pooling");

 //ContainsKey indicates whether or not the specific key exist
 //returns true even if the user has not specified it explicitly
 Console.WriteLine("Enlist exist: " +
 connStrBuilder.ContainsKey("Enlist"));

 //returns false
 connStrBuilder.ContainsKey("Invalid");

 // ShouldSerialize indicates whether or not a specific key
 // exists in connection string inherited from DbConnectionStringBuilder.
 // returns true if the key is explicitly added the user otherwise false;
 // this will return false as this key doesn't exists.
 connStrBuilder.ShouldSerialize("user");

 // returns false because this key is nott added by user explicitly.
 connStrBuilder.ShouldSerialize("Enlist");

 // IsFixedSize [read-only property]
 Console.WriteLine("Connection String is fixed size only: "
 + connStrBuilder.IsFixedSize);
 Console.WriteLine("Key/Value Pair Count: " + connStrBuilder.Count);

 //adding a new key which is not supported by the provider
 //is not allowed.
 try
 {
 //this will throw an exception.
 connStrBuilder.Add("NewKey", "newValue");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 Console.WriteLine("Key/Value Pair Count: " + connStrBuilder.Count);

 //modifying a existing key is allowed.
 connStrBuilder.Add("Enlist", false);
 Console.WriteLine("Key/Value Pair Count: " + connStrBuilder.Count);

 // Get all the keys and values supported by the provider.
 ICollection keyCollection = connStrBuilder.Keys;
 ICollection valueCollection = connStrBuilder.Values;

 IEnumerator keys = keyCollection.GetEnumerator();
 IEnumerator values = valueCollection.GetEnumerator();

 while (keys.MoveNext())
 {
 values.MoveNext();
 Console.WriteLine("Key: {0} Value: {1} \n"
 ,keys.Current ,values.Current);
 }
 }
}

Chapter 7
OracleConnectionStringBuilder Class

7-230

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Members

• OracleConnectionStringBuilder Constructors

• OracleConnectionStringBuilder Public Properties

• OracleConnectionStringBuilder Public Methods

OracleConnectionStringBuilder Members
OracleConnectionStringBuilder members are listed in the following tables.

OracleConnectionStringBuilder Constructors

OracleConnectionStringBuilder constructors are listed in Table 7-56.

Table 7-56 OracleConnectionStringBuilder Constructors

Constructor Description

OracleConnectionStringBuilder
Constructors

Instantiates a new instance of
OracleConnectionStringBuilder class (Overloaded)

OracleConnectionStringBuilder Public Properties

OracleConnectionStringBuilder instance properties are listed in Table 7-57.

Table 7-57 OracleConnectionStringBuilder Public Properties

Properties Description

BrowsableConnectionString Inherited from System.Data.Common.
DbConnectionStringBuilder

ConnectionLifeTime Specifies the value corresponding to the Connection
Lifetime attribute in the ConnectionString property

ConnectionString Inherited from System.Data.Common.
DbConnectionStringBuilder

ConnectionTimeout Specifies the value corresponding to the Connection
Timeout attribute in the ConnectionString property

ContextConnection Specifies the value corresponding to the Context
Connection attribute in the ConnectionString property

Count Inherited from
System.Data.Common.DbConnectionStringBuilder

DataSource Specifies the value corresponding to the Data Source attribute
in the ConnectionString property

Chapter 7
OracleConnectionStringBuilder Class

7-231

Table 7-57 (Cont.) OracleConnectionStringBuilder Public Properties

Properties Description

DBAPrivilege Specifies the value corresponding to the DBA Privilege
attribute in the ConnectionString property

DecrPoolSize Specifies the value corresponding to the Decr Pool Size
attribute in the ConnectionString property

Enlist Specifies the value corresponding to the Enlist attribute in
the ConnectionString property

HAEvents Specifies the value corresponding to the HA Events attribute in
the ConnectionString property

IncrPoolSize Specifies the value corresponding to the Incr Pool Size
attribute in the ConnectionString property

IsFixedSize Indicates whether or not the Connection String Builder has a
fixed size

IsReadOnly Inherited from
System.Data.Common.DbConnectionStringBuilder

Item Specifies the value associated with the specified attribute

Keys Specifies a collection of attributes contained in the Connection
String Builder

LoadBalancing Specifies the value corresponding to the Load Balancing
attribute in the ConnectionString property

MaxPoolSize Specifies the value corresponding to the Max Pool Size
attribute in the ConnectionString property

MetadataPooling Specifies the value that corresponds to the Metadata Pooling
attribute in the ConnectionString property

MinPoolSize Specifies the value corresponding to the Min Pool Size
attribute in the ConnectionString property

Password Specifies the value corresponding to the Password attribute in
the ConnectionString property

PersistSecurityInfo Specifies the value corresponding to the Persist Security
Info attribute in the ConnectionString property

Pooling Specifies the value corresponding to the Pooling attribute in
the ConnectionString property

ProxyPassword Specifies the value corresponding to the Proxy User Id
attribute in the ConnectionString property

ProxyUserId Specifies the value corresponding to the Proxy User Id
attribute in the ConnectionString property

SelfTuning Specifies the value corresponding to the Self Tuning
attribute in the ConnectionString property

StatementCachePurge Specifies the value corresponding to the Statement Cache
Purge attribute in the ConnectionString property

StatementCacheSize Specifies the value corresponding to the Statement Cache
Size attribute in the ConnectionString property

Chapter 7
OracleConnectionStringBuilder Class

7-232

Table 7-57 (Cont.) OracleConnectionStringBuilder Public Properties

Properties Description

TnsAdmin Specifies the directory where ODP.NET can find its
sqlnet.ora and tnsnames.ora configuration files

TokenAuthentication Specifies the value corresponding to the token_auth attribute
in the ConnectionString property.

This property is supported by managed ODP.NET and
ODP.NET Core only.

TokenLocation Specifies the value corresponding to the token_location
attribute in the ConnectionString property.

This property is supported by managed ODP.NET and
ODP.NET Core only.

UserID Specifies the value corresponding to the User Id attribute in
the ConnectionString property

ValidateConnection Specifies the value corresponding to the Validate
Connection attribute in the ConnectionString property

Values Specifies a collection of values contained in the Connection
String Builder

WalletLocation Specifies the ODP.NET wallet directory

OracleConnectionStringBuilder Public Methods

OracleConnectionStringBuilder instance methods are listed in Table 7-58.

Table 7-58 OracleConnectionStringBuilder Public Methods

Methods Description

Add Inherited from
System.Data.Common.DbConnectionStringBuilder

Clear Clears the connection string contents

ContainsKey Indicates whether or not a specific attribute in the connection
string is supported by ODP.NET

EquivalentTo Inherited from
System.Data.Common.DbConnectionStringBuilder

Remove Removes the entry corresponding to the specified attribute from
the connection string

ShouldSerialize Inherited from
System.Data.Common.DbConnectionStringBuilder

ToString Inherited from
System.Data.Common.DbConnectionStringBuilder

TryGetValue Returns the value corresponding to the supplied attribute, as an
output parameter

Chapter 7
OracleConnectionStringBuilder Class

7-233

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

OracleConnectionStringBuilder Constructors
OracleConnectionStringBuilder constructors instantiate new instances of the
OracleConnectionStringBuilder class.

Overload List:

• OracleConnectionStringBuilder()

This constructor instantiates a new instance of OracleConnectionStringBuilder
class.

• OracleConnectionStringBuilder(string)

This constructor instantiates a new instance of the
OracleConnectionStringBuilder class with the provided connection string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

OracleConnectionStringBuilder()
This constructor instantiates a new instance of the OracleConnectionStringBuilder
class.

Declaration

// C#
public OracleConnectionStringBuilder();

Remarks

The ConnectionString property is empty after the object is created.

Chapter 7
OracleConnectionStringBuilder Class

7-234

See Also:

"Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Namespaces"

OracleConnectionStringBuilder(string)
This constructor instantiates a new instance of the OracleConnectionStringBuilder class
with the provided connection string.

Declaration

// C#
public OracleConnectionStringBuilder(string connectionString);

Parameters

• connectionString

The connection information.

Exceptions

ArgumentNullException - The connectionString parameter is null.

ArgumentException - The connectionString parameter is invalid.

Remarks

The ConnectionString property of this instance is set to the supplied connection string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

OracleConnectionStringBuilder Public Properties
OracleConnectionStringBuilder public properties are listed in Table 7-59.

Table 7-59 OracleConnectionStringBuilder Public Properties

Properties Description

BrowsableConnectionString Inherited from System.Data.Common.
DbConnectionStringBuilder

ConnectionLifeTime Specifies the value corresponding to the Connection
Lifetime attribute in the ConnectionString property

Chapter 7
OracleConnectionStringBuilder Class

7-235

Table 7-59 (Cont.) OracleConnectionStringBuilder Public Properties

Properties Description

ConnectionString Inherited from System.Data.Common.
DbConnectionStringBuilder

ConnectionTimeout Specifies the value corresponding to the Connection
Timeout attribute in the ConnectionString property

ContextConnection Specifies the value corresponding to the Context
Connection attribute in the ConnectionString property

Count Inherited from System.Data.Common.
DbConnectionStringBuilder

DataSource Specifies the value corresponding to the Data Source
attribute in the ConnectionString property

DBAPrivilege Specifies the value corresponding to the DBA Privilege
attribute in the ConnectionString property

DecrPoolSize Specifies the value corresponding to the Decr Pool Size
attribute in the ConnectionString property

Enlist Specifies the value corresponding to the Enlist attribute in
the ConnectionString property

HAEvents Specifies the value corresponding to the HA Events attribute
in the ConnectionString property

IncrPoolSize Specifies the value corresponding to the Incr Pool Size
attribute in the ConnectionString property

IsFixedSize Indicates whether or not the Connection String Builder has a
fixed size

IsReadOnly Inherited from
System.Data.Common.DbConnectionStringBuilder

Item Specifies the value associated with the specified attribute

Keys Specifies a collection of attributes contained in the Connection
String Builder

LoadBalancing Specifies the value corresponding to the Load Balancing
attribute in the ConnectionString property

MaxPoolSize Specifies the value corresponding to the Max Pool Size
attribute in the ConnectionString property

MetadataPooling Specifies the value that corresponds to the Metadata
Pooling attribute in the ConnectionString property

MinPoolSize Specifies the value corresponding to the Min Pool Size
attribute in the ConnectionString property

Password Specifies the value corresponding to the Password attribute
in the ConnectionString property

PersistSecurityInfo Specifies the value corresponding to the Persist Security
Info attribute in the ConnectionString property

Pooling Specifies the value corresponding to the Pooling attribute in
the ConnectionString property

Chapter 7
OracleConnectionStringBuilder Class

7-236

Table 7-59 (Cont.) OracleConnectionStringBuilder Public Properties

Properties Description

ProxyPassword Specifies the value corresponding to the Proxy User Id
attribute in the ConnectionString property

ProxyUserId Specifies the value corresponding to the Proxy User Id
attribute in the ConnectionString property

SelfTuning Specifies the value corresponding to the Self Tuning
attribute in the ConnectionString property

StatementCachePurge Specifies the value corresponding to the Statement Cache
Purge attribute in the ConnectionString property

StatementCacheSize Specifies the value corresponding to the Statement Cache
Size attribute in the ConnectionString property

TnsAdmin Specifies the directory where ODP.NET can find its
sqlnet.ora and tnsnames.ora configuration files

TokenAuthentication Specifies the value corresponding to the token_auth
attribute in the ConnectionString property.

This property is supported by managed ODP.NET and
ODP.NET Core only.

TokenLocation Specifies the value corresponding to the token_location
attribute in the ConnectionString property.

This property is supported by managed ODP.NET and
ODP.NET Core only.

UserID Specifies the value corresponding to the User Id attribute in
the ConnectionString property

ValidateConnection Specifies the value corresponding to the Validate
Connection attribute in the ConnectionString property

Values Specifies a collection of values contained in the Connection
String Builder

WalletLocation Specifies the ODP.NET wallet directory

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

ConnectionLifeTime
This property specifies the value corresponding to the Connection LifeTime attribute in the
ConnectionString property.

Chapter 7
OracleConnectionStringBuilder Class

7-237

Declaration

// C#
public int ConnectionLifeTime{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than zero.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

ConnectionTimeout
This property specifies the value corresponding to the Connection Timeout attribute in
the ConnectionString property.

Declaration

 // C#
 public int ConnectionTimeout{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than zero.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

Chapter 7
OracleConnectionStringBuilder Class

7-238

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

ContextConnection
This property specifies the value corresponding to the Context Connection attribute in the
ConnectionString property.

Declaration

// C#
public bool ContextConnection {get; set;}

Property Value

A bool that represents the value of the supplied attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

DataSource
This property specifies the value corresponding to the Data Source attribute in the
ConnectionString property.

Declaration

// C#
public string DataSource{get; set;}

Property Value

A string that represents the value of the supplied attribute.

Exceptions

ArgumentNullException - The specified value is null.

Chapter 7
OracleConnectionStringBuilder Class

7-239

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

DBAPrivilege
This property specifies the value corresponding to the DBA Privilege attribute in the
ConnectionString property.

Declaration

// C#
 public string DBAPrivilege{get; set;}

Property Value

A string that represents the value of the supplied attribute.

Possible values are SYSDBA, SYSASM, SYSOPER, SYSBACKUP, SYSDG, SYSKM, or SYSRAC.

Exceptions

ArgumentNullException - The specified value is null.

OracleException - The specified value is invalid.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Chapter 7
OracleConnectionStringBuilder Class

7-240

DecrPoolSize
This property specifies the value corresponding to the Decr Pool Size attribute in the
ConnectionString property.

Declaration

 // C#
 public int DecrPoolSize{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than 1.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Enlist
This property specifies the value corresponding to the Enlist attribute in the
ConnectionString property.

Declaration

 // C#
public string Enlist{get; set;};

Property Value

A string that represents the value of the supplied attribute. Values are case-insensitive.
Possible values are: dynamic, true, false, yes, and no.

Exceptions

ArgumentNullException - The specified value is null.

OracleException - The supplied value is not one of following: dynamic, true, false, yes, or
no.

Chapter 7
OracleConnectionStringBuilder Class

7-241

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

HAEvents
This property specifies the value corresponding to the HA Events attribute in the
ConnectionString property.

Declaration

 // C#
 public bool HAEvents{get; set;}

Property Value

A bool that represents the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

IncrPoolSize
This property specifies the value corresponding to the Incr Pool Size attribute in the
ConnectionString property.

Declaration

// C#
public int IncrPoolSize{get; set;}

Chapter 7
OracleConnectionStringBuilder Class

7-242

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than 1.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

IsFixedSize
Indicates whether or not the Connection String Builder has a fixed size.

Declaration

// C#
public override bool IsFixedSize{get;}

Property Value

Returns true if the Connection String Builder has a fixed size; otherwise, returns false.

Remarks

Attributes cannot be added or removed. They can only be modified for connection strings with
a fixed size.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Chapter 7
OracleConnectionStringBuilder Class

7-243

Item
This property specifies the value associated with the specified attribute.

Declaration

// C#
public override object this[string keyword]{get; set;}

Property Value

An object value corresponding to the attribute.

Exceptions

ArgumentNullException - The specified attribute is null.

OracleException - The specified attribute is not supported or the specified value is
invalid.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Keys
This property specifies a collection of attributes contained in the Connection String
Builder.

Declaration

// C#
public override ICollection Keys{get;}

Property Value

Returns an ICollection that represents the attributes in the Connection String
Builder.

Chapter 7
OracleConnectionStringBuilder Class

7-244

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

LoadBalancing
This property specifies the value corresponding to the Load Balancing attribute in the
ConnectionString property.

Declaration

// C#
 public bool LoadBalancing {get; set;}

Property Value

A bool that contains the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

MaxPoolSize
This property specifies the value corresponding to the Max Pool Size attribute in the
ConnectionString property.

Declaration

// C#
public int MaxPoolSize{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Chapter 7
OracleConnectionStringBuilder Class

7-245

Exceptions

OracleException - The specified value is less than 1.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

MetadataPooling
This property specifies the value that corresponds to the Metadata Pooling attribute in
the ConnectionString property.

Declaration

// C#
public bool MetadataPooling{get; set;};

Property Value

A bool containing the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

MinPoolSize
This property specifies the value corresponding to the Min Pool Size attribute in the
ConnectionString property.

Chapter 7
OracleConnectionStringBuilder Class

7-246

Declaration

 // C#
public int MinPoolSize{get; set;}

Property Value

An int that contains the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than 0.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Password
This property specifies the value corresponding to the Password attribute in the
ConnectionString property.

Declaration

// C#
public string Password{get; set;}

Property Value

A string that contains the value of the supplied attribute.

Exception

ArgumentNullException - The specified value is null.

Chapter 7
OracleConnectionStringBuilder Class

7-247

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

PersistSecurityInfo
This property specifies the value corresponding to the Persist Security Info attribute
in the ConnectionString property.

Declaration

// C#
public bool PersistSecurityInfo{get; set;}

Property Value

A bool that represents the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property gets set
to the default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Pooling
This property specifies the value corresponding to the Pooling attribute in the
ConnectionString property.

Declaration

// C#
public bool Pooling {get; set;}

Property Value

A bool that represents the value of the supplied attribute.

Chapter 7
OracleConnectionStringBuilder Class

7-248

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

ProxyPassword
This property specifies the value corresponding to the Proxy Password attribute in the
ConnectionString property.

Declaration

// C#
public string ProxyPassword {get; set;}

Property Value

A string that represents the value of the supplied attribute.

Exception

ArgumentNullException - The specified value is null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

ProxyUserId
This property specifies the value corresponding to the Proxy User Id attribute in the
ConnectionString property.

Declaration

// C#
public string ProxyUserId {get; set;}

Chapter 7
OracleConnectionStringBuilder Class

7-249

Property Value

A string that represents the value of the supplied attribute.

Exception

ArgumentNullException - The specified value is null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

SelfTuning
This property specifies the value corresponding to the Self Tuning attribute in the
ConnectionString property.

Declaration

// C#
public bool SelfTuning {get; set;}

Property Value

A bool that represents the value of the supplied attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

StatementCachePurge
This property specifies the value corresponding to the Statement Cache Purge attribute
in the ConnectionString property.

Declaration

// C#
public bool StatementCachePurge {get; set;}

Chapter 7
OracleConnectionStringBuilder Class

7-250

Property Value

A bool that represents the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

StatementCacheSize
This property specifies the value corresponding to the Statement Cache Size attribute in the
ConnectionString property.

Declaration

// C#
public int StatementCacheSize{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than zero.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Chapter 7
OracleConnectionStringBuilder Class

7-251

TnsAdmin
This property specifies the directory where ODP.NET can find its sqlnet.ora and
tnsnames.ora configuration files.

Declaration

// C#
 public string TnsAdmin{get; set;}

Property Value

A string that represents the value of the supplied attribute.

Remarks

The default value is an empty string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

TokenAuthentication
This property specifies the value corresponding to the token_auth attribute in the
ConnectionString.

Declaration

// C#
 public OracleTokenAuth TokenAuthentication { get; set; }

Property Value

An OracleTokenAuth value.

Exceptions

None.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

Chapter 7
OracleConnectionStringBuilder Class

7-252

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

TokenLocation
This property specifies the value corresponding to the token_location attribute in the
ConnectionString property.

Declaration

// C#
 public string TokenLocation { get; set; }

Property Value

A string that represents the value of the supplied attribute.

Exceptions

None.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

UserID
This property specifies the value corresponding to the User Id attribute in the
ConnectionString property.

Declaration

// C#
public string UserID{get; set;}

Chapter 7
OracleConnectionStringBuilder Class

7-253

Property Value

A string that represents the value of the supplied attribute.

Exception

ArgumentNullException - The specified value is null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

ValidateConnection
This property specifies the value corresponding to the Validate Connection attribute
in the ConnectionString property.

Declaration

// C#
public bool ValidateConnection{get; set;}

Property Value

A bool that represents the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to
the default value of the corresponding connection string attribute.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Values
This property specifies a collection of values contained in the Connection String
Builder.

Chapter 7
OracleConnectionStringBuilder Class

7-254

Declaration

// C#
public override ICollection Values{get;}

Property Value

Returns an ICollection that represents the values in the Connection String Builder.

Remarks

The order of the values in the ICollection is unspecified, but is the same as the associated
attributes in the ICollection returned by the Keys property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

WalletLocation
This property specifies the ODP.NET wallet directory.

Declaration

// C#
 public string WalletLocation{get; set;}

Property Value

A string that represents the value of the supplied attribute.

Remarks

The default value is an empty string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Chapter 7
OracleConnectionStringBuilder Class

7-255

OracleConnectionStringBuilder Public Methods
OracleConnectionStringBuilder public methods are listed in Table 7-60.

Table 7-60 OracleConnectionStringBuilder Public Methods

Methods Description

Add Inherited from
System.Data.Common.DbConnectionStringBuilder

Clear Clears the connection string contents

ContainsKey Indicates whether or not a specific attribute in the connection
string is supported by ODP.NET

EquivalentTo Inherited from
System.Data.Common.DbConnectionStringBuilder

Remove Removes the entry corresponding to the specified attribute
from the connection string

ShouldSerialize Inherited from
System.Data.Common.DbConnectionStringBuilder

ToString Inherited from
System.Data.Common.DbConnectionStringBuilder

TryGetValue Returns the value corresponding to the supplied attribute, as
an output parameter

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Clear
This method clears the connection string contents.

Declaration

// C#
public override void Clear();

Remarks

All key/value pairs are removed from the OracleConnectionStringBuilder object and
the ConnectionString property is set to Empty.

Chapter 7
OracleConnectionStringBuilder Class

7-256

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

ContainsKey
This method indicates whether or not a specific attribute in the connection string is supported
by ODP.NET.

Declaration

// C#
public override bool ContainsKey(string keyword);

Parameters

• keyword

The attribute being verified.

Return Value

Returns true if the specified attribute exists; otherwise, returns false.

Exceptions

ArgumentNullException - The specified attribute is null.

Remarks

This method indicates if the attribute is part of the provider-supported attributes. It does not
indicate if the user added the attribute to the connection string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

Remove
This method removes the entry corresponding to the specified attribute from the connection
string.

Chapter 7
OracleConnectionStringBuilder Class

7-257

Declaration

// C#
public override bool Remove(string keyword);

Parameters

• keyword

The attribute that specifies the entry to be removed.

Return Value

Returns true if the attribute existed in the connection string and the corresponding
entry was removed; otherwise, returns false.

Exceptions

ArgumentNullException - The specified attribute is null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

TryGetValue
This method returns the value corresponding to the supplied attribute, as an output
parameter.

Declaration

// C#
public override bool TryGetValue(string keyword, out object value);

Parameters

• keyword

The attribute for which the value is being retrieved.

• value

The value of the supplied attribute.

Sets value to the default value if the attribute is not present in the connection
string.

Chapter 7
OracleConnectionStringBuilder Class

7-258

Return Value

Returns true if the value that corresponds to the attribute has been successfully retrieved;
otherwise, returns false. If the attribute is not present in the connection string, returns false
and sets the value to null.

Exceptions

ArgumentNullException - The specified attribute is null.

Remarks

If the function returns false, sets value to null.

If the attribute is not present in the connection string, sets value to the default value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleConnectionStringBuilder Class

• OracleConnectionStringBuilder Members

OracleCredential Class
OracleCredential class provides a secure way to provide password while opening
connection with Oracle Database using the ODP.NET driver. Use this class to avoid providing
passwords in clear text in the connection string while opening a connection with Oracle
Database. One can pass user id, password and DBA Privilege specific attributes through
OracleCredential constructors and thus these attributes do not need to be in the connection
string.

Operating system authenticated and context connections are not supported through
OracleCredential class. An ArgumentException will be thrown if "/" is passed for userId or
proxyUserId arguments of OracleCredential constructor.

Class Inheritance

System.Object
 Oracle.DataAccess.Client.OracleCredential

Declaration

// C#
public sealed class OracleCredential

Chapter 7
OracleCredential Class

7-259

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#
using System;
using System.Data;
using System.Security;
using Oracle.DataAccess.Client;
//using Oracle.ManagedDataAccess.Client;

class OracleCredentialSample

{
 static void Main()
 {
 // Connect
 string constr = "Data Source=oracle";

 SecureString secPwd = new SecureString();
 secPwd.AppendChar('h');
 secPwd.AppendChar('r');

 // Make the password read-only.
 secPwd.MakeReadOnly();

 // Create OracleCredential with userid and secure password.
 OracleCredential oc = new OracleCredential("hr", secPwd);

 OracleConnection con = new OracleConnection(constr, oc);
 con.Open();

 // Execute a SQL SELECT

 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "select * from employees";

 OracleDataReader reader = cmd.ExecuteReader();

 // Print all employee numbers
 while (reader.Read())

Chapter 7
OracleCredential Class

7-260

 Console.WriteLine(reader.GetInt32(0));

 // Clean up
 reader.Dispose();
 cmd.Dispose();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Members

• OracleCredential Constructors

• OracleCredential Properties

• Connection Pooling with OracleCredential

OracleCredential Members
OracleCredential members are listed in the following tables.

OracleCredential Constructors

OracleCredential constructors are listed in Table 7-61.

Table 7-61 OracleCredential Constructors

Constructor Description

OracleCredential Constructors Instantiates a new instance of OracleCredential class
(Overloaded)

OracleCredential Properties

OracleCredential properties are listed in Table 7-62.

Table 7-62 OracleCredential Properties

Property Description

DBAPrivilege Returns the DBA Privilege used to create the
OracleCredential object. OracleDBAPrivilege.None
is returned if it was not provided by the user.

Password Returns the password of the OracleCredential object

ProxyPassword Returns the proxy user password of the
OracleCredential object

ProxyUserId Returns the proxy user id of the OracleCredential object

Chapter 7
OracleCredential Class

7-261

Table 7-62 (Cont.) OracleCredential Properties

Property Description

UserId Returns the user id of the OracleCredential object

OracleCredential Public Methods

OracleCredential public methods are listed in Table 7-68.

Table 7-63 OracleCredential Public Methods

Public Method Description

Equals(Object) Inherited from System.Object
GetHashCode() Inherited from System.Object
GetType() Inherited from System.Object
ToString() Inherited from System.Object

OracleCredential Constructors
OracleCredential constructors instantiate new instances of an OracleCredential
class.

Overload List:

• OracleCredential(string, SecureString)

This constructor creates an OracleCredential object with the user id and the
secured password.

• OracleCredential(string, SecureString, OracleDBAPrivilege)

This constructor creates an OracleCredential object with the user id, the secured
password, and the DBA privilege request.

• OracleCredential(string, SecureString, string, SecureString)

This constructor creates an OracleCredential object with the user id and the
secured password for the end user, as well as the user id and the secured
password for the proxy user.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• OracleCredential Members

Chapter 7
OracleCredential Class

7-262

OracleCredential(string, SecureString)
This constructor creates an OracleCredential object with the user id and the secured
password.

Declaration

// C#
public OracleCredential(string userId, SecureString password)

Exceptions

• ArgumentNullException is raised if any parameters are passed as null.

• ArgumentException is raised if “/” is passed for userId argument.

• ArgumentException is raised if the SecureString containing the password is not read-
only.

• InvalidOperationException is raised when OracleCredential object is used with any of
user id, password, proxy user id, proxy password and/or dba privilegeconnection
string attribute(s) present in the connection string.

Remarks

With this constructor, OracleDBAPrivilege.None is used for the DBA privilege when
requesting for a connection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• OracleCredential Members

OracleCredential(string, SecureString, OracleDBAPrivilege)
This constructor creates an OracleCredential object with the user id, the secured password,
and the DBA privilege request.

Declaration

// C#
public OracleCredential(string userId, SecureString password, OracleDBAPrivilege
dbaprivilege)

Exceptions

• ArgumentNullException is raised if any parameters are passed as null.

• ArgumentException is raised if “/” is passed for userId argument.

Chapter 7
OracleCredential Class

7-263

• ArgumentException is raised if the SecureString containing the password is not
read-only.

• InvalidOperationException is raised when OracleCredential object is used with
any of user id, password, proxy user id, proxy password and/or dba
privilegeconnection string attribute(s) present in the connection string.

Remarks

With this constructor, the specified dbaprivilege is for the DBA privilege when
requesting for a connection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• OracleDBAPrivilege Enumeration

OracleCredential(string, SecureString, string, SecureString)
This constructor creates an OracleCredential object with the user id and the secured
password for the end user, as well as the user id and the secured password for the
proxy user.

Declaration

// C#
public OracleCredential(string userId, SecureString password, string
proxyUserId, SecureString proxyPassword)

Exceptions

• ArgumentNullException is raised if any parameters are passed as null.

• ArgumentException is raised if “/” is passed for userId argument.

• ArgumentException is raised if the SecureString containing the password is not
read-only.

• InvalidOperationException is raised when OracleCredential object is used with
any of user id, password, proxy user id, proxy password and/or dba
privilegeconnection string attribute(s) present in the connection string.

Remarks

With this constructor, OracleDBAPrivilege.None is for the DBA privilege when
requesting for a connection.

Chapter 7
OracleCredential Class

7-264

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• OracleCredential Members

OracleCredential Properties
OracleCredential properties are listed in Table 7-64.

Table 7-64 OracleCredential Properties

Property Description

DBAPrivilege Returns the DBA Privilege used to create the
OracleCredential object. OracleDBAPrivilege.None
is returned if it was not provided by the user.

Password Returns the password of the OracleCredential object.

ProxyPassword Returns the proxy user password of the
OracleCredential object.

ProxyUserId Returns the proxy user id of the OracleCredential object.

UserId Returns the user id of the OracleCredential object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• OracleCredential Members

DBAPrivilege
This property returns the DBA Privilege that is associated with the user.

Declaration

// C#
OracleDBAPrivilege DBAPrivilege { get; }

Property Value

The OracleDBAPrivilege enum value that is associated with the user.

Chapter 7
OracleCredential Class

7-265

Remarks

OracleDBAPrivilege.None is returned if it was not set by the user.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• OracleCredential Members

• OracleDBAPrivilege Enumeration

Password
This property returns the encrypted password of the user.

Declaration

// C#
SecureString Password { get; }

Property Value

The encrypted password of the user.

OracleCredential does not support double quotes around a SecureString password.
Double quotes can be used within a password, however.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• OracleCredential Members

ProxyPassword
This property returns the encrypted password of the proxy user.

Declaration

// C#
SecureString ProxyUserPassword { get; }

Property Value

The encrypted password of the proxy user.

Chapter 7
OracleCredential Class

7-266

Remarks

OracleCredential does not support double quotes around a SecureString password.
Double quotes can be used within a password, however.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• OracleCredential Members

ProxyUserId
This property returns the proxy user id.

Declaration

// C#
string ProxyUserId { get; }

Property Value

The proxy user id.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• OracleCredential Members

UserId
This property returns the user id.

Declaration

// C#
string UserId { get; }

Property Value

The user id.

Chapter 7
OracleCredential Class

7-267

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• OracleCredential Members

OracleDataAdapter Class
An OracleDataAdapter object represents a data provider object that populates the
DataSet and updates changes in the DataSet to the Oracle database.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.ComponentModel.Component
 System.Data.Common.DataAdapter
 System.Data.Common.DbDataAdapter
 Oracle.DataAccess.Client.OracleDataAdapter

Declaration

// C#
public sealed class OracleDataAdapter : DbDataAdapter, IDbDataAdapter

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 7
OracleDataAdapter Class

7-268

Example

The following example uses the OracleDataAdapter and the dataset to update the EMP table:

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleDataAdapterSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 string cmdstr = "SELECT empno, sal from emp";

 // Create the adapter with the selectCommand txt and the
 // connection string
 OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

 // Create the builder for the adapter to automatically generate
 // the Command when needed
 OracleCommandBuilder builder = new OracleCommandBuilder(adapter);

 // Create and fill the DataSet using the EMP
 DataSet dataset = new DataSet();
 adapter.Fill(dataset, "EMP");

 // Get the EMP table from the dataset
 DataTable table = dataset.Tables["EMP"];

 // Indicate DataColumn EMPNO is unique
 // This is required by the OracleCommandBuilder to update the EMP table
 table.Columns["EMPNO"].Unique = true;

 // Get the first row from the EMP table
 DataRow row = table.Rows[0];

 // Update the salary
 double sal = double.Parse(row["SAL"].ToString());
 row["SAL"] = sal + .01;

 // Now update the EMP using the adapter
 // The OracleCommandBuilder will create the UpdateCommand for the
 // adapter to update the EMP table
 adapter.Update(dataset, "EMP");

 Console.WriteLine("Row updated successfully");
 }
}

Chapter 7
OracleDataAdapter Class

7-269

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Members

• OracleDataAdapter Constructors

• OracleDataAdapter Static Methods

• OracleDataAdapter Properties

• OracleDataAdapter Public Methods

• OracleDataAdapter Events

OracleDataAdapter Members
OracleDataAdapter members are listed in the following tables.

OracleDataAdapter Constructors

OracleDataAdapter constructors are listed in Table 7-65.

Table 7-65 OracleDataAdapter Constructors

Constructor Description

OracleDataAdapter Constructors Instantiates a new instance of OracleDataAdapter
class (Overloaded)

OracleDataAdapter Static Methods

The OracleDataAdapter static method is listed in Table 7-66.

Table 7-66 OracleDataAdapter Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleDataAdapter Properties

OracleDataAdapter properties are listed in Table 7-67.

Table 7-67 OracleDataAdapter Properties

Property Description

AcceptChangesDuringFill Inherited from System.Data.Common.DataAdapter
Container Inherited from System.ComponentModel.Component
ContinueUpdateOnError Inherited from System.Data.Common.DataAdapter

Chapter 7
OracleDataAdapter Class

7-270

Table 7-67 (Cont.) OracleDataAdapter Properties

Property Description

DeleteCommand A SQL statement or stored procedure to delete rows
from an Oracle database

IdentityInsert Determines whether or not to insert identity column
values in the DataSet into the database when the
Update method is invoked.

Not Available in the ODP.NET, Managed Driver and
ODP.NET Core

IdentityUpdate Determines whether or not to update identity column
values in the DataSet into the database when the
Update method is invoked.

Not Available in the ODP.NET, Managed Driver and
ODP.NET Core

InsertCommand A SQL statement or stored procedure to insert new
rows into an Oracle database

MissingMappingAction Inherited from System.Data.Common.DataAdapter
MissingSchemaAction Inherited from System.Data.Common.DataAdapter
Requery Determines whether or not the SelectCommand is

reexecuted on the next call to Fill
ReturnProviderSpecificTypes Determines if the Fill method returns ODP.NET-

specific values or .NET common language specification
values

SafeMapping Creates a mapping between column names in the
result set to .NET types, to preserve the data

Not Available in the ODP.NET, Managed Driver and
ODP.NET Core

SelectCommand A SQL statement or stored procedure that returns a
single or multiple result set

Site Inherited from System.ComponentModel.Component
SuppressGetDecimalInvalidCastExce
ption

Specifies whether to suppress the
InvalidCastException and return a rounded-off 28
or 29 precision Oracle NUMBER value that can be
represented as a .NET decimal.

TableMappings Inherited from System.Data.Common.DataAdapter
UpdateBatchSize Specifies a value that enables or disables batch

processing support, and specifies the number of SQL
statements that can be executed in a single round-trip
to the database

UpdateCommand A SQL statement or stored procedure to update rows
from the DataSet to an Oracle database

OracleDataAdapter Public Methods

OracleDataAdapter public methods are listed in Table 7-68.

Chapter 7
OracleDataAdapter Class

7-271

Table 7-68 OracleDataAdapter Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from

System.ComponentModel.Component
Equals Inherited from System.Object (Overloaded)

Fill Adds or refreshes rows in the DataSet to match the
data in the Oracle database (Overloaded)

FillSchema Inherited from
System.Data.Common.DbDataAdapter

GetFillParameters Inherited from
System.Data.Common.DbDataAdapter

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
ToString Inherited from System.Object
Update Inherited from

System.Data.Common.DbDataAdapter

OracleDataAdapter Events

OracleDataAdapter events are listed in Table 7-69.

Table 7-69 OracleDataAdapter Events

Event Name Description

Disposed Inherited from System.ComponentModel.Component
FillError Inherited from System.Data.Common.DbDataAdapter
RowUpdated This event is raised when row(s) have been updated by the Update()

method

RowUpdating This event is raised when row data are about to be updated to the
database

OracleDataAdapter Constructors
OracleDataAdapter constructors create new instances of an OracleDataAdapter
class.

Overload List:

• OracleDataAdapter()

This constructor creates an instance of an OracleDataAdapter class.

• OracleDataAdapter(OracleCommand)

Chapter 7
OracleDataAdapter Class

7-272

This constructor creates an instance of an OracleDataAdapter class with the provided
OracleCommand as the SelectCommand.

• OracleDataAdapter(string, OracleConnection)

This constructor creates an instance of an OracleDataAdapter class with the provided
OracleConnection object and the command text for the SelectCommand.

• OracleDataAdapter(string, string)

This constructor creates an instance of an OracleDataAdapter class with the provided
connection string and the command text for the SelectCommand.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

OracleDataAdapter()
This constructor creates an instance of an OracleDataAdapter class with no arguments.

Declaration

// C#
public OracleDataAdapter();

Remarks

Initial values are set for the following OracleDataAdapter properties as indicated:

• MissingMappingAction = MissingMappingAction.Passthrough
• MissingSchemaAction = MissingSchemaAction.Add

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

OracleDataAdapter(OracleCommand)
This constructor creates an instance of an OracleDataAdapter class with the provided
OracleCommand as the SelectCommand.

Chapter 7
OracleDataAdapter Class

7-273

Declaration

// C#
public OracleDataAdapter(OracleCommand selectCommand);

Parameters

• selectCommand

The OracleCommand that is to be set as the SelectCommand property.

Remarks

Initial values are set for the following OracleDataAdapter properties as indicated:

• MissingMappingAction = MissingMappingAction.Passthrough
• MissingSchemaAction = MissingSchemaAction.Add

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

OracleDataAdapter(string, OracleConnection)
This constructor creates an instance of an OracleDataAdapter class with the provided
OracleConnection object and the command text for the SelectCommand.

Declaration

// C#
public OracleDataAdapter(string selectCommandText, OracleConnection
 selectConnection);

Parameters

• selectCommandText

The string that is set as the CommandText of the SelectCommand property of the
OracleDataAdapter.

• selectConnection

The OracleConnection to connect to the Oracle database.

Remarks

The OracleDataAdapter opens and closes the connection, if it is not already open. If
the connection is open, it must be explicitly closed.

Initial values are set for the following OracleDataAdapter properties as indicated:

Chapter 7
OracleDataAdapter Class

7-274

• MissingMappingAction = MissingMappingAction.Passthrough
• MissingSchemaAction = MissingSchemaAction.Add

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

OracleDataAdapter(string, string)
This constructor creates an instance of an OracleDataAdapter class with the provided
connection string and the command text for the SelectCommand.

Declaration

// C#
public OracleDataAdapter(string selectCommandText, string
 selectConnectionString);

Parameters

• selectCommandText

The string that is set as the CommandText of the SelectCommand property of the
OracleDataAdapter.

• selectConnectionString

The connection string.

Remarks

Initial values are set for the following OracleDataAdapter properties as indicated:

• MissingMappingAction = MissingMappingAction.Passthrough
• MissingSchemaAction = MissingSchemaAction.Add

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

Chapter 7
OracleDataAdapter Class

7-275

OracleDataAdapter Static Methods
The OracleDataAdapter static method is listed in Table 7-70.

Table 7-70 OracleDataAdapter Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

OracleDataAdapter Properties
OracleDataAdapter properties are listed in Table 7-71.

Table 7-71 OracleDataAdapter Properties

Property Description

AcceptChangesDuringFill Inherited from System.Data.Common.DataAdapter
Container Inherited from System.ComponentModel.Component
ContinueUpdateOnError Inherited from System.Data.Common.DataAdapter
DeleteCommand A SQL statement or stored procedure to delete rows

from an Oracle database

IdentityInsert Determines whether or not to insert identity column
values in the DataSet into the database when the
Update method is invoked.

Not Available in the ODP.NET, Managed Driver and
ODP.NET Core

IdentityUpdate Determines whether or not to update identity column
values in the DataSet into the database when the
Update method is invoked.

Not Available in the ODP.NET, Managed Driver and
ODP.NET Core

InsertCommand A SQL statement or stored procedure to insert new
rows into an Oracle database

MissingMappingAction Inherited from System.Data.Common.DataAdapter
MissingSchemaAction Inherited from System.Data.Common.DataAdapter

Chapter 7
OracleDataAdapter Class

7-276

Table 7-71 (Cont.) OracleDataAdapter Properties

Property Description

Requery Determines whether or not the SelectCommand is
reexecuted on the next call to Fill

ReturnProviderSpecificTypes Determines if the Fill method returns ODP.NET-
specific values or .NET common language specification
values

SafeMapping Creates a mapping between column names in the
result set to .NET types, to preserve the data

Not Available in ODP.NET, Managed Driver and
ODP.NET Core

SelectCommand A SQL statement or stored procedure that returns a
single or multiple result set

Site Inherited from System.ComponentModel.Component
SuppressGetDecimalInvalidCastExce
ption

Specifies whether to suppress the
InvalidCastException and return a rounded-off 28
or 29 precision Oracle NUMBER value that can be
represented as a .NET decimal.

TableMappings Inherited from System.Data.Common.DataAdapter
UpdateBatchSize Specifies a value that enables or disables batch

processing support, and specifies the number of SQL
statements that can be executed in a single round-trip
to the database

UpdateCommand A SQL statement or stored procedure to update rows
from the DataSet to an Oracle database

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

DeleteCommand
This property is a SQL statement or stored procedure to delete rows from an Oracle
database.

Declaration

// C#
public OracleCommand DeleteCommand {get; set;}

Chapter 7
OracleDataAdapter Class

7-277

Property Value

An OracleCommand used during the Update call to delete rows from tables in the Oracle
database, corresponding to the deleted rows in the DataSet.

Remarks

Default = null
If there is primary key information in the DataSet, the DeleteCommand can be
automatically generated using the OracleCommandBuilder, if no command is provided
for this.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

IdentityInsert
When inserting DataSet data into the database, this property indicates whether the
database generates the inserted row's identity column value or DataSet supplies this
value.

Declaration

// C#
public bool IdentityInsert {get; set;}

Property Value

When set to true, ODP.NET inserts DataSet identity column values into the database.
When set to false, the database determines the inserted identity column values.

Remarks

This property applies only to identity columns of type GENERATED BY DEFAULT and
GENERATED BY DEFAULT ON NULL. Identity column of type GENERATED ALWAYS will
ignore this property and will always use database generated values.

When set to false, the server will generate an identity value for the row. That
generated identity value returns back to the client to update the DataSet value.

When this property is set to true for the GENERATED BY DEFAULT case and the
application attempts to insert a NULL value into the database's identity column, the NOT
NULL constraint is violated and an error occurs. ODP.NET will then allow the database
to generate the identity column value and return the generated value to the DataSet.

The default value for this property is false.

Chapter 7
OracleDataAdapter Class

7-278

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• OracleIdentityType Enumeration

IdentityUpdate
When updating DataSet data into the database, this property indicates whether to replace the
database's identity column values with values of the DataSet or leave the current values
unchanged.

Declaration

// C#
public bool IdentityUpdate {get; set;}

Property Value

When set to true, ODP.NET updates the database identity column values with the values of
the DataSet. When set to false, the database identity columns are left unchanged.

Remarks

This property applies only to identity columns of type GENERATED BY DEFAULT and GENERATED
BY DEFAULT ON NULL. In the case of type GENERATED ALWAYS, this property will be ignored and
the database will always retain its current identity values.

When set to false, the existing identity column value in the server is returned to the DataSet.

When this property is set to true for the GENERATED BY DEFAULT and GENERATED BY DEFAULT
ON NULL cases and the application attempts to update the database's identity column with a
NULL value, the NOT NULL constraint is violated and an error occurs. ODP.NET then does not
update the identity column value and instead returns the existing identity column value of the
database to the DataSet.

The default value for this property is false.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• OracleIdentityType Enumeration

Chapter 7
OracleDataAdapter Class

7-279

InsertCommand
This property is a SQL statement or stored procedure to insert new rows into an
Oracle database.

Declaration

// C#
public OracleCommand InsertCommand {get; set;}

Property Value

An OracleCommand used during the Update call to insert rows into a table,
corresponding to the inserted rows in the DataSet.

Remarks

Default = null
If there is primary key information in the DataSet, the InsertCommand can be
automatically generated using the OracleCommandBuilder, if no command is provided
for this property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

Requery
This property determines whether or not the SelectCommand is reexecuted on the next
call to Fill.

Declaration

// C#
public Boolean Requery {get; set;}

Property Value

Returns true if the SelectCommand is reexecuted on the next call to Fill; otherwise,
returns false.

Chapter 7
OracleDataAdapter Class

7-280

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleDataAdapter Requery Property"

ReturnProviderSpecificTypes
This property determines if the Fill method returns ODP.NET-specific values or .NET
common language specification compliant values.

Declaration

// C#
public Boolean ReturnProviderSpecificTypes {get; set;}

Property Value

A value that indicates whether or not the Fill method returns ODP.NET-specific values.

Starting with ODP.NET 12.1.0.2, when set to true and LegacyEntireLOBFetch = 0 (default),
BLOB and CLOB column values are represented in the DataTable as OracleBlob and
OracleClob, respectively.

A value of false indicates that the Fill method returns .NET common language specification
compliant values. The default is false.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

SafeMapping
This property creates a mapping between column names in the result set to .NET types that
represent column values in the DataSet, to preserve the data.

Declaration

// C#
public Hashtable SafeMapping {get; set;}

Chapter 7
OracleDataAdapter Class

7-281

Property Value

A hash table.

Remarks

Default = null
The SafeMapping property is used, when necessary, to preserve data in the following
types:

• DATE
• TimeStamp (refers to all TimeStamp objects)

• INTERVAL DAY TO SECOND
• NUMBER

Example

See the example in "OracleDataAdapter Safe Type Mapping".

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleDataAdapter Safe Type Mapping"

SelectCommand
This property is a SQL statement or stored procedure that returns single or multiple
result sets.

Declaration

// C#
public OracleCommand SelectCommand {get; set;}

Property Value

An OracleCommand used during the Fill call to populate the selected rows to the
DataSet.

Remarks

Default = null
If the SelectCommand does not return any rows, no tables are added to the dataset and
no exception is raised.

Chapter 7
OracleDataAdapter Class

7-282

If the SELECT statement selects from a VIEW, no key information is retrieved when a
FillSchema() or a Fill() with MissingSchemaAction.AddWithKey is invoked.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleDataAdapter Requery Property"

SuppressGetDecimalInvalidCastException
This property specifies whether to suppress the InvalidCastException and return a
rounded-off 28 or 29 precision Oracle NUMBER value that can be represented as a .NET
decimal.

Declaration

// C#
public bool SuppressGetDecimalInvalidCastException { get; set; }

Property Type

System.Boolean

Remarks

Oracle NUMBER has a maximum of 38 precision. .NET Decimal has a maximum of 28 or 29
precision. When the GetDecimal() method is called for an Oracle NUMBER value that cannot
be represented as a .NET Decimal, then ODP.NET throws an InvalidCastException
because not all the precision can be preserved when converting the number to a .NET
Decimal.

This behavior occurs when SuppressGetDecimalInvalidCastException is set to false. Its
default value is false.

When SuppressGetDecimalInvalidCastException is set to true, then the resulting decimal
will be rounded off to 28 or 29 precision so that it can fit as a .NET decimal without throwing
an exception.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

Chapter 7
OracleDataAdapter Class

7-283

UpdateBatchSize
This property specifies a value that enables or disables batch processing support, and
specifies the number of SQL statements that can be executed in a single round-trip to
the database.

Declaration

// C#
public virtual int UpdateBatchSize {get; set;}

Property Value

An integer that returns the batch size.

Exceptions

ArgumentOutOfRangeException - The value is set to a number < 0.

Remarks

Update batches executed with large amounts of data may encounter an "PLS-00123:
Program too large" error. To avoid this error, reduce the size of UpdateBatchSize to a
smaller value.

For each row in the DataSet that has been modified, added, or deleted, one SQL
statement will be executed on the database.

Values are as follows:

• Value = 0
The data adapter executes all the SQL statements in a single database round-trip

• Value = 1 - Default value

This value disables batch updating and SQL statements are executed one at a
time.

• Value = n where n > 1
The data adapter updates n rows of data per database round-trip.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "Batch Processing"

Chapter 7
OracleDataAdapter Class

7-284

UpdateCommand
This property is a SQL statement or stored procedure to update rows from the DataSet to an
Oracle database.

Declaration

// C#
public OracleCommand UpdateCommand {get; set;}

Property Value

An OracleCommand used during the Update call to update rows in the Oracle database,
corresponding to the updated rows in the DataSet.

Remarks

Default = null
If there is primary key information in the DataSet, the UpdateCommand can be automatically
generated using the OracleCommandBuilder, if no command is provided for this property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleDataAdapter Requery Property"

OracleDataAdapter Public Methods
OracleDataAdapter public methods are listed in Table 7-72.

Table 7-72 OracleDataAdapter Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from System.ComponentModel.Component
Equals Inherited from System.Object (Overloaded)

Fill Adds or refreshes rows in the DataSet to match the data in
the Oracle database (Overloaded)

FillSchema Inherited from System.Data.Common.DbDataAdapter
GetFillParameters Inherited from System.Data.Common.DbDataAdapter
GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject

Chapter 7
OracleDataAdapter Class

7-285

Table 7-72 (Cont.) OracleDataAdapter Public Methods

Public Method Description

GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
ToString Inherited from System.Object
Update Inherited from System.Data.Common.DbDataAdapter

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

Fill
Fill populates or refreshes the specified DataTable or DataSet.

Overload List:

• Fill(DataTable, OracleRefCursor)

This method adds or refreshes rows in the specified DataTable to match those in
the provided OracleRefCursor object.

• Fill(DataSet, OracleRefCursor)

This method adds or refreshes rows in the DataSet to match those in the provided
OracleRefCursor object.

• Fill(DataSet, string, OracleRefCursor)

This method adds or refreshes rows in the specified source table of the DataSet to
match those in the provided OracleRefCursor object.

• Fill(DataSet, int, int, string, OracleRefCursor)

This method adds or refreshes rows in a specified range in the DataSet to match
rows in the provided OracleRefCursor object.

Chapter 7
OracleDataAdapter Class

7-286

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

Fill(DataTable, OracleRefCursor)
This method adds or refreshes rows in the specified DataTable to match those in the
provided OracleRefCursor object.

Declaration

// C#
public int Fill(DataTable dataTable, OracleRefCursor refCursor);

Parameters

• dataTable

The DataTable object being populated.

• refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value

The number of rows added to or refreshed in the DataTable.

Exceptions

ArgumentNullException - The dataTable or refCursor parameter is null.

InvalidOperationException - The OracleRefCursor is already being used to fetch data.

NotSupportedException - The SafeMapping type is not supported.

Remarks

No schema or key information is provided, even if the Fill method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

Chapter 7
OracleDataAdapter Class

7-287

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleDataAdapter Requery Property"

Fill(DataSet, OracleRefCursor)
This method adds or refreshes rows in the DataSet to match those in the provided
OracleRefCursor object.

Declaration

// C#
public int Fill(DataSet dataSet, OracleRefCursor refCursor);

Parameters

• dataSet

The DataSet object being populated.

• refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value

Returns the number of rows added or refreshed in the DataSet.

Exceptions

ArgumentNullException - The dataSet or refCursor parameter is null.

InvalidOperationException - The OracleRefCursor is already being used to fetch
data.

InvalidOperationException - The OracleRefCursor is ready to fetch data.

NotSupportedException - The SafeMapping type is not supported.

Remarks

If there is no DataTable to refresh, a new DataTable named Table is created and
populated using the provided OracleRefCursor object.

No schema or key information is provided, even if the Fill method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

Chapter 7
OracleDataAdapter Class

7-288

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleDataAdapter Requery Property"

Fill(DataSet, string, OracleRefCursor)
This method adds or refreshes rows in the specified source table of the DataSet to match
those in the provided OracleRefCursor object.

Declaration

// C#
public int Fill(DataSet dataSet, string srcTable, OracleRefCursor
 refCursor);

Parameters

• dataSet

The DataSet object being populated.

• srcTable

The name of the source table used in the table mapping.

• refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value

Returns the number of rows added or refreshed into the DataSet.

Exceptions

ArgumentNullException - The dataSet or refCursor parameter is null.

InvalidOperationException - The OracleRefCursor is already being used to fetch data or
the source table name is invalid.

NotSupportedException - The SafeMapping type is not supported.

Remarks

No schema or key information is provided, even if the Fill method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

Chapter 7
OracleDataAdapter Class

7-289

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleDataAdapter Requery Property"

Fill(DataSet, int, int, string, OracleRefCursor)
This method adds or refreshes rows in a specified range in the DataSet to match rows
in the provided OracleRefCursor object.

Declaration

// C#
public int Fill(DataSet dataSet, int startRecord, int maxRecords,
 string srcTable, OracleRefCursor refCursor);

Parameters

• dataSet

The DataSet object being populated.

• startRecord

The record number to start with.

• maxRecords

The maximum number of records to obtain.

• srcTable

The name of the source table used in the table mapping.

• refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value

This method returns the number of rows added or refreshed in the DataSet. This does
not include rows affected by statements that do not return rows.

Exceptions

ArgumentNullException - The dataSet or refCursor parameter is null.

InvalidOperationException - The OracleRefCursor is already being used to fetch
data or the source table name is invalid.

NotSupportedException - The SafeMapping type is not supported.

Chapter 7
OracleDataAdapter Class

7-290

Remarks

No schema or key information is provided, even if the Fill method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleDataAdapter Requery Property"

OracleDataAdapter Events
OracleDataAdapter events are listed in Table 7-73.

Table 7-73 OracleDataAdapter Events

Event Name Description

Disposed Inherited from System.ComponentModel.Component
FillError Inherited from System.Data.Common.DbDataAdapter
RowUpdated This event is raised when row(s) have been updated by the Update() method

RowUpdating This event is raised when row data are about to be updated to the database

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

RowUpdated
This event is raised when row(s) have been updated by the Update() method.

Declaration

// C#
public event OracleRowUpdatedEventHandler RowUpdated;

Chapter 7
OracleDataAdapter Class

7-291

Event Data

The event handler receives an OracleRowUpdatedEventArgs object which exposes the
following properties containing information about the event.

• Command
The OracleCommand executed during the Update.

• Errors (inherited from RowUpdatedEventArgs)

The exception, if any, is generated during the Update.

• RecordsAffected (inherited from RowUpdatedEventArgs)

The number of rows modified, inserted, or deleted by the execution of the Command.

• Row (inherited from RowUpdatedEventArgs)

The DataRow sent for Update.

• StatementType (inherited from RowUpdatedEventArgs)

The type of SQL statement executed.

• Status (inherited from RowUpdatedEventArgs)

The UpdateStatus of the Command.

• TableMapping (inherited from RowUpdatedEventArgs)

The DataTableMapping used during the Update.

Example

The following example shows how to use the RowUpdating and RowUpdated events.

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class RowUpdatedSample
{
 // Event handler for RowUpdating event
 protected static void OnRowUpdating(object sender,
 OracleRowUpdatingEventArgs e)
 {
 Console.WriteLine("Row updating.....");
 Console.WriteLine("Event arguments:");
 Console.WriteLine("Command Text: " + e.Command.CommandText);
 Console.WriteLine("Command Type: " + e.StatementType);
 Console.WriteLine("Status: " + e.Status);
 }

 // Event handler for RowUpdated event
 protected static void OnRowUpdated(object sender,
 OracleRowUpdatedEventArgs e)
 {
 Console.WriteLine("Row updated.....");
 Console.WriteLine("Event arguments:");
 Console.WriteLine("Command Text: " + e.Command.CommandText);
 Console.WriteLine("Command Type: " + e.StatementType);

Chapter 7
OracleDataAdapter Class

7-292

 Console.WriteLine("Status: " + e.Status);
 }

 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 string cmdstr = "SELECT EMPNO, ENAME, SAL FROM EMP";

 // Create the adapter with the selectCommand txt and the
 // connection string
 OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

 // Create the builder for the adapter to automatically generate
 // the Command when needed
 OracleCommandBuilder builder = new OracleCommandBuilder(adapter);

 // Create and fill the DataSet using the EMP
 DataSet dataset = new DataSet();
 adapter.Fill(dataset, "EMP");

 // Get the EMP table from the dataset
 DataTable table = dataset.Tables["EMP"];

 // Indicate DataColumn EMPNO is unique
 // This is required by the OracleCommandBuilder to update the EMP table
 table.Columns["EMPNO"].Unique = true;

 // Get the first row from the EMP table
 DataRow row = table.Rows[0];

 // Update the salary
 double sal = double.Parse(row["SAL"].ToString());
 row["SAL"] = sal + .01;

 // Set the event handlers for the RowUpdated and the RowUpdating event
 // the OnRowUpdating() method will be triggered before the update, and
 // the OnRowUpdated() method will be triggered after the update
 adapter.RowUpdating += new OracleRowUpdatingEventHandler(OnRowUpdating);
 adapter.RowUpdated += new OracleRowUpdatedEventHandler(OnRowUpdated);

 // Now update the EMP using the adapter
 // The OracleCommandBuilder will create the UpdateCommand for the
 // adapter to update the EMP table
 // The OnRowUpdating() and the OnRowUpdated() methods will be triggered
 adapter.Update(dataset, "EMP");
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleRowUpdatedEventHandler Delegate"

Chapter 7
OracleDataAdapter Class

7-293

RowUpdating
This event is raised when row data are about to be updated to the database.

Declaration

// C#
public event OracleRowUpdatingEventHandler RowUpdating;

Event Data

The event handler receives an OracleRowUpdatingEventArgs object which exposes
the following properties containing information about the event.

• Command
The OracleCommand executed during the Update.

• Errors (inherited from RowUpdatingEventArgs)

The exception, if any, is generated during the Update.

• Row (inherited from RowUpdatingEventArgs)

The DataRow sent for Update.

• StatementType (inherited from RowUpdatingEventArgs)

The type of SQL statement executed.

• Status (inherited from RowUpdatingEventArgs)

The UpdateStatus of the Command.

• TableMapping (inherited from RowUpdatingEventArgs)

The DataTableMapping used during the Update.

Example

The example for the RowUpdated event also shows how to use the RowUpdating event.
See RowUpdated event "Example".

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Class

• OracleDataAdapter Members

• "OracleRowUpdatingEventHandler Delegate"

OracleDatabase Class
An OracleDatabase object represents an Oracle Database instance.

Chapter 7
OracleDatabase Class

7-294

Class Inheritance

System.Object
 Oracle.DataAccess.Client.OracleDatabase

Declaration

// C#
public sealed class OracleDatabase : IDisposable

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Example

// C#

using System;
using Oracle.DataAccess.Client;

namespace Startup
{
 class Test
 {
 static void Main()
 {
 OracleConnection con = null;
 OracleDatabase db = null;
 string constring = "dba privilege=sysdba;user id=scott;password=tiger;data
source=oracle";

 try
 {
 // Open a connection to see if the DB is up
 con = new OracleConnection(constring);
 con.Open();

 Console.WriteLine("The Oracle database is already up.");
 }
 catch (OracleException ex)
 {
 // If the database is down, start up the DB
 if (ex.Number == 1034)
 {
 Console.WriteLine("The Oracle database is down.");

 // Create an instance of an OracleDatbase object

Chapter 7
OracleDatabase Class

7-295

 db = new OracleDatabase(constring);

 // Start up the database
 db.Startup();

 Console.WriteLine("The Oracle database is now up.");

 // Executing Startup() is the same as the following:
 // db.Startup(OracleDBStartupMode.NoRestriction, null, true);
 // which is also the same as:
 // db.Startup(OracleDBStartupMode.NoRestriction, null, false);
 // db.ExecuteNonQuery("ALTER DATABASE MOUNT");
 // db.ExecuteNonQuery("ALTER DATABASE OPEN");

 // Dispose the OracleDatabase object
 db.Dispose();
 }
 else
 {
 Console.WriteLine("Error: " + ex.Message);
 }
 }
 finally
 {
 // Dispose the OracleConnetion object
 con.Dispose();
 }
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Members

• OracleDatabase Constructors

• OracleDatabase Properties

• OracleDatabase Public Methods

OracleDatabase Members
OracleDatabase members are listed in the following tables.

OracleDatabase Constructors

The OracleDatabase constructor is listed in Table 7-74.

Chapter 7
OracleDatabase Class

7-296

Table 7-74 OracleDatabase Constructors

Constructor Description

OracleDatabase Constructors Instantiates a new instance of OracleDatabase class

OracleDatabase Properties

The OracleDatabase properties are listed in Table 7-75.

Table 7-75 OracleDatabase Properties

Property Description

ServerVersion Specifies the database version number of the Oracle
Database instance to which the connection is made

OracleDatabase Public Methods

The OracleDatabase public methods are listed in Table 7-76.

Table 7-76 OracleDatabase Public Methods

Public Method Description

Dispose Releases any resources or memory allocated by the object.

ExecuteNonQuery Executes the supplied non-SELECT statement against the
database

Shutdown Shuts down the database (Overloaded)

Startup Starts up the database (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

OracleDatabase Constructors
The OracleDatabase constructors instantiate a new instance of the OracleDatabase class.

Overload List

• OracleDatabase Constructor(string)

The OracleDatabase constructor instantiates a new instance of the OracleDatabase class
using the supplied connection string.

• OracleDatabase Constructor(string, OracleCredential)

Chapter 7
OracleDatabase Class

7-297

The OracleDatabase constructor instantiates a new instance of the
OracleDatabase class using the supplied connection string and OracleCredential
object .

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

OracleDatabase Constructor(string)
The OracleDatabase constructor instantiates a new instance of the OracleDatabase
class using the supplied connection string.

Declaration

// C#
public OracleDatabase(string connetionString);

Parameters

• connectionString

The connection information used to connect to the Oracle Database instance.

Remarks

The connectionString follows the same format used by the OracleConnection object.
However, the OracleDatabase constructor accepts only the user id, password, data
source, and dba privilege connection string attributes. All other attribute values are
ignored. The supplied connectionString must contain the dba privilege connection
string attribute that is set to SYSDBA, SYSASM, SYSOPER, or another valid administrator
privilege.

The OracleDatabase object creates a connection upon construction and remains
connected throughout its lifetime. The connection is destroyed when the
OracleDatabase object is disposed. This connection is not pooled to be used by
another OracleDatabase object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

Chapter 7
OracleDatabase Class

7-298

OracleDatabase Constructor(string, OracleCredential)
The OracleDatabase constructor instantiates a new instance of the OracleDatabase class
using the supplied connection string and OracleCredential object.

Declaration

// C#
public OracleDatabase(string connectionString, OracleCredential orclCredential)

Parameters

• connectionString

connection string that does not contain any of user id, password, DBA Privilege, proxy
user id, nor proxy password.

• orclCredential

OracleCredential object containing user credentials. If this parameter is passed as null
then OracleConnection’s behavior will be same as OracleConnection with normal
connection string.

Exceptions

InvalidOperationException is raised when non-null OracleCredential object is used with a
connection string containing any of user id, password, DBA Privilege, proxy user id, or
proxy password.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

OracleDatabase Properties
The OracleDatabase properties are listed in Table 7-77.

Table 7-77 OracleDatabase Properties

Property Description

ServerVersion Specifies the database version number of the Oracle
Database instance to which the connection is made

Chapter 7
OracleDatabase Class

7-299

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

ServerVersion
This property returns the database version number of the Oracle Database instance to
which the connection is made.

Declaration

Public string ServerVersion {get;}

Property value

Returns the database version of the Oracle Database instance.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

OracleDatabase Public Methods
The OracleDatabase public methods are listed in Table 7-78.

Table 7-78 OracleDatabase Public Methods

Public Method Description

Dispose Releases any resources or memory allocated by the
object.

ExecuteNonQuery Executes the supplied non-SELECT statement against the
database

Shutdown Shuts down the database (Overloaded)

Startup Starts up the database (Overloaded)

Chapter 7
OracleDatabase Class

7-300

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

ExecuteNonQuery
This method executes the supplied non-SELECT statement against the database.

Declaration

// C#
public void ExecuteNonQuery(string sql);

Exceptions

OracleException - The command execution has failed.

Remarks

This method is meant for execution of DDL statements such as ALTER DATABASE statements
to OPEN and MOUNT the database, for example. This method should not be used to execute SQL
SELECT statements. This method does not support any parameter binding.

Chapter 7
OracleDatabase Class

7-301

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

Shutdown
Shutdown methods shut down a database instance.

Overload List

• Shutdown()

This method shuts down the database.

• Shutdown(OracleDBShutdownMode, bool)

This method shuts down the database using the specified mode.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

• "OracleDBShutdownMode Enumeration"

Shutdown()
This method shuts down the database.

Declaration

// C#
public void Shutdown();

Exceptions

OracleException - The database shutdown request has failed.

Remarks

This method shuts down a database instance in the OracleDBShutdownMode.Default
mode. New connections are refused, and the method waits for the existing
connections to end.

Chapter 7
OracleDatabase Class

7-302

Note:

As the shutdown is effected using the OracleDBShutdownMode.Default mode, the
shutdown request may remain pending if there are open connections other than the
connection created by the OracleDatabase object.

After the connections have closed, the method closes the database, dismounts the database,
and shuts down the instance using the OracleDBShutdownMode.Final mode.

This method does not throw exceptions for cases where the database has been already
closed, dismounted, or shutdown appropriately. If other errors are encountered, then an
exception is thrown.

Invoking this method against an Oracle Real Application Clusters (Oracle RAC) database
shuts down only that database instance to which the OracleDatabase object is connected.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

• "OracleDBShutdownMode Enumeration"

Shutdown(OracleDBShutdownMode, bool)
This method shuts down the database instance using the specified mode.

Declaration

//C#
public void Shutdown(OracleDBShutdownMode shutdownMode, bool
bCloseDismountAndFinalize);

Parameters

• shutdownMode

A OracleDBShutdownMode enumeration value.

• bCloseDismountAndFinalize

A boolean signifying whether the database is to be closed, dismounted, and finalized.

Exceptions

OracleException - The database shutdown request has failed.

Chapter 7
OracleDatabase Class

7-303

Remarks

This method shuts down a database instance in the specified mode. If the
bCloseDismountAndFinalize parameter is true, then the method also closes the
database, dismounts the database, and shuts down the instance using the
OracleDBShutdownMode.Final mode.

If the bCloseDismountAndFinalize parameter is true, then this method does not throw
exceptions for cases where the database has been already closed, dismounted, or
shutdown appropriately. If other errors are encountered, then an exception is thrown.

If the bCloseDismountAndFinalize parameter is false, then the application needs to
explicitly close and dismount the database. The application can then reinvoke the
method using the OracleDBShutdownMode.Final mode to properly shut down the
database. For example, if db is an instance of the OracleDatabase class, then the
application invokes the following:

1. db.Shutdown(OracleDBShutdownMode.Default, false);
2. db.ExecuteNonQuery("ALTER DATABASE CLOSE NORMAL");
3. db.ExecuteNonQuery("ALTER DATABASE DISMOUNT");
4. db.Shutdown(OracleDBShutdownMode.Final);

Note:

• The OracleDBShutdownMode.Final enumeration value should not be
used as the shutdownMode for the initial method invocation. The
OracleDBShutdownMode.Final mode should be used only if the database
is already closed and dismounted. Otherwise, the method might wait
indefinitely.

• If the specified shutdownMode is OracleDBShutdownMode.Final, then the
value of the bCloseDismountAndFinalize input parameter is ignored, as
the database should have been closed and dismounted already.

If the specified shutdownMode is OracleDBShutdownMode.Abort, then the value of the
bCloseDismountAndFinalize input parameter is ignored, as the Abort mode requires
the database to be closed, dismounted, and finalized.

Invoking this method against an Oracle Real Application Clusters (Oracle RAC)
database shuts down only that database instance to which the OracleDatabase object
is connected.

Example

using System;
using Oracle.DataAccess.Client;

namespace Shutdown
{
 class Test
 {
 static void Main()

Chapter 7
OracleDatabase Class

7-304

 {
 OracleConnection con = null;
 OracleDatabase db = null;
 string constring = "user id=scott;password=tiger;data source=oracle;" +
 "pooling=false;dba privilege=sysdba";

 try
 {
 // Open a connection to see if the DB is up;
 con = new OracleConnection(constring);
 con.Open();

 Console.WriteLine("The Oracle database is currently up.");

 // If open succeeds, we know that the database is up.
 // We have to dispose the connection so that we can
 // shutdown the database.
 con.Dispose();

 // Shutdown the database
 db = new OracleDatabase(constring);
 db.Shutdown();

 Console.WriteLine("The Oracle database is shut down.");

 // Executing Shutdown() above is the same as the following:
 // db.Shutdown(OracleDBShutdownMode.Default, false);
 // db.ExecuteNonQuery("ALTER DATABASE CLOSE NORMAL");
 // db.ExecuteNonQuery("ALTER DATABASE DISMOUNT");
 // db.Shutdown(OracleDBShutdownMode.Final);

 // Dispose the OracleDatabase object
 db.Dispose();
 }
 catch (OracleException ex)
 {
 Console.WriteLine("An error has occurred: {0}", ex.Message);
 }
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

• "OracleDBShutdownMode Enumeration"

Startup
Startup methods enable a user with database administrator privileges to start a database
instance.

Chapter 7
OracleDatabase Class

7-305

Overload List

• Startup()

This method starts a database instance using the server-side parameter file.

• Startup(OracleDBStartupMode, string, bool)

This method starts a database instance using the client-side parameter file.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

• "OracleDBStartupMode Enumeration"

Startup()
This method starts up the database.

Declaration

// C#
public void Startup();

Exceptions

OracleException - The database startup request has failed.

Remarks

This method starts a database instance in the OracleDbStartupMode.Normal mode
using the server-side parameter file (spfile). After the database is successfully
started, this method also executes the ALTER DATABASE MOUNT and ALTER DATABASE
OPEN statements.

This method does not throw exceptions for cases where the database is already
mounted, opened, or started appropriately. If other errors are encountered, then an
exception is thrown.

Chapter 7
OracleDatabase Class

7-306

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

• "OracleDBStartupMode Enumeration"

Startup(OracleDBStartupMode, string, bool)
This method starts up the database using the specified startup mode.

Declaration

// C#
public void Startup(OracleDbStartupMode startupMode, string pfile, bool bMountAndOpen);

Parameters

• startupMode

An OracleDBStartupMode enumeration value.

• pfile

The location and name of the client-side parameter file. For example, "c:\\admin\
\init.ora".
The name of the parameter file varies depending on the operating system. For example,
it can be in mixed case or lowercase, or it can have a logical name or a variation of the
name init.ora. The default location is usually ORACLE_HOME/dbs or
ORACLE_HOME\database.

• bMountAndOpen

A true/false value signifying whether the database is to be mounted and opened.

Exceptions

OracleException - The database startup request has failed.

Remarks

This method starts a database instance in the specified mode using the specified client-side
parameter file. After the database is successfully started, and if bMountAndOpen input
parameter is true, this method also executes the ALTER DATABASE MOUNT and ALTER
DATABASE OPEN statements.

If bMountAndOpen is true, then this method does not throw an exception for cases where the
database is already mounted, opened, or started appropriately. If other errors are
encountered, then an exception is thrown.

If bMountAndOpen is false, then the database must be mounted and opened explicitly by the
application. For example, if db is an instance of the OracleDatabase class, then the
application invokes the following:

Chapter 7
OracleDatabase Class

7-307

1. db.Startup(OracleDBStartupMode.NoRestriction, null, false);
2. db.ExecuteNonQuery("ALTER DATABASE MOUNT");
3. db.ExecuteNonQuery("ALTER DATABASE OPEN");

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDatabase Class

• OracleDatabase Members

• "OracleDBStartupMode Enumeration"

OracleDataReader Class
An OracleDataReader object represents a forward-only, read-only, in-memory result
set.

Unlike the DataSet, the OracleDataReader object stays connected and fetches one
row at a time.

The following section contain related information:

• "Obtaining LONG and LONG RAW Data".

• "Obtaining Data from an OracleDataReader Object".

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.Data.Common.DataReader
 System.Data.Common.DbDataReader
 Oracle.DataAccess.Client.OracleDataReader

Declaration

// C#
public sealed class OracleDataReader : DbDataReader, IEnumerable,
 IDataReader, IDisposable, IDataRecord

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Chapter 7
OracleDataReader Class

7-308

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Remarks

An OracleDataReader instance is constructed by a call to the ExecuteReader method of the
OracleCommand object. The only properties that can be accessed after the DataReader is
closed or has been disposed, are IsClosed and RecordsAffected.

To minimize the number of open database cursors, OracleDataReader objects should be
explicitly disposed.

Example

The following OracleDataReader example retrieves the data from the EMP table:

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle
CREATE TABLE empInfo (
empno NUMBER(4) PRIMARY KEY,
empName VARCHAR2(20) NOT NULL,
hiredate DATE,
salary NUMBER(7,2),
jobDescription Clob,
byteCodes BLOB
);

Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(1,'KING','SOFTWARE ENGR', '5657');
Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(2,'SCOTT','MANAGER', '5960');
commit;

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleDataReaderSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);

Chapter 7
OracleDataReader Class

7-309

 con.Open();

 string cmdstr = "SELECT * FROM EMPINFO";
 OracleConnection connection = new OracleConnection(constr);
 OracleCommand cmd = new OracleCommand(cmdstr, con);

 OracleDataReader reader = cmd.ExecuteReader();

 // Declare the variables to retrieve the data in EmpInfo
 short empNo;
 string empName;
 DateTime hireDate;
 double salary;
 string jobDesc;
 byte[] byteCodes = new byte[10];

 // Read the next row until end of row
 while (reader.Read())
 {
 empNo = reader.GetInt16(0);
 Console.WriteLine("Employee number: " + empNo);
 empName = reader.GetString(1);
 Console.WriteLine("Employee name: " + empName);

 // The following columns can have NULL value, so it
 // is important to call IsDBNull before getting the column data
 if (!reader.IsDBNull(2))
 {
 hireDate = reader.GetDateTime(2);
 Console.WriteLine("Hire date: " + hireDate);
 }

 if (!reader.IsDBNull(3))
 {
 salary = reader.GetDouble(3);
 Console.WriteLine("Salary: " + salary);
 }

 if (!reader.IsDBNull(4))
 {
 jobDesc = reader.GetString(4);
 Console.WriteLine("Job Description: " + jobDesc);
 }

 if (!reader.IsDBNull(5))
 {
 long len = reader.GetBytes(5, 0, byteCodes, 0, 10);

 Console.Write("Byte codes: ");
 for (int i = 0; i < len; i++)
 Console.Write(byteCodes[i].ToString("x"));

 Console.WriteLine();
 }

 Console.WriteLine();
 }

 // Clean up
 reader.Dispose();
 con.Dispose();

Chapter 7
OracleDataReader Class

7-310

 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Members

• OracleDataReader Static Methods

• OracleDataReader Properties

• OracleDataReader Public Methods

OracleDataReader Members
OracleDataReader members are listed in the following tables.

OracleDataReader Static Methods

The OracleDataReader static method is listed in Table 7-79.

Table 7-79 OracleDataReader Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleDataReader Properties

OracleDataReader properties are listed in Table 7-80.

Table 7-80 OracleDataReader Properties

Property Description

Depth Gets a value indicating the depth of nesting for the current row

FetchSize Specifies the size of OracleDataReader's internal cache

FieldCount Gets the number of columns in the result set

HasRows Indicates whether the OracleDataReader has one or more rows

HiddenFieldCount Gets the number of fields in the OracleDataReader that are
hidden

IsClosed Indicates whether or not the data reader is closed

Item Gets the value of the column (Overloaded)

InitialLOBFetchSize Specifies the amount that the OracleDataReader initially fetches
for LOB columns

InitialLONGFetchSize Specifies the amount that the OracleDataReader initially fetches
for LONG and LONG RAW columns

Chapter 7
OracleDataReader Class

7-311

Table 7-80 (Cont.) OracleDataReader Properties

Property Description

RecordsAffected Gets the number of rows changed, inserted, or deleted by
execution of the SQL statement

RowSize Gets the amount of memory the internal cache of the
OracleDataReader needs to store one row of data.

SuppressGetDecimalInvalidCastE
xception

Specifies whether to suppress the InvalidCastException and
return a rounded-off 28 precision value if the Oracle NUMBER value
has more than 28 precision.

UseEdmMapping Indicates whether or not the OracleDataReader utilizes the Entity
Data Model mapping configuration when returning values

VisibleFieldCount Gets the number of fields in the OracleDataReader that are not
hidden

OracleDataReader Public Methods

OracleDataReader public methods are listed in Table 7-81.

Table 7-81 OracleDataReader Public Methods

Public Method Description

Close Closes the OracleDataReader
CreateObjRef Inherited from System.MarshalByRefObject
Dispose Releases any resources or memory allocated by the object

Equals Inherited from System.Object (Overloaded)

GetBoolean Returns the bool value of the specified numeric column

GetByte Returns the byte value of the specified column

GetBytes Populates the provided byte array with up to the maximum
number of bytes, from the specified offset (in bytes) of the
column

GetChar Not Supported

GetChars Populates the provided character array with up to the
maximum number of characters, from the specified offset (in
characters) of the column

GetData Not Supported

GetDataTypeName Returns the ODP.NET type name of the specified column

GetDateTime Returns the DateTime value of the specified column

GetDateTimeOffset Returns the DateTimeOffset value of the specified column

GetDecimal Returns the decimal value of the specified NUMBER column

GetDouble Returns the double value of the specified NUMBER column
or BINARY_DOUBLE column

GetEnumerator Returns an IEnumerator that can be used to iterate
through the collection

GetFieldType Returns the Type of the specified column

Chapter 7
OracleDataReader Class

7-312

Table 7-81 (Cont.) OracleDataReader Public Methods

Public Method Description

GetFloat Returns the float value of the specified NUMBER column or
BINARY_FLOAT column

GetGuid Returns the Guid value of the specified binary data column

GetHashCode Inherited from System.Object
GetInt16 Returns the Int16 value of the specified NUMBER column

GetInt32 Returns the Int32 value of the specified NUMBER column

GetInt64 Returns the Int64 value of the specified NUMBER column

GetLifetimeService Inherited by System.MarshalByRefObject
GetName Returns the name of the specified column

GetOracleBFile Returns an OracleBFile object of the specified BFILE
column

GetOracleBinary Returns an OracleBinary structure of the specified
column

GetOracleBlob Returns an OracleBlob object of the specified BLOB
column

GetOracleBlobForUpdate Returns an updatable OracleBlob object of the specified
BLOB column

Not Available in ODP.NET, Managed Driver and ODP.NET
Core

GetOracleClob Returns an OracleClob object of the specified CLOB
column

GetOracleClobForUpdate Returns an updatable OracleClob object of the specified
CLOB column

Not Available in ODP.NET, Managed Driver and ODP.NET
Core

GetOracleDate Returns an OracleDate structure of the specified DATE
column

GetOracleDecimal Returns an OracleDecimal structure of the specified
NUMBER column

GetOracleIntervalDS Returns an OracleIntervalDS structure of the specified
INTERVAL DAY TO SECOND column

GetOracleIntervalYM Returns an OracleIntervalYM structure of the specified
INTERVAL YEAR TO MONTH column

GetOracleRef Returns an OracleRef object of the specified REF column

GetOracleString Returns an OracleString structure of the specified
column

GetOracleTimeStamp Returns an OracleTimeStamp structure of the Oracle
TimeStamp column

GetOracleTimeStampLTZ Returns an OracleTimeStampLTZ structure of the
specified Oracle TimeStamp WITH LOCAL TIME ZONE
column

Chapter 7
OracleDataReader Class

7-313

Table 7-81 (Cont.) OracleDataReader Public Methods

Public Method Description

GetOracleTimeStampTZ Returns an OracleTimeStampTZ structure of the specified
Oracle TimeStamp WITH TIME ZONE column

GetOracleXmlType Returns an OracleXmlType object of the specified
XMLType column

GetOracleValue Returns the specified column value as a ODP.NET type

GetOracleValues Gets all the column values as ODP.NET types

GetOrdinal Returns the 0-based ordinal (or index) of the specified
column name

GetProviderSpecificFieldType Returns the provider-specific type of the specified column

GetProviderSpecificValue Returns an object that represents the underlying provider-
specific value of the specified ordinal

GetProviderSpecificValues Returns an array of objects that represent the underlying
provider-specific values

GetSchemaTable Returns a DataTable that describes the column metadata
of the OracleDataReader

GetString Returns the string value of the specified column

GetTimeSpan Returns the TimeSpan value of the specified INTERVAL DAY
TO SECOND column

GetType Inherited from System.Object class

GetValue Returns the column value as a .NET type

GetValues Gets all the column values as .NET types

GetXmlReader Returns the value of an XMLType column as an instance of
an .NET XmlTextReader

IsDBNull Indicates whether or not the column value is null

NextResult Advances the data reader to the next result set when
reading the results

Read Reads the next row in the result set

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

OracleDataReader Static Methods
The OracleDataReader static method is listed in Table 7-82.

Chapter 7
OracleDataReader Class

7-314

Table 7-82 OracleDataReader Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

OracleDataReader Properties
OracleDataReader properties are listed in Table 7-83.

Table 7-83 OracleDataReader Properties

Property Description

Depth Gets a value indicating the depth of nesting for the current row

FetchSize Specifies the size of OracleDataReader's internal cache

FieldCount Gets the number of columns in the result set

HasRows Indicates whether the OracleDataReader has one or more rows

HiddenFieldCount Gets the number of fields in the OracleDataReader that are
hidden

IsClosed Indicates whether or not the data reader is closed

Item Gets the value of the column (Overloaded)

InitialLOBFetchSize Specifies the amount that the OracleDataReader initially fetches
for LOB columns

InitialLONGFetchSize Specifies the amount that the OracleDataReader initially fetches
for LONG and LONG RAW columns

RecordsAffected Gets the number of rows changed, inserted, or deleted by
execution of the SQL statement

RowSize Gets the amount of memory the internal cache of the
OracleDataReader needs to store one row of data

SuppressGetDecimalInvalidCastE
xception

Specifies whether to suppress the InvalidCastException and
return a rounded-off 28 precision value if the Oracle NUMBER value
has more than 28 precision.

UseEdmMapping Indicates whether or not the OracleDataReader utilizes the Entity
Data Model mapping configuration when returning values

VisibleFieldCount Gets the number of fields in the OracleDataReader that are not
hidden

Chapter 7
OracleDataReader Class

7-315

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Depth
This property gets a value indicating the depth of nesting for the current row.

Declaration

// C#
public override int Depth {get;}

Property Value

The depth of nesting for the current row.

Implements

IDataReader

Exceptions

InvalidOperationException - The reader is closed.

Remarks

Default = 0
This property always returns zero because Oracle does not support nesting.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

FetchSize
This property specifies the size of OracleDataReader's internal cache.

Declaration

// C#
public long FetchSize {get; set;}

Chapter 7
OracleDataReader Class

7-316

Property Value

A long that specifies the amount of memory (in bytes) that the OracleDataReader uses for its
internal cache.

Exceptions

ArgumentException - The FetchSize value specified is invalid.

Remarks

Default = The OracleCommand's FetchSize property value.

The FetchSize property is inherited by the OracleDataReader that is created by a command
execution returning a result set. The FetchSize property on the OracleDataReader object
determines the amount of data fetched into its internal cache for each database round-trip.

The RowSize and FetchSize properties handle UDT and XMLType data differently than other
scalar data types. Because only a reference to the UDT and XMLType data is stored in the
ODP.NET's internal cache, the RowSize property accounts for only the memory needed for
the reference (which is very small) and not the actual size of the UDT and XMLType data.
Thus, applications can inadvertently fetch a large number of UDT or XMLType instances from
the database in a single database round-trip. This is because the actual size of UDT and
XMLType data does not count against the FetchSize, and it would require numerous UDT and
XMLType references to fill up the default cache size of 131072 bytes. Therefore, when fetching
UDT or XMLType data, the FetchSize property must be appropriately configured to control the
number of UDT and XMLType instances that are to be fetched, rather than the amount of the
actual UDT and XMLType data to be fetched.

NOTE: For LOB and LONG data types, only the sizes specified in the InitialLOBFetchSize
and InitialLONGFetchSize properties are accounted for by the RowSize property in addition
to the metadata and reference information that is maintained by the cache for each LOB in
the select list.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• OracleDataReader "RowSize"

• OracleCommand "ExecuteReader()"

• OracleCommand "RowSize"

FieldCount
This property returns the number of columns in the result set.

Chapter 7
OracleDataReader Class

7-317

Declaration

// C#
public override int FieldCount {get;}

Property Value

The number of columns in the result set if one exists, otherwise 0.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed.

Remarks

Default = 0
This property has a value of 0 for queries that do not return result sets.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

HasRows
This property indicates whether the OracleDataReader has one or more rows.

Declaration

// C#
public override bool HasRows {get;}

Return Value

bool

Remarks

HasRows indicates whether or not the OracleDataReader has any rows.

The value of HasRows does not change based on the row position. For example, even if
the application has read all the rows from the result set and the next Read method
invocation will return false, the HasRows property still returns true since the result set
was not empty to begin with.

Chapter 7
OracleDataReader Class

7-318

Rows are fetched to determine the emptiness of the OracleDataReader when HasRows
property is accessed for the first time after the creation of the OracleDataReader object.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class HasRowsSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand(
 "select * from emp where empno = 9999", con);

 OracleDataReader reader = cmd.ExecuteReader();

 if (!reader.HasRows)
 Console.WriteLine("The result set is empty.");
 else
 Console.WriteLine("The result set is not empty.");

 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• http://msdn.microsoft.com/library for detailed information about this
Microsoft .NET Framework feature

HiddenFieldCount
This property gets the number of fields in the OracleDataReader that are hidden.

Declaration

// C#
public int HiddenFieldcount { get; }

Property Value

The number of fields in the OracleDataReader that are hidden.

Chapter 7
OracleDataReader Class

7-319

http://msdn.microsoft.com/library

Exceptions

InvalidOperationException - The reader is closed.

Remarks

OracleDataReader.FieldCount and OracleDataReader.VisibleFieldCount return the
visible field count.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "VisibleFieldCount"

• "FieldCount "

IsClosed
This property indicates whether or not the data reader is closed.

Declaration

// C#
public override bool IsClosed {get;}

Property Value

If the OracleDataReader is in a closed state, returns true; otherwise, returns false.

Implements

IDataReader

Remarks

Default = true
IsClosed and RecordsAffected are the only two properties that are accessible after
the OracleDataReader is closed.

Chapter 7
OracleDataReader Class

7-320

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Item
This property gets the value of the column in .NET data type.

Overload List:

• Item [index]

This property gets the .NET Value of the column specified by the column index.

• Item [string]

This property gets the .NET Value of the column specified by the column name.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Item [index]
This property gets the .NET Value of the column specified by the column index.

Declaration

// C#
public override object this[int index] {get;}

Parameters

• index

The zero-based index of the column.

Property Value

The .NET value of the specified column.

Implements

IDataRecord

Chapter 7
OracleDataReader Class

7-321

Remarks

Default = Not Applicable

In C#, this property is the indexer for this class.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Item [string]
This property gets the .NET Value of the column specified by the column name.

Declaration

// C#
public override object this[string columnName] {get;}

Parameters

• columnName

The name of the column.

Property Value

The .NET Value of the specified column.

Implements

IDataRecord

Remarks

Default = Not Applicable

A case-sensitive search is made to locate the specified column by its name. If this
fails, then a case-insensitive search is made.

In C#, this property is the indexer for this class.

Chapter 7
OracleDataReader Class

7-322

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

InitialLOBFetchSize
This property specifies the amount that the OracleDataReader initially fetches for LOB
columns.

Declaration

// C#
public int InitialLOBFetchSize {get;}

Property Value

The size of the chunk to retrieve.

Exceptions

InvalidOperationException - The reader is closed.

Remarks

The maximum value supported for InitialLOBFetchSize is 2 GB.

Default is the OracleCommand.InitialLOBFetchSize, from which this value is inherited.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "InitialLOBFetchSize" for further information on
OracleCommand.InitialLOBFetchSize

• "Obtaining LOB Data"

InitialLONGFetchSize
This property specifies the amount that the OracleDataReader initially fetches for LONG and
LONG RAW columns.

Chapter 7
OracleDataReader Class

7-323

Declaration

// C#
public long InitialLONGFetchSize {get;}

Property Value

The size of the chunk to retrieve. The default is 0.

Exceptions

InvalidOperationException - The reader is closed.

Remarks

The maximum value supported for InitialLONGFetchSize is 32767. If this property is
set to a higher value, the provider resets it to 32767.

Default is OracleCommand.InitialLONGFetchSize, from which this value is inherited.

This property is read-only for the OracleDataReader.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "InitialLONGFetchSize" for further information on
OracleCommand.InitialLONGFetchSize

• "Obtaining LONG and LONG RAW Data"

RecordsAffected
This property gets the number of rows changed, inserted, or deleted by execution of
the SQL statement.

Declaration

// C#
public int RecordsAffected {get;}

Property Value

The number of rows affected by execution of the SQL statement.

Implements

IDataReader

Chapter 7
OracleDataReader Class

7-324

Remarks

Default = 0
The value of -1 is returned for SELECT statements.

IsClosed and RecordsAffected are the only two properties that are accessible after the
OracleDataReader is closed.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

RowSize
This property gets the amount of memory the internal cache of the OracleDataReader needs
to store one row of data.

Declaration

// C#
public long RowSize {get;}

Property Value

A long that indicates the amount of memory (in bytes) that an OracleDataReader needs to
store one row of data for the executed query.

Remarks

The RowSize property is set to a nonzero value when the OracleDataReader object is created.
This property can be used at design time or dynamically during runtime, to set the FetchSize
property, based on the number of rows. For example, to enable the OracleDataReader object
to fetch N rows for each database round-trip, the OracleDataReader FetchSize property can
be set dynamically to RowSize * N. Note that for the FetchSize property to take effect
appropriately, it must be set before the first invocation of OracleDataReader.Read() for the
particular result set.

ODP.NET now supports values up to 32K for VARCHAR2, NVARCHAR2 or RAW type columns in its
calculation of RowSize value

Chapter 7
OracleDataReader Class

7-325

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "FetchSize "

SuppressGetDecimalInvalidCastException
This property specifies whether to suppress the InvalidCastException and return a
rounded-off 28 precision value if the Oracle NUMBER value has more than 28 precision.

Declaration

// C#
public bool SuppressGetDecimalInvalidCastException { get; set; }

Property Type

System.Boolean

Remarks

Oracle NUMBER has a maximum of 38 precision. .NET Decimal has a maximum of 28 or
29 precision. When the GetDecimal() method is called for an Oracle NUMBER value that
cannot be represented as a .NET Decimal, then ODP.NET throws an
InvalidCastException because not all the precision can be preserved when
converting the number to a .NET Decimal.

This behavior occurs when SuppressGetDecimalInvalidCastException is set to
false. Its default value is false.

When SuppressGetDecimalInvalidCastException is set to true, then the resulting
decimal will be rounded off to 28 or 29 precision so that it can fit as a .NET decimal
without throwing an exception.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Chapter 7
OracleDataReader Class

7-326

UseEdmMapping
This read-only property indicates whether or not the OracleDataReader utilizes the Entity
Data Model mapping configuration when returning values.

Declaration

// C#
public bool UseEdmMapping {get;}

Property Value

A boolean that indicates whether the OracleDataReader uses the Entity Data Model mapping
configuration for returning values.

Remarks

Default is false.

The value is inherited from the OracleCommand object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• OracleCommand Class

VisibleFieldCount
This property gets the number of fields in the OracleDataReader that are not hidden.

Declaration

// C#
public override int VisibleFieldcount { get; }

Property Value

The number of fields that are not hidden.

Exceptions

InvalidOperationException - The reader is closed.

Remarks

If an application sets the AddRowid property on an OracleCommand object to true, then the
application can access the RowId but it is not a visible field. If RowId is added in the select

Chapter 7
OracleDataReader Class

7-327

statement list, then it is a visible field. OracleDataReader.VisibleFieldCount and
OracleDataReader.FieldCount always have the same value.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class VisibleFieldCountSample
{
 static void Main(string[] args)
 {
 string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
 DbProviderFactory factory =
 DbProviderFactories.GetFactory("Oracle.DataAccess.Client");

 using (DbConnection conn = factory.CreateConnection())
 {
 conn.ConnectionString = constr;
 try
 {
 conn.Open();
 OracleCommand cmd = (OracleCommand)factory.CreateCommand();
 cmd.Connection = (OracleConnection)conn;

 //to gain access to ROWIDs of the table
 cmd.AddRowid = true;
 cmd.CommandText = "select empno, ename from emp;";

 OracleDataReader reader = cmd.ExecuteReader();

 int visFC = reader.VisibleFieldCount; //Results in 2
 int hidFC = reader.HiddenFieldCount; // Results in 1

 Console.Write("Visible field count: " + visFC);
 Console.Write("Hidden field count: " + hidFC);

 reader.Dispose();
 cmd.Dispose();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
 }
}

Chapter 7
OracleDataReader Class

7-328

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "VisibleFieldCount"

• "FieldCount "

OracleDataReader Public Methods
OracleDataReader public methods are listed in Table 7-84.

Table 7-84 OracleDataReader Public Methods

Public Method Description

Close Closes the OracleDataReader
CreateObjRef Inherited from System.MarshalByRefObject
Dispose Releases any resources or memory allocated by the object

Equals Inherited from System.Object (Overloaded)

GetBoolean Returns the bool value of the specified numeric column

GetByte Returns the byte value of the specified column

GetBytes Populates the provided byte array with up to the maximum
number of bytes, from the specified offset (in bytes) of the
column

GetChar Not Supported

GetChars Populates the provided character array with up to the maximum
number of characters, from the specified offset (in characters) of
the column

GetData Not Supported

GetDataTypeName Returns the ODP.NET type name of the specified column

GetDateTime Returns the DateTime value of the specified column

GetDateTimeOffset Returns the DateTimeOffset value of the specified column

GetDecimal Returns the decimal value of the specified NUMBER column

GetDouble Returns the double value of the specified NUMBER column or
BINARY_DOUBLE column

GetEnumerator Returns an IEnumerator that can be used to iterate through the
collection

GetFieldType Returns the Type of the specified column

GetFloat Returns the float value of the specified NUMBER column or
BINARY_FLOAT column

Chapter 7
OracleDataReader Class

7-329

Table 7-84 (Cont.) OracleDataReader Public Methods

Public Method Description

GetGuid Returns the Guid value of the specified binary data column

GetHashCode Inherited from System.Object
GetInt16 Returns the Int16 value of the specified NUMBER column

GetInt32 Returns the Int32 value of the specified NUMBER column

GetInt64 Returns the Int64 value of the specified NUMBER column

GetLifetimeService Inherited by System.MarshalByRefObject
GetName Returns the name of the specified column

GetOracleBFile Returns an OracleBFile object of the specified BFILE column

GetOracleBinary Returns an OracleBinary structure of the specified column

GetOracleBlob Returns an OracleBlob object of the specified BLOB column

GetOracleBlobForUpdate Returns an updatable OracleBlob object of the specified BLOB
column

Not Available in ODP.NET, Managed Driver and ODP.NET Core

GetOracleClob Returns an OracleClob object of the specified CLOB column

GetOracleClobForUpdate Returns an updatable OracleClob object of the specified CLOB
column

Not Available in ODP.NET, Managed Driver and ODP.NET Core

GetOracleDate Returns an OracleDate structure of the specified DATE column

GetOracleDecimal Returns an OracleDecimal structure of the specified NUMBER
column

GetOracleIntervalDS Returns an OracleIntervalDS structure of the specified
INTERVAL DAY TO SECOND column

GetOracleIntervalYM Returns an OracleIntervalYM structure of the specified
INTERVAL YEAR TO MONTH column

GetOracleRef Returns an OracleRef object of the specified REF column

GetOracleString Returns an OracleString structure of the specified column

GetOracleTimeStamp Returns an OracleTimeStamp structure of the Oracle
TimeStamp column

GetOracleTimeStampLTZ Returns an OracleTimeStampLTZ structure of the specified
Oracle TimeStamp WITH LOCAL TIME ZONE column

GetOracleTimeStampTZ Returns an OracleTimeStampTZ structure of the specified
Oracle TimeStamp WITH TIME ZONE column

GetOracleXmlType Returns an OracleXmlType object of the specified XMLType
column

GetOracleValue Returns the specified column value as a ODP.NET type

GetOracleValues Gets all the column values as ODP.NET types

GetOrdinal Returns the 0-based ordinal (or index) of the specified column
name

GetProviderSpecificFieldType Returns the provider-specific type of the specified column

Chapter 7
OracleDataReader Class

7-330

Table 7-84 (Cont.) OracleDataReader Public Methods

Public Method Description

GetProviderSpecificValue Returns an object that represents the underlying provider-
specific value of the specified ordinal

GetProviderSpecificValues Returns an array of objects that represent the underlying
provider-specific values

GetSchemaTable Returns a DataTable that describes the column metadata of the
OracleDataReader

GetString Returns the string value of the specified column

GetTimeSpan Returns the TimeSpan value of the specified INTERVAL DAY TO
SECOND column

GetType Inherited from System.Object class

GetValue Returns the column value as a .NET type

GetValues Gets all the column values as .NET types

GetXmlReader Returns the value of an XMLType column as an instance of
an .NET XmlTextReader

IsDBNull Indicates whether or not the column value is null

NextResult Advances the data reader to the next result set when reading the
results

Read Reads the next row in the result set

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Close
This method closes the OracleDataReader.

Declaration

// C#
public override void Close();

Implements

IDataReader

Chapter 7
OracleDataReader Class

7-331

Remarks

The Close method frees all resources associated with the OracleDataReader.

Example

The code example for the OracleDataReader class includes the Close method. See
OracleDataReader Overview "Example".

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The Dispose method also closes the OracleDataReader.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetBoolean
This method returns the bool value of the specified numeric column.

Chapter 7
OracleDataReader Class

7-332

Declaration

// C#
public override bool GetBoolean(int index);

Parameters

• index

The zero-based column index.

Return Value

The bool value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type.

Remarks

• This method can be called on any numeric database type column (NUMBER,
BINARY_DOUBLE, BINARY_FLOAT, and FLOAT).

• FALSE is returned if column value is 0; TRUE otherwise.

• IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetByte
This method returns the byte value of the specified column.

Declaration

// C#
public override byte GetByte(int index);

Chapter 7
OracleDataReader Class

7-333

Parameters

• index

The zero-based column index.

Return Value

The value of the column as a byte.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetBytes
This method populates the provided byte array with up to the maximum number of
bytes, from the specified offset (in bytes) of the column.

Declaration

// C#
public override long GetBytes(int index, long fieldOffset, byte[] buffer,
 int bufferOffset, int length);

Parameters

• index

The zero-based column index.

• fieldOffset

The offset within the column from which reading begins (in bytes).

Chapter 7
OracleDataReader Class

7-334

• buffer

The byte array that the data is read into.

• bufferOffset

The offset within the buffer to begin reading data into (in bytes).

• length

The maximum number of bytes to read (in bytes).

Return Value

The number of bytes read.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

This method returns the number of bytes read into the buffer. This may be less than the
actual length of the field if the method has been called previously for the same column.

If a null reference is passed for buffer, the length of the field in bytes is returned.

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetChar
This method is not supported.

Declaration

// C#
public override long GetChar(int index);

Chapter 7
OracleDataReader Class

7-335

Parameters

• index

The zero based column index.

Implements

IDataRecord

Exceptions

NotSupportedException - This property is not supported.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetChars
This method populates the provided character array with up to the maximum number
of characters, from the specified offset (in characters) of the column.

Declaration

// C#
public override long GetChars(int index, long fieldOffset, char[] buffer,
 int bufferOffset, int length);

Parameters

• index

The zero based column index.

• fieldOffset

The index within the column from which to begin reading (in characters).

• buffer

The character array that the data is read into.

• bufferOffset

The index within the buffer to begin reading data into (in characters).

• length

The maximum number of characters to read (in characters).

Return Value

The number of characters read.

Chapter 7
OracleDataReader Class

7-336

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

This method returns the number of characters read into the buffer. This may be less than the
actual length of the field, if the method has been called previously for the same column.

If a null reference is passed for buffer, the length of the field in characters is returned.

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetData
This method is not supported

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetDataTypeName
This method returns the ODP.NET type name of the specified column.

Chapter 7
OracleDataReader Class

7-337

Declaration

// C#
public override string GetDataTypeName(int index);

Parameters

• index

The zero-based column index.

Return Value

The name of the ODP.NET type of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed.

IndexOutOfRangeException - The column index is invalid.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetDateTime
This method returns the DateTime value of the specified column.

Declaration

// C#
public override DateTime GetDateTime(int index);

Parameters

• index

The zero-based column index.

Return Value

The DateTime value of the column.

Implements

IDataRecord

Chapter 7
OracleDataReader Class

7-338

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetDateTimeOffset
This method returns the DateTimeOffset value of a TIMESTAMP WITH TIME ZONE column.
DateTimeOffset represents a point in time. It is generally expressed as a date and time
relative to Coordinated Universal Time (UTC).

Declaration

// C#
public override DateTimeOffset GetDateTimeOffset(int index);

Parameters

• index

The zero-based column index.

Return Value

The DateTimeOffset value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Chapter 7
OracleDataReader Class

7-339

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

• This method can be called only on a TIMESTAMP WITH TIME ZONE column.

• IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetDecimal
This method returns the decimal value of the specified NUMBER column.

Declaration

// C#
public override decimal GetDecimal(int index);

Parameters

• index

The zero-based column index.

Return Value

The decimal value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

Chapter 7
OracleDataReader Class

7-340

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetDouble
This method returns the double value of the specified NUMBER column or BINARY_DOUBLE
column.

Declaration

// C#
public override double GetDouble(int index);

Parameters

• index

The zero-based column index.

Return Value

The double value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

GetDouble now supports retrieval of data from BINARY_DOUBLE columns.

Chapter 7
OracleDataReader Class

7-341

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetEnumerator
This method returns an IEnumerator that can be used to iterate through the collection
(record set).

Declaration

// C#
public override IEnumerator GetEnumerator();

Return Value

An IEnumerator that can be used to iterate through the collection (record set).

Exceptions

InvalidOperationException - The reader is closed.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetFieldType
This method returns the type of the specified column.

Declaration

// C#
public override Type GetFieldType(int index);

Parameters

• index

The zero-based column index.

Chapter 7
OracleDataReader Class

7-342

Return Value

The type of the default .NET type of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed, or the specified column is a UDT but no
registered custom type mapping exists for the UDT.

IndexOutOfRangeException - The column index is invalid.

Remarks

GetFieldType returns a type that corresponds to the value that the application obtains after
invoking the GetValue accessor or Item property on the OracleDataReader. For example, if
the column is a string, this method returns a .NET Type object for a .NET string.

If the attribute is a UDT, this method may return either of the following:

• A .NET Type of the custom type if a custom type mapping exists for the Oracle object or
collection.

• A .NET Type of string if the column is an Oracle REF.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetFloat
This method returns the float value of the specified NUMBER column or BINARY_FLOAT column.

Declaration

// C#
public override float GetFloat(int index);

Parameters

• index

The zero-based column index.

Return Value

The float value of the column.

Chapter 7
OracleDataReader Class

7-343

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

GetFloat now supports retrieval of data from BINARY_FLOAT columns.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetGuid
This method returns the Guid value of the specified binary data column. A GUID is a
Globally Unique Identifier.

Declaration

// C#
public override Guid GetGuid(int index);

Parameters

• index

The zero-based column index.

Return Value

The Guid value of the column.

Implements

IDataRecord

Chapter 7
OracleDataReader Class

7-344

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

System.ArgumentException - Byte array for GUID must be exactly 16 bytes long.

Remarks

• This method can be called on columns that contain binary data, such as RAW and BLOB.

• An exception will be thrown if the binary data of the column is not 16 bytes in length.

• IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetInt16
This method returns the Int16 value of the specified NUMBER column.

Note:

short is equivalent to Int16.

Declaration

// C#
public override short GetInt16(int index);

Parameters

• index

The zero-based column index.

Return Value

The Int16 value of the column.

Chapter 7
OracleDataReader Class

7-345

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetInt32
This method returns the Int32 value of the specified NUMBER column.

Note:

int is equivalent to Int32.

Declaration

// C#
public override int GetInt32(int index);

Parameters

• index

The zero-based column index.

Return Value

The Int32 value of the column.

Chapter 7
OracleDataReader Class

7-346

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetInt64
This method returns the Int64 value of the specified NUMBER column.

Note:

long is equivalent to Int64.

Declaration

// C#
public override long GetInt64(int index);

Parameters

• index

The zero-based column index.

Return Value

The Int64 value of the column.

Chapter 7
OracleDataReader Class

7-347

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetName
This method returns the name of the specified column.

Declaration

// C#
public override string GetName(int index);

Parameters

• index

The zero-based column index.

Return Value

The name of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed.

IndexOutOfRangeException - The column index is invalid.

Chapter 7
OracleDataReader Class

7-348

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleBFile
This method returns an OracleBFile object of the specified BFILE column.

Declaration

// C#
public OracleBFile GetOracleBFile(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleBFile value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Chapter 7
OracleDataReader Class

7-349

GetOracleBinary
This method returns an OracleBinary structure of the specified column.

Declaration

// C#
public OracleBinary GetOracleBinary(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleBinary value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

GetOracleBinary is used on the following Oracle types:

• BFILE
• BLOB
• LONG RAW
• RAW

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleBlob
This method returns an OracleBlob object of the specified BLOB column.

Chapter 7
OracleDataReader Class

7-350

Declaration

// C#
public OracleBlob GetOracleBlob(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleBlob value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleBlobForUpdate
GetOracleBlobForUpdate returns an updatable OracleBlob object of the specified BLOB
column.

Overload List:

• GetOracleBlobForUpdate(int)

This method returns an updatable OracleBlob object of the specified BLOB column.

• GetOracleBlobForUpdate(int, int)

This method returns an updatable OracleBlob object of the specified BLOB column using
a WAIT clause.

Chapter 7
OracleDataReader Class

7-351

GetOracleBlobForUpdate(int)
This method returns an updatable OracleBlob object of the specified BLOB column.

Declaration

// C#
public OracleBlob GetOracleBlobForUpdate(int index);

Parameters

• index

The zero-based column index.

Return Value

An updatable OracleBlob object.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

When the OracleCommand's ExecuteReader() method is invoked, all the data fetched
by the OracleDataReader is from a particular snapshot. Therefore, calling an accessor
method on the same column always returns the same value. However, the
GetOracleBlobForUpdate() method incurs a database round-trip to obtain a reference
to the current BLOB data while also locking the row using the FOR UPDATE clause. This
means that the OracleBlob obtained from GetOracleBlob() can have a different value
than the OracleBlob obtained from GetOracleBlobForUpdate() since it is not obtained
from the original snapshot.

The returned OracleBlob object can be used to safely update the BLOB because the
BLOB column has been locked after a call to this method.

Invoking this method internally executes a SELECT..FOR UPDATE statement without a
WAIT clause. Therefore, the statement can wait indefinitely until a lock is acquired for
that row.

IsDBNull should be called to check for NULL values before calling this method.

Example

The following example gets the OracleBlob object for update from the reader, updates
the OracleBlob object, and then commits the transaction.

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle
CREATE TABLE empInfo (
empno NUMBER(4) PRIMARY KEY,

Chapter 7
OracleDataReader Class

7-352

empName VARCHAR2(20) NOT NULL,
hiredate DATE,
salary NUMBER(7,2),
jobDescription Clob,
byteCodes BLOB
);

Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(1,'KING','SOFTWARE ENGR', '5657');
Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(2,'SCOTT','MANAGER', '5960');
commit;

*/
// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class GetOracleBlobForUpdateSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Get the ByteCodes for empno = 1
 string cmdstr = "SELECT BYTECODES, EMPNO FROM EMPINFO where EMPNO = 1";
 OracleCommand cmd = new OracleCommand(cmdstr, con);

 // Since we are going to update the OracleBlob object, we will
 //have to create a transaction
 OracleTransaction txn = con.BeginTransaction();

 // Get the reader
 OracleDataReader reader = cmd.ExecuteReader();

 // Declare the variables to retrieve the data in EmpInfo
 OracleBlob byteCodesBlob;

 // Read the first row
 reader.Read();
 if (!reader.IsDBNull(0))
 {
 byteCodesBlob = reader.GetOracleBlobForUpdate(0);

 // Close the reader
 reader.Close();

 // Update the ByteCodes object
 byte[] addedBytes = new byte[2] {0, 0};
 byteCodesBlob.Append(addedBytes, 0, addedBytes.Length);

 // Now commit the transaction
 txn.Commit();
 Console.WriteLine("Blob Column successfully updated");
 }
 else

Chapter 7
OracleDataReader Class

7-353

 reader.Dispose();

 // Close the connection
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "LOB Support"

GetOracleBlobForUpdate(int, int)
This method returns an updatable OracleBlob object of the specified BLOB column
using a WAIT clause.

Declaration

// C#
public OracleBlob GetOracleBlobForUpdate(int index, int wait);

Parameters

• index

The zero-based column index.

• wait

The number of seconds the method waits to acquire a lock.

Return Value

An updatable OracleBlob object.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

When the OracleCommand's ExecuteReader() method is invoked, all the data fetched
by the OracleDataReader is from a particular snapshot. Therefore, calling an accessor
method on the same column always returns the same value. However, the

Chapter 7
OracleDataReader Class

7-354

GetOracleBlobForUpdate() method incurs a database round-trip to obtain a reference to the
current BLOB data while also locking the row using the FOR UPDATE clause. This means that the
OracleBlob obtained from GetOracleBlob() can have a different value than the OracleBlob
obtained from GetOracleBlobForUpdate() since it is not obtained from the original snapshot.

IsDBNull should be called to check for NULL values before calling this method.

The returned OracleBlob object can be used to safely update the BLOB because the BLOB
column has been locked after a call to this method.

Invoking this method internally executes a SELECT..FOR UPDATE statement which locks the
row.

Different WAIT clauses are appended to the statement, depending on the wait value. If the
wait value is:

• 0
"NOWAIT" is appended at the end of a SELECT..FOR UPDATE statement. The statement
executes immediately whether the lock is acquired or not. If the lock is not acquired, an
exception is thrown.

• n

"WAIT n" is appended at the end of a SELECT..FOR UPDATE statement. The statement
executes as soon as the lock is acquired. However, if the lock cannot be acquired by n
seconds, this method call throws an exception.

The WAIT n" feature is only available for Oracle9i or later. For any version lower than
Oracle9i, n is implicitly treated as -1 and nothing is appended at the end of a
SELECT..FOR UPDATE statement.

• -1
Nothing is appended at the end of the SELECT..FOR UPDATE. The statement execution
waits indefinitely until a lock can be acquired.

Example

The GetOracleBlobForUpdate methods are comparable. See "Example" for a code example
demonstrating usage.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "LOB Support"

GetOracleClob
This method returns an OracleClob object of the specified CLOB column.

Chapter 7
OracleDataReader Class

7-355

Declaration

// C#
public OracleClob GetOracleClob(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleClob value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "LOB Support"

GetOracleClobForUpdate
GetOracleClobForUpdate returns an updatable OracleClob object of the specified
CLOB column.

Overload List:

• GetOracleClobForUpdate(int)

This method returns an updatable OracleClob object of the specified CLOB column.

• GetOracleClobForUpdate(int, int)

This method returns an updatable OracleClob object of the specified CLOB column
using a WAIT clause.

Chapter 7
OracleDataReader Class

7-356

GetOracleClobForUpdate(int)
This method returns an updatable OracleClob object of the specified CLOB column.

Declaration

// C#
public OracleClob GetOracleClobForUpdate(int index);

Parameters

• index

The zero-based column index.

Return Value

An updatable OracleClob.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

When the OracleCommand's ExecuteReader() method is invoked, all the data fetched by the
OracleDataReader is from a particular snapshot. Therefore, calling an accessor method on
the same column always returns the same value. However, the GetOracleClobForUpdate()
method incurs a database round-trip to obtain a reference to the current CLOB data while also
locking the row using the FOR UPDATE clause. This means that the OracleClob obtained from
GetOracleClob() can have a different value than the OracleClob obtained from
GetOracleClobForUpdate() since it is not obtained from the original snapshot.

The returned OracleClob object can be used to safely update the CLOB because the CLOB
column is locked after a call to this method.

Invoking this method internally executes a SELECT..FOR UPDATE statement without a WAIT
clause. Therefore, the statement can wait indefinitely until a lock is acquired for that row.

IsDBNull should be called to check for NULL values before calling this method.

Example

The following example gets the OracleClob object for update from the reader, updates the
OracleClob object, and then commits the transaction.

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle
CREATE TABLE empInfo (
empno NUMBER(4) PRIMARY KEY,
empName VARCHAR2(20) NOT NULL,
hiredate DATE,

Chapter 7
OracleDataReader Class

7-357

salary NUMBER(7,2),
jobDescription Clob,
byteCodes BLOB
);

Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(1,'KING','SOFTWARE ENGR', '5657');
Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(2,'SCOTT','MANAGER', '5960');
commit;

*/
// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class GetOracleClobForUpdateSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Get the job description for empno = 1
 string cmdStr = "SELECT JOBDESCRIPTION, EMPNO FROM EMPINFO where EMPNO = 1";
 OracleCommand cmd = new OracleCommand(cmdStr, con);

 // Since we are going to update the OracleClob object, we will
 // have to create a transaction
 OracleTransaction txn = con.BeginTransaction();

 // Get the reader
 OracleDataReader reader = cmd.ExecuteReader();

 // Declare the variables to retrieve the data in EmpInfo
 OracleClob jobDescClob;

 // Read the first row
 reader.Read();

 if (!reader.IsDBNull(0))
 {
 jobDescClob = reader.GetOracleClobForUpdate(0);

 // Close the reader
 reader.Close();

 // Update the job description Clob object
 char[] jobDesc = "-SALES".ToCharArray();
 jobDescClob.Append(jobDesc, 0, jobDesc.Length);

 // Now commit the transaction
 txn.Commit();
 Console.WriteLine("Clob Column successfully updated");
 }
 else
 reader.Close();

Chapter 7
OracleDataReader Class

7-358

 // Close the connection
 con.Close();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "LOB Support"

GetOracleClobForUpdate(int, int)
This method returns an updatable OracleClob object of the specified CLOB column using a
WAIT clause.

Declaration

// C#
public OracleClob GetOracleClobForUpdate(int index, int wait);

Parameters

• index

The zero-based column index.

• wait

The number of seconds the method waits to acquire a lock.

Return Value

An updatable OracleClob.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

When the OracleCommand's ExecuteReader() method is invoked, all the data fetched by the
OracleDataReader is from a particular snapshot. Therefore, calling an accessor method on
the same column always returns the same value. However, the GetOracleClobForUpdate()
method incurs a database round-trip to obtain a reference to the current CLOB data while also

Chapter 7
OracleDataReader Class

7-359

locking the row using the FOR UPDATE clause. This means that the OracleClob obtained
from GetOracleClob() can have a different value than the OracleClob obtained from
GetOracleClobForUpdate() since it is not obtained from the original snapshot.

Invoking this method internally executes a SELECT..FOR UPDATE statement which locks
the row.

The returned OracleClob object can be used to safely update the CLOB because the
CLOB column is locked after a call to this method.

Different WAIT clauses are appended to the statement, depending on the wait value. If
the wait value is:

• 0
"NOWAIT" is appended at the end of a SELECT..FOR UPDATE statement. The
statement executes immediately whether the lock is acquired or not. If the lock is
not acquired, an exception is thrown.

• n

"WAIT n" is appended at the end of a SELECT..FOR UPDATE statement. The
statement executes as soon as the lock is acquired. However, if the lock cannot be
acquired by n seconds, this method call throws an exception.

The WAIT n" feature is only available for Oracle9i or later. For any version lower
than Oracle9i, n is implicitly treated as -1 and nothing is appended at the end of a
SELECT..FOR UPDATE statement.

• -1
Nothing is appended at the end of the SELECT..FOR UPDATE. The statement
execution waits indefinitely until a lock can be acquired.

IsDBNull should be called to check for NULL values before calling this method.

Example

The GetOracleClobForUpdate methods are comparable. See "Example" for a code
example demonstrating usage.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "LOB Support"

GetOracleDate
This method returns an OracleDate structure of the specified DATE column.

Chapter 7
OracleDataReader Class

7-360

Declaration

// C#
public OracleDate GetOracleDate(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleDate value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "LOB Support"

GetOracleDecimal
This method returns an OracleDecimal structure of the specified NUMBER column.

Declaration

// C#
public OracleDecimal GetOracleDecimal(int index);

Parameters

• index

The zero-based column index.

Chapter 7
OracleDataReader Class

7-361

Return Value

The OracleDecimal value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleIntervalDS
This method returns an OracleIntervalDS structure of the specified INTERVAL DAY TO
SECOND column.

Declaration

// C#
public OracleIntervalDS GetOracleIntervalDS(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleIntervalDS value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Chapter 7
OracleDataReader Class

7-362

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleIntervalYM
This method returns an OracleIntervalYM structure of the specified INTERVAL YEAR TO MONTH
column.

Declaration

// C#
public OracleIntervalYM GetOracleIntervalYM(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleIntervalYM value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

Chapter 7
OracleDataReader Class

7-363

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleRef
This method returns an OracleRef object of the specified REF column.

Declaration

// C#
public OracleRef GetOracleRef(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleRef object of the specified column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, the Read
method has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleString
This method returns an OracleString structure of the specified column.

Chapter 7
OracleDataReader Class

7-364

Declaration

// C#
public OracleString GetOracleString(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleString value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

If the column is an Oracle REF column, the string returned is a hexadecimal value that
represents the REF in the database.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleTimeStamp
This method returns an OracleTimeStamp structure of the Oracle TimeStamp column.

Declaration

// C#
public OracleTimeStamp GetOracleTimeStamp(int index);

Parameters

• index

The zero-based column index.

Chapter 7
OracleDataReader Class

7-365

Return Value

The OracleTimeStamp value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

GetOracleTimeStamp is used with the Oracle Type TimeStamp.

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleTimeStampLTZ
This method returns an OracleTimeStampLTZ structure of the specified Oracle
TimeStamp WITH LOCAL TIME ZONE column.

Declaration

// C#
public OracleTimeStampLTZ GetOracleTimeStampLTZ(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleTimeStampLTZ value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Chapter 7
OracleDataReader Class

7-366

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

GetOracleTimeStampLTZ is used with the Oracle Type TimeStamp with Local Time Zone
columns.

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleTimeStampTZ
This method returns an OracleTimeStampTZ structure of the specified Oracle TimeStamp WITH
TIME ZONE column.

Declaration

// C#
public OracleTimeStampTZ GetOracleTimeStampTZ(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleTimeStampTZ value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

Used with the Oracle Type TimeStamp with Local Time Zone columns

IsDBNull should be called to check for NULL values before calling this method.

Chapter 7
OracleDataReader Class

7-367

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleXmlType
This method returns an OracleXmlType object of the specified XMLType column.

Declaration

// C#
public OracleXmlType GetOracleXmlType(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleXmlType value of the column.

Exceptions

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleValue
This method returns the specified column value as an ODP.NET type.

Chapter 7
OracleDataReader Class

7-368

Declaration

// C#
public object GetOracleValue(int index);

Parameters

• index

The zero-based column index.

Return Value

The value of the column as an ODP.NET type.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Remarks

If the column is an Oracle object or Oracle collection column and a custom type mapping
exists, then a custom type is returned.

If the column is an Oracle REF column, then an OracleRef is returned.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetOracleValues
This method gets all the column values as ODP.NET types.

Declaration

// C#
public int GetOracleValues(object[] values);

Parameters

• values

An array of objects to hold the ODP.NET types as the column values.

Return Value

The number of ODP.NET types in the values array.

Chapter 7
OracleDataReader Class

7-369

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

Remarks

This method provides a way to retrieve all column values rather than retrieving each
column value individually.

The number of column values retrieved is the minimum of the length of the values
array and the number of columns in the result set.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

• "LOB Support"

GetOrdinal
This method returns the 0-based ordinal (or index) of the specified column name.

Declaration

// C#
public override int GetOrdinal(string name);

Parameters

• name

The specified column name.

Return Value

The index of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed.

IndexOutOfRangeException - The column index is invalid.

Chapter 7
OracleDataReader Class

7-370

Remarks

A case-sensitive search is made to locate the specified column by its name. If this fails, then
a case-insensitive search is made.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetProviderSpecificFieldType
This method returns the provider-specific type of the specified column.

Declaration

// C#public override Type GetProviderSpecificFieldType(int index);

Parameters

• index

A zero-based column index.

Return Value

The provider-specific type of the specified column. This is a member of the
Oracle.DataAccess.Types namespace.

Exceptions

IndexOutOfRangeException - The column index is invalid.

InvalidOperationException - The reader is closed, or the specified column is a UDT but no
registered custom type mapping exists for the UDT.

Remarks

GetProviderSpecficFieldType returns a type that corresponds to the value the application
obtains after invoking the GetProviderSpecificValue accessor on the OracleDataReader.
For example, if the column is a string, this method returns a .NET Type object for an
OracleString.

If the attribute is a UDT, this method may return any of the following:

• A .NET Type of the custom type, if the column is an Oracle object or Oracle collection
column and a custom type mapping exists.

• A .NET Type of OracleRef if the column is an Oracle REF.

Chapter 7
OracleDataReader Class

7-371

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetProviderSpecificValue
This method returns an object that represents the underlying provider-specific value of
the specified ordinal.

Declaration

// C#
public override object GetProviderSpecificValue (int index);

Parameters

index

A zero-based column index.

Return Value

An Object that is a representation of the underlying provider-specific field type.

Exceptions

IndexOutOfRangeException - The column index is invalid.

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called or all rows have been read.

Remarks

If the column is an Oracle object or collection column, and a custom type mapping
exists, a custom type is returned.

If the column is an Oracle REF column, an OracleRef is returned.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Chapter 7
OracleDataReader Class

7-372

GetProviderSpecificValues
This method returns an array of objects that represent the underlying provider-specific
values.

Declaration

// C#
public override int GetProviderSpecificValues(object [] values);

Parameters

• values

An array of objects.

Return Value

The number of Object instances in the array.

Exceptions

InvalidOperationException - The reader is closed.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetSchemaTable
This method returns a DataTable that describes the column metadata of the
OracleDataReader.

Declaration

// C#
public override DataTable GetSchemaTable();

Return Value

A DataTable that contains the metadata of the result set.

Implements

IDataReader

Exceptions

InvalidOperationException - The connection is closed or the reader is closed.

Chapter 7
OracleDataReader Class

7-373

Remarks

The OracleDataReader.GetSchemaTable method returns the SchemaTable.

OracleDataReader SchemaTable

The OracleDataReader SchemaTable is a DataTable that describes the column
metadata of the OracleDataReader.

The value of ColumnSize can show value up to 32K depending on the definition of
VARCHAR2, NVARCHAR2, or RAW type columns in the table definition.

The columns of the SchemaTable are in the order shown.

Table 7-85 OracleDataReader SchemaTable

Name Name Type Description

ColumnName System.String The name of the column.

ColumnOrdinal System.Int32 The 0-based ordinal of the column.

ColumnSize System.Int64 The maximum possible length of a value in the column.
ColumnSize value is determined as follows:
• CHAR and VARCHAR2 types:

in bytes - if IsByteSemantic boolean value is true
in characters - if IsByteSemantic boolean value is
false

• All other types:

in bytes

NumericPrecision System.Int16 The maximum precision of the column, if the column is a
numeric data type.

This column has valid values for Oracle NUMBER, Oracle
INTERVAL YEAR TO MONTH, and Oracle INTERVAL DAY TO
SECOND columns. For all other columns, the value is
null.

NumericScale System.Int16 The scale of the column.

This column has valid values for Oracle NUMBER, Oracle
INTERVAL DAY TO SECOND, and the Oracle TIMESTAMP
columns. For all other columns, the value is null.

Chapter 7
OracleDataReader Class

7-374

Table 7-85 (Cont.) OracleDataReader SchemaTable

Name Name Type Description

IsUnique System.Boolean Indicates whether or not the column is unique.

true if no two rows in the base table can have the same
value in this column, where the base table is the table
returned in BaseTableName.

IsUnique is guaranteed to be true if one of the following
applies in descending order of priority:

• the column constitutes a base table primary key by
itself and a NOT NULL constraint has been defined on
the column

• there is a unique constraint or a unique index that
applies only to this column and a NOT NULL constraint
has been defined on the column

• the column is an explicitly selected ROWID
IsUnique is false if the column can contain duplicate
values in the base table.

The default is false.

The value of this property is the same for each occurrence
of the base table column in the select list.

IsKey System.Boolean Indicates whether or not the column is a key column.

true if the column is one of a set of columns in the rowset
that, taken together, uniquely identify the row. The set of
columns with IsKey set to true must uniquely identify a
row in the rowset. There is no requirement that this set of
columns is a minimal set of columns.

This set of columns can be generated from one of the
following in descending order of priority:

• A base table primary key with the following condition:
A NOT NULL constraint must be defined on the
column or on all of the columns, in the case of a
composite primary key.

• Any of the unique constraints or unique indexes with
the following condition: A NOT NULL constraint must
be defined on the column or on all of the columns, in
the case of a composite unique constraint or
composite unique index.

• A base table composite primary key with the following
condition: A NULL constraint must be defined on at
least one, but not all, of the columns.

• Any of the composite unique constraints or composite
unique indexes with the following condition: A NULL
constraint must be defined on at least one, but not all,
of the columns.

An explicitly selected ROWID. false if the column is not
required to uniquely identify the row. The value of this
property is the same for each occurrence of the base table
column in the select list.

IsRowID System.Boolean true if the column is a ROWID, otherwise false.

BaseColumnName System.String The name of the column in the database if an alias is used
for the column.

Chapter 7
OracleDataReader Class

7-375

Table 7-85 (Cont.) OracleDataReader SchemaTable

Name Name Type Description

BaseSchemaName System.String The name of the schema in the database that contains the
column.

BaseTableName System.String The name of the table or view in the database that
contains the column.

DataType System.RuntimeType Maps to the common language runtime type.

ProviderType Oracle.DataAccess.
Client.OracleDbType

The database column type (OracleDbType) of the
column.

AllowDBNull System.Boolean true if null values are allowed, otherwise false.

IsAliased System.Boolean true if the column is an alias; otherwise false.

IsByteSemantic System.Boolean IsByteSemantic is:

• true if the ColumnSize value uses bytes semantics

• false if ColumnSize uses character semantics

This value is always true when connected to a database
version earlier than Oracle9i.

IsExpression System.Boolean true if the column is an expression; otherwise false.

IsHidden System.Boolean true if the column is hidden; otherwise false.

IsReadOnly System.Boolean true if the column is read-only; otherwise false.

IsLong System.Boolean true if the column is a LONG, LONG RAW, BLOB, CLOB, or
BFILE; otherwise false.

UdtTypeName System.String The type name of the UDT.

IsIdentity System.Boolean true if the column is an identity column; otherwise false.

IsAutoIncrement System.Boolean true if the column assigns values to new rows in fixed
increments; otherwise false.

Not Available in ODP.NET, Managed Driver and ODP.NET
Core

IdentityType OracleIdentityType An OracleIdentityType enumeration value that
specifies how the identity column values are generated;
otherwise DbNull.Value, if the column is not an identity
column.

Not Available in ODP.NET, Managed Driver and ODP.NET
Core

Example

This example creates and uses the SchemaTable from the reader.

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle
CREATE TABLE empInfo (
empno NUMBER(4) PRIMARY KEY,
empName VARCHAR2(20) NOT NULL,
hiredate DATE,
salary NUMBER(7,2),
jobDescription Clob,
byteCodes BLOB

Chapter 7
OracleDataReader Class

7-376

);

Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(1,'KING','SOFTWARE ENGR', '5657');
Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(2,'SCOTT','MANAGER', '5960');
commit;

*/
// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class GetSchemaTableSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 string cmdstr = "SELECT EMPNO,EMPNAME FROM EMPINFO where EMPNO = 1";
 OracleCommand cmd = new OracleCommand(cmdstr, con);

 //get the reader
 OracleDataReader reader = cmd.ExecuteReader();

 //get the schema table
 DataTable schemaTable = reader.GetSchemaTable();

 //retrieve the first column info.
 DataRow row = schemaTable.Rows[0];

 //print out the column info
 Console.WriteLine("Column name: " + row["COLUMNNAME"]);
 Console.WriteLine("Precision: " + row["NUMERICPRECISION"]);
 Console.WriteLine("Scale: " + row["NUMERICSCALE"]);
 reader.Close();

 // Close the connection
 con.Close();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Chapter 7
OracleDataReader Class

7-377

GetString
This method returns the string value of the specified column.

Declaration

// C#
public override string GetString(int index);

Parameters

• index

The zero-based column index.

Return Value

The string value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

GetString() can be called on all character-based column data types. Starting with
version 19.10, GetString() can be called on all non-binary data types, returning a
string representation of the following additional types with the NLS format session
setting honored:

• NUMBER
• DATE
• TIMESTAMP
• TIMESTAMP LTZ
• TIMESTAMP TZ
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND
• BINARY_DOUBLE
• BINARY_FLOAT
• FLOAT
Call the IsDBNull method to check for null values before calling this method.

Chapter 7
OracleDataReader Class

7-378

If the column is an Oracle REF column, the string returned is a hexadecimal string that
represents the REF in the database.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetTimeSpan
This method returns the TimeSpan value of the specified INTERVAL DAY TO SECOND column.

Declaration

// C#
public TimeSpan GetTimeSpan(int index);

Parameters

• index

The zero-based column index.

Return Value

The TimeSpan value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the column
value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

Chapter 7
OracleDataReader Class

7-379

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetValue
This method returns the column value as a .NET type.

Declaration

// C#
public override object GetValue(int index);

Parameters

• index

The zero-based column index.

Return Value

The value of the column as a .NET type.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read()
has not been called, all rows have been read, or no valid custom type mapping has
been specified for the Oracle Object or Oracle Collection column.

IndexOutOfRangeException - The column index is invalid.

Remarks

If the column is an Oracle Object or an Oracle Collection column, the .NET custom
type corresponding to the custom type mapping is returned.

If the column is an Oracle REF column, a hexidecimal value is returned as a .NET
string that represents the REF in the database.

If the UDT is NULL, DBNull.Value is returned

Chapter 7
OracleDataReader Class

7-380

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

GetValues
This method gets all the column values as .NET types.

Declaration

// C#
public override int GetValues(object[] values);

Parameters

• values

An array of objects to hold the .NET types as the column values.

Return Value

The number of objects in the values array.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has not
been called, or all rows have been read.

Remarks

This method provides a way to retrieve all column values rather than retrieving each column
value individually.

The number of column values retrieved is the minimum of the length of the values array and
the number of columns in the result set.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Chapter 7
OracleDataReader Class

7-381

GetXmlReader
This method returns the contents of an XMLType column as an instance of an .NET
XmlTextReader object.

Declaration

// C#
public XmlReader GetXmlReader(int index);

Parameters

• index

The zero-based column index.

Return Value

A .NET XmlTextReader.

Exceptions

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

IsDBNull
This method indicates whether or not the column value is NULL.

Declaration

// C#
public override bool IsDBNull(int index);

Parameters

• index

The zero-based column index.

Chapter 7
OracleDataReader Class

7-382

Return Value

Returns true if the column is a NULL value; otherwise, returns false.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed, Read() has not been called, or all rows
have been read.

IndexOutOfRangeException - The column index is invalid.

Remarks

This method should be called to check for NULL values before calling the other accessor
methods.

Example

The code example for the OracleDataReader class includes the IsDBNull method. See
"Example".

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

NextResult
This method advances the data reader to the next result set.

Declaration

// C#
public override bool NextResult();

Return Value

Returns true if another result set exists; otherwise, returns false.

Implements

IDataReader

Exceptions

InvalidOperationException - The connection is closed or the reader is closed.

Chapter 7
OracleDataReader Class

7-383

Remarks

NextResult is used when reading results from stored procedure execution that return
more than one result set.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

Read
This method reads the next row in the result set.

Declaration

// C#
public override bool Read();

Return Value

Returns true if another row exists; otherwise, returns false.

Implements

IDataReader

Exceptions

InvalidOperationException - The connection is closed or the reader is closed.

Remarks

The initial position of the data reader is before the first row. Therefore, the Read
method must be called to fetch the first row. The row that was just read is considered
the current row. If the OracleDataReader has no more rows to read, it returns false.

Example

The code example for the OracleDataReader class includes the Read method. See
"Example".

Chapter 7
OracleDataReader Class

7-384

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataReader Class

• OracleDataReader Members

OracleDataSourceCollection Class
An OracleDataSourceCollection supports adding and deleting network service name (i.e.
TNS) entries for ODP.NET's use to connect to an Oracle database.

Class Inheritance

System.Object
Oracle.ManagedDataAccess.Client.OracleDataSourceCollection

Declaration

// C#
public sealed class OracleDataSourceCollection

Requirements

Provider ODP.NET, Managed Driver ODP.NET Core

Assembly Oracle.ManagedDataAccess.
dll

Oracle.ManagedDataAccess.
dll

Namespace Oracle.ManagedDataAccess.
Client

Oracle.ManagedDataAccess.
Client

.NET Framework 4.8 -

.NET (Core) - See System Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Example

using System;
using Oracle.ManagedDataAccess.Client;

namespace NetCoreApp
{
 class DataSourcesExample
 {
 static void Main(string[] args)
 {
 // Example to configure Data Sources for the ODP.NET Core provider.

Chapter 7
OracleDataSourceCollection Class

7-385

 // Add data source through Add method on OracleDataSourceCollection
 OracleConfiguration.OracleDataSources.Add("orcl1",
"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host1)(PORT=1234))
(CONNECT_DATA=(SERVICE_NAME=oracle)(SERVER=dedicated)))");

 // Add data source through indexer method on OracleDataSourceCollection
 OracleConfiguration.OracleDataSources["orcl2"] =
 "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host1)(PORT=1234))
(CONNECT_DATA=(SERVICE_NAME=oracle)(SERVER=dedicated)))";

 // Get number of data sources configured
 int numDataSources = OracleConfiguration.OracleDataSources.Count;

 // Get OracleDataSourceCollection object
 OracleDataSourceCollection dsColl = OracleConfiguration.OracleDataSources;

 // Add server through Add method on OracleDataSourceCollection
 dsColl.Add("orcl3", "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host3)
(PORT=1234))(CONNECT_DATA=(SERVICE_NAME=oracle)(SERVER=dedicated)))");

 // Add server through indexer method on OracleDataSourceCollection
 dsColl["orcl4"] = "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host4)
(PORT=1234))(CONNECT_DATA=(SERVICE_NAME=oracle)(SERVER=dedicated)))";

 // Remove a data source
 OracleConfiguration.OracleDataSources.Remove("db2");

 // Get number of data sources configured
 numDataSources = OracleConfiguration.OracleDataSources.Count;

 // Get value corresponding to a data source.
 string dsVal = OracleConfiguration.OracleDataSources["db1"];

 OracleConnection orclCon = null;

 try
 {
 // Open a test connection
 orclCon = new OracleConnection("user id=scott; password=tiger; data
source=orcl3");

 orclCon.Open();
 orclCon.Close();
 }
 catch (OracleException ex)
 {
 Console.WriteLine(ex);
 }
 finally
 {
 // Close the connection
 if (null != orclCon)
 orclCon.Close();
 }
 }
 }
}

Chapter 7
OracleDataSourceCollection Class

7-386

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceCollection Members

• OracleDataSourceCollection Methods

• OracleDataSourceCollection Properties

OracleDataSourceCollection Members
OracleDataSourceCollection members are listed in the following tables.

OracleDataSourceCollection Methods

OracleDataSourceCollection methods are listed in Table 7-86.

Table 7-86 OracleDataSourceCollection Methods

Method Description

Add Adds unique network service name (TNS) entries in the
OracleDataSourceCollection using net service names
and complete connect descriptors

Remove Removes network service name entries from an
OracleDataSourceCollection

OracleDataSourceCollection Properties

OracleDataSourceCollection properties are listed in Table 7-87.

Table 7-87 OracleDataSourceCollection Properties

Property Description

Count Returns the number of OracleDataSourceCollection
elements

This Returns or sets the network service name entry with the
specified network service name

OracleDataSourceCollection Methods
OracleDataSourceCollection methods are listed in Table 7-88.

Chapter 7
OracleDataSourceCollection Class

7-387

Table 7-88 OracleDataSourceCollection Methods

Method Description

Add Adds unique network service name (TNS) entries in the
OracleDataSourceCollection using net service
names and complete connect descriptors

Remove Removes network service name entries from an
OracleDataSourceCollection

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceCollection Class

• OracleDataSourceCollection Members

Add
This method adds unique network service name (TNS) entries in the
OracleDataSourceCollection using net service names and complete connect
descriptors.

Declaration

// C#
public void Add(string tnsName, string tnsDescriptor)

Parameters

• tnsName
– Type: System.String
– Network service name used as the ODP.NET connection string Data Source

name.

• tnsDescriptor
– Type: System.String
– The complete connect descriptor information for this specific net service name.

Chapter 7
OracleDataSourceCollection Class

7-388

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceCollection Class

• OracleDataSourceCollection Members

Remove
This method removes network service name entries from an OracleDataSourceCollection.

Declaration

// C#
public void Remove(string tnsName)

Parameter

tnsName
• Type: System.String
• Unique network service name to be removed from the collection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceCollection Class

• OracleDataSourceCollection Members

OracleDataSourceCollection Properties
OracleDataSourceCollection properties are listed in Table 7-89.

Table 7-89 OracleDataSourceCollection Properties

Property Description

Count Returns the number of OracleDataSourceCollection
elements

This Returns or sets the network service name entry with the
specified network service name

Chapter 7
OracleDataSourceCollection Class

7-389

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceCollection Class

• OracleDataSourceCollection Members

Count
This is a read-only property that returns the number of OracleDataSourceCollection
elements

Declaration

// C#
public int Count { get; }

Property Value

Type: System.Int32

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceCollection Class

• OracleDataSourceCollection Members

This
This property returns or sets the network service name entry with the specified
network service name.

Declaration

// C#
public string this[string tnsName] { get; set; }

Parameters

• tnsName
– Type: System.String
– Unique network service name to be added or updated

• Value
– Type: System.String

Chapter 7
OracleDataSourceCollection Class

7-390

– Connect descriptor to be added or updated.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceCollection Class

• OracleDataSourceCollection Members

OracleDataSourceEnumerator Class
An OracleDataSourceEnumerator object allows applications to generically obtain a collection
of data sources to connect to.

Class Inheritance

System.Object
 System.DbDataSourceEnumerator
 Oracle.DataAccess.Client.OracleDataSourceEnumerator

Declaration

// C#
public sealed class OracleDataSourceEnumerator : DbDataSourceEnumerator

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Example

// C#

using System;
using System.Data;
using System.Data.Common;

Chapter 7
OracleDataSourceEnumerator Class

7-391

using Oracle.DataAccess.Client;

class DataSourceEnumSample
{
 static void Main()
 {
 string ProviderName = "Oracle.DataAccess.Client";

 DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

 if (factory.CanCreateDataSourceEnumerator)
 {
 DbDataSourceEnumerator dsenum = factory.CreateDataSourceEnumerator();
 DataTable dt = dsenum.GetDataSources();

 // Print the first column/row entry in the DataTable
 Console.WriteLine(dt.Columns[0] + " : " + dt.Rows[0][0]);
 Console.WriteLine(dt.Columns[1] + " : " + dt.Rows[0][1]);
 Console.WriteLine(dt.Columns[2] + " : " + dt.Rows[0][2]);
 Console.WriteLine(dt.Columns[3] + " : " + dt.Rows[0][3]);
 Console.WriteLine(dt.Columns[4] + " : " + dt.Rows[0][4]);
 }
 else
 Console.Write("Data source enumeration is not supported by provider");
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceEnumerator Members

• OracleDataSourceEnumerator Constructor

• OracleDataSourceEnumerator Public Methods

OracleDataSourceEnumerator Members
OracleDataSourceEnumerator members are listed in the following tables.

OracleDataSourceEnumerator Constructor

OracleDataSourceEnumerator Public Methods are listed in Table 7-90.

Table 7-90 OracleDataSourceEnumerator Method

Method Description

OracleDataSourceEnumerator
Constructor

Instantiates a new instance of the
OracleDataSourceEnumerator class

Chapter 7
OracleDataSourceEnumerator Class

7-392

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceEnumerator Class

OracleDataSourceEnumerator Public Methods

OracleDataSourceEnumerator Public Methods are listed in Table 7-91.

Table 7-91 OracleDataSourceEnumerator Method

Method Description

GetDataSources Returns a DataTable object with information on all the
TNS alias entries in the tnsnames.ora file and entries
retrieved from the LDAP servers configured in ldap.ora
if LDAP Naming is enabled

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceEnumerator Class

OracleDataSourceEnumerator Constructor
OracleDataSourceEnumerator constructor creates new instances of an
OracleDataSourceEnumerator class.

Declaration

// C#
public OracleDataSourceEnumerator();

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceEnumerator Class

• OracleDataSourceEnumerator Members

Chapter 7
OracleDataSourceEnumerator Class

7-393

OracleDataSourceEnumerator Public Methods
The OracleDataSourceEnumerator static method is listed in Table 7-92.

Table 7-92 OracleDataSourceEnumerator Method

Method Description

GetDataSources Returns a DataTable object with information on all
the TNS alias entries in the tnsnames.ora file

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceEnumerator Class

• OracleDataSourceEnumerator Members

GetDataSources
This method returns a DataTable object with information on all the .NET configuration
file ODP.NET data sources, TNS alias entries in the tnsnames.ora file, and entries
retrieved from the LDAP servers configured in ldap.ora if LDAP naming is enabled.

Declaration

// C#
public override DataTable GetDataSources();

Return Value

A DataTable object.

Remarks

This method returns a DataTable object for each ODP.NET data source in the .NET
configuration file, TNS alias entry that exists in the tnsnames.ora file, and each entry
retrieved from the LDAP servers. If there are no ODP.NET data sources in the .NET
configuration file, a tnsnames.ora file is not found, nor LDAP Naming is configured,
then the returned DataTable object will be empty.

This method in ODP.NET, Managed Driver can fetch all the data source aliases from
an LDAP server, such as Oracle Internet Directory or Microsoft Active Directory. This
method in ODP.NET, Unmanaged Driver does not support retrieving data source
aliases from an LDAP server.

When Oracle Internet Directory (OID) is used for the TNS naming repository, there is a
limit of 1000 TNS entries retrieved.

Chapter 7
OracleDataSourceEnumerator Class

7-394

The following columns are returned for each row, but only the InstanceName column is
populated.

• InstanceName (type: System.String)

• ServerName (type: System.String)

• ServiceName (type: System.String)

• Protocol (type: System.String)

• Port (type: System.String)

If the TNS and/or LDAP information changes for existing pooled connections, then calling
GetDataSources will not return these changes unless the pools have been cleared.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceEnumerator Class

• OracleDataSourceEnumerator Members

OracleError Class
The OracleError class represents an error reported by Oracle.

Class Inheritance

System.Object
 Oracle.DataAccess.Client.OracleError

Declaration

// C#
public sealed class OracleError

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 7
OracleError Class

7-395

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The OracleError class represents a warning or an error reported by Oracle.

If there are multiple errors, ODP.NET only returns the first error message on the stack.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleErrorsSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 try
 {
 cmd.CommandText = "insert into notable values (99, 'MyText')";
 cmd.ExecuteNonQuery();
 }
 catch (OracleException ex)
 {
 Console.WriteLine("Record is not inserted into the database table.");

 foreach (OracleError error in ex.Errors)
 {
 Console.WriteLine("Error Message: " + error.Message);
 Console.WriteLine("Error Source: " + error.Source);
 }
 }
 }
}

Chapter 7
OracleError Class

7-396

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Members

• OracleError Static Methods

• OracleError Properties

• OracleError Methods

OracleError Members
OracleError members are listed in the following tables.

OracleError Static Methods

The OracleError static method is listed in Table 7-93.

Table 7-93 OracleError Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleError Properties

OracleError properties are listed in Table 7-94.

Table 7-94 OracleError Properties

Property Description

ArrayBindIndex Specifies the row number of errors that occurred during the Array
Bind execution

DataSource Specifies the Oracle service name (TNS name) that identifies the
Oracle database

Message Specifies the message describing the error
Number Specifies the Oracle error number

Procedure Specifies the stored procedure that causes the error
Source Specifies the name of the data provider that generates the error

OracleError Methods

OracleError methods are listed in Table 7-95.

Chapter 7
OracleError Class

7-397

Table 7-95 OracleError Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Returns a string representation of the OracleError

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

OracleError Static Methods
The OracleError static method is listed in Table 7-96.

Table 7-96 OracleError Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

OracleError Properties
OracleError properties are listed in Table 7-97.

Table 7-97 OracleError Properties

Property Description

ArrayBindIndex Specifies the row number of errors that occurred during the Array Bind
execution

Chapter 7
OracleError Class

7-398

Table 7-97 (Cont.) OracleError Properties

Property Description

DataSource Specifies the Oracle service name (TNS name) that identifies the Oracle
database

Message Specifies the message describing the error
Number Specifies the Oracle error number

Procedure Specifies the stored procedure that causes the error
Source Specifies the name of the data provider that generates the error

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

ArrayBindIndex
This property specifies the row number of errors that occurred during the Array Bind
execution.

Declaration

// C#
public int ArrayBindIndex {get;}

Property Value

An int value that specifies the row number for errors that occurred during the Array Bind
execution.

Remarks

Default = 0.

This property is used for Array Bind operations only.

ArrayBindIndex represents the zero-based row number at which the error occurred during an
Array Bind operation. For example, if an array bind execution causes two errors on the 2nd
and 4th operations, two OracleError objects appear in the OracleErrorCollection with the
ArrayBindIndex property values 2 and 4 respectively.

Chapter 7
OracleError Class

7-399

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

• "Array Binding"

DataSource
This property specifies the Oracle service name (TNS name) that identifies the Oracle
database.

Declaration

// C#
public string DataSource {get;}

Property Value

A string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

Message
This property specifies the message describing the error.

Declaration

// C#
public string Message {get;}

Property Value

A string.

