Oracle® OLAP
Java API Developer's Guide

21c
F31849-01
November 2020

ORACLE"

Oracle OLAP Java API Developer's Guide, 21c
F31849-01

Copyright © 2000, 2020, Oracle and/or its affiliates.
Primary Author: David McDermid

Contributors: David Greenfield, Jim Hartsing, Scott Feinstein, Anne Murphy, Richard Samuels, Steve
Mesropian, Chuck Venezia, Afsaneh Koochek

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience iX

Documentation Accessibility iX

Related Documents X

Conventions X

Changes in This Release for Oracle OLAP Java API Developer's

Guide

Changes in Oracle Database 12c Release 1 (12.1) Xi

Introduction to the OLAP Java API

1.1 OLAP Java API Overview 1-1
1.1.1 What the OLAP Java API Can Do 1-1
1.1.2 Describing the Classes in the OLAP Java API 1-2
1.1.3 Describing the Dimensional Data Model 1-3
1.1.4 Implementing the Dimensional Data Model 1-5
1.1.5 Organizing the Data for OLAP 1-5

1.2 Accessing Data Through the OLAP Java API 1-5
1.2.1 Creating Queries 1-6
1.2.2 Specifying Dimension Members 1-6
1.2.3 Creating Cursors 1-6

1.3 Sample Schema for OLAP Java APl Examples 1-6

1.4 Tasks That an OLAP Java API Application Performs 1-8

Understanding OLAP Java API Metadata

2.1 Overview of OLAP Java API Metadata Classes 2-1

2.2 ldentifying, Describing, and Classifying Metadata Objects 2-3
2.2.1 Identifying Objects 2-3

2.2.1.1 Getting and Setting Names 2-4
2.2.1.2 Describing Unique Identifiers 2-4

ORACLE

2.2.1.3 Supporting Legacy Metadata Objects 2-4

2.2.2 Using Descriptions 2-6

2.2.3 Using Classifications 2-9

2.3 Providing Metadata Objects 2-9

2.3.1 Describing Metadata Providers 2-9

2.3.1.1 Getting Metadata Objects by ID 2-10

2.3.1.2 Exporting and Importing Metadata as XML Templates 2-10

2.3.2 Representing Schemas 2-13

2.3.2.1 Representing the Root Schema 2-13

2.3.2.2 Representing Database Schemas 2-14

2.3.2.3 Representing Organizational Schemas 2-15

2.4 Providing Access to Data Sources 2-15

2.4.1 Representing Cubes and Measures 2-16

2.4.1.1 Representing Cubes 2-16

2.4.1.2 Representing Measures 2-18

2.4.2 Representing Dimensions, Levels, and Hierarchies 2-19

2.4.2.1 Representing Dimensions 2-20

2.4.2.2 Representing Dimension Levels 2-21

2.4.2.3 Representing Hierarchies 2-21

2.4.2.4 Representing Hierarchy Levels 2-23

2.4.3 Representing Dimension Attributes 2-23

2.4.3.1 Describing the MdmAttribute Class 2-24

2.4.3.2 Describing the MdmBaseAttribute Class 2-25

2.4.3.3 Describing the MdmDerivedAttribute Class 2-29

2.4.4 Using OLAP Views 2-29

2.4.4.1 Getting Cube View and View Column Names 2-29

2.4.4.2 Getting Dimension and Hierarchy View and View Column Names 2-30

2.4.4.3 Using OLAP View Columns 2-31

2.4.4.4 Using Source Objects 2-34
Discovering Metadata

3.1 Connecting to Oracle OLAP 3-1

3.1.1 Prerequisites for Connecting 3-1

3.1.2 Establishing a Connection 3-1

3.1.2.1 Creating a JDBC Connection 3-2

3.1.2.2 Creating a DataProvider and a UserSession 3-2

3.1.3 Closing the Connection and the DataProvider 3-3

3.2 Overview of the Procedure for Discovering Metadata 3-3

3.2.1 Purpose of Discovering the Metadata 3-3

3.2.2 Steps in Discovering the Metadata 3-4

ORACLE

3.3 Creating an MdmMetadataProvider 3-4

3.4 Getting the MdmSchema Objects 3-5
3.5 Getting the Contents of an MdmSchema 3-6
3.6 Getting the Objects Contained by an MdmPrimaryDimension 3-7
3.6.1 Getting the Hierarchies and Levels of an MdmPrimaryDimension 3-7
3.6.2 Getting the Attributes for an MdmPrimaryDimension 3-8
3.7 Getting the Source for a Metadata Object 3-9

4 Creating Metadata and Analytic Workspaces

4.1 Overview of Creating and Mapping Metadata 4-1
4.2 Creating an Analytic Workspace 4-2
4.3 Creating the Dimensions, Levels, and Hierarchies 4-2
4.3.1 Creating and Mapping Dimensions 4-3
4.3.2 Creating and Mapping Dimension Levels 4-3
4.3.3 Creating and Mapping Hierarchies 4-4
4.3.3.1 Creating and Mapping an MdmLevelHierarchy 4-4

4.3.3.2 Creating and Mapping an MdmValueHierarchy 4-5

4.4 Creating Attributes 4-7
4.5 Creating Cubes and Measures 4-8
4.5.1 Creating Cubes 4-8
4.5.2 Creating and Mapping Measures 4-9

4.6 Committing Transactions 4-10
4.7 Exporting and Importing XML Templates 4-11
4.8 Building an Analytic Workspace 4-11

5 Understanding Source Objects

5.1 Overview of Source Objects 5-1
5.2 Kinds of Source Objects 5-2
5.3 Characteristics of Source Objects 5-3
5.3.1 Elements and Values of a Source 5-3
5.3.2 Data Type of a Source 5-3
5.3.3 Type of a Source 5-4
5.3.4 Source Identification and SourceDefinition of a Source 5-5

5.4 Inputs and Outputs of a Source 5-6
5.4.1 Describing the join Method 5-6
5.4.1.1 Describing the joined Parameter 5-6

5.4.1.2 Describing the comparison Parameter 5-7

5.4.1.3 Describing the comparisonRule Parameter 5-7

5.4.1.4 Describing the visible Parameter 5-7

ORACLE Y

5.4.2 Outputs of a Source 5-8

5.4.2.1 Producing a Source with an Output 5-8

5.4.2.2 Using COMPARISON_RULE_SELECT 5-9

5.4.2.3 Using COMPARISON_RULE_REMOVE 5-9

5.4.2.4 Producing a Source with Two Outputs 5-10

5.4.2.5 Hiding an Output 5-11

5.4.3 Inputs of a Source 5-12

5.4.3.1 Primary Source Objects with Inputs 5-12

5.4.3.2 Deriving a Source with an Input 5-12

5.4.3.3 Type of Inputs 5-13

5.4.4 Matching a Source with an Input 5-13

5.4.4.1 Matching the Input of the Source for an MdmAttribute 5-14

5.4.4.2 Matching the Inputs of a Measure 5-14

5.4.4.3 Using the value Method to Derive a Source with an Input 5-16

5.4.4.4 Using the value Method to Select Values of a Source 5-16

5.4.4.5 Using the extract Method to Combine Elements of Source Objects 5-18

5.5 Describing Parameterized Source Objects 5-19
6 Making Queries Using Source Methods

6.1 Describing the Basic Source Methods 6-1

6.2 Using the Basic Methods 6-2

6.2.1 Using the alias Method 6-2

6.2.2 Using the distinct Method 6-4

6.2.3 Using the join Method 6-5

6.2.4 Using the position Method 6-6

6.2.5 Using the recursiveJoin Method 6-7

6.2.6 Using the value Method 6-10

6.2.6.1 Selecting Elements of a Source 6-10

6.2.6.2 Reversing a Relation 6-11

6.3 Using Other Source Methods 6-13

6.3.1 Using the extract Method 6-14

6.3.2 Creating a Cube and Pivoting Edges 6-15

6.3.3 Dirilling Up and Down in a Hierarchy 6-17

6.3.4 Sorting Hierarchically by Measure Values 6-19

6.3.5 Using NumberSource Methods To Compute the Share of Units Sold 6-21

6.3.6 Selecting Based on Time Series Operations 6-22

6.3.7 Selecting a Set of Elements Using Parameterized Source Objects 6-24

ORACLE Vi

7 Using a TransactionProvider

7.1 About Creating a Metadata Object or a Query in a Transaction 7-1
7.1.1 Types of Transaction Objects 7-2
7.1.2 Committing a Transaction 7-2
7.1.3 About Transaction and Template Objects 7-3
7.1.4 Beginning a Child Transaction 7-3
7.1.5 About Rolling Back a Transaction 7-4
7.1.6 Getting and Setting the Current Transaction 7-6

7.2 Using TransactionProvider Objects 7-6

8 Understanding Cursor Classes and Concepts

8.1 Overview of the OLAP Java API Cursor Objects 8-1
8.1.1 Creating a Cursor 8-1
8.1.2 Sources For Which You Cannot Create a Cursor 8-1
8.1.3 Cursor Objects and Transaction Objects 8-2

8.2 Cursor Classes 8-2
8.2.1 Structure of a Cursor 8-2
8.2.2 Specifying the Behavior of a Cursor 8-4

8.3 CursorinfoSpecification Classes 8-5

8.4 CursorManager Class 8-6
8.4.1 Updating the CursorinfoSpecification for a CursorManager 8-7

8.5 About Cursor Positions and Extent 8-7
8.5.1 Positions of a ValueCursor 8-7
8.5.2 Positions of a CompoundCursor 8-8
8.5.3 About the Parent Starting and Ending Positions in a Cursor 8-12
8.5.4 What is the Extent of a Cursor? 8-12

8.6 About Fetch Sizes 8-13

o Retrieving Query Results

9.1 Retrieving the Results of a Query 9-1
9.1.1 Getting Values from a Cursor 9-2

9.2 Navigating a CompoundCursor for Different Displays of Data 9-6

9.3 Specifying the Behavior of a Cursor 9-12

9.4 Calculating Extent and Starting and Ending Positions of a Value 9-13

9.5 Specifying a Fetch Size 9-15

ORACLE Vii

10 Creating Dynamic Queries

10.1 About Template Objects 10-1
10.1.1 About Creating a Dynamic Source 10-1

10.1.2 About Translating User Interface Elements into OLAP Java API
Objects 10-2
10.2 Overview of Template and Related Classes 10-2

10.2.1 What Is the Relationship Between the Classes That Produce a
Dynamic Source? 10-2
10.2.2 Template Class 10-3
10.2.3 MetadataState Interface 10-3
10.2.4 SourceGenerator Interface 10-3
10.2.5 DynamicDefinition Class 10-4
10.3 Designing and Implementing a Template 10-4
10.3.1 Implementing the Classes for a Template 10-5
10.3.2 Implementing an Application That Uses Templates 10-9

A Setting Up the Development Environment
Al Overview A-1
A.2 Required Class Libraries A-1
A.3 Obtaining the Class Libraries A-2
B SingleSelectionTemplate Class

B.1 Code for the SingleSelectionTemplate Class B-1

Index

ORACLE

viii

Preface

Audience

Oracle OLAP Java API Developer's Guide introduces Java programmers to the Oracle
OLAP Java API, which is the Java application programming interface for Oracle
OLAP. Through Oracle OLAP, the OLAP Java API provides access to data stored

in an Oracle database, particularly data in an analytic workspace. The OLAP Java
API capabilities for creating and maintaining analytic workspaces, and for querying,
manipulating, and presenting data are particularly suited to applications that perform
online analytical processing (OLAP) operations.

The preface contains these topics:

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Oracle OLAP Java API Developer's Guide is intended for Java programmers who are
responsible for creating applications that do one or more of the following:

* Implement an Oracle OLAP metadata model.
» Define, build, and maintain analytic workspaces.
e Perform analysis using Oracle OLAP.

To use this manual, you should be familiar with Java, relational database management
systems, data warehousing, OLAP concepts, and Oracle OLAP.

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. cont pl s/ t opi ¢/ | ookup?
ct x=acc&i d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=accé& d=i nf o or visit ht t p: // www. or acl e. com pl s/ t opi ¢/ | ookup?
ct x=accé&i d=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more information, see these Oracle resources:

* QOracle OLAP Java API Reference
e QOracle OLAP User's Guide
* Oracle OLAP DML Reference

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE X

Changes in This Release for Oracle OLAP
Java API Developer's Guide

No changes have been made to the Oracle OLAP Java API since Oracle Database
12c, Release 1 (12.1). For changes in that release, see the following topic.

Changes in Oracle Database 12¢ Release 1 (12.1)

The following are changes in Oracle OLAP Java API Developer's Guide for Oracle
Database 12c Release 1 (12.1).

Desupported Features

Some features previously described in this document are desupported in Oracle

Database 12c¢ Release 1 (12.1). See Oracle Database Upgrade Guide for information

on desupported features.

ORACLE

Xi

Introduction to the OLAP Java API

This chapter introduces the Oracle OLAP Java application programming interface
(API). The chapter includes the following topics:

* OLAP Java API Overview

e Accessing Data Through the OLAP Java API

e Sample Schema for OLAP Java API Examples

e Tasks That an OLAP Java API Application Performs

1.1 OLAP Java API Overview

The Oracle OLAP Java APl is an application programming interface that provides
access to the online analytic processing (OLAP) technology in Oracle Database with
the OLAP option. This topic lists operations that an OLAP Java API client application
can perform, describes the classes in the OLAP Java API, describes the objects

in a dimensional data model, and discusses organizing data for online analytical
processing.

For a description of the advantages of OLAP technology, see Oracle OLAP User's

Guide. That document describes the capabilities that Oracle OLAP provides for the
analysis of multidimensional data by business intelligence and advanced analytical
applications. It describes in depth the dimensional data model, and it discusses the
database administration and management tasks related to Oracle OLAP.

1.1.1 What the OLAP Java API Can Do

ORACLE

Using the OLAP Java API, your can develop client applications that do the following
operations.

» Establish one or more user sessions in a JDBC connection to an Oracle Database
instance. Multiple user sessions can share the same connection and the same
cache of metadata objects.

* Manage OLAP transactions with the database.

* Implement a dimensional data model using OLAP metadata objects.
» Create and maintain analytic workspaces.

» Create logical metadata objects and map them to relational sources.

» Deploy the metadata objects as an analytic workspace or as relational tables and
views and commit the objects to the database.

* Explore the metadata to discover the data that is available for viewing or for
analysis.

« Construct analytical queries of the multidimensional data. Enable end users to
create queries that specify and manipulate the data according to the needs of the
user (for example, selecting, aggregating, and calculating data).

1-1

Chapter 1
OLAP Java API Overview

Modify queries, rather than totally redefine them, as application users refine their

analyses.

Retrieve query results that are structured for display in a multidimensional format.

For more information on some of these operations, see "Tasks That an OLAP Java

API Application Performs".

1.1.2 Describing the Classes in the OLAP Java API

The OLAP Java API has classes that represent the following types of objects.

ORACLE

User sessions
Transactions

Metadata objects

Build items, processes, specifications, and commands

Queries

Cursors that retrieve the data of a query

Expressions that specify data objects, such as a column in a relational table or
view, or that specify a function or command that operates on data

Table 1-1 lists packages that contain the majority of the OLAP Java API classes.
These packages are under the oracl e. ol api package. The table contains brief
descriptions of the package contents.

Table 1-1 Packages of the OLAP Java API under oracle.olapi

Package

Description

dat a. cur sor

dat a. source

met adat a

met adat a. depl oynent
met adat a. mappi ng
met adat a. ndm

resource

session

Contains classes that represent cursor managers and cursors
that retrieve the data specified by a Sour ce object. For
information on Cur sor objects, see Understanding Cursor
Classes and Concepts and Retrieving Query Results.

Contains classes that represent data sources and cursor
specifications. You use Sour ce objects to create queries of
the data store. With the Tenpl at e class you can incrementally
build a Sour ce object that represents a query that you can
dynamically modify. For information on Sour ce objects, see
Understanding Source Objects and Making Queries Using
Source Methods. For information on Tenpl at e objects, see
Creating Dynamic Queries.

Contains classes that represent metadata objects, classes that
map the metadata objects to relational data sources, and classes
that deploy the metadata objects in an analytic workspace or

in relational database structures. For a description of these
packages, see Understanding OLAP Java API Metadata. For
information on using the classes in these packages, see
Discovering Metadata and Creating Metadata and Analytic
Workspaces.

Contains classes that support the internationalization of
messages for Except i on classes.

Contains a class that represents a session in a connection to an
Oracle database.

1-2

Chapter 1
OLAP Java API Overview

Table 1-1 (Cont.) Packages of the OLAP Java API under oracle.olapi

__|
Package Description

synt ax Contains classes that represent the items and commands that
specify how Oracle OLAP builds analytic workspace objects
and classes that implement a syntax for creating SQL-like
expressions. You use Expr essi on objects in mapping metadata
objects to relational data sources such as columns in a table or
a view. You also use Expr essi on objects to specify calculations
and analytical operations for some metadata objects.

transaction Contains classes that represent transactions with Oracle OLAP
in an Oracle Database instance. You use Tr ansact i on objects
to commit changes to the database. For information on
Transact i on objects, see Using a TransactionProvider.

The OLAP Java API also has packages organized under the or acl e. express
package. These packages date from the earliest versions of the API. The classes

that remain in these packages are mostly Except i on classes for exceptions that occur
during interactions between Oracle OLAP and a client application.

For information on obtaining the OLAP Java API software and on the requirements for
using it to develop applications, see Setting Up the Development Environment.

1.1.3 Describing the Dimensional Data Model

ORACLE

Data warehousing and OLAP applications are based on a multidimensional view of
data. This view is implemented in a dimensional data model that includes the following
dimensional objects.

Cubes

Cubes are containers for measures that have the same set of dimensions. A cube
usually corresponds to a single relational fact table or view. The measures of a

cube contain facts and the dimensions give shape to the fact data. Typically, the
dimensions form the edges of the cube and the measure data is the body of the cube.
For example, you could organize data on product units sold into a cube whose edges
contain values for members from time, product, customer, and channel dimensions
and whose body contains values from a measure of the quantity of units sold and a
measure of sales amounts.

The OLAP concept of a cube edge is not represented by a metadata object in the
OLAP Java API, but edges are often incorporated into the design of applications that
use the OLAP Java API. Each edge contains values of members from one or more
dimensions. Although there is no limit to the number of edges on a cube, data is often
organized for display purposes along three edges, which are referred to as the row
edge, column edge, and page edge.

Measures

Measures contain fact data in a cube. The measure values are organized and
identified by dimensions. Measures are usually multidimensional. Each measure
value is identified by a unique set of dimension members. This set of dimension
members is called a tuple.

1-3

ORACLE

Chapter 1
OLAP Java API Overview

Dimensions

Dimensions contain lists of unique values that identify and categorize data in a
measure. Commonly-used dimensions are customers, products, and times. Typically,
a dimension has one or more hierarchies that organize the dimension members into
parent-child relationships.

By specifying dimension members, measures, and calculations to perform on the
data, end users formulate business questions and get answers to their queries. For
example, using a time dimension that categorizes data by month, a product dimension
that categorizes data by unit item, and a measure that contains data for the quantities
of product units sold by month, you can formulate a query that asks if sales of a
product unit were higher in January or in June.

Hierarchies

Hierarchies are components of a dimension that organize dimension members into
parent-child relationships. Typically, in the user interface of a client application, an end
user can expand or collapse a hierarchy by drilling down or up among the parents and
children. The measure values for the parent dimension members are aggregations of
the values of the children.

A dimension can have more than one hierarchy. For example, a time dimension
could have a calendar year hierarchy and a fiscal year hierarchy. A hierarchy can be
level-based or value-based.

In a level-based hierarchy, a parent must be in a higher level than the children of
that parent. In a cube, the measure values for the parents are typically aggregated
from the values of the children. For example, a time dimension might have levels for
year, quarter, and month. The month level contains the base data, which is the most
detailed data. The measure value for a quarter is an aggregation of the values of

the months that are the children of the quarter and the measure value for a year is
the aggregation of the quarters that are children of the year. Typically each level is
mapped to a different column in the relational dimension table.

In a value-based hierarchy, the parent and the child dimension members typically
come from the same column in the relational table. Another column identifies the
parent of a member. For example, a value hierarchy could contain all employees of
a company and identify the manager for each employee that has one. All employees,
including managers, would come from the same column. Another column would
contain the managers of the employees.

Levels

Levels are components of a level-based hierarchy. A level can be associated with
more than one hierarchy. A dimension member can belong to only one level.

A level typically corresponds to a column in a dimension table or view. The base level
is the primary key.

Attributes

Attributes contain information related to the members of a dimension. An end user
can use an attribute to select data. For example, an end user might select a set
of products by using an attribute that has a descriptive name of each product. An
attribute is contained by a dimension.

Queries

A query is a specification for a particular set of data. The term query in the OLAP
Java API refers to a Sour ce object that specifies a set of data and can include
aggregations, calculations, or other operations to perform using the data. The data
and the operations on it define the result set of the query. In this documentation, the
general term query refers to a Sour ce object.

1-4

Chapter 1
Accessing Data Through the OLAP Java API

The API has a Query class in the or acl e. ol api . synt ax package. A Query represents
a multirow, multicolumn result set that is similar to a relational table, a SQL SELECT
statement, or an OLAP function. You use a Query object in mapping a dimension or
measure to a relational table or view.

1.1.4 Implementing the Dimensional Data Model

In the OLAP Java API, the dimensional data objects are represented

by Multidimensional Model (MDM) classes. These classes are in

the oracl e. ol api . net adat a. mimpackage. Related classes are in the

oracl e. ol api . met adat a package and the other packages under it. For detailed
information about those classes, see Understanding OLAP Java API Metadata.

1.1.5 Organizing the Data for OLAP

The OLAP Java API makes it possible for Java applications (including applets) to
access data that resides in an Oracle data warehouse. A data warehouse is a
relational database that is designed for query and analysis, rather than for transaction
processing. Warehouse data often conforms to a star schema, which is a dimensional
data model for a relational database. A star schema consists of one or more fact
tables and one or more dimension tables. The fact tables have columns that contain
foreign keys to the dimension tables. Typically, a data warehouse is created from a
transaction processing database by an extraction transformation transport (ETT) tool.

For the data in a data warehouse to be accessible to an OLAP Java API application,

a database administrator must ensure that the data warehouse is configured according
to an organization that is supported by Oracle OLAP. The star schema is one such
organization, but not the only one.

Once the data is organized in the warehouse, you can use an OLAP Java

API application to design an OLAP dimensional data model of cubes, measures,
dimensions, and so on, and to create the logical OLAP metadata objects that
implement the model. You map the metadata objects to data in the warehouse and
build an analytic workspace. Building the analytic workspace populates the OLAP
views and other storage structures with the data that the OLAP metadata objects
represent. You can also use Analytic Workspace Manager to do the same tasks.

An OLAP Java API application can get the OLAP metadata objects created either by
Analytic Workspace Manager or through the OLAP Java API. It can use the metadata
objects to create queries that operate on the data in the warehouse.

The collection of warehouse data in an analytic workspace is the data store to which
the OLAP Java API gives access. Of course, the scope of the data that a user has
access to is limited by the privileges granted to the user by the database administrator.

In addition to ensuring that data and metadata have been prepared appropriately, you
must ensure that application users can make a JDBC connection to the data store and
that users have database privileges that give them access to the data. For information
about establishing a connection, see Discovering Metadata.

1.2 Accessing Data Through the OLAP Java API

Oracle OLAP metadata objects organize and describe the data that is available to a
client application. The metadata objects contain other information, as well, such as
the data type of the data. However, you cannot retrieve data directly from a metadata

ORACLE 1-5

Chapter 1
Sample Schema for OLAP Java APl Examples

object. To specify the data that you want, you must create a query. In specifying the
data, you usually must specify one or more dimension member values. To retrieve the
specified data, you create a Cur sor . This topic briefly describes those actions.

Another way that you can query the data contained in OLAP metadata objects
is through SQL queries of the views that Oracle OLAP creates for the metadata
objects. For information about querying these views, see "Using OLAP Views" in
Understanding OLAP Java API Metadata.

1.2.1 Creating Queries

Queries are represented by or acl e. ol api . dat a. sour ce. Sour ce objects. You get a
Sour ce from a metadata object and use that Sour ce object in specifying the data that
you want to get. Sour ce classes have methods for selecting and performing operations
on the data. You can use the methods to manipulate data in any way that the user
requires. For information about Sour ce objects, see Understanding Source Objects
and Making Queries Using Source Methods.

1.2.2 Specifying Dimension Members

The members of an Oracle OLAP dimension are usually organized into one or more
hierarchies. Some hierarchies have parent-child relationships based on levels and
some have those relationships based on values. The value of each dimension member
must be unique.

The OLAP Java API uses a three-part format to uniquely identify a dimension member.
The format contains the hierarchy, the level, and the value of the dimension member,
and thereby identifies a unique value in the dimension. The first part of a unique value
is the name of the hierarchy object, the second part is the name of the level object,
and the third part is the value of the member in the level. The parts of the unique

value are separated by a value separation string, which by default is double colons

(: ;). The following is an example of a unigue member value of a level named YEAR in a
hierarchy named CALENDAR_YEAR in a dimension named Tl ME_AW.

CALENDAR_YEAR: : YEAR: : CY2001

The third part of a unique value is the local value. The local value in the preceding
example identifies the calendar year 2001.

1.2.3 Creating Cursors

To retrieve the data specified by a Sour ce, you create an

oracl e. ol api . data. cursor. Cursor for that Sour ce. You then use this Cur sor to
request and retrieve the data from the data store. You can specify the amount of

data that the Cur sor retrieves in each fetch operation (for example, enough to fill a
40-cell table in the user interface). Oracle OLAP then efficiently manages the timing,
sizing, and caching of the data blocks that it retrieves for your application, so that you
do not need to do so. For information about Cur sor objects, see Understanding Cursor
Classes and Concepts and Retrieving Query Results.

1.3 Sample Schema for OLAP Java API Examples

The examples of OLAP Java API code in this documentation are excerpts from
a set of example programs that are available on the Oracle Technology Network

ORACLE 1-6

ORACLE

Chapter 1
Sample Schema for OLAP Java API Examples

(OTN) website. One example, Cr eat eAndBui | dAW j ava, has methods that create and
build an analytic workspace. Another example, Speci f yAWal ues, calls the methods
of Cr eat eAndBui | dAW j ava and specifies values, such as names for the metadata
objects and names of columns of relational tables for mapping the metadata objects
to data sources. The analytic workspace produced by these examples is named
GLOBAL_AW. Other examples query that analytic workspace. The metadata objects

in the analytic workspace are mapped to columns in relational tables that are in the
Global schema.