Chapter 7
OracleError Class

7-400

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

Number
This property specifies the Oracle error number.

Declaration

// C#
public int Number {get;}

Property Value

An int.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

Procedure
This property specifies the stored procedure that causes the error.

Declaration

// C#
public string Procedure {get;}

Property Value

The stored procedure name.

Remarks

Represents the stored procedure which creates this OracleError object.

Chapter 7
OracleError Class

7-401

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

Source
This property specifies the name of the data provider that generates the error.

Declaration

// C#
public string Source {get;}

Property Value

A string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

OracleError Methods
OracleError methods are listed in Table 7-98.

Table 7-98 OracleError Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Returns a string representation of the OracleError

Chapter 7
OracleError Class

7-402

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

ToString
Overrides Object
This method returns a string representation of the OracleError.

Declaration

// C#
public override string ToString();

Return Value

Returns a string with the format Ora- error number: Class.Method name error message
stack trace information.

Example

ORA-24333: zero iteration count

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleError Class

• OracleError Members

OracleErrorCollection Class
An OracleErrorCollection class represents a collection of all errors that are thrown by the
Oracle Data Provider for .NET.

Class Inheritance

System.Object
 System.ArrayList
 Oracle.DataAccess.Client.OracleErrorCollection

Chapter 7
OracleErrorCollection Class

7-403

Declaration

// C#
public sealed class OracleErrorCollection : ArrayList

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

A simple ArrayList that holds a list of OracleErrors.

If there are multiple errors, ODP.NET only returns the first error message on the stack.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleErrorCollectionSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 try
 {
 cmd.CommandText = "insert into notable values (99, 'MyText')";
 cmd.ExecuteNonQuery();
 }
 catch (OracleException ex)
 {
 Console.WriteLine("Record is not inserted into the database table.");

 foreach (OracleError error in ex.Errors)

Chapter 7
OracleErrorCollection Class

7-404

 {
 Console.WriteLine("Error Message: " + error.Message);
 Console.WriteLine("Error Source: " + error.Source);
 }
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleErrorCollection Members

• OracleErrorCollection Static Methods

• OracleErrorCollection Properties

• OracleErrorCollection Public Methods

OracleErrorCollection Members
OracleErrorCollection members are listed in the following tables.

OracleErrorCollection Static Methods

OracleErrorCollection static methods are listed in Table 7-99.

Table 7-99 OracleErrorCollection Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

OracleErrorCollection Properties

OracleErrorCollection properties are listed in Table 7-100.

Table 7-100 OracleErrorCollection Properties

Property Description

Capacity Inherited from System.Collections.ArrayList
Count Inherited from System.Collections.ArrayList
IsReadOnly Inherited from System.Collections.ArrayList
IsSynchronized Inherited from System.Collections.ArrayList
Item Inherited from System.Collections.ArrayList

OracleErrorCollection Public Methods

OracleErrorCollection public methods are listed in Table 7-101.

Chapter 7
OracleErrorCollection Class

7-405

Table 7-101 OracleErrorCollection Public Methods

Public Method Description

CopyTo Inherited from System.Collections.ArrayList
Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleErrorCollection Class

OracleErrorCollection Static Methods
The OracleErrorCollection static method is listed in Table 7-102.

Table 7-102 OracleErrorCollection Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleErrorCollection Class

• OracleErrorCollection Members

OracleErrorCollection Properties
OracleErrorCollection properties are listed in Table 7-103.

Table 7-103 OracleErrorCollection Properties

Property Description

Capacity Inherited from System.Collections.ArrayList

Chapter 7
OracleErrorCollection Class

7-406

Table 7-103 (Cont.) OracleErrorCollection Properties

Property Description

Count Inherited from System.Collections.ArrayList
IsReadOnly Inherited from System.Collections.ArrayList
IsSynchronized Inherited from System.Collections.ArrayList
Item Inherited from System.Collections.ArrayList

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleErrorCollection Class

• OracleErrorCollection Members

OracleErrorCollection Public Methods
OracleErrorCollection public methods are listed in Table 7-104.

Table 7-104 OracleErrorCollection Public Methods

Public Method Description

CopyTo Inherited from System.Collections.ArrayList
Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleErrorCollection Class

• OracleErrorCollection Members

Chapter 7
OracleErrorCollection Class

7-407

OracleException Class
The OracleException class represents an exception that is thrown when the Oracle
Data Provider for .NET encounters an error. Each OracleException object contains at
least one OracleError object in the Error property that describes the error or warning.

Class Inheritance

System.Object
 System.Exception
 System.SystemException
 System.Runtime.InteropServices.ExternalException
 System.Data.Common.DbException
 Oracle.DataAccess.Client.OracleException

Declaration

// C#
public sealed class OracleException : SystemException

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

If there are multiple errors, ODP.NET only returns the first error message on the stack.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleExceptionSample
{

Chapter 7
OracleException Class

7-408

 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 try
 {
 cmd.CommandText = "insert into notable values (99, 'MyText')";
 cmd.ExecuteNonQuery();
 }
 catch (OracleException ex)
 {
 Console.WriteLine("Record is not inserted into the database table.");
 Console.WriteLine("Exception Message: " + ex.Message);
 Console.WriteLine("Exception Source: " + ex.Source);
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Members

• OracleException Methods

• OracleException Static Methods

• OracleException Static Methods

• OracleException Properties

• OracleException Methods

OracleException Members
OracleException members are listed in the following tables.

OracleException Static Methods

The OracleException static method is listed in Table 7-105.

Table 7-105 OracleException Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

Chapter 7
OracleException Class

7-409

OracleException Properties

OracleException properties are listed in Table 7-106.

Table 7-106 OracleException Properties

Property Description

DataSource Specifies the TNS name that contains the information for
connecting to an Oracle instance

Errors Specifies a collection of one or more OracleError objects that
contain information about exceptions generated by the Oracle
database

HelpLink Inherited from System.Exception
InnerException Inherited from System.Exception
IsRecoverable Specifies whether the current operation producing this exception

can succeed if retried

Message Specifies the error messages that occur in the exception

Number Specifies the Oracle error number

OracleLogicalTransaction Returns an OracleLogicalTransaction object for a
recoverable error when using Transaction Guard

Procedure Specifies the stored procedure that cause the exception

Source Specifies the name of the data provider that generates the error

StackTrace Inherited from System.Exception
TargetSite Inherited from System.Exception

OracleException Methods

OracleException methods are listed in Table 7-107.

Table 7-107 OracleException Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.Exception
GetHashCode Inherited from System.Object
GetObjectData Sets the serializable info object with information about the

exception

GetType Inherited from System.Object
ToString Returns the fully qualified name of this exception

Chapter 7
OracleException Class

7-410

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

OracleException Static Methods
The OracleException static method is listed in Table 7-108.

Table 7-108 OracleException Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

OracleException Properties
OracleException properties are listed in Table 7-109.

Table 7-109 OracleException Properties

Property Description

DataSource Specifies the TNS name that contains the information for connecting to
an Oracle instance

Errors Specifies a collection of one or more OracleError objects that contain
information about exceptions generated by the Oracle database

HelpLink Inherited from System.Exception
InnerException Inherited from System.Exception
IsRecoverable Specifies whether the current operation producing this exception can

succeed if retried

Message Specifies the error messages that occur in the exception

Number Specifies the Oracle error number

OracleLogicalTransaction Returns an OracleLogicalTransaction object for a recoverable
error when using Transaction Guard

Chapter 7
OracleException Class

7-411

Table 7-109 (Cont.) OracleException Properties

Property Description

Procedure Specifies the stored procedure that cause the exception

Source Specifies the name of the data provider that generates the error

StackTrace Inherited from System.Exception
TargetSite Inherited from System.Exception

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

DataSource
This property specifies the TNS name that contains the information for connecting to
an Oracle instance.

Declaration

// C#
public string DataSource {get;}

Property Value

The TNS name containing the connect information.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

Errors
This property specifies a collection of one or more OracleError objects that contain
information about exceptions generated by the Oracle database.

Chapter 7
OracleException Class

7-412

Declaration

// C#
public OracleErrorCollection Errors {get;}

Property Value

An OracleErrorCollection.

Remarks

The Errors property contains at least one instance of OracleError objects.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

IsRecoverable
This property specifies whether the current operation producing this exception can succeed if
retried.

Declaration

// C#
public bool IsRecoverable {get;}

Property Value

A bool.

Remarks

When a database outage occurs, such as during a network failure, the session becomes
unavailable and the client receives an error code. The client can have difficulty determining
whether the in-flight operation committed or needs to be resubmitted. Oracle automatically
determines whether an in-flight database operation can be recovered or not using the
IsRecoverable property. If IsRecoverable returns true after an outage, then the application
can retrieve the current operation status and complete the transaction. If IsRecoverable
returns false, then the application can rollback the current operation and resubmit the
transaction.

This property is often used in conjunction with Transaction Guard.

Chapter 7
OracleException Class

7-413

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

• Using Transaction Guard to Prevent Logical Corruption

Message
Overrides Exception
This property specifies the error messages that occur in the exception.

Declaration

// C#
public override string Message {get;}

Property Value

A string.

Remarks

Message is a concatenation of all errors in the Errors collection. Each error message is
concatenated and is followed by a carriage return, except the last one.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

Number
This property specifies the Oracle error number.

Declaration

// C#
public int Number {get;}

Property Value

The error number.

Chapter 7
OracleException Class

7-414

Remarks

This error number can be the topmost level of error generated by Oracle and can be a
provider-specific error number.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

OracleLogicalTransaction
This property will returns an OracleLogicalTransaction object for a recoverable error when
using Transaction Guard.

Declaration

// C#
public OracleLogicalTransaction OracleLogicalTransaction {get;}

Property Value

An OracleLogicalTransaction.

Remarks

OracleLogicalTransaction is non-null when both of the following conditions are met:

• Transaction Guard is enabled on the service

• The exception is a recoverable error

OracleLogicalTransaction can be used to determine the transaction outcome by looking at
the two properties that it exposes: Committed and UserCallCompleted. If the outcome is not
known, then Committed and UserCallCompleted will be set to null.

If the outcome of a recoverable error could not be determined by ODP.NET and the
connection have not participated in a distributed transaction, then the
OracleLogicalTransactionId property of the OracleLogicalTransaction object will be non-
null and it can be used to determine the outcome by having the application explicitly call the
OracleLogicalTransaction.GetOutcome static method, if the database/service is up.

Chapter 7
OracleException Class

7-415

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

• OracleLogicalTransaction Class

Procedure
This property specifies the stored procedure that caused the exception.

Declaration

// C#
public string Procedure {get;}

Property Value

The stored procedure name.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

Source
Overrides Exception
This property specifies the name of the data provider that generates the error.

Declaration

// C#
public override string Source {get;}

Property Value

The name of the data provider.

Chapter 7
OracleException Class

7-416

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

OracleException Methods
OracleException methods are listed in Table 7-110.

Table 7-110 OracleException Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.Exception
GetHashCode Inherited from System.Object
GetObjectData Sets the serializable info object with information about the

exception

GetType Inherited from System.Object
ToString Returns the fully qualified name of this exception

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

GetObjectData
Overrides Exception
This method sets the serializable info object with information about the exception.

Declaration

// C#
public override void GetObjectData(SerializationInfo info, StreamingContext
 context);

Parameters

• info

Chapter 7
OracleException Class

7-417

A SerializationInfo object.

• context

A StreamingContext object.

Remarks

The information includes DataSource, Message, Number, Procedure, Source, and
StackTrace.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

ToString
Overrides Exception
This method returns the fully qualified name of this exception, the error message in
the Message property, the InnerException.ToString() message, and the stack trace.

Declaration

// C#
public override string ToString();

Return Value

The string representation of the exception.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class ToStringSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 try
 {
 cmd.CommandText = "insert into notable values (99, 'MyText')";

Chapter 7
OracleException Class

7-418

 cmd.ExecuteNonQuery(); // This will throw an exception
 }
 catch (OracleException ex)
 {
 Console.WriteLine("Record is not inserted into the database table.");
 Console.WriteLine("ex.ToString() : " + ex.ToString());
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Class

• OracleException Members

OracleInfoMessageEventArgs Class
The OracleInfoMessageEventArgs class provides event data for the
OracleConnection.InfoMessage event. When any warning occurs in the database, the
OracleConnection.InfoMessage event is triggered along with the
OracleInfoMessageEventArgs object that stores the event data.

Class Inheritance

System.Object
 System.EventArgs
 Oracle.DataAccess.Client.OracleInfoMessageEventArgs

Declaration

// C#
public sealed class OracleInfoMessageEventArgs

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 7
OracleInfoMessageEventArgs Class

7-419

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class InfoMessageSample
{
 public static void WarningHandler(object src,
 OracleInfoMessageEventArgs args)
 {
 Console.WriteLine("Source object is: " + src.GetType().Name);
 Console.WriteLine("InfoMessageArgs.Message is " + args.Message);
 Console.WriteLine("InfoMessageArgs.Source is " + args.Source);
 }
 static void Main()
 {
 OracleConnection con = new OracleConnection("User Id=scott;" +
 "Password=tiger;Data Source=oracle;");

 con.Open();

 OracleCommand cmd = con.CreateCommand();

 //Register to the InfoMessageHandler
 cmd.Connection.InfoMessage +=
 new OracleInfoMessageEventHandler(WarningHandler);

 cmd.CommandText =
 "create or replace procedure SelectWithNoInto(" +
 " empname in VARCHAR2) AS " +
 "BEGIN " +
 " select * from emp where ename = empname; " +
 "END SelectWithNoInto;";

 // Execute the statement that produces a warning
 cmd.ExecuteNonQuery();

 // Clean up
 cmd.Dispose();
 con.Dispose();
 }
}

Chapter 7
OracleInfoMessageEventArgs Class

7-420

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleInfoMessageEventArgs Members

• OracleInfoMessageEventArgs Static Methods

• OracleInfoMessageEventArgs Properties

• OracleInfoMessageEventArgs Public Methods

• "OracleConnection Class"

OracleInfoMessageEventArgs Members
OracleInfoMessageEventArgs members are listed in the following tables.

OracleInfoMessageEventArgs Static Methods

The OracleInfoMessageEventArgs static methods is listed in Table 7-111.

Table 7-111 OracleInfoMessageEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleInfoMessageEventArgs Properties

The OracleInfoMessageEventArgs properties are listed in Table 7-112.

Table 7-112 OracleInfoMessageEventArgs Properties

Property Description

Errors Specifies the collection of errors generated by the data source

Message Specifies the error text generated by the data source

Source Specifies the name of the object that generated the error

OracleInfoMessageEventArgs Public Methods

The OracleInfoMessageEventArgs methods are listed in Table 7-113.

Table 7-113 OracleInfoMessageEventArgs Public Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object

Chapter 7
OracleInfoMessageEventArgs Class

7-421

Table 7-113 (Cont.) OracleInfoMessageEventArgs Public Methods

Method Description

ToString Returns the string representation of the current instance

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleInfoMessageEventArgs Class

OracleInfoMessageEventArgs Static Methods
The OracleInfoMessageEventArgs static method is listed in Table 7-114.

Table 7-114 OracleInfoMessageEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleInfoMessageEventArgs Class

• OracleInfoMessageEventArgs Members

OracleInfoMessageEventArgs Properties
The OracleInfoMessageEventArgs properties are listed in Table 7-115.

Table 7-115 OracleInfoMessageEventArgs Properties

Property Description

Errors Specifies the collection of errors generated by the data source

Message Specifies the error text generated by the data source

Source Specifies the name of the object that generated the error

Chapter 7
OracleInfoMessageEventArgs Class

7-422

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleInfoMessageEventArgs Class

• OracleInfoMessageEventArgs Members

Errors
This property specifies the collection of errors generated by the data source.

Declaration

// C#
public OracleErrorCollection Errors {get;}

Property Value

The collection of errors.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleInfoMessageEventArgs Class

• OracleInfoMessageEventArgs Members

Message
This property specifies the error text generated by the data source.

Declaration

// C#
public string Message {get;}

Property Value

The error text.

Chapter 7
OracleInfoMessageEventArgs Class

7-423

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleInfoMessageEventArgs Class

• OracleInfoMessageEventArgs Members

Source
This property specifies the name of the object that generated the error.

Declaration

// C#
public string Source {get;}

Property Value

The object that generated the error.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleInfoMessageEventArgs Class

• OracleInfoMessageEventArgs Members

OracleInfoMessageEventArgs Public Methods
The OracleInfoMessageEventArgs methods are listed in Table 7-116.

Table 7-116 OracleInfoMessageEventArgs Public Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Returns the string representation of the current instance

Chapter 7
OracleInfoMessageEventArgs Class

7-424

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleInfoMessageEventArgs Class

• OracleInfoMessageEventArgs Members

ToString
Overrides Object
This method returns the string representation of the current instance.

Declaration

// C#
public override string ToString();

Return Value

Returns the OracleInfoMessageEventArgs value in a string representation.

Remarks

If the current instance has a null value, the returned string is null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleInfoMessageEventArgs Class

• OracleInfoMessageEventArgs Members

OracleInfoMessageEventHandler Delegate
The OracleInfoMessageEventHandler represents the signature of the method that handles
the OracleConnection.InfoMessage event.

Declaration

// C#
public delegate void OracleInfoMessageEventHandler(object sender,
 OracleInfoMessageEventArgs eventArgs);

Chapter 7
OracleInfoMessageEventHandler Delegate

7-425

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Parameters

• sender

The source of the event.

• eventArgs

The OracleInfoMessageEventArgs object that contains the event data.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "InfoMessage"

OracleLogicalTransaction Class
The OracleLogicalTransaction class provides detailed information about the logical
transaction status. Applications can conclusively determine the outcome of the running
transaction during the last database outage, then act accordingly to commit, complete,
or rollback the transaction.

Class Inheritance

System.Object
 System.MarshalByRefObject
 Oracle.DataAccess.Client.OracleLogicalTransaction

Declaration

// C#
public sealed class OracleLogicalTransaction

Chapter 7
OracleLogicalTransaction Class

7-426

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleLogicalTransaction Members

• OracleLogicalTransaction Public Read-Only Properties

• OracleLogicalTransaction Methods

OracleLogicalTransaction Members
OracleLogicalTransaction members are listed in the following tables.

OracleLogicalTransaction Public Read-Only Properties

OracleLoigcalTransaction public read-only properties are listed in Table 7-117

Table 7-117 OracleLogicalTransaction Public Read-Only Properties

Property Description

Committed Specifies if the transaction was committed or not

ConnectionString Specifies a subset of the connection string used for the transaction running
during the last database outage

LogicalTransactionId The logical transaction id is used to determine the commit outcome of the
last transaction open in a database session following an outage.

UserCallCompleted Specifies if the transaction completed and that the information returned may
be incomplete and/or not all expected work was completed

Chapter 7
OracleLogicalTransaction Class

7-427

OracleLogicalTransaction Methods

OracleLoigcalTransaction methods are listed in Table 7-118

Table 7-118 OracleLogicalTransaction Methods

Property Description

Dispose This method releases any resources or memory allocated by the object

GetOutcome This method retrieves the transaction outcome from the database
server. The method will determine whether the transaction committed
and completed or not.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleLogicalTransaction Class

OracleLogicalTransaction Public Read-Only Properties
OracleLoigcalTransaction public read-only properties are listed in Table 7-119

Table 7-119 OracleLogicalTransaction Public Read-Only Properties

Property Description

Committed Specifies if the transaction was committed or not

ConnectionString Specifies a subset of the connection string used for the transaction
running during the last database outage

LogicalTransactionId The logical transaction id is used to determine the commit outcome of
the last transaction open in a database session following an outage.

UserCallCompleted Specifies if the transaction completed and that the information
returned may be incomplete and/or not all expected work was
completed

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleLogicalTransaction Class

• OracleLogicalTransaction Members

Chapter 7
OracleLogicalTransaction Class

7-428

Committed
This property specifies if the transaction was committed or not.

Declaration

// C#
public bool? Committed {get;}

Property Value

bool.

Remarks

If GetOutcome() is not called, the this property holds a null value.

Once GetOutcome() is called, then this property will hold either true or false.

In some cases, OracleLogicalTransaction.GetOutcome will be called implicitly and populate
this property with a non-null value automatically.

Table 7-120 describes the possible outcomes of the Committed and UserCallCompleted
properties.

Table 7-120 Outcome of OracleLogicalTransaction Committed and
UserCallCompleted Properties

Committed Value UserCallCompleted Value Outcome

false false The call did not execute the commit.

true true The call did execute the commit and there was
no additional information to return and no
more work to do if that call was a PL/SQL
procedure.

true false The transaction is committed, but the
information returned may be incomplete
and/or not all expected work was completed.
Examples of incomplete information or
incomplete work done include: the number of
rows modified when using autocommit or
commit on success, parameter and function
results when calling PL/SQL procedures, or
PL/SQL procedures with more work to do after
the commit. In order to function correctly, .NET
applications that use data returned from the
commit must check the UserCallCompleted
value.

Chapter 7
OracleLogicalTransaction Class

7-429

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleLogicalTransaction Class

• OracleLogicalTransaction Members

ConnectionString
This property specifies a subset of the connection string used for the transaction
running during the last database outage.

Declaration

// C#
public string ConnectionString {get;}

Property Value

The data source as a string.

Remarks

This connection string can be useful if the outcome is not known at the time the
exception is thrown due to a service that is down. In such a scenario, use the
connection string from this property along with the LogicalTransactionId to
determine the outcome of the logical transaction by invoking the static GetOutcome()
method, once the database or service is back up.

The string returned by this property will contain only the following attributes: User Id,
Proxy user Id (if not null/empty), Data Source, and Pooling (which will be set to
false).

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleLogicalTransaction Class

• OracleLogicalTransaction Members

LogicalTransactionId
The logical transaction id is used to determine the commit outcome of the last
transaction open in a database session following an outage.

Chapter 7
OracleLogicalTransaction Class

7-430

Declaration

// C#
public byte LogicalTransactionId {get;}

Property Value

byte[]

Remarks

This logical transaction id can be useful if the outcome is not known at the time the exception
is thrown due to a service that is down. In such a scenario, use the byte[] returned from this
property (along with the ConnectionString) to determine the outcome of the logical
transaction by invoking the static GetOutcome() method, once the database or service is back
up.

This property will return a non-null value only when the outcome is not known. For example
when database or service is down, then the outcome is not known.

LogicalTransactionId property will return null if the connection has participated in a
distributed transaction.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleLogicalTransaction Class

• OracleLogicalTransaction Members

UserCallCompleted
This property specifies if the transaction completed and that the information returned may be
incomplete and/or not all expected work was completed.

Declaration

// C#
public bool? UserCallCompleted {get;}

Property Value

bool

Remarks

If GetOutcome() is not called, the this property holds a null value.

Once GetOutcome() is called, then this property will hold either true or false.

In some cases, GetOutcome will be called implicitly and populate this property with a non-null
value automatically

Chapter 7
OracleLogicalTransaction Class

7-431

Table 7-120 describes the possible outcomes of the Committed and
UserCallCompleted properties.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleLogicalTransaction Class

• OracleLogicalTransaction Members

OracleLogicalTransaction Methods
OracleLoigcalTransaction methods are listed in Table 7-121

Table 7-121 OracleLogicalTransaction Methods

Property Description

Dispose This method releases any resources or memory allocated by the object

GetOutcome This method retrieves the transaction outcome from the database
server. The method will determine whether the transaction committed
and completed or not.

Dispose
This method releases any resources or memory allocated by the object

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The Dispose method also closes the OracleLogicalTransaction object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleLogicalTransaction Class

• OracleLogicalTransaction Members

Chapter 7
OracleLogicalTransaction Class

7-432

GetOutcome
The GetOutcome method retrieves the transaction outcome from the database server. The
method will determine whether the transaction committed and completed or not.

Overload List:

• GetOutcome(string constring, byte[] ltxid, out bool? bCommitted, out bool?
bUserCallCompleted)

The application can use this static method to determine the outcome if the outcome was
not known when the exception was raised.

The application will need to obtain the connection string and logical transaction id
from the OracleException.OracleLogicalTransaction object before calling this method.

The supplied connection string will be used to establish a connection to the database to
determine the outcome of the provided logical transaction id.

ODP.NET implicitly calls GetOutcome under the following conditions:

– Transaction Guard is enabled on the service

– OracleException is raised

– The exception is a recoverable error

When all of the above is true, then the OracleException.OracleLogicalTransaction
property will be non-null.

If a connection is involved in a distributed transaction, then GetOutcome is not called
implicitly and the OracleException.OracleLogicalTransaction.LogicalTransactionId
property returns null.

Note:

Once one server round-trip is incurred for the GetOutcome() invocation, the
PL/SQL ForceOutcome is never invoked again against the server for a given
OracleLogicalTransaction object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleLogicalTransaction Class

• OracleLogicalTransaction Members

Chapter 7
OracleLogicalTransaction Class

7-433

OracleOnsServerCollection Class
The OracleOnsServerCollection class supports adding to and deleting from a
collection of logical servers with their corresponding list of nodes where the Oracle
Notification Service (ONS) daemons are talking to their remote clients.

In case of remote configuration, the application has to specify the <host>:<port>
values for every potential database that it can connect to. The <host>:<port> value
pairs represent the ports on the different nodes.

Class Inheritance

System.Object
Oracle.ManagedDataAccess.Client.OracleOnsServerCollection

Declaration

// C#
public static class OracleOnsServerCollection

Requirements

Provider ODP.NET, Managed Driver ODP.NET Core

Assembly Oracle.ManagedDataAcces
s.dll

Oracle.ManagedDataAcces
s.dll

Namespace Oracle.ManagedDataAcces
s.Client

Oracle.ManagedDataAcces
s.Client

.NET Framework 4.8 -

.NET (Core) - See System Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

using System;
using Oracle.ManagedDataAccess.Client;

namespace NetCoreApp
{
 class OnsServersExample
 {
 static void Main(string[] args)
 {
 // Example to configure ONS Servers for the ODP.NET Core provider.

 // Add server through Add method on OracleOnsServerCollection
 OracleConfiguration.OracleOnsServers.Add("db1", "nodeList=host1:port1,
host2:port2, host3:port3");

 // Add server through indexer method on OracleOnsServerCollection
 OracleConfiguration.OracleOnsServers["db2"] = "nodeList=m1:p1, m2:p2";

Chapter 7
OracleOnsServerCollection Class

7-434

 // Get number of servers configured
 int numServers = OracleConfiguration.OracleOnsServers.Count;

 // Get OracleOnsServerCollection object
 OracleOnsServerCollection serverColl = OracleConfiguration.OracleOnsServers;

 // Add server through Add method on OracleOnsServerCollection
 serverColl.Add("db3", "nodeList=host1:port1, host2:port2, host3:port3");

 // Add server through indexer method on OracleOnsServerCollection
 serverColl["db4"] = "nodeList=m1:p1, m2:p2";

 // Remove a server
 OracleConfiguration.OracleOnsServers.Remove("db2");

 // Get number of servers configured
 numServers = OracleConfiguration.OracleOnsServers.Count;

 // Get value corresponding to a server.
 string serverVal = OracleConfiguration.OracleOnsServers["db1"];

 OracleConnection orclCon = null;

 try
 {
 // Open a test connection
 orclCon = new OracleConnection("user id=scott; password=tiger; data
source=oracle");

 orclCon.Open();
 orclCon.Close();
 }
 catch (OracleException ex)
 {
 Console.WriteLine(ex);
 }
 finally
 {
 // Close the connection
 if (null != orclCon)
 orclCon.Close();
 }
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleOnsServerCollection Members

• OracleOnsServerCollection Methods

• OracleOnsServerCollection Properties

Chapter 7
OracleOnsServerCollection Class

7-435

OracleOnsServerCollection Members
OracleOnsServerCollection members are listed in the following tables.

OracleOnsServerCollection Methods

OracleOnsServerCollection methods are listed in Table 7-122.

Table 7-122 OracleOnsServerCollection Methods

Method Description

Add Adds unique entries in the
OracleOnsServerCollection using logical server
names and it's corresponding list of nodes

Remove Removes an entry from an
OracleOnsServerCollection

OracleOnsServerCollection Properties

OracleOnsServerCollection properties are listed in Table 7-123.

Table 7-123 OracleOnsServerCollection Properties

Property Description

Count Returns the number of OracleOnsServerCollection
elements

This Returns or sets the an entry for a unique logical server
name, which is to be associated with a list of nodes

OracleOnsServerCollection Methods
OracleOnsServerCollection methods are listed in Table 7-124.

Table 7-124 OracleOnsServerCollection Methods

Method Description

Add Adds unique entries in the
OracleOnsServerCollection using logical server
names and it's corresponding list of nodes

Remove Removes an entry from an
OracleOnsServerCollection

Chapter 7
OracleOnsServerCollection Class

7-436

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleOnsServerCollection Class

• OracleOnsServerCollection Members

Add
This method adds unique entries in the OracleOnsServerCollection using logical server
names and it's corresponding list of nodes.

Declaration

// C#
public void Add(string serverName, string nodeList)

Parameters

• serverName
– Type: System.String
– A unique logical name for a list of nodes to be added

• nodeList
– Type: System.String
– Node names and remote ports for the list of nodes that ODP.NET shares ONS

communication with using the following example format: nodeList=racnode1:4200,
racnode2:4200

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleOnsServerCollection Class

• OracleOnsServerCollection Members

Remove
This method removes an entry from an OracleOnsServerCollection.

Declaration

// C#
public void Remove(string serverName)

Chapter 7
OracleOnsServerCollection Class

7-437

Parameters

serverName
• Type: System.String
• A unique logical name for a list of nodes to be removed

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleOnsServerCollection Class

• OracleOnsServerCollection Members

OracleOnsServerCollection Properties
OracleOnsServerCollection properties are listed in Table 7-125.

Table 7-125 OracleOnsServerCollection Properties

Property Description

Count Returns the number of OracleOnsServerCollection
elements

This Returns or sets the an entry for a unique logical server
name, which is to be associated with a list of nodes

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceCollection Class

• OracleDataSourceCollection Members

Count
This is a read-only property that returns the number of OracleOnsServerCollection
elements.

Declaration

// C#
public int Count { get; }

Chapter 7
OracleOnsServerCollection Class

7-438

Property Value

Type: System.Int32

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleOnsServerCollection Class

• OracleOnsServerCollection Members

This
This property returns or sets the an entry for a unique logical server name, which is to be
associated with a list of nodes.

Declaration

// C#
public string this[string serverName] { get; set; }

Parameters

• serverName
– Type: System.String
– Unique logical server name to be added or updated

• Value
– Type: System.String
– Node names and remote ports for the list of nodes that ODP.NET shares ONS

communication with using the following example format: nodeList=racnode1:4200,
racnode2:4200

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleOnsServerCollection Class

• OracleOnsServerCollection Members

OracleParameter Class
An OracleParameter object represents a parameter for an OracleCommand or a DataSet
column.

Chapter 7
OracleParameter Class

7-439

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.Data.Common.DbParameter
 Oracle.DataAccess.Client.OracleParameter

Declaration

// C#
public sealed class OracleParameter : DbParameter, IDisposable, ICloneable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Exceptions

ArgumentException - The type binding is invalid.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleParameterSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleParameter[] prm = new OracleParameter[3];

 // Create OracleParameter objects through OracleParameterCollection
 OracleCommand cmd = con.CreateCommand();

Chapter 7
OracleParameter Class

7-440

 cmd.CommandText = "select max(empno) from emp";
 int maxno = int.Parse(cmd.ExecuteScalar().ToString());

 prm[0] = cmd.Parameters.Add("paramEmpno", OracleDbType.Decimal,
 maxno + 10, ParameterDirection.Input);
 prm[1] = cmd.Parameters.Add("paramEname", OracleDbType.Varchar2,
 "Client", ParameterDirection.Input);
 prm[2] = cmd.Parameters.Add("paramDeptNo", OracleDbType.Decimal,
 10, ParameterDirection.Input);
 cmd.CommandText =
 "insert into emp(empno, ename, deptno) values(:1, :2, :3)";
 cmd.ExecuteNonQuery();

 Console.WriteLine("Record for employee id {0} has been inserted.",
 maxno + 10);
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Members

• OracleParameter Constructors

• OracleParameter Static Methods

• OracleParameter Properties

• OracleParameter Public Methods

OracleParameter Members
OracleParameter members are listed in the following tables.

OracleParameter Constructors

OracleParameter constructors are listed in Table 7-126.

Table 7-126 OracleParameter Constructors

Constructor Description

OracleParameter Constructors Instantiates a new instance of OracleParameter class
(Overloaded)

OracleParameter Static Methods

OracleParameter static methods are listed in Table 7-127.

Chapter 7
OracleParameter Class

7-441

Table 7-127 OracleParameter Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

OracleParameter Properties

OracleParameter properties are listed in Table 7-128.

Table 7-128 OracleParameter Properties

Property Description

ArrayBindSize Specifies the input or output size of elements in Value property of a
parameter before or after an Array Bind or PL/SQL Associative Array
Bind execution

ArrayBindStatus Specifies the input or output status of elements in Value property of a
parameter before or after an Array Bind or PL/SQL Associative Array
Bind execution

CollectionType Specifies whether or not the OracleParameter represents a collection,
and if so, specifies the collection type

DbType Specifies the data type of the parameter using the Data.DbType
enumeration type

Direction Specifies whether the parameter is input-only, output-only, bi-directional,
or a stored function return value parameter

IsNullable Not supported

Offset Specifies the offset to the Value property or offset to the elements in
the Value property

OracleDbType Specifies the Oracle data type

OracleDbTypeEx Specifies the Oracle data type to bind the parameter as, but returns
a .NET type as output

ParameterName Specifies the name of the parameter

Precision Specifies the maximum number of digits used to represent the Value
property

Scale Specifies the number of decimal places to which Value property is
resolved

Size Specifies the maximum size, in bytes or characters, of the data
transmitted to or from the database. For PL/SQL Associative Array Bind,
Size specifies the maximum number of elements in PL/SQL
Associative Array

SourceColumn Specifies the name of the DataTable Column of the DataSet
SourceColumnNullM
apping

Specifies a value which indicates whether the source column is nullable

SourceVersion Specifies the DataRowVersion value to use when loading the Value
property of the parameter

Status Indicates the status of the execution related to the data in the Value
property

Chapter 7
OracleParameter Class

7-442

Table 7-128 (Cont.) OracleParameter Properties

Property Description

UdtTypeName Specifies the Oracle user-defined type name if the parameter is a user-
defined data type

Value Specifies the value of the Parameter

OracleParameter Public Methods

OracleParameter public methods are listed in Table 7-129.

Table 7-129 OracleParameter Public Methods

Public Method Description

Clone Creates a shallow copy of an OracleParameter object

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Releases allocated resources

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
ResetDbType Resets the type associated with the parameter so that it can

infer its type from the value passed in the parameter

ResetOracleDbType Resets the type associated with the parameter so that it can
infer its type from the value passed in the parameter

ToString Returns the string representation of the current instance

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

OracleParameter Constructors
OracleParameter constructors instantiate new instances of the OracleParameter class.

Overload List:

• OracleParameter()

This constructor instantiates a new instance of OracleParameter class.

• OracleParameter(string, OracleDbType)

Chapter 7
OracleParameter Class

7-443

This constructor instantiates a new instance of OracleParameter class using the
supplied parameter name and Oracle data type.

• OracleParameter(string, object)

This constructor instantiates a new instance of the OracleParameter class using
the supplied parameter name and parameter value.

• OracleParameter(string, OracleDbType, ParameterDirection)

This constructor instantiates a new instance of the OracleParameter class using
the supplied parameter name, data type, and parameter direction.

• OracleParameter(string, OracleDbType, object, ParameterDirection)

This constructor instantiates a new instance of the OracleParameter class using
the supplied parameter name, data type, value, and direction.

• OracleParameter(string, OracleDbType, int)

This constructor instantiates a new instance of the OracleParameter class using
the supplied parameter name, data type, and size.

• OracleParameter(string, OracleDbType, int, string)

This constructor instantiates a new instance of the OracleParameter class using
the supplied parameter name, data type, size, and source column.

• OracleParameter(string, OracleDbType, int, ParameterDirection, bool, byte, byte,
string, DataRowVersion, object)

This constructor instantiates a new instance of the OracleParameter class using
the supplied parameter name, data type, size, direction, null indicator, precision,
scale, source column, source version and parameter value.

• OracleParameter(string, OracleDbType, int, object, ParameterDirection)

This constructor instantiates a new instance of the OracleParameter class using
the supplied parameter name, data type, size, value, and direction.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

OracleParameter()
This constructor instantiates a new instance of OracleParameter class.

Declaration

// C#
public OracleParameter();

Chapter 7
OracleParameter Class

7-444

Remarks

Default Values:

• DbType - String
• ParameterDirection - Input
• isNullable - true
• offset - 0
• OracleDbType - Varchar2
• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0
• Size - 0
• SourceColumn - Empty string

• SourceVersion - Current
• ArrayBindStatus - Success
• Value - null

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

• "OracleParameterCollection Class"

OracleParameter(string, OracleDbType)
This constructor instantiates a new instance of OracleParameter class using the supplied
parameter name and Oracle data type.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType oraType);

Parameters

• parameterName

The parameter name.

• oraType

Chapter 7
OracleParameter Class

7-445

The data type of the OracleParameter.

Remarks

Changing the DbType implicitly changes the OracleDbType.

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String
• ParameterDirection - Input
• isNullable - true
• offset - 0
• OracleDbType - Varchar2
• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0
• Size - 0
• SourceColumn - Empty string

• SourceVersion - Current
• ArrayBindStatus - Success
• Value - null

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

• "OracleParameterCollection Class"

OracleParameter(string, object)
This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name and parameter value.

Declaration

// C#
public OracleParameter(string parameterName, object obj);

Chapter 7
OracleParameter Class

7-446

Parameters

• parameterName

The parameter name.

• obj

The value of the OracleParameter.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String
• ParameterDirection - Input
• isNullable - true
• offset - 0
• OracleDbType - Varchar2
• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0
• Size - 0
• SourceColumn - Empty string

• SourceVersion - Current
• ArrayBindStatus - Success
• Value - null

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

• "OracleParameterCollection Class"

OracleParameter(string, OracleDbType, ParameterDirection)
This constructor instantiates a new instance of the OracleParameter class using the supplied
parameter name, data type, and parameter direction.

Chapter 7
OracleParameter Class

7-447

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type,
 ParameterDirection direction);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• direction

The direction of the OracleParameter.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String
• ParameterDirection - Input
• isNullable - true
• offset - 0
• OracleDbType - Varchar2
• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0
• Size - 0
• SourceColumn - Empty string

• SourceVersion - Current
• ArrayBindStatus - Success
• Value - null

Chapter 7
OracleParameter Class

7-448

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

• "OracleParameterCollection Class"

OracleParameter(string, OracleDbType, object, ParameterDirection)
This constructor instantiates a new instance of the OracleParameter class using the supplied
parameter name, data type, value, and direction.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type, object obj,
 ParameterDirection direction);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• obj

The value of the OracleParameter.

• direction

The ParameterDirection value.

Remarks

Changing the DbType implicitly changes the OracleDbType.

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String
• ParameterDirection - Input
• isNullable - true
• offset - 0
• OracleDbType - Varchar2
• ParameterAlias - Empty string

Chapter 7
OracleParameter Class

7-449

• ParameterName - Empty string

• Precision - 0
• Size - 0
• SourceColumn - Empty string

• SourceVersion - Current
• ArrayBindStatus - Success
• Value - null

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

• "OracleParameterCollection Class"

OracleParameter(string, OracleDbType, int)
This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, and size.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type,
 int size);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• size

The size of the OracleParameter value.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String
• ParameterDirection - Input

Chapter 7
OracleParameter Class

7-450

• isNullable - true
• offset - 0
• OracleDbType - Varchar2
• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0
• Size - 0
• SourceColumn - Empty string

• SourceVersion - Current
• ArrayBindStatus - Success
• Value - null

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

• "OracleParameterCollection Class"

OracleParameter(string, OracleDbType, int, string)
This constructor instantiates a new instance of the OracleParameter class using the supplied
parameter name, data type, size, and source column.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type, int size,
 string srcColumn);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• size

The size of the OracleParameter value.

• srcColumn

Chapter 7
OracleParameter Class

7-451

The name of the source column.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String
• ParameterDirection - Input
• isNullable - true
• offset - 0
• OracleDbType - Varchar2
• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0
• Size - 0
• SourceColumn - Empty string

• SourceVersion - Current
• ArrayBindStatus - Success
• Value - null

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

OracleParameter(string, OracleDbType, int, ParameterDirection, bool, byte,
byte, string, DataRowVersion, object)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, size, direction, null indicator, precision, scale,
source column, source version and parameter value.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType oraType,
 int size, ParameterDirection direction, bool isNullable, byte
 precision, byte scale, string srcColumn, DataRowVersion srcVersion,
 object obj);

Chapter 7
OracleParameter Class

7-452

Parameters

• parameterName

The parameter name.

• oraType

The data type of the OracleParameter.

• size

The size of the OracleParameter value.

• direction

The ParameterDirection value.

• isNullable

An indicator that specifies if the parameter value can be null.

• precision

The precision of the parameter value.

• scale

The scale of the parameter value.

• srcColumn

The name of the source column.

• srcVersion

The DataRowVersion value.

• obj

The parameter value.

Exceptions

ArgumentException - The supplied value does not belong to the type of Value property in any
of the OracleTypes.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String
• ParameterDirection - Input
• isNullable - true
• offset - 0
• OracleDbType - Varchar2
• ParameterAlias - Empty string

• ParameterName - Empty string

Chapter 7
OracleParameter Class

7-453

• Precision - 0
• Size - 0
• SourceColumn - Empty string

• SourceVersion - Current
• ArrayBindStatus - Success
• Value - null

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

OracleParameter(string, OracleDbType, int, object, ParameterDirection)
This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, size, value, and direction.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type, int size,
 object obj, ParameterDirection direction);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• size

The size of the OracleParameter value.

• obj

The value of the OracleParameter.

• direction

The ParameterDirection value.

Remarks

Changing the DbType implicitly changes the OracleDbType.

Unless explicitly set in the constructor, all the properties have the default values.

Chapter 7
OracleParameter Class

7-454

Default Values:

• DbType - String
• ParameterDirection - Input
• isNullable - true
• offset - 0
• OracleDbType - Varchar2
• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0
• Size - 0
• SourceColumn - Empty string

• SourceVersion - Current
• ArrayBindStatus - Success
• Value - null

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

• "OracleParameterCollection Class"

OracleParameter Static Methods
The OracleParameter static method is listed in Table 7-130.

Table 7-130 OracleParameter Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

Chapter 7
OracleParameter Class

7-455

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

OracleParameter Properties
OracleParameter properties are listed in Table 7-131.

Table 7-131 OracleParameter Properties

Property Description

ArrayBindSize Specifies the input or output size of elements in Value property of a
parameter before or after an Array Bind or PL/SQL Associative Array
Bind execution

ArrayBindStatus Specifies the input or output status of elements in Value property of a
parameter before or after an Array Bind or PL/SQL Associative Array
Bind execution

CollectionType Specifies whether or not the OracleParameter represents a collection,
and if so, specifies the collection type

DbType Specifies the data type of the parameter using the Data.DbType
enumeration type

Direction Specifies whether the parameter is input-only, output-only, bi-directional,
or a stored function return value parameter

IsNullable Not supported

Offset Specifies the offset to the Value property or offset to the elements in
the Value property

OracleDbType Specifies the Oracle data type

OracleDbTypeEx Specifies the Oracle data type to bind the parameter as, but returns
a .NET type as output

ParameterName Specifies the name of the parameter

Precision Specifies the maximum number of digits used to represent the Value
property

Scale Specifies the number of decimal places to which Value property is
resolved

Size Specifies the maximum size, in bytes or characters, of the data
transmitted to or from the database. For PL/SQL Associative Array Bind,
Size specifies the maximum number of elements in PL/SQL
Associative Array

SourceColumn Specifies the name of the DataTable Column of the DataSet
SourceColumnNullM
apping

Specifies a value which indicates whether the source column is nullable

Chapter 7
OracleParameter Class

7-456

Table 7-131 (Cont.) OracleParameter Properties

Property Description

SourceVersion Specifies the DataRowVersion value to use when loading the Value
property of the parameter

Status Indicates the status of the execution related to the data in the Value
property

UdtTypeName Specifies the Oracle user-defined type name if the parameter is a user-
defined data type

Value Specifies the value of the Parameter

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

ArrayBindSize
This property specifies the maximum size, in bytes or characters, of the data for each array
element transmitted to or from the database. This property is used for Array Bind or PL/SQL
Associative Array execution.

Declaration

// C#
public int[] ArrayBindSize {get; set; }

Property Value

An array of int values specifying the size.

Remarks

Default = null.

This property is only used for variable size element types for an Array Bind or PL/SQL
Associative Array. For fixed size element types, this property is ignored.

Each element in the ArrayBindSize corresponds to the bind size of an element in the Value
property. Before execution, ArrayBindSize specifies the maximum size of each element to be
bound in the Value property. After execution, it contains the size of each element returned in
the Value property.

For binding a PL/SQL Associative Array, whose elements are of a variable-length element
type, as an InputOutput, Out, or ReturnValue parameter, this property must be set properly.
The number of elements in ArrayBindSize must be equal to the value specified in the
OracleParameter.Size property.

Chapter 7
OracleParameter Class

7-457

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindSizeSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleParameter[] prm = new OracleParameter[3];

 // Create OracleParameter objects through OracleParameterCollection
 OracleCommand cmd = con.CreateCommand();

 cmd.CommandText = "select max(empno) from emp";
 int maxno = int.Parse(cmd.ExecuteScalar().ToString());

 // Set the ArrayBindCount for Array Binding
 cmd.ArrayBindCount = 2;

 prm[0] = cmd.Parameters.Add("paramEmpno", OracleDbType.Decimal,
 new int[2] {maxno + 10, maxno + 11}, ParameterDirection.Input);
 prm[1] = cmd.Parameters.Add("paramEname", OracleDbType.Varchar2,
 new string[2] {"Client1xxx", "Client2xxx"}, ParameterDirection.Input);
 prm[2] = cmd.Parameters.Add("paramDeptNo", OracleDbType.Decimal,
 new int[2] {10, 10}, ParameterDirection.Input);

 // Set the ArrayBindSize for prm[1]
 // These sizes indicate the maximum size of the elements in Value property
 prm[1].ArrayBindSize = new int[2];
 prm[1].ArrayBindSize[0] = 7; // Set ename = "Client1"
 prm[1].ArrayBindSize[1] = 7; // Set ename = "Client2"

 cmd.CommandText =
 "insert into emp(empno, ename, deptno) values(:1, :2, :3)";

 cmd.ExecuteNonQuery();

 Console.WriteLine("Record for employee id {0} has been inserted.",
 maxno + 10);
 Console.WriteLine("Record for employee id {0} has been inserted.",
 maxno + 11);

 prm[0].Dispose();
 prm[1].Dispose();
 prm[2].Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 7
OracleParameter Class

7-458

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "ArrayBindCount "

• "Size " and "Value " for more information on binding Associative Arrays

• "ArrayBindStatus "

ArrayBindStatus
This property specifies the input or output status of each element in the Value property before
or after an Array Bind or PL/SQL Associative Array execution.

Declaration

// C#
public OracleParameterStatus[] ArrayBindStatus { get; set; }

Property Value

An array of OracleParameterStatus enumerated values.

Exceptions

ArgumentOutofRangeException - The Status value specified is invalid.

Remarks

Default = null.

ArrayBindStatus is used for Array Bind and PL/SQL Associative Array execution only.

Before execution, ArrayBindStatus indicates the bind status of each element in the Value
property. After execution, it contains the execution status of each element in the Value
property.

Chapter 7
OracleParameter Class

7-459

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "ArrayBindCount "

• "OracleParameterStatus Enumeration"

• "Value " for more information on binding Associative Arrays

• "ArrayBindSize "

CollectionType
This property specifies whether or not the OracleParameter represents a collection,
and if so, specifies the collection type.

Declaration

// C#
public OracleCollectionType CollectionType { get; set; }

Property Value

An OracleCollectionType enumerated value.

Exceptions

ArgumentException - The OracleCollectionType value specified is invalid.

Remarks

Default = OracleCollectionType.None. If OracleParameter is used to bind a PL/SQL
Associative Array, then CollectionType must be set to
OracleCollectionType.PLSQLAssociativeArray.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

DbType
This property specifies the data type of the parameter using the Data.DbType
enumeration type.

Chapter 7
OracleParameter Class

7-460

Declaration

// C#
public override DbType DbType {get; set; }

Property Value

A DbType enumerated value.

Implements

IDataParameter

Exceptions

ArgumentException - The DbType value specified is invalid.

Remarks

Default = DbType.String
DbType is the data type of each element in the array if the OracleParameter object is used for
Array Bind or PL/SQL Associative Array Bind execution.

Due to the link between DbType and OracleDbType properties, if the DbType property is set,
the OracleDbType property is inferred from DbType.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "Inference of OracleDbType from DbType"

• "CollectionType"

Direction
This property specifies whether the parameter is input-only, output-only, bi-directional, or a
stored function return value parameter.

Declaration

// C#
public override ParameterDirection Direction { get; set; }

Property Value

A ParameterDirection enumerated value.

Chapter 7
OracleParameter Class

7-461

Implements

IDataParameter

Exceptions

ArgumentOutOfRangeException - The ParameterDirection value specified is invalid.

Remarks

Default = ParameterDirection.Input
Possible values: Input, InputOutput, Output, and ReturnValue.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

IsNullable
This property is not supported.

Declaration

// C#
public override bool IsNullable { get; set; }

Implements

IDataParameter

Property Value

This property is not supported.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

Offset
This property specifies the offset to the Value property.

Chapter 7
OracleParameter Class

7-462

Declaration

// C#
public int Offset { get; set; }

Property Value

An int that specifies the offset.

Exceptions

ArgumentOutOfRangeException - The Offset value specified is invalid.

Remarks

Default = 0
For Array Bind and PL/SQL Associative Array Bind, Offset applies to every element in the
Value property.

The Offset property is used for binary and string data types. The Offset property represents
the number of bytes for binary types and the number of characters for strings. The count for
strings does not include the terminating character if a null is referenced. The Offset
property is used by parameters of the following types:

• OracleDbType.BFile
• OracleDbType.Blob
• OracleDbType.LongRaw
• OracleDbType.Raw
• OracleDbType.Char
• OracleDbType.Clob
• OracleDbType.NClob
• OracleDbType.NChar
• OracleDbType.NVarchar2
• OracleDbType.Varchar2

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

OracleDbType
This property specifies the Oracle data type.

Chapter 7
OracleParameter Class

7-463

Declaration

// C#
public OracleDbType OracleDbType { get; set; }

Property Value

An OracleDbType enumerated value.

Remarks

Default = OracleDbType.Varchar2
If the OracleParameter object is used for Array Bind or PL/SQL Associative Array Bind
execution, OracleDbType is the data type of each element in the array.

The OracleDbType property and DbType property are linked. Therefore, setting the
OracleDbType property changes the DbType property to a supporting DbType.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleDbType Enumeration"

• "Inference of DbType from OracleDbType"

• "CollectionType"

OracleDbTypeEx
This property specifies the Oracle data type to bind the parameter as, but returns
a .NET type as output.

Declaration

// C#
public OracleDbType OracleDbTypeEx { get; set; }

Property Value

An OracleDbType enumerated value.

Remarks

This property is used by applications that need to bind a parameter value as an Oracle
type, but need a .NET type back for output. This property should be used with an
output or input/output parameter. For an input parameter, using OracleDbTypeEx has
the same affect as using OracleDbType. The .NET type that is returned for the output
is the .NET type that the Oracle type closely maps to.

Chapter 7
OracleParameter Class

7-464

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleDbType Enumeration"

• "OracleDbType "

• "Inference of DbType from OracleDbType"

• "CollectionType"

ParameterName
This property specifies the name of the parameter.

Declaration

// C#
public override string ParameterName { get; set; }

Property Value

String

Implements

IDataParameter

Remarks

Default = null
Oracle supports ParameterName up to 30 characters.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

Precision
This property specifies the maximum number of digits used to represent the Value property.

Chapter 7
OracleParameter Class

7-465

Declaration

// C#
Public byte Precision { get; set; }

Property Value

byte

Remarks

Default = 0
The Precision property is used by parameters of type OracleDbType.Decimal.

Oracle supports Precision range from 0 to 38.

For Array Bind and PL/SQL Associative Array Bind, Precision applies to each
element in the Value property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "Value "

Scale
This property specifies the number of decimal places to which Value property is
resolved.

Declaration

// C#
public byte Scale { get; set; }

Property Value

byte

Remarks

Default = 0.

Scale is used by parameters of type OracleDbType.Decimal.

Oracle supports Scale between -84 and 127.

For Array Bind and PL/SQL Associative Array Bind, Scale applies to each element in
the Value property.

Chapter 7
OracleParameter Class

7-466

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "Value "

Size
This property specifies the maximum size, in bytes or characters, of the data transmitted to or
from the database.

Declaration

// C#
public override int Size { get; set;}

Property Value

int

Exceptions

ArgumentOutOfRangeException - The Size value specified is invalid.

InvalidOperationException - The Size = 0 when the OracleParameter object is used to
bind a PL/SQL Associative Array.

Remarks

If Size is not explicitly set, it is inferred from the actual size of the specified parameter value
when binding only for input parameters. Output parameters must have their size defined
explicitly.

The default value is 0.

Before execution, this property specifies the maximum size to be bound in the Value property.
After execution, it contains the size of the type in the Value property.

Size is used for parameters of the following types:

• OracleDbType.Blob
• OracleDbType.Char
• OracleDbType.Clob
• OracleDbType.LongRaw
• OracleDbType.NChar
• OracleDbType.NClob
• OracleDbType.NVarchar2

Chapter 7
OracleParameter Class

7-467

• OracleDbType.Raw
• OracleDbType.Varchar2
For the preceding types, the Size property describes the maximum amount of data
transmitted to or from the database. For character data, Size is in number of
characters and for binary data, it is in number of bytes.

For fixed length data types, the value of Size is ignored.

If the Size is not explicitly set, it is inferred from the actual size of the specified
parameter value when binding.

Note:

Size does not include the null terminating character for the string data.

If the OracleParameter object is used to bind a PL/SQL Associative Array, Size
specifies the maximum number of elements in the PL/SQL Associative Array. Before
the execution, this property specifies the maximum number of elements in the PL/SQL
Associative Array. After the execution, it specifies the current number of elements
returned in the PL/SQL Associative Array. For Output and InputOutput parameters
and return values, Size specifies the maximum number of elements in the PL/SQL
Associative Array.

ODP.NET does not support binding an empty PL/SQL Associative Array. Therefore,
Size cannot be set to 0 when the OracleParameter object is used to bind a PL/SQL
Associative Array.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleDbType Enumeration"

• "CollectionType"

• "ArrayBindSize "

• "ArrayBindStatus "

• "Value "

SourceColumn
This property specifies the name of the DataTable Column of the DataSet.

Chapter 7
OracleParameter Class

7-468

Declaration

// C#
public override string SourceColumn { get; set; }

Property Value

A string.

Implements

IDataParameter

Remarks

Default = empty string

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

SourceColumnNullMapping
This property specifies a value which indicates whether the source column is nullable.

Declaration

// C#
public bool SourceColumnNullMapping { get; set; }

Property Value

Returns true if the source column can be nullified; otherwise, returns false.

Remarks

The default value is false.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

Chapter 7
OracleParameter Class

7-469

SourceVersion
This property specifies the DataRowVersion value to use when loading the Value
property of the parameter.

Declaration

// C#
public override DataRowVersion SourceVersion { get; set; }

Property Value

DataRowVersion

Implements

IDataParameter

Exceptions

ArgumentOutOfRangeException - The DataRowVersion value specified is invalid.

Remarks

Default = DataRowVersion.Current
SourceVersion is used by the OracleDataAdapter.UpdateCommand() during the
OracleDataAdapter.Update to determine whether the original or current value is used
for a parameter value. This allows primary keys to be updated. This property is ignored
by the OracleDataAdapter.InsertCommand() and the
OracleDataAdapter.DeleteCommand().

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

Status
This property indicates the status of the execution related to the data in the Value
property.

Declaration

// C#
public OracleParameterStatus Status { get; set; }

Property Value

An OracleParameterStatus enumerated value.

Chapter 7
OracleParameter Class

7-470

Exceptions

ArgumentOutOfRangeException - The Status value specified is invalid.

Remarks

Default = OracleParameterStatus.Success
Before execution, this property indicates the bind status related to the Value property. After
execution, it returns the status of the execution.

Status indicates if:

• A NULL is fetched from a column.

• Truncation has occurred during the fetch; then Value was not big enough to hold the
data.

• A NULL is to be inserted into a database column; then Value is ignored, and a NULL is
inserted into a database column.

This property is ignored for Array Bind and PL/SQL Associative Array Bind. Instead,
ArrayBindStatus property is used.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "OracleParameterStatus Enumeration"

• "ArrayBindStatus "

UdtTypeName
This property specifies the Oracle user-defined type name if the parameter is a user-defined
data type.

Declaration

// C#
public string UdtTypeName {get; set;}

Property Value

Name of the Oracle UDT.

Remarks

The UdtTypeName property corresponds to the user-defined type name of the parameter. This
property must always be specified if the parameter is a user-defined type. Note that when a
custom object is provided as an input parameter value, it is converted to the Oracle UDT that
is specified by the custom type mapping on the connection used to execute the

Chapter 7
OracleParameter Class

7-471

command.The Oracle UDT specified by the custom type mapping and by the
OracleParamter.UdtTypeName property differs if the application binds a custom object
that represents a subtype of the parameter type.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

Value
This property specifies the value of the Parameter.

Declaration

// C#
public override object Value { get; set; }

Property Value

An object.

Implements

IDataParameter

Exceptions

ArgumentException - The Value property specified is invalid.

InvalidArgumentException- The Value property specified is invalid.

Remarks

Default = null
If the OracleParameter object is used for Array Bind or PL/SQL Associative Array,
Value is an array of parameter values.

The Value property can be overwritten by OracleDataAdapter.Update().

The provider attempts to convert any type of value if it supports the IConvertible
interface. Conversion errors occur if the specified type is not compatible with the value.

When sending a null parameter value to the database, the user must specify DBNull,
not null. The null value in the system is an empty object that has no value. DBNull is
used to represent null values. The user can also specify a null value by setting
Status to OracleParameterStatus.NullValue. In this case, the provider sends a null
value to the database.

If neither OracleDbType nor DbType are set, their values can be inferred by Value.
Please see the following for related information:

Chapter 7
OracleParameter Class

7-472

• Tables in section "Inference of DbType and OracleDbType from Value"

• "ArrayBindCount "

• "ArrayBindSize "

• "ArrayBindStatus "

• "OracleDbType Enumeration"

For input parameters the value is:

• Bound to the OracleCommand that is sent to the database.

• Converted to the data type specified in OracleDbType or DbType when the provider sends
the data to the database.

For output parameters the value is:

• Set on completion of the OracleCommand (true for return value parameters also).

• Set to the data from the database, to the data type specified in OracleDbType or DbType.

When array binding is used with:

• Input parameter - Value should be set to an array of values.
OracleCommand.ArrayBindCount should be set to a value that is greater than zero to
indicate the number of elements to be bound.

The number of elements in the array should be equal to the
OracleCommand.ArrayBindCount property; otherwise, their minimum value is used to bind
the elements in the array.

• Output parameter - OracleCommand.ArrayBindCount should be set to a value that is
greater than zero to indicate the number of elements to be retrieved (for SELECT
statements).

When PL/SQL Associative Array binding is used with:

• Input parameter – Value should be set to an array of values. CollectionType should be
set to OracleCollection.PLSQLAssociativeArray.Size should be set to specify the
possible maximum number of array elements in the PL/SQL Associative Array. If Size is
smaller than the number of elements in Value, then Size specifies the number of
elements in the Value property to be bound.

• Output parameter - CollectionType should be set to
OracleCollection.PLSQLAssociativeArray. Size should be set to specify the maximum
number of array elements in PL/SQL Associative Array.

Each parameter should have a value. To bind a parameter with a null value, set Value to
DBNull.Value, or set Status to OracleParameterStatus. NullInsert.

Chapter 7
OracleParameter Class

7-473

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

• "ArrayBindCount "

• "OracleParameterStatus Enumeration"

OracleParameter Public Methods
OracleParameter public methods are listed in Table 7-132.

Table 7-132 OracleParameter Public Methods

Public Method Description

Clone Creates a shallow copy of an OracleParameter
object

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Releases allocated resources

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
ResetDbType Resets the type associated with the parameter so that

it can infer its type from the value passed in the
parameter

ResetOracleDbType Resets the type associated with the parameter so that
it can infer its type from the value passed in the
parameter

ToString Returns the string representation of the current
instance

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

Chapter 7
OracleParameter Class

7-474

Clone
This method creates a shallow copy of an OracleParameter object.

Declaration

// C#
public object Clone();

Return Value

An OracleParameter object.

Implements

ICloneable

Remarks

The cloned object has the same property values as that of the object being cloned.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class CloneSample
{
 static void Main()
 {
 OracleParameter prm1 = new OracleParameter();

 // Prints "prm1.ParameterName = "
 Console.WriteLine("prm1.ParameterName = " + prm1.ParameterName);

 // Set the ParameterName before cloning
 prm1.ParameterName = "MyParam";

 // Clone the OracleParameter
 OracleParameter prm2 = (OracleParameter) prm1.Clone();

 // Prints "prm2.ParameterName = MyParam"
 Console.WriteLine("prm2.ParameterName = " + prm2.ParameterName);

 prm1.Dispose();
 prm2.Dispose();
 }
}

Chapter 7
OracleParameter Class

7-475

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

Dispose
This method releases resources allocated for an OracleParameter object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

ResetDbType
This method resets the type associated with the parameter so that it can infer its type
from the value passed in the parameter.

Declaration

// C#
public override void ResetDbType();

Remarks

If an application does not set the DbType or OracleDbType properties of an
OracleParameter object, then these values are inferred from the value set by the
application to that OracleParameter object. Calling ResetDbType method resets these
properties so that OracleParameter can again infer its type from the value passed into
the OracleParameter. Calling this method affects both the DbType and OracleDbType
properties of the OracleParameter object.

Chapter 7
OracleParameter Class

7-476

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

ResetOracleDbType
This method resets the type associated with the parameter so that it can infer its type from
the value passed in the parameter.

Declaration

// C#
public override void ResetOracleDbType();

Remarks

If an application does not set the DbType or OracleDbType properties of an OracleParameter
object, then these values are inferred from the value set by the application to that
OracleParameter object. Calling the ResetOracleDbType method resets these properties so
that OracleParameter can again infer its type from the value passed into the
OracleParameter. Calling this method affects both the DbType and OracleDbType properties
of the OracleParameter object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

ToString
Overrides Object
This method returns the string representation of the current instance.

Declaration

// C#
public override string ToString();

Return Value

Returns the OracleParameter value in a string representation.

Chapter 7
OracleParameter Class

7-477

Remarks

If the current instance has a null value, the returned string is null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameter Class

• OracleParameter Members

OracleParameterCollection Class
An OracleParameterCollection class represents a collection of all parameters
relevant to an OracleCommand object and their mappings to DataSet columns.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.Data.Common.DbParameterCollection
 Oracle.DataAccess.Client.OracleParameterCollection

Declaration

// C#
public sealed class OracleParameterCollection : DbParameterCollection,
 IDataParameterCollection, IList, ICollection, IEnumerable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 7
OracleParameterCollection Class

7-478

Remarks

The position of an OracleParameter added into the OracleParameterCollection is the
binding position in the SQL statement. Position is 0-based and is used only for positional
binding. If named binding is used, the position of an OracleParameter in the
OracleParameterCollection is ignored.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleParameterCollectionSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleParameter[] prm = new OracleParameter[3];

 // Create OracleParameter objects through OracleParameterCollection
 OracleCommand cmd = con.CreateCommand();

 cmd.CommandText = "select max(empno) from emp";
 int maxno = int.Parse(cmd.ExecuteScalar().ToString());

 prm[0] = cmd.Parameters.Add("paramEmpno", OracleDbType.Decimal,
 maxno + 10, ParameterDirection.Input);
 prm[1] = cmd.Parameters.Add("paramEname", OracleDbType.Varchar2,
 "Client", ParameterDirection.Input);
 prm[2] = cmd.Parameters.Add("paramDeptNo", OracleDbType.Decimal,
 10, ParameterDirection.Input);
 cmd.CommandText =
 "insert into emp(empno, ename, deptno) values(:1, :2, :3)";
 cmd.ExecuteNonQuery();

 Console.WriteLine("Record for employee id {0} has been inserted.",
 maxno + 10);

 // Remove all parameters from OracleParameterCollection
 cmd.Parameters.Clear();

 prm[0].Dispose();
 prm[1].Dispose();
 prm[2].Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 7
OracleParameterCollection Class

7-479

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Members

• OracleParameterCollection Static Methods

• OracleParameterCollection Properties

• OracleParameterCollection Public Methods

OracleParameterCollection Members
OracleParameterCollection members are listed in the following tables.

OracleParameterCollection Static Methods

OracleParameterCollection static methods are listed in Table 7-133.

Table 7-133 OracleParameterCollection Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

OracleParameterCollection Properties

OracleParameterCollection properties are listed in Table 7-134.

Table 7-134 OracleParameterCollection Properties

Property Description

Count Specifies the number of OracleParameters in the
collection

Item Gets and sets the OracleParameter object
(Overloaded)

IsFixedSize Gets a value that indicates whether the
OracleParameterCollection has a fixed size

IsReadOnly Gets a value that indicates whether the
OracleParameterCollection is read-only

IsSynchronized Gets a value that indicates whether the
OracleParameterCollection is synchronized.

SyncRoot Gets an object that can be used to synchronize access
to the OracleParameterCollection

OracleParameterCollection Public Methods

OracleParameterCollection public methods are listed in Table 7-135.

Chapter 7
OracleParameterCollection Class

7-480

Table 7-135 OracleParameterCollection Public Methods

Public Method Description

Add Adds objects to the collection (Overloaded)

AddRange Adds elements to the end of the
OracleParameterCollection

Clear Removes all the OracleParameter objects from the
collection

Contains Indicates whether or not objects exist in the collection
(Overloaded)

CopyTo Copies OracleParameter objects from the collection,
starting with the supplied index to the supplied array

CreateObjRef Inherited from System.MarshalByRefObject
Equals Inherited from System.Object (Overloaded)

GetEnumerator Returns an enumerator that iterates through the
OracleParameterCollection

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
IndexOf Returns the index of the objects in the collection

(Overloaded)

Insert Inserts the supplied OracleParameter to the collection at
the specified index

Remove Removes objects from the collection

RemoveAt Removes objects from the collection by location
(Overloaded)

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

OracleParameterCollection Static Methods
The OracleParameterCollection static method is listed in Table 7-136.

Chapter 7
OracleParameterCollection Class

7-481

Table 7-136 OracleParameterCollection Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

OracleParameterCollection Properties
OracleParameterCollection properties are listed in Table 7-137.

Table 7-137 OracleParameterCollection Properties

Property Description

Count Specifies the number of OracleParameters in the
collection

Item Gets and sets the OracleParameter object (Overloaded)

IsFixedSize Gets a value that indicates whether the
OracleParameterCollection has a fixed size

IsReadOnly Gets a value that indicates whether the
OracleParameterCollection is read-only

IsSynchronized Gets a value that indicates whether the
OracleParameterCollection is synchronized.

SyncRoot Gets an object that can be used to synchronize access to
the OracleParameterCollection

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Chapter 7
OracleParameterCollection Class

7-482

Count
This property specifies the number of OracleParameter objects in the collection.

Declaration

// C#
public override int Count {get;}

Property Value

The number of OracleParameter objects.

Implements

ICollection

Remarks

Default = 0

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Item
Item gets and sets the OracleParameter object.

Overload List:

• Item[int]

This property gets and sets the OracleParameter object at the index specified by the
supplied parameterIndex.

• Item[string]

This property gets and sets the OracleParameter object using the parameter name
specified by the supplied parameterName.

Chapter 7
OracleParameterCollection Class

7-483

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Item[int]
This property gets and sets the OracleParameter object at the index specified by the
supplied parameterIndex.

Declaration

// C#
public object Item[int parameterIndex] {get; set;}

Property Value

An object.

Implements

IList

Exceptions

IndexOutOfRangeException - The supplied index does not exist.

Remarks

The OracleParameterCollection class is a zero-based index.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Item[string]
This property gets and sets the OracleParameter object using the parameter name
specified by the supplied parameterName.

Declaration

// C#
public OracleParameter Item[string parameterName] {get; set;};

Chapter 7
OracleParameterCollection Class

7-484

Property Value

An OracleParameter.

Implements

IDataParameterCollection

Exceptions

IndexOutOfRangeException - The supplied parameter name does not exist.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

IsFixedSize
IsFixedSize gets a value that indicates whether the OracleParameterCollection has a fixed
size.

Declaration

// C#
public override bool IsFixedSize { get; };

Property Value

Returns true if the OracleParameterCollection has a fixed size; otherwise false.

Implements

IList

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

IsReadOnly
IsReadOnly gets a value that indicates whether the OracleParameterCollection is read-only.

Chapter 7
OracleParameterCollection Class

7-485

Declaration

// C#
public override bool IsReadOnly { get; };

Property Value

Returns true if the OracleParameterCollection is read only; otherwise false.

Implements

IList

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

IsSynchronized
IsSynchronized gets a value that indicates whether the OracleParameterCollection
is synchronized.

Declaration

// C#
public override bool IsSynchronized { get; };

Property Value

Returns true if the OracleParameterCollection is synchronized; otherwise false.

Implements

ICollection

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Chapter 7
OracleParameterCollection Class

7-486

SyncRoot
SyncRoot gets an object that can be used to synchronize access to the
OracleParameterCollection.

Declaration

// C#
public override Object SyncRoot { get; };

Property Value

An object that can be used to synchronize access to the OracleParameterCollection.

Implements

ICollection

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

OracleParameterCollection Public Methods
OracleParameterCollection public methods are listed in Table 7-138.

Table 7-138 OracleParameterCollection Public Methods

Public Method Description

Add Adds objects to the collection (Overloaded)

AddRange Adds elements to the end of the
OracleParameterCollection

Clear Removes all the OracleParameter objects from the
collection

Contains Indicates whether or not objects exist in the collection
(Overloaded)

CopyTo Copies OracleParameter objects from the collection,
starting with the supplied index to the supplied array

CreateObjRef Inherited from System.MarshalByRefObject
Equals Inherited from System.Object (Overloaded)

GetEnumerator Returns an enumerator that iterates through the
OracleParameterCollection

GetHashCode Inherited from System.Object

Chapter 7
OracleParameterCollection Class

7-487

Table 7-138 (Cont.) OracleParameterCollection Public Methods

Public Method Description

GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
IndexOf Returns the index of the objects in the collection

(Overloaded)

Insert Inserts the supplied OracleParameter to the collection at
the specified index

Remove Removes objects from the collection

RemoveAt Removes objects from the collection by location
(Overloaded)

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Add
Add adds objects to the collection.

Overload List:

• Add(object)

This method adds the supplied object to the collection.

• Add(OracleParameter)

This method adds the supplied OracleParameter object to the collection.

• Add(string, object)

This method adds an OracleParameter object to the collection using the supplied
name and object value.

• Add(string, OracleDbType)

This method adds an OracleParameter object to the collection using the supplied
name and database type.

• Add(string, OracleDbType, ParameterDirection)

This method adds an OracleParameter object to the collection using the supplied
name, database type, and direction.

Chapter 7
OracleParameterCollection Class

7-488

• Add(string, OracleDbType, object, ParameterDirection)

This method adds an OracleParameter object to the collection using the supplied name,
database type, parameter value, and direction.

• Add(string, OracleDbType, int, object, ParameterDirection)

This method adds an OracleParameter object to the collection using the supplied name,
database type, size, parameter value, and direction.

• Add(string, OracleDbType, int)

This method adds an OracleParameter object to the collection using the supplied name,
database type, and size.

• Add (string, OracleDbType, int, string)

This method adds an OracleParameter object to the collection using the supplied name,
database type, size, and source column.

• Add(string, OracleDbType, int, ParameterDirection, bool, byte, byte, string,
DataRowVersion, object)

This method adds an OracleParameter object to the collection using the supplied name,
database type, size, direction, null indicator, precision, scale, source column, source
version, and parameter value.

See Also:

– "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

– OracleParameterCollection Class

– OracleParameterCollection Members

Add(object)
This method adds the supplied object to the collection.

Declaration

// C#
public override int Add(object obj);

Parameters

• obj

The supplied object.

Return Value

The index at which the new OracleParameter is added.

Implements

IList

Chapter 7
OracleParameterCollection Class

7-489

Remarks

InvalidCastException - The supplied obj cannot be cast to an OracleParameter
object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Add(OracleParameter)
This method adds the supplied OracleParameter object to the collection.

Declaration

// C#
public OracleParameter Add(OracleParameter paramObj);

Parameters

• paramObj

The supplied OracleParameter object.

Return Value

The newly created OracleParameter object which was added to the collection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Add(string, object)
This method adds an OracleParameter object to the collection using the supplied
name and object value

Declaration

// C#
public OracleParameter Add(string name, object val);

Chapter 7
OracleParameterCollection Class

7-490

Parameters

• name

The parameter name.

• val

The OracleParameter value.

Return Value

The newly created OracleParameter object which was added to the collection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Add(string, OracleDbType)
This method adds an OracleParameter object to the collection using the supplied name and
database type.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType);

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

Return Value

The newly created OracleParameter object which was added to the collection.

Chapter 7
OracleParameterCollection Class

7-491

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Add(string, OracleDbType, ParameterDirection)
This method adds an OracleParameter object to the collection using the supplied
name, database type, and direction.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType,
 ParameterDirection direction);

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• direction

The OracleParameter direction.

Return Value

The newly created OracleParameter object which was added to the collection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

• "OracleDbType Enumeration"

Add(string, OracleDbType, object, ParameterDirection)
This method adds an OracleParameter object to the collection using the supplied
name, database type, parameter value, and direction.

Chapter 7
OracleParameterCollection Class

7-492

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, object val,
 ParameterDirection dir);

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• val

The OracleParameter value.

• dir

The ParameterDirection value.

Return Value

The newly created OracleParameter object which was added to the collection.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class AddSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add parameter to the OracleParameterCollection
 OracleParameter prm = cmd.Parameters.Add(
 "MyParam", OracleDbType.Decimal, 1, ParameterDirection.Input);

 // Prints "cmd.Parameters.Count = 1"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 prm.Dispose();
 cmd.Dispose();
 }
}

Chapter 7
OracleParameterCollection Class

7-493

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

• "OracleDbType Enumeration"

Add(string, OracleDbType, int, object, ParameterDirection)
This method adds an OracleParameter object to the collection using the supplied
name, database type, size, parameter value, and direction.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, int size,
 object val, ParameterDirection dir;

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• size

The size of OracleParameter.

• val

The OracleParameter value.

• dir

The ParameterDirection value.

Return Value

The newly created OracleParameter object which was added to the collection.

Chapter 7
OracleParameterCollection Class

7-494

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

• "OracleDbType Enumeration"

Add(string, OracleDbType, int)
This method adds an OracleParameter object to the collection using the supplied name,
database type, and size.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, int size);

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• size

The size of OracleParameter.

Return Value

The newly created OracleParameter object which was added to the collection.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class AddSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add parameter to the OracleParameterCollection
 OracleParameter prm = cmd.Parameters.Add(
 "MyParam", OracleDbType.Varchar2, 10);

 // Prints "cmd.Parameters.Count = 1"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

Chapter 7
OracleParameterCollection Class

7-495

 prm.Dispose();
 cmd.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Add (string, OracleDbType, int, string)
This method adds an OracleParameter object to the collection using the supplied
name, database type, size, and source column.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, int size,
 string srcColumn);

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• size

The size of OracleParameter.

• srcColumn

The name of the source column.

Return Value

An OracleParameter.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Chapter 7
OracleParameterCollection Class

7-496

Add(string, OracleDbType, int, ParameterDirection, bool, byte, byte, string,
DataRowVersion, object)

This method adds an OracleParameter object to the collection using the supplied name,
database type, size, direction, null indicator, precision, scale, source column, source version,
and parameter value.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, int size,
 ParameterDirection dir, bool isNullable, byte precision,
 byte scale, string srcColumn, DataRowVersion version, object val);

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• size

The size of OracleParameter.

• dir

The ParameterDirection value.

• isNullable

An indicator that specifies if the parameter value can be null.

• precision

The precision of the parameter value.

• scale

The scale of the parameter value.

• srcColumn

The name of the source column.

• version

The DataRowVersion value.

• val

The parameter value.

Return Value

The newly created OracleParameter object which was added to the collection.

Chapter 7
OracleParameterCollection Class

7-497

Exceptions

ArgumentException - The type of supplied val does not belong to the type of Value
property in any of the ODP.NET Types.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

AddRange
This method adds elements to the end of the OracleParameterCollection.

Declaration

// C#
public override void AddRange(Array paramArray);

Parameters

paramArray

An array of OracleParameter objects.

Exceptions

ArgumentNullException - The input parameter is null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Clear
This method removes all the OracleParameter objects from the collection.

Declaration

// C#
public override void Clear();

Chapter 7
OracleParameterCollection Class

7-498

Implements

IList

Example

// C#

using System;
using Oracle.DataAccess.Client;

class ClearSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add parameter to the OracleParameterCollection
 OracleParameter prm = cmd.Parameters.Add("MyParam", OracleDbType.Decimal);

 // Prints "cmd.Parameters.Count = 1"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 // Clear all parameters in the OracleParameterCollection
 cmd.Parameters.Clear();

 // Prints "cmd.Parameters.Count = 0"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 prm.Dispose();
 cmd.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Contains
Contains indicates whether or not the supplied object exists in the collection.

Overload List:

• Contains(object)

This method indicates whether or not the supplied object exists in the collection.

• Contains(string)

This method indicates whether or not an OracleParameter object exists in the collection
using the supplied string.

Chapter 7
OracleParameterCollection Class

7-499

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Contains(object)
This method indicates whether or not the supplied object exists in the collection.

Declaration

// C#
public override bool Contains(object obj)

Parameters

• obj

The object.

Return Value

A bool that indicates whether or not the OracleParameter specified is inside the
collection.

Implements

IList

Exceptions

InvalidCastException - The supplied obj is not an OracleParameter object.

Remarks

Returns true if the collection contains the OracleParameter object; otherwise, returns
false.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class ContainsSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add parameter to the OracleParameterCollection
 OracleParameter prm1 = cmd.Parameters.Add("MyParam", OracleDbType.Decimal);

Chapter 7
OracleParameterCollection Class

7-500

 // Check if the OracleParameterCollection contains prm1
 bool bContains = cmd.Parameters.Contains(prm1);

 // Prints "bContains = True"
 Console.WriteLine("bContains = " + bContains);

 OracleParameter prm2 = new OracleParameter();

 // Check if the OracleParameterCollection contains prm2
 bContains = cmd.Parameters.Contains(prm2);

 // Prints "bContains = False"
 Console.WriteLine("bContains = " + bContains);

 prm1.Dispose();
 prm2.Dispose();
 cmd.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Contains(string)
This method indicates whether or not an OracleParameter object exists in the collection
using the supplied string.

Declaration

// C#
public override bool Contains(string name);

Parameters

• name

The name of OracleParameter object.

Return Value

Returns true if the collection contains the OracleParameter object with the specified
parameter name; otherwise, returns false.

Implements

IDataParameterCollection

Chapter 7
OracleParameterCollection Class

7-501

Example

// C#

using System;
using Oracle.DataAccess.Client;

class ContainsSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add parameter to the OracleParameterCollection
 OracleParameter prm = cmd.Parameters.Add("MyParam", OracleDbType.Decimal);

 // Check if the OracleParameterCollection contains "MyParam"
 bool bContains = cmd.Parameters.Contains("MyParam");

 // Prints "bContains = True"
 Console.WriteLine("bContains = " + bContains);

 // Check if the OracleParameterCollection contains "NoParam"
 bContains = cmd.Parameters.Contains("NoParam");

 // Prints "bContains = False"
 Console.WriteLine("bContains = " + bContains);

 prm.Dispose();
 cmd.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

CopyTo
This method copies OracleParameter objects from the collection, starting with the
supplied index to the supplied array.

Declaration

// C#
public override void CopyTo(Array array, int index);

Parameters

• array

Chapter 7
OracleParameterCollection Class

7-502

The specified array.

• index

The array index.

Implements

ICollection

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

GetEnumerator
GetEnumerator returns an enumerator that iterates through the OracleParameterCollection.

Declaration

// C#
public override IEnumerator GetEnumerator();

Implements

IEnumerable

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

IndexOf
IndexOf returns the index of the OracleParameter object in the collection.

Overload List:

• IndexOf(object)

This method returns the index of the OracleParameter object in the collection.

• IndexOf(String)

Chapter 7
OracleParameterCollection Class

7-503

This method returns the index of the OracleParameter object with the specified
name in the collection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

IndexOf(object)
This method returns the index of the OracleParameter object in the collection.

Declaration

// C#
public override int IndexOf(object obj);

Parameters

• obj

The specified object.

Return Value

Returns the index of the OracleParameter object in the collection.

Implements

IList

Exceptions

InvalidCastException - The supplied obj cannot be cast to an OracleParameter
object.

Remarks

Returns the index of the supplied OracleParameter obj in the collection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Chapter 7
OracleParameterCollection Class

7-504

IndexOf(String)
This method returns the index of the OracleParameter object with the specified name in the
collection.

Declaration

// C#
public override int IndexOf(String name);

Parameters

• name

The name of parameter.

Return Value

Returns the index of the supplied OracleParameter in the collection.

Implements

IDataParameterCollection

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Insert
This method inserts the supplied OracleParameter object to the collection at the specified
index.

Declaration

// C#
public override void Insert(int index, object obj);

Parameters

• index

The specified index.

• obj

The OracleParameter object.

Implements

IList

Chapter 7
OracleParameterCollection Class

7-505

Remarks

An InvalidCastException is thrown if the supplied obj cannot be cast to an
OracleParameter object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Remove
This method removes the supplied OracleParameter from the collection.

Declaration

// C#
public override void Remove(object obj);

Parameters

• obj

The specified object to remove.

Implements

IList

Exceptions

InvalidCastException - The supplied obj cannot be cast to an OracleParameter
object.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class RemoveSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add 2 parameters to the OracleParameterCollection
 OracleParameter prm1 = cmd.Parameters.Add("MyParam1", OracleDbType.Decimal);
 OracleParameter prm2 = cmd.Parameters.Add("MyParam2", OracleDbType.Decimal);

 // Prints "cmd.Parameters.Count = 2"

Chapter 7
OracleParameterCollection Class

7-506

 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 // Remove the 1st parameter from the OracleParameterCollection
 cmd.Parameters.Remove(prm1);

 // Prints "cmd.Parameters.Count = 1"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 // Prints "cmd.Parameters[0].ParameterName = MyParam2"
 Console.WriteLine("cmd.Parameters[0].ParameterName = " +
 cmd.Parameters[0].ParameterName);

 prm1.Dispose();
 prm2.Dispose();
 cmd.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

RemoveAt
RemoveAt removes the OracleParameter object from the collection by location.

Overload List:

• RemoveAt(int)

This method removes from the collection the OracleParameter object located at the index
specified by the supplied index.

• RemoveAt(String)

This method removes from the collection the OracleParameter object specified by the
supplied name.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

Chapter 7
OracleParameterCollection Class

7-507

RemoveAt(int)
This method removes from the collection the OracleParameter object located at the
index specified by the supplied index.

Declaration

// C#
public override void RemoveAt(int index);

Parameters

• index

The specified index from which the OracleParameter is to be removed.

Implements

IList

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

RemoveAt(String)
This method removes from the collection the OracleParameter object specified by the
supplied name.

Declaration

// C#
public override void RemoveAt(String name);

Parameters

• name

The name of the OracleParameter object to be removed from the collection.

Implements

IDataParameterCollection

Chapter 7
OracleParameterCollection Class

7-508

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleParameterCollection Class

• OracleParameterCollection Members

OraclePermission Class
An OraclePermission object enables ODP.NET to enforce imperative security and helps
ensure that a user has a security level adequate for accessing data.

Class Inheritance

 System.Object
 System.Security.CodeAccessPermission
 System.Data.Common.DBDataPermission
 Oracle.DataAccess.Client.OraclePermission

Declaration

// C#
public class OraclePermission: DBDataPermission

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.
dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.
Client

.NET Framework 4.8 4.8

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Chapter 7
OraclePermission Class

7-509

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermission Members

• OraclePermission Constructor

• OraclePermission Static Methods

• OraclePermission Public Properties

• OraclePermission Public Methods

OraclePermission Members
OraclePermission members are listed in the following tables.

OraclePermission Constructors

The OraclePermission constructor is listed in Table 7-139.

Table 7-139 OraclePermission Constructor

Constructor Description

OraclePermission Constructor Instantiates a new instance of the OraclePermission
class.

OraclePermission Static Methods

The OraclePermission static methods are listed in Table 7-140.

Table 7-140 OraclePermission Static Methods

Static Method Description

Equals Inherited from System.Object
ReferenceEquals Inherited from System.Object
RevertAll Inherited from CodeAccessPermission
RevertAssert Inherited from CodeAccessPermission
RevertDeny Inherited from CodeAccessPermission
RevertPermitOnly Inherited from CodeAccessPermission

OraclePermission Public Properties

The OraclePermission public methods are listed in Table 7-144.

Chapter 7
OraclePermission Class

7-510

Table 7-141 OraclePermission Public Properties

Public Properties Description

AllowBlankPassword Inherited from DBDataPermission
OraclePermission does not support this property.

OraclePermission Public Methods

The OraclePermission public methods are listed in Table 7-142.

Table 7-142 OraclePermission Public Methods

Public Method Description

Add Adds a new connection string fragment and a list of
restricted keywords to the OraclePermission object

Assert Inherited from CodeAccessPermission
Copy Returns a copy of the current permission object

Demand Inherited from CodeAccessPermission
Deny Inherited from CodeAccessPermission
Equals Inherited from CodeAccessPermission
FromXml Inherited from DBDataPermission
GetHashCode Inherited from CodeAccessPermission
GetType Inherited from System.Object
Intersect Inherited from DBDataPermission
IsSubsetOf Returns a boolean value that indicates whether or not

the current permission is a subset of the target
permission

IsUnrestricted Inherited from DBDataPermission
PermitOnly Inherited from CodeAccessPermission
ToString Inherited from CodeAccessPermission
ToXml Inherited from DBDataPermission
Union Inherited from DBDataPermission

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermission Class

Chapter 7
OraclePermission Class

7-511

OraclePermission Constructor
The OraclePermission constructor instantiates a new instance of the
OraclePermission class.

Declaration

// C#
public OraclePermission (PermissionState state);

Parameters

• state

The state parameter takes one of the following two values:
PermissionState.None or PermissionState.Unrestricted.

Exceptions

ArgumentException - The PermissionState value is invalid.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermission Class

• OraclePermission Members

OraclePermission Static Methods
The OraclePermission static methods are listed in Table 7-143.

Table 7-143 OraclePermission Static Methods

Static Method Description

Equals Inherited from System.Object
ReferenceEquals Inherited from System.Object
RevertAll Inherited from CodeAccessPermission
RevertAssert Inherited from CodeAccessPermission
RevertDeny Inherited from CodeAccessPermission
RevertPermitOnly Inherited from CodeAccessPermission

Chapter 7
OraclePermission Class

7-512

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermission Class

• OraclePermission Members

OraclePermission Public Properties
The OraclePermission public methods are listed in Table 7-144.

Table 7-144 OraclePermission Public Properties

Public Properties Description

AllowBlankPassword Inherited from DBDataPermission
OraclePermission ignores the value of this property.
Any value set for this property, for an
OraclePermission object, is ignored.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermission Class

• OraclePermission Members

OraclePermission Public Methods
The OraclePermission public methods are listed in Table 7-145.

Table 7-145 OraclePermission Public Methods

Public Method Description

Add Adds a new connection string fragment and a list of
restricted keywords to the OraclePermission object

Assert Inherited from CodeAccessPermission
Copy Returns a copy of the current permission object

Demand Inherited from CodeAccessPermission
Deny Inherited from CodeAccessPermission
Equals Inherited from CodeAccessPermission
FromXml Inherited from DBDataPermission

Chapter 7
OraclePermission Class

7-513

Table 7-145 (Cont.) OraclePermission Public Methods

Public Method Description

GetHashCode Inherited from CodeAccessPermission
GetType Inherited from System.Object
Intersect Inherited from DBDataPermission
IsSubsetOf Returns a boolean value that indicates whether or not

the current permission is a subset of the target
permission

IsUnrestricted Inherited from DBDataPermission
PermitOnly Inherited from CodeAccessPermission
ToString Inherited from CodeAccessPermission
ToXml Inherited from DBDataPermission
Union Inherited from DBDataPermission

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermission Class

• OraclePermission Members

Add
This method adds a new connection string fragment and a list of restricted keywords to
the OraclePermission object.

Declaration

// C#
public void Add(string connStr, string keyRestrict,
 KeyRestrictionBehavior behavior);

Parameters

• connStr

The connection string fragment.

• keyRestrict

The key restrictions.

• behavior

One of the following KeyRestrictionBehavior enumerations:

– AllowOnly

Chapter 7
OraclePermission Class

7-514

– PreventUsage

Exceptions

ArgumentException - The KeyRestrictionBehavior value or the format of the connStr or
keyRestict string is invalid.

Remarks

The Add method configures the connection strings allowed or disallowed by the permission
object.

Opening an OracleConnection is allowed or denied based upon the connection string
fragment, key restrictions combination, and the key restriction behavior.

In the following example, KeyRestrictionBehavior.AllowOnly allows connection strings that
use orcl as the Data Source with any User Id and Password combination but no other
connection string keywords. Connection string keywords other than User Id and Password
cause security exceptions.

orclPermission.Add("Data Source=orcl;","User Id=;Password=;",
 KeyRestrictionBehavior.AllowOnly);

In the next example, KeyRestrictionBehavior.PreventUsage restricts connection strings
that use the keyword Pooling. Use of the Pooling keyword causes an exception.

orclPermission.Add("Data Source=orcl;","Pooling=;",
 KeyRestrictionBehavior.PreventUsage)

As a general rule, in an unrestricted environment, any connection string that is not allowed is
restricted and throws a security exception.

If a connection string fragment contains key-value pairs for the password and proxy
password attributes, then values for these attributes are ignored. However, the presence of
the attributes themselves is still checked. This means that the connection is allowed only if
the password and proxy attributes keywords are allowed in the connection string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermission Class

• OraclePermission Members

Copy
This method returns a copy of the current permission object.

Declaration

// C#
public override IPermission Copy();

Chapter 7
OraclePermission Class

7-515

Return Value

A copy of the OraclePermission object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermission Class

• OraclePermission Members

IsSubsetOf
This method returns a boolean value that indicates whether or not the current
permission is a subset of the target permission.

Declaration

// C#
public override bool IsSubsetOf(IPermission target);

Parameters

• target

A permission that must be of type OraclePermission.

Return Value

A bool value that indicates whether or not the current permission is a subset of the
target permission.

Exceptions

ArgumentException - The permission is not of the OraclePermission type.

Remarks

The AllowBlankPassword property is ignored when evaluating whether or not the
current permission is a subset of the target permission.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermission Class

• OraclePermission Members

Chapter 7
OraclePermission Class

7-516

OraclePermissionAttribute Class
An OraclePermissionAttribute object enables ODP.NET to enforce declarative security and
helps ensure that a user has a security level adequate for accessing data.

Class Inheritance

 System.Object
 System.Attribute
 System.Security.Permissions.SecurityAttribute
 System.Security.Permissions.CodeAccessSecurityAttribute
 System.Data.Common.DBDataPermissionAttribute
 Oracle.DataAccess.Client.OraclePermissionAttribute

Declaration

// C#
[Serializable, AttributeUsage(AttributeTargets.Method |
AttributeTargets.Constructor | AttributeTargets.Class | AttributeTargets.Struct |
AttributeTargets.Assembly, AllowMultiple = true, Inherited = false)]
public sealed class OraclePermissionAttribute: DBDataPermissionAttribute

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll
Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client
.NET Framework 4.8 4.8

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermissionAttribute Members

• OraclePermissionAttribute Constructor

• OraclePermissionAttribute Static Methods

• OraclePermissionAttribute Public Properties

• OraclePermissionAttribute Public Methods

Chapter 7
OraclePermissionAttribute Class

7-517

OraclePermissionAttribute Members
OraclePermissionAttribute members are listed in the following tables.

OraclePermissionAttribute Constructor

The OraclePermissionAttribute constructor is listed in Table 7-146.

Table 7-146 OraclePermission Constructor

Constructor Description

OraclePermissionAttribute
Constructor

Instantiates a new instance of the
OraclePermissionAttribute class.

OraclePermissionAttribute Static Methods

The OraclePermissionAttribute static methods are listed in Table 7-147.

Table 7-147 OraclePermissionAttribute Static Methods

Static Methods Description

GetCustomAttribute Inherited from System.Attribute (Overloaded)

GetCustomAttributes Inherited from System.Attribute(Overloaded)

IsDefined Inherited from System.Attribute(Overloaded)

ReferenceEquals Inherited from System.Object

OraclePermissionAttribute Public Properties

The OraclePermissionAttribute public properties are listed in Table 7-148.

Table 7-148 OraclePermissionAttribute Public Properties

Public Properties Description

Action Inherited from SecurityAttribute
AllowBlankPassword Inherited from DBDataPermissionAttribute.

OraclePermissionAttribute ignores this
property. Any value set for this property, for an
OraclePermissionAttribute object, is ignored.

ConnectionString Inherited from DBDataPermissionAttribute
KeyRestrictionBehavior Inherited from DBDataPermissionAttribute
KeyRestrictions Inherited from DBDataPermissionAttribute
TypeId Inherited from System.Attribute
Unrestricted Inherited from SecurityAttribute

OraclePermissionAttribute Public Methods

The OraclePermissionAttribute public methods are listed in Table 7-149.

Chapter 7
OraclePermissionAttribute Class

7-518

Table 7-149 OraclePermissionAttribute Public Methods

Public Methods Description

CreatePermission Returns a new OraclePermissionAttribute
object that is configured based on the attributes set

Equals Inherited from System.Attribute
GetHashCode Inherited from System.Attribute
GetType Inherited from System.Attribute
IsDefaultAttribute Inherited from System.Attribute
Match Inherited from System.Attribute
ShouldSerializeConnectionString Inherited from DBDataPermissionAttribute
ShouldSerializeKeyRestrictions Inherited from DBDataPermissionAttribute
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermissionAttribute Class

OraclePermissionAttribute Constructor
The OraclePermissionAttribute constructor instantiates new instances of the
OraclePermissionAttribute class.

Declaration

// C#
public OraclePermissionAttribute (SecurityAction action);

Parameters

• action

A System.Security.Permissions.SecurityAction value representing an action that can
be performed using declarative security.

Chapter 7
OraclePermissionAttribute Class

7-519

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermissionAttribute Class

• OraclePermissionAttribute Members

OraclePermissionAttribute Static Methods
The OraclePermissionAttribute static methods are listed in Table 7-150.

Table 7-150 OraclePermissionAttribute Static Methods

Static Methods Description

GetCustomAttribute Inherited from System.Attribute (Overloaded)

GetCustomAttributes Inherited from System.Attribute(Overloaded)

IsDefined Inherited from System.Attribute(Overloaded)

ReferenceEquals Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermissionAttribute Class

• OraclePermissionAttribute Members

OraclePermissionAttribute Public Properties
The OraclePermissionAttribute public properties are listed in Table 7-151.

Table 7-151 OraclePermissionAttribute Public Properties

Public Properties Description

Action Inherited from SecurityAttribute
AllowBlankPassword Inherited from DBDataPermissionAttribute.

OraclePermissionAttribute ignores this
property. Any value set for this property, for an
OraclePermissionAttribute object, is ignored.

ConnectionString Inherited from DBDataPermissionAttribute
KeyRestrictionBehavior Inherited from DBDataPermissionAttribute

Chapter 7
OraclePermissionAttribute Class

7-520

Table 7-151 (Cont.) OraclePermissionAttribute Public Properties

Public Properties Description

KeyRestrictions Inherited from DBDataPermissionAttribute
TypeId Inherited from System.Attribute
Unrestricted Inherited from SecurityAttribute

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermissionAttribute Class

• OraclePermissionAttribute Members

OraclePermissionAttribute Public Methods
The OraclePermissionAttribute public methods are listed in Table 7-152.

Table 7-152 OraclePermissionAttribute Public Methods

Public Methods Description

CreatePermission Returns a new OraclePermissionAttribute
object that is configured based on the attributes set

Equals Inherited from System.Attribute
GetHashCode Inherited from System.Attribute
GetType Inherited from System.Attribute
IsDefaultAttribute Inherited from System.Attribute
Match Inherited from System.Attribute
ShouldSerializeConnectionString Inherited from DBDataPermissionAttribute
ShouldSerializeKeyRestrictions Inherited from DBDataPermissionAttribute
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermissionAttribute Class

• OraclePermissionAttribute Members

Chapter 7
OraclePermissionAttribute Class

7-521

CreatePermission
This method returns a new OraclePermissionAttribute object that is configured
based on the attributes set.

Declaration

// C#
public override IPermission CreatePermission();

Return Value

An OraclePermission object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OraclePermissionAttribute Class

• OraclePermissionAttribute Members

OracleRefreshAccessTokenEventArgs Class
The OracleRefreshAccessTokenEventArgs class provides a way for the application to
return the refreshed signature token. When the token is about to expire, the callback
registered using RefreshAccessToken event is triggered along with the
OracleRefreshAccessTokenEventArgs object. The application is expected to provide
the refreshed token with a new expiration within this object.

Class Inheritance

System.Object
 System.EventArgs
 Oracle.DataAccess.Client.OracleRefreshAccessTokenEventArgs

Declaration

// C#
public sealed class OracleRefreshAccessTokenEventArgs

Requirements

Provider ODP.NET, Managed Driver ODP.NET Core

Assembly Oracle.ManagedDataAcces
s.dll

Oracle.ManagedDataAcces
s.dll

Namespace Oracle.ManagedDataAcces
s.Client

Oracle.ManagedDataAcces
s.Client

Chapter 7
OracleRefreshAccessTokenEventArgs Class

7-522

Provider ODP.NET, Managed Driver ODP.NET Core

.NET Framework 4.8 -

.NET (Core) - See System Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRefreshAccessTokenEventArgs Members

• OracleRefreshAccessTokenEventArgs Properties

OracleRefreshAccessTokenEventArgs Members
OracleRefreshAccessTokenEventArgs members are listed in the following tables.

OracleRefreshAccessTokenEventArgs Properties

OracleRefreshAccessTokenEventArgs properties are listed in Table 7-170.

Table 7-153 OracleRefreshAccessTokenEventArgs Properties

Property Description

DbToken Sets the new/refreshed signature token in this object

PrivateKey Sets the refreshed private key in this object

Token Sets the new or refreshed access token in this object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRefreshAccessTokenEventArgs Class

OracleRefreshAccessTokenEventArgs Properties
The OracleRefreshAccessTokenEventArgs properties are listed in Table 7-160.

Table 7-154 OracleRefreshAccessTokenEventArgs Properties

Property Description

DbToken Sets the new/refreshed signature token in this object

PrivateKey Sets the refreshed private key in this object

Chapter 7
OracleRefreshAccessTokenEventArgs Class

7-523

Table 7-154 (Cont.) OracleRefreshAccessTokenEventArgs Properties

Property Description

Token Sets the new or refreshed access token in this object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRefreshAccessTokenEventArgs Class

• OracleRefreshAccessTokenEventArgs Members

DbToken
This property sets the new/refreshed signature token in this object.

Declaration

// C#
public char[] DbToken { set; }

Description

The char[] used to set the value of this property will be cleared by ODP.NET.
Applications should not depend on this char[] once this property is called.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRefreshAccessTokenEventArgs Class

• OracleRefreshAccessTokenEventArgs Members

PrivateKey
This property sets the refreshed private key in this object.

Declaration

// C#
public char[] PrivateKey { set; }

Description

The char[] used to set the value of this property will be cleared by ODP.NET.
Applications should not depend on this char[] once this property is called.

Chapter 7
OracleRefreshAccessTokenEventArgs Class

7-524

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRefreshAccessTokenEventArgs Class

• OracleRefreshAccessTokenEventArgs Members

Token
This property sets the new or refreshed access token in this object.

Declaration

// C#
public char[] Token { set; }

Description

This property can hold an access token.

The char[] used to set the value of this property will be cleared by ODP.NET for security
reasons. The application should not depend on this char[] once this property is called.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRefreshAccessTokenEventArgs Class

• OracleRefreshAccessTokenEventArgs Members

OracleRowUpdatedEventArgs Class
The OracleRowUpdatedEventArgs class provides event data for the
OracleDataAdapter.RowUpdated event.

Class Inheritance

System.Object
 System.EventArgs
 System.RowUpdatedEventArgs
 System.OracleRowUpdatedEventArgs

Declaration

// C#
public sealed class OracleRowUpdatedEventArgs : RowUpdatedEventArgs

Chapter 7
OracleRowUpdatedEventArgs Class

7-525

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

The example for the RowUpdated event shows how to use
OracleRowUpdatedEventArgs. See RowUpdated event "Example".

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatedEventArgs Members

• OracleRowUpdatedEventArgs Constructor

• OracleRowUpdatedEventArgs Static Methods

• OracleRowUpdatedEventArgs Properties

• OracleRowUpdatedEventArgs Public Methods

• OracleDataAdapter Class

OracleRowUpdatedEventArgs Members
OracleRowUpdatedEventArgs members are listed in the following tables.

OracleRowUpdatedEventArgs Constructors

OracleRowUpdatedEventArgs constructors are listed in Table 7-155.

Chapter 7
OracleRowUpdatedEventArgs Class

7-526

Table 7-155 OracleRowUpdatedEventArgs Constructors

Constructor Description

OracleRowUpdatedEventArgs
Constructor

Instantiates a new instance of
OracleRowUpdatedEventArgs class

OracleRowUpdatedEventArgs Static Methods

The OracleRowUpdatedEventArgs static method is listed in Table 7-156.

Table 7-156 OracleRowUpdatedEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleRowUpdatedEventArgs Properties

The OracleRowUpdatedEventArgs properties are listed in Table 7-157.

Table 7-157 OracleRowUpdatedEventArgs Properties

Property Description

Command Specifies the OracleCommand that is used when
OracleDataAdapter.Update() is called

Errors Inherited from
System.Data.Common.RowUpdatedEventArgs

RecordsAffected Inherited from
System.Data.Common.RowUpdatedEventArgs

Row Inherited from
System.Data.Common.RowUpdatedEventArgs

StatementType Inherited from
System.Data.Common.RowUpdatedEventArgs

Status Inherited from
System.Data.Common.RowUpdatedEventArgs

TableMapping Inherited from
System.Data.Common.RowUpdatedEventArgs

OracleRowUpdatedEventArgs Public Methods

The OracleRowUpdatedEventArgs properties are listed in Table 7-158.

Table 7-158 OracleRowUpdatedEventArgs Public Methods

Public Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object

Chapter 7
OracleRowUpdatedEventArgs Class

7-527

Table 7-158 (Cont.) OracleRowUpdatedEventArgs Public Methods

Public Method Description

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatedEventArgs Class

OracleRowUpdatedEventArgs Constructor
The OracleRowUpdatedEventArgs constructor creates a new
OracleRowUpdatedEventArgs instance.

Declaration

// C#
public OracleRowUpdatedEventArgs(DataRow row,IDbCommand command,
 StatementType statementType, DataTableMapping tableMapping);

Parameters

• row

The DataRow sent for Update.

• command

The IDbCommand executed during the Update.

• statementType

The StatementType Enumeration value indicating the type of SQL statement
executed.

• tableMapping

The DataTableMapping used for the Update.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatedEventArgs Class

• OracleRowUpdatedEventArgs Members

Chapter 7
OracleRowUpdatedEventArgs Class

7-528

OracleRowUpdatedEventArgs Static Methods
The OracleRowUpdatedEventArgs static method is listed in Table 7-159.

Table 7-159 OracleRowUpdatedEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatedEventArgs Class

• OracleRowUpdatedEventArgs Members

OracleRowUpdatedEventArgs Properties
The OracleRowUpdatedEventArgs properties are listed in Table 7-160.

Table 7-160 OracleRowUpdatedEventArgs Properties

Property Description

Command Specifies the OracleCommand that is used when
OracleDataAdapter.Update() is called

Errors Inherited from System.Data.Common.RowUpdatedEventArgs
RecordsAffected Inherited from System.Data.Common.RowUpdatedEventArgs
Row Inherited from System.Data.Common.RowUpdatedEventArgs
StatementType Inherited from System.Data.Common.RowUpdatedEventArgs
Status Inherited from System.Data.Common.RowUpdatedEventArgs
TableMapping Inherited from System.Data.Common.RowUpdatedEventArgs

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatedEventArgs Class

• OracleRowUpdatedEventArgs Members

Chapter 7
OracleRowUpdatedEventArgs Class

7-529

Command
This property specifies the OracleCommand that is used when
OracleDataAdapter.Update() is called.

Declaration

// C#
public new OracleCommand Command {get;}

Property Value

The OracleCommand executed when Update is called.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatedEventArgs Class

• OracleRowUpdatedEventArgs Members

OracleRowUpdatedEventArgs Public Methods
The OracleRowUpdatedEventArgs properties are listed in Table 7-161.

Table 7-161 OracleRowUpdatedEventArgs Public Methods

Public Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatedEventArgs Class

• OracleRowUpdatedEventArgs Members

Chapter 7
OracleRowUpdatedEventArgs Class

7-530

OracleRowUpdatedEventHandler Delegate
The OracleRowUpdatedEventHandler delegate represents the signature of the method that
handles the OracleDataAdapter.RowUpdated event.

Declaration

// C#
public delegate void OracleRowUpdatedEventHandler(object sender,
 OracleRowUpdatedEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Parameters

• sender

The source of the event.

• eventArgs

The OracleRowUpdatedEventArgs object that contains the event data.

Remarks

Event callbacks can be registered through this event delegate for applications that wish to be
notified after a row is updated.

In the .NET framework, the convention of an event delegate requires two parameters: the
object that raises the event and the event data.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "RowUpdated"

Chapter 7
OracleRowUpdatedEventHandler Delegate

7-531

OracleRowUpdatingEventArgs Class
The OracleRowUpdatingEventArgs class provides event data for the
OracleDataAdapter.RowUpdating event.

Class Inheritance

System.Object
 System.EventArgs
 System.RowUpdatingEventArgs
 System.OracleRowUpdatingEventArgs

Declaration

// C#
public sealed class OracleRowUpdatingEventArgs : RowUpdatingEventArgs

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

The example for the RowUpdated event shows how to use
OracleRowUpdatingEventArgs. See RowUpdated event "Example".

Chapter 7
OracleRowUpdatingEventArgs Class

7-532

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatingEventArgs Members

• OracleRowUpdatingEventArgs Constructor

• OracleRowUpdatingEventArgs Static Methods

• OracleRowUpdatingEventArgs Properties

• OracleRowUpdatingEventArgs Public Methods

• "OracleDataAdapter Class "

OracleRowUpdatingEventArgs Members
OracleRowUpdatingEventArgs members are listed in the following tables.

OracleRowUpdatingEventArgs Constructors

OracleRowUpdatingEventArgs constructors are listed in Table 7-162.

Table 7-162 OracleRowUpdatingEventArgs Constructors

Constructor Description

OracleRowUpdatingEventArgs
Constructor

Instantiates a new instance of
OracleRowUpdatingEventArgs class (Overloaded)

OracleRowUpdatingEventArgs Static Methods

The OracleRowUpdatingEventArgs static methods are listed in Table 7-163.

Table 7-163 OracleRowUpdatingEventArgs Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

OracleRowUpdatingEventArgs Properties

The OracleRowUpdatingEventArgs properties are listed in Table 7-164.

Table 7-164 OracleRowUpdatingEventArgs Properties

Property Description

Command Specifies the OracleCommand that is used when the
OracleDataAdapter.Update() is called

Errors Inherited from
System.Data.Common.RowUpdatingEventArgs

Chapter 7
OracleRowUpdatingEventArgs Class

7-533

Table 7-164 (Cont.) OracleRowUpdatingEventArgs Properties

Property Description

Row Inherited from
System.Data.Common.RowUpdatingEventArgs

StatementType Inherited from
System.Data.Common.RowUpdatingEventArgs

Status Inherited from
System.Data.Common.RowUpdatingEventArgs

TableMapping Inherited from
System.Data.Common.RowUpdatingEventArgs

OracleRowUpdatingEventArgs Public Methods

The OracleRowUpdatingEventArgs public methods are listed in Table 7-165.

Table 7-165 OracleRowUpdatingEventArgs Public Methods

Public Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatingEventArgs Class

OracleRowUpdatingEventArgs Constructor
The OracleRowUpdatingEventArgs constructor creates a new instance of the
OracleRowUpdatingEventArgs class using the supplied data row, IDbCommand, type of
SQL statement, and table mapping.

Declaration

// C#
public OracleRowUpdatingEventArgs(DataRow row, IDbCommand command,
 StatementType statementType, DataTableMapping tableMapping);

Parameters

• row

The DataRow sent for Update.

Chapter 7
OracleRowUpdatingEventArgs Class

7-534

• command

The IDbCommand executed during the Update.

• statementType

The StatementType enumeration value indicating the type of SQL statement executed.

• tableMapping

The DataTableMapping used for the Update.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatingEventArgs Class

• OracleRowUpdatingEventArgs Members

OracleRowUpdatingEventArgs Static Methods
The OracleRowUpdatingEventArgs static method is listed in Table 7-166.

Table 7-166 OracleRowUpdatingEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatingEventArgs Class

• OracleRowUpdatingEventArgs Members

OracleRowUpdatingEventArgs Properties
The OracleRowUpdatingEventArgs properties are listed in Table 7-167.

Table 7-167 OracleRowUpdatingEventArgs Properties

Property Description

Command Specifies the OracleCommand that is used when the
OracleDataAdapter.Update() is called

Errors Inherited from System.Data.Common.RowUpdatingEventArgs

Chapter 7
OracleRowUpdatingEventArgs Class

7-535

Table 7-167 (Cont.) OracleRowUpdatingEventArgs Properties

Property Description

Row Inherited from System.Data.Common.RowUpdatingEventArgs
StatementType Inherited from System.Data.Common.RowUpdatingEventArgs
Status Inherited from System.Data.Common.RowUpdatingEventArgs
TableMapping Inherited from System.Data.Common.RowUpdatingEventArgs

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatingEventArgs Class

• OracleRowUpdatingEventArgs Members

Command
This property specifies the OracleCommand that is used when the
OracleDataAdapter.Update() is called.

Declaration

// C#
public new OracleCommand Command {get; set;}

Property Value

The OracleCommand executed when Update is called.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatingEventArgs Class

• OracleRowUpdatingEventArgs Members

OracleRowUpdatingEventArgs Public Methods
The OracleRowUpdatingEventArgs public methods are listed in Table 7-168.

Chapter 7
OracleRowUpdatingEventArgs Class

7-536

Table 7-168 OracleRowUpdatingEventArgs Public Methods

Public Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatingEventArgs Class

• OracleRowUpdatingEventArgs Members

OracleRowUpdatingEventHandler Delegate
The OracleRowUpdatingEventHandler delegate represents the signature of the method that
handles the OracleDataAdapter.RowUpdating event.

Declaration

// C#
public delegate void OracleRowUpdatingEventHandler (object sender,
 OracleRowUpdatingEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Parameters

• sender

The source of the event.

• eventArgs

Chapter 7
OracleRowUpdatingEventHandler Delegate

7-537

The OracleRowUpdatingEventArgs object that contains the event data.

Remarks

Event callbacks can be registered through this event delegate for applications that
wish to be notified after a row is updated.

In the .NET framework, the convention of an event delegate requires two parameters:
the object that raises the event and the event data.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "RowUpdating"

OracleShardingKey Class
An OracleShardingKey object can represent either a sharding key or a super sharding
key.

Class Inheritance

System.Object
 Oracle.DataAccess.Client.OracleShardingKey

Declaration

// C#
public class OracleShardingKey : IDisposable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Example

// C#

using System;
using Oracle.DataAccess.Client;

Chapter 7
OracleShardingKey Class

7-538

class Sharding
{
 static void Main()
 {
 OracleConnection con = new OracleConnection("user id=hr;password=hr;Data
Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32, 123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection
 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleShardingKey Members

• OracleShardingKey Constructors

• OracleShardingKey Instance Methods

OracleShardingKey Members
OracleShardingKey members are listed in the following tables.

OracleShardingKey Constructors

OracleShardingKey constructors are listed in Table 7-169.

Table 7-169 OracleShardingKey Constructors

Constructor Description

OracleShardingKey Constructors Instantiates a new instance of OracleShardingKey class
(Overloaded)

OracleShardingKey Instance Methods

OracleShardingKey instance methods are listed in Table 7-170.

Chapter 7
OracleShardingKey Class

7-539

Table 7-170 OracleShardingKey Instance Methods

Method Description

SetShardingKey(OracleDbType,
object)

Enables applications to set a key within the
OracleShardingKey object

Dispose Enables applications to explicitly dispose the
OracleShardingKey object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleShardingKey Class

OracleShardingKey Constructors
OracleShardingKey constructors instantiate new instances of the OracleShardingKey
class.

Overload List:

• OracleShardingKey()

This constructor instantiates a new instance of OracleShardingKey class.

• OracleShardingKey(OracleDbType, object)

This constructor instantiates a new instance of the OracleShardingKey class using
the supplied data type and key.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleShardingKey Class

• OracleShardingKey Members

OracleShardingKey()
This constructor enables applications to construct the OracleShardingKey object.

Declaration

// C#
public OracleShardingKey();

Chapter 7
OracleShardingKey Class

7-540

Exceptions

None

Remarks

This constructs an OracleShardingKey without any keys set.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleShardingKey Class

• OracleShardingKey Members

OracleShardingKey(OracleDbType, object)
This constructor enables applications to construct the OracleShardingKey object with the
supplied key.

Declaration

// C#
public OracleShardingKey(OracleDbType type, object key);

Exceptions

InvalidArgumentException – The supplied argument is invalid

Remarks

This constructs an OracleShardingKey with the supplied key set.

Acceptable OracleDbType enumeration values are Byte, Decimal, Double, Int16, In32,
Int64, Single, Varchar2, String, Date, TimeStamp, and Raw.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleShardingKey Class

• OracleShardingKey Members

OracleShardingKey Instance Methods
OracleShardingKey instance methods are listed in Table 7-171.

Chapter 7
OracleShardingKey Class

7-541

Table 7-171 OracleShardingKey Instance Methods

Instance Method Description

SetShardingKey(OracleD
bType, object)

Enables applications to set a key within the OracleShardingKey
object

Dispose Enables applications to explicitly dispose the OracleShardingKey
object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleShardingKey Class

• OracleShardingKey Members

SetShardingKey(OracleDbType, object)
This instance method enables applications to set a key within the OracleShardingKey
object.

Declaration

// C#
public void SetShardingKey(OracleDbType type, object key);

Exceptions

InvalidArgumentException – The supplied argument is invalid

Remarks

This method sets a key within the OracleShardingKey object.

Acceptable OracleDbType enumeration values are Byte, Decimal, Double, Int16, In32,
Int64, Single, Varchar2, String, Date, TimeStamp, and Raw.

This can be called multiple times to construct a composite key.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleShardingKey Class

• OracleShardingKey Members

Chapter 7
OracleShardingKey Class

7-542

Dispose
This instance method enables applications to explicitly dispose the OracleShardingKey
object.

Declaration

// C#
public void Dispose();

Exceptions

None

Remarks

This method disposes the OracleShardingKey object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleShardingKey Class

• OracleShardingKey Members

OracleTransaction Class
An OracleTransaction object represents a local transaction.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.Data.Common.DbTransaction
 Oracle.DataAccess.Client.OracleTransaction

Declaration

// C#
public sealed class OracleTransaction : DbTransaction

// C#
public sealed class OracleTransaction : MarshalByRefObject,
 IDbTransaction, IDisposable

Chapter 7
OracleTransaction Class

7-543

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The application calls BeginTransaction on the OracleConnection object to create an
OracleTransaction object. The OracleTransaction object can be created in Read
Committed mode only. Any other mode results in an exception.

The execution of a DDL statement in the context of a transaction is not recommended
since it results in an implicit commit that is not reflected in the state of the
OracleTransaction object.

All operations related to savepoints pertain to the current local transaction. Operations
like commit and rollback performed on the transaction have no effect on data in any
existing DataSet.

Example

// Database Setup, if you have not done so yet.
/*
connect scott/tiger@oracle
DROP TABLE MyTable;
CREATE TABLE MyTable (MyColumn NUMBER);
--CREATE TABLE MyTable (MyColumn NUMBER PRIMARY KEY);

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleTransactionSample
{
 static void Main()
 {
 // Drop & Create MyTable as indicated Database Setup, at beginning

 // This sample starts a transaction and inserts two records with the same
 // value for MyColumn into MyTable.

Chapter 7
OracleTransaction Class

7-544

 // If MyColumn is not a primary key, the transaction will commit.
 // If MyColumn is a primary key, the second insert will violate the
 // unique constraint and the transaction will rollback.

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = con.CreateCommand();

 // Check the number of rows in MyTable before transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 int myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Print the number of rows in MyTable
 Console.WriteLine("myTableCount = " + myTableCount);

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(
 IsolationLevel.ReadCommitted);

 try
 {
 // Insert the same row twice into MyTable
 cmd.CommandText = "INSERT INTO MyTable VALUES (1)";
 cmd.ExecuteNonQuery();
 cmd.ExecuteNonQuery(); // This may throw an exception
 txn.Commit();
 }
 catch (Exception e)
 {
 // Print the exception message
 Console.WriteLine("e.Message = " + e.Message);

 // Rollback the transaction
 txn.Rollback();
 }

 // Check the number of rows in MyTable after transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Prints the number of rows
 // If MyColumn is not a PRIMARY KEY, the value should increase by two.
 // If MyColumn is a PRIMARY KEY, the value should remain same.
 Console.WriteLine("myTableCount = " + myTableCount);

 txn.Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

Not supported in a .NET stored procedure

Chapter 7
OracleTransaction Class

7-545

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Members

• OracleTransaction Static Methods

• OracleTransaction Properties

OracleTransaction Members
OracleTransaction members are listed in the following tables.

OracleTransaction Static Methods

The OracleTransaction static method is listed in Table 7-172.

Table 7-172 OracleTransaction Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleTransaction Properties

OracleTransaction properties are listed in Table 7-173.

Table 7-173 OracleTransaction Properties

Property Description

IsolationLevel Specifies the isolation level for the transaction

Connection Specifies the connection that is associated with the
transaction

OracleTransaction Public Methods

OracleTransaction public methods are listed in Table 7-174.

Table 7-174 OracleTransaction Public Methods

Public Method Description

Commit Commits the database transaction

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Frees the resources used by the OracleTransaction

object

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

Chapter 7
OracleTransaction Class

7-546

Table 7-174 (Cont.) OracleTransaction Public Methods

Public Method Description

GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
Rollback Rolls back a database transaction (Overloaded)

Save Creates a savepoint within the current transaction

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

OracleTransaction Static Methods
The OracleTransaction static method is listed in Table 7-175.

Table 7-175 OracleTransaction Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

OracleTransaction Properties
OracleTransaction properties are listed in Table 7-176.

Chapter 7
OracleTransaction Class

7-547

Table 7-176 OracleTransaction Properties

Property Description

IsolationLevel Specifies the isolation level for the transaction

Connection Specifies the connection that is associated with the transaction

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

IsolationLevel
This property specifies the isolation level for the transaction.

Declaration

// C#
public override IsolationLevel IsolationLevel {get;}

Property Value

IsolationLevel

Implements

IDbTransaction

Exceptions

InvalidOperationException - The transaction has already completed.

Remarks

Default = IsolationLevel.ReadCommitted

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

Chapter 7
OracleTransaction Class

7-548

Connection
This property specifies the connection that is associated with the transaction.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

Connection

Implements

IDbTransaction

Remarks

This property indicates the OracleConnection object that is associated with the transaction.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

OracleTransaction Public Methods
OracleTransaction public methods are listed in Table 7-177.

Table 7-177 OracleTransaction Public Methods

Public Method Description

Commit Commits the database transaction

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Frees the resources used by the OracleTransaction object

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
Rollback Rolls back a database transaction (Overloaded)

Save Creates a savepoint within the current transaction

Chapter 7
OracleTransaction Class

7-549

Table 7-177 (Cont.) OracleTransaction Public Methods

Public Method Description

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

Commit
This method commits the database transaction.

Declaration

// C#
public override void Commit();

Implements

IDbTransaction

Exceptions

InvalidOperationException - The transaction has already been completed
successfully, has been rolled back, or the associated connection is closed.

Remarks

Upon a successful commit, the transaction enters a completed state.

Example

// Database Setup, if you have not done so yet
/*
connect scott/tiger@oracle
DROP TABLE MyTable;
CREATE TABLE MyTable (MyColumn NUMBER);
--CREATE TABLE MyTable (MyColumn NUMBER PRIMARY KEY);

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class CommitSample

Chapter 7
OracleTransaction Class

7-550

{
 static void Main()
 {
 // Drop & Create MyTable as indicated in Database Setup, at beginning

 // This sample starts a transaction and inserts two records with the same
 // value for MyColumn into MyTable.
 // If MyColumn is not a primary key, the transaction will commit.
 // If MyColumn is a primary key, the second insert will violate the
 // unique constraint and the transaction will rollback.

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = con.CreateCommand();

 // Check the number of rows in MyTable before transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 int myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Print the number of rows in MyTable
 Console.WriteLine("myTableCount = " + myTableCount);

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(
 IsolationLevel.ReadCommitted);

 try
 {
 // Insert the same row twice into MyTable
 cmd.CommandText = "INSERT INTO MyTable VALUES (1)";
 cmd.ExecuteNonQuery();
 cmd.ExecuteNonQuery(); // This may throw an exception
 txn.Commit();
 }
 catch (Exception e)
 {
 // Print the exception message
 Console.WriteLine("e.Message = " + e.Message);

 // Rollback the transaction
 txn.Rollback();
 }

 // Check the number of rows in MyTable after transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Prints the number of rows
 // If MyColumn is not a PRIMARY KEY, the value should increase by two.
 // If MyColumn is a PRIMARY KEY, the value should remain same.
 Console.WriteLine("myTableCount = " + myTableCount);

 txn.Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();

Chapter 7
OracleTransaction Class

7-551

 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

Dispose
This method frees the resources used by the OracleTransaction object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

This method releases both the managed and unmanaged resources held by the
OracleTransaction object. If the transaction is not in a completed state, an attempt to
rollback the transaction is made.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

Rollback
Rollback rolls back a database transaction.

Overload List:

• Rollback()

This method rolls back a database transaction.

• Rollback(string)

Chapter 7
OracleTransaction Class

7-552

This method rolls back a database transaction to a savepoint within the current
transaction.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

Rollback()
This method rolls back a database transaction.

Declaration

// C#
public override void Rollback();

Implements

IDbTransaction

Exceptions

InvalidOperationException - The transaction has already been completed successfully, has
been rolled back, or the associated connection is closed.

Remarks

After a Rollback(), the OracleTransaction object can no longer be used because the
Rollback ends the transaction.

Example

// Database Setup, if you have not done so yet.
/*
connect scott/tiger@oracle
DROP TABLE MyTable;
CREATE TABLE MyTable (MyColumn NUMBER);

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class RollbackSample
{
 static void Main()
 {
 // Drop & Create MyTable as indicated previously in Database Setup

Chapter 7
OracleTransaction Class

7-553

 // This sample starts a transaction and inserts one record into MyTable.
 // It then rollsback the transaction, the number of rows remains the same

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = con.CreateCommand();

 // Check the number of rows in MyTable before transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 int myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Print the number of rows in MyTable
 Console.WriteLine("myTableCount = " + myTableCount);

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(
 IsolationLevel.ReadCommitted);

 // Insert a row into MyTable
 cmd.CommandText = "INSERT INTO MyTable VALUES (1)";
 cmd.ExecuteNonQuery();

 // Rollback the transaction
 txn.Rollback();

 // Check the number of rows in MyTable after transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Prints the number of rows, should remain the same
 Console.WriteLine("myTableCount = " + myTableCount);

 txn.Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

Rollback(string)
This method rolls back a database transaction to a savepoint within the current
transaction.

Chapter 7
OracleTransaction Class

7-554

Declaration

// C#
public override void Rollback(string savepointName);

Parameters

• savepointName

The name of the savepoint to rollback to, in the current transaction.

Exceptions

InvalidOperationException - The transaction has already been completed successfully, has
been rolled back, or the associated connection is closed.

Remarks

After a rollback to a savepoint, the current transaction remains active and can be used for
further operations.

The savepointName specified does not have to match the case of the savepointName created
using the Save method, since savepoints are created in the database in a case-insensitive
manner.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

Save
This method creates a savepoint within the current transaction.

Declaration

// C#
public void Save(string savepointName);

Parameters

• savepointName

The name of the savepoint being created in the current transaction.

Exceptions

InvalidOperationException - The transaction has already been completed.

Chapter 7
OracleTransaction Class

7-555

Remarks

After creating a savepoint, the transaction does not enter a completed state and can
be used for further operations.

The savepointName specified is created in the database in a case-insensitive manner.
Calling the Rollback method rolls back to savepointName. This allows portions of a
transaction to be rolled back, instead of the entire transaction.

Example

// Database Setup, if you have not done so yet.
/*
connect scott/tiger@oracle
DROP TABLE MyTable;
CREATE TABLE MyTable (MyColumn NUMBER);

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class SaveSample
{
 static void Main()
 {
 // Drop & Create MyTable as indicated in Database Setup, at beginning

 // This sample starts a transaction and creates a savepoint after
 // inserting one record into MyTable.
 // After inserting the second record it rollsback to the savepoint
 // and commits the transaction. Only the first record will be inserted

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = con.CreateCommand();

 // Check the number of rows in MyTable before transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 int myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Print the number of rows in MyTable
 Console.WriteLine("myTableCount = " + myTableCount);

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(
 IsolationLevel.ReadCommitted);

 // Insert a row into MyTable
 cmd.CommandText = "INSERT INTO MyTable VALUES (1)";
 cmd.ExecuteNonQuery();

 // Create a savepoint
 txn.Save("MySavePoint");

Chapter 7
OracleTransaction Class

7-556

 // Insert another row into MyTable
 cmd.CommandText = "insert into mytable values (2)";
 cmd.ExecuteNonQuery();

 // Rollback to the savepoint
 txn.Rollback("MySavePoint");

 // Commit the transaction
 txn.Commit();

 // Check the number of rows in MyTable after transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Prints the number of rows, should have increased by 1
 Console.WriteLine("myTableCount = " + myTableCount);

 txn.Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleTransaction Class

• OracleTransaction Members

OracleConnectionType Enumeration
OracleConnectionType enumerated values specify whether a particular connection object is
associated with an Oracle database connection, a TimesTen database connection, or no
physical connection at all.

Table 7-178 lists all the OracleConnectionType enumeration values with a description of each
enumerated value.

Table 7-178 OracleConnectionType Enumeration Values

Member Name Description

Undefined No connection is associated with the OracleConnection object.

Oracle The OracleConnection object is associated with an Oracle
database.

TimesTen The OracleConnection object is associated with a TimesTen
database.

Chapter 7
OracleConnectionType Enumeration

7-557

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleConnection Class"

• "ConnectionType"

OracleCollectionType Enumeration
OracleCollectionType enumerated values specify whether or not the
OracleParameter object represents a collection, and if so, specifies the collection type.

Table 7-179 lists all the OracleCollectionType enumeration values with a description
of each enumerated value.

Table 7-179 OracleCollectionType Enumeration Values

Member Name Description

None Is not a collection type

PLSQLAssociativeArray Indicates that the collection type is a PL/SQL Associative
Array (or PL/SQL Index-By Table)

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 7
OracleCollectionType Enumeration

7-558

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleParameter Class"

• "CollectionType"

OracleDBAPrivilege Enumeration
OracleDBAPrivilege enumerated values are used to explicitly specify the DBA Privilege
required while creating the OracleCredential object.

Table 7-178 lists all the OracleDBAPrivilege enumeration values with a description of each
enumerated value.

Table 7-180 OracleDBAPrivilege Enumeration Values

Member Name Description

None Default value, no DBA privilege set.

SYSASM SYSASM connection

SYSBACKUP SYSBACKUP connection

SYSDBA SYSDBA connection

SYSDG SYSDG connection

SYSKM SYSKM connection

SYSOPER SYSOPER connection

SYSRAC SYSRAC connection

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 7
OracleDBAPrivilege Enumeration

7-559

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleCredential Class

• DBAPrivilege

OracleDBShutdownMode Enumeration
OracleDBShutdownMode enumerated values specify the database shutdown options.

Table 7-182 lists all the OracleDBShutdownMode enumeration values with a description
of each enumerated value.

Table 7-181 OracleDBShutdownMode Enumeration Values

Member Name Description

Default Refuses new connections and waits for existing connections
to end.

Transactional Refuses new connections and does not allow any new
transactions. Waits for active transactions to commit.

TransactionalLocal Refuses new connections and does not allow any new
transactions. Waits for only local transactions to commit.

Immediate Does not wait for current calls to complete or users to
disconnect from the database. All uncommitted transactions
are terminated and rolled back.

Final Shuts down the database. Used in the second call for
shutdown after the database has been closed and
dismounted.

Abort Does not wait for current calls to complete or users to
disconnect from the database. All uncommitted transactions
are terminated and are not rolled back.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Chapter 7
OracleDBShutdownMode Enumeration

7-560

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleConnection Class"

• "Shutdown"

OracleDBStartupMode Enumeration
OracleDBStartupMode enumerated values specify the database startup options.

Table 7-182 lists all the OracleDBStartupMode enumeration values with a description of each
enumerated value.

Table 7-182 OracleDBStartupMode Enumeration Values

Member Name Description

NoRestriction Starts the database and allows access to all users.

Restrict Starts the database and allows database access only to users
having the CREATE SESSION and RESTRICTED SESSION
privileges. These privileges are normally assigned to database
administrators.

Force Shuts down a running instance in abort mode and starts a new
instance.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleConnection Class"

• "Startup"

Chapter 7
OracleDBStartupMode Enumeration

7-561

OracleDbType Enumeration
OracleDbType enumerated values are used to explicitly specify the OracleDbType of an
OracleParameter.

Table 7-183 lists all the OracleDbType enumeration values with a description of each
enumerated value.

Table 7-183 OracleDbType Enumeration Values

Member Name Description

Array Oracle Collection (VArray or Nested Table)

BFile Oracle BFILE type

BinaryFloat Oracle BINARY_FLOAT type

BinaryDouble Oracle BINARY_DOUBLE type

Blob Oracle BLOB type

Boolean Oracle BOOLEAN type

Byte byte type

Char Oracle CHAR type

Clob Oracle CLOB type

Date Oracle DATE type

Decimal Oracle NUMBER type

Double 8-byte FLOAT type

Int16 2-byte INTEGER type

Int32 4-byte INTEGER type

Int64 8-byte INTEGER type

IntervalDS Oracle INTERVAL DAY TO SECOND type

IntervalYM Oracle INTERVAL YEAR TO MONTH type

Long Oracle LONG type

Json Oracle JSON type

LongRaw Oracle LONG RAW type

NChar Oracle NCHAR type

NClob Oracle NCLOB type

NVarchar2 Oracle NVARCHAR2 type

Object Oracle Object
Raw Oracle RAW type

Ref Oracle REF
RefCursor Oracle REF CURSOR type

Single 4-byte FLOAT type, supports 6 precisions

TimeStamp Oracle TIMESTAMP type

TimeStampLTZ Oracle TIMESTAMP WITH LOCAL TIME ZONE type

Chapter 7
OracleDbType Enumeration

7-562

Table 7-183 (Cont.) OracleDbType Enumeration Values

Member Name Description

TimeStampTZ Oracle TIMESTAMP WITH TIME ZONE type

Varchar2 Oracle VARCHAR2 type

XmlType Oracle XMLType type

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleParameter Class"

• "OracleParameterCollection Class"

• OracleParameter "OracleDbType "

OracleDRCPPurity Enumeration
OracleDRCPPurity enumerated values specify the session purity.

Table 7-184 lists all the OracleDRCPPurity enumeration values with a description of each
enumerated value.

Table 7-184 OracleDRCPPurity Enumeration Values

Member Name Description

New The application requires a session without any previously set
session state.

Pooled An application can reuse a pooled session (i.e. the session can
have been used before)

Chapter 7
OracleDRCPPurity Enumeration

7-563

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleConnection Class"

• DRCPPurity

OracleIdentityType Enumeration
The OracleIdentityType enumeration specifies how Oracle identity column values
are generated.

Table 7-185 lists all the OracleIdentityType enumeration values with a description of
each enumerated value.

Table 7-185 OracleIdentityType Members

Member Name Description

GeneratedAlways Indicates that unique values are generated for every insertion.
No updates or inserts are allowed for this identity column.

GeneratedByDefault Indicates that the values are generated only if no explicit value is
provided for the identity column. Null values are not allowed for
this identity column.

GeneratedByDefaultOnNu
ll

Indicates that the values are generated only if no explicit value is
provided or a NULL is inserted for the identity column.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Chapter 7
OracleIdentityType Enumeration

7-564

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleDataAdapter Class "

• OracleDataAdapter "IdentityInsert"

• OracleDataAdapter "IdentityUpdate"

OracleParameterStatus Enumeration
The OracleParameterStatus enumeration type indicates whether a NULL value is fetched
from a column, or truncation has occurred during the fetch, or a NULL value is to be inserted
into a database column.

Table 7-186 lists all the OracleParameterStatus enumeration values with a description of
each enumerated value.

Table 7-186 OracleParameterStatus Members

Member Name Description

Success Indicates that (for input parameters) the input value has been assigned
to the column. For output parameter, it indicates that the provider
assigned an intact value to the parameter.

NullFetched Indicates that a NULL value has been fetched from a column or an OUT
parameter.

NullInsert Indicates that a NULL value is to be inserted into a column.

Truncation Indicates that truncation has occurred when fetching the data from the
column.

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 7
OracleParameterStatus Enumeration

7-565

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleParameter Class"

• OracleParameter "ArrayBindStatus "

• OracleParameter "Value "

OraclePasswordAuth Enumeration
OraclePasswordAuth enumerated values specify which PASSWORD_AUTH mode must be
enabled for database token authentication. There is no impact on external
authentication. Possible values are:

Table 7-187 lists all the OracleTokenAuth enumeration values with a description of
each enumerated value.

Table 7-187 OraclePasswordAuth Members

Member Name Description

PasswordVerifier Default value. Indicates database authentication is to be used.

OciToken ODP.NET makes REST calls to IAM endpoint to retrieve the
database token for authentication.

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAccessToken Class

• OracleRefreshAccessTokenEventArgs Class

Chapter 7
OraclePasswordAuth Enumeration

7-566

OracleTokenAuth Enumeration
OracleTokenAuth enumerated values are used to explicitly specify which TOKEN_AUTH mode
needs to be enabled for token authentication. Possible values for this enumeration are:

Table 7-188 lists all the OracleTokenAuth enumeration values with a description of each
enumerated value.

Table 7-188 OracleTokenAuth Members

Member Name Description

Disabled Default value. Token authentication is DISABLED.

OciToken Token authentication is enabled for Oracle Identity and Access
Management.

OAuth Token authentication enabled for Azure Active Directory.

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAccessToken Class

• OracleRefreshAccessTokenEventArgs Class

Chapter 7
OracleTokenAuth Enumeration

7-567

8
Oracle Data Provider for .NET XML-Related
Classes

This chapter describes ODP.NET XML-related classes and enumerations.

This chapter contains these topics:

• OracleXmlCommandType Enumeration

• OracleXmlQueryProperties Class

• OracleXmlSaveProperties Class

• OracleXmlStream Class

• OracleXmlType Class

All offsets are 0-based for OracleXmlStream object parameters.

OracleXmlCommandType Enumeration
The OracleXmlCommandType enumeration specifies the values that are allowed for the
XmlCommandType property of the OracleCommand class. It is used to specify the type of XML
operation.

Table 8-1 lists all the OracleXmlCommandType enumeration values with a description of each
enumerated value.

Table 8-1 OracleXmlCommandType Members

Member Name Description

None No XML operation is desired

Query The command text is a SQL query and the result of the query is an
XML document. The SQL query needs to be a select statement

Insert The command text is an XML document containing rows to insert.

Update The command text is an XML document containing rows to update.

Delete The command text is an XML document containing rows to delete.

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

8-1

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

"Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

OracleXmlQueryProperties Class
An OracleXmlQueryProperties object represents the XML properties used by the
OracleCommand class when the XmlCommandType property is Query.

Class Inheritance

System.Object
 System.OracleXmlQueryProperties

Declaration

public sealed class OracleXmlQueryProperties : ICloneable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleXmlQueryProperties can be accessed, and modified using the
XmlQueryProperties property of the OracleCommand class. Each OracleCommand object
has its own instance of the OracleXmlQueryProperties class in the
XmlQueryProperties property.

Chapter 8
OracleXmlQueryProperties Class

8-2

Use the default constructor to get a new instance of the OracleXmlQueryProperties. Use the
OracleXmlQueryProperties.Clone() method to get a copy of an OracleXmlQueryProperties
instance.

Example

This example retrieves relational data as XML.

// C#

using System;
using System.IO;
using System.Data;
using System.Xml;
using System.Text;
using Oracle.DataAccess.Client;

class OracleXmlQueryPropertiesSample
{
 static void Main()
 {
 int rows = 0;
 StreamReader sr = null;

 // Define the XSL document for doing the transform.
 string xslstr = "<?xml version='1.0'?>\n" +
 "<xsl:stylesheet version=\"1.0\"" +
 " xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">\n" +
 " <xsl:output encoding=\"utf-8\"/>\n" +
 " <xsl:template match=\"/\">\n" +
 " <EMPLOYEES>\n" +
 " <xsl:apply-templates select=\"ROWSET\"/>\n" +
 " </EMPLOYEES>\n" +
 " </xsl:template>\n" +
 " <xsl:template match=\"ROWSET\">\n" +
 " <xsl:apply-templates select=\"ROW\"/>\n" +
 " </xsl:template>\n" +
 " <xsl:template match=\"ROW\">\n" +
 " <EMPLOYEE>\n" +
 " <EMPLOYEE_ID>\n" +
 " <xsl:apply-templates select=\"EMPNO\"/>\n" +
 " </EMPLOYEE_ID>\n" +
 " <EMPLOYEE_NAME>\n" +
 " <xsl:apply-templates select=\"ENAME\"/>\n" +
 " </EMPLOYEE_NAME>\n" +
 " <HIRE_DATE>\n" +
 " <xsl:apply-templates select=\"HIREDATE\"/>\n" +
 " </HIRE_DATE>\n" +
 " <JOB_TITLE>\n" +
 " <xsl:apply-templates select=\"JOB\"/>\n" +
 " </JOB_TITLE>\n" +
 " </EMPLOYEE>\n" +
 " </xsl:template>\n" +
 "</xsl:stylesheet>\n";

 // Create the connection.
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Set the date, and timestamp formats for Oracle 9i Release 2, or later.

Chapter 8
OracleXmlQueryProperties Class

8-3

 // This is just needed for queries.
 if (!con.ServerVersion.StartsWith("9.0") &&
 !con.ServerVersion.StartsWith("8.1"))
 {
 OracleGlobalization sessionParams = con.GetSessionInfo();
 sessionParams.DateFormat = "YYYY-MM-DD\"T\"HH24:MI:SS";
 sessionParams.TimeStampFormat = "YYYY-MM-DD\"T\"HH24:MI:SS.FF3";
 sessionParams.TimeStampTZFormat = "YYYY-MM-DD\"T\"HH24:MI:SS.FF3";
 con.SetSessionInfo(sessionParams);
 }

 // Create the command.
 OracleCommand cmd = new OracleCommand("", con);

 // Set the XML command type to query.
 cmd.XmlCommandType = OracleXmlCommandType.Query;

 // Set the SQL query.
 cmd.CommandText = "select * from emp e where e.empno = :empno";

 // Set command properties that affect XML query behaviour.
 cmd.BindByName = true;

 // Bind values to the parameters in the SQL query.
 Int32 empNum = 7369;
 cmd.Parameters.Add("empno", OracleDbType.Int32, empNum,
 ParameterDirection.Input);

 // Set the XML query properties.
 cmd.XmlQueryProperties.MaxRows = 1;
 cmd.XmlQueryProperties.RootTag = "ROWSET";
 cmd.XmlQueryProperties.RowTag = "ROW";
 cmd.XmlQueryProperties.Xslt = xslstr;

 // Test query execution without returning a result.
 Console.WriteLine("SQL query: select * from emp e where e.empno = 7369");
 Console.WriteLine("Maximum rows: all rows (-1)");
 Console.WriteLine("Return Value from OracleCommand.ExecuteNonQuery():");
 rows = cmd.ExecuteNonQuery();
 Console.WriteLine(rows);
 Console.WriteLine("\n");

 // Get the XML document as an XmlReader.
 Console.WriteLine("SQL query: select * from emp e where e.empno = 7369");
 Console.WriteLine("Maximum rows: all rows (-1)");
 Console.WriteLine("XML Document from OracleCommand.ExecuteXmlReader():");

 XmlReader xmlReader = cmd.ExecuteXmlReader();
 XmlDocument xmlDocument = new XmlDocument();
 xmlDocument.PreserveWhitespace = true;
 xmlDocument.Load(xmlReader);
 Console.WriteLine(xmlDocument.OuterXml);
 Console.WriteLine("\n");

 // Change the SQL query, and set the maximum number of rows to 2.
 cmd.CommandText = "select * from emp e";
 cmd.Parameters.Clear();
 cmd.XmlQueryProperties.MaxRows = 2;

 // Get the XML document as a Stream.
 Console.WriteLine("SQL query: select * from emp e");

Chapter 8
OracleXmlQueryProperties Class

8-4

 Console.WriteLine("Maximum rows: 2");
 Console.WriteLine("XML Document from OracleCommand.ExecuteStream():");
 Stream stream = cmd.ExecuteStream();
 sr = new StreamReader(stream, Encoding.Unicode);
 Console.WriteLine(sr.ReadToEnd());
 Console.WriteLine("\n");

 // Get all the rows.
 cmd.XmlQueryProperties.MaxRows = -1;

 // Append the XML document to an existing Stream.
 Console.WriteLine("SQL query: select * from emp e");
 Console.WriteLine("Maximum rows: all rows (-1)");
 Console.WriteLine("XML Document from OracleCommand.ExecuteToStream():");
 MemoryStream mstream = new MemoryStream(32);
 cmd.ExecuteToStream(mstream);
 mstream.Seek(0, SeekOrigin.Begin);
 sr = new StreamReader(mstream, Encoding.Unicode);
 Console.WriteLine(sr.ReadToEnd());
 Console.WriteLine("\n");

 // Clean up.
 cmd.Dispose();
 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Members

• OracleXmlQueryProperties Constructor

• OracleXmlQueryProperties Properties

• OracleXmlQueryProperties Public Methods

OracleXmlQueryProperties Members
OracleXmlQueryProperties members are listed in the following tables.

OracleXmlQueryProperties Constructors

The OracleXmlQueryProperties constructors are listed in Table 8-2.

Table 8-2 OracleXmlQueryProperties Constructors

Constructor Description

OracleXmlQueryProperties
Constructor

Instantiates a new instance of the
OracleXmlQueryProperties class

Chapter 8
OracleXmlQueryProperties Class

8-5

OracleXmlQueryProperties Properties

The OracleXmlQueryProperties properties are listed in Table 8-3.

Table 8-3 OracleXmlQueryProperties Properties

Name Description

MaxRows Specifies the maximum number of rows from the result
set of the query that can be represented in the result
XML document

RootTag Specifies the root element of the result XML document

RowTag Specifies the value of the XML element which identifies a
row of data from the result set in an XML document

Xslt Specifies the XSL document used for XML
transformation using XSLT

XsltParams Specifies parameters for the XSL document

OracleXmlQueryProperties Public Methods

The OracleXmlQueryProperties public methods are listed in Table 8-4.

Table 8-4 OracleXmlQueryProperties Public Methods

Name Description

Clone Creates a copy of an OracleXmlQueryProperties
object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Class

OracleXmlQueryProperties Constructor
The OracleXmlQueryProperties constructor instantiates a new instance of the
OracleXmlQueryProperties class.

Declaration

// C#
public OracleXmlQueryProperties();

Chapter 8
OracleXmlQueryProperties Class

8-6

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Class

• OracleXmlQueryProperties Members

OracleXmlQueryProperties Properties
The OracleXmlQueryProperties properties are listed in Table 8-5.

Table 8-5 OracleXmlQueryProperties Properties

Name Description

MaxRows Specifies the maximum number of rows from the result set of the query that
can be represented in the result XML document

RootTag Specifies the root element of the result XML document

RowTag Specifies the value of the XML element which identifies a row of data from
the result set in an XML document

Xslt Specifies the XSL document used for XML transformation using XSLT

XsltParams Specifies parameters for the XSL document

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Class

• OracleXmlQueryProperties Members

MaxRows
This property specifies the maximum number of rows from the result set of the query that can
be represented in the result XML document.

Declaration

// C#
public int MaxRows {get; set;}

Property Value

The maximum number of rows.

Chapter 8
OracleXmlQueryProperties Class

8-7

Exceptions

ArgumentException - The new value for MaxRows is not valid.

Remarks

Default value is -1.

Possible values are:

• -1 (all rows).

• A number greater than or equal to 0.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Class

• OracleXmlQueryProperties Members

RootTag
This property specifies the root element of the result XML document.

Declaration

// C#
public string RootTag {get; set;}

Property Value

The root element of the result XML document.

Remarks

The default root tag is ROWSET.

To indicate that no root tag is be used in the result XML document, set this property to
null or "" or String.Empty.

If both RootTag and RowTag are set to null, an XML document is returned only if the
result set returns one row and one column.

Chapter 8
OracleXmlQueryProperties Class

8-8

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Class

• OracleXmlQueryProperties Members

RowTag
This property specifies the value of the XML element which identifies a row of data from the
result set in an XML document.

Declaration

// C#
public string RowTag {get; set;}

Property Value

The value of the XML element.

Remarks

The default is ROW.

To indicate that no row tag is be used in the result XML document, set this property to null or
"" or String.Empty.

If both RootTag and RowTag are set to null, an XML document is returned only if the result set
returns one row and one column.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Class

• OracleXmlQueryProperties Members

Xslt
This property specifies the XSL document used for XML transformation using XSLT.

Declaration

// C#
public string Xslt {get; set;}

Chapter 8
OracleXmlQueryProperties Class

8-9

Property Value

The XSL document used for XML transformation.

Remarks

Default value is null.

The XSL document is used for XML transformation of the XML document generated
from the result set of the query.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Class

• OracleXmlQueryProperties Members

XsltParams
This property specifies parameters for the XSL document.

Declaration

// C#
public string XsltParams {get; set;}

Property Value

The parameters for the XSL document.

Remarks

Default value is null.

The parameters are specified as a string of "name=value" pairs of the form
"param1=value1; param2=value2;..." delimited by semicolons.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Class

• OracleXmlQueryProperties Members

Chapter 8
OracleXmlQueryProperties Class

8-10

OracleXmlQueryProperties Public Methods
The OracleXmlQueryProperties public methods are listed in Table 8-6.

Table 8-6 OracleXmlQueryProperties Public Methods

Name Description

Clone Creates a copy of an OracleXmlQueryProperties object

Clone
This method creates a copy of an OracleXmlQueryProperties object.

Declaration

// C#
public object Clone();

Return Value

An OracleXmlQueryProperties object

Implements

ICloneable

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlQueryProperties Class

• OracleXmlQueryProperties Members

OracleXmlSaveProperties Class
An OracleXmlSaveProperties object represents the XML properties used by the
OracleCommand class when the XmlCommandType property is Insert, Update, or Delete.

Class Inheritance

System.Object
 System.OracleXmlSaveProperties

Declaration

public sealed class OracleXmlSaveProperties : ICloneable

Chapter 8
OracleXmlSaveProperties Class

8-11

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleXmlSaveProperties can be accessed and modified using the
XmlSaveProperties property of the OracleCommand class. Each OracleCommand object
has its own instance of the OracleXmlSaveProperties class in the XmlSaveProperties
property.

Use the default constructor to get a new instance of OracleXmlSaveProperties. Use
the OracleXmlSaveProperties.Clone() method to get a copy of an
OracleXmlSaveProperties instance.

Example

This sample demonstrates how to do inserts, updates, and deletes to a relational table
or view using an XML document.

// C#
/* -- If HR account is being locked, you need to log on as a DBA
 -- to unlock the account first. Unlock a locked users account:

 ALTER USER hr ACCOUNT UNLOCK;
*/

using System;
using Oracle.DataAccess.Client;

class OracleXmlSavePropertiesSample
{
 static void Main()
 {
 string[] KeyColumnsList = null;
 string[] UpdateColumnsList = null;
 int rows = 0;

 // Create the connection.
 string constr = "User Id=hr;Password=hr;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

Chapter 8
OracleXmlSaveProperties Class

8-12

 // Create the command.
 OracleCommand cmd = new OracleCommand("", con);

 // Set the XML command type to insert.
 cmd.XmlCommandType = OracleXmlCommandType.Insert;

 // Set the XML document.
 cmd.CommandText = "<?xml version=\"1.0\"?>\n" +
 "<ROWSET>\n" +
 " <MYROW num = \"1\">\n" +
 " <EMPLOYEE_ID>1234</EMPLOYEE_ID>\n" +
 " <LAST_NAME>Smith</LAST_NAME>\n" +
 " <EMAIL>Smith@Oracle.com</EMAIL>\n" +
 " <HIRE_DATE>1982-01-23T00:00:00.000</HIRE_DATE>\n" +
 " <JOB_ID>IT_PROG</JOB_ID>\n" +
 " </MYROW>\n" +
 " <MYROW num = \"2\">\n" +
 " <EMPLOYEE_ID>1235</EMPLOYEE_ID>\n" +
 " <LAST_NAME>Barney</LAST_NAME>\n" +
 " <EMAIL>Barney@Oracle.com</EMAIL>\n" +
 " <HIRE_DATE>1982-01-23T00:00:00.000</HIRE_DATE>\n" +
 " <JOB_ID>IT_PROG</JOB_ID>\n" +
 " </MYROW>\n" +
 "</ROWSET>\n";

 // Set the XML save properties.
 KeyColumnsList = new string[1];
 KeyColumnsList[0] = "EMPLOYEE_ID";
 UpdateColumnsList = new string[5];
 UpdateColumnsList[0] = "EMPLOYEE_ID";
 UpdateColumnsList[1] = "LAST_NAME";
 UpdateColumnsList[2] = "EMAIL";
 UpdateColumnsList[3] = "HIRE_DATE";
 UpdateColumnsList[4] = "JOB_ID";
 cmd.XmlSaveProperties.KeyColumnsList = KeyColumnsList;
 cmd.XmlSaveProperties.RowTag = "MYROW";
 cmd.XmlSaveProperties.Table = "employees";
 cmd.XmlSaveProperties.UpdateColumnsList = UpdateColumnsList;
 cmd.XmlSaveProperties.Xslt = null;
 cmd.XmlSaveProperties.XsltParams = null;

 // Do the inserts.
 rows = cmd.ExecuteNonQuery();
 Console.WriteLine("rows: " + rows);

 // Set the XML command type to update.
 cmd.XmlCommandType = OracleXmlCommandType.Update;

 // Set the XML document.
 cmd.CommandText = "<?xml version=\"1.0\"?>\n" +
 "<ROWSET>\n" +
 " <MYROW num = \"1\">\n" +
 " <EMPLOYEE_ID>1234</EMPLOYEE_ID>\n" +
 " <LAST_NAME>Adams</LAST_NAME>\n" +
 " </MYROW>\n" +
 "</ROWSET>\n";

 // Set the XML save properties.
 KeyColumnsList = new string[1];
 KeyColumnsList[0] = "EMPLOYEE_ID";
 UpdateColumnsList = new string[1];

Chapter 8
OracleXmlSaveProperties Class

8-13

 UpdateColumnsList[0] = "LAST_NAME";
 cmd.XmlSaveProperties.KeyColumnsList = KeyColumnsList;
 cmd.XmlSaveProperties.UpdateColumnsList = UpdateColumnsList;
 rows = cmd.ExecuteNonQuery();
 Console.WriteLine("rows: " + rows);

 // Set the XML command type to delete.
 cmd.XmlCommandType = OracleXmlCommandType.Delete;

 // Set the XML document.
 cmd.CommandText = "<?xml version=\"1.0\"?>\n" +
 "<ROWSET>\n" +
 " <MYROW num = \"1\">\n" +
 " <EMPLOYEE_ID>1234</EMPLOYEE_ID>\n" +
 " </MYROW>\n" +
 " <MYROW num = \"2\">\n" +
 " <EMPLOYEE_ID>1235</EMPLOYEE_ID>\n" +
 " </MYROW>\n" +
 "</ROWSET>\n";

 // Set the XML save properties.
 KeyColumnsList = new string[1];
 KeyColumnsList[0] = "EMPLOYEE_ID";
 cmd.XmlSaveProperties.KeyColumnsList = KeyColumnsList;
 cmd.XmlSaveProperties.UpdateColumnsList = null;

 // Do the deletes.
 rows = cmd.ExecuteNonQuery();
 Console.WriteLine("rows: " + rows);

 // Clean up.
 cmd.Dispose();
 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Members

• OracleXmlSaveProperties Constructor

• OracleXmlSaveProperties Properties

• OracleXmlSaveProperties Public Methods

OracleXmlSaveProperties Members
OracleXmlSaveProperties members are listed in the following tables.

OracleXmlSaveProperties Constructor

OracleXmlSaveProperties constructors are listed in Table 8-7

Chapter 8
OracleXmlSaveProperties Class

8-14

Table 8-7 OracleXmlSaveProperties Constructor

Constructor Description

OracleXmlSaveProperties Constructor Instantiates a new instance of the
OracleXmlSaveProperties class

OracleXmlSaveProperties Properties

The OracleXmlSaveProperties properties are listed in Table 8-8.

Table 8-8 OracleXmlSaveProperties Properties

Name Description

KeyColumnsList Specifies the list of columns used as a key to locate existing
rows for update or delete using an XML document

RowTag Specifies the value for the XML element that identifies a row
of data in an XML document

Table Specifies the name of the table or view to which changes are
saved

UpdateColumnsList Specifies the list of columns to update or insert

Xslt Specifies the XSL document used for XML transformation
using XSLT

XsltParams Specifies the parameters for the XSLT document specified in
the Xslt property

OracleXmlSaveProperties Public Methods

The OracleXmlSaveProperties public methods are listed in Table 8-9.

Table 8-9 OracleXmlSaveProperties Public Methods

Name Description

Clone Creates a copy of an OracleXmlSaveProperties object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

OracleXmlSaveProperties Constructor
The OracleXmlSaveProperties constructor instantiates a new instance of
OracleXmlSaveProperties class.

Chapter 8
OracleXmlSaveProperties Class

8-15

Declaration

// C#
public OracleXmlSaveProperties;

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

OracleXmlSaveProperties Properties
The OracleXmlSaveProperties properties are listed in Table 8-10.

Table 8-10 OracleXmlSaveProperties Properties

Name Description

KeyColumnsList Specifies the list of columns used as a key to locate existing rows for
update or delete using an XML document

RowTag Specifies the value for the XML element that identifies a row of data
in an XML document

Table Specifies the name of the table or view to which changes are saved

UpdateColumnsList Specifies the list of columns to update or insert

Xslt Specifies the XSL document used for XML transformation using
XSLT

XsltParams Specifies the parameters for the XSLT document specified in the Xslt
property

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

KeyColumnsList
This property specifies the list of columns used as a key to locate existing rows for
update or delete using an XML document.

Chapter 8
OracleXmlSaveProperties Class

8-16

Declaration

// C#
public string[] KeyColumnsList {get; set;}

Property Value

The list of columns.

Remarks

Default value is null.

The first null value (if any) terminates the list.

KeyColumnsList usage with XMLCommandType property values:

• Insert - KeyColumnsList is ignored and can be null.

• Update - KeyColumnsList must be specified; it identifies the columns to use to find the
rows to be updated.

• Delete - If KeyColumnsList is null, all the column values in each row element in the XML
document are used to locate the rows to delete. Otherwise, KeyColumnsList specifies the
columns used to identify the rows to delete.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

RowTag
This property specifies the value for the XML element that identifies a row of data in an XML
document.

Declaration

// C#
public string RowTag {get; set;}

Property Value

An XML element name.

Remarks

The default value is ROW.

Each element in the XML document identifies one row in a table or view.

Chapter 8
OracleXmlSaveProperties Class

8-17

If RowTag is set to "" or null, no row tag is used in the XML document. In this case,
the XML document is assumed to contain only one row.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

Table
This property specifies the name of the table or view to which changes are saved.

Declaration

// C#
public string Table {get; set;}

Property Value

A table name.

Remarks

Default value is null.

The property must be set to a valid table or view name.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

UpdateColumnsList
This property specifies the list of columns to update or insert.

Declaration

// C#
public string[] UpdateColumnsList {get; set;}

Property Value

A list of columns.

Chapter 8
OracleXmlSaveProperties Class

8-18

Remarks

Default value is null.

The first null value (if any) terminates the list.

UpdateColumnList usage with XMLCommandType property values:

• Insert - UpdateColumnList indicates which columns are assigned values when a new
row is created. If UpdateColumnList is null, then all columns are assigned values. If a
column is on the UpdateColumnList, but no value is specified for the row in the XML file,
then NULL is used. If a column is not on the UpdateColumnList, then the default value for
that column is used.

• Update - UpdateColumnList specifies columns to modify for each row of data in the XML
document. If UpdateColumnList is null, all the values in each XML element in the XML
document are used to modify the columns.

• Delete - UpdateColumnsList is ignored and can be null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

Xslt
This property specifies the XSL document used for XML transformation using XSLT.

Declaration

// C#
public string Xslt {get; set;}

Property Value

The XSL document used for XML transformation.

Remarks

Default = null.

The XSL document is used for XSLT transformation of a given XML document. The
transformed XML document is used to save changes to the table or view.

Chapter 8
OracleXmlSaveProperties Class

8-19

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

XsltParams
This property specifies the parameters for the XSLT document specified in the Xslt
property.

Declaration

// C#
public string XsltParams {get; set;}

Property Value

The parameters for the XSLT document.

Remarks

Default is null.

This property is a string delimited by semicolons in "name=value" pairs of the form
"param1=value1; param2=value2; …".

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

OracleXmlSaveProperties Public Methods
The OracleXmlSaveProperties public methods are listed in Table 8-11.

Table 8-11 OracleXmlSaveProperties Public Methods

Name Description

Clone Creates a copy of an OracleXmlSaveProperties object

Chapter 8
OracleXmlSaveProperties Class

8-20

Clone
This method creates a copy of an OracleXmlSaveProperties object.

Declaration

// C#
public object Clone();

Return Value

An OracleXmlSaveProperties object

Implements

ICloneable

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleXmlSaveProperties Class

• OracleXmlSaveProperties Members

OracleXmlStream Class
An OracleXmlStream object represents a read-only stream of XML data stored in an
OracleXmlType object.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.Stream
 System.OracleXmlStream

Declaration

// C#
public sealed class OracleXmlStream : IDisposable, ICloneable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Chapter 8
OracleXmlStream Class

8-21

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Members

• OracleXmlStream Constructor

• OracleXmlStream Static Methods

• OracleXmlStream Instance Properties

• OracleXmlStream Instance Methods

OracleXmlStream Members
OracleXmlStream members are listed in the following tables.

OracleXmlStream Constructors

The OracleXmlStream constructors are listed in Table 8-12.

Table 8-12 OracleXmlStream Constructors

Constructor Description

OracleXmlStream
Constructor

Creates an instance of an OracleXmlStream object which provides a
Stream representation of the XML data stored in an OracleXmlType

OracleXmlStream Static Methods

The OracleXmlStream static methods are listed in Table 8-13.

Chapter 8
OracleXmlStream Class

8-22

Table 8-13 OracleXmlStream Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleXmlStream Instance Properties

The OracleXmlStream instance properties are listed in Table 8-14.

Table 8-14 OracleXmlStream Instance Properties

Properties Description

CanRead Indicates whether or not the XML stream can be read

CanSeek Indicates whether or not forward and backward seek operation can be
performed

CanWrite OracleXmlStream is a sequential read only, forward only stream.

Connection Indicates the OracleConnection that is used to retrieve the XML
data

Length Indicates the number of bytes in the XML stream

Position Gets or sets the byte position within the stream

Value Returns the XML data, starting from the first character in the stream
as a string

OracleXmlStream Instance Methods

The OracleXmlStream instance methods are listed in Table 8-15.

Table 8-15 OracleXmlStream Instance Methods

Methods Description

BeginRead Inherited from System.IO.Stream
BeginWrite Inherited from System.IO.Stream
Clone Creates a copy of an OracleXmlStream object

Close Closes the current stream and releases any resources
associated with it

Dispose Releases resources allocated by this object

EndRead Inherited from System.IO.Stream
EndWrite Inherited from System.IO.Stream
Equals Inherited from System.Object
Flush Not Supported

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject

Chapter 8
OracleXmlStream Class

8-23

Table 8-15 (Cont.) OracleXmlStream Instance Methods

Methods Description

Read Reads a specified amount from the current stream instance
and populates the array buffer (Overloaded)

ReadByte Inherited from System.IO.Stream
Seek Sets the position within the current stream and returns the new

position within the current stream

SetLength Not Supported

ToString Inherited from System.Object
Write Not Supported

WriteByte Not Supported

WriteLine Not Supported

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

OracleXmlStream Constructor
This constructor creates an instance of an OracleXmlStream object which provides a
Stream representation of the XML data stored in an OracleXmlType object.

Declaration

// C#
public OracleXmlStream(OracleXmlType xmlType);

Parameters

• xmlType

The OracleXmlType object.

Remarks

The OracleXmlStream implicitly uses the OracleConnection object from the
OracleXmlType object from which it was constructed.

Chapter 8
OracleXmlStream Class

8-24

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

OracleXmlStream Static Methods
The OracleXmlStream static methods are listed in Table 8-16.

Table 8-16 OracleXmlStream Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

OracleXmlStream Instance Properties
The OracleXmlStream instance properties are listed in Table 8-17.

Table 8-17 OracleXmlStream Instance Properties

Properties Description

CanRead Indicates whether or not the XML stream can be read

CanSeek Indicates whether or not forward and backward seek operation can be
performed

CanWrite OracleXmlStream is a sequential read only, forward only stream.

Connection Indicates the OracleConnection that is used to retrieve the XML
data

Length Indicates the number of bytes in the XML stream

Position Gets or sets the byte position within the stream

Value Returns the XML data, starting from the first character in the stream
as a string

Chapter 8
OracleXmlStream Class

8-25

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

CanRead
Overrides Stream
This property indicates whether or not the XML stream can be read.

Declaration

// C#
public override bool CanRead{get;}

Property Value

If the XML stream is can be read, returns true; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

CanSeek
Overrides Stream
This property indicates whether or not forward and backward seek operation can be
performed.

Declaration

// C#
public override bool CanSeek{get;}

Property Value

If forward and backward seek operations can be performed, this property returns true.
Otherwise, returns false.

Chapter 8
OracleXmlStream Class

8-26

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

CanWrite
Overrides Stream
OracleXmlStream is a sequential read only, forward only stream.

Declaration

// C#
public override bool CanWrite{get;}

Property Value

Always returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Connection
This instance property indicates the OracleConnection that is used to retrieve the XML data.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 8
OracleXmlStream Class

8-27

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Length
Overrides Stream
This property indicates the number of bytes in the XML stream.

Declaration

// C#
public override Int64 Length{get;}

Property Value

An Int64 value representing the number of bytes in the XML stream. An empty stream
has a length of 0 bytes.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Position
Overrides Stream
This property gets or sets the byte position within the stream.

Declaration

// C#
public override Int64 Position{get; set;}

Chapter 8
OracleXmlStream Class

8-28

Property Value

An Int64 that indicates the current position in the stream.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The Position is less than 0.

Remarks

The beginning of the stream is represented by position 0. Seeking to any location beyond the
length of the stream is supported.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Value
This property returns the XML data, starting from the first character of the stream as a string.

Declaration

// C#
public string Value{get; set;}

Property Value

A string.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The value of Position is neither used nor changed by using this property.

The maximum length of the string that can be returned by this property is 2 GB.

Chapter 8
OracleXmlStream Class

8-29

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

OracleXmlStream Instance Methods
The OracleXmlStream instance methods are listed in Table 8-18.

Table 8-18 OracleXmlStream Instance Methods

Methods Description

BeginRead Inherited from System.IO.Stream
BeginWrite Inherited from System.IO.Stream
Clone Creates a copy of an OracleXmlStream object

Close Closes the current stream and releases any resources
associated with it

Dispose Releases resources allocated by this object

EndRead Inherited from System.IO.Stream
EndWrite Inherited from System.IO.Stream
Equals Inherited from System.Object
Flush Not Supported

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
Read Reads a specified amount from the current XML stream

instance and populates the array buffer (Overloaded)

ReadByte Inherited from System.IO.Stream
Seek Sets the position within the current stream and returns the

new position within the current stream

SetLength Not Supported

ToString Inherited from System.Object
Write Not Supported

WriteByte Not Supported

WriteLine Not Supported

Chapter 8
OracleXmlStream Class

8-30

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Clone
This method creates a copy of an OracleXmlStream object.

Declaration

// C#
public object Clone();

Return Value

An OracleXmlStream object.

Implements

ICloneable

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The cloned object has the same property values as that of the object being cloned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Close
Overrides Stream
This method closes the current stream and releases any resources associated with it.

Chapter 8
OracleXmlStream Class

8-31

Declaration

// C#
public override void Close();

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Dispose
This public method releases resources allocated by this object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The object cannot be reused after being disposed. Although some properties can still
be accessed, their values cannot be accountable. Since resources are freed, method
calls can lead to exceptions.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Flush
This method is not supported.

Chapter 8
OracleXmlStream Class

8-32

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Read
This method reads a specified amount from the current XML stream instance and populates
the array buffer.

Overload List:

• Read(byte[], int, int)

This method reads a specified amount of unicode bytes from the current instance,
advances the position within the stream, and populates the byte array buffer.

• Read(char[], int, int)

This method reads a specified amount of characters from the current instance, advances
the position within the stream, and populates the character array buffer.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Read(byte[], int, int)
Overrides Stream
This method reads a specified amount of unicode bytes from the current instance, advances
the position within the stream, and populates the byte array buffer.

Declaration

// C#
public override int Read(byte[] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer that is populated.

• offset

Chapter 8
OracleXmlStream Class

8-33

The zero-based offset (in bytes) at which the buffer is populated.

• count

The maximum amount of bytes to be read.

Return Value

The number of unicode bytes read into the given byte[] buffer or 0 if the end of the
stream has been reached.

Remarks

This method reads a maximum of count bytes from the current stream and stores
them in buffer beginning at offset. The current position within the stream is advanced
by the number of bytes read. However, if an exception occurs, the current position
within the stream remains unchanged.

The XML data is read starting from the position specified by the Position property.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Read(char[], int, int)
Overrides Stream
This method reads a specified amount of characters from the current instance,
advances the position within the stream, and populates the character array buffer.

Declaration

// C#
public override int Read(char[] buffer, int offset, int count);

Parameters

• buffer

The character array buffer to be populated.

• offset

The zero-based offset (in characters) in the buffer at which the buffer is populated.

Chapter 8
OracleXmlStream Class

8-34

• count

The maximum amount of characters to be read from the stream.

Return Value

The return value indicates the number of characters read from the stream or 0 if the end of
the stream has been reached.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

This method requires that the Position on the stream instance be zero or an even number.

The XML data is read starting from the position specified by the Position property.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Seek
Overrides Stream.

This method sets the position within the current stream and returns the new position within
the current stream.

Declaration

// C#
public long Seek(long offset, SeekOrigin origin);

Parameters

• offset

A byte offset relative to origin.

– If offset is negative, the new position precedes the position specified by origin by
the number of bytes specified by offset.

– If offset is zero, the new position is the position specified by origin.

– If offset is positive, the new position follows the position specified by origin by the
number of bytes specified by offset.

• origin

Chapter 8
OracleXmlStream Class

8-35

A value of type SeekOrigin indicating the reference point used to obtain the new
position.

Return Value

The new Position within the current stream.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object

Remarks

Use the CanSeek property to determine whether or not the current instance supports
seeking. Seeking to any location beyond the length of the stream is supported.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

SetLength
This method is not supported.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

Write
This method is not supported.

Chapter 8
OracleXmlStream Class

8-36

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

WriteLine
This method is not supported.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlStream Class

• OracleXmlStream Members

OracleXmlType Class
An OracleXmlType object represents an Oracle XMLType instance.

Class Inheritance

System.Object
 System.OracleXmlType

Declaration

// C#
public sealed class OracleXmlType : IDisposable, INullable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 8
OracleXmlType Class

8-37

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleXmlType objects can be used for well-formed XML documents with or without
XML schemas or XML fragments.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Members

• OracleXmlType Constructors

• OracleXmlType Static Methods

• OracleXmlType Static Fields

• OracleXmlType Instance Properties

• OracleXmlType Instance Methods

OracleXmlType Members
OracleXmlType members are listed in the following tables.

OracleXmlType Constructors

The OracleXmlType constructors are listed in Table 8-19.

Table 8-19 OracleXmlType Constructors

Constructor Description

OracleXmlType Constructors Creates an instance of the OracleXmlType class
(Overloaded)

OracleXmlType Static Methods

The OracleXmlType static methods are listed in Table 8-20.

Table 8-20 OracleXmlType Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

Chapter 8
OracleXmlType Class

8-38

OracleXmlType Static Fields

The OracleXmlType static field is listed in Table 8-21.

Table 8-21 OracleXmlType Static Field

Static Field Description

Null Represents a null value that can be assigned to an OracleXmlType
instance

OracleXmlType Instance Properties

The OracleXmlType instance properties are listed in Table 8-22.

Table 8-22 OracleXmlType Instance Properties

Properties Description

Connection Indicates the OracleConnection that is used to retrieve and store
XML data in the OracleXmlType

IsEmpty Indicates whether or not the OracleXmlType is empty

IsFragment Indicates whether the XML data is a collection of XML elements or a
well-formed XML document

IsNull Indicates whether or not the OracleXmlType is null

IsSchemaBased Indicates whether or not the XML data represented by the
OracleXmlType is based on an XML schema

RootElement Represents the name of the top-level element of the schema-based
XML data contained in the OracleXmlType

Schema Represents the XML schema of the XML data contained in the
OracleXmlType

SchemaUrl Represents in the database for the XML schema of the XML data
contained in the OracleXmlType.

Value Returns the XML data starting from the first character in the current
instance as a string

OracleXmlType Instance Methods

The OracleXmlType instance methods are listed in Table 8-23.

Table 8-23 OracleXmlType Instance Methods

Methods Description

Clone Creates a copy of the OracleXmlType instance

Dispose Releases the resources allocated by this OracleXmlType object

Equals Inherited from System.Object
Extract Extracts a subset from the XML data using the given XPath

expression (Overloaded)

GetHashCode Inherited from System.Object

Chapter 8
OracleXmlType Class

8-39

Table 8-23 (Cont.) OracleXmlType Instance Methods

Methods Description

GetStream Returns an instance of OracleXmlStream which provides a read-
only stream of the XML data stored in this OracleXmlType instance

GetType Inherited from System.Object
GetXmlDocument Returns a XmlDocument object containing the XML data stored in this

OracleXmlType instance

GetXmlReader Returns a XmlTextReader object that can be used to manipulate
XML data directly using the .NET Framework classes and methods

IsExists Checks for the existence of a particular set of nodes identified by the
given XPath expression in the XMLdata (Overloaded)

ToString Inherited from System.Object
Transform Transforms the OracleXmlType into another OracleXmlType

instance using the given XSL document (Overloaded)

Update Updates the XML node or fragment identified by the given XPath
expression in the current OracleXmlType instance (Overloaded)

Validate Validates whether or not the XML data in the OracleXmlType object
conforms to the given XML schema.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

OracleXmlType Constructors
OracleXmlType constructors create instances of the OracleXmlType class.

Overload List:

• OracleXmlType(OracleClob)

This constructor creates an instance of the OracleXmlType class using the XML
data contained in an OracleClob object.

• OracleXmlType(OracleConnection, string)

This constructor creates an instance of the OracleXmlType class using the XML
data contained in the .NET String.

• OracleXmlType(OracleConnection, XmlReader)

This constructor creates an instance of the OracleXmlType class using the
contents of the .NET XmlReader object.

• OracleXmlType(OracleConnection, XmlDocument)

Chapter 8
OracleXmlType Class

8-40

This constructor creates an instance of the OracleXmlType object using the contents of
the XML DOM document in the .NET XmlDocument object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

OracleXmlType(OracleClob)
This constructor creates an instance of the OracleXmlType class using the XML data
contained in an OracleClob object.

Declaration

// C#
public OracleXmlType(OracleClob oraClob);

Parameters

• oraClob

An OracleClob object.

Exceptions

ArgumentNullException - The OracleClob object is null.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The CLOB data depends on a valid connection object and the new OracleXMLType uses the
OracleConnection in the OracleClob object to store data for the current instance.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Chapter 8
OracleXmlType Class

8-41

OracleXmlType(OracleConnection, string)
This constructor creates an instance of the OracleXmlType class using the XML data
contained in the .NET String.

Declaration

// C#
public OracleXmlType(OracleConnection con, string xmlData);

Parameters

• con

An OracleConnection object.

• xmlData

A string containing the XML data.

Exceptions

ArgumentNullException - The OracleConnection object is null.

ArgumentException - The xmlData argument is an empty string.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The new OracleXmlType uses the given OracleConnection object to store data for the
current instance.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

OracleXmlType(OracleConnection, XmlReader)
This constructor creates an instance of the OracleXmlType class using the contents of
the .NET XmlReader object.

Declaration

// C#
public OracleXmlType(OracleConnection con, XmlReader reader);

Chapter 8
OracleXmlType Class

8-42

Parameters

• con

An OracleConnection object.

• reader

An XmlReader object.

Exceptions

ArgumentNullException - The OracleConnection object is null.

ArgumentException - The reader argument contains no data.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The new OracleXMLType uses the given OracleConnection object to store data for the current
instance.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

OracleXmlType(OracleConnection, XmlDocument)
This constructor creates an instance of the OracleXmlType object using the contents of the
XML DOM document in the .NET XmlDocument object.

Declaration

// C#
public OracleXmlType(OracleConnection con, XmlDocument domDoc);

Parameters

• con

An OracleConnection object.

• domDoc

An XML document.

Exceptions

ArgumentNullException - The OracleConnection object is null.

Chapter 8
OracleXmlType Class

8-43

ArgumentException - The domDoc argument contains no data.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The new OracleXMLType uses the given OracleConnection object to store data for the
current instance.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

OracleXmlType Static Methods
The OracleXmlType static methods are listed in Table 8-24.

Table 8-24 OracleXmlType Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

OracleXmlType Static Fields
The OracleXmlType static field is listed in Table 8-25.

Table 8-25 OracleXmlType Static Field

Static Field Description

Null Represents a null value that can be assigned to an
OracleXmlType instance

Chapter 8
OracleXmlType Class

8-44

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Null
This static field represents a null value that can be assigned to an OracleXmlType instance.

Declaration

// C#
public static readonly OracleXmlType Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

OracleXmlType Instance Properties
The OracleXmlType instance properties are listed in Table 8-26.

Table 8-26 OracleXmlType Instance Properties

Properties Description

Connection Indicates the OracleConnection that is used to retrieve and store
XML data in the OracleXmlType

IsEmpty Indicates whether or not the OracleXmlType is empty

IsFragment Indicates whether the XML data is a collection of XML elements or a
well-formed XML document

IsNull Indicates whether or not the OracleXmlType is null

IsSchemaBased Indicates whether or not the XML data represented by the
OracleXmlType is based on an XML schema

Null Represents a null value that can be assigned to an OracleXmlType
instance

RootElement Represents the name of the top-level element of the schema-based
XML data contained in the OracleXmlType

Chapter 8
OracleXmlType Class

8-45

Table 8-26 (Cont.) OracleXmlType Instance Properties

Properties Description

Schema Represents the XML schema of the XML data contained in the
OracleXmlType

SchemaUrl Represents URL in the database for the XML schema of the XML
data contained in the OracleXmlType

Value Returns the XML data starting from the first character in the current
instance as a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Connection
This property indicates the OracleConnection that is used to retrieve and store XML
data in the OracleXmlType.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An OracleConnection object.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The connection must explicitly be opened by the user before creating or using
OracleXmlType.

Chapter 8
OracleXmlType Class

8-46

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

IsEmpty
This property indicates whether or not the OracleXmlType is empty.

Declaration

// C#
public bool IsEmpty {get;}

Property Value

Returns true if the OracleXmlType represents an empty XML document. Returns false
otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

IsFragment
This property indicates whether the XML data is a collection of XML elements or a well-
formed XML document.

Declaration

// C#
public bool IsFragment {get;}

Property Value

Returns true if the XML data contained in the OracleXmlType object is a collection of XML
elements with no root element. Returns false otherwise.

Chapter 8
OracleXmlType Class

8-47

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

IsNull
This property indicates whether or not the OracleXmlType is null.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the OracleXmlType represents a null value. Returns false otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

IsSchemaBased
This property indicates whether or not the XML data represented by the
OracleXmlType is based on an XML schema.

Declaration

// C#
public bool IsSchemaBased {get;}

Chapter 8
OracleXmlType Class

8-48

Property Value

Returns true if the XML data represented by the OracleXmlType is based on an XML
schema. Returns false otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

RootElement
This property represents the name of the top-level or root element of the schema-based XML
data contained in the OracleXmlType.

Declaration

// C#
public string RootElement{get;}

Property Value

A string that represents the name of the top-level or root element of the XML data contained
in the OracleXmlType.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

If the OracleXmlType instance contains non-schema based XML data, this property returns an
empty string.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Chapter 8
OracleXmlType Class

8-49

Schema
This property represents the XML schema for the XML data contained in the
OracleXmlType.

Declaration

// C#
public OracleXmlType Schema {get;}

Property Value

An OracleXmlType instance that represents the XML schema for the XML data
contained in the OracleXmlType.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

If the OracleXmlType instance contains non-schema based XML data, this property
returns an OracleXmlType instance representing an empty XML document.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

SchemaUrl
This property represents the XML schema in the database for the XML schema of the
XML data contained in the OracleXmlType.

Declaration

// C#
public string SchemaUrl {get;}

Property Value

A string that represents the URL in the database for the XML schema of the XML data.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 8
OracleXmlType Class

8-50

Remarks

If the OracleXmlType instance contains non-schema based XML data, this property returns an
empty string.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Value
This property returns the XML data starting from the first character in the current instance as
a string.

Declaration

// C#
public string Value{get;}

Property Value

The entire XML data as a string.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

OracleXmlType Instance Methods
The OracleXmlType instance methods are listed in Table 8-27.

Chapter 8
OracleXmlType Class

8-51

Table 8-27 OracleXmlType Instance Methods

Methods Description

Clone Creates a copy of the OracleXmlType instance

Dispose Releases the resources allocated by this OracleXmlType object

Equals Inherited from System.Object
Extract Extracts a subset from the XML data using the given XPath

expression (Overloaded)

GetHashCode Inherited from System.Object
GetStream Returns an instance of OracleXmlStream which provides a

read-only stream of the XML data stored in this OracleXmlType
instance

GetType Inherited from System.Object
GetXmlDocument Returns a XmlDocument object containing the XML data stored

in this OracleXmlType instance

GetXmlReader Returns a XmlTextReader object that can be used to
manipulate XML data directly using the .NET Framework classes
and methods

IsExists Checks for the existence of a particular set of nodes identified by
the given XPath expression in the XMLdata (Overloaded)

ToString Inherited from System.Object
Transform Transforms the OracleXmlType into another OracleXmlType

instance using the given XSL document (Overloaded)

Update Updates the XML node or fragment identified by the given XPath
expression in the current OracleXmlType instance
(Overloaded)

Validate Validates whether or not the XML data in the OracleXmlType
object conforms to the given XML schema.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Clone
This method creates a copy of this OracleXmlType instance.

Declaration

// C#
public object Clone();

Chapter 8
OracleXmlType Class

8-52

Implements

ICloneable

Return Value

An OracleXmlType object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Dispose
This method releases the resources allocated by this object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Extract
This method extracts a subset from the XML data using the given XPath expression.

Chapter 8
OracleXmlType Class

8-53

Overload List:

• Extract(string, string)

This method extracts a subset from the XML data represented by the
OracleXmlType object using the given XPath expression and a string parameter for
namespace resolution.

• Extract(string, XmlNameSpaceManager)

This method extracts a subset from the XML data represented by the
OracleXmlType object, using the given XPath expression and a .NET
XmlNameSpaceManager object for namespace resolution.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Extract(string, string)
This method extracts a subset from the XML data represented by the OracleXmlType
object using the given XPath expression and a string parameter for namespace
resolution.

Declaration

// C#
public OracleXmlType Extract(string xpathExpr, string nsMap);

Parameters

• xpathExpr

The XPath expression.

• nsMap

The string parameter used for namespace resolution of the XPath expression.
nsMap has zero or more namespaces separated by spaces. nsMap can be null. For
example:

 xmlns:nsi"=http://www.company1.com" xmlns:nsz="http://www.company2.com"

Return Value

An OracleXmlType object.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

Chapter 8
OracleXmlType Class

8-54

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Extract(string, XmlNameSpaceManager)
This public method extracts a subset from the XML data represented by the OracleXmlType
object, using the given XPath expression and a .NET XmlNameSpaceManager object for
namespace resolution.

Declaration

// C#
public OracleXmlType Extract(string xpathExpr, XmlNameSpaceManager nsMgr);

Parameters

• xpathExpr

The XPath expression.

• nsMgr

The .NET XmlNameSpaceManager object used for namespace resolution of the XPath
expression. nsMgr can be null.

Return Value

An OracleXmlType.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

Chapter 8
OracleXmlType Class

8-55

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

GetStream
This public method returns an instance of OracleXmlStream which provides a read-
only stream of the XML data stored in this OracleXmlType instance.

Declaration

// C#
public Stream GetStream();

Return Value

A Stream object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

GetXmlDocument
This public method returns a XmlDocument object containing the XML data stored in
this OracleXmlType instance.

Declaration

// C#
public XmlDocument GetXmlDocument();

Return Value

An XmlDocument object.

Chapter 8
OracleXmlType Class

8-56

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The XML data in the XmlDocument object is a copy of the XML data in the OracleXmlType
instance and modifying it does not automatically modify the XML data in the OracleXmlType
instance. The XmlDocument instance returned has the PreserveWhitespace property set to
true.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

GetXmlReader
This public method returns a XmlTextReader object that can be used to manipulate XML data
directly using the .NET Framework classes and methods.

Declaration

// C#
public XmlTextReader GetXmlReader();

Return Value

An XmlTextReader object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The XmlTextReader is a read-only, forward-only representation of the XML data stored in the
OracleXmlType instance.

Chapter 8
OracleXmlType Class

8-57

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

IsExists
IsExists checks for the existence of a particular set of nodes identified by the XPath
expression in the XML data.

Overload List:

• IsExists(string, string)

This method checks for the existence of a particular set of nodes identified by the
XPath expression in the XML data represented by the current OracleXmlType
instance using a string parameter for namespace resolution.

• IsExists(string, XmlNameSpaceManager)

This method checks for the existence of a particular set of nodes identified by the
XPath expression in the XML document represented by the current OracleXmlType
instance using a .NET XmlNameSpaceManager object for namespace resolution.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

IsExists(string, string)
This method checks for the existence of a particular set of nodes identified by the
XPath expression in the XML data represented by the current OracleXmlType instance
using a string parameter for namespace resolution.

Declaration

// C#
public bool IsExists(string xpathExpr, string nsMap);

Parameters

• xpathExpr

The XPath expression.

Chapter 8
OracleXmlType Class

8-58

• nsMap

The string parameter used for namespace resolution of the XPath expression. nsMap has
zero or more namespaces separated by spaces. nsMap can be null.

Return Value

Returns true if the required set of nodes exists; otherwise, returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

IsExists(string, XmlNameSpaceManager)
This method checks the existence of a particular set of nodes identified by the XPath
expression in the XML document represented by the current OracleXmlType instance using
a .NET XmlNameSpaceManager object for namespace resolution.

Declaration

// C#
public bool IsExists(string xpathExpr, XmlNameSpaceManager nsMgr);

Parameters

• xpathExpr

The XPath expression.

• nsMgr

The .NET XmlNameSpaceManager object used for namespace resolution of the XPath
expression. nsMgr can be null.

Return Value

Returns true if the required set of nodes exists; otherwise, returns false.

Chapter 8
OracleXmlType Class

8-59

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Transform
This method transforms the OracleXmlType into another OracleXmlType instance using
the given XSL document.

Overload List:

• Transform(OracleXmlType, string)

This method transforms the current OracleXmlType instance into another
OracleXmlType instance using the given XSL document (as an OracleXmlType
object) and a string of XSLT parameters.

• Transform(string, string)

This public method transforms the current OracleXmlType instance into another
OracleXmlType instance using the given XSL document and a string of XSLT
parameters.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Chapter 8
OracleXmlType Class

8-60

Transform(OracleXmlType, string)
This method transforms the current OracleXmlType instance into another OracleXmlType
instance using the given XSL document and a string of XSLT parameters.

Declaration

// C#
public OracleXmlType Transform(OracleXmlType xsldoc, string paramMap);

Parameters

• xsldoc

The XSL document as an OracleXmlType object.

• paramMap

A string which provides the parameters for the XSL document.

For this release, paramMap is ignored.

Return Value

An OracleXmlType object containing the transformed XML document.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xsldoc parameter is null.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Transform(string, string)
This method transforms the current OracleXmlType instance into another OracleXmlType
instance using the given XSL document and a string of XSLT parameters.

Declaration

// C#
public OracleXmlType Transform(string xsldoc, string paramMap);

Chapter 8
OracleXmlType Class

8-61

Parameters

• xsldoc

The XSL document to be used for XSLT.

• paramMap

A string which provides the parameters for the XSL document.

For this release, paramMap is ignored.

Return Value

An OracleXmlType object containing the transformed XML document.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xsldoc parameter is null.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Update
This method updates the XML node or fragment identified by the given XPath
expression in the current OracleXmlType instance.

Overload List:

• Update(string, string, string)

This method updates the XML nodes identified by the given XPath expression with
the given string value and a string parameter for namespace resolution.

• Update(string, XmlNameSpaceManager, string)

This method updates the XML nodes identified by the given XPath expression with
the given string value and a .NET XmlNameSpaceManager object for namespace
resolution.

• Update(string, string, OracleXmlType)

This method updates the XML nodes identified by the given XPath expression with
the XML data stored in the given OracleXmlType value and a string parameter for
namespace resolution.

Chapter 8
OracleXmlType Class

8-62

• Update(string, XmlNameSpaceManager, OracleXmlType)

This method updates the XML nodes identified by the given XPath expression with the
XML data stored in the given OracleXmlType value and a .NET XmlNameSpaceManager
object for namespace resolution.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Update(string, string, string)
This method updates the XML nodes identified by the given XPath expression with the given
string value and a string parameter for namespace resolution.

Declaration

// C#
public void Update(string xpathExpr, string nsMap, string value);

Parameters

• xpathExpr

The XPath expression that identifies the nodes to update.

• nsMap

The string parameter used for namespace resolution of the XPath expression. nsMap has
zero or more namespaces separated by spaces. nsMap can be null. For example:

xmlns:nsi"=http://www.company1.com" xmlns:nsz="http://www.company2.com"
• value

The new value as a string.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

Chapter 8
OracleXmlType Class

8-63

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Update(string, XmlNameSpaceManager, string)
This method updates the XML nodes identified by the given XPath expression with the
given string value and a .NET XmlNameSpaceManager object for namespace resolution.

Declaration

// C#
public void Update(string xpathExpr, XmlNameSpaceManager nsMgr, string
 value);

Parameters

• xpathExpr

The XPath expression that identifies the nodes to update.

• nsMgr

The .NET XmlNameSpaceManager object used for namespace resolution of the
XPath expression. nsMgr can be null.

• value

The new value as a string.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

Chapter 8
OracleXmlType Class

8-64

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Update(string, string, OracleXmlType)
This method updates the XML nodes identified by the given XPath expression with the XML
data stored in the given OracleXmlType value and a string parameter for namespace
resolution.

Declaration

// C#
public void Update(string xpathExpr, string nsMap, OracleXmlType value);

Parameters

• xpathExpr

The XPath expression that identifies the nodes to update.

• nsMap

The string parameter used for namespace resolution of the XPath expression. nsMap has
zero or more namespaces separated by spaces. nsMap can be null.

• value

The new value as an OracleXmlType object.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

Chapter 8
OracleXmlType Class

8-65

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Update(string, XmlNameSpaceManager, OracleXmlType)
This method updates the XML nodes identified by the given XPath expression with the
XML data stored in the given OracleXmlType value and a .NET XmlNameSpaceManager
object for namespace resolution.

Declaration

// C#
public void Update(string xpathExpr, XmlNameSpaceManager nsMgr,
OracleXmlType value);

Parameters

• xpathExpr

The XPath expression that identifies the nodes to update.

• nsMgr

The .NET XmlNameSpaceManager object used for namespace resolution of the
XPath expression. nsMgr can be null.

• value

The new value as an OracleXmlType object.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

Chapter 8
OracleXmlType Class

8-66

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Validate
This methods validates whether or not the XML data in the OracleXmlType object conforms to
the given XML schema.

Declaration

// C#
public bool Validate(String schemaUrl);

Parameters

• schemaUrl
A string representing the URL in the database of the XML schema.

Return Value

Returns true if the XML data conforms to the XML schema; otherwise, returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentNullException - The schemaUrl argument is null or an empty string.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleXmlType Class

• OracleXmlType Members

Chapter 8
OracleXmlType Class

8-67

9
Oracle Data Provider for .NET HA Event
Classes

This chapter describes the following ODP.NET HA event class and enumerations:

• OracleHAEventArgs Class

• OracleHAEventHandler Delegate

• OracleHAEventSource Enumeration

• OracleHAEventStatus Enumeration

OracleHAEventArgs Class
The OracleHAEventArgs class provides event data for the OracleConnection.HAEvent event.

Class Inheritance

 System.Object
 System.EventArgs
 Oracle.DataAccess.Client.OracleHAEventArgs

Declaration

// C#
public sealed class OracleHAEventArgs

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public methods are thread-safe, although instance methods do not guarantee thread
safety.

9-1

Remarks

When any HA event occurs for a service, service member, host, node, or instance that
an OracleConnection object is set to with "ha events=true", the
OracleConnection.HAEvent is triggered and passes an instance of
OracleHAEventArgs to all the delegates that have registered with the event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Members

• OracleHAEventArgs Properties

• "OracleConnection Class"

• "HAEvent"

OracleHAEventArgs Members
OracleHAEventArgs members are listed in the following table.

OracleHAEventArgs Properties

The OracleHAEventArgs properties are listed in Table 9-2.

Table 9-1 OracleHAEventArgs Properties

Name Description

DatabaseDomainName Specifies the domain name of the database affected by the HAevent
DatabaseName Specifies the database affected by the HAevent
DrainTimeout Indicates the number of seconds allowed for resource draining to be

completed during a planned outage

HostName Specifies the host that triggered the event

InstanceName Specifies the instance that triggered the event

Reason Specifies the reason for which the HA event was sent by the server

ServiceName Specifies the service that triggered the event

Source Specifies the source that triggered the event

Status Specifies the status of the source that triggered the event

Time Specifies the time when the event was triggered on the server

Chapter 9
OracleHAEventArgs Class

9-2

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• "HAEvent"

OracleHAEventArgs Properties
The OracleHAEventArgs properties are listed in Table 9-2.

Table 9-2 OracleHAEventArgs Properties

Name Description

DatabaseDomainName Specifies the domain name of the database affected by the HAevent
DatabaseName Specifies the database affected by the HAevent

DrainTimeout Indicates the number of seconds allowed for resource draining to be
completed during a planned outage

HostName Specifies the host that triggered the event

InstanceName Specifies the instance that triggered the event

Reason Specifies the reason for which the HA event was sent by the server

ServiceName Specifies the service that triggered the event

Source Specifies the source that triggered the event

Status Specifies the status of the source that triggered the event

Time Specifies the time when the event was triggered on the server

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

DatabaseDomainName
This property specifies the domain name of the database that is affected by the HA event.

Declaration

// C#
public string DatabaseDomainName {get;}

Chapter 9
OracleHAEventArgs Class

9-3

Property Value

The domain name of the database that is affected by the HA Event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

DatabaseName
This property specifies the database that is affected by the HA event.

Declaration

// C#
public string DatabaseName {get;}

Property Value

This property specifies the database name that is affected by the HA event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

DrainTimeout
An integer value indicating the maximum time period in seconds that ODP.NET waits
for the service to drain connections from the database service from when the Fast
Application Notification SERVICE DOWN event is received.

Declaration

// C#
public int DrainTimeout {get;}

Chapter 9
OracleHAEventArgs Class

9-4

Property Value

The number of seconds allowed for resource draining to be completed during a planned
outage

Remarks

When connecting to Oracle Data Guard in Oracle Database 12c Release 2 or later, database
administrators can set their own timeout value, drain_timeout, to indicate the number of
seconds allowed for resource draining to be completed during a planned outage. The
drain_timeout value populates OracleHAEventArgs.DrainTimeout.drain_timeout can be
used by the ODP.NET ServiceRelocationConnectionTimeout to wait for a service to be
relocated before attempting new connections.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

• ServiceRelocationConnectionTimeout

HostName
This property specifies the host that triggered the HA event.

Declaration

// C#
public string HostName {get;}

Property Value

The host that is affected by the HA Event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

Chapter 9
OracleHAEventArgs Class

9-5

InstanceName
This property specifies the instance that triggered the HA event.

Declaration

// C#
public string InstanceName {get;}

Property Value

The instance that is affected by the HA Event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

Reason
This property specifies reason for which the HA event was sent by the server.

Declaration

// C#
public string Reason {get;}

Property Value

The reason the HA Event was triggered. Possible values include
Data_Guard_Failover, Failure, Dependency, User, Autostart, and Restart.

The value User is indicative of a planned outage. All other values are indicative of an
unplanned outage.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

Chapter 9
OracleHAEventArgs Class

9-6

ServiceName
This property specifies the service that triggered the HA event.

Declaration

// C#
public string ServiceName {get;}

Property Value

The service that is affected by the HA Event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

Source
This property specifies the source that triggered the HA event.

Declaration

// C#
public OracleHAEventSource Source {get;}

Property Value

The source that triggered the HA Event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

Status
This property specifies the status of the source that triggered the HA event.

Chapter 9
OracleHAEventArgs Class

9-7

Declaration

// C#
public OracleHAEventStatus Status {get;}

Property Value

The status of the source that triggered the HA Event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

Time
This property specifies the time when the HA event was triggered on the server.

Declaration

// C#
public DateTime Time {get;}

Property Value

The time that the HA Event was triggered.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• OracleHAEventArgs Members

• "HAEvent"

OracleHAEventHandler Delegate
The OracleHAEventHandler delegate represents the signature of the method that
handles the OracleConnection.HAEvent event.

Chapter 9
OracleHAEventHandler Delegate

9-8

Declaration

// C#
public delegate void OracleHAEventHandler(OracleHAEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Parameters

• sender

The source of the event.

• EventArgs

The OracleHAEventArgs object that contains the event data.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• "HAEvent"

OracleHAEventSource Enumeration
The OracleHAEventSource enumeration indicates the source of the HA event.

Table 9-3 lists all the OracleHAEventSource enumeration values with a description of each
enumerated value.

Table 9-3 OracleHAEventSource Enumeration Member Values

Member Name Description

Service The source of the HA Event is a service.

ServiceMember The source of the HA Event is a service member.

Database The source of the HA Event is a database.

Chapter 9
OracleHAEventSource Enumeration

9-9

Table 9-3 (Cont.) OracleHAEventSource Enumeration Member Values

Member Name Description

Host The source of the HA Event is a host.

Instance The source of the HA Event is an instance.

Node The source of the HA Event is a node.

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• "Source"

OracleHAEventStatus Enumeration
The OracleHAEventStatus enumeration indicates the status of the HA event source.

Table 9-4 lists all the OracleHAEventStatus enumeration values with a description of
each enumerated value.

Table 9-4 OracleHAEventStatus Enumeration Values

Member Name Description

Up The source of the HA Event is up.

Down The source of the HA Event is down.

Chapter 9
OracleHAEventStatus Enumeration

9-10

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleHAEventArgs Class

• "Status"

Chapter 9
OracleHAEventStatus Enumeration

9-11

10
Continuous Query Notification Classes

This chapter describes Oracle Data Provider for .NET Continuous Query Notification Classes,
Event Delegates, and Enumerations.

See Also:

"Continuous Query Notification Support "

This chapter contains these topics:

• OracleDependency Class

• OracleNotificationRequest Class

• OracleNotificationEventArgs Class

• OnChangeEventHandler Delegate

• OracleRowidInfo Enumeration

• OracleNotificationType Enumeration

• OracleNotificationSource Enumeration

• OracleNotificationInfo Enumeration

OracleDependency Class
An OracleDependency class represents a dependency between an application and an Oracle
database, enabling the application to get notifications whenever the data of interest or the
state of the Oracle database changes.

Class Inheritance

System.Object
 Oracle.DataAccess.Client.OracleDependency

Declaration

// C#
public sealed class OracleDependency

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

10-1

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Not supported in a .NET stored procedure

Thread Safety

All public static methods are thread-safe, although methods do not guarantee thread
safety.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Members

• OracleDependency Constructors

• OracleDependency Static Fields

• OracleDependency Static Methods

• OracleDependency Methods

• OracleDependency Properties

• OracleDependency Events

OracleDependency Members
OracleDependency members are listed in the following tables.

OracleDependency Constructors

OracleDependency constructors are listed in Table 10-1.

Table 10-1 OracleDependency Constructors

Constructors Description

OracleDependency Constructors Instantiates a new instance of OracleDependency class
(Overloaded)

OracleDependency Static Fields

The OracleDependency static fields arelisted in Table 10-2.

Chapter 10
OracleDependency Class

10-2

Table 10-2 OracleDependency Static Fields

Static Field Description

Address Indicates the address that the notification listener listens on, for
database notifications

Supported in ODP.NET Core only

Port Indicates the port number that the no tification listener listens on, for
database notifications

OracleDependency Static Methods

OracleDependency static methods are listed in Table 10-3.

Table 10-3 OracleDependency Static Methods

Static Methods Description

Equals Inherited from System.Object
GetOracleDependency Returns an OracleDependency instance based on the specified

unique identifier

OracleDependency Properties

OracleDependency properties are listed in Table 10-4.

Table 10-4 OracleDependency Properties

Properties Description

DataSource Indicates the data source associated with the OracleDependency
instance

HasChanges Indicates whether or not there is any change in the database
associated with this dependency

Id Represents the unique identifier for the OracleDependency instance

IsEnabled Specifies whether or not the dependency is enabled between the
application and the database

QueryBasedNotification Specifies whether the change notification registration is object-based
or query-based

RegisteredQueryIDs Provides a list of CHANGE_NOTIFICATION_QUERY_IDs

RegisteredResources Indicates the database resources that are registered in the notification
registration

RowidInfo Specifies whether or not ROWID information is part of change
notification events fired whenever data changes on the database

UserName Indicates the database user name associated with the
OracleDependency instance

OracleDependency Methods

OracleDependency methods are listed in Table 10-5.

Chapter 10
OracleDependency Class

10-3

Table 10-5 OracleDependency Methods

Methods Description

AddCommandDependency Binds the OracleDependency instance to the specified
OracleCommand instance

Equals Inherited from System.Object
GetHashCode Inherited from System.Object
GetType Inherited from System.Object
RemoveRegistration Removes the specified dependency between the application and

the database

ToString Inherited from System.Object

OracleDependency Events

The OracleDependency event is listed in Table 10-6.

Table 10-6 OracleDependency Events

Event Description

OnChange An event that is sent when a database notification associated
with the dependency is received from the database

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

OracleDependency Constructors
OracleDependency constructors create instances of the OracleDependency class.

Overload List:

• OracleDependency ()

This constructor creates an instance of the OracleDependency class.

• OracleDependency(OracleCommand)

This constructor creates an instance of the OracleDependency class and binds it to
the specified OracleCommand instance.

• OracleDependency(OracleCommand, bool, int, bool)

This constructor creates an instance of the OracleDependency class and binds it to
the specified OracleCommand instance, specifying whether or not a notification is to

Chapter 10
OracleDependency Class

10-4

be removed upon notification, the timeout value of the notification registration, and the
persistence of the notification.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

OracleDependency ()
This constructor creates an instance of the OracleDependency class.

Declaration

// C#
public OracleDependency ()

Remarks

Using this constructor does not bind any OracleCommand to the newly constructed
OracleDependency. Use the AddCommandDependency method to do so.

Note:

The dependency between the application and the database is not established when
the OracleDependency instance is created. The dependency is established when
the command that is associated with this dependency is executed.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

OracleDependency(OracleCommand)
This constructor creates an instance of the OracleDependency class and binds it to an
OracleCommand instance.

Chapter 10
OracleDependency Class

10-5

Declaration

// C#
public OracleDependency (OracleCommand cmd)

Parameters

• cmd

The command that the OracleDependecy object binds to.

Exceptions

ArgumentNullException - The cmd parameter is null.

InvalidOperationException - The specified OracleCommand instance already contains
a notification request.

Remarks

When this OracleDependency constructor binds the OracleCommand instance to an
OracleDependency instance, it causes the creation of an OracleNotificationRequest
instance and then sets that OracleNotificationRequest instance to the
OracleCommand.Notification property.

The Continuous Query Notification is registered with the database, when the
command is executed. Any of the command execution methods (for example,
ExecuteNonQuery, ExecuteReader, and so on) will register the notification request. An
OracleDependency may be bound to more than one OracleCommand. When one of
these OracleCommand object statements is executed, the statement is registered with
the associated OracleCommand. Although the registration happens on each
OracleCommand separately, one OracleDependency can be responsible for detecting
and sending notifications that occur for all OracleCommand objects that the
OracleDependency is associated with. The OnChangeEventArgs that is passed to the
application for the OnChange event provides information on what has changed in the
database.

The OracleNotificationRequest instance that is created by this constructor has the
following default property values:

• IsNotifiedOnce is set to the value True.

• Timeout is set to 50,000 seconds.

• IsPersistent is set to the value False, that is, the invalidation message is not
persistent, but is stored in an in-memory queue before delivery.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

Chapter 10
OracleDependency Class

10-6

OracleDependency(OracleCommand, bool, int, bool)
This constructor creates an instance of the OracleDependency class and binds it to the
specified OracleCommand instance, while specifying whether or not a registration is to be
removed upon notification, the timeout value of the notification registration, and the
persistence of the notification.

Declaration

// C#
public OracleDependency (OracleCommand cmd, bool isNotifiedOnce, long timeout,
 bool isPersistent)

Parameters

• cmd

The command associated with the Continuous Query Notification request.

• isNotifiedOnce

An indicator that specifies whether or not the registration is removed automatically once
the notification occurs.

• timeout

The amount of time, in seconds, that the registration stays active. When timeout is set to
0, the registration never expires. The valid values for timeout are between 0 and
4294967295.

• isPersistent

Indicates whether or not the invalidation message should be queued persistently in the
database before delivery. If the isPersistent parameter is set to True, the message is
queued persistently in the database and cannot be lost upon database failures or
shutdowns. If the isPersistent property is set to False, the message is stored in an in-
memory queue before delivery and might be lost.

Database performance is faster if the message is stored in an in-memory queue rather
than in the database queue.

Exceptions

ArgumentNullException - The cmd parameter is null.

ArgumentOutOfRangeException - The specified timeout is invalid.

InvalidOperationException - The specified OracleCommand instance already contains a
notification request.

Remarks

When this OracleDependency constructor binds the OracleCommand instance to an
OracleDependency instance, it causes the creation of an OracleNotificationRequest
instance and then sets that OracleNotificationRequest instance to the
OracleCommand.Notification property.

The Continuous Query Notification is registered with the database, when the command is
executed. Any of the command execution methods (for example, ExecuteNonQuery,

Chapter 10
OracleDependency Class

10-7

ExecuteReader, and so on) will register the notification request. An OracleDependency
may be bound to more than one OracleCommand. When one of these OracleCommand
object statements is executed, the statement is registered with the associated
OracleCommand. Although the registration happens on each OracleCommand separately,
one OracleDependency can be responsible for detecting and sending notifications that
occur for all OracleCommand objects that the OracleDependency is associated with. The
OnChangeEventArgs that is passed to the application for the OnChange event provides
information on what has changed in the database.

The OracleNotificationRequest instance that is created by this constructor has the
following default property values:

• IsNotifiedOnce is set to the specified value.

• Timeout is set to the specified value.

• IsPersistent is set to the specified value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

OracleDependency Static Fields
The OracleDependency static fields are listed in Table 10-7.

Table 10-7 OracleDependency Static Fields

Static Field Description

Address Indicates the address that the notification listener listens on, for
database notifications

Supported in ODP.NET Core only

Port Indicates the port number that the notification listener listens on,
for database notifications

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

Chapter 10
OracleDependency Class

10-8

Address
This static field indicates the address that the notification listener listens on, for database
notifications.

Declaration

// C#
public static string Address{get; set}

Property Value

A string value that represents the address that listens for the database notifications.

If the address is not set, then OracleConfiguration.DBNotificationAddress will be used if
set. If OracleDependency.Address is explicitly set to string.Empty or null, then the
hostname will be used.

Remarks

This property allows specifying a particular IPv4 or IPv6 address to use, such as the case
with a machine that contains multiple network cards. The address can be set to any valid
hostname, IPv4, or IPv6 address, which is associated with the machine on which the
ODP.NET application is running on, which will be listening for notifications.

The address specified by the OracleDependency.Address static field is used by the
notification listener that runs within the same application domain as ODP.NET. This address
receives Continuous Query Notifications from the database. One notification listener is
capable of listening to all Continuous Query Notifications and therefore, only one notification
listener is created for each application domain.

The notification listener is created when a command associated with
an OracleDependency object is executed for the first time during the application domain
lifetime. The address specified for the OracleDependency.Address static field is used by the
listener for its lifetime. The OracleDependency.Address static field can be changed after the
creation of the notification listener, but doing so does not affect the actual address that the
notification listener listens on.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

Port
This static field indicates the port number that the notification listener listens on, for database
notifications.

Chapter 10
OracleDependency Class

10-9

Declaration

// C#
public static int Port{get; set}

Property Value

An int value that represents the number of the port that listens for the database
notifications. If the port number is set to -1, a random port number is assigned for the
listener when the listener is started. Otherwise, the specified port number is used to
start the listener.

Exceptions

ArgumentOutOfRangeException - The port number is set to a negative value.

InvalidOperationException - The port number is being changed after the listener has
started.

Remarks

The port number specified by the OracleDependency.Port static field is used by the
notification listener that runs within the same application domain as ODP.NET. This
port number receives Continuous Query Notifications from the database. One
notification listener is capable of listening to all Continuous Query Notifications and
therefore, only one notification listener is created for each application domain.

The notification listener is created when a command associated with an
OracleDependency object is executed for the first time during the application domain
lifetime. The port number specified for the OracleDependency.Port static field is used
by the listener for its lifetime. The OracleDependency.Port static field can be changed
after the creation of the notification listener, but doing so does not affect the actual port
number that the notification listener listens on.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

OracleDependency Static Methods
OracleDependency static methods are listed in Table 10-8.

Table 10-8 OracleDependency Static Methods

Static Methods Description

Equals Inherited from System.Object

Chapter 10
OracleDependency Class

10-10

Table 10-8 (Cont.) OracleDependency Static Methods

Static Methods Description

GetOracleDependency Returns an OracleDependency instance based on the specified
unique identifier

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

GetOracleDependency
This static method returns an OracleDependency instance based on the specified unique
identifier.

Declaration

// C#
public static OracleDependency GetOracleDependency(string guid)

Parameters

• guid

The string representation of the unique identifier of an OracleDependency instance.

Exceptions

ArgumentException - The specified unique identifier cannot locate an OracleDependency
instance.

Return Value

An OracleDependency instance that has the specified guid parameter.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

Chapter 10
OracleDependency Class

10-11

OracleDependency Properties
OracleDependency properties are listed in Table 10-9.

Table 10-9 OracleDependency Properties

Properties Description

DataSource Indicates the data source associated with the
OracleDependency instance

HasChanges Indicates whether or not there is any change in the database
associated with this dependency

Id Represents the unique identifier for the OracleDependency
instance

IsEnabled Specifies whether or not the dependency is enabled between the
application and the database

QueryBasedNotification Specifies whether the change notification registration is object-
based or query-based

RegisteredQueryIDs Provides a list of CHANGE_NOTIFICATION_QUERY_IDs

RegisteredResources Indicates the database resources that are registered in the
notification registration

RowidInfo Specifies whether or not ROWID information is part of change
notification events fired whenever data changes on the database

UserName Indicates the database user name associated with the
OracleDependency instance

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

DataSource
This property indicates the data source associated with the OracleDependency
instance.

Declaration

// C#
public string DataSource{get;}

Property Value

A string that indicates the data source associated with the OracleDependency instance.

Chapter 10
OracleDependency Class

10-12

Remarks

The DataSource property is populated with the data source once the OracleCommand
associated with the OracleDependency executes and registers for the notification
successfully.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

HasChanges
This property indicates whether or not there is any change in the database associated with
this dependency.

Declaration

// C#
public bool HasChanges{get;}

Property Value

A bool value that returns True if the database has detected changes that are associated with
this dependency; otherwise, returns False.

Remarks

As an alternative to using the OnChange event, applications can check the HasChanges
property to determine if there are any changes in the database associated with this
dependency.

Once the HasChanges property is accessed, its value is reset to False so that the next
notification can then be acknowledged.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

Id
This property represents the unique identifier for the OracleDependency instance.

Chapter 10
OracleDependency Class

10-13

Declaration

// C#
public string Id{get;}

Property Value

A string that represents the unique identifier that was generated for the
OracleDependency instance when it was created.

Remarks

This property is set when the OracleDependency instance is created.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

IsEnabled
This property specifies whether or not the dependency is enabled between the
application and the database.

Declaration

// C#
public bool IsEnabled {get;}

Property Value

A bool value that specifies whether or not dependency is enabled between the
application and the database.

Remarks

The dependency between the application and the database is not established when
the OracleDependency instance is created. The dependency is established when the
command that is associated with this dependency is executed, at which time the
notification request is registered with the database. The dependency ends when the
notification registration is removed from the database or when it times out.

Chapter 10
OracleDependency Class

10-14

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

QueryBasedNotification
This instance property specifies whether the change notification registration is object-based
or query-based.

Declaration

// C#
public bool QueryBasedNotification{get; set;}

Property Value

Specifies whether the change notification registration is object-based or not.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This property value will be ignored if it is set after the command execution that registers the
command for change notification.

By default, this property is true.

ODP.NET developers can register their queries on the row level, not just the object level,
beginning with Oracle Data Provider for .NET release 11.1 and Oracle Database 11g release
1 (11.1). The application only receives notification when the selected row or rows change.
Query-based notifications provide developers more granularity for using client-side cached
data, as they can be more specific about what changes the application needs to be notified
of.

OracleNotificationType enumeration is set to Query for query-based notifications.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

Chapter 10
OracleDependency Class

10-15

RegisteredQueryIDs
This instance property provides a list of CHANGE_NOTIFICATION_QUERY_IDs.

Declaration

// C#
public ArrayList RegisteredQueryIDs {get;}

Property Value

This property is an ArrayList of CHANGE_NOTIFICATION_QUERY_IDs.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This property provides a list of CHANGE_NOTIFICATION_QUERY_IDs that uniquely identify
the query that has been registered for change notification. The notification returned
from the database will also contain these IDs, allowing applications to determine the
query that the notifications are for.

The QueryId at index n in RegisteredQueryIDs is for the statement at index n the
RegisteredResources at index n.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

RegisteredResources
This property indicates the database resources that are registered in the notification
registration.

Declaration

// C#
public ArrayList RegisteredResources{get;}

Property Value

The registered resources in the notification registration.

Chapter 10
OracleDependency Class

10-16

Remarks

The ArrayList contains all the command statement or statements that are registered for
notification through this OracleDependency object. It is appropriately updated when the
Continuous Query Notification is registered by a command execution.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

RowidInfo
This property specifies whether or not ROWID information is part of change notification events
fired whenever data changes on the database.

Declaration

// C#
public OracleRowidInfo RowidInfo {get; set;};

Property Value

An OracleRowidInfo enumeration type that determines the inclusion of ROWID in the change
notification event.

Remarks

There are three OracleRowidInfo enumeration types that are valid for this property:

• Default includes ROWID information in the change notification event only if
OracleCommand.AddRowid property is set to true or if ROWID is in the select list of the query
that is registered for change notification.

• Include includes ROWID information regardless of whether or not ROWID is in the select-list
for the query.

• Exclude excludes ROWID information regardless of whether or not ROWID is in the select-
list.

For change notification registrations that involve stored procedure executions, change
notification events related to the REF CURSOR contain ROWID information only if RowidInfo
property is set to OracleRowidInfo.Include.

Chapter 10
OracleDependency Class

10-17

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

• "OracleRowidInfo Enumeration"

UserName
This property indicates the database user name associated with the
OracleDependency instance.

Declaration

// C#
public string UserName{get;}

Property Value

A string that indicates the database user name associated with the OracleDependency
instance. This database user registers the Continuous Query Notification request with
the database.

Remarks

The UserName property is populated with the user name once the OracleCommand
associated with the OracleDependency executes and registers for the notification
successfully. Only the database user who creates the notification registration, or the
database system administrator, can remove the registration.

The user specified by this property must have the CHANGE NOTIFICATION privilege to
register successfully for the Continuous Query Notification with the database.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

OracleDependency Methods
OracleDependency methods are listed in Table 10-10.

Chapter 10
OracleDependency Class

10-18

Table 10-10 OracleDependency Methods

Methods Description

AddCommandDependency Binds the OracleDependency instance to the specified
OracleCommand instance

Equals Inherited from System.Object
GetHashCode Inherited from System.Object
GetType Inherited from System.Object
RemoveRegistration Removes the specified dependency between the application and the

database

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

AddCommandDependency
This instance method binds the OracleDependency instance to the specified OracleCommand
instance.

Declaration

// C#
Public void AddCommandDependency (OracleCommand cmd);

Parameters

• cmd

The command that is to be bound to the OracleDependency object.

Exceptions

ArgumentNullException - The cmd parameter is null.

InvalidOperationException - The specified OracleCommand instance already contains a
notification request.

Remarks

An OracleDependency instance can bind to multiple OracleCommand instances.

While it binds an existing OracleDependency instance to an OracleCommand instance, the
AddCommandDependency method creates an OracleNotificationRequest instance, and sets it
to the specified OracleCommand.Notification property.

Chapter 10
OracleDependency Class

10-19

When this method creates an OracleNotificationRequest instance, the following
OracleNotificationRequest properties are set:

• IsNotifiedOnce is set to the value True.

• Timeout is set to 50,000 seconds.

• IsPersistent is set to the value False, indicating that the invalidation message is
stored in an in-memory queue before delivery.

With this method, multiple commands can be associated with a single Continuous
Query Notification registration request. Furthermore, the OracleNotificationRequest
attribute values assigned to the OracleCommand can be changed once the association
between the OracleCommand and the OracleDependency is established.

However, when multiple OracleCommand objects are associated with a single
OracleDependency object, the OracleNotificationRequest attributes (Timeout,
IsPersistent, and IsNotifiedOnce) of the first executed OracleCommand object are
used for registration, the attributes associated with subsequent OracleCommand
executions will be ignored.

Furthermore, once a command associated with an OracleDependency is executed and
registered, all other subsequent command executions and registration associated with
the same OracleDependency must use a connection with the same "User Id" and
"Data Source" connection string attribute value settings.

Otherwise, an exception will be thrown.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

• "OracleDependency(OracleCommand)" for OracleNotificationRequest
property value

RemoveRegistration
This instance method removes the specified dependency between the application and
the database. Once the registration of the dependency is removed from the database,
the OracleDependency is no longer able to detect any changes that the database
undergoes.

Declaration

// C#
public void RemoveRegistration(OracleConnection con)

Parameters

• con

Chapter 10
OracleDependency Class

10-20

The connection associated with the OracleDependency instance.

Exceptions

InvalidOperationException - The associated connection is not open.

Remarks

The notification registration associated with the OracleDependency instance is removed from
the database.

The OracleConnection parameter must be in an opened state. This instance method does
not open the connection implicitly for the application.

An exception is thrown if the dependency is not valid.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

OracleDependency Events
The OracleDependency event is listed in Table 10-11.

Table 10-11 OracleDependency Event

Event Description

OnChange An event that is sent when a database notification associated with the
dependency is received from the database

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

OnChange
The OnChange event is sent when a database notification associated with the dependency is
received from the database. The information related to the notification is stored in the
OracleChangeNotificationEventArgs class.

Chapter 10
OracleDependency Class

10-21

Declaration

// C#
public event OnChangeEventHandler OnChange;

Remarks

The OnChange event occurs if any result set associated with the dependency changes.
For objects that are part of a Transaction, notifications will be received for each
modified object. This event also occurs for other actions related to database or
registration status, such as database shutdowns and startups, or registration timeouts.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDependency Class

• OracleDependency Members

OracleNotificationRequest Class
An OracleNotificationRequest class represents a notification request to be
subscribed in the database. It contains information about the request and the
characteristics of the notification. Using the OracleNotificationRequest class, Oracle
Data Provider for .NET can create the notification registration in the database.

Class Inheritance

System.Object
 Oracle.DataAccess.Client.OracleNotificationRequest

Declaration

// C#
public sealed class OracleNotificationRequest

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 10
OracleNotificationRequest Class

10-22

Not supported in a .NET stored procedure

Thread Safety

All public static methods are thread-safe, although methods do not guarantee thread safety.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Static Methods

• OracleNotificationRequest Properties

• OracleNotificationRequest Methods

OracleNotificationRequest Members
OracleNotificationRequest members are listed in the following tables.

OracleNotificationRequest Static Method

The OracleNotificationRequest static method is listed in Table 10-12.

Table 10-12 OracleNotificationRequest Static Method

Static Method Description

Equals Inherited from System.Object

OracleNotificationRequest Properties

OracleNotificationRequest properties are listed in Table 10-13.

Table 10-13 OracleNotificationRequest Properties

Properties Description

IsNotifiedOnce Indicates whether or not the registration is to be removed upon
notification

IsPersistent Indicates whether or not the notification message should be queued
persistently in the database before delivery

Timeout Specifies the time that the registration remains alive

GroupingNotificationEnabled Specifies whether grouping notification is enabled or not

GroupingType Specifies the type of grouping notification

GroupingInterval Specifies the interval between grouping notifications, in seconds

Chapter 10
OracleNotificationRequest Class

10-23

OracleNotificationRequest Methods

OracleNotificationRequest methods are listed in Table 10-14.

Table 10-14 OracleNotificationRequest Methods

Methods Description

Equals Inherited from System.Object
GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

OracleNotificationRequest Static Methods
The OracleNotificationRequest static method is listed in Table 10-15.

Table 10-15 OracleNotificationRequest Static Method

Static Method Description

Equals Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

OracleNotificationRequest Properties
The OracleNotificationRequest properties are listed in Table 10-16.

Chapter 10
OracleNotificationRequest Class

10-24

Table 10-16 OracleNotificationRequest Properties

Properties Description

IsNotifiedOnce Indicates whether or not the registration is to be removed upon
notification

IsPersistent Indicates whether or not the notification message should be
queued persistently in the database before delivery

Timeout Specifies the time that the registration remains alive

GroupingNotificationEnabled Specifies whether grouping notification is enabled or not

GroupingType Specifies the type of grouping notification

GroupingInterval Specifies the interval between grouping notifications, in seconds

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

IsNotifiedOnce
This property indicates whether or not the registration is to be removed upon notification.

Declaration

// C#
public bool IsNotifiedOnce{get; set;}

Property Value

A bool value that indicates whether or not the registration is to be removed upon notification.

Remarks

The default value is false for AQ. This is different from change notification where the default
value is true.

Modifying this property after the completion of a successful registration has no effect.

Chapter 10
OracleNotificationRequest Class

10-25

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

IsPersistent
This property indicates whether or not the notification message should be queued
persistently in the database until delivery.

Declaration

// C#
public bool IsPersistent{get; set;}

Property Value

A bool value that indicates whether or not the notifications should be stored
persistently in the database until delivery.

When the IsPersistent property is set to True, the message is queued persistently in
the database and cannot be lost upon database failures or shutdowns. When the
IsPersistent property is set to False, the message is stored in an in-memory queue
before delivery and could be lost.

This property does not apply to NotificationRegistration which is always
persistent.

This property only applies to the notification message after it has been sent.

Remarks

The default value is false.

The database performs faster if the message is stored in an in-memory queue rather
than a database queue.

Modifying this property after the completion of a successful registration has no effect.

This property is ignored for grouping notifications.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

Chapter 10
OracleNotificationRequest Class

10-26

Timeout
This property specifies the time, in seconds, that the registration remains alive.

Declaration

// C#
public long Timeout{get; set}

Property Value

A long value that specifies the time, in seconds, that the registration remains alive. The valid
values for the Timeout property are between 0 and 4294967295.

Exceptions

ArgumentOutOfRangeException - The specified Timeout is invalid.

Remarks

The default value is 0 (infinite) for AQ and 50000 for change notification. If the Timeout
property is set to 0, then the registration does not expire.

If the registration is removed because the Timeout value has been reached, then the
database sends a notification indicating the expiration.

Modifying this property after the completion of a successful registration has no effect.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

GroupingNotificationEnabled
This property specifies whether to group notifications together by time is enabled or not.

Declaration

// C#
public bool GroupingNotificationEnabled {get; set}

Property Value

A true value indicates that grouping notification is enabled. A false value indicates that
grouping notification is disabled.

Remarks

The default value is false.

Chapter 10
OracleNotificationRequest Class

10-27

Modifying this property after the completion of a successful registration has no effect.

If enabled, then ODP.NET will group notifications together that occur during the same
time period. The time period is defined by
OracleNotificationRequest.GroupingInterval.

If disabled, then notifications will be generated immediately after the event that triggers
them.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

GroupingType
This property specifies the type of grouping notification, which can summarize all
notifications during the time period or only the last notification.

Declaration

// C#
public OracleAQNotificationGroupingType GroupingType {get; set}

Property Value

An OracleAQNotificationGroupingType enum value. The possible enum values are
OracleAQNotificationGroupingType.Summary and
OracleAQNotificationGroupingType.Last.

Remarks

The default value is OracleAQNotificationGroupingType.Summary.

Modifying this property after the completion of a successful registration has no effect.

OracleAQNotificationGroupingType.Summary : All notifications in the group are
summarized into a single notification.

Note:

The single notification does not include ROWIDs, even if ROWID information
was requested to be returned.

OracleAQNotificationGroupingType.Last : Only the last notification in the group is
published. The earlier ones discarded.

Chapter 10
OracleNotificationRequest Class

10-28

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

GroupingInterval
This property specifies the interval of grouping notification in seconds. The group notifications
are delivered at intervals specified by this property.

Declaration

// C#
public int GroupingInterval {get; set}

Property Value

An integer specifying the grouping interval in seconds.

Remarks

If this value is 900, then notifications generated in the same 15 minute interval are grouped
together into a single notification. The default value is 600 seconds.

The range of GroupingInterval is from 1 to Int32.MaxValue.

Modifying this property after the completion of a successful registration has no effect.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

OracleNotificationRequest Methods
OracleNotificationRequest methods are listed in Table 10-17.

Table 10-17 OracleNotificationRequest Methods

Methods Description

Equals Inherited from System.Object
GetHashCode Inherited from System.Object

Chapter 10
OracleNotificationRequest Class

10-29

Table 10-17 (Cont.) OracleNotificationRequest Methods

Methods Description

GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationRequest Members

• OracleNotificationRequest Class

OracleNotificationEventArgs Class
The OracleNotificationEventArgs class provides event data for a notification.

Class Inheritance

System.Object
 System.EventArgs
 Oracle.DataAccess.Client.OracleNotificationEventArgs

Declaration

// C#
public sealed class OracleNotificationEventArgs

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Not supported in a .NET stored procedure

Chapter 10
OracleNotificationEventArgs Class

10-30

Thread Safety

All public static methods are thread-safe, although methods do not guarantee thread safety.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Members

• OracleNotificationEventArgs Static Fields

• OracleNotificationEventArgs Static Methods

• OracleNotificationEventArgs Properties

• OracleNotificationEventArgs Methods

OracleNotificationEventArgs Members
OracleNotificationEventArgs members are listed in the following tables.

OracleNotificationEventArgs Static Fields

The OracleNotificationEventArgs static field is listed in Table 10-18.

Table 10-18 OracleNotificationEventArgs Static Field

Static Field Description

Empty Inherited from System.EventArgs

OracleNotificationEventArgs Static Methods

The OracleNotificationEventArgs static method is listed in Table 10-19.

Table 10-19 OracleNotificationEventArgs Static Method

Static Method Description

Equals Inherited from System.Object

OracleNotificationEventArgs Properties

OracleNotificationEventArgs properties are listed in Table 10-20.

Table 10-20 OracleNotificationEventArgs Properties

Properties Description

Details Contains detailed information about the current notification

Info Indicates the database events for the notification

Chapter 10
OracleNotificationEventArgs Class

10-31

Table 10-20 (Cont.) OracleNotificationEventArgs Properties

Properties Description

ResourceNames Indicates the database resources related to the current notification

Source Returns the database event source for the notification

Type Returns the database event type for the notification

OracleNotificationEventArgs Methods

OracleNotificationEventArgs methods are listed in Table 10-21.

Table 10-21 OracleNotificationEventArgs Methods

Methods Description

Equals Inherited from System.Object
GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

OracleNotificationEventArgs Static Fields
The OracleNotificationEventArgs static field is listed in Table 10-22.

Table 10-22 OracleNotificationEventArgs Static Field

Static Field Description

Empty Inherited from System.EventArgs

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

Chapter 10
OracleNotificationEventArgs Class

10-32

OracleNotificationEventArgs Static Methods
The OracleNotificationEventArgs static method is listed in Table 10-23.

Table 10-23 OracleNotificationEventArgs Static Method

Static Method Description

Equals Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

OracleNotificationEventArgs Properties
OracleNotificationEventArgs properties are listed in Table 10-24.

Table 10-24 OracleNotificationEventArgs Properties

Properties Description

Details Contains detailed information about the current notification

Info Indicates the database events for the notification

ResourceNames Indicates the database resources related to the current notification

Source Returns the database event source for the notification

Type Returns the database event type for the notification

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

Details
This property contains detailed information about the current notification.

Chapter 10
OracleNotificationEventArgs Class

10-33

Declaration

// C#
Public DataTable Details{get;}

Property Value

A DataTable instance that contains detailed information about the current notification.

Remarks

The returned DataTable object contains column data about the current notification in
order as shown in Table 10-25.

Table 10-25 DataTable Object Column Data

Name Type Description

ResourceName System.String The resource name of the invalidated
object in the format
<Schema_name>.<object_name>

Info OracleNotificationInfo The information about the database event
that occurs on a resource

Rowid System.String The rowid for the invalidated table row

QueryId Int32 The CHANGE_NOTIFICATION_QUERY_ID

The QueryId column contains the CHANGE_NOTIFICATION_QUERY_ID that corresponds to
the pseudo-column that may have been retrieved by a SELECT statement at the time
of the query-based notification. Also, the OracleDependency object maintains all the
CHANGE_NOTIFICATION_QUERY_IDs that are registered with it.

For Continuous Query Notification:

• The Details property indicates changes for each invalidated object in the
notification in the data table.

• If ROWID information is requested, then the ROWID information is populated into the
Rowid column. However, if many rows are modified in a table, then the whole table
is invalidated, and ROWID information is not provided. Therefore, the Rowid column
contains all Null values.

• If the database event is related to a DDL change of the table or a table drop, then
the Rowid column is set to Null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

Chapter 10
OracleNotificationEventArgs Class

10-34

Info
This property indicates the database events for the notification.

Declaration

// C#
public OracleNotificationInfo Info{get;}

Property Value

An OracleNotificationInfo value that indicates the database event for the notification.

Remarks

The OracleNotificationInfo value is an enumeration type. If several events are received
from the invalidation message, the Info property is set to one of the
OracleNotificationInfo enumeration values associated with the database events. For
example, if a table has been altered and a new row has been inserted into another table, the
Info property is set to either OracleNotificationInfo.Altered or
OracleNotificationInfo.Insert.

To obtain more detailed information from the invalidation message, use the Details and the
ResourceNames properties.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

• "Details"

• "ResourceNames"

• "OracleNotificationInfo Enumeration"

ResourceNames
This property indicates the database resources related to the current notification.

Declaration

// C#
public string[] ResourceNames{get;}

Property Value

A string array that indicates the database resources related to the current notification.

Chapter 10
OracleNotificationEventArgs Class

10-35

Remarks

For Continuous Query Notification, the ResourceNames property contains information
about the invalidated object names in the format <schema_name>.<object _name>. To
obtain more detailed information about the changes for invalidated objects, use the
Details property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

• "Details"

Source
This property returns the database event source for the notification.

Declaration

// C#
public OracleNotificationSource Source{get;}

Property Value

The OracleNotificationSource value for the notification.

Remarks

The OracleNotificationSource value is an enumeration type. If several event
sources are received from the notification message, the Source property is set to one
of the OracleNotificationSource enumeration values related to the database event
source. For example, if a table has been altered (by the ALTER TABLE command) and a
new row has been inserted into the same table, the Source property is set to either
OracleNotificationSource.Object or OracleNotificationSource.Data.

For Continuous Query Notification:

• When the Source property is set to OracleNotificationSource.Data:

– The Info property is set to one of the following:

* OracleNotificationInfo.Insert
* OracleNotificationInfo.Delete
* OracleNotificationInfo.Update

– The ResourceNames property is set, and the elements are set to the invalidated
object names.

Chapter 10
OracleNotificationEventArgs Class

10-36

– The Details property contains detailed information on the change of each
invalidated table.

• When the Source property is set to OracleNotificationSource.Database:

– The Info property is set to one of the following:

* OracleNotificationInfo.Startup
* OracleNotificationInfo.Shutdown
* OracleNotificationInfo.Shutdown_Any
* OracleNotificationInfo.Dropped

• When the Source property is set to OracleNotificationSource.Object:

– The Info property is set to either OracleNotificationInfo.Altered or
OracleNotificationInfo.Dropped.

– The ResourceNames property is set, and the array elements of the ResourceNames
property are set to the object names that have been altered or dropped.

– The Details property contains detailed information on the changes of the object.

• When the Source property is set to OracleNotificationSource.Subscription:

– The Info property is set to the following:

* OracleNotificationInfo.End

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

• "OracleNotificationSource Enumeration"

Type
This property returns the database event type for the notification.

Declaration

// C#
public OracleNotificationType Type{get;}

Property Value

An OracleNotificationType enumeration value that represents the type of the database
event notification.

Chapter 10
OracleNotificationEventArgs Class

10-37

Remarks

The OracleNotificationType value is an enumeration type. If several event types are
received from the notification message, then the Type property is set to one of the
OracleNotificationType enumeration values related to the database event type.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

• "OracleNotificationType Enumeration"

OracleNotificationEventArgs Methods
OracleNotificationEventArgs methods are listed in Table 10-26.

Table 10-26 OracleNotificationEventArgs Methods

Methods Description

Equals Inherited from System.Object
GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

OnChangeEventHandler Delegate
The OnChangeEventHandler delegate represents the signature of the method that
handles the notification.

Chapter 10
OnChangeEventHandler Delegate

10-38

Declaration

// C#
public delegate void OnChangeEventHandler(object sender,
 OracleNotificationEventArgs args);

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Not supported in a .NET stored procedure

Parameters

• sender

The source of the event.

• args

The OracleNotificationEventArgs instance that contains the event data.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleNotificationEventArgs Class

• OracleNotificationEventArgs Members

OracleRowidInfo Enumeration
OracleRowidInfo enumeration values specify whether ROWID information is included as part
of the ChangeNotificationEventArgs or not.

Table 10-28 lists all the OracleRowidInfoenumeration values with a description of each
enumerated value.

Chapter 10
OracleRowidInfo Enumeration

10-39

Table 10-27 OracleRowidInfo Members

Member Name Description

Default ROWID information is included only if
OracleCommand.AddRowid property is set to true or if ROWID
column is explicitly included in the query.

Include ROWID information is included regardless of whether ROWID is
included in the select-list of the query or not.

Exclude ROWID information is not included regardless of whether ROWID
is included in the select-list of the query or not.

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "RowidInfo"

OracleNotificationType Enumeration
OracleNotificationType enumerated values specify the different types that cause the
notification.

Table 10-28 lists all the OracleNotificationType enumeration values with a
description of each enumerated value.

Table 10-28 OracleNotificationType Members

Member Name Description

Change A change occurs in the database.

Subscribe A change occurs in the subscription.

Query A query-based change occurs in the database.

Chapter 10
OracleNotificationType Enumeration

10-40

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

"Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Namespaces"

OracleNotificationSource Enumeration
OracleNotificationSource enumerated values specify the different sources that cause
notification.

Table 10-29 lists all the OracleNotificationSource enumeration values with a description of
each enumerated value.

Table 10-29 OracleNotificationSource Members

Member Name Description

Data The data in a table has changed.

Database A database event such as a database startup or shutdown occurs.

Object A database object is altered or dropped.

Subscription The subscription is changed.

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 10
OracleNotificationSource Enumeration

10-41

See Also:

"Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

OracleNotificationInfo Enumeration
OracleNotificationInfo enumerated values specify the database event that causes
the notification.

Table 10-30 lists all the OracleNotificationInfo enumeration values with a
description of each enumerated value.

Table 10-30 OracleNotificationInfo Members

Member Name Description

Insert A row is inserted.

Delete A row is deleted.

Update A row is updated.

Startup A database starts.

Shutdown A database shuts down.

Shutdown_any A database instance in a Real Application Cluster (Oracle RAC)
environment shuts down.

Alter An object is altered.

Drop An object or database is dropped.

End A registration is removed.

Error A notification error occurs.

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 10
OracleNotificationInfo Enumeration

10-42

See Also:

"Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Namespaces"

Chapter 10
OracleNotificationInfo Enumeration

10-43

11
Oracle Data Provider for .NET Globalization
Classes

This chapter describes the ODP.NET globalization classes.

This chapter contains these topics:

• OracleGlobalization Class

OracleGlobalization Class
The OracleGlobalization class is used to obtain and set the Oracle globalization settings of
the session, thread, and local computer (read-only).

Class Inheritance

System.Object
 Oracle.DataAccess.Client.OracleGlobalization

Declaration

public sealed class OracleGlobalization : ICloneable, IDisposable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Remarks

An exception is thrown for invalid property values. All newly set property values are validated,
except the TimeZone property.

Changing the OracleGlobalization object properties does not change the globalization
settings of the session or the thread. Either the SetSessionInfo method of the

11-1

OracleConnection object or the SetThreadInfo method of the OracleGlobalization
object must be called to alter the session's and thread's globalization settings,
respectively.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class OracleGlobalizationSample
{
 static void Main()
 {
 // Get thread's globalization info
 OracleGlobalization glob = OracleGlobalization.GetThreadInfo();

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 // Set language on thread's globalization info
 glob.Language = "FRENCH";
 OracleGlobalization.SetThreadInfo(glob);
 OracleGlobalization.GetThreadInfo(glob);

 // Prints "glob.Language = FRENCH"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Members

• OracleGlobalization Static Methods

• OracleGlobalization Properties

• OracleGlobalization Public Methods

• Oracle Database SQL Language Reference

• Oracle Database Globalization Support Guide

OracleGlobalization Members
OracleGlobalization members are listed in the following tables.

OracleGlobalization Static Methods

The OracleGlobalization static methods are listed in Table 11-1.

Chapter 11
OracleGlobalization Class

11-2

Table 11-1 OracleGlobalization Static Methods

Name Description

GetClientInfo Returns an OracleGlobalization object that represents the Oracle
globalization settings of the local computer (Overloaded)

Not Available in ODP.NET, Managed Driver and ODP.NET Core

GetThreadInfo Returns or refreshes an OracleGlobalization instance that
represents Oracle globalization settings of the current thread
(Overloaded)

Not Available in ODP.NET, Managed Driver and ODP.NET Core

SetThreadInfo Sets Oracle globalization parameters to the current thread

Not Available in ODP.NET, Managed Driver and ODP.NET Core

OracleGlobalization Properties

The OracleGlobalization properties are listed in Table 11-2.

Table 11-2 OracleGlobalization Properties

Name Description

Calendar Specifies the calendar system

ClientCharacterSet Specifies a client character set

Not Available in ODP.NET, Managed Driver and ODP.NET Core

Comparison Specifies a method of comparison for WHERE clauses and
comparison in PL/SQL blocks

Currency Specifies the string to use as a local currency symbol for the L
number format element

DateFormat Specifies the date format for Oracle Date type as a string

DateLanguage Specifies the language used to spell day and month names and
date abbreviations

DualCurrency Specifies the dual currency symbol, such as Euro, for the U
number format element

ISOCurrency Specifies the string to use as an international currency symbol
for the C number format element

Language Specifies the default language of the database

LengthSemantics Enables creation of CHAR and VARCHAR2 columns using either
byte or character (default) length semantics

NCharConversionException Determines whether or not data loss during an implicit or explicit
character type conversion reports an error

NumericCharacters Specifies the characters used for the decimal character and the
group separator character for numeric values in strings

Sort Specifies the collating sequence for ORDER by clause

Territory Specifies the name of the territory

TimeStampFormat Specifies the string format for TimeStamp types

TimeStampTZFormat Specifies the string format for TimeStampTZ types

Chapter 11
OracleGlobalization Class

11-3

Table 11-2 (Cont.) OracleGlobalization Properties

Name Description

TimeZone Specifies the time zone region name

OracleGlobalization Public Methods

OracleGlobalization public methods are listed in Table 11-3.

Table 11-3 OracleGlobalization Public Methods

Public Method Description

Clone Creates a copy of an OracleGlobalization object

Dispose Releases any resources or memory allocated by the
object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

OracleGlobalization Static Methods
The OracleGlobalization static methods are listed in Table 11-4.

Table 11-4 OracleGlobalization Static Methods

Name Description

GetClientInfo Returns an OracleGlobalization object that represents the
Oracle globalization settings of the local computer (Overloaded)

Not Available in ODP.NET, Managed Driver and ODP.NET Core

GetThreadInfo Returns or refreshes an OracleGlobalization instance that
represents Oracle globalization settings of the current thread
(Overloaded)

Not Available in ODP.NET, Managed Driver and ODP.NET Core

SetThreadInfo Sets Oracle globalization parameters to the current thread

Not Available in ODP.NET, Managed Driver and ODP.NET Core

Chapter 11
OracleGlobalization Class

11-4

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

GetClientInfo
GetClientInfo returns an OracleGlobalization object instance that represents the Oracle
globalization settings of the local computer.

Overload List:

• GetClientInfo()

This method returns an OracleGlobalization instance that represents the globalization
settings of the local computer.

• GetClientInfo(OracleGlobalization)

This method refreshes the provided OracleGlobalization object with the globalization
settings of the local computer.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

GetClientInfo()
This method returns an OracleGlobalization instance that represents the globalization
settings of the local computer.

Declaration

// C#
public static OracleGlobalization GetClientInfo();

Return Value

An OracleGlobalization instance.

Example

// C#

Chapter 11
OracleGlobalization Class

11-5

using System;
using Oracle.DataAccess.Client;

class GetClientInfoSample
{
 static void Main()
 {
 // Get client's globalization info
 OracleGlobalization glob = OracleGlobalization.GetClientInfo();

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

GetClientInfo(OracleGlobalization)
This method refreshes the provided OracleGlobalization object with the globalization
settings of the local computer.

Declaration

// C#
public static void GetClientInfo(OracleGlobalization oraGlob);

Parameters

• oraGlob

The OracleGlobalization object being updated.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class GetClientInfoSample
{
static void Main()
{
 // Get client's globalization info
 OracleGlobalization glob = OracleGlobalization.GetClientInfo();

 // Prints "glob.Language = AMERICAN"

Chapter 11
OracleGlobalization Class

11-6

 Console.WriteLine("glob.Language = " + glob.Language);

 // Get client's globalization info using overload
 OracleGlobalization.GetClientInfo(glob);

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
}
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

GetThreadInfo
GetThreadInfo returns or refreshes an OracleGlobalization instance.

Overload List:

• GetThreadInfo()

This method returns an OracleGlobalization object instance of the current thread.

• GetThreadInfo(OracleGlobalization)

This method refreshes the OracleGlobalization object instance with the globalization
settings of the current thread.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

GetThreadInfo()
This method returns an OracleGlobalization instance of the current thread.

Declaration

// C#
public static OracleGlobalization GetThreadInfo();

Chapter 11
OracleGlobalization Class

11-7

Return Value

An OracleGlobalization instance.

Remarks

Initially, GetThreadInfo() returns an OracleGlobalization object that has the same
property values as that returned by GetClientInfo(), unless the application changes
it by invoking SetThreadInfo().

Example

// C#

using System;
using Oracle.DataAccess.Client;

class GetThreadInfoSample
{
 static void Main()
 {
 // Get thread's globalization info
 OracleGlobalization glob = OracleGlobalization.GetThreadInfo();

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 // Get thread's globalization info using overloaded
 OracleGlobalization.GetThreadInfo(glob);

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

GetThreadInfo(OracleGlobalization)
This method refreshes the OracleGlobalization object with the globalization settings
of the current thread.

Declaration

// C#
public static void GetThreadInfo(OracleGlobalization oraGlob);

Chapter 11
OracleGlobalization Class

11-8

Parameters

• oraGlob

The OracleGlobalization object being updated.

Remarks

Initially GetThreadInfo() returns an OracleGlobalization object that has the same property
values as that returned by GetClientInfo(), unless the application changes it by invoking
SetThreadInfo().

Example

// C#

using System;
using Oracle.DataAccess.Client;

class GetThreadInfoSample
{
 static void Main()
 {
 // Get thread's globalization info
 OracleGlobalization glob = OracleGlobalization.GetThreadInfo();

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 // Get thread's globalization info using overloaded
 OracleGlobalization.GetThreadInfo(glob);

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

SetThreadInfo
This method sets Oracle globalization parameters to the current thread.

Declaration

// C#
public static void SetThreadInfo(OracleGlobalization oraGlob);

Chapter 11
OracleGlobalization Class

11-9

Parameters

• oraGlob

An OracleGlobalization object.

Remarks

Any .NET string conversions to and from ODP.NET Types, as well as ODP.NET Type
constructors, use the globalization property values where applicable. For example,
when constructing an OracleDate structure from a .NET string, that string is expected
to be in the format specified by the OracleGlobalization.DateFormat property of the
thread.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class SetThreadInfoSample
{
 static void Main()
 {
 // Get thread's globalization info
 OracleGlobalization glob1 = OracleGlobalization.GetThreadInfo();

 // Prints "glob1.Language = AMERICAN"
 Console.WriteLine("glob1.Language = " + glob1.Language);

 // Set language on thread's globalization info
 glob1.Language = "FRENCH";
 OracleGlobalization.SetThreadInfo(glob1);
 OracleGlobalization glob2 = OracleGlobalization.GetThreadInfo();

 // Prints "glob2.Language = FRENCH"
 Console.WriteLine("glob2.Language = " + glob2.Language);

 glob1.Dispose();
 glob2.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Chapter 11
OracleGlobalization Class

11-10

OracleGlobalization Properties
The OracleGlobalization properties are listed in Table 11-5.

Table 11-5 OracleGlobalization Properties

Name Description

Calendar Specifies the calendar system

ClientCharacterSet Specifies a client character set

Not Available in ODP.NET, Managed Driver and ODP.NET
Core

Comparison Specifies a method of comparison for WHERE clauses and
comparison in PL/SQL blocks

Currency Specifies the string to use as a local currency symbol for the
L number format element

DateFormat Specifies the date format for Oracle Date type as a string

DateLanguage Specifies the language used to spell day and month names
and date abbreviations

DualCurrency Specifies the dual currency symbol, such as Euro, for the U
number format element

ISOCurrency Specifies the string to use as an international currency
symbol for the C number format element

Language Specifies the default language of the database

LengthSemantics Enables creation of CHAR and VARCHAR2 columns using
either byte or character (default) length semantics

NCharConversionException Determines whether or not data loss during an implicit or
explicit character type conversion reports an error

NumericCharacters Specifies the characters used for the decimal character and
the group separator character for numeric values in strings

Sort Specifies the collating sequence for ORDER by clause

Territory Specifies the name of the territory

TimeStampFormat Specifies the string format for TimeStamp types

TimeStampTZFormat Specifies the string format for TimeStampTZ types

TimeZone Specifies the time zone region name

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Chapter 11
OracleGlobalization Class

11-11

Calendar
This property specifies the calendar system.

Declaration

// C#
public string Calendar {get; set;}

Property Value

A string representing the Calendar.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_CALENDAR setting of the local computer. This value is the
same regardless of whether or not the OracleGlobalization object represents the
settings of the client, thread, or session.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

ClientCharacterSet
This property specifies a client character set.

Declaration

// C#
public string ClientCharacterSet {get;}

Property Value

A string that the provides the name of the character set of the local computer.

Remarks

The default value is the character set of the local computer.

Chapter 11
OracleGlobalization Class

11-12

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Comparison
This property represents a method of comparison for WHERE clauses and comparison in
PL/SQL blocks.

Declaration

// C#
public string Comparison {get; set;}

Property Value

A string that provides the name of the method of comparison.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_COMP setting of the local computer.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Currency
This property specifies the string to use as a local currency symbol for the L number format
element.

Declaration

// C#
public string Currency {get; set;}

Property Value

The string to use as a local currency symbol for the L number format element.

Chapter 11
OracleGlobalization Class

11-13

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_CURRENCY setting of the local computer.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

• Oracle Database SQL Language Reference for further information on the
L number format element

DateFormat
This property specifies the date format for Oracle Date type as a string.

Declaration

// C#
public string DateFormat {get; set;}

Property Value

The date format for Oracle Date type as a string

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_DATE_FORMAT setting of the local computer.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Chapter 11
OracleGlobalization Class

11-14

DateLanguage
This property specifies the language used to spell names of days and months, and date
abbreviations (for example: a.m., p.m., AD, BC).

Declaration

// C#
public string DateLanguage {get; set;}

Property Value

A string specifying the language.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_DATE_LANGUAGE setting of the local computer.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

DualCurrency
This property specifies the dual currency symbol, such as Euro, for the U number format
element.

Declaration

// C#
public string DualCurrency {get; set;}

Property Value

A string that provides the dual currency symbol.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_DUAL_CURRENCY setting of the local computer.

Chapter 11
OracleGlobalization Class

11-15

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

• Oracle Database SQL Language Referencefor further information on the
U number format element

ISOCurrency
This property specifies the string to use as an international currency symbol for the C
number format element.

Declaration

// C#
public string ISOCurrency {get; set;}

Property Value

The string used as an international currency symbol.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_ISO_CURRENCY setting of the local computer.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

• Oracle Database SQL Language Reference for further information on the
C number format element

Language
This property specifies the default language of the database.

Chapter 11
OracleGlobalization Class

11-16

Declaration

// C#
public string Language {get; set;}

Property Value

The default language of the database.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_LANGUAGE setting of the local computer.

Language is used for messages, day and month names, and sorting algorithms. It also
determines NLS_DATE_LANGUAGE and NLS_SORT parameter values.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

LengthSemantics
This property indicates whether or not CHAR and VARCHAR2 columns use byte or character
(default) length semantics.

Declaration

// C#
public string LengthSemantics {get; set;}

Property Value

A string that indicates either byte or character length semantics.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_LENGTH_SEMANTICS setting of the local computer.

Chapter 11
OracleGlobalization Class

11-17

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

NCharConversionException
This property determines whether or not data loss during an implicit or explicit
character type conversion reports an error.

Declaration

// C#
public bool NCharConversionException {get; set;}

Property Value

A string that indicates whether or not a character type conversion causes an error
message.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value of NLS_NCHAR_CONV_EXCP is False, unless it is overridden by a setting
in the INIT.ORA file.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

NumericCharacters
This property specifies the characters used for the decimal character and the group
separator character for numeric values in strings.

Declaration

// C#
public string NumericCharacters {get; set;}

Chapter 11
OracleGlobalization Class

11-18

Property Value

A string that represents the characters used.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_NUMERIC_CHARACTERS setting of the local computer.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Sort
This property specifies the collating sequence for ORDER by clause.

Declaration

// C#
public string Sort {get; set;}

Property Value

A string that indicates the collating sequence.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_SORT setting of the local computer.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Chapter 11
OracleGlobalization Class

11-19

Territory
This property specifies the name of the territory.

Declaration

// C#
public string Territory {get; set;}

Property Value

A string that provides the name of the territory.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_TERRITORY setting of the local computer.

Changing this property changes other globalization properties.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

• Oracle Database Globalization Support Guide.

TimeStampFormat
This property specifies the string format for TimeStamp types.

Declaration

// C#
public string TimeStampFormat {get; set;}

Property Value

The string format for TimeStamp types.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_TIMESTAMP_FORMAT setting of the local computer.

Chapter 11
OracleGlobalization Class

11-20

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

TimeStampTZFormat
This property specifies the string format for TimeStampTZ types.

Declaration

// C#
public string TimeStampTZFormat {get; set;}

Property Value

The string format for TimeStampTZ types.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_TIMESTAMP_TZ_FORMAT setting of the local computer.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

TimeZone
This property specifies the time zone region name or hour offset.

Declaration

// C#
public string TimeZone {get; set;}

Property Value

The string represents the time zone region name or the time zone offset.

Chapter 11
OracleGlobalization Class

11-21

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the time zone region name of the local computer

TimeZone is only used when the thread constructs one of the TimeStamp structures.
TimeZone has no effect on the session.

TimeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

Note:

PST is a time zone region name as well as a time zone abbreviation;
therefore it is accepted by OracleGlobalization.

This property returns an empty string if the OracleGlobalization object is obtained
using GetSessionInfo() or GetSessionInfo(OracleGlobalization). Initially, by
default, the time zone of the session is identical to the time zone of the thread.
Therefore, given that the session time zone is not changed by invoking ALTER SESSION
calls, the session time zone can be fetched from the client's globalization settings.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

OracleGlobalization Public Methods
OracleGlobalization public methods are listed in Table 11-6.

Table 11-6 OracleGlobalization Public Methods

Public Method Description

Clone Creates a copy of an OracleGlobalization object

Dispose Releases any resources or memory allocated by the
object

Chapter 11
OracleGlobalization Class

11-22

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Clone
This method creates a copy of an OracleGlobalization object.

Declaration

// C#
public object Clone();

Return Value

An OracleGlobalization object.

Implements

ICloneable

Remarks

The cloned object has the same property values as that of the object being cloned.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Chapter 11
OracleGlobalization Class

11-23

Remarks

The Dispose method also closes the OracleGlobalization object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleGlobalization Class

• OracleGlobalization Members

Chapter 11
OracleGlobalization Class

11-24

12
Oracle Data Provider for .NET Failover
Classes

This chapter describes the ODP.NET failover classes and enumerations.

This chapter contains these topics:

• OracleFailoverEventArgs Class

• OracleFailoverEventHandler Delegate

• FailoverEvent Enumeration

• FailoverReturnCode Enumeration

• FailoverType Enumeration

OracleFailoverEventArgs Class
The OracleFailoverEventArgs class provides event data for the
OracleConnection.Failover event. When database failover occurs, the
OracleConnection.Failover event is triggered along with the OracleFailoverEventArgs
object that stores the event data.

Class Inheritance

System.Object
 System.EventArgs
 Oracle.DataAccess.Client.OracleFailoverEventArgs

Declaration

// C#
public sealed class OracleFailoverEventArgs

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Not supported in a .NET stored procedure

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

12-1

Example (Oracle.DataAccess.Client only)

// Transparent Application Failover (TAF) Setup
// Refer Oracle® Database Net Services Administrator's Guide

// C#

using System;
using System.Threading;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class FailoverSample
{
 static void Main(string[] args)
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Register the event handler OnFailover
 con.Failover += new OracleFailoverEventHandler(OnFailover);

 Console.WriteLine("Wait for a failover for 5 seconds");
 Thread.Sleep(5000);

 con.Close();
 con.Dispose();
 }

 // TAF callback function
 static FailoverReturnCode OnFailover(object sender,
 OracleFailoverEventArgs eventArgs)
 {
 switch (eventArgs.FailoverEvent)
 {
 case FailoverEvent.Begin:
 {
 Console.WriteLine("FailoverEvent.Begin - Failover is starting");
 Console.WriteLine("FailoverType = " + eventArgs.FailoverType);
 break;
 }
 case FailoverEvent.End:
 {
 Console.WriteLine("FailoverEvent.End - Failover was successful");
 break;
 }
 case FailoverEvent.Reauth:
 {
 Console.WriteLine("FailoverEvent.Reauth - User reauthenticated");
 break;
 }
 case FailoverEvent.Error:
 {
 Console.WriteLine("FailoverEvent.Error - Failover was unsuccessful");

 // Sleep for 3 sec and Retry
 Thread.Sleep(3000);
 return FailoverReturnCode.Retry;
 }

Chapter 12
OracleFailoverEventArgs Class

12-2

 case FailoverEvent.Abort:
 {
 Console.WriteLine("FailoverEvent.Abort - Failover was unsuccessful");
 break;
 }
 default:
 {
 Console.WriteLine("Invalid FailoverEvent : " + eventArgs.FailoverEvent);
 break;
 }
 }
 return FailoverReturnCode.Success;
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleFailoverEventArgs Members

• OracleFailoverEventArgs Static Methods

• OracleFailoverEventArgs Properties

• OracleFailoverEventArgs Public Methods

• "OracleConnection Class"

• Oracle Database Net Services Administrator's Guide

OracleFailoverEventArgs Members
OracleFailoverEventArgs members are listed in the following tables.

OracleFailoverEventArgs Static Methods

The OracleFailoverEventArgs static methods are listed in Table 12-1.

Table 12-1 OracleFailoverEventArgs Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleFailoverEventArgs Properties

The OracleFailoverEventArgs properties are listed in Table 12-2.

Table 12-2 OracleFailoverEventArgs Properties

Name Description

FailoverType Specifies the type of failover the client has requested

Chapter 12
OracleFailoverEventArgs Class

12-3

Table 12-2 (Cont.) OracleFailoverEventArgs Properties

Name Description

FailoverEvent Indicates the state of the failover

OracleFailoverEventArgs Public Methods

The OracleFailoverEventArgs public methods are listed in Table 12-3.

Table 12-3 OracleFailoverEventArgs Public Methods

Name Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleFailoverEventArgs Class

• "FailoverType Enumeration"

OracleFailoverEventArgs Static Methods
The OracleFailoverEventArgs static methods are listed in Table 12-1.

Table 12-4 OracleFailoverEventArgs Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleFailoverEventArgs Class

• OracleFailoverEventArgs Members

Chapter 12
OracleFailoverEventArgs Class

12-4

OracleFailoverEventArgs Properties
The OracleFailoverEventArgs properties are listed in Table 12-5.

Table 12-5 OracleFailoverEventArgs Properties

Name Description

FailoverType Specifies the type of failover the client has requested

FailoverEvent Indicates the state of the failover

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleFailoverEventArgs Class

• OracleFailoverEventArgs Members

FailoverType
This property indicates the state of the failover.

Declaration

// C#
public FailoverType FailoverType {get;}

Property Value

A FailoverType enumeration value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleFailoverEventArgs Class

• OracleFailoverEventArgs Members

• "FailoverType Enumeration"

FailoverEvent
This property indicates the state of the failover.

Chapter 12
OracleFailoverEventArgs Class

12-5

Declaration

// C#
public FailoverEvent FailoverEvent {get;}

Property Value

A FailoverEvent enumerated value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleFailoverEventArgs Class

• OracleFailoverEventArgs Members

• "FailoverEvent Enumeration"

OracleFailoverEventArgs Public Methods
The OracleFailoverEventArgs public methods are listed in Table 12-6.

Table 12-6 OracleFailoverEventArgs Public Methods

Name Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleFailoverEventArgs Class

• OracleFailoverEventArgs Members

OracleFailoverEventHandler Delegate
The OracleFailoverEventHandler represents the signature of the method that
handles the OracleConnection.Failover event.

Chapter 12
OracleFailoverEventHandler Delegate

12-6

Declaration

// C#
public delegate FailoverReturnCode OracleFailoverEventHandler(object sender,
 OracleFailoverEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Not supported in a .NET stored procedure

Parameter

• sender

The source of the event.

• eventArgs

The OracleFailoverEventArgs object that contains the event data.

Return Type

An int.

Remarks

To receive failover notifications, a callback function can be registered as follows:

ConObj.Failover += new OracleFailoverEventHandler(OnFailover);

The definition of the callback function OnFailover can be as follows:

public FailoverReturnCode OnFailover(object sender, OracleFailoverEventArgs eventArgs)

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleFailoverEventArgs Class

• OracleFailoverEventArgs Members

• "Failover"

FailoverEvent Enumeration
FailoverEvent enumerated values are used to specify the state of the failover.

Chapter 12
FailoverEvent Enumeration

12-7

Table 12-7 lists all the FailoverEvent enumeration values with a description of each
enumerated value.

Table 12-7 FailoverEvent Enumeration Values

Member Names Description

FailoverEvent.Begin Indicates that failover has detected a lost connection and that
failover is starting.

FailoverEvent.End Indicates successful completion of failover.

FailoverEvent.Abort Indicates that failover was unsuccessful, and there is no option of
retrying.

FailoverEvent.Error Indicates that failover was unsuccessful, and it gives the
application the opportunity to handle the error and retry failover.
The application can retry failover by returning
FailoverReturnCode.Retry for the event notification.

FailoverEvent.Reauth Indicates that a user handle has been reauthenticated. This
applies to the situation where a client has multiple user sessions
on a single server connection. During the initial failover, only the
active user session is failed over. Other sessions are failed over
when the application tries to use them. This is the value passed to
the callback during these subsequent failovers.

No significant database operation should occur immediately after a
FailoverEvent.Begin event. SQL and major database operations should wait until the
FailoverEvent.End event. FailoverEvent.Begin is primarily used to reject failover or
to trace it. FailoverEvent.Begin can also be used for non-database application
operations, such as informing the end user a failover is in progress and to wait until it
completes before proceeding. Transactions can be used in the FailoverEvent.End
callback phase, such as to file fault tickets or audit. These transactions must be
committed before the callback completes.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

See Also:

• FailoverEvent Enumeration

• "OracleFailoverEventArgs Class"

• "FailoverEvent"

• Oracle Real Application Clusters Administration and Deployment Guide

• Oracle Database Net Services Reference

Chapter 12
FailoverEvent Enumeration

12-8

FailoverReturnCode Enumeration
FailoverReturnCode enumerated values are passed back by the application to the ODP.NET
provider to request a retry in case of a failover error, or to continue in case of a successful
failover.

Table 12-8 lists the FailoverReturnCode enumeration values with a description of each
enumerated value.

Table 12-8 FailoverReturnCode Enumeration Values

Member Names Description

FailoverReturnCode.Retry Requests ODP.NET to retry failover in case
FailoverEvent.Error is passed to the application

FailoverReturnCode.Success Requests ODP.NET to proceed so that the application
receive more notifications, if any

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

See Also:

• FailoverEvent Enumeration

• "OracleFailoverEventArgs Class"

• "FailoverEvent"

• Oracle Real Application Clusters Administration and Deployment Guide

• Oracle Database Net Services Reference

FailoverType Enumeration
FailoverType enumerated values are used to indicate the type of failover event that was
raised.

Table 12-9 lists all the FailoverType enumeration values with a description of each
enumerated value.

Chapter 12
FailoverReturnCode Enumeration

12-9

Table 12-9 FailoverType Enumeration Values

Member Names Description

FailoverType.Session Indicates that the user has requested only session failover

FailoverType.Select Indicates that the user has requested select and session failover

FailoverType.Auto Indicates that the user has requested Transparent Application
Continuity

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

See Also:

• FailoverEvent Enumeration

• "OracleFailoverEventArgs Class"

• "FailoverType"

• Oracle Real Application Clusters Administration and Deployment Guide

• Oracle Database Net Services Reference

Chapter 12
FailoverType Enumeration

12-10

13
Oracle Database Advanced Queuing Classes

This chapter describes the following Oracle Data Provider for .NET classes:

• OracleAQAgent Class

• OracleAQDequeueOptions Class

• OracleAQEnqueueOptions Class

• OracleAQMessage Class

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventHandler Delegate

• OracleAQQueue Class

• OracleAQDequeueMode Enumeration

• OracleAQMessageDeliveryMode Enumeration

• OracleAQMessageState Enumeration

• OracleAQMessageType Enumeration

• OracleAQNavigationMode Enumeration

• OracleAQNotificationGroupingType Enumeration

• OracleAQNotificationType Enumeration

• OracleAQVisibilityMode Enumeration

OracleAQAgent Class
The OracleAQAgent class represents agents that may be senders or recipients of a message.

Class Inheritance

System.Object
 OracleAQAgent

Declaration

// C#
public sealed class OracleAQAgent

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

13-1

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

An agent may be a consumer, another queue, or a consumer of another queue. The
queue may be either local or remote. A remote queue is specified through a database
link.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQAgent Members

• OracleAQAgent Constructors

• OracleAQAgent Properties

OracleAQAgent Members
OracleAQAgent members are listed in the following tables.

OracleAQAgent Constructors

OracleAQAgent constructors are listed in Table 13-1.

Table 13-1 OracleAQAgent Constructors

Constructor Description

OracleAQAgent Constructors Instantiates a new instance of the OracleAQAgent class
(Overloaded).

OracleAQAgent Properties

OracleAQAgent properties are listed in Table 13-2.

Table 13-2 OracleAQAgent Properties

Property Description

Address Specifies the address of the agent.

Name Specifies the name of the agent.

Chapter 13
OracleAQAgent Class

13-2

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQAgent Class

OracleAQAgent Constructors
OracleAQAgent constructors instantiate new instances of the OracleAQAgent class.

Overload List:

• OracleAQAgent (string)

This constructor instantiates the OracleAQAgent class using the specified name.

• OracleAQAgent (string, string)

This constructor instantiates the OracleAQAgent class using the specified name and
address.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQAgent Class

• OracleAQAgent Members

OracleAQAgent (string)
This constructor instantiates the OracleAQAgent class using the specified name.

Declaration

// C#
public OracleAQAgent(string name);

Parameters

• name

The name of the agent.

Exceptions

ArgumentNullException - The name parameter is null.

ArgumentException - The name parameter is empty.

Chapter 13
OracleAQAgent Class

13-3

Remarks

The agent name signifies the name of a producer or consumer of a message. In the
context of functionality exposed by Listen, an agent name corresponds to the name of
a consumer for which a message is expected on a multiconsumer queue. It may also
be set on a message to signify sender identification or intended recipients of the
message.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQAgent Class

• OracleAQAgent Members

OracleAQAgent (string, string)
This constructor instantiates the OracleAQAgent class using the specified name and
address.

Declaration

// C#
public OracleAQAgent(string name, string address);

Parameters

• name

The name of the agent.

• address

The address is of the form [schema.]queue[@dblink].

Exceptions

ArgumentNullException - The address parameter is null.
ArgumentException - The address parameter is empty.

Remarks

The agent name signifies the name of a producer or consumer of a message. In the
context of functionality exposed by Listen, an agent name corresponds to the name of
a consumer for which a message is expected on a multiconsumer queue.

The name parameter can be specified as null in this constructor. In such a scenario,
the agent only has an address.

The address parameter signifies the name of the queue against which this agent
listens for new messages. The address represents a queue at a local or remote

Chapter 13
OracleAQAgent Class

13-4

database.The validity of the address is not checked implicitly. The exceptions due to wrong
address are thrown only during database operations such as Listen.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQAgent Class

• OracleAQAgent Members

OracleAQAgent Properties
OracleAQAgent properties are listed in Table 13-3.

Table 13-3 OracleAQAgent Properties

Property Description

Address Specifies the address of the agent.

Name Specifies the name of the agent.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQAgent Class

• OracleAQAgent Members

Address
This instance property specifies the address of the agent.

Declaration

// C#
public string Address {get; }

Property Value

A string that specifies the agent address.

Remarks

The address represents a queue at a local or remote database. The default value is null.
The address of the agent is of the form [schema.]queue[@dblink]. The string length can be up
to 128 characters.

Chapter 13
OracleAQAgent Class

13-5

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQAgent Class

• OracleAQAgent Members

Name
This instance property specifies the name of the agent.

Declaration

// C#
public string Name {get; }

Property Value

A string.

Remarks

The default is null. The string length can be up to 30 characters. A non-null value
implies that this agent name either corresponds to a consumer name in a
multiconsumer queue, or a recipient as specified in message properties.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQAgent Class

• OracleAQAgent Members

OracleAQDequeueOptions Class
An OracleAQDequeueOptions object represents the options available when dequeuing
a message from an OracleAQQueue object.

Class Inheritance

System.Object
 OracleAQDequeueOptions

Declaration

// C#
public sealed class OracleAQDequeueOptions : ICloneable

Chapter 13
OracleAQDequeueOptions Class

13-6

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Members

• OracleAQDequeueOptions Constructor

• OracleAQDequeueOptions Properties

• OracleAQDequeueOptions Public Methods

OracleAQDequeueOptions Members
OracleAQDequeueOptions members are listed in the following tables.

OracleAQDequeueOptions Constructor

The OracleAQDequeueOptions constructor is listed in Table 13-4.

Table 13-4 OracleAQDequeueOptions Constructor

Constructor Description

OracleAQDequeueOptions
Constructor

Instantiates a new instance of the
OracleAQDequeueOptions class

OracleAQDequeueOptions Properties

OracleAQDequeueOptions properties are listed in Table 13-5.

Table 13-5 OracleAQDequeueOptions Properties

Property Description

ConsumerName Specifies the consumer name for which to dequeue the
message

Chapter 13
OracleAQDequeueOptions Class

13-7

Table 13-5 (Cont.) OracleAQDequeueOptions Properties

Property Description

Correlation Specifies the correlation identifier of the message to be
dequeued

DeliveryMode Specifies the expected delivery mode of the message being
dequeued

DequeueMode Specifies the locking behavior associated with the dequeue
operation

MessageId Specifies the message identifier of the message to be
dequeued

NavigationMode Specifies the position of the message that will be retrieved

ProviderSpecificType Specifies whether the payload of a dequeued message is
provided as an ODP.NET specific type or a .NET type

Visibility Specifies whether or not the new message is dequeued as part
of the current transaction

Wait Specifies the wait time, in seconds, for a message that
matches the search criteria

OracleAQDequeueOptions Public Methods

OracleAQDequeueOptions public methods are listed in Table 13-6.

Table 13-6 OracleAQDequeueOptions Public Methods

Public Method Description

Clone Creates a copy of an OracleAQDequeueOptions
object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

OracleAQDequeueOptions Constructor
The OracleAQDequeueOptions constructor creates an instance of the
OracleAQDequeueOptions class and sets all its properties to their default values.

Declaration

// C#
public OracleAQDequeueOptions();

Chapter 13
OracleAQDequeueOptions Class

13-8

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

OracleAQDequeueOptions Properties
OracleAQDequeueOptions properties are listed in Table 13-7.

Table 13-7 OracleAQDequeueOptions Properties

Property Description

ConsumerName Specifies the consumer name for which to dequeue the
message

Correlation Specifies the correlation identifier of the message to be
dequeued

DeliveryMode Specifies the expected delivery mode of the message being
dequeued

DequeueMode Specifies the locking behavior associated with the dequeue
operation

MessageId Specifies the message identifier of the message to be
dequeued

NavigationMode Specifies the position of the message that will be retrieved

ProviderSpecificType Specifies whether the payload of a dequeued message is
provided as an ODP.NET specific type or a .NET type

Visibility Specifies whether or not the new message is dequeued as part
of the current transaction

Wait Specifies the wait time, in seconds, for a message that
matches the search criteria

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

ConsumerName
This instance property specifies the consumer name for which to dequeue the message.

Chapter 13
OracleAQDequeueOptions Class

13-9

Declaration

// C#
public string ConsumerName {get;set;}

Property Value

A string.

Remarks

The ConsumerName property only accesses those messages that match the consumer
name. If a queue is not set up for multiple consumers, then this field should be set to
null.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

Correlation
This instance property specifies the correlation identifier of the message to be
dequeued.

Declaration

// C#
public string Correlation {get;set;}

Property Value

A string.

Remarks

This property specifies the identification of the message to be dequeued. Special
pattern matching characters, such as the percent sign (%) and the underscore (_) can
be used. If more than one message satisfies the pattern, then the order of dequeuing
is undetermined.

The maximum length of Correlation is 128.

MessageId and Correlation are two independent identifiers. While MessageId is
unique for a message, a group of messages can be assigned the same Correlation.
Also, pattern matching is possible only with Correlation.

Chapter 13
OracleAQDequeueOptions Class

13-10

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

DeliveryMode
This instance property specifies the expected delivery mode of the message being dequeued.

Declaration

// C#
public OracleAQMessageDeliveryMode DeliveryMode {get;set;}

Property Value

An OracleAQMessageDeliveryMode enumerated value.

Remarks

This property specifies the type of messages to be dequeued. It can be set to dequeue either
persistent or buffered messages, or both from a queue. The following values are valid:

• OracleAQMessageDeliveryMode.Persistent
• OracleAQMessageDeliveryMode.Buffered
• OracleAQMessageDeliveryMode.PersistentOrBuffered
The default value is OracleAQMessageDeliveryMode.Persistent.

Buffered messaging is supported in all queue tables created with a database compatibility
level of 8.1 or higher.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

DequeueMode
This instance property specifies the locking behavior associated with the dequeue operation.

Chapter 13
OracleAQDequeueOptions Class

13-11

Declaration

// C#
public OracleAQDequeueMode DequeueMode {get;set;}

Property Value

An OracleAQDequeueMode enumerated value.

Exceptions

ArgumentOutOfRangeException - The specified DequeueMode value is invalid.

Remarks

The default value is OracleAQDequeueMode.Remove.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

MessageId
This instance property specifies the message identifier of the message to be
dequeued.

Declaration

// C#
public byte[] MessageId {get;set;}

Property Value

A byte[].

Remarks

The dequeue operation succeeds only if the message ID of the message being
dequeued matches with the message ID specified.

Chapter 13
OracleAQDequeueOptions Class

13-12

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

NavigationMode
This instance property specifies the position of the message that will be retrieved.

Declaration

// C#
public OracleAQNavigationMode NavigationMode {get;set;}

Property Value

An OracleAQNavigationMode enumerated value.

Exceptions

ArgumentOutOfRangeException - The specified NavigationMode value is invalid.

Remarks

The default value is OracleAQNavigationMode.NextMessage.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

ProviderSpecificType
This property specifies whether the payload of a dequeued message is provided as an
ODP.NET specific type or a .NET type.

Declaration

// C#
public bool ProviderSpecificType {get;set;}

Property Value

A bool.

Chapter 13
OracleAQDequeueOptions Class

13-13

Remarks

The default value of this property is false. For a discussion of how this property
affects payload type, refer to "MessageType" under the OracleAQQueue class.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

• "MessageType"

Visibility
This instance property specifies whether or not the new message is dequeued as part
of the current transaction.

Declaration

// C#
public OracleAQVisibilityMode Visibility {get;set;}

Property Value

An OracleAQVisibilityMode enumerated value.

Exceptions

ArgumentOutOfRangeException - The Visibility value specified is invalid.

Remarks

The default value is OracleAQVisibilityMode.OnCommit. You must use transactions
when using the default value for this property. This ensures that applications do not
lose messages and the messages are appropriately removed from the queue after the
dequeue operation is successful. If transactions are not used when using the default
visibility mode of OracleAQVisibilityMode.OnCommit, then messages are not
removed from the queue.

Using the alternative visibility mode value, OracleAQVisibilityMode.Immediate can
eliminate the need to create, commit, and rollback a transaction. However, if an error
occurs during the dequeue operation, then the message may be lost.

The visibility parameter is ignored when DequeueMode is set to
OracleAQDequeueMode.Browse.

Chapter 13
OracleAQDequeueOptions Class

13-14

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

Wait
This instance property specifies the wait time, in seconds, for a message that matches the
search criteria.

Declaration

// C#
public int Wait {get;set;}

Property Value

Any positive integer value or 0 or -1.

Exceptions

ArgumentOutOfRangeException - The specified Wait value is invalid.

Remarks

The default value is -1, which implies an infinite wait. The following values are valid:

• Positive integer: Wait time in seconds.

• -1: Wait forever.

• 0: Do not wait.

A value of less than -1 raises an ArgumentOutOfRangeException.

This parameter is ignored if messages in the same group are being dequeued.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

OracleAQDequeueOptions Public Methods
The OracleAQDequeueOptions public method is listed in Table 13-8.

Chapter 13
OracleAQDequeueOptions Class

13-15

Table 13-8 OracleAQDequeueOptions Public Methods

Public Method Description

Clone Creates a copy of an OracleAQDequeueOptions
object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

Clone
This method creates a copy of an OracleAQDequeueOptions object.

Declaration

// C#
public object Clone();

Return Value

An OracleAQDequeueOptions object.

Implements

ICloneable.

Remarks

The cloned object has the same property values as the object being cloned.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQDequeueOptions Class

• OracleAQDequeueOptions Members

OracleAQEnqueueOptions Class
The OracleAQEnqueueOptions class represents the options available when enqueuing
a message to an OracleAQQueue.

Chapter 13
OracleAQEnqueueOptions Class

13-16

Class Inheritance

System.Object
 OracleAQEnqueueOptions

Declaration

// C#
public sealed class OracleAQEnqueueOptions : ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQEnqueueOptions Members

• OracleAQEnqueueOptions Constructor

• OracleAQEnqueueOptions Properties

• OracleAQEnqueueOptions Public Methods

OracleAQEnqueueOptions Members
The OracleAQEnqueueOptions members are listed in the following tables.

OracleAQEnqueueOptions Constructor

OracleAQEnqueueOptions constructor is listed in Table 13-9.

Table 13-9 OracleAQEnqueueOptions Constructor

Constructor Description

OracleAQEnqueueOptions
Constructor

Instantiates a new instance of the
OracleAQEnqueueOptions class.

Chapter 13
OracleAQEnqueueOptions Class

13-17

OracleAQEnqueueOptions Properties

OracleAQEnqueueOptions properties are listed in Table 13-10.

Table 13-10 OracleAQEnqueueOptions Properties

Property Description

DeliveryMode Specifies the delivery mode of the message being
enqueued.

Visibility Specifies whether or not the new message is enqueued
as part of the current transaction.

OracleAQEnqueueOptions Public Methods

The OracleAQEnqueueOptions public method is listed in Table 13-11.

Table 13-11 OracleAQEnqueueOptions Public Methods

Public Method Description

Clone Creates a copy of an OracleAQEnqueueOptions
object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQEnqueueOptions Class

OracleAQEnqueueOptions Constructor
This constructor creates an instance of the OracleAQEnqueueOptions class with default
property values.

Declaration

// C#
public OracleAQEnqueueOptions();

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQEnqueueOptions Class

• OracleAQEnqueueOptions Members

Chapter 13
OracleAQEnqueueOptions Class

13-18

OracleAQEnqueueOptions Properties
OracleAQEnqueueOptions properties are listed in Table 13-12.

Table 13-12 OracleAQEnqueueOptions Properties

Property Description

DeliveryMode Specifies the delivery mode of the message being enqueued.

Visibility Specifies whether or not the new message is enqueued as part
of the current transaction.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQEnqueueOptions Class

• OracleAQEnqueueOptions Members

DeliveryMode
This instance property specifies the delivery mode of the message being enqueued.

Declaration

// C#
public OracleAQMessageDeliveryMode DeliveryMode {get;set;}

Exceptions

ArgumentOutOfRangeException - The specified Visibility value is invalid.

Remarks

The valid values can be any of the following enumerated values:

• OracleAQMessageDeliveryMode.Persistent
• OracleAQMessageDeliveryMode.Buffered
The default is OracleAQMessageDeliveryMode.Persistent.

OracleAQMessageDeliveryMode.PersistentOrBuffered cannot be set on this property.

Chapter 13
OracleAQEnqueueOptions Class

13-19

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQEnqueueOptions Class

• OracleAQEnqueueOptions Members

Visibility
This instance property specifies whether or not the new message is enqueued as part
of the current transaction.

Declaration

// C#
public OracleAQVisibilityMode Visibility {get;set;}

Property Value

An OracleAQVisibilityMode enumerated value.

Exceptions

ArgumentOutOfRangeException - The specified Visibility value is invalid.

Remarks

The default value is OracleAQVisibilityMode.OnCommit. You must use transactions
when using the default value. If transactions are not used when using the default
visibility mode of OracleAQVisibilityMode.OnCommit, then messages are not
enqueued to the queue.

Using the alternative visibility mode value, OracleAQVisibilityMode.Immediate
eliminates the need to use a transaction. The queue is not affected in case the
enqueue operation fails. The message does not get enqueued to the queue for such
cases.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQEnqueueOptions Class

• OracleAQEnqueueOptions Members

OracleAQEnqueueOptions Public Methods
OracleAQEnqueueOptions public method is listed in Table 13-13.

Chapter 13
OracleAQEnqueueOptions Class

13-20

Table 13-13 OracleAQEnqueueOptions Public Methods

Public Method Description

Clone Creates a copy of an OracleAQEnqueueOptions
object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQEnqueueOptions Class

• OracleAQEnqueueOptions Members

Clone
This method creates a copy of an OracleAQEnqueueOptions object.

Declaration

// C#
public object Clone();

Return Value

An OracleAQEnqueueOptions object.

Implements

ICloneable.

Remarks

The cloned object has the same property values as that of the object being cloned.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQEnqueueOptions Class

• OracleAQEnqueueOptions Members

OracleAQMessage Class
An OracleAQMessage object represents a message to be enqueued and dequeued.

Chapter 13
OracleAQMessage Class

13-21

Class Inheritance

System.Object
 OracleAQMessage

Declaration

// C#
public sealed class OracleAQMessage

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

An OracleAQMessage object consists of control information (metadata) and Payload
(data). The control information is exposed by various properties on the
OracleAQMessage object and is used by Oracle Database Advanced Queuing to
manage messages. The payload is the information stored in the queue.

Note:

An instance of OracleAQMessage cannot be re-used across multiple
operations of OracleAQQueue public method Enqueue() or EnqueueArray(), if
the payload is an XmlReader. This is a direct consequence of the forward-
only semantics of the XmlReader, as an Enqueue() or EnqueueArray()
operation internally invokes a read operation on the XmlReader to extract the
data to be enqueued.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Members

• OracleAQMessage Constructors

• OracleAQMessage Properties

Chapter 13
OracleAQMessage Class

13-22

OracleAQMessage Members
OracleAQMessage members are listed in the following tables.

OracleAQMessage Constructor

OracleAQMessage constructors are listed in Table 13-14.

Table 13-14 OracleAQMessage Constructors

Constructor Description

OracleAQMessage Constructors Instantiates a new instance of the OracleAQMessage class
(Overloaded).

OracleAQMessage Properties

OracleAQMessage properties are listed in Table 13-15.

Table 13-15 OracleAQMessage Properties

Property Description

Correlation Specifies an identification for the message.

Delay Specifies the duration, in seconds, after which an enqueued
message is available for dequeuing.

DeliveryMode Specifies the delivery mode of the dequeued message.

DequeueAttempts Returns the number of attempts that have been made to
dequeue the message.

EnqueueTime Specifies the time when the message was enqueued.

ExceptionQueue Specifies the name of the queue that the message should be
moved to if it cannot be processed successfully.

Expiration Specifies the duration, in seconds, for which an enqueued
message is available for dequeuing.

MessageId Returns the message identifier.

OriginalMessageId Specifies the identifier of the message in the last queue that
generated this message.

Payload Specifies the payload of the message.

Priority Specifies the priority of the message.

Recipients Specifies the list of recipients that overrides the default queue
subscribers.

SenderId Identifies the original sender of the message.

State Specifies the state of the message at the time of dequeue.

TransactionGroup Specifies the transaction group for the dequeued message.

Chapter 13
OracleAQMessage Class

13-23

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

OracleAQMessage Constructors
OracleAQMessage constructors create new instances of the OracleAQMessage class.

Overload List:

• OracleAQMessage()

This constructor instantiates the OracleAQMessage class.

• OracleAQMessage(Object)

This constructor instantiates the OracleAQMessage class using the object provided
as the payload.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

OracleAQMessage()
This constructor instantiates the OracleAQMessage class.

Declaration

// C#
public OracleAQMessage();

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

Chapter 13
OracleAQMessage Class

13-24

OracleAQMessage(Object)
This constructor instantiates the OracleAQMessage class using the Object provided as the
payload.

Declaration

// C#
public OracleAQMessage(Object payload);

Parameters

• payload

An Object specifying payload. It can be one of the following types:

– byte[]
– IOracleCustomType
– OracleBinary
– OracleXmlType
– String
– XmlReader

Exceptions

ArgumentException - The specified payload value is of invalid type.

Remarks

The ODP.NET AQ implementation currently does not support user defined types with LOB
attributes. It also does not support other variants of user defined types such as VARRAY and
nested tables, as Oracle Database AQ does not support them inherently.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

OracleAQMessage Properties
OracleAQMessage properties are listed in Table 13-16.

Chapter 13
OracleAQMessage Class

13-25

Table 13-16 OracleAQMessage Properties

Property Description

Correlation Specifies an identification for the message.

Delay Specifies the duration, in seconds, after which an
enqueued message is available for dequeuing.

DeliveryMode Specifies the delivery mode of the dequeued message.

DequeueAttempts Returns the number of attempts that have been made to
dequeue the message.

EnqueueTime Specifies the time when the message was enqueued.

ExceptionQueue Specifies the name of the queue that the message should
be moved to if it cannot be processed successfully.

Expiration Specifies the duration, in seconds, for which an enqueued
message is available for dequeuing.

MessageId Returns the message identifier.

OriginalMessageId Specifies the identifier of the message in the last queue
that generated this message.

Payload Specifies the payload of the message.

Priority Specifies the priority of the message.

Recipients Specifies the list of recipients that overrides the default
queue subscribers.

SenderId Identifies the original sender of the message.

State Specifies the state of the message at the time of dequeue.

TransactionGroup Specifies the transaction group for the dequeued
message.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

Correlation
This instance property specifies an identification for the message.

Declaration

// C#
public string Correlation {get;set;}

Property Value

A string that specifies the identification for the message.

Chapter 13
OracleAQMessage Class

13-26

Remarks

The producer of a message can set this property at the time of enqueuing. The consumer can
then use this identification to dequeue specific messages by setting the Correlation property
of an OracleAQDequeueOptions object. For more information regarding dequeuing messages
based on Correlation, refer to "Correlation" under the OracleAQDequeueOptions class.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

• "Correlation"

Delay
This instance property specifies the duration, in seconds, after which an enqueued message
is available for dequeuing.

Declaration

// C#
public int Delay {get;set;}

Property Value

An integer that indicates the number of seconds after which an enqueued message is
available for dequeuing.

Exceptions

ArgumentException - The value specified is less than 0.

Remarks

This property delays the immediate consumption of an enqueued message. The following are
valid values for this property:

• Positive integer - Indicates the delay in seconds.

• 0 - indicates that the message is immediately available for dequeuing.

The default value is 0. The Delay property is not supported with buffered messaging.

Chapter 13
OracleAQMessage Class

13-27

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

DeliveryMode
This instance property specifies the delivery mode of the dequeued message.

Declaration

// C#
public OracleAQMessageDeliveryMode DeliveryMode {get;}

Property Value

An OracleAQMessageDeliveryMode enumerated value
(OracleAQMessageDeliveryMode.Persistent or
OracleAQMessageDeliveryMode.Buffered).

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

DequeueAttempts
This instance property returns the number of attempts that have been made to
dequeue the message.

Declaration

// C#
public int DequeueAttempts {get;}

Property Value

An integer that indicates the number of dequeue attempts.

Remarks

This property is available in an OracleAQMessage after the message has been
dequeued from a queue.

Chapter 13
OracleAQMessage Class

13-28

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

EnqueueTime
This instance property specifies the time when the message was enqueued.

Declaration

// C#
public DateTime EnqueueTime {get;}

Property Value

A DateTime object.

Remarks

This property is available after the message is dequeued. It provides the enqueue time of a
dequeued message.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

ExceptionQueue
This instance property specifies the name of the queue that the message should be moved to
if it cannot be processed successfully.

Declaration

// C#
public string ExceptionQueue {get;set;}

Property Value

The name of the queue that a message should be moved to if it cannot be processed
successfully. The default value is null.

Chapter 13
OracleAQMessage Class

13-29

Remarks

This property specifies the queue that a message should be moved to if the message
has expired or if the number of unsuccessful dequeue attempts have exceeded the
max_retries value for the queue.

If this property is not set or the specified exception queue name does not exist, then
the default exception queue associated with the queue table is used.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

Expiration
This instance property specifies the duration, in seconds, for which an enqueued
message is available for dequeuing.

Declaration

// C#
public int Expiration {get;set;}

Property Value

An integer that specifies the number of seconds an enqueued message is available
for dequeuing.

Exceptions

ArgumentException - The value specified is less than -1.

Remarks

The value specified is an offset from the value specified in the Delay property.

The following are valid values for the property:

• Positive integer - Indicates the expiration in seconds.

• -1 - Indicates that the message never expires.

The default value is -1. When a message expires, the message moves from the READY
state to the EXPIRED state.

Chapter 13
OracleAQMessage Class

13-30

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

MessageId
This instance property returns the message identifier.

Declaration

// C#
public byte[] MessageId {get;}

Property Value

A byte[] that specifies the message identifier.

Remarks

This property is available after an enqueue or dequeue operation. Dequeued buffered
messages have a null value for MessageId.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

OriginalMessageId
This instance property specifies the identifier of the message in the last queue that generated
this message.

Declaration

// C#
public byte[] OriginalMessageId {get;}

Property Value

A byte[] that specifies the original message identifier.

Chapter 13
OracleAQMessage Class

13-31

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

Payload
This instance property specifies the payload of the message.

Declaration

// C#
public Object Payload {get;set;}

Property Value

An Object that specifies the payload of the message.

Exceptions

ArgumentException - The specified object is not one of the allowed types.

Remarks

For a complete discussion of various payload types, refer to "MessageType" under the
OracleAQQueue class.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

• "MessageType"

Priority
This instance property specifies the priority of the message.

Declaration

// C#
public int Priority {get;set;}

Chapter 13
OracleAQMessage Class

13-32

Property Value

An integer that specifies the priority of the message.

Remarks

The default value is 0. In order to take effect, this property must be set prior to enqueuing the
message.

Smaller values indicate higher priority for the message. Negative values may also be used.

The priority of an enqueued message is useful for priority-based dequeuing.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

Recipients
This instance property specifies the list of recipients that overrides the default queue
subscribers.

Declaration

// C#
public OracleAQAgent[] Recipients {get; set}

Property Value

An OracleAQAgent[].

Remarks

This recipient list is valid only for messages being enqueued to multiconsumer queues. The
list of recipients is not returned with the message at the time of dequeuing.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

Chapter 13
OracleAQMessage Class

13-33

SenderId
This instance property identifies the original sender of the message.

Declaration

// C#
public OracleAQAgent SenderId {get; set}

Property Value

An OracleAQAgent object.

Remarks

Sender identification is supported in all queue tables created with a database
compatibility level of 8.1 or higher.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

State
This instance property specifies the state of the message at the time of dequeue.

Declaration

// C#
public OracleAQMessageState State {get;}

Property Value

An OracleAQMessageState enumerated value.

Remarks

This property is available after the message is dequeued.

The state of buffered messages dequeued by specifying Correlation under dequeue
options is always OracleAQMessageState.Ready.

Chapter 13
OracleAQMessage Class

13-34

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

TransactionGroup
This instance property specifies the transaction group for the dequeued message.

Declaration

// C#
public string TransactionGroup {get;}

Property Value

A string that specifies the transaction group.

Remarks

This property is set only after the call to DequeueArray. This property is supported only when
using Oracle Database 10g database or higher.

Messages belonging to one queue can be grouped to form a set that can only be consumed
by one user at a time. This requires that the queue be created in a queue table that is
enabled for message grouping. All messages belonging to a group must be created in the
same transaction. Also, all messages created in one transaction belong to the same group.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessage Class

• OracleAQMessage Members

OracleAQMessageAvailableEventArgs Class
The OracleAQMessageAvailableEventArgs class provides event data for the
OracleAQQueue.MessageAvailable event.

Class Inheritance

System.Object
 System.EventArgs

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-35

 Oracle.DataAccess.Client.OracleAQMessageAvailableEventArgs

Declaration

// C#
public sealed class OracleAQMessageAvailableEventArgs

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

This class cannot be inherited.

For detailed information on all the inherited properties and methods, please read the
documentation provided by Microsoft's .NET Documentation.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Members

• OracleAQMessageAvailableEventArgs Constructor

• OracleAQMessageAvailableEventArgs Properties

OracleAQMessageAvailableEventArgs Members
OracleAQMessageAvailableEventArgs members are listed in the following tables.

OracleAQMessageAvailableEventArgs Constructor

OracleAQMessageAvailableEventArgs properties are listed in Table 13-17

Table 13-17 OracleAQMessageAvailableEventArgs Constructor

Property Description

OracleAQMessageAvailableEventArg
s Constructor

Instantiates a new instance of the
OracleAQMessageAvailableEventArgs class.

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-36

OracleAQMessageAvailableEventArgs Properties

OracleAQMessageAvailableEventArgs properties are listed in Table 13-18.

Table 13-18 OracleAQMessageAvailableEventArgs Properties

Property Description

AvailableMessages Specifies the number of messages that raised this notification.

ConsumerName Provides the name of the consumer for which the message is
available for dequeuing.

Correlation Provides the user-defined identifier of the message.

Delay Specifies the duration, in seconds, after which an enqueued
message is available for dequeuing.

DeliveryMode Specifies the delivery mode of the message.

EnqueueTime Specifies the time when the message was enqueued.

ExceptionQueue Specifies the name of the queue that the message is moved to
if it cannot be processed successfully.

Expiration Specifies the duration, in seconds, for which an enqueued
message is available for dequeuing before expiring.

MessageId Returns an array of message identifiers.

NotificationType Indicates the type of notification such as regular, grouping, or
timeout.

OriginalMessageId Specifies the ID of the message, in the last queue, that
generated this message.

Priority Specifies the priority of the message.

QueueName Indicates the name of the queue that contains the message to
be dequeued.

SenderId Identifies the original sender of the message.

State Specifies the state of the message.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

OracleAQMessageAvailableEventArgs Constructor
This constructor creates an instance of the OracleAQMessageAvailableEventArgs class with
default property values.

Declaration

// C#
public OracleAQMessageAvailableEventArgs();

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-37

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

OracleAQMessageAvailableEventArgs Properties
OracleAQMessageAvailableEventArgs properties are listed in Table 13-19.

Table 13-19 OracleAQMessageAvailableEventArgs Properties

Property Description

AvailableMessages Specifies the number of messages that raised this
notification.

ConsumerName Provides the name of the consumer for which the
message is available for dequeuing.

Correlation Provides the user-defined identifier of the message.

Delay Specifies the duration, in seconds, after which an
enqueued message is available for dequeuing.

DeliveryMode Specifies the delivery mode of the message.

EnqueueTime Specifies the time when the message was enqueued.

ExceptionQueue Specifies the name of the queue that the message is
moved to if it cannot be processed successfully.

Expiration Specifies the duration, in seconds, for which an enqueued
message is available for dequeuing before expiring.

MessageId Returns an array of message identifiers.

NotificationType Indicates the type of notification such as regular, grouping,
or timeout.