From the OTN website, you can download a file that contains SQL scripts that create
the Global schema and a file that contains the example programs. The OTN website is
athttp://ww. oracl e.com technet wor k/ dat abase/ opti ons/ ol ap/ i ndex. htni .

To get either file, select Sample Code and Schemas in the Download section of the
web page. To get the sample schema, select Global Schema 11g. To get the example
programs, select Example Programs for Documentation and then select Download
the Example Programs for 11g Release 2 (11.2) to download the compressed file
that contains the examples.

The example programs are in a package structure that you can easily add

to your development environment. The classes include a base class that the
example program classes extend, and utility classes that they use. The base

class is BaseExanpl ellg. j ava. The utility classes include Cont ext 11g. j ava and
CursorPrintWiter.java. The Context11g.java class has methods that create

a connection to an Oracle Database instance, that store metadata objects,

that return the stored metadata objects, and that create Cur sor objects. The
CursorPrintWiter.javaclassisaPrintWiter that has methods that display the
contents of Cur sor objects.

The OLAP metadata objects are created and built by the Cr eat eAndBui | dAW j ava and
the Speci f yAW/al ues programs. Those metadata objects include the following:

e GLOBAL_AWJ, which is the analytic workspace that contains the other objects.

« PRODUCT_AWJ, which is a dimension for products. It has one hierarchy
named PRODUCT_PRIMARY. The lowest level of the hierarchy has product item
identifiers and the higher levels have product family, class, and total products
identifiers.

e CUSTOMER_AWJ, which is a dimension for customers. It has two hierarchies
named SHIPMENTS and MARKETS. The lowest level of each hierarchy
has customer identifiers and higher levels have warehouse, region, and
total customers, and account, market segment, and total market identifiers,
respectively.

e TIME_AWJ, which is a dimension for time values. It has a hierarchy named
CALENDAR_YEAR. The lowest level has month identifiers, and the other levels
have quarter and year identifiers.

e CHANNEL_AWJ, which is a dimension for sales channels. It has one hierarchy
named CHANNEL_PRIMARY. The lowest level has sales channel identifiers and
the higher level has the total channel identifier.

« UNITS_CUBE_AWSJ, which is a cube that contains the measures COST, SALES,
and UNITS. COST has values for the costs of product units. SALES has the
dollar amounts for the sales of product units. UNITS has values for the quantities
of product units sold. The cube is dimensioned by all four dimensions. The
aggregation method for the cube is SUM in which each the value for each parent is
the sum of the values of the children of the parent.

1-7

http://www.oracle.com/technetwork/database/options/olap/index.html

Chapter 1
Tasks That an OLAP Java API Application Performs

PRICE_CUBE_AWJ, which is a cube that contains the measures UNIT_COST and
UNIT_PRICE. UNIT_COST has the costs of the units. UNIT_PRICE has the prices
of the units. The cube is dimensioned by the PRODUCT_AWJ and TIME_AWJ
dimensions. The aggregation method for the cube is AVG, in which the value for
each parent is the average of the values of the children of the parent.

For an example of a program that discovers the OLAP metadata for the analytic
workspace, see Discovering Metadata.

1.4 Tasks That an OLAP Java API Application Performs

ORACLE

A client application that uses the OLAP Java API typically performs the following tasks:

1. Connects to the data store and creates a Dat aPr ovi der and a User Sessi on.
2. Creates or discovers metadata objects.

3. Deploys, maps, and builds metadata objects, as needed.

4. Specifies queries that select and manipulate data.

5. Retrieves query results.

The rest of this topic briefly describes these tasks, and the rest of this guide provides
detailed information about how to accomplish them.

Task 1: Connect to the Data Store and Create a DataProvider and UserSession
You connect to the data store by identifying some information about the target Oracle
Database instance and specifying this information in a JDBC connection method.
Having established a connection, you create a Dat aPr ovi der and use it and the
connection to create a User Sessi on. For more information about connecting and
creating a Dat aProvi der and User Sessi on, see "Connecting to Oracle OLAP" in
Discovering Metadata.

Task 2: Create or Discover Metadata Objects

You use the Dat aPr ovi der to get an Min\et adat aPr ovi der. The

Mimvet adat aPr ovi der gives access to all of the metadata objects in the data store.
You next obtain the MinRoot Schema object by calling the get Root Schema method of the
Mimvet dat aPr ovi der . The MinRoot Schena object contains all of the OLAP metadata
objects in the database. From the MinRoot Schenma, you get the MinDat abaseSchema
objects for the schemas that the current user has permission to access. An

MinDat abaseSchenma represents a named Oracle Database user as returned by the
SQL statement SELECT usernane FROM al | _users.

From an MinDat abaseSchenm, you can discover the existing metadata objects

that are owned by the schema or you can create new ones. Methods such as

get Measur es and get Di mensi ons get all of the measures or dimensions owned by the
MinDat abaseSchema. Methods such as fi ndOr Cr eat eAWand fi ndOr Cr eat eCube get an
analytic workspace or cube, if it exists, or create one if it does not already exist.

From a top-level metadata object contained by the MinDat abaseSchens, such as an
analytic workspace, cube, or dimension, you can get the objects that it contains.

For example, from an MinPri mar yDi mensi on, you can get the hierarchies, levels, and
attributes that are associated with it. Having determined the metadata objects that are
available to the user, you can present relevant lists of objects to the user for data
selection and manipulation.

1-8

ORACLE

Chapter 1
Tasks That an OLAP Java API Application Performs

For a description of the metadata objects, see Understanding OLAP Java API
Metadata. For information about how you can discover the available metadata, see
Discovering Metadata.

Task 3: Deploy, Map, and Build Objects

If you create a new MinCube or MinPri mar yDi mensi on, you must deploy it as

an analytic workspace object or as a relational OLAP (Rolap) object. To deploy

a cube, you call an MinCube method such as fi ndOr Cr eat eAWCubeOr gani zat i on.
To deploy a di mensi on, you call an MinPr i mar yDi mensi on method such as
findOr Creat eAWPr i mar yDi mensi onOr gani zat i on.

If you create a new metadata object that represents data, you must specify an
Expr essi on that maps the metadata object to a relational source table or view, or
that Oracle OLAP uses to generate the data. For objects that are contained by an
analytic workspace, you can build the metadata objects after mapping them. For
information on creating metadata, deploying, mapping, and building metadata objects,
see Creating Metadata and Analytic Workspaces.

Task 4: Select and Calculate Data Through Queries

An OLAP Java API application can construct queries against the data store. A typical
application user interface provides ways for the user to select data and to specify

the operations to perform using the data. Then, the data manipulation code translates
these instructions into queries against the data store. The queries can be as simple
as a selection of dimension members, or they can be complex, including several
aggregations and calculations involving the measure values that are specified by
selections of dimension members.

The OLAP Java API object that represents a query is a Sour ce. Metadata objects
that represent data are extensions of the MinfSour ce class. From an MinSour ce,

such as an Mimveasur e or an MinPri mar yDi mensi on, you can get a Sour ce object.
With the methods of a Sour ce object, you can produce other Sour ce objects that
specify a selection of the elements of the Sour ce, or that specify calculations or other
operations to perform on the values of a Sour ce.

If you are implementing a simple user interface, then you might use only the methods
of a Sour ce object to select and manipulate the data that users specify in the
interface. However, if you want to offer your users multistep selection procedures
and the ability to modify queries or undo individual steps in their selections, then you
should design and implement Tenpl at e classes. Within the code for each Tenpl at e,
you use the methods of the Sour ce classes, but the Tenpl at e classes themselves
allow you to dynamically modify and refine even the most complex query. In addition,
you can write general-purpose Tenpl at e classes and reuse them in various parts of
your application.

For information about working with Sour ce objects, see Understanding Source
Objects. For information about working with Tenpl at e objects, see Creating Dynamic
Queries.

Task 5: Retrieve Query Results

When users of an OLAP Java API application are selecting, calculating, combining,
and generally manipulating data, they also want to see the results of their work. This
means that the application must retrieve the result sets of queries from the data store
and display the data in multidimensional form. To retrieve a result set for a query
through the OLAP Java API, you create a Cur sor for the Sour ce that specifies the
query.

You can also get the SQL that Oracle OLAP generates for a query. To do so,

you create a SQLCur sor Manager for the Sour ce instead of creating a Cur sor. The

1-9

ORACLE

Chapter 1
Tasks That an OLAP Java API Application Performs

gener at eSQL method of the SQLCur sor Manager returns the SQL specified by the

Sour ce. You can then retrieve the data by means outside of the OLAP Java API.
Because the OLAP Java API was designed to deal with a multidimensional view of
data, a Sour ce can have a multidimensional result set. For example, a Sour ce can
represent an Mimveasur e that is dimensioned by four MinPr i mar yDi nensi on objects.
Each MinPri mar yDi mensi on has an associated Sour ce. You can create a query by
joining the Sour ce objects for the dimensions to the Sour ce for the measure. The
resulting query has the Sour ce for the measure as the base and it has the Sour ce
objects for the dimensions as outputs.

A Cursor for a query Sour ce has the same structure as the Sour ce. For example, the
Cur sor for the Sour ce just mentioned has base values that are the measure data.
The Cur sor also has four outputs. The values of the outputs are those of the Sour ce
objects for the dimensions.

To retrieve all of the items of data through a Cur sor, you can loop through the
multidimensional Cur sor structure. This design is well adapted to the requirements of
standard user interface objects for painting the computer screen. It is especially well
adapted to the display of data in multidimensional format.

For more information about using Sour ce objects to specify a query, see
Understanding Source Objects. For more information about using Cur sor objects to
retrieve data, see Understanding Cursor Classes and Concepts. For more information
about the SQLCur sor Manager class, see Oracle OLAP Java API Reference.

1-10

Understanding OLAP Java API Metadata

This chapter describes the classes in the Oracle OLAP Java API that represent OLAP
dimensional and relational metadata objects. It also describes the classes that provide
access to the metadata objects and to data sources, or that contain information about
the metadata objects. This chapter includes the following topics:

* Overview of OLAP Java AP| Metadata Classes

» ldentifying, Describing, and Classifying Metadata Objects
e Providing Metadata Objects

e Providing Access to Data Sources

For more information on getting existing metadata objects, see Discovering Metadata.
For more information on creating metadata objects, see Creating Metadata and
Analytic Workspaces.

2.1 Overview of OLAP Java APl Metadata Classes

ORACLE

Introduction to the OLAP Java API describes the OLAP dimensional data model and
briefly mentions some of the OLAP Java API classes that implement that model.
Those classes are in the or acl e. ol api . met adat a packages. Using those classes, you
can do the following tasks.

e Gain access to the available metadata objects

» Create new metadata objects

» Deploy metadata objects in an analytic workspace or as relational objects
* Map metadata objects to data sources

» Export metadata objects to XML or import them from XML

» Create Sour ce objects to query the data

Figure 2-1 shows the or acl e. ol api . net adat a packages.

2-1

Chapter 2
Overview of OLAP Java API Metadata Classes

Figure 2-1 The oracle.olapi.metadata Packages

oracle.olapi.metadata

deployment mapping mdm

The packages are the following:

e oracle.ol api . net adat a, which has interfaces and abstract classes that specify
the most basic characteristics of metadata objects and metadata providers.

e oracle. ol api . net adat a. mdm which has classes that implement the MDM
(multidimensional model) metadata model. This package has classes that
represent the metadata objects, classes that provide access to those objects, and
classes that contain descriptive information about the objects.

e oracle.ol api . met adat a. depl oyment , which has classes that specify the
organization of a metadata object as an analytic workspace object or as a
relational object.

e oracle.ol api . met adat a. mappi ng, which has classes that map a metadata object
to relational data sources.

Some of the classes in the or acl e. ol api . net adat a. mimpackage directly correspond
to OLAP dimensional metadata objects. Table 2-1 presents some of these
correspondences.

Table 2-1 Corresponding Dimensional and MDM Objects

Dimensional Metadata Objects MDM Metadata Objects

Cube MinCube

Measure MinBaseMeasur e

Calculated measure MinDer i vedMeasur e

Measure folder MInOr gani zat i onal Schema

Dimension MinTTi meDi mensi on and Mint andar dDi mensi on
Hierarchy MinLevel Hi er ar chy and MinVal ueHi er ar chy
Level MinDi mensi onLevel and MinHi er ar chyLevel
Attribute MinBaseAttri but e and MinDeri vedAttribute

ORACLE 2-2

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

Other classes in the package correspond to relational objects. Table 2-2 shows those
correspondences.

Table 2-2 Corresponding Relational and MDM Objects

Relational Objects MDM Metadata Objects
Schema MinDat abaseSchema
Table MiniTabl e

Table column MinCol umm

2.2 |dentifying, Describing, and Classifying Metadata

Objects

Most OLAP Java APl metadata objects have a unique identifier (ID), a name, and an
owner or a containing object. You can also associate descriptions and classifications to
most metadata objects.

Most metadata classes extend the abstract

oracl e. ol api . met adat a. BaseMet adat albj ect class. A BaseMet adat albj ect can have
a name and an ID. You can get most metadata objects by name. The ID is used
internally by Oracle OLAP, but an application can also use the ID to get some
metadata objects.

A BaselMet adat aCbj ect also has an owner, which is returned by the get Oaner

method. For most metadata objects, the owner is an MinDat abaseSchema. For the
MinRoot Schema and Mimveasur eDi mensi on objects, the owner is the root schema. For
an Minvi ewCol umrm, which is not a subclass of BaseMet adat albj ect , the get Oaner
method returns the owning implementation of the MimVi ewCol utmOaner interface,

such as an MinPr i mar yDi mensi on, an MinBaseAttri but e, or an Mimveasur e. An

MinVi ewCol unn represents a column in an OLAP view. For information on OLAP views,
see "Using OLAP Views".

Some BaseMet adat aCbj ect objects are contained by the metadata object that created
them. For example, an MinBaseMeasur e is contained by the MinCube that created it.
You can get the container for a metadata object by calling the get Cont ai nedByhj ect
method.

The Mimbj ect class, which is an abstract subclass of BaseMet adat aCbj ect , adds
associations with descriptive objects and classifications. Typically, a descriptive object
contains a hame or descriptive text that you associate with the metadata object itself.
Applications often use a descriptive object for display purposes in a user interface.

A classification is a string value that your application assigns to the metadata object.
Your application handles the classification for whatever purpose you want.

2.2.1 ldentifying Objects

ORACLE

You can identify a BaseMet adat aCbj ect object by name and by ID. Namespaces
identify the type and the format of legacy metadata objects.

2-3

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

2.2.1.1 Getting and Setting Names

Most metadata objects have a name that you can get by calling the get Nanme method of
the object. For some objects, you can assign a name when you create the object. For
example, an or acl e. ol api . net adat a. depl oynment . AWobject represents an analytic
workspace. When you create an AWby calling the fi ndOr Cr eat eAWmethod of an
MinDat abaseSchenma, you use the publ i cName parameter of the method to specify a
name for the AWobject that the method returns.

For some objects, you can use the set Name method to change the name of an existing
object. For example, you can change the name of an Mintt andar dDi mensi on by calling
the set Nane method of the dimension object. The new name does not take effect until
you commit the root Tr ansact i on of the session. After you call set Name, but before you
commit the root Transact i on, the get NewNane method returns the new name while the
get Name method returns the existing name. For more information on getting objects by
name, see "About Creating a Metadata Object or a Query in a Transaction”

You can get some objects by hame from an MinDat abaseSchena. For more information
on getting objects by name, see "Representing Schemas".

For use in displaying names or descriptions in a user interface, or for any purpose you
want, you can associate any number of names and descriptions with an Minbj ect

by using the MinDescr i pti on class. For information on using that class, see "Using
Descriptions".

2.2.1.2 Describing Unique Identifiers

Most metadata objects have a unique identifier (ID). The identifier has one of the
following forms.

e obj ect Nare
e owner Nane. obj ect Nare
e owner Nane. cont ai ner Nane. obj ect Narre

For example, for the MinDat abaseSchena that represents the schema for the

user GLOBAL, the identifier returned by the get | D method is GLOBAL. For

an MinPr i mar yDi mensi on named PRODUCT_AWJ, the get | D method returns
GLOBAL. PRODUCT_AW and for an MinLevel Hi er ar chy of that dimension named
PRODUCT_PRIMARY, the method returns GLOBAL. PRODUCT_AW . PRODUCT_PRI MARY.

The ID of a metadata object is persistent. However, if the name or the owner of
a metadata object changes, then the ID changes as well. For more information on
getting objects by ID, see "Getting Metadata Objects by ID".

For a legacy 10g metadata object, the first part of the identifier is a namespace. The
namespace is followed by the namespace delimiter, which is two periods. An example
of the identifier of a 10g dimension is AWKM__DI MENSI ON. . GLOBAL. PRODUCT_AW

2.2.1.3 Supporting Legacy Metadata Objects

ORACLE

In Oracle Database, Release 11g, Oracle Database, Release 11g Oracle OLAP
supports legacy 10g OLAP Java API applications. Namespaces identify 10g metadata
objects and enable them to exist in the same session as 11g objects.

2-4

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

2.2.1.3.1 Supporting Legacy Applications

To support legacy applications that use OLAP metadata objects that were created
in 10g, the or acl e. ol api . dat a. sour ce. Dat aPr ovi der class has a metadata reader
mode. By default, the metadata reader recognizes Oracle OLAP 10g and 11g
metadata objects. You can specify a metadata reader mode with a property of
ajava.util.Properties object or with a string in the proper XML format. For
information on the modes and how to specify one, see the constructor methods of
the Dat aPr ovi der class in the Oracle OLAP Java API Reference documentation.

2.2.1.3.2 Describing Namespaces

In Oracle Database, Release 10g, an Oracle OLAP cube, dimension, or measure
folder could have the same name as a relational table or view. In Release 11g,
top-level OLAP metadata objects are stored in the Oracle Database data dictionary,
so they cannot have the same name as another relational object. A namespace
designation allows a legacy OLAP Java API 10g metadata object to exist in the

same session as 11g metadata objects. Such legacy metadata objects were created
by using classes in the or acl e. ol api . AWKM. package of the Oracle OLAP Analytic
Workspace Java API or by using CWM PL/SQL packages. For 10g and 11g objects to
exist in the same session, the metadata reader mode of the Dat aPr ovi der must be set
to ALL. The ALL mode is the default metadata reader mode. For more information on
metadata reader mode settings, see the Dat aPr ovi der class documentation in Oracle
OLAP Java API Reference.

The metadata objects for a 10g cube, dimension, and measure folder are represented
in 11g by the MinCube, MinPr i mar yDi mensi on, and MinSchena classes. An instance of
one of those classes can have a namespace associated with it, which is returned by
the get Nanespace method. For an 11g object, the namespace is null.

The 11g XML definition of a 10g object has a Nanespace attribute. For information
on exporting and importing XML definitions of metadata objects, see "Exporting and
Importing Metadata as XML Templates".

The namespace of a legacy metadata object identifies the metadata format and the
type of object. It begins with either ANKM__ or CWM_ and then has the type of object,
such as CUBE or DI MENSI ON. For example, a dimension created by using the Oracle
OLAP Analytic Workspace Java API in Oracle Database 10g, Release 2 (10.2), would
have the namespace AWKM._DI MENS| ONin 11g.

The valid namespaces are represented by static constant fields of the

Mimvet adat aPr ovi der class. The get Val i dNanespaces method of that class returns
a list of the valid namespaces, including the default namespace. You cannot create a
new namespace.

You can use the constant fields to get a legacy metadata object from an
MinDat abaseSchena. For example, the following code gets the PRODUCT_AW
dimension. In the code, minDBSchema is the MinDat abaseSchema for the GLOBAL user.

Minst andar dDi mrensi on ndnPr odAWDI m =
mdnDBSchena. f i ndOr Cr eat eSt andar dDi mensi on(" PRODUCT_AW ,
Mimvet adat aPr ovi der . AWKM__DI MENSI ON_NAMESPACE) ;

ORACLE 2-5

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

In the ALL metadata reader mode, you get an existing 10g metadata object but you
cannot create a new one. If the legacy metadata object does not exist, the method
returns an 11g object that has the specified name.

2.2.2 Using Descriptions

ORACLE

With an MinDescri pti on object, you can associate descriptive information with an
Minhj ect object.

An MinDescri pti onType object represents the type of description of an

MinDescri pti on. You can use MinDescri pti on objects to display names, descriptions,
or other information for a metadata object in a user interface. MinDescri pti on objects
are created, assigned, and handled entirely by your application.

¢ Note:

A descriptive name that you associate with an Minbj ect through

an MimDescr i pti on is not the object name that is returned by the
Minbj ect . get Nane method. The object name is used by Oracle OLAP
to identify the object internally. A descriptive name is used only by an
application.

The OLAP Java API defines some types of descriptions. The MinDescr i pti onType
class has static methods that provide the following description types:

* Name

e Short name

* Long name

e Plural name

e Short plural name
e Long plural name
e Description

e Short description

e Long description

You get one of these defined description types by calling a method of
MinDescri pti onType. For example, the following code gets the description type object
for a long name and a long description.

MimDescri pti onType mdnLongNanmeDescr Type =

MimDescr i ptionType. get LongNameDescri ptionType();
MimDescri pti onType ndnLongDescr Descr Type =

MimDescr i ptionType. get LongDescri ptionDescriptionType();

You can create a new type of description by using a constructor method of
MinDescri pti onType. You can get the type of an MinDescri pti onType object with
the get Descri pti veType method. The first figure below shows the methods of
MinDescri pti onType.

2-6

ORACLE

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

Some of the defined description types have an associated default description type.
You change a default description type or assign a default description type for a new

or existing MinDescri pti onType by using the MinmDescri pti onType(j ava.lang. String
type, MinDescriptionType defaul t Type) constructor method. You can get the
default type of an MinDescri pti onType object with the get Descri pti veTypeDef aul t
method.

Example 2-1 Associating a Description with an MdmObject

To associate an MinDescr i pti on object with an MinmObj ect , use the

findOr CreateDescriptionorasetDescriptionmethod of the Minbj ect. The
findOr Creat eDescri pti on method returns an MinDescr i pti on object. To specify a
value for the description, use the set Val ue method of MinDescri pti on.

This example shows both ways of associating an MinDescr i pti on with an Minbj ect .
In the example, ndnPr odDi mis an Mintt andar dDi mensi on object.

MimDescri ption ndnShort NaneDescr =
mdnPr odDi m fi ndOr Cr eat eDescri pti on(
MimDescri ptionType. get Short NaneDescri ptionType(), "AVERI CAN');
mdnShor t NameDescr . set Val ue(" Product™);

mdnPr odDi m set Descri pti on(
MinDescri pti onType. get LongNaneDescri ptionType(), "Product Di mension");

This figure shows the methods of Minbj ect that use MinDescri pti on

and MinDescri pti onType objects. It also shows the MinDescri pti on and

MinDescri pti onType classes and their methods, and the associations between the
classes. An Minthj ect can have from zero to many MinDescri pti on objects. An
MinDescri pti on is associated with one MinCbj ect and one MinDescri pti onType. An
MinDescri pti onType can be associated with one or more MinDescri pti on objects.

2-7

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

Figure 2-2 MdmObject and MdmDescription Associations

MdmObject

getDescriptions() : List

addDescription(MdmDescription desc) : void
findOrCreateDescription(MdmDescriptionType type, String language) : MdmDescription
getDescription(MdmDescriptionType type) : String

getDescription(MdmDescriptionType type, String language) : String

removeDescription(MdmDescription desc) : void
setDescription(MdmDescriptionType type, String value) : void
setDescription(MdmDescriptionType type, String language, String value) : void

1

0.*

MdmDescription

MdmDescriptionType

getDescribedObject() : MdmObiject
getLanguage() : String

getName() : String

getType() : String

getValue() : String

setValue(String value) : void

*

MdmDescriptionType(java.lang.String type) : MdmDescriptionType
MdmDescriptionType(java.lang.String type,
MdmDescriptionType defaultType) :
MdmDescriptionType

getDescriptionDescriptionType() : MdmDescriptionType
getDescriptiveType() : MdmDescriptionType

getDescriptive TypeDefault() : MdmDescriptionType
getLongDescriptionDescriptionType() : MdmDescriptionType
getLongNameDescriptionType() : MdmDescriptionType
getLongPluralNameDescriptionType() : MdmDescriptionType
getNameDescriptionType() : MdmDescriptionType
getPluralNameDescriptionType() : MdmDescriptionType
getShortDescriptionDescriptionType() : MdmDescriptionType
getShortNameDescriptionType() : MdmDescriptionType
getShortPluralNameDescriptionType() : MdmDescriptionType

Versions of the OLAP Java API before 11g did not have the MinDescri pti on and
MinDescri pti onType classes. In those versions, the MinChj ect class had only the
following methods for getting and setting descriptions.

Figure 2-3 Methods for Getting and Setting Descriptions Before 11g

MdmObject

getDescription() : String
getShortDescription() : String

setShortDescription(String description) : void
setDescription(String description) : void

For backward compatibility, the OLAP Java API still supports these methods, but
implements them internally using MinDescri pti on and MinDescri pti onType objects.

ORACLE

2-8

Chapter 2
Providing Metadata Objects

2.2.3 Using Classifications

A classification is a property of an Minbj ect . You assign a classification to an

object and then use the classification as you please. For example, you could add

a classification with the value of "HIDDEN" to indicate that an application should

not display the object in the user interface. You can assign a classification to an
Minbj ect by using the addbj ect Cl assi fi cati on method of the object. You can get
the classifications with the get Qbj ect C assi fi cati ons method and remove one with
the removej ect Cl assi fi cati on method.

2.3 Providing Metadata Objects

Access to Oracle OLAP Java APl metadata objects is initially provided by an

Mimvet adat aPr ovi der and by MinSchena objects. The Mim\et adat aPr ovi der also has
the ability to import or export an XML representation of a metadata object. The
following topics describe the Mim\et adat aPr ovi der class and its uses.

* Describing Metadata Providers

* Representing Schemas

2.3.1 Describing Metadata Providers

ORACLE

Before you can get or create OLAP Java AP| metadata objects, you must first create
an Mimvet adat aPr ovi der . For information on creating an Mimvet adat aPr ovi der, see
"Creating an MdmMetadataProvider".

With the get Root Schema method of the Mimvet adat aPr ovi der, you can get the root
MinSchenma object, which is an instance of the MinRoot Schena class. The root schema
is a container for MinDat abaseSchena objects.