OriginalMessageId Specifies the ID of the message, in the last queue, that
generated this message.

Priority Specifies the priority of the message.

QueueName Indicates the name of the queue that contains the
message to be dequeued.

SenderId Identifies the original sender of the message.

State Specifies the state of the message.

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-38

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

AvailableMessages
This instance property specifies the number of messages that raised this notification.

Declaration

// C#
public int AvailableMessages{get;}

Property Value

An integer indicating the number of messages that raised this notification.

Remarks

The property value is 1 for a regular notification type. The notification type can be specified
using the OracleAQQueue.Notification property.

This property is not relevant if the NotificationType is OracleAQNotificationType.Timeout.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

ConsumerName
This property provides the name of the consumer for which the message is available for
dequeuing.

Declaration

// C#
public string ConsumerName {get;}

Property Value

A string that identifies the name of the consumer.

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-39

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

Correlation
This instance property specifies the identification for the message.

Declaration

// C#
public string Correlation {get;}

Property Value

A string that specifies the identification for the message.

Remarks

This property specifies the correlation of the message for which the notification is
raised. The consumer can then use this identification to dequeue specific messages
by setting the "Correlation" property of the OracleAQDequeueOptions object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

• "Correlation"

Delay
This instance property specifies the duration, in seconds, after which an enqueued
message is available for dequeuing.

Declaration

// C#
public int Delay {get;}

Property Value

An integer that indicates the duration, in seconds, after which an enqueued message
is available for dequeuing.

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-40

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

DeliveryMode
This instance property specifies the delivery mode of the message.

Declaration

// C#
public OracleAQMessageDeliveryMode DeliveryMode {get;}

Property Value

An OracleAQMessageDeliveryMode enumerated value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

EnqueueTime
This instance property specifies the time when the message was enqueued.

Declaration

// C#
public DateTime EnqueueTime {get;}

Property Value

A DateTime object.

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-41

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

ExceptionQueue
This instance property specifies the name of the queue that the message is moved to
if it cannot be processed successfully.

Declaration

// C#
public string ExceptionQueue {get;}

Property Value

The name of the queue that a message to is moved if it cannot be processed
successfully.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

Expiration
This instance property specifies the duration, in seconds, for which an enqueued
message is available for dequeuing before expiring.

Declaration

// C#
public int Expiration {get;}

Property Value

An integer that specifies the duration, in seconds, for which an enqueued message is
available for dequeuing.

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-42

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

MessageId
This instance property returns an array of message identifiers.

Declaration

// C#
public byte[][] MessageId{get;}

Property Value

A byte[][] that specifies the message identifiers received as part of the notification.

Remarks

This property specifies the message identifiers of the messages that raise the notification.

The size of the MessageId array is 1 for regular notifications. The size of the MessageId array
is 1 for grouping notifications if the notification grouping type is
OracleAQNotificationGroupingType.Last. This property is not relevant if the
NotificationType is OracleAQNotificationType.Timeout.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

NotificationType
This property indicates the type of notification such as regular, grouping, or timeout.

Declaration

// C#
public OracleAQNotificationType NotificationType {get;}

Property Value

An OracleAQNotificationType enum value.

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-43

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

OriginalMessageId
This property specifies the ID of the message, in the last queue, that generated this
message.

Declaration

// C#
public byte[] OriginalMessageId {get;}

Property Value

A byte[] that specifies the original message ID.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

Priority
This instance property specifies the priority of the message.

Declaration

// C#
public int Priority {get;}

Property Value

An integer that specifies the priority of the message.

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-44

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

QueueName
This property indicates the name of the queue that contains the message to be dequeued.

Declaration

// C#
public string QueueName {get;}

Property Value

A string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

SenderId
This property identifies the original sender of the message.

Declaration

// C#
public OracleAQAgent SenderId {get;}

Property Value

An OracleAQAgent object.

Chapter 13
OracleAQMessageAvailableEventArgs Class

13-45

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

State
This instance property specifies the state of the message.

Declaration

// C#
public OracleAQMessageState State {get;}

Property Value

An OracleAQMessageState enumerated value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventArgs Members

OracleAQMessageAvailableEventHandler Delegate
The OracleAQMessageAvailableEventHandler delegate represents the signature of
the method that handles the OracleAQQueue.MessageAvailable event.

Declaration

// C#
public delegate void OracleAQMessageAvailableEventHandler (object
 sender,OracleAQMessageAvailableEventArg eventArgs);

Parameters

• sender

The source of the event.

• eventArgs

The OracleAQMessageAvailableEventArgs object that contains the event data.

Chapter 13
OracleAQMessageAvailableEventHandler Delegate

13-46

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "MessageAvailable Event"

OracleAQQueue Class
An OracleAQQueue object represents a queue.

Class Inheritance

System.Object
 OracleAQQueue

Declaration

// C#
public class OracleAQQueue : IDisposable

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Remarks

A queue is a repository of messages and may either be a user queue, or an exception queue.
A user queue is for normal message processing. A message is moved from a user queue to
an exception queue if it cannot be retrieved and processed for some reason.

Chapter 13
OracleAQQueue Class

13-47

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Members

• OracleAQQueue Constructors

• OracleAQQueue Static Methods

• OracleAQQueue Properties

• OracleAQQueue Public Methods

• OracleAQQueue Events

OracleAQQueue Members
OracleAQQueue members are listed in the following tables.

OracleAQQueue Constructors

OracleAQQueue constructors are listed in Table 13-20.

Table 13-20 OracleAQQueue Constructors

Constructor Description

OracleAQQueue Constructors Instantiate a new instance of the OracleAQQueue class
(Overloaded).

OracleAQQueue Static Methods

The OracleAQQueue static method is listed in Table 13-21.

Table 13-21 OracleAQQueue Static Methods

Static Method Description

Listen Listens for messages on one or more queues for
one or more consumers, as specified in the array of
OracleAQAgent objects (Overloaded).

OracleAQQueue Properties

OracleAQQueue properties are listed in Table 13-22.

Table 13-22 OracleAQQueue Properties

Property Description

Connection Specifies the OracleConnection object associated with
the queue.

Chapter 13
OracleAQQueue Class

13-48

Table 13-22 (Cont.) OracleAQQueue Properties

Property Description

DequeueOptions Specifies the dequeueing options to use when dequeuing
a message from a queue.

EnqueueOptions Specifies the enqueueing options used to enqueue a
message to a queue.

MessageType Specifies the type of queue table associated with this
queue.

Name Returns the name of the queue.

Notification Specifies the various notification options for notifications
that are registered using the MessageAvailable event.

NotificationConsumers Specifies the array of consumers, for a multiconsumer
queue, that are to be notified asynchronously for any
incoming messages on the queue.

UdtTypeName Specifies the type name on which the queue and the
corresponding queue table is based if the MessageType is
OracleAQMessageType.UDT.

OracleAQQueue Public Methods

The OracleAQQueue public methods are listed in Table 13-23.

Table 13-23 OracleAQQueue Public Methods

Public Method Description

Dequeue Dequeues messages from queues (Overloaded).

DequeueArray Dequeues multiple messages from queues
(Overloaded).

Dispose Releases any resources or memory allocated by the
object

Enqueue Enqueues messages to queues (Overloaded).

EnqueueArray Enqueues multiple messages to a queue (Overloaded).

Listen Listens for messages on the queue on behalf of
listenConsumers (Overloaded).

OracleAQQueue Events

The OracleAQQueue event is listed in Table 13-24.

Table 13-24 OracleAQQueue Events

Event Name Description

MessageAvailable Event Notifies when a message is available in the queue for
NotificationConsumers.

Chapter 13
OracleAQQueue Class

13-49

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

OracleAQQueue Constructors
OracleAQQueue constructors create new instances of the OracleAQQueue class.

Overload List:

• OracleAQQueue(string)

This constructor takes a queue name to initialize a queue object.

• OracleAQQueue(string, OracleConnection)

This constructor takes a queue name and connection to initialize a queue object.
The connection does not need be open during the queue object construction.

• OracleAQQueue(string, OracleConnection, OracleAQMessageType)

This constructor takes a queue name, connection, and message type enumeration
to initialize a queue object.

• OracleAQQueue(string, OracleConnection, OracleAQMessageType, string)

This constructor takes a queue name, connection, message type enumeration,
and UDT type name to initialize a queue object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

OracleAQQueue(string)
This constructor takes a queue name to initialize a queue object.

Declaration

// C#
public OracleAQQueue(string name);

Parameters

• name

The name of the queue as specified in the database.

Chapter 13
OracleAQQueue Class

13-50

Exceptions

ArgumentNullException - The queue name is null.

ArgumentException - The queue name is empty.

Remarks

The operation of creating an OracleAQQueue object does not involve checking for the
existence of the queue in the database.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

OracleAQQueue(string, OracleConnection)
This constructor takes a queue name and connection to initialize a queue object. The
connection does not need to be open during the queue object construction.

Declaration

// C#
public OracleAQQueue(string name, OracleConnection con);

Parameters

• name

Name of the queue as specified in the database.

• con

An OracleConnection object that connects to the queue.

Exceptions

ArgumentNullException - Either the connection is null or queue name is null.

ArgumentException - Queue name is empty.

Remarks

The connection can be accessed using the Connection property, and it must be opened
before calling any operational APIs such as Enqueue and Dequeue.

Creating an OracleAQQueue object does not check for the existence of the queue in the
database.

Chapter 13
OracleAQQueue Class

13-51

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

OracleAQQueue(string, OracleConnection, OracleAQMessageType)
This constructor takes a queue name, connection and message type enumeration to
initialize a queue object. The connection does not need to be open during the queue
object construction.

Declaration

// C#
public OracleAQQueue(string name, OracleConnection con, OracleAQMessageType
 messageType);

Parameters

• name

The name of the queue as specified in the database.

• con

An OracleConnection object that is used to connect to the queue.

• messageType

An OracleAQMessageType enumeration specifying the type of the message that is
enqueued or dequeued from this queue.

Exceptions

ArgumentNullException - Either the connection is null or queue name is null.

ArgumentException - Queue name is empty or the specified message type is not valid.

Remarks

Creating an OracleAQQueue object does not check for the existence of the queue in the
database.

You need to set the UdtTypeName property before using the queue object if the
messageType is a UDT. Another approach is to create a queue using the other
constructor overload by supplying the udtTypeName.

Chapter 13
OracleAQQueue Class

13-52

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

OracleAQQueue(string, OracleConnection, OracleAQMessageType, string)
This constructor takes a queue name, connection, message type enumeration, and UDT type
name to initialize a queue object. The connection does not need to be open during the queue
object construction.

Declaration

// C#
public OracleAQQueue(string name, OracleConnection con, OracleAQMessageType
 messageType, string udtTypeName);

Parameters

• name

The name of the queue as specified in the database.

• con

An OracleConnection object that is used to connect to the queue.

• messageType

An OracleAQMessageType enumeration specifying the type of the message that is
enqueued or dequeued from this queue.

• udtTypeName

The name of the database object type used if the messageType is UDT. The udtTypeName
parameter represents the type on which the queue is based.

Exceptions

ArgumentNullException - The connection is null or the queue name is null.

ArgumentException - The queue name is empty or the specified messageType is not valid.

Remarks

Creating an OracleAQQueue object does not check for the existence of the queue in the
database.

Chapter 13
OracleAQQueue Class

13-53

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

OracleAQQueue Static Methods
OracleAQQueue static methods are listed in Table 13-25.

Table 13-25 OracleAQQueue Static Methods

Static Method Description

Listen Listens for messages on one or more queues for
one or more consumers, as specified in the array of
OracleAQAgent objects (Overloaded).

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Listen
Listen methods listen for messages on one or more queues for one or more
consumers as specified in the array of OracleAQAgent objects.

Overload list

• Listen(OracleConnection, OracleAQAgent[])

This static method listens for messages on one or more queues for one or more
consumers as specified in the array of OracleAQAgent objects.

• Listen(OracleConnection, OracleAQAgent[], int)

This static method listens for messages on one or more queues for one or more
consumers as specified in the array of OracleAQAgent objects. It also specifies a
wait time.

Chapter 13
OracleAQQueue Class

13-54

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Listen(OracleConnection, OracleAQAgent[])
This static method listens for messages on one or more queues for one or more consumers
as specified in the array of OracleAQAgent objects.

Declaration

// C#
public static OracleAQAgent Listen(OracleConnection con, OracleAQAgent[]
 listenConsumers);

Parameters

• con

An OracleConnection instance.

• listenConsumers

The array of consumers being listened for. The name of the OracleAQAgent object must
be null or empty for single consumer queues.

Return Value

An OracleAQAgent object.

Exceptions

ArgumentNullException - The con or listenConsumers parameter is null.

InvalidOperationException - The connection is not open.

Remarks

Listen is useful in situations where one needs to monitor multiple queues until a message is
available for a consumer in one of the queues. The Name property of the OracleAQAgent
object represents the name of the consumer and the Address property represents the name
of the queue.

This call blocks the calling thread until there is a message ready for consumption for a
consumer in the list. It returns an OracleAQAgent object which specifies the consumer and
queue for which a message is ready to be dequeued.

Chapter 13
OracleAQQueue Class

13-55

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Listen(OracleConnection, OracleAQAgent[], int)
This static method listens for messages on one or more queues for one or more
consumers as specified in the array of OracleAQAgent objects. The Name property of
the OracleAQAgent object represents the name of the consumer and the Address
property of the OracleAQAgent object represents the name of the queue.

In case of timeout, this method returns null.

Declaration

// C#
public static OracleAQAgent Listen(OracleConnection con, OracleAQAgent[]
 listenConsumers, int waitTime);

Parameters

• con

An OracleConnection instance.

• listenConsumers

The array of consumers being listened for. The name of the OracleAQAgent object
must be null or empty for single consumer queues.

• waitTime

Wait time in seconds.

Return Value

An OracleAQAgent object.

Exceptions

ArgumentNullException - The con or listenConsumers parameter is null.

InvalidOperationException - The connection is not open.

ArgumentException - waitTime is less than -1.

Remarks

Listen is useful in situations where one needs to monitor multiple queues until a
message is available for a consumer in one of the queues. The Name property of the
OracleAQAgent object represents the name of the consumer and the Address property
of the OracleAQAgent object represents the name of the queue.

Chapter 13
OracleAQQueue Class

13-56

A waitTime of -1 implies an infinite wait time.

This call blocks the calling thread until there is a message ready for consumption for a
consumer in the list. It returns an OracleAQAgent object which specifies the consumer and
queue for which a message is ready to be dequeued.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

OracleAQQueue Properties
OracleAQQueue properties are listed in Table 13-26.

Table 13-26 OracleAQQueue Properties

Property Description

Connection Specifies the OracleConnection object associated with the
queue.

DequeueOptions Specifies the dequeueing options to use when dequeuing a
message from a queue.

EnqueueOptions Specifies the enqueueing options used to enqueue a message
to a queue.

MessageType Specifies the type of queue table associated with this queue.

Name Returns the name of the queue.

Notification Specifies the various notification options for notifications that
are registered using the MessageAvailable event.

NotificationConsumers Specifies the array of consumers, for a multiconsumer queue,
that are to be notified asynchronously for any incoming
messages on the queue.

UdtTypeName Specifies the type name on which the queue and the
corresponding queue table is based if the MessageType is
OracleAQMessageType.UDT.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Chapter 13
OracleAQQueue Class

13-57

Connection
This property specifies the OracleConnection object associated with the queue.

Declaration

// C#
public OracleConnection Connection {get; set;}

Property Value

An OracleConnection object that indicates the connection associated with the queue.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This connection must be opened before calling methods like Enqueue and Dequeue.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

DequeueOptions
This instance property specifies the dequeueing options to use when dequeuing a
message from a queue.

Declaration

// C#
public OracleAQDequeueOptions DequeueOptions {get; set}

Property Value

An OracleAQDequeueOptions object.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is an OracleAQDequeueOptions object with default property values.
Setting this property to null resets all dequeue options to their default values.

Chapter 13
OracleAQQueue Class

13-58

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

EnqueueOptions
This instance property specifies the enqueueing options used to enqueue a message to a
queue.

Declaration

// C#
public OracleAQEnqueueOptions EnqueueOptions {get; set}

Property Value

An OracleAQEnqueueOptions object.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is an OracleAQEnqueueOptions object with default property values. Setting
this property to null resets all enqueue options to their default values.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

MessageType
This instance property specifies the type of queue table associated with this queue.

Declaration

// C#
public OracleAQMessageType MessageType {get; set;}

Property Value

An OracleAQMessageType enumerated value.

Chapter 13
OracleAQQueue Class

13-59

Exceptions

ArgumentOutOfRangeException - The type value specified is invalid.

ObjectDisposedException - The object is already disposed.

Remarks

The MessageType property also dictates the type of message payloads that are
enqueued or dequeued from the queue. It is possible to enqueue a variety of payloads
depending on the MessageType. ODP.NET supports RAW, user-defined type, and XML
data type payloads. It does not support other data types, such as Java Message
Service data types.

Table 13-27 lists the allowed payload types for various message types.

Table 13-27 Message Types and Payloads

OracleAQQueue.MessageType Allowed OracleAQMessage.Payload type to
Enqueue

OracleAQMessageType.Raw OracleBinary, byte[]
OracleAQMessageType.Xml OracleXmlType, XmlReader, String (well-formed

XML, else exception is raised)

OracleAQMessageType.UDT UDT Custom Object

Table 13-28 lists the payload types for dequeued messages.

Table 13-28 Payload Types for Dequeued Messages

OracleAQQueue.MessageType DequeueOptions.Pro
viderSpecificType

OracleAQMessage.Payload of
dequeued message

OracleAQMessageType.Xml true OracleXmlType
OracleAQMessageType.Xml false XmlReader
OracleAQMessageType.Raw true OracleBinary
OracleAQMessageType.Raw false Byte[]
OracleAQMessageType.UDT N.A. UDT Custom Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Chapter 13
OracleAQQueue Class

13-60

Name
This instance property returns the name of the queue.

Declaration

// C#
public string Name {get;}

Property Value

A string that indicates the name of the queue.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Notification
This instance property specifies the various notification options for notifications that are
registered using the MessageAvailable event.

Declaration

// C#
public OracleNotificationRequest Notification {get;}

Property Value

Specifies an OracleNotificationRequest object whose properties can be changed to alter
the notification behavior.

Remarks

This property can be used to change various notification options. The notification options
must be changed before registering with the MessageAvailable event. This property can be
modified again only after unregistering from the MessageAvailable event.

Chapter 13
OracleAQQueue Class

13-61

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

NotificationConsumers
This instance property specifies the array of consumers, for a multiconsumer queue,
that are to be notified asynchronously for any incoming messages on the queue.

Declaration

// C#
public string[] NotificationConsumers {get; set;}

Property Value

Specifies an array of consumer name strings for which the notifications are delivered.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - MessageAvailable registration is active.

Remarks

The consumer names must be in uppercase. This functionality only supports queues
with uppercase names.

The list of consumers is used in the MessageAvailable event. The list must be set
before registering for the event. This property cannot be modified after registering for
the MessageAvailable event. This property can be modified again only after
unregistering from MessageAvailable event.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

UdtTypeName
This instance property specifies the type name on which the queue and the
corresponding queue table is based if the MessageType is OracleAQMessageType.UDT.

Chapter 13
OracleAQQueue Class

13-62

Declaration

// C#
public string UdtTypeName {get; set;}

Property Value

Specifies the Oracle user-defined type name if the MessageType is
OracleAQMessageType.UDT.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The UdtTypeName property corresponds to the user-defined type name of the payload. This
property must always be specified if the payload is a user-defined type. This property need
not be set for other payload types.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

OracleAQQueue Public Methods
OracleAQQueue public methods are listed in Table 13-29.

Table 13-29 OracleAQQueue Public Methods

Public Method Description

Dequeue Dequeues messages from queues (Overloaded).

DequeueArray Dequeues multiple messages from queues
(Overloaded).

Dispose Releases any resources or memory allocated by the
object

Enqueue Enqueues messages to queues (Overloaded).

EnqueueArray Enqueues multiple messages to a queue (Overloaded).

Listen Listens for messages on the queue on behalf of
listenConsumers (Overloaded).

Chapter 13
OracleAQQueue Class

13-63

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Dequeue
Dequeue methods dequeue messages from queues.

Overload List

• Dequeue()

This instance method dequeues messages from a queue using the
DequeueOptions for the instance.

• Dequeue(OracleAQDequeueOptions)

This instance method dequeues messages from a queue using the supplied
dequeue options.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Dequeue()
This instance method is used to dequeue a message from a queue using the
DequeueOptions for the instance.

Declaration

// C#
public OracleAQMessage Dequeue();

Return Value

An OracleAQMessage instance representing the dequeued message.

Exceptions

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

Chapter 13
OracleAQQueue Class

13-64

OracleException - In case of timeout, an exception is thrown with the message, ORA-25228:
timeout or end-of-fetch during message dequeue from queue_name.Timeout may
happen if DequeueOptions.Wait is set to a value other than -1.

Remarks

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also be set.

Dequeued buffered messages always have null MessageId values.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Dequeue(OracleAQDequeueOptions)
This instance method dequeues messages from a queue using the supplied dequeue
options.

Declaration

// C#
public OracleAQMessage Dequeue(OracleAQDequeueOptions dequeueOptions);

Parameters

• dequeueOptions

An OracleAQDequeueOptions object.

Return Value

An OracleAQMessage instance representing the dequeued message.

Exceptions

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

OracleException - In case of timeout, an exception is thrown with the message, ORA-25228:
timeout or end-of-fetch during message dequeue from queue_name. Timeout may
happen if DequeueOptions.Wait is set to a value other than -1.

Remarks

If the supplied dequeueOptions object is null, then the dequeue options default values are
used. The queue object's DequeueOptions property is ignored for this operation.

Calling this method does not change the DequeueOptions property of the queue.

Chapter 13
OracleAQQueue Class

13-65

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also
be set.

Dequeued buffered messages always have null MessageId values.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

DequeueArray
DequeueArray methods dequeue multiple messages from queues.

Overload List

• DequeueArray(int)

This instance method dequeues multiple messages from a queue using the
DequeueOptions of the instance.

• DequeueArray(int, OracleAQDequeueOptions)

This instance method dequeues multiple messages from a queue using the
supplied dequeue options.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

DequeueArray(int)
This instance method dequeues multiple messages from a queue using the
DequeueOptions of the instance.

Declaration

// C#
public OracleAQMessage[] DequeueArray(int dequeueCount);

Parameters

• dequeueCount

Chapter 13
OracleAQQueue Class

13-66

An integer specifying the numbers of messages to dequeue.

Return Value

An array of OracleAQMessage instances representing the dequeued messages.

Exceptions

ArgumentOutOfRangeException - dequeueCount is less than or equal to 0.

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

OracleException - In case of timeout, an exception is thrown with the message, ORA-25228:
timeout or end-of-fetch during message dequeue from queue_name. Timeout may
happen if DequeueOptions.Wait is set to a value other than -1.

Remarks

This method is supported for Oracle Database 10g and higher releases.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must be set as
well.

The size of the returned array may be less than the dequeueCount. It depends on the actual
number of messages present in the queue.

For database versions earlier than Oracle Database 12c Release 2 (12.2), the MessageId
property of persistent OracleAQMessage objects retrieved using DequeueArray is always null.

Dequeued buffered messages always have null MessageId values irrespective of the
database version.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

DequeueArray(int, OracleAQDequeueOptions)
This instance method dequeues multiple messages from a queue using the supplied
dequeue options.

Declaration

// C#
public OracleAQMessage[] DequeueArray(int dequeueCount, OracleAQDequeueOptions
dequeueOptions);

Chapter 13
OracleAQQueue Class

13-67

Parameters

• dequeueCount

An integer specifying the numbers of messages to dequeue.

• dequeueOptions
An OracleAQDequeueOptions object.

Return Value

An array of OracleAQMessage instances representing the dequeued messages.

Exceptions

ArgumentOutOfRangeException - dequeueCount is less than or equal to 0.

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

OracleException - In case of timeout, an exception is thrown with the message,
ORA-25228: timeout or end-of-fetch during message dequeue from queue_name.
Timeout may happen if DequeueOptions.Wait is set to a value other than -1.

Remarks

This method is supported for Oracle Database 10g Release 1 (10.1) and higher
releases. Calling this method does not change the DequeueOptions property of the
queue.

If the supplied dequeueOptions object is null, then the dequeue options default values
are used. The DequeueOptions property of the queue object is ignored in this
operation.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must be set
as well.

The size of the returned array may be less than the dequeueCount. It dependes on the
actual number of messages present in the queue.

For database versions earlier than Oracle Database 12c Release 2 (12.2), the
MessageId property of persistent OracleAQMessage objects retrieved using
DequeueArray is always null.

Dequeued buffered messages always have null MessageId values irrespective of the
database version.

Chapter 13
OracleAQQueue Class

13-68

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Enqueue
Enqueue instance methods enqueue messages to queues.

Overload List

• Enqueue(OracleAQMessage)

This instance method enqueues messages to a queue using the EnqueueOptions of the
instance.

• Enqueue(OracleAQMessage, OracleAQEnqueueOptions)

This instance method enqueues messages to a queue using the supplied enqueue
options.

Chapter 13
OracleAQQueue Class

13-69

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Enqueue(OracleAQMessage)
This instance method enqueues messages to a queue using the EnqueueOptions of
the instance.

Declaration

// C#
public void Enqueue(OracleAQMessage message);

Parameters

• message

An OracleAQMessage object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The connection is not open.

ArgumentNullException - The message parameter is null.

ArgumentException - The message payload is OracleXmlType and the connection
used to create OracleXmlType is different from the queue's connection.

Remarks

MessageId of the enqueued message is populated after the call to Enqueue completes.
Enqueued buffered messages always have null MessageId values.

The MessageType property needs to be set appropriately before calling this function. If
the MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must be
set as well.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Chapter 13
OracleAQQueue Class

13-70

Enqueue(OracleAQMessage, OracleAQEnqueueOptions)
This instance method enqueues messages to a queue using the supplied enqueue options.

Declaration

// C#
public void Enqueue(OracleAQMessage message, OracleAQEnqueueOptions enqueueOptions);

Parameters

• message

An OracleAQMessage object.

• enqueueOptions

An OracleAQEnqueueOptions object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The connection is not open.

ArgumentNullException - The message parameter is null.

ArgumentException - The message payload is OracleXmlType and the connection used to
create OracleXmlType is different from the queue's connection.

Remarks

If the supplied enqueueOptions object is null, then the enqueue options default values are
used. The EnqueueOptions property of the queue object is ignored in this operation.

The MessageId of the enqueued message is populated after the call to Enqueue completes.
Enqueued buffered messages always have null MessageId values. Calling this method does
not change the EnqueueOptions property of the queue.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also be set.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

EnqueueArray
EnqueueArray instance methods enqueue multiple messages to a queue.

Chapter 13
OracleAQQueue Class

13-71

Overload List

• EnqueueArray(OracleAQMessage[])

This instance method enqueues multiple messages to a queue using the
EnqueueOptions of the instance.

• EnqueueArray(OracleAQMessage[], OracleAQEnqueueOptions)

This instance method enqueues multiple messages to a queue using the supplied
enqueue options.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

EnqueueArray(OracleAQMessage[])
This instance method enqueues multiple messages to a queue using the
EnqueueOptions of the instance.

Declaration

// C#
public int EnqueueArray(OracleAQMessage[] messages);

Parameters

• messages

An array of OracleAQMessage objects.

Return Value

An integer representing the number of messages actually enqueued.

Exceptions

ArgumentNullException - The message parameter is null.

ArgumentException - At least one of the OracleAQMessage[] elements is null, or at
least one of the OracleAQMessage[] elements has a payload of OracleXmlType, which
is created using a connection that is different from the queue's connection.

InvalidOperationException - The OracleAQMessage array is empty or the connection
is not open.

ObjectDisposedException - The object is already disposed.

Chapter 13
OracleAQQueue Class

13-72

Remarks

This method is supported by Oracle Database 10g and higher releases. The MessageId
properties of the enqueued messages are populated after the call to Enqueue completes.
Enqueued buffered messages always have null MessageId values.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also be set.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

EnqueueArray(OracleAQMessage[], OracleAQEnqueueOptions)
This instance method enqueues multiple messages to a queue using the supplied enqueue
options.

Declaration

// C#
public int EnqueueArray(OracleAQMessage[] messages, OracleAQEnqueueOptions
 enqueueOptions);

Parameters

• messages

An array of OracleAQMessage objects.

• enqueueOptions

An OracleAQEnqueueOptions object.

Return Value

An integer representing the number of messages actually enqueued.

Exceptions

ArgumentNullException - The message parameter is null.

ArgumentException - At least one of the OracleAQMessage[] elements is null, or at least
one of the OracleAQMessage[] elements has a payload of OracleXmlType, which is created
using a connection that is different from the queue's connection.

InvalidOperationException - The OracleAQMessage array is empty or the connection is not
open.

ObjectDisposedException - The object is already disposed.

Chapter 13
OracleAQQueue Class

13-73

Remarks

This method is supported by Oracle Database 10g and higher releases. MessageId
properties of the enqueued messages are populated after the call to Enqueue
completes. Enqueued buffered messages always have null MessageId values.
Calling this method does not change the EnqueueOptions property of the queue.

If the supplied enqueueOptions object is null, then the enqueue options default values
are used. The EnqueueOptions property of the queue object is ignored in this
operation.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also
be set.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Listen
Listen methods listen for messages on the queue on behalf of listenConsumers.

Overload List

• Listen(string[])

This method listens for messages on the queue on behalf of listenConsumers.

• Listen (string[], int)

This method listens for messages on behalf of listenConsumers for a specified
time.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Listen(string[])
This method listens for messages on the queue on behalf of listenConsumers.

Chapter 13
OracleAQQueue Class

13-74

Declaration

// C#
public string Listen(string[] listenConsumers);

Parameters

• listenConsumers

An array of consumers to listen for on this queue. This parameter should be null in case
of single consumer queues.

Return Value

A string.

Exceptions

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

Remarks

This call blocks the calling thread until there is a message ready for consumption for a
consumer in the listenConsumers array. It returns a string representing the consumer name
for which the message is ready.

Listen is useful in situations that require waiting until a message is available in the queue for
consumers whose names are specified in listenConsumers.

Example

The following example demonstrates using the Listen method. The first part of the example
performs the requisite database setup for the database user, SCOTT. The second part of the
example demonstrates how a thread can listen and wait until a message is enqueued.

-- Part I: Database setup required for this demo

--
-- SQL to grant appropriate privilege to database user, SCOTT
--
SQL> ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY Pwd4Sct;
User altered.
GRANT ALL ON DBMS_AQADM TO scott;

--
-- PLSQL to create queue-table and queue and start queue for SCOTT
--
BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table=>'scott.test_q_tab',
 queue_payload_type=>'RAW',
 multiple_consumers=>FALSE);

 DBMS_AQADM.CREATE_QUEUE(
 queue_name=>'scott.test_q',
 queue_table=>'scott.test_q_tab');

 DBMS_AQADM.START_QUEUE(queue_name=>'scott.test_q');

Chapter 13
OracleAQQueue Class

13-75

END;
/

--
-- PLSQL to stop queue and drop queue & queue-table from SCOTT
--
BEGIN
 DBMS_AQADM.STOP_QUEUE('scott.test_q');

 DBMS_AQADM.DROP_QUEUE(
 queue_name => 'scott.test_q',
 auto_commit => TRUE);

 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'scott.test_q_tab',
 force => FALSE,
 auto_commit => TRUE);
END;
/
-- End of Part I, database setup.

//Part II: Demonstrates using the Listen method
//C#
using System;
using System.Text;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;
using System.Threading;

namespace ODPSample
{
 /// <summary>
 /// Demonstrates how a thread can listen and wait until a message is enqueued.
 /// Once a message is enqueued, the listening thread returns from the
 /// blocked Listen() method invocation and dequeues the message.
 /// </summary>
 class EnqueueDequeue
 {
 static bool s_bListenReturned = false;

 static void Main(string[] args)
 {
 // Create connection
 string constr = "user id=scott;password=Pwd4Sct;data source=oracle";
 OracleConnection con = new OracleConnection(constr);

 // Create queue
 OracleAQQueue queue = new OracleAQQueue("scott.test_q", con);

 try
 {
 // Open connection
 con.Open();

 // Set message type for the queue
 queue.MessageType = OracleAQMessageType.Raw;

 // Spawning a thread which will listen for a message
 ThreadStart ts = new ThreadStart(TestListen);
 Thread t = new Thread(ts);
 t.Start();

Chapter 13
OracleAQQueue Class

13-76

 System.Threading.Thread.Sleep(2000);

 // Begin transaction for enqueue
 OracleTransaction txn = con.BeginTransaction();

 // Prepare message and RAW payload
 OracleAQMessage enqMsg = new OracleAQMessage();
 byte[] bytePayload = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 enqMsg.Payload = bytePayload;

 // Prepare to Enqueue
 queue.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;

 Console.WriteLine("[Main Thread] Enqueuing a message...");
 Console.WriteLine("[Main Thread] Enqueued Message Payload : "
 + ByteArrayToString(enqMsg.Payload as byte[]));
 Console.WriteLine();

 // Enqueue message
 queue.Enqueue(enqMsg);

 // Enqueue transaction commit
 txn.Commit();

 // Loop till Listen returns
 while (!s_bListenReturned)
 System.Threading.Thread.Sleep(1000);
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 finally
 {
 // Close/Dispose objects
 queue.Dispose();
 con.Close();
 con.Dispose();
 }
 }

 static void TestListen()
 {
 // Create connection
 string constr = "user id=scott;password=Pwd4Sct;data source=oracle";
 OracleConnection conListen = new OracleConnection(constr);

 // Create queue
 OracleAQQueue queueListen = new OracleAQQueue("scott.test_q", conListen);

 try
 {
 // Open the connection for Listen thread.
 // Connection blocked on Listen thread can not be used for other DB
 // operations
 conListen.Open();

 // Set message type for the queue
 queueListen.MessageType = OracleAQMessageType.Raw;

Chapter 13
OracleAQQueue Class

13-77

 // Listen
 queueListen.Listen(null);

 Console.WriteLine("[Listen Thread] Listen returned... Dequeuing...");

 // Begin txn for Dequeue
 OracleTransaction txn = conListen.BeginTransaction();

 // Prepare to Dequeue
 queueListen.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 queueListen.DequeueOptions.Wait = 10;

 // Dequeue message
 OracleAQMessage deqMsg = queueListen.Dequeue();
 Console.WriteLine("[Listen Thread] Dequeued Message Payload : "
 + ByteArrayToString(deqMsg.Payload as byte[]));

 // Dequeue txn commit
 txn.Commit();

 // Allow the main thread to exit
 s_bListenReturned = true;
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 finally
 {
 // Close/Dispose objects
 queueListen.Dispose();
 conListen.Close();
 conListen.Dispose();
 }
 }

 // Function to convert byte[] to string
 static private string ByteArrayToString(byte[] byteArray)
 {
 StringBuilder sb = new StringBuilder();
 for (int n = 0; n < byteArray.Length; n++)
 {
 sb.Append((int.Parse(byteArray[n].ToString())).ToString("X"));
 }
 return sb.ToString();
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Chapter 13
OracleAQQueue Class

13-78

Listen (string[], int)
This method listens for messages on behalf of listenConsumers for a specified time.

Declaration

// C#
public string Listen(string[] listenConsumers, int waitTime);

Parameters

• listenConsumers

Array of consumers for which to listen on this queue.

• waitTime

Wait time in seconds.

Return Value

A string

Exceptions

InvalidOperationException - The connection is not open.

ArgumentException - waitTime is less than -1.

ObjectDisposedException - The object is already disposed.

Remarks

Listen is useful in situations that require waiting until a message is available in the queue for
consumers whose names are specified in listenConsumers.

This call blocks the calling thread until there is a message ready for consumption for a
consumer in the listenConsumers array. It returns a string representing the consumer name
for which the message is ready.The method returns null if a timeout occurs.

The listenConsumers parameter should be null for single consumer queues. An empty
string is returned in such cases.

A waitTime of -1 implies infinite wait time.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

Chapter 13
OracleAQQueue Class

13-79

OracleAQQueue Events
The OracleAQQueue event is listed in Table 13-30.

Table 13-30 OracleAQQueue Events

Event Name Description

MessageAvailable Event Notifies when a message is available in the queue for
NotificationConsumers.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

MessageAvailable Event
This event is notified when a message is available in the queue for
NotificationConsumers.

Declaration

// C#
public event OracleAQMessageAvailableEventHandler MessageAvailable;

Event Data

The event handler receives an OracleAQMessageAvailableEventArgs object.

Exceptions

InvalidOperationException - The connection is not open.

Remarks

Asynchronous notification is supported in all queue tables created with a database
compatibility level of 8.1 or higher.

In order to receive the notification about message availability, the client must create an
OracleAQMessageAvailableEventHandler delegate to listen to this event. The
delegate should be added to this event only after setting the NotificationConsumers
and Notification properties.

The notification registration takes place after the first delegate is added to the event.
The notification is unregistered when the last delegate is removed from the event.
Notifications set on an OracleAQQueue object get cancelled automatically when the
object gets disposed.

Chapter 13
OracleAQQueue Class

13-80

Oracle Data Provider for .NET opens a port to listen for notifications. HA events, load
balancing, and continuous query notification features also share the same port. This port can
be configured centrally by setting the database notification port in an application or Web
configuration file. The following example code specifies a port number of 1200:

<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DbNotificationPort" value="1200"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

If the configuration file does not exist or the db notification port is not specified, then
ODP.NET uses a valid and random port number. The configuration file may also request for a
random port number by specifying a db notification port value of -1.

The notification listener, which runs in the same application domain as ODP.NET, uses the
specified port number to listen to notifications from the database. A notification listener gets
created when the application registers with OracleAQQueue.MessageAvailable event. One
notification listener can listen to all notification types. Only one notification listener is created
for each application domain.

Example

The following example demonstrates application notification. The first part of the example
performs the requisite database setup for the database user, SCOTT. The second part of the
example demonstrates how an application is notified when a message is available in the
queue.

-- Part I: Database setup required for this demo

--
-- SQL to grant appropriate privilege to database user, SCOTT
--
SQL> ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY Pwd4Sct;
User altered.
SQL> GRANT ALL ON DBMS_AQADM TO scott;

--
-- PLSQL to create queue-table and queue and start queue for SCOTT
--
BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table=>'scott.test_q_tab',
 queue_payload_type=>'RAW',
 multiple_consumers=>FALSE);

 DBMS_AQADM.CREATE_QUEUE(
 queue_name=>'scott.test_q',
 queue_table=>'scott.test_q_tab');

 DBMS_AQADM.START_QUEUE(queue_name=>'scott.test_q');
END;
/

--
-- PLSQL to stop queue and drop queue & queue-table from SCOTT
--
BEGIN

Chapter 13
OracleAQQueue Class

13-81

 DBMS_AQADM.STOP_QUEUE('scott.test_q');

 DBMS_AQADM.DROP_QUEUE(
 queue_name => 'scott.test_q',
 auto_commit => TRUE);

 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'scott.test_q_tab',
 force => FALSE,
 auto_commit => TRUE);
END;
/
-- End of Part I, database setup.

//Part II: Demonstrates application notification
//C#
using System;
using System.Text;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

namespace ODPSample
{
 /// <summary>
 /// Demonstrates how the application can be notified when a message is
 /// available in a queue.
 /// </summary>
 class Notification
 {
 static bool isNotified = false;

 static void Main(string[] args)
 {
 // Create connection
 string constr = "user id=scott;password=Pwd4Sct;data source=oracle";
 OracleConnection con = new OracleConnection(constr);

 // Create queue
 OracleAQQueue queue = new OracleAQQueue("scott.test_q", con);

 try
 {
 // Open connection
 con.Open();

 // Set message type for the queue
 queue.MessageType = OracleAQMessageType.Raw;

 // Add the event handler to handle the notification. The
 // MsgReceived method will be invoked when a message is enqueued
 queue.MessageAvailable +=
 new OracleAQMessageAvailableEventHandler(Notification.MsgReceived);

 Console.WriteLine("Notification registered...");

 // Begin txn for enqueue
 OracleTransaction txn = con.BeginTransaction();

 Console.WriteLine("Now enqueuing message...");

 // Prepare message and RAW payload

Chapter 13
OracleAQQueue Class

13-82

 OracleAQMessage enqMsg = new OracleAQMessage();
 byte[] bytePayload = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 enqMsg.Payload = bytePayload;

 // Prepare to Enqueue
 queue.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;

 // Enqueue message
 queue.Enqueue(enqMsg);

 Console.WriteLine("Enqueued Message Payload : "
 + ByteArrayToString(enqMsg.Payload as byte[]));
 Console.WriteLine("MessageId of Enqueued Message : "
 + ByteArrayToString(enqMsg.MessageId));
 Console.WriteLine();

 // Enqueue txn commit
 txn.Commit();

 // Loop while waiting for notification
 while (isNotified == false)
 {
 System.Threading.Thread.Sleep(2000);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 finally
 {
 // Close/Dispose objects
 queue.Dispose();
 con.Close();
 con.Dispose();
 }
 }

 static void MsgReceived(object src, OracleAQMessageAvailableEventArgs arg)
 {
 try
 {
 Console.WriteLine("Notification Received...");
 Console.WriteLine("QueueName : {0}", arg.QueueName);
 Console.WriteLine("Notification Type : {0}", arg.NotificationType);

 //following type-cast to "byte[]" is required only for .NET 1.x
 byte[] notifiedMsgId = (byte[]) arg.MessageId[0];
 Console.WriteLine("MessageId of Notified Message : "
 + ByteArrayToString(notifiedMsgId));
 isNotified = true;
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 }

 // Function to convert byte[] to string
 static private string ByteArrayToString(byte[] byteArray)
 {

Chapter 13
OracleAQQueue Class

13-83

 StringBuilder sb = new StringBuilder();
 for (int n = 0; n < byteArray.Length; n++)
 {
 sb.Append((int.Parse(byteArray[n].ToString())).ToString("X"));
 }
 return sb.ToString();
 }
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleAQQueue Class

• OracleAQQueue Members

OracleAQDequeueMode Enumeration
Table 13-31 lists all the OracleAQDequeueMode enumeration values with a description of
each enumerated value.

Table 13-31 OracleAQDequeueMode Members

Member Name Description

Browse Reads the message without acquiring any lock on the message.
This is equivalent to a SELECT statement.

Locked Reads and obtains a write lock on the message. The lock lasts for
the duration of the transaction. This is equivalent to a SELECT FOR
UPDATE statement.

Remove Reads the message and updates or deletes it. This is the default.

The message can be retained in the queue table based on the
retention properties

RemoveNoData Confirms receipt of the message but does not deliver the actual
message content.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Chapter 13
OracleAQDequeueMode Enumeration

13-84

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleAQDequeueOptions Class"

• "DequeueMode"

OracleAQMessageDeliveryMode Enumeration
The OracleAQMessageDeliveryMode enumeration type specifies the delivery mode of the
message.

Table 13-32 lists all the OracleAQMessageDeliveryMode enumeration values with a description
of each enumerated value.

Table 13-32 OracleAQMessageDeliveryMode Members

Member Name Description

Buffered Indicates a buffered message.

Both enqueue and dequeue buffered messaging operations must be in
IMMEDIATE visibility mode. This means that these operations cannot be
part of another transaction. You cannot specify delay when enqueuing
buffered messages.

Dequeuing applications can choose to dequeue persistent messages
only, buffered messages only, or both types.

Buffered messages can be queried using the AQ$Queue_Table_Name
view. These messages appear with states, IN-MEMORY or SPILLED.

Transaction grouping queues and array enqueues are not supported for
buffered messages in Oracle Database 11g release 1 (11.1) . One can
still use the array enqueue procedure to enqueue buffered messages,
but the array size must be set to 1. Array dequeue is not supported for
buffered messaging, but one can still use the array dequeue procedure
by setting array size to 1.

Buffered messaging is faster than persistent messaging. Use buffered
messaging for applications that do not require the reliability and
transaction support of Oracle Database AQ persistent messaging.

Persistent Indicates a persistent message.

Persistent messaging ensures reliability and support transactions. It is
slower than buffered messaging.

PersistentOrBuffered Indicates a persistent or buffered message.

This is used with Dequeue() when a consumer wants to dequeue a
message irrespective of whether it is Persistent or Buffered.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Chapter 13
OracleAQMessageDeliveryMode Enumeration

13-85

Provider ODP.NET, Unmanaged Driver

Namespace Oracle.DataAccess.Client
.NET Framework 4.8

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleAQDequeueOptions Class"

• "DeliveryMode"

OracleAQMessageState Enumeration
The OracleAQMessageState enumeration type identifies the state of the message at
the time of dequeue.

Table 13-33 lists all the OracleAQMessageState enumeration values with a description
of each enumerated value.

Table 13-33 OracleAQMessageState Members

Member Name Description

Expired Indicates that the message has been moved to the exception
queue.

Processed Indicates that the message has been processed and retained.

Ready Indicates that the message is ready to be processed.

Waiting Indicates that the message delay has not been reached.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Chapter 13
OracleAQMessageState Enumeration

13-86

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleAQMessage Class"

• "State"

OracleAQMessageType Enumeration
The OracleAQMessageType enumeration type specifies the message payload type.

Table 13-34 lists all the OracleAQMessageType enumeration values with a description of each
enumerated value.

Table 13-34 OracleAQMessageType Members

Member Name Description

Raw Indicates the Raw message type.

The data type of the payload must be either OracleBinary or byte[]
to enqueue the message.

Udt Indicates the Oracle UDT message type.

The ODP.NET AQ implementation currently does not support user
defined types with LOB attributes. It also does not support other
variants of user defined types such as VARRAY and nested tables, as
Oracle Database AQ does not support them inherently.

Xml Indicates the XML message type.

The data type of the payload must be OracleXmlType, XmlReader, or
String in order to enqueue the message. If the data type is String, it
must be well-formed XML, else an exception is raised when enqueuing
the message.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Chapter 13
OracleAQMessageType Enumeration

13-87

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleAQQueue Class"

• "OracleAQQueue Constructors"

• "MessageType"

OracleAQNavigationMode Enumeration
Table 13-35 lists all the OracleAQNavigationMode enumeration values with a
description of each enumerated value.

Table 13-35 OracleAQNavigationMode Members

Member Name Description

FirstMessage Retrieves the first message that is available and matches the
search criteria. This resets the position to the beginning of the
queue.

FirstMessageMultiGroup Indicates that a call to DequeueArray resets the position to
the beginning of the queue, and dequeues messages that are
available and match the search criteria. Messages are
dequeued till the dequeueCount limit is reached. The
dequeued messages can belong to different transaction
groups.

You can use the OracleAQMessage.TransactionGroup
property to distinguish between messages from different
transaction groups. All messages from the same transaction
group have the same value for the
OracleAQMessage.TransactionGroup property.

NextMessage Retrieves the next message that is available and matches the
search criteria. If the previous message belongs to a message
group, AQ retrieves the next available message that matches
the search criteria and belongs to the message group.

NextMessageMultiGroup Indicates that a call to DequeueArray dequeues the next set
of messages that are available and match the search criteria.
Messages are dequeued till the dequeueCount limit is
reached. The dequeued messages can belong to different
transaction groups.

You can use the OracleAQMessage.TransactionGroup
property to distinguish between messages from different
transaction groups. All messages from the same transaction
group have the same value for the
OracleAQMessage.TransactionGroup property.

NextTransaction Skips the remainder of the current transaction group (if any)
and retrieves the first message of the next transaction group.

Chapter 13
OracleAQNavigationMode Enumeration

13-88

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleAQDequeueOptions Class"

• "NavigationMode"

OracleAQNotificationGroupingType Enumeration
The OracleAQNotificationGroupingType enumeration type specifies the notification
grouping type.

Table 13-36 lists all the OracleAQNotificationGroupingType enumeration values with a
description of each enumerated value.

Table 13-36 OracleAQNotificationGroupingType Members

Member Name Description

Last Indicates that only details of the last message in the notification group
are provided.

Summary Indicates that the Summary of all messages in the notification group is
provided.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

Chapter 13
OracleAQNotificationGroupingType Enumeration

13-89

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleNotificationRequest Class"

OracleAQNotificationType Enumeration
The OracleAQNotificationType enumeration type specifies the notification type of the
received notification.

Table 13-37 lists all the OracleAQNotificationType enumeration values with a
description of each enumerated value.

Table 13-37 OracleAQNotificationType Members

Member Name Description

Group Indicates that the received notification is a grouping notification.

Regular Indicates that the received notification is a regular notification.

Timeout Indicates that the received notification is raised due to a timeout.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

OracleAQVisibilityMode Enumeration
Table 13-38 lists all the OracleAQVisibilityMode enumeration values with a
description of each enumerated value.

Chapter 13
OracleAQNotificationType Enumeration

13-90

Table 13-38 OracleAQVisibilityMode Members

Member Name Description

Immediate Indicates that the enqueue or dequeue operation is not part of the
current transaction. The operation constitutes a transaction of its own.

OnCommit Indicates that the enqueue or dequeue operation is part of the current
transaction. This is the default case.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll
Namespace Oracle.DataAccess.Client
.NET Framework 4.8

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

Chapter 13
OracleAQVisibilityMode Enumeration

13-91

14
Oracle Data Provider for .NET Types Classes

This chapter describes the large object and REF CURSOR objects provided by Oracle Data
Provider for .NET.

This chapter contains these topics:

• ODP.NET Types (ODP.NET LOB objects) consisting of these object classes:

– OracleBFile Class

– OracleBlob Class

– OracleClob Class

• OracleRefCursor Class

All offsets are 0-based for all ODP.NET LOB object parameters.

OracleBFile Class
An OracleBFile is an object that has a reference to BFILE data. It provides methods for
performing operations on BFILEs.

Note:

OracleBFile is supported for applications running against Oracle8.x and later.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.IO.Stream
 Oracle.DataAccess.Types.OracleBFile

Declaration

// C#
public sealed class OracleBFile : Stream, ICloneable, INullable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

14-1

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleBFile is supported for applications running against Oracle8.x and later.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleBFileSample
{
static void Main()
{
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile.OpenFile();

 // Read 7 bytes into readBuffer, starting at buffer offset 0
 byte[] readBuffer = new byte[7];
 int bytesRead = bFile.Read(readBuffer, 0, 7);

 // Prints "bytesRead = 7"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 65666768656667"

Chapter 14
OracleBFile Class

14-2

 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 // Search for the 2nd occurrence of a byte pattern {66,67}
 // starting from byte offset 1 in the OracleBFile
 byte[] pattern = new byte[2] {66, 67};
 long posFound = bFile.Search(pattern, 1, 2);

 // Prints "posFound = 6"
 Console.WriteLine("posFound = " + posFound);

 // Close the OracleBFile
 bFile.CloseFile();

 bFile.Close();
 bFile.Dispose();

 con.Close();
 con.Dispose();
}
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Members

• OracleBFile Constructors

• OracleBFile Static Fields

• OracleBFile Static Methods

• OracleBFile Instance Properties

• OracleBFile Instance Methods

OracleBFile Members
OracleBFile members are listed in the following tables.

OracleBFile Constructors

OracleBFile constructors are listed in Table 14-1.

Table 14-1 OracleBFile Constructors

Constructor Description

OracleBFile Constructors Creates an instance of the OracleBFile class
(Overloaded)

Chapter 14
OracleBFile Class

14-3

OracleBFile Static Fields

OracleBFile static fields are listed in Table 14-2.

Table 14-2 OracleBFile Static Fields

Field Description

MaxSize The static field holds the maximum number of bytes
a BFILE can hold, which is 4,294,967,295 (2^32 - 1)
bytes

Null Represents a null value that can be assigned to the
value of an OracleBFile instance

OracleBFile Static Methods

OracleBFile static methods are listed in Table 14-3.

Table 14-3 OracleBFile Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleBFile Instance Properties

OracleBFile instance properties are listed in Table 14-4.

Table 14-4 OracleBFile Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be
read

CanSeek Indicates whether or not forward and backward seek
operations can be performed

CanWrite Indicates whether or not the LOB object supports
writing

Connection Indicates the connection used to read from a BFILE
DirectoryName Indicates the directory alias of the BFILE
FileExists Indicates whether or not the specified BFILE exists

FileName Indicates the name of the BFILE
IsEmpty Indicates whether the BFILE is empty or not

IsNull Indicates whether or not the current instance has a
null value

IsOpen Indicates whether the BFILE has been opened by
this instance or not

Length Indicates the size of the BFILE data in bytes

Position Indicates the current read position in the LOB
stream

Chapter 14
OracleBFile Class

14-4

Table 14-4 (Cont.) OracleBFile Instance Properties

Properties Description

Value Returns the data, starting from the first byte in
BFILE, as a byte array

OracleBFile Instance Methods

OracleBFile instance methods are listed in Table 14-5.

Table 14-5 OracleBFile Instance Methods

Methods Description

BeginRead Inherited from System.IO.Stream
BeginWrite Not Supported

Clone Creates a copy of an OracleBFile object

Close Closes the current stream and releases any resources
associated with the stream

CloseFile Closes the BFILE referenced by the current BFILE
instance

Compare Compares data referenced by the two OracleBFiles

CreateObjRef Inherited from System.MarshalByRefObject
CopyTo Copies data as specified (Overloaded)

Dispose Releases resources allocated by this object

EndRead Inherited from System.IO.Stream
EndWrite Not Supported

Equals Inherited from System.Object (Overloaded)

Flush Not Supported

FlushAsync Not Supported

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
IsEqual Compares the LOB references

OpenFile Opens the BFILE specified by the FileName and
DirectoryName

Read Reads a specified amount of bytes from the
OracleBFile instance and populates the buffer

ReadByte Inherited from System.IO.Stream
Search Searches for a binary pattern in the current instance of

an OracleBFile
Seek Sets the position on the current LOB stream

Chapter 14
OracleBFile Class

14-5

Table 14-5 (Cont.) OracleBFile Instance Methods

Methods Description

SetLength Not Supported

ToString Inherited from System.Object
Write Not Supported

WriteByte Not Supported

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Members

OracleBFile Constructors
OracleBFile constructors create new instances of the OracleBFile class.

Overload List:

• OracleBFile(OracleConnection)

This constructor creates an instance of the OracleBFile class with an
OracleConnection object.

• OracleBFile(OracleConnection, string, string)

This constructor creates an instance of the OracleBFile class with an
OracleConnection object, the location of the BFILE, and the name of the BFILE.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

OracleBFile(OracleConnection)
This constructor creates an instance of the OracleBFile class with an
OracleConnection object.

Chapter 14
OracleBFile Class

14-6

Declaration

// C#
public OracleBFile(OracleConnection con);

Parameters

• con

The OracleConnection object.

Exceptions

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The connection must be opened explicitly by the application. OracleBFile does not open the
connection implicitly.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

OracleBFile(OracleConnection, string, string)
This constructor creates an instance of the OracleBFile class with an OracleConnection
object, the location of the BFILE, and the name of the BFILE.

Declaration

// C#
public OracleBFile(OracleConnection con, string directoryName, string
 fileName);

Parameters

• con

The OracleConnection object.

• directoryName

The directory alias created by the CREATE DIRECTORY SQL statement.

• fileName

The name of the external LOB.

Chapter 14
OracleBFile Class

14-7

Exceptions

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The OracleConnection must be opened explicitly by the application. OracleBFile
does not open the connection implicitly.

To initialize a BFILE column using an OracleBFile instance as an input parameter of a
SQL INSERT statement, directoryName and fileName must be properly set.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

OracleBFile Static Fields
OracleBFile static fields are listed in Table 14-6.

Table 14-6 OracleBFile Static Fields

Field Description

MaxSize The static field holds the maximum number of bytes a BFILE can hold,
which is 4,294,967,295 (2^32 - 1) bytes

Null Represents a null value that can be assigned to the value of an
OracleBFile instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

MaxSize
This static field holds the maximum number of bytes a BFILE can hold, which is
4,294,967,295 (2^32 - 1) bytes.

Chapter 14
OracleBFile Class

14-8

Declaration

// C#
public static readonly Int64 MaxSize = 4294967295;

Remarks

This field is useful in code that checks whether or not the operation exceeds the maximum
length allowed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Null
This static field represents a null value that can be assigned to the value of an OracleBFile
instance.

Declaration

// C#
public static readonly OracleBFile Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

OracleBFile Static Methods
OracleBFile static methods are listed in Table 14-7.

Table 14-7 OracleBFile Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

Chapter 14
OracleBFile Class

14-9

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

OracleBFile Instance Properties
OracleBFile instance properties are listed in Table 14-8.

Table 14-8 OracleBFile Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be read

CanSeek Indicates whether or not forward and backward seek operations can be
performed

CanWrite Indicates whether or not the LOB object supports writing

Connection Indicates the connection used to read from a BFILE
DirectoryName Indicates the directory alias of the BFILE
FileExists Indicates whether or not the specified BFILE exists

FileName Indicates the name of the BFILE
IsEmpty Indicates whether the BFILE is empty or not

IsNull Indicates whether or not the current instance has a null value

IsOpen Indicates whether the BFILE has been opened by this instance or not

Length Indicates the size of the BFILE data in bytes

Position Indicates the current read position in the LOB stream

Value Returns the data, starting from the first byte in BFILE, as a byte array

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

CanRead
Overrides Stream

Chapter 14
OracleBFile Class

14-10

This instance property indicates whether or not the LOB stream can be read.

Declaration

// C#
public override bool CanRead{get;}

Property Value

If the LOB stream can be read, returns true; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

CanSeek
Overrides Stream
This instance property indicates whether or not forward and backward seek operations can
be performed.

Declaration

// C#
public override bool CanSeek{get;}

Property Value

If forward and backward seek operations can be performed, returns true; otherwise, returns
false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

CanWrite
Overrides Stream
This instance property indicates whether or not the LOB object supports writing.

Chapter 14
OracleBFile Class

14-11

Declaration

// C#
public override bool CanWrite{get;}

Property Value

BFILE is read only.

Remarks

BFILE is read-only, therefore, the boolean value is always false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Connection
This instance property indicates the connection used to read from a BFILE.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An object of OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

DirectoryName
This instance property indicates the directory alias of the BFILE.

Chapter 14
OracleBFile Class

14-12

Declaration

// C#
public string DirectoryName {get;set;}

Property Value

A string.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The value of the DirectoryName changed while the BFILE is
open.

Remarks

The maximum length of a DirectoryName is 30 bytes.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

FileExists
This instance property indicates whether or not the BFILE specified by the DirectoryName
and FileName exists.

Declaration

// C#
public bool FileExists {get;}

Property Value

bool

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

Unless a connection, file name, and directory name are provided, this property is set to false
by default.

Chapter 14
OracleBFile Class

14-13

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

FileName
This instance property indicates the name of the BFILE.

Declaration

// C#
public string FileName {get;set}

Property Value

A string that contains the BFILE name.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The value of the DirectoryName changed while the
BFILE is open.

Remarks

The maximum length of a FileName is 255 bytes.

Changing the FileName property while the BFILE object is opened causes an
exception.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

IsEmpty
This instance property indicates whether the BFILE is empty or not.

Declaration

// C#
public bool IsEmpty {get;}

Chapter 14
OracleBFile Class

14-14

Property Value

bool

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

IsOpen
This instance property indicates whether the BFILE has been opened by this instance or not.

Declaration

// C#
public bool IsOpen {get;}

Property Value

A bool.

Chapter 14
OracleBFile Class

14-15

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Length
Overrides Stream
This instance property indicates the size of the BFILE data in bytes.

Declaration

// C#
public override Int64 Length {get;}

Property Value

Int64

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Position
Overrides Stream
This instance property indicates the current read position in the LOB stream.

Declaration

// C#
public override Int64 Position{get; set;}

Chapter 14
OracleBFile Class

14-16

Property Value

An Int64 value that indicates the read position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The value is less than 0.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Value
This instance property returns the data, starting from the first byte in BFILE, as a byte array.

Declaration

// C#
public byte[] Value{get;}

Property Value

A byte array.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The length of data is bound by the maximum length of the byte array. The current value of the
Position property is not used or changed.

Chapter 14
OracleBFile Class

14-17

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

OracleBFile Instance Methods
OracleBFile instance methods are listed in Table 14-9.

Table 14-9 OracleBFile Instance Methods

Methods Description

BeginRead Inherited from System.IO.Stream
BeginWrite Not Supported

Clone Creates a copy of an OracleBFile object

Close Closes the current stream and releases any resources
associated with the stream

CloseFile Closes the BFILE referenced by the current BFILE
instance

Compare Compares data referenced by the two OracleBFiles

CreateObjRef Inherited from System.MarshalByRefObject
CopyTo Copies data as specified (Overloaded)

Dispose Releases resources allocated by this object

EndRead Inherited from System.IO.Stream
EndWrite Not Supported

Equals Inherited from System.Object (Overloaded)

Flush Not Supported

FlushAsync Not Supported

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
IsEqual Compares the LOB references

OpenFile Opens the BFILE specified by the FileName and
DirectoryName

Read Reads a specified amount of bytes from the
OracleBFile instance and populates the buffer

ReadByte Inherited from System.IO.Stream

Chapter 14
OracleBFile Class

14-18

Table 14-9 (Cont.) OracleBFile Instance Methods

Methods Description

Search Searches for a binary pattern in the current instance
of an OracleBFile

Seek Sets the position on the current LOB stream

SetLength Not Supported

ToString Inherited from System.Object
Write Not Supported

WriteByte Not Supported

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Clone
This instance method creates a copy of an OracleBFile object.

Declaration

// C#
public object Clone();

Return Value

An OracleBFile object.

Implements

ICloneable

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The cloned object has the same property values as that of the object being cloned.

Chapter 14
OracleBFile Class

14-19

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CloneSample
{
 static void Main()
 {
 // Create MYDIR directory object as indicated above and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile1 = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile1.OpenFile();

 // Prints "bFile1.Position = 0"
 Console.WriteLine("bFile1.Position = " + bFile1.Position);

 // Set the Position before calling Clone()
 bFile1.Position = 1;

 // Clone the OracleBFile
 OracleBFile bFile2 = (OracleBFile) bFile1.Clone();

 // Open the OracleBFile
 bFile2.OpenFile();

 // Prints "bFile2.Position = 1"
 Console.WriteLine("bFile2.Position = " + bFile2.Position);

 // Close the OracleBFile
 bFile1.CloseFile();

 bFile1.Close();
 bFile1.Dispose();

 // Close the Cloned OracleBFile
 bFile2.CloseFile();

 bFile2.Close();
 bFile2.Dispose();

 con.Close();

Chapter 14
OracleBFile Class

14-20

 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Close
Overrides Stream
This instance method closes the current stream and releases any resources associated with
it.

Declaration

// C#
public override void Close();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

CloseFile
This instance method closes the BFILE referenced by the current BFILE instance.

Declaration

// C#
public void CloseFile();

Chapter 14
OracleBFile Class

14-21

Remarks

No error is returned if the BFILE exists, but is not opened.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Compare
This instance method compares data referenced by the two OracleBFiles.

Declaration

// C#
public int Compare(Int64 src_offset, OracleBFile obj, Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The offset of the current instance.

• obj

The provided OracleBFile object.

• dst_offset

The offset of the OracleBFile object.

• amount

The number of bytes to compare.

Return Value

Returns a number that is:

• Less than zero: if the BFILE data of the current instance is less than that of the
provided BFILE data.

• Zero: if both the BFILEs store the same data.

• Greater than zero: if the BFILE data of the current instance is greater than that of
the provided BFILE data.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 14
OracleBFile Class

14-22

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount is less than
0.

Remarks

The provided object and the current instance must be using the same connection, that is, the
same OracleConnection object.

The BFILE needs to be opened using OpenFile before the operation.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CompareSample
{
 static void Main()
 {
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile1 = new OracleBFile(con, "MYDIR", "MyFile.txt");
 OracleBFile bFile2 = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFiles
 bFile1.OpenFile();
 bFile2.OpenFile();

 // Compare 2 bytes from the 1st byte of bFile1 and
 // the 5th byte of bFile2 onwards
 int result = bFile1.Compare(1, bFile2, 5, 2);

 // Prints "result = 0" (Indicates the data is identical)
 Console.WriteLine("result = " + result);

 // Close the OracleBFiles
 bFile1.CloseFile();
 bFile2.CloseFile();

 bFile1.Close();
 bFile1.Dispose();

Chapter 14
OracleBFile Class

14-23

 bFile2.Close();
 bFile2.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

CopyTo
CopyTo copies data from the current instance to the provided object.

Overload List:

• CopyTo(OracleBlob)

This instance method copies data from the current instance to the provided
OracleBlob object.

• CopyTo(OracleBlob, Int64)

This instance method copies data from the current OracleBFile instance to the
provided OracleBlob object with the specified destination offset.

• CopyTo(Int64, OracleBlob, Int64, Int64)

This instance method copies data from the current OracleBFile instance to the
provided OracleBlob object with the specified source offset, destination offset, and
character amounts.

• CopyTo(OracleClob)

This instance method copies data from the current OracleBFile instance to the
provided OracleClob object.

• CopyTo(OracleClob, Int64)

This instance method copies data from the current OracleBFile instance to the
provided OracleClob object with the specified destination offset.

• CopyTo(Int64, OracleClob, Int64, Int64)

This instance method copies data from the current OracleBFile instance to the
provided OracleClob object with the specified source offset, destination offset, and
amount of characters.

Chapter 14
OracleBFile Class

14-24

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

CopyTo(OracleBlob)
This instance method copies data from the current instance to the provided OracleBlob
object.

Declaration

// C#
public Int64 CopyTo(OracleBlob obj);

Parameters

• obj

The OracleBlob object to which the data is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the object.

• The LOB object parameter has a different connection than the object.

Remarks

The provided object and the current instance must be using the same connection; that is, the
same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Chapter 14
OracleBFile Class

14-25

CopyTo(OracleBlob, Int64)
This instance method copies data from the current OracleBFile instance to the
provided OracleBlob object with the specified destination offset.

Declaration

// C#
public Int64 CopyTo(OracleBlob obj, Int64 dst_offset);

Parameters

• obj

The OracleBlob object to which the data is copied.

• dst_offset

The offset (in bytes) at which the OracleBlob object is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The dst_offset is less than 0.

InvalidOperationException - This exception is thrown if any of the following
conditions exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleBlob data, spaces are written into
the OracleBlob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Chapter 14
OracleBFile Class

14-26

CopyTo(Int64, OracleBlob, Int64, Int64)
This instance method copies data from the current OracleBFile instance to the provided
OracleBlob object with the specified source offset, destination offset, and character amounts.

Declaration

// C#
public Int64 CopyTo(Int64 src_offset,OracleBlob obj,Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The offset (in bytes) in the current instance, from which the data is read.

• obj

An OracleBlob object to which the data is copied.

• dst_offset

The offset (in bytes) to which the OracleBlob object is copied.

• amount

The amount of data to be copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount is less than
0.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleBlob data, spaces are written into the
OracleBlob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that is, the
same OracleConnection object.

Chapter 14
OracleBFile Class

14-27

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

CopyTo(OracleClob)
This instance method copies data from the current OracleBFile instance to the
provided OracleClob object.

Declaration

// C#
public Int64 CopyTo(OracleClob obj);

Parameters

• obj

The OracleClob object to which the data is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - This exception is thrown if any of the following
conditions exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Chapter 14
OracleBFile Class

14-28

CopyTo(OracleClob, Int64)
This instance method copies data from the current OracleBFile instance to the provided
OracleClob object with the specified destination offset.

Declaration

// C#
public Int64 CopyTo(OracleClob obj, Int64 dst_offset);

Parameters

• obj

The OracleClob object that the data is copied to.

• dst_offset

The offset (in characters) at which the OracleClob object is copied to.

Return Value

The amount copied.

Exceptions

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The dst_offset is less than 0.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleClob data, spaces are written into the
OracleClob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection, that is, the
same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Chapter 14
OracleBFile Class

14-29

CopyTo(Int64, OracleClob, Int64, Int64)
This instance method copies data from the current OracleBFile instance to the
provided OracleClob object with the specified source offset, destination offset, and
amount of characters.

Declaration

// C#
public Int64 CopyTo(Int64 src_offset,OracleClob obj,Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The offset (in characters) in the current instance, from which the data is read.

• obj

An OracleClob object that the data is copied to.

• dst_offset

The offset (in characters) at which the OracleClob object is copied to.

• amount

The amount of data to be copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount is
less than 0.

InvalidOperationException - This exception is thrown if any of the following
conditions exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the current OracleClob data, spaces are written
into the OracleClob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

Chapter 14
OracleBFile Class

14-30

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Dispose
This instance method releases resources allocated by this object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

Although some properties can still be accessed, their values may not be accountable. Since
resources are freed, method calls may lead to exceptions. The object cannot be reused after
being disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Flush
This method is not supported.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Chapter 14
OracleBFile Class

14-31

FlushAsync
This method is not supported.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

IsEqual
This instance method compares the LOB references.

Declaration

// C#
public bool IsEqual(OracleBFile obj);

Parameters

• obj

The provided OracleBFile object.

Return Value

Returns true if the current OracleBFile and the provided OracleBFile object refer to
the same external LOB. Returns false otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

Note that this method can return true even if the two OracleBFile objects return
false for == or Equals() since two different OracleBFile instances can refer to the
same external LOB.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

Chapter 14
OracleBFile Class

14-32

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

OpenFile
This instance method opens the BFILE specified by the FileName and DirectoryName.

Declaration

// C#
public void OpenFile();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

Many operations, such as Compare(), CopyTo(), Read(), and Search() require that the BFILE
be opened using OpenFile before the operation.

Calling OpenFile on an opened BFILE is not operational.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Read
Overrides Stream
This instance method reads a specified amount of bytes from the OracleBFile instance and
populates the buffer.

Declaration

// C#
public override int Read(byte[] buffer, int offset, int count);

Chapter 14
OracleBFile Class

14-33

Parameters

• buffer

The byte array buffer to be populated.

• offset

The offset of the byte array buffer to be populated.

• count

The amount of bytes to read.

Return Value

The return value indicates the number of bytes read from the BFILE, that is, the
external LOB.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - Either the offset or the count parameter is less than
0 or the offset is greater than or equal to the buffer.Length or the offset and the
count together are greater than buffer.Length.

Remarks

The LOB data is read starting from the position specified by the Position property.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ReadSample
{
 static void Main()
 {
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

Chapter 14
OracleBFile Class

14-34

 OracleBFile bFile = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile.OpenFile();

 // Read 7 bytes into readBuffer, starting at buffer offset 0
 byte[] readBuffer = new byte[7];
 int bytesRead = bFile.Read(readBuffer, 0, 7);

 // Prints "bytesRead = 7"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 65666768656667"
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 // Close the OracleBFile
 bFile.CloseFile();

 bFile.Close();
 bFile.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Search
This instance method searches for a binary pattern in the current instance of an OracleBFile.

Declaration

// C#
public int Search(byte[] val, Int64 offset, Int64 nth);

Parameters

• val

The binary pattern being searched for.

• offset

The 0-based offset (in bytes) starting from which the OracleBFile is searched.

Chapter 14
OracleBFile Class

14-35

• nth

The specific occurrence (1-based) of the match for which the offset is returned.

Return Value

Returns the absolute offset of the start of the matched pattern (in bytes) for the nth
occurrence of the match. Otherwise, 0 is returned.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - Either the offset is less than 0 or nth is less than or
equal to 0 or val.Length is greater than 16383 or nth is greater than or equal to
OracleBFile.MaxSize or offset is greater than or equal to OracleBFile.MaxSize.

Remarks

The limit of the search pattern is 16383 bytes.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class SearchSample
{
 static void Main()
 {
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile.OpenFile();

 // Search for the 2nd occurrence of a byte pattern {66,67}
 // starting from byte offset 1 in the OracleBFile
 byte[] pattern = new byte[2] {66, 67};
 long posFound = bFile.Search(pattern, 1, 2);

Chapter 14
OracleBFile Class

14-36

 // Prints "posFound = 6"
 Console.WriteLine("posFound = " + posFound);

 // Close the OracleBFile
 bFile.CloseFile();

 bFile.Close();
 bFile.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Seek
Overrides Stream
This instance method sets the position on the current LOB stream.

Declaration

// C#
public override Int64 Seek(Int64 offset, SeekOrigin origin);

Parameters

• offset

A byte offset relative to origin.

• origin

A value of type System.IO.SeekOrigin indicating the reference point used to obtain the
new position.

Return Value

Returns an Int64 that indicates the position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Chapter 14
OracleBFile Class

14-37

Remarks

If offset is negative, the new position precedes the position specified by origin by
the number of bytes specified by offset.

If offset is zero, the new position is the position specified by origin.

If offset is positive, the new position follows the position specified by origin by the
number of bytes specified by offset.

SeekOrigin.Begin specifies the beginning of a stream.

SeekOrigin.Current specifies the current position within a stream.

SeekOrigin.End specifies the end of a stream.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using System.IO;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class SeekSample
{
 static void Main()
 {
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile.OpenFile();

 // Set the Position to 2 with respect to SeekOrigin.Begin
 long newPosition = bFile.Seek(2, SeekOrigin.Begin);

 // Prints "newPosition = 2"
 Console.WriteLine("newPosition = " + newPosition);

 // Prints "bFile.Position = 2"
 Console.WriteLine("bFile.Position = " + bFile.Position);

 // Read 2 bytes into readBuffer, starting at buffer offset 1
 byte[] readBuffer = new byte[4];

Chapter 14
OracleBFile Class

14-38

 int bytesRead = bFile.Read(readBuffer, 1, 2);

 // Prints "bytesRead = 2"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 067680"
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 // Close the OracleBFile
 bFile.CloseFile();

 bFile.Close();
 bFile.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

SetLength
This method is not supported.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

Write
This method is not supported.

Chapter 14
OracleBFile Class

14-39

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBFile Class

• OracleBFile Members

OracleBlob Class
An OracleBlob object is an object that has a reference to BLOB data. It provides
methods for performing operations on BLOBs.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.IO.Stream
 Oracle.DataAccess.Types.OracleBlob

Declaration

// C#
public sealed class OracleBlob : Stream, ICloneable, INullable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

Chapter 14
OracleBlob Class

14-40

class OracleBlobSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

 // Write 4 bytes from writeBuffer, starting at buffer offset 0
 byte[] writeBuffer = new byte[4] {1, 2, 3, 4};
 blob.Write(writeBuffer, 0, 4);

 // Append first 2 bytes from writeBuffer {1, 2} to the oracleBlob
 blob.Append(writeBuffer, 0, 2);

 // Prints "blob.Length = 6"
 Console.WriteLine("blob.Length = " + blob.Length);

 // Reset the Position for the Read
 blob.Position = 0;

 // Read 6 bytes into readBuffer, starting at buffer offset 0
 byte[] readBuffer = new byte[6];
 int bytesRead = blob.Read(readBuffer, 0, 6);

 // Prints "bytesRead = 6"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 123412"
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 // Search for the 2nd occurrence of a byte pattern '12'
 // starting from byte offset 0 in the OracleBlob
 byte[] pattern = new byte[2] {1, 2};
 long posFound = blob.Search(pattern, 0, 2);

 // Prints "posFound = 5"
 Console.WriteLine("posFound = " + posFound);

 // Erase 4 bytes of data starting at byte offset 1
 // Sets bytes to zero
 blob.Erase(1, 4);

 byte[] erasedBuffer = blob.Value;

 //Prints "erasedBuffer = 100002"
 Console.Write("erasedBuffer = ");
 for(int index = 0; index < erasedBuffer.Length; index++)
 {
 Console.Write(erasedBuffer[index]);
 }
 Console.WriteLine();

Chapter 14
OracleBlob Class

14-41

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Members

• OracleBlob Constructors

• OracleBlob Static Fields

• OracleBlob Static Methods

• OracleBlob Instance Properties

• OracleBlob Instance Methods

OracleBlob Members
OracleBlob members are listed in the following tables.

OracleBlob Constructors

OracleBlob constructors are listed in Table 14-10.

Table 14-10 OracleBlob Constructors

Constructor Description

OracleBlob Constructors Creates an instance of the OracleBlob class
(Overloaded)

OracleBlob Static Fields

OracleBlob static fields are listed in Table 14-11.

Table 14-11 OracleBlob Static Fields

Field Description

MaxSize Holds the maximum number of bytes a BLOB can
hold, which is 4,294,967,295 (2^32 - 1) bytes

Null Represents a null value that can be assigned to the
value of an OracleBlob instance

Chapter 14
OracleBlob Class

14-42

OracleBlob Static Methods

OracleBlob static methods are listed in Table 14-12.

Table 14-12 OracleBlob Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleBlob Instance Properties

OracleBlob instance properties are listed in Table 14-13.

Table 14-13 OracleBlob Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be read

CanSeek Indicates whether or not forward and backward seek
operations be performed

CanWrite Indicates whether or not the LOB object supports writing

Connection Indicates the OracleConnection that is used to
retrieve and write BLOB data

IsEmpty Indicates whether the BLOB is empty or not

IsInChunkWriteMode Indicates whether or not the BLOB has been opened to
defer index updates

IsNull Indicates whether or not the current instance has a null
value

IsTemporary Indicates whether or not the current instance is bound to
a temporary BLOB

Length Indicates the size of the BLOB data

OptimumChunkSize Indicates the optimal data buffer length (or multiples
thereof) that read and write operations should use to
improve performance

Position Indicates the current read or write position in the LOB
stream

Value Returns the data, starting from the first byte in BLOB, as
a byte array

OracleBlob Instance Methods

OracleBlob instance methods are listed in Table 14-14.

Table 14-14 OracleBlob Instance Methods

Methods Description

Append Appends the supplied data to the current OracleBlob
instance (Overloaded)

Chapter 14
OracleBlob Class

14-43

Table 14-14 (Cont.) OracleBlob Instance Methods

Methods Description

BeginChunkWrite Opens the BLOB
BeginRead Inherited from System.IO.Stream
BeginWrite Inherited from System.IO.Stream
Clone Creates a copy of an OracleBlob object

Close Closes the current stream and releases any resources
associated with it

Compare Compares data referenced by the current instance and
that of the supplied object

CopyTo Copies from the current OracleBlob instance to an
OracleBlob object (Overloaded)

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Releases resources allocated by this object
EndChunkWrite Closes the BLOB referenced by the current OracleBlob

instance

EndRead Inherited from System.IO.Stream
EndWrite Inherited from System.IO.Stream
Equals Inherited from System.Object (Overloaded)

Erase Erases data (Overloaded)

Flush Not supported

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializedLifetimeService Inherited from System.MarshalByRefObject
IsEqual Compares the LOB data referenced by the two

OracleBlobs

Read Reads a specified amount of bytes from the ODP.NET
LOB Type instance and populates the buffer

ReadByte Inherited from System.IO.Stream
Search Searches for a binary pattern in the current instance of

an OracleBlob
Seek Sets the position in the current LOB stream

SetLength Trims or truncates the BLOB value to the specified length

ToString Inherited from System.Object
Write Writes the supplied buffer into the OracleBlob
WriteByte Inherited from System.IO.Stream

Chapter 14
OracleBlob Class

14-44

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Members

OracleBlob Constructors
OracleBlob constructors are listed in Table 14-10.

Overload List:

• OracleBlob(OracleConnection)

This constructor creates an instance of the OracleBlob class bound to a temporary BLOB
with an OracleConnection object.

• OracleBlob(OracleConnection, bool)

This constructor creates an instance of the OracleBlob class bound to a temporary BLOB
with an OracleConnection object and a boolean value for caching.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

OracleBlob(OracleConnection)
This constructor creates an instance of the OracleBlob class bound to a temporary BLOB with
an OracleConnection object.

Declaration

// C#
public OracleBlob(OracleConnection con);

Parameters

• con

The OracleConnection object.

Exceptions

InvalidOperationException - The OracleConnection is not opened.

Chapter 14
OracleBlob Class

14-45

Remarks

The connection must be opened explicitly by the application. OracleBlob does not
open the connection implicitly.

The temporary BLOB utilizes the provided connection to store BLOB data. Caching is not
turned on by this constructor.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

OracleBlob(OracleConnection, bool)
This constructor creates an instance of the OracleBlob class bound to a temporary
BLOB with an OracleConnection object and a boolean value for caching.

Declaration

// C#
public OracleBlob(OracleConnection con, bool bCaching);

Parameters

• con

The OracleConnection object.

• bCaching

A flag for enabling or disabling server-side caching.

Exceptions

InvalidOperationException - The OracleConnection is not opened.

Remarks

The connection must be opened explicitly by the application. OracleBlob does not
open the connection implicitly.

The temporary BLOB uses the provided connection to store BLOB data. The bCaching
input parameter determines whether or not server-side caching is used.

Chapter 14
OracleBlob Class

14-46

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

OracleBlob Static Fields
OracleBlob static fields are listed in Table 14-15.

Table 14-15 OracleBlob Static Fields

Field Description

MaxSize Holds the maximum number of bytes a BLOB can hold, which is 4,294,967,295
(2^32 - 1) bytes

Null Represents a null value that can be assigned to the value of an OracleBlob
instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

MaxSize
The MaxSize field holds the maximum number of bytes a BLOB can hold, which is
4,294,967,295 (2^32 - 1) bytes.

Declaration

// C#
public static readonly Int64 MaxSize = 4294967295;

Remarks

This field can be useful in code that checks whether or not the operation exceeds the
maximum length allowed.

Chapter 14
OracleBlob Class

14-47

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Null
This static field represents a null value that can be assigned to the value of an
OracleBlob instance.

Declaration

// C#
public static readonly OracleBlob Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

OracleBlob Static Methods
OracleBlob static methods are listed in Table 14-16.

Table 14-16 OracleBlob Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Chapter 14
OracleBlob Class

14-48

OracleBlob Instance Properties
OracleBlob instance properties are listed in Table 14-17.

Table 14-17 OracleBlob Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be read

CanSeek Indicates whether or not forward and backward seek operations be
performed

CanWrite Indicates whether or not the LOB object supports writing

Connection Indicates the OracleConnection that is used to retrieve and write BLOB
data

IsEmpty Indicates whether the BLOB is empty or not

IsInChunkWriteMode Indicates whether or not the BLOB has been opened to defer index
updates

IsNull Indicates whether or not the current instance has a null value

IsTemporary Indicates whether or not the current instance is bound to a temporary
BLOB

Length Indicates the size of the BLOB data

OptimumChunkSize Indicates the optimal data buffer length (or multiples thereof) that read
and write operations should use to improve performance

Position Indicates the current read or write position in the LOB stream

Value Returns the data, starting from the first byte in BLOB, as a byte array

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

CanRead
Overrides Stream
This instance property indicates whether or not the LOB stream can be read.

Declaration

// C#
public override bool CanRead{get;}

Chapter 14
OracleBlob Class

14-49

Property Value

If the LOB stream can be read, returns true; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

CanSeek
Overrides Stream
This instance property indicates whether or not forward and backward seek operations
can be performed.

Declaration

// C#
public override bool CanSeek{get;}

Property Value

If forward and backward seek operations can be performed, returns true; otherwise,
returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

CanWrite
Overrides Stream
This instance property indicates whether or not the LOB object supports writing.

Declaration

// C#
public override bool CanWrite{get;}

Chapter 14
OracleBlob Class

14-50

Property Value

If the LOB stream can be written, returns true; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Connection
This instance property indicates the OracleConnection that is used to retrieve and write BLOB
data.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An object of OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

IsEmpty
This instance property indicates whether the BLOB is empty or not.

Declaration

// C#
public bool IsEmpty {get;}

Chapter 14
OracleBlob Class

14-51

Property Value

A bool that indicates whether or not the BLOB is empty.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

IsInChunkWriteMode
This instance property indicates whether or not the BLOB has been opened to defer
index updates.

Declaration

// C#
public bool IsInChunkWriteMode{get;}

Property Value

If the BLOB has been opened, returns true; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Chapter 14
OracleBlob Class

14-52

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

IsTemporary
This instance property indicates whether or not the current instance is bound to a temporary
BLOB.

Declaration

// C#
public bool IsTemporary {get;}

Property Value

bool

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Length
Overrides Stream
This instance property indicates the size of the BLOB data in bytes.

Declaration

// C#
public override Int64 Length {get;}

Property Value

A number indicating the size of the BLOB data in bytes.

Chapter 14
OracleBlob Class

14-53

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

OptimumChunkSize
This instance property indicates the optimal data buffer length (or multiples thereof)
that read and write operations should use to improve performance.

Declaration

// C#
public int OptimumChunkSize{get;}

Property Value

A number representing the minimum bytes to retrieve or send.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Position
Overrides Stream
This instance property indicates the current read or write position in the LOB stream.

Chapter 14
OracleBlob Class

14-54

Declaration

// C#
public override Int64 Position{get; set;}

Property Value

An Int64 that indicates the read or write position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The Position is less than 0.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Value
This instance property returns the data, starting from the first byte in the BLOB, as a byte array.

Declaration

// C#
public Byte[] Value{get;}

Property Value

A byte array.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The Value is less than 0.

Remarks

The value of Position is not used or changed by using this property. 2 GB is the maximum
byte array length that can be returned by this property.

Chapter 14
OracleBlob Class

14-55

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

OracleBlob Instance Methods
OracleBlob instance methods are listed in Table 14-18.

Table 14-18 OracleBlob Instance Methods

Methods Description

Append Appends the supplied data to the current OracleBlob
instance (Overloaded)

BeginChunkWrite Opens the BLOB
BeginRead Inherited from System.IO.Stream
BeginWrite Inherited from System.IO.Stream
Clone Creates a copy of an OracleBlob object

Close Closes the current stream and releases any resources
associated with it

Compare Compares data referenced by the current instance and
that of the supplied object

CopyTo Copies from the current OracleBlob instance to an
OracleBlob object (Overloaded)

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Releases resources allocated by this object
EndChunkWrite Closes the BLOB referenced by the current OracleBlob

instance

EndRead Inherited from System.IO.Stream
EndWrite Inherited from System.IO.Stream
Equals Inherited from System.Object (Overloaded)

Erase Erases data (Overloaded)

Flush Not supported

GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializedLifetimeService Inherited from System.MarshalByRefObject
IsEqual Compares the LOB data referenced by the two

OracleBlobs

Chapter 14
OracleBlob Class

14-56

Table 14-18 (Cont.) OracleBlob Instance Methods

Methods Description

Read Reads a specified amount of bytes from the ODP.NET
LOB Type instance and populates the buffer

ReadByte Inherited from System.IO.Stream
Search Searches for a binary pattern in the current instance of

an OracleBlob
Seek Sets the position in the current LOB stream

SetLength Trims or truncates the BLOB value to the specified length

ToString Inherited from System.Object
Write Writes the supplied buffer into the OracleBlob
WriteByte Inherited from System.IO.Stream

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Append
Append appends the supplied data to the end of the current OracleBlob instance.

Overload List:

• Append(OracleBlob)

This instance method appends the BLOB data referenced by the provided OracleBlob
object to the current OracleBlob instance.

• Append(byte[], int, int)

This instance method appends data from the supplied byte array buffer to the end of the
current OracleBlob instance.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Chapter 14
OracleBlob Class

14-57

Append(OracleBlob)
This instance method appends the BLOB data referenced by the provided OracleBlob
object to the current OracleBlob instance.

Declaration

// C#
public void Append(OracleBlob obj);

Parameters

• obj

An object of OracleBlob.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the
object, OracleConnection is not opened, or OracleConnection has been reopened.

Remarks

No character set conversions are made.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Append(byte[], int, int)
This instance method appends data from the supplied byte array buffer to the end of
the current OracleBlob instance.

Declaration

// C#
public void Append(byte[] buffer, int offset, int count);

Parameters

• buffer

An array of bytes.

Chapter 14
OracleBlob Class

14-58

• offset

The zero-based byte offset in the buffer from which data is read.

• count

The number of bytes to be appended.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class AppendSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

 // Append 2 bytes {4, 5} to the OracleBlob
 byte[] buffer = new byte[3] {4, 5, 6};
 blob.Append(buffer, 0, 2);

 byte[] appendBuffer = blob.Value;

 // Prints "appendBuffer = 45"
 Console.Write("appendBuffer = ");
 for(int index = 0; index < appendBuffer.Length; index++)
 {
 Console.Write(appendBuffer[index]);
 }
 Console.WriteLine();

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 14
OracleBlob Class

14-59

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

BeginChunkWrite
This instance method opens the BLOB.

Declaration

// C#
public void BeginChunkWrite();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

BeginChunkWrite does not need to be called before manipulating the BLOB data. This
is provided for performance reasons.

After this method is called, write operations do not cause the domain or function-based
index on the column to be updated. Index updates occur only once after
EndChunkWrite is called.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Clone
This instance method creates a copy of an OracleBlob object.

Declaration

// C#
public object Clone();

Chapter 14
OracleBlob Class

14-60

Return Value

An OracleBlob object.

Implements

ICloneable

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The cloned object has the same property values as that of the object being cloned.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CloneSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob1 = new OracleBlob(con);

 // Prints "blob1.Position = 0"
 Console.WriteLine("blob1.Position = " + blob1.Position);

 // Set the Position before calling Clone()
 blob1.Position = 1;

 // Clone the OracleBlob
 OracleBlob blob2 = (OracleBlob)blob1.Clone();

 // Prints "blob2.Position = 1"
 Console.WriteLine("blob2.Position = " + blob2.Position);

 blob1.Close();
 blob1.Dispose();

 blob2.Close();
 blob2.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 14
OracleBlob Class

14-61

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Close
Overrides Stream
This instance method closes the current stream and releases any resources
associated with it.

Declaration

// C#
public override void Close();

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Compare
This instance method compares data referenced by the current instance and that of
the supplied object.

Declaration

// C#
public int Compare(Int64 src_offset, OracleBlob obj, Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The comparison starting point (in bytes) for the current instance.

• obj

The provided OracleBlob object.

• dst_offset

The comparison starting point (in bytes) for the provided OracleBlob.

Chapter 14
OracleBlob Class

14-62

• amount

The number of bytes to compare.

Return Value

Returns a value that is:

• Less than zero: if the data referenced by the current instance is less than that of the
supplied instance

• Zero: if both objects reference the same data

• Greater than zero: if the data referenced by the current instance is greater than that of
the supplied instance

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the object,
OracleConnection is not opened, or OracleConnection has been reopened.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount parameter
is less than 0.

Remarks

The provided object and the current instance must be using the same connection, that is, the
same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

CopyTo
CopyTo copies data from the current instance to the provided OracleBlob object.

Overload List:

• CopyTo(OracleBlob)

This instance method copies data from the current instance to the provided OracleBlob
object.

• CopyTo(OracleBlob, Int64)

This instance method copies data from the current OracleBlob instance to the provided
OracleBlob object with the specified destination offset.

• CopyTo(Int64, OracleBlob, Int64, Int64)

Chapter 14
OracleBlob Class

14-63

This instance method copies data from the current OracleBlob instance to the
provided OracleBlob object with the specified source offset, destination offset, and
character amounts.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

CopyTo(OracleBlob)
This instance method copies data from the current instance to the provided
OracleBlob object.

Declaration

// C#
public Int64 CopyTo(OracleBlob obj);

Parameters

• obj

The OracleBlob object to which the data is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - This exception is thrown if any of the following
conditions exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

Chapter 14
OracleBlob Class

14-64

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

CopyTo(OracleBlob, Int64)
This instance method copies data from the current OracleBlob instance to the provided
OracleBlob object with the specified destination offset.

Declaration

// C#
public Int64 CopyTo(OracleBlob obj, Int64 dst_offset);

Parameters

• obj

The OracleBlob object to which the data is copied.

• dst_offset

The offset (in bytes) at which the OracleBlob object is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The dst_offset is less than 0.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleBlob data, spaces are written into the
OracleBlob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that is, the
same OracleConnection object.

Chapter 14
OracleBlob Class

14-65

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

CopyTo(Int64, OracleBlob, Int64, Int64)
This instance method copies data from the current OracleBlob instance to the
provided OracleBlob object with the specified source offset, destination offset, and
character amounts.

Declaration

// C#
public Int64 CopyTo(Int64 src_offset,OracleBlob obj,Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The offset (in bytes) in the current instance, from which the data is read.

• obj

The OracleBlob object to which the data is copied.

• dst_offset

The offset (in bytes) at which the OracleBlob object is copied.

• amount

The amount of data to be copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the
object, OracleConnection is not opened, or OracleConnection has been reopened.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount
parameter is less than 0.

Remarks

If the dst_offset is beyond the end of the OracleBlob data, spaces are written into
the OracleBlob until the dst_offset is met.

Chapter 14
OracleBlob Class

14-66

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that is, the
same OracleConnection object.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CopyToSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob1 = new OracleBlob(con);
 OracleBlob blob2 = new OracleBlob(con);

 // Write 4 bytes, starting at buffer offset 0
 byte[] buffer = new byte[4] {1, 2, 3, 4};
 blob1.Write(buffer, 0, 4);

 // Copy 2 bytes from byte 0 of blob1 to byte 1 of blob2
 blob1.CopyTo(0, blob2, 1, 2);

 byte[] copyBuffer = blob2.Value;

 //Prints "Value = 012"
 Console.Write("Value = ");
 for(int index = 0; index < copyBuffer.Length; index++)
 {
 Console.Write(copyBuffer[index]);
 }
 Console.WriteLine();

 blob1.Close();
 blob1.Dispose();

 blob2.Close();
 blob2.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 14
OracleBlob Class

14-67

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Dispose
This instance method releases resources allocated by this object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

Once Dispose() is called, the object of OracleBlob is in an uninitialized state.

Although some properties can still be accessed, their values may not be accountable.
Since resources are freed, method calls may lead to exceptions. The object cannot be
reused after being disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

EndChunkWrite
This instance method closes the BLOB referenced by the current OracleBlob instance.

Declaration

// C#
public void EndChunkWrite();

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 14
OracleBlob Class

14-68

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

Index updates occur immediately if there is write operation(s) deferred by the
BeginChunkWrite method.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Erase
Erase erases a portion or all data.

Overload List:

• Erase()

This instance method erases all data.

• Erase(Int64, Int64)

This instance method erases a specified portion of data.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Erase()
This instance method erases all data.

Declaration

// C#
public Int64 Erase();

Return Value

The number of bytes erased.

Chapter 14
OracleBlob Class

14-69

Remarks

Erase() replaces all data with zero-byte fillers.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Erase(Int64, Int64)
This instance method erases a specified portion of data.

Declaration

// C#
public Int64 Erase(Int64 offset, Int64 amount);

Parameters

• offset

The offset from which to erase.

• amount

The quantity (in bytes) to erase.

Return Value

The number of bytes erased.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The offset or amount parameter is less than 0.

Remarks

Replaces the specified amount of data with zero-byte fillers.

Chapter 14
OracleBlob Class

14-70

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Flush
This method is not supported.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

IsEqual
This instance method compares the LOB data referenced by the two OracleBlobs.

Declaration

// C#
public bool IsEqual(OracleBlob obj);

Parameters

• obj

An OracleBlob object.

Return Value

If the current OracleBlob and the provided OracleBlob refer to the same LOB, returns true.
Returns false otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

Note that this method can return true even if the two OracleBlob objects return false for ==
or Equals() because two different OracleBlob instances can refer to the same LOB.

Chapter 14
OracleBlob Class

14-71

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Read
Overrides Stream
This instance method reads a specified amount of bytes from the ODP.NET LOB
instance and populates the buffer.

Declaration

// C#
public override int Read(byte[] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer to be populated.

• offset

The starting offset (in bytes) at which the buffer is populated.

• count

The amount of bytes to read.

Return Value

The return value indicates the number of bytes read from the LOB.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset or the count parameter is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than the buffer.Length.

Chapter 14
OracleBlob Class

14-72

Remarks

The LOB data is read starting from the position specified by the Position property.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ReadSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

 // Write 3 bytes, starting at buffer offset 1
 byte[] writeBuffer = new byte[4] {1, 2, 3, 4};
 blob.Write(writeBuffer, 1, 3);

 // Reset the Position for Read
 blob.Position = 1;

 // Read 2 bytes into buffer starting at buffer offset 1
 byte[] readBuffer = new byte[4];
 int bytesRead = blob.Read(readBuffer, 1, 2);

 // Prints "bytesRead = 2"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 0340"
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 14
OracleBlob Class

14-73

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Search
This instance method searches for a binary pattern in the current instance of an
OracleBlob.

Declaration

// C#
public Int64 Search(byte[] val, int64 offset, int64 nth);

Parameters

• val

The binary pattern being searched for.

• offset

The 0-based offset (in bytes) starting from which the OracleBlob is searched.

• nth

The specific occurrence (1-based) of the match for which the absolute offset (in
bytes) is returned.

Return Value

Returns the absolute offset of the start of the matched pattern (in bytes) for the nth
occurrence of the match. Otherwise, 0 is returned.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset is less than 0.

• The nth is less than or equal to 0.

• The val.Length is greater than 16383.

• The nth is greater than or equal to OracleBlob.MaxSize.

• The offset is greater than or equal to OracleBlob.MaxSize.

Chapter 14
OracleBlob Class

14-74

Remarks

The limit of the search pattern is 16383 bytes.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class SearchSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

 // Write 7 bytes, starting at buffer offset 0
 byte[] buffer = new byte[7] {1, 2, 3, 4, 1, 2, 3};
 blob.Write(buffer, 0, 7);

 // Search for the 2nd occurrence of a byte pattern '23'
 // starting at offset 1 in the OracleBlob
 byte[] pattern = new byte[2] {2 ,3};
 long posFound = blob.Search(pattern, 1, 2);

 // Prints "posFound = 6"
 Console.WriteLine("posFound = " + posFound);

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Seek
Overrides Stream
This instance method sets the position on the current LOB stream.

Chapter 14
OracleBlob Class

14-75

Declaration

// C#
public override Int64 Seek(Int64 offset, SeekOrigin origin);

Parameters

• offset

A byte offset relative to origin.

• origin

A value of type System.IO.SeekOrigin indicating the reference point used to
obtain the new position.

Return Value

Returns Int64 for the position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

If offset is negative, the new position precedes the position specified by origin by
the number of bytes specified by offset.

If offset is zero, the new position is the position specified by origin.

If offset is positive, the new position follows the position specified by origin by the
number of bytes specified by offset.

SeekOrigin.Begin specifies the beginning of a stream.

SeekOrigin.Current specifies the current position within a stream.

SeekOrigin.End specifies the end of a stream.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

SetLength
Overrides Stream

Chapter 14
OracleBlob Class

14-76

This instance method trims or truncates the BLOB value to the specified length (in bytes).

Declaration

// C#
public override void SetLength(Int64 newlen);

Parameters

• newlen

The desired length of the current stream in bytes.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The newlen parameter is less than 0.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

Write
Overrides Stream
This instance method writes the supplied buffer into the OracleBlob.

Declaration

// C#
public override void Write(byte[] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer that provides the data.

• offset

The 0-based offset (in bytes) from which the buffer is read.

• count

The amount of data (in bytes) that is to be written into the OracleBlob.

Chapter 14
OracleBlob Class

14-77

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset or the count is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than buffer.Length.

Remarks

Destination offset in the OracleBlob can be specified by the Position property.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class WriteSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

 // Set the Position for the Write
 blob.Position = 0;

 // Begin ChunkWrite to improve performance
 // Index updates occur only once after EndChunkWrite
 blob.BeginChunkWrite();

 // Write to the OracleBlob in 5 chunks of 2 bytes each
 byte[] b = new byte[2] {1, 2};
 for(int index = 0; index < 5; index++)
 {
 blob.Write(b, 0, b.Length);
 }
 blob.EndChunkWrite();

 byte[] chunkBuffer = blob.Value;

 // Prints "chunkBuffer = 1212121212"
 Console.Write("chunkBuffer = ");
 for(int index = 0; index < chunkBuffer.Length; index++)
 {
 Console.Write(chunkBuffer[index]);
 }

Chapter 14
OracleBlob Class

14-78

 Console.WriteLine();

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Class

• OracleBlob Members

OracleClob Class
An OracleClob is an object that has a reference to CLOB data. It provides methods for
performing operations on CLOBs.

Note:

The OracleClob object uses the client side character set when retrieving or writing
CLOB data using a .NET Framework byte array.

Class Inheritance

System.Object
 System.MarshalByRefObject
 System.IO.Stream
 Oracle.DataAccess.Types.OracleClob

Declaration

// C#
public sealed class OracleClob : Stream, ICloneable, INullable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Chapter 14
OracleClob Class

14-79

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleClobSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob = new OracleClob(con);

 // Write 4 chars from writeBuffer, starting at buffer offset 0
 char[] writeBuffer = new char[4] {'a', 'b', 'c', 'd'};
 clob.Write(writeBuffer, 0, 4);

 // Append first 2 chars from writeBuffer {'a', 'b'} to the oracleClob
 clob.Append(writeBuffer, 0, 2);

 // Prints "clob.Length = 12"
 Console.WriteLine("clob.Length = " + clob.Length);

 // Reset the Position for the Read
 clob.Position = 0;

 // Read 6 chars into readBuffer, starting at buffer offset 0
 char[] readBuffer = new char[6];
 int charsRead = clob.Read(readBuffer, 0, 6);

 // Prints "charsRead = 6"
 Console.WriteLine("charsRead = " + charsRead);

 // Prints "readBuffer = abcdab"
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }

Chapter 14
OracleClob Class

14-80

 Console.WriteLine();

 // Search for the 2nd occurrence of a char pattern 'ab'
 // starting from char offset 0 in the OracleClob
 char[] pattern = new char[2] {'a', 'b'};
 long posFound = clob.Search(pattern, 0, 2);

 // Prints "posFound = 5"
 Console.WriteLine("posFound = " + posFound);

 // Erase 4 chars of data starting at char offset 1
 // Sets chars to ''
 clob.Erase(1, 4);

 //Prints "clob.Value = a b"
 Console.WriteLine("clob.Value = " + clob.Value);

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Members

• OracleClob Constructors

• OracleClob Static Fields

• OracleClob Static Methods

• OracleClob Instance Properties

• OracleClob Instance Methods

OracleClob Members
OracleClob members are listed in the following tables.

OracleClob Constructors

OracleClob constructors are listed in Table 14-19.

Table 14-19 OracleClob Constructors

Constructor Description

OracleClob Constructors Creates an instance of the OracleClob class bound to
a temporary CLOB (Overloaded)

Chapter 14
OracleClob Class

14-81

OracleClob Static Fields

OracleClob static fields are listed in Table 14-20.

Table 14-20 OracleClob Static Fields

Field Description

MaxSize Holds the maximum number of bytes a CLOB can
hold, which is 4,294,967,295 (2^32 - 1) bytes

Null Represents a null value that can be assigned to the
value of an OracleClob instance

OracleClob Static Methods

OracleClob static methods are listed in Table 14-21.

Table 14-21 OracleClob Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleClob Instance Properties

OracleClob instance properties are listed in Table 14-22.

Table 14-22 OracleClob Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be
read

CanSeek Indicates whether or not forward and backward seek
operations can be performed

CanWrite Indicates whether or not the LOB stream can be
written

Connection Indicates the OracleConnection that is used to
retrieve and write CLOB data

IsEmpty Indicates whether the CLOB is empty or not

IsInChunkWriteMode Indicates whether or not the CLOB has been opened

IsNClob Indicates whether or not the OracleClob object
represents an NCLOB.

IsNull Indicates whether or not the current instance has a
null value

IsTemporary Indicates whether or not the current instance is
bound to a temporary CLOB

Length Indicates the size of the CLOB data in bytes

Chapter 14
OracleClob Class

14-82

Table 14-22 (Cont.) OracleClob Instance Properties

Properties Description

OptimumChunkSize Indicates the minimum number of bytes to retrieve or
send from the database during a read or write
operation

Position Indicates the current read or write position in the
LOB stream in bytes

Value Returns the data, starting from the first character in
the CLOB or NCLOB, as a string

OracleClob Instance Methods

The OracleClob instance methods are listed in Table 14-23.

Table 14-23 OracleClob Instance Methods

Methods Description

Append Appends data to the current OracleClob instance
(Overloaded)

BeginChunkWrite Opens the CLOB
BeginRead Inherited from System.IO.Stream
BeginWrite Inherited from System.IO.Stream
Clone Creates a copy of an OracleClob object

Close Closes the current stream and releases resources
associated with it

Compare Compares data referenced by the current instance to
that of the supplied object

CopyTo Copies the data to an OracleClob (Overloaded)

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Releases resources allocated by this object

EndChunkWrite Closes the CLOB referenced by the current OracleClob
instance

EndRead Inherited from System.IO.Stream
EndWrite Inherited from System.IO.Stream
Equals Inherited from System.Object (Overloaded)

Erase Erases the specified amount of data (Overloaded)

Flush Not supported

GetHashCode Returns a hash code for the current instance

GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
IsEqual Compares the LOB data referenced by two

OracleClobs

Chapter 14
OracleClob Class

14-83

Table 14-23 (Cont.) OracleClob Instance Methods

Methods Description

Read Reads from the current instance (Overloaded)

ReadByte Inherited from System.IO.Stream
Search Searches for a character pattern in the current instance

of OracleClob (Overloaded)

Seek Sets the position in the current LOB stream

SetLength Trims or truncates the CLOB value

ToString Inherited from System.Object
Write Writes the provided buffer into the OracleClob

(Overloaded)

WriteByte Inherited from System.IO.Stream

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

OracleClob Constructors
OracleClob constructors create instances of the OracleClob class bound to a
temporary CLOB.

Overload List:

• OracleClob(OracleConnection)

This constructor creates an instance of the OracleClob class bound to a
temporary CLOB with an OracleConnection object.

• OracleClob(OracleConnection, bool, bool)

This constructor creates an instance of the OracleClob class that is bound to a
temporary CLOB, with an OracleConnection object, a boolean value for caching,
and a boolean value for NCLOB.

Chapter 14
OracleClob Class

14-84

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

OracleClob(OracleConnection)
This constructor creates an instance of the OracleClob class bound to a temporary CLOB with
an OracleConnection object.

Declaration

// C#
public OracleClob(OracleConnection con);

Parameters

• con

The OracleConnection object.

Exceptions

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

The connection must be opened explicitly by the application. OracleClob does not open the
connection implicitly. The temporary CLOB utilizes the provided connection to store CLOB data.
Caching is not enabled by default.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

OracleClob(OracleConnection, bool, bool)
This constructor creates an instance of the OracleClob class that is bound to a temporary
CLOB, with an OracleConnection object, a boolean value for caching, and a boolean value for
NCLOB.

Chapter 14
OracleClob Class

14-85

Declaration

// C#
public OracleClob(OracleConnection con, bool bCaching, bool bNCLOB);

Parameters

• con

The OracleConnection object connection.

• bCaching

A flag that indicates whether or not server-side caching is enabled.

• bNCLOB

A flag that is set to true if the instance is a NCLOB or false if it is a CLOB.

Exceptions

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The connection must be opened explicitly by the application. OracleClob does not
open the connection implicitly. The temporary CLOB or NCLOB uses the provided
connection to store CLOB data.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

OracleClob Static Fields
OracleClob static fields are listed in Table 14-24.

Table 14-24 OracleClob Static Fields

Field Description

MaxSize Holds the maximum number of bytes a CLOB can hold, which is 4,294,967,295
(2^32 - 1) bytes

Null Represents a null value that can be assigned to the value of an OracleClob
instance

Chapter 14
OracleClob Class

14-86

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

MaxSize
The MaxSize field holds the maximum number of bytes a CLOB can hold, which is
4,294,967,295 (2^32 - 1) bytes.

Declaration

// C#
public static readonly Int64 MaxSize = 4294967295;

Remarks

This field is useful in code that checks whether or not your operation exceeds the maximum
length (in bytes) allowed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Null
This static field represents a null value that can be assigned to the value of an OracleClob
instance.

Declaration

// C#
public static readonly OracleClob Null;

Chapter 14
OracleClob Class

14-87

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

OracleClob Static Methods
OracleClob static methods are listed in Table 14-25.

Table 14-25 OracleClob Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

OracleClob Instance Properties
OracleClob instance properties are listed in Table 14-26.

Table 14-26 OracleClob Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be read

CanSeek Indicates whether or not forward and backward seek operations can
be performed

CanWrite Indicates whether or not the LOB stream can be written

Connection Indicates the OracleConnection that is used to retrieve and write
CLOB data

IsEmpty Indicates whether the CLOB is empty or not

IsInChunkWriteMode Indicates whether or not the CLOB has been opened

IsNClob Indicates whether or not the OracleClob object represents an
NCLOB.

IsNull Indicates whether or not the current instance has a null value

Chapter 14
OracleClob Class

14-88

Table 14-26 (Cont.) OracleClob Instance Properties

Properties Description

IsTemporary Indicates whether or not the current instance is bound to a
temporary CLOB

Length Indicates the size of the CLOB data in bytes

OptimumChunkSize Indicates the minimum number of bytes to retrieve or send from the
database during a read or write operation

Position Indicates the current read or write position in the LOB stream in
bytes

Value Returns the data, starting from the first character in the CLOB or
NCLOB, as a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

CanRead
Overrides Stream
This instance property indicates whether or not the LOB stream can be read.

Declaration

// C#
public override bool CanRead{get;}

Property Value

If the LOB stream can be read, returns true; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Chapter 14
OracleClob Class

14-89

CanSeek
Overrides Stream
This instance property indicates whether or not forward and backward seek operations
can be performed.

Declaration

// C#
public override bool CanSeek{get;}

Property Value

If forward and backward seek operations can be performed, returns true; otherwise,
returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

CanWrite
Overrides Stream
This instance property indicates whether or not the LOB object supports writing.

Declaration

// C#
public override bool CanWrite{get;}

Property Value

If the LOB stream can be written, returns true; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Chapter 14
OracleClob Class

14-90

Connection
This instance property indicates the OracleConnection that is used to retrieve and write CLOB
data.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

IsEmpty
This instance property indicates whether the CLOB is empty or not.

Declaration

// C#
public bool IsEmpty {get;}

Property Value

A bool.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Chapter 14
OracleClob Class

14-91

IsInChunkWriteMode
This instance property indicates whether or not the CLOB has been opened to defer
index updates.

Declaration

// C#
public bool IsInChunkWriteMode{get;}

Property Value

If the CLOB has been opened, returns true; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

IsNClob
This instance property indicates whether or not the OracleClob object represents an
NClob.

Declaration

// C#
public bool IsNClob {get;}

Property Value

A bool.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

IsNull
This property indicates whether or not the current instance has a null value.

Chapter 14
OracleClob Class

14-92

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

IsTemporary
This instance property indicates whether or not the current instance is bound to a temporary
CLOB.

Declaration

// C#
public bool IsTemporary {get;}

Property Value

A bool.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Length
Overrides Stream
This instance property indicates the size of the CLOB data in bytes.

Declaration

// C#
public override Int64 Length {get;}

Chapter 14
OracleClob Class

14-93

Property Value

An Int64 that indicates the size of the CLOB in bytes.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

OptimumChunkSize
This instance property indicates the minimum number of bytes to retrieve or send from
the database during a read or write operation.

Declaration

// C#
public int OptimumChunkSize{get;}

Property Value

A number representing the minimum bytes to retrieve or send.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Position
Overrides Stream

Chapter 14
OracleClob Class

14-94

This instance property indicates the current read or write position in the LOB stream in bytes.

Declaration

// C#
public override Int64 Position{get; set;}

Property Value

An Int64 that indicates the read or write position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The Position is less than 0.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Value
This instance property returns the data, starting from the first character in the CLOB or NCLOB,
as a string.

Declaration

// C#
public string Value{get;}

Property Value

A string.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The Value is less than 0.

Remarks

The value of Position is neither used nor changed by using this property.

The maximum string length that can be returned by this property is 2 GB.

Chapter 14
OracleClob Class

14-95

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

OracleClob Instance Methods
The OracleClob instance methods are listed in Table 14-27.

Table 14-27 OracleClob Instance Methods

Methods Description

Append Appends data to the current OracleClob instance
(Overloaded)

BeginChunkWrite Opens the CLOB
BeginRead Inherited from System.IO.Stream
BeginWrite Inherited from System.IO.Stream
Clone Creates a copy of an OracleClob object

Close Closes the current stream and releases resources
associated with it

Compare Compares data referenced by the current instance to that
of the supplied object

CopyTo Copies the data to an OracleClob (Overloaded)

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Releases resources allocated by this object

EndChunkWrite Closes the CLOB referenced by the current OracleClob
instance

EndRead Inherited from System.IO.Stream
EndWrite Inherited from System.IO.Stream
Equals Inherited from System.Object (Overloaded)

Erase Erases the specified amount of data (Overloaded)

Flush Not supported

GetHashCode Returns a hash code for the current instance

GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
IsEqual Compares the LOB data referenced by two OracleClobs

Read Reads from the current instance (Overloaded)

ReadByte Inherited from System.IO.Stream

Chapter 14
OracleClob Class

14-96

Table 14-27 (Cont.) OracleClob Instance Methods

Methods Description

Search Searches for a character pattern in the current instance of
OracleClob (Overloaded)

Seek Sets the position in the current LOB stream

SetLength Trims or truncates the CLOB value

ToString Inherited from System.Object
Write Writes the provided buffer into the OracleClob

(Overloaded)

WriteByte Inherited from System.IO.Stream

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Append
This instance method appends data to the current OracleClob instance.

Overload List:

• Append(OracleClob)

This instance method appends the CLOB data referenced by the provided OracleClob
object to the current OracleClob instance.

• Append(byte [], int, int)

This instance method appends data at the end of the CLOB, from the supplied byte array
buffer, starting from offset (in bytes) of the supplied byte array buffer.

• Append(char [], int, int)

This instance method appends data from the supplied character array buffer to the end of
the current OracleClob instance, starting at the offset (in characters) of the supplied
character buffer.

Chapter 14
OracleClob Class

14-97

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Append(OracleClob)
This instance method appends the CLOB data referenced by the provided OracleClob
object to the current OracleClob instance.

Declaration

// C#
public void Append(OracleClob obj);

Parameters

• obj

An OracleClob object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the
object, OracleConnection is not opened, or OracleConnection has been reopened.

Remarks

No character set conversions are made.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Append(byte [], int, int)
This instance method appends data at the end of the CLOB, from the supplied byte
array buffer, starting from offset (in bytes) of the supplied byte array buffer.

Chapter 14
OracleClob Class

14-98

Declaration

// C#
public int Append(byte[] buffer, int offset, int count);

Parameters

• buffer

An array of bytes, representing a Unicode string.

• offset

The zero-based byte offset in the buffer from which data is read.

• count

The number of bytes to be appended.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - Either the offset or the count parameter is not even.

Remarks

Both offset and count must be even numbers for CLOB and NCLOB because every two bytes
represent a Unicode character.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Append(char [], int, int)
This instance method appends data from the supplied character array buffer to the end of the
current OracleClob instance, starting at the offset (in characters) of the supplied character
buffer.

Declaration

// C#
public void Append(char[] buffer, int offset, int count);

Parameters

• buffer

Chapter 14
OracleClob Class

14-99

An array of characters.

• offset

The zero-based offset (in characters) in the buffer from which data is read.

• count

The number of characters to be appended.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class AppendSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob = new OracleClob(con);

 // Append 2 chars {'d', 'e'} to the OracleClob
 char[] buffer = new char[3] {'d', 'e', 'f'};
 clob.Append(buffer, 0, 2);

 // Prints "clob.Value = de"
 Console.WriteLine("clob.Value = " + clob.Value);

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Chapter 14
OracleClob Class

14-100

BeginChunkWrite
This instance method opens the CLOB.

Declaration

// C#
public void BeginChunkWrite();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

BeginChunkWrite does not need to be called before manipulating the CLOB data. This is
provided for performance reasons.

After this method is called, write operations do not cause the domain or function-based index
on the column to be updated. Index updates occur only once after EndChunkWrite is called.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Clone
This instance method creates a copy of an OracleClob object.

Declaration

// C#
public object Clone();

Return Value

An OracleClob object.

Implements

ICloneable

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 14
OracleClob Class

14-101

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The cloned object has the same property values as that of the object being cloned.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CloneSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob1 = new OracleClob(con);

 // Prints "clob1.Position = 0"
 Console.WriteLine("clob1.Position = " + clob1.Position);

 // Set the Position before calling Clone()
 clob1.Position = 1;

 // Clone the OracleClob
 OracleClob clob2 = (OracleClob)clob1.Clone();

 // Prints "clob2.Position = 1"
 Console.WriteLine("clob2.Position = " + clob2.Position);

 clob1.Close();
 clob1.Dispose();

 clob2.Close();
 clob2.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Chapter 14
OracleClob Class

14-102

Close
Overrides Stream
This instance method closes the current stream and releases resources associated with it.

Declaration

// C#
public override void Close();

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Compare
This instance method compares data referenced by the current instance to that of the
supplied object.

Declaration

// C#
public int Compare(Int64 src_offset, OracleClob obj, Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The comparison starting point (in characters) for the current instance.

• obj

The provided OracleClob object.

• dst_offset

The comparison starting point (in characters) for the provided OracleClob.

• amount

The number of characters to compare.

Return Value

The method returns a value that is:

• Less than zero: if the data referenced by the current instance is less than that of the
supplied instance.

• Zero: if both objects reference the same data.

Chapter 14
OracleClob Class

14-103

• Greater than zero: if the data referenced by the current instance is greater than
that of the supplied instance.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the
object, OracleConnection is not opened, or OracleConnection has been reopened.

ArgumentOutOfRangeException - Either the src_offset, dst_offset, or amount
parameter is less than 0.

Remarks

The character set of the two OracleClob objects being compared should be the same
for a meaningful comparison.

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

CopyTo
CopyTo copies data from the current instance to the provided OracleClob object.

Overload List:

• CopyTo(OracleClob)

This instance method copies data from the current instance to the provided
OracleClob object.

• CopyTo(OracleClob, Int64)

This instance method copies data from the current OracleClob instance to the
provided OracleClob object with the specified destination offset.

• CopyTo(Int64, OracleClob, Int64, Int64)

This instance method copies data from the current OracleClob instance to the
provided OracleClob object with the specified source offset, destination offset, and
character amounts.

Chapter 14
OracleClob Class

14-104

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

CopyTo(OracleClob)
This instance method copies data from the current instance to the provided OracleClob
object.

Declaration

// C#
public Int64 CopyTo(OracleClob obj);

Parameters

• obj

The OracleClob object to which the data is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the object.

• The LOB object parameter has a different connection than the object.

Remarks

The provided object and the current instance must be using the same connection, that is, the
same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Chapter 14
OracleClob Class

14-105

CopyTo(OracleClob, Int64)
This instance method copies data from the current OracleClob instance to the
provided OracleClob object with the specified destination offset.

Declaration

// C#
public Int64 CopyTo(OracleClob obj, Int64 dst_offset);

Parameters

• obj

The OracleClob object to which the data is copied.

• dst_offset

The offset (in characters) at which the OracleClob object is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The dst_offset is less than 0.

InvalidOperationException - This exception is thrown if any of the following
conditions exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleClob data, spaces are written into
the OracleClob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Chapter 14
OracleClob Class

14-106

CopyTo(Int64, OracleClob, Int64, Int64)
This instance method copies data from the current OracleClob instance to the provided
OracleClob object with the specified source offset, destination offset, and character amounts.

Declaration

// C#
public Int64 CopyTo(Int64 src_offset,OracleClob obj,Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The offset (in characters) in the current instance, from which the data is read.

• obj

The OracleClob object to which the data is copied.

• dst_offset

The offset (in characters) at which the OracleClob object is copied.

• amount

The amount of data to be copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the object,
OracleConnection is not opened, or OracleConnection has been reopened.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount parameter
is less than 0.

Remarks

If the dst_offset is beyond the end of the OracleClob data, spaces are written into the
OracleClob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection, that is, the
same OracleConnection object.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

Chapter 14
OracleClob Class

14-107

class CopyToSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob1 = new OracleClob(con);
 OracleClob clob2 = new OracleClob(con);

 // Write 4 chars, starting at buffer offset 0
 char[] buffer = new char[4] {'a', 'b', 'c', 'd'};
 clob1.Write(buffer, 0, 4);

 // Copy 2 chars from char 0 of clob1 to char 1 of clob2
 clob1.CopyTo(0, clob2, 1, 2);

 //Prints "clob2.Value = ab"
 Console.WriteLine("clob2.Value = " + clob2.Value);

 clob1.Close();
 clob1.Dispose();

 clob2.Close();
 clob2.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Dispose
This instance method releases resources allocated by this object.

Declaration

public void Dispose();

Implements

IDisposable

Chapter 14
OracleClob Class

14-108

Remarks

The object cannot be reused after being disposed. Although some properties can still be
accessed, their values cannot be accountable. Since resources are freed, method calls can
lead to exceptions.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

EndChunkWrite
This instance method closes the CLOB referenced by the current OracleClob instance.

Declaration

// C#
public void EndChunkWrite();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

Remarks

Index updates occur immediately if write operation(s) are deferred by the BeginChunkWrite
method.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Erase
Erase erases part or all data.

Chapter 14
OracleClob Class

14-109

Overload List:

• Erase()

This instance method erases all data.

• Erase(Int64, Int64)

This instance method replaces the specified amount of data (in characters) starting
from the specified offset with zero-byte fillers (in characters).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Erase()
This instance method erases all data.

Declaration

// C#
public Int64 Erase();

Return Value

The number of characters erased.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Erase(Int64, Int64)
This instance method replaces the specified amount of data (in characters) starting
from the specified offset with zero-byte fillers (in characters).

Declaration

// C#
public Int64 Erase(Int64 offset, Int64 amount);

Chapter 14
OracleClob Class

14-110

Parameters

• offset

The offset.

• amount

The amount of data.

Return Value

The actual number of characters erased.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The offset or amount parameter is less than 0.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Flush
This method is not supported.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

GetHashCode
Overrides Object
This method returns a hash code for the current instance.

Chapter 14
OracleClob Class

14-111

Declaration

// C#
public override int GetHashCode();

Return Value

An int representing a hash code.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

IsEqual
This instance method compares the LOB data referenced by two OracleClobs.

Declaration

// C#
public bool IsEqual(OracleClob obj);

Parameters

• obj

An OracleClob object.

Return Value

Returns true if the current OracleClob and the provided OracleClob refer to the same
LOB. Otherwise, returns false.

Remarks

Note that this method can return true even if the two OracleClob objects returns
false for == or Equals() because two different OracleClob instances can refer to the
same LOB.

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

Chapter 14
OracleClob Class

14-112

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Read
Read reads a specified amount from the current instance and populates the array buffer.

Overload List:

• Read(byte [], int, int)

This instance method reads a specified amount of bytes from the current instance and
populates the byte array buffer.

• Read(char [], int, int)

This instance method reads a specified amount of characters from the current instance
and populates the character array buffer.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Read(byte [], int, int)
Overrides Stream
This instance method reads a specified amount of bytes from the current instance and
populates the byte array buffer.

Declaration

// C#
public override int Read(byte [] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer that is populated.

• offset

The offset (in bytes) at which the buffer is populated.

Chapter 14
OracleClob Class

14-113

• count

The amount of bytes to be read.

Return Value

The number of bytes read from the CLOB.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

Both offset and count must be even numbers for CLOB and NCLOB because every two
bytes represent a Unicode character.

The LOB data is read starting from the position specified by the Position property,
which must also be an even number.

OracleClob is free to return fewer bytes than requested, even if the end of the stream
has not been reached.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Read(char [], int, int)
This instance method reads a specified amount of characters from the current instance
and populates the character array buffer.

Declaration

// C#
public int Read(char[] buffer, int offset, int count);

Parameters

• buffer

The character array buffer that is populated.

• offset

The offset (in characters) at which the buffer is populated.

• count

The amount of characters to be read.

Chapter 14
OracleClob Class

14-114

Return Value

The return value indicates the number of characters read from the CLOB.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following conditions
exist:

• The offset or the count is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than buffer.Length.

Remarks

Handles all CLOB and NCLOB data as Unicode.

The LOB data is read starting from the position specified by the Position property.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ReadSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob = new OracleClob(con);

 // Write 3 chars, starting at buffer offset 1
 char[] writeBuffer = new char[4] {'a', 'b', 'c', 'd'};
 clob.Write(writeBuffer, 1, 3);

 // Reset the Position (in bytes) for Read
 clob.Position = 2;

 // Read 2 chars into buffer starting at buffer offset 1
 char[] readBuffer = new char[4];
 int charsRead = clob.Read(readBuffer, 1, 2);

 // Prints "charsRead = 2"
 Console.WriteLine("charsRead = " + charsRead);

 // Prints "readBuffer = cd "
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)

Chapter 14
OracleClob Class

14-115

 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Search
Search searches for a character pattern in the current instance of OracleClob.

Overload List:

• Search(byte[], Int64, Int64)

This instance method searches for a character pattern, represented by the byte
array, in the current instance of OracleClob.

• Search(char[], Int64, Int64)

This instance method searches for a character pattern in the current instance of
OracleClob.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Search(byte[], Int64, Int64)
This instance method searches for a character pattern, represented by the byte array,
in the current instance of OracleClob.

Chapter 14
OracleClob Class

14-116

Declaration

// C#
public int Search(byte[] val, Int64 offset, Int64 nth);

Parameters

• val

A Unicode byte array.

• offset

The 0-based offset (in characters) starting from which the OracleClob is searched.

• nth

The specific occurrence (1-based) of the match for which the absolute offset (in
characters) is returned.

Return Value

Returns the absolute offset of the start of the matched pattern (in bytes) for the nth
occurrence of the match. Otherwise, 0 is returned.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following conditions
exist:

• The offset is less than 0.

• The nth is less than or equal to 0.

• The nth is greater than or equal to OracleClob.MaxSize.

• The offset is greater than or equal to OracleClob.MaxSize.

Remarks

The byte[] is converted to Unicode before the search is made.

The limit of the search pattern is 16383 bytes.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Chapter 14
OracleClob Class

14-117

Search(char[], Int64, Int64)
This instance method searches for a character pattern in the current instance of
OracleClob.

Declaration

// C#
public Int64 Search(char [] val, Int64 offset, Int64 nth);

Parameters

• val

The Unicode string being searched for.

• offset

The 0-based offset (in characters) starting from which the OracleClob is searched.

• nth

The specific occurrence (1-based) of the match for which the absolute offset (in
characters) is returned.

Return Value

Returns the absolute offset of the start of the matched pattern (in characters) for the
nth occurrence of the match. Otherwise, 0 is returned.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset is less than 0.

• The nth is less than or equal to 0.

• The val.Length doubled is greater than 16383.

• The nth is greater than or equal to OracleClob.MaxSize.

• The offset is greater than or equal to OracleClob.MaxSize.

Remarks

The limit of the search pattern is 16383 bytes.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

Chapter 14
OracleClob Class

14-118

class SearchSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob = new OracleClob(con);

 // Write 7 chars, starting at buffer offset 0
 char[] buffer = new char[7] {'a', 'b', 'c', 'd', 'a', 'b', 'c'};
 clob.Write(buffer, 0, 7);

 // Search for the 2nd occurrence of a char pattern 'bc'
 // starting at offset 1 in the OracleBlob
 char[] pattern = new char[2] {'b', 'c'};
 long posFound = clob.Search(pattern, 1, 2);

 // Prints "posFound = 6"
 Console.WriteLine("posFound = " + posFound);

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Seek
Overrides Stream
This instance method sets the position on the current LOB stream.

Declaration

// C#
public override Int64 Seek(Int64 offset, SeekOrigin origin);

Parameters

• offset

A byte offset relative to origin.

• origin

Chapter 14
OracleClob Class

14-119

A value of type System.IO.SeekOrigin indicating the reference point used to
obtain the new position.

Return Value

Returns an Int64 that indicates the position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

If offset is negative, the new position precedes the position specified by origin by
the number of characters specified by offset.

If offset is zero, the new position is the position specified by origin.

If offset is positive, the new position follows the position specified by origin by the
number of characters specified by offset.

SeekOrigin.Begin specifies the beginning of a stream.

SeekOrigin.Current specifies the current position within a stream.

SeekOrigin.End specifies the end of a stream.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

SetLength
Overrides Stream
This instance method trims or truncates the CLOB value to the specified length (in
characters).

Declaration

// C#
public override void SetLength(Int64 newlen);

Parameters

• newlen

The desired length of the current stream in characters.

Chapter 14
OracleClob Class

14-120

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - The newlen parameter is greater than 0.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Write
This instance method writes data from the provided array buffer into the OracleClob.

Overload List:

• Write(byte[], int, int)

This instance method writes data from the provided byte array buffer into the OracleClob.

• Write(char[], int, int)

This instance method writes data from the provided character array buffer into the
OracleClob.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Write(byte[], int, int)
Overrides Stream
This instance method writes data from the provided byte array buffer into the OracleClob.

Declaration

// C#
public override void Write(byte[] buffer, int offset, int count);

Chapter 14
OracleClob Class

14-121

Parameters

• buffer

The byte array buffer that represents a Unicode string.

• offset

The offset (in bytes) from which the buffer is read.

• count

The amount of data (in bytes) from the buffer to be written into the OracleClob.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset or the count is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than the buffer.Length.

• The offset, the count, or the Position is not even.

Remarks

Both offset and count must be even numbers for CLOB and NCLOB because every two
bytes represent a Unicode character.

The LOB data is read starting from the position specified by the Position property.
The Position property must be an even number.

If necessary, proper data conversion is carried out from the client character set to the
database character set.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

Write(char[], int, int)
This instance method writes data from the provided character array buffer into the
OracleClob.

Chapter 14
OracleClob Class

14-122

Declaration

// C#
public void Write(char[] buffer, int offset, int count);

Parameters

• buffer

The character array buffer that is written to the OracleClob.

• offset

The offset (in characters) from which the buffer is read.

• count

The amount (in characters) from the buffer that is to be written into the OracleClob.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed during
the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following conditions
exist:

• The offset or the count is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than buffer.Length.

• The Position is not even.

Remarks

Handles all CLOB and NCLOB data as Unicode.

The LOB data is read starting from the position specified by the Position property.

If necessary, proper data conversion is carried out from the client character set to the
database character set.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class WriteSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

Chapter 14
OracleClob Class

14-123

 OracleClob clob = new OracleClob(con);

 // Set the Position for the Write;
 clob.Position = 0;

 // Begin ChunkWrite to improve performance
 // Index updates occur only once after EndChunkWrite
 clob.BeginChunkWrite();

 // Write to the OracleClob in 5 chunks of 2 chars each
 char[] c = new char[2] {'a', 'b'};
 for (int index = 0; index < 5; index++)
 {
 clob.Write(c, 0, c.Length);
 }
 clob.EndChunkWrite();

 // Prints "clob.Value = ababababab"
 Console.WriteLine("clob.Value = " + clob.Value);

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

• OracleClob Members

OracleRefCursor Class
An OracleRefCursor object represents an Oracle REF CURSOR..

Class Inheritance

System.Object
 System.MarshalRefByObject
 Oracle.DataAccess.Types.OracleRefCursor

Declaration

// C#
public sealed class OracleRefCursor : MarshalByRefObject, IDisposable, INullable

Chapter 14
OracleRefCursor Class

14-124

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Remarks

To minimize the number of open server cursors, OracleRefReader objects should be explicitly
disposed.

Example

// Database Setup
/*
connect scott/tiger@oracle
CREATE OR REPLACE FUNCTION MyFunc(refcur_out OUT SYS_REFCURSOR)
 RETURN SYS_REFCURSOR IS refcur_ret SYS_REFCURSOR;
BEGIN
 OPEN refcur_ret FOR SELECT * FROM EMP;
 OPEN refcur_out FOR SELECT * FROM DEPT;
 RETURN refcur_ret;
END MyFunc;
/
*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleRefCursorSample
{
 static void Main()
 {
 // Example demonstrates how to use REF CURSORs returned from
 // PL/SQL Stored Procedures or Functions
 // Create the PL/SQL Function MyFunc as defined previously

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

Chapter 14
OracleRefCursor Class

14-125

 // Create an OracleCommand
 OracleCommand cmd = new OracleCommand("MyFunc", con);
 cmd.CommandType = CommandType.StoredProcedure;

 // Bind the parameters
 // p1 is the RETURN REF CURSOR bound to SELECT * FROM EMP;
 OracleParameter p1 =
 cmd.Parameters.Add("refcur_ret", OracleDbType.RefCursor);
 p1.Direction = ParameterDirection.ReturnValue;

 // p2 is the OUT REF CURSOR bound to SELECT * FROM DEPT
 OracleParameter p2 =
 cmd.Parameters.Add("refcur_out", OracleDbType.RefCursor);
 p2.Direction = ParameterDirection.Output;

 // Execute the command
 cmd.ExecuteNonQuery();

 // Construct an OracleDataReader from the REF CURSOR
 OracleDataReader reader1 = ((OracleRefCursor)p1.Value).GetDataReader();

 // Prints "reader1.GetName(0) = EMPNO"
 Console.WriteLine("reader1.GetName(0) = " + reader1.GetName(0));

 // Construct an OracleDataReader from the REF CURSOR
 OracleDataReader reader2 = ((OracleRefCursor)p2.Value).GetDataReader();

 // Prints "reader2.GetName(0) = DEPTNO"
 Console.WriteLine("reader2.GetName(0) = " + reader2.GetName(0));

 reader1.Close();
 reader1.Dispose();

 reader2.Close();
 reader2.Dispose();

 p1.Dispose();
 p2.Dispose();

 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 14
OracleRefCursor Class

14-126

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Members

• OracleRefCursor Static Methods

• OracleRefCursor Static Fields

• OracleRefCursor Properties

• OracleRefCursor Instance Methods

OracleRefCursor Members
OracleRefCursor members are listed in the following tables.

OracleRefCursor Static Methods

OracleRefCursor static methods are listed in Table 14-28.

Table 14-28 OracleRefCursor Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleRefCursor Static Fields

OracleRefCursor static field is listed in Table 14-29.

Table 14-29 OracleRefCursor Static Field

Methods Description

Null Represents a null value that can be assigned to an
OracleRefCursor instance

OracleRefCursor Properties

OracleRefCursor properties are listed in Table 14-30.

Table 14-30 OracleRefCursor Properties

Properties Description

Connection A reference to the OracleConnection used to fetch the
REF CURSOR data

FetchSize Specifies the size that the OracleDataReader internal
cache needs to store result set data

IsNull Indicates whether or not the OracleRefCursor is null

Chapter 14
OracleRefCursor Class

14-127

Table 14-30 (Cont.) OracleRefCursor Properties

Properties Description

RowSize Specifies the amount of memory the OracleRefcursor
internal cache needs to store one row of data

OracleRefCursor Instance Methods

OracleRefCursor instance methods are listed in Table 14-31.

Table 14-31 OracleRefCursor Instance Methods

Methods Description

Dispose Disposes the resources allocated by the
OracleRefCursor object

Equals Inherited from System.Object (Overloaded)

GetDataReader Returns an OracleDataReader object for the REF
CURSOR

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

OracleRefCursor Static Methods
OracleRefCursor static methods are listed in Table 14-32.

Table 14-32 OracleRefCursor Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

Chapter 14
OracleRefCursor Class

14-128

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

OracleRefCursor Static Fields
OracleRefCursor static field is listed in Table 14-32.

Table 14-33 OracleRefCursor Static Field

Methods Description

Null Represents a null value that can be assigned to an
OracleRefCursor instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

Null
This static field represents a null value that can be assigned to an OracleRefCursor instance.

Declaration

// C#
public static readonly OracleRefCursor Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

Chapter 14
OracleRefCursor Class

14-129

OracleRefCursor Properties
OracleRefCursor properties are listed in Table 14-34.

Table 14-34 OracleRefCursor Properties

Properties Description

Connection A reference to the OracleConnection used to fetch the REF CURSOR
data

FetchSize Specifies the size that the OracleDataReader internal cache needs to
store result set data

IsNull Indicates whether or not the OracleRefCursor is null

RowSize Specifies the amount of memory the OracleRefcursor internal cache
needs to store one row of data

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

Connection
This property refers to the OracleConnection used to fetch the REF CURSOR data.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This property is bound to a REF CURSOR once it is set. After the OracleRefCursor object
is created by the constructor, this property is initially null. An OracleRefCursor object
can be bound to a REF CURSOR after a command execution.

If the connection is closed or returned to the connection pool, the OracleRefCursor is
placed in an uninitialized state and no operation can be carried out from it. However,
the uninitialized OracleRefCursor can be reassigned to another REF CURSOR.

Chapter 14
OracleRefCursor Class

14-130

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

FetchSize
This property specifies the size that the OracleDataReader internal cache needs to store
result set data.

Declaration

// C#
public long FetchSize {get; set;}

Property Value

A long that specifies the size (in bytes) of the OracleRefCursor internal cache.

Exceptions

ArgumentException - The FetchSize value specified is invalid.

Remarks

Default = 131072.

The FetchSize property value is inherited by the OracleCommand that created the
OracleRefCursor object. The FetchSize property on the OracleDataReader object
determines the amount of data the OracleRefCursor fetches into its internal cache for each
database round-trip.

This property is useful if the OracleRefCursor is explicitly used to fill the DataSet or
DataTable through the OracleDataAdapter, because it can provide control on how the data of
the REF CURSOR is fetched.

If an OracleDataReader object is created from the OracleRefCursor, the resulting
OracleDataReader object inherits the FetchSize value of the OracleDataReader object.
However, the inherited value can be overridden, if it is set before the first invocation of the
OracleDataReader Read method for the given result set, by setting the OracleDataReader
FetchSize property.

The RowSize and FetchSize properties handle UDT and XMLType data differently than other
scalar data types. Because only a reference to the UDT and XMLType data is stored in the
ODP.NET's internal cache, the RowSize property accounts for only the memory needed for
the reference (which is very small) and not the actual size of the UDT and XMLType data.
Thus, applications can inadvertently fetch a large number of UDT or XMLType instances from
the database in a single database round-trip. This is because the actual size of UDT and
XMLType data does not count against the FetchSize, and it would require numerous UDT and
XMLType references to fill up the default cache size of 131072 bytes. Therefore, when fetching

Chapter 14
OracleRefCursor Class

14-131

UDT or XMLType data, the FetchSize property must be appropriately configured to
control the number of UDT and XMLType instances that are to be fetched, rather than
the amount of the actual UDT and XMLType data to be fetched.

NOTE: For LOB and LONG data types, only the sizes specified in the
InitialLOBFetchSize and InitialLONGFetchSize properties are accounted for by the
RowSize property in addition to the metadata and reference information that is
maintained by the cache for each LOB in the select list.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

IsNull
This property indicates whether or not the OracleRefCursor is null.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the OracleRefCursor represents a null value. Returns false otherwise.

Exception

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

RowSize
This property specifies the amount of memory the OracleRefcursor internal cache
needs to store one row of data.

Chapter 14
OracleRefCursor Class

14-132

Declaration

// C#
public long RowSize {get;}

Property Value

A long that indicates the amount of memory (in bytes) that an OracleRefcursor needs to
store one row of data for the executed query.

Remarks

The RowSize property is set to a nonzero value when the OracleRefcursor object is created.
This property can be used at design time or dynamically during run time, to set the
FetchSize, based on number of rows. For example, to enable the OracleRefcursor to fetch N
rows for each database round-trip, the OracleRefcursor FetchSize property can be set
dynamically to RowSize * N. Note that for the FetchSize to take effect appropriately, it must be
set before the it is used to fill the DataSet/DataTable using OracleDataAdapter.

If an OracleDataReader is obtained from the OracleRefCursor through the GetDataReader
method, the resulting OracleDataReader will have its FetchSize property set to the
FetchSize value of the OracleRefCursor.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

OracleRefCursor Instance Methods
OracleRefCursor instance methods are listed in Table 14-35.

Table 14-35 OracleRefCursor Instance Methods

Methods Description

Dispose Disposes the resources allocated by the OracleRefCursor object

Equals Inherited from System.Object (Overloaded)

GetDataReader Returns an OracleDataReader object for the REF CURSOR
GetHashCode Inherited from System.Object
GetType Inherited from System.Object
ToString Inherited from System.Object

Chapter 14
OracleRefCursor Class

14-133

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

Dispose
This instance method disposes of the resources allocated by the OracleRefCursor
object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The object cannot be reused after being disposed.

Once Dispose() is called, the object of OracleRefCursor is in an uninitialized state.
Although some properties can still be accessed, their values may not be accountable.
Since resources are freed, method calls can lead to exceptions.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

GetDataReader
This instance method returns an OracleDataReader object for the REF CURSOR.

Declaration

// C#
public OracleDataReader GetDataReader();

Return Value

OracleDataReader

Chapter 14
OracleRefCursor Class

14-134

Remarks

Using the OracleDataReader, rows can be fetched from the REF CURSOR.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRefCursor Class

• OracleRefCursor Members

Chapter 14
OracleRefCursor Class

14-135

15
Oracle Data Provider for .NET Types
Structures

This chapter describes the ODP.NET Types structures.

This chapter contains these topics:

• OracleBinary Structure

• OracleBoolean Structure

• OracleDate Structure

• OracleDecimal Structure

• OracleIntervalDS Structure

• OracleIntervalYM Structure

• OracleString Structure

• OracleTimeStamp Structure

• OracleTimeStampLTZ Structure

• OracleTimeStampTZ Structure

• INullable Interface

OracleBinary Structure
The OracleBinary structure represents a variable-length stream of binary data to be stored in
or retrieved from a database.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleBinary

Declaration

// C#
public struct OracleBinary : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

15-1

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleBinarySample
{
 static void Main(string[] args)
 {
 // Initialize the OracleBinary structures
 OracleBinary binary1= new OracleBinary(new byte[] {1,2,3,4,5});
 OracleBinary binary2 = new OracleBinary(new byte[] {1,2,3});
 OracleBinary binary3 = new OracleBinary(new byte[] {4,5});
 OracleBinary binary4 = binary2 + binary3;

 // Compare binary1 and binary4; they're equal
 if (binary1 == binary4)
 Console.WriteLine("The two OracleBinary structs are equal");
 else
 Console.WriteLine("The two OracleBinary structs are different");
 }
}

Chapter 15
OracleBinary Structure

15-2

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Members

• OracleBinary Constructor

• OracleBinary Static Fields

• OracleBinary Static Methods

• OracleBinary Static Operators

• OracleBinary Static Type Conversion Operators

• OracleBinary Properties

• OracleBinary Instance Methods

OracleBinary Members
OracleBinary members are listed in the following tables:

OracleBinary Constructors

OracleBinary constructors are listed in Table 15-1

Table 15-1 OracleBinary Constructors

Constructor Description

OracleBinary Constructor Instantiates a new instance of OracleBinary structure

OracleBinary Static Fields

The OracleBinary static fields are listed in Table 15-2.

Table 15-2 OracleBinary Static Fields

Field Description

Null Represents a null value that can be assigned to an
instance of the OracleBinary structure

OracleBinary Static Methods

The OracleBinary static methods are listed in Table 15-3.

Chapter 15
OracleBinary Structure

15-3

Table 15-3 OracleBinary Static Methods

Methods Description

Concat Returns the concatenation of two OracleBinary
structures

Equals Determines if two OracleBinary values are equal
(Overloaded)

GetXsdType Returns the XML Schema definition language (XSD)
of the specified XmlSchemaSet

GreaterThan Determines if the first of two OracleBinary values
is greater than the second

GreaterThanOrEqual Determines if the first of two OracleBinary values
is greater than or equal to the second

LessThan Determines if the first of two OracleBinary values
is less than the second

LessThanOrEqual Determines if the first of two OracleBinary values
is less than or equal to the second

NotEquals Determines if two OracleBinary values are not
equal

OracleBinary Static Operators

The OracleBinary static operators are listed in Table 15-4.

Table 15-4 OracleBinary Static Operators

Operator Description

operator + Concatenates two OracleBinary values

operator == Determines if two OracleBinary values are equal

operator > Determines if the first of two OracleBinary values is greater
than the second

operator >= Determines if the first of two OracleBinary values is greater
than or equal to the second

operator != Determines if two OracleBinary values are not equal

operator < Determines if the first of two OracleBinary value is less than
the second

operator <= Determines if the first of two OracleBinary value is less than
or equal to the second

OracleBinary Static Type Conversion Operators

The OracleBinary static type conversion operators are listed in Table 15-5.

Chapter 15
OracleBinary Structure

15-4

Table 15-5 OracleBinary Static Type Conversion Operators

Operator Description

explicit operator byte[] Converts an instance value to a byte array

implicit operator OracleBinary Converts an instance value to an OracleBinary
structure

OracleBinary Properties

The OracleBinary properties are listed in Table 15-6.

Table 15-6 OracleBinary Properties

Properties Description

IsNull Indicates whether or not the current instance has a null value

Item Obtains the particular byte in an OracleBinary structure using an index

Length Returns the length of the binary data

Value Returns the binary data that is stored in an OracleBinary structure

OracleBinary Instance Methods

The OracleBinary instance methods are listed in Table 15-7.

Table 15-7 OracleBinary Instance Methods

Methods Description

CompareTo Compares the current instance to an object and returns an integer that
represents their relative values

Equals Determines if two objects contain the same binary data (Overloaded)

GetHashCode Returns a hash code for the current instance

GetType Inherited from System.Object
ToString Converts the current OracleBinary structure to a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

OracleBinary Constructor
The OracleBinary constructor instantiates a new instance of the OracleBinary structure and
sets its value to the provided array of bytes.

Chapter 15
OracleBinary Structure

15-5

Declaration

// C#
public OracleBinary(byte[] bytes);

Parameters

• bytes

A byte array.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

OracleBinary Static Fields
The OracleBinary static fields are listed in Table 15-8.

Table 15-8 OracleBinary Static Fields

Field Description

Null Represents a null value that can be assigned to an instance of the
OracleBinary structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

Null
This static field represents a null value that can be assigned to an instance of the
OracleBinary structure.

Declaration

// C#
public static readonly OracleBinary Null;

Chapter 15
OracleBinary Structure

15-6

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

OracleBinary Static Methods
The OracleBinary static methods are listed in Table 15-9.

Table 15-9 OracleBinary Static Methods

Methods Description

Concat Returns the concatenation of two OracleBinary structures

Equals Determines if two OracleBinary values are equal (Overloaded)

GetXsdType Returns the XML Schema definition language (XSD) of the specified
XmlSchemaSet

GreaterThan Determines if the first of two OracleBinary values is greater than
the second

GreaterThanOrEqual Determines if the first of two OracleBinary values is greater than or
equal to the second

LessThan Determines if the first of two OracleBinary values is less than the
second

LessThanOrEqual Determines if the first of two OracleBinary values is less than or
equal to the second

NotEquals Determines if two OracleBinary values are not equal

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

Concat
This method returns the concatenation of two OracleBinary structures.

Declaration

// C#
public static OracleBinary Concat(OracleBinary value1, OracleBinary value2);

Chapter 15
OracleBinary Structure

15-7

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

An OracleBinary.

Remarks

If either argument has a null value, the returned OracleBinary structure has a null
value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

Equals
This method determines if two OracleBinary values are equal.

Declaration

// C#
public static bool Equals(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if two OracleBinary values are equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

Chapter 15
OracleBinary Structure

15-8

• Two OracleBinarys that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

GetXsdType
This method returns the XML Schema definition language (XSD) of the specified
XmlSchemaSet.

Declaration

// C#
public static XmlQualifiedName GetXsdType(XmlSchemaSet schemaSet);

Parameters

• schemaSet

An XmlSchemaSet.

Return Value

Returns a string that indicates the XSD of the specified XmlSchemaSet.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

GreaterThan
This method determines whether or not the first of two OracleBinary values is greater than
the second.

Declaration

// C#
public static bool GreaterThan(OracleBinary value1, OracleBinary value2);

Parameters

• value1

Chapter 15
OracleBinary Structure

15-9

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is greater than the second;
otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class GreaterThanSample
{
 static void Main(string[] args)
 {
 OracleBinary binary1 = OracleBinary.Null;
 OracleBinary binary2 = new OracleBinary(new byte[] {1});

 // Compare two OracleBinary structs; binary1 < binary2
 if (OracleBinary.GreaterThan(binary1, binary2))
 Console.WriteLine("binary1 > binary2");
 else
 Console.WriteLine("binary1 < binary2");
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

GreaterThanOrEqual
This method determines whether or not the first of two OracleBinary values is greater
than or equal to the second.

Chapter 15
OracleBinary Structure

15-10

Declaration

// C#
public static bool GreaterThanOrEqual(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is greater than or equal to the second;
otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null value.

• Two OracleBinarys that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

LessThan
This method determines whether or not the first of two OracleBinary values is less than the
second.

Declaration

// C#
public static bool LessThan(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Chapter 15
OracleBinary Structure

15-11

Return Value

Returns true if the first of two OracleBinary values is less than the second; otherwise
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

LessThanOrEqual
This method determines whether or not the first of two OracleBinary values is less
than or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is less than or equal to the
second; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

Chapter 15
OracleBinary Structure

15-12

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

NotEquals
This method determines whether or not two OracleBinary values are not equal.

Declaration

// C#
public static bool NotEquals(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if two OracleBinary values are not equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null value.

• Two OracleBinarys that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

OracleBinary Static Operators
The OracleBinary static operators are listed in Table 15-10.

Chapter 15
OracleBinary Structure

15-13

Table 15-10 OracleBinary Static Operators

Operator Description

operator + Concatenates two OracleBinary values

operator == Determines if two OracleBinary values are equal

operator > Determines if the first of two OracleBinary values is greater
than the second

operator >= Determines if the first of two OracleBinary values is greater
than or equal to the second

operator != Determines if two OracleBinary values are not equal

operator < Determines if the first of two OracleBinary value is less than
the second

operator <= Determines if the first of two OracleBinary value is less than or
equal to the second

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

operator +
This method concatenates two OracleBinary values.

Declaration

// C#
public static OracleBinary operator + (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

OracleBinary

Remarks

If either argument has a null value, the returned OacleBinary structure has a null
value.

Chapter 15
OracleBinary Structure

15-14

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

operator ==
This method determines if two OracleBinary values are equal.

Declaration

// C#
public static bool operator == (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if they are the same; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null value.

• Two OracleBinarys that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

operator >
This method determines if the first of two OracleBinary values is greater than the second.

Chapter 15
OracleBinary Structure

15-15

Declaration

// C#
public static bool operator > (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OperatorSample
{
 static void Main(string[] args)
 {
 OracleBinary binary1 = OracleBinary.Null;
 OracleBinary binary2 = new OracleBinary(new byte[] {1});

 // Compare two OracleBinary structs; binary1 < binary2
 if (binary1 > binary2)
 Console.WriteLine("binary1 > binary2");
 else
 Console.WriteLine("binary1 < binary2");
 }
}

Chapter 15
OracleBinary Structure

15-16

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

operator >=
This method determines if the first of two OracleBinary values is greater than or equal to the
second.

Declaration

// C#
public static bool operator >= (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null value.

• Two OracleBinarys that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

operator !=
This method determines if two OracleBinary values are not equal.

Chapter 15
OracleBinary Structure

15-17

Declaration

// C#
public static bool operator != (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the two OracleBinary values are not equal; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

operator <
This method determines if the first of two OracleBinary values is less than the second.

Declaration

// C#
public static bool operator < (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is less than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

Chapter 15
OracleBinary Structure

15-18

• Any OracleBinary that has a value is greater than an OracleBinary that has a null value.

• Two OracleBinarys that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

operator <=
This method determines if the first of two OracleBinary values is less than or equal to the
second.

Declaration

// C#
public static bool operator <= (OracleBinary value1, OracleBinary value1);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null value.

• Two OracleBinarys that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

Chapter 15
OracleBinary Structure

15-19

OracleBinary Static Type Conversion Operators
The OracleBinary static type conversion operators are listed in Table 15-11.

Table 15-11 OracleBinary Static Type Conversion Operators

Operator Description

explicit operator byte[] Converts an instance value to a byte array

implicit operator OracleBinary Converts an instance value to an OracleBinary
structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

explicit operator byte[]
This method converts an OracleBinary value to a byte array.

Declaration

// C#
public static explicit operator byte[] (OracleBinary val);

Parameters

• val

An OracleBinary.

Return Value

A byte array.

Exceptions

OracleNullValueException - The OracleBinary structure has a null value.

Chapter 15
OracleBinary Structure

15-20

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

implicit operator OracleBinary
This method converts a byte array to an OracleBinary structure.

Declaration

// C#
public static implicit operator OracleBinary(byte[] bytes);

Parameters

• bytes

A byte array.

Return Value

OracleBinary

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

OracleBinary Properties
The OracleBinary properties are listed in Table 15-12.

Table 15-12 OracleBinary Properties

Properties Description

IsNull Indicates whether or not the current instance has a null value

Item Obtains the particular byte in an OracleBinary structure using an index

Length Returns the length of the binary data

Value Returns the binary data that is stored in an OracleBinary structure

Chapter 15
OracleBinary Structure

15-21

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the current instance has a null value; otherwise returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

Item
This property obtains the particular byte in an OracleBinary structure using an index.

Declaration

// C#
public byte this[int index] {get;}

Property Value

A byte in the specified index.

Exceptions

OracleNullValueException - The current instance has a null value.

Example

// C#

using System;

Chapter 15
OracleBinary Structure

15-22

using Oracle.DataAccess.Types;

class ItemSample
{
 static void Main(string[] args)
 {
 OracleBinary binary = new OracleBinary(new byte[] {1,2,3,4});

 // Prints the value 4
 Console.WriteLine(binary[binary.Length - 1]);
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

Length
This property returns the length of the binary data.

Declaration

// C#
public int length {get;}

Property Value

Length of the binary data.

Exceptions

OracleNullValueException - The current instance has a null value.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class LengthSample
{
 static void Main(string[] args)
 {
 OracleBinary binary = new OracleBinary(new byte[] {1,2,3,4});

 // Prints the value 4
 Console.WriteLine(binary.Length);
 }
}

Chapter 15
OracleBinary Structure

15-23

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

Value
This property returns the binary data that is stored in the OracleBinary structure.

Declaration

// C#
public byte[] Value {get;}

Property Value

Binary data.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

OracleBinary Instance Methods
The OracleBinary instance methods are listed in Table 15-13.

Table 15-13 OracleBinary Instance Methods

Methods Description

CompareTo Compares the current instance to an object and returns an
integer that represents their relative values

Equals Determines if two objects contain the same binary data
(Overloaded)

GetHashCode Returns a hash code for the current instance

GetType Inherited from System.Object
ToString Converts the current OracleBinary structure to a string

Chapter 15
OracleBinary Structure

15-24

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

CompareTo
This method compares the current instance to an object and returns an integer that
represents their relative values

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared.

Return Value

The method returns a number that is:

• Less than zero: if the current OracleBinary instance value is less than obj.

• Zero: if the current OracleBinary instance and obj values have the same binary data.

• Greater than zero: if the current OracleBinary instance value is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The parameter is not of type OracleBinary.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleBinarys. For example, comparing an
OracleBinary instance with an OracleTimeStamp instance is not allowed. When an
OracleBinary is compared with a different type, an ArgumentException is thrown.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null value.

• Two OracleBinarys that contain a null value are equal.

Chapter 15
OracleBinary Structure

15-25

Example

// C#

using System;
using Oracle.DataAccess.Types;

class CompareToSample
{
 static void Main(string[] args)
 {
 OracleBinary binary1 = new OracleBinary(new byte[] {1,2,3});
 OracleBinary binary2 = new OracleBinary(new byte[] {1,2,3,4});

 // Compare
 if (binary1.CompareTo(binary2) == 0)
 Console.WriteLine("binary1 is the same as binary2");
 else
 Console.WriteLine("binary1 is different from binary2");
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

Equals
This method determines whether or not an object is an instance of OracleBinary, and
has the same binary data as the current instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The object being compared.

Return Value

Returns true if obj is an instance of OracleBinary, and has the same binary data as
the current instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

Chapter 15
OracleBinary Structure

15-26

• Any OracleBinary that has a value is greater than an OracleBinary that has a null value.

• Two OracleBinarys that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

GetHashCode
Overrides Object
This method returns a hash code for the OracleBinary instance.

Declaration

// C#
public override int GetHashCode();

Return Value

An int that represents the hash.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

ToString
Overrides Object
This method converts an OracleBinary instance to a string instance.

Declaration

// C#
public override string ToString();

Return Value

string

Chapter 15
OracleBinary Structure

15-27

Remarks

If the current OracleBinary instance has a null value, the returned string "null".

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBinary Structure

• OracleBinary Members

OracleBoolean Structure
The OracleBoolean structure represents a logical value that is either TRUE or FALSE.

ODP.NET, Unmanaged Driver can access Oracle Database PL/SQL Booleans in
Oracle Database Release 12.1 and later. ODP.NET, Managed Driver can access
Oracle Database PL/SQL Booleans in Oracle Database Release 12.2 and later.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleBoolean

Declaration

// C#
public struct OracleBoolean : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 15
OracleBoolean Structure

15-28

Remarks

A OracleBoolean structure represents three possible values: TRUE, FALSE, and NULL. A non-
zero value is interpreted as TRUE.

Example

// C#
using System;
using System.Data;
using Oracle.DataAccess.Types; // for use with ODP.NET, Unmanaged Driver
// using Oracle.ManagedDataAccess.Types; // for use with ODP.NET, Managed Driver

 class OracleBooleanSample
 {
 static void Main(string[] args)
 {
 OracleBoolean oracleBoolean1 = new OracleBoolean(true);
 OracleBoolean oracleBoolean2 = new OracleBoolean(0);

 Console.WriteLine("oracleBoolean1 : " + oracleBoolean1);
 Console.WriteLine("oracleBoolean2 : " + oracleBoolean2);
 }
 }

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Members

• OracleBoolean Constructors

• OracleBoolean Static Fields

• OracleBoolean Static Methods

• OracleBoolean Static Operators

• OracleBoolean Static Type Conversions

• OracleBoolean Properties

• OracleBoolean Instance Methods

OracleBoolean Members
OracleBoolean members are listed in the following tables:

OracleBoolean Constructors

OracleBoolean constructors are listed in Table 15-14

Chapter 15
OracleBoolean Structure

15-29

Table 15-14 OracleBoolean Constructors

Constructor Description

OracleBoolean
Constructors

Instantiates a new instance of OracleBoolean structure
(Overloaded)

OracleBoolean Static Fields

The OracleBoolean static fields are listed in Table 15-15.

Table 15-15 OracleBoolean Static Fields

Field Description

False Represents a false value that can be assigned to an
OracleBoolean instance

Null Represents a null value that can be assigned to an
OracleBoolean instance

One Indicates a constant representing the positive one value

True Represents a true value that can be assigned to an
OracleBoolean instance

Zero Indicates a constant representing the zero value

OracleBoolean Static Methods

OracleBoolean static methods are listed in Table 15-16

Table 15-16 OracleBoolean Static Methods

Methods Description

And Returns the result of bitwise AND operation of two
OracleBoolean instances

Equals Determines whether or not the two OracleBoolean values are
equal

GreaterThan Determines whether or not the first of two OracleBoolean
values is greater than the second

GreaterThanOrEquals Determines whether or not the first of two OracleBoolean
values is greater than or equal to the second

LessThan Determines whether or not the first of two OracleBoolean
values is less than the second

LessThanOrEquals Determines whether or not the first of two OracleBoolean
values is less than or equal to the second

NotEquals Determines whether or not two OracleBoolean values are not
equal

OnesComplement Returns the result of a one's complement operation on the
specified OracleBoolean value

Or Returns the result of bitwise OR operation of two OracleBoolean
instances

Chapter 15
OracleBoolean Structure

15-30

Table 15-16 (Cont.) OracleBoolean Static Methods

Methods Description

Parse Returns an OracleBoolean structure and sets its value using a
string

Xor Returns the result of a bitwise exclusive OR operation of two
OracleBoolean instances

OracleBoolean Static Operators

The OracleBoolean static operators are listed in Table 15-17.

Table 15-17 OracleBoolean Static Operators

Field Description

operator > Determines whether or not the first of two OracleBoolean values is
greater than the second

operator >= Determines whether or not the first of two OracleBoolean values is
greater than or equal to the second

operator < Determines whether or not the first of two OracleBoolean values is
less than the second

operator <= Dtermines whether or not the first of two OracleBoolean values is
less than or equal to the second

operator == Indicates whether or not the two OracleBoolean instances are equal

operator != Determines whether or not two OracleBoolean values are not equal

operator ! Determines the result of a NOT operation on a OracleBoolean
operator ~ Returns the result of a one's complement operation on the specified

OracleBoolean value

operator false Determines whether or not the specified OracleBoolean value is
false

operator true Determines whether or not the specified OracleBoolean value is true

operator & Returns the result of bitwise AND operation of two OracleBoolean
instances

operator | Returns the result of bitwise OR operation of two OracleBoolean
instances

operator ^ Returns the result of bitwise exclusive OR operation of two
OracleBoolean instances

The OracleBoolean Static Type conversions

The OracleBoolean static type conversions are listed in Table 15-18

Chapter 15
OracleBoolean Structure

15-31

Table 15-18 OracleBoolean Static Type Conversions

Field Description

implicit operator
OracleBoolean

Returns the OracleBoolean representation of a boolean value

explicit operator bool Returns the boolean representation of the OracleBoolean value

explicit operator
OracleBoolean

Converts a structure to an OracleBoolean structure
(Overloaded)

OracleBoolean Properties

The OracleBoolean properties are listed in Table 15-25.

Table 15-19 OracleBoolean Properties

Properties Description

ByteValue Returns a byte that represents the OracleBoolean structure

IsFalse Indicates whether or not the value of the current instance is false

IsNull Indicates whether or not the current instance has a null value

IsTrue Indicates whether or not the value of the current instance is true

Value Returns a boolean value that represents the current instance

OracleBoolean Instance Methods

The OracleBoolean instance methods are listed in Table 15-20.

Table 15-20 OracleBoolean Instance Methods

Method Description

CompareTo Compares the current instance to the supplied object and returns
an integer that represents their relative values

Equals Determines whether or not an object is an instance of
OracleBoolean, and whether or not the value of the object is
equal to the current instance

GetHashCode Returns a hash code for the current instance

ToString Returns the string representation of the current instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

Chapter 15
OracleBoolean Structure

15-32

OracleBoolean Constructors
The OracleBoolean constructors instantiates a new instance of the OracleBoolean structure.

Overload List:

• OracleBoolean(bool)

This constructor creates a new instance of the OracleBoolean structure and sets its value
to the supplied Boolean value.

• OracleBoolean(int)

This constructor creates a new instance of the OracleBoolean structure and sets its value
to the supplied Int32 value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

OracleBoolean(bool)
This constructor creates a new instance of the OracleBoolean structure and sets its value to
the supplied Boolean value.

Declaration

// C#
public OracleBoolean(bool value) ;

Parameters

• value

The provided Boolean value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Chapter 15
OracleBoolean Structure

15-33

OracleBoolean(int)
This constructor creates a new instance of the OracleBoolean structure and sets its
value to the supplied Int32 value.

Declaration

// C#
public OracleBoolean(int value)

Parameters

• value

The provided Int32 value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

OracleBoolean Static Fields
The OracleBoolean static fields are listed in Table 15-21.

Table 15-21 OracleBoolean Static Fields

Field Description

False Represents a false value that can be assigned to an
OracleBoolean instance

Null Represents a null value that can be assigned to an
OracleBoolean instance

One Indicates a constant representing the positive one value

True Represents a true value that can be assigned to an
OracleBoolean instance

Zero Indicates a constant representing the zero value

Chapter 15
OracleBoolean Structure

15-34

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

False
This static field represents a false value that can be assigned to an OracleBoolean instance.

Declaration

// C#
public static readonly OracleBoolean False;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Null
This static field represents a null value that can be assigned to an OracleBoolean instance.

Declaration

// C#
public static readonly OracleBoolean Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

One
This static field indicates a constant representing the positive one value.

Chapter 15
OracleBoolean Structure

15-35

Declaration

// C#
public static readonly OracleBoolean One;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

True
This static field represents a true value that can be assigned to an OracleBoolean
instance.

Declaration

// C#
public static readonly OracleBoolean True;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Zero
This static field indicates a constant representing the zero value.

Declaration

// C#
public static readonly OracleBoolean Zero;

Chapter 15
OracleBoolean Structure

15-36

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

OracleBoolean Static Methods
OracleBoolean static methods are listed in Table 15-22

Table 15-22 OracleBoolean Static Methods

Methods Description

And Returns the result of bitwise AND operation of two OracleBoolean
instances

Equals Determines whether or not the two OracleBoolean values are equal

GreaterThan Determines whether or not the first of two OracleBoolean values is
greater than the second

GreaterThanOrEquals Determines whether or not the first of two OracleBoolean values is
greater than or equal to the second

LessThan Determines whether or not the first of two OracleBoolean values is
less than the second

LessThanOrEquals Determines whether or not the first of two OracleBoolean values is
less than or equal to the second

NotEquals Determines whether or not two OracleBoolean values are not equal

OnesComplement Returns the result of a one's complement operation on the specified
OracleBoolean value

Or Returns the result of bitwise OR operation of two OracleBoolean
instances

Parse Returns an OracleBoolean structure and sets its value using a
string

Xor Returns the result of a bitwise exclusive OR operation of two
OracleBoolean instances

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Chapter 15
OracleBoolean Structure

15-37

And
This method returns the result of bitwise AND operation of two OracleBoolean
instances.

Declaration

// C#
public static OracleBoolean And(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise AND operation of two
OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Equals
This method returns an OracleBoolean that indicates whether or not the two
OracleBoolean instances are equal.

Declaration

// C#
public static OracleBoolean Equal(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

Chapter 15
OracleBoolean Structure

15-38

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the specified two OracleBoolean instances are equal;
otherwise, returns an OracleBoolean that is false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null value
will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

GreaterThan
This method determines if the first of two OracleBoolean values is greater than the second.

Declaration

// C#
public static OracleBoolean GreaterThan(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

The first OracleBoolean
• value2

The second OracleBoolean

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is greater than the
second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null value
will be returned.

Chapter 15
OracleBoolean Structure

15-39

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

GreaterThanOrEquals
This method determines if the first of two OracleBoolean values is greater than or
equal to the second.

Declaration

// C#
public static OracleBoolean GreaterThanOrEquals(OracleBoolean value1,
OracleBoolean value2);

Parameters

• value1

The first OracleBoolean
• value2

The second OracleBoolean

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is greater than
or equal to the second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

LessThan
This method determines if the first of two OracleBoolean values is less than the
second.

Chapter 15
OracleBoolean Structure

15-40

Declaration

// C#
public static OracleBoolean LessThan(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

The first OracleBoolean
• value2

The second OracleBoolean

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is less than the
second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null value
will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

LessThanOrEquals
This method determines if the first of two OracleBoolean values is less or equal than the
second.

Declaration

// C#
public static OracleBoolean LessThanOrEquals(OracleBoolean value1, OracleBoolean
value2);

Parameters

• value1

The first OracleBoolean
• value2

The second OracleBoolean

Chapter 15
OracleBoolean Structure

15-41

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is less than or
equal to the second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

NotEquals
This method determines if two OracleBoolean values are not equal.

Declaration

// C#
public static OracleBoolean NotEquals(OracleBoolean value1, OracleBoolean
value2);

Parameters

• value1

The first OracleBoolean
• value2

The second OracleBoolean

Return Value

An OracleBoolean that is true if two OracleBoolean values are not equal; otherwise,
returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

Chapter 15
OracleBoolean Structure

15-42

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

OnesComplement
This method returns the result of a one's complement operation on the specified
OracleBoolean value.

Declaration

// C#
public static OracleBoolean OnesComplement(OracleBoolean value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of a one's complement operation on
the specified OracleBoolean value.

Remarks

If the specified OracleBoolean instance is null, an OracleBoolean with a null value will be
returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Or
This method returns the result of bitwise OR operation of two OracleBoolean instances.

Declaration

// C#
public static OracleBoolean Or(OracleBoolean value1, OracleBoolean value2);

Chapter 15
OracleBoolean Structure

15-43

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise OR operation of two
OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Parse
This method converts a string to an OracleBoolean.

Declaration

// C#
public static OracleBoolean Parse(string str);

Parameters

• str

The string being converted.

Return Value

A new OracleBoolean structure.

Exceptions

ArgumentNullException – The str parameter is null.

IndexOutOfRangeException – The str parameter is an empty string.

Chapter 15
OracleBoolean Structure

15-44

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Xor
This method returns the result of a bitwise exclusive OR operation of two OracleBoolean
instances.

Declaration

// C#
public static OracleBoolean Xor(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise exclusive OR operation of
two OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null value
will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

OracleBoolean Static Operators
The OracleBoolean static operators are listed in Table 15-23.

Chapter 15
OracleBoolean Structure

15-45

Table 15-23 OracleBoolean Static Operators

Field Description

operator > Determines whether or not the first of two OracleBoolean
values is greater than the second

operator >= Determines whether or not the first of two OracleBoolean
values is greater than or equal to the second

operator < Determines whether or not the first of two OracleBoolean
values is less than the second

operator <= Dtermines whether or not the first of two OracleBoolean values
is less than or equal to the second

operator == Indicates whether or not the two OracleBoolean instances are
equal

operator != Determines whether or not two OracleBoolean values are not
equal

operator ! Determines the result of a NOT operation on a OracleBoolean
operator ~ Returns the result of a one's complement operation on the

specified OracleBoolean value

operator false Determines whether or not the specified OracleBoolean value
is false

operator true Determines whether or not the specified OracleBoolean value
is true

operator & Returns the result of bitwise AND operation of two
OracleBoolean instances

operator | Returns the result of bitwise OR operation of two OracleBoolean
instances

operator ^ Returns the result of bitwise exclusive OR operation of two
OracleBoolean instances

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator >
This method determines whether or not the first of two OracleBoolean values is
greater than the second.

Declaration

// C#
public static operator > (OracleBoolean value1, OracleBoolean value2);

Chapter 15
OracleBoolean Structure

15-46

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is greater than the
second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null value
will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator >=
This method determines whether or not the first of two OracleBoolean values is greater than
or equal to the second.

Declaration

// C#
public static operator >= (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is greater than or
equal to the second; otherwise, returns false.

Chapter 15
OracleBoolean Structure

15-47

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator <
This method determines whether or not the first of two OracleBoolean values is less
than the second.

Declaration

// C#
public static operator < (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is less than the
second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Chapter 15
OracleBoolean Structure

15-48

operator <=
This method determines whether or not the first of two OracleBoolean values is less than or
equal to the second.

Declaration

// C#
public static operator <= (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is less than or equal to
the second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null value
will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator ==
This method returns an OracleBoolean that indicates whether or not the two OracleBoolean
instances are equal.

Declaration

// C#
public static operator == (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

Chapter 15
OracleBoolean Structure

15-49

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the specified two OracleBoolean instances are equal;
otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator !=
This method determines whether or not two OracleBoolean values are not equal.

Declaration

// C#
public static operator != (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if two OracleBoolean values are not equal; otherwise,
returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

Chapter 15
OracleBoolean Structure

15-50

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator !
This method determines the result of a NOT operation on a OracleBoolean.

Declaration

// C#
public static operator ! (OracleBoolean value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the specified OracleBoolean value is true; otherwise, returns
false.

Remarks

If the specified OracleBoolean instance is null, an OracleBoolean with a null value will be
returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator ~
This method returns the result of a one's complement operation on the specified
OracleBoolean value.

Declaration

// C#
public static operator ~ (OracleBoolean value1);

Chapter 15
OracleBoolean Structure

15-51

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of a one's complement
operation on the specified OracleBoolean value.

Remarks

If the specified OracleBoolean instance is null, an OracleBoolean with a null value
will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator false
This method determines whether or not the specified OracleBoolean value is false.

Declaration

// C#
public static operator false (OracleBoolean value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean that is true if specified OracleBoolean value is false; otherwise,
returns false.

Remarks

This property will return false if the current instance is null.

Chapter 15
OracleBoolean Structure

15-52

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator true
This method determines whether or not the specified OracleBoolean value is true.

Declaration

// C#
public static operator true (OracleBoolean value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean that is true if specified OracleBoolean value is true; otherwise, returns
false.

Remarks

This property will return false if the current instance is null.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator &
This method returns the result of bitwise AND operation of two OracleBoolean instances.

Declaration

// C#
public static operator & (OracleBoolean value1, OracleBoolean value2);

Chapter 15
OracleBoolean Structure

15-53

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise AND operation of two
OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a
null value will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator |
This method returns the result of bitwise OR operation of two OracleBoolean instances.

Declaration

// C#
public static operator | (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise OR operation of two
OracleBoolean instances.

Chapter 15
OracleBoolean Structure

15-54

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null value
will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

operator ^
This method returns the result of bitwise exclusive OR operation of two OracleBoolean
instances.

Declaration

// C#
public static operator ^ (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise exclusive OR operation of
two OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null value
will be returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Chapter 15
OracleBoolean Structure

15-55

OracleBoolean Static Type Conversions
The OracleBoolean static type conversions are listed in Table 15-24

Table 15-24 OracleBoolean Static Type Conversions

Field Description

implicit operator
OracleBoolean

Returns the OracleBoolean representation of a boolean value

explicit operator bool Returns the boolean representation of the OracleBoolean value

explicit operator
OracleBoolean

Converts a structure to an OracleBoolean structure
(Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

implicit operator OracleBoolean
This method returns the OracleBoolean representation of a boolean value.

Declaration

// C#
public static implicit operator OracleBoolean(bool value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Chapter 15
OracleBoolean Structure

15-56

explicit operator bool
This method returns the boolean representation of the OracleBoolean value.

Declaration

// C#
public static explicit operator bool(OracleBoolean value1);

Parameters

• value1

An OracleBoolean structure

Return Value

A boolean

Exception

OracleNullValueException – OracleBoolean has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

explicit operator OracleBoolean
explicit operator OracleBoolean converts the provided structure to an OracleBoolean
structure.

Overload List

• explicit operator OracleBoolean(byte)

This method converts the supplied byte to an OracleBoolean structure.

• explicit operator OracleBoolean(Decimal)

This method converts the supplied Decimal to an OracleBoolean structure.

• explicit operator OracleBoolean(Double)

This method converts the supplied Double to an OracleBoolean structure.

• explicit operator OracleBoolean(Int16)

This method converts the supplied Int16 to an OracleBoolean structure.

• explicit operator OracleBoolean(int)

This method converts the supplied int to an OracleBoolean structure.

Chapter 15
OracleBoolean Structure

15-57

• explicit operator OracleBoolean(Int64)

This method converts the supplied Int64 to an OracleBoolean structure.

• explicit operator OracleBoolean(Single)

This method converts the supplied Single to an OracleBoolean structure.

• explicit operator OracleBoolean(String)

This method converts the supplied String to an OracleBoolean structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

explicit operator OracleBoolean(byte)
This method converts the supplied byte to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(byte value1);

Parameters

• value1

A byte

Return Value

An OracleBoolean structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

explicit operator OracleBoolean(Decimal)
This method converts the supplied Decimal to an OracleBoolean structure.

Chapter 15
OracleBoolean Structure

15-58

Declaration

// C#
public static explicit operator OracleBoolean(Decimal value1);

Parameters

• value1

A Decimal

Return Value

An OracleBoolean structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

explicit operator OracleBoolean(Double)
This method converts the supplied Double to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(Double value1);

Parameters

• value1

A Double

Return Value

An OracleBoolean structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Chapter 15
OracleBoolean Structure

15-59

explicit operator OracleBoolean(Int16)
This method converts the supplied Int16 to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(Int16 value1);

Parameters

• value1

An Int16

Return Value

An OracleBoolean structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

explicit operator OracleBoolean(int)
This method converts the supplied int to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(int value1);

Parameters

• value1

An int

Return Value

An OracleBoolean structure.

Chapter 15
OracleBoolean Structure

15-60

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

explicit operator OracleBoolean(Int64)
This method converts the supplied Int64 to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(Int64 value1);

Parameters

• value1

An Int64

Return Value

An OracleBoolean structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

explicit operator OracleBoolean(Single)
This method converts the supplied Single to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(Single value1);

Parameters

• value1

A Single

Chapter 15
OracleBoolean Structure

15-61

Return Value

An OracleBoolean structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

explicit operator OracleBoolean(String)
This method converts the supplied String to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(String value1);

Parameters

• value1

A String

Return Value

An OracleBoolean structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

OracleBoolean Properties
The OracleBoolean properties are listed in Table 15-25.

Table 15-25 OracleBoolean Properties

Properties Description

ByteValue Returns a byte that represents the OracleBoolean structure

Chapter 15
OracleBoolean Structure

15-62

Table 15-25 (Cont.) OracleBoolean Properties

Properties Description

IsFalse Indicates whether or not the value of the current instance is false

IsNull Indicates whether or not the current instance has a null value

IsTrue Indicates whether or not the value of the current instance is true

Value Returns a boolean value that represents the current instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

ByteValue
This property returns a byte that represents the OracleBoolean structure.

Declaration

// C#
public byte ByteValue {get;}

Property Value

A byte that represents the value of OracleBoolean structure.

Exceptions

OracleNullValueException – The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

IsFalse
This property indicates whether or not the value of the current instance is false.

Chapter 15
OracleBoolean Structure

15-63

Declaration

// C#
public bool IsFalse {get;}

Property Value

A bool value that returns true if the current instance is false; otherwise, returns false.

Remarks

This property will return false if the current instance is null.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

A bool value that returns true if the current instance has a null value; otherwise,
returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

IsTrue
This property indicates whether or not the value of the current instance is true.

Chapter 15
OracleBoolean Structure

15-64

Declaration

// C#
public bool IsTrue {get;}

Property Value

A bool value that returns true if the current instance is true; otherwise, returns false.

Remarks

This property will return false if the current instance is null.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Value
This property returns a boolean value that represents the current instance.

Declaration

// C#
public bool Value {get;}

Property Value

A bool value that returns true if the current instance is true; otherwise, returns false.

Exceptions

OracleNullValueException – The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

OracleBoolean Instance Methods
The OracleBoolean instance methods are listed in Table 15-26.

Chapter 15
OracleBoolean Structure

15-65

Table 15-26 OracleBoolean Instance Methods

Method Description

CompareTo Compares the current instance to the supplied object and returns
an integer that represents their relative values

Equals Determines whether or not an object is an instance of
OracleBoolean, and whether or not the value of the object is
equal to the current instance

GetHashCode Returns a hash code for the current instance

ToString Returns the string representation of the current instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

CompareTo
This method compares the current instance to the supplied object and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameter

• obj

The supplied instance.

Return Value

The method returns a number:

• Less than zero: if the value of the current instance is less than obj.

• Zero: if the value of the current instance is equal to obj.

• Greater than zero: if the value of the current instance is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The parameter is not of type OracleBoolean.

Chapter 15
OracleBoolean Structure

15-66

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleBoolean. For example, comparing an
OracleBoolean instance with an OracleBinary instance is not allowed. When an
OracleBoolean is compared with a different type, an ArgumentException is thrown.

• Any OracleBoolean that has a value compares greater than an OracleBoolean that has a
null value.

• Two OracleBoolean that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

Equals
Overrides Object
This method determines whether or not an object is an instance of OracleBoolean, and
whether or not the value of the object is equal to the current instance.

Declaration

// C#
public override bool Equals(object obj);

Parameter

• obj

An OracleBoolean instance.

Return Value

Returns true if obj is an instance of OracleBoolean, and the value of obj is equal to the
current instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBoolean that has a value compares greater than an OracleBoolean that has a
null value.

• Two OracleBooleans that contain a null value are equal.

Chapter 15
OracleBoolean Structure

15-67

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

GetHashCode
Overrides Object
This method returns a hash code for the current instance.

Declaration

// C#
public override int GetHashCode();

Return Value

Returns a hash code.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

ToString
Overrides Object
This method returns the string representation of the current instance.

Declaration

// C#
public override string ToString();

Return Value

Returns the OracleBoolean value in a string representation.

Remarks

If the current instance has a null value, the returned string is null.

Chapter 15
OracleBoolean Structure

15-68

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBoolean Structure

• OracleBoolean Members

OracleDate Structure
The OracleDate structure represents the Oracle DATE data type to be stored in or retrieved
from a database. Each OracleDate stores the following information: year, month, day, hour,
minute, and second.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleDate

Declaration

// C#
public struct OracleDate : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

Chapter 15
OracleDate Structure

15-69

class OracleDateSample
{
 static void Main(string[] args)
 {
 // Initialize the dates to the lower and upper boundaries
 OracleDate date1 = OracleDate.MinValue;
 OracleDate date2 = OracleDate.MaxValue;
 OracleDate date3 = new OracleDate(DateTime.MinValue);
 OracleDate date4 = new OracleDate(DateTime.MaxValue);

 // Set the thread's DateFormat for output
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "DD-MON-YYYY BC";
 OracleGlobalization.SetThreadInfo(info);

 // Print the lower and upper boundaries
 Console.WriteLine("OracleDate ranges from\n{0}\nto\n{1}\n",
 date1, date2);
 Console.WriteLine(".NET DateTime ranges from\n{0}\nto\n{1}\n",
 date3, date4);
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Members

• OracleDate Constructors

• OracleDate Static Fields

• OracleDate Static Methods

• OracleDate Static Operators

• OracleDate Static Type Conversions

• OracleDate Properties

• OracleDate Methods

OracleDate Members
OracleDate members are listed in the following tables:

OracleDate Constructors

OracleDate constructors are listed in Table 15-27

Table 15-27 OracleDate Constructors

Constructor Description

OracleDate Constructors Instantiates a new instance of OracleDate structure
(Overloaded)

Chapter 15
OracleDate Structure

15-70

OracleDate Static Fields

The OracleDate static fields are listed in Table 15-28.

Table 15-28 OracleDate Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleDate structure,
which is December 31, 9999 23:59:59

MinValue Represents the minimum valid date for an OracleDate structure,
which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to the value of an
OracleDate structure instance

OracleDate Static Methods

The OracleDate static methods are listed in Table 15-29.

Table 15-29 OracleDate Static Methods

Methods Description

Equals Determines if two OracleDate values are equal (Overloaded)

GreaterThan Determines if the first of two OracleDate values is greater than the
second

GreaterThanOrEqual Determines if the first of two OracleDate values is greater than or
equal to the second

LessThan Determines if the first of two OracleDate values is less than the
second

LessThanOrEqual Determines if the first of two OracleDate values is less than or equal
to the second

NotEquals Determines if two OracleDate values are not equal

GetSysDate Returns an OracleDate structure that represents the current date
and time

Parse Returns an OracleDate structure and sets its value using a string

OracleDate Static Operators

The OracleDate static operators are listed in Table 15-30.

Table 15-30 OracleDate Static Operators

Operator Description

operator == Determines if two OracleDate values are the same

operator > Determines if the first of two OracleDate values is greater than the
second

operator >= Determines if the first of two OracleDate values is greater than or
equal to the second

Chapter 15
OracleDate Structure

15-71

Table 15-30 (Cont.) OracleDate Static Operators

Operator Description

operator != Determines if the two OracleDate values are not equal

operator < Determines if the first of two OracleDate values is less than the
second

operator <= Determines if the first of two OracleDate values is less than or equal
to the second

OracleDate Static Type Conversions

The OracleDate static type conversions are listed in Table 15-31.

Table 15-31 OracleDate Static Type Conversions

Operator Description

explicit operator DateTime Converts a structure to a DateTime structure

explicit operator OracleDate Converts a structure to an OracleDate structure
(Overloaded)

OracleDate Properties

The OracleDate properties are listed in Table 15-32.

Table 15-32 OracleDate Properties

Properties Description

BinData Gets an array of bytes that represents an Oracle DATE in Oracle
internal format

Day Gets the day component of an OracleDate method

IsNull Indicates whether or not the current instance has a null value

Hour Gets the hour component of an OracleDate
Minute Gets the minute component of an OracleDate
Month Gets the month component of an OracleDate
Second Gets the second component of an OracleDate
Value Gets the date and time that is stored in the OracleDate

structure

Year Gets the year component of an OracleDate

OracleDate Methods

The OracleDate methods are listed in Table 15-33.

Chapter 15
OracleDate Structure

15-72

Table 15-33 OracleDate Methods

Methods Description

CompareTo Compares the current OracleDate instance to an object, and returns
an integer that represents their relative values

Equals Determines whether or not an object has the same date and time as
the current OracleDate instance (Overloaded)

GetHashCode Returns a hash code for the OracleDate instance

GetDaysBetween Calculates the number of days between the current OracleDate
instance and an OracleDate structure

GetType Inherited from System.Object
ToOracleTimeStamp Converts the current OracleDate structure to an OracleTimeStamp

structure

ToString Converts the current OracleDate structure to a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

OracleDate Constructors
The OracleDate constructors instantiates a new instance of the OracleDate structure.

Overload List:

• OracleDate(DateTime)

This constructor creates a new instance of the OracleDate structure and sets its value for
date and time using the supplied DateTime value.

• OracleDate(string)

This constructor creates a new instance of the OracleDate structure and sets its value
using the supplied string.

• OracleDate(int, int, int)

This constructor creates a new instance of the OracleDate structure and set its value for
date using the supplied year, month, and day.

• OracleDate(int, int, int, int, int, int)

This constructor creates a new instance of the OracleDate structure and set its value for
time using the supplied year, month, day, hour, minute, and second.

• OracleDate(byte [])

This constructor creates a new instance of the OracleDate structure and sets its value to
the provided byte array, which is in the internal Oracle DATE format.

Chapter 15
OracleDate Structure

15-73

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

OracleDate(DateTime)
This constructor creates a new instance of the OracleDate structure and sets its value
for date and time using the supplied DateTime value.

Declaration

// C#
public OracleDate (DateTime dt);

Parameters

• dt

The provided DateTime value.

Remarks

The OracleDate structure only supports up to a second precision. The time value in
the provided DateTime structure that has a precision smaller than second is ignored.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

OracleDate(string)
This constructor creates a new instance of the OracleDate structure and sets its value
using the supplied string.

Declaration

// C#
public OracleDate (string dateStr);

Parameters

• dateStr

Chapter 15
OracleDate Structure

15-74

A string that represents an Oracle DATE.

Exceptions

ArgumentException - The dateStr is an invalid string representation of an Oracle DATE or the
dateStr is not in the date format specified by the thread's OracleGlobalization.DateFormat
property, which represents the Oracle NLS_DATE_FORMAT parameter.

ArgumentNullException - The dateStr is null.

Remarks

The names and abbreviations used for months and days are in the language specified by the
DateLanguage and Calendar properties of the thread's OracleGlobalization object. If any of
the thread's globalization properties are set to null or an empty string, the client computer's
settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleDateSample
{
 static void Main(string[] args)
 {
 // Set the thread's DateFormat for the OracleDate constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleDate from a string using the DateFormat specified.
 OracleDate date = new OracleDate("1999-DEC-01");

 // Set a different DateFormat for the thread
 info.DateFormat = "MM/DD/YYYY";
 OracleGlobalization.SetThreadInfo(info);

 // Print "12/01/1999"
 Console.WriteLine(date.ToString());
 }
}

Chapter 15
OracleDate Structure

15-75

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

• "OracleGlobalization Class"

• Oracle Database SQL Language Reference for further information on
date format elements

OracleDate(int, int, int)
This constructor creates a new instance of the OracleDate structure and set its value
for date using the supplied year, month, and day.

Declaration

// C#
public OracleDate (int year, int month, int day);

Parameters

• year

The supplied year. Range of year is (-4712 to 9999).

• month

The supplied month. Range of month is (1 to 12).

• day

The supplied day. Range of day is (1 to 31).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleDate (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Chapter 15
OracleDate Structure

15-76

OracleDate(int, int, int, int, int, int)
This constructor creates a new instance of the OracleDate structure and set its value for time
using the supplied year, month, day, hour, minute, and second.

Declaration

// C#
public OracleDate (int year, int month, int day, int hour, int minute, int second);

Parameters

• year

The supplied year. Range of year is (-4712 to 9999).

• month

The supplied month. Range of month is (1 to 12).

• day

The supplied day. Range of day is (1 to 31).

• hour

The supplied hour. Range of hour is (0 to 23).

• minute

The supplied minute. Range of minute is (0 to 59).

• second

The supplied second. Range of second is (0 to 59).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleDate (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

OracleDate(byte [])
This constructor creates a new instance of the OracleDate structure and sets its value to the
provided byte array, which is in the internal Oracle DATE format.

Chapter 15
OracleDate Structure

15-77

Declaration

// C#
public OracleDate(byte [] bytes);

Parameters

• bytes

A byte array that represents Oracle DATE in the internal Oracle DATE format.

Exceptions

ArgumentException - bytes is null or bytes is not in internal Oracle DATE format or
bytes is not a valid Oracle DATE.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

OracleDate Static Fields
The OracleDate static fields are listed in Table 15-34.

Table 15-34 OracleDate Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleDate
structure, which is December 31, 9999 23:59:59

MinValue Represents the minimum valid date for an OracleDate structure,
which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to the value of an
OracleDate structure instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Chapter 15
OracleDate Structure

15-78

MaxValue
This static field represents the maximum valid date for an OracleDate structure, which is
December 31, 9999 23:59:59.

Declaration

// C#
public static readonly OracleDate MaxValue;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

MinValue
This static field represents the minimum valid date for an OracleDate structure, which is
January 1, -4712.

Declaration

// C#
public static readonly OracleDate MinValue;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Null
This static field represents a null value that can be assigned to the value of an OracleDate
instance.

Declaration

// C#
public static readonly OracleDate Null;

Chapter 15
OracleDate Structure

15-79

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

OracleDate Static Methods
The OracleDate static methods are listed in Table 15-35.

Table 15-35 OracleDate Static Methods

Methods Description

Equals Determines if two OracleDate values are equal (Overloaded)

GreaterThan Determines if the first of two OracleDate values is greater than
the second

GreaterThanOrEqual Determines if the first of two OracleDate values is greater than
or equal to the second

LessThan Determines if the first of two OracleDate values is less than the
second

LessThanOrEqual Determines if the first of two OracleDate values is less than or
equal to the second

NotEquals Determines if two OracleDate values are not equal

GetSysDate Returns an OracleDate structure that represents the current
date and time

Parse Returns an OracleDate structure and sets its value using a
string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Equals
Overloads Object
This method determines if two OracleDate values are equal.

Chapter 15
OracleDate Structure

15-80

Declaration

// C#
public static bool Equals(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if two OracleDate values are equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a null
value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

GreaterThan
This method determines if the first of two OracleDate values is greater than the second.

Declaration

// C#
public static bool GreaterThan(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Chapter 15
OracleDate Structure

15-81

Return Value

Returns true if the first of two OracleDate values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

GreaterThanOrEqual
This method determines if the first of two OracleDate values is greater than or equal to
the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

Chapter 15
OracleDate Structure

15-82

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

LessThan
This method determines if the first of two OracleDate values is less than the second.

Declaration

// C#
public static bool LessThan(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is less than the second. Otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a null
value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Chapter 15
OracleDate Structure

15-83

LessThanOrEqual
This method determines if the first of two OracleDate values is less than or equal to
the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

NotEquals
This method determines if two OracleDate values are not equal.

Declaration

// C#
public static bool NotEquals(OracleDate value1, OracleDate value2);

Parameters

• value1

Chapter 15
OracleDate Structure

15-84

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if two OracleDate values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a null
value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

GetSysDate
This method gets an OracleDate structure that represents the current date and time.

Declaration

// C#
public static OracleDate GetSysDate ();

Return Value

An OracleDate structure that represents the current date and time.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Chapter 15
OracleDate Structure

15-85

Parse
This method gets an OracleDate structure and sets its value for date and time using
the supplied string.

Declaration

// C#
public static OracleDate Parse (string dateStr);

Parameters

• dateStr

A string that represents an Oracle DATE.

Return Value

An OracleDate structure.

Exceptions

ArgumentException - The dateStr is an invalid string representation of an Oracle DATE
or the dateStr is not in the date format specified by the thread's
OracleGlobalization.DateFormat property, which represents the Oracle
NLS_DATE_FORMAT parameter.

ArgumentNullException - The dateStr is null.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string,
the client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ParseSample
{
 static void Main(string[] args)
 {
 // Set the thread's DateFormat for the OracleDate constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // Construct OracleDate from a string using the DateFormat specified
 OracleDate date = OracleDate.Parse("1999-DEC-01");

 // Set a different DateFormat on the thread for ToString()
 info.DateFormat = "MM-DD-YY";

Chapter 15
OracleDate Structure

15-86

 OracleGlobalization.SetThreadInfo(info);

 // Print "12-01-1999"
 Console.WriteLine(date.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

• "OracleGlobalization Class"

• "Globalization Support "

• Oracle Database SQL Language Reference for further information on datetime
format elements

OracleDate Static Operators
The OracleDate static operators are listed in Table 15-36.

Table 15-36 OracleDate Static Operators

Operator Description

operator == Determines if two OracleDate values are the same

operator > Determines if the first of two OracleDate values is greater than the second

operator >= Determines if the first of two OracleDate values is greater than or equal to
the second

operator != Determines if the two OracleDate values are not equal

operator < Determines if the first of two OracleDate values is less than the second

operator <= Determines if the first of two OracleDate values is less than or equal to the
second

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Chapter 15
OracleDate Structure

15-87

operator ==
This method determines if two OracleDate values are the same.

Declaration

// C#
public static bool operator == (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if they are the same; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

operator >
This method determines if the first of two OracleDate values is greater than the
second.

Declaration

// C#
public static bool operator > (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

Chapter 15
OracleDate Structure

15-88

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is greater than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a null
value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

operator >=
This method determines if the first of two OracleDate values is greater than or equal to the
second.

Declaration

// C#
public static bool operator >= (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a null
value.

Chapter 15
OracleDate Structure

15-89

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

operator !=
This method determines if the two OracleDate values are not equal.

Declaration

// C#
public static bool operator != (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the two OracleDate values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Chapter 15
OracleDate Structure

15-90

operator <
This method determines if the first of two OracleDate values is less than the second.

Declaration

// C#
public static bool operator < (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is less than the second; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a null
value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

operator <=
This method determines if the first of two OracleDate values is less than or equal to the
second.

Declaration

// C#
public static bool operator <= (OracleDate value1, OracleDate value2);

Parameters

• value1

Chapter 15
OracleDate Structure

15-91

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

OracleDate Static Type Conversions
The OracleDate static type conversions are listed in Table 15-37.

Table 15-37 OracleDate Static Type Conversions

Operator Description

explicit operator DateTime Converts a structure to a DateTime structure

explicit operator OracleDate Converts a structure to an OracleDate structure
(Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Chapter 15
OracleDate Structure

15-92

explicit operator DateTime
This method converts an OracleDate structure to a DateTime structure.

Declaration

// C#
public static explicit operator DateTime(OracleDate val);

Parameters

• val

An OracleDate structure.

Return Value

A DateTime structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

explicit operator OracleDate
explicit operator OracleDate converts the provided structure to an OracleDate structure.

Overload List:

• explicit operator OracleDate(DateTime)

This method converts a DateTime structure to an OracleDate structure.

• explicit operator OracleDate(OracleTimeStamp)

This method converts an OracleTimeStamp structure to an OracleDate structure.

• explicit operator OracleDate(string)

This method converts the supplied string to an OracleDate structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Chapter 15
OracleDate Structure

15-93

explicit operator OracleDate(DateTime)
This method converts a DateTime structure to an OracleDate structure.

Declaration

// C#
public static explicit operator OracleDate(DateTime dt);

Parameters

• dt

A DateTime structure.

Return Value

An OracleDate structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

explicit operator OracleDate(OracleTimeStamp)
This method converts an OracleTimeStamp structure to an OracleDate structure.

Declaration

// C#
public explicit operator OracleDate(OracleTimeStamp ts);

Parameters

• ts

OracleTimeStamp

Return Value

The returned OracleDate structure contains the date and time in the OracleTimeStamp
structure.

Remarks

The precision of the OracleTimeStamp value can be lost during the conversion.

If the OracleTimeStamp structure has a null value, the returned OracleDate structure
also has a null value.

Chapter 15
OracleDate Structure

15-94

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

explicit operator OracleDate(string)
This method converts the supplied string to an OracleDate structure.

Declaration

// C#
public explicit operator OracleDate (string dateStr);

Parameters

• dateStr

A string representation of an Oracle DATE.

Return Value

The returned OracleDate structure contains the date and time in the string dateStr.

Exceptions

ArgumentNullException - The dateStr is null.

ArgumentException - This exception is thrown if any of the following conditions exist:

• The dateStr is an invalid string representation of an Oracle DATE.

• The dateStr is not in the date format specified by the thread's
OracleGlobalization.DateFormat property, which represents the Oracle
NLS_DATE_FORMAT parameter.

Remarks

The names and abbreviations used for months and days are in the language specified by the
DateLanguage and Calendar properties of the thread's OracleGlobalization object. If any of
the thread's globalization properties are set to null or an empty string, the client computer's
settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleDateSample
{

Chapter 15
OracleDate Structure

15-95

 static void Main(string[] args)
 {
 // Set the thread's DateFormat to a specific format
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // Construct OracleDate from a string using the DateFormat specified
 OracleDate date = (OracleDate)"1999-DEC-01";

 // Set a different DateFormat on the thread for ToString()
 info.DateFormat = "MON DD YY";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "DEC 01 99"
 Console.WriteLine(date.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

• "OracleGlobalization Class"

• "Globalization Support "

OracleDate Properties
The OracleDate properties are listed in Table 15-38.

Table 15-38 OracleDate Properties

Properties Description

BinData Gets an array of bytes that represents an Oracle DATE in Oracle internal
format

Day Gets the day component of an OracleDate method

IsNull Indicates whether or not the current instance has a null value

Hour Gets the hour component of an OracleDate
Minute Gets the minute component of an OracleDate
Month Gets the month component of an OracleDate
Second Gets the second component of an OracleDate
Value Gets the date and time that is stored in the OracleDate structure

Year Gets the year component of an OracleDate

Chapter 15
OracleDate Structure

15-96

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

BinData
This property gets a array of bytes that represents an Oracle DATE in Oracle internal format.

Declaration

// C#
public byte[] BinData{get;}

Property Value

An array of bytes.

Exceptions

OracleNullValueException - OracleDate has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Day
This property gets the day component of an OracleDate.

Declaration

// C#
public int Day{get;}

Property Value

A number that represents the day. Range of Day is (1 to 31).

Exceptions

OracleNullValueException - OracleDate has a null value.

Chapter 15
OracleDate Structure

15-97

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Hour
This property gets the hour component of an OracleDate.

Declaration

// C#
public int Hour {get;}

Property Value

A number that represents Hour. Range of Hour is (0 to 23).

Exceptions

OracleNullValueException - OracleDate has a null value.

Chapter 15
OracleDate Structure

15-98

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Minute
This property gets the minute component of an OracleDate.

Declaration

// C#
public int Minute {get;}

Property Value

A number that represents Minute. Range of Minute is (0 to 59).

Exceptions

OracleNullValueException - OracleDate has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Month
This property gets the month component of an OracleDate.

Declaration

// C#
public int Month {get;}

Property Value

A number that represents Month. Range of Month is (1 to 12).

Exceptions

OracleNullValueException - OracleDate has a null value.

Chapter 15
OracleDate Structure

15-99

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Second
This property gets the second component of an OracleDate.

Declaration

// C#
public int Second {get;}

Property Value

A number that represents Second. Range of Second is (0 to 59).

Exceptions

OracleNullValueException - OracleDate has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Value
This property specifies the date and time that is stored in the OracleDate structure.

Declaration

// C#
public DateTime Value {get;}

Property Value

A DateTime.

Exceptions

OracleNullValueException - OracleDate has a null value.

Chapter 15
OracleDate Structure

15-100

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Year
This property gets the year component of an OracleDate.

Declaration

// C#
public int Year {get;}

Property Value

A number that represents Year. Range of Year is (-4712 to 9999).

Exceptions

OracleNullValueException - OracleDate has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

OracleDate Methods
The OracleDate methods are listed in Table 15-39.

Table 15-39 OracleDate Methods

Methods Description

CompareTo Compares the current OracleDate instance to an object, and returns
an integer that represents their relative values

Equals Determines whether or not an object has the same date and time as
the current OracleDate instance (Overloaded)

GetHashCode Returns a hash code for the OracleDate instance

GetDaysBetween Calculates the number of days between the current OracleDate
instance and an OracleDate structure

Chapter 15
OracleDate Structure

15-101

Table 15-39 (Cont.) OracleDate Methods

Methods Description

GetType Inherited from System.Object
ToOracleTimeStamp Converts the current OracleDate structure to an OracleTimeStamp

structure

ToString Converts the current OracleDate structure to a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

CompareTo
This method compares the current OracleDate instance to an object, and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

An object.

Return Value

The method returns:

• Less than zero: if the current OracleDate instance value is less than that of obj.

• Zero: if the current OracleDate instance and obj values are equal.

• Greater than zero: if the current OracleDate instance value is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not an instance of OracleDate.

Chapter 15
OracleDate Structure

15-102

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleDates. For example, comparing an OracleDate
instance with an OracleBinary instance is not allowed. When an OracleDate is
compared with a different type, an ArgumentException is thrown.

• Any OracleDate that has a value compares greater than an OracleDate that has a null
value.

• Two OracleDates that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

Equals
This method determines whether or not an object has the same date and time as the current
OracleDate instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

An object.

Return Value

Returns true if obj has the same type as the current instance and represents the same date
and time; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a null
value.

• Two OracleDates that contain a null value are equal.

Chapter 15
OracleDate Structure

15-103

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

GetHashCode
Overrides Object
This method returns a hash code for the OracleDate instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

GetDaysBetween
This method calculates the number of days between the current OracleDate instance
and the supplied OracleDate structure.

Declaration

// C#
public int GetDaysBetween (OracleDate val);

Parameters

• val

An OracleDate structure.

Return Value

The number of days between the current OracleDate instance and the OracleDate
structure.

Chapter 15
OracleDate Structure

15-104

Exceptions

OracleNullValueException - The current instance or the supplied OracleDate structure has
a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

ToOracleTimeStamp
This method converts the current OracleDate structure to an OracleTimeStamp structure.

Declaration

// C#
public OracleTimeStamp ToOracleTimeStamp();

Return Value

An OracleTimeStamp structure.

Remarks

The returned OracleTimeStamp structure has date and time in the current instance.

If the OracleDate instance has a null value, the returned OracleTimeStamp structure has a
null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

ToString
Overrides ValueType
This method converts the current OracleDate structure to a string.

Chapter 15
OracleDate Structure

15-105

Declaration

// C#
public override string ToString();

Return Value

A string.

Remarks

The returned value is a string representation of the OracleDate in the format specified
by the thread's OracleGlobalization.DateFormat property. The names and
abbreviations used for months and days are in the language specified by the thread's
OracleGlobalization.DateLanguage and OracleGlobalization.Calendar properties.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ToStringSample
{
 static void Main(string[] args)
 {
 // Set the thread's DateFormat to a specific format
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // Construct OracleDate from a string using the DateFormat specified
 OracleDate date = (OracleDate)"1999-DEC-01";

 // Set a different DateFormat on the thread for ToString()
 info.DateFormat = "YYYY/MM/DD";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999/12/01"
 Console.WriteLine(date.ToString());
 }
}

Chapter 15
OracleDate Structure

15-106

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDate Structure

• OracleDate Members

• "OracleGlobalization Class"

• "Globalization Support "

OracleDecimal Structure
The OracleDecimal structure represents an Oracle NUMBER in the database or any Oracle
numeric value.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleDecimal

Declaration

// C#
 public struct OracleDecimal : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Remarks

OracleDecimal can store up to 38 precision, while the .NET Decimal data type can only hold
up to 28 precision. When accessing the OracleDecimal.Value property from an
OracleDecimal that has a value greater than 28 precision, an exception is thrown. To retrieve

Chapter 15
OracleDecimal Structure

15-107

the actual value of OracleDecimal, use the OracleDecimal.ToString() method.
Another approach is to obtain the OracleDecimal value as a byte array in an internal
Oracle NUMBER format through the BinData property.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleDecimalSample
{
 static void Main(string[] args)
 {
 // Illustrates the range of OracleDecimal vs. .NET decimal
 OracleDecimal decimal1 = OracleDecimal.MinValue;
 OracleDecimal decimal2 = OracleDecimal.MaxValue;
 OracleDecimal decimal3 = new OracleDecimal(decimal.MinValue);
 OracleDecimal decimal4 = new OracleDecimal(decimal.MaxValue);

 // Print the ranges
 Console.WriteLine("OracleDecimal can range from\n{0}\nto\n{1}\n",
 decimal1, decimal2);
 Console.WriteLine(".NET decimal can range from\n{0}\nto\n{1}",
 decimal3, decimal4);
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Constructors

• OracleDecimal Static Fields

• OracleDecimal Static (Comparison) Methods

• OracleDecimal Static (Manipulation) Methods

• OracleDecimal Static (Logarithmic) Methods

• OracleDecimal Static (Trigonometric) Methods

• OracleDecimal Static (Comparison) Operators

• OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal)

• OracleDecimal Static Operators (Conversion from OracleDecimal
to .NET)

• OracleDecimal Properties

• OracleDecimal Instance Methods

Chapter 15
OracleDecimal Structure

15-108

OracleDecimal Members
OracleDecimal members are listed in the following tables:

OracleDecimal Constructors

OracleDecimal constructors are listed in Table 15-40

Table 15-40 OracleDecimal Constructors

Constructor Description

OracleDecimal Constructors Instantiates a new instance of OracleDecimal structure (Overloaded)

OracleDecimal Static Fields

The OracleDecimal static fields are listed in Table 15-41.

Table 15-41 OracleDecimal Static Fields

Field Description

MaxPrecision A constant representing the maximum precision, which is 38

MaxScale A constant representing the maximum scale, which is 127

MaxValue A constant representing the maximum value for this structure, which is
9.9…9 x 10125

MinScale A constant representing the minimum scale, which is -84

MinValue A constant representing the minimum value for this structure, which is
-1.0 x 10130

NegativeOne A constant representing the negative one value

Null Represents a null value that can be assigned to an OracleDecimal
instance

One A constant representing the positive one value

Pi A constant representing the numeric Pi value

Zero A constant representing the zero value

OracleDecimal Static (Comparison) Methods

The OracleDecimal static (comparison) methods are listed in Table 15-42.

Table 15-42 OracleDecimal Static (Comparison) Methods

Methods Description

Equals Determines if two OracleDecimal values are equal (Overloaded)

GreaterThan Determines if the first of two OracleDecimal values is greater than
the second

GreaterThanOrEqual Determines if the first of two OracleDecimal values is greater than or
equal to the second

Chapter 15
OracleDecimal Structure

15-109

Table 15-42 (Cont.) OracleDecimal Static (Comparison) Methods

Methods Description

LessThan Determines if the first of two OracleDecimal values is less than the
second

LessThanOrEqual Determines if the first of two OracleDecimal values is less than or
equal to the second.

NotEquals Determines if two OracleDecimal values are not equal

OracleDecimal Static (Manipulation) Methods

The OracleDecimal static (manipulation) methods are listed in Table 15-43.

Table 15-43 OracleDecimal Static (Manipulation) Methods

Methods Description

Abs Returns the absolute value of an OracleDecimal
Add Adds two OracleDecimal structures

AdjustScale Returns a new OracleDecimal with the specified number of
digits and indicates whether or not to round or truncate the
number if the scale is less than original

Ceiling Returns a new OracleDecimal structure with its value set to the
ceiling of an OracleDecimal structure

ConvertToPrecScale Returns a new OracleDecimal structure with a new precision
and scale

Divide Divides one OracleDecimal value by another

Floor Returns a new OracleDecimal structure with its value set to the
floor of an OracleDecimal structure

Max Returns the maximum value of the two supplied OracleDecimal
structures

Min Returns the minimum value of the two supplied OracleDecimal
structures

Mod Returns a new OracleDecimal structure with its value set to the
modulus of two OracleDecimal structures

Multiply Returns a new OracleDecimal structure with its value set to the
result of multiplying two OracleDecimal structures

Negate Returns a new OracleDecimal structure with its value set to the
negation of the supplied OracleDecimal structure

Parse Converts a string to an OracleDecimal
Round Returns a new OracleDecimal structure with its value set to

that of the supplied OracleDecimal structure and rounded off to
the specified place

SetPrecision Returns a new OracleDecimal structure with a new specified
precision.

Chapter 15
OracleDecimal Structure

15-110

Table 15-43 (Cont.) OracleDecimal Static (Manipulation) Methods

Methods Description

Shift Returns a new OracleDecimal structure with its value set to
that of the supplied OracleDecimal structure, and its decimal
place shifted to the specified number of places to the right

Sign Determines the sign of an OracleDecimal structure

Sqrt Returns a new OracleDecimal structure with its value set to the
square root of the supplied OracleDecimal structure

Subtract Returns a new OracleDecimal structure with its value set to
result of subtracting one OracleDecimal structure from another

Truncate Truncates the OracleDecimal at a specified position

OracleDecimal Static (Logarithmic) Methods

The OracleDecimal static (logarithmic) methods are listed in Table 15-44.

Table 15-44 OracleDecimal Static (Logarithmic) Methods

Methods Description

Exp Returns a new OracleDecimal structure with its value set to e raised
to the supplied power

Log Returns the supplied OracleDecimal structure with its value set to
the logarithm of the supplied OracleDecimal structure (Overloaded)

Pow Returns a new OracleDecimal structure with its value set to the
supplied OracleDecimal structure raised to the supplied power
(Overloaded)

OracleDecimal Static (Trigonometric) Methods

The OracleDecimal static (trigonometric) methods are listed in Table 15-45.

Table 15-45 OracleDecimal Static (Trigonometric) Methods

Methods Description

Acos Returns an angle in radians whose cosine is the supplied
OracleDecimal structure

Asin Returns an angle in radians whose sine is the supplied
OracleDecimal structure

Atan Returns an angle in radians whose tangent is the supplied
OracleDecimal structure

Atan2 Returns an angle in radians whose tangent is the quotient of the two
supplied OracleDecimal structures

Cos Returns the cosine of the supplied angle in radians

Sin Returns the sine of the supplied angle in radians

Tan Returns the tangent of the supplied angle in radians

Chapter 15
OracleDecimal Structure

15-111

Table 15-45 (Cont.) OracleDecimal Static (Trigonometric) Methods

Methods Description

Cosh Returns the hyperbolic cosine of the supplied angle in radians

Sinh Returns the hyperbolic sine of the supplied angle in radians

Tanh Returns the hyperbolic tangent of the supplied angle in radians

OracleDecimal Static (Comparison) Operators

The OracleDecimal static (comparison) operators are listed in Table 15-46.

Table 15-46 OracleDecimal Static (Comparison) Operators

Operator Description

operator + Adds two OracleDecimal values

operator / Divides one OracleDecimal value by another

operator == Determines if the two OracleDecimal values are equal

operator > Determines if the first of two OracleDecimal values is greater
than the second

operator >= Determines if the first of two OracleDecimal values is greater
than or equal to the second

operator != Determines if the two OracleDecimal values are not equal

operator < Determines if the first of two OracleDecimal values is less than
the second

operator <= Determines if the first of two OracleDecimal values is less than
or equal to the second

operator * Multiplies two OracleDecimal structures

operator - Subtracts one OracleDecimal structure from another

operator - Negates an OracleDecimal structure

operator% Returns a new OracleDecimal structure with its value set to the
modulus of two OracleDecimal structures.

OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal)

The OracleDecimal static operators (Conversion from .NET Type to OracleDecimal)
are listed in Table 15-47.

Table 15-47 OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal)

Operator Description

implicit operator
OracleDecimal

Converts an instance value to an OracleDecimal structure
(Overloaded)

explicit operator
OracleDecimal

Converts an instance value to an OracleDecimal structure
(Overloaded)

Chapter 15
OracleDecimal Structure

15-112

OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)

The OracleDecimal static operators (Conversion from OracleDecimal to .NET) are listed in
Table 15-48.

Table 15-48 OracleDecimal Static Operators (Conversion from OracleDecimal
to .NET)

Operator Description

explicit operator byte Returns the byte representation of the OracleDecimal value

explicit operator decimal Returns the decimal representation of the OracleDecimal value

explicit operator double Returns the double representation of the OracleDecimal value

explicit operator short Returns the short representation of the OracleDecimal value

explicit operator int Returns the int representation of the OracleDecimal value

explicit operator long Returns the long representation of the OracleDecimal value

explicit operator float Returns the float representation of the OracleDecimal value

OracleDecimal Properties

The OracleDecimal properties are listed in Table 15-49.

Table 15-49 OracleDecimal Properties

Properties Description

BinData Returns a byte array that represents the Oracle NUMBER in Oracle
internal format

Format Specifies the format for ToString()
IsInt Indicates whether or not the current instance is an integer

IsNull Indicates whether or not the current instance has a null value

IsPositive Indicates whether or not the current instance is greater than 0
IsZero Indicates whether or not the current instance has a zero value

Value Returns a decimal value

OracleDecimal Instance Methods

The OracleDecimal instance methods are listed in Table 15-50.

Table 15-50 OracleDecimal Instance Methods

Method Description

CompareTo Compares the current instance to the supplied object and returns an
integer that represents their relative values

Equals Determines whether or not an object is an instance of
OracleDecimal, and whether or not the value of the object is equal to
the current instance (Overloaded)

Chapter 15
OracleDecimal Structure

15-113

Table 15-50 (Cont.) OracleDecimal Instance Methods

Method Description

GetHashCode Returns a hash code for the current instance

GetType Inherited from System.Object
ToByte Returns the byte representation of the current instance

ToDouble Returns the double representation of the current instance

ToInt16 Returns the Int16 representation of the current instance

ToInt32 Returns the Int32 representation of the current instance

ToInt64 Returns the Int64 representation of the current instance

ToSingle Returns the Single representation of the current instance

ToString Overloads Object.ToString()
Returns the string representation of the current instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Structure

OracleDecimal Constructors
The OracleDecimal constructors instantiate a new instance of the OracleDecimal
structure.

Overload List:

• OracleDecimal(byte [])

This constructor creates a new instance of the OracleDecimal structure and sets
its value to the supplied byte array, which is in an Oracle NUMBER format.

• OracleDecimal(decimal)

This constructor creates a new instance of the OracleDecimal structure and sets
its value to the supplied Decimal value.

• OracleDecimal(double)

This constructor creates a new instance of the OracleDecimal structure and sets
its value to the supplied double value.

• OracleDecimal(int)

This constructor creates a new instance of the OracleDecimal structure and sets
its value to the supplied Int32 value.

• OracleDecimal(float)

Chapter 15
OracleDecimal Structure

15-114

This constructor creates a new instance of the OracleDecimal structure and sets its value
to the supplied Single value.

• OracleDecimal(long)

This constructor creates a new instance of the OracleDecimal structure and sets its value
to the supplied Int64 value.

• OracleDecimal(string)

This constructor creates a new instance of the OracleDecimal structure and sets its value
to the supplied string value.

• OracleDecimal(string, string)

This constructor creates a new instance of the OracleDecimal structure with the supplied
string value and number format.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal(byte [])
This constructor creates a new instance of the OracleDecimal structure and sets its value to
the supplied byte array, which is in an Oracle NUMBER format.

Declaration

// C#
public OracleDecimal(byte [] bytes);

Parameters

• bytes

A byte array that represents an Oracle NUMBER in an internal Oracle format.

Exceptions

ArgumentException - The bytes parameter is not in a internal Oracle NUMBER format or bytes
has an invalid value.

ArgumentNullException - The bytes parameter is null.

Chapter 15
OracleDecimal Structure

15-115

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal(decimal)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Decimal value.

Declaration

// C#
public OracleDecimal(decimal decX);

Parameters

• decX

The provided Decimal value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal(double)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied double value.

Declaration

// C#
public OracleDecimal(double doubleX)

Parameters

• doubleX

The provided double value.

Chapter 15
OracleDecimal Structure

15-116

Exceptions

OverFlowException - The value of the supplied double is greater than the maximum value or
less than the minimum value of OracleDecimal.

Remarks

OracleDecimal contains the following values depending on the provided double value:

• double.PositiveInfinity: positive infinity value

• double.NegativeInfinity: negative infinity value.

• double.NaN: null value

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal(int)
This constructor creates a new instance of the OracleDecimal structure and sets its value to
the supplied Int32 value.

Declaration

// C#
public OracleDecimal(int intX);

Parameters

• intX

The provided Int32 value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-117

OracleDecimal(float)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Single value.

Declaration

// C#
public OracleDecimal(float floatX);

Parameters

• floatX

The provided float value.

Remarks

OracleDecimal contains the following values depending on the provided float value:

float.PositiveInfinity: positive infinity value

float.NegativeInfinity: negative infinity value

float.NaN: null value

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal(long)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Int64 value.

Declaration

// C#
public OracleDecimal(long longX);

Parameters

• longX

The provided Int64 value.

Chapter 15
OracleDecimal Structure

15-118

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal(string)
This constructor creates a new instance of the OracleDecimal structure and sets its value to
the supplied string value.

Declaration

// C#
public OracleDecimal(string numStr);

Parameters

• numStr

The provided string value.

Exceptions

ArgumentException - The numStr parameter is an invalid string representation of an
OracleDecimal.

ArgumentNullException - The numStr parameter is null.

OverFlowException - The value of numStr is greater than the maximum value or less than the
minimum value of OracleDecimal.

input string format is incorrect - The locale's numeric separator is a comma(,).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

• "OracleGlobalization Class"

• "Globalization Support "

Chapter 15
OracleDecimal Structure

15-119

OracleDecimal(string, string)
This constructor creates a new instance of the OracleDecimal structure with the
supplied string value and number format.

Declaration

// C#
public OracleDecimal(string numStr, string format);

Parameters

• numStr

The provided string value.

• format

The provided number format.

Exceptions

ArgumentException - The numStr parameter is an invalid string representation of an
OracleDecimal or the numStr is not in the numeric format specified by format.

ArgumentNullException - The numStr parameter is null.

OverFlowException - The value of numStr parameter is greater than the maximum
value or less than the minimum value of OracleDecimal.

Remarks

If the numeric format includes decimal and group separators, then the provided string
must use those characters defined by the OracleGlobalization.NumericCharacters
of the thread.

If the numeric format includes the currency symbol, ISO currency symbol, or the dual
currency symbol, then the provided string must use those symbols defined by the
OracleGlobalization.Currency, OracleGlobalization.ISOCurrency, and
OracleGlobalization.DualCurrency properties respectively.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleDecimalSample
{
 static void Main(string[] args)
 {
 // Set the nls parameters related to currency
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.Currency = "$";
 info.NumericCharacters = ".,";
 OracleGlobalization.SetThreadInfo(info);

Chapter 15
OracleDecimal Structure

15-120

 // Construct an OracleDecimal using a valid numeric format
 OracleDecimal dec = new OracleDecimal("$2,222.22","L9G999D99");

 // Print "$2,222.22"
 Console.WriteLine(dec.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

• "OracleGlobalization Class"

• "Globalization Support "

OracleDecimal Static Fields
The OracleDecimal static fields are listed in Table 15-51.

Table 15-51 OracleDecimal Static Fields

Field Description

MaxPrecision A constant representing the maximum precision, which is 38

MaxScale A constant representing the maximum scale, which is 127

MaxValue A constant representing the maximum value for this structure, which is 9.9…9
x 10125

MinScale A constant representing the minimum scale, which is -84

MinValue A constant representing the minimum value for this structure, which is -1.0 x
10130

NegativeOne A constant representing the negative one value

Null Represents a null value that can be assigned to an OracleDecimal instance

One A constant representing the positive one value

Pi A constant representing the numeric Pi value

Zero A constant representing the zero value

Chapter 15
OracleDecimal Structure

15-121

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

MaxPrecision
This static field represents the maximum precision, which is 38.

Declaration

// C#
public static readonly byte MaxPrecision;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

MaxScale
This static field a constant representing the maximum scale, which is 127.

Declaration

// C#
public static readonly byte MaxScale;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

MaxValue
This static field indicates a constant representing the maximum value for this structure,
which is 9.9…9 x 10125 (38 nines followed by 88 zeroes).

Chapter 15
OracleDecimal Structure

15-122

Declaration

// C#
public static readonly OracleDecimal MaxValue;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

MinScale
This static field indicates a constant representing the maximum scale, which is -84.

Declaration

// C#
public static readonly int MinScale;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

MinValue
This static field indicates a constant representing the minimum value for this structure, which
is -1.0 x 10130.

Declaration

// C#
public static readonly OracleDecimal MinValue;

Chapter 15
OracleDecimal Structure

15-123

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

NegativeOne
This static field indicates a constant representing the negative one value.

Declaration

// C#
public static readonly OracleDecimal NegativeOne;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Null
This static field represents a null value that can be assigned to an OracleDecimal
instance.

Declaration

// C#
public static readonly OracleDecimal Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

One
This static field indicates a constant representing the positive one value.

Chapter 15
OracleDecimal Structure

15-124

Declaration

// C#
public static readonly OracleDecimal One;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Pi
This static field indicates a constant representing the numeric Pi value.

Declaration

// C#
public static readonly OracleDecimal Pi;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Zero
This static field indicates a constant representing the zero value.

Declaration

// C#
public static readonly OracleDecimal Zero;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-125

OracleDecimal Static (Comparison) Methods
The OracleDecimal static (comparison) methods are listed in Table 15-52.

Table 15-52 OracleDecimal Static (Comparison) Methods

Methods Description

Equals Determines if two OracleDecimal values are equal
(Overloaded)

GreaterThan Determines if the first of two OracleDecimal values is greater
than the second

GreaterThanOrEqual Determines if the first of two OracleDecimal values is greater
than or equal to the second

LessThan Determines if the first of two OracleDecimal values is less than
the second

LessThanOrEqual Determines if the first of two OracleDecimal values is less than
or equal to the second.

NotEquals Determines if two OracleDecimal values are not equal

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Equals
This method determines if two OracleDecimal values are equal.

Declaration

// C#
public static bool Equals(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if two OracleDecimal values are equal; otherwise, returns false.

Chapter 15
OracleDecimal Structure

15-126

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that has a
null value.

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

GreaterThan
This method determines if the first of two OracleDecimal values is greater than the second.

Declaration

// C#
public static bool GreaterThan(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is greater than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that has a
null value.

• Two OracleDecimals that contain a null value are equal.

Chapter 15
OracleDecimal Structure

15-127

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

GreaterThanOrEqual
This method determines if the first of two OracleDecimal values is greater than or
equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleDecimal value1, OracleDecimal
value2);

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal
that has a null value.

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-128

LessThan
This method determines if the first of two OracleDecimal values is less than the second.

Declaration

// C#
public static bool LessThan(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is less than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that has a
null value.

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

LessThanOrEqual
This method determines if the first of two OracleDecimal values is less than or equal to the
second.

Declaration

// C#
public static bool LessThanOrEqual(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

Chapter 15
OracleDecimal Structure

15-129

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is less than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal
that has a null value.

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

NotEquals
This method determines if two OracleDecimal values are not equal.

Declaration

// C#
public static bool NotEquals(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if two OracleDecimal values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal
that has a null value.

Chapter 15
OracleDecimal Structure

15-130

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal Static (Manipulation) Methods
The OracleDecimal static (manipulation) methods are listed in Table 15-53.

Table 15-53 OracleDecimal Static (Manipulation) Methods

Methods Description

Abs Returns the absolute value of an OracleDecimal
Add Adds two OracleDecimal structures

AdjustScale Returns a new OracleDecimal with the specified number of digits
and indicates whether or not to round or truncate the number if the
scale is less than original

Ceiling Returns a new OracleDecimal structure with its value set to the
ceiling of an OracleDecimal structure

ConvertToPrecScale Returns a new OracleDecimal structure with a new precision and
scale

Divide Divides one OracleDecimal value by another

Floor Returns a new OracleDecimal structure with its value set to the floor
of an OracleDecimal structure

Max Returns the maximum value of the two supplied OracleDecimal
structures

Min Returns the minimum value of the two supplied OracleDecimal
structures

Mod Returns a new OracleDecimal structure with its value set to the
modulus of two OracleDecimal structures

Multiply Returns a new OracleDecimal structure with its value set to the
result of multiplying two OracleDecimal structures

Negate Returns a new OracleDecimal structure with its value set to the
negation of the supplied OracleDecimal structure

Parse Converts a string to an OracleDecimal
Round Returns a new OracleDecimal structure with its value set to that of

the supplied OracleDecimal structure and rounded off to the
specified place

SetPrecision Returns a new OracleDecimal structure with a new specified
precision.

Chapter 15
OracleDecimal Structure

15-131

Table 15-53 (Cont.) OracleDecimal Static (Manipulation) Methods

Methods Description

Shift Returns a new OracleDecimal structure with its value set to that of
the supplied OracleDecimal structure, and its decimal place shifted
to the specified number of places to the right

Sign Determines the sign of an OracleDecimal structure

Sqrt Returns a new OracleDecimal structure with its value set to the
square root of the supplied OracleDecimal structure

Subtract Returns a new OracleDecimal structure with its value set to result of
subtracting one OracleDecimal structure from another

Truncate Truncates the OracleDecimal at a specified position

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Abs
This method returns the absolute value of an OracleDecimal.

Declaration

// C#
public static OracleDecimal Abs(OracleDecimal val);

Parameters

• val

An OracleDecimal.

Return Value

The absolute value of an OracleDecimal.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 15
OracleDecimal Structure

15-132

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Add
This method adds two OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Add(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns an OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

AdjustScale
This method returns a new OracleDecimal with the specified number of digits and indicates
whether or not to round or truncate the number if the scale is less than the original.

Chapter 15
OracleDecimal Structure

15-133

Declaration

// C#
public static OracleDecimal AdjustScale(OracleDecimal val, int digits,
 bool fRound);

Parameters

• val

An OracleDecimal.

• digits

The number of digits.

• fRound

Indicates whether or not to round or truncate the number. Setting it to true rounds
the number and setting it to false truncates the number.

Return Value

An OracleDecimal.

Remarks

If the supplied OracleDecimal has a null value, the returned OracleDecimal has a null
value.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class AdjustScaleSample
{
 static void Main(string[] args)
 {
 OracleDecimal dec1 = new OracleDecimal(5.555);

 // Adjust Scale to 2 with rounding off
 OracleDecimal dec2 = OracleDecimal.AdjustScale(dec1, 2, true);

 // Prints 5.56
 Console.WriteLine(dec2.ToString());

 // Adjust Scale to 2 with truncation
 OracleDecimal dec3 = OracleDecimal.AdjustScale(dec1, 2, false);

 // Prints 5.55
 Console.WriteLine(dec3.ToString());
 }
}

Chapter 15
OracleDecimal Structure

15-134

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Ceiling
This method returns a new OracleDecimal structure with its value set to the ceiling of the
supplied OracleDecimal.

Declaration

// C#
public static OracleDecimal Ceiling(OracleDecimal val);

Parameters

• val

An OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

ConvertToPrecScale
This method returns a new OracleDecimal structure with a new precision and scale.

Declaration

// C#
public static OracleDecimal ConvertToPrecScale(OracleDecimal val
 int precision, int scale);

Chapter 15
OracleDecimal Structure

15-135

Parameters

• val

An OracleDecimal structure.

• precision

The precision. Range of precision is 1 to 38.

• scale

The number of digits to the right of the decimal point. Range of scale is -84 to 127.

Return Value

A new OracleDecimal structure.

Remarks

If the supplied OracleDecimal has a null value, the returned OracleDecimal has a null
value.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class ConvertToPrecScaleSample
{
 static void Main(string[] args)
 {
 OracleDecimal dec1 = new OracleDecimal(555.6666);

 // Set the precision of od to 5 and scale to 2
 OracleDecimal dec2 = OracleDecimal.ConvertToPrecScale(dec1,5,2);

 // Prints 555.67
 Console.WriteLine(dec2.ToString());

 // Set the precision of od to 3 and scale to 0
 OracleDecimal dec3 = OracleDecimal.ConvertToPrecScale(dec1,3,0);

 // Prints 556
 Console.WriteLine(dec3.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-136

Divide
This method divides one OracleDecimal value by another.

Declaration

// C#
public static OracleDecimal Divide(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal.

• val2

An OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Floor
This method returns a new OracleDecimal structure with its value set to the floor of the
supplied OracleDecimal structure.

Declaration

// C#
public static OracleDecimal Floor(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A new OracleDecimal structure.

Chapter 15
OracleDecimal Structure

15-137

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Max
This method returns the maximum value of the two supplied OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Max(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal structure.

• val2

An OracleDecimal structure.

Return Value

An OracleDecimal structure that has the greater value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Min
This method returns the minimum value of the two supplied OracleDecimal structures.

Chapter 15
OracleDecimal Structure

15-138

Declaration

// C#
public static OracleDecimal Min(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal structure.

• val2

An OracleDecimal structure.

Return Value

An OracleDecimal structure that has the smaller value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Mod
This method returns a new OracleDecimal structure with its value set to the modulus of two
OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Mod(OracleDecimal val1, OracleDecimal divider);

Parameters

• val1

An OracleDecimal structure.

• divider

An OracleDecimal structure.

Return Value

An OracleDecimal.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 15
OracleDecimal Structure

15-139

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Multiply
This method returns a new OracleDecimal structure with its value set to the result of
multiplying two OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Multiply(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal structure.

• val2

An OracleDecimal structure.

Return Value

A new OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Negate
This method returns a new OracleDecimal structure with its value set to the negation
of the supplied OracleDecimal structures.

Chapter 15
OracleDecimal Structure

15-140

Declaration

// C#
public static OracleDecimal Negate(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A new OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Parse
This method converts a string to an OracleDecimal.

Declaration

// C#
public static OracleDecimal Parse (string str);

Parameters

• str

The string being converted.

Return Value

A new OracleDecimal structure.

Exceptions

ArgumentException - The numStr parameter is an invalid string representation of an
OracleDecimal.

ArgumentNullException - The numStr parameter is null.

OverFlowException - The value of numStr is greater than the maximum value or less than the
minimum value of OracleDecimal.

Chapter 15
OracleDecimal Structure

15-141

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

• "OracleGlobalization Class"

• "Globalization Support "

Round
This method returns a new OracleDecimal structure with its value set to that of the
supplied OracleDecimal structure and rounded off to the specified place.

Declaration

// C#
public static OracleDecimal Round(OracleDecimal val, int decplace);

Parameters

• val

An OracleDecimal structure.

• decplace

The specified decimal place. If the value is positive, the function rounds the
OracleDecimal structure to the right of the decimal point. If the value is negative,
the function rounds to the left of the decimal point.

Return Value

An OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal
has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-142

SetPrecision
This method returns a new OracleDecimal structure with a new specified precision.

Declaration

// C#
public static OracleDecimal SetPrecision(OracleDecimal val, int precision);

Parameters

• val

An OracleDecimal structure.

• precision

The specified precision. Range of precision is 1 to 38.

Return Value

An OracleDecimal structure.

Remarks

The returned OracleDecimal is rounded off if the specified precision is smaller than the
precision of val.

If val has a null value, the returned OracleDecimal has a null value.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class SetPrecisionSample
{
 static void Main(string[] args)
 {
 OracleDecimal dec1 = new OracleDecimal(555.6666);

 // Set the precision of dec1 to 3
 OracleDecimal dec2 = OracleDecimal.SetPrecision(dec1, 3);

 // Prints 556
 Console.WriteLine(dec2.ToString());

 // Set the precision of dec1 to 4
 OracleDecimal dec3 = OracleDecimal.SetPrecision(dec1, 4);

 // Prints 555.7
 Console.WriteLine(dec3.ToString());
 }
}

Chapter 15
OracleDecimal Structure

15-143

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces""Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Shift
This method returns a new OracleDecimal structure with its value set to that of the
supplied OracleDecimal structure, and its decimal place shifted to the specified
number of places to the right.

Declaration

// C#
public static OracleDecimal Shift(OracleDecimal val, int decplaces);

Parameters

• val

An OracleDecimal structure.

• decplaces

The specified number of places to be shifted.

Return Value

An OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal
has a null value.

If decplaces is negative, the shift is to the left.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-144

Sign
This method determines the sign of an OracleDecimal structure.

Declaration

// C#
public static int Sign(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

• -1: if the supplied OracleDecimal < 0

• 0: if the supplied OracleDecimal == 0

• 1: if the supplied OracleDecimal > 0

Exceptions

OracleNullValueException - The argument has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Sqrt
This method returns a new OracleDecimal structure with its value set to the square root of
the supplied OracleDecimal structure.

Declaration

// C#
public static OracleDecimal Sqrt(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

An OracleDecimal structure.

Chapter 15
OracleDecimal Structure

15-145

Exceptions

ArgumentOutOfRangeException - The provided OracleDecimal structure is less than
zero.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Subtract
This method returns a new OracleDecimal structure with its value set to result of
subtracting one OracleDecimal structure from another.

Declaration

// C#
public static OracleDecimal Subtract(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal structure.

• val2

An OracleDecimal structure.

Return Value

An OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 15
OracleDecimal Structure

15-146

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Truncate
This method truncates the OracleDecimal at a specified position.

Declaration

// C#
public static OracleDecimal Truncate(OracleDecimal val, int pos);

Parameters

• val

An OracleDecimal structure.

• pos

The specified position. If the value is positive, the function truncates the OracleDecimal
structure to the right of the decimal point. If the value is negative, it truncates the
OracleDecimal structure to the left of the decimal point.

Return Value

An OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has a
null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal Static (Logarithmic) Methods
The OracleDecimal static (logarithmic) methods are listed in Table 15-54.

Chapter 15
OracleDecimal Structure

15-147

Table 15-54 OracleDecimal Static (Logarithmic) Methods

Methods Description

Exp Returns a new OracleDecimal structure with its value set to e raised to the
supplied power

Log Returns the supplied OracleDecimal structure with its value set to the
logarithm of the supplied OracleDecimal structure (Overloaded)

Pow Returns a new OracleDecimal structure with its value set to the supplied
OracleDecimal structure raised to the supplied power (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Exp
This method returns a new OracleDecimal structure with its value set to e raised to the
supplied OracleDecimal.

Declaration

// C#
public static OracleDecimal Exp(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

An OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 15
OracleDecimal Structure

15-148

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Log
Log returns the supplied OracleDecimal structure with its value set to the logarithm of the
supplied OracleDecimal structure.

Overload List:

• Log(OracleDecimal)

This method returns a new OracleDecimal structure with its value set to the natural
logarithm (base e) of the supplied OracleDecimal structure.

• Log(OracleDecimal, int)

This method returns the supplied OracleDecimal structure with its value set to the
logarithm of the supplied OracleDecimal structure in the supplied base.

• Log(OracleDecimal, OracleDecimal)

This method returns the supplied OracleDecimal structure with its value set to the
logarithm of the supplied OracleDecimal structure in the supplied base.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Log(OracleDecimal)
This method returns a new OracleDecimal structure with its value set to the natural logarithm
(base e) of the supplied OracleDecimal structure.

Declaration

// C#
public static OracleDecimal Log(OracleDecimal val);

Parameters

• val

Chapter 15
OracleDecimal Structure

15-149

An OracleDecimal structure whose logarithm is to be calculated.

Return Value

Returns a new OracleDecimal structure with its value set to the natural logarithm
(base e) of val.

Exceptions

ArgumentOutOfRangeException - The supplied OracleDecimal value is less than zero.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal
has a null value.

If the supplied OracleDecimal structure has zero value, the result is undefined, and the
returned OracleDecimal structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Log(OracleDecimal, int)
This method returns the supplied OracleDecimal structure with its value set to the
logarithm of the supplied OracleDecimal structure in the supplied base.

Declaration

// C#
public static OracleDecimal Log(OracleDecimal val, int logBase);

Parameters

• val

An OracleDecimal structure whose logarithm is to be calculated.

• logBase

An int that specifies the base of the logarithm.

Return Value

A new OracleDecimal structure with its value set to the logarithm of val in the supplied
base.

Exceptions

ArgumentOutOfRangeException - Either argument is less than zero.

Chapter 15
OracleDecimal Structure

15-150

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

If both arguments have zero value, the result is undefined, and the returned OracleDecimal
structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Log(OracleDecimal, OracleDecimal)
This method returns the supplied OracleDecimal structure with its value set to the logarithm
of the supplied OracleDecimal structure in the supplied base.

Declaration

// C#
public static OracleDecimal Log(OracleDecimal val, OracleDecimal logBase);

Parameters

• val

An OracleDecimal structure whose logarithm is to be calculated.

• logBase

An OracleDecimal structure that specifies the base of the logarithm.

Return Value

Returns the logarithm of val in the supplied base.

Exceptions

ArgumentOutOfRangeException - Either the val or logBase parameter is less than zero.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

If both arguments have zero value, the result is undefined, and the returned OracleDecimal
structure has a null value.

Chapter 15
OracleDecimal Structure

15-151

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Pow
Pow returns a new OracleDecimal structure with its value set to the supplied
OracleDecimal structure raised to the supplied power.

Overload List:

• Pow(OracleDecimal, int)

This method returns a new OracleDecimal structure with its value set to the
supplied OracleDecimal value raised to the supplied Int32 power.

• Pow(OracleDecimal, OracleDecimal)

This method returns a new OracleDecimal structure with its value set to the
supplied OracleDecimal structure raised to the supplied OracleDecimal power.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Pow(OracleDecimal, int)
This method returns a new OracleDecimal structure with its value set to the supplied
OracleDecimal value raised to the supplied Int32 power.

Declaration

// C#
public static OracleDecimal Pow(OracleDecimal val, int power);

Parameters

• val

An OracleDecimal structure.

• power

An int value that specifies the power.

Chapter 15
OracleDecimal Structure

15-152

Return Value

An OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has a
null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Pow(OracleDecimal, OracleDecimal)
This method returns a new OracleDecimal structure with its value set to the supplied
OracleDecimal structure raised to the supplied OracleDecimal power.

Declaration

// C#
public static OracleDecimal Pow(OracleDecimal val, OracleDecimal power);

Parameters

• val

An OracleDecimal structure.

• power

An OracleDecimal structure that specifies the power.

Return Value

An OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has a
null value.

Chapter 15
OracleDecimal Structure

15-153

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal Static (Trigonometric) Methods
The OracleDecimal static (trigonometric) methods are listed in Table 15-55.

Table 15-55 OracleDecimal Static (Trigonometric) Methods

Methods Description

Acos Returns an angle in radians whose cosine is the supplied
OracleDecimal structure

Asin Returns an angle in radians whose sine is the supplied
OracleDecimal structure

Atan Returns an angle in radians whose tangent is the supplied
OracleDecimal structure

Atan2 Returns an angle in radians whose tangent is the quotient of the
two supplied OracleDecimal structures

Cos Returns the cosine of the supplied angle in radians

Sin Returns the sine of the supplied angle in radians

Tan Returns the tangent of the supplied angle in radians

Cosh Returns the hyperbolic cosine of the supplied angle in radians

Sinh Returns the hyperbolic sine of the supplied angle in radians

Tanh Returns the hyperbolic tangent of the supplied angle in radians

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Acos
This method returns an angle in radians whose cosine is the supplied OracleDecimal
structure.

Chapter 15
OracleDecimal Structure

15-154

Declaration

// C#
public static OracleDecimal Acos(OracleDecimal val);

Parameters

• val

An OracleDecimal structure. Range is (-1 to 1).

Return Value

An OracleDecimal structure that represents an angle in radians.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Asin
This method returns an angle in radians whose sine is the supplied OracleDecimal structure.

Declaration

// C#
public static OracleDecimal Asin(OracleDecimal val);

Parameters

• val

An OracleDecimal structure. Range is (-1 to 1).

Return Value

An OracleDecimal structure that represents an angle in radians.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 15
OracleDecimal Structure

15-155

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Atan
This method returns an angle in radians whose tangent is the supplied OracleDecimal
structure

Declaration

// C#
public static OracleDecimal Atan(OracleDecimal val);

Parameters

• val

An OracleDecimal.

Return Value

An OracleDecimal structure that represents an angle in radians.

Remarks

If the argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Atan2
This method returns an angle in radians whose tangent is the quotient of the two
supplied OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Atan2(OracleDecimal val1, OracleDecimal val2);

Chapter 15
OracleDecimal Structure

15-156

Parameters

• val1

An OracleDecimal structure that represents the y-coordinate.

• val2

An OracleDecimal structure that represents the x-coordinate.

Return Value

An OracleDecimal structure that represents an angle in radians.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Cos
This method returns the cosine of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Cos(OracleDecimal val);

Parameters

• val

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Exceptions

ArgumentOutOfRangeException - The val parameter is positive or negative infinity.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 15
OracleDecimal Structure

15-157

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Sin
This method returns the sine of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Sin(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

An OracleDecimal structure that represents an angle in radians.

Exceptions

ArgumentOutOfRangeException - The val parameter is positive or negative infinity.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Tan
This method returns the tangent of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Tan(OracleDecimal val);

Chapter 15
OracleDecimal Structure

15-158

Parameters

• val

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Exceptions

ArgumentOutOfRangeException - The val parameter is positive or negative infinity.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Cosh
This method returns the hyperbolic cosine of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Cosh(OracleDecimal val);

Parameters

• val

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 15
OracleDecimal Structure

15-159

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Sinh
This method returns the hyperbolic sine of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Sinh(OracleDecimal val);

Parameters

• val

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Tanh
This method returns the hyperbolic tangent of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Tanh(OracleDecimal val);

Parameters

• val

Chapter 15
OracleDecimal Structure

15-160

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal Static (Comparison) Operators
The OracleDecimal static (comparison) operators are listed in Table 15-56.

Table 15-56 OracleDecimal Static (Comparison) Operators

Operator Description

operator + Adds two OracleDecimal values

operator / Divides one OracleDecimal value by another

operator == Determines if the two OracleDecimal values are equal

operator > Determines if the first of two OracleDecimal values is greater than the
second

operator >= Determines if the first of two OracleDecimal values is greater than or
equal to the second

operator != Determines if the two OracleDecimal values are not equal

operator < Determines if the first of two OracleDecimal values is less than the
second

operator <= Determines if the first of two OracleDecimal values is less than or
equal to the second

operator * Multiplies two OracleDecimal structures

operator - Subtracts one OracleDecimal structure from another

operator - Negates an OracleDecimal structure

operator% Returns a new OracleDecimal structure with its value set to the
modulus of two OracleDecimal structures.

Chapter 15
OracleDecimal Structure

15-161

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator +
This method adds two OracleDecimal values.

Declaration

// C#
public static OracleDecimal operator + (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

An OracleDecimal structure.

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator /
This method divides one OracleDecimal value by another.

Declaration

/ C#
public static OracleDecimal operator / (OracleDecimal val1, OracleDecimal val2)

Chapter 15
OracleDecimal Structure

15-162

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

An OracleDecimal structure.

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator ==
This method determines if two OracleDecimal values are equal.

Declaration

// C#
public static bool operator == (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if their values are equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that has a
null value.

Chapter 15
OracleDecimal Structure

15-163

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator >
This method determines if the first of two OracleDecimal values is greater than the
second.

Declaration

// C#
public static bool operator > (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the two OracleDecimal values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal
that has a null value.

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-164

operator >=
This method determines if the first of two OracleDecimal values is greater than or equal to
the second.

Declaration

// C#
public static bool operator >= (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that has a
null value.

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator !=
This method determines if the first of two OracleDecimal values are not equal.

Declaration

// C#
public static bool operator != (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

Chapter 15
OracleDecimal Structure

15-165

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the two OracleDecimal values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal
that has a null value.

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator <
This method determines if the first of two OracleDecimal values is less than the
second.

Declaration

// C#
public static bool operator < (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is less than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

Chapter 15
OracleDecimal Structure

15-166

• Any OracleDecimal that has a value compares greater than an OracleDecimal that has a
null value.

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator <=
This method determines if the first of two OracleDecimal values is less than or equal to the
second.

Declaration

// C#
public static bool operator <= (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that has a
null value.

• Two OracleDecimals that contain a null value are equal.

Chapter 15
OracleDecimal Structure

15-167

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator *
This method multiplies two OracleDecimal structures.

Declaration

// C#
public static OracleDecimal operator * (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator -
This method subtracts one OracleDecimal structure from another.

Declaration

// C#
public static OracleDecimal operator - (OracleDecimal val1, OracleDecimal val2);

Chapter 15
OracleDecimal Structure

15-168

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator -
This method negates the supplied OracleDecimal structure.

Declaration

// C#
public static OracleDecimal operator - (OracleDecimal val);

Parameters

• val

An OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has a
null value.

Chapter 15
OracleDecimal Structure

15-169

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

operator%
This method returns a new OracleDecimal structure with its value set to the modulus
of two OracleDecimal structures.

Declaration

// C#
public static OracleDecimal operator % (OracleDecimal val,
 OracleDecimal divider);

Parameters

• val

An OracleDecimal.

• divider

An OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal)

The OracleDecimal static operators (Conversion from .NET Type to OracleDecimal)
are listed in Table 15-57.

Chapter 15
OracleDecimal Structure

15-170

Table 15-57 OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal)

Operator Description

implicit operator OracleDecimal Converts an instance value to an OracleDecimal
structure (Overloaded)

explicit operator OracleDecimal Converts an instance value to an OracleDecimal
structure (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

implicit operator OracleDecimal
implicit operator OracleDecimal returns the OracleDecimal representation of a value.

Overload List:

• implicit operator OracleDecimal(decimal)

This method returns the OracleDecimal representation of a decimal value.

• implicit operator OracleDecimal(int)

This method returns the OracleDecimal representation of an int value.

• implicit operator OracleDecimal(long)

This method returns the OracleDecimal representation of a long value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

implicit operator OracleDecimal(decimal)
This method returns the OracleDecimal representation of a decimal value.

Chapter 15
OracleDecimal Structure

15-171

Declaration

// C#
public static implicit operator OracleDecimal(decimal val);

Parameters

• val

A decimal value.

Return Value

An OracleDecimal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

implicit operator OracleDecimal(int)
This method returns the OracleDecimal representation of an int value.

Declaration

// C#
public static implicit operator OracleDecimal(int val);

Parameters

• val

An int value.

Return Value

An OracleDecimal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-172

implicit operator OracleDecimal(long)
This method returns the OracleDecimal representation of a long value.

Declaration

// C#
public static implicit operator OracleDecimal(long val);

Parameters

• val

A long value.

Return Value

An OracleDecimal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

explicit operator OracleDecimal
OracleDecimal returns the OracleDecimal representation of a value.

Overload List:

• explicit operator OracleDecimal(double)

This method returns the OracleDecimal representation of a double.

• explicit operator OracleDecimal(string)

This method returns the OracleDecimal representation of a string.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-173

explicit operator OracleDecimal(double)
This method returns the OracleDecimal representation of a double.

Declaration

// C#
public static explicit operator OracleDecimal(double val);

Parameters

• val

A double.

Return Value

An OracleDecimal.

Exceptions

OverFlowException - The value of the supplied double is greater than the maximum
value of OracleDecimal or less than the minimum value of OracleDecimal.

Remarks

OracleDecimal contains the following values depending on the provided double value:

• double.PositiveInfinity: positive infinity value

• double.NegativeInfinity: negative infinity value.

• double.NaN: null value

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

explicit operator OracleDecimal(string)
This method returns the OracleDecimal representation of a string.

Declaration

// C#
public static explicit operator OracleDecimal(string numStr);

Parameters

• numStr

Chapter 15
OracleDecimal Structure

15-174

A string that represents a numeric value.

Return Value

An OracleDecimal.

Exceptions

ArgumentException - The numStr parameter is an invalid string representation of an
OracleDecimal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

• "OracleGlobalization Class"

• "Globalization Support "

OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)
The OracleDecimal static operators (Conversion from OracleDecimal to .NET) are listed in
Table 15-58.

Table 15-58 OracleDecimal Static Operators (Conversion from OracleDecimal
to .NET)

Operator Description

explicit operator byte Returns the byte representation of the OracleDecimal
value

explicit operator decimal Returns the decimal representation of the OracleDecimal
value

explicit operator double Returns the double representation of the OracleDecimal
value

explicit operator short Returns the short representation of the OracleDecimal
value

explicit operator int Returns the int representation of the OracleDecimal
value

explicit operator long Returns the long representation of the OracleDecimal
value

explicit operator float Returns the float representation of the OracleDecimal
value

Chapter 15
OracleDecimal Structure

15-175

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

explicit operator byte
This method returns the byte representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator byte(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A byte.

Exceptions

OracleNullValueException - OracleDecimal has a null value.

OverFlowException- The byte cannot represent the supplied OracleDecimal structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

explicit operator decimal
This method returns the decimal representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator decimal(OracleDecimal val);

Chapter 15
OracleDecimal Structure

15-176

Parameters

• val

An OracleDecimal structure.

Return Value

A decimal.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The decimal cannot represent the supplied OracleDecimal structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

explicit operator double
This method returns the double representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator double(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A double.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The double cannot represent the supplied OracleDecimal structure.

Chapter 15
OracleDecimal Structure

15-177

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

explicit operator short
This method returns the short representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator short(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A short.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The short cannot represent the supplied OracleDecimal
structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

explicit operator int
This method returns the int representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator int(OracleDecimal val);

Chapter 15
OracleDecimal Structure

15-178

Parameters

• val

An OracleDecimal structure.

Return Value

An int.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The int cannot represent the supplied OracleDecimal structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

explicit operator long
This method returns the long representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator long(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A long.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The long cannot represent the supplied OracleDecimal structure.

Chapter 15
OracleDecimal Structure

15-179

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

explicit operator float
This method returns the float representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator float(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A float.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The float cannot represent the supplied OracleDecimal
structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal Properties
The OracleDecimal properties are listed in Table 15-59.

Chapter 15
OracleDecimal Structure

15-180

Table 15-59 OracleDecimal Properties

Properties Description

BinData Returns a byte array that represents the Oracle NUMBER in Oracle internal
format

Format Specifies the format for ToString()
IsInt Indicates whether or not the current instance is an integer

IsNull Indicates whether or not the current instance has a null value

IsPositive Indicates whether or not the current instance is greater than 0
IsZero Indicates whether or not the current instance has a zero value

Value Returns a decimal value

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

BinData
This property returns a byte array that represents the Oracle NUMBER in an internal Oracle
format.

Declaration

// C#
public byte[] BinData {get;}

Property Value

A byte array that represents the Oracle NUMBER in an internal Oracle format.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Chapter 15
OracleDecimal Structure

15-181

Format
This property specifies the format for ToString().

Declaration

// C#
public string Format {get; set;}

Property Value

The string which specifies the format.

Remarks

Format is used when ToString() is called on an instance of an OracleDecimal. It is
useful if the ToString() method needs a specific currency symbol, group, or decimal
separator as part of a string.

By default, this property is null which indicates that no special formatting is used.

The decimal and group separator characters are specified by the thread's
OracleGlobalization.NumericCharacters.

The currency symbols are specified by the following thread properties:

• OracleGlobalization.Currency
• OracleGlobalization.ISOCurrency
• OracleGlobalization.DualCurrency

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

• "OracleGlobalization Class"

• "Globalization Support "

IsInt
This property indicates whether or not the current instance is an integer value.

Declaration

// C#
public bool IsInt {get;}

Chapter 15
OracleDecimal Structure

15-182

Property Value

A bool value that returns true if the current instance is an integer value; otherwise, returns
false.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

A bool value that returns true if the current instance has a null value; otherwise, returns
false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

IsPositive
This property indicates whether or not the value of the current instance is greater than 0.

Declaration

// C#
public bool IsPositive {get;}

Chapter 15
OracleDecimal Structure

15-183

Property Value

A bool value that returns true if the current instance is greater than 0; otherwise,
returns false.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

IsZero
This property indicates whether or not the current instance has a zero value.

Declaration

// C#
public bool IsZero{get;}

Property Value

A bool value that returns true if the current instance has a zero value; otherwise,
returns false.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Value
This method returns a decimal value.

Chapter 15
OracleDecimal Structure

15-184

Declaration

// C#
public decimal Value {get;}

Property Value

A decimal value.

Exceptions

OracleNullValueException - The current instance has a null value.

OverFlowException - The decimal cannot represent the supplied OracleDecimal structure.

Remarks

Precision can be lost when the decimal value is obtained from an OracleDecimal. See
Remarks under "OracleDecimal Structure" for further information.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

OracleDecimal Instance Methods
The OracleDecimal instance methods are listed in Table 15-60.

Table 15-60 OracleDecimal Instance Methods

Method Description

CompareTo Compares the current instance to the supplied object and returns an
integer that represents their relative values

Equals Determines whether or not an object is an instance of
OracleDecimal, and whether or not the value of the object is equal to
the current instance (Overloaded)

GetHashCode Returns a hash code for the current instance

GetType Inherited from System.Object
ToByte Returns the byte representation of the current instance

ToDouble Returns the double representation of the current instance

ToInt16 Returns the Int16 representation of the current instance

ToInt32 Returns the Int32 representation of the current instance

ToInt64 Returns the Int64 representation of the current instance

Chapter 15
OracleDecimal Structure

15-185

Table 15-60 (Cont.) OracleDecimal Instance Methods

Method Description

ToSingle Returns the Single representation of the current instance

ToString Overloads Object.ToString()
Returns the string representation of the current instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

CompareTo
This method compares the current instance to the supplied object and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The supplied instance.

Return Value

The method returns a number:

• Less than zero: if the value of the current instance is less than obj.
• Zero: if the value of the current instance is equal to obj.

• Greater than zero: if the value of the current instance is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The parameter is not of type OracleDecimal.

Remarks

The following rules apply to the behavior of this method.

Chapter 15
OracleDecimal Structure

15-186

• The comparison must be between OracleDecimals. For example, comparing an
OracleDecimal instance with an OracleBinary instance is not allowed. When an
OracleDecimal is compared with a different type, an ArgumentException is thrown.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that has a
null value.

• Two OracleDecimals that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

Equals
Overrides Object
This method determines whether or not an object is an instance of OracleDecimal, and
whether or not the value of the object is equal to the current instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

An OracleDecimal instance.

Return Value

Returns true if obj is an instance of OracleDecimal, and the value of obj is equal to the
current instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that has a
null value.

• Two OracleDecimals that contain a null value are equal.

Chapter 15
OracleDecimal Structure

15-187

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

GetHashCode
Overrides Object
This method returns a hash code for the current instance.

Declaration

// C#
public override int GetHashCode();

Return Value

Returns a hash code.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

ToByte
This method returns the byte representation of the current instance.

Declaration

// C#
public byte ToByte();

Return Value

A byte.

Exceptions

OverFlowException - The byte cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleDecimal Structure

15-188

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

ToDouble
This method returns the double representation of the current instance.

Declaration

// C#
public double ToDouble();

Return Value

A double.

Exceptions

OverFlowException - The double cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

ToInt16
This method returns the Int16 representation of the current instance.

Declaration

// C#
public short ToInt16();

Return Value

A short.

Exceptions

OverFlowException - The short cannot represent the current instance.

Chapter 15
OracleDecimal Structure

15-189

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

ToInt32
This method returns the Int32 representation of the current instance.

Declaration

// C#
public int ToInt32();

Return Value

An int.

Exceptions

OverFlowException - The int cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

ToInt64
This method returns the Int64 representation of the current instance.

Declaration

// C#
public long ToInt64();

Return Value

A long.

Chapter 15
OracleDecimal Structure

15-190

Exceptions

OverFlowException - The long cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

ToSingle
This method returns the Single representation of the current instance.

Declaration

// C#
public float ToSingle();

Return Value

A float.

Exceptions

OverFlowException - The float cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

ToString
Overrides Object
This method returns the string representation of the current instance.

Chapter 15
OracleDecimal Structure

15-191

Declaration

// C#
public override string ToString();

Return Value

Returns the number in a string returns and a period (.) as a numeric separator.

Remarks

If the current instance has a null value, the returned string is "null".

The returned value is a string representation of an OracleDecimal in the numeric
format specified by the Format property.

The decimal and group separator characters are specified by the thread's
OracleGlobalization.NumericCharacters.

The currency symbols are specified by the following thread properties:

• OracleGlobalization.Currency
• OracleGlobalization.ISOCurrency
• OracleGlobalization.DualCurrency
If the numeric format is not specified, an Oracle default value is used.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Structure

• "OracleGlobalization Class"

• "Globalization Support "

OracleIntervalDS Structure
The OracleIntervalDS structure represents the Oracle INTERVAL DAY TO SECOND data
type to be stored in or retrieved from a database. Each OracleIntervalDS stores a
period of time in term of days, hours, minutes, seconds, and fractional seconds.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleIntervalDS

Chapter 15
OracleIntervalDS Structure

15-192

Declaration

// C#
public struct OracleIntervalDS : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleIntervalDSSample
{
 static void Main()
 {
 OracleIntervalDS iDSMax = OracleIntervalDS.MaxValue;
 double totalDays = iDSMax.TotalDays;

 totalDays -= 1;
 OracleIntervalDS iDSMax_1 = new OracleIntervalDS(totalDays);

 // Calculate the difference
 OracleIntervalDS iDSDiff = iDSMax - iDSMax_1;

 // Prints "iDSDiff.ToString() = +000000000 23:59:59.999999999"
 Console.WriteLine("iDSDiff.ToString() = " + iDSDiff.ToString());
 }
}

Chapter 15
OracleIntervalDS Structure

15-193

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Members

• OracleIntervalDS Constructors

• OracleIntervalDS Static Fields

• OracleIntervalDS Static Methods

• OracleIntervalDS Static Operators

• OracleIntervalDS Type Conversions

• OracleIntervalDS Properties

• OracleIntervalDS Methods

OracleIntervalDS Members
OracleIntervalDS members are listed in the following tables:

OracleIntervalDS Constructors

OracleIntervalDS constructors are listed in Table 15-61

Table 15-61 OracleIntervalDS Constructors

Constructor Description

OracleIntervalDS Constructors Instantiates a new instance of OracleIntervalDS
structure (Overloaded)

OracleIntervalDS Static Fields

The OracleIntervalDS static fields are listed in Table 15-62.

Table 15-62 OracleIntervalDS Static Fields

Field Description

MaxValue Represents the maximum valid time interval for an
OracleIntervalDS structure

MinValue Represents the minimum valid time interval for an
OracleIntervalDS structure

Null Represents a null value that can be assigned to an
OracleIntervalDS instance

Zero Represents a zero value for an
OracleIntervalDS structure

Chapter 15
OracleIntervalDS Structure

15-194

OracleIntervalDS Static Methods

The OracleIntervalDS static methods are listed in Table 15-63.

Table 15-63 OracleIntervalDS Static Methods

Methods Description

Equals Determines whether or not two OracleIntervalDS
values are equal (Overloaded)

GreaterThan Determines whether or not one OracleIntervalDS
value is greater than another

GreaterThanOrEqual Determines whether or not one OracleIntervalDS
value is greater than or equal to another

LessThan Determines whether or not one OracleIntervalDS
value is less than another

LessThanOrEqual Determines whether or not one OracleIntervalDS
value is less than or equal to another

NotEquals Determines whether or not two OracleIntervalDS
values are not equal

Parse Returns an OracleIntervalDS structure and sets its
value for time interval using a string

SetPrecision Returns a new instance of an OracleIntervalDS with
the specified day precision and fractional second
precision

OracleIntervalDS Static Operators

The OracleIntervalDS static operators are listed in Table 15-64.

Table 15-64 OracleIntervalDS Static Operators

Operator Description

operator + Adds two OracleIntervalDS values

operator == Determines whether or not two OracleIntervalDS
values are equal

operator > Determines whether or not one OracleIntervalDS
value is greater than another

operator >= Determines whether or not one OracleIntervalDS
value is greater than or equal to another

operator != Determines whether or not two OracleIntervalDS
values are not equal

operator < Determines whether or not one OracleIntervalDS
value is less than another

operator <= Determines whether or not one OracleIntervalDS
value is less than or equal to another

operator - Subtracts one OracleIntervalDS value from another

operator - Negates an OracleIntervalDS structure

Chapter 15
OracleIntervalDS Structure

15-195

Table 15-64 (Cont.) OracleIntervalDS Static Operators

Operator Description

operator * Multiplies an OracleIntervalDS value by a number

operator / Divides an OracleIntervalDS value by a number

OracleIntervalDS Type Conversions

The OracleIntervalDS type conversions are listed in Table 15-65.

Table 15-65 OracleIntervalDS Type Conversions

Operator Description

explicit operator TimeSpan Converts an OracleIntervalDS structure to a
TimeSpan structure

explicit operator OracleIntervalDS Converts a string to an OracleIntervalDS
structure

implicit operator OracleIntervalDS Converts a TimeSpan structure to an
OracleIntervalDS structure

OracleIntervalDS Properties

The OracleIntervalDS properties are listed in Table 15-66.

Table 15-66 OracleIntervalDS Properties

Properties Description

BinData Returns an array of bytes that represents the
Oracle INTERVAL DAY TO SECOND in Oracle
internal format

Days Gets the days component of an
OracleIntervalDS

Hours Gets the hours component of an
OracleIntervalDS

IsNull Indicates whether or not the current instance has a
null value

Milliseconds Gets the milliseconds component of an
OracleIntervalDS

Minutes Gets the minutes component of an
OracleIntervalDS

Nanoseconds Gets the nanoseconds component of an
OracleIntervalDS

Seconds Gets the seconds component of an
OracleIntervalDS

TotalDays Returns the total number, in days, that represent
the time period in the OracleIntervalDS
structure

Chapter 15
OracleIntervalDS Structure

15-196

Table 15-66 (Cont.) OracleIntervalDS Properties

Properties Description

Value Specifies the time interval that is stored in the
OracleIntervalDS structure

OracleIntervalDS Methods

The OracleIntervalDS methods are listed in Table 15-67.

Table 15-67 OracleIntervalDS Methods

Methods Description

CompareTo Compares the current OracleIntervalDS instance to
an object, and returns an integer that represents their
relative values

Equals Determines whether or not the specified object has
the same time interval as the current instance
(Overloaded)

GetHashCode Returns a hash code for the OracleIntervalDS
instance

GetType Inherited from System.Object
ToString Converts the current OracleIntervalDS structure to

a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

OracleIntervalDS Constructors
OracleIntervalDS constructors create a new instance of the OracleIntervalDS structure.

Overload List:

• OracleIntervalDS(TimeSpan)

This constructor creates a new instance of the OracleIntervalDS structure and sets its
value using a TimeSpan structure.

• OracleIntervalDS(string)

This constructor creates a new instance of the OracleIntervalDS structure and sets its
value using a string that indicates a period of time.

• OracleIntervalDS(double)

Chapter 15
OracleIntervalDS Structure

15-197

This constructor creates a new instance of the OracleIntervalDS structure and
sets its value using the total number of days.

• OracleIntervalDS(int, int, int, int, double)

This constructor creates a new instance of the OracleIntervalDS structure and
sets its value using the supplied days, hours, minutes, seconds and milliseconds.

• OracleIntervalDS(int, int, int, int, int)

This constructor creates a new instance of the OracleIntervalDS structure and
sets its value using the supplied days, hours, minutes, seconds, and
nanoseconds.

• OracleIntervalDS(byte[])

This constructor creates a new instance of the OracleIntervalDS structure and
sets its value to the provided byte array, which is in an internal Oracle INTERVAL
DAY TO SECOND format.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS(TimeSpan)
This constructor creates a new instance of the OracleIntervalDS structure and sets
its value using a TimeSpan structure.

Declaration

// C#
public OracleIntervalDS(TimeSpan ts);

Parameters

• ts

A TimeSpan structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Chapter 15
OracleIntervalDS Structure

15-198

OracleIntervalDS(string)
This constructor creates a new instance of the OracleIntervalDS structure and sets its value
using a string that indicates a period of time.

Declaration

// C#
public OracleIntervalDS(string intervalStr);

Parameters

• intervalStr

A string representing the Oracle INTERVAL DAY TO SECOND.

Exceptions

ArgumentException - The intervalStr parameter is not in the valid format or has an invalid
value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The value specified in the supplied intervalStr must be in Day HH:MI:SSxFF format.

Example

"1 2:3:4.99" means 1 day, 2 hours, 3 minutes, 4 seconds, and 990 milliseconds or 1 day, 2
hours, 3 minutes, 4 seconds, and 990000000 nanoseconds.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS(double)
This constructor creates a new instance of the OracleIntervalDS structure and sets its value
using the total number of days.

Declaration

// C#
public OracleIntervalDS(double totalDays);

Parameters

• totalDays

Chapter 15
OracleIntervalDS Structure

15-199

The supplied total number of days for a time interval. Range of days is
-1000,000,000 < totalDays < 1000,000,000.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleIntervalDS.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS(int, int, int, int, double)
This constructor creates a new instance of the OracleIntervalDS structure and sets
its value using the supplied days, hours, minutes, seconds, and milliseconds.

Declaration

// C#
public OracleIntervalDS (int days, int hours, int minutes, int seconds,
 double milliSeconds);

Parameters

• days

The days provided. Range of day is (-999,999,999 to 999,999,999).

• hours

The hours provided. Range of hour is (-23 to 23).

• minutes

The minutes provided. Range of minute is (-59 to 59).

• seconds

The seconds provided. Range of second is (-59 to 59).

• milliSeconds

The milliseconds provided. Range of millisecond is (- 999.999999 to 999.999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

Chapter 15
OracleIntervalDS Structure

15-200

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleIntervalDS.

Remarks

The sign of all the arguments must be the same.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS(int, int, int, int, int)
This constructor creates a new instance of the OracleIntervalDS structure and sets its value
using the supplied days, hours, minutes, seconds, and nanoseconds.

Declaration

// C#
public OracleIntervalDS (int days, int hours, int minutes, int seconds,
 int nanoseconds);

Parameters

• days

The days provided. Range of day is (-999,999,999 to 999,999,999).

• hours

The hours provided. Range of hour is (-23 to 23).

• minutes

The minutes provided. Range of minute is (-59 to 59).

• seconds

The seconds provided. Range of second is (-59 to 59).

• nanoseconds

The nanoseconds provided. Range of nanosecond is (-999,999,999 to 999,999,999)

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleIntervalDS.

Chapter 15
OracleIntervalDS Structure

15-201

Remarks

The sign of all the arguments must be the same.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS(byte[])
This constructor creates a new instance of the OracleIntervalDS structure and sets
its value to the provided byte array, which is in an internal Oracle INTERVAL DAY TO
SECOND format.

Declaration

// C#
public OracleIntervalDS (byte[] bytes);

Parameters

• bytes

A byte array that is in an internal Oracle INTERVAL DAY TO SECOND format.

Exceptions

ArgumentException - bytes is not in internal Oracle INTERVAL DAY TO SECOND format, or
bytes is not a valid Oracle INTERVAL DAY TO SECOND.

ArgumentNullException - bytes is null.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS Static Fields
The OracleIntervalDS static fields are listed in Table 15-68.

Chapter 15
OracleIntervalDS Structure

15-202

Table 15-68 OracleIntervalDS Static Fields

Field Description

MaxValue Represents the maximum valid time interval for an OracleIntervalDS
structure

MinValue Represents the minimum valid time interval for an OracleIntervalDS structure

Null Represents a null value that can be assigned to an OracleIntervalDS
instance

Zero Represents a zero value for an OracleIntervalDS structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

MaxValue
This static field represents the maximum value for an OracleIntervalDS structure.

Declaration

// C#
public static readonly OracleIntervalDS MaxValue;

Remarks

Maximum values:

• Day: 999999999

• hour: 23

• minute is 59

• second: 59

• nanosecond: 999999999

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Chapter 15
OracleIntervalDS Structure

15-203

MinValue
This static field represents the minimum value for an OracleIntervalDS structure.

Declaration

// C#
public static readonly OracleIntervalDS MinValue;

Remarks

Minimum values:

• Day: -999999999

• hour: -23

• minute: -59

• second: -59

• nanosecond: -999999999

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Null
This static field represents a null value that can be assigned to an OracleIntervalDS
instance.

Declaration

// C#
public static readonly OracleIntervalDS Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Chapter 15
OracleIntervalDS Structure

15-204

Zero
This static field represents a zero value for an OracleIntervalDS structure.

Declaration

// C#
public static readonly OracleIntervalDS Zero;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS Static Methods
The OracleIntervalDS static methods are listed in Table 15-69.

Table 15-69 OracleIntervalDS Static Methods

Methods Description

Equals Determines whether or not two OracleIntervalDS values are equal
(Overloaded)

GreaterThan Determines whether or not one OracleIntervalDS value is greater
than another

GreaterThanOrEqual Determines whether or not one OracleIntervalDS value is greater
than or equal to another

LessThan Determines whether or not one OracleIntervalDS value is less than
another

LessThanOrEqual Determines whether or not one OracleIntervalDS value is less than
or equal to another

NotEquals Determines whether or not two OracleIntervalDS values are not
equal

Parse Returns an OracleIntervalDS structure and sets its value for time
interval using a string

SetPrecision Returns a new instance of an OracleIntervalDS with the specified
day precision and fractional second precision

Chapter 15
OracleIntervalDS Structure

15-205

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Equals
This static method determines whether or not two OracleIntervalDS values are equal.

Declaration

// C#
public static bool Equals(OracleIntervalDS val1, OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

If the two OracleIntervalDS structures represent the same time interval, returns true;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an
OracleIntervalDS that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Chapter 15
OracleIntervalDS Structure

15-206

GreaterThan
This static method determines whether or not the first of two OracleIntervalDS values is
greater than the second.

Declaration

// C#
public static bool GreaterThan(OracleIntervalDS val1, OracleIntervalDS
 val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

GreaterThanOrEqual
This static method determines whether or not the first of two OracleIntervalDS values is
greater than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleIntervalDS val1,
 OracleIntervalDS val2);

Chapter 15
OracleIntervalDS Structure

15-207

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an
OracleIntervalDS that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

LessThan
This static method determines whether or not the first of two OracleIntervalDS values
is less than the second.

Declaration

// C#
public static bool LessThan(OracleIntervalDS val1, OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is less than the second;
otherwise, returns false.

Chapter 15
OracleIntervalDS Structure

15-208

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

LessThanOrEqual
This static method determines whether or not the first of two OracleIntervalDS values is less
than or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleIntervalDS val1, OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

Chapter 15
OracleIntervalDS Structure

15-209

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

NotEquals
This static method determines whether or not two OracleIntervalDS values are not
equal.

Declaration

// C#
public static bool NotEquals(OracleIntervalDS val1, OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if two OracleIntervalDS values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an
OracleIntervalDS that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Chapter 15
OracleIntervalDS Structure

15-210

Parse
This static method returns an OracleIntervalDS instance and sets its value for time interval
using a string.

Declaration

// C#
public static OracleIntervalDS Parse(string intervalStr);

Parameters

• intervalStr

A string representing the Oracle INTERVAL DAY TO SECOND.

Return Value

Returns an OracleIntervalDS instance representing the time interval from the supplied
string.

Exceptions

ArgumentException - The intervalStr parameter is not in the valid format or intervalStr
has an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The value specified in intervalStr must be in Day HH:MI:SSxFF format.

Example

"1 2:3:4.99" means 1 day, 2 hours, 3 minutes, 4 seconds, and 990 milliseconds or 1 day, 2
hours, 3 minutes, 4 seconds, and 990000000 nanoseconds.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

SetPrecision
This static method returns a new instance of an OracleIntervalDS with the specified day
precision and fractional second precision.

Chapter 15
OracleIntervalDS Structure

15-211

Declaration

// C#
public static OracleIntervalDS SetPrecision(OracleIntervalDS value1,
 int dayPrecision, int fracSecPrecision);

Parameters

• value1

An OracleIntervalDS structure.

• dayPrecision

The day precision provided. Range of day precision is (0 to 9).

• fracSecPrecision

The fractional second precision provided. Range of fractional second precision is
(0 to 9).

Return Value

An OracleIntervalDS instance.

Exceptions

ArgumentOutOfRangeException - An argument value is out of the specified range.

Remarks

Depending on the value specified in the supplied dayPrecision, 0 or more leading
zeros are displayed in the string returned by ToString().

The value specified in the supplied fracSecPrecision is used to perform a rounding
off operation on the supplied OracleIntervalDS value. Depending on this value, 0 or
more trailing zeros are displayed in the string returned by ToString().

Example

The OracleIntervalDS with a value of "1 2:3:4.99" results in the string "001
2:3:4.99000" when SetPrecision() is called, with the day precision set to 3 and
fractional second precision set to 5.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS Static Operators
The OracleIntervalDS static operators are listed in Table 15-70.

Chapter 15
OracleIntervalDS Structure

15-212

Table 15-70 OracleIntervalDS Static Operators

Operator Description

operator + Adds two OracleIntervalDS values

operator == Determines whether or not two OracleIntervalDS values are equal

operator > Determines whether or not one OracleIntervalDS value is greater
than another

operator >= Determines whether or not one OracleIntervalDS value is greater
than or equal to another

operator != Determines whether or not two OracleIntervalDS values are not
equal

operator < Determines whether or not one OracleIntervalDS value is less than
another

operator <= Determines whether or not one OracleIntervalDS value is less than
or equal to another

operator - Subtracts one OracleIntervalDS value from another

operator - Negates an OracleIntervalDS structure

operator * Multiplies an OracleIntervalDS value by a number

operator / Divides an OracleIntervalDS value by a number

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator +
This static operator adds two OracleIntervalDS values.

Declaration

// C#
public static OracleIntervalDS operator + (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Chapter 15
OracleIntervalDS Structure

15-213

Return Value

An OracleIntervalDS.

Remarks

If either argument has a null value, the returned OracleIntervalDS structure has a null
value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator ==
This static operator determines if two OracleIntervalDS values are equal.

Declaration

// C#
public static bool operator == (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the two OracleIntervalDS values are the same; otherwise returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an
OracleIntervalDS that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

Chapter 15
OracleIntervalDS Structure

15-214

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator >
This static operator determines if the first of two OracleIntervalDS values is greater than the
second.

Declaration

// C#
public static bool operator > (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if one OracleIntervalDS value is greater than another; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Chapter 15
OracleIntervalDS Structure

15-215

operator >=
This static operator determines if the first of two OracleIntervalDS values is greater
than or equal to the second.

Declaration

// C#
public static bool operator >= (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an
OracleIntervalDS that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator !=
This static operator determines if the two OracleIntervalDS values are not equal.

Declaration

// C#
public static bool operator != (OracleIntervalDS val1,
 OracleIntervalDS val2);

Chapter 15
OracleIntervalDS Structure

15-216

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the two OracleIntervalDS values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator <
This static operator determines if the first of two OracleIntervalDS values is less than the
second.

Declaration

// C#
public static bool operator < (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is less than the second; otherwise,
returns false.

Chapter 15
OracleIntervalDS Structure

15-217

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an
OracleIntervalDS that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator <=
This static operator determines if the first of two OracleIntervalDS values is less than
or equal to the second.

Declaration

// C#
public static bool operator <= (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is less than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an
OracleIntervalDS that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

Chapter 15
OracleIntervalDS Structure

15-218

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator -
This static operator subtracts one OracleIntervalDS structure from another.

Declaration

// C#
public static OracleIntervalDS operator - (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

An OracleIntervalDS structure.

Remarks

If either argument has a null value, the returned OracleIntervalDS structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator -
This static operator negates the supplied OracleIntervalDS structure.

Declaration

// C#
public static OracleIntervalDS operator - (OracleIntervalDS val);

Chapter 15
OracleIntervalDS Structure

15-219

Parameters

• val

An OracleIntervalDS.

Return Value

An OracleIntervalDS structure.

Remarks

If the supplied OracleIntervalDS structure has a null value, the returned
OracleIntervalDS structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator *
This static operator multiplies an OracleIntervalDS value by a number.

Declaration

// C#
public static OracleIntervalDS operator * (OracleIntervalDS val1,
 int multiplier);

Parameters

• val1

The first OracleIntervalDS.

• multiplier

A multiplier.

Return Value

A new OracleIntervalDS instance.

Remarks

If the OracleIntervalDS structure has a null value, the returned OracleIntervalDS
structure has a null value.

Chapter 15
OracleIntervalDS Structure

15-220

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

operator /
This static operator divides an OracleIntervalDS value by a number.

Declaration

// C#
public static OracleIntervalDS operator / (OracleIntervalDS val1,
 int divisor);

Parameters

• val1

The first OracleIntervalDS.

• divisor

A divisor.

Return Value

An OracleIntervalDS structure.

Remarks

If the OracleIntervalDS structure has a null value, the returned OracleIntervalDS structure
has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS Type Conversions
The OracleIntervalDS type conversions are listed in Table 15-71.

Chapter 15
OracleIntervalDS Structure

15-221

Table 15-71 OracleIntervalDS Type Conversions

Operator Description

explicit operator TimeSpan Converts an OracleIntervalDS structure to a
TimeSpan structure

explicit operator OracleIntervalDS Converts a string to an OracleIntervalDS
structure

implicit operator OracleIntervalDS Converts a TimeSpan structure to an
OracleIntervalDS structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

explicit operator TimeSpan
This type conversion operator converts an OracleIntervalDS structure to a TimeSpan
structure.

Declaration

// C#
public static explicit operator TimeSpan(OracleIntervalDS val);

Parameters

• val

An OracleIntervalDS instance.

Return Value

A TimeSpan structure.

Exceptions

OracleNullValueException - The OracleIntervalDS structure has a null value.

Chapter 15
OracleIntervalDS Structure

15-222

Remarks

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

explicit operator OracleIntervalDS
This type conversion operator converts a string to an OracleIntervalDS structure.

Declaration

// C#
public static explicit operator OracleIntervalDS (string intervalStr);

Parameters

• intervalStr

A string representation of an Oracle INTERVAL DAY TO SECOND.

Return Value

An OracleIntervalDS structure.

Exceptions

ArgumentException - The supplied intervalStr parameter is not in the correct format or has
an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The returned OracleIntervalDS structure contains the same time interval represented by the
supplied intervalStr. The value specified in the supplied intervalStr must be in Day
HH:MI:SSxFF format.

Example

"1 2:3:4.99" means 1 day, 2 hours, 3 minutes 4 seconds and 990 milliseconds or 1 day, 2
hours, 3 minutes 4 seconds and 990000000 nanoseconds.

Chapter 15
OracleIntervalDS Structure

15-223

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

implicit operator OracleIntervalDS
This type conversion operator converts a TimeSpan structure to an OracleIntervalDS
structure.

Declaration

// C#
public static implicit operator OracleIntervalDS(TimeSpan val);

Parameters

• val

A TimeSpan instance.

Return Value

An OracleIntervalDS structure.

Remarks

The returned OracleIntervalDS structure contains the same days, hours, seconds,
and milliseconds as the supplied TimeSpan val.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS Properties
The OracleIntervalDS properties are listed in Table 15-72.

Chapter 15
OracleIntervalDS Structure

15-224

Table 15-72 OracleIntervalDS Properties

Properties Description

BinData Returns an array of bytes that represents the Oracle INTERVAL DAY TO
SECOND in Oracle internal format

Days Gets the days component of an OracleIntervalDS
Hours Gets the hours component of an OracleIntervalDS
IsNull Indicates whether or not the current instance has a null value

Milliseconds Gets the milliseconds component of an OracleIntervalDS
Minutes Gets the minutes component of an OracleIntervalDS
Nanoseconds Gets the nanoseconds component of an OracleIntervalDS
Seconds Gets the seconds component of an OracleIntervalDS
TotalDays Returns the total number, in days, that represent the time period in the

OracleIntervalDS structure

Value Specifies the time interval that is stored in the OracleIntervalDS structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

BinData
This property returns an array of bytes that represents the Oracle INTERVAL DAY TO SECOND in
Oracle internal format.

Declaration

// C#
public byte[] BinData {get;}

Property Value

A byte array that represents an Oracle INTERVAL DAY TO SECOND in Oracle internal format.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleIntervalDS Structure

15-225

Remarks

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Days
This property gets the days component of an OracleIntervalDS.

Declaration

// C#
public int Days {get;}

Property Value

An int representing the days component.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Hours
This property gets the hours component of an OracleIntervalDS.

Declaration

// C#
public int Hours {get;}

Property Value

An int representing the hours component.

Chapter 15
OracleIntervalDS Structure

15-226

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Milliseconds
This property gets the milliseconds component of an OracleIntervalDS.

Declaration

// C#
public double Milliseconds {get;}

Property Value

A double that represents milliseconds component.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleIntervalDS Structure

15-227

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Minutes
This property gets the minutes component of an OracleIntervalDS.

Declaration

// C#
public int Minutes {get;}

Property Value

A int that represents minutes component.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Nanoseconds
This property gets the nanoseconds component of an OracleIntervalDS.

Declaration

// C#
public int Nanoseconds {get;}

Property Value

An int that represents nanoseconds component.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleIntervalDS Structure

15-228

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Seconds
This property gets the seconds component of an OracleIntervalDS.

Declaration

// C#
public int Seconds {get;}

Property Value

An int that represents seconds component.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

TotalDays
This property returns the total number, in days, that represent the time period in the
OracleIntervalDS structure.

Declaration

// C#
public double TotalDays {get;}

Property Value

A double that represents the total number of days.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleIntervalDS Structure

15-229

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Value
This property specifies the time interval that is stored in the OracleIntervalDS
structure.

Declaration

// C#
public TimeSpan Value {get;}

Property Value

A time interval.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalDS Methods
The OracleIntervalDS methods are listed in Table 15-73.

Table 15-73 OracleIntervalDS Methods

Methods Description

CompareTo Compares the current OracleIntervalDS instance to an object,
and returns an integer that represents their relative values

Equals Determines whether or not the specified object has the same
time interval as the current instance (Overloaded)

GetHashCode Returns a hash code for the OracleIntervalDS instance

GetType Inherited from System.Object

Chapter 15
OracleIntervalDS Structure

15-230

Table 15-73 (Cont.) OracleIntervalDS Methods

Methods Description

ToString Converts the current OracleIntervalDS structure to a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

CompareTo
This method compares the current OracleIntervalDS instance to an object, and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared to.

Return Value

The method returns:

• Less than zero: if the current OracleIntervalDS represents a shorter time interval than
obj.

• Zero: if the current OracleIntervalDS and obj represent the same time interval.

• Greater than zero: if the current OracleIntervalDS represents a longer time interval than
obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not of type OracleIntervalDS.

Remarks

The following rules apply to the behavior of this method.

Chapter 15
OracleIntervalDS Structure

15-231

• The comparison must be between OracleIntervalDSs. For example, comparing
an OracleIntervalDS instance with an OracleBinary instance is not allowed.
When an OracleIntervalDS is compared with a different type, an
ArgumentException is thrown.

• Any OracleIntervalDS that has a value compares greater than an
OracleIntervalDS that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

Equals
This method determines whether or not the specified object has the same time
interval as the current instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The specified object.

Return Value

Returns true if obj is of type OracleIntervalDS and has the same time interval as the
current instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an
OracleIntervalDS that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

Chapter 15
OracleIntervalDS Structure

15-232

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

GetHashCode
Overrides Object
This method returns a hash code for the OracleIntervalDS instance.

Declaration

// C#
public override int GetHashCode();

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

ToString
Overrides Object
This method converts the current OracleIntervalDS structure to a string.

Declaration

// C#
public override string ToString();

Return Value

Returns a string.

Remarks

If the current instance has a null value, the returned string contains "null".

Chapter 15
OracleIntervalDS Structure

15-233

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Structure

• OracleIntervalDS Members

OracleIntervalYM Structure
The OracleIntervalYM structure represents the Oracle INTERVAL YEAR TO MONTH data
type to be stored in or retrieved from a database. Each OracleIntervalYM stores a
period of time in years and months.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleIntervalYM

Declaration

// C#
public struct OracleIntervalYM : IComparable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleIntervalYMSample

Chapter 15
OracleIntervalYM Structure

15-234

{
 static void Main()
 {
 OracleIntervalYM iYMMax = OracleIntervalYM.MaxValue;
 double totalYears = iYMMax.TotalYears;

 totalYears -= 1;
 OracleIntervalYM iYMMax_1 = new OracleIntervalYM(totalYears);

 // Calculate the difference
 OracleIntervalYM iYMDiff = iYMMax - iYMMax_1;

 // Prints "iYMDiff.ToString() = +000000001-00"
 Console.WriteLine("iYMDiff.ToString() = " + iYMDiff.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Members

• OracleIntervalYM Constructors

• OracleIntervalYM Static Fields

• OracleIntervalYM Static Methods

• OracleIntervalYM Static Operators

• OracleIntervalYM Type Conversions

• OracleIntervalYM Properties

• OracleIntervalYM Methods

OracleIntervalYM Members
OracleIntervalYM members are listed in the following tables:

OracleIntervalYM Constructors

OracleIntervalYM constructors are listed in Table 15-74

Table 15-74 OracleIntervalYM Constructors

Constructor Description

OracleIntervalYM Constructors Instantiates a new instance of OracleIntervalYM
structure (Overloaded)

OracleIntervalYM Static Fields

The OracleIntervalYM static fields are listed in Table 15-75.

Chapter 15
OracleIntervalYM Structure

15-235

Table 15-75 OracleIntervalYM Static Fields

Field Description

MaxValue Represents the maximum value for an
OracleIntervalYM structure

MinValue Represents the minimum value for an
OracleIntervalYM structure

Null Represents a null value that can be assigned to an
OracleIntervalYM instance

Zero Represents a zero value for an
OracleIntervalYM structure

OracleIntervalYM Static Methods

The OracleIntervalYM static methods are listed in Table 15-76.

Table 15-76 OracleIntervalYM Static Methods

Methods Description

Equals Determines whether or not two
OracleIntervalYM values are equal
(Overloaded)

GreaterThan Determines whether or not one
OracleIntervalYM value is greater than another

GreaterThanOrEqual Determines whether or not one
OracleIntervalYM value is greater than or equal
to another

LessThan Determines whether or not one
OracleIntervalYM value is less than another

LessThanOrEqual Determines whether or not one
OracleIntervalYM value is less than or equal to
another

NotEquals Determines whether two OracleIntervalYM
values are not equal

Parse Returns an OracleIntervalYM structure and sets
its value for time interval using a string

SetPrecision Returns a new instance of an OracleIntervalYM
with the specified year precision.

OracleIntervalYM Static Operators

The OracleIntervalYM static operators are listed in Table 15-77.

Table 15-77 OracleIntervalYM Static Operators

Operator Description

operator + Adds two OracleIntervalYM values

Chapter 15
OracleIntervalYM Structure

15-236

Table 15-77 (Cont.) OracleIntervalYM Static Operators

Operator Description

operator == Determines whether or not two
OracleIntervalYM values are equal

operator > Determines whether or not one
OracleIntervalYM value is greater than another

operator >= Determines whether or not one
OracleIntervalYM value is greater than or equal
to another

operator != Determines whether two OracleIntervalYM
values are not equal

operator < Determines whether or not one
OracleIntervalYM value is less than another

operator <= Determines whether or not one
OracleIntervalYM value is less than or equal to
another

operator - Subtracts one OracleIntervalYM value from
another

operator - Negates an OracleIntervalYM structure

operator * Multiplies an OracleIntervalYM value by a
number

operator / Divides an OracleIntervalYM value by a number

OracleIntervalYM Type Conversions

The OracleIntervalYM conversions are listed in Table 15-78.

Table 15-78 OracleIntervalYM Type Conversions

Operator Description

explicit operator long Converts an OracleIntervalYM structure to a
number

explicit operator OracleIntervalYM Converts a string to an OracleIntervalYM structure

implicit operator OracleIntervalYM Converts the number of months to an
OracleIntervalYM structure

OracleIntervalYM Properties

The OracleIntervalYM properties are listed in Table 15-79.

Table 15-79 OracleIntervalYM Properties

Properties Description

BinData Returns an array of bytes that represents the Oracle
INTERVAL YEAR TO MONTH in an Oracle internal format

Chapter 15
OracleIntervalYM Structure

15-237

Table 15-79 (Cont.) OracleIntervalYM Properties

Properties Description

IsNull Indicates whether or not the current instance has a null
value

Months Gets the months component of an OracleIntervalYM
TotalYears Returns the total number, in years, that represents the

period of time in the current OracleIntervalYM
structure

Value Specifies the total number of months that is stored in
the OracleIntervalYM structure

Years Gets the years component of an OracleIntervalYM

OracleIntervalYM Methods

The OracleIntervalYM methods are listed in Table 15-80.

Table 15-80 OracleIntervalYM Methods

Methods Description

CompareTo Compares the current OracleIntervalYM
instance to the supplied object, and returns an
integer that represents their relative values

Equals Determines whether or not the specified object
has the same time interval as the current instance
(Overloaded)

GetHashCode Returns a hash code for the OracleIntervalYM
instance

GetType Inherited from System.Object
ToString Converts the current OracleIntervalYM structure

to a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

OracleIntervalYM Constructors
The OracleIntervalYM constructors creates a new instance of the OracleIntervalYM
structure.

Chapter 15
OracleIntervalYM Structure

15-238

Overload List:

• OracleIntervalYM(long)

This method creates a new instance of the OracleIntervalYM structure using the
supplied total number of months for a period of time.

• OracleIntervalYM(string)

This method creates a new instance of the OracleIntervalYM structure and sets its value
using the supplied string.

• OracleIntervalYM(double)

This method creates a new instance of the OracleIntervalYM structure and sets its value
using the total number of years.

• OracleIntervalYM(int, int)

This method creates a new instance of the OracleIntervalYM structure and sets its value
using years and months.

• OracleIntervalYM(byte[])

This method creates a new instance of the OracleIntervalYM structure and sets its value
to the provided byte array, which is in an internal Oracle INTERVAL DAY TO SECOND format.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleIntervalYM(long)
This method creates a new instance of the OracleIntervalYM structure using the supplied
total number of months for a period of time.

Declaration

// C#
public OracleIntervalYM (long totalMonths);

Parameters

• totalMonths

The number of total months for a time interval. Range is -12,000,000,000 < totalMonths
< 12,000,000,000.

Exceptions

ArgumentOutOfRangeException - The totalMonths parameter is out of the specified range.

Chapter 15
OracleIntervalYM Structure

15-239

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleIntervalYM(string)
This method creates a new instance of the OracleIntervalYM structure and sets its
value using the supplied string.

Declaration

// C#
public OracleIntervalYM (string intervalStr);

Parameters

• intervalStr

A string representing the Oracle INTERVAL YEAR TO MONTH.

Remarks

The value specified in the supplied intervalStr must be in Year-Month format.

Exceptions

ArgumentException - The intervalStr parameter is not in the valid format or
intervalStr has an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Example

"1-2" means 1 year and 2 months.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleIntervalYM(double)
This method creates a new instance of the OracleIntervalYM structure and sets its
value using the total number of years.

Chapter 15
OracleIntervalYM Structure

15-240

Declaration

// C#
public OracleIntervalYM (double totalYears);

Parameters

• totalYears

Number of total years. Range is -1,000,000,000 < totalYears > 1,000,000,000.

Exceptions

ArgumentOutOfRangeException - The totalYears parameter is out of the specified range.

ArgumentException - The totalYears parameter cannot be used to construct a valid
OracleIntervalYM.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleIntervalYM(int, int)
This method creates a new instance of the OracleIntervalYM structure and sets its value
using years and months.

Declaration

// C#
public OracleIntervalYM (int years, int months);

Parameters

• years

Number of years. Range of year is (-999,999,999 to 999,999,999).

• months

Number of months. Range of month is (-11 to 11).

Remarks

The sign of all the arguments must be the same.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

Chapter 15
OracleIntervalYM Structure

15-241

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleIntervalYM.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleIntervalYM(byte[])
This method creates a new instance of the OracleIntervalYM structure and sets its
value to the provided byte array, which is in an internal Oracle INTERVAL DAY TO SECOND
format.

Declaration

// C#
public OracleIntervalYM (byte[] bytes);

Parameters

• bytes

A byte array that is in an internal Oracle INTERVAL YEAR TO MONTH format.

Exceptions

ArgumentException - The supplied byte array is not in an internal Oracle INTERVAL
YEAR TO MONTH format or the supplied byte array has an invalid value.

ArgumentNullException - bytes is null.

Remarks

The supplied byte array must be in an internal Oracle INTERVAL YEAR TO MONTH format.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleIntervalYM Static Fields
The OracleIntervalYM static fields are listed in Table 15-81.

Chapter 15
OracleIntervalYM Structure

15-242

Table 15-81 OracleIntervalYM Static Fields

Field Description

MaxValue Represents the maximum value for an OracleIntervalYM structure

MinValue Represents the minimum value for an OracleIntervalYM structure

Null Represents a null value that can be assigned to an OracleIntervalYM instance

Zero Represents a zero value for an OracleIntervalYM structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

MaxValue
This static field represents the maximum value for an OracleIntervalYM structure.

Declaration

// C#
public static readonly OracleIntervalYM MaxValue;

Remarks

Year is 999999999 and Month is 11.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

MinValue
This static field represents the minimum value for an OracleIntervalYM structure.

Declaration

// C#
public static readonly OracleIntervalYM MinValue;

Chapter 15
OracleIntervalYM Structure

15-243

Remarks

Year is -999999999 and Month is -11.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Null
This static field represents a null value that can be assigned to an OracleIntervalYM
instance.