MinDat abaseSchema objects are owners of top-level metadata objects such as AW
MinCube, and MinPr i mar yDi mensi on objects. The top-level objects are first-class
data objects and are represented in the Oracle Database data dictionary. Because
they are in the data dictionary, these OLAP data objects are available to SQL
gueries. You create top-level metadata objects by using fi ndOr Cr eat e methods of
an MinDat abaseSchensa.

The top-level objects are the containers of objects such as Mimveasur e, MinHi er ar chy,
and MimAt t ri but e objects. You create the contained objects by using methods of the
top-level objects.

For more information on MinSchena objects, see "Representing Schemas". For
information on top-level metadata objects, see "Providing Access to Data Sources".

You can also get an existing metadata object by calling the get Met adat aCbj ect or
get Met adat aChj ect s method of the Mim\et adat aPr ovi der and providing the ID of the
metadata object.

The following topics describe getting metadata objects:

e Getting Metadata Objects by ID
e Exporting and Importing Metadata as XML Templates

2-9

Chapter 2
Providing Metadata Objects

2.3.1.1 Getting Metadata Objects by ID

Usually, you get or create metadata objects by calling fi ndOr Cr eat e methods on

the owning object. For example, you can get or create an MinCube by calling the

fi ndOr Cr eat eCube method of an MinDat abaseSchena object. However, you can also
get an existing metadata object from an Mim\et adat aPr ovi der by specifying the ID
of the object. The Mim\et adat aPr ovi der . get Met adat aCbj ect method takes a String
that is the ID of an object and returns the object. The get Met adat aCbj ect s method
takes a Li st of IDs and returns a Li st of objects.

You can store the ID of a metadata object from one session and then get the object by
that ID in another session. Of course, getting an object by a stored ID assumes that
the object still exists and that the ID of the object has not changed. For some metadata
objects, you can change the name or the owner. If the name or owner of the object
changes, then the ID of the object changes.

2.3.1.2 Exporting and Importing Metadata as XML Templates

The Mim\vet adat aPr ovi der class has many methods for exporting and importing
metadata objects to and from XML definitions of those objects. The XML definition
is a template from which Oracle OLAP can create the metadata objects defined.

You can use XML templates to transport metadata objects between Oracle Database
instances. You can exchange XML templates between Analytic Workspace Manager
and an OLAP Java API application; that is, in Analytic Workspace Manager you can
import a template that you created with an MinVet adat aPr ovi der export XML method,
and you can use an i nport XML method to import an XML template created by Analytic
Workspace Manager.

When exporting XML, you can rename objects or specify bind variables for the values
of XML attributes. You can also supply an implementation of the XMW i t er Cal | back
interface to manage some aspects of the export process. When importing XML,

you can specify an MinDat abaseSchema to own the imported objects, bind values

to replace the bind variables in the exported XML, and an implementation of the
XM_Par ser Cal | back interface to manage some aspects of the import process.

The following topics describe exporting and importing metadata objects through XML
templates.

* Exporting XML Templates
* Importing XML Templates
» Describing Bind Variables in XML Templates

2.3.1.2.1 Exporting XML Templates

ORACLE

For exporting metadata objects to XML templates, Mim\et adat aPr ovi der has many
signatures of the export Ful | XML and export | ncr enent al XM. methods. The methods
export atemplatetoajava.lang. Stringortoajava.io. Witer.

You can use an XML template produced by these methods to import metadata objects
through the i npor t XM. methods of Mim\et adat aPr ovi der . You can also use the XML
template to import metadata objects in Analytic Workspace Manager.

2-10

Chapter 2
Providing Metadata Objects

An export Ful | XM method exports the complete XML definitions for the
specified objects or for the objects that you have created or modified since a
specified or acl e. ol api . transacti on. Transacti on. For an example of using the
export Ful | XML method, see Example 4-10.

An export | ncrement al XM method exports only the XML attributes that have changed
for a metadata object since a specified Transacti on. If you specify a Li st of objects,
then the exported templates contain the XML attributes that have changed for the
objects that are in the list. The exported incremental XML includes the type and hame
of the objects in the ownership and containment hierarchy of the changed object.

The export Ful | XM. and export | ncr enent al XML methods take various combinations of
the following parameters.

e AlList of the objects to export or a Transact i on.

* AWiter to which Oracle OLAP exports the XML. If you do not specify aWiter,
then the method returns a j ava. | ang. Stri ng that contains the XML.

 Ajava.util.Mp that has metadata object references as keys and that has, as
the objects for the keys, Stri ng values that contain new names for the referenced
objects. With this Map, you can rename an object that you export. You can specify
nul | for the parameter if you do not want to rename any objects.

If you specify a Map for this r enameMap parameter, then the Oracle OLAP XML
generator renames a referenced object during the export. You can copy the
definition of an existing object this way, by renaming an object during the export of
an XML template and then importing the template.

* Abool ean that specifies whether or not to include the name of the owning object in
the exported XML.

e An optional Map that has metadata object references as keys and that has, as the
objects for the keys, St ri ng values that function like SQL bind variables. For more
information on the bind variables in this parameter, see "Describing Bind Variables
in XML Templates".

* An optional implementation of the or acl e. ol api . net adat a. XML.W i t er Cal | back
interface. With an XML.W i t er Cal | back, you can specify whether or not to exclude
an attribute or an owner name from the exported XML.

All metadata objects that share an ancestor are grouped together in the exported XML.
For any object that is not a top-level object and whose top-level container is not in the
Li st of the objects to export, the exported template contains an incremental definition
to the object and a full definition below that. This supports the export of objects such
as a calculated measure in a cube without having to export the entire cube template.

If an MinDat abaseSchena is in the Li st of objects to export, then the

exported template includes all objects within the database schema. If an

oracl e. ol api . met adat a. depl oynent . AWobject is in the Li st , then the exported
template includes all of the objects that are contained by the AW If the MinRoot Schema
is in the list, it is ignored.

2.3.1.2.2 Importing XML Templates

For importing metadata objects as XML templates, Mimvket adat aPr ovi der has several
signatures of the i nport XML method.

ORACLE 2-11

Chapter 2
Providing Metadata Objects

An i mpor t XM method imports XML definitions of objects and either creates new
objects or modifies existing objects. The i npor t XM. method take various combinations
of the following parameters.

e« Ajava.io. Reader forinput of the XML or a St ri ng that contains the XML to
import.

* An MinDat abaseSchena to contain the new or modified metadata objects.

e Abool ean, modi fyl f Exi st's, that indicates whether or not you want differences in
the imported XML definition to modify an existing object of the same name.

* An optional Map, bi ndVal ues, that contains bind variables as keys and, as the
objects for the keys, St ri ng values to replace the bind variables. For more
information on the bind values in this parameter, see "Describing Bind Variables in
XML Templates".

* An optional implementation of the or acl e. ol api . met adat a. XM_Par ser Cal | back
interface.

If the value of the nodi fyl f Exi st s parameter is t r ue and if the imported XML contains
a full definition for an object that already exists and the object definition is different
from the XML, then the method merges the new or changed elements of the object
definition with the existing definition of the object. If the value of nodi fyl f Exi sts is

fal se and if the XML contains a full definition for an object that already exists, then the
i mpor t XML method throws an exception.

With the bi ndVal ues parameter, you can specify a Map that has key/object pairs that
Oracle OLAP uses to replace bind variables when importing an XML template. A key
in the Map is a bind variable to replace and the object paired to the key is the value with
which to replace the bind variable. When you import a template, if you specify a Map
that contains bind variables as keys, then Oracle OLAP replaces a bind variable in the
imported XML with the value specified for the bind variable in the bi ndval ues Map.

You can pass an implementation of the XM_Par ser Cal | back interface to an i npor t XML
method as the par ser Cal | back parameter. With the XM_Par ser Cal | back, you can
specify how Oracle OLAP handles an error that might occur when importing XML. The
XM.11 2 Parser Cal | back interface adds methods for renaming the imported object
and for suppressing attributes of the imported object.

2.3.1.2.3 Describing Bind Variables in XML Templates

ORACLE

The export Ful | XM. and export | ncr enent al XM. methods have an optional

bi ndVari abl es parameter. This parameter is a Map that has metadata objects as
keys and Stri ng values as the objects for the keys. The St ri ng values function like
SQL bind variables. During the export of the XML, the Oracle OLAP XML generator
replaces the name of the referenced object with the bind variable.

If you provide a Map for the bi ndVari abl es parameter to an export Ful | XM or
export | ncrenent al XM method, then the XML produced by the method begins with
the following declaration.

<! DOCTYPE Met adata |

<IENTITY % BI ND_VALUES PUBLI C "OLAP BI ND VALUES" "OLAP METADATA'>
98l ND_VALUES;

1>

2-12

Chapter 2
Providing Metadata Objects

A value specified in the bi ndVari abl es map appears in the exported XML in the
format " &BV, ", where BV is the bind variable.

The bi ndVal ues parameter of an i npor t XML method specifies values that Oracle
OLAP uses to replace the bind variables when importing an XML template. When
you import a template, if you specify a Map that contains bind variables as keys, then
Oracle OLAP replaces a bind variable in the imported XML with the St ri ng specified
as the object for the bind variable key in the Map.

If you provide a Map for the bi ndVal ues parameter, then the i nXM. string that you
provide to the method must include the ! DOCTYPE Met adat a declaration and the bind
variables in the XML to import must be in the " &BV, " format.

2.3.2 Representing Schemas

Schemas are represented by the MinSchema class and the subclasses of it. An
MinSchena is owner of, or a container for, MinCube, MinDi nensi on, and other

Minbj ect objects, including other MinSchena objects. In the 10g and earlier versions
of the OLAP Java API, the MinSchema class had more than one role. The API had one
root MinSchena, an MinSchena for each measure folder, and custom MinSchena objects
that an application could create.

The 11g OLAP Java API introduced subclasses of MinSchena to separate and define
the different roles. In 11g, MinSchema remains a concrete class for compatibility with
the earlier versions and for use in 10g metadata reader modes.

In 11g, an MinSchena is an instance of one of the following subclasses of MinSchena:

e MinRoot Schema, which is a container for MinDat abaseSchena objects and is
supplied by the system.

» MinDat abaseSchemna, which represents the relational schema for a database
user and which creates and owns MinCube, MinDi nensi on, and other Minhj ect
objects. MinDat abaseSchema objects are supplied by the system.

e MInOrgani zati onal Schena, which you can use to organize measures and other
MinCr gani zat i onal Schena objects.

The following topics describe the subclasses of MinSchema.
* Representing the Root Schema
* Representing Database Schemas

* Representing Organizational Schemas

2.3.2.1 Representing the Root Schema

ORACLE

The root schema is a container for database schema objects. This top-level

schema is represented by the MinRoot Schema class. You get the MinmRoot Schema with
the get Root Schena method of the Mimvet adat aPr ovi der . From the MinRoot Schenma
you can get all of the MinDat abaseSchema objects or you can get an individual
MinDat abaseSchema by name.

The MinRoot Schema class also contains all of the MinCube, Mimveasur e, and
MinPr i mar yDi mensi on objects that are provided by the Mim\vet adat aPr ovi der, and
has methods for getting those objects. However, the Li st of objects returned by

2-13

Chapter 2
Providing Metadata Objects

those methods contains only the cubes, measures, or dimensions that the user has
permission to see.

Figure 2-4 shows the associations between an Mimvet adat aPr ovi der and the
subclasses of MinSchema.

Figure 2-4 Associations Between MdmMetadataProvider and the MdmSchema Subclasses

1 1

MdmMetadataProvider MdmRootSchema
getRootSchema
1
getDatabaseSchema
0 *\J(o 4 +| getDatabaseSchemas
addOrganizationalSchema
0.* !
MdmOrganizationalSchema —— MdmDatabaseSchema

findOrCreateOrganizationalSchema

2.3.2.2 Representing Database Schemas

ORACLE

The relational schema owned by a database user is represented by an
MinDat abaseSchena object.

The MinRoot Schema has one MinDat abaseSchenma object for each database user. An
MinDat abaseSchema has the same name as the database user. For example, the name
of the MinDat abaseSchena for the user GLOBAL is GLOBAL.

You can get one or all of the MinDat abaseSchena objects with methods of

the MinRoot Schenma. However, access to the objects that are owned by an

MinDat abaseSchena is determined by the security privileges granted to the user of
the session.

An MinDat abaseSchema is the owner of top-level OLAP metadata objects and the
objects created by them. You use an MinDat abaseSchenma to get existing metadata
objects or to create new ones. The top-level objects are the following:

o AW

e MinCube

* MimNanmedBui | dProcess

e MInOrgani zati onal Schema
* MinPrimaryDi nension

* MinTabl e

Except for an MinTTabl e, you can create new top-level objects, or get

existing ones, with the fi ndOr Cr eat e methods such as fi ndOr Cr eat eAWand
findOr Cr eat eSt andar dDi nensi on. Creating objects is described in Discovering
Metadata.

When you commit the Transact i on in which you have created top-level OLAP
metadata objects, those objects then exist in the Oracle data dictionary. They are

2-14

Chapter 2
Providing Access to Data Sources

available for use by ordinary SQL queries as well as for use by applications that use
the Oracle OLAP Java API.

Because the metadata objects exist in the Oracle data dictionary, an Oracle Database
DBA can restrict access to certain types of the metadata objects. In a client
application, you can set such restrictions by using the JDBC API to send standard
SQL GRANT and REVOKE commands through the JDBC connection for the user session.

You can get an Minirabl e, or other top-level object, with the get TopLevel Qbj ect
method. You can get all of the instances of a particular type of top-level object

with methods such as get AW, get Di mensi ons, or get Or gani zat i onal Schenas, or

you can use the get Schemaj ect s to get all of the objects owned by the

MinDat abaseSchema. You can add or remove top-level objects with methods like addAW
and r enoveSchemaQhj ect .

2.3.2.3 Representing Organizational Schemas

An OLAP measure folder organizes measures, cubes, and dimensions. A measure
folder is represented by the MInQOr gani zat i onal Schenma class. Measure folders provide
a way to differentiate among the similarly named measures. For example, a user may
have access to several schemas with measures named SALES or COSTS. You could
separate measures that have the same name into different MinQOr gani zat i onal Schena
objects. An Minr gani zat i onal Schema has methods for adding or removing cubes,
dimensions, and measures. You can nest organizational schemas, so the class also
has methods for adding and removing other MinOr gani zat i onal Schema objects.

2.4 Providing Access to Data Sources

Some of the classes in the mimpackage that represent objects that contain or
provide access to the data in the data store. Some of these classes represent OLAP
dimensional data model objects, which include cubes, measures, dimensions, levels,
hierarchies, and attributes. Other mimclasses represent relational objects such as
tables, or columns in a view or table.

Figure 2-5 shows the associations between the classes that implement dimensional
data model objects. An MinCube can contain from zero to many Mimveasur e objects.
An MimVeasur e is contained by one MinCube object. An MinCube can have from

zero to many MinPr i mar yDi mensi on objects, which are associated with it through
MinDi mensi onal i ty objects. An MinPri mar yDi nensi on can contain from zero to many
MinDi nensi onLevel objects, MinHi er ar chy objects, and MimAt t ri but e objects.

Figure 2-5 Associations of Dimensional Data Model Classes

MdmCube it MdmPrimaryDimension
1 1 1 1
0. 0..* 0. 0.
MdmMeasure MdmDimensionLevel MdmHierarchy MdmAttribute

ORACLE 2-15

Chapter 2
Providing Access to Data Sources

The classes that represent these dimensional or relational data objects are subclasses
of the MinSour ce class. Subclasses of MinSour ce have a get Sour ce method, which
returns a Sour ce object. You use Sour ce objects to define a query of the data. You
then use Cur sor objects to retrieve the data. For more information about working with
Sour ce and Cur sor objects, see Understanding Source Objects and Understanding
Cursor Classes and Concepts.

You can also use SQL to query the views that Oracle OLAP automatically generates
for the cubes, dimensions, and hierarchies. For information on querying these views,
see "Getting Dimension and Hierarchy View and View Column Names".

The following topics describe the classes that provide access to data sources.
* Representing Cubes and Measures

* Representing Dimensions, Levels, and Hierarchies

* Representing Dimension Attributes

e Using OLAP Views

2.4.1 Representing Cubes and Measures

Cubes are the physical implementation of the dimensional model. They organize
measures that have the same set of dimensions. Cubes and measures are
dimensioned objects; the dimensions associated with a cube identify and categorize
the data of the measures. The following topics describe cubes and measures.

e Representing Cubes

e Representing Measures

2.4.1.1 Representing Cubes

ORACLE

An OLAP cube is represented by the MinCube class. An MinCube is a container for
Mimveasur e objects that are dimensioned by the same set of MinPr i nar yDi nensi on
objects. An application creates MinBaseMeasur e or MinDer i vedMeasur e objects with
the fi ndOr Cr eat eBaseMeasur e and fi ndOr Cr eat eDer i vedMeasur e methods of an
MinCube. It associates each of the dimensions of the measures with the cube by using
the addDi nensi on method.

An MinCube usually corresponds to a single fact table or view. To associate the table or
view with the cube, you use Query and CubeMap objects. You get the Query for the table
or view and then associate the Query with the CubeMap by using the set Query method
of the CubeMap.

The CubeMap contains Measur eMap and CubeDi nensi onal i t yMap objects that map the
measures and dimensions of the cube to data sources. With the Measur eMap, you
specify an MinBaseMeasur e and an Expr essi on that identifies the column in the fact
table or view that contains the base data for the measure.

To map the dimensions of the cube you get the MinDi nensi onal i ty objects of the
cube. You create a CubeDi nensi onal i t yMap for each MinDi mensi onal i ty. You then
specify an Expr essi on for the CubeDi nensi onal i t yMap that identifies the foreign
key column for the dimension in the fact table or view. If you want to specify

a dimension column other than the column for the leaf-level dimension members,
then you must specify a join Condi t i on with the set Joi nCondi ti on method of the
CubeDi mensi onal i t yMap.

2-16

Chapter 2
Providing Access to Data Sources

An MinCube has an associated CubeQOr gani zat i on. The CubeQOr gani zat i on deploys the
cube in an analytic workspace or as a relational database object. To deploy a cube

to an analytic workspace, you call the fi ndOr Cr eat eAWCubeOr gani zat i on method of
the MinCube. You use the AWCubeOr gani zat i on returned by that method to specify
characteristics of the cube, such as how Oracle OLAP builds the cube, how the cube
stores measure data, and whether the database creates materialized views for the
cube. For information on the AWCubeOr gani zat i on class, see Oracle OLAP Java API
Reference.

If the AWCubeOr gani zat i on has a materialized view option of REWRI TE_W_CPTI ON,
then Oracle OLAP creates a materialized view for the cube that can be

used by the database query rewrite system. If the materialized view option is

REVRI TE_W TH_ATTRI BUTES_W_OPTI ON, then Oracle OLAP includes in the rewrite
materialized view the dimension attributes for which the i sPopul at eLi neage method
returns t r ue. You set the materialized view options with the set WOpt i on method of
the AWCubeOr gani zat i on.

An MinCube also has a Consi st ent Sol veSpeci fi cati on object, which contains

one or more Consi st ent Sol veCommand objects that specify how Oracle OLAP
calculates (or solves) the values of the measures of the cube. For example, as the
Consi st ent Sol veConmmand, you could specify an Aggr egat i onConmand that represents
the SUMor the MAX function. You specify the Consi st ent Sol veSpeci fi cati on with the
set Consi st ent Sol veSpeci fi cati on method of the cube.

A cube is consistent when the values of the measures match the specification,

for example, when the values of the parents are equal to the SUMof the values

of their children. A cube becomes consistent when the Bui | dPr ocess executes the
Consi st ent Sol veConmand.

For examples of creating MinCube and Mim\easur e objects and mapping them, and of
the other operations described in this topic, see Example 4-7 and Example 4-8.

Figure 2-6 shows the associations between an MinCube and the some of the classes
mentioned in this topic. The figure shows an MinCube as deployed in an analytic
workspace.

Figure 2-6 MdmCube and Associated Objects

ConsistentSolveCommand

1.7

setConsistentSolveSpecification

[

findOrCreateAWCubeOrganization

MdmDimension

1

findOrCreateBaseMeasure

ORACLE

0..”

1

0..”

findOrCreateDerivedMeasure

MdmBaseMeasure

MdmDerivedMeasure

ConsistentSolveSpecification]] AWCubeOrganization
: : : addDimension findOrCreateCubeMap
MdmDimensionality MdmCube CubeMap
0.7 1 L
1

2-17

Chapter 2
Providing Access to Data Sources

2.4.1.2 Representing Measures

ORACLE

An Mimveasur e is an abstract class that represents a set of data that is organized

by one or more MinPri mar yDi nensi on objects. The structure of the data is similar to
that of a multidimensional array. Like the dimensions of an array, which provide the
indexes for identifying a specific cell in the array, the MinPr i mar yDi mensi on objects
that organize an Mimveasur e provide the indexes for identifying a specific value of the
Mimveasur e.

For example, suppose you have an MinMeasur e that has data that records the number
of product units sold to a customer during a time period and through a sales channel.
The data of the measure is organized by dimensions for products, times, customers,
and channels (with a channel representing the sales avenue, such as catalog or
internet.). You can think of the data as occupying a four-dimensional array with

the product, time, customer, and channel dimensions providing the organizational
structure. The values of these four dimensions are indexes for identifying each
particular cell in the array. Each cell contains a single data value for the number of
units sold. You must specify a value for each dimension in order to identify a value in
the array.

The values of an Mimveasur e are usually numeric, but a measure can have values
of other data types. The concrete subclasses of Mimveasur e are MinBaseMeasur e and
MinDer i vedMeasur e.

An MinmBaseMeasur e in an analytic workspace has associated physical storage
structures. Typically an MinCube gets the base data for an MinBaseMeasur e from a
column in a fact table. Oracle OLAP then calculates the aggregate values of the
measure and stores those values in an OLAP view for the cube.

When you create an MinBaseMeasur e, you can specify the SQL data type of
the measure with the set SQ.Dat aType method. If you do not specify it, then the
MinBaseMeasur e has the data type of the source data to which you map it.

By specifying t r ue with the set Al | owAut oDat aTypeChange method, you can allow
Oracle OLAP to automatically set the SQL data type of the measure. This can be
useful if the data type of a measure changes. If you allow the automatic changing
of the SQL data type, then Oracle OLAP determines the appropriate SQL data type
whether or not you have specified one with the set SQ.Dat aType method.

An MinDer i vedMeasur e has no associated physical storage. Oracle OLAP dynamically
calculates the values for an MimDer i vedMeasur e as needed.

The values of an Mim\kasur e are determined by the structure of the

MinPr i mar yDi mensi on objects of the MinMeasur e. That is, each value of an MimMeasur e
is identified by a tuple, which is a uniqgue combination of members from the

MinPr i mar yDi mensi on objects.

The MiInPri mar yDi nensi on objects of an Mimveasur e are MiIntt andar dDi mensi on or
MiniTi meDi nensi on objects. They usually have at least one hierarchical structure.
Those MinPr i mar yDi mensi on objects include all of the members of their component
MinHi er ar chy objects. Because of this structure, the values of an MinMeasur e are of
one or more of the following:

e Values from the fact table column, view, or calculation on which the Mim\easur e is
based. These values are identified by a combination of the members at the leaf
levels of the hierarchies of a dimension.

2-18

Chapter 2
Providing Access to Data Sources

» Aggregated values that Oracle OLAP has provided. These measure values are
identified by at least one member from an aggregate level of a hierarchy.

* Values specified by an Expr essi on for a MimDer i vedMeasur e or a custom
dimension member.

As an example, imagine an MinBaseMeasur e that is dimensioned by an

MiniTi meDi mensi on and an Mint andar dDi mensi on of products. The metadata objects
for the measure and the dimensions are ndnni t Cost , mdnili meDi m and mdnPr odDi m

Each of the mdniTi meDi mand the mdnPr odDi mobjects has all of the leaf members and

aggregate members of the dimension it represents. A leaf member is one that has no
children. An aggregate member has one or more children.

A unique combination of two members, one from ninili meDi mand one from
mdnPr odDi m identifies each mdrni t Cost value, and every possible combination of
dimension members is used to specify the entire set of mdnni t Cost values.

Some mdnni t Cost values are identified by a combination of leaf members (for
example, a particular product item and a particular month). Other mdnini t Cost values
are identified by a combination of aggregate members (for example, a particular
product family and a particular quarter). Still other ndnni t Cost values are identified by
a mixture of leaf and aggregate members.

The values of mdnlni t Cost that are identified only by leaf members come directly from
the column in the database fact table (or fact table calculation). They represent the
lowest level of data. However, the values that are identified by at least one aggregate
member are calculated by Oracle OLAP. These higher-level values represent
aggregated, or rolled-up, data. Thus, the data represented by an MinBaseMeasure is a
mixture of fact table data from the data store and aggregated data that Oracle OLAP
makes available for analytical manipulation.

2.4.2 Representing Dimensions, Levels, and Hierarchies

ORACLE

A dimension represents the general concept of a list of members that can organize

a set of data. For example, if you have a set of figures that are the prices of

product items during month time periods, then the unit price data is represented by
an Mimveasur e that is dimensioned by dimensions for time and product values. The
time dimension includes the month values and the product dimension includes item
values. The month and item values act as indexes for identifying each particular value
in the set of unit price data.

A dimension can contain levels and hierarchies. Levels can group dimension members
into parent and child relationships, where members of lower levels are the children

of parents that are in higher levels. Hierarchies define the relationships between the
levels. Dimensions usually have associated attributes.

The base class for dimension, level, and hierarchy objects is the abstract class

MinDi mensi on, which extends MinSour ce. An MInDi nensi on has methods for getting
and for removing the attributes associated with the object. It also has methods for
getting and setting the cardinality and the custom order of the members of the object.
The direct subclasses of MInDi nensi on are the abstract MinPri nar yDi mensi on and
MinSubDi mensi on classes.

MinPr i mar yDi mensi on and MinHi er ar chyLevel objects can have associated
MimAt t ri but e objects. For information on attributes, see "Representing Dimension
Attributes".