Declaration

// C#
public static readonly OracleIntervalYM Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Zero
This static field represents a zero value for an OracleIntervalYM structure.

Declaration

// C#
public static readonly OracleIntervalDS Zero;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Chapter 15
OracleIntervalYM Structure

15-244

OracleIntervalYM Static Methods
The OracleIntervalYM static methods are listed in Table 15-82.

Table 15-82 OracleIntervalYM Static Methods

Methods Description

Equals Determines whether or not two OracleIntervalYM values are equal
(Overloaded)

GreaterThan Determines whether or not one OracleIntervalYM value is greater
than another

GreaterThanOrEqual Determines whether or not one OracleIntervalYM value is greater
than or equal to another

LessThan Determines whether or not one OracleIntervalYM value is less than
another

LessThanOrEqual Determines whether or not one OracleIntervalYM value is less than
or equal to another

NotEquals Determines whether two OracleIntervalYM values are not equal

Parse Returns an OracleIntervalYM structure and sets its value for time
interval using a string

SetPrecision Returns a new instance of an OracleIntervalYM with the specified
year precision.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Equals
This static method determines whether or not two OracleIntervalYM values are equal.

Declaration

// C#
public static bool Equals(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

An OracleIntervalYM structure.

• val2

An OracleIntervalYM structure.

Chapter 15
OracleIntervalYM Structure

15-245

Return Value

Returns true if two OracleIntervalYM values represent the same time interval,
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an
OracleIntervalYM that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

GreaterThan
This static method determines whether or not the first of two OracleIntervalYM values
is greater than the second.

Declaration

// C#
public static bool GreaterThan(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an
OracleIntervalYM that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

Chapter 15
OracleIntervalYM Structure

15-246

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

GreaterThanOrEqual
This static method determines whether or not the first of two OracleIntervalYM values is
greater than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleIntervalYM val1,
 OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is greater than or equal to the
second; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Chapter 15
OracleIntervalYM Structure

15-247

LessThan
This static method determines whether or not the first of two OracleIntervalYM values
is less than the second.

Declaration

// C#
public static bool LessThan(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is less than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an
OracleIntervalYM that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

LessThanOrEqual
This static method determines whether or not the first of two OracleIntervalYM values
is less than or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

Chapter 15
OracleIntervalYM Structure

15-248

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is less than or equal to the second.
Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

NotEquals
This static method determines whether two OracleIntervalYM values are not equal.

Declaration

// C#
public static bool NotEquals(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if two OracleIntervalYM values are not equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

Chapter 15
OracleIntervalYM Structure

15-249

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Parse
This static method returns an OracleIntervalYM structure and sets its value for time
interval using a string.

Declaration

// C#
public static OracleIntervalYM Parse (string intervalStr);

Parameters

• intervalStr

A string representing the Oracle INTERVAL YEAR TO MONTH.

Return Value

Returns an OracleIntervalYM structure.

Exceptions

ArgumentException - The intervalStr parameter is not in the valid format or
intervalStr has an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The value specified in the supplied intervalStr must be in the Year-Month format.

Example

"1-2" means 1 year and 2 months.

Chapter 15
OracleIntervalYM Structure

15-250

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

SetPrecision
This static method returns a new instance of an OracleIntervalYM with the specified year
precision.

Declaration

// C#
public static OracleIntervalYM SetPrecision(OracleIntervalYM value1,
 int yearPrecision);

Parameters

• value1

An OracleIntervalYM structure.

• yearPrecision

The year precision provided. Range of year precision is (0 to 9).

Return Value

An OracleIntervalDS instance.

Exceptions

ArgumentOutOfRangeException - yearPrecision is out of the specified range.

Remarks

Depending on the value specified in the supplied yearPrecision, 0 or more leading zeros are
displayed in the string returned by ToString().

Example

An OracleIntervalYM with a value of "1-2" results in the string "001-2" when SetPrecision()
is called with the year precision set to 3.

Chapter 15
OracleIntervalYM Structure

15-251

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleIntervalYM Static Operators
The OracleIntervalYM static operators are listed in Table 15-83.

Table 15-83 OracleIntervalYM Static Operators

Operator Description

operator + Adds two OracleIntervalYM values

operator == Determines whether or not two OracleIntervalYM values are
equal

operator > Determines whether or not one OracleIntervalYM value is
greater than another

operator >= Determines whether or not one OracleIntervalYM value is
greater than or equal to another

operator != Determines whether two OracleIntervalYM values are not
equal

operator < Determines whether or not one OracleIntervalYM value is less
than another

operator <= Determines whether or not one OracleIntervalYM value is less
than or equal to another

operator - Subtracts one OracleIntervalYM value from another

operator - Negates an OracleIntervalYM structure

operator * Multiplies an OracleIntervalYM value by a number

operator / Divides an OracleIntervalYM value by a number

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Chapter 15
OracleIntervalYM Structure

15-252

operator +
This static operator adds two OracleIntervalYM values.

Declaration

// C#
public static OracleIntervalYM operator + (OracleIntervalYM val1,
 OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

OracleIntervalYM

Remarks

If either argument has a null value, the returned OracleIntervalYM structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

operator ==
This static operator determines if two OracleIntervalYM values are equal.

Declaration

// C#
public static bool operator == (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Chapter 15
OracleIntervalYM Structure

15-253

Return Value

Returns true if they are equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an
OracleIntervalYM that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

operator >
This static operator determines if the first of two OracleIntervalYM values is greater
than the second.

Declaration

// C#
public static bool operator > (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if one OracleIntervalYM value is greater than another; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an
OracleIntervalYM that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

Chapter 15
OracleIntervalYM Structure

15-254

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

operator >=
This static operator determines if the first of two OracleIntervalYM values is greater than or
equal to the second.

Declaration

// C#
public static bool operator >= (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if one OracleIntervalYM value is greater than or equal to another; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Chapter 15
OracleIntervalYM Structure

15-255

operator !=
This static operator determines whether two OracleIntervalYM values are not equal.

Declaration

// C#
public static bool operator != (OracleIntervalYM val1, OracleIntervalYM val2)

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if two OracleIntervalYM values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an
OracleIntervalYM that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

operator <
This static operator determines if the first of two OracleIntervalYM values is less than
the second.

Declaration

// C#
public static bool operator < (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

Chapter 15
OracleIntervalYM Structure

15-256

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is less than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

operator <=
This static operator determines if the first of two OracleIntervalYM values is less than or
equal to the second.

Declaration

// C#
public static bool operator <= (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

Chapter 15
OracleIntervalYM Structure

15-257

• Any OracleIntervalYM that has a value compares greater than an
OracleIntervalYM that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

operator -
This static operator subtracts one OracleIntervalYM structure from another.

Declaration

// C#
public static OracleIntervalYM operator - (OracleIntervalYM val1,
OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

An OracleIntervalYM structure.

Remarks

If either argument has a null value, the returned OracleIntervalYM structure has a null
value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Chapter 15
OracleIntervalYM Structure

15-258

operator -
This static operator negates an OracleIntervalYM structure.

Declaration

// C#
public static OracleIntervalYM operator - (OracleIntervalYM val);

Parameters

• val

An OracleIntervalYM.

Return Value

An OracleIntervalYM structure.

Remarks

If the supplied OracleIntervalYM structure has a null value, the returned OracleIntervalYM
structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

operator *
This static operator multiplies an OracleIntervalYM value by a number.

Declaration

// C#
public static OracleIntervalYM operator * (OracleIntervalYM val1, int multiplier);

Parameters

• val1

The first OracleIntervalYM.

• multiplier

A multiplier.

Return Value

An OracleIntervalYM structure.

Chapter 15
OracleIntervalYM Structure

15-259

Remarks

If the supplied OracleIntervalYM structure has a null value, the returned
OracleIntervalYM structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

operator /
This static operator divides an OracleIntervalYM value by a number.

Declaration

// C#
public static OracleIntervalYM operator / (OracleIntervalYM val1, int divisor);

Parameters

• val1

The first OracleIntervalYM.

• divisor

A divisor.

Return Value

An OracleIntervalYM structure.

Remarks

If the supplied OracleIntervalYM structure has a null value, the returned
OracleIntervalYM structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Chapter 15
OracleIntervalYM Structure

15-260

OracleIntervalYM Type Conversions
The OracleIntervalYM conversions are listed in Table 15-84.

Table 15-84 OracleIntervalYM Type Conversions

Operator Description

explicit operator long Converts an OracleIntervalYM structure to a
number

explicit operator OracleIntervalYM Converts a string to an OracleIntervalYM
structure

implicit operator OracleIntervalYM Converts the number of months to an
OracleIntervalYM structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

explicit operator long
This type conversion operator converts an OracleIntervalYM to a number that represents the
number of months in the time interval.

Declaration

// C#
public static explicit operator long (OracleIntervalYM val);

Parameters

• val

An OracleIntervalYM structure.

Return Value

A long number in months.

Exceptions

OracleNullValueException - The OracleIntervalYM structure has a null value.

Chapter 15
OracleIntervalYM Structure

15-261

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

explicit operator OracleIntervalYM
This type conversion operator converts the string intervalStr to an
OracleIntervalYM structure.

Declaration

// C#
public static explicit operator OracleIntervalYM (string intervalStr);

Parameters

• intervalStr

A string representation of an Oracle INTERVAL YEAR TO MONTH.

Return Value

An OracleIntervalYM structure.

Exceptions

ArgumentException - The supplied intervalStr parameter is not in the correct format
or has an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The returned OracleIntervalDS structure contains the same time interval represented
by the supplied intervalStr. The value specified in the supplied intervalStr must be
in Year-Month format.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Chapter 15
OracleIntervalYM Structure

15-262

implicit operator OracleIntervalYM
This type conversion operator converts the total number of months as time interval to an
OracleIntervalYM structure.

Declaration

// C#
public static implicit operator OracleIntervalYM (long months);

Parameters

• months

The number of months to be converted. Range is (-999,999,999 * 12)-11 <= months <=
(999,999,999 * 12)+11.

Return Value

An OracleIntervalYM structure.

Exceptions

ArgumentOutOfRangeException - The months parameter is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleIntervalYM Properties
The OracleIntervalYM properties are listed in Table 15-85.

Table 15-85 OracleIntervalYM Properties

Properties Description

BinData Returns an array of bytes that represents the Oracle INTERVAL YEAR TO MONTH in
an Oracle internal format

IsNull Indicates whether or not the current instance has a null value

Months Gets the months component of an OracleIntervalYM
TotalYears Returns the total number, in years, that represents the period of time in the current

OracleIntervalYM structure

Value Specifies the total number of months that is stored in the OracleIntervalYM
structure

Years Gets the years component of an OracleIntervalYM

Chapter 15
OracleIntervalYM Structure

15-263

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

BinData
This property returns an array of bytes that represents the Oracle INTERVAL YEAR TO
MONTH in Oracle internal format.

Declaration

// C#
public byte[] BinData {get;}

Property Value

A byte array that represents an Oracle INTERVAL YEAR TO MONTH in Oracle internal
format.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

IsNull
This property indicates whether or not the value has a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if value has a null value; otherwise, returns false.

Chapter 15
OracleIntervalYM Structure

15-264

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Months
This property gets the months component of an OracleIntervalYM.

Declaration

// C#
public int Months {get;}

Property Value

An int representing the months component.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

TotalYears
This property returns the total number, in years, that represents the period of time in the
current OracleIntervalYM structure.

Declaration

// C#
public double TotalYears {get;}

Property Value

A double representing the total number of years.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleIntervalYM Structure

15-265

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Value
This property gets the total number of months that is stored in the OracleIntervalYM
structure.

Declaration

// C#
public long Value {get;}

Property Value

The total number of months representing the time interval.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Years
This property gets the years component of an OracleIntervalYM.

Declaration

// C#
public int Years {get;}

Property Value

An int representing the years component.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleIntervalYM Structure

15-266

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleIntervalYM Methods
The OracleIntervalYM methods are listed in Table 15-86.

Table 15-86 OracleIntervalYM Methods

Methods Description

CompareTo Compares the current OracleIntervalYM instance to the supplied
object, and returns an integer that represents their relative values

Equals Determines whether or not the specified object has the same time
interval as the current instance (Overloaded)

GetHashCode Returns a hash code for the OracleIntervalYM instance

GetType Inherited from System.Object
ToString Converts the current OracleIntervalYM structure to a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

CompareTo
This method compares the current OracleIntervalYM instance to the supplied object, and
returns an integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The supplied object.

Chapter 15
OracleIntervalYM Structure

15-267

Return Value

The method returns a number:

Less than zero: if the current OracleIntervalYM represents a shorter time interval than
obj.

Zero: if the current OracleIntervalYM and obj represent the same time interval.

Greater than zero: if the current OracleIntervalYM represents a longer time interval
than obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not of type OracleIntervalYM.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleIntervalYMs. For example, comparing
an OracleIntervalYM instance with an OracleBinary instance is not allowed.
When an OracleIntervalYM is compared with a different type, an
ArgumentException is thrown.

• Any OracleIntervalYM that has a value compares greater than an
OracleIntervalYM that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Equals
Overrides Object
This method determines whether or not the specified object has the same time interval
as the current instance.

Declaration

// C#
public override bool Equals(object obj);

Chapter 15
OracleIntervalYM Structure

15-268

Parameters

• obj

The supplied object.

Return Value

Returns true if the specified object instance is of type OracleIntervalYM and has the same
time interval; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

GetHashCode
Overrides Object
This method returns a hash code for the OracleIntervalYM instance.

Declaration

// C#
public override int GetHashCode();

Return Value

An int representing a hash code.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

Chapter 15
OracleIntervalYM Structure

15-269

ToString
Overrides Object
This method converts the current OracleIntervalYM structure to a string.

Declaration

// C#
public override string ToString();

Return Value

A string that represents the current OracleIntervalYM structure.

Remarks

If the current instance has a null value, the returned string contain "null".

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalYM Structure

• OracleIntervalYM Members

OracleString Structure
The OracleString structure represents a variable-length stream of characters to be
stored in or retrieved from a database.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleString

Declaration

// C#
public struct OracleString : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Chapter 15
OracleString Structure

15-270

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleStringSample
{
 static void Main()
 {
 // Initialize OracleString structs
 OracleString string1 = new OracleString("AAA");

 // Display the string "AAA"
 Console.WriteLine("{0} has length of {1}", string1, string1.Length);

 // Contatenate characters to string1 until the length is 5
 while (string1.Length < 5)
 string1 = OracleString.Concat(string1,"a");

 // Display the string of "AAAaa"
 Console.WriteLine("{0} has length of {1}", string1, string1.Length);
 }
}

Chapter 15
OracleString Structure

15-271

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Members

• OracleString Constructors

• OracleString Static Fields

• OracleString Static Methods

• OracleString Static Operators

• OracleString Type Conversions

• OracleString Properties

• OracleString Methods

OracleString Members
OracleString members are listed in the following tables:

OracleString Constructors

OracleString constructors are listed in Table 15-87

Table 15-87 OracleString Constructors

Constructor Description

OracleString Constructors Instantiates a new instance of OracleString
structure (Overloaded)

OracleString Static Fields

The OracleString static fields are listed in Table 15-88.

Table 15-88 OracleString Static Fields

Field Description

Null Represents a null value that can be assigned to an
instance of the OracleString structure

OracleString Static Methods

The OracleString static methods are listed in Table 15-89.

Chapter 15
OracleString Structure

15-272

Table 15-89 OracleString Static Methods

Methods Description

Concat Concatenates two OracleString instances and
returns a new OracleString instance that represents
the result

Equals Determines if two OracleString values are equal
(Overloaded)

GreaterThan Determines whether or not the first of two
OracleString values is greater than the second

GreaterThanOrEqual Determines whether or not the first of two
OracleString values is greater than or equal to the
second

LessThan Determines whether or not the first of two
OracleString values is less than the second

LessThanOrEqual Determines whether or not the first of two
OracleString values is less than or equal to the
second

NotEquals Determines whether two OracleString values are not
equal

OracleString Static Operators

The OracleString static operators are listed in Table 15-90.

Table 15-90 OracleString Static Operators

Operator Description

operator + Concatenates two OracleString values

operator == Determines if two OracleString values are equal

operator > Determines if the first of two OracleString values is
greater than the second

operator >= Determines if the first of two OracleString values is
greater than or equal to the second

operator != Determines if the two OracleString values are not
equal

operator < Determines if the first of two OracleString values is
less than the second

operator <= Determines if two OracleString values are not equal

OracleString Type Conversions

The OracleString type conversions are listed in Table 15-91.

Chapter 15
OracleString Structure

15-273

Table 15-91 OracleString Type Conversions

Operator Description

explicit operator string Converts the supplied OracleString to a string
instance

implicit operator OracleString Converts the supplied string to an
OracleString instance

OracleString Properties

The OracleString properties are listed in Table 15-92.

Table 15-92 OracleString Properties

Properties Description

IsCaseIgnored Indicates whether or not case should be ignored
when performing string comparison

IsNull Indicates whether or not the current instance has a
null value

Item Obtains the particular character in an
OracleString using an index.

Length Returns the length of the OracleString
Value Returns the string data that is stored in the

OracleString structure.

OracleString Methods

The OracleString methods are listed in Table 15-93.

Table 15-93 OracleString Methods

Methods Description

Clone Returns a copy of the current OracleString
instance

CompareTo Compares the current OracleString instance to
the supplied object, and returns an integer that
represents their relative values

Equals Determines whether or not an object has the same
string value as the current OracleString
structure (Overloaded)

GetHashCode Returns a hash code for the OracleString
instance

GetNonUnicodeBytes Returns an array of bytes, containing the contents
of the OracleString, in the client character set
format

GetType Inherited from System.Object

Chapter 15
OracleString Structure

15-274

Table 15-93 (Cont.) OracleString Methods

Methods Description

GetUnicodeBytes Returns an array of bytes, containing the contents
of the OracleString, in Unicode format

ToString Converts the current OracleString instance to a
string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

OracleString Constructors
The OracleString constructors create new instances of the OracleString structure.

Overload List:

• OracleString(string)

This constructor creates a new instance of the OracleString structure and sets its value
using a string.

• OracleString(string, bool)

This constructor creates a new instance of the OracleString structure and sets its value
using a string and specifies if case is ignored in comparison.

• OracleString(byte [], bool)

This constructor creates a new instance of the OracleString structure and sets its value
using a byte array and specifies if the supplied byte array is Unicode encoded.

• OracleString(byte [], bool, bool)

This constructor creates a new instance of the OracleString structure and sets its value
using a byte array and specifies the following: if the supplied byte array is Unicode
encoded and if case is ignored in comparison.

• OracleString(byte [], int, int, bool)

This constructor creates a new instance of the OracleString structure and sets its value
using a byte array, and specifies the following: the starting index in the byte array, the
number of bytes to copy from the byte array, and if the supplied byte array is Unicode
encoded.

• OracleString(byte [], int, int, bool, bool)

This constructor creates a new instance of the OracleString structure and sets its value
using a byte array, and specifies the following: the starting index in the byte array, the
number of bytes to copy from the byte array, if the supplied byte array is Unicode
encoded, and if case is ignored in comparison.

Chapter 15
OracleString Structure

15-275

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString(string)
This constructor creates a new instance of the OracleString structure and sets its
value using a string.

Declaration

// C#
public OracleString(string data);

Parameters

• data

A string value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString(string, bool)
This constructor creates a new instance of the OracleString structure and sets its
value using a string and specifies if case is ignored in comparison.

Declaration

// C#
public OracleString(string data, bool isCaseIgnored);

Parameters

• data

A string value.

• isCaseIgnored

Specifies if case is ignored in comparison. Specifies true if case is to be ignored;
otherwise, specifies false.

Chapter 15
OracleString Structure

15-276

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString(byte [], bool)
This constructor creates a new instance of the OracleString structure and sets its value
using a byte array and specifies if the supplied byte array is Unicode encoded.

Declaration

// C#
public OracleString(byte[] data, bool fUnicode);

Parameters

• data

Byte array data for the new OracleString.

• fUnicode

Specifies if the supplied data is Unicode encoded. Specifies true if Unicode encoded;
otherwise, false.

Exceptions

ArgumentNullException - The data parameter is null.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString(byte [], bool, bool)
This constructor creates a new instance of the OracleString structure and sets its value
using a byte array and specifies the following: if the supplied byte array is Unicode encoded
and if case is ignored in comparison.

Declaration

// C#
public OracleString(byte[] data, bool fUnicode, bool isCaseIgnored);

Chapter 15
OracleString Structure

15-277

Parameters

• data

Byte array data for the new OracleString.

• fUnicode

Specifies if the supplied data is Unicode encoded. Specifies true if Unicode
encoded; otherwise, false.

• isCaseIgnored

Specifies if case is ignored in comparison. Specifies true if case is to be ignored;
otherwise, specifies false.

Exceptions

ArgumentNullException - The data parameter is null.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString(byte [], int, int, bool)
This constructor creates a new instance of the OracleString structure and sets its
value using a byte array, and specifies the following: the starting index in the byte
array, the number of bytes to copy from the byte array, and if the supplied byte array is
Unicode encoded.

Declaration

// C#
public OracleString(byte[] data, int index, int count, bool fUnicode);

Parameters

• data

Byte array data for the new OracleString.

• index

The starting index to copy from data.

• count

The number of bytes to copy.

• fUnicode

Chapter 15
OracleString Structure

15-278

Specifies if the supplied data is Unicode encoded. Specifies true if Unicode encoded;
otherwise, false.

Exceptions

ArgumentNullException - The data parameter is null.

ArgumentOutOfRangeException - The count parameter is less than zero.

IndexOutOfRangeException - The index parameter is greater than or equal to the length of
data or less than zero.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString(byte [], int, int, bool, bool)
This constructor creates a new instance of the OracleString structure and sets its value
using a byte array, and specifies the following: the starting index in the byte array, the number
of bytes to copy from the byte array, if the supplied byte array is Unicode encoded, and if
case is ignored in comparison.

Declaration

// C#
public OracleString(byte[] data, int index, int count, bool fUnicode,
 bool isCaseIgnored);

Parameters

• data

Byte array data for the new OracleString.

• index

The starting index to copy from data.

• count

The number of bytes to copy.

• fUnicode

Specifies if the supplied data is Unicode encoded. Specifies true if Unicode encoded;
otherwise, false.

• isCaseIgnored

Specifies if case is ignored in comparison. Specifies true if case is to be ignored;
otherwise, specifies false.

Chapter 15
OracleString Structure

15-279

Exceptions

ArgumentNullException - The data parameter is null.

ArgumentOutOfRangeException - The count parameter is less than zero.

IndexOutOfRangeException - The index parameter is greater than or equal to the
length of data or less than zero.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString Static Fields
The OracleString static fields are listed in Table 15-94.

Table 15-94 OracleString Static Fields

Field Description

Null Represents a null value that can be assigned to an instance of the OracleString
structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Null
This static field represents a null value that can be assigned to an instance of the
OracleString structure.

Declaration

// C#
public static readonly OracleString Null;

Chapter 15
OracleString Structure

15-280

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString Static Methods
The OracleString static methods are listed in Table 15-95.

Table 15-95 OracleString Static Methods

Methods Description

Concat Concatenates two OracleString instances and returns a new
OracleString instance that represents the result

Equals Determines if two OracleString values are equal (Overloaded)

GreaterThan Determines whether or not the first of two OracleString values is
greater than the second

GreaterThanOrEqual Determines whether or not the first of two OracleString values is
greater than or equal to the second

LessThan Determines whether or not the first of two OracleString values is
less than the second

LessThanOrEqual Determines whether or not the first of two OracleString values is
less than or equal to the second

NotEquals Determines whether two OracleString values are not equal

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Concat
This static method concatenates two OracleString instances and returns a new
OracleString instance that represents the result.

Declaration

// C#
public static OracleString Concat(OracleString str1, OracleString str2);

Chapter 15
OracleString Structure

15-281

Parameters

• str1

The first OracleString.
• str2

The second OracleString.

Return Value

An OracleString.

Remarks

If either argument has a null value, the returned OracleString structure has a null
value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Equals
Overloads Object
This static method determines whether or not the two OracleStrings being compared
are equal.

Declaration

// C#
public static bool Equals(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.
• str2

The second OracleString.

Return Value

Returns true if the two OracleStrings being compared are equal; returns false
otherwise.

Chapter 15
OracleString Structure

15-282

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

GreaterThan
This static method determines whether or not the first of two OracleString values is greater
than the second.

Declaration

// C#
public static bool GreaterThan(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.
• str2

The second OracleString.

Return Value

Returns true if the first of two OracleStrings is greater than the second; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null value.

• Two OracleStrings that contain a null value are equal.

Chapter 15
OracleString Structure

15-283

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

GreaterThanOrEqual
This static method determines whether or not the first of two OracleString values is
greater than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleString str1,
 OracleString str2);

Parameters

• str1

The first OracleString.

• str2

The second OracleString.

Return Value

Returns true if the first of two OracleStrings is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Chapter 15
OracleString Structure

15-284

LessThan
This static method determines whether or not the first of two OracleString values is less
than the second.

Declaration

// C#
public static bool LessThan(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.
• str2

The second OracleString.

Return Value

Returns true if the first is less than the second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

LessThanOrEqual
This static method determines whether or not the first of two OracleString values is less
than or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.

Chapter 15
OracleString Structure

15-285

• str2

The second OracleString.

Return Value

Returns true if the first is less than or equal to the second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

NotEquals
This static method determines whether two OracleString values are not equal.

Declaration

// C#
public static bool NotEquals(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.
• str2

The second OracleString.

Return Value

Returns true if the two OracleString instances are not equal; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

Chapter 15
OracleString Structure

15-286

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString Static Operators
The OracleString static operators are listed in Table 15-96.

Table 15-96 OracleString Static Operators

Operator Description

operator + Concatenates two OracleString values

operator == Determines if two OracleString values are equal

operator > Determines if the first of two OracleString values is greater than the
second

operator >= Determines if the first of two OracleString values is greater than or
equal to the second

operator != Determines if the two OracleString values are not equal

operator < Determines if the first of two OracleString values is less than the
second

operator <= Determines if two OracleString values are not equal

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

operator +
This static operator concatenates two OracleString values.

Declaration

// C#
public static OracleString operator + (OracleString value1, OracleString value2);

Chapter 15
OracleString Structure

15-287

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

An OracleString.

Remarks

If either argument has a null value, the returned OracleString structure has a null
value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

operator ==
This static operator determines if two OracleString values are equal.

Declaration

// C#
public static bool operator == (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if two OracleString values are equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

Chapter 15
OracleString Structure

15-288

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

operator >
This static operator determines if the first of two OracleString values is greater than the
second.

Declaration

// C#
public static bool operator > (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if the first of two OracleString values is greater than the second; otherwise
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Chapter 15
OracleString Structure

15-289

operator >=
This static operator determines if the first of two OracleString values is greater than
or equal to the second.

Declaration

// C#
public static bool operator >= (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if the first of two OracleString values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

operator !=
This static operator determines if two OracleString values are not equal.

Declaration

// C#
public static bool operator != (OracleString value1, OracleString value2);

Parameters

• value1

Chapter 15
OracleString Structure

15-290

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if two OracleString values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

operator <
This static operator determines if the first of two OracleStrings is less than the second.

Declaration

// C#
public static bool operator < (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if the first of two OracleStrings is less than the second; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString has a null value.

• Two OracleStrings that contain a null value are equal.

Chapter 15
OracleString Structure

15-291

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

operator <=
This static operator determines if the first of two OracleString values is less than or
equal to the second.

Declaration

// C#
public static bool operator <= (OracleString value1, OracleString value1);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if the first of two OracleString values is less than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Chapter 15
OracleString Structure

15-292

OracleString Type Conversions
The OracleString type conversions are listed in Table 15-97.

Table 15-97 OracleString Type Conversions

Operator Description

explicit operator string Converts the supplied OracleString to a string
instance

implicit operator OracleString Converts the supplied string to an OracleString
instance

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

explicit operator string
This type conversion operator converts the supplied OracleString to a string.

Declaration

//C#
public static explicit operator string (OracleString value1);

Parameters

• value1

The supplied OracleString.

Return Value

string

Exceptions

OracleNullValueException - The OracleString structure has a null value.

Chapter 15
OracleString Structure

15-293

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

implicit operator OracleString
This type conversion operator converts the supplied string to an OracleString.

Declaration

// C#
public static implicit operator OracleString (string value1);

Parameters

• value1

The supplied string.

Return Value

An OracleString.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString Properties
The OracleString properties are listed in Table 15-98.

Table 15-98 OracleString Properties

Properties Description

IsCaseIgnored Indicates whether or not case should be ignored when performing
string comparison

IsNull Indicates whether or not the current instance has a null value

Item Obtains the particular character in an OracleString using an index.

Length Returns the length of the OracleString

Chapter 15
OracleString Structure

15-294

Table 15-98 (Cont.) OracleString Properties

Properties Description

Value Returns the string data that is stored in the OracleString structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

IsCaseIgnored
This property indicates whether or not case should be ignored when performing string
comparison.

Declaration

//C#
public bool IsCaseIgnored {get;set;}

Property Value

Returns true if string comparison must ignore case; otherwise false.

Remarks

Default value is true.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class IsCaseIgnoredSample
{
 static void Main()
 {
 OracleString string1 = new OracleString("aAaAa");
 OracleString string2 = new OracleString("AaAaA");

 // Ignore case for comparisons
 string1.IsCaseIgnored = true;
 string2.IsCaseIgnored = true;

 // Same; Prints 0
 Console.WriteLine(string1.CompareTo(string2));

 // Make comparisons case sensitive

Chapter 15
OracleString Structure

15-295

 // Note that IsCaseIgnored must be set to false for both
 // OracleStrings; otherwise an exception is thrown
 string1.IsCaseIgnored = false;
 string2.IsCaseIgnored = false;

 // Different; Prints nonzero value
 Console.WriteLine(string1.CompareTo(string2));
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

IsNull
This property indicates whether or not the current instance contains a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the current instance contains has a null value; otherwise, returns
false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Item
This property obtains the particular character in an OracleString using an index.

Declaration

// C#
public char Item {get;}

Chapter 15
OracleString Structure

15-296

Property Value

A char value.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Length
This property returns the length of the OracleString.

Declaration

// C#
public int Length {get;}

Property Value

A int value.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Value
This property returns the string data that is stored in the OracleString.

Declaration

// C#
public string Value {get;}

Chapter 15
OracleString Structure

15-297

Property Value

The stored string value

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleString Methods
The OracleString methods are listed in Table 15-99.

Table 15-99 OracleString Methods

Methods Description

Clone Returns a copy of the current OracleString instance

CompareTo Compares the current OracleString instance to the supplied
object, and returns an integer that represents their relative values

Equals Determines whether or not an object has the same string value
as the current OracleString structure (Overloaded)

GetHashCode Returns a hash code for the OracleString instance

GetNonUnicodeBytes Returns an array of bytes, containing the contents of the
OracleString, in the client character set format

GetType Inherited from System.Object
GetUnicodeBytes Returns an array of bytes, containing the contents of the

OracleString, in Unicode format

ToString Converts the current OracleString instance to a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Chapter 15
OracleString Structure

15-298

Clone
This method creates a copy of an OracleString instance.

Declaration

// C#
public OracleString Clone();

Return Value

An OracleString structure.

Remarks

The cloned object has the same property values as that of the object being cloned.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class CloneSample
{
 static void Main()
 {
 OracleString str1 = new OracleString("aAaAa");
 OracleString str2 = str1.Clone();

 // The OracleStrings are same; Prints 0
 Console.WriteLine(str1.CompareTo(str2));
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

CompareTo
This method compares the current OracleString instance to the supplied object, and returns
an integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Chapter 15
OracleString Structure

15-299

Parameters

• obj

The object being compared to the current instance.

Return Value

The method returns a number that is:

• Less than zero: if the current OracleString value is less than obj.

• Zero: if the current OracleString value is equal to obj.

• Greater than zero: if the current OracleString value is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not of type OracleString.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleStrings. For example, comparing an
OracleString instance with an OracleBinary instance is not allowed. When an
OracleString is compared with a different type, an ArgumentException is thrown.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Equals
This method determines whether or not supplied object is an instance of OracleString
and has the same values as the current OracleString instance.

Declaration

// C#
public override bool Equals(object obj);

Chapter 15
OracleString Structure

15-300

Parameters

• obj

An object being compared.

Return Value

Returns true if the supplied object is an instance of OracleString and has the same values
as the current OracleString instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null value.

• Two OracleStrings that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

GetHashCode
Overrides Object
This method returns a hash code for the OracleString instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

Chapter 15
OracleString Structure

15-301

GetNonUnicodeBytes
This method returns an array of bytes, containing the contents of the OracleString, in
the client character set format.

Declaration

// C#
public byte[] GetNonUnicodeBytes();

Return Value

A byte array that contains the contents of the OracleString in the client character set
format.

Remarks

If the current instance has a null value, an OracleNullValueException is thrown.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

GetUnicodeBytes
This method returns an array of bytes, containing the contents of the OracleString in
Unicode format.

Declaration

// C#
public byte[] GetUnicodeBytes();

Return Value

A byte array that contains the contents of the OracleString in Unicode format.

Remarks

If the current instance has a null value, an OracleNullValueException is thrown.

Chapter 15
OracleString Structure

15-302

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

ToString
Overrides Object
This method converts the current OracleString instance to a string.

Declaration

// C#
public override string ToString();

Return Value

A string.

Remarks

If the current OracleString instance has a null value, the string contains "null".

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Structure

• OracleString Members

OracleTimeStamp Structure
The OracleTimeStamp structure represents the Oracle TIMESTAMP data type to be stored in or
retrieved from a database. Each OracleTimeStamp stores the following information: year,
month, day, hour, minute, second, and nanosecond.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleTimeStamp

Chapter 15
OracleTimeStamp Structure

15-303

Declaration

 // C#public struct OracleTimeStamp : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleTimeStampSample
{
 static void Main()
 {
 OracleTimeStamp tsCurrent1 = OracleTimeStamp.GetSysDate();
 OracleTimeStamp tsCurrent2 = DateTime.Now;

 // Calculate the difference between tsCurrent1 and tsCurrent2
 OracleIntervalDS idsDiff = tsCurrent2.GetDaysBetween(tsCurrent1);

 // Calculate the difference using AddNanoseconds()
 int nanoDiff = 0;
 while (tsCurrent2 > tsCurrent1)
 {
 nanoDiff += 10;
 tsCurrent1 = tsCurrent1.AddNanoseconds(10);
 }
 Console.WriteLine("idsDiff.Nanoseconds = " + idsDiff.Nanoseconds);
 Console.WriteLine("nanoDiff = " + nanoDiff);
 }
}

Chapter 15
OracleTimeStamp Structure

15-304

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Members

• OracleTimeStamp Constructors

• OracleTimeStamp Static Fields

• OracleTimeStamp Static Methods

• OracleTimeStamp Static Operators

• OracleTimeStamp Static Type Conversions

• OracleTimeStamp Properties

• OracleTimeStamp Methods

OracleTimeStamp Members
OracleTimeStamp members are listed in the following tables:

OracleTimeStamp Constructors

OracleTimeStamp constructors are listed in Table 15-100

Table 15-100 OracleTimeStamp Constructors

Constructor Description

OracleTimeStamp Constructors Instantiates a new instance of OracleTimeStamp
structure (Overloaded)

OracleTimeStamp Static Fields

The OracleTimeStamp static fields are listed in Table 15-101.

Table 15-101 OracleTimeStamp Static Fields

Field Description

MaxValue Represents the maximum valid date for an
OracleTimeStamp structure, which is December 31,
9999 23:59:59.999999999

MinValue Represents the minimum valid date for an
OracleTimeStamp structure, which is January 1,
-4712 0:0:0

Null Represents a null value that can be assigned to an
instance of the OracleTimeStamp structure

Chapter 15
OracleTimeStamp Structure

15-305

OracleTimeStamp Static Methods

The OracleTimeStamp static methods are listed in Table 15-102.

Table 15-102 OracleTimeStamp Static Methods

Methods Description

Equals Determines if two OracleTimeStamp values are
equal (Overloaded)

GreaterThan Determines if the first of two OracleTimeStamp
values is greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStamp
values is greater than or equal to the second

LessThan Determines if the first of two OracleTimeStamp
values is less than the second

LessThanOrEqual Determines if the first of two OracleTimeStamp
values is less than or equal to the second

NotEquals Determines if two OracleTimeStamp values are
not equal

GetSysDate Gets an OracleTimeStamp structure that
represents the current date and time

Parse Gets an OracleTimeStamp structure and sets its
value using the supplied string

SetPrecision Returns a new instance of an OracleTimeStamp
with the specified fractional second precision

OracleTimeStamp Static Operators

The OracleTimeStamp static operators are listed in Table 15-103.

Table 15-103 OracleTimeStamp Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStamp and returns a new
OracleTimeStamp structure (Overloaded)

operator == Determines if two OracleTimeStamp values are
equal

operator > Determines if the first of two OracleTimeStamp
values is greater than the second

operator >= Determines if the first of two OracleTimeStamp
values is greater than or equal to the second

operator != Determines if the two OracleTimeStamp values
are not equal

operator < Determines if the first of two OracleTimeStamp
values is less than the second

Chapter 15
OracleTimeStamp Structure

15-306

Table 15-103 (Cont.) OracleTimeStamp Static Operators

Operator Description

operator <= Determines if the first of two OracleTimeStamp
values is less than or equal to the second

operator - Subtracts the supplied instance value from the
supplied OracleTimeStamp and returns a new
OracleTimeStamp structure (Overloaded)

OracleTimeStamp Static Type Conversions

The OracleTimeStamp static type conversions are listed in Table 15-104.

Table 15-104 OracleTimeStamp Static Type Conversions

Operator Description

explicit operator OracleTimeStamp Converts an instance value to an OracleTimeStamp
structure (Overloaded)

implicit operator OracleTimeStamp Converts an instance value to an OracleTimeStamp
structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStamp value to a DateTime
structure

OracleTimeStamp Properties

The OracleTimeStamp properties are listed in Table 15-105.

Table 15-105 OracleTimeStamp Properties

Properties Description

BinData Returns an array of bytes that represents an Oracle
TIMESTAMP in Oracle internal format

Day Specifies the day component of an OracleTimeStamp
IsNull Indicates whether or not the OracleTimeStamp

instance has a null value

Hour Specifies the hour component of an
OracleTimeStamp

Millisecond Specifies the millisecond component of an
OracleTimeStamp

Minute Specifies the minute component of an
OracleTimeStamp

Month Specifies the month component of an
OracleTimeStamp

Nanosecond Specifies the nanosecond component of an
OracleTimeStamp

Second Specifies the second component of an
OracleTimeStamp

Chapter 15
OracleTimeStamp Structure

15-307

Table 15-105 (Cont.) OracleTimeStamp Properties

Properties Description

Value Specifies the date and time that is stored in the
OracleTimeStamp structure

Year Specifies the year component of an OracleTimeStamp

OracleTimeStamp Methods

The OracleTimeStamp methods are listed in Table 15-106.

Table 15-106 OracleTimeStamp Methods

Methods Description

AddDays Adds the supplied number of days to the current
instance

AddHours Adds the supplied number of hours to the current
instance

AddMilliseconds Adds the supplied number of milliseconds to the
current instance

AddMinutes Adds the supplied number of minutes to the current
instance

AddMonths Adds the supplied number of months to the current
instance

AddNanoseconds Adds the supplied number of nanoseconds to the
current instance

AddSeconds Adds the supplied number of seconds to the
current instance

AddYears Adds the supplied number of years to the current
instance

CompareTo Compares the current OracleTimeStamp instance
to an object, and returns an integer that represents
their relative values

Equals Determines whether or not an object has the same
date and time as the current OracleTimeStamp
instance (Overloaded)

GetHashCode Returns a hash code for the OracleTimeStamp
instance

GetDaysBetween Subtracts an OracleTimeStamp value from the
current instance and returns an
OracleIntervalDS that represents the time
difference between the supplied
OracleTimeStamp and the current instance

GetYearsBetween Subtracts value1 from the current instance and
returns an OracleIntervalYM that represents the
difference between value1 and the current
instance using OracleIntervalYM

GetType Inherited from System.Object

Chapter 15
OracleTimeStamp Structure

15-308

Table 15-106 (Cont.) OracleTimeStamp Methods

Methods Description

ToOracleDate Converts the current OracleTimeStamp structure
to an OracleDate structure

ToOracleTimeStampLTZ Converts the current OracleTimeStamp structure
to an OracleTimeStampLTZ structure

ToOracleTimeStampTZ Converts the current OracleTimeStamp structure
to an OracleTimeStampTZ structure

ToString Converts the current OracleTimeStamp structure
to a string

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

OracleTimeStamp Constructors
The OracleTimeStamp constructors create new instances of the OracleTimeStamp structure.

Overload List:

• OracleTimeStamp(DateTime)

This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using the supplied DateTime value.

• OracleTimeStamp(string)

This constructor creates a new instance of the OracleTimeStamp structure and sets its
value using the supplied string.

• OracleTimeStamp(int, int, int)

This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date using year, month, and day.

• OracleTimeStamp(int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using year, month, day, hour, minute, and second.

• OracleTimeStamp(int, int, int, int, int, int, double)

This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using year, month, day, hour, minute, second, and millisecond.

• OracleTimeStamp(int, int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using year, month, day, hour, minute, second, and nanosecond.

Chapter 15
OracleTimeStamp Structure

15-309

• OracleTimeStamp(byte [])

This constructor creates a new instance of the OracleTimeStamp structure and
sets its value to the provided byte array, which is in the internal Oracle TIMESTAMP
format.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

OracleTimeStamp(DateTime)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using the supplied DateTime value.

Declaration

// C#
public OracleTimeStamp (DateTime dt);

Parameters

• dt

The supplied DateTime value.

Exceptions

ArgumentException - The dt parameter cannot be used to construct a valid
OracleTimeStamp.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

OracleTimeStamp(string)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value using the supplied string.

Chapter 15
OracleTimeStamp Structure

15-310

Declaration

// C#
public OracleTimeStamp (string tsStr);

Parameters

• tsStr

A string that represents an Oracle TIMESTAMP.

Exceptions

ArgumentException - The tsStr value is an invalid string representation of an Oracle
TIMESTAMP or the supplied tsStr is not in the timestamp format specified by the
OracleGlobalization.TimeStampFormat property of the thread, which represents the Oracle
NLS_TIMESTAMP_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Remarks

The names and abbreviations used for months and days are in the language specified by the
DateLanguage and Calendar properties of the thread's OracleGlobalization object. If any of
the thread's globalization properties are set to null or an empty string, the client computer's
settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleTimeStampSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the OracleTimeStamp(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStamp from a string using the format specified.
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

Chapter 15
OracleTimeStamp Structure

15-311

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

• "OracleGlobalization Class"

• "Globalization Support "

• Oracle Database SQL Language Reference for further information on
date format elements

OracleTimeStamp(int, int, int)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date using year, month, and day.

Declaration

// C#
public OracleTimeStamp(int year, int month, int day);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStamp (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-312

OracleTimeStamp(int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStamp structure and sets its value
for date and time using year, month, day, hour, minute, and second.

Declaration

// C#
public OracleTimeStamp (int year, int month, int day, int hour,
 int minute, int second);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStamp (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-313

OracleTimeStamp(int, int, int, int, int, int, double)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using year, month, day, hour, minute, second, and millisecond.

Declaration

// C#
public OracleTimeStamp(int year, int month, int day, int hour,
 int minute, int second, double millisecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• milliSeconds

The milliseconds provided. Range of millisecond is (0 to 999.999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStamp (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-314

OracleTimeStamp(int, int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStamp structure and sets its value
for date and time using year, month, day, hour, minute, second, and nanosecond.

Declaration

// C#
public OracleTimeStamp (int year, int month, int day, int hour,
 int minute, int second, int nanosecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• nanosecond

The nanosecond provided. Range of nanosecond is (0 to 999999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStamp (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-315

OracleTimeStamp(byte [])
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value to the provided byte array, which is in the internal Oracle TIMESTAMP format.

Declaration

// C#
public OracleTimeStamp (byte[] bytes);

Parameters

• bytes

A byte array that represents an Oracle TIMESTAMP in Oracle internal format.

Exceptions

ArgumentException - bytes is not in an internal Oracle TIMESTAMP format or bytes is
not a valid Oracle TIMESTAMP.

ArgumentNullException - bytes is null.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

OracleTimeStamp Static Fields
The OracleTimeStamp static fields are listed in Table 15-107.

Table 15-107 OracleTimeStamp Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleTimeStamp structure,
which is December 31, 9999 23:59:59.999999999

MinValue Represents the minimum valid date for an OracleTimeStamp structure,
which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to an instance of the
OracleTimeStamp structure

Chapter 15
OracleTimeStamp Structure

15-316

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

MaxValue
This static field represents the maximum valid date and time for an OracleTimeStamp
structure, which is December 31, 9999 23:59:59.999999999.

Declaration

// C#
public static readonly OraTimestamp MaxValue;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

MinValue
This static field represents the minimum valid date and time for an OracleTimeStamp
structure, which is January 1, -4712 0:0:0.

Declaration

// C#
public static readonly OracleTimeStamp MinValue;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-317

Null
This static field represents a null value that can be assigned to an instance of the
OracleTimeStamp structure.

Declaration

// C#
public static readonly OracleTimeStamp Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

OracleTimeStamp Static Methods
The OracleTimeStamp static methods are listed in NOT_SUPPORTED.

NOT_SUPPORTED

Methods Description

Equals Determines if two OracleTimeStamp values are equal
(Overloaded)

GreaterThan Determines if the first of two OracleTimeStamp values is
greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStamp values is
greater than or equal to the second

LessThan Determines if the first of two OracleTimeStamp values is
less than the second

LessThanOrEqual Determines if the first of two OracleTimeStamp values is
less than or equal to the second

NotEquals Determines if two OracleTimeStamp values are not equal

GetSysDate Gets an OracleTimeStamp structure that represents the
current date and time

Parse Gets an OracleTimeStamp structure and sets its value using
the supplied string

SetPrecision Returns a new instance of an OracleTimeStamp with the
specified fractional second precision

Chapter 15
OracleTimeStamp Structure

15-318

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Equals
This static method determines if two OracleTimeStamp values are equal.

Declaration

// C#
public static bool Equals(OracleTimeStamp value1, OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if two OracleTimeStamp values are equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

GreaterThan
This static method determines if the first of two OracleTimeStamp values is greater than the
second.

Chapter 15
OracleTimeStamp Structure

15-319

Declaration

// C#
public static bool GreaterThan(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first of two OracleTimeStamp values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that
has a null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

GreaterThanOrEqual
This static method determines if the first of two OracleTimeStamp values is greater
than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

Chapter 15
OracleTimeStamp Structure

15-320

The second OracleTimeStamp.

Return Value

Returns true if the first of two OracleTimeStamp values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

LessThan
This static method determines if the first of two OracleTimeStamp values is less than the
second.

Declaration

// C#
public static bool LessThan(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first of two OracleTimeStamp values is less than the second. Returns
false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

Chapter 15
OracleTimeStamp Structure

15-321

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

LessThanOrEqual
This static method determines if the first of two OracleTimeStamp values is less than or
equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first of two OracleTimeStamp values is less than or equal to the
second. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that
has a null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-322

NotEquals
This static method determines if two OracleTimeStamp values are not equal.

Declaration

// C#
public static bool NotEquals(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if two OracleTimeStamp values are not equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

GetSysDate
This static method gets an OracleTimeStamp structure that represents the current date and
time.

Declaration

// C#
public static OracleTimeStamp GetSysDate();

Return Value

An OracleTimeStamp structure that represents the current date and time.

Chapter 15
OracleTimeStamp Structure

15-323

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Parse
This static method gets an OracleTimeStamp structure and sets its value using the
supplied string.

Declaration

// C#
public static OracleTimeStamp Parse(string datetime);

Parameters

• datetime

A string that represents an Oracle TIMESTAMP.

Return Value

An OracleTimeStamp structure.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle
TIMESTAMP or the supplied tsStr is not in the timestamp format specified by the
OracleGlobalization.TimeStampFormat property of the thread, which represents the
Oracle NLS_TIMESTAMP_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string,
the client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ParseSample
{
 static void Main()

Chapter 15
OracleTimeStamp Structure

15-324

 {
 // Set the nls_timestamp_format for the Parse() method
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStamp from a string using the format specified.
 OracleTimeStamp ts =
 OracleTimeStamp.Parse("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

• "OracleGlobalization Class"

• "Globalization Support "

SetPrecision
This static method returns a new instance of an OracleTimeStamp with the specified fractional
second precision.

Declaration

// C#
public static OracleTimeStamp SetPrecision(OracleTimeStamp value1,
 int fracSecPrecision);

Parameters

• value1

The provided OracleTimeStamp object.

• fracSecPrecision

The fractional second precision provided. Range of fractional second precision is (0 to 9).

Return Value

An OracleTimeStamp structure with the specified fractional second precision.

Chapter 15
OracleTimeStamp Structure

15-325

Exceptions

ArgumentOutOfRangeException - fracSecPrecision is out of the specified range.

Remarks

The value specified in the supplied fracSecPrecision is used to perform a rounding
off operation on the supplied OracleTimeStamp value. Depending on this value, 0 or
more trailing zeros are displayed in the string returned by ToString().

Example

The OracleTimeStamp with a value of "December 31, 9999 23:59:59.99" results in the
string "December 31, 9999 23:59:59.99000" when SetPrecision() is called with the
fractional second precision set to 5.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

OracleTimeStamp Static Operators
The OracleTimeStamp static operators are listed in Table 15-109.

Table 15-109 OracleTimeStamp Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStamp and returns a new OracleTimeStamp
structure (Overloaded)

operator == Determines if two OracleTimeStamp values are equal

operator > Determines if the first of two OracleTimeStamp values is greater
than the second

operator >= Determines if the first of two OracleTimeStamp values is greater
than or equal to the second

operator != Determines if the two OracleTimeStamp values are not equal

operator < Determines if the first of two OracleTimeStamp values is less
than the second

operator <= Determines if the first of two OracleTimeStamp values is less
than or equal to the second

operator - Subtracts the supplied instance value from the supplied
OracleTimeStamp and returns a new OracleTimeStamp
structure (Overloaded)

Chapter 15
OracleTimeStamp Structure

15-326

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator +
operator+ adds the supplied object to the OracleTimeStamp and returns a new
OracleTimeStamp structure.

Overload List:

• operator + (OracleTimeStamp, OracleIntervalDS)

This static operator adds the supplied OracleIntervalDS to the OracleTimeStamp and
returns a new OracleTimeStamp structure.

• operator + (OracleTimeStamp, OracleIntervalYM)

This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStamp and returns a new OracleTimeStamp structure.

• operator + (OracleTimeStamp, TimeSpan)

This static operator adds the supplied TimeSpan to the supplied OracleTimeStamp and
returns a new OracleTimeStamp structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator + (OracleTimeStamp, OracleIntervalDS)
This static operator adds the supplied OracleIntervalDS to the OracleTimeStamp and returns
a new OracleTimeStamp structure.

Declaration

// C#
public static operator + (OracleTimeStamp value1, OracleIntervalDS value2);

Parameters

• value1

Chapter 15
OracleTimeStamp Structure

15-327

An OracleTimeStamp.

• value2

An OracleIntervalDS.

Return Value

An OracleTimeStamp.

Remarks

If either parameter has a null value, the returned OracleTimeStamp has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator + (OracleTimeStamp, OracleIntervalYM)
This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStamp and returns a new OracleTimeStamp structure.

Declaration

// C#
public static operator + (OracleTimeStamp value1, OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStamp.

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStamp.

Remarks

If either parameter has a null value, the returned OracleTimeStamp has a null value.

Chapter 15
OracleTimeStamp Structure

15-328

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator + (OracleTimeStamp, TimeSpan)
This static operator adds the supplied TimeSpan to the supplied OracleTimeStamp and returns
a new OracleTimeStamp structure.

Declaration

// C#
public static operator + (OracleTimeStamp value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStamp.

• value2

A TimeSpan.

Return Value

An OracleTimeStamp.

Remarks

If the OracleTimeStamp instance has a null value, the returned OracleTimeStamp has a null
value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator ==
This static operator determines if two OracleTimeStamp values are equal.

Chapter 15
OracleTimeStamp Structure

15-329

Declaration

// C#
public static bool operator == (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if they are the same; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that
has a null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator >
This static operator determines if the first of two OracleTimeStamp values is greater
than the second.

Declaration

// C#
public static bool operator > (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

Chapter 15
OracleTimeStamp Structure

15-330

The second OracleTimeStamp.

Return Value

Returns true if the first OracleTimeStamp value is greater than the second; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator >=
This static operator determines if the first of two OracleTimeStamp values is greater than or
equal to the second.

Declaration

// C#
public static bool operator >= (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first OracleTimeStamp is greater than or equal to the second; otherwise
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

Chapter 15
OracleTimeStamp Structure

15-331

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator !=
This static operator determines if two OracleTimeStamp values are not equal.

Declaration

// C#
public static bool operator != (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if two OracleTimeStamp values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that
has a null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-332

operator <
This static operator determines if the first of two OracleTimeStamp values is less than the
second.

Declaration

// C#
public static bool operator < (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first OracleTimeStamp is less than the second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator <=
This static operator determines if the first of two OracleTimeStamp values is less than or equal
to the second.

Declaration

// C#
public static bool operator <= (OracleTimeStamp value1,
 OracleTimeStamp value2);

Chapter 15
OracleTimeStamp Structure

15-333

Parameters

• value1

The first OracleTimeStamp.
• value2

The second OracleTimeStamp.

Return Value

Returns true if the first OracleTimeStamp is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that
has a null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator -
operator- subtracts the supplied value, from the supplied OracleTimeStamp value,
and returns a new OracleTimeStamp structure.

Overload List:

• operator - (OracleTimeStamp, OracleIntervalDS)

This static operator subtracts the supplied OracleIntervalDS value, from the
supplied OracleTimeStamp value, and return a new OracleTimeStamp structure.

• operator - (OracleTimeStamp, OracleIntervalYM)

This static operator subtracts the supplied OracleIntervalYM value, from the
supplied OracleTimeStamp value, and returns a new OracleTimeStamp structure.

• operator - (OracleTimeStamp, TimeSpan)

This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStamp value, and returns a new OracleTimeStamp structure.

Chapter 15
OracleTimeStamp Structure

15-334

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator - (OracleTimeStamp, OracleIntervalDS)
This static operator subtracts the supplied OracleIntervalDS value, from the supplied
OracleTimeStamp value, and return a new OracleTimeStamp structure.

Declaration

// C#
public static operator - (OracleTimeStamp value1, OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStamp.

• value2

An OracleIntervalDS instance.

Return Value

An OracleTimeStamp structure.

Remarks

If either parameter has a null value, the returned OracleTimeStamp has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator - (OracleTimeStamp, OracleIntervalYM)
This static operator subtracts the supplied OracleIntervalYM value, from the supplied
OracleTimeStamp value, and returns a new OracleTimeStamp structure.

Chapter 15
OracleTimeStamp Structure

15-335

Declaration

// C#
public static operator - (OracleTimeStamp value1, OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStamp.

• value2

An OracleIntervalYM instance.

Return Value

An OracleTimeStamp structure.

Remarks

If either parameter has a null value, the returned OracleTimeStamp has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

operator - (OracleTimeStamp, TimeSpan)
This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStamp value, and returns a new OracleTimeStamp structure.

Declaration

// C#
public static operator - (OracleTimeStamp value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStamp.

• value2

A TimeSpan instance.

Return Value

An OracleTimeStamp structure.

Chapter 15
OracleTimeStamp Structure

15-336

Remarks

If the OracleTimeStamp instance has a null value, the returned OracleTimeStamp structure
has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

OracleTimeStamp Static Type Conversions
The OracleTimeStamp static type conversions are listed in Table 15-110.

Table 15-110 OracleTimeStamp Static Type Conversions

Operator Description

explicit operator OracleTimeStamp Converts an instance value to an
OracleTimeStamp structure (Overloaded)

implicit operator OracleTimeStamp Converts an instance value to an
OracleTimeStamp structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStamp value to a
DateTime structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

explicit operator OracleTimeStamp
explicit operator OracleTimeStamp converts the supplied value to an OracleTimeStamp
structure

Overload List:

• explicit operator OracleTimeStamp(OracleTimeStampLTZ)

This static type conversion operator converts an OracleTimeStampLTZ value to an
OracleTimeStamp structure.

Chapter 15
OracleTimeStamp Structure

15-337

• explicit operator OracleTimeStamp(OracleTimeStampTZ)

This static type conversion operator converts an OracleTimeStampTZ value to an
OracleTimeStamp structure.

• explicit operator OracleTimeStamp(string)

This static type conversion operator converts the supplied string to an
OracleTimeStamp structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

explicit operator OracleTimeStamp(OracleTimeStampLTZ)
This static type conversion operator converts an OracleTimeStampLTZ value to an
OracleTimeStamp structure.

Declaration

// C#
public static explicit operator OracleTimeStamp(OracleTimeStampLTZ value1);

Parameters

• value1

An OracleTimeStampLTZ instance.

Return Value

The returned OracleTimeStamp contains the date and time of the OracleTimeStampLTZ
structure.

Remarks

If the OracleTimeStampLTZ structure has a null value, the returned OracleTimeStamp
structure also has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-338

explicit operator OracleTimeStamp(OracleTimeStampTZ)
This static type conversion operator converts an OracleTimeStampTZ value to an
OracleTimeStamp structure.

Declaration

// C#
public static explicit operator OracleTimeStamp(OracleTimeStampTZ value1);

Parameters

• value1

An OracleTimeStampTZ instance.

Return Value

The returned OracleTimeStamp contains the date and time information from value1, but the
time zone information from value1 is truncated.

Remarks

If the OracleTimeStampTZ structure has a null value, the returned OracleTimeStamp structure
also has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

explicit operator OracleTimeStamp(string)
This static type conversion operator converts the supplied string to an OracleTimeStamp
structure.

Declaration

// C#
public static explicit operator OracleTimeStamp(string tsStr);

Parameters

• tsStr

A string representation of an Oracle TIMESTAMP.

Return Value

An OracleTimeStamp.

Chapter 15
OracleTimeStamp Structure

15-339

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle
TIMESTAMP or the tsStr is not in the timestamp format specified by the thread's
OracleGlobalization.TimeStampFormat property, which represents the Oracle
NLS_TIMESTAMP_FORMAT parameter.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string,
the client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleTimeStampSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the explicit
 // operator OracleTimeStamp(string)
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStamp from a string using the format specified.
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

Chapter 15
OracleTimeStamp Structure

15-340

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

• "OracleGlobalization Class"

• "Globalization Support "

• Oracle Database SQL Language Reference for further information on datetime
format elements

implicit operator OracleTimeStamp
This static type conversion operator converts a value to an OracleTimeStamp structure.

Overload List:

• implicit operator OracleTimeStamp(OracleDate)

This static type conversion operator converts an OracleDate value to an
OracleTimeStamp structure.

• implicit operator OracleTimeStamp(DateTime)

This static type conversion operator converts a DateTime value to an OracleTimeStamp
structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

implicit operator OracleTimeStamp(OracleDate)
This static type conversion operator converts an OracleDate value to an OracleTimeStamp
structure.

Declaration

// C#
public static implicit operator OracleTimeStamp (OracleDate value1);

Parameters

• value1

Chapter 15
OracleTimeStamp Structure

15-341

An OracleDate instance.

Return Value

An OracleTimeStamp structure that contains the date and time of the OracleDate
structure, value1.

Remarks

If the OracleDate structure has a null value, the returned OracleTimeStamp structure
also has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

implicit operator OracleTimeStamp(DateTime)
This static type conversion operator converts a DateTime value to an OracleTimeStamp
structure.

Declaration

// C#
public static implicit operator OracleTimeStamp(DateTime value);

Parameters

• value

A DateTime instance.

Return Value

An OracleTimeStamp structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-342

explicit operator DateTime
This static type conversion operator converts an OracleTimeStamp value to a DateTime
structure.

Declaration

// C#
public static explicit operator DateTime(OracleTimeStamp value1);

Parameters

• value1

An OracleTimeStamp instance.

Return Value

A DateTime containing the date and time in the current instance.

Exceptions

OracleNullValueException - The OracleTimeStamp structure has a null value.

Remarks

The precision of the OracleTimeStamp can be lost during the conversion.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

OracleTimeStamp Properties
The OracleTimeStamp properties are listed in Table 15-111.

Table 15-111 OracleTimeStamp Properties

Properties Description

BinData Returns an array of bytes that represents an Oracle TIMESTAMP in Oracle
internal format

Day Specifies the day component of an OracleTimeStamp
IsNull Indicates whether or not the OracleTimeStamp instance has a null value

Hour Specifies the hour component of an OracleTimeStamp
Millisecond Specifies the millisecond component of an OracleTimeStamp

Chapter 15
OracleTimeStamp Structure

15-343

Table 15-111 (Cont.) OracleTimeStamp Properties

Properties Description

Minute Specifies the minute component of an OracleTimeStamp
Month Specifies the month component of an OracleTimeStamp
Nanosecond Specifies the nanosecond component of an OracleTimeStamp
Second Specifies the second component of an OracleTimeStamp
Value Specifies the date and time that is stored in the OracleTimeStamp structure

Year Specifies the year component of an OracleTimeStamp

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

BinData
This property returns an array of bytes that represents an Oracle TIMESTAMP in Oracle
internal format.

Declaration

// C#
public byte[] BinData {get;}

Property Value

A byte array that represents an Oracle TIMESTAMP in an internal format.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-344

Day
This property specifies the day component of an OracleTimeStamp.

Declaration

// C#
public int Day{get;}

Property Value

A number that represents the day. Range of Day is (1 to 31).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Hour
This property specifies the hour component of an OracleTimeStamp.

Chapter 15
OracleTimeStamp Structure

15-345

Declaration

// C#
public int Hour{get;}

Property Value

A number that represents the hour. Range of hour is (0 to 23).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Millisecond
This property gets the millisecond component of an OracleTimeStamp.

Declaration

// C#
public double Millisecond{get;}

Property Value

A number that represents a millisecond. Range of Millisecond is (0 to 999.999999).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Minute
This property gets the minute component of an OracleTimeStamp.

Chapter 15
OracleTimeStamp Structure

15-346

Declaration

// C#
public int Minute{get;}

Property Value

A number that represent a minute. Range of Minute is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Month
This property gets the month component of an OracleTimeStamp.

Declaration

// C#
public int Month{get;}

Property Value

A number that represents a month. Range of Month is (1 to 12).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Nanosecond
This property gets the nanosecond component of an OracleTimeStamp.

Chapter 15
OracleTimeStamp Structure

15-347

Declaration

// C#
public int Nanosecond{get;}

Property Value

A number that represents a nanosecond. Range of Nanosecond is (0 to 999999999).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Second
This property gets the second component of an OracleTimeStamp.

Declaration

// C#
public int Second{get;}

Property Value

A number that represents a second. Range of Second is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-348

Value
This property specifies the date and time that is stored in the OracleTimeStamp structure.

Declaration

// C#
public DateTime Value{get;}

Property Value

A DateTime.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Year
This property gets the year component of an OracleTimeStamp.

Declaration

// C#
public int Year{get;}

Property Value

A number that represents a year. The range of Year is (-4712 to 9999).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-349

OracleTimeStamp Methods
The OracleTimeStamp methods are listed in Table 15-112.

Table 15-112 OracleTimeStamp Methods

Methods Description

AddDays Adds the supplied number of days to the current instance

AddHours Adds the supplied number of hours to the current instance

AddMilliseconds Adds the supplied number of milliseconds to the current
instance

AddMinutes Adds the supplied number of minutes to the current instance

AddMonths Adds the supplied number of months to the current instance

AddNanoseconds Adds the supplied number of nanoseconds to the current
instance

AddSeconds Adds the supplied number of seconds to the current instance

AddYears Adds the supplied number of years to the current instance

CompareTo Compares the current OracleTimeStamp instance to an
object, and returns an integer that represents their relative
values

Equals Determines whether or not an object has the same date and
time as the current OracleTimeStamp instance (Overloaded)

GetHashCode Returns a hash code for the OracleTimeStamp instance

GetDaysBetween Subtracts an OracleTimeStamp value from the current
instance and returns an OracleIntervalDS that represents
the time difference between the supplied OracleTimeStamp
and the current instance

GetYearsBetween Subtracts value1 from the current instance and returns an
OracleIntervalYM that represents the difference between
value1 and the current instance using OracleIntervalYM

GetType Inherited from System.Object
ToOracleDate Converts the current OracleTimeStamp structure to an

OracleDate structure

ToOracleTimeStampLTZ Converts the current OracleTimeStamp structure to an
OracleTimeStampLTZ structure

ToOracleTimeStampTZ Converts the current OracleTimeStamp structure to an
OracleTimeStampTZ structure

ToString Converts the current OracleTimeStamp structure to a string

Chapter 15
OracleTimeStamp Structure

15-350

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

AddDays
This method adds the supplied number of days to the current instance.

Declaration

// C#
public OracleTimeStamp AddDays(double days);

Parameters

• days

The supplied number of days. Range is (-1,000,000,000 < days < 1,000,000,000)

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

AddHours
This method adds the supplied number of hours to the current instance.

Declaration

// C#
public OracleTimeStamp AddHours(double hours);

Chapter 15
OracleTimeStamp Structure

15-351

Parameters

• hours

The supplied number of hours. Range is (-24,000,000,000 < hours <
24,000,000,000).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

AddMilliseconds
This method adds the supplied number of milliseconds to the current instance.

Declaration

// C#
public OracleTimeStamp AddMilliseconds(double milliseconds);

Parameters

• milliseconds

The supplied number of milliseconds. Range is (-8.64 * 1016< milliseconds <
8.64 * 1016).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStamp Structure

15-352

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

AddMinutes
This method adds the supplied number of minutes to the current instance.

Declaration

// C#
public OracleTimeStamp AddMinutes(double minutes);

Parameters

• minutes

The supplied number of minutes. Range is (-1,440,000,000,000 < minutes <
1,440,000,000,000).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

AddMonths
This method adds the supplied number of months to the current instance.

Declaration

// C#
public OracleTimeStamp AddMonths(long months);

Chapter 15
OracleTimeStamp Structure

15-353

Parameters

• months

The supplied number of months. Range is (-12,000,000,000 < months <
12,000,000,000).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

AddNanoseconds
This method adds the supplied number of nanoseconds to the current instance.

Declaration

// C#
public OracleTimeStamp AddNanoseconds(long nanoseconds);

Parameters

• nanoseconds

The supplied number of nanoseconds.

Return Value

An OracleTimeStamp.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStamp Structure

15-354

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

AddSeconds
This method adds the supplied number of seconds to the current instance.

Declaration

// C#
public OracleTimeStamp AddSeconds(double seconds);

Parameters

• seconds

The supplied number of seconds. Range is (-8.64 * 1013< seconds < 8.64 * 1013).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

AddYears
This method adds the supplied number of years to the current instance.

Declaration

// C#
public OracleTimeStamp AddYears(int years);

Chapter 15
OracleTimeStamp Structure

15-355

Parameters

• years

The supplied number of years. Range is (-999,999,999 <= years < = 999,999,999)

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

CompareTo
This method compares the current OracleTimeStamp instance to an object, and returns
an integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStamp instance.

Return Value

The method returns a number that is:

Less than zero: if the current OracleTimeStamp instance value is less than that of obj.

Zero: if the current OracleTimeStamp instance and obj values are equal.

Greater than zero: if the current OracleTimeStamp instance value is greater than that of
obj.

Implements

IComparable

Chapter 15
OracleTimeStamp Structure

15-356

Exceptions

ArgumentException - The obj parameter is not of type OracleTimeStamp.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleTimeStamps. For example, comparing an
OracleTimeStamp instance with an OracleBinary instance is not allowed. When an
OracleTimeStamp is compared with a different type, an ArgumentException is thrown.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Equals
Overrides Object
This method determines whether or not an object has the same date and time as the current
OracleTimeStamp instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStamp instance.

Return Value

Returns true if the obj is of type OracleTimeStamp and represents the same date and time;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

Chapter 15
OracleTimeStamp Structure

15-357

• Two OracleTimeStamps that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

GetHashCode
Overrides Object
This method returns a hash code for the OracleTimeStamp instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

GetDaysBetween
This method subtracts an OracleTimeStamp value from the current instance and
returns an OracleIntervalDS that represents the time difference between the supplied
OracleTimeStamp structure and the current instance.

Declaration

// C#
public OracleIntervalDS GetDaysBetween(OracleTimeStamp value1);

Parameters

• value1

The OracleTimeStamp value being subtracted.

Chapter 15
OracleTimeStamp Structure

15-358

Return Value

An OracleIntervalDS that represents the interval between two OracleTimeStamp values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalDS has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

GetYearsBetween
This method subtracts an OracleTimeStamp value from the current instance and returns an
OracleIntervalYM that represents the time difference between the OracleTimeStamp value
and the current instance.

Declaration

// C#
public OracleIntervalYM GetYearsBetween(OracleTimeStamp value1);

Parameters

• value1

The OracleTimeStamp value being subtracted.

Return Value

An OracleIntervalYM that represents the interval between two OracleTimeStamp values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalYM has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

Chapter 15
OracleTimeStamp Structure

15-359

ToOracleDate
This method converts the current OracleTimeStamp structure to an OracleDate
structure.

Declaration

// C#
public OracleDate ToOracleDate();

Return Value

The returned OracleDate contains the date and time in the current instance.

Remarks

The precision of the OracleTimeStamp value can be lost during the conversion.

If the value of the OracleTimeStamp has a null value, the value of the returned
OracleDate structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

ToOracleTimeStampLTZ
This method converts the current OracleTimeStamp structure to an
OracleTimeStampLTZ structure.

Declaration

// C#
public OracleTimeStampLTZ ToOracleTimeStampLTZ();

Return Value

The returned OracleTimeStampLTZ contains date and time in the current instance.

Remarks

If the value of the current instance has a null value, the value of the returned
OracleTimeStampLTZ structure has a null value.

Chapter 15
OracleTimeStamp Structure

15-360

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

ToOracleTimeStampTZ
This method converts the current OracleTimeStamp structure to an OracleTimeStampTZ
structure.

Declaration

// C#
public OracleTimeStampTZ ToOracleTimeStampTZ();

Return Value

The returned OracleTimeStampTZ contains the date and time from the OracleTimeStamp and
the time zone from the OracleGlobalization.TimeZone of the thread.

Remarks

If the value of the current instance has a null value, the value of the returned
OracleTimeStampTZ structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

• "OracleGlobalization Class"

• "Globalization Support "

ToString
Overrides Object
This method converts the current OracleTimeStamp structure to a string.

Declaration

// C#
public override string ToString();

Chapter 15
OracleTimeStamp Structure

15-361

Return Value

A string that represents the same date and time as the current OracleTimeStamp
structure.

Remarks

The returned value is a string representation of an OracleTimeStamp in the format
specified by the OracleGlobalization.TimeStampFormat property of the thread.

The names and abbreviations used for months and days are in the language specified
by the OracleGlobalization's DateLanguage and Calendar properties of the thread. If
any of the thread's globalization properties are set to null or an empty string, the client
computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ToStringSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the OracleTimeStamp(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStamp from a string using the format specified.
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStamp Structure

• OracleTimeStamp Members

• "OracleGlobalization Class"

• "Globalization Support "

Chapter 15
OracleTimeStamp Structure

15-362

OracleTimeStampLTZ Structure
The OracleTimeStampLTZ structure represents the Oracle TIMESTAMP WITH LOCAL TIME ZONE
data type to be stored in or retrieved from a database. Each OracleTimeStampLTZ stores the
following information: year, month, day, hour, minute, second, and nanosecond.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleTimeStampLTZ

Declaration

// C#
public struct OracleTimeStampLTZ : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleTimeStampLTZSample
{
 static void Main()
 {
 // Illustrates usage of OracleTimeStampLTZ
 // Display Local Time Zone Name
 Console.WriteLine("Local Time Zone Name = " +
 OracleTimeStampLTZ.GetLocalTimeZoneName());
 OracleTimeStampLTZ tsLocal1 = OracleTimeStampLTZ.GetSysDate();
 OracleTimeStampLTZ tsLocal2 = DateTime.Now;

Chapter 15
OracleTimeStampLTZ Structure

15-363

 // Calculate the difference between tsLocal1 and tsLocal2
 OracleIntervalDS idsDiff = tsLocal2.GetDaysBetween(tsLocal1);

 // Calculate the difference using AddNanoseconds()
 int nanoDiff = 0;
 while (tsLocal2 > tsLocal1)
 {
 nanoDiff += 10;
 tsLocal1 = tsLocal1.AddNanoseconds(10);
 }
 Console.WriteLine("idsDiff.Nanoseconds = " + idsDiff.Nanoseconds);
 Console.WriteLine("nanoDiff = " + nanoDiff);
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Members

• OracleTimeStampLTZ Constructors

• OracleTimeStampLTZ Static Fields

• OracleTimeStampLTZ Static Methods

• OracleTimeStampLTZ Static Operators

• OracleTimeStampLTZ Static Type Conversions

• OracleTimeStampLTZ Properties

• OracleTimeStampLTZ Methods

OracleTimeStampLTZ Members
OracleTimeStampLTZ members are listed in the following tables:

OracleTimeStampLTZ Constructors

OracleTimeStampLTZ constructors are listed in Table 15-113

Table 15-113 OracleTimeStampLTZConstructors

Constructor Description

OracleTimeStampLTZ Constructors Instantiates a new instance of
OracleTimeStampLTZ structure (Overloaded)

OracleTimeStampLTZ Static Fields

The OracleTimeStampLTZ static fields are listed in Table 15-114.

Chapter 15
OracleTimeStampLTZ Structure

15-364

Table 15-114 OracleTimeStampLTZ Static Fields

Field Description

MaxValue Represents the maximum valid date for an
OracleTimeStampLTZ structure, which is December
31, 9999 23:59:59.999999999

MinValue Represents the minimum valid date for an
OracleTimeStampLTZ structure, which is January 1,
-4712 0:0:0

Null Represents a null value that can be assigned to an
instance of the OracleTimeStampLTZ structure

OracleTimeStampLTZ Static Methods

The OracleTimeStampLTZ static methods are listed in Table 15-115.

Table 15-115 OracleTimeStampLTZ Static Methods

Methods Description

Equals Determines if two OracleTimeStampLTZ values are
equal (Overloaded)

GetLocalTimeZoneName Gets the client's local time zone name

GetLocalTimeZoneOffset Gets the client's local time zone offset relative to UTC

GetSysDate Gets an OracleTimeStampLTZ structure that
represents the current date and time

GreaterThan Determines if the first of two OracleTimeStampLTZ
values is greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStampLTZ
values is greater than or equal to the second

LessThan Determines if the first of two OracleTimeStampLTZ
values is less than the second

LessThanOrEqual Determines if the first of two OracleTimeStampLTZ
values is less than or equal to the second

NotEquals Determines if two OracleTimeStampLTZ values are
not equal

Parse Gets an OracleTimeStampLTZ structure and sets its
value for date and time using the supplied string

SetPrecision Returns a new instance of an OracleTimeStampLTZ
with the specified fractional second precision

OracleTimeStampLTZ Static Operators

The OracleTimeStampLTZ static operators are listed in Table 15-116.

Chapter 15
OracleTimeStampLTZ Structure

15-365

Table 15-116 OracleTimeStampLTZ Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStampLTZ and returns a new
OracleTimeStampLTZ structure (Overloaded)

operator == Determines if two OracleTimeStampLTZ values
are equal

operator > Determines if the first of two
OracleTimeStampLTZ values is greater than the
second

operator >= Determines if the first of two
OracleTimeStampLTZ values is greater than or
equal to the second

operator != Determines if two OracleTimeStampLTZ values
are not equal

operator < Determines if the first of two
OracleTimeStampLTZ values is less than the
second

operator <= Determines if the first of two
OracleTimeStampLTZ values is less than or equal
to the second

operator - Subtracts the supplied instance value from the
supplied OracleTimeStampLTZ and returns a new
OracleTimeStampLTZ structure (Overloaded)

OracleTimeStampLTZ Static Type Conversions

The OracleTimeStampLTZ static type conversions are listed in Table 15-117.

Table 15-117 OracleTimeStampLTZ Static Type Conversions

Operator Description

explicit operator OracleTimeStampLTZ Converts an instance value to an
OracleTimeStampLTZ structure (Overloaded)

implicit operator OracleTimeStampLTZ Converts an instance value to an
OracleTimeStampLTZ structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStampLTZ value to a
DateTime structure

OracleTimeStampLTZ Properties

The OracleTimeStampLTZ properties are listed in Table 15-118.

Chapter 15
OracleTimeStampLTZ Structure

15-366

Table 15-118 OracleTimeStampLTZ Properties

Properties Description

BinData Returns an array of bytes that represents an Oracle
TIMESTAMP WITH LOCAL TIME ZONE in Oracle
internal format

Day Specifies the day component of an
OracleTimeStampLTZ

IsNull Indicates whether or not the OracleTimeStampLTZ
instance has a null value

Hour Specifies the hour component of an
OracleTimeStampLTZ

Millisecond Specifies the millisecond component of an
OracleTimeStampLTZ

Minute Specifies the minute component of an
OracleTimeStampLTZ

Month Specifies the month component of an
OracleTimeStampLTZ

Nanosecond Specifies the nanosecond component of an
OracleTimeStampLTZ

Second Specifies the second component of an
OracleTimeStampLTZ

Value Specifies the date and time that is stored in the
OracleTimeStampLTZ structure

Year Specifies the year component of an
OracleTimeStampLTZ

OracleTimeStampLTZ Methods

The OracleTimeStampLTZ methods are listed in Table 15-119.

Table 15-119 OracleTimeStampLTZ Methods

Methods Description

AddDays Adds the supplied number of days to the current
instance

AddHours Adds the supplied number of hours to the current
instance

AddMilliseconds Adds the supplied number of milliseconds to the
current instance

AddMinutes Adds the supplied number of minutes to the current
instance

AddMonths Adds the supplied number of months to the current
instance

AddNanoseconds Adds the supplied number of nanoseconds to the
current instance

Chapter 15
OracleTimeStampLTZ Structure

15-367

Table 15-119 (Cont.) OracleTimeStampLTZ Methods

Methods Description

AddSeconds Adds the supplied number of seconds to the current
instance

AddYears Adds the supplied number of years to the current
instance

CompareTo Compares the current OracleTimeStampLTZ instance
to an object and returns an integer that represents their
relative values

Equals Determines whether or not an object has the same
date and time as the current OracleTimeStampLTZ
instance (Overloaded)

GetHashCode Returns a hash code for the OracleTimeStampLTZ
instance

GetDaysBetween Subtracts an OracleTimeStampLTZ from the current
instance and returns an OracleIntervalDS that
represents the difference

GetYearsBetween Subtracts an OracleTimeStampLTZ from the current
instance and returns an OracleIntervalYM that
represents the difference

GetType Inherited from System.Object
ToOracleDate Converts the current OracleTimeStampLTZ structure

to an OracleDate structure

ToOracleTimeStamp Converts the current OracleTimeStampLTZ structure
to an OracleTimeStamp structure

ToOracleTimeStampTZ Converts the current OracleTimeStampLTZ structure
to an OracleTimeStampTZ structure

ToString Converts the current OracleTimeStampLTZ structure
to a string

ToUniversalTime Converts the current local time to Coordinated
Universal Time (UTC)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

OracleTimeStampLTZ Constructors
The OracleTimeStampLTZ constructors create new instances of the
OracleTimeStampLTZ structure.

Chapter 15
OracleTimeStampLTZ Structure

15-368

Overload List:

• OracleTimeStampLTZ(DateTime)

This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value for date and time using the supplied DateTime value.

• OracleTimeStampLTZ(string)

This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value for date and time using the supplied string.

• OracleTimeStampLTZ(int, int, int)

This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value for date using year, month, and day.

• OracleTimeStampLTZ(int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value for date and time using year, month, day, hour, minute, and second.

• OracleTimeStampLTZ(int, int, int, int, int, int, double)

This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and millisecond.

• OracleTimeStampLTZ(int, int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and nanosecond.

• OracleTimeStampLTZ(byte [])

This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value to the provided byte array, which is in the internal Oracle TIMESTAMP WITH LOCAL
TIME ZONE format.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ(DateTime)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value for date and time using the supplied DateTime value.

Declaration

// C#
public OracleTimeStampLTZ (DateTime dt);

Chapter 15
OracleTimeStampLTZ Structure

15-369

Parameters

• dt

The supplied DateTime value.

Exceptions

ArgumentException - The dt parameter cannot be used to construct a valid
OracleTimeStampLTZ.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ(string)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value for date and time using the supplied string.

Declaration

// C#
public OracleTimeStampLTZ(string tsStr);

Parameters

• tsStr

A string that represents an Oracle TIMESTAMP WITH LOCAL TIME ZONE.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle
TIMESTAMP WITH LOCAL TIME ZONE or the supplied tsStr is not in the timestamp format
specified by the OracleGlobalization.TimeStampFormat property of the thread, which
represents the Oracle NLS_TIMESTAMP_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string,
the client computer's settings are used.

Chapter 15
OracleTimeStampLTZ Structure

15-370

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleTimeStampLTZSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the OracleTimeStampLTZ(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampLTZ from a string using the format
 // specified.
 OracleTimeStampLTZ ts =
 new OracleTimeStampLTZ("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

• Oracle Database SQL Language Referencefor further information on date
format elements

OracleTimeStampLTZ(int, int, int)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value for date using year, month, and day.

Declaration

// C#
public OracleTimeStampLTZ(int year, int month, int day);

Chapter 15
OracleTimeStampLTZ Structure

15-371

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampLTZ (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ(int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value for date and time using year, month, day, hour, minute, and second.

Declaration

// C#
public OracleTimeStampLTZ (int year, int month, int day, int hour,
 int minute, int second);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

Chapter 15
OracleTimeStampLTZ Structure

15-372

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStampLTZ (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ(int, int, int, int, int, int, double)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and millisecond.

Declaration

// C#
public OracleTimeStampLTZ(int year, int month, int day, int hour, int minute, int
second, double millisecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

Chapter 15
OracleTimeStampLTZ Structure

15-373

The second provided. Range of second is (0 to 59).

• milliSeconds

The milliseconds provided. Range of millisecond is (0 to 999.999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampLTZ (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ(int, int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value for date and time using year, month, day, hour, minute, second, and
nanosecond.

Declaration

// C#
public OracleTimeStampLTZ (int year, int month, int day, int hour,
 int minute, int second, int nanosecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

Chapter 15
OracleTimeStampLTZ Structure

15-374

• nanosecond

The nanosecond provided. Range of nanosecond is (0 to 999999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStampLTZ (that is, the day is out of range for the month).

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ(byte [])
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets its
value to the provided byte array, which is in the internal Oracle TIMESTAMP WITH LOCAL TIME
ZONE format.

Declaration

// C#
public OracleTimeStampLTZ (byte[] bytes);

Parameters

• bytes

A byte array that represents an Oracle TIMESTAMP WITH LOCAL TIME ZONE in Oracle internal
format.

Exceptions

ArgumentException - bytes is not in an internal Oracle TIMESTAMP WITH LOCAL TIME ZONE
format or bytes is not a valid Oracle TIMESTAMP WITH LOCAL TIME ZONE.

ArgumentNullException - bytes is null.

Chapter 15
OracleTimeStampLTZ Structure

15-375

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ Static Fields
The OracleTimeStampLTZ static fields are listed in Table 15-120.

Table 15-120 OracleTimeStampLTZ Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleTimeStampLTZ
structure, which is December 31, 9999 23:59:59.999999999

MinValue Represents the minimum valid date for an OracleTimeStampLTZ
structure, which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to an instance of the
OracleTimeStampLTZ structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

MaxValue
This static field represents the maximum valid date for an OracleTimeStampLTZ
structure, which is December 31, 9999 23:59:59.999999999.

Declaration

// C#
public static readonly OracleTimeStampLTZ MaxValue;

Remarks

This value is the maximum date and time in the client time zone.

Chapter 15
OracleTimeStampLTZ Structure

15-376

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

MinValue
This static field represents the minimum valid date for an OracleTimeStampLTZ structure,
which is January 1, -4712 0:0:0.

Declaration

// C#
public static readonly OracleTimeStampLTZ MinValue;

Remarks

This value is the minimum date and time in the client time zone.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Null
This static field represents a null value that can be assigned to an instance of the
OracleTimeStampLTZ structure.

Declaration

// C#
public static readonly OracleTimeStampLTZ Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Chapter 15
OracleTimeStampLTZ Structure

15-377

OracleTimeStampLTZ Static Methods
The OracleTimeStampLTZ static methods are listed in Table 15-121.

Table 15-121 OracleTimeStampLTZ Static Methods

Methods Description

Equals Determines if two OracleTimeStampLTZ values are equal
(Overloaded)

GetLocalTimeZoneName Gets the client's local time zone name

GetLocalTimeZoneOffset Gets the client's local time zone offset relative to UTC

GetSysDate Gets an OracleTimeStampLTZ structure that represents the
current date and time

GreaterThan Determines if the first of two OracleTimeStampLTZ values is
greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStampLTZ values is
greater than or equal to the second

LessThan Determines if the first of two OracleTimeStampLTZ values is
less than the second

LessThanOrEqual Determines if the first of two OracleTimeStampLTZ values is
less than or equal to the second

NotEquals Determines if two OracleTimeStampLTZ values are not
equal

Parse Gets an OracleTimeStampLTZ structure and sets its value
for date and time using the supplied string

SetPrecision Returns a new instance of an OracleTimeStampLTZ with the
specified fractional second precision

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Equals
This static method determines if two OracleTimeStampLTZ values are equal.

Declaration

// C#
public static bool Equals(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Chapter 15
OracleTimeStampLTZ Structure

15-378

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if two OracleTimeStampLTZ values are equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

GetLocalTimeZoneName
This static method gets the client's local time zone name.

Declaration

// C#
public static string GetLocalTimeZoneName();

Return Value

A string containing the local time zone.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Chapter 15
OracleTimeStampLTZ Structure

15-379

GetLocalTimeZoneOffset
This static method gets the client's local time zone offset relative to Coordinated
Universal Time (UTC).

Declaration

// C#
public static TimeSpan GetLocalTimeZoneOffset();

Return Value

A TimeSpan structure containing the local time zone hours and time zone minutes.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

GetSysDate
This static method gets an OracleTimeStampLTZ structure that represents the current
date and time.

Declaration

// C#
public static OracleTimeStampLTZ GetSysDate();

Return Value

An OracleTimeStampLTZ structure that represents the current date and time.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

GreaterThan
This static method determines if the first of two OracleTimeStampLTZ values is greater
than the second.

Chapter 15
OracleTimeStampLTZ Structure

15-380

Declaration

// C#
public static bool GreaterThan(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first of two OracleTimeStampLTZ values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

GreaterThanOrEqual
This static method determines if the first of two OracleTimeStampLTZ values is greater than or
equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

Chapter 15
OracleTimeStampLTZ Structure

15-381

The second OracleTimeStampLTZ.

Return Value

Returns true if the first of two OracleTimeStampLTZ values is greater than or equal to
the second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ
that has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

LessThan
This static method determines if the first of two OracleTimeStampLTZ values is less
than the second.

Declaration

// C#
public static bool LessThan(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first of two OracleTimeStampLTZ values is less than the second.
Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ
that has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-382

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

LessThanOrEqual
This static method determines if the first of two OracleTimeStampLTZ values is less than or
equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first of two OracleTimeStampLTZ values is less than or equal to the
second. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Chapter 15
OracleTimeStampLTZ Structure

15-383

NotEquals
This static method determines if two OracleTimeStampLTZ values are not equal.

Declaration

// C#
public static bool NotEquals(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if two OracleTimeStampLTZ values are not equal. Returns false
otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ
that has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Parse
This static method creates an OracleTimeStampLTZ structure and sets its value using
the supplied string.

Declaration

// C#
public static OracleTimeStampLTZ Parse(string tsStr);

Parameters

• tsStr

Chapter 15
OracleTimeStampLTZ Structure

15-384

A string that represents an Oracle TIMESTAMP WITH LOCAL TIME ZONE.

Return Value

An OracleTimeStampLTZ structure.

Exceptions

ArgumentException - The tsStr parameter is an invalid string representation of an Oracle
TIMESTAMP WITH LOCAL TIME ZONE or the tsStr is not in the timestamp format specified by the
OracleGlobalization.TimeStampFormat property of the thread, which represents the Oracle
NLS_TIMESTAMP_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Remarks

The names and abbreviations used for months and days are in the language specified by the
DateLanguage and Calendar properties of the thread's OracleGlobalization object. If any of
the thread's globalization properties are set to null or an empty string, the client computer's
settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ParseSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the Parse() method
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampLTZ from a string using the format specified.
 OracleTimeStampLTZ ts =
 OracleTimeStampLTZ.Parse("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

Chapter 15
OracleTimeStampLTZ Structure

15-385

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

SetPrecision
This static method returns a new instance of an OracleTimeStampLTZ with the
specified fractional second precision.

Declaration

// C#
public static OracleTimeStampLTZ SetPrecision(OracleTimeStampLTZ value1,
 int fracSecPrecision);

Parameters

• value1

The provided OracleTimeStampLTZ object.

• fracSecPrecision

The fractional second precision provided. Range of fractional second precision is
(0 to 9).

Return Value

An OracleTimeStampLTZ structure with the specified fractional second precision

Exceptions

ArgumentOutOfRangeException - fracSecPrecision is out of the specified range.

Remarks

The value specified in the supplied fracSecPrecision parameter is used to perform a
rounding off operation on the supplied OracleTimeStampLTZ value. Depending on this
value, 0 or more trailing zeros are displayed in the string returned by ToString().

Example

The OracleTimeStampLTZ with a value of "December 31, 9999 23:59:59.99" results in
the string "December 31, 9999 23:59:59.99000" when SetPrecision() is called with
the fractional second precision set to 5.

Chapter 15
OracleTimeStampLTZ Structure

15-386

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ Static Operators
The OracleTimeStampLTZ static operators are listed in Table 15-122.

Table 15-122 OracleTimeStampLTZ Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ
structure (Overloaded)

operator == Determines if two OracleTimeStampLTZ values are equal

operator > Determines if the first of two OracleTimeStampLTZ values is greater
than the second

operator >= Determines if the first of two OracleTimeStampLTZ values is greater
than or equal to the second

operator != Determines if two OracleTimeStampLTZ values are not equal

operator < Determines if the first of two OracleTimeStampLTZ values is less
than the second

operator <= Determines if the first of two OracleTimeStampLTZ values is less
than or equal to the second

operator - Subtracts the supplied instance value from the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ
structure (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator +
operator + adds the supplied value to the supplied OracleTimeStampLTZ and returns a new
OracleTimeStampLTZ structure.

Chapter 15
OracleTimeStampLTZ Structure

15-387

Overload List:

• operator + (OracleTimeStampLTZ, OracleIntervalDS)

This static operator adds the supplied OracleIntervalDS to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ structure.

• operator + (OracleTimeStampLTZ, OracleIntervalYM)

This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ structure.

• operator + (OracleTimeStampLTZ, TimeSpan)

This static operator adds the supplied TimeSpan to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator + (OracleTimeStampLTZ, OracleIntervalDS)
This static operator adds the supplied OracleIntervalDS to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampLTZ value1,
 OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

An OracleIntervalDS.

Return Value

An OracleTimeStampLTZ.

Remarks

If either parameter has a null value, the returned OracleTimeStampLTZ has a null
value.

Chapter 15
OracleTimeStampLTZ Structure

15-388

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator + (OracleTimeStampLTZ, OracleIntervalYM)
This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampLTZ value1,
 OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStampLTZ.

Remarks

If either parameter has a null value, the returned OracleTimeStampLTZ has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator + (OracleTimeStampLTZ, TimeSpan)
This static operator adds the supplied TimeSpan to the supplied OracleTimeStampLTZ and
returns a new OracleTimeStampLTZ structure.

Chapter 15
OracleTimeStampLTZ Structure

15-389

Declaration

// C#
public static operator +(OracleTimeStampLTZ value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

A TimeSpan.

Return Value

An OracleTimeStampLTZ.

Remarks

If the OracleTimeStampLTZ instance has a null value, the returned
OracleTimeStampLTZ has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator ==
This static operator determines if two OracleTimeStampLTZ values are equal.

Declaration

// C#
public static bool operator == (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if they are the same; otherwise, returns false.

Chapter 15
OracleTimeStampLTZ Structure

15-390

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator >
This static operator determines if the first of two OracleTimeStampLTZ values is greater than
the second.

Declaration

// C#
public static bool operator > (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first OracleTimeStampLTZ value is greater than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

Chapter 15
OracleTimeStampLTZ Structure

15-391

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator >=
This static operator determines if the first of two OracleTimeStampLTZ values is greater
than or equal to the second.

Declaration

// C#
public static bool operator >= (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first OracleTimeStampLTZ is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ
that has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Chapter 15
OracleTimeStampLTZ Structure

15-392

operator !=
This static operator determines if two OracleTimeStampLTZ values are not equal.

Declaration

// C#
public static bool operator != (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if two OracleTimeStampLTZ values are not equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator <
This static operator determines if the first of two OracleTimeStampLTZ values is less than the
second.

Declaration

// C#
public static bool operator < (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

Chapter 15
OracleTimeStampLTZ Structure

15-393

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first OracleTimeStampLTZ is less than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ
that has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator <=
This static operator determines if the first of two OracleTimeStampLTZ values is less
than or equal to the second.

Declaration

// C#
public static bool operator <= (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first OracleTimeStampLTZ is less than or equal to the second;
otherwise, returns false.

Chapter 15
OracleTimeStampLTZ Structure

15-394

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator -
operator- subtracts the supplied value, from the supplied OracleTimeStampLTZ value, and
returns a new OracleTimeStampLTZ structure.

Overload List:

• operator - (OracleTimeStampLTZ, OracleIntervalDS)

This static operator subtracts the supplied OracleIntervalDS value, from the supplied
OracleTimeStampLTZ value, and return a new OracleTimeStampLTZ structure.

• operator - (OracleTimeStampLTZ, OracleIntervalYM)

This static operator subtracts the supplied OracleIntervalYM value, from the supplied
OracleTimeStampLTZ value, and returns a new OracleTimeStampLTZ structure.

• operator - (OracleTimeStampLTZ, TimeSpan)

This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStampLTZ value, and returns a new OracleTimeStampLTZ structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Chapter 15
OracleTimeStampLTZ Structure

15-395

operator - (OracleTimeStampLTZ, OracleIntervalDS)
This static operator subtracts the supplied OracleIntervalDS value, from the supplied
OracleTimeStampLTZ value, and return a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator - (OracleTimeStampLTZ value1,
 OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

An OracleIntervalDS instance.

Return Value

An OracleTimeStampLTZ structure.

Remarks

If either parameter has a null value, the returned OracleTimeStampLTZ has a null
value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator - (OracleTimeStampLTZ, OracleIntervalYM)
This static operator subtracts the supplied OracleIntervalYM value, from the supplied
OracleTimeStampLTZ value, and returns a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator - (OracleTimeStampLTZ value1,
 OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStampLTZ.

Chapter 15
OracleTimeStampLTZ Structure

15-396

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStampLTZ structure.

Remarks

If either parameter has a null value, the returned OracleTimeStampLTZ has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

operator - (OracleTimeStampLTZ, TimeSpan)
This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStampLTZ value, and returns a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator -(OracleTimeStampLTZ value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

A TimeSpan.

Return Value

An OracleTimeStampLTZ structure.

Remarks

If the OracleTimeStampLTZ instance has a null value, the returned OracleTimeStampLTZ
structure has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-397

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ Static Type Conversions
The OracleTimeStampLTZ static type conversions are listed in Table 15-123.

Table 15-123 OracleTimeStampLTZ Static Type Conversions

Operator Description

explicit operator OracleTimeStampLTZ Converts an instance value to an
OracleTimeStampLTZ structure (Overloaded)

implicit operator OracleTimeStampLTZ Converts an instance value to an
OracleTimeStampLTZ structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStampLTZ value to a
DateTime structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

explicit operator OracleTimeStampLTZ
explicit operator OracleTimeStampLTZ converts the supplied value to an
OracleTimeStampLTZ structure.

Overload List:

• explicit operator OracleTimeStampLTZ(OracleTimeStamp)

This static type conversion operator converts an OracleTimeStamp value to an
OracleTimeStampLTZ structure.

• explicit operator OracleTimeStampLTZ(OracleTimeStampTZ)

This static type conversion operator converts an OracleTimeStampTZ value to an
OracleTimeStampLTZ structure.

• explicit operator OracleTimeStampLTZ(string)

Chapter 15
OracleTimeStampLTZ Structure

15-398

This static type conversion operator converts the supplied string to an
OracleTimeStampLTZ structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

explicit operator OracleTimeStampLTZ(OracleTimeStamp)
This static type conversion operator converts an OracleTimeStamp value to an
OracleTimeStampLTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampLTZ (OracleTimeStamp value1);

Parameters

• value1

An OracleTimeStamp.

Return Value

The OracleTimeStampLTZ structure contains the date and time of the OracleTimeStampTZ
structure.

Remarks

If the OracleTimeStamp structure has a null value, the returned OracleTimeStampLTZ structure
also has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

explicit operator OracleTimeStampLTZ(OracleTimeStampTZ)
This static type conversion operator converts an OracleTimeStampTZ value to an
OracleTimeStampLTZ structure.

Chapter 15
OracleTimeStampLTZ Structure

15-399

Declaration

// C#
public static explicit operator OracleTimeStampLTZ
 (OracleTimeStampTZ value1);

Parameters

• value1

An OracleTimeStampTZ instance.

Return Value

The OracleTimeStampLTZ structure contains the date and time in the
OracleTimeStampTZ structure (which is normalized to the client local time zone).

Remarks

If the OracleTimeStampTZ structure has a null value, the returned OracleTimeStampLTZ
structure also has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

explicit operator OracleTimeStampLTZ(string)
This static type conversion operator converts the supplied string to an
OracleTimeStampLTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampLTZ (string tsStr);

Parameters

• tsStr

A string representation of an Oracle TIMESTAMP WITH LOCAL TIME ZONE.

Return Value

A OracleTimeStampLTZ.

Exceptions

ArgumentException - ThetsStr parameter is an invalid string representation of an
Oracle TIMESTAMP WITH LOCAL TIME ZONE or the tsStr is not in the timestamp format

Chapter 15
OracleTimeStampLTZ Structure

15-400

specified by the thread's OracleGlobalization.TimeStampFormat property, which represents
the Oracle NLS_TIMESTAMP_FORMAT parameter.

Remarks

The names and abbreviations used for months and days are in the language specified by the
DateLanguage and Calendar properties of the thread's OracleGlobalization object. If any of
the thread's globalization properties are set to null or an empty string, the client computer's
settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleTimeStampLTZSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the OracleTimeStampLTZ(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampLTZ from a string using the format specified.
 OracleTimeStampLTZ ts =
 new OracleTimeStampLTZ("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

• Oracle Database SQL Language Reference for further information on datetime
format elements

Chapter 15
OracleTimeStampLTZ Structure

15-401

implicit operator OracleTimeStampLTZ
implicit operator OracleTimeStampLTZ converts the supplied structure to an
OracleTimeStampLTZ structure.

Overload List:

• implicit operator OracleTimeStampLTZ(OracleDate)

This static type conversion operator converts an OracleDate value to an
OracleTimeStampLTZ structure.

• implicit operator OracleTimeStampLTZ(DateTime)

This static type conversion operator converts a DateTime structure to an
OracleTimeStampLTZ structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

implicit operator OracleTimeStampLTZ(OracleDate)
This static type conversion operator converts an OracleDate value to an
OracleTimeStampLTZ structure.

Declaration

// C#
public static implicit operator OracleTimeStampLTZ(OracleDate value1);

Parameters

• value1

An OracleDate.

Return Value

The returned OracleTimeStampLTZ structure contains the date and time in the
OracleDate structure.

Remarks

If the OracleDate structure has a null value, the returned OracleTimeStampLTZ
structure also has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-402

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

implicit operator OracleTimeStampLTZ(DateTime)
This static type conversion operator converts a DateTime structure to an OracleTimeStampLTZ
structure.

Declaration

// C#
public static implicit operator OracleTimeStampLTZ(DateTime value1);

Parameters

• value1

A DateTime structure.

Return Value

An OracleTimeStampLTZ structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

explicit operator DateTime
This static type conversion operator converts an OracleTimeStampLTZ value to a DateTime
structure.

Declaration

// C#
public static explicit operator DateTime(OracleTimeStampLTZ value1);

Parameters

• value1

An OracleTimeStampLTZ instance.

Chapter 15
OracleTimeStampLTZ Structure

15-403

Return Value

A DateTime that contains the date and time in the current instance.

Exceptions

OracleNullValueException - The OracleTimeStampLTZ structure has a null value.

Remarks

The precision of the OracleTimeStampLTZ value can be lost during the conversion.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ Properties
The OracleTimeStampLTZ properties are listed in Table 15-124.

Table 15-124 OracleTimeStampLTZ Properties

Properties Description

BinData Returns an array of bytes that represents an Oracle TIMESTAMP
WITH LOCAL TIME ZONE in Oracle internal format

Day Specifies the day component of an OracleTimeStampLTZ
IsNull Indicates whether or not the OracleTimeStampLTZ instance has a null

value

Hour Specifies the hour component of an OracleTimeStampLTZ
Millisecond Specifies the millisecond component of an OracleTimeStampLTZ
Minute Specifies the minute component of an OracleTimeStampLTZ
Month Specifies the month component of an OracleTimeStampLTZ
Nanosecond Specifies the nanosecond component of an OracleTimeStampLTZ
Second Specifies the second component of an OracleTimeStampLTZ
Value Specifies the date and time that is stored in the OracleTimeStampLTZ

structure

Year Specifies the year component of an OracleTimeStampLTZ

Chapter 15
OracleTimeStampLTZ Structure

15-404

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

BinData
This property returns an array of bytes that represents an Oracle TIMESTAMP WITH LOCAL TIME
ZONE in Oracle internal format.

Declaration

// C#
public byte[] BinData {get;}

Property Value

A byte array that represents an Oracle TIMESTAMP WITH LOCAL TIME ZONE internal format.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Day
This property specifies the day component of an OracleTimeStampLTZ.

Declaration

// C#
public int Day{get;}

Property Value

A number that represents the day. Range of Day is (1 to 31).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-405

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance contains a null value; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Hour
This property specifies the hour component of an OracleTimeStampLTZ.

Declaration

// C#
public int Hour{get;}

Property Value

A number that represents the hour. Range of Hour is (0 to 23).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-406

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Millisecond
This property gets the millisecond component of an OracleTimeStampLTZ.

Declaration

// C#
public double Millisecond{get;}

Property Value

A number that represents a millisecond. Range of Millisecond is (0 to 999.999999)

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Minute
This property gets the minute component of an OracleTimeStampLTZ.

Declaration

// C#
public int Minute{get;}

Property Value

A number that represent a minute. Range of Minute is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-407

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Month
This property gets the month component of an OracleTimeStampLTZ.

Declaration

// C#
public int Month{get;}

Property Value

A number that represents a month. Range of Month is (1 to 12).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Nanosecond
This property gets the nanosecond component of an OracleTimeStampLTZ.

Declaration

// C#
public int Nanosecond{get;}

Property Value

A number that represents a nanosecond. Range of Nanosecond is (0 to 999999999).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-408

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Second
This property gets the second component of an OracleTimeStampLTZ.

Declaration

// C#
public int Second{get;}

Property Value

A number that represents a second. Range of Second is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Value
This property specifies the date and time that is stored in the OracleTimeStampLTZ structure.

Declaration

// C#
public DateTime Value{get;}

Property Value

A DateTime.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-409

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Year
This property gets the year component of an OracleTimeStampLTZ.

Declaration

// C#
public int Year{get;}

Property Value

A number that represents a year. The range of Year is (-4712 to 9999).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampLTZ Methods
The OracleTimeStampLTZ methods are listed in Table 15-125.

Table 15-125 OracleTimeStampLTZ Methods

Methods Description

AddDays Adds the supplied number of days to the current instance

AddHours Adds the supplied number of hours to the current instance

AddMilliseconds Adds the supplied number of milliseconds to the current
instance

AddMinutes Adds the supplied number of minutes to the current instance

AddMonths Adds the supplied number of months to the current instance

Chapter 15
OracleTimeStampLTZ Structure

15-410

Table 15-125 (Cont.) OracleTimeStampLTZ Methods

Methods Description

AddNanoseconds Adds the supplied number of nanoseconds to the current
instance

AddSeconds Adds the supplied number of seconds to the current instance

AddYears Adds the supplied number of years to the current instance

CompareTo Compares the current OracleTimeStampLTZ instance to an
object and returns an integer that represents their relative
values

Equals Determines whether or not an object has the same date and
time as the current OracleTimeStampLTZ instance
(Overloaded)

GetHashCode Returns a hash code for the OracleTimeStampLTZ instance

GetDaysBetween Subtracts an OracleTimeStampLTZ from the current instance
and returns an OracleIntervalDS that represents the
difference

GetYearsBetween Subtracts an OracleTimeStampLTZ from the current instance
and returns an OracleIntervalYM that represents the
difference

GetType Inherited from System.Object
ToOracleDate Converts the current OracleTimeStampLTZ structure to an

OracleDate structure

ToOracleTimeStamp Converts the current OracleTimeStampLTZ structure to an
OracleTimeStamp structure

ToOracleTimeStampTZ Converts the current OracleTimeStampLTZ structure to an
OracleTimeStampTZ structure

ToString Converts the current OracleTimeStampLTZ structure to a
string

ToUniversalTime Converts the current local time to Coordinated Universal Time
(UTC)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

AddDays
This method adds the supplied number of days to the current instance.

Chapter 15
OracleTimeStampLTZ Structure

15-411

Declaration

// C#
public OracleTimeStampLTZ AddDays(double days);

Parameters

• days

The supplied number of days. Range is (-1,000,000,000 < days < 1,000,000,000)

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

AddHours
This method adds the supplied number of hours to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddHours(double hours);

Parameters

• hours

The supplied number of hours. Range is (-24,000,000,000 < hours <
24,000,000,000).

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

Chapter 15
OracleTimeStampLTZ Structure

15-412

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

AddMilliseconds
This method adds the supplied number of milliseconds to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddMilliseconds(double milliseconds);

Parameters

• milliseconds

The supplied number of milliseconds. Range is (-8.64 * 1016< milliseconds < 8.64 *
1016).

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

AddMinutes
This method adds the supplied number of minutes to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddMinutes(double minutes);

Chapter 15
OracleTimeStampLTZ Structure

15-413

Parameters

• minutes

The supplied number of minutes. Range is (-1,440,000,000,000 < minutes <
1,440,000,000,000).

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

AddMonths
This method adds the supplied number of months to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddMonths(long months);

Parameters

• months

The supplied number of months. Range is (-12,000,000,000 < months <
12,000,000,000).

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

Chapter 15
OracleTimeStampLTZ Structure

15-414

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

AddNanoseconds
This method adds the supplied number of nanoseconds to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddNanoseconds(long nanoseconds);

Parameters

• nanoseconds

The supplied number of nanoseconds.

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

AddSeconds
This method adds the supplied number of seconds to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddSeconds(double seconds);

Parameters

• seconds

Chapter 15
OracleTimeStampLTZ Structure

15-415

The supplied number of seconds. Range is (-8.64 * 1013< seconds < 8.64 * 1013).

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

AddYears
This method adds the supplied number of years to the current instance

Declaration

// C#
public OracleTimeStampLTZ AddYears(int years);

Parameters

• years

The supplied number of years. Range is (-999,999,999 <= years < = 999,999,999)

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Chapter 15
OracleTimeStampLTZ Structure

15-416

CompareTo
This method compares the current OracleTimeStampLTZ instance to an object, and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStampLTZ instance.

Return Value

The method returns a number that is:

• Less than zero: if the current OracleTimeStampLTZ instance value is less than that of obj.

• Zero: if the current OracleTimeStampLTZ instance and obj values are equal.

• Greater than zero: if the current OracleTimeStampLTZ instance value is greater than that
of obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not of type OracleTimeStampLTZ.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleTimeStampLTZs. For example, comparing an
OracleTimeStampLTZ instance with an OracleBinary instance is not allowed. When an
OracleTimeStampLTZ is compared with a different type, an ArgumentException is thrown.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

Chapter 15
OracleTimeStampLTZ Structure

15-417

Equals
Overrides Object
This method determines whether or not an object has the same date and time as the
current OracleTimeStampLTZ instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStampLTZ instance.

Return Value

Returns true if the obj is of type OracleTimeStampLTZ and represents the same date
and time; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ
that has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

GetHashCode
Overrides Object
This method returns a hash code for the OracleTimeStampLTZ instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

Chapter 15
OracleTimeStampLTZ Structure

15-418

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

GetDaysBetween
This method subtracts an OracleTimeStampLTZ value from the current instance and returns
an OracleIntervalDS that represents the difference.

Declaration

// C#
public OracleIntervalDS GetDaysBetween(OracleTimeStampLTZ value1);

Parameters

• value1

The OracleTimeStampLTZ value being subtracted.

Return Value

An OracleIntervalDS that represents the interval between two OracleTimeStampLTZ values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalDS has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

GetYearsBetween
This method subtracts an OracleTimeStampLTZ value from the current instance and returns
an OracleIntervalYM that represents the time interval.

Declaration

// C#
public OracleIntervalYM GetYearsBetween(OracleTimeStampLTZ value1);

Chapter 15
OracleTimeStampLTZ Structure

15-419

Parameters

• value1

The OracleTimeStampLTZ value being subtracted.

Return Value

An OracleIntervalYM that represents the interval between two OracleTimeStampLTZ
values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalYM has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

ToOracleDate
This method converts the current OracleTimeStampLTZ structure to an OracleDate
structure.

Declaration

// C#
public OracleDate ToOracleDate();

Return Value

The returned OracleDate structure contains the date and time in the current instance.

Remarks

The precision of the OracleTimeStampLTZ value can be lost during the conversion.

If the current instance has a null value, the value of the returned OracleDate structure
has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-420

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

ToOracleTimeStamp
This method converts the current OracleTimeStampLTZ structure to an OracleTimeStamp
structure.

Declaration

// C#
public OracleTimeStamp ToOracleTimeStamp();

Return Value

The returned OracleTimeStamp contains the date and time in the current instance.

Remarks

If the current instance has a null value, the value of the returned OracleTimeStamp structure
has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

ToOracleTimeStampTZ
This method converts the current OracleTimeStampLTZ structure to an OracleTimeStampTZ
structure.

Declaration

// C#
public OracleTimeStampTZ ToOracleTimeStampTZ();

Return Value

The returned OracleTimeStampTZ contains the date and time of the current instance, with the
time zone set to the OracleGlobalization.TimeZone from the thread.

Chapter 15
OracleTimeStampLTZ Structure

15-421

Remarks

If the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

ToString
Overrides Object
This method converts the current OracleTimeStampLTZ structure to a string.

Declaration

// C#
public override string ToString();

Return Value

A string that represents the same date and time as the current OracleTimeStampLTZ
structure.

Remarks

The returned value is a string representation of the OracleTimeStampLTZ in the format
specified by the OracleGlobalization.TimeStampFormat property of the thread.

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string,
the client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ToStringSample
{
 static void Main()
 {

Chapter 15
OracleTimeStampLTZ Structure

15-422

 // Set the nls_timestamp_format for the OracleTimeStampLTZ(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampLTZ from a string using the format
 // specified.
 OracleTimeStampLTZ ts =
 new OracleTimeStampLTZ("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

ToUniversalTime
This method converts the current local time to Coordinated Universal Time (UTC).

Declaration

// C#
public OracleTimeStampTZ ToUniversalTime();

Return Value

An OracleTimeStampTZ structure.

Remarks

If the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.

Chapter 15
OracleTimeStampLTZ Structure

15-423

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampLTZ Structure

• OracleTimeStampLTZ Members

OracleTimeStampTZ Structure
The OracleTimeStampTZ structure represents the Oracle TIMESTAMP WITH TIME ZONE
data type to be stored in or retrieved from a database. Each OracleTimeStampTZ
stores the following information: year, month, day, hour, minute, second, nanosecond,
and time zone.

Class Inheritance

System.Object
 System.ValueType
 Oracle.DataAccess.Types.OracleTimeStampTZ

Declaration

// C#
public struct OracleTimeStampTZ : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

Chapter 15
OracleTimeStampTZ Structure

15-424

class OracleTimeStampTZSample
{
 static void Main()
 {
 // Set the nls parameters for the current thread
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeZone = "US/Eastern";
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // Create an OracleTimeStampTZ in US/Pacific time zone
 OracleTimeStampTZ tstz1=new OracleTimeStampTZ("11-NOV-1999 "+
 "11:02:33.444 AM US/Pacific");

 // Note that ToOracleTimeStampTZ uses the thread's time zone region,
 // "US/Eastern"
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");
 OracleTimeStampTZ tstz2 = ts.ToOracleTimeStampTZ();

 // Calculate the difference between tstz1 and tstz2
 OracleIntervalDS idsDiff = tstz1.GetDaysBetween(tstz2);

 // Display information
 Console.WriteLine("tstz1.TimeZone = " + tstz1.TimeZone);

 // Prints "US/Pacific"
 Console.WriteLine("tstz2.TimeZone = " + tstz2.TimeZone);

 // Prints "US/Eastern"
 Console.WriteLine("idsDiff.Hours = " + idsDiff.Hours); // Prints 3
 Console.WriteLine("idsDiff.Minutes = " + idsDiff.Minutes); // Prints 0
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Members

• OracleTimeStampTZ Constructors

• OracleTimeStampTZ Static Fields

• OracleTimeStampTZ Static Methods

• OracleTimeStampTZ Static Operators

• OracleTimeStampTZ Static Type Conversions

• OracleTimeStampTZ Properties

• OracleTimeStampTZ Methods

Chapter 15
OracleTimeStampTZ Structure

15-425

OracleTimeStampTZ Members
OracleTimeStampTZ members are listed in the following tables:

OracleTimeStampTZ Constructors

OracleTimeStampTZ constructors are listed in Table 15-126

Table 15-126 OracleTimeStampTZ Constructors

Constructor Description

OracleTimeStampTZ Constructors Instantiates a new instance of
OracleTimeStampTZ structure (Overloaded)

OracleTimeStampTZ Static Fields

The OracleTimeStampTZ static fields are listed in Table 15-127.

Table 15-127 OracleTimeStampTZ Static Fields

Field Description

MaxValue Represents the maximum valid date for an
OracleTimeStampTZ structure in UTC, which is
December 31, 999923:59:59.999999999

MinValue Represents the minimum valid date for an
OracleTimeStampTZ structure in UTC, which is
January 1, -4712 0:0:0

Null Represents a null value that can be assigned to an
instance of the OracleTimeStampTZ structure

OracleTimeStampTZ Static Methods

The OracleTimeStampTZ static methods are listed in Table 15-128.

Table 15-128 OracleTimeStampTZ Static Methods

Methods Description

Equals Determines if two OracleTimeStampTZ values are
equal (Overloaded)

GetSysDate Gets an OracleTimeStampTZ structure that
represents the current date and time

GreaterThan Determines if the first of two OracleTimeStampTZ
values is greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStampTZ
values is greater than or equal to the second

LessThan Determines if the first of two OracleTimeStampTZ
values is less than the second

Chapter 15
OracleTimeStampTZ Structure

15-426

Table 15-128 (Cont.) OracleTimeStampTZ Static Methods

Methods Description

LessThanOrEqual Determines if the first of two OracleTimeStampTZ
values is less than or equal to the second

NotEquals Determines if two OracleTimeStampTZ values are
not equal

Parse Gets an OracleTimeStampTZ structure and sets
its value for date and time using the supplied string

SetPrecision Returns a new instance of an
OracleTimeStampTZ with the specified fractional
second precision

OracleTimeStampTZ Static Operators

The OracleTimeStampTZ static operators are listed in Table 15-129.

Table 15-129 OracleTimeStampTZ Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStampTZ and returns a new
OracleTimeStampTZ structure (Overloaded)

operator == Determines if two OracleTimeStampTZ values are
equal

operator > Determines if the first of two OracleTimeStampTZ
values is greater than the second

operator >= Determines if the first of two OracleTimeStampTZ
values is greater than or equal to the second

operator != Determines if two OracleTimeStampTZ values are not
equal

operator < Determines if the first of two OracleTimeStampTZ
values is less than the second

operator <= Determines if the first of two OracleTimeStampTZ
values is less than or equal to the second

operator - Subtracts the supplied instance value from the supplied
OracleTimeStampTZ and returns a new
OracleTimeStampTZ structure (Overloaded)

OracleTimeStampTZ Static Type Conversions

The OracleTimeStampTZ static type conversions are listed in Table 15-130.

Table 15-130 OracleTimeStampTZ Static Type Conversions

Operator Description

explicit operator OracleTimeStampTZ Converts an instance value to an OracleTimeStampTZ
structure (Overloaded)

Chapter 15
OracleTimeStampTZ Structure

15-427

Table 15-130 (Cont.) OracleTimeStampTZ Static Type Conversions

Operator Description

implicit operator OracleTimeStampTZ Converts an instance value to an OracleTimeStampTZ
structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStampTZ value to a
DateTime structure

OracleTimeStampTZ Properties

The OracleTimeStampTZ properties are listed in Table 15-131.

Table 15-131 OracleTimeStampTZ Properties

Properties Description

BinData Returns an array of bytes that represents an
Oracle TIMESTAMP WITH TIME ZONE in Oracle
internal format

Day Specifies the day component of an
OracleTimeStampTZ in the current time zone

IsNull Indicates whether or not the current instance has a
null value

Hour Specifies the hour component of an
OracleTimeStampTZ in the current time zone

Millisecond Specifies the millisecond component of an
OracleTimeStampTZ in the current time zone

Minute Specifies the minute component of an
OracleTimeStampTZ in the current time zone

Month Specifies the month component of an
OracleTimeStampTZ in the current time zone

Nanosecond Specifies the nanosecond component of an
OracleTimeStampTZ in the current time zone

Second Specifies the second component of an
OracleTimeStampTZ in the current time zone

TimeZone Returns the time zone of the OracleTimeStampTZ
instance

Value Returns the date and time that is stored in the
OracleTimeStampTZ structure in the current time
zone

Year Specifies the year component of an
OracleTimeStampTZ

OracleTimeStampTZ Methods

The OracleTimeStampTZ methods are listed in Table 15-132.

Chapter 15
OracleTimeStampTZ Structure

15-428

Table 15-132 OracleTimeStampTZ Methods

Methods Description

AddDays Adds the supplied number of days to the current
instance

AddHours Adds the supplied number of hours to the current
instance

AddMilliseconds Adds the supplied number of milliseconds to the
current instance

AddMinutes Adds the supplied number of minutes to the current
instance

AddMonths Adds the supplied number of months to the current
instance

AddNanoseconds Adds the supplied number of nanoseconds to the
current instance

AddSeconds Adds the supplied number of seconds to the current
instance

AddYears Adds the supplied number of years to the current
instance

CompareTo Compares the current OracleTimeStampTZ instance
to an object, and returns an integer that represents
their relative values

Equals Determines whether or not an object has the same
date and time as the current OracleTimeStampTZ
instance

GetDaysBetween Subtracts an OracleTimeStampTZ from the current
instance and returns an OracleIntervalDS that
represents the time interval

GetHashCode Returns a hash code for the OracleTimeStampTZ
instance

GetTimeZoneOffset Gets the time zone information in hours and minutes of
the current OracleTimeStampTZ

GetYearsBetween Subtracts an OracleTimeStampTZ from the current
instance and returns an OracleIntervalYM that
represents the time interval

GetType Inherited from System.Object
ToLocalTime Converts the current OracleTimeStampTZ instance to

local time

ToOracleDate Converts the current OracleTimeStampTZ structure to
an OracleDate structure

ToOracleTimeStampLTZ Converts the current OracleTimeStampTZ structure to
an OracleTimeStampLTZ structure

ToOracleTimeStamp Converts the current OracleTimeStampTZ structure to
an OracleTimeStamp structure

ToString Converts the current OracleTimeStampTZ structure to
a string

Chapter 15
OracleTimeStampTZ Structure

15-429

Table 15-132 (Cont.) OracleTimeStampTZ Methods

Methods Description

ToUniversalTime Converts the current datetime to Coordinated Universal
Time (UTC)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

OracleTimeStampTZ Constructors
The OracleTimeStampTZ constructors create new instances of the OracleTimeStampTZ
structure.

Overload List:

• OracleTimeStampTZ(DateTime)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using the supplied DateTime value.

• OracleTimeStampTZ(DateTime, string)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using the supplied DateTime value and the supplied
time zone data.

• OracleTimeStampTZ(string)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using the supplied string.

• OracleTimeStampTZ(int, int, int)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, and day.

• OracleTimeStampTZ(int, int, int, string)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, and time zone data.

• OracleTimeStampTZ(int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, hour, minute, and second.

• OracleTimeStampTZ(int, int, int, int, int, int, string)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, hour, minute, second, and
time zone data.

Chapter 15
OracleTimeStampTZ Structure

15-430

• OracleTimeStampTZ(int, int, int, int, int, int, double)

This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and millisecond.

• OracleTimeStampTZ(int, int, int, int, int, int, double, string)

This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, millisecond, and
time zone data.

• OracleTimeStampTZ(int, int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and nanosecond.

• OracleTimeStampTZ(int, int, int, int, int, int, int, string)

This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, nanosecond, and
time zone data.

• OracleTimeStampTZ(byte [])

This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value to the provided byte array, that represents the internal Oracle TIMESTAMP WITH TIME
ZONE format.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(DateTime)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using the supplied DateTime value.

Declaration

// C#
public OracleTimeStampTZ (DateTime dt);

Parameters

• dt

The supplied DateTime value.

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

Chapter 15
OracleTimeStampTZ Structure

15-431

Exceptions

ArgumentException - The dt parameter cannot be used to construct a valid
OracleTimeStampTZ.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(DateTime, string)
This constructor creates a new instance of the OracleTimeStampTZ structure with the
supplied DateTime value and the time zone data.

Declaration

// C#
public OracleTimeStampTZ (DateTime value1, string timeZone);

Parameters

• value1

The supplied DateTime value.

• timeZone

The time zone data provided.

Exceptions

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ.

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Note:

PST is a time zone region name as well as a time zone abbreviation;
therefore it is accepted by OracleTimeStampTZ.

Chapter 15
OracleTimeStampTZ Structure

15-432

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using the supplied string.

Declaration

// C#
public OracleTimeStampTZ (string tsStr);

Parameters

• tsStr

A string that represents an Oracle TIMESTAMP WITH TIME ZONE.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle TIMESTAMP
WITH TIME ZONE or the tsStr is not in the timestamp format specified by the
OracleGlobalization.TimeStampTZFormat property of the thread.

ArgumentNullException - The tsStr value is null.

Remarks

The names and abbreviations used for months and days are in the language specified by the
DateLanguage and Calendar properties of the thread's OracleGlobalization object. If any of
the thread's globalization properties are set to null or an empty string, the client computer's
settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleTimeStampTZSample
{
 static void Main()
 {
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampTZ from a string using the format specified.

Chapter 15
OracleTimeStampTZ Structure

15-433

 OracleTimeStampTZ tstz = new OracleTimeStampTZ("11-NOV-1999" +
 "11:02:33.444 AM US/Pacific");

 // Set the nls_timestamp_tz_format for the ToString() method
 info.TimeStampTZFormat = "YYYY-MON-DD HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM US/Pacific"
 Console.WriteLine(tstz.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

• Oracle Database SQL Language Reference for further information on
date format elements

OracleTimeStampTZ(int, int, int)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets
its value for date and time using year, month, and day.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

Chapter 15
OracleTimeStampTZ Structure

15-434

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStampTZ (that is, the day is out of range for the month).

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(int, int, int, string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, and time zone data.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day,
 string timeZone);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• timeZone

The time zone data provided.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStampTZ (that is, the day is out of range for the month or the time zone is
invalid).

Chapter 15
OracleTimeStampTZ Structure

15-435

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Note:

PST is a time zone region name as well as a time zone abbreviation;
therefore it is accepted by OracleTimeStampTZ.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets
its value for date and time using year, month, day, hour, minute, and second.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

Chapter 15
OracleTimeStampTZ Structure

15-436

• second

The second provided. Range of second is (0 to 59).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStampTZ (that is, the day is out of range for the month).

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(int, int, int, int, int, int, string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and time zone data.

Declaration

// C#
public OracleTimeStampTZ (int year, int month, int day, int hour,
 int minute, int second, string timeZone);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

Chapter 15
OracleTimeStampTZ Structure

15-437

The second provided. Range of second is (0 to 59).

• timeZone

The time zone data provided.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range of the month or
the time zone is invalid).

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Note:

PST is a time zone region name as well as a time zone abbreviation;
therefore it is accepted by OracleTimeStampTZ.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(int, int, int, int, int, int, double)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets
its value for date and time using year, month, day, hour, minute, second, and
millisecond.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second, double millisecond);

Parameters

• year

Chapter 15
OracleTimeStampTZ Structure

15-438

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• millisecond

The millisecond provided. Range of millisecond is (0 to 999.999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStampTZ (that is, the day is out of range for the month).

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(int, int, int, int, int, int, double, string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, millisecond, and time
zone data.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second, double millisecond, string timeZone);

Chapter 15
OracleTimeStampTZ Structure

15-439

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• millisecond

The millisecond provided. Range of millisecond is (0 to 999.999999).

• timeZone

The time zone data provided.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the
parameters is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range for the month or
the time zone is invalid).

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Note:

PST is a time zone region name as well as a time zone abbreviation;
therefore it is accepted by OracleTimeStampTZ.

Chapter 15
OracleTimeStampTZ Structure

15-440

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(int, int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and nanosecond.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second, int nanosecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• nanosecond

The nanosecond provided. Range of nanosecond is (0 to 999999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStampTZ (that is, the day is out of range for the month).

Chapter 15
OracleTimeStampTZ Structure

15-441

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(int, int, int, int, int, int, int, string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets
its value for date and time using year, month, day, hour, minute, second, nanosecond,
and time zone data.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second, int nanosecond, string timeZone);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• nanosecond

The nanosecond provided. Range of nanosecond is (0 to 999999999).

• timeZone

The time zone data provided.

Chapter 15
OracleTimeStampTZ Structure

15-442

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters is
out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to construct a
valid OracleTimeStampTZ (that is, the day is out of range for the month or the time zone is
invalid).

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region name
that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone abbreviations are not
supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Note:

PST is a time zone region name as well as a time zone abbreviation; therefore it is
accepted by OracleTimeStampTZ.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ(byte [])
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value to the provided byte array, that represents the internal Oracle TIMESTAMP WITH TIME
ZONE format.

Declaration

// C#
public OracleTimeStampLTZ (byte[] bytes);

Parameters

• bytes

The provided byte array that represents an Oracle TIMESTAMP WITH TIME ZONE in Oracle
internal format.

Chapter 15
OracleTimeStampTZ Structure

15-443

Exceptions

ArgumentException - bytes is not in internal Oracle TIMESTAMP WITH TIME ZONE format
or bytes is not a valid Oracle TIMESTAMP WITH TIME ZONE.

ArgumentNullException - bytes is null.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ Static Fields
The OracleTimeStampTZ static fields are listed in Table 15-133.

Table 15-133 OracleTimeStampTZ Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleTimeStampTZ structure
in UTC, which is December 31, 999923:59:59.999999999

MinValue Represents the minimum valid date for an OracleTimeStampTZ structure
in UTC, which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to an instance of the
OracleTimeStampTZ structure

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

MaxValue
This static field represents the maximum valid datetime time for an OracleTimeStampTZ
structure in UTC, which is December 31, 999923:59:59.999999999.

Declaration

// C#
public static readonly OracleTimeStampTZ MaxValue;

Chapter 15
OracleTimeStampTZ Structure

15-444

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

MinValue
This static field represents the minimum valid datetime for an OracleTimeStampTZ structure in
UTC, which is January 1, -4712 0:0:0.

Declaration

// C#
public static readonly OracleTimeStampTZ MinValue;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Null
This static field represents a null value that can be assigned to an instance of the
OracleTimeStampTZ structure.

Declaration

// C#
public static readonly OracleTimeStampTZ Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Chapter 15
OracleTimeStampTZ Structure

15-445

OracleTimeStampTZ Static Methods
The OracleTimeStampTZ static methods are listed in Table 15-134.

Table 15-134 OracleTimeStampTZ Static Methods

Methods Description

Equals Determines if two OracleTimeStampTZ values are equal
(Overloaded)

GetSysDate Gets an OracleTimeStampTZ structure that represents the
current date and time

GreaterThan Determines if the first of two OracleTimeStampTZ values is
greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStampTZ values is
greater than or equal to the second

LessThan Determines if the first of two OracleTimeStampTZ values is less
than the second

LessThanOrEqual Determines if the first of two OracleTimeStampTZ values is less
than or equal to the second

NotEquals Determines if two OracleTimeStampTZ values are not equal

Parse Gets an OracleTimeStampTZ structure and sets its value for
date and time using the supplied string

SetPrecision Returns a new instance of an OracleTimeStampTZ with the
specified fractional second precision

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Equals
This static method determines if two OracleTimeStampTZ values are equal.

Declaration

// C#
public static bool Equals(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

Chapter 15
OracleTimeStampTZ Structure

15-446

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if two OracleTimeStampTZ values are equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that has
a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

GetSysDate
This static method gets an OracleTimeStampTZ structure that represents the current date and
time.

Declaration

// C#
public static OracleTimeStampTZ GetSysDate();

Return Value

An OracleTimeStampTZ structure that represents the current date and time.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Chapter 15
OracleTimeStampTZ Structure

15-447

GreaterThan
This static method determines if the first of two OracleTimeStampTZ values is greater
than the second.

Declaration

// C#
public static bool GreaterThan(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first of two OracleTimeStampTZ values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ
that has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

GreaterThanOrEqual
This static method determines if the first of two OracleTimeStampTZ values is greater
than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Chapter 15
OracleTimeStampTZ Structure

15-448

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first of two OracleTimeStampTZ values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that has
a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

LessThan
This static method determines if the first of two OracleTimeStampTZ values is less than the
second.

Declaration

// C#
public static bool LessThan(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Chapter 15
OracleTimeStampTZ Structure

15-449

Return Value

Returns true if the first of two OracleTimeStampTZ values is less than the second.
Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ
that has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

LessThanOrEqual
This static method determines if the first of two OracleTimeStampTZ values is less than
or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first of two OracleTimeStampTZ values is less than or equal to the
second. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ
that has a null value.

Chapter 15
OracleTimeStampTZ Structure

15-450

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

NotEquals
This static method determines if two OracleTimeStampTZ values are not equal.

Declaration

// C#
public static bool NotEquals(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if two OracleTimeStampTZ values are not equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that has
a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Chapter 15
OracleTimeStampTZ Structure

15-451

Parse
This static method returns an OracleTimeStampTZ structure and sets its value for date
and time using the supplied string.

Declaration

// C#
public static OracleTimeStampTZ Parse(string tsStr);

Parameters

• tsStr

A string that represents an Oracle TIMESTAMP WITH TIME ZONE.

Return Value

An OracleTimeStampTZ structure.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle
TIMESTAMP WITH TIME ZONE or the tsStr is not in the timestamp format specified by the
OracleGlobalization.TimeStampTZFormat property of the thread, which represents
the Oracle NLS_TIMESTAMP_TZ_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string,
the client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ParseSample
{
 static void Main()
 {
 // Set the nls_timestamp_tz_format for the Parse() method
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampTZ from a string using the format specified.
 OracleTimeStampTZ tstz = OracleTimeStampTZ.Parse("11-NOV-1999 " +
 "11:02:33.444 AM US/Pacific");

 // Set the nls_timestamp_tz_format for the ToString() method

Chapter 15
OracleTimeStampTZ Structure

15-452

 info.TimeStampTZFormat = "YYYY-MON-DD HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM US/Pacific"
 Console.WriteLine(tstz.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

SetPrecision
This static method returns a new instance of an OracleTimeStampTZ with the specified
fractional second precision.

Declaration

// C#
public static OracleTimeStampTZ SetPrecision(OracleTimeStampTZ value1,
 int fracSecPrecision);

Parameters

• value1

The provided OracleTimeStampTZ object.

• fracSecPrecision

The fractional second precision provided. Range of fractional second precision is (0 to 9).

Return Value

An OracleTimeStampTZ structure with the specified fractional second precision

Exceptions

ArgumentOutOfRangeException - fracSecPrecision is out of the specified range.

Remarks

The value specified in the supplied fracSecPrecision is used to perform a rounding off
operation on the supplied OracleTimeStampTZ value. Depending on this value, 0 or more
trailing zeros are displayed in the string returned by ToString().

Chapter 15
OracleTimeStampTZ Structure

15-453

Example

The OracleTimeStampTZ with a value of "December 31, 9999 23:59:59.99 US/Pacific"
results in the string "December 31, 9999 23:59:59.99000 US/Pacific" when
SetPrecision() is called with the fractional second precision set to 5.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ Static Operators
The OracleTimeStampTZ static operators are listed in Table 15-135.

Table 15-135 OracleTimeStampTZ Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ
structure (Overloaded)

operator == Determines if two OracleTimeStampTZ values are equal

operator > Determines if the first of two OracleTimeStampTZ values is
greater than the second

operator >= Determines if the first of two OracleTimeStampTZ values is
greater than or equal to the second

operator != Determines if two OracleTimeStampTZ values are not equal

operator < Determines if the first of two OracleTimeStampTZ values is less
than the second

operator <= Determines if the first of two OracleTimeStampTZ values is less
than or equal to the second

operator - Subtracts the supplied instance value from the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ
structure (Overloaded)

Chapter 15
OracleTimeStampTZ Structure

15-454

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator +
operator+ adds the supplied structure to the supplied OracleTimeStampTZ and returns a new
OracleTimeStampTZ structure.

Overload List:

• operator +(OracleTimeStampTZ, OracleIntervalDS)

This static operator adds the supplied OracleIntervalDS to the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ structure.

• operator +(OracleTimeStampTZ, OracleIntervalYM)

This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ structure.

• operator +(OracleTimeStampTZ, TimeSpan)

This static operator adds the supplied TimeSpan to the supplied OracleTimeStampTZ and
returns a new OracleTimeStampTZ structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator +(OracleTimeStampTZ, OracleIntervalDS)
This static operator adds the supplied OracleIntervalDS to the supplied OracleTimeStampTZ
and returns a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampTZ value1,
 OracleIntervalDS value2);

Parameters

• value1

Chapter 15
OracleTimeStampTZ Structure

15-455

An OracleTimeStampTZ.

• value2

An OracleIntervalDS.

Return Value

An OracleTimeStampTZ.

Remarks

If either parameter has a null value, the returned OracleTimeStampTZ has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator +(OracleTimeStampTZ, OracleIntervalYM)
This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampTZ value1,
 OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStampTZ.

Remarks

If either parameter has a null value, the returned OracleTimeStampTZ has a null value.

Chapter 15
OracleTimeStampTZ Structure

15-456

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator +(OracleTimeStampTZ, TimeSpan)
This static operator adds the supplied TimeSpan to the supplied OracleTimeStampTZ and
returns a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampTZ value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

A TimeSpan.

Return Value

An OracleTimeStampTZ.

Remarks

If the OracleTimeStampTZ instance has a null value, the returned OracleTimeStampTZ has a
null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator ==
This static operator determines if two OracleTimeStampTZ values are equal.

Chapter 15
OracleTimeStampTZ Structure

15-457

Declaration

// C#
public static bool operator == (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if they are equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ
that has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator >
This static operator determines if the first of two OracleTimeStampTZ values is greater
than the second.

Declaration

// C#
public static bool operator > (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

Chapter 15
OracleTimeStampTZ Structure

15-458

The second OracleTimeStampTZ.

Return Value

Returns true if the first OracleTimeStampTZ value is greater than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that has
a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator >=
This static operator determines if the first of two OracleTimeStampTZ values is greater than or
equal to the second.

Declaration

// C#
public static bool operator >= (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first OracleTimeStampTZ is greater than or equal to the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that has
a null value.

Chapter 15
OracleTimeStampTZ Structure

15-459

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator !=
This static operator determines if two OracleTimeStampTZ values are not equal.

Declaration

// C#
public static bool operator != (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if two OracleTimeStampTZ values are not equal; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ
that has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Chapter 15
OracleTimeStampTZ Structure

15-460

operator <
This static operator determines if the first of two OracleTimeStampTZ values is less than the
second.

Declaration

// C#
public static bool operator < (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first OracleTimeStampTZ is less than the second; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that has
a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator <=
This static operator determines if the first of two OracleTimeStampTZ values is less than or
equal to the second.

Declaration

// C#
public static bool operator <= (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Chapter 15
OracleTimeStampTZ Structure

15-461

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first OracleTimeStampTZ is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ
that has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator -
operator- subtracts the supplied value, from the supplied OracleTimeStampTZ value,
and returns a new OracleTimeStampTZ structure.

Overload List:

• operator - (OracleTimeStampTZ, OracleIntervalDS)

This static operator subtracts the supplied OracleIntervalDS value, from the
supplied OracleTimeStampTZ value, and return a new OracleTimeStampTZ
structure.

• operator - (OracleTimeStampTZ, OracleIntervalYM)

This static operator subtracts the supplied OracleIntervalYM value, from the
supplied OracleTimeStampTZ value, and returns a new OracleTimeStampTZ
structure.

• operator - (OracleTimeStampTZ value1, TimeSpan value2)

This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStampTZ value, and returns a new OracleTimeStampTZ structure.

Chapter 15
OracleTimeStampTZ Structure

15-462

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator - (OracleTimeStampTZ, OracleIntervalDS)
This static operator subtracts the supplied OracleIntervalDS value, from the supplied
OracleTimeStampTZ value, and return a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator - (OracleTimeStampTZ value1,
 OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

An OracleIntervalDS.

Return Value

An OracleTimeStampTZ structure.

Remarks

If either parameter has a null value, the returned OracleTimeStampTZ has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator - (OracleTimeStampTZ, OracleIntervalYM)
This static operator subtracts the supplied OracleIntervalYM value, from the supplied
OracleTimeStampTZ value, and returns a new OracleTimeStampTZ structure.

Chapter 15
OracleTimeStampTZ Structure

15-463

Declaration

// C#
public static operator - (OracleTimeStampTZ value1,
 OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStampTZ structure.

Remarks

If either parameter has a null value, the returned OracleTimeStampTZ has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

operator - (OracleTimeStampTZ value1, TimeSpan value2)
This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStampTZ value, and returns a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator - (OracleTimeStampTZ value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

A TimeSpan.

Return Value

An OracleTimeStampTZ structure.

Chapter 15
OracleTimeStampTZ Structure

15-464

Remarks

If the OracleTimeStampTZ instance has a null value, the returned OracleTimeStampTZ
structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ Static Type Conversions
The OracleTimeStampTZ static type conversions are listed in Table 15-136.

Table 15-136 OracleTimeStampTZ Static Type Conversions

Operator Description

explicit operator OracleTimeStampTZ Converts an instance value to an
OracleTimeStampTZ structure (Overloaded)

implicit operator OracleTimeStampTZ Converts an instance value to an
OracleTimeStampTZ structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStampTZ value to a
DateTime structure in the current time zone

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

explicit operator OracleTimeStampTZ
explicit operator OracleTimeStampTZ converts an instance value to an
OracleTimeStampTZ structure.

Overload List:

• explicit operator OracleTimeStampTZ(OracleTimeStamp)

This static type conversion operator converts an OracleTimeStamp value to an
OracleTimeStampTZ structure.

Chapter 15
OracleTimeStampTZ Structure

15-465

• explicit operator OracleTimeStampTZ(OracleTimeStampLTZ)

This static type conversion operator converts an OracleTimeStampLTZ value to an
OracleTimeStampTZ structure.

• explicit operator OracleTimeStampTZ(string)

This static type conversion operator converts the supplied string value to an
OracleTimeStampTZ structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

explicit operator OracleTimeStampTZ(OracleTimeStamp)
This static type conversion operator converts an OracleTimeStamp value to an
OracleTimeStampTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampTZ(OracleTimeStamp value1);

Parameters

• value1

An OracleTimeStamp.

Return Value

The returned OracleTimeStampTZ contains the date and time from the
OracleTimeStamp and the time zone from the OracleGlobalization.TimeZone of the
thread.

Remarks

The OracleGlobalization.TimeZone of the thread is used to convert from an
OracleTimeStamp structure to an OracleTimeStampTZ structure.

If the OracleTimeStamp structure has a null value, the returned OracleTimeStampTZ
structure also has a null value.

Chapter 15
OracleTimeStampTZ Structure

15-466

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

explicit operator OracleTimeStampTZ(OracleTimeStampLTZ)
This static type conversion operator converts an OracleTimeStampLTZ value to an
OracleTimeStampTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampTZ(OracleTimeStampLTZ value1);

Parameters

• value1

An OracleTimeStampLTZ.

Return Value

The returned OracleTimeStampTZ contains the date and time from the OracleTimeStampLTZ
and the time zone from the OracleGlobalization.TimeZone of the thread.

Remarks

If the OracleTimeStampLTZ structure has a null value, the returned OracleTimeStampTZ
structure also has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

Chapter 15
OracleTimeStampTZ Structure

15-467

explicit operator OracleTimeStampTZ(string)
This static type conversion operator converts the supplied string value to an
OracleTimeStampTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampTZ(string tsStr);

Parameters

• tsStr

A string representation of an Oracle TIMESTAMP WITH TIME ZONE.

Return Value

An OracleTimeStampTZ value.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle
TIMESTAMP WITH TIME ZONE. or the tsStr is not in the timestamp format specified by the
thread's OracleGlobalization.TimeStampTZFormat property, which represents the
Oracle NLS_TIMESTAMP_TZ_FORMAT parameter.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization
object. If any of the thread's globalization properties are set to null or an empty string,
the client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleTimeStampTZSample
{
 static void Main()
 {
 // Set the nls_timestamp_tz_format for the explicit operator
 // OracleTimeStampTZ(string)
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampTZ from a string using the format specified.
 OracleTimeStampTZ tstz = new OracleTimeStampTZ("11-NOV-1999" +
 "11:02:33.444 AM US/Pacific");

 // Set the nls_timestamp_tz_format for the ToString() method
 info.TimeStampTZFormat = "YYYY-MON-DD HH:MI:SS.FF AM TZR";

Chapter 15
OracleTimeStampTZ Structure

15-468

 OracleGlobalization.SetThreadInfo(info);
 Console.WriteLine(tstz.ToString());
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

implicit operator OracleTimeStampTZ
implicit operator OracleTimeStampTZ converts a DateTime structure to an
OracleTimeStampTZ structure.

Overload List:

• implicit operator OracleTimeStampTZ(OracleDate)

This static type conversion operator converts an OracleDate value to an
OracleTimeStampTZ structure.

• implicit operator OracleTimeStampTZ(DateTime)

This static type conversion operator converts a DateTime structure to an
OracleTimeStampTZ structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

implicit operator OracleTimeStampTZ(OracleDate)
This static type conversion operator converts an OracleDate value to an OracleTimeStampTZ
structure.

Chapter 15
OracleTimeStampTZ Structure

15-469

Declaration

// C#
public static implicit operator OracleTimeStampTZ(OracleDate value1);

Parameters

• value1

An OracleDate.

Return Value

The returned OracleTimeStampTZ contains the date and time from the OracleDate and
the time zone from the OracleGlobalization.TimeZone of the thread.

Remarks

The OracleGlobalization.TimeZone of the thread is used to convert from an
OracleDate to an OracleTimeStampTZ structure. If the OracleDate structure has a null
value, the returned OracleTimeStampTZ structure also has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

implicit operator OracleTimeStampTZ(DateTime)
This static type conversion operator converts a DateTime structure to an
OracleTimeStampTZ structure.

Declaration

// C#
public static implicit operator OracleTimeStampTZ (DateTime value1);

Parameters

• value1

A DateTime structure.

Return Value

The returned OracleTimeStampTZ contains the date and time from the DateTime and
the time zone from the OracleGlobalization.TimeZone of the thread.

Chapter 15
OracleTimeStampTZ Structure

15-470

Remarks

The OracleGlobalization.TimeZone of the thread is used to convert from a DateTime to an
Oracle TimeStampTZ structure.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

explicit operator DateTime
This static type conversion operator converts an OracleTimeStampTZ value to a DateTime
structure and truncates the time zone information.

Declaration

// C#
public static explicit operator DateTime(OracleTimeStampTZ value1);

Parameters

• value1

An OracleTimeStampTZ.

Return Value

A DateTime containing the date and time in the current instance, but with the time zone
information in the current instance truncated.

Exceptions

OracleNullValueException - The OracleTimeStampTZ structure has a null value.

Remarks

The precision of the OracleTimeStampTZ value can be lost during the conversion, and the
time zone information in the current instance is truncated

Chapter 15
OracleTimeStampTZ Structure

15-471

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ Properties
The OracleTimeStampTZ properties are listed in Table 15-137.

Table 15-137 OracleTimeStampTZ Properties

Properties Description

BinData Returns an array of bytes that represents an Oracle TIMESTAMP WITH
TIME ZONE in Oracle internal format

Day Specifies the day component of an OracleTimeStampTZ in the current
time zone

IsNull Indicates whether or not the current instance has a null value

Hour Specifies the hour component of an OracleTimeStampTZ in the
current time zone

Millisecond Specifies the millisecond component of an OracleTimeStampTZ in the
current time zone

Minute Specifies the minute component of an OracleTimeStampTZ in the
current time zone

Month Specifies the month component of an OracleTimeStampTZ in the
current time zone

Nanosecond Specifies the nanosecond component of an OracleTimeStampTZ in
the current time zone

Second Specifies the second component of an OracleTimeStampTZ in the
current time zone

TimeZone Returns the time zone of the OracleTimeStampTZ instance

Value Returns the date and time that is stored in the OracleTimeStampTZ
structure in the current time zone

Year Specifies the year component of an OracleTimeStampTZ

Chapter 15
OracleTimeStampTZ Structure

15-472

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

BinData
This property returns an array of bytes that represents an Oracle TIMESTAMP WITH TIME ZONE
in Oracle internal format.

Declaration

// C#
public byte[] BinData {get;}

Property Value

The provided byte array that represents an Oracle TIMESTAMP WITH TIME ZONE in Oracle
internal format.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Day
This property specifies the day component of an OracleTimeStampTZ in the current time zone.

Declaration

// C#
public int Day{get;}

Property Value

A number that represents the day. Range of Day is (1 to 31).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStampTZ Structure

15-473

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value. Otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Hour
This property specifies the hour component of an OracleTimeStampTZ in the current
time zone.

Declaration

// C#
public int Hour{get;}

Property Value

A number that represents the hour. Range of Hour is (0 to 23).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStampTZ Structure

15-474

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Millisecond
This property gets the millisecond component of an OracleTimeStampTZ in the current time
zone.

Declaration

// C#
public double Millisecond{get;}

Property Value

A number that represents a millisecond. Range of Millisecond is (0 to 999.999999)

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Minute
This property gets the minute component of an OracleTimeStampTZ in the current time zone.

Declaration

// C#
public int Minute{get;}

Property Value

A number that represent a minute. Range of Minute is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStampTZ Structure

15-475

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Month
This property gets the month component of an OracleTimeStampTZ in the current time
zone

Declaration

// C#
public int Month{get;}

Property Value

A number that represents a month. Range of Month is (1 to 12).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Nanosecond
This property gets the nanosecond component of an OracleTimeStampTZ in the current
time zone.

Declaration

// C#
public int Nanosecond{get;}

Property Value

A number that represents a nanosecond. Range of Nanosecond is (0 to 999999999).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 15
OracleTimeStampTZ Structure

15-476

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Second
This property gets the second component of an OracleTimeStampTZ in the current time zone.

Declaration

// C#
public int Second{get;}

Property Value

A number that represents a second. Range of Second is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

TimeZone
This property returns the time zone of the OracleTimeStampTZ instance.

Declaration

// C#
public string TimeZone{get;}

Property Value

A string that represents the time zone.

Remarks

If no time zone is specified in the constructor, this property is set to the thread's
OracleGlobalization.TimeZone by default

Chapter 15
OracleTimeStampTZ Structure

15-477

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

Value
This property returns the date and time that is stored in the OracleTimeStampTZ
structure in the current time zone.

Declaration

// C#
public DateTime Value{get;}

Property Value

A DateTime in the current time zone.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Year
This property sets the year component of an OracleTimeStampTZ in the current time
zone.

Declaration

// C#
public int Year{get;}

Property Value

A number that represents a year. The range of Year is (-4712 to 9999).

Chapter 15
OracleTimeStampTZ Structure

15-478

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

OracleTimeStampTZ Methods
The OracleTimeStampTZ methods are listed in Table 15-138.

Table 15-138 OracleTimeStampTZ Methods

Methods Description

AddDays Adds the supplied number of days to the current instance

AddHours Adds the supplied number of hours to the current instance

AddMilliseconds Adds the supplied number of milliseconds to the current instance

AddMinutes Adds the supplied number of minutes to the current instance

AddMonths Adds the supplied number of months to the current instance

AddNanoseconds Adds the supplied number of nanoseconds to the current instance

AddSeconds Adds the supplied number of seconds to the current instance

AddYears Adds the supplied number of years to the current instance

CompareTo Compares the current OracleTimeStampTZ instance to an object,
and returns an integer that represents their relative values

Equals Determines whether or not an object has the same date and time as
the current OracleTimeStampTZ instance (Overloaded)

GetDaysBetween Subtracts an OracleTimeStampTZ from the current instance and
returns an OracleIntervalDS that represents the time interval

GetHashCode Returns a hash code for the OracleTimeStampTZ instance

GetTimeZoneOffset Gets the time zone information in hours and minutes of the current
OracleTimeStampTZ

GetYearsBetween Subtracts an OracleTimeStampTZ from the current instance and
returns an OracleIntervalYM that represents the time interval

GetType Inherited from System.Object
ToLocalTime Converts the current OracleTimeStampTZ instance to local time

ToOracleDate Converts the current OracleTimeStampTZ structure to an
OracleDate structure

Chapter 15
OracleTimeStampTZ Structure

15-479

Table 15-138 (Cont.) OracleTimeStampTZ Methods

Methods Description

ToOracleTimeStampLTZ Converts the current OracleTimeStampTZ structure to an
OracleTimeStampLTZ structure

ToOracleTimeStamp Converts the current OracleTimeStampTZ structure to an
OracleTimeStamp structure

ToString Converts the current OracleTimeStampTZ structure to a string

ToUniversalTime Converts the current datetime to Coordinated Universal Time (UTC)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

AddDays
This method adds the supplied number of days to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddDays(double days);

Parameters

• days

The supplied number of days. Range is (-1,000,000,000 < days < 1,000,000,000)

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

Chapter 15
OracleTimeStampTZ Structure

15-480

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

AddHours
This method adds the supplied number of hours to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddHours(double hours);

Parameters

• hours

The supplied number of hours. Range is (-24,000,000,000 < hours < 24,000,000,000).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

AddMilliseconds
This method adds the supplied number of milliseconds to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddMilliseconds(double milliseconds);

Chapter 15
OracleTimeStampTZ Structure

15-481

Parameters

• milliseconds

The supplied number of milliseconds. Range is (-8.64 * 1016< milliseconds <
8.64 * 1016).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

AddMinutes
This method adds the supplied number of minutes to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddMinutes(double minutes);

Parameters

• minutes

The supplied number of minutes. Range is (-1,440,000,000,000 < minutes <
1,440,000,000,000).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

Chapter 15
OracleTimeStampTZ Structure

15-482

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

AddMonths
This method adds the supplied number of months to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddMonths(long months);

Parameters

• months

The supplied number of months. Range is (-12,000,000,000 < months < 12,000,000,000).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

AddNanoseconds
This method adds the supplied number of nanoseconds to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddNanoseconds(long nanoseconds);

Chapter 15
OracleTimeStampTZ Structure

15-483

Parameters

• nanoseconds

The supplied number of nanoseconds.

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

AddSeconds
This method adds the supplied number of seconds to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddSeconds(double seconds);

Parameters

• seconds

The supplied number of seconds. Range is (-8.64 * 1013< seconds < 8.64 * 1013).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

Chapter 15
OracleTimeStampTZ Structure

15-484

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

AddYears
This method adds the supplied number of years to the current instance

Declaration

// C#
public OracleTimeStampTZ AddYears(int years);

Parameters

• years

The supplied number of years. Range is (-999,999,999 <= years < = 999,999,999).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

CompareTo
This method compares the current OracleTimeStampTZ instance to an object, and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Chapter 15
OracleTimeStampTZ Structure

15-485

Parameters

• obj

The object being compared to the current OracleTimeStampTZ instance.

Return Value

The method returns a number that is:

Less than zero: if the current OracleTimeStampTZ instance value is less than that of
obj.

Zero: if the current OracleTimeStampTZ instance and obj values are equal.

Greater than zero: if the current OracleTimeStampTZ instance value is greater than that
of obj.

Implements

IComparable

Exceptions

ArgumentException - The obj is not of type OracleTimeStampTZ.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleTimeStampTZs. For example, comparing
an OracleTimeStampTZ instance with an OracleBinary instance is not allowed.
When an OracleTimeStampTZ is compared with a different type, an
ArgumentException is thrown.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ
that has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

Equals
Overrides Object
This method determines whether or not an object has the same date and time as the
current OracleTimeStampTZ instance.

Chapter 15
OracleTimeStampTZ Structure

15-486

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStampTZ instance.

Return Value

Returns true if the obj is of type OracleTimeStampTZ and represents the same date and
time; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that has
a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

GetDaysBetween
This method subtracts an OracleTimeStampTZ value from the current instance and returns an
OracleIntervalDS that represents the time interval.

Declaration

// C#
public OracleIntervalDS GetDaysBetween(OracleTimeStampTZ value1);

Parameters

• value1

The OracleTimeStampTZ value being subtracted.

Return Value

An OracleIntervalDS that represents the interval between two OracleTimeStampTZ values.

Chapter 15
OracleTimeStampTZ Structure

15-487

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalDS has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

GetHashCode
Overrides Object
This method returns a hash code for the OracleTimeStampTZ instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

GetTimeZoneOffset
This method gets the time zone portion in hours and minutes of the current
OracleTimeStampTZ.

Declaration

// C#
public TimeSpan GetTimeZoneOffset();

Return Value

A TimeSpan.

Chapter 15
OracleTimeStampTZ Structure

15-488

Exceptions

OracleNullValueException - The current instance has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

GetYearsBetween
This method subtracts an OracleTimeStampTZ value from the current instance and returns an
OracleIntervalYM that represents the time interval.

Declaration

// C#
public OracleIntervalYM GetYearsBetween(OracleTimeStampTZ val);

Parameters

• val

The OracleTimeStampTZ value being subtracted.

Return Value

An OracleIntervalYM that represents the interval between two OracleTimeStampTZ values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalYM has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

ToLocalTime
This method converts the current OracleTimeStampTZ instance to local time.

Chapter 15
OracleTimeStampTZ Structure

15-489

Declaration

// C#
public OracleTimeStampLTZ ToLocalTime();

Return Value

An OracleTimeStampLTZ that contains the date and time, which is normalized to the
client local time zone, in the current instance.

Remarks

If the current instance has a null value, the returned OracleTimeStampLTZ has a null
value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

ToOracleDate
This method converts the current OracleTimeStampTZ structure to an OracleDate
structure.

Declaration

// C#
public OracleDate ToOracleDate();

Return Value

The returned OracleDate contains the date and time in the current instance, but the
time zone information in the current instance is truncated

Remarks

The precision of the OracleTimeStampTZ value can be lost during the conversion, and
the time zone information in the current instance is truncated.

If the current instance has a null value, the value of the returned OracleDate structure
has a null value.

Chapter 15
OracleTimeStampTZ Structure

15-490

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

ToOracleTimeStampLTZ
This method converts the current OracleTimeStampTZ structure to an OracleTimeStampLTZ
structure.

Declaration

// C#
public OracleTimeStampLTZ ToOracleTimeStampLTZ();

Return Value

The returned OracleTimeStampLTZ structure contains the date and time, which is normalized
to the client local time zone, in the current instance.

Remarks

If the value of the current instance has a null value, the value of the returned
OracleTimeStampLTZ structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

ToOracleTimeStamp
This method converts the current OracleTimeStampTZ structure to an OracleTimeStamp
structure.

Declaration

// C#
public OracleTimeStamp ToOracleTimeStamp();

Return Value

The returned OracleTimeStamp contains the date and time in the current instance, but the
time zone information is truncated.

Chapter 15
OracleTimeStampTZ Structure

15-491

Remarks

If the value of the current instance has a null value, the value of the returned
OracleTimeStamp structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

ToString
Overrides Object
This method converts the current OracleTimeStampTZ structure to a string.

Declaration

// C#
public override string ToString();

Return Value

A string that represents the same date and time as the current OracleTimeStampTZ
structure.

Remarks

The returned value is a string representation of an OracleTimeStampTZ in the format
specified by the OracleGlobalization.TimeStampTZFormat property of the thread. The
names and abbreviations used for months and days are in the language specified by
the OracleGlobalization.DateLanguage and the OracleGlobalization.Calendar
properties of the thread. If any of the thread's globalization properties are set to null or
an empty string, the client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ToStringSample
{
 static void Main()
 {
 // Set the nls parameters for the current thread
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeZone = "US/Eastern";
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";

Chapter 15
OracleTimeStampTZ Structure

15-492

 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // Create an OracleTimeStampTZ in US/Pacific time zone
 OracleTimeStampTZ tstz1=new OracleTimeStampTZ("11-NOV-1999 "+
 "11:02:33.444 AM US/Pacific");

 // Note that ToOracleTimeStampTZ uses the thread's time zone region,
 // "US/Eastern"
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");
 OracleTimeStampTZ tstz2 = ts.ToOracleTimeStampTZ();

 // Calculate the difference between tstz1 and tstz2
 OracleIntervalDS idsDiff = tstz1.GetDaysBetween(tstz2);

 // Prints "US/Pacific"
 Console.WriteLine("tstz1.TimeZone = " + tstz1.TimeZone);

 // Prints "US/Eastern"
 Console.WriteLine("tstz2.TimeZone = " + tstz2.TimeZone);

 // Prints 3
 Console.WriteLine("idsDiff.Hours = " + idsDiff.Hours);

 // Prints 0
 Console.WriteLine("idsDiff.Minutes = " + idsDiff.Minutes);
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

• "OracleGlobalization Class"

• "Globalization Support "

ToUniversalTime
This method converts the current datetime to Coordinated Universal Time (UTC).

Declaration

// C#
public OracleTimeStampTZ ToUniversalTime();

Return Value

An OracleTimeStampTZ structure.

Chapter 15
OracleTimeStampTZ Structure

15-493

Remarks

If the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Structure

• OracleTimeStampTZ Members

INullable Interface
The INullable interface is used to determine whether or not an ODP.NET type has a
NULL value.

Declaration

// C#
public interface INullable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 15
INullable Interface

15-494

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• INullable Interface Members

• INullable Interface Properties

INullable Interface Members
INullable members are listed in the following tables.

INullable Interface Properties

INullable interface properties are listed in Table 15-139.

Table 15-139 INullable Interface Properties

Public Property Description

IsNull Indicates whether or not the ODP.NET type has a NULL value

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• INullable Interface

INullable Interface Properties
INullable interface properties are listed in Table 15-139.

Table 15-140 INullable Interface Properties

Public Property Description

IsNull Indicates whether or not the ODP.NET type has a NULL value

IsNull
This property indicates whether or not the ODP.NET type has a NULL value.

Declaration

// C#
bool IsNull {get;}

Chapter 15
INullable Interface

15-495

Property Value

Returns true if the ODP.NET type has a NULL value; otherwise, returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• INullable Interface

• INullable Interface Members

Chapter 15
INullable Interface

15-496

16
Oracle Data Provider for .NET Types
Exceptions

This section covers the ODP.NET Types exceptions.

This chapter contains these topics:

• OracleTypeException Class

• OracleNullValueException Class

• OracleTruncateException Class

OracleTypeException Class
The OracleTypeException is the base exception class for handling exceptions that occur in
the ODP.NET Types classes.

Class Inheritance

System.Object
 System.Exception
 System.SystemException
 Oracle.DataAccess.Types.OracleTypeException

Declaration

// C#
public class OracleTypeException : SystemException

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

16-1

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Members

• OracleTypeException Constructors

• OracleTypeException Static Methods

• OracleTypeException Properties

• OracleTypeException Methods

OracleTypeException Members
OracleTypeException members are listed in the following tables.

OracleTypeException Constructors

The OracleTypeException constructors are listed in Table 16-1.

Table 16-1 OracleTypeException Constructor

Constructor Description

OracleTypeException Constructors Creates a new instance of the
OracleTypeException class (Overloaded)

OracleTypeException Static Methods

The OracleTypeException static methods are listed in Table 16-2.

Table 16-2 OracleTypeException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleTypeException Properties

The OracleTypeException properties are listed in Table 16-3.

Table 16-3 OracleTypeException Properties

Properties Description

HelpLink Inherited from
System.SystemException.Exception

InnerException Inherited from
System.SystemException.Exception

Chapter 16
OracleTypeException Class

16-2

Table 16-3 (Cont.) OracleTypeException Properties

Properties Description

Message Specifies the error messages that occur in the
exception

Number Specifies the error number that occurs in the
exception

Source Specifies the name of the data provider that
generates the error

StackTrace Inherited from
System.SystemException.Exception

TargetSite Inherited from
System.SystemException.Exception

OracleTypeException Methods

The OracleTypeException methods are listed in Table 16-4.

Table 16-4 OracleTypeException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception
GetHashCode Inherited from System.Object
GetObjectData Inherited from System.SystemException.Exception
GetType Inherited from System.Object
ToString Returns the fully qualified name of this exception

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

OracleTypeException Constructors
The OracleTypeException constructors create new instances of the OracleTypeException
class.

Overload List:

• OracleTypeException(string)

This constructor creates a new instance of the OracleTypeException class with the
specified error message, errMessage.

Chapter 16
OracleTypeException Class

16-3

• OracleTypeException(SerializationInfo, StreamingContext)

This constructor creates a new instance of the OracleTypeException class with
the specified serialization information, si, and the specified streaming context, sc.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

OracleTypeException(string)
This constructor creates a new instance of the OracleTypeException class with the
specified error message, errMessage.

Declaration

// C#
public OracleTypeException (string errMessage);

Parameters

• errMessage

The specified error message.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

OracleTypeException(SerializationInfo, StreamingContext)
This constructor creates a new instance of the OracleTypeException class with the
specified serialization information, si, and the specified streaming context, sc.

Declaration

// C#
protected OracleTypeException (SerializationInfo si, StreamingContext sc);

Parameters

• si

Chapter 16
OracleTypeException Class

16-4

The specified serialization information.

• sc

The specified streaming context.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

OracleTypeException Static Methods
The OracleTypeException static methods are listed in Table 16-5.

Table 16-5 OracleTypeException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

OracleTypeException Properties
The OracleTypeException properties are listed in Table 16-6.

Table 16-6 OracleTypeException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception
InnerException Inherited from System.SystemException.Exception
Message Specifies the error messages that occur in the exception

Number Specifies the error number that occurs in the exception

Source Specifies the name of the data provider that generates the error

StackTrace Inherited from System.SystemException.Exception

Chapter 16
OracleTypeException Class

16-5

Table 16-6 (Cont.) OracleTypeException Properties

Properties Description

TargetSite Inherited from System.SystemException.Exception

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

Message
Overrides Exception
This property specifies the error messages that occur in the exception.

Declaration

// C#
public override string Message {get;}

Property Value

An error message.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

Number
Overrides Exception
This property specifies the error number that occurs in the exception

Declaration

// C#
public override int Number {get;}

Chapter 16
OracleTypeException Class

16-6

Property Value

An error number

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

Source
Overrides Exception
This property specifies the name of the data provider that generates the error.

Declaration

// C#
public override string Source {get;}

Property Value

Oracle Data Provider for .NET.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

OracleTypeException Methods
The OracleTypeException methods are listed in Table 16-7.

Table 16-7 OracleTypeException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception
GetHashCode Inherited from System.Object
GetObjectData Inherited from System.SystemException.Exception

Chapter 16
OracleTypeException Class

16-7

Table 16-7 (Cont.) OracleTypeException Methods

Methods Description

GetType Inherited from System.Object
ToString Returns the fully qualified name of this exception

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

ToString
Overrides Exception
This method returns the fully qualified name of this exception, the error message in the
Message property, the InnerException.ToString() message, and the stack trace.

Declaration

// C#
public override string ToString();

Return Value

The fully qualified name of this exception.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTypeException Class

• OracleTypeException Members

OracleNullValueException Class
The OracleNullValueException represents an exception that is thrown when trying to
access an ODP.NET Types structure that has a null value.

Class Inheritance

System.Object

Chapter 16
OracleNullValueException Class

16-8

 System.Exception
 System.SystemException
 System.OracleTypeException
 Oracle.DataAccess.Types.OracleNullValueException

Declaration

// C#
public sealed class OracleNullValueException : OracleTypeException

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleNullValueException Members

• OracleNullValueException Constructors

• OracleNullValueException Static Methods

• OracleNullValueException Properties

• OracleNullValueException Methods

OracleNullValueException Members
OracleNullValueException members are listed in the following tables.

OracleNullValueException Constructors

The OracleNullValueException constructors are listed in Table 16-8.

Chapter 16
OracleNullValueException Class

16-9

Table 16-8 OracleNullValueException Constructors

Constructor Description

OracleNullValueException Constructors Creates a new instance of the
OracleNullValueException class (Overloaded)

OracleNullValueException Static Methods

The OracleNullValueException static methods are listed in Table 16-9.

Table 16-9 OracleNullValueException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleNullValueException Properties

The OracleNullValueException properties are listed in Table 16-10.

Table 16-10 OracleNullValueException Properties

Properties Description

HelpLink Inherited from
System.SystemException.Exception

InnerException Inherited from
System.SystemException.Exception

Message Inherited from OracleTypeException
Source Inherited from OracleTypeException
StackTrace Inherited from

System.SystemException.Exception
TargetSite Inherited from

System.SystemException.Exception

OracleNullValueException Methods

The OracleNullValueException methods are listed in Table 16-11.

Table 16-11 OracleNullValueException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from
System.SystemException.Exception

GetHashCode Inherited from System.Object
GetObjectData Inherited from

System.SystemException.Exception

Chapter 16
OracleNullValueException Class

16-10

Table 16-11 (Cont.) OracleNullValueException Methods

Methods Description

GetType Inherited from System.Object
ToString Inherited from OracleTypeException

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleNullValueException Class

OracleNullValueException Constructors
The OracleNullValueException constructors create new instances of the
OracleNullValueException class.

Overload List:

• OracleNullValueException()

This constructor creates a new instance of the OracleNullValueException class with its
default properties.

• OracleNullValueException(string)

This constructor creates a new instance of the OracleNullValueException class with the
specified error message, errMessage.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleNullValueException Class

• OracleNullValueException Members

OracleNullValueException()
This constructor creates a new instance of the OracleNullValueException class with its
default properties.

Declaration

// C#
public OracleNullValueException();

Chapter 16
OracleNullValueException Class

16-11

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleNullValueException Class

• OracleNullValueException Members

OracleNullValueException(string)
This constructor creates a new instance of the OracleNullValueException class with
the specified error message, errMessage.

Declaration

// C#
public OracleNullValueException (string errMessage);

Parameters

• errMessage

The specified error message.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleNullValueException Class

• OracleNullValueException Members

OracleNullValueException Static Methods
The OracleNullValueException static methods are listed in Table 16-12.

Table 16-12 OracleNullValueException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

Chapter 16
OracleNullValueException Class

16-12

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleNullValueException Class

• OracleNullValueException Members

OracleNullValueException Properties
The OracleNullValueException properties are listed in Table 16-13.

Table 16-13 OracleNullValueException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception
InnerException Inherited from System.SystemException.Exception
Message Inherited from OracleTypeException
Source Inherited from OracleTypeException
StackTrace Inherited from System.SystemException.Exception
TargetSite Inherited from System.SystemException.Exception

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleNullValueException Class

• OracleNullValueException Members

OracleNullValueException Methods
The OracleNullValueException methods are listed in Table 16-14.

Table 16-14 OracleNullValueException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception
GetHashCode Inherited from System.Object
GetObjectData Inherited from System.SystemException.Exception

Chapter 16
OracleNullValueException Class

16-13

Table 16-14 (Cont.) OracleNullValueException Methods

Methods Description

GetType Inherited from System.Object
ToString Inherited from OracleTypeException

OracleTruncateException Class
The OracleTruncateException class represents an exception that is thrown when
truncation in a ODP.NET Types class occurs.

Class Inheritance

System.Object
 System.Exception
 System.SystemException
 System.OracleTypeException
 Oracle.DataAccess.Types.OracleTruncateException

Declaration

// C#
public sealed class OracleTruncateException : OracleTypeException

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 16
OracleTruncateException Class

16-14

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTruncateException Members

• OracleTruncateException Constructors

• OracleTruncateException Static Methods

• OracleTruncateException Properties

• OracleTruncateException Methods

OracleTruncateException Members
OracleTruncateException members are listed in the following tables.

OracleTruncateException Constructors

The OracleTruncateException constructors are listed in Table 16-15.

Table 16-15 OracleTruncateException Constructors

Constructor Description

OracleTruncateException Constructors Creates a new instance of the
OracleTruncateException class (Overloaded)

OracleTruncateException Static Methods

The OracleTruncateException static methods are listed in Table 16-16.

Table 16-16 OracleTruncateException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleTruncateException Properties

The OracleTruncateException properties are listed in Table 16-17.

Table 16-17 OracleTruncateException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception
InnerException Inherited from System.SystemException.Exception
Message Inherited from OracleTypeException
Source Inherited from OracleTypeException

Chapter 16
OracleTruncateException Class

16-15

Table 16-17 (Cont.) OracleTruncateException Properties

Properties Description

StackTrace Inherited from System.SystemException.Exception
TargetSite Inherited from System.SystemException.Exception

OracleTruncateException Methods

The OracleTruncateException methods are listed in Table 16-18.

Table 16-18 OracleTruncateException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from
System.SystemException.Exception

GetHashCode Inherited from System.Object
GetObjectData Inherited from

System.SystemException.Exception
GetType Inherited from System.Object
ToString Inherited from OracleTypeException

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTruncateException Class

OracleTruncateException Constructors
The OracleTruncateException constructors create new instances of the
OracleTruncateException class

Overload List:

• OracleTruncateException()

This constructor creates a new instance of the OracleTruncateException class
with its default properties.

• OracleTruncateException(string)

This constructor creates a new instance of the OracleTruncateException class
with the specified error message, errMessage.

Chapter 16
OracleTruncateException Class

16-16

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTruncateException Class

• OracleTruncateException Members

OracleTruncateException()
This constructor creates a new instance of the OracleTruncateException class with its
default properties.

Declaration

// C#
public OracleTruncateException();

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTruncateException Class

• OracleTruncateException Members

OracleTruncateException(string)
This constructor creates a new instance of the OracleTruncateException class with the
specified error message, errMessage.

Declaration

// C#
public OracleTruncateException (string errMessage);

Parameters

• errMessage

The specified error message.

Chapter 16
OracleTruncateException Class

16-17

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTruncateException Class

• OracleTruncateException Members

OracleTruncateException Static Methods
The OracleTruncateException static methods are listed in Table 16-19.

Table 16-19 OracleTruncateException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTruncateException Class

• OracleTruncateException Members

OracleTruncateException Properties
The OracleTruncateException properties are listed in Table 16-20.

Table 16-20 OracleTruncateException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception
InnerException Inherited from System.SystemException.Exception
Message Inherited from OracleTypeException
Source Inherited from OracleTypeException
StackTrace Inherited from System.SystemException.Exception
TargetSite Inherited from System.SystemException.Exception

Chapter 16
OracleTruncateException Class

16-18

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTruncateException Class

• OracleTruncateException Members

OracleTruncateException Methods
The OracleTruncateException methods are listed in Table 16-21.

Table 16-21 OracleTruncateException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception
GetHashCode Inherited from System.Object
GetObjectData Inherited from System.SystemException.Exception
GetType Inherited from System.Object
ToString Inherited from OracleTypeException

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTruncateException Class

• OracleTruncateException Members

Chapter 16
OracleTruncateException Class

16-19

17
Oracle Data Provider for .NET UDT-Related
Classes

This chapter describes the object-related classes and interfaces in the Oracle Data Provider
for .NET that provide support for Oracle user-defined data types (UDT).

In ODAC Oracle Universal Installer, samples are provided in the
ORACLE_BASE\ORACLE_HOME\ODP.NET\Samples\UDT directory.

See Also:

"Oracle User-Defined Types (UDTs) and .NET Custom Types"

• OracleCustomTypeMappingAttribute Class

• OracleObjectMappingAttribute Class

• OracleArrayMappingAttribute Class

• IOracleCustomType Interface

• IOracleCustomTypeFactory Interface

• IOracleArrayTypeFactory Interface

• OracleUdt Class

• OracleRef Class

• OracleUdtFetchOption Enumeration

• OracleUdtStatus Enumeration

OracleCustomTypeMappingAttribute Class
The OracleCustomTypeMappingAttribute class is used to mark a custom type factory class
or struct with information that is used by ODP.NET when a custom type is used to represent
an Oracle UDT.

Class Inheritance

System.Object
System.Attribute
System.OracleCustomTypeMappingAttribute

Declaration

// C#
[AttributeUsageAttribute(AttributeTargets.Class|AttributeTargets.Struct,

17-1

 AllowMultiple=false, Inherited=true)]
public sealed class OracleCustomTypeMappingAttribute : Attribute

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Remarks

The OracleCustomTypeMapping attribute must be specified on the custom type factory
class to indicate the Oracle UDT that the corresponding custom type represents. The
Oracle UDT may be specified in the form schema_name.type_name.

For each Oracle UDT that the application uses, there must be a unique custom type
factory, as follows:

• Oracle Object Types

The custom type factory must return a custom type that cannot be used to
represent any other Oracle Object Type.

• Oracle Collection Types

The custom type factory may return a custom type that can be used by other
Oracle Collection Types. This is common when an array type is used to represent
an Oracle Collection, that is, when an int[] is used to represent a collection of
NUMBERs.

If the OracleCustomTypeMappingAttribute is not specified, then custom type
mappings must be specified through an XML configuration file, for example,
app.config for Windows applications or the web.config for web applications, and the
machine.config

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 17
OracleCustomTypeMappingAttribute Class

17-2

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleCustomTypeMappingAttribute Members

• OracleCustomTypeMappingAttribute Constructors

• OracleCustomTypeMappingAttribute Static Methods

• OracleCustomTypeMappingAttribute Methods

OracleCustomTypeMappingAttribute Members
OracleCustomTypeMappingAttribute members are listed in the following tables.

OracleCustomTypeMappingAttribute Constructors

OracleCustomTypeMappingAttribute constructors are listed in Table 17-1.

Table 17-1 OracleCustomTypeMappingAttribute Constructors

Constructor Description

OracleCustomTypeMappingAttribute
Constructors

Instantiates a new instance of
OracleCustomTypeMappingAttribute class

OracleCustomTypeMappingAttribute Static Methods

OracleCustomTypeMappingAttribute static methods are listed in Table 17-2.

Table 17-2 OracleCustomTypeMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute
GetCustomAttribute Inherited from System.Attribute
GetCustomAttributes Inherited from System.Attribute
IsDefined Inherited from System.Attribute
ReferenceEquals Inherited from System.Attribute

OracleCustomTypeMappingAttribute Properties

OracleCustomTypeMappingAttribute properties are listed in Table 17-3.

Table 17-3 OracleCustomTypeMappingAttribute Properties

Property Description

UdtTypeName Specifies the Oracle user-defined type name that the custom
class maps to

Chapter 17
OracleCustomTypeMappingAttribute Class

17-3

Table 17-3 (Cont.) OracleCustomTypeMappingAttribute Properties

Property Description

TypeId Inherited from System.Attribute

OracleCustomTypeMappingAttribute Methods

OracleCustomTypeMappingAttribute methods are listed in Table 17-4.

Table 17-4 OracleCustomTypeMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute
GetHashCode Inherited from System.Attribute
GetType Inherited from System.Attribute
IsDefaultAttribute Inherited from System.Attribute
Match Inherited from System.Attribute
ToString Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleCustomTypeMappingAttribute Class

OracleCustomTypeMappingAttribute Constructors
OracleCustomTypeMappingAttribute constructors create new instances of the
OracleCustomTypeMappingAttribute class.

Overload List:

• OracleCustomTypeMappingAttribute(string)

This constructor creates and initializes an OracleCustomTypeMappingAttribute
using the specified Oracle user-defined type name.

Chapter 17
OracleCustomTypeMappingAttribute Class

17-4

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleCustomTypeMappingAttribute Class

• OracleCustomTypeMappingAttribute Methods

OracleCustomTypeMappingAttribute(string)
This constructor creates and initializes an OracleCustomTypeMappingAttribute using the
specified Oracle user-defined type name.

Declaration

// C#
public OracleCustomTypeMappingAttribute(string udtTypeName)

Parameters

• udtTypeName

The Oracle user-defined type name that the custom class maps to.

Remarks

The udtTypeName parameter is case-sensitive. The udtTypeName is specified in the form of
schema_name.type_name.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleCustomTypeMappingAttribute Class

• OracleCustomTypeMappingAttribute Members

OracleCustomTypeMappingAttribute Static Methods
OracleCustomTypeMappingAttribute static methods are listed in Table 17-5.

Table 17-5 OracleCustomTypeMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute
GetCustomAttribute Inherited from System.Attribute
GetCustomAttributes Inherited from System.Attribute

Chapter 17
OracleCustomTypeMappingAttribute Class

17-5

Table 17-5 (Cont.) OracleCustomTypeMappingAttribute Static Methods

Method Description

IsDefined Inherited from System.Attribute
ReferenceEquals Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleCustomTypeMappingAttribute Class

• OracleCustomTypeMappingAttribute Members

OracleCustomTypeMappingAttribute Properties
OracleCustomTypeMappingAttribute properties are listed in Table 17-6.

Table 17-6 OracleCustomTypeMappingAttribute Properties

Property Description

UdtTypeName Specifies the Oracle user-defined type name that the
custom class maps to

TypeId Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleCustomTypeMappingAttribute Class

• OracleCustomTypeMappingAttribute Members

UdtTypeName
This property specifies the Oracle user-defined type name that the custom class maps
to.

Declaration

// C#
public string UdtTypeName {get; set;}

Chapter 17
OracleCustomTypeMappingAttribute Class

17-6

Property Value

A string that represents an Oracle user-defined type name.

Remarks

UdtTypeName is case-sensitive. It is specified in the form of schema_name.type_name.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleCustomTypeMappingAttribute Class

• OracleCustomTypeMappingAttribute Members

OracleCustomTypeMappingAttribute Methods
OracleCustomTypeMappingAttribute methods are listed in Table 17-7.

Table 17-7 OracleCustomTypeMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute
GetHashCode Inherited from System.Attribute
GetType Inherited from System.Attribute
IsDefaultAttribute Inherited from System.Attribute
Match Inherited from System.Attribute
ToString Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleCustomTypeMappingAttribute Class

• OracleCustomTypeMappingAttribute Members

OracleObjectMappingAttribute Class
The OracleObjectMappingAttribute class marks custom class fields or properties with
information that ODP.NET uses when a custom type represents an Oracle Object type.

Chapter 17
OracleObjectMappingAttribute Class

17-7

Class Inheritance

System.Object
 System.Attribute
 System.OracleObjectMappingAttribute

Declaration

// C#
[AttributeUsageAttribute(AttributeTargets.Field|AttributeTargets.Property,
AllowMultiple=false, Inherited=true)]

public sealed class OracleObjectMappingAttribute : Attribute

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Remarks

The OracleObjectMappingAttribute is specified on members of a custom type that
represent an Oracle object type. This attribute must specify the name or zero-based
index of the attribute in the Oracle object that the custom class field or property maps
to. This also allows the custom type to declare field or property names which differ
from the Oracle Object type.

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 17
OracleObjectMappingAttribute Class

17-8

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Members

• OracleObjectMappingAttribute Constructors

• OracleObjectMappingAttribute Static Methods

• OracleObjectMappingAttribute Properties

• OracleObjectMappingAttribute Methods

OracleObjectMappingAttribute Members
OracleObjectMappingAttribute members are listed in the following tables.

OracleObjectMappingAttribute Constructors

OracleObjectMappingAttribute constructors are listed in Table 17-8.

Table 17-8 OracleObjectMappingAttribute Constructors

Constructor Description

OracleObjectMappingAttribute
Constructors

Instantiates a new instance of
OracleObjectMappingAttribute class (Overloaded)

OracleObjectMappingAttribute Static Methods

OracleObjectMappingAttribute static methods are listed in Table 17-9.

Table 17-9 OracleObjectMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute
GetCustomAttribute Inherited from System.Attribute
GetCustomAttributes Inherited from System.Attribute
IsDefined Inherited from System.Attribute
ReferenceEquals Inherited from System.Attribute

OracleObjectMappingAttribute Properties

OracleObjectMappingAttribute properties are listed in Table 17-10.

Chapter 17
OracleObjectMappingAttribute Class

17-9

Table 17-10 OracleObjectMappingAttribute Properties

Property Description

AttributeIndex Specifies the index of the Oracle Object attribute that
must be retrieved

AttributeName Specifies the name of Oracle Object attribute that must
be retrieved

TypeId Inherited from System.Attribute

OracleObjectMappingAttribute Methods

OracleObjectMappingAttribute methods are listed in Table 17-11.

Table 17-11 OracleObjectMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute
GetHashCode Inherited from System.Attribute
GetType Inherited from System.Attribute
IsDefaultAttribute Inherited from System.Attribute
Match Inherited from System.Attribute
ToString Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Class

OracleObjectMappingAttribute Constructors
OracleObjectMappingAttribute constructors create new instances of the
OracleObjectMappingAttribute class.

Overload List:

• OracleObjectMappingAttribute(string)

This constructor creates and initializes an OracleObjectMappingAttribute object
with the specified Oracle Object attribute name.

• OracleObjectMappingAttribute(int)

This constructor creates and initializes an OracleObjectMappingAttribute with
the specified Oracle Object attribute index.

Chapter 17
OracleObjectMappingAttribute Class

17-10

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Class

• OracleObjectMappingAttribute Members

OracleObjectMappingAttribute(string)
This constructor creates and initializes an OracleObjectMappingAttribute object with the
specified Oracle Object attribute name.

Declaration

// C#
public OracleObjectMappingAttribute(string attrName);

Parameters

• attrName

The name of the Oracle Object attribute to map to.

Remarks

The attrName parameter is case-sensitive.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Class

• OracleObjectMappingAttribute Members

OracleObjectMappingAttribute(int)
This constructor creates and initializes an OracleObjectMappingAttribute object with the
specified Oracle Object attribute index.

Declaration

// C#
public OracleObjectMappingAttribute(int attrIndex);

Parameters

• attrIndex

The zero-based index of the Oracle Object attribute to map to.

Chapter 17
OracleObjectMappingAttribute Class

17-11

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Class

• OracleObjectMappingAttribute Members

OracleObjectMappingAttribute Static Methods
OracleObjectMappingAttribute static methods are listed in Table 17-12.

Table 17-12 OracleObjectMappingAttribute Static Method

Method Description

Equals Inherited from System.Attribute
GetCustomAttribute Inherited from System.Attribute
GetCustomAttributes Inherited from System.Attribute
IsDefined Inherited from System.Attribute
ReferenceEquals Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Class

• OracleObjectMappingAttribute Members

OracleObjectMappingAttribute Properties
OracleObjectMappingAttribute properties are listed in Table 17-13.

Table 17-13 OracleObjectMappingAttribute Properties

Property Description

AttributeIndex Specifies the index of the Oracle Object attribute that
must be retrieved

AttributeName Specifies the name of the Oracle Object attribute that
must be retrieved

TypeId Inherited from System.Attribute

Chapter 17
OracleObjectMappingAttribute Class

17-12

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Class

• OracleObjectMappingAttribute Members

AttributeIndex
This property specifies the index of the Oracle Object attribute that must be retrieved.

Declaration

// C#
public int AttributeIndex {get;}

Property Value

The zero-based index of an Oracle Object type attribute.

Remarks

The AttributeIndex property specifies the index of the Oracle Object type attribute that the
custom class field or property maps to. This allows the custom class to declare fields or
property names that differ from the Oracle object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Class

• OracleObjectMappingAttribute Members

AttributeName
This property specifies the name of the Oracle Object attribute that must be retrieved.

Declaration

// C#
public string AttributeName {get;}

Property Value

The name of an attribute of an Oracle Object type.

Chapter 17
OracleObjectMappingAttribute Class

17-13

Remarks

The AttributeName property specifies name of the attribute in the Oracle Object type
that the custom class field or property maps to. This allows the custom class to declare
field or property names that differ from the Oracle object.

The specified attribute name is case-sensitive.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Class

• OracleObjectMappingAttribute Members

OracleObjectMappingAttribute Methods
OracleObjectMappingAttribute methods are listed in Table 17-14.

Table 17-14 OracleObjectMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute
GetHashCode Inherited from System.Attribute
GetType Inherited from System.Attribute
IsDefaultAttribute Inherited from System.Attribute
Match Inherited from System.Attribute
ToString Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleObjectMappingAttribute Class

• OracleObjectMappingAttribute Members

OracleArrayMappingAttribute Class
The OracleArrayMappingAttribute class is required to mark a custom class field or
property with information that ODP.NET uses when a custom type represents an
Oracle Collection type.

Chapter 17
OracleArrayMappingAttribute Class

17-14

Class Inheritance

System.Object
 System.Attribute
 System.OracleArrayMappingAttribute

Declaration

[AttributeUsageAttribute(AttributeTargets.Field|AttributeTargets.Property, AllowMultiple=false,
Inherited=true)]

// C#
public sealed class OracleArrayMappingAttribute : Attribute

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Remarks

An OracleArrayMappingAttribute object must be specified when a custom type represents
an Oracle Collection. This attribute is applied only to the custom class member that stores the
collection elements.

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleArrayMappingAttribute Members

• OracleArrayMappingAttribute Constructors

• OracleArrayMappingAttribute Static Methods

• OracleArrayMappingAttribute Properties

• OracleArrayMappingAttribute Methods

Chapter 17
OracleArrayMappingAttribute Class

17-15

OracleArrayMappingAttribute Members
OracleArrayMappingAttribute members are listed in the following tables.

OracleArrayMappingAttribute Constructors

OracleArrayMappingAttribute constructors are listed in Table 17-15.

Table 17-15 OracleArrayMappingAttribute Constructors

Constructor Description

OracleArrayMappingAttribute
Constructors

Instantiates a new instance of
OracleArrayMappingAttribute class (Overloaded)

OracleArrayMappingAttribute Static Methods

OracleArrayMappingAttribute static methods are listed in Table 17-16.

Table 17-16 OracleArrayMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute
GetCustomAttribute Inherited from System.Attribute
GetCustomAttributes Inherited from System.Attribute
IsDefined Inherited from System.Attribute
ReferenceEquals Inherited from System.Attribute

OracleArrayMappingAttribute Properties

OracleArrayMappingAttribute properties are listed in Table 17-17.

Table 17-17 OracleArrayMappingAttribute Properties

Property Description

TypeId Inherited from System.Attribute

OracleArrayMappingAttribute Methods

OracleArrayMappingAttribute methods are listed in Table 17-18.

Table 17-18 OracleArrayMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute
GetHashCode Inherited from System.Attribute
GetType Inherited from System.Attribute

Chapter 17
OracleArrayMappingAttribute Class

17-16

Table 17-18 (Cont.) OracleArrayMappingAttribute Methods

Method Description

IsDefaultAttribute Inherited from System.Attribute
Match Inherited from System.Attribute
ToString Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleArrayMappingAttribute Class

OracleArrayMappingAttribute Constructors
OracleArrayMappingAttribute constructors create new instances of the
OracleArrayMappingAttribute class.

Overload List:

• OracleArrayMappingAttribute()

This constructor creates and initializes an OracleArrayMappingAttribute object.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleArrayMappingAttribute Class

• OracleArrayMappingAttribute Members

OracleArrayMappingAttribute()
This constructor creates and initializes an OracleArrayMappingAttribute object.

Declaration

// C#
public OracleArrayMappingAttribute();

Remarks

An OracleArrayMappingAttribute object must be applied when a custom class represents
an Oracle Collection type, to specify the custom class field or property that stores the
collection elements.

Chapter 17
OracleArrayMappingAttribute Class

17-17

The OracleArrayMappingAttribute can be applied to only one field or property in the
custom class.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleArrayMappingAttribute Class

• OracleArrayMappingAttribute Members

OracleArrayMappingAttribute Static Methods
OracleArrayMappingAttribute static methods are listed in Table 17-19.

Table 17-19 OracleArrayMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute
GetCustomAttribute Inherited from System.Attribute
GetCustomAttributes Inherited from System.Attribute
IsDefined Inherited from System.Attribute
ReferenceEquals Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleArrayMappingAttribute Class

• OracleArrayMappingAttribute Members

OracleArrayMappingAttribute Properties
OracleArrayMappingAttribute properties are listed in Table 17-20.

Table 17-20 OracleArrayMappingAttribute Properties

Property Description

TypeId Inherited from System.Attribute

Chapter 17
OracleArrayMappingAttribute Class

17-18

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleArrayMappingAttribute Class

• OracleArrayMappingAttribute Members

OracleArrayMappingAttribute Methods
OracleArrayMappingAttribute methods are listed in Table 17-21.

Table 17-21 OracleArrayMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute
GetHashCode Inherited from System.Attribute
GetType Inherited from System.Attribute
IsDefaultAttribute Inherited from System.Attribute
Match Inherited from System.Attribute
ToString Inherited from System.Attribute

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleArrayMappingAttribute Class

• OracleArrayMappingAttribute Members

IOracleCustomType Interface
IOracleCustomType is an interface for converting between a Custom Type and an Oracle
Object or Collection Type.

Declaration

// C#
public interface IOracleCustomType

Chapter 17
IOracleCustomType Interface

17-19

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomType Members

• IOracleCustomType Interface Methods

IOracleCustomType Members
IOracleCustomType members are listed in the following tables.

IOracleCustomType Interface Methods

IOracleCustomType interface methods are listed in Table 17-22.

Table 17-22 IOracleCustomType Interface Methods

Interface Method Description

FromCustomObject(Oracle
Connection, IntPtr)

Returns the values that set the Oracle Object attributes

Available in ODP.NET, Unmanaged Driver only

FromCustomObject(Oracle
Connection, object)

Returns the values that set the Oracle Object attributes

Available in ODP.NET, Managed Driver and ODP.NET Core only

ToCustomObject(OracleCon
nection, IntPtr)

Provides the Oracle Object with the attribute values to set on the
custom type

Available in ODP.NET, Unmanaged Driver only

ToCustomObject(OracleCon
nection, object)

Provides the Oracle Object with the attribute values to set on the
custom type

Available in ODP.NET, Managed Driver and ODP.NET Core only

Chapter 17
IOracleCustomType Interface

17-20

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomType Interface

IOracleCustomType Interface Methods
IOracleCustomType Interface methods are listed in Table 17-23.

Table 17-23 IOracleCustomType Interface Methods: Overload list

Interface Method Description

FromCustomObject(OracleCo
nnection, IntPtr)

Returns the values that set the Oracle Object attributes

Available in ODP.NET, Unmanaged Driver only

FromCustomObject(OracleCo
nnection, object)

Returns the values that set the Oracle Object attributes

Available in ODP.NET, Managed Driver and ODP.NET Core only

ToCustomObject(OracleConne
ction, IntPtr)

Provides the Oracle Object with the attribute values to set on the
custom type

Available in ODP.NET, Unmanaged Driver only

ToCustomObject(OracleConne
ction, object)

Provides the Oracle Object with the attribute values to set on the
custom type

Available in ODP.NET, Managed Driver and ODP.NET Core only

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomType Interface

• IOracleCustomType Members

FromCustomObject(OracleConnection, IntPtr)
This interface method creates an Oracle Object or Collection by setting the attribute or
element values respectively on the specified Oracle UDT.

Declaration

// C#
void FromCustomObject(OracleConnection con, IntPtr pUdt);

Parameters

• con

Chapter 17
IOracleCustomType Interface

17-21

An OracleConnection instance.

• pUdt

An opaque pointer to the Oracle Object or Collection to be created.

Remarks

The FromCustomObject method is used to build an Oracle Object or Collection from a
custom object by setting attribute or element values respectively through the
OracleUdt.SetValue method.

The OracleUdt.SetValue method is invoked as follows:

• Oracle Object Type

For a custom type that represents an Oracle Object Type, the
OracleUdt.SetValue method must be invoked for each non-NULL attribute value
that needs to be set.

• Oracle Collection Type

For a custom type that represents an Oracle Collection Type, a single call to
OracleUdt.SetValue method specifies the collection element values.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomType Interface

• IOracleCustomType Members

FromCustomObject(OracleConnection, object)
This interface method creates an Oracle Object or Collection by setting the attribute or
element values respectively on the specified Oracle UDT.

Declaration

// C#
void FromCustomObject(OracleConnection con, object pUdt);

Parameters

• con

An OracleConnection instance.

• pUdt

An object of Oracle Object or Collection to be created.

Chapter 17
IOracleCustomType Interface

17-22

Remarks

The FromCustomObject method is used to build an Oracle Object or Collection from a custom
object by setting attribute or element values respectively through the OracleUdt.SetValue
method.

The OracleUdt.SetValue method is invoked as follows:

• Oracle Object Type

For a custom type that represents an Oracle Object Type, the OracleUdt.SetValue
method must be invoked for each non-NULL attribute value that needs to be set.

• Oracle Collection Type

For a custom type that represents an Oracle Collection Type, a single call to
OracleUdt.SetValue method specifies the collection element values.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomType Interface

• IOracleCustomType Members

ToCustomObject(OracleConnection, IntPtr)
This interface initializes a custom object using the specified Oracle UDT.

Declaration

// C#
void ToCustomObject (OracleConnection con, IntPtr pUdt);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to the Oracle UDT.

Remarks

The ToCustomObject method is used to initialize a custom object from the specified Oracle
Object or Collection by retrieving attribute or element values respectively through the
OracleUdt.GetValue method.

The OracleUdt.GetValue method is invoked as follows:

• Oracle Object Type

Chapter 17
IOracleCustomType Interface

17-23

For a custom type that represents an Oracle Object Type, the
OracleUdt.GetValue method must be invoked for each attribute value to be
retrieved.

• For a custom type that represents an Oracle Collection Type, a single call to
OracleUdt.GetValue method retrieves the collection element values.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomType Interface

• IOracleCustomType Members

ToCustomObject(OracleConnection, object)
This interface initializes a custom object using the specified Oracle UDT.

Declaration

// C#
void ToCustomObject (OracleConnection con, object pUdt);

Parameters

• con

An OracleConnection instance.

• pUdt

An object of the Oracle UDT.

Remarks

The ToCustomObject method is used to initialize a custom object from the specified
Oracle Object or Collection by retrieving attribute or element values respectively
through the OracleUdt.GetValue method.

The OracleUdt.GetValue method is invoked as follows:

• Oracle Object Type

For a custom type that represents an Oracle Object Type, the
OracleUdt.GetValue method must be invoked for each attribute value to be
retrieved.

• For a custom type that represents an Oracle Collection Type, a single call to
OracleUdt.GetValue method retrieves the collection element values.

Chapter 17
IOracleCustomType Interface

17-24

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomType Interface

• IOracleCustomType Members

IOracleCustomTypeFactory Interface
The IOracleCustomTypeFactory interface is used by ODP.NET to create custom objects that
represent Oracle Objects or Collections.

Declaration

// C#
public interface IOracleCustomTypeFactory

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomTypeFactory Members

• IOracleCustomTypeFactory Interface Methods

IOracleCustomTypeFactory Members
IOracleCustomTypeFactory members are listed in the following tables.

Chapter 17
IOracleCustomTypeFactory Interface

17-25

IOracleCustomTypeFactory Interface Methods

IOracleCustomTypeFactory interface methods are listed in Table 17-24.

Table 17-24 IOracleCustomTypeFactory Interface Methods

Public Method Description

CreateObject Returns a new custom object to represent an Oracle Object or
Collection

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomTypeFactory Interface

IOracleCustomTypeFactory Interface Methods
IOracleCustomTypeFactory Interface methods are listed in Table 17-25.

Table 17-25 IOracleCustomTypeFactory Interface Methods

Public Method Description

CreateObject Returns a new custom object to represent an Oracle Object or
Collection

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomTypeFactory Interface

• IOracleCustomTypeFactory Members

CreateObject
This interface method returns a new custom object to represent an Oracle Object or
Collection.

Declaration

// C#
IOracleCustomType CreateObject();

Chapter 17
IOracleCustomTypeFactory Interface

17-26

Return Value

An IOracleCustomType object.

Remarks

The CreateObject method is used to create a new instance of a custom object to represent
an Oracle Object or Collection.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleCustomTypeFactory Interface

• IOracleCustomTypeFactory Members

IOracleArrayTypeFactory Interface
The IOracleArrayTypeFactory interface is used by ODP.NET to create arrays that represent
Oracle Collections.

Declaration

// C#
public interface IOracleArrayTypeFactory

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Chapter 17
IOracleArrayTypeFactory Interface

17-27

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleArrayTypeFactory Members

• IOracleArrayTypeFactory Interface Methods

IOracleArrayTypeFactory Members
IOracleArrayTypeFactory members are listed in the following tables.

IOracleArrayTypeFactory Interface Methods

IOracleArrayTypeFactory interface methods are listed in Table 17-26.

Table 17-26 IOracleArrayTypeFactory Interface Methods

Public Method Description

CreateArray Returns a new array of the specified length to store Oracle
Collection elements

CreateStatusArray Returns a newly allocated OracleUdtStatus array of the
specified length that will be used to store the null status of the
collection elements

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleArrayTypeFactory Interface

IOracleArrayTypeFactory Interface Methods
IOracleArrayTypeFactory Interface methods are listed in Table 17-27.

Table 17-27 IOracleArrayTypeFactory Interface Methods

Public Method Description

CreateArray Returns a new array of the specified length to store Oracle
Collection elements

CreateStatusArray Returns a newly allocated OracleUdtStatus array of the
specified length that will be used to store the null status of the
collection elements

Chapter 17
IOracleArrayTypeFactory Interface

17-28

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleArrayTypeFactory Interface

• IOracleArrayTypeFactory Members

CreateArray
This interface method returns a new array of the specified length to store Oracle Collection
elements.

Declaration

// C#
Array CreateArray(int numElems);

Parameters

• numElems

The number of collection elements to be returned.

Return Value

A System.Array object.

Remarks

An Oracle Collection Type may be represented in either of the following ways:

• As an array of the appropriate type. The type must be able to represent a collection
element.

• As a Custom Type that contains an array of the appropriate type.

In both cases, the CreateArray method creates an array of the specified length to store the
collection elements.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleArrayTypeFactory Interface

• IOracleArrayTypeFactory Members

CreateStatusArray
This method returns a newly allocated OracleUdtStatus array of the specified length that will
be used to store the null status of the collection elements.

Chapter 17
IOracleArrayTypeFactory Interface

17-29

Declaration

// C#
Array CreateStatusArray(int numElems);

Parameters

• numElems

The number of collection elements to be returned.

Return Value

A multi-dimensional OracleUdtStatus array as a System.Array.

Remarks

An Oracle Collection Type can be represented in the following ways:

• As an array of the appropriate type. The type must be able to represent a
collection element.

• As a Custom Type that contains an array of the appropriate type.

In both cases, the CreateStatusArray method creates an OracleUdtStatus array of
the specified length that stores the null status of the collection elements.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• IOracleArrayTypeFactory Interface

• IOracleArrayTypeFactory Members

• "OracleUdtFetchOption Enumeration"

OracleUdt Class
The OracleUdt class defines static methods that are used when converting between
Custom Types and Oracle UDTs and vice-versa.

Class Inheritance

System.Object
 System.OracleUdt

Declaration

public sealed class OracleUdt

Chapter 17
OracleUdt Class

17-30

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Members

• OracleUDT Static Methods

OracleUdt Members
OracleUdt static methods are listed in Table 17-28.

Table 17-28 OracleUdt Static Methods

Static Method Description

Equals Inherited from System.Object
GetValue Gets the attributes or elements from the specified Oracle UDT

(Overloaded)

IsDBNull Indicates whether or not the specified attribute being retrieved is NULL
(Overloaded)

SetValue Sets the attributes or elements on the specified Oracle UDT
(Overloaded)

Chapter 17
OracleUdt Class

17-31

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

OracleUDT Static Methods
OracleUDT methods are listed in Table 17-29.

Table 17-29 OracleUdt Static Methods

Static Method Description

Equals Inherited from System.Object
GetValue Gets the attributes or elements from the specified Oracle UDT

(Overloaded)

IsDBNull Indicates whether or not the specified attribute being retrieved is
NULL (Overloaded)

SetValue Sets the attributes or elements on the specified Oracle UDT
(Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

GetValue
GetValue methods get the attributes or elements from the specified Oracle UDT.

Overload List for ODP.NET, Unmanaged Driver:

• GetValue(OracleConnection, IntPtr, string)

This method gets the attributes or elements from the specified Oracle UDT, using
the specified attribute name.

• GetValue(OracleConnection, IntPtr, int)

This method gets the attribute or elements from the specified Oracle UDT, using
the specified index.

• GetValue(OracleConnection, IntPtr, string, out object)

Chapter 17
OracleUdt Class

17-32

This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

• GetValue(OracleConnection, IntPtr, int, out object)

This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

Overload List for ODP.NET, Managed Driver and ODP.NET Core:

• GetValue(OracleConnection, object, string)

This method gets the attributes or elements from the specified Oracle UDT, using the
specified attribute name.

• GetValue(OracleConnection, object, int)

This method gets the attribute or elements from the specified Oracle UDT, using the
specified index.

• GetValue(OracleConnection, object, string, out object)

This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

• GetValue(OracleConnection, object, int, out object)

This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• "OracleUdt Members"

GetValue(OracleConnection, IntPtr, string)
This method gets the attributes or elements from the specified Oracle UDT, using the
specified attribute name.

Declaration

public static object GetValue(OracleConnection con, IntPtr pUdt, string attrName);

Parameters

• con

An OracleConnection instance.

• pUdt

A pointer to an Oracle UDT.

• attrName

Chapter 17
OracleUdt Class

17-33

The case-sensitive name of the attribute to be retrieved. Null is specified for
retrieving collection elements from a Custom Type that represents an Oracle
Collection.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentException - The specified name is not a valid attribute name.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue
method passing it the con and pUdt parameters. The OracleUdt.GetValue method
returns these types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is
the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and
Provider Specific Types, the static Null property of the type is returned. For attributes
that are represented as Nullable types, for example, System.String and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32 and
DateTime DBNull.Value is returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

• "OracleUdtFetchOption Enumeration"

GetValue(OracleConnection, IntPtr, int)
This method gets the attribute or elements from the specified Oracle UDT, using the
specified index.

Chapter 17
OracleUdt Class

17-34

Declaration

// C#
public static object GetValue(OracleConnection con, IntPtr pUdt, int attrIndex,);

Parameters

• con

An OracleConnection instance.

• pUdt

A pointer to an Oracle UDT.

• attrIndex

The zero-based index of the attribute to be retrieved. For retrieving collection elements
from a Custom Type that represents an Oracle Collection, zero must be specified.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentOutOfRangeException - The specified index is not a valid attribute index.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue method
passing it the con and pUdt parameters. The OracleUdt.GetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute index is the type of the member in the custom class or struct that is
mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is the
type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and Provider
Specific Types, the static Null property of the type is returned. For attributes that are
represented as Nullable types, for example, System.String and System.Array Types, null is
returned, and for all other remaining built-in types such as Int32 and DateTime DBNull.Value
is returned.

Chapter 17
OracleUdt Class

17-35

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

• "OracleUdtFetchOption Enumeration"

GetValue(OracleConnection, IntPtr, string, out object)
This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

Declaration

// C#
public static object GetValue(OracleConnection con, IntPtr pUdt, string attrName,
 out object statusArray);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrName

The case-sensitive name of the attribute to be retrieved. Null must specified for
retrieving collection elements from a Custom Type that represents an Oracle
Collection.

• statusArray

The OracleUdtStatus array which returns the null status for the retrieved
collection elements.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentException - The specified name is not a valid attribute name.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue
method passing it the con and pUdt parameters. The OracleUdt.GetValue method
returns these types of object:

• Oracle Object Type

Chapter 17
OracleUdt Class

17-36

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute name is the type of the member in the custom class or struct that is
mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is the
type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and Provider
Specific Types, the static Null property of the type is returned. For attributes that are
represented as Nullable types, for example, System.String and System.Array Types, null is
returned, and for all other remaining built-in types such as Int32 and DateTime DBNull.Value
is returned.

If the collection being returned is not NULL, the output statusArray parameter is populated
with the null status for each of the collection elements.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

• "OracleUdtFetchOption Enumeration"

GetValue(OracleConnection, IntPtr, int, out object)
This method returns either the elements of the specified collection attribute of the specified
Oracle Object or the elements of the specified Oracle Collection.

Declaration

// C#
public static object GetValue(OracleConnection con, IntPtr pUdt, int attrIndex,
 out object statusArray);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrIndex

The zero-based index of the attribute to be retrieved. For retrieving collection elements
from a Custom Type that represents an Oracle Collection, 0 is specified.

• statusArray

Chapter 17
OracleUdt Class

17-37

The OracleUdtStatus array which returns the null status for the retrieved
collection elements.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentOutOfRangeException - The specified index is not a valid attribute index.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue
method passing it the con and pUdt parameters. The OracleUdt.GetValue method
returns these types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute index is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is
the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and
Provider Specific Types, the static Null property of the type is returned. For attributes
that are represented as Nullable types, for example, System.String and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32 and
DateTime DBNull.Value is returned.

If the collection being returned is not NULL, the output statusArray parameter is
populated with the null status for each of the collection elements.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

• "OracleUdtFetchOption Enumeration"

GetValue(OracleConnection, object, string)
This method gets the attributes or elements from the specified Oracle UDT, using the
specified attribute name.

Chapter 17
OracleUdt Class

17-38

Declaration

public static object GetValue(OracleConnection con, object Udt, string attrName);

Parameters

• con

An OracleConnection instance.

• Udt

An object of an Oracle UDT.

• attrName

The case-sensitive name of the attribute to be retrieved. Null is specified for retrieving
collection elements from a Custom Type that represents an Oracle Collection.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentException - The specified name is not a valid attribute name.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue method
passing it the con and Udt parameters. The OracleUdt.GetValue method returns these types
of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute name is the type of the member in the custom class or struct that is
mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is the
type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and Provider
Specific Types, the static Null property of the type is returned. For attributes that are
represented as Nullable types, for example, System.String and System.Array Types, null is
returned, and for all other remaining built-in types such as Int32 and DateTime DBNull.Value
is returned.

Chapter 17
OracleUdt Class

17-39

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

• "OracleUdtFetchOption Enumeration"

GetValue(OracleConnection, object, int)
This method gets the attribute or elements from the specified Oracle UDT, using the
specified index.

Declaration

// C#
public static object GetValue(OracleConnection con, object Udt, int attrIndex,);

Parameters

• con

An OracleConnection instance.

• Udt

An Oracle UDT object.

• attrIndex

The zero-based index of the attribute to be retrieved. For retrieving collection
elements from a Custom Type that represents an Oracle Collection, zero must be
specified.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentOutOfRangeException - The specified index is not a valid attribute index.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue
method passing it the con and Udt parameters. The OracleUdt.GetValue method
returns these types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute index is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

Chapter 17
OracleUdt Class

17-40

For a Custom Type that represents an Oracle Collection Type, the type returned is the
type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and Provider
Specific Types, the static Null property of the type is returned. For attributes that are
represented as Nullable types, for example, System.String and System.Array Types, null is
returned, and for all other remaining built-in types such as Int32 and DateTime DBNull.Value
is returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

• "OracleUdtFetchOption Enumeration"

GetValue(OracleConnection, object, string, out object)
This method returns either the elements of the specified collection attribute of the specified
Oracle Object or the elements of the specified Oracle Collection.

Declaration

// C#
public static object GetValue(OracleConnection con, object Udt, string attrName,
 out object statusArray);

Parameters

• con

An OracleConnection instance.

• pUdt

An Oracle UDT object.

• attrName

The case-sensitive name of the attribute to be retrieved. Null must specified for retrieving
collection elements from a Custom Type that represents an Oracle Collection.

• statusArray

The OracleUdtStatus array which returns the null status for the retrieved collection
elements.

Return Value

An object representing the returned attribute or collection elements.

Chapter 17
OracleUdt Class

17-41

Exceptions

ArgumentException - The specified name is not a valid attribute name.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue
method passing it the con and Udt parameters. The OracleUdt.GetValue method
returns these types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is
the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and
Provider Specific Types, the static Null property of the type is returned. For attributes
that are represented as Nullable types, for example, System.String and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32 and
DateTime DBNull.Value is returned.

If the collection being returned is not NULL, the output statusArray parameter is
populated with the null status for each of the collection elements.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

• "OracleUdtFetchOption Enumeration"

GetValue(OracleConnection, object, int, out object)
This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

Declaration

// C#
public static object GetValue(OracleConnection con, object Udt, int attrIndex,
 out object statusArray);

Chapter 17
OracleUdt Class

17-42

Parameters

• con

An OracleConnection instance.

• Udt

An Oracle UDT object.

• attrIndex

The zero-based index of the attribute to be retrieved. For retrieving collection elements
from a Custom Type that represents an Oracle Collection, 0 is specified.

• statusArray

The OracleUdtStatus array which returns the null status for the retrieved collection
elements.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentOutOfRangeException - The specified index is not a valid attribute index.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue method
passing it the con and Udt parameters. The OracleUdt.GetValue method returns these types
of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute index is the type of the member in the custom class or struct that is
mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is the
type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and Provider
Specific Types, the static Null property of the type is returned. For attributes that are
represented as Nullable types, for example, System.String and System.Array Types, null is
returned, and for all other remaining built-in types such as Int32 and DateTime DBNull.Value
is returned.

If the collection being returned is not NULL, the output statusArray parameter is populated
with the null status for each of the collection elements.

Chapter 17
OracleUdt Class

17-43

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

• "OracleUdtFetchOption Enumeration"

IsDBNull
IsDBNull methods indicate whether or not the specified attribute being retrieved is
NULL.

Overload List for ODP.NET, Unmanaged Driver:

• IsDBNull(OracleConnection, IntPtr, string)

This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, pointer, and attribute name, is NULL.

• IsDBNull(OracleConnection, IntPtr, int)

This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, pointer, and attribute index, is NULL.

Overload List for ODP.NET, Managed Driver and ODP.NET Core :

• IsDBNull(OracleConnection, object, string)

This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, UDT, and attribute name, is NULL.

• IsDBNull(OracleConnection, object, int)

This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, UDT, and attribute index, is NULL.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

• "OracleUdtFetchOption Enumeration"

IsDBNull(OracleConnection, IntPtr, string)
This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, pointer, and attribute name, is NULL.

Chapter 17
OracleUdt Class

17-44

Declaration

// C#
public static bool IsDBNull(OracleConnection con, IntPtr pUdt, string attrName);

Parameters

• con

An OracleConnection instance.

• pUdt

A pointer to an Oracle UDT.

• attrName

The case-sensitive name of the attribute.

Return Value

True if the specified attribute is NULL; otherwise, false.

Exceptions

ArgumentException - The specified name is not a valid attribute name.

Remarks

This method is invoked from the IOracleCustomType.ToCustomObject method. The con and
pUdt parameter is passed from the IOracleCustomType.ToCustomObject method to the
OracleUdt.IsDBNull method. The attrName parameter is case-sensitive.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

IsDBNull(OracleConnection, IntPtr, int)
This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, pointer, and attribute index, is NULL.

Declaration

// C#
public static bool IsDBNull(OracleConnection con, IntPtr pUdt, int attrIndex);

Parameters

• con

Chapter 17
OracleUdt Class

17-45

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrIndex

The zero-based index of the attribute.

Return Value

True if the specified attribute is NULL; otherwise, false.

Exceptions

ArgumentOutOfRangeException - The specified index is not a valid attribute index

Remarks

This method is invoked from the IOracleCustomType.ToCustomObject method. The
con and pUdt parameter is passed from the IOracleCustomType.ToCustomObject
method to the OracleUdt.IsDBNull method.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

IsDBNull(OracleConnection, object, string)
This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, UDT, and attribute name, is NULL.

Declaration

// C#
public static bool IsDBNull(OracleConnection con, object Udt, string attrName);

Parameters

• con

An OracleConnection instance.

• Udt

An Oracle UDT.

• attrName

The case-sensitive name of the attribute.

Chapter 17
OracleUdt Class

17-46

Return Value

True if the specified attribute is NULL; otherwise, false.

Exceptions

ArgumentException - The specified name is not a valid attribute name.

Remarks

This method is invoked from the IOracleCustomType.ToCustomObject method. The con and
Udt parameter is passed from the IOracleCustomType.ToCustomObject method to the
OracleUdt.IsDBNull method. The attrName parameter is case-sensitive.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

IsDBNull(OracleConnection, object, int)
This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, UDT, and attribute index, is NULL.

Declaration

// C#
public static bool IsDBNull(OracleConnection con, object Udt, int attrIndex);

Parameters

• con

An OracleConnection instance.

• pUdt

An Oracle UDT object.

• attrIndex

The zero-based index of the attribute.

Return Value

True if the specified attribute is NULL; otherwise, false.

Exceptions

ArgumentOutOfRangeException - The specified index is not a valid attribute index

Chapter 17
OracleUdt Class

17-47

Remarks

This method is invoked from the IOracleCustomType.ToCustomObject method. The
con and Udt parameter is passed from the IOracleCustomType.ToCustomObject
method to the OracleUdt.IsDBNull method.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

SetValue
SetValue methods set the attributes or elements on the specified Oracle UDT.

Overload List for ODP.NET, Unmanaged Driver:

• SetValue(OracleConnection, IntPtr, string, object)

This method sets the attribute or elements on the specified Oracle UDT, using the
specified attribute name and value.

• SetValue(OracleConnection, IntPtr, int, object)

This method sets the attribute or elements on the specified Oracle UDT, using the
specified index and value.

• SetValue(OracleConnection, IntPtr, string, object, object)

This method sets either the specified collection attribute of the specified Oracle
Object or elements of the specified Oracle Collection, to the specified value using
the supplied null status of the collection elements.

• SetValue(OracleConnection, IntPtr, int, object, object)

This method sets either the specified collection attribute of the specified Oracle
Object or elements of the specified Oracle Collection, to the specified value using
the supplied null status of the collection elements.

Overload List for ODP.NET, Managed Driver and ODP.NET Core

• SetValue(OracleConnection, object, string, object)

This method sets the attribute or elements on the specified Oracle UDT, using the
specified attribute name and value.

• SetValue(OracleConnection, object, int, object)

This method sets the attribute or elements on the specified Oracle UDT, using the
specified index and value.

• SetValue(OracleConnection, object, string, object, object)

Chapter 17
OracleUdt Class

17-48

This method sets either the specified collection attribute of the specified Oracle Object or
elements of the specified Oracle Collection, to the specified value using the supplied null
status of the collection elements.

• SetValue(OracleConnection, object, int, object, object)

This method sets either the specified collection attribute of the specified Oracle Object or
elements of the specified Oracle Collection, to the specified value using the supplied null
status of the collection elements.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• OracleUdt Members

SetValue(OracleConnection, IntPtr, string, object)
This method sets the attribute or elements on the specified Oracle UDT, using the specified
attribute name and value.

Declaration

// C#
public static void SetValue(OracleConnection con, IntPtr pUdt, string attrName,
 object value);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrName

The name of the attribute to be set. Specify null for setting collection elements from a
Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue method
passing it the con and pUdt parameters. The OracleUdt.SetValue method returns these
types of object:

Chapter 17
OracleUdt Class

17-49

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted
is the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• "OracleUdt Members"

SetValue(OracleConnection, IntPtr, int, object)
This method sets the attribute or elements on the specified Oracle UDT, using the
specified index and value.

Declaration

// C#
public static void SetValue(OracleConnection con, IntPtr pUdt, int attrIndex,
object value);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrIndex

The index of the attribute to be set. Specify 0 for setting collection elements from a
Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Chapter 17
OracleUdt Class

17-50

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue method
passing it the con and pUdt parameters. The OracleUdt.SetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute index is the type of the member in the custom class or struct that is
mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted is the
type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• "OracleUdt Members"

SetValue(OracleConnection, IntPtr, string, object, object)
This method sets either the specified collection attribute of the specified Oracle Object or
elements of the specified Oracle Collection, to the specified value using the supplied null
status of the collection elements.

Declaration

// C#
public static void SetValue(OracleConnection con, IntPtr pUdt, string attrName,
 object value, object statusArray);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrName

The name of the attribute to be set. Specify null for setting collection elements from a
Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

Chapter 17
OracleUdt Class

17-51

• statusArray

The null status for the collection elements.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue
method passing it the con and pUdt parameters. The OracleUdt.SetValue method
returns these types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted
is the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• "OracleUdt Members"

SetValue(OracleConnection, IntPtr, int, object, object)
This method sets either the specified collection attribute of the specified Oracle Object
or elements of the specified Oracle Collection, to the specified value using the
supplied null status of the collection elements.

Declaration

// C#
public static void SetValue(OracleConnection con, IntPtr pUdt, int attrIndex,
 object value, object statusArray);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrIndex

Chapter 17
OracleUdt Class

17-52

The index of the attribute to be set. Specify 0 for setting collection elements from a
Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

• statusArray

The null status for the collection elements.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue method
passing it the con and pUdt parameters. The OracleUdt.SetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute index is the type of the member in the custom class or struct that is
mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted is the
type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• "OracleUdt Members"

SetValue(OracleConnection, object, string, object)
This method sets the attribute or elements on the specified Oracle UDT, using the specified
attribute name and value.

Declaration

// C#
public static void SetValue(OracleConnection con, object Udt, string attrName,
 object value);

Parameters

• con

An OracleConnection instance.

Chapter 17
OracleUdt Class

17-53

• Udt

An Oracle UDT object.

• attrName

The name of the attribute to be set. Specify null for setting collection elements
from a Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue
method passing it the con and Udt parameters. The OracleUdt.SetValue method
returns these types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted
is the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• "OracleUdt Members"

SetValue(OracleConnection, object, int, object)
This method sets the attribute or elements on the specified Oracle UDT, using the
specified index and value.

Declaration

// C#
public static void SetValue(OracleConnection con, object Udt, int attrIndex,
object value);

Parameters

• con

Chapter 17
OracleUdt Class

17-54

An OracleConnection instance.

• Udt

An Oracle UDT object.

• attrIndex

The index of the attribute to be set. Specify 0 for setting collection elements from a
Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue method
passing it the con and Udt parameters. The OracleUdt.SetValue method returns these types
of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute index is the type of the member in the custom class or struct that is
mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted is the
type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• "OracleUdt Members"

SetValue(OracleConnection, object, string, object, object)
This method sets either the specified collection attribute of the specified Oracle Object or
elements of the specified Oracle Collection, to the specified value using the supplied null
status of the collection elements.

Declaration

// C#
public static void SetValue(OracleConnection con, object Udt, string attrName,
 object value, object statusArray);

Chapter 17
OracleUdt Class

17-55

Parameters

• con

An OracleConnection instance.

• Udt

An Oracle UDT object.

• attrName

The name of the attribute to be set. Specify null for setting collection elements
from a Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

• statusArray

The null status for the collection elements.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue
method passing it the con and Udt parameters. The OracleUdt.SetValue method
returns these types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted
is the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• "OracleUdt Members"

Chapter 17
OracleUdt Class

17-56

SetValue(OracleConnection, object, int, object, object)
This method sets either the specified collection attribute of the specified Oracle Object or
elements of the specified Oracle Collection, to the specified value using the supplied null
status of the collection elements.

Declaration

// C#
public static void SetValue(OracleConnection con, object Udt, int attrIndex,
 object value, object statusArray);

Parameters

• con

An OracleConnection instance.

• Udt

An Oracle UDT object.

• attrIndex

The index of the attribute to be set. Specify 0 for setting collection elements from a
Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

• statusArray

The null status for the collection elements.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue method
passing it the con and Udt parameters. The OracleUdt.SetValue method returns these types
of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute index is the type of the member in the custom class or struct that is
mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted is the
type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

Chapter 17
OracleUdt Class

17-57

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleUdt Class

• "OracleUdt Members"

OracleRef Class
An OracleRef instance represents an Oracle REF, which references a persistent,
standalone, referenceable object that resides in the database. The OracleRef object
provides methods to insert, update, and delete the Oracle REF.

Class Inheritance

System.Object
 System.MarshalByRefObject
 Oracle.DataAccess.Types.OracleRef

Declaration

// C#
public sealed class OracleRef : MarshalByRefObject,ICloneable, IDisposable,
 INullable

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

If two or more OracleRef objects that refer to the same Oracle object in the database
are retrieved through the same OracleConnection, then their operations on the
referenced object must be synchronized.

Chapter 17
OracleRef Class

17-58

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Members

• OracleRef Constructors

• OracleRef Static Methods

• OracleRef Instance Properties

• Oracle Ref Instance Methods

OracleRef Members
OracleRef members are listed in the following tables.

OracleRef Constructors

OracleRef constructors are listed in Table 17-30.

Table 17-30 OracleRef Constructors

Constructor Description

OracleRef Constructors Instantiates a new instance of OracleRef class (Overloaded)

Not Available in ODP.NET, Managed Driver and ODP.NET
Core

OracleRef Static Fields

OracleRef static methods are listed in Table 17-31

Table 17-31 OracleRef Static Fields

Static Field Description

Null Represents a null value that can be assigned to an OracleRef
instance

OracleRef Static Methods

OracleRef static methods are listed in Table 17-32.

Table 17-32 OracleRef Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

Chapter 17
OracleRef Class

17-59

OracleRef Instance Properties

OracleRef instance properties are listed in Table 17-33.

Table 17-33 OracleRef Instance Properties

Property Description

Connection References the connection used by the OracleRef
HasChanges References the connection used by the OracleRef

Not Available in ODP.NET, Managed Driver and ODP.NET
Core

IsLocked Indicates whether or not the REF is locked

IsNull Indicates whether or not the Oracle REF is NULL
ObjectTableName Returns the fully qualified object table name that is

associated with the REF
Not Available in ODP.NET, Managed Driver and ODP.NET
Core

Value Returns a .NET representation of this Oracle REF

OracleRef Instance Methods

OracleRef instance methods are listed in Table 17-34.

Table 17-34 OracleRef Instance Methods

Method Description

Clone Clones the REF
Delete Deletes the referenced object from the database

See also Table 3-29

Dispose Releases resources allocated for the OracleRef instance

Equals Inherited from System.Object
Flush Flushes changes made on the REF object to the database

Not Available in ODP.NET, Managed Driver and ODP.NET Core

GetCustomObject Returns the object that the specified REF references as a
custom type (Overloaded)

See also Table 3-29

GetCustomObjectForUpdate Returns the object that the specified REF references as a
custom type (Overloaded)

Not Available in ODP.NET, Managed Driver and ODP.NET Core

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
IsEqual Compares two OracleREF objects

Lock Locks the REF in the database

Not Available in ODP.NET, Managed Driver and ODP.NET Core

ToString Inherited from System.Object

Chapter 17
OracleRef Class

17-60

Table 17-34 (Cont.) OracleRef Instance Methods

Method Description

Update Updates the object referenced by the specified REF in the
database using the specified custom object

See also Table 3-29

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

OracleRef Constructors
OracleRef constructors instantiate new instances of OracleRef class.

Overload List:

• OracleRef(OracleConnection, string)

This constructor creates an instance of the OracleRef class with a connection and a HEX
string that represents an REF instance in the database.

Not Available in ODP.NET, Managed Driver and ODP.NET Core

• OracleRef(OracleConnection, string, string)

This constructor creates an instance of the OracleRef class using the specified
OracleConnection object, user-defined type name, and an object table name

Not Available in ODP.NET, Managed Driver and ODP.NET Core

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

OracleRef(OracleConnection, string)
This constructor creates an instance of the OracleRef class with a connection and a HEX
string that represents an REF instance in the database.

Chapter 17
OracleRef Class

17-61

Declaration

// C#
public OracleRef(OracleConnection con, string hexStr);

Parameters

• con

An OracleConnection instance.

• hexStr

A HEX string that represents an REF instance in the database.

Exceptions

ArgumentException - The HEX string does not represent a valid REF in the database.

ArgumentNullException - The connection or HEX string is null.

InvalidOperationException - The OracleConnection object is not open.

Remarks

When an OracleRef instance is created, it is referenced to a specific table in the
database.

The connection must be opened explicitly by the application. OracleRef does not open
the connection implicitly.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

OracleRef(OracleConnection, string, string)
This constructor creates an instance of the OracleRef class using the specified
OracleConnection object, user-defined type name, and an object table name.

Declaration

// C#
public OracleRef(OracleConnection con, string udtTypeName, string objTabName);

Parameters

• con

An OracleConnection instance.

• udtTypeName

Chapter 17
OracleRef Class

17-62

A user-defined type name.

• objTabName

An object table name.

Exceptions

ArgumentException - The object type name or the object table name is not valid.

ArgumentNullException - The object type name or the table name is null.

InvalidOperationException - The OracleConnection object is not open.

Remarks

When an OracleRef instance is created, this OracleRef instance is associated with the
specific table in the database. In other words, it represents a persistent REF.

This constructor creates a reference to the object table. However, it does not cause any
entries to be made in database tables until the object is flushed to the database, that is, until
the OracleRef.Flush or the OracleConnection.FlushCache method is called on the
OracleRef Connection. Therefore, any operation that attempts to operate on the database
copy of the object before flushing the object, such as, lock the object or fetch the latest copy
of the object from the database, results in an OracleException.

The connection must be opened explicitly by the application. OracleRef does not open the
connection implicitly.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

• "FlushCache"

OracleRef Static Fields
OracleRef static fields are listed in Table 17-35.

Table 17-35 OracleRef Static Fields

Static Field Description

Null Represents a null value that can be assigned to an OracleRef
instance

Chapter 17
OracleRef Class

17-63

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Null
This static field represents a null value that can be assigned to an OracleRef instance.

Declaration

// C#
public static readonly OracleRef Null;

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

OracleRef Static Methods
OracleRef static methods are listed in Table 17-36.

Table 17-36 OracleRef Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Chapter 17
OracleRef Class

17-64

OracleRef Instance Properties
OracleRef instance properties are listed in Table 17-37.

Table 17-37 OracleRef Instance Properties

Property Description

Connection References the connection used by the OracleRef
HasChanges References the connection used by the OracleRef

Not Available in ODP.NET, Managed Driver and ODP.NET Core

IsLocked Indicates whether or not the REF is locked

IsNull Indicates whether or not the Oracle REF is NULL
ObjectTableName Returns the fully qualified object table name that is associated

with the REF
Not Available in ODP.NET, Managed Driver and ODP.NET Core

Value Returns a .NET representation of this Oracle REF

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Connection
This instance property references the connection used by the OracleRef.

Declaration

// C#
public OracleConnection Connection{get;}

Property Value

An OracleConnection object associated with the REF.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

Once the Dispose method is invoked, this property is set to null.

Chapter 17
OracleRef Class

17-65

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

HasChanges
This instance property indicates whether or not the object referenced by the Oracle
REF in the object cache has any changes that can be flushed to the database.

Declaration

// C#
public bool HasChanges {get;}

Property Value

Returns true if the object referenced by the Oracle REF in the object cache has any
changes that can be flushed to the database; otherwise, returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This property returns true if a copy of the referenced object in the object cache is
updated or deleted.

If there is no copy of the referenced object in the object cache, the latest copy of the
referenced object in the database is cached in the object cache and false is returned.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

IsLocked
This instance property indicates whether or not the REF is locked.

Chapter 17
OracleRef Class

17-66

Declaration

// C#
public bool IsLocked {get;}

Property Value

Returns true if the REF is locked; otherwise returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

IsNull
This instance property indicates whether or not the Oracle REF is NULL.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the REF is NULL; otherwise, returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

If the Oracle REF is NULL, this property returns true. Otherwise, it returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Chapter 17
OracleRef Class

17-67

ObjectTableName
This instance property returns the fully-qualified object table name that is associated
with the REF.

Declaration

// C#
public string ObjectTableName{get;}

Property Value

A fully-qualified object table name that is associated with the REF.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The object table name is in the form schema_Name.Table_Name.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Value
This instance property returns a .NET representation of this Oracle REF.

Declaration

// C#
public string Value{get;}

Property Value

A .NET representation of the Oracle REF.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This property returns a HEX string that represents the REF.

The returned string can be used to create a new OracleRef instance by using the
OracleRef(OracleConnection, string) constructor.

Chapter 17
OracleRef Class

17-68

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

• "OracleRef(OracleConnection, string)"

Oracle Ref Instance Methods
OracleRef instance methods are listed in Table 17-38.

Table 17-38 OracleRef Instance Methods

Method Description

Clone Clones the REF
Delete Deletes the referenced object from the database

See also Table 3-29

Dispose Releases resources allocated for the OracleRef instance

Equals Inherited from System.Object
Flush Flushes changes made on the REF object to the database

Not Available in ODP.NET, Managed Driver and ODP.NET Core

GetCustomObject Returns the object that the specified REF references as a custom
type (Overloaded)

See also Table 3-29

GetCustomObjectForUpdate Returns the object that the specified REF references as a custom
type (Overloaded)

Not Available in ODP.NET, Managed Driver and ODP.NET Core

GetHashCode Inherited from System.Object
GetType Inherited from System.Object
IsEqual Compares two OracleREF objects

Lock Locks the REF in the database

Not Available in ODP.NET, Managed Driver and ODP.NET Core

ToString Inherited from System.Object
Update Updates the object referenced by the specified REF in the database

using the specified custom object

See also Table 3-29

Chapter 17
OracleRef Class

17-69

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Clone
This instance method clones the REF.

Declaration

// C#
public OracleRef Clone();

Return Value

A clone of the current instance.

Implements

ICloneable

Exceptions

InvalidOperationException - The associated connection is not open.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Delete
This method deletes the referenced object from the database.

Declaration

// C# - managed and core ODP.NET
public void Delete();

// C# - unmanaged ODP.NET
public void Delete(bool bFlush);

Chapter 17
OracleRef Class

17-70

Parameters

• bFlush

A bool that specifies whether or not the REF is flushed immediately.

Remarks

This method marks the specified REF for deletion.

In managed ODP.NET and ODP.NET Core, Delete() has the same behavior as unmanaged
ODP.NET Delete(true).

Depending on whether the value of bFlush is set to true or false, the following occurs:

• True
The object referenced by the specified REF is deleted immediately from the database.

Before flushing objects, it is required that the application has explicitly started a
transaction by executing the BeginTransaction method on the OracleConnection object.
This is because if the object being flushed has not already been locked by the
application, an exclusive lock is obtained implicitly for the object. The lock is only
released when the transaction commits or rollbacks.

• False
The object referenced by the REF is not deleted immediately from the database, but only
when a subsequent Flush method is invoked for the specified REF or the FlushCache
method is invoked on the OracleRef or the FlushCache method is invoked on the
OracleRef connection.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

• OracleConnection "FlushCache"

Dispose
This instance method releases resources allocated for the OracleRef instance.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Chapter 17
OracleRef Class

17-71

Remarks

The object cannot be reused after it is disposed. Although some properties can still be
accessed, their values may not be up-to-date.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Flush
This instance method flushes changes made on the REF object to the database, such
as updates or deletes.

Declaration

// C#
public void Flush();

Exceptions

InvalidOperationException - The associated connection is not open.

Remarks

Before flushing objects, it is required that the application has explicitly started a
transaction by executing the BeginTransaction method on the OracleConnection
object. This is because if the object being flushed has not already been locked by the
application, an exclusive lock is obtained implicitly for the object. The lock is only
released when the transaction commits or rollbacks.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

GetCustomObject
GetCustomObject methods return the object that the specified REF references as a
custom type.

Chapter 17
OracleRef Class

17-72

Overload List

• GetCustomObject(OracleUdtFetchOption)

This method returns the object that the specified REF references as a custom type using
the specified fetch option.

• GetCustomObject(OracleUdtFetchOption, int)

This method returns the object that the specified REF references as a custom type using
the specified fetch option and depth level.

Not supported in ODP.NET, Managed Driver and ODP.NET Core.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

GetCustomObject(OracleUdtFetchOption)
This method returns the object that the specified REF references, as a custom type, using the
specified fetch option.

Declaration

// C# - managed and core ODP.NET
public object GetCustomObject();

// C# - unmanaged ODP.NET
public object GetCustomObject(OracleUdtFetchOption fetchOption);

Parameters

• fetchOption

An OracleUdtFetchOption value.

Return Value

A custom object that represents the object that the specified REF references.

Exceptions

InvalidOperationException - The specified connection is not open, or a valid custom type
has not been registered for the type of the referenced object.

Remarks

This method returns a custom type determined by the UDT mappings on the specified
connection.

Chapter 17
OracleRef Class

17-73

The connection must be opened explicitly by the application. This method does not
open the connection implicitly.

Managed ODP.NET and ODP.NET Core always retrieves the object from the database
as it does not have an object cache.

The application can use the OracleUdtFetchOption method to control the copy of the
Object that is returned according to the specified option:

• OracleUdtFetchOption.Cache option

If this option is specified, and there is a copy of the referenced object in the object
cache, it is returned immediately. If no cached copy exists, the latest copy of the
referenced object in the database is cached in the object cache and returned.

• OracleUdtFetchOption.Server option

If this option is specified, the latest copy of the referenced object from the
database is cached in the object cache and returned. If a copy of the referenced
object already exists in the cache, the latest copy overwrites the existing one.

• OracleUdtFetchOption.TransactionCache option

If this option is specified, and a copy of the referenced object is cached in the
current transaction, the copy is returned. Otherwise, the latest copy of the
referenced object from the database is cached in the object cache and returned. If
a copy of the referenced object already exists in the cache, the latest copy
overwrites the existing one.

Note that if a cached copy of the referenced object was modified before the
current transaction began, that is, if the OracleRef.HasChanges property returns
true, then the Recent option returns the cached copy of the referenced object.
Outside of a transaction, the Recent option behaves like the Any option.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

• "OracleUdtFetchOption Enumeration"

GetCustomObject(OracleUdtFetchOption, int)
This method returns the object that the specified REF references, as a custom type,
using the specified fetch option and depth level.

Declaration

// C#
public object GetCustomObject(OracleUdtFetchOption fetchOption, int depthLevel);

Parameters

• fetchOption

Chapter 17
OracleRef Class

17-74

An OracleUdtFetchOption value.

• depthLevel

The number of levels to be fetched for nested REF attributes.

Return Value

A custom object that represents the object that the specified REF references.

Exceptions

InvalidOperationException - The specified connection is not open, or a valid custom type
has not been registered for the type of the referenced object.

Remarks

This method returns a custom type determined by the UDT mappings on the specified
connection.

If the object that the REF references contains nested REF attributes, the depthLevel can be
specified to optimize the subsequent object retrieval. The value of depthLevel determines the
number of levels that are optimized.

For example, if the depthLevel is specified as two, the optimization is applied to all top-level
nested REF attributes in the object being fetched and also to all nested REF attributes within
the objects referenced by the top-level nested REF attributes.

The connection must be opened explicitly by the application. This method does not open the
connection implicitly.

The application can use the OracleUdtFetchOption method to control the copy of the Object
that is returned according to the specified option:

• OracleUdtFetchOption.Cache option

If this option is specified, and there is a copy of the referenced object in the object cache,
it is returned immediately. If no cached copy exists, the latest copy of the referenced
object in the database is cached in the object cache and returned.

• OracleUdtFetchOption.Server option

If this option is specified, the latest copy of the referenced object from the database is
cached in the object cache and returned. If a copy of the referenced object already exists
in the cache, the latest copy overwrites the existing one.

• OracleUdtFetchOption.TransactionCache option

If this option is specified, and a copy of the referenced object is cached in the current
transaction, the copy is returned. Otherwise, the latest copy of the referenced object from
the database is cached in the object cache and returned. If a copy of the referenced
object already exists in the cache, the latest copy overwrites the existing one.

Note that if a cached copy of the referenced object was modified before the current
transaction began, that is, if the OracleRef.HasChanges property returns true, then the
Recent option returns the cached copy of the referenced object. Outside of a transaction,
the Recent option behaves like the Any option.

Chapter 17
OracleRef Class

17-75

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

• "OracleUdtFetchOption Enumeration"

GetCustomObjectForUpdate
GetCustomObjectForUpdate methods return the object that the specified REF
references as a custom type.

• GetCustomObjectForUpdate(bool)

This method locks the specified REF in the database and returns the object that the
specified REF references as a custom type using the specified wait option.

Not supported in ODP.NET, Managed Driver and ODP.NET Core.

• GetCustomObjectForUpdate(bool, int)

This method locks the specified REF in the database and returns the object that the
specified REF references as a custom type using the specified wait option and
depth level.

Not supported in ODP.NET, Managed Driver and ODP.NET Core.

See Also:

– "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

– OracleRef Class

– OracleRef Members

GetCustomObjectForUpdate(bool)
This method locks the specified REF in the database and returns the object that the
specified REF references, as a custom type, using the specified wait option.

Declaration

// C#
public object GetCustomObjectForUpdate(bool bWait);

Parameters

• bWait

Chapter 17
OracleRef Class

17-76

Specifies if the REF is to be locked with the no-wait option. If wait is set to true, this
method invocation does not return until the REF is locked.

Return Value

A custom object that represents the object that the specified REF references.

Exceptions

InvalidOperationException - The specified connection is not open, or a valid custom type
has not been registered for type of the referenced object.

OracleException - bWait is set to false, and the lock cannot be acquired.

Remarks

This method returns the latest copy of the referenced object, as a custom type, determined
by the custom types registered on the OracleRef connection.

To be able to release the lock on the REF appropriately after flushing the REF using the Flush
method on the OracleRef or FlushCache method on the OracleConnection, the application
must commit or rollback the transaction. Therefore, it is required that, before invoking this
method, a transaction is explicitly started by executing the BeginTransaction method on the
OracleConnection object.

This method makes a network round-trip to lock the REF in the database. After this call,
programmers can modify the associated row object exclusively. Then a call to the Flush
method on the OracleRef or FlushCache method on the OracleConnection flushes the
changes to the database.

If true is passed, this method blocks until the lock can be acquired. If false is passed, this
method immediately returns. If the lock cannot be acquired, an OracleException is thrown.

The connection must be opened explicitly by the application. This method does not open the
connection implicitly.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

GetCustomObjectForUpdate(bool, int)
This method locks the specified REF in the database and returns the object that the specified
REF references, as a custom type, using the specified wait option and depth level

Declaration

public object GetCustomObjectForUpdate(bool bWait, int depthlevel);

Chapter 17
OracleRef Class

17-77

Parameters

• bWait

A boolean value that specifies if the REF is to be locked with the no-wait option. If
wait is set to true, this method invocation does not return until the REF is locked.

• depthLevel

The number of levels to be fetched for nested REF attributes.

Return Value

A custom object that represents the object that the specified REF references.

Exceptions

InvalidOperationException - The specified connection is not open, or a valid custom
type has not been registered for type of the referenced object.

OracleException - bWait is set to false, and the lock cannot be acquired.

Remarks

This method returns the latest copy of the referenced object, as a custom type,
determined by the custom types registered on the OracleRef connection.

To be able to release the lock on the REF appropriately after flushing the REF using the
Flush method on the OracleRef or FlushCache method on the OracleConnection, the
application must commit or rollback the transaction. Therefore, it is required that,
before invoking this method, a transaction is explicitly started by executing the
BeginTransaction method on the OracleConnection object.

This method makes a network round-trip to lock the REF in the database. After this call,
programmers can modify the associated row object exclusively. Then a call to the
Flush method on the OracleRef or FlushCache method on the OracleConnection
flushes the changes to the database.

If true is passed, this method blocks until the lock can be acquired. If false is passed,
this method immediately returns. If the lock cannot be acquired, an OracleException
is thrown.

If the object that the REF references contains nested REF attributes, the depthLevel can
be specified to optimize the subsequent object retrieval. The value of depthLevel
determines the number of levels that are optimized.

For example, if the depthLevel is specified as 2, the optimization is applied to all top-
level nested REF attributes in the object being fetched and also to all nested REF
attributes within the objects referenced by the top-level nested REF attributes.

The connection must be opened explicitly by the application. This method does not
open the connection implicitly.

Chapter 17
OracleRef Class

17-78

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

IsEqual
This instance method compares two OracleREF objects.

Declaration

// C#
public bool IsEqual(OracleRef oraRef);

Parameters

• oraRef

The provided OracleRef object.

Return Value

bool

Remarks

This instance method returns true if the OracleRef instance and the OracleRef parameter
both reference the same object. Otherwise, it returns false.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Lock
This instance method locks the REF in the database.

Declaration

// C#
public bool Lock(bool bWait);

Chapter 17
OracleRef Class

17-79

Parameters

• bWait

Specifies if the lock is set to the no-wait option. If bWait is set to true, the method
invocation does not return until the REF is locked.

Return Value

A boolean value that indicates whether or not the lock has been acquired.

Exceptions

InvalidOperationException - The associated connection is not open.

ObjectDisposedException - The object is already disposed.

Remarks

In order for the application to release the lock on the REF appropriately after the Flush
invocation on the OracleRef or FlushCache methods, the application must commit or
rollback the transaction. Therefore, it is required that, before invoking a lock on an
OracleRef object, a transaction is explicitly started by executing the BeginTransaction
method on the OracleConnection object.

This instance method makes a network round-trip to lock the REF in the database. After
this call, programmers can modify the attribute values of the associated row object
exclusively. Then a call to the Flush instance method on the OracleRef or FlushCache
method on the OracleConnection flushes the changes to the database.

If true is passed, this method blocks, that is, does not return, until the lock is acquired.
Consequently, the return value is always true.

If false is passed, this method immediately returns. The return value indicates true if
the lock is acquired, and false if it is not.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Update
This method updates the object referenced by the specified REF in the database using
the specified custom object.

Declaration

// C# - managed and core ODP.NET
public void Update(object customObject);

Chapter 17
OracleRef Class

17-80

// C# - unmanaged ODP.NET
public void Update(object customObject, bool bFlush);

Parameters

• customObject

The custom object used to update the referenced object.

• bFlush

A boolean that specifies if the changes must be flushed immediately. If bFlush is set to
true, this method invocation flushes the changes immediately.

Exceptions

InvalidOperationException - The specified connection is not open or the custom object
does not map to the type of referenced object.

Remarks

This method marks the specified REF for update. In managed ODP.NET and ODP.NET Core,
Update(customObject) has the same behavior as unmanaged ODP.NET
Update(customObject, true). Depending on whether the value of bFlush is set to true or
false, the following occurs:

• True

The object referenced by the specified REF is updated immediately in the database.

Before flushing objects, it is required that the application has explicitly started a
transaction by executing the BeginTransaction method on the OracleConnection object.
This is because if the object being flushed has not already been locked by the
application, an exclusive lock is obtained implicitly for the object. The lock is only
released when the transaction commits or rollbacks.

• False

The object referenced by the REF is not updated immediately in the database, but only
when a subsequent Flush method is invoked for the specified REF or the FlushCache
method is invoked for the specified connection.

The connection must be opened explicitly by the application. This method does not open the
connection implicitly.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Chapter 17
OracleRef Class

17-81

OracleUdtFetchOption Enumeration
OracleUdtFetchOption enumeration values specify how to retrieve a copy of the
referenceable object.

Table 17-39 lists all the OracleUdtFetchOption enumeration values with a description
of each enumerated value.

Table 17-39 OracleUdtFetchOption Enumeration Values

Member Name Description

Cache If there is a copy of the referenced object in the object cache, it
is returned immediately. If no cached copy exists, the latest copy
of the referenced object in the database is cached in the object
cache and returned.

Server The latest copy of the referenced object from the database is
cached in the object cache and returned. If a copy of the
referenced object already exists in the cache, the latest copy
overwrites the existing one.

TransactionCache If a copy of the referenced object is cached in the current
transaction, the copy is returned. Otherwise, the latest copy of
the referenced object from the database is cached in the object
cache and returned. If a copy of the referenced object already
exists in the cache, the latest copy overwrites the existing one.

Note that if a cached copy of the referenced object was modified
before the current transaction began, that is, if the
OracleRef.HasChanges property returns true, then the
Recent option returns the cached copy of the referenced object.
Outside of a transaction, the Recent option behaves like the Any
option.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

OracleUdtStatus Enumeration
OracleUdtStatus enumeration values specify the status of an object attribute or
collection element. An object attribute or a collection element can be a valid value or a
null value.

Table 17-40 lists all the OracleUdtStatus enumeration values with a description of
each enumerated value:

Chapter 17
OracleUdtFetchOption Enumeration

17-82

Table 17-40 OracleUdtStatus Enumeration Values

Member Name Description

Null Indicates that an object attribute or collection element is NULL.

NotNull Indicates that a non-NULL value exists for the object attribute or
collection element.

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleRef Class

• OracleRef Members

Chapter 17
OracleUdtStatus Enumeration

17-83

18
Oracle Data Provider for .NET Bulk Copy
Classes

This chapter describes Oracle Data Provider for .NET support for Bulk Copy operations.

Note:

Oracle Data Provider for .NET bulk copy operations do not support loading of UDT
type columns.

This chapter includes the following topics:

• OracleBulkCopy Class

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyOptions Enumeration

• OracleRowsCopiedEventHandler Delegate

• OracleRowsCopiedEventArgs Class

OracleBulkCopy Class
An OracleBulkCopy object efficiently bulk loads or copies data into an Oracle table from
another data source.

Class Inheritance

System.Object
 System.OracleBulkCopy

Declaration

// C#
public sealed class OracleBulkCopy : IDisposable

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

18-1

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The OracleBulkCopy class can be used to write data to Oracle database tables only.
However, the data source is not limited to Oracle databases; any data source can be
used, as long as the data can be loaded to a DataTable instance or read with an
IDataReader instance.

Bulk copy of string data to destination number column is currently not supported.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Members

• OracleBulkCopy Constructors

• OracleBulkCopy Properties

• OracleBulkCopy Public Methods

• OracleBulkCopy Events

OracleBulkCopy Members
OracleBulkCopy members are listed in the following tables.

OracleBulkCopy Constructors

OracleBulkCopy constructors are listed in Table 18-1.

Table 18-1 OracleBulkCopy Constructors

Constructor Description

OracleBulkCopy
Constructors

OracleBulkCopy constructors create new instances of the
OracleBulkCopy class

Chapter 18
OracleBulkCopy Class

18-2

OracleBulkCopy Properties

OracleBulkCopy properties are listed in Table 18-2.

Table 18-2 OracleBulkCopy Properties

Property Description

BatchSize Specifies the number of rows to be sent as a batch to the database

BulkCopyOptions Specifies the OracleBulkCopyOptions enumeration value that
determines the behavior of the bulk copy operation

BulkCopyTimeout Specifies the number of seconds allowed for the bulk copy operation
to complete before it is aborted

ColumnMappings Specifies the column mappings between the data source and
destination table

Connection Specifies the OracleConnection object that the Oracle database
uses to perform the bulk copy operation

DestinationPartitionName Specifies the database partition that the data is loaded into

DestinationSchemaName Specifies the database schema that the data is loaded into

DestinationTableName Specifies the database table that the data is loaded in

NotifyAfter Defines the number of rows to be processed before a notification
event is generated

OracleBulkCopy Public Methods

OracleBulkCopy public methods are listed in Table 18-3.

Table 18-3 OracleBulkCopy Public Methods

Method Description

Close Closes the OracleBulkCopy instance

Dispose Releases any resources or memory allocated by the object

WriteToServer Copies rows to a destination table

OracleBulkCopy Events

OracleBulkCopy events are listed in Table 18-4.

Table 18-4 OracleBulkCopy Events

Event Description

OracleRowsCopied Triggered every time the number of rows specified by the
OracleBulkCopy.NotifyAfter property has been processed

Chapter 18
OracleBulkCopy Class

18-3

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

OracleBulkCopy Constructors
OracleBulkCopy constructors create new instances of the OracleBulkCopy class.

Overload List:

• OracleBulkCopy(OracleConnection)

This constructor instantiates a new instance of OracleBulkCopy class using the
specified connection and default value for OracleBulkCopyOptions.

• OracleBulkCopy(string)

This constructor instantiates a new instance of OracleBulkCopy based on the
supplied connectionString and default value for OracleBulkCopyOptions.

• OracleBulkCopy(OracleConnection, OracleBulkCopyOptions)

This constructor instantiates a new instance of OracleBulkCopy using the specified
connection object and OracleBulkCopyOptions value.

• OracleBulkCopy(string, OracleBulkCopyOptions)

This constructor instantiates a new instance of OracleConnection based on the
supplied connectionString and OracleBulkCopyOptions value.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

OracleBulkCopy(OracleConnection)
This constructor instantiates a new instance of OracleBulkCopy class using the
specified connection and default OracleBulkCopyOptions enumeration values.

Declaration

// C#
public OracleBulkCopy(OracleConnection connection);

Chapter 18
OracleBulkCopy Class

18-4

Parameters

• connection

The open instance of OracleConnection that performs the bulk copy operation.

Exceptions

ArgumentNullException - The connection parameter is null.

InvalidOperationException - The connection is not in the open state.

Remarks

The connection object passed to this constructor must be open. It remains open after the
OracleBulkCopy instance is closed.

This constructor uses the default enumeration value OracleBulkCopyOptions.Default.

The Connection property is set to the supplied connection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

• "OracleBulkCopyOptions Enumeration"

OracleBulkCopy(string)
This constructor instantiates a new instance of the OracleBulkCopy class by first creating an
OracleConnection object based on the supplied connectionString , then initializing the new
OracleBulkCopy object with the OracleConnection object and OracleBulkCopyOptions
default value.

Declaration

// C#
public OracleBulkCopy(string connectionString);

Parameters

• connectionString

The connection information used to connect to the Oracle database and perform the bulk
copy operation.

Exception

ArgumentNullException - The connectionString parameter is null.

ArgumentException - The connectionString parameter is empty.

Chapter 18
OracleBulkCopy Class

18-5

Remarks

The WriteToServer method opens the connection, if it is not already opened. The
connection is automatically closed when the OracleBulkCopy instance is closed.

This constructor uses the default enumeration value
OracleBulkCopyOptions.Default.

The Connection property is set to the OracleConnection object initialized using the
supplied connectionString.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

• "OracleBulkCopyOptions Enumeration"

OracleBulkCopy(OracleConnection, OracleBulkCopyOptions)
This constructor instantiates a new instance of OracleBulkCopy using the specified
connection object and OracleBulkCopyOptions value.

Declaration

// C#
public OracleBulkCopy(OracleConnection connection, OracleBulkCopyOptions
 copyOptions);

Parameters

• connection

The open instance of an OracleConnection object that performs the bulk copy
operation.

• copyOptions

The combination of OracleBulkCopyOptions enumeration values that determine
the behavior of the OracleBulkCopy object.

Exceptions

ArgumentNullException - The connection parameter is null.

InvalidOperationException - The connection is not in the open state.

Remarks

The connection passed to this constructor must be open. It remains open after the
OracleBulkCopy instance is closed.

Chapter 18
OracleBulkCopy Class

18-6

The Connection property is set to the supplied connection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

• "OracleBulkCopyOptions Enumeration"

OracleBulkCopy(string, OracleBulkCopyOptions)
This constructor instantiates a new instance of the OracleBulkCopy class by first creating an
OracleConnection object based on the supplied connectionString, then initializing the new
OracleBulkCopy object with the OracleConnection object and the supplied
OracleBulkCopyOptions enumeration values.

Declaration

// C#
public OracleBulkCopy(string connectionString, OracleBulkCopyOptions copyOptions);

Parameters

• connectionString

The connection information used to connect to the Oracle database to perform the bulk
copy operation.

• copyOptions

The combination of OracleBulkCopyOptions enumeration values that determine the
behavior of the bulk copy operation.

Exceptions

ArgumentNullException - The connectionString is null.

ArgumentException - The connectionString parameter is empty.

Remarks

The constructor uses the new instance of the OracleConnection class to initialize a new
instance of the OracleBulkCopy class. The OracleBulkCopy instance behaves according to
options supplied in the copyOptions parameter.

The connection is automatically closed when the OracleBulkCopy instance is closed.

The Connection property is set to an OracleConnection object initialized using the supplied
connectionString.

Chapter 18
OracleBulkCopy Class

18-7

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

• "OracleBulkCopyOptions Enumeration"

OracleBulkCopy Properties
OracleBulkCopy properties are listed in Table 18-5.

Table 18-5 OracleBulkCopy Properties

Property Description

BatchSize Specifies the number of rows to be sent as a batch to the
database

BulkCopyOptions Specifies the OracleBulkCopyOptions enumeration value that
determines the behavior of the bulk copy operation

BulkCopyTimeout Specifies the number of seconds allowed for the bulk copy
operation to complete before it is aborted

ColumnMappings Specifies the column mappings between the data source and
destination table

Connection Specifies the OracleConnection object that the Oracle
database uses to perform the bulk copy operation

DestinationPartitionName Specifies the database partition that the data is loaded into

DestinationSchemaName Specifies the database schema that the data is loaded into

DestinationTableName Specifies the database table that the data is loaded in

NotifyAfter Defines the number of rows to be processed before a notification
event is generated

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

BatchSize
This property specifies the number of rows to be sent as a batch to the database.

Chapter 18
OracleBulkCopy Class

18-8

Declaration

// C#
public int BatchSize {get; set;}

Property Value

An integer value for the number of rows to be sent to the database as a batch.

Exceptions

ArgumentOutOfRangeException - The batch size is less than zero.

Remarks

The default value is zero, indicating that the rows are not sent to the database in batches.
The entire set of rows are sent in one single batch.

A large batch size reduces database round trips, but it can also consume large amounts of
client side memory. Excessive memory consumption slows down overall machine
performance and leads to errors if the process runs out of accessible memory. It is
recommended that client side memory is not consumed in excess. This can be done by
reducing the batch size.

A batch is complete when BatchSize number of rows have been processed or there are no
more rows to send to the database.

• If BatchSize > 0 and the UseInternalTransaction bulk copy option is specified, each
batch of the bulk copy operation occurs within a transaction. If the connection used to
perform the bulk copy operation is already part of a transaction, an
InvalidOperationException exception is raised.

• If BatchSize > 0 and the UseInternalTransaction option is not specified, rows are sent
to the database in batches of size BatchSize, but no transaction-related action is taken.

The BatchSize property can be set at any time. If a bulk copy is already in progress, the
current batch size is determined by the previous batch size. Subsequent batches use the new
batch size.

If the BatchSize property is initially zero and changes while a WriteToServer operation is in
progress, that operation loads the data as a single batch. Any subsequent WriteToServer
operations on the same OracleBulkCopy instance use the new BatchSize.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

• "OracleBulkCopyOptions Enumeration"

Chapter 18
OracleBulkCopy Class

18-9

BulkCopyOptions
This property specifies the OracleBulkCopyOptions enumeration value that
determines the behavior of the bulk copy option.

Declaration

// C#
public OracleBulkCopyOptions BulkCopyOptions {get; set;}

Property Value

The OracleBulkCopyOptions enumeration object that defines the behavior of the bulk
copy operation.

Exceptions

ArgumentNullException - The bulk copy options set is null.

Remarks

The default value of this property is OracleBulkCopyOptions.Default value. This
property can be used to change the bulk copy options between the batches of a bulk
copy operation.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

• "OracleBulkCopyOptions Enumeration"

BulkCopyTimeout
This property specifies the number of seconds allowed for the bulk copy operation to
complete before it is aborted.

Declaration

// C#
public int BulkCopyTimeout {get; set;}

Property Value

An integer value for the number of seconds after which the bulk copy operation times
out.

Exceptions

ArgumentOutOfRangeException - The timeout value is set to less than zero.

Chapter 18
OracleBulkCopy Class

18-10

Remarks

The default value is 30 seconds.

If BatchSize>0, rows that were sent to the database in the previous batches remain
committed. The rows that are processed in the current batch are not sent to the database. If
BatchSize=0, no rows are sent to the database.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

ColumnMappings
This property specifies the column mappings between the data source and destination table.

Declaration

// C#
public OracleBulkCopyColumnMappingCollection ColumnMappings {get;}

Property Value

The OracleBulkCopyColumnMappingCollection object that defines the column mapping
between the source and destination table.

Remarks

The ColumnMappings collection is unnecessary if the data source and the destination table
have the same number of columns, and the ordinal position of each source column matches
the ordinal position of the corresponding destination column. However, if the column counts
differ, or the ordinal positions are not consistent, the ColumnMappings collection must be used
to ensure that data is copied into the correct columns.

During the execution of a bulk copy operation, this collection can be accessed, but it cannot
be changed.

By default, this property specifies an empty collection of column mappings.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

Chapter 18
OracleBulkCopy Class

18-11

Connection
This property specifies the OracleConnection object that the Oracle database uses to
perform the bulk copy operation.

Declaration

// C#
public OracleConnection Connection {get; }

Property Value

The OracleConnection object used for the bulk copy operations.

Remarks

This property gets the connection constructed by the OracleBulkCopy, if the
OracleBulkCopy object is initialized using a connection string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

DestinationPartitionName
This property specifies the database partition that the data is loaded into.

Declaration

// C#
public string DestinationPartitionName {get; set;}

Property Value

A string value that identifies the destination partition name.

Remarks

If DestinationPartitionName is modified while a WriteToServer operation is running,
the change does not affect the current operation. The new DestinationPartitionName
value is used the next time a WriteToServer method is called.

Chapter 18
OracleBulkCopy Class

18-12

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

DestinationSchemaName
This property specifies the database schema that the data is loaded into.

Declaration

// C#
public string DestinationSchemaName {get; set;}

Property Value

A string value that identifies the destination schema name.

Remarks

By default, this property is set to the schema or the user associated with the connection used
by the OracleBulkCopy object. This default can be modified by setting this property to a
different destination schema or user name.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

DestinationTableName
This property specifies the database table that the data is loaded into.

Declaration

// C#
public string DestinationTableName {get; set;}

Property Value

A string value that identifies the destination table name.

Exceptions

ArgumentNullException - The destination table name set is null.

Chapter 18
OracleBulkCopy Class

18-13

ArgumentException - The destination table name is empty.

Remarks

If DestinationTableName is modified while a WriteToServer operation is running, the
change does not affect the current operation. The new DestinationTableName value is
used the next time a WriteToServer method is called.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

NotifyAfter
This property defines the number of rows to be processed before a notification event is
generated.

Declaration

// C#
public int NotifyAfter {get; set;}

Property Value

An integer value that specifies the number of rows to be processed before the
notification event is raised.

Exceptions

ArgumentOutOfRangeException - The property value is set to a number less than zero.

Remarks

The default value for this property is zero, to specify that no notifications events are to
be generated.

This property can be retrieved in user interface components to display the progress of
a bulk copy operation. The NotifyAfter property can be set at anytime, even during a
bulk copy operation. The changes take effect for the next notification and any
subsequent operations on the same instance.

Chapter 18
OracleBulkCopy Class

18-14

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

OracleBulkCopy Public Methods
OracleBulkCopy methods are listed in Table 18-6.

Table 18-6 OracleBulkCopy Public Methods

Method Description

Close Closes the OracleBulkCopy instance

Dispose Releases any resources or memory allocated by the object

WriteToServer Copies rows to a destination table

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

Close
This method closes the OracleBulkCopy instance.

Declaration

// C#
public void Close();

Exceptions

InvalidOperationException - The Close method was called from a OracleRowsCopied
event.

Remarks

After the Close method is called on a OracleBulkCopy object, no other operation can
succeed. Calls to the WriteToServer method throw an InvalidOperationException. The
Close method closes the connection if the connection was opened by the OracleBulkCopy

Chapter 18
OracleBulkCopy Class

18-15

object, that is, if the OracleBulkCopy object was created by a constructor that takes a
connection string.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

After the Dispose method is called on the OracleBulkCopy object, no other operation
can succeed. The connection is closed if the connection was opened by the
OracleBulkCopy object, that is, if a constructor that takes a connection string created
the OracleBulkCopy object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

WriteToServer
WriteToServer copies rows to a destination table.

Overload List:

• WriteToServer(DataRow[])

This method copies all rows from the supplied DataRow array to a destination table
specified by the DestinationTableName property of the OracleBulkCopy object.

Chapter 18
OracleBulkCopy Class

18-16

• WriteToServer(DataTable)

This method copies all rows in the supplied DataTable to a destination table specified by
the DestinationTableName property of the OracleBulkCopy object.

• WriteToServer(IDataReader)

This method copies all rows in the supplied IDataReader to a destination table specified
by the DestinationTableName property of the OracleBulkCopy object.

• WriteToServer(DataTable, DataRowState)

This method copies rows that match the supplied row state in the supplied DataTable to
a destination table specified by the DestinationTableName property of the
OracleBulkCopy object.

• WriteToServer(OracleRefCursor)

This method copies all rows from the specified OracleRefCursor to a destination table
specified by the DestinationTableName property of the OracleBulkCopy object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

WriteToServer(DataRow[])
This method copies all rows from the supplied DataRow array to a destination table specified
by the DestinationTableName property of the OracleBulkCopy object.

Declaration

// C#
public void WriteToServer(DataRow[] rows);

Parameters

• rows

An array of DataRow objects to be copied to the destination table.

Exceptions

ArgumentNullException - The rows parameter is null.

InvalidOperationException - The connection is not in an open state.

Remarks

The ColumnMappings collection maps from the DataRow columns to the destination database
table.

Chapter 18
OracleBulkCopy Class

18-17

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

WriteToServer(DataTable)
This method copies all rows in the supplied DataTable to a destination table specified
by the DestinationTableName property of the OracleBulkCopy object.

Declaration

// C#
public void WriteToServer(DataTable table);

Parameters

• table

The source DataTable containing rows to be copied to the destination table.

Exceptions

ArgumentNullException - The table parameter is null.

InvalidOperationException - The connection is not in an open state.

Remarks

All rows in the DataTable are copied to the destination table except those that have
been deleted.

The ColumnMappings collection maps from the DataTable columns to the destination
database table.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

WriteToServer(IDataReader)
This method copies all rows in the supplied IDataReader to a destination table
specified by the DestinationTableName property of the OracleBulkCopy object.

Chapter 18
OracleBulkCopy Class

18-18

Declaration

// C#
public void WriteToServer(IDataReader reader);

Parameters

• reader

A IDataReader instance containing rows to be copied to the destination table.

Exceptions

ArgumentNullException - The reader parameter is null.

InvalidOperationException - The connection is not in an open state.

Remarks

The bulk copy operation starts with the next available row of the data reader. Typically, the
reader returned by a call to the ExecuteReader method is passed to the WriteToServer
method so that the next row becomes the first row. To copy multiple result sets, the
application must call NextResult on the reader and then call the WriteToServer method
again.

This WriteToServer method changes the state of the reader as it calls reader.Read internally
to get the source rows. Thus, at the end of the WriteToServer operation, the reader is at the
end of the result set.

The ColumnMappings collection maps from the data reader columns to the destination
database table.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

WriteToServer(DataTable, DataRowState)
This method copies rows that match the supplied row state in the supplied DataTable to a
destination table specified by the DestinationTableName property of the OracleBulkCopy
object.

Declaration

// C#
public void WriteToServer(DataTable table, DataRowState rowState);

Parameters

• table

Chapter 18
OracleBulkCopy Class

18-19

A DataTable containing rows to be copied to the destination table.

• rowState

The DataRowState enumeration value. Only rows matching the row state are
copied to the destination.

Exceptions

ArgumentNullException - The table or rowState parameter is null.

InvalidOperationException - The connection is not in an open state.

Remarks

Only rows in the DataTable that are in the state indicated in the rowState argument
and have not been deleted are copied to the destination table.

The ColumnMappings collection maps from the DataTable columns to the destination
database table.

DataRowState.Deleted is not supported and the behavior would be that all the rows
except the deleted ones are copied.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

WriteToServer(OracleRefCursor)
This method copies all rows from the specified OracleRefCursor to a destination table
specified by the DestinationTableName property of the OracleBulkCopy object.

Declaration

// C#
public void WriteToServer(OracleRefCursor refCursor);

Parameters

• refCursor

An OracleRefCursor object containing rows to be copied to the destination table.

Exceptions

ArgumentNullException - The refCursor parameter is null

InvalidOperationException - The connection is not in an open state.

Chapter 18
OracleBulkCopy Class

18-20

Remarks

The ColumnMappings collection maps from the OracleRefCursor columns to the destination
database table.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

OracleBulkCopy Events
OracleBulkCopy events are listed in Table 18-7.

Table 18-7 OracleBulkCopy Events

Event Description

OracleRowsCopied Triggered every time the number of rows specified by the
OracleBulkCopy.NotifyAfter property has been processed

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

OracleRowsCopied
This event is triggered every time the number of rows specified by the
OracleBulkCopy.NotifyAfter property has been processed.

Declaration

// C#
public event OracleRowsCopiedEventHandler OracleRowsCopied;

Exceptions

InvalidOperationException - The Close method is called inside this event.

Chapter 18
OracleBulkCopy Class

18-21

Remarks

This event is raised when the number of rows specified by the NotifyAfter property
has been processed. It does not imply that the rows have been sent to the database or
committed.

To cancel the operation from this event, use the Abort property of
OracleRowsCopiedEventArgs class.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy Class

• OracleBulkCopy Members

• "NotifyAfter"

OracleBulkCopyColumnMapping Class
The OracleBulkCopyColumnMapping class defines the mapping between a column in
the data source and a column in the destination database table.

Class Inheritance

System.Object
 System.OracleBulkCopyColumnMapping

Declaration

// C#
public sealed class OracleBulkCopyColumnMapping

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 18
OracleBulkCopyColumnMapping Class

18-22

Remarks

Column mappings define the mapping between data source and the target table.

It is not necessary to specify column mappings for all the columns in the data source. If a
ColumnMapping is not specified, then, by default, columns are mapped based on the ordinal
position. This succeeds only if the source and destination table schema match. If there is a
mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round-trips to the database to
determine the column name if the mapping is specified by ordinal position. To avoid
this performance overhead, specify the mapping by column name.

Example

// C#

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Members

• OracleBulkCopyColumnMapping Constructors

• OracleBulkCopyColumnMapping Methods

• OracleBulkCopyColumnMapping Properties

OracleBulkCopyColumnMapping Members
OracleBulkCopyColumnMapping members are listed in the following tables.

OracleBulkCopyColumnMapping Constructors

The OracleBulkCopyColumnMapping constructors are listed in Table 18-8.

Table 18-8 OracleBulkCopyColumnMapping Constructors

Constructor Description

OracleBulkCopyColumnMappi
ng Constructors

Instantiates new instances of the OracleBulkCopyColumnMapping
class

Chapter 18
OracleBulkCopyColumnMapping Class

18-23

OracleBulkCopyColumnMapping Methods

The OracleBulkCopyColumnMapping method is listed in Table 18-9.

Table 18-9 OracleBulkCopyColumnMapping Method

Constructor Description

CompareTo Compares the current instance to the supplied object and
returns an integer that represents their relative values

OracleBulkCopyColumnMapping Properties

The OracleBulkCopyColumnMapping properties are listed in Table 18-10.

Table 18-10 OracleBulkCopyColumnMapping Properties

Property Description

DestinationColumn Specifies the column name of the destination table that is being
mapped

DestinationOrdinal Specifies the column ordinal value of the destination table that is
being mapped

SourceColumn Specifies the column name of the data source that is being
mapped

SourceOrdinal Specifies the column ordinal value of the data source that is
being mapped

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

OracleBulkCopyColumnMapping Constructors
OracleBulkCopyColumnMapping constructors instantiates new instances of the
OracleBulkCopyColumnMapping class.

Overload List:

• OracleBulkCopyColumnMapping()

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class

• OracleBulkCopyColumnMapping(int, int)

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column ordinal and destination column ordinal.

Chapter 18
OracleBulkCopyColumnMapping Class

18-24

• OracleBulkCopyColumnMapping(int, string)

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source column ordinal and destination column name.

• OracleBulkCopyColumnMapping(string, int)

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source column name and destination column ordinal.

• OracleBulkCopyColumnMapping(string, string)

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source column name and destination column name.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

OracleBulkCopyColumnMapping()
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class.

Declaration

// C#
public OracleBulkCopyColumnMapping();

Remarks

Applications that use this constructor must define the source for the mapping using the
SourceColumn or SourceOrdinal property, and must define the destination for the mapping
using the DestinationColumn or DestinationOrdinal property.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

OracleBulkCopyColumnMapping(int, int)
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source and destination column ordinal positions.

Chapter 18
OracleBulkCopyColumnMapping Class

18-25

Declaration

// C#
public OracleBulkCopyColumnMapping(int sourceColumnOrdinal,
 int destinationOrdinal);

Parameters

• sourceColumnOrdinal

The ordinal position of the source column within the data source.

• destinationOrdinal

The ordinal position of the destination column within the destination table.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

OracleBulkCopyColumnMapping(int, string)
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column ordinal and destination column name.

Declaration

// C#
public OracleBulkCopyColumnMapping(int sourceColumnOrdinal,
 string destinationColumn);

Parameters

• sourceColumnOrdinal

The ordinal position of the source column within the data source.

• destinationColumn

The name of the destination column within the destination table.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

Chapter 18
OracleBulkCopyColumnMapping Class

18-26

OracleBulkCopyColumnMapping(string, int)
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source column name and destination column ordinal.

Declaration

// C#
public OracleBulkCopyColumnMapping(string sourceColumn, int destinationOrdinal);

Parameters

• sourceColumn

The name of the source column within the data source.

• destinationOrdinal

The ordinal position of the destination column within the destination table.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

OracleBulkCopyColumnMapping(string, string)
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source and destination column names.

Declaration

// C#
public OracleBulkCopyColumnMapping(string sourceColumn, string destinationColumn);

Parameters

• sourceColumn

The name of the source column within the data source.

• destinationColumn

The name of the destination column within the destination table.

Chapter 18
OracleBulkCopyColumnMapping Class

18-27

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

OracleBulkCopyColumnMapping Methods
The OracleBulkCopyColumnMapping method is listed in Table 18-11.

Table 18-11 OracleBulkCopyColumnMapping Method

Property Description

CompareTo Compares the current instance to the supplied object and
returns an integer that represents their relative values

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

CompareTo
This method compares the current instance to the supplied object and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

obj - The supplied instance.

Return Value

Less than zero: if the value of the current instance is less than obj.

Zero: if the value of the current instance is equal to obj.

Greater than zero: if the value of the current instance is greater than obj.

Chapter 18
OracleBulkCopyColumnMapping Class

18-28

Implements

IComparable

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

OracleBulkCopyColumnMapping Properties
The OracleBulkCopyColumnMapping properties are listed in Table 18-12.

Table 18-12 OracleBulkCopyColumnMapping Properties

Property Description

DestinationColumn Specifies the column name of the destination table that is being
mapped

DestinationOrdinal Specifies the column ordinal value of the destination table that is
being mapped

SourceColumn Specifies the column name of the data source that is being mapped

SourceOrdinal Specifies the column ordinal value of the data source that is being
mapped

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

DestinationColumn
This property specifies the column name of the destination table that is being mapped.

Declaration

// C#
public string DestinationColumn {get; set;}

Chapter 18
OracleBulkCopyColumnMapping Class

18-29

Property Value

A string value that represents the destination column name of the mapping.

Remarks

The DestinationColumn and DestinationOrdinal properties are mutually exclusive.
The last value set takes precedence.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

DestinationOrdinal
This property specifies the column ordinal value of the destination table that is being
mapped.

Declaration

// C#
public int DestinationOrdinal {get; set;}

Property Value

An integer value that represents the destination column ordinal of the mapping.

Exceptions

IndexOutOfRangeException - The destination ordinal is invalid.

Remarks

The DestinationOrdinal and DestinationColumn properties are mutually exclusive.
The last value set takes precedence.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

Chapter 18
OracleBulkCopyColumnMapping Class

18-30

SourceColumn
This property specifies the column name of the data source that is being mapped.

Declaration

// C#
public string SourceColumn {get; set;}

Property Value

A string value that represents the source column name of the mapping.

Remarks

The SourceColumn and SourceOrdinal properties are mutually exclusive. The last value set
takes precedence.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

SourceOrdinal
This property specifies the column ordinal value of the data source that is being mapped.

Declaration

// C#
public int SourceOrdinal {get; set;}

Property Value

An integer value that represents the source column ordinal of the mapping.

Exceptions

IndexOutOfRangeException - The source ordinal is invalid.

Remarks

The SourceOrdinal and SourceColumn properties are mutually exclusive. The last value set
takes precedence.

Chapter 18
OracleBulkCopyColumnMapping Class

18-31

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMapping Members

OracleBulkCopyColumnMappingCollection Class
The OracleBulkCopyColumnMappingCollection class represents a collection of
OracleBulkCopyColumnMapping objects that are used to map columns in the data
source to columns in a destination table.

Class Inheritance

System.Object
 System.CollectionBase
 System.OracleBulkCopyColumnMappingCollection

Declaration

// C#
public sealed class OracleBulkCopyColumnMappingCollection : CollectionBase

Requirements

Provider ODP.NET,
Unmanaged Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess
.dll

Oracle.ManagedDat
aAccess.dll

Oracle.ManagedDat
aAccess.dll

Namespace Oracle.DataAccess
.Client

Oracle.ManagedDat
aAccess.Client

Oracle.ManagedDat
aAccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

Column mappings define the mapping between data source and the target table.

It is not necessary to specify column mappings for all the columns in the data source.
If a ColumnMapping is not specified, then, by default, columns are mapped based on
the ordinal position. This succeeds only if the source and destination table schema
match. If there is a mismatch, an InvalidOperationException is thrown.

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-32

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round-trips to the database to
determine the column name if the mapping is specified by ordinal position. To avoid
this performance overhead, specify the mapping by column name.

Example

// C#

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

• OracleBulkCopyColumnMappingCollection Properties

• OracleBulkCopyColumnMappingCollection Public Methods

OracleBulkCopyColumnMappingCollection Members
OracleBulkCopyColumnMappingCollection members are listed in the following tables.

OracleBulkCopyColumnMappingCollection Properties

The OracleBulkCopyColumnMappingCollection properties are listed in Table 18-13.

Table 18-13 OracleBulkCopyColumnMappingCollection Properties

Property Description

Item[index] Gets or sets the OracleBulkCopyColumnMappingCollection
object at the specified index

OracleBulkCopyColumnMappingCollection Public Methods

The OracleBulkCopyColumnMappingCollection public methods are listed in Table 18-14.

Table 18-14 OracleBulkCopyColumnMappingCollection Public Methods

Public Method Description

Add Adds objects to the collection

Clear Clears the contents of the collection

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-33

Table 18-14 (Cont.) OracleBulkCopyColumnMappingCollection Public Methods

Public Method Description

Contains Returns a value indicating whether or not a specified
OracleBulkCopyColumnMapping object exists in the collection

CopyTo Copies the elements of the
OracleBulkCopyColumnMappingCollection to an array of
OracleBulkCopyColumnMapping items, starting at a specified index

IndexOf Returns the index of the specified OracleBulkCopyColumnMapping
object

Insert Inserts a new OracleBulkCopyColumnMapping object in the
collection, at the index specified.

Remove Removes the specified OracleBulkCopyColumnMapping element
from the OracleBulkCopyColumnMappingCollection.

RemoveAt Removes the mapping from the collection at the specified index.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

OracleBulkCopyColumnMappingCollection Properties
The OracleBulkCopyColumnMappingCollection properties are listed in Table 18-15.

Table 18-15 OracleBulkCopyColumnMappingCollection Properties

Property Description

Item[index] Gets or sets the OracleBulkCopyColumnMappingCollection
object at the specified index

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-34

Item[index]
This property gets or sets the OracleBulkCopyColumnMapping object at the specified index.

Declaration

// C#
public OracleBulkCopyColumnMapping this[int index] {get;set;}

Parameters

• index

The zero-based index of the OracleBulkCopyColumnMapping being set or retrieved.

Property Value

An OracleBulkCopyColumnMapping object at the specified index.

Exceptions

IndexOutOfRangeException - The specified index does not exist.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

OracleBulkCopyColumnMappingCollection Public Methods
The OracleBulkCopyColumnMappingCollection public methods are listed in Table 18-16.

Table 18-16 OracleBulkCopyColumnMappingCollection Public Methods

Public Method Description

Add Adds objects to the collection

Clear Clears the contents of the collection

Contains Returns a value indicating whether or not a specified
OracleBulkCopyColumnMapping object exists in the collection

CopyTo Copies the elements of the
OracleBulkCopyColumnMappingCollection to an array of
OracleBulkCopyColumnMapping items, starting at a specified index

IndexOf Returns the index of the specified OracleBulkCopyColumnMapping
object

Insert Inserts a new OracleBulkCopyColumnMapping object in the
collection, at the index specified.

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-35

Table 18-16 (Cont.) OracleBulkCopyColumnMappingCollection Public Methods

Public Method Description

Remove Removes the specified OracleBulkCopyColumnMapping element
from the OracleBulkCopyColumnMappingCollection.

RemoveAt Removes the mapping from the collection at the specified index.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Add
Add methods add objects to the collection.

Overload List:

• Add(OracleBulkCopyColumnMapping)

This method adds the supplied OracleBulkCopyColumnMapping object to the
collection.

• Add(int, int)

This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source and destination column ordinal positions.

• Add(int, string)

This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source column ordinal and destination column name.

• Add(string, int)

This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source column name and destination column ordinal.

• Add(string, string)

This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source and destination column names.

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-36

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Add(OracleBulkCopyColumnMapping)
This method adds the supplied OracleBulkCopyColumnMapping object to the collection.

Declaration

// C#
public OracleBulkCopyColumnMapping Add(OracleBulkCopyColumnMapping
 bulkCopyColumnMapping);

Parameters

• bulkCopyColumnMapping

The OracleBulkCopyColumnMapping object that describes the mapping to be added to the
collection.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Add(int, int)
This method creates and adds an OracleBulkCopyColumnMapping object to the collection
using the supplied source and destination column ordinal positions.

Declaration

// C#
public OracleBulkCopyColumnMapping Add(int sourceColumnIndex,
 int destinationColumnIndex);

Parameters

• sourceColumnIndex

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-37

The ordinal position of the source column within the data source.

• destinationColumnIndex

The ordinal position of the destination column within the destination table.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Return Value

The newly created OracleBulkCopyColumnMapping object that was added to the
collection.

Remarks

It is not necessary to specify column mappings for all the columns in the data source.
If a ColumnMapping is not specified, then, by default, columns are mapped based on
the ordinal position. This succeeds only if the source and destination table schema
match. If there is a mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round-trips to the
database to determine the column name if the mapping is specified by
ordinal position. To avoid this performance overhead, specify the mapping by
column name.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Add(int, string)
This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source column ordinal and destination column name.

Declaration

// C#
public OracleBulkCopyColumnMapping Add(int sourceColumnIndex,
 string destinationColumn);

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-38

Parameters

• sourceColumnIndex

The ordinal position of the source column within the data source.

• destinationColumn

The name of the destination column within the destination table.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Return Value

The newly created OracleBulkCopyColumnMapping object that was added to the collection.

Remarks

It is not necessary to specify column mappings for all the columns in the data source. If a
ColumnMapping is not specified, then, by default, columns are mapped based on the ordinal
position. This succeeds only if the source and destination table schema match. If there is a
mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round trips to the database to
determine the column names if the mapping is specified by ordinal resulting in a
performance overhead. Therefore, it is recommended to specify the mapping by
column names.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Add(string, int)
This method creates and adds an OracleBulkCopyColumnMapping object to the collection
using the supplied source column name and destination column ordinal.

Declaration

// C#
public OracleBulkCopyColumnMapping Add(string sourceColumn,
 int destinationColumnIndex);

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-39

Parameters

• sourceColumn

The name of the source column within the data source.

• destinationColumnIndex

The ordinal position of the destination column within the destination table.

Return Value

The newly created OracleBulkCopyColumnMapping object that was added to the
collection.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Remarks

It is not necessary to specify column mappings for all the columns in the data source.
If a ColumnMapping is not specified, then, by default, columns are mapped based on
the ordinal position. This succeeds only if the source and destination table schema
match. If there is a mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round trips to the
database to determine the column names if the mapping is specified by
ordinal resulting in a performance overhead. Therefore, it is recommended to
specify the mapping by column names.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Add(string, string)
This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source and destination column names.

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-40

Declaration

// C#
public OracleBulkCopyColumnMapping Add(string sourceColumn,
 string destinationColumn);

Parameters

• sourceColumn

The name of the source column within the data source.

• destinationColumn

The name of the destination column within the destination table.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Return Value

The newly created OracleBulkCopyColumnMapping object that was added to the collection.

Remarks

It is not necessary to specify column mappings for all the columns in the data source. If a
ColumnMapping is not specified, then, by default, columns are mapped based on the ordinal
position. This succeeds only if the source and destination table schema match. If there is a
mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round-trips to the database to
determine the column name if the mapping is specified by ordinal position. To avoid
this performance overhead, specify the mapping by column name.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Clear
This method clears the contents of the collection.

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-41

Declaration

// C#
public void Clear();

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Remarks

The Clear method is most commonly used when an application uses a single
OracleBulkCopy instance to process more than one bulk copy operation. If column
mappings are created for one bulk copy operation, the
OracleBulkCopyColumnMappingCollection must be cleared after the WriteToServer
method invocation and before the next bulk copy is processed.

It is usually more efficient to perform several bulk copies using the same
OracleBulkCopy instance than to use a separate OracleBulkCopy for each operation.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Contains
This method returns a value indicating whether or not a specified
OracleBulkCopyColumnMapping object exists in the collection.

Declaration

// C#
public bool Contains(OracleBulkCopyColumnMapping value);

Parameters

• value

A valid OracleBulkCopyColumnMapping object.

Return Value

Returns true if the specified mapping exists in the collection; otherwise, returns false.

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-42

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

CopyTo
This method copies the elements of the OracleBulkCopyColumnMappingCollection to an
array of OracleBulkCopyColumnMapping items, starting at a specified index.

Declaration

// C#
public void CopyTo(OracleBulkCopyColumnMapping[] array, int index);

Parameters

• array

The one-dimensional OracleBulkCopyColumnMapping array that is the destination for the
elements copied from the OracleBulkCopyColumnMappingCollection object. The array
must have zero-based indexing.

• index

The zero-based array index at which copying begins.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

IndexOf
This method returns the index of the specified OracleBulkCopyColumnMapping object.

Declaration

// C#
public int IndexOf(OracleBulkCopyColumnMapping value);

Parameters

• value

The OracleBulkCopyColumnMapping object that is being returned.

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-43

Return Value

The zero-based index of the column mapping or -1 if the column mapping is not found
in the collection.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Insert
This method inserts a new OracleBulkCopyColumnMapping object in the collection, at
the index specified.

Declaration

// C#
public void Insert(int index, OracleBulkCopyColumnMapping value);

Parameters

• index

The integer value of the location within the
OracleBulkCopyColumnMappingCollection at which the new
OracleBulkCopyColumnMapping is inserted.

• value

The OracleBulkCopyColumnMapping object to be inserted in the collection.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-44

Remove
This method removes the specified OracleBulkCopyColumnMapping element from the
OracleBulkCopyColumnMappingCollection.

Declaration

// C#
public void Remove(OracleBulkCopyColumnMapping value);

Parameters

• value

The OracleBulkCopyColumnMapping object to be removed from the collection.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Remarks

The Remove method is most commonly used when a single OracleBulkCopy instance
processes more than one bulk copy operation. If column mappings are created for one bulk
copy operation, mappings that no longer apply must be removed after the WriteToServer
method invocation and before mappings are defined for the next bulk copy. The Clear
method can clear the entire collection, and the Remove and the RemoveAt methods can
remove mappings individually.

It is usually more efficient to perform several bulk copies using the same OracleBulkCopy
instance than to use a separate OracleBulkCopy for each operation.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

RemoveAt
This method removes the mapping from the collection at the specified index.

Declaration

// C#
public void RemoveAt(int index);

Parameters

• index

Chapter 18
OracleBulkCopyColumnMappingCollection Class

18-45

The zero-based index of the OracleBulkCopyColumnMapping object to be removed
from the collection.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Remarks

The RemoveAt method is most commonly used when a single OracleBulkCopy instance
is used to process more than one bulk copy operation. If column mappings are created
for one bulk copy operation, mappings that no longer apply must be removed after the
WriteToServer method invocation and before the mappings for the next bulk copy are
defined. The Clear method can clear the entire collection, and the Remove and the
RemoveAt methods can remove mappings individually.

It is usually more efficient to perform several bulk copies using the same
OracleBulkCopy instance than to use a separate OracleBulkCopy for each operation.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyColumnMappingCollection Members

OracleBulkCopyOptions Enumeration
The OracleBulkCopyOptions enumeration specifies the values that can be combined
with an instance of the OracleBulkCopy class and used as options to determine its
behavior and the behavior of the WriteToServer methods for that instance.

Table 18-17 lists all the OracleBulkCopyOptions enumeration values with a description
of each enumerated value.

Table 18-17 OracleBulkCopyOptions Enumeration Members

Member Name Description

Default Indicates that the default value for all options are to be used

UseInternalTransaction Indicates that each batch of the bulk copy operation occurs
within a transaction. If the connection used to perform the
bulk copy operation is already part of a transaction, an
InvalidOperationException exception is raised.

If this member is not specified, BatchSize number of rows
are sent to the database, without any transaction-related
activity.

Chapter 18
OracleBulkCopyOptions Enumeration

18-46

Note:

All bulk copy operations are agnostic of any local or distributed transaction created
by the application.

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleBulkCopy "BulkCopyOptions"

OracleRowsCopiedEventHandler Delegate
The OracleRowsCopiedEventHandler delegate represents the method that handles the
OracleRowsCopied event of an OracleBulkCopy object.

Declaration

// C#
public delegate void OracleRowsCopiedEventHandler (object sender,
 OracleRowsCopiedEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Chapter 18
OracleRowsCopiedEventHandler Delegate

18-47

Parameters

• sender

The source of the event.

• eventArgs

The OracleRowsCopiedEventArgs object that contains the event data.

Remarks

Event callbacks can be registered through this event delegate for applications that
wish to be notified every time the number of rows specified by the
OracleBulkCopy.NotifyAfter property has been processed.

If the event handler calls the OracleBulkCopy.Close method, an exception is
generated, and the OracleBulkCopy object state does not change.

The event handler can also set the OracleRowsCopiedEventArgs.Abort property to
true to indicate that the bulk copy operation must be aborted. If the bulk copy
operation is part of an external transaction, an exception is generated and the
transaction is not rolled back. The application is responsible for either committing or
rolling back the external transaction.

If there is no external transaction, the internal transaction for the current batch of rows
is automatically rolled back. However the previous batches of imported rows are
unaffected, as their transactions have already been committed.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "OracleRowsCopied"

• "NotifyAfter"

OracleRowsCopiedEventArgs Class
The OracleRowsCopiedEventArgs class represents the set of arguments passed as
part of event data for the OracleRowsCopied event.

Class Inheritance

System.Object
 System.EventArgs
 System.OracleRowsCopiedEventArgs

Declaration

// C#
public class OracleRowsCopiedEventArgs : EventArgs

Chapter 18
OracleRowsCopiedEventArgs Class

18-48

Requirements

Provider ODP.NET, Unmanaged
Driver

ODP.NET, Managed
Driver

ODP.NET Core

Assembly Oracle.DataAccess.d
ll

Oracle.ManagedDataA
ccess.dll

Oracle.ManagedDataA
ccess.dll

Namespace Oracle.DataAccess.C
lient

Oracle.ManagedDataA
ccess.Client

Oracle.ManagedDataA
ccess.Client

.NET Framework 4.8 4.8 -

.NET (Core) - - See System
Requirements

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee thread
safety.

Remarks

Each time the number of rows represented by the OracleBulkCopy.NotifyAfter property is
processed, the OracleBulkCopy.OracleRowsCopied event is raised, providing an
OracleRowsCopiedEventArgs object that stores the event data.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowsCopiedEventArgs Members

• OracleRowsCopiedEventArgs Constructors

• OracleRowsCopiedEventArgs Properties

OracleRowsCopiedEventArgs Members
OracleRowsCopiedEventArgs members are listed in the following tables.

OracleRowsCopiedEventArgs Constructors

OracleRowsCopiedEventArgs constructors are listed in Table 18-18.

Table 18-18 OracleRowsCopiedEventArgs Constructors

Constructor Description

OracleRowsCopiedEventArgs
Constructors.

OracleRowsCopiedEventArgs creates new instances of the
OracleRowsCopiedEventArgs class

Chapter 18
OracleRowsCopiedEventArgs Class

18-49

OracleRowsCopiedEventArgs Properties

OracleRowsCopiedEventArgs properties are listed in Table 18-19.

Table 18-19 OracleRowsCopiedEventArgs Properties

Property Description

Abort Retrieves or sets a value that indicates whether or not the bulk
copy operation is aborted

RowsCopied Retrieves a value that represents the number of rows copied
during the current bulk copy operation

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowsCopiedEventArgs Class

OracleRowsCopiedEventArgs Constructors
OracleRowsCopiedEventArgs creates new instances of the
OracleRowsCopiedEventArgs class.

Overload List:

• OracleRowsCopiedEventArgs(long)

This constructor creates a new instance of the OracleRowsCopiedEventArgs
object.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowsCopiedEventArgs Class

• OracleRowsCopiedEventArgs Members

OracleRowsCopiedEventArgs(long)
This constructor creates a new instance of the OracleRowsCopiedEventArgs object.

Declaration

// C#
public OracleRowsCopiedEventArgs(long rowsCopied);

Chapter 18
OracleRowsCopiedEventArgs Class

18-50

Parameters

• rowsCopied

An Int64 value that indicates the number of rows copied during the current bulk copy
operation.

Remarks

The value in the rowsCopied parameter is reset by each call to a WriteToServer method.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowsCopiedEventArgs Class

• OracleRowsCopiedEventArgs Members

OracleRowsCopiedEventArgs Properties
OracleRowsCopiedEventArgs properties are listed in Table 18-20.

Table 18-20 OracleRowsCopiedEventArgs Properties

Property Description

Abort Retrieves or sets a value that indicates whether or not the bulk copy
operation is aborted

RowsCopied Retrieves a value that represents the number of rows copied during
the current bulk copy operation

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowsCopiedEventArgs Class

• OracleRowsCopiedEventArgs Members

Abort
This property retrieves or sets a value that indicates whether or not the bulk copy operation is
aborted.

Chapter 18
OracleRowsCopiedEventArgs Class

18-51

Declaration

// C#
public bool Abort{get; set;}

Property Value

Returns true if the bulk copy operation is to be aborted; otherwise, returns false.

Remarks

Set the Abort property to true to cancel the bulk copy operation.

If the Close method is called from OracleRowsCopied, an exception is generated, and
the OracleBulkCopy object state does not change.

If the application does not create a transaction, the internal transaction corresponding
to the current batch is automatically rolled back. However, changes related to previous
batches within the bulk copy operation are retained, because the transactions in those
batches are committed. This case is applicable only when UseInternalTransaction
bulk copy option is chosen.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowsCopiedEventArgs Class

• OracleRowsCopiedEventArgs Members

RowsCopied
This property retrieves a value that represents the number of rows copied during the
current bulk copy operation.

Declaration

// C#
public long RowsCopied {get;}

Property Value

An Int64 value that returns the number of rows copied.

Remarks

The value in the RowsCopied property is reset by each call to a WriteToServer method.

Chapter 18
OracleRowsCopiedEventArgs Class

18-52

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowsCopiedEventArgs Class

• OracleRowsCopiedEventArgs Members

Chapter 18
OracleRowsCopiedEventArgs Class

18-53

A
Oracle Schema Collections

ODP.NET provides standard metadata collections as well as various Oracle database-specific
metadata collections that can be retrieved through the OracleConnection.GetSchema API.