2-19

Chapter 2
Providing Access to Data Sources

The following topics describe dimensions, levels, and hierarchies.
* Representing Dimensions

* Representing Dimension Levels

* Representing Hierarchies

* Representing Hierarchy Levels

2.4.2.1 Representing Dimensions

ORACLE

Dimensions are represented by instances of the MinPr i mar yDi mensi on class,

which is an abstract subclass of MinDi mensi on. The concrete subclasses of the

MinPr i mar yDi mensi on class represent different types of data. The concrete subclasses
of MInPri mar yDi mensi on are the following:

e MimMeasur eDi nensi on, which has all of the Mimveasur e objects in the data
store as the values of the dimension members. A data store has only one
Mimveasur eDi mensi on. You can obtain the Mimveasur eDi mensi on by calling the
get Measur eDi nensi on method of the MinRoot Schema. You can get the measures of
the data store by calling the get Measur es method of the Mimveasur eDi mensi on.

» Minft andar dDi nensi on, which has no special characteristics, and which typically
represent dimensions of products, customers, distribution channels, and so on.

e Minili meDi mensi on, which has time periods as the values of the members. Each
time period has an end date and a time span. An Minili neDi nensi on has methods
for getting the attributes that record that information.

An MinPri maryDi mensi on implements the following interfaces.

e Buil dabl e, which is a marker interface for objects that you can specify in
constructing a Bui | dl tem

* Mimvenber Li st MapOaner , which defines methods for finding or creating, or getting,
a Menber Li st Map object.

e MiInVi ewCol uimOnner , which is marker interface for objects that can have an
associated Minvi ewCol um.

e Metadat albj ect, which defines a method for getting a unique identifier.

* MimQuery, which defines methods for getting the Query object associated with the
implementing class and for getting information about the Query.

An MinPri mar yDi nensi on can have component MinDi mensi onLevel objects that
organize the dimension members into levels. It also can have MinHi er ar chy objects,
which organize the levels into the hierarchies. An MinPri mar yDi mensi on has all of the
members of the component MinHi er ar chy objects, while each of the MinHi er ar chy
objects has only the members in that hierarchy.

You can get all of the MinPri mar yDi nensi on objects that are contained by an
MinDat abaseSchema or an MInQr gani zat i onal Schena by calling the get Di mensi ons
method of the object. An MinDat abaseSchema has methods for finding an

MiniTi neDi nensi on or an MinSt andar dDi nensi on by name or creating the object if it
does not already exist.

MinSt andar dDi nensi on and MiInili meDi mensi on objects contain MimAt t ri but e objects.
Some of the attributes are derived by Oracle OLAP, such as the parent attribute,

2-20

Chapter 2
Providing Access to Data Sources

and others you map to data in relational tables or to data that you specify by an
Expr essi on. For information on attributes, see "Representing Dimension Attributes".

An MinPri mar yDi nensi on can organize the dimension members into one or

more levels. Each level is represented by an MinDi mensi onLevel object. An

Mintt andar dDi mensi on or an MinTTi meDi mensi on can contain MinHi er ar chy objects
that organize the levels into hierarchical relationships. In an MinLevel Hi er ar chy

the dimension levels are represented by MintHi er ar chyLevel objects. The concrete
MinDi mensi onLevel and MinHi er ar chyLevel classes, and the abstract MinHi er ar chy
class, are the direct subclasses of the abstract MinSubDi nensi on class.

2.4.2.2 Representing Dimension Levels

An MinDi mensi onLevel represents a set of dimension members that are at the

same level. A dimension member can be in at most one dimension level. You

get or create an MinDi mensi onLevel with the fi ndOr Cr eat eDi nensi onLevel of an
MinPr i mar yDi mensi on. You can map an MinDi nensi onLevel to a data source by using
a Member Li st Map.

An MinPri nmar yDi nensi on has a method for getting a list of all of the
MinDi mensi onLevel objects that it contains. It also has a method for finding an
MinDi nensi onLevel by name or creating the object if it does not already exist.

2.4.2.3 Representing Hierarchies

MinHi er ar chy is an abstract subclass of MinSubDi mensi on. The concrete subclasses
of MinHi er ar chy are Mim_evel Hi er ar chy and MinVal ueHi er ar chy.

An MinHi er ar chy organizes the members of a dimension into a hierarchical structure.
The parent-child hierarchical relationships of an MinlLevel H er ar chy are based on the
levels of the dimension. In an MinVal ueHi er ar chy, the hierarchical relationships are
based on dimension member values and not on levels. An MinPri mar yDi mensi on can
have more than one of either or both kinds of hierarchies.

The parent of a hierarchy member is recorded in a parent MimAt t ri but e, which

you can get by calling the get Parent At t ri but e method of the MinHi er ar chy. The
ancestors of a hierarchy member are recorded in an ancestors MimAt t ri but e, which
you can get by calling the get Ancest or sAt t ri but e method.

An MinPri mar yDi nensi on has a method for getting a list of all of the MinHi er ar chy
objects that it contains. It also has methods for finding an Mim_evel Hi er ar chy or
MinVal ueH erar chy by name or creating the object if it does not already exist.

The following topics describe the objects that represent level-based and value-based
hierarchies.

* Representing a Level-based Hierarchy
* Representing a Value-based Hierarchy
2.4.2.3.1 Representing a Level-based Hierarchy

MinlLevel Hi erarchy is a subclass of MinHi er ar chy. An MinLevel Hi er ar chy has a tree-
like structure with a top, or highest, level, and a leaf, or lowest, level. Each member
may have zero or one parent in the hierarchy. Cycles are not allowed, for example

ORACLE 2-21

ORACLE

Chapter 2
Providing Access to Data Sources

where member A is the parent of member B, member B is the parent of member C,
and member C is the parent of member A.

Members that are not the child of any other member are the top members. Members
with children are aggregates or aggregate members of the hierarchy. Members with no
children are the leaves or leaf members of the hierarchy.

Each member is in a level. The levels are ordered, from top level to leaf level.

The order is determined by the order in which you create the MinDi nensi onLevel
objects of the MInPri mar yDi nensi on. The first MinDi nensi onLevel that you

create is the top level and the last one you create is the leaf level. For

example, for the CALENDAR_YEAR hierarchy of the TIME_AWJ dimension,

the Cr eat eAndBui | dJAW j ava and Speci f yAW/al ues example programs create four
MinDi mensi onLevel objects in the following order: TOTAL_TIME, YEAR, QUARTER,
and MONTH. The top level is TOTAL_TIME and the leaf level is MONTH.

If a member of the hierarchy has a parent, then that parent must be in a higher

level. Oracle OLAP expects that all leaf members in the hierarchy are in the leaf
level. You can specify that Oracle OLAP allow the hierarchy to be ragged. In a
ragged hierarchy, one or more leaf members are not in the leaf level. You can specify
allowing the hierarchy to be ragged by calling the set | sRagged(true) method of the
MinLevel Hi erar chy.

Oracle OLAP also expects that if a member is in a level below the top level, then
that member has a parent, and that the parent is in the level just above the level of
the member. If a member is not at the top level and that member either does not
have a parent or the parent is not in the next higher level, then the hierarchy is a
ski p- | evel hierarchy. You can specify allowing a skip-level hierarchy by calling the
set | sSki pLevel (true) method of the Mim_evel Hi erar chy.

Figure 2-7 illustrates the relationships of members in a regular hierarchy, a ragged
hierarchy, and two types of skip-level hierarchies.

Figure 2-7 Regular, Ragged, and Skip-level Hierarchies

Regular
Level Hierarchy Ragged Hierarchy Skip-level Hierarchies

Leaf level A
The different levels of an MinLevel Hi er ar chy are represented by MinHi er ar chyLevel

objects. For an example of creating a level-based hierarchy, see "Creating and
Mapping an MdmLevelHierarchy".

The MinLevel Hi er ar chy has all of the members of the hierarchy, and each of

the component MinHi er ar chyLevel objects has only the members at the level that

it represents. An MinLevel Hi er ar chy can also represent a nonhierarchical list of
members, in which case the MinLevel H er ar chy has one MinHi er ar chyLevel , and
both objects have the same members. You get the levels of an MinLevel Hi er ar chy by
calling the get Hi er ar chyLevel s method.

2-22

Chapter 2
Providing Access to Data Sources

An MimLevel Hi er ar chy has a method for getting a list of all of the MinHi er ar chyLevel
objects that it contains. It also has a method for finding an MinHi er ar chyLevel by
name or creating the object if it does not already exist.

An MinPr i mar yDi nensi on can contain more than one MinlLevel Hi erarchy. For
example, an MInTTi neDi mensi on dimension might have two MinLevel Hi er ar chy
objects, one organized by calendar year time periods and the other organized by
fiscal year time periods. The MinHi er ar chyLevel objects of one hierarchy associate
MinDi mensi onLevel objects of calendar year time periods with the hierarchy. The
MintHi er ar chyLevel objects of the other hierarchy associate MinDi nensi onLevel
objects of fiscal year time periods with that hierarchy. Generally, level-based
hierarchies share the lowest level, so the MinHi er ar chyLevel for the lowest level of
each of the hierarchies associates the same MinDi mensi onLevel with each hierarchy.
For example, the calendar year hierarchy and the fiscal year hierarchy share the same
MinHi er ar chyLevel of month time periods.

2.4.2.3.2 Representing a Value-based Hierarchy

A value-based hierarchy is one in which levels are not meaningful in defining

the hierarchical relationships. This type of hierarchy is represented by the

MinVal ueH er ar chy class, which is a subclass of MinHi er ar chy. An example of a
value hierarchy is the employee reporting structure of a company, which can be
represented with parent-child relationships but without levels. For an example of
creating a value-based hierarchy, see "Creating and Mapping an MdmValueHierarchy".

The OLAP view for the value hierarchy has a column that contains all employees,
including those who are managers. It has another column that contains the parent
members. Another column identifies the depth of the member in the hierarchy, where
the member that has no manager is at depth 0 (zero), the employees who report to
that manager are at level 1, and so on.

2.4.2.4 Representing Hierarchy Levels

MinHi er ar chyLevel is a subclass of MinSubDi mensi on. An MinHi er ar chyLevel
associates an MinDi nensi onLevel with an MinmLevel Hi er ar chy.

The order of the levels in the hierarchy is specified by the order in which

you create the MinHi er ar chyLevel objects for the MinLevel Hi er ar chy. The first
MinHi er ar chyLevel that you create is the highest level and the last one that you
create is the lowest level. For an example of creating a hierarchy, see "Creating and
Mapping an MdmLevelHierarchy".

2.4.3 Representing Dimension Attributes

ORACLE

An OLAP dimension attribute is represented by an MimAt t ri but e object. An

MimAt t ri but e has values that are related to members of an MinPr i mar yDi nensi on.
The MimAt t ri but e class is a subclass of MInDi mensi oned(bj ect because, like an
Mimveasur e, the values of an MimAt t ri but e have meaning in relation to the members
of the dimension.

The relation can be one-to-one, many-to-one, or one-to-many. For example, the
PRODUCT_AWJ dimension has a short description attribute, a package attribute, and
an ancestors attribute. The short description attribute has a separate value for each
dimension member. The package attribute has a set of values, each of which applies
to more than one dimension member. The ancestors attribute has multiple values that

2-23

Chapter 2
Providing Access to Data Sources

apply to a single dimension member. If an MImAt t ri but e does not apply to a member
of an MInDi nensi on, then the MimAt t ri but e value for that member is nul | .

Table 2-3 shows the first few members of the PRODUCT_AWJ dimension and their
related short description and package attribute values. Only some of the members of
the ITEM level of the dimension have a package attribute. For other items, and for
higher levels, the package attribute value is nul | , which appears as NA in the table.

Table 2-3 Dimension Members and Related Attribute Values

Dimension Member Related Short Description Related Package
TOTAL_PRODUCT: : TOTAL Total Product NA

CLASS: : HRD Har dwar e NA

FAMLY: : DI SK CD/ DVD NA

| TEM : EXT CD ROM External 48X CD-ROM NA

| TEM : EXT DVD External - DVD-RW- 8X Executive

| TEM : I NT 8X DVD Internal - DVD-RW- 8X NA

[TEM : INT CD ROM I nternal 48X CD ROM Lapt op Val ue Pack
| TEM : I NT CD USB I nternal 48X CD-ROM USB NA

[TEM : INT RWDVD Internal - DVD-RW- 6X Mil tinmedi a

To get values from an MimAt t ri but e, you must join the Sour ce for the MimAt tri but e
and a Sour ce that specifies one or more members of the MinDi nensi on. For

an explanation of joining Sour ce objects, see Understanding Source Objects. For
examples of joining the Sour ce objects for an MimAt t ri but e and an MinDi nensi on, see
Example 4-5 and examples from Understanding Source Objects and Making Queries
Using Source Methods, such as Example 5-7 and Example 6-10.

The following topics describe the classes that represent dimension attributes.
e Describing the MdmAttribute Class

* Describing the MdmBaseAttribute Class
* Describing the MdmDerivedAttribute Class

2.4.3.1 Describing the MdmAttribute Class

The abstract MimAt t ri but e class has a subclass, which is the abstract
class MIni ngl eVal uedAttri but e. That class has two concrete subclasses:
MinBaseAttribut e and MinDeri vedAttri but e.

2.4.3.1.1 Describing Types of Attributes

ORACLE

An MimAt t ri but e is contained by the MinPri mar yDi mensi on that creates it. Some
attributes, such as the parent attribute and the level attribute, are derived by Oracle
OLAP from the structure of the dimension. Others are common attributes for which an
MinPr i mar yDi mensi on has accessor methods, such as the long and short description
attributes, or the end date and time span attributes that an Minili meDi nmensi on
requires. After you create one of those attributes, you associate it with the dimension
through a method such as the set Short Val ueDescri pti onAttri but e method of an

2-24

Chapter 2
Providing Access to Data Sources

MinPr i mar yDi mensi on or the set Ti meSpanAt t ri but e method of an Minili meDi nensi on.
You can also create attributes for your own purposes, such as the PACKAGE attribute
in the GLOBAL_AWJ example analytic workspace.

2.4.3.1.2 Associating an Attribute with an MdmSubDimension

After you create an attribute, you associate it with an MinSubDi mensi on. You can
associate it with just a single MinSubDi nensi on by using the addAt t ri but e method of
the MinSubDi mensi on. You can also associate it with all of the MinDi nensi onLevel
objects of an MiInPri mar yDi nensi on by using the set | sVi si bl eFor Al | method of

the MimAt t ri but e. If you specify t r ue with the set | sVi si bl eFor All method, then
the attribute applies to all of the MinDi nensi onLevel objects that are currently
contained by the MinPr i mar yDi mensi on and to any MinDi nensi onLevel objects that
you subsequently create or add to the dimension.

2.4.3.1.3 Getting MdmAttribute Objects

The get Attri but es method of an MinPri mar yDi mensi on returns all of the

MimAt t ri but e objects that were created by a client application. The get Attri but es
method of an MinSubDi mensi on returns only those attributes that the application
added to it with it the addAt t ri but e method. Other methods of an

MinPr i mar yDi mensi on return specific attributes that Oracle OLAP generates,

such as the get H erarchyAttri but e, the get Level Dept hAttri but e, or the

get Parent Att ri but e method.

2.4.3.1.4 Specifying a Target Dimension

A target dimension for an attribute is similar to defining a foreign key constraint
between columns in a table. All of the values of the attribute must also be keys of
the target dimension.

You can specify a target dimension for an attribute by using the set Tar get Di nensi on
method of the MimAt t ri but e. The relational table that is the Query for the target
dimension must have a column that contains all of the values that are in the column of
the dimension table to which you map the attribute.

2.4.3.2 Describing the MdmBaseAttribute Class

ORACLE

An MinBaseAt t ri but e has values that are stored in the OLAP views for the dimension
that contains it and the hierarchy to which it applies. For information on OLAP views,
see "Using OLAP Views".

You create an MinBaseAt t ri but e with the fi ndOr Cr eat eBaseAt t ri but e method of an
MinPr i mar yDi mensi on. You map the MinBaseAt t ri but e to a column in a relational
table or view. When you build the MinPr i nar yDi nensi on that created the attribute,
Oracle OLAP stores the values of the MinBaseAtt ri but e in an OLAP view. You

can get the column for the MinBaseAt t ri but e in the OLAP view by using the

get ETAt t ri but eCol utm method. That method returns an MinVi ewCol urm object.

Examples of MinBaseAt t ri but e objects are the name attribute created and mapped in
Example 4-5 and the long description attribute created in Example 4-6. The mapping
for that long description attribute is in Example 4-3.

For regular OLAP queries, using Sour ce objects, you only need to map an
MinBaseAttri but e to MInDi mensi onLevel objects by using Menber Li st Map objects.

2-25

Chapter 2
Providing Access to Data Sources

For SQL queries against OLAP views, you should map the attributes to
MintHi er ar chyLevel objects by using Hi er ar chyLevel Map objects.

2.4.3.2.1 Specifying a Data Type

When you create an MinBaseAttri but e, you can specify the SQL data type with the
set SQLDat aType method. If you do not specify it, then the MinBaseAtt ri but e has the
data type of the source data to which you map it. For example, the SQL data type of
the short description attribute is VARCHAR2 and the data type of the end date attribute is
DATE.

By specifying t r ue with the set Al | owAut oDat aTypeChange method, you can allow
Oracle OLAP to automatically set the SQL data type. If you allow the automatic
changing of the SQL data type, then Oracle OLAP ignores the SQL data type specified
by the set SQLDat aType method. This can be useful if you map the same attribute to
levels that have different data types, or if the data type of a level changes.

2.4.3.2.2 Grouping Attributes

With the set Att ri but eG oupName method of an MinBaseAttri but e, you can specify a
name for an attribute group. You can specify the same group name for other attributes.
For example, you could create a long description attribute for each dimension level
and give each attribute the group name of LONG_DESCRIPTION. You could use the
group name to identify similar kinds of attributes. You get the group name with the

get Attri but eG oupNane method.

2.4.3.2.3 Creating an Index

You can improve the performance of attribute-based queries by creating an index
for the attribute. Creating an index adds maintenance time and increases the
size of the analytic workspace, which may increase the build time for extremely
large dimensions. You create an index for an attribute by specifying t r ue with

the set Creat eAttri but el ndex method of the AWAt t ri but eOr gani zat i on for the
MinBaseAttri bute.

2.4.3.2.4 Specifying a Language for an Attribute

When you create an At t ri but eMap for an MinBaseAtt ri but e, you can specify a
language for the attribute. For example, to specify French as the language for the

long description attribute for the MinDi nensi onLevel named CHANNEL, you would
create an Attri but eMap by calling the Menber Li st Map. fi ndOr Creat eAt t ri but eMap
method and passing in the long description MinBaseAt t ri but e and FRENCH

as the Stri ng that specifies the language. You would then specify

GLOBAL. CHANNEL_DI M CHANNEL_DSC FRENCH as the Expr essi on for the Att ri but eMap.
By using the set Language method of an At t ri but eMap, you can specify a language for
an Attri but eMap after you have created it.

2.4.3.2.5 Specifying Multilingual Attributes

ORACLE

The MinBaseAt tri but e. set Ml ti Li ngual method allows you to map more than
one language column to the same attribute. To do so, you specify true with the

set Ml ti Li ngual method of the attribute. You then create a separate Attri but eMap
for each language but you use the same MinBaseAttri bute.

2-26

Chapter 2
Providing Access to Data Sources

The language in use for the database determines which language appears in the
OLAP view for the dimension. Only one language is in use at a time in a session,

but if the language in use changes, then the language in the attribute column in the
OLAP view also changes. For more information on specifying languages for database
sessions, see Setting Up a Globalization Support Environment in Oracle Database
Globalization Support Guide.

For materialized views, you should create a separate attribute for each language, so
that there is a long description attribute for English, one for French, and so on. That
behavior is more typical in SQL, which does not expect multivalued columns.

2.4.3.2.6 Populating OLAP Views with Hierarchical Attribute Values

ORACLE

For SQL queries, you should populate the lineage of the attributes in the view by
specifying t r ue with the MinBaseAt t ri but e. set Popul at eLi neage method. Populating
the lineage means that in the column for an attribute in an OLAP view, Oracle OLAP
populates the rows for lower levels in a dimension hierarchy with the attribute values
that are mapped at a higher level. Populating the lineage for the attributes is also
useful if you are creating materialized views for an analytic workspace cube.

If you specify set Popul at eLi neage(f al se), which is the default for the setting, then
the attribute values appear only in the rows for the hierarchy members at the level

to which the attribute is mapped. For hierarchy members at other levels, the attribute
value is nul | . If you specify set Popul at eLi neage(t rue), then the attribute values
appear in the rows for the members of the mapped level and for the hierarchy
members of all levels that are descendants of the mapped level.

Populating the hierarchy lineage in an OLAP view makes the contents of the

view more like the contents of a relational table in a star schema. For example,

you could create a separate long description attribute on the dimension for each
MinDi nensi onLevel of the dimension. You would specify populating the lineage of
those attributes by calling the set Popul at eLi neage(true) method of each attribute.
You would then make the attribute visible for a hierarchy level by adding the attribute
to the MinHi er ar chyLevel with the addAttri but e method.

The OLAP view for a hierarchy of the dimension would then have a column for each
of the long description attributes. Those columns would contain the long description
attribute values for the members of the mapped hierarchy level and for the hierarchy
members of all levels that are descendants of the mapped level.

For example, the Cr eat eAndBui | dAWexample class has a line of code that specifies
populating the lineage for the MinBaseAt t ri but e objects that it adds to each individual
MinHi er ar chyLevel . The following line appears in the cr eat eLi neageAttri but es
method of the class.

mimAt t r. set Popul at eLi neage(true);

Example 2-2 shows the results of the following SQL query when that line of code

is commented out. Example 2-3 shows the results of the SQL query when the line

is included in the class. Both examples show the values that are in the selected
columns of the OLAP view for the PRODUCT_PRIMARY hierarchy. The view hame

is PRODUCT_AWJ_PRODUCT_PRIMA_VIEW. The examples show only a few of the
lines returned by the SQL query.

SELECT TOTAL_PRODUCT SHORT DESC || '*' || CLASS_SHORT DESC || '*' ||
FAM LY_SHORT DESC || '*' || |TEM SHORT DESC
FROM PRODUCT_AW_PRODUCT PRI MA VI EW

2-27

Chapter 2
Providing Access to Data Sources

ORDER BY TOTAL_PRODUCT null's first, CLASS nulls first,
FAMLY nulls first, ITEMnulls first;

Example 2-2 Values in OLAP View Columns After setPopulateLineage(false)

In this example, the attribute rows of the OLAP view have only the attribute values for
the hierarchy level to which the dimension member belongs.

TOTAL_PRODUCT _SHORT _DESC| | ' *' || CLASS_SHORT _DESC| | ' *" | | FAM LY_SHORT _DESC| |"*' || I T
Total Product***

Har dwar e *

** CD/ DVD*

***External 48X CD- ROM

***External - DVD-RW- 8X

***|nternal - DVD-RW- 8X

**Deskt op PCs*
***Sentinel Financial
***Sentinel Miltimedia
***Sentinel Standard
**Portabl e PCs*
***Envoy Anbassador
***Envoy Executive
***Envoy Standard

Example 2-3 Values in OLAP View Columns After setPopulateLineage(true)

In this example , the attribute rows of the OLAP view are populated with the attribute
values for the ancestors of a dimension member. For example, the first row contains
only the value Total Product because TOTAL_PRODUCT is the highest level in the
hierarchy. The row that contains the value Envoy Standard also has the values for the
TOTAL_PRODUCT, CLASS, and FAMILY levels.

TOTAL_PRODUCT _SHORT _DESC| | ' *' || CLASS_SHORT_DESC| | ' *" | | FAM LY_SHORT _DESC| |"*' || I T
Total Product***

Total Product *Har dwar e**

Tot al Product *Har dwar e* COy DVD*

Tot al Product *Har dwar e* COY DVD* Ext er nal 48X CD- ROM

Total Product *Har dwar e* CDY DVD*Ext ernal - DVD-RW- 8X

Total Product *Har dwar e*CDY DVD*I nternal - DVD-RW- 8X

Total Product *Har dwar e* Deskt op PCs*

Total Product *Har dwar e* Deskt op PCs*Sentinel Fi nanci al
Total Product *Har dwar e* Deskt op PCs*Sentinel Miltimedia
Total Product *Har dwar e* Deskt op PCs*Sentinel Standard
Total Product *Har dwar e* Port abl e PCs*

Total Product*Har dwar e* Port abl e PCs*Envoy Anbassador
Total Product *Har dwar e*Portabl e PCs*Envoy Executive
Total Product *Har dwar e* Port abl e PCs*Envoy Standard

2.4.3.2.7 Preparing Attributes for Materialized Views

ORACLE

To generate materialized views for the OLAP metadata objects, for each

MinDi mensi onLevel you must create an MinBaseAttri but e, map it to a unique key for
the MinDi nensi onLevel , and add it to the MInDi nensi onLevel . An MinDi mensi onLevel
has methods for adding, getting, and removing unique key attributes. The

2-28

Chapter 2
Providing Access to Data Sources

Enabl eMVs. | ava example program creates unique key attributes and adds them to
the MinDi nensi onLevel objects of the dimensions.

When Oracle OLAP creates a materialized view for a cube, it creates columns for
the attributes of the dimensions of the cube. For the name of a column, it uses the
name of the attribute column from the OLAP view of the dimension. To ensure that
the column name is unique, Oracle OLAP adds a default prefix to the name. You can
specify the prefix by using the set ETAt t r Pref i x method of the MinDi nensi onal ity
object for a dimension of the cube.

2.4.3.3 Describing the MdmDerivedAttribute Class

An MinDer i vedAt t ri but e has values that Oracle OLAP calculates on the fly as you
need them. Oracle OLAP generates several MinDer i vedAtt ri but e objects, such as
the attributes returned by the get Parent At t ri but e and the get AncestorsAttribute
methods of an MinPri mar yDi mensi on.

2.4.4 Using OLAP Views

For each instance of an MinCube, MinPr i mar yDi nensi on, and MinHi erar chy in an
analytic workspace, Oracle OLAP automatically creates an associated relational view.
Oracle OLAP uses these views internally to provide access to the aggregate and
calculated data that is generated by the analytic workspace. An OLAP Java API
guery transparently uses the views. In the OLAP Java API, these views are called

ET (embedded totals) views. A SQL application can directly query these views, using
them as it would the fact tables and dimension tables of a star or snowflake schema.

A client OLAP Java API application can get the names of the OLAP views and get the
names of columns in the views. The application could display the names to the end
user of the application, and the end user could then use the names in a SQL SELECT
statement to query the OLAP objects.

The following topics describe getting and using these views.

e Getting Cube View and View Column Names

e Getting Dimension and Hierarchy View and View Column Names
e Using OLAP View Columns

e Using Source Objects

2.4.4.1 Getting Cube View and View Column Names

ORACLE

To get the name of a cube view, call the MinCube. get Vi ewNarme() method. For
example, the following code gets the name of the view for the MinCube that is named
UNITS_CUBE_AWJ. In the code, the ndnDBSchena object is the MinDat abaseSchena
for the GLOBAL user.

MinCube ndnni t sCube =
(MimCube) minDBSchema. get TopLevel Obj ect ("UNI TS_CUBE_AW") ;
String cubeVi ewNane = mdmni t sCube. get Vi ewNane() ;
println("The name of the view for the " +
mdnni t sCube. get Name() + " cube is " + cubeViewNane + ".");

The output of the code is the following.

The nane of the view for the UNITS_CUBE_AW cube is UNI TS_CUBE AW _VI EW

2-29

Chapter 2
Providing Access to Data Sources

You can change the name of the OLAP view by using the MinCube. set Vi ewNane
method. To make the name change permanent, you must commit the Tr ansacti on.

The OLAP view for an MinCube has a column for each measure of the cube, including
each derived measure. In Oracle OLAP User's Guide, a derived measure is known
as a calculated measure. A cube view also has a column for each dimension of the
cube. For example, for the MinCube named UNITS_CUBE_AWJ, the view is named
UNITS_CUBE_AWJ_VIEW. The following code gets the names of the view columns.

MinCube ndnni t sCube = ndnDBSchema. fi ndOr Cr eat eCube(" UNI TS_CUBE_AW") ;
Li st <MImQuer yCol um> ndnQCol s = ndmni t sCube. get Quer yCol urms() ;

for (MinQueryCol um nmdnQCol : ndnQCol s)

{

MinVi ewCol um mdnVi ewCol = (MinVi ewCol umm) ndnQCol ;
print! n(mdnVi ewCol . get Vi ewCol utmNane()) ;
}

The code displays the following output.

TI ME_AW
PRODUCT AW
CUSTOMER AW
CHANNEL_AW
UNI TS

SALES

cosT

The UNI TS, SALES, and COST columns are for the measures of the cube, and the other
four columns are for the dimensions of the cube.

2.4.4.2 Getting Dimension and Hierarchy View and View Column Names

ORACLE

To get the name of the OLAP view for a dimension or a hierarchy, call the

get ETVi ewName() method of the MinPri mar yDi nensi on or MinHi er ar chy. You can

get the name of a column in the view by calling the appropriate method of the
metadata object. For example, the following code gets the name of the key column for
the CHANNEL_AWJ dimension and the parent column for the CHANNEL_PRIMARY
hierarchy.

printl n(mdmChanDi m get ETKeyCol umm() . get Vi ewCol ummNane()) ;
MinVi ewCol um mdnPar ent Col =(MinVi ewCol uim) ndnChanHi er . get ETPar ent Col urm() ;
printl n(mdnPar ent Col . get Vi ewCol umNare()) ;

The code displays the following output.

DI M_KEY
PARENT

You can change the name of the OLAP view by using the set ETVi ewNane method of
the MinPri mar yDi mensi on or MinHi er ar chy.

The OLAP view for an MinPri mar yDi nensi on has a column for the dimension

keys, a column for each dimension level, and a column for each attribute
associated with the dimension. For example, for the Minst andar dDi mensi on named
CHANNEL_AWJ, the view is named CHANNEL_AWJ_VIEW. The SQL command
DESCRI BE CHANNEL_AW VI EWdisplays the names of the following columns.

DI M KEY
LEVEL_NAME

2-30

Chapter 2
Providing Access to Data Sources

MEMBER_TYPE
DI M_ORDER

LONG DESCRI PTI ON
SHORT_DESCR! PTI ON
TOTAL_CHANNEL_LONG DESC
TOTAL_CHANNEL_SHORT DESC
CHANNEL_LONG DESC
CHANNEL_SHORT DESC

The OLAP view for an MinHi er ar chy has a column for the dimension keys and a
column for the parent of a hierarchy member. If it is an MinLevel Hi er ar chy, then it
also has a column for each hierarchy level and a column for the depth of a level.

If the hierarchy has one or more added attributes, then the view has a column for
each attribute. For example, for the MinLevel H er ar chy named CHANNEL_PRIMARY,
the view is named CHANNEL_AWJ_CHANNEL_PRIMA_VIEW. The SQL command
DESCRI BE CHANNEL_ AW _CHANNEL_PRI MA VI EWdisplays the names of the following
columns.

DI M KEY
LEVEL_NAME

MEMBER TYPE

DI M ORDER

H ER_ORDER

LONG_DESCRI PTI ON

SHORT DESCR! PTI ON
TOTAL_CHANNEL_LONG DESC
TOTAL_CHANNEL_SHORT DESC
CHANNEL_LONG DESC
CHANNEL_SHORT DESC
PARENT

DEPTH

TOTAL_CHANNEL

CHANNEL

2.4.4.3 Using OLAP View Columns

ORACLE

See Oracle OLAP User's Guide for several examples of how to create SQL
gueries using the OLAP views. An OLAP Java API query that uses Sour ce objects
automatically uses these views.

You can also provide direct access to the OLAP views to the users of your OLAP Java
API application. You could allow users to specify a SQL SELECT statement that uses
the views and then send that SQL query to the database.

Example 2-4 reproduces Example 4-2 of Oracle OLAP User's Guide except that it
uses the cubes and dimensions of the analytic workspace. The example selects the
SALES measure from UNITS_CUBE_AWJ_VIEW, and joins the keys from the cube
view to the hierarchy views to select the data.

In the example, mdnDBSchena is the MinDat abaseSchema for the GLOBAL user. The
example is an excerpt from the Basi cCubeVi ewQuery. j ava example program.

Example 2-4 Basic Cube View Query

/1 In a nmethod. ..
/] Get the cube.
MinmCube mdmini t sCube =
MinmCube) mdnDBSchena. get TopLevel bj ect (" UNI TS_CUBE_AW") ;
Il Get the OLAP view for the cube.
String cubeVi ewName = mdnlni t sCube. get Vi ewName() ;

2-31

ORACLE

Chapter 2
Providing Access to Data Sources

Il Display the name of the CLAP view for the cube.
println("The name of the OLAP view for the " + ndmnitsCube. get Nane()
+ " cube is:\n " + cubeVi ewNane);

Il Get the dimensions and the hierarchies of the dinensions.
MinPr i mar yDi mensi on mdnili neDi m =
(MdnPri mar yDi mensi on) ndnDBSchema. get TopLevel Gbj ect (" TI ME_AW") ;
MinLevel Hi erarchy minCal H er =
mdniTi meDi m fi ndOr Cr eat eLevel Hi erar chy(" CALENDAR_YEAR') ;

/1 Display the name of the OLAP view name for the hierarchy and
/1 display the names of the hierarchy |evels.
di spl ayVi ewAndLevel Names(nmdnCal Hier);

MinPr i mar yDi mensi on mdnPr odDi m =
(MdnPri mar yDi mensi on) ndnDBSchema. get TopLevel Obj ect (" PRODUCT_AW") ;
MinLevel Hi erarchy ndnProdH er =

mdnPr odDi m fi ndOr Cr eat eLevel Hi erar chy(" PRODUCT_PRI MARY") ;

di spl ayVi ewAndLevel Names(ndnProdHi er);

MinPr i mar yDi mensi on mdnCust Di m =
(MdnPri mar yDi mensi on) ndnDBSchema. get TopLevel Obj ect (" CUSTOMER_AW") ;
MinLevel Hi erarchy ndnShipHier =
mdmCust Di m fi ndOr Cr eat eLevel Hi erar chy(" SH PMENTS") ;
di spl ayVi ewAndLevel Nanmes(ndnthi pHi er) ;

MinPr i mar yDi mensi on mdnChanDi m =
(MdnPri mar yDi mensi on) ndnDBSchema. get TopLevel Obj ect (" CHANNEL_AW") ;
MinLevel Hi erarchy ndnChanHi er =
mdnChanDi m findOr Creat eLevel Hi erar chy(" CHANNEL_PRI MARY") ;
di spl ayVi ewAndLevel Nanes(ndnChanHi er);

Il Create a SQL SELECT statenent using the names of the views and the
Il levels.
/1 UNI'TS_CUBE_AW _VI EW has a col urm naned SALES for the sal es neasure.
/1 TIME_AW_CALENDAR_YEAR VI EW has a col utm naned LONG_DESCRI PTI ON
/1 for the long description attribute.
/'l The hierarchy views have colums that have the sane names as the |evels.
String sql = "SELECT t.long_description tinme,\n" +
" ROUND(f . sal es) sales\n" +
FROM TI ME_AW_CALENDAR_YEAR VIEWt,\n" +
PRODUCT_AW_PRCDUCT_PRI MA VI EW p,\ n" +
CUSTOVER_AW_SHI PMENTS_VI EW cu, \ n" +
CHANNEL_AW_CHANNEL_PRI MA VI EW ch,\n" +
UNI TS_CUBE_ AW_VIEWf\n" +
WHERE t.level _nane = 'YEAR \n" +
AND p. | evel _nane = ' TOTAL_PRODUCT' \ n" +
AND cu. | evel _name = ' TOTAL_CUSTOMER \ n" +
AND ch. | evel _name = ' TOTAL_CHANNEL'\n" +
AND t.dimkey = f.time_aw\n" +
AND p.dimkey = f.product_awj\n" +
AND cu. dimkey = f.custoner_awj\n" +
AND ch. di m key = f.channel _awj\n" +
ORDER BY t.end_date";

/1 Display the SQL SELECT statenent.
println("\nThe SQL SELECT statenent is:\n" + sql);

/] Display the results of the SQ query.

String title = "\nThe results of the SQ query are:\n";
executeSQ.(sql, title);

2-32

ORACLE

Chapter 2
Providing Access to Data Sources

...
} /1 End of method.

private void displ ayVi ewAndLevel Names(MimLevel Hi erarchy mdnievel Hi er)
{
Il Get the OLAP view name for the hierarchy.
String |evel H erVi ewNane = ndmlLevel Hi er. get ETVi ewNang() ;
/1 Display the name of the OLAP view for the hierarchy.
printIn("\nThe OLAP view for the " + ninlevel Hi er. get Nange() +
" hierarchy is:\n " + |evel H erVi ewNane);

/1 Display the names of the levels of the hierarchy.
di spl ayLevel Nanes(ndnLevel Hi er);
}

private void displayLevel Names(MinLevel Hi erarchy mdnievel Hier)
{
Li st <MinHi erar chyLevel > ndnHi er Level Li st =
mdrm_evel Hi er. get Hi erarchylLevel s();
println("The nanes of the levels of the "

+ ndnLevel H er.getName() + " hierarchy are:");
for (MinHierarchyLevel mdnHi erLevel : ndnHi erLevel List)
{

printin(" " + ndnHierLevel.getNane());
}
}

/1 The executeSQL nethod is in the BaseExanpl ellg cl ass.
protected void executeSQ(String sql, String heading)
{
try
{
Statement statement = dp. get Connection().createStatenent();
println(heading);
Resul t Set rs = statenent.executeQery(sql);
SQLResul t Set Printer. printResultSet(getCursorPrintWiter(), rs);
rs.close();
statenent. cl ose();

catch (SQ.Exception e)
{

}
}

printIn("Could not execute SQL statenment. " + e);

The output of the example is the following.

The nane of the OLAP view for the UNITS CUBE_ AW cube is:
UNI TS_CUBE_AW_VI EW

The OLAP view for the CALENDAR_YEAR hierarchy is:
TI NE_AW_CALENDAR YEAR VI EW

The nanes of the levels of the CALENDAR YEAR hierarchy are:
TOTAL_TI ME
YEAR

QUARTER
MONTH

The OLAP view for the PRODUCT_PRI MARY hierarchy is:

PRODUCT_AW_PRODUCT PRI MA VI EW
The nanes of the levels of the PRODUCT_PRI MARY hierarchy are:

2-33

Chapter 2
Providing Access to Data Sources

TOTAL_PRODUCT
CLASS

FAM LY

| TEM

The OLAP view for the SH PMENTS hierarchy is:
CUSTOVER_AW_SHI PMENTS_VI EW

The nanes of the levels of the SH PMENTS hierarchy are:
TOTAL_CUSTOMER
REG ON
WAREHOUSE
SHI P_TO

The OLAP view for the CHANNEL_PRI MARY hierarchy is:
CHANNEL_AW_CHANNEL_PRI MA VI EW

The nanes of the levels of the CHANNEL_PRI MARY hi erarchy are:
TOTAL_CHANNEL
CHANNEL

The SQL SELECT statenent is:
SELECT t. | ong_description tine,
ROUND(f . sal es) sal es
FROM TI ME_AW_CALENDAR_YEAR VIEW't,
PRODUCT_AW_PRCDUCT_PRI MA_ VI EW p,
CUSTOMER_AW_SHI PMENTS VI EW cu,
CHANNEL_AW_CHANNEL_PRI MA VI EW ch,
UNI TS_CUBE_AW_VI EW f
WHERE t .l evel _nane = ' YEAR
AND p. | evel _name = ' TOTAL_PRODUCT'
AND cu. | evel _name = ' TOTAL_CUSTOMER
AND ch. | evel _name = ' TOTAL_CHANNEL'
AND t.dimkey = f.time_aw
AND p.di mkey = f.product _aw
AND cu. di m key = f.custoner_aw
AND ch. di m key = f.channel _awj
ORDER BY t.end_date

The results of the SQ query are:

TI ME SALES
1998 100870877
1999 134109248
2000 124173522
2001 116931722
2002 92515295
2003 130276514
2004 144290686
2005 136986572
2006 140138317
2007 <nul I >

2.4.4.4 Using Source Objects

Example 2-4 demonstrates how to create a SQL statement using the OLAP views.
You can produce the same results by using OLAP Java API Sour ce objects, as shown
in Example 2-5. The code in Example 2-5 uses the MinLevel H er ar chy objects from
Example 2-4.

ORACLE 2-34

ORACLE

Chapter 2
Providing Access to Data Sources

Example 2-5 Basic Cube Query Using Source Objects

Il Get the SALES neasure and the Source for it.
MinBaseMeasur e ndnBal es = ndnbni t sCube. fi ndOr Cr eat eBaseMeasur e(" SALES") ;
Nunber Sour ce sal es = (Nunber Sour ce) minfal es. get Sour ce();

Il Get the Source objects for the PRODUCT_PRI MARY, CHANNEL_PRI MARY

/1 and the SH PMENTS hi erar chi es.

StringSource prodH er = (StringSource)nmdnProdHi er. get Source();
StringSource shipHi er = (StringSource)ndnshi pHi er. get Source();

StringSource chanHi er = (StringSource)nmdnChanHi er. get Source();

/1 Get the YEAR hierarchy level.

Li st <MinHi erarchylLevel > hierlLevel s = ndntCal Hi er. get Level s();
MinHi er archyLevel ndniear Hi er Level nul | ;

for(Mnt erarchyLevel ndnHi erLevel : hierLevels)

mdmYear H er Level = ndnHi er Level ;
i f (mdmyear Hi er Level . get Nane() . equal s(" YEAR"))

{

}

}
Il Get the Source for the YEAR | evel of the CALENDAR YEAR hierarchy.

Sour ce yearLevel = mdnear Hi er Level . get Source();

break;

/'l Select single values for the hierarchies except for the time hierarchy.
Sour ce prodSel prodHi er. sel ect Val ue(" PRODUCT_PRI MARY: : TOTAL_PRCDUCT: : TOTAL") ;
Sour ce cust Sel shi pHi er. sel ect Val ue(" SH PVENTS: : TOTAL_CUSTOMER: : TOTAL") ;
Sour ce chanSel chanHi er. sel ect Val ue(" CHANNEL_PRI MARY: : TOTAL_CHANNEL: : TOTAL");

/1 Get the long description attribute for the TIME_AW di nension.
MinBaseAttribute mdnili meLDAttr = (MinBaseAttribute)

mdnTi meDi m get Val ueDescriptionAttribute();
Source tineLDAttr = ndnili neLDAttr. get Source();

Source yearsWthLDVal ue = tineLDAttr.join(yearLevel);

Source result = sal es.joinH dden(prodSel)
.j oi nHi dden(cust Sel)
.j oi nHi dden(chanSel)
.join(yearsWthLDval ue);

get Context().comit();
get Cont ext (). di spl ayResul t(result);

The values of the Cur sor for the resul t Sour ce are the following. The code for
formatting the values is not shown. For the complete code for Example 2-4 and
Example 2-5, see the Basi cCubeVi ewQuery. j ava example program.

Year Sal es

1998 100870876. 58
1999 134109248. 15
2000 124173521.55
2001 116931722.03
2002 92515295.02
2003 130276513. 86
2004 144290685. 55
2005 136986571. 96

2-35

Chapter 2
Providing Access to Data Sources

2006 140138317. 39
2007 NA

ORACLE" 2-36

Discovering Metadata

This chapter describes how to connect to an Oracle Database instance and how to
discover existing Oracle OLAP metadata objects. It includes the following topics:

e Connecting to Oracle OLAP

e Overview of the Procedure for Discovering Metadata

e Creating an MdmMetadataProvider

e Getting the MdmSchema Objects

e Getting the Contents of an MdmSchema

e Getting the Objects Contained by an MdmPrimaryDimension

e Getting the Source for a Metadata Object

3.1 Connecting to Oracle OLAP

To connect to the Oracle OLAP server in an Oracle Database instance, an OLAP
Java API client application uses the Oracle implementation of the Java Database
Connectivity (JDBC) API. The Oracle JDBC classes that you use to establish a
connection to Oracle OLAP are in the Java archive file oj dbc6. j ar . For information
about getting that file, see Setting Up the Development Environment.

The following topics describe creating a connection to Oracle OLAP.

e Prerequisites for Connecting
e Establishing a Connection

e Closing the Connection and the DataProvider

3.1.1 Prerequisites for Connecting

Before attempting to connect to the Oracle OLAP server, ensure that the following
requirements are met:

* The Oracle Database instance is running and was installed with the OLAP option.

» The Oracle Database user ID that you are using for the connection has access to
the relational schemas that contain the data.

e The Oracle JDBC and OLAP Java API jar files are in your application development
environment. For information about setting up the required jar files, see Setting Up
the Development Environment.

3.1.2 Establishing a Connection

To connect to the OLAP server, perform the following steps:

1. Create a JDBC connection to the database.

ORACLE 3-1

Chapter 3
Connecting to Oracle OLAP

2. Create a Dat aProvi der and a User Sessi on.
These steps are described in the following topics:

* Creating a JDBC Connection

* Creating a DataProvider and a UserSession

3.1.2.1 Creating a JDBC Connection

One way to create a connection to an Oracle Database instance is to use
oracle.jdbc. O acl eDat aSour ce and or acl e. j dbc. Oracl eConnect i on objects. For
example, the following code creates an or acl e. j dbc. Oracl eDat aSour ce, sets
properties of the object, and then gets a JDBC O acl eConnect i on object from the
O acl eDat aSour ce.

The values of the properties for the Or acl eDat aSour ce are from
ajava.util.Properties object. The url property has the form

j dbc: oracl e:thin: @erverName: port Nunber: si d, where server Nane is the hostname
of the server on which the Oracle Database instance is running, port Nunber is the
number of the TCP/IP listener port for the database, and si d is the system identifier
(SID) of the database instance.

Example 3-1 Getting a JDBC OracleConnection

oracle. jdbc. Oracl eConnection conn = null;
try
{

Oracl ebDat aSource ods = new Oracl eDat aSour ce();

ods. set URL(props. get Property("url"));

ods. set User (props. get Property("user"));

ods. set Passwor d(props. get Property("password"));

conn = (oracle.jdbc. Oacl eConnection) ods. get Connection();

}
cat ch(SQLException e)
{

Systemout. println("Connection attenpt failed. " + e);

}

In the example, the connection uses the Oracle JDBC thin driver. There are many
ways to specify your connection characteristics using the get Connect i on method.
There are also other ways to connect to an Oracle Database instance. For more
information about Oracle JDBC connections, see Oracle Database JDBC Developer’s
Guide.

After you have the Or acl eConnect i on object, you can create OLAP Java API
Dat aProvi der and User Sessi on objects.

3.1.2.2 Creating a DataProvider and a UserSession

ORACLE

The following code creates a Dat aPr ovi der and a User Sessi on. The conn object is the
O acl eConnect i on from Example 3-1.

Example 3-2 Creating a DataProvider

Dat aProvi der dp = new Dat aProvider();
try
{

User Sessi on session = dp. createSession(conn);

3-2

Chapter 3
Overview of the Procedure for Discovering Metadata

cat ch(SQLException e)
{

}

Systemout.println("Could not create a UserSession. " + e);

Using the Dat aPr ovi der, you can get the Mim\et adat aPr ovi der, which is described
in "Creating an MdmMetadataProvider". You use the Dat aPr ovi der to get the
Transacti onProvi der and to create Sour ce and Cur sor Manager objects as described
in Understanding Source Objects and Making Queries Using Source Methods.

3.1.3 Closing the Connection and the DataProvider

If you are finished using the OLAP Java API, but you want to continue working in your
JDBC connection to the database, then use the cl ose method of your Dat aPr ovi der to
release the OLAP Java API resources.

dp. cl ose(); /1 dp is the DataProvider

When you have completed your work with the database, use the
O acl eConnecti on. cl ose method.

Example 3-3 Closing the Connection
try
conn. cl ose(); /1 conn is the O acl eConnection

}
cat ch(SQLException e)
{

Systemout. println("Cannot close the connection. " + e);

}

3.2 Overview of the Procedure for Discovering Metadata

The OLAP Java API provides access to the data of an analytic workspace or that is in
relational structures. This collection of data is the data store for the application.

Potentially, the data store includes all of the subchemas of the MinRoot Schena.
However, the scope of the data store that is visible when an application is running
depends on the database privileges that apply to the user ID through which the
connection was made. A user can see all of the MinDat abaseSchena objects that exist
under the MinRoot Schena, but the user can see the objects that are owned by an
MinDat abaseSchema only if the user has access rights to the metadata objects,

The following topics describe discovering metadata.

e Purpose of Discovering the Metadata

e Steps in Discovering the Metadata

3.2.1 Purpose of Discovering the Metadata

The metadata objects in the data store help your application to make sense of the
data. They provide a way for you to find out what data is available, how it is structured,
and what the characteristics of it are.

ORACLE 3-3

Chapter 3
Creating an MdmMetadataProvider

Therefore, after connecting, your first step is to find out what metadata is available.
You can then present choices to the end user about what data to select or calculate
and how to display it.

After an application discovers the metadata, it typically goes on to create queries

for selecting, calculating, and otherwise manipulating the data. To work with data in
these ways, you must get the Sour ce objects from the metadata objects. These Sour ce
objects specify the data for querying. For more information on Sour ce objects, see
Understanding Source Objects.

3.2.2 Steps in Discovering the Metadata

Before investigating the metadata, your application must make a connection to Oracle
OLAP. Then, your application might perform the following steps:

Create a Dat aProvi der.
Get the Mim\et adat aPr ovi der from the Dat aProvi der .
Get the MinRoot Schenma from the MimVet adat aPr ovi der .

Get all of the MinDat abaseSchena objects or get individual ones.

@ p W DM PR

Get the MinCube, MInDi mensi on, and MinCr gani zat i onal Schema objects owned by
the MinDat abaseSchenma objects.

The following topics describe these steps in detail.
e Creating an MdmMetadataProvider

e Getting the MdmSchema Objects

e Getting the Contents of an MdmSchema

e Getting the Objects Contained by an MdmPrimaryDimension

3.3 Creating an MdmMetadataProvider

An Mim\et adat aPr ovi der gives access to the metadata in a data store by

providing the MinRoot Schena. Before you can create an Mimvet adat aPr ovi der,

you must create a Dat aPr ovi der as described in Creating Metadata and Analytic
Workspaces. Example 3-4 creates an Mimvet adat aPr ovi der . In the example, dp is the
Dat aPr ovi der .

Example 3-4 Creating an MdmMetadataProvider

Mimvet adat aProvi der nmp = nul | ;

try
{

mp = (Mimvet adat aProvi der) dp. get MimMet adat aPr ovi der () ;
}
catch (Exception e)
{

println("Cannot get the MDM netadata provider. " + e);
}

ORACLE 3-4

Chapter 3
Getting the MdmSchema Objects

3.4 Getting the MdmSchema Objects

ORACLE

The Oracle OLAP metadata objects that provide access to the data in a data store
are organized by MinSchema objects. The top-level MinSchena is the MinRoot Schema.
Getting the MinRoot Schena is the first step in exploring the metadata in your

data store. From the MinRoot Schenma, you can get the MinDat abaseSchena objects.
The MinRoot Schema has an MinDat abaseSchema for each database user. An

MinDat abaseSchena can have MinOr gani zat i onal Schema objects that organize the
metadata objects owned by the MinDat abaseSchena.

Example 3-5 Getting the MdmSchema Objects

This example demonstrates getting the MinmRoot Schema, the MinDat abaseSchema
objects under it, and any MinOr gani zat i onal Schenma objects under them.

private void get Schemas(Mm\et adat aPr ovi der np)
{
MinRoot Schenma mdnRoot Schema = (MinRoot Schens) np. get Root Schema() ;
Li st <MinDat abaseSchema> dbSchemas = nmdnRoot Schenma. get Dat abaseSchemas() ;
f or (MinDat abaseSchema ndnDBSchema : dbSchenas)
{
print!l n(mdnDBSchena. get Nane()) ;
get Or gSchenmas(ndnDBSchem) ;
}
}

private void get OrgSchemas(MinSchema nudnBSchema)

{
ArraylList orgSchemaLi st = new ArrayList();

i f (mdnSchena instanceof MinDat abaseSchems)

{
MimDat abaseSchenma mdnDBSchenma = (MinDat abaseSchema) mdnScheng;

orgSchemalLi st = (Arraylist) mdnDBSchemna. get Or gani zati onal Schemas();

}
el se if (minSchema instanceof MInOrganizati onal Schems)
{
MImOr gani zat i onal Schema mdmOr gSchema = (MinOr gani zat i onal Schena)

minSchemy;
orgSchemaLi st = (Arraylist) mdnOr gSchema. get Organi zat i onal Schemas();

}

if (orgSchemalist.size() > 0)
{
println("The MInOrgani zational Schema subschemas of "
+ mdnSchena. get Nane() + " are:");
Iterator orgSchemaListltr = orgSchenmalist.iterator();
whil e (orgSchemalListltr.hasNext())
{
MInOr gani zat i onal Schema nmdnOr gSchema = (MInOr gani zat i onal Schena)
orgSchemaLi stltr.next();
println(mdnOr gSchenma. get Nane()) ;
get Or gSchemas(mdnOr gSchena) ;
}
}

el se

{
println(mdnSchena. get Nane() + " does not have any" +

3-5

Chapter 3
Getting the Contents of an MdmSchema

" MInOr gani zati onal Schema subschemas. ");

}
}

Example 3-6 Getting a Single MdmDatabaseSchema

Rather than getting all of the MinDat abaseSchena objects, you can use the

get Dat abaseSchema method of the MinRoot Schema to get the schema for an individual
user. This example demonstrates getting the MinDat abaseSchena for the GLOBAL
user.

MinDat abaseSchema mdnd obal Schema = ndnRoot Schema. get Dat abaseSchema(" GLOBAL") ;

3.5 Getting the Contents of an MdmSchema

ORACLE

From an MinSchenm, you can get all of the subschema, MinCube,

MinPr i mar yDi mensi on, and Mimveasur e objects that it contains. Also, the

MinRoot Schenma has an Mimveasur eDi nensi on that has a Li st of all of the available
Mimveasur e objects.

If you want to display all of the dimensions and methods that are owned by a
particular user, then you could get the lists of dimensions and measures from the
MinDat abaseSchena for that user.

Example 3-7 Getting the Dimensions and Measures of an
MdmbDatabaseSchema

This example gets the dimensions and measures from the MinDat abaseSchena from
Example 3-6. It displays the name of each dimension and measure.

private void get Obj ect s(MinDat abaseSchena ndnd obal Schena)
{
List dinList = ndn@ obal Schema. get Di mensi ons();
String obj Nane = mind obal Schema. get Name() + " schema”;
get Names(di mLi st, "di mensions", objNane);

Li st neasList = mdnd obal Schena. get Measures();
get Names(measLi st, "neasures", objName);

}

private void getNames(List objectList, String obj Types, String obj Nanme)
{
printIn("The " + obj Types + " of the " + objName + " are:");
Iterator objListltr = objectList.iterator();
while (objListltr.hasNext())
{
MimChj ect mdmObj = (Midnbj ect) objListltr.next();
println(mdmObj . get Name()) ;
}
}

The output of the example is the following.

The di nensions of the GLOBAL schema are:
CHANNEL_AW

CUSTOMER AW

PRODUCT AW

TI ME_AW

The measures of the GLOBAL schenm are:
UNI T_CCST

3-6

Chapter 3
Getting the Objects Contained by an MdmPrimaryDimension

UNI T_PRI CE
SALES

UNI TS

CosT

Example 3-8 Getting the Dimensions and Measures of an MdmCube

To display just the dimensions and measures associated with an MinCube, you could
use the fi ndOr Cr eat eCube method of an MinDat abaseSchema to get the cube and then
get the dimensions and measures of the cube. This example gets an MinCube from

the MinDat abaseSchena of Example 3-6 and displays the names of the dimensions and
measures associated with it using the get Names method of Example 3-7.

private void get CubeCbj ect s(MinDat abaseSchema mdnG obal Schems)
{
MimCube mdrini t sCube = (MinCube)
mdmd obal Schena. fi ndOr Cr eat eCube(" PRI CE_CUBE_AW") ;
String obj Nane = mdmni t sCube. get Nane() + " cube”;
Li st dinList = mdnbnitsCube. get Di nensi ons();
get Names(di mLi st, "di mensions", obj Nane);

Li st <Mim\Veasur e> neasLi st = mdrni t sCube. get Measures();
get Names(measLi st, "nmeasures", objName);

}

The output of the example is the following.

The dinensions of the PRICE_CUBE_ AW cube are:
TI ME_AW

PRODUCT_AW

The measures of the PRI CE_CUBE_AW cube are:
UNI T_COST

UNI T_PRI CE

3.6 Getting the Objects Contained by an
MdmPrimaryDimension

In discovering the metadata objects to use in creating queries and displaying

the data, an application typically gets the MinSubDi mensi on components of an
MinPr i mar yDi mensi on and the MimAt t ri but e objects that are associated with the
dimension. The following topics demonstrate getting the components and attributes
of a dimension.

* Getting the Hierarchies and Levels of an MdmPrimaryDimension

e Getting the Attributes for an MdmPrimaryDimension

3.6.1 Getting the Hierarchies and Levels of an MdmPrimaryDimension

ORACLE

An MinPr i mar yDi nensi on has zero or more component MinH er ar chy objects, which
you can obtain by calling the get Hi er ar chi es method of the dimension. That method
returns a Li st of MinHi er ar chy objects. The levels of an MinPri mar yDi mensi on are
represented by MinDi mensi onLevel objects.

If an MinHi er ar chy is an MinLevel Hi er ar chy, then it has MinHi er ar chyLevel
objects that associate MInDi nensi onLevel objects with it. You can obtain the

3-7

Chapter 3
Getting the Objects Contained by an MdmPrimaryDimension

MintHi er ar chyLevel objects by calling the get Hi er ar chyLevel s method of the
MinLevel Hi erarchy.

Example 3-9 Getting the Hierarchies and Levels of a Dimension

This example gets an MinPri mar yDi mensi on from the MinDat abaseSchena of
Example 3-6 and displays the names of the hierarchies and the levels associated
with them.

private void getH erarchi esAndLevel s(MinDat abaseSchema nmdn@ obal Schems)
{
MinPr i mar yDi mensi on mdnCust Di m = (MdnPr i mar yDi mensi on)
mdmd obal Schemna. fi ndOr Cr eat eSt andar dDi mensi on(" CUSTOVER_AW") ;
Li st <MInHi erarchy> hi erList = mdnCust Di m get Hi erarchi es();
println("The hierarchies of the dimension are:");
for (MinHi erarchy ndnHi er : hierlList)
{
println(mdnHi er. get Nane());
if (mdrHier instanceof MinLevel Hi erarchy)
{
Minm_evel H erarchy mdnlievel Hi er = (MinmLevel Hi erarchy) ndntHi er;
Li st <MiInHi erarchyLevel > hi erLevel Li st = mdmievel Hi er. get H erarchyLevel s();
printIn(" The levels of the hierarchy are:");
for (MinHi erarchylLevel ndnHierlLevel : hierLevel List)

{

}
}
}
}

printIn(" " + mdnHi erLevel . get Nane());

The output of Example 3-9 is the following.

The hierarchies of the dimension are:
SHI PMENTS
The levels of the hierarchy are:
TOTAL_CUSTOMER
REG ON
WAREHOUSE
SH P_TO
MARKETS
The levels of the hierarchy are:
TOTAL_MARKET
MARKET _SEGVENT
ACCOUNT
SH P_TO

3.6.2 Getting the Attributes for an MdmPrimaryDimension

ORACLE

An MinPri mar yDi mensi on and the hierarchies and levels of it have associated

MimAt t ri but e objects. You can obtain many of the attributes by calling the

get Attri but es method of the dimension, hierarchy, or level. That method returns a
Li st of MimAt t ri but e objects that an application has explicitly added to or specified
for the MinPri mar yDi mensi on. You can obtain specific attributes, such as a short or
long description attribute or a parent attribute by calling the appropriate method of an
MinPr i mar yDi mensi on or an MinHi er ar chy.

3-8

Chapter 3
Getting the Source for a Metadata Object

Example 3-10 Getting the MdmAttribute Objects of an MdmPrimaryDimension

This example demonstrates getting the MimAt t r i but e objects for an

MinPr i mar yDi mensi on. It also gets the parent attribute separately. The example

displays the names of the MimAt t ri but e objects. The attribute names that end in
LDand _SD are the attributes that are added to the MinHi er ar chyLevel objects, as

mentioned in "Populating OLAP Views with Hierarchical Attribute Values".

private void getAttributes(MinDat abaseSchema nidn@ obal Schen)
{
MInTi meDi mensi on mdnili meDi m = (Mdnili meDi nensi on)
mdmd obal Schena. fi ndOr Cr eat eTi meDi mensi on(" TI ME_AW") ;
List attrList = ndnili neDi m get Attributes();
Iterator attrListltr = attrList.iterator();
printin("The MimAttribute objects of " + ndnfimeDi mgetNange() + " are:");
while (attrListltr.hasNext())
{
MimAttribute mimAttr = (MimAttribute) attrListlitr.next();
printin(" " + mimAttr.getNane());

}

MimAttribute ndnParent Attr = ndnili meDi m get Parent Attribute();
println("The parent attribute is " + ndnParentAttr.getName() + ".");

}

The output of the example is the following.

The MimAttribute objects of TIME AW are:
LONG DESCRI PTI ON
SHORT _DESCRI PTI ON
END_DATE

TI ME_SPAN
TOTAL_TI ME_LD
YEAR LD
QUARTER LD
MONTH_LD

TOTAL_TI ME_SD
YEAR SD
QUARTER SD
MONTH_SD

TOTAL_TI ME_ED
YEAR ED
QUARTER ED
MONTH_ED

TOTAL_TI ME_TS
YEAR TS
QUARTER TS
MONTH_TS

The parent attribute i s PARENT _ATTRI BUTE.

3.7 Getting the Source for a Metadata Object

ORACLE

A metadata object represents a set of data, but it does not provide the ability to create
gueries on that data. The object is informational. It records the existence, structure,
and characteristics of the data. It does not give access to the data values.

To access the data values for a metadata object, an application gets the Sour ce object
for that metadata object. The Sour ce for a metadata object is a primary Sour ce.

3-9

ORACLE

Chapter 3
Getting the Source for a Metadata Object

To get the primary Sour ce for a metadata object, an application calls the get Sour ce
method of that metadata object. For example, if an application needs to display the
guantity of product units sold during the year 1999, then it must use the get Sour ce

method of the Mim\Measur e for that data, which is mdrni t s in the following example.

Example 3-11 Getting a Primary Source for a Metadata Object

Source units = ndmni ts. get Source();

For more information about getting and working with primary Sour ce objects, see
Understanding Source Objects.

3-10

Creating Metadata and Analytic
Workspaces

This chapter describes how to create new metadata objects and map them to
relational structures or expressions. It describes how to export and import the
definitions of the metadata objects to XML templates. It also describes how to
associate the objects with an analytic workspace, and how to build the analytic
workspace.

The examples in this chapter are from the Cr eat eMet adat aAndAW j ava example
program. That program creates some of the same metadata objects as

the Cr eat eAndBui | dAW j ava and Speci f yAW/al ues. j ava example programs. The
Cr eat eMet adat aAndAWprogram also exports the analytic workspace to an XML
template.

This chapter includes the following topics:

* Overview of Creating and Mapping Metadata

* Creating an Analytic Workspace

* Creating the Dimensions, Levels, and Hierarchies
* Creating Attributes

e Creating Cubes and Measures

e Committing Transactions

* Exporting and Importing XML Templates

e Building an Analytic Workspace

4.1 Overview of Creating and Mapping Metadata

ORACLE

The OLAP Java API provides the ability to create persistent metadata objects. The
top-level metadata objects exist in the data dictionary of the Oracle Database instance.
The API also provides the ability to create transient metadata objects that exist only for
the duration of the session. An application can use both types of metadata objects to
create queries that retrieve or otherwise use the data in the data store.

Before an OLAP Java API application can create metadata objects, a database
administrator must have prepared the Oracle Database instance. The DBA must have
set up permanent and temporary tablespaces in the database to support the creation
of Oracle OLAP metadata objects and must have granted the privileges that allow the
user of the session to create and manage objects. A dimensional metadata model
typically includes the objects described in Understanding OLAP Java API Metadata.

You implement the dimensional model by creating OLAP Java API metadata
objects. You use classes in the or acl e. ol api . net adat a. mappi ng package to
map the metadata objects to relational source objects and to build analytic
workspaces. You use classes in the or acl e. ol api . synt ax package to specify
Expr essi on objects that you use in mapping the metadata. You use classes in the

4-1

Chapter 4
Creating an Analytic Workspace

oracl e. ol api . met adat a. depl oyment package to deploy the metadata objects in an
analytic workspace or in a relational database (ROLAP) organization.

The basic steps for implementing the dimensional model as OLAP Java API objects in
an analytic workspace are the following:

1. Create an AWobject and MinPri mar yDi mensi on and MinCube objects.
2. Deploy the MinPri mar yDi nensi on and MinCube objects to the AW

3. Create MInDi nensi onLevel , MinHi er ar chy, and MimAt t ri but e objects for
each MinPri mar yDi mensi on, create MinHi er ar chyLevel objects to associate
MinDi nensi onLevel objects with an MinHi er ar chy, and create the Mim\easur e and
related objects for the MinCube objects.

4. Map the metadata objects to the relational sources of the base data.
5. Commit the Transacti on, which creates persistent objects in the database.

6. Load data into the objects from the relational sources by building the analytic
workspace.

For a list of the topics that describe these steps, see Creating Metadata and Analytic
Workspaces.

4.2 Creating an Analytic Workspace

An analytic workspace is a container for dimensional objects. It is represented by the
AWclass in the oracl e. ol api . met adat a. depl oynent package. An analytic workspace
is owned by an MinDat abaseSchena.

Example 4-1 demonstrates getting the MinDat abaseSchema for the GLOBAL user
and creating an AW For an example that gets the MinRoot Schema, see Discovering
Metadata.

Example 4-1 Creating an AW

private void createAW MinRoot Schema ndnRoot Schenma)

{
MimDat abaseSchema ndnDBSchema = ndnRoot Schena. get Dat abaseSchema(" GLOBAL") ;
aw = mdnDBSchena. fi ndOr Cr eat eAW " GLOBAL_AW") ;

}

4.3 Creating the Dimensions, Levels, and Hierarchies

ORACLE

A dimension is a list of unique values that identify and categorize data. Dimensions
form the edges of a cube and identify the values in the measures of the cube. A
dimension can have one or more levels that categorize the dimension members. It
can have one or more hierarchies that further categorize the members. A dimension
can also have no levels or hierarchies. However, a dimension must have one or more
levels before Oracle OLAP can create a materialized view for it.

A dimension also has attributes that contain information about dimension members.
For descriptions of creating attributes, see "Creating Attributes".

The following topics describe how to create objects that represent a dimension and the
levels and hierarchies of a dimension.

e Creating and Mapping Dimensions

4-2

Chapter 4
Creating the Dimensions, Levels, and Hierarchies

» Creating and Mapping Dimension Levels

» Creating and Mapping Hierarchies

4.3.1 Creating and Mapping Dimensions

An OLAP dimension is represented by the MinPri mar yDi mensi on class. A

dimension is owned by an MinDat abaseSchena. You create a dimension with the
findO Creat eTi meDi mensi on or the fi ndOr Cr eat eSt andar dDi nensi on method of the
MinDat abaseSchema. You can map a dimension that has no levels to a relational data
source by creating a Menber Li st Map for the dimension.

Example 4-2 creates a standard dimension that has the name CHANNEL_AWJ.
The example creates an AWPr i mar yDi mensi onOr gani zat i on object to deploy the
dimension in an analytic workspace. The ndnDBSchema and aw objects are created
by Example 4-1. The last three lines call the methods of Example 4-3, Example 4-4,
and Example 4-9, respectively.

Example 4-2 Creating and Deploying an MdmStandardDimension

Mint andar dDi mensi on ndnChanDi m =

mdnDBSchena. fi ndOr Cr eat eSt andar dDi mensi on(" CHANNEL_AW") ;
AWPr i mar yDi nensi onOr gani zati on awChanDi mOrg =

mdnChanDi m fi ndOr Cr eat eAWPr i mar yDi mensi onOr gani zat i on(aw) ;

cr eat eAndMapDi nensi onLevel s(ndnChanDi nj ;
creat eAndMapHi erar chies();
conmi t (mdnChanDi m) ;

4.3.2 Creating and Mapping Dimension Levels

ORACLE

An MinDi mensi onLevel represents the members of a dimension that are at the same
level. Typically, the members of a level are in a column in a dimension table in

the relational source. A Menber Li st Map associates the MInDi nensi onLevel with the
relational source.

Example 4-3 creates two MinDi nensi onLevel objects for the CHANNEL_AWJ
dimension and maps the dimension levels to the key columns of the
GLOBAL.CHANNEL_DIM table. The example also maps the long description
attributes for the dimension levels to columns of that table. The long description
attribute, chanLongDescAt tr, is created by Example 4-6.

Example 4-3 Creating and Mapping an MdmDimensionLevel

private ArrayLi st <MinDi nensi onLevel > di nLevel Li st = new ArraylList();
private ArrayList<String> dimLevel Names = new ArraylList();

private ArrayList<String> keyCol ums = new ArrayList();

private ArrayList<String> | DescCol Names = new Arraylist();

private void createAndMapDi nensi onLevel s(MinPri maryDi nensi on mdnChanDi m)

{
di mLevel Nanmes. add(" TOTAL_CHANNEL") ;

di nLevel Nanmes. add(" CHANNEL") ;

keyCol umms. add(" GLOBAL. CHANNEL_DI M TOTAL_I D") ;
keyCol unms. add(" GLOBAL. CHANNEL_DI M CHANNEL_| D") ;

| DescCol Nanes. add(" GLOBAL. CHANNEL_DI M TOTAL_DSC') ;
| DescCol Nanes. add(" GLOBAL. CHANNEL_DI M CHANNEL_DSC") ;

4-3

Chapter 4
Creating the Dimensions, Levels, and Hierarchies

Il Create the MiInDi nensionLevel and MenberLi st Map objects.
int i =0;
for(String dinmLevel Name : di nLevel Nanes)
{
MinDi nensi onLevel mdnDi nLevel =
mdnChanDi m fi ndOr Cr eat eDi nensi onLevel (di mLevel Narres. get (i));
di nLevel Li st. add(ndnDi nLevel);

/I Create a MenberListMp for the dinension |evel.
Member Li st Map mdnDi nLevel MenLi st Map =
mdnDi mLevel . fi ndOr Cr eat eMenber Li st Map() ;
Col umExpr essi on keyCol Exp =
(Col umExpr essi on) Synt axQoj ect . fronSynt ax(keyCol ums. get (i),
met adat aPr ovi der) ;
mdnDi mLevel Menli st Map. set KeyExpr essi on(keyCol Exp) ;
mdnDi mLevel Menli st Map. set Quer y(keyCol Exp. get Query());

/I Create an attribute map for the Long Description attribute.
AttributeMap attrMaplLong =
mdnDi mLevel Menli st Map. fi ndOr Creat eAttri but eMap(chanLongDescAttr);

Il Create an expression for the attribute map.
Expression | DescCol Exp =
(Expressi on) Synt axChj ect . fronBynt ax(| DescCol Nares. get (i),
met adat aPr ovi der) ;
attrMapLong. set Expressi on(| DescCol Exp);
i ++;
}
}

4.3.3 Creating and Mapping Hierarchies

An MinHi er ar chy represents a hierarchy in the dimensional object model.

An MinHi er ar chy can be an instance of the MinLevel H er ar chy or the

MinVal ueHi er ar chy class. An MinLevel Hi erar chy has an ordered list of

MinHi er ar chyLevel objects that relate MinDi nensi onLevel objects to the hierarchy.

4.3.3.1 Creating and Mapping an MdmLevelHierarchy

ORACLE

Example 4-4 creates a hierarchy for the CHANNEL_AWJ dimension. It creates
hierarchy levels for the hierarchy and associates attributes with the hierarchy levels. It
also maps the hierarchy levels and the attributes to relational sources. The example
uses the ArrayLi st objects from Example 4-3. It maps the MinHi er ar chyLevel objects
to the same relational source objects as the MinDi mensi onLevel objects are mapped.

Example 4-4 Creating and Mapping MdmLevelHierarchy and
MdmHierarchyLevel Objects

private void createAndMapHi erar chies()
{
Minm_evel Hi erarchy ndnievel Hier =
mdnChanDi m fi ndOr Cr eat eLevel Hi er ar chy (" CHANNEL_PRI MARY") ;

/1 Create the Minti erarchylLevel and HierarchylLevel Map objects.
int i =0;
for(String dinmlevel Name : di nLevel Nanes)

{
MiInDi nensi onLevel ndnDi nlievel =

4-4

Chapter 4
Creating the Dimensions, Levels, and Hierarchies

mdnChanDi m fi ndOr Cr eat eDi nensi onLevel (di mLevel Nane) ;
MinHi erar chyLevel ndnHi erLevel =
mdnievel Hi er. findOr Creat eHi erarchyLevel (mdnDi nievel) ;
H erarchyLevel Map hi erLevel Map =
mdnHi er Level . fi ndOr Creat eHi erar chyLevel Map();
Col umExpr essi on keyCol Exp =
(Col umExpr essi on) Synt axQoj ect . fronSynt ax(keyCol ums. get (i),
met adat aPr ovi der) ;
hi er Level Map. set KeyExpr essi on(keyCol Exp) ;
hi er Level Map. set Quer y(keyCol Exp. get Query());
i ++
}
}

4.3.3.2 Creating and Mapping an MdmValueHierarchy

ORACLE

The GLOBAL_AWJ analytic workspace that is used by the examples in

this documentation does not have an MinPri mar yDi mensi on for which an

MinVal ueH erar chy would be sensible. The sample schema for the user SCOIT has
a table that can serve as an example.

The SCOTT sample schema has a table named EMP. That table has columns for
employees and for managers. You could create a dimension for employees. You could
then create an MinVal ueHi er ar chy in which you map the employee column as the
base values for the hierarchy and you map the manager column as the parent relation,
as shown in Example 4-5. To be able to create OLAP dimensions, the SCOTT user
must be granted the OLAP_USER role and the CREATE SESSI ON privilege.

In the example, mdnDBSchena is the MinDat abaseSchena for the SCOTT user, dp

is the Dat aPr ovi der, and np is the Mim\et adat aPr ovi der . The example does not
show the code for connecting to the database or getting the Dat aPr ovi der and
creating a User Sessi on, or getting the Mim\et adat aPr ovi der, the MinRoot Schena,
or the MinDat abaseSchena. The code is an excerpt from a class that extends the
BaseExanpl ellg example class. That class uses other example classes that have
methods for committing the current Tr ansact i on and for displaying output. For the
complete code, see the Cr eat eVal ueHi erar chy. j ava example program.

Example 4-5 Creating an MdmValueHierarchy

/I Create an anal ytic workspace object.
AW aw = ndnDBSchena. fi ndOr Cr eat eAW awNane) ;
/] Create a dinmension and deploy it to the anal ytic workspace.
MinPr i mar yDi nensi on ndnEnpDi m =
mdnDBSchena. fi ndOr Cr eat eSt andar dDi nensi on("EMP_DI M) ;
AWPr i mar yDi mensi onOr gani zati on awEnpDi nOrg =
mdnEnpDi m fi ndOr Cr eat eAWPr i mar yDi mensi onOr gani zat i on(aw) ;

/] Get the EMP table and the Query for the table.
MinTabl e enpTabl e = (MinTabl e) mdnDBSchena. get TopLevel Obj ect ("EMP");

Query enpQuery = enpTabl e. get Query();

Il Create a value hierarchy.
MinVal ueH erarchy mdnval H er =
mdnEnpDi m fi ndOr Cr eat eVal ueHi erar chy(" EMPVALHI ER") ;
/I Create a map for the hierarchy.
Sol vedVal ueHi erar chyMap sol vedVal Hi er Map =
minVal Hi er. findOr Cr eat eSol vedVal ueHi er ar chyMap() ;
/'l Specify the Query, the key expression and the parent key expression for
Il the hierarchy.

4-5

ORACLE

Chapter 4
Creating the Dimensions, Levels, and Hierarchies

sol vedVal Hi er Map. set Quer y(enmpQuery);
Expression keyExp =

(Expressi on) Synt ax(hj ect . f ronSynt ax(" SCOTT. EMP. EMPNO', np);
sol vedVal Hi er Map. set KeyExpr essi on(keyExp) ;
Expression parentExp =

(Expressi on) Synt axQoj ect . fronSynt ax(" SCOTT. EMP. MGR", np) ;
sol vedVal Hi er Map. set Par ent KeyExpr essi on(par ent Exp) ;

/] Create an attribute that relates a nane to each dinension nenber.
MinBaseAttribute mdmNameAttr =

mdEmpDi m fi ndOr Cr eat eBaseAt t ri but e(" EMP_NAME") ;
SQLDat aType sdtVC2 = new SQ.Dat aType(" VARCHAR2") ;
mdnmNanmeAt t r. set SQLDat aType(sdt VC2)
/]l Create an attribute map for the attribute.
AttributeMap attrMap =

sol vedVal Hi er Map. fi ndOr Creat eAt tri but eMap(minNaneAttr);
/] Create and set an expression for the attribute map.
Expression exp = (Expression)

Synt axbj ect . fronBynt ax(" SCOTT. EMP. ENAME", np);
attr Map. set Expressi on(exp);
mdnVal Hi er. addAttri but e(mdnmNanmeAttr);

/1 Commit the Transaction before building the anal ytic workspace.

/1 The get Context nethod of BaseExanpl ellg returns a Contextl1lg object,
/1 which has a method that conmits the Transaction.

get Context ().comit();

Bui | dl t em bl dEnpDi m = new Bui | dI t en{ mdnEnpDi) ;

Arraylist<Buildltem itenms = new ArrayList();

i tens. add(bl dEnpDi M) ;

Bui | dProcess bl dProc = new Bui | dProcess(itens);

/1 Execute the build.

try

{

dp. execut eBui | d(bl dProc, 0);
}

catch (Exception ex)

{

printIn("Could not execute the BuildProcess.");
println("Caught: " + ex);
}

/1 Get the Source objects for the dinension, the hierarchy, and the attribute.
Source enpDi m = mdrEnpDi m get Sour ce() ;

Source val H er = nmdnVal Hi er. get Source();

Source enpNanmeAttr = ndnmNanmeAttr. get Source();

/] Get the parent attribute and get the Source for it.

MimAttribute ndnParent Attr = ndnEnpDi m get Parent Attribute();

Source parent Attr = mdnParent Attr. get Source();

Sour ce parent ByEnpByNane = parentAttr.join(val H er.join(enpNaneAttr));
/1 Sort the values in ascending order by enployee nunber of the nanagers.
Sour ce sortedPar ent ByEnpByNane = par ent ByEnpByNane. sort Ascendi ng() ;

/1 Commit the Transaction before creating a Cursor.

get Context ().comit();

/1 The displayResult method of the Contextl1llg object creates a Cursor and
/1 displays the results.

println("The managers of the enpl oyees are:");

get Cont ext (). di spl ayResul t (sort edPar ent ByEnpByNare) ;

4-6

Chapter 4
Creating Attributes

The output of the example is the following. It shows the employee name, the employee
ID and then the employee ID of the manager. The results are sorted by manager. The
employee King does not have a parent and is the highest member of the hierarchy so
the manager value for King is null, which appears as NA in the output.

The nanagers of the enpl oyees are:
((SCOTT, EMPVALHI ER: : 7788) , EMPVALHI ER: : 7566)

2: ((FORD, EMPVALHI ER: : 7902) , EMPVALHI ER: : 7566)

3: ((ALLEN, EMPVALH ER: : 7499), EMPVALHI ER: : 7698)

4: ((WARD, EMPVALHI ER: : 7521) , EMPVALHI ER: : 7698)

5: ((MARTI N, EMPVALH ER: : 7654) , EMPVALH ER: : 7698)

6: ((TURNER, EMPVALH ER : 7844), EMPVALH ER: : 7698)

7: ((JAMES, EMPVALH ER: : 7900) , EMPVALHI ER: : 7698)

8: ((M LLER EMPVALHI ER : 7934) , EMPVALHI ER: : 7782)
((

(

(

(

(

(

ADAMS, EMPVALH ER: : 7876) , EMPVALHI ER: : 7788)

10: ((JONES, EMPVALHI ER: : 7566) , EMPVALH ER: : 7839)
11: ((BLAKE, EMPVALHI ER : 7698) , EMPVALHI ER: : 7839)
12: ((CLARK, EMPVALHI ER : 7782), EMPVALHI ER: : 7839)
13: ((SM TH, EMPVALHI ER: : 7369) , EMPVALH ER: : 7902)
14: ((KING EMPVALHI ER: : 7839), NA)

4.4 Creating Attributes

ORACLE

Attributes contain information about dimension members. An MinBaseAt tri but e
represents values that are based on relational source tables. An MinDeri vedAttri bute
represents values that Oracle OLAP derives from characteristics or relationships

of the dimension members. For example, the get Parent At tri but e method of an
MinPr i mar yDi mensi on returns an MinmDer i vedAt t ri but e that records the parent of
each dimension member.

You create a base attribute for a dimension with the fi ndOr Cr eat eBaseAttri bute
method. You can specify the data type of the attribute, although for many attributes
Oracle OLAP can determine the data type from the attribute mapping. With the

set Al | owAut oDat aTypeChange method, you can specify that Oracle OLAP determine
the data type. Some attributes are used by the dimension in certain ways, such as to
provide descriptions of dimension members or to provide date information that can be
used in calculations. For example, you can specify an attribute for descriptions with
the set Val ueDescri ptionAttribut e method of the dimension and you can specify
an attribute that contains end date time period values with the set EndDat eAttri but e
method of an Minfli neDi nensi on.

Example 4-6 creates a long description attribute for the CHANNEL_AWJ dimension
and specifies it as the attribute that contains descriptions of the members of the
dimension. The example specifies that Oracle OLAP automatically determines a SQL
data type for the attribute.

Example 4-6 Creating an MdmBaseAttribute

private MinBaseAttribute chanLongDescAttr = null;
private void createlLongDesciptionAttribute(MinPrinaryDi nensi on ndnChanDi m)

{

/I Create the long description attribute and allow the automatic changi ng of
/1 the SQL data type.

chanLongDescAttr = mdnChanDi m findOr Creat eBaseAttri but e(" LONG _DESCRI PTI ON') ;
chanLongDescAttr. set Al | owAut oDat aTypeChange(true));

/1 Specifies that the attribute contains descriptions of the dimension menbers.

4-7

Chapter 4
Creating Cubes and Measures

mdnChanDi m set Val ueDescri ptionAttribute(chanLongDescAttr);
}

An attribute can have different values for the members of different levels of

the dimension. In that case the attribute has an attribute mapping for each

level. Example 4-3 creates an At t ri but eMap for the long description attribute for
each dimension level by calling the fi ndOr Cr eat eAt t ri but eMap method of the
Menber Li st Map for each dimension level. It specifies a different column for each
attribute map.

4.5 Creating Cubes and Measures

A cube in a dimensional object model is represented by the MinCube class. An MinCube
owns one or more Mimveasur e objects. It has a list of the MinPri mar yDi mensi on
objects that dimension the measures.

An MinCube has the following objects associated with it.

e MinPrimaryDi nensi on objects that specify the dimensionality of the cube.
e Mmvkasur e objects that contain data that is identified by the dimensions.

A CubeOrgani zati on that specifies how the cube stores and manages the
measure data.

* CubeMap objects that associate the cube with relational sources.

e A Consi stent Sol veSpeci fi cati on that specifies how to calculate, or solve, the
aggregate level data.

The following examples demonstrate creating and mapping a cube and its measures .
e Creating Cubes

e Creating and Mapping Measures

4.5.1 Creating Cubes

ORACLE

Example 4-7 Creating and Mapping an MdmCube

This example creates a cube and some of the objects associated with it. It

creates an MinCube that has the name PRICE_CUBE_AWJ. It also creates an
AWCubeOr gani zat i on object to deploy the cube in an analytic workspace. The
mdnDBSchena and aw objects are created by Example 4-1 and the | eaf Level ArraylLi st
is created in Example 4-4. The mdnili neDi mand ndnPr odDi mobjects are dimensions of
time periods and product categories. The Cr eat eAndBui | dAWprogram creates those
dimensions. The last lines of the example call the methods in Example 4-8 and
Example 4-9, respectively.

private MinCube creat eAndMapCube(MinPri naryDi nensi on ndnili meDi m
MinPr i mar yDi mensi on mdnPr odDi m)
{
MinmCube mdnPriceCube = ndnDBSchema. fi ndOr Cr eat eCube(" PRI CE_CUBE_AW") ;
/1 Add dinensions to the cube.
mdnPr i ceCube. addDi nensi on(ndnili meDi) ;
mdnPr i ceCube. addDi nensi on(ndnProdDi) ;

AWCubeOr gani zati on awCubeOrg =
mdnPri ceCube. fi ndOr Cr eat eAWCubeOr gani zat i on(aw) ;

4-8

Chapter 4
Creating Cubes and Measures

awCubeCOr g. set WOpt i on(AWCubeOr gani zat i on. NONE_W_OPTI ON) ;
awCubeOr g. set Measur eSt or age(AWCubeOr gani zat i on. SHARED_MEASURE_STORAGE) ;
awCubeOr g. set CubeSt or ageType(" NUMBER") ;

Aggr egat i onCommand aggConmand = new Aggr egat i onConmand(" AVG') ;
ArraylLi st <Consi st ent Sol veCommand> sol veCommands = new ArraylList();
sol veComands. add(aggComand) ;
Consi st ent Sol veSpeci fication conSol veSpec =

new Consi st ent Sol veSpeci fi cati on(sol veComrmands) ;
mdnPr i ceCube. set Consi st ent Sol veSpeci fi cati on(conSol veSpec) ;

Il Create and nap the neasures of the cube.
creat eAndMapMeasur es(nmdnPri ceCube) ;

/1 Commit the Transaction.

conmi t (mdnPri ceCube);

}

4.5.2 Creating and Mapping Measures

ORACLE

Example 4-8 Creating and Mapping Measures

This example creates measures for a cube and maps the measures to fact tables in
the relational database. The example uses the cube created by Example 4-7.

private void createAndMapMeasures(MinCube nunPri ceCube)
{
ArraylLi st <MinBaseMeasur e> neasures = new Arraylist();
MinBaseMeasur e ndnCost Measure =
mdnPr i ceCube. fi ndOr Cr eat eBaseMeasur e(" UNI T_COST") ;
MinBaseMeasure ndnPriceMeasure =
mdnPr i ceCube. fi ndOr Cr eat eBaseMeasure("UNI T_PRICE");
mdnCost Measur e. set Al | owAut oDat aTypeChange(true);
mdnPr i ceMeasur e. set Al | owAut oDat aTypeChange(true);
measur es. add(mdnCost Measure) ;
measur es. add(ndnPri ceMeasure);
Minirabl e priceCost Table =
(MimTabl e) mdnDBSchena. get TopLevel Obj ect (" PRI CE_FACT");
Query cubeQuery = priceCost Tabl e. get Query();
ArraylList<String> nmeasureCol utms = new Arraylist();
measur eCol ums. add(" GLOBAL. PRI CE_FACT. UNI T_COST") ;
measur eCol ums. add(" GLOBAL. PRI CE_FACT. UNIT_PRI CE") ;
CubeMap cubeMap = mdnPriceCube. findOr Cr eat eCubeMap();
cubeMap. set Quer y(cubeQuery);

Il Create MeasureMap objects for the neasures of the cube and
Il set the expressions for the measures. The expressions specify the
Il colums of the fact table for the neasures.
int i =0;
for (MinBaseMeasur e ndnBaseMeasure : mneasures)
{

Measur eMap neasureMap = cubeMap. findOr Cr eat eMeasur eMap(minBaseMeasure) ;

Expression expr =

(Expressi on) Synt axQoj ect . f r onSynt ax(measur eCol ums. get (i),
met adat aPr ovi der) ;
measur eMap. set Expressi on(expr);
i ++:

}

/'l Create CubeDinensionalityMap objects for the dinensions of the cube and
Il set the expressions for the dimensions. The expressions specify the
Il colums of the fact table for the dinmensions.

4-9

Chapter 4
Committing Transactions

ArrayList<String> fact Col Names = new ArraylList();
fact Col Names. add(" GLOBAL. PRI CE_FACT. MONTH_I D") ;
fact Col Names. add(" GLOBAL. PRI CE_FACT. I TEM I D) ;
Li st <MInDi mensi onal i ty> mdnDi ml tys = ndnPri ceCube. get Di nensi onality();
for (MinDinensionality mdnDimty: ndnDimtys)
{
CubeDi nensi onal i t yMap cubeDi mvap =
cubeMap. fi ndOr Cr eat eCubeDi nensi onal i t yMap(nmdnDi M ty);
MinPr i mar yDi mensi on mdnPrinDim =
(MdnPri mar yDi mensi on) ndnDi m ty. get Di mensi on() ;
String col umMap = nul | ;
if (mdnPrinDimgetName().startsWth("TIME"))

{
col umMap = fact Col Nanmes. get (0);
i =0;
el se// (nmdnPrinDi mgetNane().startsWth("PRODUCT"))
{
col utmMap = fact Col Nanes. get (1);
i =1
}

Expression expr =
(Expressi on) Synt axCbj ect . f ronBynt ax(col uimMap, met adat aPr ovi der) ;
cubeDi mvap. set Expr essi on(expr);

Il Associate the |eaf level of the hierarchy with the cube.
MinHi erarchy mdnDef Hi er = munPrinDi m get Def aul t Hi erar chy();
MinLevel Hi erarchy minLevH er = (MinLevel H erar chy) ndnDef Hi er;
Li st <MinHi erarchyLevel > | evHi erLi st = mdnlievHi er. get H erar chyLevel s();
/1 The last element in the list nust be the |eaf |evel of the hierarchy.
MinHi erarchyLevel |eaflLevel = |evH erList.get(levH erList.size() - 1);
cubeDi m\vap. set MappedDi nensi on(| eaf Level);
}
}

4.6 Committing Transactions

To save a metadata object as a persistent entity in the database, you must commit the
Transact i on in which you created the object. You can commit a Tr ansact i on at any
time. Committing the Transact i on after creating a top-level object and the objects that
it owns is a good practice.

Example 4-9 gets the Transacti onProvi der from the Dat aPr ovi der for the session
and commits the current Tr ansact i on.

Example 4-9 Committing Transactions

private void comm t(MinSource ndnSource)
{

try

{

Systemout.printin("Conmtting the transaction for " +
minSour ce. get Nane() + ".");
(dp. get Transacti onProvi der()).comm t Current Transaction();

}

catch (Exception ex)

{

Systemout. printin("Could not commit the Transaction. " + ex);

ORACLE 4-10

Chapter 4
Exporting and Importing XML Templates

}
}

4.7 Exporting and Importing XML Templates

You can save the definition of a metadata object by exporting the object to an XML
template. Exporting an object saves the definition of the object and the definitions of
any objects that it owns. For example, if you export an AWobject to XML, then the XML
includes the definitions of any MinPri mar yDi nensi on and MinCube objects that the AW
owns, and the MimAt t ri but e, Mimveasur e and other objects owned by the dimensions
and cubes.

You can import a metadata object definition as an XML template. After importing, you
must build the object.

Example 4-10 Exporting to an XML Template

This example exports metadata objects to an XML template and saves it in a file.
The code excerpt at the beginning of the example creates a Li st of the objects to
export. It adds to the Li st the aw object, which is the analytic workspace created by
Example 4-1. It then calls the export ToXM. method.

. /1 I'n sone nethod.
Li st objectsToExport = new ArrayList();
obj ect sToExport . add(aw) ;
export ToXM_(obj ect sToExport, "global awj.xm");

public void export TOXM.(Li st objectsToExport, String fileNanme)
{

try
{
PrintWiter witer = new PrintWiter(new FileWiter(filename));
mp. export Ful | XM_(writer, Il mp is the Mim\et adat aProvi der
obj ect sToExport,
nul |, /1 No Map for renaning objects
fal se); /1 Do not include the owner nane
witer.close();
}
catch (I CException ie)
{
ie printStackTrace();
}

}

4.8 Building an Analytic Workspace

ORACLE

After creating and mapping metadata objects, or importing the XML definition of
an object, you must perform the calculations that the objects specify and load the
resulting data into physical storage structures.

Example 4-11 creates Bui | dI t emobjects for the dimensions and cubes of the analytic
workspace. It creates a Bui | dPr ocess that specifies the Bui | dI t emobjects and passes
the Bui | dPr ocess to the execut eBui | d method of the Dat aPr ovi der for the session.

Example 4-11 Building an Analytic Workspace

Bui | dl t em bl dChanDi m = new Bui | dl t em(mdnChanDi m) ;
Bui | dl t em bl dProdDi m = new Bui | dl t em(mdnPr odDi) ;

4-11

ORACLE

Chapter 4
Building an Analytic Workspace

Bui | dl tem bl dCust Di m = new Bui | dl t em(mdmCust Di m) ;

Bui | dl tem bl dTi neDi m = new Bui | dl t em(mdnili neDi m) ;

Bui | dl t em bl dUni t sCube = new Bui | dI t en{ ndnlni t sCube) ;
Bui | dl tem bl dPri ceCube = new Bui | dI t en(ndnPri ceCube);
Arraylist<Buildltem itenms = new ArrayList();

i tens. add(bl dChanDi m ;

i tens. add(bl dProdDi m;

i tens. add(bl dCustDim;

i tens. add(bl dTi meDi m ;

i tens. add(bl dUni t sCube);

i tens. add(bl dPriceCube);

Bui | dProcess bl dProc = new Bui | dProcess(itens);

try
{
dp. execut eBui | d(bl dProc, 0);
}
catch (Exception ex)
{

Systemout. println("Coul d not execute the Buil dProcess." + ex);

}

4-12

Understanding Source Objects

This chapter describes Sour ce objects, which you use to specify a query. With a

Sour ce, you specify the data that you want to retrieve from the data store and the
analytical or other operations that you want to perform on the data. Making Queries
Using Source Methods, provides examples of using Sour ce objects. Creating Dynamic
Queries, describes using Tenpl at e objects to make modifiable queries.

This chapter includes the following topics:

* Overview of Source Objects

» Kinds of Source Objects

» Characteristics of Source Objects
* Inputs and Outputs of a Source

» Describing Parameterized Source Objects

5.1 Overview of Source Objects

ORACLE

You use Sour ce objects to create a query that specifies the data that you want to
retrieve from the database. As a query, a Sour ce is similar to a SQL SELECT statement.

To create a query, you typically use the classes in the oracl e. ol api . net adat a. mdm
package to get MinSour ce objects that represent OLAP metadata objects. From an
MinSour ce object, you can get a Sour ce object. You can also create other kinds of
Sour ce objects with methods of a Dat aPr ovi der . You can then use these Sour ce
objects to create a query. To retrieve the data specified by the query, you create a
Cur sor for the Sour ce.

With the methods of a Sour ce, you can specify selections of dimension members,
attribute values, or measure values. You can also specify operations on the elements
of the Sour ce, such as mathematical calculations, comparisons, and ordering, adding,
or removing elements of a query.

The Sour ce class has a few basic methods and many shortcut methods that use one
or more of the basic methods. The most complex basic methods are the j oi n(Sour ce
j oi ned, Source conparison, int conparisonRule, boolean visible) method and
the recursi veJoi n(Source joined, Source conpariso4n, Source parent, int
conpari sonRul e, bool ean parentsFirst, boolean parentsRestrictedToBase, int
max| terations, bool ean visibl e) method. The many other signatures of the j oi n
and r ecur si veJoi n methods are shortcuts for certain operations of the basic methods.

In this chapter, the information about the j oi n method applies equally to the

recur si veJoi n method, except where otherwise noted. With the j oi n method you

can relate the elements of one Sour ce to those of another Sour ce by joining a Sour ce
with an input to a Sour ce that matches with that input. For example, to specify the
dimension members that are required to retrieve the data of a measure that has the
dimension as an input, you use a j oi n method to relate the dimension members to the

5-1

Chapter 5
Kinds of Source Objects

measure. The j oi n method and the inputs of a Sour ce are described in "Inputs and
Outputs of a Source".

A Sour ce has certain characteristics, such as a type and a data type, and it can

have one or more inputs or outputs. This chapter describes these concepts. It also
describes the different kinds of Sour ce objects and how you get them, and the j oi n
method and other Sour ce methods and how you use those methods to specify a query.

5.2 Kinds of Source Objects

ORACLE

The kinds of Sour ce objects that you use to specify data and to perform analysis, and
the ways that you get them, are the following:

e Primary Sour ce objects, which are returned by the get Sour ce method of an
MinBour ce object such as an MinDi mensi on or an MinDi mensi onedChj ect . A
primary Sour ce provides access to the data that the MinSour ce represents. Getting
primary Sour ce objects is usually the first step in creating a query. You then
typically select elements from the primary Sour ce objects, thereby producing
derived Sour ce objects.

» Derived Sour ce objects, which you get by calling some of the methods of a Sour ce
object. Methods such as j oi n return a new Sour ce that is derived from the Sour ce
on which you call the method. All queries on the data store, other than a simple list
of values specified by the primary Sour ce for an MinDi nensi on, are derived Sour ce
objects.

* Fundamental Sour ce objects, which are returned by the get Sour ce method of a
Fundanent al Met adat atbj ect . These Sour ce objects represent the OLAP Java API
data types.

» List or range Sour ce objects, which are returned by the cr eat eConst ant Sour ce,
creat elLi st Sour ce, or cr eat eRangeSour ce methods of a Dat aPr ovi der . Typically,
you use this kind of Sour ce as the j oi ned or conpari son parameter to a j oi n
method.

e Empty, null, or void Sour ce objects. The empty and void Sour ce objects are
returned by the get Enpt ySour ce or get Voi dSour ce method of a Dat aPr ovi der,
and the null Sour ce object is returned by the nul | Sour ce method of a Sour ce. The
empty Sour ce has no elements. The void Sour ce and a null Sour ce each has one
element that has the value of nul | . The difference between the void Sour ce and a
null Sour ce is that the type of the void Sour ce is the Fundanent al Met adat abj ect
for the Value data type and the type of a null Sour ce is the Sour ce whose
nul | Sour ce method returned it. Typically, you use these kinds of Sour ce objects as
the j oi ned or conpari son parameter to a j oi n method.

» Dynamic Sour ce objects, which are returned by the get Sour ce method of a
Dynani cDef i ni tion. A dynamic Sour ce is usually a derived Sour ce. It is generated
by a Tenpl at e, which you use to create a dynamic query that you can revise after
interacting with an end user.

» Parameterized Sour ce objects, which are returned by the cr eat eSour ce methods
of a Par anet er. Like a list or range Sour ce, you use a parameterized Sour ce
as a parameter to the j oi n method. Unlike a list or range Sour ce, however, you
can change the value that the Par anet er represents after the join operation and
thereby change the selection that the derived Sour ce represents. You can create a
Cursor for that derived Sour ce and retrieve the results of the query. You can then
change the value of the Par anet er, and, without having to create a new Cur sor for

5-2

Chapter 5
Characteristics of Source Objects

the derived Sour ce, use that same Cur sor to retrieve the results of the modified
query.

The Sour ce class has the following subclasses:

* Bool eanSource

» DateSource

* Nunber Sour ce

e StringSource

These subclasses have different data types and implement Sour ce methods that
require those data types. Each subclass also implements methods unique to it, such
as the i npl i es method of a Bool eanSour ce or the i ndexOf method of a St ri ngSour ce.

5.3 Characteristics of Source Objects

A Sour ce has a data type, a type, and an identifier (ID), and all Sour ce objects except
the empty Sour ce have one or more elements. The following topics describe these
concepts.

* Elements and Values of a Source

e Data Type of a Source

e Type of a Source

* Source ldentification and SourceDefinition of a Source

Some Sour ce objects have one or more inputs or outputs. Those complex concepts
are discussed in "Inputs and Outputs of a Source".

5.3.1 Elements and Values of a Source

All Sour ce objects, except the empty Sour ce, have one or more elements. An element
of a Sour ce has a value, which can be null. For example, the Sour ce for the

MinPr i mar yDi mensi on object for the CHANNEL_AWJ dimension has four elements.
The values of those elements are the unique values of the members of the dimension,
which are the following.

CHANNEL _PRI MARY: : CHANNEL: : TOTAL
CHANNEL_PRI MARY: : CHANNEL: : CAT
CHANNEL_PRI MARY: : CHANNEL: : DI R
CHANNEL_PRI MARY: : CHANNEL: : I NT

5.3.2 Data Type of a Source

ORACLE

The Fundanent al Met adat albj ect class represents the data type of the values of the
elements of an MinSour ce. The data type of a Sour ce is represented by a fundamental
Sour ce. For example, a Bool eanSour ce has elements that have Java bool ean values.
The data type of a Bool eanSour ce is the fundamental Sour ce that represents OLAP
Java API| Boolean values.

To get the fundamental Sour ce that represents the data type of a Sour ce, call the
get Dat aType method of the Sour ce. You can also get a fundamental Sour ce by calling
the get Sour ce method of a Fundanent al Met adat aObj ect .

5-3

Chapter 5
Characteristics of Source Objects

The data type for a primary Sour ce is related to the SQL data type of the associated
metadata object. For example, an MinBaseAt t ri but e that has a SQL data type

of VARCHAR2(30) would produce a Sour ce whose data type is the fundamental

Sour ce that represents OLAP Java API String values. The following code gets that
fundamental Sour ce.

frp. get StringDat aType().getSource(); // fnp is the Fundanental Met adat aProvi der.

A typical use of a Sour ce for a data type is as the comparison Sour ce for a join or a
recursive join operation. As such it represents the set of all values of that data type.
For examples of the use of the get Dat aType method, see Example 6-3, Example 6-5,
and Example 6-11.

5.3.3 Type of a Source

ORACLE

Along with a data type, a Sour ce has a type, which is the Sour ce from which the
elements of the Sour ce are drawn. The type of a Sour ce determines whether the j oi n
method can match the Sour ce with the input of another Sour ce. The only Sour ce that
does not have a type is the fundamental Sour ce for the OLAP Java API Value data
type, which represents the set of all values, and from which all other Sour ce objects
ultimately descend. You can find the type by calling the get Type method of a Sour ce.

The type of a fundamental Sour ce is the data type of the Sour ce. The type of a list or
range Sour ce is the data type of the values of the elements of the list or range Sour ce.

The type of a primary Sour ce is one of the following:

e The fundamental Sour ce that represents the data type of the values of the
elements of the primary Sour ce. For example, the type of the Sour ce returned by
the get Sour ce method of a typical numeric Minm\veasur e is the fundamental Sour ce
that represents the set of all OLAP Java APl number values.

e The Sour ce for the object that contains the primary Sour ce. For example, the type
of the Sour ce returned by the get Sour ce method of an Mim_evel Hi er ar chy is the
Sour ce for the MinPri mar yDi mensi on that contains the hierarchy.

The type of a derived Sour ce is one of the following:

* The base Sour ce, which is the Sour ce whose method returned the derived Sour ce.
A Sour ce returned by the al i as, di stinct, extract,join,recursiveloin,or
val ue methods, or one of their shortcuts, has the base Sour ce as the type.

* A fundamental Sour ce. The type of the Sour ce returned by methods such as
posi tion and count is the fundamental Sour ce for the OLAP Java API Integer
data type. The type of the Sour ce returned by methods that make comparisons,
such as eq, | e, and so on, is the fundamental Sour ce for the Boolean data type.
The type of the Sour ce returned by methods that perform aggregate functions,
such as the Nunmber Sour ce methods t ot al and aver age, is a fundamental Sour ce
that represents the function.

A derived Sour ce that has the base Sour ce as the type is a subtype of the Sour ce
from which it is derived. A derived Source that has a fundamental Sour ce as the type
is a subtype of the fundamental Sour ce. You can use the i sSubt ypeO method to
determine if a Sour ce is a subtype of another Sour ce.

For example, in Example 5-1 the nyLi st object is a list Sour ce. The example uses
nmyLi st to select values from pr odHi er, a Sour ce for an MinLevel H er ar chy of the

5-4

Chapter 5
Characteristics of Source Objects

MinPr i mar yDi mensi on for the PRODUCT_AWJ dimension. In the example, dp is the
Dat aPr ovi der .

Example 5-1 Using the isSubtypeOf Method

Source nyList = dp.createlListSource(new String[] {
" PRODUCT_PRI MARY: : FAM LY: : LTPC",
" PRODUCT_PRI MARY: : FAM LY: : DTPC",
" PRODUCT_PRI MARY: : FAM LY: : ACC',
" PRODUCT_PRI MARY: : FAM LY: : MON'}) ;
Source prodSel = prodHi er.sel ectVal ues(nyList);
if (prodSel.isSubtypeC(prodHier))
println("prodSel is a subtype of prodHier.");
el se
println("prodSel is not a subtype of prodHer.");

Because prodSel is a subtype of prodHi er, the condition in the i f statement is true
and the example displays the following:

prodSel is a subtype of prodHier.

The type of nyLi st is the fundamental String Sour ce. The type of prodHi er is the
Sour ce for the PRODUCT_AWJ dimension. The type of prodSel is prodH er because
the elements of prodSel are derived from the elements of prodHi er.

The supertype of a Sour ce is the type of the type of a Sour ce, and so on, up

through the types to the Sour ce for the fundamental Value data type. For example,

the fundamental Value Sour ce is the type of the fundamental String Sour ce, which is
the type of prodHi er, which is the type of prodSel . The fundamental Value Sour ce and
the fundamental String Sour ce are both supertypes of prodSel . The prodSel Source is
a subtype of prodHi er, and of the fundamental String Sour ce, and of the fundamental
Value Sour ce.

5.3.4 Source Identification and SourceDefinition of a Source

ORACLE

A Sour ce has an identification, an ID, which is a St ri ng that uniquely identifies it
during the current connection to the database. You can get the identification by calling
the get | D method of a Sour ce. For example, the following code gets the identification
of the Sour ce for the MinPri mar yDi mensi on for the PRODUCT_AWJ dimension and
displays the value.

printIn("The Source ID of prodDimis " + prodDimget!X));

The preceding code displays the following:

The Source ID of prodDimis Hidden..G.OBAL. PRODUCT_AW

Each Sour ce also has a Sour ceDef i ni ti on object, which records information

about the Sour ce. Oracle OLAP uses this information internally. For example, the

Sour ceDef i ni ti on of a derived Sour ce records the parameters of the join operation
that produced the Sour ce, such as the base Sour ce, the joined Sour ce, the comparison
Sour ce, the comparison rule, and the value of the vi si bl e parameter.

The Dynami cDefinition class is a subclass of Sour ceDefi ni ti on. An OLAP Java
API client application uses the Dynani cDef i ni ti on of a Tenpl at e to get the dynamic
Sour ce of the Tenpl at e.

5-5

Chapter 5
Inputs and Outputs of a Source

5.4 Inputs and Outputs of a Source

An input of a Sour ce indicates that the elements of the Sour ce have a relation to those
of another Sour ce. An output of a Sour ce contains elements from which values of the
Sour ce with the output are derived. A Sour ce with one or more outputs is somewhat
like an array of arrays.

A Sour ce can have inputs and it can have outputs. The inputs and the outputs of a
Sour ce are other Sour ce objects.

The inputs and outputs of a base Sour ce influence the elements of a Sour ce that
you derive from that base Sour ce. To derive a Sour ce, you use methods of the base
Sour ce. The derived Sour ce can have outputs or inputs or both or neither, depending
on the method and the parameters of the method.

Some Sour ce methods, such as the val ue and posi ti on methods, return a Sour ce
that has an input. The j oi n and r ecur si veJoi n methods can return a Sour ce that
has an output. If the join operation involves a Sour ce with an input and a Sour ce that
matches with that input, then the input acts as a filter in producing the elements of the
derived Sour ce.

The following topics describe the j oi n method, the concepts of outputs and inputs,
and the matching of inputs. They provide examples of producing Sour ce objects that
have outputs, Sour ce objects that have inputs, and join operations that match an input
with a Sour ce.

» Describing the join Method
e Outputs of a Source
* Inputs of a Source

* Matching a Source with an Input

5.4.1 Describing the join Method

With the j oi n method, you join the elements of one Sour ce with those of another

Sour ce to produce a derived Sour ce. The derived Sour ce could have inputs or outputs.
The elements of the derived Sour ce, and whether it has any inputs or outputs, depend
on the values of the parameters that you pass to the j oi n method.

The full signature of the j oi n method is the following.

Sour ce j oi n(Source j oi ned,
Sour ce conpari son,
int conparisonRul e,
bool ean vi si bl e)

The Sour ce on which you call the j oi n method is the base of the join operation. The
parameters of the method are the following.

5.4.1.1 Describing the joined Parameter

The j oi ned parameter is a Sour ce object. The j oi n method joins the elements of the
base Sour ce and the elements of the joined Sour ce, with results that are determined
by the values of the other j oi n parameters. If the values of the joined Sour ce are not

ORACLE 5-6

Chapter 5
Inputs and Outputs of a Source

related to the values of the base Sour ce, that is, if neither the joined Sour ce nor the
base Sour ce matches with an input of the other, then the join produces a Cartesian
product of the elements of the base and the joined Sour ce objects. The examples in
the "Outputs of a Source" topic demonstrate this kind of join operation.

If the values of the joined Sour ce are related to the values of the base Sour ce, that is, if
either the joined Sour ce or the base Sour ce is an input of the other, then the elements
of the derived Sour ce are the result of the matching of the input. The examples in
"Matching a Source with an Input" demonstrate this kind of join operation.

5.4.1.2 Describing the comparison Parameter

The conpari son parameter is another Sour ce object. The join operation compares the
values of the elements of the comparison Sour ce to the values of the joined Sour ce.
The values that are the same in the joined and comparison objects participate in

the join operation or are removed from participation, depending on the value of the
conpari sonRul e parameter.

5.4.1.3 Describing the comparisonRule Parameter

The value of the conpari sonRul e parameter specifies which values of the joined
Sour ce participate in the join operation. The conpari sonRul e value also determines
the sort order of the participating values. The comparison rule is one of the static
constant fields of the Sour ce class. The basic comparison rules are the following.

e COWPARI SON_RULE_SELECT, which specifies that only the elements of the joined
Sour ce that are also in the comparison Sour ce participate in the join operation.

* COWPARI SON_RULE_REMOVE, which specifies that only the elements of the joined
Sour ce that are not in the comparison Sour ce participate in the join operation.

The other comparison rules are all select operations that sort the resulting values in
various ways. Those rules are the following.

« COVPARI SON_RULE_ASCENDI NG

- COVPARI SON_RULE_ASCENDI NG NULLS_FI RST
« COVPARI SON_RULE_ASCENDI NG NULLS_LAST

- COVPARI SON_RULE_DESCENDI NG

- COVPARI SON_RULE_DESCENDI NG NULLS_FI RST
« COVPARI SON_RULE_DESCENDI NG NULLS_LAST

5.4.1.4 Describing the visible Parameter

The vi si bl e parameter is a bool ean value that specifies whether the joined Sour ce
appears as an output of the Sour ce that is derived by the join operation. If the value
of the vi si bl e parameter is t r ue, then the derived Sour ce has an output that contains
the elements drawn from the joined Sour ce. If the value is f al se, then the derived
Sour ce does not have an output for the joined Sour ce.

ORACLE .

Chapter 5
Inputs and Outputs of a Source

5.4.2 Outputs of a Source

The j oi n method returns a derived Sour ce that has the values of the elements of the
base Sour ce that are specified by the parameters of the method. Those values are the
base values of the derived Sour ce.

If the value of the vi si bl e parameter of the j oi n method is t r ue, then the joined

Sour ce becomes an output of the derived Sour ce. The elements of the derived Sour ce
then have the values of the output and the base values, as specified by the other
parameters of the join operation.

A derived Sour ce can have from zero to many outputs. A Sour ce that is an output
can itself have outputs. You can get the outputs of a Sour ce by calling the get Qut put s
method, which returns a Li st of Sour ce objects.

The examples in the following topics all have simple join operations that produce
Sour ce objects that have one or more outputs. Because none of the Sour ce objects
in the join operations have inputs, the values of the derived Sour ce objects produced
by the join operations are the Cartesian products of the base and the joined Sour ce
objects.

e Producing a Source with an Output

* Using COMPARISON_RULE_SELECT
* Using COMPARISON_RULE_REMOVE
* Producing a Source with Two Outputs

e Hiding an Output

Very different results occur from a join operation that involves a Sour ce that has an
input and a Sour ce that matches with that input. For examples of Sour ce objects with
inputs and the matching of inputs, see the following topics.

* Inputs of a Source

e Matching a Source with an Input

5.4.2.1 Producing a Source with an Output

ORACLE

Example 5-2 A Simple Join That Produces a Source with an Output

This example uses the simplest signature of the j oi n method to produce a Sour ce that
has one output. The example creates a list Sour ce, | et t er s, that has three elements,
the values of which are A, B, and C. It also creates a list Sour ce, nanes, that has three
elements, the values of which are Stephen, Leo, and Molly.

Source letters = dp.createListSource(new String[] {"A", "B", "C'});
Source nanmes = dp.createlistSource(new String[] {"Stephen", "Leo", "Mlly"});
Source lettersWthNames = letters.join(nanes);

/] Oracle OLAP translates this shortcut signature of the join nmethod into the
/] following full signature, where dp is the DataProvider for the session.

/] Source letters.join(names,

11 dp. get Enpt ySour ce(),

Il Sour ce. COVPARI SON_RULE_REMOVE,

I/ true);

5-8

Chapter 5
Inputs and Outputs of a Source

The l etters.joi n(names) operation joins the elements of the base Source, | etters,
and the joined Sour ce, names. Because the comparison Sour ce has no elements,

the join operation does not remove any of the elements that are in the joined

Sour ce in producing the derived Sour ce. (The comparison Sour ce is the empty

Sour ce that is returned by the dp. get Enpt ySour ce() parameter of the full j oi n
signature shown in the example.) The resulting derived Sour ce, | ett er sWt hNares,
is the Cartesian product of the elements of the base | et t er s and the joined nanes.
Because both | ett er s and names have three elements, the number of elements in

| ettersWthNanes is nine.

Because the vi si bl e parameter of | ett ers. j oi n(names) is true, the derived Sour ce
has an output. Because no el ement s were removed from the joined Sour ce, the
derived Sour ce has the values of all of the elements of the joined Sour ce.

A Cursor for a Sour ce has the same structure as the Sour ce. A Cur sor for the

| ettersWthNames Sour ce has a Val ueCur sor for the base values of the derived
Sour ce and a Val ueCur sor for the output values. The following table presents the
values of the Val ueCur sor objects. The table includes headings that are not in the
Val ueCur sor objects.

Qut put Val ues Base Val ues
St ephen A
St ephen B
St ephen C
Leo A
Leo B
Leo C
Mol |y A
Mol |y B
Mol |y C

5.4.2.2 Using COMPARISON_RULE_SELECT

Example 5-3 A Simple Join That Selects Elements of the Joined Source

This example demonstrates using a comparison Sour ce that has values and the
comparison rule COVPARI SON_RULE_SELECT. The example uses the | et t er and nanes
Sour ce objects from Example 5-2 and adds the someNames Sour ce. It uses soneNanes
as the comparison Sour ce. The output of the Sour ce derived from the join operation
has only the names that are in both the joined Sour ce and the comparison Sour ce.

Sour ce soneNames = dp. createlLi st Source(new String[] {"Stephen", "MlIly"});
Source | ettersAndSel ect edNanmes =
letters.join(nanes, someNanes, Source. COVPARI SON_RULE_SELECT, true);

A Cursor forthe | ettersAndSel ect edNanes Sour ce has the values specified by the
Sour ce. The following table presents the Cur sor values and has headings added.

Qut put Val ues Base Val ues
St ephen A
St ephen B
St ephen C
Mol |y A
Mol |y B
Mol |y C

5.4.2.3 Using COMPARISON_RULE_REMOVE

ORACLE 5-9

Chapter 5
Inputs and Outputs of a Source

Example 5-4 A Simple Join That Removes Elements of the Joined Source

This example demonstrates using a comparison Sour ce that has values and the
comparison rule COVPARI SON_RULE_REMOVE. That comparison rule removes from
participation in the join operation those values that are the same in the joined and

in the comparison Sour ce objects. The output of the derived Sour ce therefore has only
the name from the joined Sour ce that is not in the comparison Sour ce.

The example has the same base, joined, and comparison Sour ce objects as
Example 5-3.

Source | ettersAndNanesW t hout RenovedNanmes =
| etters.join(nanes,
soneNanes,
Sour ce. COVPARI SON_RULE_REMOVE,
true);

A Cursor forthe | ettersAndNamesW t hout RenovedNanes Sour ce has the values
specified by the Sour ce. The following table presents the values and has headings
added.

Qut put Val ues Base Val ues
Leo A
Leo B
Leo C

5.4.2.4 Producing a Source with Two Outputs

ORACLE

Example 5-5 A Simple Join That Produces a Source with Two Outputs

If you join a Sour ce to a Sour ce that has an output, and if the vi si bl e par anet er

is t rue, then the join operation produces a Sour ce that has the joined Sour ce as an
additional output. The additional output becomes the first output, as shown in this
example.

The example uses the Sour ce objects from Example 5-3 and creates another
list Sour ce, col or s, that contains the names of two colors. The example joins
the col ors Source to the | etter sWt hSel ect edNames Sour ce to produce the
| ettersWthSel ect edNamesAndCol or s Sour ce.

The | ett ersWt hSel ect edNames Sour ce has nanes as an output. The
I ettersWthSel ect edNanmesAndCol ors Sour ce has both col or s and nanes as outputs.
The first output is col or s and the second output is nanes.

Source colors = dp. createlistSource(new String[] {"Geen", "Maroon"});

Source lettersWthSel ect edNanes =
| etters.join(nanes,
someNanes,
Sour ce. COVPARI SON_RULE_SELECT,
true);
Source |ettersWthSel ect edNamesAndCol ors =
| ettersWthSel ect edNanes. j oin(col ors);

A Cur sor for the | ettersWthSel ect edNamesAndCol or s Sour ce has the values shown
in the following table. The table has headings added.

Qut put 1 Val ues Qut put 2 Val ues Base Val ues
G een St ephen A

5-10

Chapter 5
Inputs and Outputs of a Source

G een St ephen B
G een St ephen C
G een Mol 'y A
G een Mol 'y B
G een Mol 'y C
Mar oon St ephen A
Mar oon St ephen B
Mar oon St ephen C
Mar oon Mol 'y A
Mar oon Mol 'y B
Mar oon Mol 'y C
5.4.2.5 Hiding an Output

ORACLE

Example 5-6 A Simple Join That Hides An Output

If the vi si bl e parameter of a j oi n method is f al se, then the joined Sour ce
participates in the join operation but does not appear as an output of the Sour ce
derived by the join. This example uses the j oi nH dden shortcut method to join the
| ettersWthSel ect edNames and the col or s Sour ce objects from Example 5-5. The
example includes in a comment the full j oi n signature for the j oi nH dden shortcut.

Source | ettersWthSel ect edNamesAndH ddenCol ors =
| ettersWthSel ect edNanes. j oi nHi dden(col ors);

/1 The full signature of the joinH dden shortcut method is
/] Source result = base.join(joined,

Il dp. get Enpt ySour ce(),
Il Sour ce. COMPARI SON_RULE_REMOVE,
I/ fal se);

/] So if Source base = lettersWthSel ect edNanes and
/] Source joined = colors, then the result Source is the same as the
/] lettersWthSel ect edNanesAndH ddenCol ors Source.

A Cursor for the | ettersWthSel ect edNamesAndHi ddenCol or s Sour ce has the values
shown in the following table. The table has headings added.

Note that the derived | ett er sWt hSel ect edNamesAndHi ddenCol or s Sour ce still has
twelve elements, even though the values for the col or s Sour ce do not appear

as output values. The derived Sour ce has one set of the six values of the

| ettersWthSel ect edNares Sour ce for each value of the hidden col ors Sour ce.

The example displays the following output.

Qut put Val ues Base Val ues
St ephen A
St ephen B
St ephen C
Mol |y A
Mol |y B
Mol |y C
St ephen A
St ephen B
St ephen C
Mol |y A
Mol |y B
Mol |y C

5-11

Chapter 5
Inputs and Outputs of a Source

5.4.3 Inputs of a Source

The examples in the "Outputs of a Source" topic all produce derived Sour ce objects
that have elements that are the Cartesian product of the unrelated base and joined
Sour ce objects. While such an operation can be useful, a more powerful aspect of
Sour ce objects is the ability to relate the elements of one Sour ce to another Sour ce.
When such a relationship exists, you can derive other Sour ce objects that are the
result of operations between the related elements. For example, you can derive a
Sour ce that contains only selected elements of another Sour ce. This relationship
between elements is represented by the input of a Sour ce.

A Sour ce with an input is an incomplete specification of data. The input represents the
type of Sour ce that can have the elements that a join operation requires to complete
the data specification. Before you can retrieve the data with a Cur sor, you must match
the input with a Sour ce that has the elements that complete the specification.

You match an input with a Sour ce by using the j oi n or recur si veJoi n method. The
match occurs between the base Sour ce and the joined Sour ce.

The matching of an input acts as a filter so that the Sour ce derived by the join
operation has only the elements of the base Sour ce whose values are related to those
of the elements of the joined Sour ce. The rules related to matching a Sour ce with an
input are described in "Matching a Source with an Input". That topic has examples that
produce derived Sour ce objects that are the result of the matching of an input.

A Sour ce can have from zero to many inputs. You can get all of the inputs of a Sour ce
by calling the get | nput s method.

Some primary Sour ce objects have inputs. You can derive a Sour ce that has an input
by using some methods of the Sour ce class.

5.4.3.1 Primary Source Objects with Inputs

The primary Sour ce objects for the MinDi nensi onedChj ect subclasses MimAttri but e
and Mimveasur e have inputs. The primary Sour ce for an MimAt t ri but e has one input.
The primary Sour ce for an MinMeasur e has one or more inputs.

The inputs of an MimAt t ri but e or an Mim\veasur e are the Sour ce objects for the
MinPr i mar yDi mensi on objects that dimension the attribute or measure. To get the
value of an attribute or a measure, you must join the attribute or measure with a
Sour ce that contains the related dimension members. The join operation matches
the input of the attribute or measure with the Sour ce that contains the dimension
members. Example 5-7 matches the input of an attribute with the dimension of that
attribute. Example 5-8 matches the inputs of a measure with the dimensions of that
measure.

5.4.3.2 Deriving a Source with an Input

ORACLE

Some Sour ce methods always return a Sour ce that has an input. The Sour ce returned
by the ext ract, posi tion, or val ue method has the base Sour ce as an input. You can
use these methods to produce a Sour ce whose elements are derived, or filtered, from
the elements of another Sour ce.

5-12

Chapter 5
Inputs and Outputs of a Source

The val ue method returns a Sour ce that has the elements of the base Sour ce and
has the base Sour ce as an input. You typically use the Sour ce returned by the

val ue method as the base or joined Sour ce of a j oi n method, or sometimes as the
comparison Sour ce. Several examples in this chapter and in Making Queries Using
Source Methods use the val ue method.

The posi ti on method returns a Sour ce that has the position of each element of the
base Sour ce and that has the base Sour ce as an input. For an example of using the
posi ti on method, see Example 6-4.

You use the ext ract method when elements of the Sour ce objects that you want to
join have Sour ce objects as values. For examples of using the ext ract method, see
Example 5-12, Example 6-8, Example 6-13, and Example 6-14.

5.4.3.3 Type of Inputs

The input of a Sour ce derived by the posi ti on or val ue method, and an input intrinsic
to an MinDi nensi onedQbj ect , are regular inputs. A regular input relates the elements
of the Sour ce with the input to the elements of the Sour ce that matches with the input.
You can get the regular inputs by calling the get Regul ar | nput s method.

The input of a Sour ce returned by the ext ract method is an extraction input. You can
get the extraction inputs by calling the get Ext ract i onl nput s method.

5.4.4 Matching a Source with an Input

ORACLE

In a join operation, the matching of a Sour ce with an input occurs only between the
base Sour ce and the joined Sour ce. A Sour ce matches with an input if one of the
following conditions is true.

1. The Sour ce is the same object as the input or it is a subtype of the input.

2. The Sour ce has an output that is the same object as the input or the output is a
subtype of the input.

The join operation looks for the conditions in the order shown in the preceding list.
It searches the list of outputs of the Sour ce recursively, including any outputs of an
output, looking for a match with the input. The search ends with the first matching

Sour ce. An input can match with only one Sour ce.

When a Sour ce with an input is joined to a Sour ce that matches with the input, the
derived Sour ce returned by the j oi n method has the elements of the base that are
related to the elements specified by the parameters of the method. The derived Sour ce
does not have the input.

Matching a Sour ce with an input does not affect the outputs of the base Sour ce or the
joined Sour ce. If a base Sour ce has an output that matches with the input of the joined
Sour ce, then the resulting Sour ce does not have the input but it does have the output.
If the base Sour ce or the joined Sour ce in a join operation has an input that is not
matched in the operation, then the unmatched input is an input of the resulting Sour ce.

The comparison Sour ce of a j oi n method does not participate in the input matching.
If the comparison Sour ce has an input, then that input is not matched and the Sour ce
returned by the j oi n method has that same input.

The examples in the following topics demonstrate matching a Sour ce with an input.

5-13

Chapter 5
Inputs and Outputs of a Source

* Matching the Input of the Source for an MdmAttribute

* Matching the Inputs of a Measure

* Using the value Method to Derive a Source with an Input
* Using the value Method to Select Values of a Source

* Using the extract Method to Combine Elements of Source Objects

5.4.4.1 Matching the Input of the Source for an MdmaAttribute

Example 5-7 demonstrates the joining of the Sour ce for an MinBaseAt tri but e to

the Sour ce for an MinPri mar yDi mensi on. The example gets the local value attribute
from the MinPr i mar yDi mensi on for the CHANNEL_AWJ dimension. The Sour ce for the
attribute, | ocVal Attr, has the Sour ce for the MinPri mar yDi mensi on as an input.

In the example, | ocVal Attr is the base Sour ce of the join operation and chanDi m

is the joined Sour ce. Because chanDi mis an instance of the Sour ce for the

MinPr i mar yDi mensi on for the CHANNEL_AWJ dimension, chanDi mmatches with the
input of | ocVal At tr. The result of the join is di mvenber sWt hLocal Val ue, which has
chanDi mas an output and does not have any inputs.

The |l ocVal Attr Sour ce has four elements because each of the four members of the
CHANNEL_AWJ dimension has a different local value. The Sour ce derived by the join
operation, di mvenber sWt hLocal Val ue, has four elements. The value of each element
is the dimension member and the related attribute value. The dimension member is a
value from the output and the attribute value is from the base.

Example 5-7 demonstrates matching the input of a base Sour ce with the joined
Sour ce. In the example, mdnDBSchema is the MinDat abaseSchema for the GLOBAL
schema.

A Cursor for the di mvenber sWt hLocal Val ue Sour ce has the values shown in the
following table. The output values are the unique dimension member values derived
from the joined Sour ce, chanDi m The base values are derived from the base Sour ce,
| ocVal Attr. The table has headings added.

Qut put Val ues Base Val ues
CHANNEL_PRI MARY: : TOTAL_CHANNEL: : TOTAL TOTAL
CHANNEL_PRI MARY: : CHANNEL: : CAT CAT
CHANNEL_PRI MARY: : CHANNEL: : DI R DR
CHANNEL_PRI MARY: : CHANNEL: : I NT I NT

Example 5-7 Getting an Attribute for a Dimension Member

MinSt andar dDi nensi on ndnChanDi m =
mdnDBSchena. fi ndOr Cr eat eSt andar dDi mensi on(" CHANNEL_AW") ;
Source chanDi m = mdnChanDi m get Sour ce();
Source locVal Attr = mdnChanDi m get Local Val ueAttribute(). get Source();
Sour ce di mvenber sWthLocal Val ue = | ocVal Attr.join(chanDin;

5.4.4.2 Matching the Inputs of a Measure

Example 5-8 demonstrates getting values from a measure. The example gets the
MinCube that contains the UNIT_PRICE measure and gets the MinBaseMeasur e

for the measure from that cube. The cube, and the measures of the cube, are
dimensioned by the PRODUCT_AWJ and TIME_AWJ dimensions. The example gets

ORACLE 5-14

Chapter 5
Inputs and Outputs of a Source

the MinPri mar yDi mensi on objects for those dimensions and gets the Sour ce objects
for those metadata objects.

The Sour ce for the measure, uni t Pri ce, has the Sour ce objects for the two

MinPr i mar yDi mensi on objects as inputs. The example joins the Sour ce for the
measure with the Sour ce objects for the dimensions. The join operations match the
inputs of the measure with the Sour ce objects for the dimensions.

The example first joins the Sour ce for the PRODUCT_AWJ dimension to the Sour ce
for the measure. That uni t Pri ce. j oi n(prodDi) operation derives a Sour ce that

has base values from uni t Pri ce and has prodDi mas an output. It also has the

Sour ce for the TIME_AWJ dimension as an input. The next join operation joins

the Sour ce derived by uni t Pri ce. j oi n(prodDi m) with ti meDi m the Sour ce for the
TIME_AWJ dimension. That join operation matches the input of the Sour ce derived by
unitPrice.join(prodD m withtinmeD m

The Sour ce derived by the second join operation is pri cesByProduct AndTi me. That
Sour ce has no inputs and has the Sour ce objects for the PRODUCT_AWJ and
TIME_AWJ dimensions as outputs. A Cur sor for pri cesByProduct AndTi me contains
the price of each product value for every time value.

The example finally calls the count method of pri cesByPr oduct AndTi ne. That
method returns the Nurmber Sour ce nunPri cesByProduct AndTi e, which contains the
number of elements of the pri cesByProduct AndTi me Sour ce. A Cursor for the
nunPri cesByProduct AndTi ne Sour ce contains the value 4998, which is the number
of measure values for the product and time tuples.

To produce a Sour ce that contains only the measure values for certain products and
times, you need to join the Sour ce for the measure with Sour ce objects that specify the
dimension values that you want. You can produce such a selection by using methods
of the primary Sour ce for the dimension. One means of producing a Sour ce that
represents a selection of values of a Sour ce is to use the val ue method.

Example 5-8 Getting Measure Values

This example demonstrates matching the inputs of the base Sour ce with the joined
Sour ce. In the example, mdnDBSchema is the MinDat abaseSchemna for the GLOBAL
schema.

MinCube ndnPri ceCube =

mdnDBSchena. fi ndOr Cr eat eCube(" PRI CE_CUBE_AW") ;
MinBaseMeasure ndnbnitPrice =

mdnPri ceCube. fi ndOr Cr eat eBaseMeasure(" UNI T_PRI CE") ;
MinSt andar dDi nensi on ndnProdDi m =

mdnDBSchena. fi ndOr Cr eat eSt andar dDi mensi on(" PRODUCT_AW") ;
MiniTi neDi nensi on ndnili meDi m =

mdnDBSchena. fi ndOr Cr eat eTi meDi mensi on(" TI ME_AW") ;

Source prodDi m = ndnProdDi m get Sour ce();
Source tinmeDi m= ndnTi meDi m get Sour ce();
Source unitPrice = ndnnitPrice. get Source();

Source pricesByProduct AndTime = unitPrice.join(prodDin).join(tinebim;
Nurber Sour ce nunPri cesByProduct AndTi me = pri cesByProduct AndTi ne. count ();

ORACLE 5-15

Chapter 5
Inputs and Outputs of a