See Also:

• "Schema Discovery"

• "GetSchema"

This appendix contains the following topics:

• Common Schema Collections

• ODP.NET-Specific Schema Collection

Common Schema Collections
The common schema collections are available for all .NET Framework managed providers.
ODP.NET supports the same common schema collections.

• MetaDataCollections

• DataSourceInformation

• DataTypes

• Restrictions

• ReservedWords

See Also:

"Common Schema Collections" in the MSDN Library

MetaDataCollections
Table A-1 is a list of metadata collections that is available from the data source, such as
tables, columns, indexes, and stored procedures.

A-1

https://msdn.microsoft.com/en-us/library/ms254501(v=vs.110).aspx

Table A-1 MetaDataCollections

Column Name Data Type Description

CollectionName string The name of the collection passed to the
GetSchema method for retrieval.

NumberOfRestrictions int Number of restrictions specified for the named
collection.

NumberOfIdentifierParts int Number of parts in the composite identifier/
database object name.

DataSourceInformation
Table A-2 lists DataSourceInformation information which may include these columns
and possibly others.

Table A-2 DataSource Information

Columns Data Type Description

CompositeIdentifierSeparatorPattern string Separator for multipart names: @ | \ .

DataSourceProductName string Database name: Oracle

DataSourceProductVersion string Database version. Note that this is the
version of the database instance currently
being accessed by DbConnection.

DataSourceProductVersionNormalized string A normalized DataSource version for
easier comparison between different
versions. For example:

DataSource Version: 10.2.0.1.0

Normalized DataSource Version:
10.02.00.01.00

GroupByBehavior GroupByBehavior An enumeration that indicates the
relationship between the columns in a
GROUP BY clause and the non-aggregated
columns in a select list.

IdentifierPattern string Format for a valid identifier.

IdentifierCase IdentifierCase An enumeration that specifies whether or
not to treat non-quoted identifiers as case
sensitive.

OrderByColumnsInSelect bool A boolean that indicates whether or not
the select list must contain the columns in
an ORDER BY clause.

ParameterMarkerFormat string A string indicating whether or not
parameter markers begin with a special
character.

ParameterMarkerPattern string The format of a parameter marker.

ParameterNameMaxLength int Maximum length of a parameter.

ParameterNamePattern string The format for a valid parameter name.

QuotedIdentifierPattern string The format of a quoted identifier.

Appendix A
Common Schema Collections

A-2

Table A-2 (Cont.) DataSource Information

Columns Data Type Description

QuotedIdentifierCase IdentifierCase An enumeration that specifies whether or
not to treat quote identifiers as case
sensitive.

StringLiteralPattern string The format for a string literal.

SupportedJoinOperators SupportedJoin
Operators

An enumeration indicating the types of
SQL join statements supported by the
data source.

DataTypes
Table A-3 lists DataTypes Collection information which may include these columns and
possibly others.

Note:

As an example, the description column includes complete information for the
TIMESTAMP WITH LOCAL TIME ZONE data type.

Table A-3 Data Types

ColumnName Data Type Description

TypeName string The provider-specific data type
name.

Example: TIMESTAMP WITH
LOCAL TIME ZONE

ProviderDbType int The provider-specific type value.

Example: 124
ColumnSize long The length of a non-numeric

column or parameter.

Example:27
CreateFormat string A format string that indicates

how to add this column to a DDL
statement.

Example: TIMESTAMP({0} WITH
LOCAL TIME ZONE)

CreateParameters string The parameters specified to
create a column of this data type.

Example: 8

DataType string The .NET type for the data type.

Example: System.DateTime

Appendix A
Common Schema Collections

A-3

Table A-3 (Cont.) Data Types

ColumnName Data Type Description

IsAutoIncrementable bool A boolean value that indicates
whether or not this data type can
be auto-incremented.

Example: false
IsBestMatch bool A boolean value that indicates

whether or not this data type is
the best match to values in the
DataType column.

Example: false
IsCaseSensitive bool A boolean value that indicates

whether or not this data type is
case-sensitive.

Example: false
IsFixedLength bool A boolean value that indicates

whether or not this data type has
a fixed length.

Example: true
IsFixedPrecisionScale bool A boolean value that indicates

whether or not this data type has
a fixed precision and scale.

Example: false
IsLong bool A boolean value that indicates

whether or not this data type
contains very long data.

Example: false
IsNullable bool A boolean value that indicates

whether or not this data type is
nullable.

Example: true
IsSearchable bool A boolean value that indicates

whether or not the data type can
be used in a WHERE clause with
any operator, except the LIKE
predicate.

Example: true
IsSearchableWithLike bool A boolean value that indicates

whether or not this data type can
be used with the LIKE predicate.

Example: false
IsUnsigned bool A boolean value that indicates

whether or not the data type is
unsigned.

MaximumScale short The maximum number of digits
allowed to the right of the
decimal point.

Appendix A
Common Schema Collections

A-4

Table A-3 (Cont.) Data Types

ColumnName Data Type Description

MinimumScale short The minimum number of digits
allowed to the right of the
decimal point.

IsConcurrencyType bool A boolean value that indicates
whether or not the database
updates the data type every time
the row is changed and the value
of the column differs from all
previous values.

Example: false
MinimumVersion String The earliest version of the

database that can be used.

Example:09.00.00.00.00
IsLiteralSupported bool A boolean value that indicates

whether or not the data type can
be expressed as a literal.

Example: true
LiteralPrefix string The prefix of a specified literal.

Example: TO_TIMESTAMP_TZ('
LiteralSuffix string The suffix of a specified literal.

Example: ','YYYY-MM-DD
HH24:MI:SS.FF')

Restrictions
Table A-4 lists Restrictions, including the following columns.

Table A-4 Restrictions

ColumnName Data Type Description

CollectionName string The collection that the restrictions apply to.

RestrictionName string The restriction name.

RestrictionNumber int A number that indicates the location of the restriction.

ReservedWords
The ReservedWords collection exposes information about the words that are reserved by the
database currently connected to ODP.NET.

Table A-5 lists the ReservedWords Collection.

Appendix A
Common Schema Collections

A-5

Table A-5 ReservedWords

ColumnName Data Type Description

ReservedWord string Provider-specific reserved words

ODP.NET-Specific Schema Collection
Oracle Data Provider for .NET supports both the common schema collections
described previously and the following Oracle-specific schema collections:

• Tables

• Columns

• Views

• XMLSchema

• Users

• Synonyms

• Sequences

• Functions

• Procedures

• ProcedureParameters

• Arguments

• Packages

• PackageBodies

• JavaClasses

• Indexes

• IndexColumns

• PrimaryKeys

• ForeignKeys

• ForeignKeyColumns

• UniqueKeys

Tables
Table A-6 lists the column name, data type, and description of the Tables Schema
Schema Collection.

Table A-6 Tables

Column Name Data Type Description

OWNER String Owner of the Table.

TABLE_NAME String Name of the Table.

Appendix A
ODP.NET-Specific Schema Collection

A-6

Table A-6 (Cont.) Tables

Column Name Data Type Description

TYPE String Type of Table, for example, System or User.

Columns
Table A-7 lists the column name, data type, and description of the Columns Schema
Collection .

Table A-7 Columns

ColumnName Data Type Description

OWNER String Owner of the table or view.

TABLE_NAME String Name of the table or view.

COLUMN_NAME String Name of the column.

ID Decimal Sequence number of the column as created.

DATATYPE String Data type of the column.

LENGTH Decimal Length of the column in bytes.

PRECISION Decimal Decimal precision for NUMBER data type; binary
precision for FLOAT data type, null for all other data
types.

Scale Decimal Digits to right of decimal point in a number.

NULLABLE String Specifies whether or not a column allows NULLs.

CHAR_USED String Indicates whether the column uses BYTE length
semantics (B) or CHAR length semantics (C).

LengthInChars Decimal Length of the column in characters.

This value only applies to CHAR, VARCHAR2, NCHAR, and
NVARCHAR2.

Views
Table A-8 lists the column name, data type, and description of the Views Schema Collection.

Table A-8 Views

Column Name Data Type Description

OWNER String Owner of the view.

VIEW_NAME String Name of the view.

TEXT_LENGTH Decimal Length of the view text.

TEXT String View text.

TYPE_TEXT_LENGTH Decimal Length of the type clause of the typed view.

TYPE_TEXT String Type clause of the typed view.

Appendix A
ODP.NET-Specific Schema Collection

A-7

Table A-8 (Cont.) Views

Column Name Data Type Description

OID_TEXT_LENGTH Decimal Length of the WITH OID clause of the typed view.

OID_TEXT String WITH OID clause of the typed view.

VIEW_TYPE_OWNER String Owner of the view type if the view is a typed view.

VIEW_TYPE String Type of the view if the view is a typed view.

SUPERVIEW_NAME String Name of the superview.

(Oracle9i or later)

XMLSchema
Table A-9 lists the column name, data type and description of the XMLSchema
Schema Collection.

Note:

This collection is only available with Oracle Database 10g and later.

Table A-9 XMLSchema

Column Name Data Type Description

OWNER String Owner of the XML schema.

SCHEMA_URL String Schema URL of the XML schema.

LOCAL String Indicates whether the XML schema is local
(YES) or global (NO).

SCHEMA String XML schema document.

INT_OBJNAME String Internal database object name for the
schema.

QUAL_SCHEMA_URL String Fully qualified schema URL.

HIER_TYPE String Hierarchy type for the schema.

Users
Table A-10 lists the column name, data type and description of the Users Schema
Collection.

Table A-10 Users

Column Name Data Type Description

NAME String Name of the user.

ID Decimal ID number of the user.

Appendix A
ODP.NET-Specific Schema Collection

A-8

Table A-10 (Cont.) Users

Column Name Data Type Description

CREATEDATE DateTime User creation date.

Synonyms
Table A-11 lists the column name, data type and description of the Synonyms Schema
Collection.

Table A-11 Synonyms

Column Name Data Type Description

OWNER String Owner of the synonym.

SYNONYM_NAME String Name of the synonym.

TABLE_OWNER String Owner of the object referenced by the synonym.
Although the column is called TABLE_OWNER, the object
owned is not necessarily a table. It can be any general
object such as a view, sequence, stored procedure,
synonym, and so on.

TABLE_NAME String Name of the object referenced by the synonym. Although
the column is called TABLE_NAME, the object does not
necessarily have to be a table. It can be any general
object such as a view, sequence, stored procedure,
synonym, and so on.

DB_LINK String Name of the database link referenced, if any.

Sequences
Table A-12 lists the column name, data type, and description of the Sequences Schema
Collection.

Table A-12 Sequences

Column Name Data Type Description

SEQUENCE_OWNER String Name of the owner of the sequence.

SEQUENCE_NAME String Sequence name.

MIN_VALUE Decimal Minimum value of the sequence.

MAX_VALUE Decimal Maximum value of the sequence.

INCREMENT_BY Decimal Value by which sequence is incremented.

CYCLE_FLAG String Indicates if sequence wraps around on reaching limit.

ORDER_FLAG String Indicates if sequence numbers are generated in order.

CACHE_SIZE Decimal Number of sequence numbers to cache.

Appendix A
ODP.NET-Specific Schema Collection

A-9

Table A-12 (Cont.) Sequences

Column Name Data Type Description

LAST_NUMBER Decimal Last sequence number written to disk. If a sequence
uses caching, the number written to disk is the last
number placed in the sequence cache. This number is
likely to be greater than the last sequence number that
was used.

Functions
Table A-13 lists the column name, data type, and description of the Functions Schema
Collection.

Table A-13 Functions

Column Name Data Type Description

OWNER String Owner of the function.

OBJECT_NAME String Name of the function.

SUBOBJECT_NAME String Name of the subobject (for example, partition).

OBJECT_ID Decimal Dictionary object number of the function.

DATA_OBJECT_ID Decimal Dictionary object number of the segment that
contains the function.

CREATED DateTime Timestamp for the creation of the function.

LAST_DDL_TIME DateTime Timestamp for the last modification of the
function resulting from a DDL statement
(including grants and revokes).

TIMESTAMP String Timestamp for the specification of the function
(character data).

STATUS String Status of the function (VALID, INVALID, or
N/A).

TEMPORARY String Whether or not the function is temporary (the
current session can see only data that it
placed in this object itself).

GENERATED String Indicates whether the name of this function is
system generated (Y) or not (N).

SECONDARY String Whether or not this is a secondary object
created by the ODCIIndexCreate method of
the Oracle Data Cartridge (Y | N).

Procedures
Table A-14 lists the column name, data type, and description of the Procedures
Schema Collection.

Appendix A
ODP.NET-Specific Schema Collection

A-10

Table A-14 Procedures

Column Name Data Type Description

OWNER String Owner of the procedure.

OBJECT_NAME String Name of the procedure.

SUBOBJECT_NAME String Name of the subobject (for example, partition).

OBJECT_ID Decimal Dictionary object number of the procedure.

DATA_OBJECT_ID Decimal Dictionary object number of the segment that contains
the procedure.

CREATED DateTime Timestamp for the creation of the procedure.

LAST_DDL_TIME Decimal Timestamp for the last modification of the procedure
resulting from a DDL statement (including grants and
revokes).

TIMESTAMP String Timestamp for the specification of the procedure
(character data).

STATUS String Status of the procedure (VALID, INVALID, or N/A).

TEMPORARY String Whether or not the procedure is temporary (the current
session can see only data that it placed in this object
itself).

GENERATED String Indicates whether the name of this procedure is system
generated (Y) or not (N).

SECONDARY String Whether or not this is a secondary object created by the
ODCIIndexCreate method of the Oracle Data Cartridge
(Y | N).

ProcedureParameters
Table A-15 lists the column name, data type and description of the ProcedureParameters
Schema Collection.

Table A-15 ProcedureParameters

Column Name Data Type Description

OWNER String Owner of the object.

OBJECT_NAME String Name of the procedure or function.

PACKAGE_NAME String Name of the package.

OBJECT_ID Decimal Object number of the object.

OVERLOAD String Indicates the nth overloading ordered by its appearance
in the source; otherwise, it is NULL.

SUBPROGRAM_ID Decimal Subprogram id for the procedure or function

ARGUMENT_NAME String If the argument is a scalar type, then the argument name
is the name of the argument. A null argument name is
used to denote a function return value.

POSITION Decimal If DATA_LEVEL is zero, then this column holds the
position of this item in the argument list, or zero for a
function return value.

Appendix A
ODP.NET-Specific Schema Collection

A-11

Table A-15 (Cont.) ProcedureParameters

Column Name Data Type Description

SEQUENCE Decimal Defines the sequential order of the argument. Argument
sequence starts from 1.

DATA_LEVEL Decimal Nesting depth of the argument for composite types.

DATA_TYPE String Data type of the argument.

DEFAULT_VALUE String Default value for the argument.

DEFAULT_LENGTH Decimal Length of the default value for the argument.

IN_OUT String Direction of the argument: [IN] [OUT] [IN/OUT].

DATA_LENGTH Decimal Length of the column (in bytes).

DATA_PRECISION Decimal Length in decimal digits (NUMBER) or binary digits
(FLOAT).

DATA_SCALE Decimal Digits to the right of the decimal point in a number.

RADIX Decimal Argument radix for a number.

CHARACTER_SET_NAME String Character set name for the argument.

TYPE_OWNER String Owner of the type of the argument.

TYPE_NAME String Name of the type of the argument. If the type is a
package local type (that is, it is declared in a package
specification), then this column displays the name of the
package.

TYPE_SUBNAME String Displays the name of the type declared in the package
identified in the TYPE_NAME column.

Relevant only for package local types.

TYPE_LINK String Displays the database link that refers to the remote
package.

Relevant only for package local types when the package
identified in the TYPE_NAME column is a remote package.

PLS_TYPE String For numeric arguments, the name of the PL/SQL type of
the argument. Otherwise, Null.

CHAR_LENGTH Decimal Character limit for string data types.

CHAR_USED String Indicates whether the byte limit (B) or character limit (C)
is official for the string.

Arguments
Table A-16 lists the column name, data type, and description of the Arguments
Schema Collection.

Table A-16 Arguments

Column Name Data Type Description

OWNER String Owner of the object.

PACKAGE_NAME String Name of the package.

Appendix A
ODP.NET-Specific Schema Collection

A-12

Table A-16 (Cont.) Arguments

Column Name Data Type Description

OBJECT_NAME String Name of the procedure or function.

ARGUMENT_NAME String If the argument is a scalar type, then the argument
name is the name of the argument. A null argument
name is used to denote a function return value.

POSITION Decimal If DATA_LEVEL is zero, then this column holds the
position of this item in the argument list, or zero for a
function return value.

SEQUENCE Decimal Defines the sequential order of the argument.
Argument sequence starts from 1.

DEFAULT_VALUE String Default value for the argument.

DEFAULT_LENGTH Decimal Length of the default value for the argument.

IN_OUT String Direction of the argument: [IN] [OUT] [IN/OUT].

DATA_LENGTH Decimal Length of the column (in bytes).

DATA_PRECISION Decimal Length in decimal digits (NUMBER) or binary digits
(FLOAT).

DATA_SCALE Decimal Digits to the right of the decimal point in a number.

DATA_TYPE String Data type of the argument.

CHAR_USED String Indicates whether the column uses BYTE length
semantics (B) or CHAR length semantics (C).

Packages
Table A-17 lists the column name, data type, and description of the Packages Schema
Collection.

Table A-17 Packages

Column Name Data Type Description

OWNER String Owner of the package.

OBJECT_NAME String Name of the package.

SUBOBJECT_NAME String Name of the subobject (for example, partition).

OBJECT_ID Decimal Dictionary object number of the package.

DATA_OBJECT_ID Decimal Dictionary object number of the segment that contains
the package.

CREATED DateTime Timestamp for the creation of the package.

LAST_DDL_TIME DateTime Timestamp for the last modification of the package
resulting from a DDL statement (including grants and
revokes).

TIMESTAMP String Timestamp for the specification of the package
(character data).

STATUS String Status of the package (VALID, INVALID, or N/A).

Appendix A
ODP.NET-Specific Schema Collection

A-13

Table A-17 (Cont.) Packages

Column Name Data Type Description

TEMPORARY String Whether or not the package is temporary (the current
session can see only data that it placed in this object
itself).

GENERATED String Indicates whether the name of this package was system
generated (Y) or not (N).

SECONDARY String Whether or not this is a secondary object created by the
ODCIIndexCreate method of the Oracle Data Cartridge
(Y | N).

PackageBodies
Table A-18 lists the column name, data type, and description of the PackageBodies
Schema Collection.

Table A-18 PackageBodies

Column Name Data Type Description

OWNER String Owner of the package body.

OBJECT_NAME String Name of the package body.

SUBOBJECT_NAME String Name of the subobject (for example, partition).

OBJECT_ID Decimal Dictionary object number of the package body.

DATA_OBJECT_ID Decimal Dictionary object number of the segment that
contains the package body.

CREATED DateTime Timestamp for the creation of the package body.

LAST_DDL_TIME DateTime Timestamp for the last modification of the package
body resulting from a DDL statement (including
grants and revokes).

TIMESTAMP String Timestamp for the specification of the package body
(character data).

STATUS String Status of the package body (VALID, INVALID, or
N/A).

TEMPORARY String Whether the package body is temporary (the current
session can see only data that it placed in this object
itself).

GENERATED String Indicates whether the name of this package body is
system generated (Y) or not (N).

SECONDARY String Whether or not this is a secondary object created by
the ODCIIndexCreate method of the Oracle Data
Cartridge (Y | N).

JavaClasses
Table A-19 lists the column name, data type, and description of the JavaClasses
Schema Collection.

Appendix A
ODP.NET-Specific Schema Collection

A-14

Table A-19 JavaClasses

Column Name Data Type Description

OWNER String Owner of the Java class.

NAME String Name of the Java class.

MAJOR Decimal Major version number of the Java class, as defined in the
JVM specification.

MINOR Decimal Minor version number of the Java class, as defined in the
JVM specification.

KIND String Indicates whether the stored object is a Java class
(CLASS) or a Java interface (INTERFACE).

ACCESSIBILITY String Accessibility of the Java class.

IS_INNER String Indicates whether this Java class is an inner class (YES)
or not (NO).

IS_ABSTRACT String Indicates whether this Java class is an abstract class
(YES) or not (NO).

IS_FINAL String Indicates whether this Java class is a final class (YES) or
not (NO).

IS_DEBUG String Indicates whether this Java class contains debug
information (YES) or not (NO).

SOURCE String Source designation of the Java class.

SUPER String Super class of this Java class.

OUTER String Outer class of this Java class if this Java class is an
inner class.

Indexes
Table A-20 lists the column name, data type, and description of the Indexes Schema
Collection.

Table A-20 Indexes

Column Name Data Type Description

OWNER String Owner of the index.

INDEX_NAME String Name of the index.

INDEX_TYPE String Type of the index:

• NORMAL
• BITMAP
• FUNCTION-BASED NORMAL
• FUNCTION-BASED BITMAP
• DOMAIN

TABLE_OWNER String Owner of the indexed object.

TABLE_NAME String Name of the indexed object.

TABLE_TYPE String Type of the indexed object (for example, TABLE or
CLUSTER).

Appendix A
ODP.NET-Specific Schema Collection

A-15

Table A-20 (Cont.) Indexes

Column Name Data Type Description

UNIQUENESS String Indicates whether the index is UNIQUE or NONUNIQUE.

COMPRESSION String Indicates whether index compression is enabled
(ENABLED) or not (DISABLED).

PREFIX_LENGTH Decimal Number of columns in the prefix of the compression key.

TABLESPACE_NAME String Name of the tablespace containing the index.

INI_TRANS Decimal Initial number of transactions.

MAX_TRANS Decimal Maximum number of transactions.

INITIAL_EXTENT Decimal Size of the initial extent.

NEXT_EXTENT Decimal Size of secondary extents.

MIN_EXTENTS Decimal Minimum number of extents allowed in the segment.

MAX_EXTENTS Decimal Maximum number of extents allowed in the segment.

PCT_INCREASE Decimal Percentage increase in extent size.

PCT_THRESHOLD Decimal Threshold percentage of block space allowed per index
entry.

INCLUDE_COLUMN Decimal Column ID of the last column to be included in index-
organized table primary key (non-overflow) index. This
column maps to the COLUMN_ID column of the
*_TAB_COLUMNS data dictionary views.

FREELISTS Decimal Number of process freelists allocated to this segment.

FREELIST_GROUPS Decimal Number of freelist groups allocated to this segment.

PCT_FREE Decimal Minimum percentage of free space in a block.

LOGGING String Logging information.

BLEVEL Decimal B*-Tree level: depth of the index from its root block to its
leaf blocks. A depth of 0 indicates that the root block and
leaf block are the same.

LEAF_BLOCKS Decimal Number of leaf blocks in the index.

DISTINCT_KEYS Decimal Number of distinct indexed values. For indexes that
enforce UNIQUE and PRIMARY KEY constraints, this value
is the same as the number of rows in the table
(USER_TABLES.NUM_ROWS).

AVG_LEAF_BLOCKS_PE
R_KEY

Decimal Average number of leaf blocks in which each distinct
value in the index appears, rounded to the nearest
integer. For indexes that enforce UNIQUE and PRIMARY
KEY constraints, this value is always 1.

AVG_DATA_BLOCKS_PE
R_KEY

Decimal Average number of data blocks in the table that are
pointed to by a distinct value in the index, rounded to the
nearest integer. This statistic is the average number of
data blocks that contain rows that contain a given value
for the indexed columns.

CLUSTERING_FACTOR Decimal Indicates the amount of order of the rows in the table
based on the values of the index.

STATUS String Indicates whether a nonpartitioned index is VALID or
UNUSABLE.

Appendix A
ODP.NET-Specific Schema Collection

A-16

Table A-20 (Cont.) Indexes

Column Name Data Type Description

NUM_ROWS Decimal Number of rows in the index.

SAMPLE_SIZE Decimal Size of the sample used to analyze the index.

LAST_ANALYZED Date Date on which this index was most recently analyzed.

DEGREE String Number of threads per instance for scanning the index.

INSTANCES String Number of instances across which the indexes to be
scanned.

PARTITIONED String Indicates whether the index is partitioned (YES) or not
(NO).

TEMPORARY String Indicates whether or not the index is on a temporary
table.

GENERATED String Indicates whether the name of the index is system
generated (Y) or not (N).

SECONDARY String Indicates whether the index is a secondary object
created by the ODCIIndexCreate method of the Oracle
Data Cartridge (Y) or not (N).

BUFFER_POOL String Name of the default buffer pool to be used for the index
blocks.

USER_STATS String Indicates whether statistics were entered directly by the
user (YES) or not (NO).

DURATION String Indicates the duration of a temporary table.

PCT_DIRECT_ACCESS Decimal For a secondary index on an index-organized table, the
percentage of rows with VALID guess.

ITYP_OWNER String For a domain index, the owner of the index type.

ITYP_NAME String For a domain index, the name of the index type.

PARAMETERS String For a domain index, the parameter string.

GLOBAL_STATS String For partitioned indexes, indicates whether statistics are
collected by analyzing the index as a whole (YES) or
estimated from statistics on underlying index partitions
and subpartitions (NO).

DOMIDX_STATUS String Status of the domain index:

• NULL - Index is not a domain index.

• VALID - Index is a valid domain index.

• IDXTYP_INVLD - Indextype of the domain index is
invalid.

DOMIDX_OPSTATUS String Status of the operation on the domain index:

• NULL - Index is not a domain index.

• VALID - Operation performed without errors.

• FAILED - Operation failed with an error.

FUNCIDX_STATUS String Status of a function-based index:

• NULL - Index is not a function-based index.

• ENABLED - Function-based index is enabled.

• DISABLED - Function-based index is disabled.

Appendix A
ODP.NET-Specific Schema Collection

A-17

Table A-20 (Cont.) Indexes

Column Name Data Type Description

JOIN_INDEX String Indicates whether the index is a join index (YES) or not
(NO).

IOT_REDUNDANT_PKEY
_ELIM

String Indicates whether redundant primary key columns are
eliminated from secondary indexes on index-organized
tables (YES) or not (NO).

DROPPED String Indicates whether the index has been dropped and is in
the recycle bin (YES) or not (NO); null for partitioned
tables.

IndexColumns
Table A-21 lists the column name, data type, and description of the IndexColumns
Schema Collection.

Table A-21 IndexColumns

Column Name Data Type Description

INDEX_OWNER String Owner of the index.

INDEX_NAME String Name of the index.

TABLE_OWNER String Owner of the table or cluster.

TABLE_NAME String Name of the table or cluster.

COLUMN_NAME String Column name or attribute of object type column.

COLUMN_POSITION Decimal Position of column or attribute within the index.

COLUMN_LENGTH Decimal Indexed length of the column.

DESCEND String Whether the column is sorted in descending order
(Y/N).

CHAR_LENGTH Decimal Maximum codepoint length of the column.

(Oracle9i or later)

PrimaryKeys
Table A-22 lists the column name, data type, and description of the PrimaryKeys
Schema Collection.

Table A-22 PrimaryKeys

Column Name Data Type Description

OWNER String Owner of the constraint definition.

CONSTRAINT_NAME String Name of the constraint definition.

TABLE_NAME String Name associated with the table (or view) with
constraint definition.

SEARCH_CONDITION String Text of search condition for a check constraint.

Appendix A
ODP.NET-Specific Schema Collection

A-18

Table A-22 (Cont.) PrimaryKeys

Column Name Data Type Description

R_OWNER String Owner of table referred to in a referential constraint.

R_CONSTRAINT_NAME String Name of the unique constraint definition for
referenced table.

DELETE_RULE String Delete rule for a referential constraint (CASCADE or
NO ACTION).

STATUS String Enforcement status of constraint (ENABLED or
DISABLED).

DEFERRABLE String Whether or not the constraint is deferrable.

VALIDATED String Whether all data obeys the constraint (VALIDATED
or NOT VALIDATED).

GENERATED String Whether the name of the constraint is user or
system generated.

BAD String Indicates that this constraint specifies a century in
an ambiguous manner. (Yes| No)

To avoid errors resulting from this ambiguity, rewrite
the constraint using the TO_DATE function with a
four-digit year.

RELY String Whether an enabled constraint is enforced or
unenforced.

LAST_CHANGE DateTime When the constraint was last enabled or disabled.

INDEX_OWNER String Name of the user owning the index.

(Oracle9i or later)

INDEX_NAME String Name of the index (only shown for unique and
primary-key constraints).

(Oracle9i or later)

ForeignKeys
Table A-23 lists the column name, data type, and description of the ForeignKeys Schema
Collection.

Table A-23 ForeignKeys

Column Name Data Type Description

PRIMARY_KEY_CONSTRA
INT_NAME

String Name of the constraint definition.

PRIMARY_KEY_OWNER String Owner of the constraint definition.

PRIMARY_KEY_TABLE_N
AME

String Name associated with the table (or view) with constraint
definition.

FOREIGN_KEY_OWNER String Owner of the constraint definition.

FOREIGN_KEY_CONSTRA
INT_NAME

String Name of the constraint definition.

Appendix A
ODP.NET-Specific Schema Collection

A-19

Table A-23 (Cont.) ForeignKeys

Column Name Data Type Description

FOREIGN_KEY_TABLE_N
AME

String Name associated with the table (or view) with constraint
definition.

SEARCH_CONDITION String Text of search condition for a check constraint

R_OWNER String Owner of table referred to, in a referential constraint.

R_CONSTRAINT_NAME String Name of the unique constraint definition for referenced
table.

DELETE_RULE String Delete rule for a referential constraint (CASCADE or NO
ACTION).

STATUS String Enforcement status of constraint (ENABLED or
DISABLED).

VALIDATED String Whether or not all data obeys the constraint (VALIDATED
or NOT VALIDATED).

GENERATED String Whether the name of the constraint is user or system
generated.

RELY String Whether an enabled constraint is enforced or
unenforced.

LAST_CHANGE DateTime When the constraint was last enabled or disabled.

INDEX_OWNER String Name of the user owning the index.

(Oracle9i or later)

INDEX_NAME String Name of the index.

(Oracle9i or later)

ForeignKeyColumns
Table A-24 lists the column name, data type, and description of the
ForeignKeyColumns Schema Collection.

Table A-24 ForeignKeyColumns

Column Name Data Type Description

OWNER String Owner of the constraint definition.

CONSTRAINT_NAME String Name of the constraint definition.

TABLE_NAME String Name of the table with constraint definition.

COLUMN_NAME String Name of the column or attribute of the object type
column specified in the constraint definition.

POSITION String Original position of column or attribute in the
definition of the object.

UniqueKeys
Table A-25 lists the column name, data type, and description of the UniqueKeys
Schema Collection.

Appendix A
ODP.NET-Specific Schema Collection

A-20

Table A-25 UniqueKeys

Column Name Data Type Description

OWNER String Owner of the constraint definition.

CONSTRAINT_NAME String Name of the constraint definition.

TABLE_NAME String Name associated with the table (or view) with constraint
definition.

SEARCH_CONDITION String Text of search condition for a check constraint.

R_OWNER String Owner of table referred to in a referential constraint.

R_CONSTRAINT_NAME String Name of the unique constraint definition for referenced
table.

DELETE_RULE String Delete rule for a referential constraint (CASCADE or NO
ACTION).

STATUS String Enforcement status of constraint (ENABLED or
DISABLED).

DEFERRABLE String Whether or not the constraint is deferrable.

VALIDATED String Whether all data obeys the constraint (VALIDATED or
NOT VALIDATED).

GENERATED String Whether the name of the constraint is user or system
generated.

BAD String Indicates that this constraint specifies a century in an
ambiguous manner. (Yes| No)

To avoid errors resulting from this ambiguity, rewrite the
constraint using the TO_DATE function with a four-digit
year.

RELY String Whether an enabled constraint is enforced or not.

LAST_CHANGE String When the constraint was last enabled or disabled.

INDEX_OWNER String Name of the user owning the index.

(Oracle9i or later)

INDEX_NAME String Name of the index (only shown for unique and primary-
key constraints).

(Oracle9i or later)

Appendix A
ODP.NET-Specific Schema Collection

A-21

B
Mapping LINQ Canonical Functions and
Oracle Functions

This appendix lists the Entity Framework canonical functions and the corresponding
ODP.NET provider functions to which they map.

Aggregate Canonical Functions

Table B-1 Mapping of Aggregate Canonical Functions and Oracle Functions

Canonical Function Oracle Function

Avg (expression) AVG(expression)
BigCount (expression) COUNT(expression)
Count (expression) COUNT(expression)
Max (expression) MAX(expression)
Min (expression) MIN(expression)
StDev (expression) STDDEV(expression)
StDevP(expression) STDEVP(expression)
Sum (expression) SUM (expression)
Var(expression) VAR(expression)
VarP(expression) VARP(expression)

Math Canonical Functions

Table B-2 Mapping of Math Canonical Functions and Oracle Functions

Canonical Function Oracle Function

Abs (value) ABS (value)
Ceiling (value) CEIL(value)
Floor (value) FLOOR(value)
Power(value, exponent) POWER(value, exponent)
Round (value) ROUND(value)
Round (value, digits) ROUND(value, digits)
Truncate(value, digits) TRUNC(value, digits)

B-1

String Canonical Functions

Table B-3 Mapping of String Canonical Functions and Oracle Functions

Canonical Function Oracle Function

Concat (string1, string2) CONCAT(string1, string2)
or

((string1) || (string2))
Contains(string, target) INSTR(string, target)
EndsWith(string, target) INSTR(REVERSE(string), REVERSE(target))
Comparison operators

(<, <=, >, >=, <>, !=)
Comparison operators

(<, <=, >, >=, <>, !=)
IndexOf(target, string) INSTR(string2, target)
Left (string1, length) SUBSTR(string1, length)
Length (string) LENGTH(string)
LTrim(string) LTRIM(string)
Replace (string1, string2,
string3)

REPLACE(string1, string2, string3)

Reverse (string) REVERSE(string)
Right (string, length) (CASE WHEN LENGTH(string) >= (length) THEN

SUBSTR (string) ,-(length), length) ELSE
string END)

RTrim(string) RTRIM(string)
Substring (string, start,
length)

SUBSTR((string, start, length)

StartsWith(string, target) INSTR(string, target)
ToLower (string) LOWER(string)
ToUpper(string) UPPER
Trim (string) LTRIM(RTRIM(string))

Date And Time Canonical Functions

Table B-4 Mapping of Date And Time Canonical Functions and Oracle
Functions

Canonical Function Oracle Function

AddNanoseconds(expression,
number)

(expression) + INTERVAL

AddMicroseconds(expression,
number)

(expression) + INTERVAL

AddMilliseconds(expression,
number)

(expression) + INTERVAL

AddSeconds(expression,
number)

(expression) + INTERVAL

Appendix B

B-2

Table B-4 (Cont.) Mapping of Date And Time Canonical Functions and Oracle
Functions

Canonical Function Oracle Function

AddMinutes(expression,
number)

(expression) + INTERVAL

AddHours(expression, number) (expression) + INTERVAL
AddDays(expression, number) (expression) + INTERVAL
AddMonths(expression, number) (expression) + INTERVAL
AddYears(expression, number) (expression) + INTERVAL
CreateDateTime(year, month,
day, hour, minute, second)

TO_TIMESTAMP

CreateDateTimeOffset(year,
month, day, hour, minute,
second, tzoffset)

TO_TIMESTAMP_TZ

CreateTime(hour, minute,
second)

Time literals are not supported in Oracle

CurrentDateTime() LOCALTIMESTAMP
CurrentDateTimeOffset() SYSTIMESTAMP
CurrentUtcDateTime() SYS_EXTRACT_UTC

(LOCALTIMESTAMP)
Day(expression) EXTRACT(DAY FROM expression)
DayOfYear(expression) TO_NUMBER(TO_CHAR(CAST(expression AS

TIMESTAMP), 'DDD'))
DiffNanoseconds(startExpressi
on, endExpression)

EXTRACT and arithmetic operations

DiffMilliseconds(startExpress
ion, endExpression)

EXTRACT and arithmetic operations

DiffMicroseconds(startExpress
ion, endExpression)

EXTRACT and arithmetic operations

DiffSeconds(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffMinutes(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffHours(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffDays(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffMonths(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffYears(startExpression,
endExpression
)

EXTRACT and arithmetic operations

Appendix B

B-3

Table B-4 (Cont.) Mapping of Date And Time Canonical Functions and Oracle
Functions

Canonical Function Oracle Function

Comparison operators

(<, <=, >, >=, <>, !=)
<, <=, >, >=, <>, != operators

GetTotalOffsetMinutes
(datetimeoffset)

(EXTRACT(TIMEZONE_HOUR FROM (expression)))
* 60 + EXTRACT (TIMEZONE_MINUTE
FROM(expression))
(Require multiple operations.)

Hour (expression) EXTRACT(HOUR FROM expression)
Millisecond(expression) NVL(TO_NUMBER(SUBSTR(TO_CHAR(CAST(expressio

n AS TIMESTAMP), 'DD-
MON-RR HH24:MI:SSXFF'), 20, 3)), 0)

Minute(expression) EXTRACT(MINUTE FROM expression)
Month (expression) EXTRACT(MONTH FROM expression)
Second(expression) EXTRACT (SECOND FROM expression)
TruncateDate(expression) TRUNC(expression)
Year(expression) EXTRACT(YEAR FROM expression)

Bitwise Canonical Functions

Table B-5 Mapping of Bitwise Canonical Functions and Oracle Functions

Canonical Function Oracle Function

BitWiseAnd (value1 , value2) BITAND(value1, value2)
BitWiseNot (value) (0 - value) - 1
BitWiseOr (value1 , value2) Value1 - BITAND(value1, value2) + value2
BitWiseXor (value1 , value2) Value1 - 2 * BITAND(value1, value2) + value2

Other Canonical Functions

Table B-6 Mapping of Other Canonical Functions and Oracle Functions

Canonical Function Oracle Function

NewGuid() SYS_GUID

Appendix B

B-4

Glossary

assembly
Assembly is Microsoft's term for the module that is created when a DLL or .EXE is complied
by a .NET compiler.

BFILES
External binary files that exist outside the database tablespaces residing in the operating
system. BFILES are referenced from the database semantics, and are also known as
external LOBs.

Binary Large Object (BLOB)
A large object data type whose content consists of binary data. Additionally, this data is
considered raw as its structure is not recognized by the database.

Character Large Object (CLOB)
The LOB data type whose value is composed of character data corresponding to the
database character set. A CLOB may be indexed and searched by the Oracle Text search
engine.

data provider
As the term is used with Oracle Data Provider for .NET, a data provider is the connected
component in the ADO.NET model and transfers data between a data source and the
DataSet.

DataSet
A DataSet is an in-memory copy of database data. The DataSet exists in memory without an
active connection to the database.

dirty writes
Dirty writes means writing uncommitted or dirty data.

Glossary-1

DDL
DDL refers to data definition language, which includes statements defining or changing
data structure.

DOM
Document Object Model (DOM) is an application program interface (API) for HTML
and XML documents. It defines the logical structure of documents and the way that a
document is accessed and manipulated.

Extensible Stylesheet Language Transformation (XSLT)
The XSL W3C standard specification that defines a transformation language to convert
one XML document into another.

flush
Flush or flushing refers to recording changes (that is, sending modified data) to the
database.

Global Assembly Cache (GAC)
A cache for .NET assemblies.

goodness
The degree of load in the Oracle database. The lighter load is better and vice versa.

implicit database connection
The connection that is implicitly available from the context of the .NET stored
procedure execution.

instantiate
A term used in object-based languages such as C# to refer to the creation of an object
of a specific class.

invalidation message
The content of a change notification which indicates that the cache is now invalid

Glossary

Glossary-2

Large Object (LOB)
The class of SQL data type that is further divided into internal LOBs and external LOBs.
Internal LOBs include BLOBs, CLOBs, and NCLOBs while external LOBs include BFILEs.

Microsoft .NET Framework Class Library
The Microsoft .NET Framework Class Library provides the classes for the .NET framework
model.

namespace

• .NET:

A namespace is naming device for grouping related types. More than one namespace
can be contained in an assembly.

• XML Documents:

A namespace describes a set of related element names or attributes within an XML
document.

National Character Large Object (NCLOB)
The LOB data type whose value is composed of character data corresponding to the
database national character set.

Oracle Net Services
The Oracle client/server communication software that offers transparent operation to Oracle
tools or databases over any type of network protocol and operating system.

OracleDataReader
An OracleDataReader is a read-only, forward-only result set.

Oracle XML DB
Oracle XML DB is the name for a distinct group of technologies related to high-performance
XML storage and retrieval that are available within the Oracle database. Oracle XML DB is
not a separate server.

Oracle XML DB is based on the W3C XML data model.

PL/SQL
The Oracle procedural language extension to SQL.

Glossary

Glossary-3

primary key
The column or set of columns included in the definition of a table's PRIMARY KEY
constraint.

reference semantics
Reference semantics indicates that assignment is to a reference (an address such as
a pointer) rather than to a value. See value semantics.

REF
A data type that encapsulates references to row objects of a specified object type.

result set
The output of a SQL query, consisting of one or more rows of data.

Safe Type Mapping
Safe Type Mapping allows the OracleDataAdapter to populate a DataSet with .NET
type representations of Oracle data without any data or precision loss.

savepoint
A point in the workspace to which operations can be rolled back.

stored procedure
A stored procedure is a PL/SQL block that Oracle stores in the database and can be
executed from an application.

Transparent Application Failover (TAF)
Transparent Application Failover is a runtime failover for high-availability
environments. It enables client applications to automatically reconnect to the database
if the connection fails. This reconnect happens automatically from within the Oracle
Call Interface (OCI) library.

Unicode
Unicode is a universal encoded character set that enables information from any
language to be stored using a single character set.

URL
URL (Universal Resource Locator).

Glossary

Glossary-4

value semantics
Value semantics indicates that assignment copies the value, not the reference or address
(such as a pointer). See reference semantics.

XPath
XML Path Language (XPath), based on a W3C recommendation, is a language for
addressing parts of an XML document. It is designed to be used by both XSLT and XPointer.
It can be used as a searching or query language as well as in hypertext linking.

Glossary

Glossary-5

Index

Symbols
.NET custom types, 3-151
.NET Framework datatype, 3-103
.NET languages, 1-1, 1-2
.NET products and documentation, 1-1
.NET stored procedures and functions, 6-1
.NET Stream class, 3-135
.NET type accessors, 3-110
.NET Types

inference, 3-87

A
abstract data types, 3-151
ADO, 1-4
ADO.NET, 1-4, 3-165
ADO.NET 1.x, 2-1
ADO.NET 2.0, 2-6

base or DbCommon classes, 3-2
ADO.NET 2.x, 2-1
ADTs, 3-151
app.config file, 3-19
AppDomain, 3-47
application config, 2-12
array bind

OracleParameter, 3-95
array bind operations, 3-94

ArrayBindCount, 7-27
ArrayBindIndex, 7-399
ArrayBindSize, 7-429, 7-431, 7-457
ArrayBindStatus, 7-459
error handling, 3-96

array binding, 3-94
ArrayBindCount property, 7-27
ArrayBindIndex property, 7-399
ArrayBindSize property, 3-91, 3-95, 7-457
ArrayBindStatus property, 3-91, 3-95, 7-459
ASP.NET, 1-2
assembly, 1-5

ODP.NET, 1-5

B
batch processing, 3-98

BatchUpdate
Microsoft Hotfix, 3-98

behavior of ExecuteScalar method for REF
CURSOR, 3-123

BFILE, 3-134
binding, 3-84

PL/SQL Associative Array, 3-91
BLOB, 3-134
bulk copy constraints, 3-171
bulk copy feature, 3-171

restrictions, 3-171

C
C#, Visual Basic .NET, C++ .NET, 1-1
callback support, 3-61
case-sensitivity

column name mapping, 3-148
change notification

ODP.NET support, 3-181
change notification, Continuous Query

Notification, 10-1
characters with special meaning

in column data, 3-148
in table or view, 3-148

characters with special meaning in XML, 3-142
client applications, 1-1
client globalization settings, 3-193, 3-196
client identifier, 3-60
CLOB, 3-134
close calls, 2-58
CLR, 1-2
collection types, 3-152
CollectionType property, 3-91
column data

special characters in, 3-148
CommandBehavior.SequentialAccess, 3-114
commit transactions

changes to XML data, 3-151
CommittableTransaction, 3-79
Committed property, 7-429
configuration settings

UDTs, 3-167
connect descriptor, 3-20
connection dependency, 3-140

Index-1

connection pool
performance counters, 3-44

connection pooling, 3-41
example, 3-41
management, 3-43

ConnectionString attributes, 3-41
Connection Lifetime, 3-17, 3-41, 3-42
Connection Timeout, 3-17, 3-41, 3-42
Data Source, 3-17
DBA Privilege, 3-17
Decr Pool Size, 3-17, 3-41, 3-42
Enlist, 3-17
HA Events, 3-17, 3-41
Incr Pool Size, 3-17, 3-41, 3-42
Load Balancing, 3-17, 3-41
Max Pool Size, 3-17, 3-41, 3-42
Metadata Pooling, 3-17
Min Pool Size, 3-17, 3-41, 3-42
Password, 3-17
Persist Security Info, 3-17
Pooling, 3-17, 3-41, 3-42
Proxy Password, 3-17, 3-59
Proxy User Id, 3-17, 3-59
Statement Cache Purge, 3-17
Statement Cache Size, 3-17
User Id, 3-17
Validate Connection, 3-17, 3-41, 3-42

ConnectionString property, 3-41, 3-42, 7-158
Constraints property, 3-190

configuring, 3-191
context connection, 6-2
continuous query notification, 2-57, 3-180

ODP.NET support, 3-181
Continuous Query Notification, 3-178

best practices, 3-185
performance considerations, 3-185

controlling query reexecution, 3-189
custom classes, 3-152
custom type factories, 3-152
custom type factory, 3-156
custom type implementations

optional, 3-154
custom type mapping, 3-156
custom type mappings

specifying, 3-155
specifying with custom type factories, 3-155
specifying with XML, 3-155
using, 3-157

custom types
converting to Oracle UDTS, 3-158
requirements, 3-153

custom UDT classes, 3-152

D
Data Guard, 3-64
data loss, 3-186
data manipulation

using XML, 3-147
data source attribute, 3-20
data source enumerators, 3-23
database

changes to, 3-147
database notification

port to listen, 2-57
DataSet, 3-136

populating, 3-122
populating from a REF CURSOR, 3-122
populating with generic and custom objects,

3-165
updating, 3-123
updating to database, 3-190

DataTable, 3-191
Datatable properties, 3-190
DBlinks, 6-2
DbProviderFactories class, 2-6, 2-8, 3-2
DbType

inference, 3-87
debug tracing, 3-197
default mapping

improving, 3-150
dependent unmanaged DLL mismatch, 2-7
direct path load, 3-171
dispose calls, 2-58
distributed transactions, 3-79
documentation

.NET, 1-1
Dynamic Enlistment, 3-60
dynamic help, 1-1, 2-6, 2-8

E
Easy Connect naming method, 3-21
EDM type facets, 4-6
EDM types, 4-3

and Oracle data types, 4-3
end-to-end tracing, 3-60
EnlistDistributedTransaction method, 3-60
Entity Framework, 4-1
enumeration type

OracleDbType, 3-86
error handling, 3-96
example

connection pooling, 3-41
examples

documentation
readme file, 2-7, 2-10

ExecuteNonQuery method, 3-123

Index

Index-2

ExecuteScalar method, 3-123
explicit user connections, 6-1
EZCONNECT, 3-21

F
failover, 3-61

registering an event handler, 3-61
FailoverEvent Enumeration

description, 12-7
FailoverReturnCode Enumeration

description, 12-9
FailoverType Enumeration

description, 12-9
Fast Application Notification (FAN), 3-65
Fast Connection Failover (FCF), 3-67
FCF, 3-68
features, 3-1
FetchSize property

fine-tuning, 3-120
setting at design time, 3-121
setting at run time, 3-121
using, 3-120

file locations, 2-7, 2-10

G
garbage collection, 2-58
GDS, 3-64
geographic data, 3-151
Global Assembly Cache (GAC), 2-6, 2-8
Global Data Services, 3-67
Global Data Services (GDS), 3-64
globalization settings, 3-192, 3-193

client, 3-193
session, 3-194
thread-based, 3-194

globalization support, 3-192
globalization-sensitive operations, 3-196
GoldenGate, 3-64
GUI access to ODP.NET, 1-2

H
HA events, 2-57
HA Events, 3-17
handling date and time format

manipulating data in XML, 3-147
retrieving queries in XML, 3-143

high availability, 3-64

I
implicit database connection, 6-1–6-3, 7-166

implicit REF CURSOR, 3-125
bind and metadata, 3-126
bindinfo, 3-126
configuration, 3-129
examples, 3-129
usage, 3-132

improving default mapping, 3-150
inference of DbType and OracleDbType from

Value, 3-89
inference of DbType from OracleDbType, 3-87
inference of OracleDbType from DbType, 3-88
inference of types, 3-87
InitialLOBFetchSize property, 3-116
InitialLONGFetchSize property, 3-114
input binding

XMLType column, 3-141
insert triggers, 3-172
installation, 2-6, 2-8

Oracle Data Provider for .NET, 2-6
Oracle Data Provider for .NET, Manager

Provider, 2-8
XCopy class, 2-6, 2-8

integrated help, 2-6, 2-8
interference in OracleParameter class, 3-87
introduction, overview, 1-4
INullable Interface

interface description, 15-494
interface members, 15-495
interface properties, 15-495

invalidation message, 3-180
ensuring persistency of, 3-181

IOracleArrayTypeFactory Interface
interface description, 17-27
interface members, 17-28
interface methods, 17-28

IOracleCustomType Interface
interface description, 17-19
interface members, 17-20
interface methods, 17-21

IOracleCustomTypeFactory Interface
interface description, 17-25
interface members, 17-25
interface methods, 17-26

L
large binary datatypes, 3-134
large character datatypes, 3-134
limitations and restrictions, 6-2
LINQ to Entities, 4-1
load balancing, 2-57
Load Balancing, 3-17
LOBs

temporary, 3-137
updating, 3-136

Index

Index-3

LOBs updating, 3-136
local transactions, 3-79
location data, 3-151
logical transaction ID (LTXID), 3-71
LONG and LONG RAW datatypes, 3-134
LTXID, 3-71

M
machine.config, 2-12
machine.config file, 2-6, 2-8
metadata, 3-192
method invocation

UDT, 3-166
Microsoft .NET Framework, 2-1
Microsoft .NET Framework Class Library, 1-4
Microsoft Common Language Runtime (CLR),

1-2
Microsoft Hotfix

BatchUpdate, 3-98
multiple notification requests, 3-181
multiple tables

changes to, 3-151

N
namespace

Oracle.DataAccess.Types, 1-19
native XML support, 3-138
NCLOB, 3-134
nested table types, 3-152
notification framework, 3-180
notification information

retrieving, 3-181
notification process

flow, 3-182
notification registration, 3-181

requirements of, 3-182
NULL values

retrieving from column, 3-147
number of rows fetched in round-trip

controlling, 3-119

O
object data type support, 3-151
object types, 3-152
object-relational data, 3-146

saving changes from XML data, 3-150
obtaining a REF CURSOR, 3-122
obtaining an OracleRefCursor, 3-122
obtaining data from an OracleDataReader, 3-110
obtaining LOB data

InitialLOBFetchSize property, 3-116
obtaining LONG and LONG RAW Data, 3-114

OCI
statement caching, 3-98

ODP.NET
installing, 2-6

ODP.NET Configuration, 2-12
ODP.NET LOB classes, 3-134
ODP.NET Type accessors, 3-113
ODP.NET Type classes, 3-103
ODP.NET Type exceptions, 16-1
ODP.NET Type structures, 3-103, 15-1
ODP.NET Types, 3-103

overview, 3-103
ODP.NET within a .NET stored procedure

limitations and restrictions, 6-2
transaction support, 6-3
unsupported SQL commands, 6-6

ODP.NET XML Support, 3-138
OnChangedEventArgs Class

instance properties, 10-33
members, 10-31
static fields, 10-32
static methods, 10-33

OnChangeEventHandler Delegate
description, 10-38

operating system authentication, 3-37
Oracle Call Interface

statement caching, 3-98
Oracle Data Provider for .NET

installing, 2-6
system requirements, 2-1

Oracle Data Provider for .NET assembly, 1-5
Oracle Data Provider for .NET, Managed Driver

installing, 2-8
Oracle data types, 4-3

and EDM types, 4-3
mapping and customizing, 4-14

Oracle Database Extensions for .NET, 1-2, 6-1
Oracle Developer Tools for Visual Studio, 1-2
Oracle Label Security, 3-60
Oracle native types, 3-103

supported by ODP.NET, 3-110
Oracle Providers for ASP.NET, 1-2
Oracle RAC, 3-64
Oracle Real Application Clusters (Oracle RAC),

3-64
Oracle UDT attribute mappings, 3-159
Oracle Universal Installer (OUI), 2-6
Oracle user-defined types, 3-151
Oracle User-Defined Types (UDTs), 3-152
Oracle Virtual Private Database (VPD), 3-60
Oracle XML DB, 3-138
Oracle.DataAccess.Client namespace, 1-5
Oracle.DataAccess.dll, 1-5
Oracle.DataAccess.Types namespace, 1-5, 1-19

Index

Index-4

OracleAccessToken
constructors, 7-4

OracleAccessToken Class
class description, 7-2
members, 7-3

OracleAQAgent
constructors, 13-3

OracleAQAgent Class
constructors, 13-3
description, 13-1
members, 13-2, 13-36
properties, 13-5, 13-9

OracleAQDequeueMode Enumeration
description, 13-84

OracleAQDequeueOptions Class
constructor, 13-8
description, 13-6
members, 13-7
properties, 13-9
public methods, 13-15

OracleAQEnqueueOptions Class
constructor, 13-18
description, 13-16
members, 13-17
properties, 13-19
public methods, 13-20

OracleAQMessage Class
constructors, 13-24
description, 13-21
members, 13-23
properties, 13-25

OracleAQMessageAvailableEventArgs Class
description, 13-35
members, 13-36
properties, 13-38

OracleAQMessageAvailableEventHandler
Delegate

description, 13-46
OracleAQMessageDeliveryMode Enumeration

description, 13-85
OracleAQMessageState Enumeration

description, 13-86
OracleAQMessageType Enumeration

description, 13-87
OracleAQNavigationMode Enumeration

description, 13-88
OracleAQNotificationGroupingType Enumeration

description, 13-89
OracleAQNotificationType Enumeration

description, 13-90
OracleAQQueue Class

constructors, 13-50
description, 13-47
events, 13-80
members, 13-48

OracleAQQueue Class (continued)
properties, 13-57
public methods, 13-63
static methods, 13-50

OracleAQVisibilityMode Enumeration
description, 13-90

OracleArrayMappingAttribute Class
constructors, 17-17
description, 17-14
members, 17-16
methods, 17-19
properties, 17-18
static methods, 17-18

OracleBFile Class
class description, 14-1
constructors, 14-6
instance methods, 14-18
instance properties, 14-10
members, 14-3
static fields, 14-8
static methods, 14-9

OracleBinary Structure
constructor, 15-5
description, 15-1
instance methods, 15-24
members, 15-3
properties, 15-21
static fields, 15-6
static methods, 15-7
static operators, 15-13
static type conversion operators, 15-20

OracleBlob Class
class description, 14-40
constructors, 14-45
instance methods, 14-56
instance properties, 14-49
members, 14-42
static fields, 14-47
static methods, 14-48

OracleBulkCopy Class
class description, 18-1
constructors, 18-4
events, 18-21
members, 18-2
properties, 18-8
public methods, 18-15

OracleBulkCopyColumnMapping Class
class description, 18-22
constructors, 18-24
members, 18-23
properties, 18-28, 18-29

OracleBulkCopyColumnMappingCollection Class
class description, 18-32
members, 18-33
properties, 18-34

Index

Index-5

OracleBulkCopyColumnMappingCollection Class (continued)
public methods, 18-35

OracleBulkCopyOptions Enumeration
description, 18-46

OracleClientFactory, 2-6, 2-8
OracleClientFactory class

instantiating, 3-2
OracleClientFactory Class

class description, 7-6
class members, 7-7
public methods, 7-11
public properties, 7-10

OracleClob Class
class description, 14-79
constructors, 14-84
instance methods, 14-96
instance properties, 14-88
members, 14-81
static fields, 14-86
static methods, 14-88

OracleCollectionType Enumeration, 7-558
OracleCommand

constructors, 7-21
InitialLOBFetchSize property, 3-116
InitialLONGFetchSize property, 3-114
Transaction property, 3-78

OracleCommand Class
ArrayBindCount, 7-27
class description, 7-16
ExecuteScalar method, 3-123
FetchSize property, 3-120
members, 7-18
properties, 7-23
public methods, 7-45, 13-15
RowSize property, 3-120
static methods, 7-23

OracleCommand object, 3-78
OracleCommand properties

ArrayBindCount, 3-94
OracleCommand Transaction object, 3-79
OracleCommandBuilder Class, 3-192

class description, 7-61
constructors, 7-66
events, 7-86
members, 7-64
properties, 7-70
public methods, 7-76
static methods, 7-67
updating dataset, 3-190

OracleConfiguration
members, 7-89

OracleConfiguration Class
class description, 7-86
properties, 7-93, 7-100, 7-111, 7-115, 7-121,

7-127, 7-132

OracleConnection
ClearAllPools property, 3-43
ClearPool property, 3-43
ClientId property, 3-60
events, 7-219

OracleConnection class
GetSchema methods, 3-40

OracleConnection Class
class description, 7-135
constructors, 7-142
members, 7-137
obtaining a reference, 3-140
properties, 7-150
static methods, 7-147

OracleConnectionOpenEventArgs
members, 7-225
properties, 7-226

OracleConnectionOpenEventArgs Class, 7-225
OracleConnectionOpenEventHandler Delegate,

7-227
OracleConnectionStringBuilder class

using, 3-19
OracleConnectionStringBuilder Class

class description, 7-228
class members, 7-231
constructors, 7-234
public methods, 7-256
public properties, 7-235

OracleConnectionType Enumeration
description, 7-557

OracleCredential, 3-56
constructors, 7-262
members, 7-261

OracleCredential Class, 7-259
properties, 7-265

OracleCustomTypeMappingAttribute Class
constructors, 17-4
description, 17-1
members, 17-3
methods, 17-7
properties, 17-6
static methods, 17-5

OracleDataAdapter, 3-186
constructors, 7-272
members, 7-270
SafeMapping Property, 3-188
SelectCommand property, 3-122

OracleDataAdapter class
FillSchema method, 3-191
Requery property, 3-189
SelectCommand property, 3-191

OracleDataAdapter Class, 7-268
events, 7-291
FillSchema method, 3-192
properties, 7-276

Index

Index-6

OracleDataAdapter Class (continued)
public methods, 7-285
SelectCommand property, 3-192
static methods, 7-276

OracleDataAdapter Safe Type Mapping, 3-186
OracleDatabase Class

class description, 7-294
constructor, 7-298, 7-299
members, 7-296
properties, 7-299
public methods, 7-300
Shutdown method, 7-302
Startup method, 7-305

OracleDatabase Constructors, 7-297
OracleDataReader, 3-110, 3-114

members, 7-311
retrieving UDTs from, 3-160
typed accessors, 3-110

OracleDataReader Class
class description, 7-308
FetchSize property, 3-120
populating, 3-122
properties, 7-315
public methods, 7-329
static methods, 7-314

OracleDataReader Class SchemaTable, 7-373
OracleDataSource Enumerator class

using, 3-23
OracleDataSourceCollection

members, 7-387
OracleDataSourceCollection Class

class description, 7-385
methods, 7-387
properties, 7-389

OracleDataSourceEnumerator Class
class description, 7-391
class members, 7-392
public methods, 7-394

OracleDate Structure
constructors, 15-73
description, 15-69
members, 15-70
methods, 15-101
properties, 15-96
static fields, 15-78
static methods, 15-80
static operators, 15-87
static type conversions, 15-92

OracleDBAPrivilege Enumeration
description, 7-559

OracleDBShutdownMode Enumeration
description, 7-560

OracleDBStartupMode Enumeration
description, 7-561

OracleDbType
inference, 3-87

OracleDbType enumeration, 3-87
OracleDbType Enumeration

description, 7-562
OracleDbType enumeration type, 3-86, 7-562
OracleDecimal Structure

constructors, 15-114
description, 15-107
instance methods, 15-185
members, 15-109
properties, 15-180
static comparison methods, 15-126
static comparison operators, 15-161
static logarithmic methods, 15-147
static manipulation methods, 15-131
static operators, .NET Type to

OracleDecimal, 15-170
static operators, OracleDecimal to .NET,

15-175
static trignonmetric methods, 15-154

OracleDependency Class
change notification, 3-180
class description, 10-1
constructors, 10-4
Continuous Query Notification, 3-178
events, 10-21
instance methods, 10-18
instance properties, 10-12
members, 10-2
static fields, 10-8
static methods, 10-10

OracleDRCPPurity Enumeration
description, 7-563

OracleError Class
ArrayBindIndex, 7-399
class description, 7-395
members, 7-397
methods, 7-402
properties, 7-398
static methods, 7-398

OracleErrorCollection
members, 7-405
properties, 7-406
public methods, 7-407
static methods, 7-406

OracleErrorCollection Class, 7-403
OracleException

members, 7-409
methods, 7-417
properties, 7-411
static methods, 7-411

OracleException Class, 7-408
OracleFailoverEventArgs

members, 12-3

Index

Index-7

OracleFailoverEventArgs (continued)
properties, 12-5
public methods, 12-6

OracleFailoverEventHandler Delegate
description, 12-6

OracleGlobalization Class
class description, 11-1
members, 11-2
properties, 11-11
public methods, 11-22

OracleHAEventArgs Class
description, 9-1
members, 9-2
properties, 9-3

OracleHAEventHandler Delegate
description, 9-8

OracleHAEventSource Enumeration
description, 9-9

OracleHAEventStatus Enumeration
description, 9-10

OracleIdentityType Enumeration
description, 7-564

OracleInfoMessageEventArgs
members, 7-421
properties, 7-422
public methods, 7-424
static methods, 7-422

OracleInfoMessageEventHandler Delegate,
7-425

OracleIntervalDS Structure
constructors, 15-197
description, 15-192
members, 15-194
methods, 15-230
properties, 15-224
static methods, 15-205
static operators, 15-212
type conversions, 15-221

OracleIntervalYM Structure
constructors, 15-238
description, 15-234
members, 15-235
methods, 15-245, 15-267
properties, 15-263
static fields, 15-242
static operators, 15-252
type conversions, 15-261

OracleNotificationEventArgs Class
change notification, 3-180
class description, 10-30
instance methods, 10-38

OracleNotificationInfo Enumeration
description, 10-42

OracleNotificationRequest Class
change notification, 3-180

OracleNotificationRequest Class (continued)
class description, 10-22
Continuous Query Notification, 3-178
instance methods, 10-29
instance properties, 10-24
members, 10-23
static methods, 10-24

OracleNotificationSource Enumeration
description, 10-41

OracleNotificationType Enumeration
description, 10-40

OracleNullValueException Class
class description, 16-8
constructors, 16-11
members, 16-9
methods, 16-12, 16-13
properties, 16-13

OracleObjectMappingAttribute Class
constructors, 17-10
description, 17-7
members, 17-9
methods, 17-14
properties, 17-12
static methods, 17-12

OracleOnsServerCollection
members, 7-436

OracleOnsServerCollection Class
class description, 7-434
methods, 7-436
properties, 7-438

OracleParameter
array bind properties, 3-95
ArrayBindSize property, 3-95, 7-429, 7-431,

7-457
ArrayBindStatus property, 3-95, 7-459
constructors, 7-443
inferences of types, 3-87
members, 7-441
properties, 7-455
public methods, 7-474
static methods, 7-455

OracleParameter array bind feature, 3-94
OracleParameter Class, 7-439
OracleParameter object, 3-84

OracleDbType enumerated values, 3-86
OracleParameter property

ArrayBindSize, 3-91
ArrayBindStatus, 3-91
CollectionType, 3-91
Size, 3-91
Value, 3-91

OracleParameterCollection
members, 7-480
public methods, 7-487
static methods, 7-481

Index

Index-8

OracleParameterCollection Class, 7-478
OracleParameterStatus Enumeration

description, 7-565, 7-567
OracleParameterStatus enumeration type, 3-97,

7-565, 7-567
OraclePasswordAuth Enumeration

description, 7-566
OraclePasswordAuth enumeration type, 7-566
Oraclepermission Class

description, 7-509
OraclePermission Class

constructor, 7-512
members, 7-510
public methods, 7-513
public properties, 7-513
static methods, 7-512

OraclePermissionAttribute Class
constructor, 7-519
description, 7-517
members, 7-518
public methods, 7-521
public properties, 7-520
static methods, 7-520

OracleRef Class
class description, 17-58
class members, 17-59
constructors, 17-61
instance methods, 17-69
instance properties, 17-65
static fields, 17-63
static methods, 17-64

OracleRefCursor, 3-121
OracleRefCursor Class

class description, 14-124
instance methods, 14-133
members, 14-127
populating from a REF CURSOR, 3-123
properties, 14-130
static methods, 14-128, 14-129

OracleRefreshAccessTokenEventArgs
members, 7-523
properties, 7-523

OracleRefreshAccessTokenEventArgs Class
class description, 7-522

OracleRowsCopiedEventArgs Class
class description, 18-48
constructors, 18-50
members, 18-49
properties, 18-51

OracleRowsCopiedEventHandler Delegate
description, 18-47

OracleRowUpdatedEventArgs
constructor, 7-528
members, 7-526
properties, 7-529

OracleRowUpdatedEventArgs (continued)
public methods, 7-530
static methods, 7-529

OracleRowUpdatedEventArgs Class, 7-525
OracleRowUpdatedEventHandler Delegate,

7-531
OracleRowUpdatingEventArgs

constructor, 7-534
members, 7-533
properties, 7-535
public methods, 7-536
static methods, 7-535

OracleRowUpdatingEventArgs Class, 7-532
OracleRowUpdatingEventHandler Delegate,

7-537
OracleShardingKey

constructors, 7-540
members, 7-539

OracleShardingKey Class, 7-538
instance methods, 7-541

OracleString Structure
constructors, 15-275
description, 15-270
members, 15-272
methods, 15-298
properties, 15-294
static fields, 15-280
static methods, 15-281
static operators, 15-287
type conversions, 15-293

OracleTimeStamp Structure
constructors, 15-309
description, 15-303
members, 15-305
methods, 15-350
properties, 15-343
static methods, 15-318
static operators, 15-326
static type conversions, 15-337

OracleTimeStampLTZ Structure
constructors, 15-368
description, 15-363
members, 15-364
methods, 15-410
properties, 15-404
static fields, 15-376
static methods, 15-378
static operators, 15-387
static type conversions, 15-398

OracleTimeStampTZ Structure
constructors, 15-430
description, 15-424
members, 15-426
methods, 15-479
properties, 15-472

Index

Index-9

OracleTimeStampTZ Structure (continued)
static fields, 15-444
static methods, 15-446
static operators, 15-454
static type conversions, 15-465

OracleTransaction
members, 7-546
properties, 7-547
public methods, 7-549
static methods, 7-547

OracleTransaction Class
class description, 7-543

OracleTruncateException Class
class description, 16-14
constructors, 16-16
members, 16-15
methods, 16-19
properties, 16-18
static methods, 16-18

OracleTypeException Class
class description, 16-1
constructors, 16-3
members, 16-2
properties, 16-5
static methods, 16-5

OracleUdt Class
description, 17-30
members, 17-31
static methods, 17-32

OracleUdtFetchOption Enumeration
description, 17-82

OracleUdtStatus Enumeration
description, 17-82

OracleXmlCommandType Enumeration, 8-1
OracleXmlQueryProperties Class

class description, 8-2
constructors, 8-6
members, 8-5
properties, 8-7
public methods, 8-11

OracleXmlSaveProperties Class, 8-11
constructors, 8-15
members, 8-14
properties, 8-16
public methods, 8-20

OracleXmlStream Class
class description, 8-21
constructors, 8-24
instance methods, 8-30
instance properties, 8-25
members, 8-22
static methods, 8-25

OracleXmlType Class, 3-140
class description, 8-37
constructors, 8-40

OracleXmlType Class (continued)
instance methods, 8-51
instance properties, 8-45
members, 8-38
static methods, 8-44

outages, 3-68

P
parameter binding, 3-84
parameter binding with OracleParameter, 3-162
password expiration, 3-57
passwords in code examples, lxxxvi
performance, 3-64, 3-98

array binding, 3-94
connection pooling, 3-41
fine-tuning FetchSize, 3-120
number of rows fetched, 3-119
Obtaining LOB Data, 3-116

performance counters
connection pool, 3-44
publishing, 3-44, 3-47

PL/SQL Associative Array binding, 3-91
PL/SQL Index-By Tables, 3-91
PL/SQL language, 3-121
PL/SQL REF CURSOR, 3-121
PL/SQL REF CURSOR and OracleRefCursor,

3-121
planned outage, 3-68
PLSQLAssociativeArray, 7-558
pool size attributes

Oracle RAC, 3-70
populating an OracleDataReader from a REF

CURSOR, 3-122
populating an OracleRefCursor from a REF

CURSOR, 3-123
populating the DataSet from a REF CURSOR,

3-122
populating the DataSet with generic and custom

objects, 3-165
port

listen for database notifications, 2-57
port number

defining listener, 3-181
porting

client application to .NET stored procedure,
6-6

preventing data loss, 3-186, 3-188
preventing logical corruption, 3-71
PrimaryKey property, 3-190

configuring, 3-191
privileged connections, 3-55
promotable transactions, 3-79
properties

ClientId property, 3-60

Index

Index-10

provider factory classes, 3-2
proxy authentication, 3-59

Q
query result set

retrieving as XML, 3-143

R
REF CURSOR, 3-125

behavior of ExecuteScalar method, 3-123
implicit, 3-125
obtaining, 3-122
passing to stored procedure, 3-124
populating DataSet from, 3-122
populating from OracleDataReader, 3-122

registry entries, 2-12
release Oracle8i (8.1.7), 3-147
release Oracle9i(9.0.x), 3-147
Requery property, 3-189
round-trip, 3-94
RowSize property, 3-120
runtime connection load balancing, 3-67

S
Safe Type Mapping, 3-186
SafeMapping Property, 3-188
samples, 2-7, 2-10

UDT, 17-1
saving change using an XML document, 3-149
saving changes

using XML data, 3-147
schema metadata

customizing metadata, 3-40
SchemaTable, 7-373
search order

unmanaged DLLs, 2-7
SecureFiles, 3-134
SelectCommand property, 3-122
session globalization parameters, 3-197
session globalization settings, 3-194
Shutdown method, 7-302
simple application, 1-27
Size property, 3-91
SQL commands

unsupported, 6-6
Startup method, 7-305
Statement Caching

connection string attributes, 3-98
methods and properties, 3-99
Statement Cache Purge, 3-98
Statement Cache Size, 3-98

StatementCacheWithUdts, 3-167

stored procedures and functions, 3-124, 6-1
Stream class, 3-135
support comparison

client application versus .NET stored
procedure, 6-6

SYSDBA privileges, 3-55
SYSOPER privileges, 3-55
system requirements

Oracle Data Provider for .NET, 2-1
System.Transactions support, 3-79

T
table or view

special characters in, 3-148
TAF, 3-61
TAF callback support, 3-61
Temporary LOBs, 3-137
thread globalization settings, 3-196
thread-based globalization settings, 3-194
Thread.Abort method, 2-58
tips for ODP.NET, 2-58
TNS alias, 3-20
tracing attributes, 3-60
Transaction Guard, 3-71
Transaction object, 3-79
Transaction property, 3-78
transaction support, 6-3
transactions

commit, 3-151
TransactionScope, 3-79
Transparent Application Failover (TAF), 3-61
triggers, 3-172

insert triggers, 3-172
troubleshooting, 3-197
typed OracleDataReader accessors, 3-110

U
UDT

method invocation, 3-166
UDT metadata retrieval from OracleDataReader,

3-162
UdtCacheSize, 3-167
UDTs, 3-151

collection types, 3-152
configuration settings, 3-167
object types, 3-152
parameter binding with OracleParameter,

3-162
retrieving from OracleDataReader, 3-160
samples, 17-1

UDTs (Oracle User-Defined Types), 3-152
UdtTypeName property, 3-162
unique columns, 3-114, 3-116

Index

Index-11

unique constraint, 3-114, 3-116
unique index, 3-114, 3-116
UniqueConstraint, 3-191
uniqueness

in updating DataSet to database, 3-190
uniqueness in DataRows, 3-191
unmanaged DLLs

mismatch, 2-7
search order, 2-7

unmanged DLLs
config support, 2-7

unsupported SQL commands, 6-6
updating

LOBs, 3-136
updating a DataSet obtained from a REF

CURSOR, 3-123
updating LOBs using a DataSet, 3-136
updating LOBs using ODP.NET LOB objects,

3-136
updating LOBs using OracleCommand and

OracleParameter, 3-136
updating without PrimaryKey and Constraints,

3-192
user-defined types, 3-151
UserCallCompleted public read-only property,

7-431
using FetchSize property, 3-120

V
Value property, 3-91
VARRAY types, 3-152
Virtual Private Database(VPD), 3-60
Visual Studio

documentation, 2-6, 2-8

W
web.config, 2-12
Windows registry, 2-27

X
XML

characters with special meaning, 3-142
data manipulation using, 3-147

XML data
saving changes using, 3-147
updating in OracleXmlType, 3-142

XML Database, 3-138
XML DB, 3-138, 3-139
XML element name

case-sensitivity in, 3-148
XML Element Name to Column Name Mapping,

3-149
XML related classes, 8-1
XML related enumerations, 8-1
XML Support, 3-138
XML to specify custom type mappings, 3-156
XMLQuery, 3-138
XMLTable, 3-138
XMLType column

as a .NET String, 3-140
fetching into the DataSet, 3-140
updating with OracleCommand, 3-141

XMLType columns
setting to NULL, 3-141

XQuery
support, 3-139

XQUERY, 3-138
XQuery language, 3-138

Index

Index-12

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Passwords in Code Examples
	Conventions

	Changes in This Release for Oracle Data Provider for .NET
	Changes in Oracle Data Provider for .NET Release 21c (21.12)
	New Features

	Changes in Oracle Data Provider for .NET Release 21c (21.8)
	New Features

	Changes in Oracle Data Provider for .NET Release 21c (21.7)
	New Features

	Changes in Oracle Data Provider for .NET Release 21c (21.6.1)
	New Features

	Changes in Oracle Data Provider for .NET Release 21c (21.5)
	New Features

	Changes in Oracle Data Provider for .NET Release 21c (21.4.1)
	New Features

	Changes in Oracle Data Provider for .NET Release 21c (21.4)
	New Features

	Changes in Oracle Data Provider for .NET Release 21c (21.3)
	New Features
	Deprecated Features
	Deprecation of Oracle Database Extensions for .NET

	Changes in Oracle Data Provider for .NET (21.1)
	New Features

	Changes in Oracle Data Provider for .NET (19.15.1)
	New Features

	Changes in Oracle Data Provider for .NET (19.10)
	New Features

	Changes in Oracle Data Provider for .NET (19.9)
	New Features

	Changes in Oracle Data Provider for .NET ODAC Release 19c (19.3.2)
	New Features

	Changes in Oracle Data Provider for .NET (19.7)
	New Features

	Changes in Oracle Data Provider for .NET (19.6)
	New Features

	Changes in Oracle Data Provider for .NET (19.5)
	New Features

	Changes in Oracle Data Provider for .NET in ODAC Release 19c (19.3)
	New Features

	Changes in Oracle Data Provider for .NET Release 19c (19.3)
	New Features

	Changes in Oracle Data Provider for .NET in ODAC Release 18c (18.3)
	New Features

	Changes in Oracle Data Provider for .NET Release 18c (18.3)
	New Features
	Desupported Features

	Changes in Oracle Data Provider for .NET in ODAC 12.2c Release 1
	New Features
	Deprecated Features

	Changes in Oracle Data Provider for .NET Release 12.2.0.1
	New Features
	Desupported Features

	1 Introducing Oracle Data Provider for .NET
	.NET Data Access in Oracle: Products and Documentation
	Oracle Data Provider for .NET (ODP.NET)
	Oracle Developer Tools for Visual Studio
	Oracle Database Extensions for .NET
	Oracle Providers for ASP.NET
	Oracle Services for Microsoft Transaction Server
	Oracle TimesTen In-Memory Database

	Overview of Oracle Data Provider for .NET (ODP.NET)
	Oracle Data Provider for .NET Assemblies
	Oracle Data Provider for .NET, Unmanaged Driver Assemblies
	Oracle Data Provider for .NET, Managed Driver and ODP.NET Core Assemblies
	Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Namespaces
	Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
	Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations

	Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Namespaces
	Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Structures
	Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Exceptions
	Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes
	Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces
	Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Enumerations

	Differences between the ODP.NET Drivers
	Getting Started With Developing ODP.NET Applications

	2 Installing and Configuring Oracle Data Provider for .NET
	System Requirements
	Entity Framework Requirements
	Entity Framework Database First and Model First Requirements
	Entity Framework Code First Requirements

	Entity Framework Core System Requirements
	Oracle Data Provider for .NET Versioning Scheme
	Installing Oracle Data Provider for .NET, Unmanaged Driver
	File Locations After Installation
	Search Order for Unmanaged DLLs
	Unmanaged ODP.NET and Dependent Unmanaged DLL Mismatch

	Installing Oracle Data Provider for .NET, Managed Driver
	Platform-Dependent Assemblies and Their Search Order
	File Locations After Installation

	Installing Oracle Data Provider for .NET Core
	Entity Framework Assemblies and File Location
	Configuring Oracle Data Provider for .NET
	Oracle Client Configuration File Automated Setup During Installation
	Oracle Client Configuration File Settings
	Configuring .NET Framework to Use ODP.NET
	ODP.NET Intellisense for .NET Configuration Files

	Oracle Data Provider for .NET, Unmanaged Driver Configuration
	Supported Configuration Settings
	Windows Registry
	Configuration File Support
	SQL Translation Framework Configuration
	Specifying UDT Mappings with Unified Configuration for Unmanaged ODP.NET

	Oracle Data Provider for .NET, Managed Driver Configuration
	version Section
	dataSources Section
	settings section
	LDAPsettings section
	Lightweight Directory Access Protocol
	implicitRefCursor section
	distributedTransaction section
	connectionPools section
	edmMappings section
	onsConfig section
	ONS TCPS and Wallets
	Client Side ONS Daemon Configuration
	Relative Windows Path and Windows Environment Variable Configuration Settings

	Oracle Data Provider for .NET Core Configuration
	Configuration Differences among ODP.NET Drivers
	Configuring for Entity Framework Code First
	Entity Framework 6 Code-Based Registration

	Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver
	Configuring a Port to Listen for Database Notifications
	General .NET Programming Recommendations and Tips for ODP.NET

	3 Features of Oracle Data Provider for .NET
	Base Classes and Provider Factory Classes
	Code Access Security
	Configuring OraclePermission
	Configuring OraclePermission for Web Applications with High or Medium Trust Levels
	Configuring OraclePermission for Windows Applications Running in a Partial Trust Environment

	Connecting to Oracle Database
	Connecting to Oracle Autonomous Database
	Using Azure Active Directory
	Connection String Attributes
	Connection String Builder
	Specifying the Data Source Attribute
	Using the TNS Alias
	Using the Connect Descriptor
	Easy Connect and Easy Connect Plus Naming Methods
	Using LDAP
	Data Source Enumerator

	Using WebSocket
	Using Transport Layer Security and Secure Sockets Layer
	Secure Sockets Layer and Transport Layer Security Differences
	ODP.NET Secure Sockets Layer Configuration Using Wallets
	ODP.NET Secure Sockets Layer Configuration without Wallets
	Inserting Public Keys into System Trusted Certificate Authority List
	Troubleshooting TLS/SSL Setup

	Using Secure External Password Store
	Configuring Secure External Password Store (SEPS)

	Using Kerberos
	File Based Credential Cache and MSLSA
	ODP.NET, Managed Driver Dependency on MIT Kerberos
	Configuring Kerberos Authentication with ODP.NET

	Using Windows Native Authentication (NTS)
	Configuring Windows Native Authentication (NTS) for the ODP.NET Client
	Operating System Authentication Credentials

	Network Data Encryption and Integrity
	Using Data Encryption
	Using Data Integrity

	Schema Discovery
	User Customization of Metadata

	Connection Pooling
	Using Connection Pooling

	Connection Pool Management
	Connection Performance Counters
	Registering Performance Counters
	Enabling Performance Counters
	Setting Performance Counters in .NET Configuration Files
	Setting Performance Counters in Windows Registry
	Publishing Performance Counters

	Database Resident Connection Pooling
	Oracle Multitenant and Pluggable Databases
	Edition-Based Redefinition
	Privileged Connections
	Connection Pooling with OracleCredential
	Password Expiration
	Proxy Authentication
	Dynamic Distributed Transaction Enlistment
	Client Identifier and End-to-End Tracing
	Transparent Application Failover (TAF) Callback Support
	TAF Notification
	When Failover Occurs
	Registering an Event Handler for Failover

	Real Application Clusters and Global Data Services
	Fast Application Notification
	In-Band Fast Application Notification
	Runtime Connection Load Balancing
	Fast Connection Failover (FCF)
	Using FCF Planned Outage to Minimize Service Disruption
	Pool Behavior in an Oracle RAC Database

	Using Transaction Guard to Prevent Logical Corruption
	ODP.NET and Transaction Guard

	Application Continuity
	ODP.NET and Application Continuity

	Database Sharding
	ODP.NET Sharding

	OracleCommand Object
	Transactions
	System.Transactions and Promotable Transactions
	Implicit Transaction Enlistment Using TransactionScope
	Explicit Transaction Enlistment Using CommittableTransaction

	Distributed Transactions
	Microsoft Distributed Transaction Coordinator Integration
	ODP.NET, Managed Driver Setup
	ODP.NET, Unmanaged Driver Setup

	Parameter Binding
	Command Timeouts
	OracleDbType Enumeration Type
	Inference of DbType, OracleDbType, and .NET Types
	Inference of DbType from OracleDbType
	Inference of OracleDbType from DbType
	Inference of DbType and OracleDbType from Value

	PL/SQL Associative Array Binding
	Array Binding
	OracleParameter Array Bind Properties
	Error Handling for Array Binding
	OracleParameterStatus Enumeration Types

	Batch Processing
	Statement Caching
	Statement Caching Connection String Attributes
	Enabling Statement Caching through the Registry
	Statement Caching Methods and Properties
	Connections and Statement Caching
	Pooling and Statement Caching

	Self-Tuning
	Self-Tuning Statement Caching
	Enabling or Disabling Self-Tuning for Applications
	Tracing Optimization Changes

	Data Transmission Performance

	ODP.NET Types Overview
	GUIDs
	Obtaining Data from an OracleDataReader Object
	Typed OracleDataReader Accessors
	.NET Type Accessors
	ODP.NET Type Accessors

	Obtaining LONG and LONG RAW Data
	Setting InitialLONGFetchSize to Zero or a Value Greater than Zero
	Setting InitialLONGFetchSize to -1

	Obtaining LOB Data
	Setting InitialLOBFetchSize to Zero
	Setting InitialLOBFetchSize to a Value Greater than Zero
	Setting InitialLOBFetchSize to -1
	Methods Supported for InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1

	Performance Considerations Related to the InitialLOBFetchSize Property

	Controlling the Number of Rows Fetched in One Database Round-Trip
	Use of FetchSize
	Fine-Tuning FetchSize
	Using the RowSize Property
	Setting FetchSize Value in the Registry
	Setting FetchSize Value at Design Time
	Setting FetchSize Value at Run Time

	PL/SQL REF CURSOR and OracleRefCursor
	Obtaining an OracleRefCursor Object
	Obtaining a REF CURSOR Data Type
	Populating an OracleDataReader from a REF CURSOR
	Populating the DataSet from a REF CURSOR
	Populating an OracleRefCursor from a REF CURSOR
	Updating a DataSet Obtained from a REF CURSOR
	Behavior of ExecuteScalar Method for REF CURSOR
	Passing a REF CURSOR to a Stored Procedure

	Implicit REF CURSOR Binding
	Specifying REF CURSOR Bind and Metadata Information in the .NET Configuration File
	Sample Configuration File and Application
	Usage Considerations
	CommandText Property Considerations
	Bind Considerations
	Overloaded Stored Procedures
	Type Initialization Exceptions
	Using Stored Functions with Function Import

	LOB Support
	Large Character and Large Binary Data Types
	Oracle Data Provider for .NET LOB Objects
	Updating LOBs Using a DataSet
	Updating LOBs Using OracleCommand and OracleParameter
	Updating LOBs Using ODP.NET LOB Objects
	Temporary LOBs

	Native JSON Support
	ODP.NET XML Support
	Supported XML Features
	XQuery Support
	OracleXmlType and Connection Dependency
	Updating XMLType Data in the Database
	Updating with DataSet, OracleDataAdapter, and OracleCommandBuilder
	Updating with OracleCommand and OracleParameter
	Input Binding
	Setting XMLType Column to NULL Value
	Setting XMLType Column to Empty XML Data

	Updating XML Data in OracleXmlType
	Characters with Special Meaning in XML
	Retrieving Query Result Set as XML
	Handling Date and Time Format
	Characters with Special Meaning in Column Data
	Characters in Table or View Name
	Case-Sensitivity in Column Name to XML Element Name Mapping
	Column Name to XML Element Name Mapping
	Improving Default Mapping

	Object-Relational Data
	NULL Values

	Data Manipulation Using XML
	Handling Date and Time Format
	Saving Changes Using XML
	Characters with Special Meaning in Column Data
	Characters with Special Meaning in Table or View Name
	Case-Sensitivity in XML Element Name to Column Name Mapping
	XML Element Name to Column Name Mapping
	Saving Changes to a Table Using an XML Document
	Improving Default Mapping

	Object-Relational Data
	Multiple Tables
	Commit Transactions

	Oracle User-Defined Types (UDTs) and .NET Custom Types
	Oracle User-Defined Types (UDTs)
	Custom Types
	Required Custom Type Implementations
	Optional Custom Type Implementations

	Specifying Custom Type Mappings
	Using a Custom Type Factory to Specify Custom Type Mappings
	Using XML in Configuration Files to Specify Custom Type Mappings
	Required Attributes
	Optional Attributes

	Using Custom Type Mappings

	Converting Between Custom Types and Oracle UDTs
	Oracle UDT Attribute Mappings
	Oracle UDT Retrieval from OracleDataReader
	Oracle UDT Metadata Retrieval from OracleDataReader
	Oracle UDT Parameter Binding with OracleParameter
	Guidelines for Binding UDT Input and Output Parameters
	UDT Input Parameter Binding with OracleParameters
	UDT Output Parameter Binding with OracleParameters

	Populating the DataSet with Oracle UDTs
	UDT Method Invocation
	Configuration Settings for Oracle UDTs
	StatementCacheWithUdts
	UdtCacheSize

	Using UDTs with Managed ODP.NET and ODP.NET Core
	Migrating from Unmanaged ODP.NET to Managed or Core
	Handling NULL Attribute Values in UDTs

	Bulk Copy
	Data Types Supported by Bulk Copy
	Restrictions on Oracle Bulk Copy of a Single Partition
	Integrity Constraints Affecting Oracle Bulk Copy
	Database Insert Triggers
	Field Defaults

	Oracle Database Advanced Queuing Support
	Using ODP.NET for Advanced Queuing
	Enqueuing and Dequeuing Example

	Continuous Query Notification Support
	Client Initiated Continuous Query Notifications
	Continuous Query Notification Classes
	Supported Operations
	Requirements of Notification Registration
	Using Continuous Query Notification
	Application Steps
	Flow of Notification Process

	Best Practice Guidelines and Performance Considerations

	OracleDataAdapter Safe Type Mapping
	Comparison Between Oracle Data Types and .NET Types
	SafeMapping Property
	Using Safe Type Mapping

	OracleDataAdapter Requery Property
	Guaranteeing Uniqueness in Updating DataSet to Database
	What Constitutes Uniqueness in DataRow Objects?
	Configuring PrimaryKey and Constraints Properties
	Updating Without PrimaryKey and Constraints Configuration

	Globalization Support
	Globalization Settings
	Client Globalization Settings
	Session Globalization Settings
	Thread-Based Globalization Settings

	Globalization-Sensitive Operations
	Operations Dependent on Client Computer's Globalization Settings
	Operations Dependent on Thread Globalization Settings
	Operations Sensitive to Session Globalization Parameters

	ODP.NET Driver Globalization Differences

	Debug Tracing
	Database Application Migration: SQL Translation Framework
	The SQL Translation Profile

	4 ADO.NET Entity Framework and LINQ to Entities
	Overview of Entity Framework
	Language Integrated Query and Entity SQL
	Mapping Oracle Data Types to EDM Types
	EDM Type Facets

	Oracle Number Default Data Type Mapping and Customization
	Entity Framework 6 Mapping and Customization
	New Default Mappings

	Data Type Mapping and Customization Process
	StoreGeneratedPattern Enumeration
	Identity Attribute
	Virtual Column

	Resolving Compilation Errors When Using Custom Mapping
	Mapping Boolean and Guid Parameters in Custom INSERT, UPDATE, and DELETE Stored Procedures

	Migrating Existing Entity Framework 5 Applications to Entity Framework 6
	Code First
	Mapping of .NET Types to Oracle Types
	Code First Migrations
	Code First Migrations With No Supporting Code Migration File

	Code First Database Initialization
	Oracle Database Object Creation
	Using the Default Connection Factory

	Unsupported Entity Framework Features

	5 Oracle Data Provider for .NET Entity Framework Core
	Oracle Entity Framework Core 7 Features
	Oracle Entity Framework Core 8 Features
	Application Programming Interface
	DatabaseFacade Class
	DatabaseFacade.IsOracle
	DatabaseFacade.EnsureCreated
	DatabaseFacade.EnsureCreated(string[])
	DatabaseFacade.EnsureDeleted
	DatabaseFacade.EnsureDeleted(string[])

	DbContextOptionsBuilder Class
	DbContextOptionsBuilder.UseOracle
	UseOracle(string connectionString)
	UseOracle(DbContextOptionsBuilder, Action<OracleDbContextOptionsBuilder> oracleOptionsAction = null)
	UseOracleSQLCompatibility(string version)
	UseOracleSQLCompatibility(enum version)

	IQueryingEnumerable Interface
	IQueryingEnumerable.ToQueryString Extension Method

	MigrationBuilder Class
	ModelBuilder Class
	ModelBuilder UseIdentityColumn() and UseOracleIdentityColumn()

	OracleSQLCompatibility Enumeration

	Sample Code
	Using ODP.NET Core Classes
	Logging
	Migrations
	Scaffolding Or Reverse Engineering
	Identifier Name Length and Uniqueness
	Using Large Character or Binary Data Types
	Performance Considerations
	Breaking Changes

	6 Oracle Data Provider for .NET Stored Procedures
	Introducing .NET Stored Procedure Execution Using ODP.NET
	Limitations and Restrictions on ODP.NET Within .NET Stored Procedure
	Implicit Database Connection
	Transaction Support
	Unsupported SQL Commands
	Oracle User-Defined Type (UDT) Support

	Porting Client Application to .NET Stored Procedure

	7 Oracle Data Provider for .NET Classes
	OracleAccessToken Class
	OracleAccessToken Members
	OracleAccessToken Constructors
	OracleAccessToken(char)
	OracleAccessToken(char, char)

	RefreshAccessToken Event

	OracleClientFactory Class
	OracleClientFactory Members
	OracleClientFactory Field
	Instance

	OracleClientFactory Constructor
	OracleClientFactory Public Properties
	CanCreateDataSourceEnumerator

	OracleClientFactory Public Methods
	CreateCommand
	CreateCommandBuilder
	CreateConnection
	CreateConnectionStringBuilder
	CreateDataAdapter
	CreateDataSourceEnumerator
	CreateParameter
	CreatePermission

	OracleCommand Class
	OracleCommand Members
	OracleCommand Constructors
	OracleCommand()
	OracleCommand(string)
	OracleCommand(string, OracleConnection)

	OracleCommand Static Methods
	OracleCommand Properties
	AddRowid
	AddToStatementCache
	ArrayBindCount
	ArrayBindRowsAffected
	BindByName
	CommandText
	CommandTimeout
	CommandType
	Connection
	DesignTimeVisible
	FetchSize
	ImplicitRefCursors
	InitialLOBFetchSize
	InitialLONGFetchSize
	Notification
	NotificationAutoEnlist
	Parameters
	RowSize
	Transaction
	UpdatedRowSource
	UseEdmMapping
	XmlCommandType
	XmlQueryProperties
	XmlSaveProperties

	OracleCommand Public Methods
	Cancel
	Clone
	CreateParameter
	Dispose
	ExecuteNonQuery
	ExecuteReader
	ExecuteReader()
	ExecuteReader(CommandBehavior)
	ExecuteScalar
	ExecuteStream
	ExecuteToStream
	ExecuteXmlReader
	Prepare

	OracleCommandBuilder Class
	OracleCommandBuilder Members
	OracleCommandBuilder Constructors
	OracleCommandBuilder()
	OracleCommandBuilder(OracleDataAdapter)

	OracleCommandBuilder Static Methods
	DeriveParameters

	OracleCommandBuilder Properties
	CaseSensitive
	CatalogLocation
	CatalogSeparator
	ConflictOption
	DataAdapter
	QuotePrefix
	QuoteSuffix
	SchemaSeparator

	OracleCommandBuilder Public Methods
	GetDeleteCommand
	GetDeleteCommand()
	GetDeleteCommand(bool)
	GetInsertCommand
	GetInsertCommand()
	GetInsertCommand(bool)
	GetUpdateCommand
	GetUpdateCommand()
	GetUpdateCommand(bool)
	QuoteIdentifier
	RefreshSchema
	UnquoteIdentifier

	OracleCommandBuilder Events

	OracleConfiguration Class
	OracleConfiguration Members
	OracleConfiguration Connection Properties
	DatabaseEditionName
	DisableOOB
	DrcpConnectionClass
	HostnameDefaultServiceIsHost
	NamesDirectoryPath
	OciCompartment
	OciDatabase
	OciIamUrl
	OciTenacy
	OracleDataSources
	TcpConnectTimeout
	TnsAdmin

	OracleConfiguration Secure Connection Properties
	PasswordAuthentication
	SqlNetAuthenticationServices
	SqlNetCloudUser
	SqlNetCryptoChecksumClient
	SqlNetEncryptionClient
	SqlNetEncryptionTypesClient
	SqlNetCryptoChecksumTypesClient
	SqlNetWalletOverride
	SqlNetURI
	SSLServerDNMatch
	SSLVersion
	TokenAuthentication
	TokenLocation
	WalletLocation

	OracleConfiguration Command Properties
	AddOracleTypesDeserialization
	BindByName
	CommandTimeout
	GetDecimalRetainTrailingZeros
	UseClientInitiatedCQN

	OracleConfiguration Directories Properties
	DefaultAdminContext
	DirectoryServers
	DirectoryServerType
	LdapAdmin
	NamesLdapAuthenticateBind
	NamesLdapAuthenticateBindMethod
	NamesLdapConnTimeout

	OracleConfiguration High Availability Properties
	ChunkMigrationConnectionTimeout
	DbNotificationAddress
	DbNotificationPort
	HAEvents
	OnsConfigFile
	OnsMode
	OnsProtocol
	OnsWalletLocation
	OracleOnsServers
	ServiceRelocationConnectionTimeout

	OracleConfiguration Performance Properties
	FetchSize
	LoadBalancing
	MaxStatementCacheSize
	PerformanceCounters
	ReceiveBufferSize
	SelfTuning
	SendBufferSize
	StatementCacheSize
	TcpNoDelay

	OracleConfiguration Debug Tracing Properties
	TraceFileLocation
	TraceFileMaxSize
	TraceLevel
	TraceOption

	OracleConnection Class
	OracleConnection Members
	OracleConnection Constructors
	OracleConnection()
	OracleConnection(string)
	OracleConnection(string, OracleCredential)

	OracleConnection Static Properties
	IsAvailable

	OracleConnection Static Methods
	ClearPool
	ClearAllPools

	OracleConnection Properties
	AccessToken
	ActionName
	AllowCertificateSelectionUI
	ChunkMigrationConnectionTimeout
	ClientId
	ClientInfo
	ConnectionString
	ConnectionTimeout
	ConnectionType
	Credential
	Database
	DatabaseDomainName
	DatabaseEditionName
	DatabaseName
	DataSource
	DRCPConnectionClass
	DRCPPurity
	HostName
	InstanceName
	KeepAlive
	KeepAliveInterval
	KeepAliveTime
	ModuleName
	OciCompartment
	OciDatabase
	OciIamUrl
	OciTenacy
	PasswordAuthentication
	PDBName
	ProviderVersion
	ServerVersion
	ServiceName
	SqlNetAuthenticationServices
	State
	StatementCacheSize
	SwitchedConnection
	TnsAdmin
	TokenAuthentication
	TokenLocation
	UseHourOffsetForUnsupportedTimezone
	WalletLocation

	OracleConnection Public Methods
	BeginTransaction
	BeginTransaction()
	BeginTransaction(IsolationLevel)
	ChangeDatabase
	Clone
	Close
	CreateCommand
	EnlistDistributedTransaction
	EnlistTransaction
	FlushCache
	GetSchema
	GetSchema()
	GetSchema (string collectionName)
	GetSchema (string collectionName, string[] restrictions)
	GetSessionInfo
	GetSessionInfo()
	GetSessionInfo(OracleGlobalization)
	Open
	OpenWithNewPassword
	OpenWithNewPassword(String)
	OpenWithNewPassword(SecureString)
	OpenWithNewToken(char[])
	OpenWithNewToken(char[], char[])
	PurgeStatementCache
	SetSessionInfo
	SetShardingKey(OracleShardingKey, OracleShardingKey)

	OracleConnection Events
	ConnectionOpen
	Failover
	HAEvent
	InfoMessage
	StateChange

	OracleConnectionOpenEventArgs Class
	OracleConnectionOpenEventArgs Members
	OracleConnectionOpenEventArgs Properties
	Connection

	OracleConnectionOpenEventHandler Delegate
	OracleConnectionStringBuilder Class
	OracleConnectionStringBuilder Members
	OracleConnectionStringBuilder Constructors
	OracleConnectionStringBuilder()
	OracleConnectionStringBuilder(string)

	OracleConnectionStringBuilder Public Properties
	ConnectionLifeTime
	ConnectionTimeout
	ContextConnection
	DataSource
	DBAPrivilege
	DecrPoolSize
	Enlist
	HAEvents
	IncrPoolSize
	IsFixedSize
	Item
	Keys
	LoadBalancing
	MaxPoolSize
	MetadataPooling
	MinPoolSize
	Password
	PersistSecurityInfo
	Pooling
	ProxyPassword
	ProxyUserId
	SelfTuning
	StatementCachePurge
	StatementCacheSize
	TnsAdmin
	TokenAuthentication
	TokenLocation
	UserID
	ValidateConnection
	Values
	WalletLocation

	OracleConnectionStringBuilder Public Methods
	Clear
	ContainsKey
	Remove
	TryGetValue

	OracleCredential Class
	OracleCredential Members
	OracleCredential Constructors
	OracleCredential(string, SecureString)
	OracleCredential(string, SecureString, OracleDBAPrivilege)
	OracleCredential(string, SecureString, string, SecureString)

	OracleCredential Properties
	DBAPrivilege
	Password
	ProxyPassword
	ProxyUserId
	UserId

	OracleDataAdapter Class
	OracleDataAdapter Members
	OracleDataAdapter Constructors
	OracleDataAdapter()
	OracleDataAdapter(OracleCommand)
	OracleDataAdapter(string, OracleConnection)
	OracleDataAdapter(string, string)

	OracleDataAdapter Static Methods
	OracleDataAdapter Properties
	DeleteCommand
	IdentityInsert
	IdentityUpdate
	InsertCommand
	Requery
	ReturnProviderSpecificTypes
	SafeMapping
	SelectCommand
	SuppressGetDecimalInvalidCastException
	UpdateBatchSize
	UpdateCommand

	OracleDataAdapter Public Methods
	Fill
	Fill(DataTable, OracleRefCursor)
	Fill(DataSet, OracleRefCursor)
	Fill(DataSet, string, OracleRefCursor)
	Fill(DataSet, int, int, string, OracleRefCursor)

	OracleDataAdapter Events
	RowUpdated
	RowUpdating

	OracleDatabase Class
	OracleDatabase Members
	OracleDatabase Constructors
	OracleDatabase Constructor(string)
	OracleDatabase Constructor(string, OracleCredential)

	OracleDatabase Properties
	ServerVersion

	OracleDatabase Public Methods
	Dispose
	ExecuteNonQuery
	Shutdown
	Shutdown()
	Shutdown(OracleDBShutdownMode, bool)
	Startup
	Startup()
	Startup(OracleDBStartupMode, string, bool)

	OracleDataReader Class
	OracleDataReader Members
	OracleDataReader Static Methods
	OracleDataReader Properties
	Depth
	FetchSize
	FieldCount
	HasRows
	HiddenFieldCount
	IsClosed
	Item
	Item [index]
	Item [string]
	InitialLOBFetchSize
	InitialLONGFetchSize
	RecordsAffected
	RowSize
	SuppressGetDecimalInvalidCastException
	UseEdmMapping
	VisibleFieldCount

	OracleDataReader Public Methods
	Close
	Dispose
	GetBoolean
	GetByte
	GetBytes
	GetChar
	GetChars
	GetData
	GetDataTypeName
	GetDateTime
	GetDateTimeOffset
	GetDecimal
	GetDouble
	GetEnumerator
	GetFieldType
	GetFloat
	GetGuid
	GetInt16
	GetInt32
	GetInt64
	GetName
	GetOracleBFile
	GetOracleBinary
	GetOracleBlob
	GetOracleBlobForUpdate
	GetOracleBlobForUpdate(int)
	GetOracleBlobForUpdate(int, int)
	GetOracleClob
	GetOracleClobForUpdate
	GetOracleClobForUpdate(int)
	GetOracleClobForUpdate(int, int)
	GetOracleDate
	GetOracleDecimal
	GetOracleIntervalDS
	GetOracleIntervalYM
	GetOracleRef
	GetOracleString
	GetOracleTimeStamp
	GetOracleTimeStampLTZ
	GetOracleTimeStampTZ
	GetOracleXmlType
	GetOracleValue
	GetOracleValues
	GetOrdinal
	GetProviderSpecificFieldType
	GetProviderSpecificValue
	GetProviderSpecificValues
	GetSchemaTable
	GetString
	GetTimeSpan
	GetValue
	GetValues
	GetXmlReader
	IsDBNull
	NextResult
	Read

	OracleDataSourceCollection Class
	OracleDataSourceCollection Members
	OracleDataSourceCollection Methods
	Add
	Remove

	OracleDataSourceCollection Properties
	Count
	This

	OracleDataSourceEnumerator Class
	OracleDataSourceEnumerator Members
	OracleDataSourceEnumerator Constructor
	OracleDataSourceEnumerator Public Methods
	GetDataSources

	OracleError Class
	OracleError Members
	OracleError Static Methods
	OracleError Properties
	ArrayBindIndex
	DataSource
	Message
	Number
	Procedure
	Source

	OracleError Methods
	ToString

	OracleErrorCollection Class
	OracleErrorCollection Members
	OracleErrorCollection Static Methods
	OracleErrorCollection Properties
	OracleErrorCollection Public Methods

	OracleException Class
	OracleException Members
	OracleException Static Methods
	OracleException Properties
	DataSource
	Errors
	IsRecoverable
	Message
	Number
	OracleLogicalTransaction
	Procedure
	Source

	OracleException Methods
	GetObjectData
	ToString

	OracleInfoMessageEventArgs Class
	OracleInfoMessageEventArgs Members
	OracleInfoMessageEventArgs Static Methods
	OracleInfoMessageEventArgs Properties
	Errors
	Message
	Source

	OracleInfoMessageEventArgs Public Methods
	ToString

	OracleInfoMessageEventHandler Delegate
	OracleLogicalTransaction Class
	OracleLogicalTransaction Members
	OracleLogicalTransaction Public Read-Only Properties
	Committed
	ConnectionString
	LogicalTransactionId
	UserCallCompleted

	OracleLogicalTransaction Methods
	Dispose
	GetOutcome

	OracleOnsServerCollection Class
	OracleOnsServerCollection Members
	OracleOnsServerCollection Methods
	Add
	Remove

	OracleOnsServerCollection Properties
	Count
	This

	OracleParameter Class
	OracleParameter Members
	OracleParameter Constructors
	OracleParameter()
	OracleParameter(string, OracleDbType)
	OracleParameter(string, object)
	OracleParameter(string, OracleDbType, ParameterDirection)
	OracleParameter(string, OracleDbType, object, ParameterDirection)
	OracleParameter(string, OracleDbType, int)
	OracleParameter(string, OracleDbType, int, string)
	OracleParameter(string, OracleDbType, int, ParameterDirection, bool, byte, byte, string, DataRowVersion, object)
	OracleParameter(string, OracleDbType, int, object, ParameterDirection)

	OracleParameter Static Methods
	OracleParameter Properties
	ArrayBindSize
	ArrayBindStatus
	CollectionType
	DbType
	Direction
	IsNullable
	Offset
	OracleDbType
	OracleDbTypeEx
	ParameterName
	Precision
	Scale
	Size
	SourceColumn
	SourceColumnNullMapping
	SourceVersion
	Status
	UdtTypeName
	Value

	OracleParameter Public Methods
	Clone
	Dispose
	ResetDbType
	ResetOracleDbType
	ToString

	OracleParameterCollection Class
	OracleParameterCollection Members
	OracleParameterCollection Static Methods
	OracleParameterCollection Properties
	Count
	Item
	Item[int]
	Item[string]
	IsFixedSize
	IsReadOnly
	IsSynchronized
	SyncRoot

	OracleParameterCollection Public Methods
	Add
	Add(object)
	Add(OracleParameter)
	Add(string, object)
	Add(string, OracleDbType)
	Add(string, OracleDbType, ParameterDirection)
	Add(string, OracleDbType, object, ParameterDirection)
	Add(string, OracleDbType, int, object, ParameterDirection)
	Add(string, OracleDbType, int)
	Add (string, OracleDbType, int, string)
	Add(string, OracleDbType, int, ParameterDirection, bool, byte, byte, string, DataRowVersion, object)
	AddRange
	Clear
	Contains
	Contains(object)
	Contains(string)
	CopyTo
	GetEnumerator
	IndexOf
	IndexOf(object)
	IndexOf(String)
	Insert
	Remove
	RemoveAt
	RemoveAt(int)
	RemoveAt(String)

	OraclePermission Class
	OraclePermission Members
	OraclePermission Constructor
	OraclePermission Static Methods
	OraclePermission Public Properties
	OraclePermission Public Methods
	Add
	Copy
	IsSubsetOf

	OraclePermissionAttribute Class
	OraclePermissionAttribute Members
	OraclePermissionAttribute Constructor
	OraclePermissionAttribute Static Methods
	OraclePermissionAttribute Public Properties
	OraclePermissionAttribute Public Methods
	CreatePermission

	OracleRefreshAccessTokenEventArgs Class
	OracleRefreshAccessTokenEventArgs Members
	OracleRefreshAccessTokenEventArgs Properties
	DbToken
	PrivateKey
	Token

	OracleRowUpdatedEventArgs Class
	OracleRowUpdatedEventArgs Members
	OracleRowUpdatedEventArgs Constructor
	OracleRowUpdatedEventArgs Static Methods
	OracleRowUpdatedEventArgs Properties
	Command

	OracleRowUpdatedEventArgs Public Methods

	OracleRowUpdatedEventHandler Delegate
	OracleRowUpdatingEventArgs Class
	OracleRowUpdatingEventArgs Members
	OracleRowUpdatingEventArgs Constructor
	OracleRowUpdatingEventArgs Static Methods
	OracleRowUpdatingEventArgs Properties
	Command

	OracleRowUpdatingEventArgs Public Methods

	OracleRowUpdatingEventHandler Delegate
	OracleShardingKey Class
	OracleShardingKey Members
	OracleShardingKey Constructors
	OracleShardingKey()
	OracleShardingKey(OracleDbType, object)

	OracleShardingKey Instance Methods
	SetShardingKey(OracleDbType, object)
	Dispose

	OracleTransaction Class
	OracleTransaction Members
	OracleTransaction Static Methods
	OracleTransaction Properties
	IsolationLevel
	Connection

	OracleTransaction Public Methods
	Commit
	Dispose
	Rollback
	Rollback()
	Rollback(string)
	Save

	OracleConnectionType Enumeration
	OracleCollectionType Enumeration
	OracleDBAPrivilege Enumeration
	OracleDBShutdownMode Enumeration
	OracleDBStartupMode Enumeration
	OracleDbType Enumeration
	OracleDRCPPurity Enumeration
	OracleIdentityType Enumeration
	OracleParameterStatus Enumeration
	OraclePasswordAuth Enumeration
	OracleTokenAuth Enumeration

	8 Oracle Data Provider for .NET XML-Related Classes
	OracleXmlCommandType Enumeration
	OracleXmlQueryProperties Class
	OracleXmlQueryProperties Members
	OracleXmlQueryProperties Constructor
	OracleXmlQueryProperties Properties
	MaxRows
	RootTag
	RowTag
	Xslt
	XsltParams

	OracleXmlQueryProperties Public Methods
	Clone

	OracleXmlSaveProperties Class
	OracleXmlSaveProperties Members
	OracleXmlSaveProperties Constructor
	OracleXmlSaveProperties Properties
	KeyColumnsList
	RowTag
	Table
	UpdateColumnsList
	Xslt
	XsltParams

	OracleXmlSaveProperties Public Methods
	Clone

	OracleXmlStream Class
	OracleXmlStream Members
	OracleXmlStream Constructor
	OracleXmlStream Static Methods
	OracleXmlStream Instance Properties
	CanRead
	CanSeek
	CanWrite
	Connection
	Length
	Position
	Value

	OracleXmlStream Instance Methods
	Clone
	Close
	Dispose
	Flush
	Read
	Read(byte[], int, int)
	Read(char[], int, int)
	Seek
	SetLength
	Write
	WriteLine

	OracleXmlType Class
	OracleXmlType Members
	OracleXmlType Constructors
	OracleXmlType(OracleClob)
	OracleXmlType(OracleConnection, string)
	OracleXmlType(OracleConnection, XmlReader)
	OracleXmlType(OracleConnection, XmlDocument)

	OracleXmlType Static Methods
	OracleXmlType Static Fields
	Null

	OracleXmlType Instance Properties
	Connection
	IsEmpty
	IsFragment
	IsNull
	IsSchemaBased
	RootElement
	Schema
	SchemaUrl
	Value

	OracleXmlType Instance Methods
	Clone
	Dispose
	Extract
	Extract(string, string)
	Extract(string, XmlNameSpaceManager)
	GetStream
	GetXmlDocument
	GetXmlReader
	IsExists
	IsExists(string, string)
	IsExists(string, XmlNameSpaceManager)
	Transform
	Transform(OracleXmlType, string)
	Transform(string, string)
	Update
	Update(string, string, string)
	Update(string, XmlNameSpaceManager, string)
	Update(string, string, OracleXmlType)
	Update(string, XmlNameSpaceManager, OracleXmlType)
	Validate

	9 Oracle Data Provider for .NET HA Event Classes
	OracleHAEventArgs Class
	OracleHAEventArgs Members
	OracleHAEventArgs Properties
	DatabaseDomainName
	DatabaseName
	DrainTimeout
	HostName
	InstanceName
	Reason
	ServiceName
	Source
	Status
	Time

	OracleHAEventHandler Delegate
	OracleHAEventSource Enumeration
	OracleHAEventStatus Enumeration

	10 Continuous Query Notification Classes
	OracleDependency Class
	OracleDependency Members
	OracleDependency Constructors
	OracleDependency ()
	OracleDependency(OracleCommand)
	OracleDependency(OracleCommand, bool, int, bool)

	OracleDependency Static Fields
	Address
	Port

	OracleDependency Static Methods
	GetOracleDependency

	OracleDependency Properties
	DataSource
	HasChanges
	Id
	IsEnabled
	QueryBasedNotification
	RegisteredQueryIDs
	RegisteredResources
	RowidInfo
	UserName

	OracleDependency Methods
	AddCommandDependency
	RemoveRegistration

	OracleDependency Events
	OnChange

	OracleNotificationRequest Class
	OracleNotificationRequest Members
	OracleNotificationRequest Static Methods
	OracleNotificationRequest Properties
	IsNotifiedOnce
	IsPersistent
	Timeout
	GroupingNotificationEnabled
	GroupingType
	GroupingInterval

	OracleNotificationRequest Methods

	OracleNotificationEventArgs Class
	OracleNotificationEventArgs Members
	OracleNotificationEventArgs Static Fields
	OracleNotificationEventArgs Static Methods
	OracleNotificationEventArgs Properties
	Details
	Info
	ResourceNames
	Source
	Type

	OracleNotificationEventArgs Methods

	OnChangeEventHandler Delegate
	OracleRowidInfo Enumeration
	OracleNotificationType Enumeration
	OracleNotificationSource Enumeration
	OracleNotificationInfo Enumeration

	11 Oracle Data Provider for .NET Globalization Classes
	OracleGlobalization Class
	OracleGlobalization Members
	OracleGlobalization Static Methods
	GetClientInfo
	GetClientInfo()
	GetClientInfo(OracleGlobalization)
	GetThreadInfo
	GetThreadInfo()
	GetThreadInfo(OracleGlobalization)
	SetThreadInfo

	OracleGlobalization Properties
	Calendar
	ClientCharacterSet
	Comparison
	Currency
	DateFormat
	DateLanguage
	DualCurrency
	ISOCurrency
	Language
	LengthSemantics
	NCharConversionException
	NumericCharacters
	Sort
	Territory
	TimeStampFormat
	TimeStampTZFormat
	TimeZone

	OracleGlobalization Public Methods
	Clone
	Dispose

	12 Oracle Data Provider for .NET Failover Classes
	OracleFailoverEventArgs Class
	OracleFailoverEventArgs Members
	OracleFailoverEventArgs Static Methods
	OracleFailoverEventArgs Properties
	FailoverType
	FailoverEvent

	OracleFailoverEventArgs Public Methods

	OracleFailoverEventHandler Delegate
	FailoverEvent Enumeration
	FailoverReturnCode Enumeration
	FailoverType Enumeration

	13 Oracle Database Advanced Queuing Classes
	OracleAQAgent Class
	OracleAQAgent Members
	OracleAQAgent Constructors
	OracleAQAgent (string)
	OracleAQAgent (string, string)

	OracleAQAgent Properties
	Address
	Name

	OracleAQDequeueOptions Class
	OracleAQDequeueOptions Members
	OracleAQDequeueOptions Constructor
	OracleAQDequeueOptions Properties
	ConsumerName
	Correlation
	DeliveryMode
	DequeueMode
	MessageId
	NavigationMode
	ProviderSpecificType
	Visibility
	Wait

	OracleAQDequeueOptions Public Methods
	Clone

	OracleAQEnqueueOptions Class
	OracleAQEnqueueOptions Members
	OracleAQEnqueueOptions Constructor
	OracleAQEnqueueOptions Properties
	DeliveryMode
	Visibility

	OracleAQEnqueueOptions Public Methods
	Clone

	OracleAQMessage Class
	OracleAQMessage Members
	OracleAQMessage Constructors
	OracleAQMessage()
	OracleAQMessage(Object)

	OracleAQMessage Properties
	Correlation
	Delay
	DeliveryMode
	DequeueAttempts
	EnqueueTime
	ExceptionQueue
	Expiration
	MessageId
	OriginalMessageId
	Payload
	Priority
	Recipients
	SenderId
	State
	TransactionGroup

	OracleAQMessageAvailableEventArgs Class
	OracleAQMessageAvailableEventArgs Members
	OracleAQMessageAvailableEventArgs Constructor
	OracleAQMessageAvailableEventArgs Properties
	AvailableMessages
	ConsumerName
	Correlation
	Delay
	DeliveryMode
	EnqueueTime
	ExceptionQueue
	Expiration
	MessageId
	NotificationType
	OriginalMessageId
	Priority
	QueueName
	SenderId
	State

	OracleAQMessageAvailableEventHandler Delegate
	OracleAQQueue Class
	OracleAQQueue Members
	OracleAQQueue Constructors
	OracleAQQueue(string)
	OracleAQQueue(string, OracleConnection)
	OracleAQQueue(string, OracleConnection, OracleAQMessageType)
	OracleAQQueue(string, OracleConnection, OracleAQMessageType, string)

	OracleAQQueue Static Methods
	Listen
	Listen(OracleConnection, OracleAQAgent[])
	Listen(OracleConnection, OracleAQAgent[], int)

	OracleAQQueue Properties
	Connection
	DequeueOptions
	EnqueueOptions
	MessageType
	Name
	Notification
	NotificationConsumers
	UdtTypeName

	OracleAQQueue Public Methods
	Dequeue
	Dequeue()
	Dequeue(OracleAQDequeueOptions)
	DequeueArray
	DequeueArray(int)
	DequeueArray(int, OracleAQDequeueOptions)
	Dispose
	Enqueue
	Enqueue(OracleAQMessage)
	Enqueue(OracleAQMessage, OracleAQEnqueueOptions)
	EnqueueArray
	EnqueueArray(OracleAQMessage[])
	EnqueueArray(OracleAQMessage[], OracleAQEnqueueOptions)
	Listen
	Listen(string[])
	Listen (string[], int)

	OracleAQQueue Events
	MessageAvailable Event

	OracleAQDequeueMode Enumeration
	OracleAQMessageDeliveryMode Enumeration
	OracleAQMessageState Enumeration
	OracleAQMessageType Enumeration
	OracleAQNavigationMode Enumeration
	OracleAQNotificationGroupingType Enumeration
	OracleAQNotificationType Enumeration
	OracleAQVisibilityMode Enumeration

	14 Oracle Data Provider for .NET Types Classes
	OracleBFile Class
	OracleBFile Members
	OracleBFile Constructors
	OracleBFile(OracleConnection)
	OracleBFile(OracleConnection, string, string)

	OracleBFile Static Fields
	MaxSize
	Null

	OracleBFile Static Methods
	OracleBFile Instance Properties
	CanRead
	CanSeek
	CanWrite
	Connection
	DirectoryName
	FileExists
	FileName
	IsEmpty
	IsNull
	IsOpen
	Length
	Position
	Value

	OracleBFile Instance Methods
	Clone
	Close
	CloseFile
	Compare
	CopyTo
	CopyTo(OracleBlob)
	CopyTo(OracleBlob, Int64)
	CopyTo(Int64, OracleBlob, Int64, Int64)
	CopyTo(OracleClob)
	CopyTo(OracleClob, Int64)
	CopyTo(Int64, OracleClob, Int64, Int64)
	Dispose
	Flush
	FlushAsync
	IsEqual
	OpenFile
	Read
	Search
	Seek
	SetLength
	Write

	OracleBlob Class
	OracleBlob Members
	OracleBlob Constructors
	OracleBlob(OracleConnection)
	OracleBlob(OracleConnection, bool)

	OracleBlob Static Fields
	MaxSize
	Null

	OracleBlob Static Methods
	OracleBlob Instance Properties
	CanRead
	CanSeek
	CanWrite
	Connection
	IsEmpty
	IsInChunkWriteMode
	IsNull
	IsTemporary
	Length
	OptimumChunkSize
	Position
	Value

	OracleBlob Instance Methods
	Append
	Append(OracleBlob)
	Append(byte[], int, int)
	BeginChunkWrite
	Clone
	Close
	Compare
	CopyTo
	CopyTo(OracleBlob)
	CopyTo(OracleBlob, Int64)
	CopyTo(Int64, OracleBlob, Int64, Int64)
	Dispose
	EndChunkWrite
	Erase
	Erase()
	Erase(Int64, Int64)
	Flush
	IsEqual
	Read
	Search
	Seek
	SetLength
	Write

	OracleClob Class
	OracleClob Members
	OracleClob Constructors
	OracleClob(OracleConnection)
	OracleClob(OracleConnection, bool, bool)

	OracleClob Static Fields
	MaxSize
	Null

	OracleClob Static Methods
	OracleClob Instance Properties
	CanRead
	CanSeek
	CanWrite
	Connection
	IsEmpty
	IsInChunkWriteMode
	IsNClob
	IsNull
	IsTemporary
	Length
	OptimumChunkSize
	Position
	Value

	OracleClob Instance Methods
	Append
	Append(OracleClob)
	Append(byte [], int, int)
	Append(char [], int, int)
	BeginChunkWrite
	Clone
	Close
	Compare
	CopyTo
	CopyTo(OracleClob)
	CopyTo(OracleClob, Int64)
	CopyTo(Int64, OracleClob, Int64, Int64)
	Dispose
	EndChunkWrite
	Erase
	Erase()
	Erase(Int64, Int64)
	Flush
	GetHashCode
	IsEqual
	Read
	Read(byte [], int, int)
	Read(char [], int, int)
	Search
	Search(byte[], Int64, Int64)
	Search(char[], Int64, Int64)
	Seek
	SetLength
	Write
	Write(byte[], int, int)
	Write(char[], int, int)

	OracleRefCursor Class
	OracleRefCursor Members
	OracleRefCursor Static Methods
	OracleRefCursor Static Fields
	Null

	OracleRefCursor Properties
	Connection
	FetchSize
	IsNull
	RowSize

	OracleRefCursor Instance Methods
	Dispose
	GetDataReader

	15 Oracle Data Provider for .NET Types Structures
	OracleBinary Structure
	OracleBinary Members
	OracleBinary Constructor
	OracleBinary Static Fields
	Null

	OracleBinary Static Methods
	Concat
	Equals
	GetXsdType
	GreaterThan
	GreaterThanOrEqual
	LessThan
	LessThanOrEqual
	NotEquals

	OracleBinary Static Operators
	operator +
	operator ==
	operator >
	operator >=
	operator !=
	operator <
	operator <=

	OracleBinary Static Type Conversion Operators
	explicit operator byte[]
	implicit operator OracleBinary

	OracleBinary Properties
	IsNull
	Item
	Length
	Value

	OracleBinary Instance Methods
	CompareTo
	Equals
	GetHashCode
	ToString

	OracleBoolean Structure
	OracleBoolean Members
	OracleBoolean Constructors
	OracleBoolean(bool)
	OracleBoolean(int)

	OracleBoolean Static Fields
	False
	Null
	One
	True
	Zero

	OracleBoolean Static Methods
	And
	Equals
	GreaterThan
	GreaterThanOrEquals
	LessThan
	LessThanOrEquals
	NotEquals
	OnesComplement
	Or
	Parse
	Xor

	OracleBoolean Static Operators
	operator >
	operator >=
	operator <
	operator <=
	operator ==
	operator !=
	operator !
	operator ~
	operator false
	operator true
	operator &
	operator |
	operator ^

	OracleBoolean Static Type Conversions
	implicit operator OracleBoolean
	explicit operator bool
	explicit operator OracleBoolean
	explicit operator OracleBoolean(byte)
	explicit operator OracleBoolean(Decimal)
	explicit operator OracleBoolean(Double)
	explicit operator OracleBoolean(Int16)
	explicit operator OracleBoolean(int)
	explicit operator OracleBoolean(Int64)
	explicit operator OracleBoolean(Single)
	explicit operator OracleBoolean(String)

	OracleBoolean Properties
	ByteValue
	IsFalse
	IsNull
	IsTrue
	Value

	OracleBoolean Instance Methods
	CompareTo
	Equals
	GetHashCode
	ToString

	OracleDate Structure
	OracleDate Members
	OracleDate Constructors
	OracleDate(DateTime)
	OracleDate(string)
	OracleDate(int, int, int)
	OracleDate(int, int, int, int, int, int)
	OracleDate(byte [])

	OracleDate Static Fields
	MaxValue
	MinValue
	Null

	OracleDate Static Methods
	Equals
	GreaterThan
	GreaterThanOrEqual
	LessThan
	LessThanOrEqual
	NotEquals
	GetSysDate
	Parse

	OracleDate Static Operators
	operator ==
	operator >
	operator >=
	operator !=
	operator <
	operator <=

	OracleDate Static Type Conversions
	explicit operator DateTime
	explicit operator OracleDate
	explicit operator OracleDate(DateTime)
	explicit operator OracleDate(OracleTimeStamp)
	explicit operator OracleDate(string)

	OracleDate Properties
	BinData
	Day
	IsNull
	Hour
	Minute
	Month
	Second
	Value
	Year

	OracleDate Methods
	CompareTo
	Equals
	GetHashCode
	GetDaysBetween
	ToOracleTimeStamp
	ToString

	OracleDecimal Structure
	OracleDecimal Members
	OracleDecimal Constructors
	OracleDecimal(byte [])
	OracleDecimal(decimal)
	OracleDecimal(double)
	OracleDecimal(int)
	OracleDecimal(float)
	OracleDecimal(long)
	OracleDecimal(string)
	OracleDecimal(string, string)

	OracleDecimal Static Fields
	MaxPrecision
	MaxScale
	MaxValue
	MinScale
	MinValue
	NegativeOne
	Null
	One
	Pi
	Zero

	OracleDecimal Static (Comparison) Methods
	Equals
	GreaterThan
	GreaterThanOrEqual
	LessThan
	LessThanOrEqual
	NotEquals

	OracleDecimal Static (Manipulation) Methods
	Abs
	Add
	AdjustScale
	Ceiling
	ConvertToPrecScale
	Divide
	Floor
	Max
	Min
	Mod
	Multiply
	Negate
	Parse
	Round
	SetPrecision
	Shift
	Sign
	Sqrt
	Subtract
	Truncate

	OracleDecimal Static (Logarithmic) Methods
	Exp
	Log
	Log(OracleDecimal)
	Log(OracleDecimal, int)
	Log(OracleDecimal, OracleDecimal)
	Pow
	Pow(OracleDecimal, int)
	Pow(OracleDecimal, OracleDecimal)

	OracleDecimal Static (Trigonometric) Methods
	Acos
	Asin
	Atan
	Atan2
	Cos
	Sin
	Tan
	Cosh
	Sinh
	Tanh

	OracleDecimal Static (Comparison) Operators
	operator +
	operator /
	operator ==
	operator >
	operator >=
	operator !=
	operator <
	operator <=
	operator *
	operator -
	operator -
	operator%

	OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal)
	implicit operator OracleDecimal
	implicit operator OracleDecimal(decimal)
	implicit operator OracleDecimal(int)
	implicit operator OracleDecimal(long)
	explicit operator OracleDecimal
	explicit operator OracleDecimal(double)
	explicit operator OracleDecimal(string)

	OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)
	explicit operator byte
	explicit operator decimal
	explicit operator double
	explicit operator short
	explicit operator int
	explicit operator long
	explicit operator float

	OracleDecimal Properties
	BinData
	Format
	IsInt
	IsNull
	IsPositive
	IsZero
	Value

	OracleDecimal Instance Methods
	CompareTo
	Equals
	GetHashCode
	ToByte
	ToDouble
	ToInt16
	ToInt32
	ToInt64
	ToSingle
	ToString

	OracleIntervalDS Structure
	OracleIntervalDS Members
	OracleIntervalDS Constructors
	OracleIntervalDS(TimeSpan)
	OracleIntervalDS(string)
	OracleIntervalDS(double)
	OracleIntervalDS(int, int, int, int, double)
	OracleIntervalDS(int, int, int, int, int)
	OracleIntervalDS(byte[])

	OracleIntervalDS Static Fields
	MaxValue
	MinValue
	Null
	Zero

	OracleIntervalDS Static Methods
	Equals
	GreaterThan
	GreaterThanOrEqual
	LessThan
	LessThanOrEqual
	NotEquals
	Parse
	SetPrecision

	OracleIntervalDS Static Operators
	operator +
	operator ==
	operator >
	operator >=
	operator !=
	operator <
	operator <=
	operator -
	operator -
	operator *
	operator /

	OracleIntervalDS Type Conversions
	explicit operator TimeSpan
	explicit operator OracleIntervalDS
	implicit operator OracleIntervalDS

	OracleIntervalDS Properties
	BinData
	Days
	Hours
	IsNull
	Milliseconds
	Minutes
	Nanoseconds
	Seconds
	TotalDays
	Value

	OracleIntervalDS Methods
	CompareTo
	Equals
	GetHashCode
	ToString

	OracleIntervalYM Structure
	OracleIntervalYM Members
	OracleIntervalYM Constructors
	OracleIntervalYM(long)
	OracleIntervalYM(string)
	OracleIntervalYM(double)
	OracleIntervalYM(int, int)
	OracleIntervalYM(byte[])

	OracleIntervalYM Static Fields
	MaxValue
	MinValue
	Null
	Zero

	OracleIntervalYM Static Methods
	Equals
	GreaterThan
	GreaterThanOrEqual
	LessThan
	LessThanOrEqual
	NotEquals
	Parse
	SetPrecision

	OracleIntervalYM Static Operators
	operator +
	operator ==
	operator >
	operator >=
	operator !=
	operator <
	operator <=
	operator -
	operator -
	operator *
	operator /

	OracleIntervalYM Type Conversions
	explicit operator long
	explicit operator OracleIntervalYM
	implicit operator OracleIntervalYM

	OracleIntervalYM Properties
	BinData
	IsNull
	Months
	TotalYears
	Value
	Years

	OracleIntervalYM Methods
	CompareTo
	Equals
	GetHashCode
	ToString

	OracleString Structure
	OracleString Members
	OracleString Constructors
	OracleString(string)
	OracleString(string, bool)
	OracleString(byte [], bool)
	OracleString(byte [], bool, bool)
	OracleString(byte [], int, int, bool)
	OracleString(byte [], int, int, bool, bool)

	OracleString Static Fields
	Null

	OracleString Static Methods
	Concat
	Equals
	GreaterThan
	GreaterThanOrEqual
	LessThan
	LessThanOrEqual
	NotEquals

	OracleString Static Operators
	operator +
	operator ==
	operator >
	operator >=
	operator !=
	operator <
	operator <=

	OracleString Type Conversions
	explicit operator string
	implicit operator OracleString

	OracleString Properties
	IsCaseIgnored
	IsNull
	Item
	Length
	Value

	OracleString Methods
	Clone
	CompareTo
	Equals
	GetHashCode
	GetNonUnicodeBytes
	GetUnicodeBytes
	ToString

	OracleTimeStamp Structure
	OracleTimeStamp Members
	OracleTimeStamp Constructors
	OracleTimeStamp(DateTime)
	OracleTimeStamp(string)
	OracleTimeStamp(int, int, int)
	OracleTimeStamp(int, int, int, int, int, int)
	OracleTimeStamp(int, int, int, int, int, int, double)
	OracleTimeStamp(int, int, int, int, int, int, int)
	OracleTimeStamp(byte [])

	OracleTimeStamp Static Fields
	MaxValue
	MinValue
	Null

	OracleTimeStamp Static Methods
	Equals
	GreaterThan
	GreaterThanOrEqual
	LessThan
	LessThanOrEqual
	NotEquals
	GetSysDate
	Parse
	SetPrecision

	OracleTimeStamp Static Operators
	operator +
	operator + (OracleTimeStamp, OracleIntervalDS)
	operator + (OracleTimeStamp, OracleIntervalYM)
	operator + (OracleTimeStamp, TimeSpan)
	operator ==
	operator >
	operator >=
	operator !=
	operator <
	operator <=
	operator -
	operator - (OracleTimeStamp, OracleIntervalDS)
	operator - (OracleTimeStamp, OracleIntervalYM)
	operator - (OracleTimeStamp, TimeSpan)

	OracleTimeStamp Static Type Conversions
	explicit operator OracleTimeStamp
	explicit operator OracleTimeStamp(OracleTimeStampLTZ)
	explicit operator OracleTimeStamp(OracleTimeStampTZ)
	explicit operator OracleTimeStamp(string)
	implicit operator OracleTimeStamp
	implicit operator OracleTimeStamp(OracleDate)
	implicit operator OracleTimeStamp(DateTime)
	explicit operator DateTime

	OracleTimeStamp Properties
	BinData
	Day
	IsNull
	Hour
	Millisecond
	Minute
	Month
	Nanosecond
	Second
	Value
	Year

	OracleTimeStamp Methods
	AddDays
	AddHours
	AddMilliseconds
	AddMinutes
	AddMonths
	AddNanoseconds
	AddSeconds
	AddYears
	CompareTo
	Equals
	GetHashCode
	GetDaysBetween
	GetYearsBetween
	ToOracleDate
	ToOracleTimeStampLTZ
	ToOracleTimeStampTZ
	ToString

	OracleTimeStampLTZ Structure
	OracleTimeStampLTZ Members
	OracleTimeStampLTZ Constructors
	OracleTimeStampLTZ(DateTime)
	OracleTimeStampLTZ(string)
	OracleTimeStampLTZ(int, int, int)
	OracleTimeStampLTZ(int, int, int, int, int, int)
	OracleTimeStampLTZ(int, int, int, int, int, int, double)
	OracleTimeStampLTZ(int, int, int, int, int, int, int)
	OracleTimeStampLTZ(byte [])

	OracleTimeStampLTZ Static Fields
	MaxValue
	MinValue
	Null

	OracleTimeStampLTZ Static Methods
	Equals
	GetLocalTimeZoneName
	GetLocalTimeZoneOffset
	GetSysDate
	GreaterThan
	GreaterThanOrEqual
	LessThan
	LessThanOrEqual
	NotEquals
	Parse
	SetPrecision

	OracleTimeStampLTZ Static Operators
	operator +
	operator + (OracleTimeStampLTZ, OracleIntervalDS)
	operator + (OracleTimeStampLTZ, OracleIntervalYM)
	operator + (OracleTimeStampLTZ, TimeSpan)
	operator ==
	operator >
	operator >=
	operator !=
	operator <
	operator <=
	operator -
	operator - (OracleTimeStampLTZ, OracleIntervalDS)
	operator - (OracleTimeStampLTZ, OracleIntervalYM)
	operator - (OracleTimeStampLTZ, TimeSpan)

	OracleTimeStampLTZ Static Type Conversions
	explicit operator OracleTimeStampLTZ
	explicit operator OracleTimeStampLTZ(OracleTimeStamp)
	explicit operator OracleTimeStampLTZ(OracleTimeStampTZ)
	explicit operator OracleTimeStampLTZ(string)
	implicit operator OracleTimeStampLTZ
	implicit operator OracleTimeStampLTZ(OracleDate)
	implicit operator OracleTimeStampLTZ(DateTime)
	explicit operator DateTime

	OracleTimeStampLTZ Properties
	BinData
	Day
	IsNull
	Hour
	Millisecond
	Minute
	Month
	Nanosecond
	Second
	Value
	Year

	OracleTimeStampLTZ Methods
	AddDays
	AddHours
	AddMilliseconds
	AddMinutes
	AddMonths
	AddNanoseconds
	AddSeconds
	AddYears
	CompareTo
	Equals
	GetHashCode
	GetDaysBetween
	GetYearsBetween
	ToOracleDate
	ToOracleTimeStamp
	ToOracleTimeStampTZ
	ToString
	ToUniversalTime

	OracleTimeStampTZ Structure
	OracleTimeStampTZ Members
	OracleTimeStampTZ Constructors
	OracleTimeStampTZ(DateTime)
	OracleTimeStampTZ(DateTime, string)
	OracleTimeStampTZ(string)
	OracleTimeStampTZ(int, int, int)
	OracleTimeStampTZ(int, int, int, string)
	OracleTimeStampTZ(int, int, int, int, int, int)
	OracleTimeStampTZ(int, int, int, int, int, int, string)
	OracleTimeStampTZ(int, int, int, int, int, int, double)
	OracleTimeStampTZ(int, int, int, int, int, int, double, string)
	OracleTimeStampTZ(int, int, int, int, int, int, int)
	OracleTimeStampTZ(int, int, int, int, int, int, int, string)
	OracleTimeStampTZ(byte [])

	OracleTimeStampTZ Static Fields
	MaxValue
	MinValue
	Null

	OracleTimeStampTZ Static Methods
	Equals
	GetSysDate
	GreaterThan
	GreaterThanOrEqual
	LessThan
	LessThanOrEqual
	NotEquals
	Parse
	SetPrecision

	OracleTimeStampTZ Static Operators
	operator +
	operator +(OracleTimeStampTZ, OracleIntervalDS)
	operator +(OracleTimeStampTZ, OracleIntervalYM)
	operator +(OracleTimeStampTZ, TimeSpan)
	operator ==
	operator >
	operator >=
	operator !=
	operator <
	operator <=
	operator -
	operator - (OracleTimeStampTZ, OracleIntervalDS)
	operator - (OracleTimeStampTZ, OracleIntervalYM)
	operator - (OracleTimeStampTZ value1, TimeSpan value2)

	OracleTimeStampTZ Static Type Conversions
	explicit operator OracleTimeStampTZ
	explicit operator OracleTimeStampTZ(OracleTimeStamp)
	explicit operator OracleTimeStampTZ(OracleTimeStampLTZ)
	explicit operator OracleTimeStampTZ(string)
	implicit operator OracleTimeStampTZ
	implicit operator OracleTimeStampTZ(OracleDate)
	implicit operator OracleTimeStampTZ(DateTime)
	explicit operator DateTime

	OracleTimeStampTZ Properties
	BinData
	Day
	IsNull
	Hour
	Millisecond
	Minute
	Month
	Nanosecond
	Second
	TimeZone
	Value
	Year

	OracleTimeStampTZ Methods
	AddDays
	AddHours
	AddMilliseconds
	AddMinutes
	AddMonths
	AddNanoseconds
	AddSeconds
	AddYears
	CompareTo
	Equals
	GetDaysBetween
	GetHashCode
	GetTimeZoneOffset
	GetYearsBetween
	ToLocalTime
	ToOracleDate
	ToOracleTimeStampLTZ
	ToOracleTimeStamp
	ToString
	ToUniversalTime

	INullable Interface
	INullable Interface Members
	INullable Interface Properties
	IsNull

	16 Oracle Data Provider for .NET Types Exceptions
	OracleTypeException Class
	OracleTypeException Members
	OracleTypeException Constructors
	OracleTypeException(string)
	OracleTypeException(SerializationInfo, StreamingContext)

	OracleTypeException Static Methods
	OracleTypeException Properties
	Message
	Number
	Source

	OracleTypeException Methods
	ToString

	OracleNullValueException Class
	OracleNullValueException Members
	OracleNullValueException Constructors
	OracleNullValueException()
	OracleNullValueException(string)

	OracleNullValueException Static Methods
	OracleNullValueException Properties
	OracleNullValueException Methods

	OracleTruncateException Class
	OracleTruncateException Members
	OracleTruncateException Constructors
	OracleTruncateException()
	OracleTruncateException(string)

	OracleTruncateException Static Methods
	OracleTruncateException Properties
	OracleTruncateException Methods

	17 Oracle Data Provider for .NET UDT-Related Classes
	OracleCustomTypeMappingAttribute Class
	OracleCustomTypeMappingAttribute Members
	OracleCustomTypeMappingAttribute Constructors
	OracleCustomTypeMappingAttribute(string)

	OracleCustomTypeMappingAttribute Static Methods
	OracleCustomTypeMappingAttribute Properties
	UdtTypeName

	OracleCustomTypeMappingAttribute Methods

	OracleObjectMappingAttribute Class
	OracleObjectMappingAttribute Members
	OracleObjectMappingAttribute Constructors
	OracleObjectMappingAttribute(string)
	OracleObjectMappingAttribute(int)

	OracleObjectMappingAttribute Static Methods
	OracleObjectMappingAttribute Properties
	AttributeIndex
	AttributeName

	OracleObjectMappingAttribute Methods

	OracleArrayMappingAttribute Class
	OracleArrayMappingAttribute Members
	OracleArrayMappingAttribute Constructors
	OracleArrayMappingAttribute()

	OracleArrayMappingAttribute Static Methods
	OracleArrayMappingAttribute Properties
	OracleArrayMappingAttribute Methods

	IOracleCustomType Interface
	IOracleCustomType Members
	IOracleCustomType Interface Methods
	FromCustomObject(OracleConnection, IntPtr)
	FromCustomObject(OracleConnection, object)
	ToCustomObject(OracleConnection, IntPtr)
	ToCustomObject(OracleConnection, object)

	IOracleCustomTypeFactory Interface
	IOracleCustomTypeFactory Members
	IOracleCustomTypeFactory Interface Methods
	CreateObject

	IOracleArrayTypeFactory Interface
	IOracleArrayTypeFactory Members
	IOracleArrayTypeFactory Interface Methods
	CreateArray
	CreateStatusArray

	OracleUdt Class
	OracleUdt Members
	OracleUDT Static Methods
	GetValue
	GetValue(OracleConnection, IntPtr, string)
	GetValue(OracleConnection, IntPtr, int)
	GetValue(OracleConnection, IntPtr, string, out object)
	GetValue(OracleConnection, IntPtr, int, out object)
	GetValue(OracleConnection, object, string)
	GetValue(OracleConnection, object, int)
	GetValue(OracleConnection, object, string, out object)
	GetValue(OracleConnection, object, int, out object)
	IsDBNull
	IsDBNull(OracleConnection, IntPtr, string)
	IsDBNull(OracleConnection, IntPtr, int)
	IsDBNull(OracleConnection, object, string)
	IsDBNull(OracleConnection, object, int)
	SetValue
	SetValue(OracleConnection, IntPtr, string, object)
	SetValue(OracleConnection, IntPtr, int, object)
	SetValue(OracleConnection, IntPtr, string, object, object)
	SetValue(OracleConnection, IntPtr, int, object, object)
	SetValue(OracleConnection, object, string, object)
	SetValue(OracleConnection, object, int, object)
	SetValue(OracleConnection, object, string, object, object)
	SetValue(OracleConnection, object, int, object, object)

	OracleRef Class
	OracleRef Members
	OracleRef Constructors
	OracleRef(OracleConnection, string)
	OracleRef(OracleConnection, string, string)

	OracleRef Static Fields
	Null

	OracleRef Static Methods
	OracleRef Instance Properties
	Connection
	HasChanges
	IsLocked
	IsNull
	ObjectTableName
	Value

	Oracle Ref Instance Methods
	Clone
	Delete
	Dispose
	Flush
	GetCustomObject
	GetCustomObject(OracleUdtFetchOption)
	GetCustomObject(OracleUdtFetchOption, int)
	GetCustomObjectForUpdate
	GetCustomObjectForUpdate(bool)
	GetCustomObjectForUpdate(bool, int)
	IsEqual
	Lock
	Update

	OracleUdtFetchOption Enumeration
	OracleUdtStatus Enumeration

	18 Oracle Data Provider for .NET Bulk Copy Classes
	OracleBulkCopy Class
	OracleBulkCopy Members
	OracleBulkCopy Constructors
	OracleBulkCopy(OracleConnection)
	OracleBulkCopy(string)
	OracleBulkCopy(OracleConnection, OracleBulkCopyOptions)
	OracleBulkCopy(string, OracleBulkCopyOptions)

	OracleBulkCopy Properties
	BatchSize
	BulkCopyOptions
	BulkCopyTimeout
	ColumnMappings
	Connection
	DestinationPartitionName
	DestinationSchemaName
	DestinationTableName
	NotifyAfter

	OracleBulkCopy Public Methods
	Close
	Dispose
	WriteToServer
	WriteToServer(DataRow[])
	WriteToServer(DataTable)
	WriteToServer(IDataReader)
	WriteToServer(DataTable, DataRowState)
	WriteToServer(OracleRefCursor)

	OracleBulkCopy Events
	OracleRowsCopied

	OracleBulkCopyColumnMapping Class
	OracleBulkCopyColumnMapping Members
	OracleBulkCopyColumnMapping Constructors
	OracleBulkCopyColumnMapping()
	OracleBulkCopyColumnMapping(int, int)
	OracleBulkCopyColumnMapping(int, string)
	OracleBulkCopyColumnMapping(string, int)
	OracleBulkCopyColumnMapping(string, string)

	OracleBulkCopyColumnMapping Methods
	CompareTo

	OracleBulkCopyColumnMapping Properties
	DestinationColumn
	DestinationOrdinal
	SourceColumn
	SourceOrdinal

	OracleBulkCopyColumnMappingCollection Class
	OracleBulkCopyColumnMappingCollection Members
	OracleBulkCopyColumnMappingCollection Properties
	Item[index]

	OracleBulkCopyColumnMappingCollection Public Methods
	Add
	Add(OracleBulkCopyColumnMapping)
	Add(int, int)
	Add(int, string)
	Add(string, int)
	Add(string, string)
	Clear
	Contains
	CopyTo
	IndexOf
	Insert
	Remove
	RemoveAt

	OracleBulkCopyOptions Enumeration
	OracleRowsCopiedEventHandler Delegate
	OracleRowsCopiedEventArgs Class
	OracleRowsCopiedEventArgs Members
	OracleRowsCopiedEventArgs Constructors
	OracleRowsCopiedEventArgs(long)

	OracleRowsCopiedEventArgs Properties
	Abort
	RowsCopied

	A Oracle Schema Collections
	Common Schema Collections
	MetaDataCollections
	DataSourceInformation
	DataTypes
	Restrictions
	ReservedWords

	ODP.NET-Specific Schema Collection
	Tables
	Columns
	Views
	XMLSchema
	Users
	Synonyms
	Sequences
	Functions
	Procedures
	ProcedureParameters
	Arguments
	Packages
	PackageBodies
	JavaClasses
	Indexes
	IndexColumns
	PrimaryKeys
	ForeignKeys
	ForeignKeyColumns
	UniqueKeys

	B Mapping LINQ Canonical Functions and Oracle Functions
	Glossary
	assembly
	BFILES
	Binary Large Object (BLOB)
	Character Large Object (CLOB)
	data provider
	DataSet
	dirty writes
	DDL
	DOM
	Extensible Stylesheet Language Transformation (XSLT)
	flush
	Global Assembly Cache (GAC)
	goodness
	implicit database connection
	instantiate
	invalidation message
	Large Object (LOB)
	Microsoft .NET Framework Class Library
	namespace
	National Character Large Object (NCLOB)
	Oracle Net Services
	OracleDataReader
	Oracle XML DB
	PL/SQL
	primary key
	reference semantics
	REF
	result set
	Safe Type Mapping
	savepoint
	stored procedure
	Transparent Application Failover (TAF)
	Unicode
	URL
	value semantics
	XPath

	Index

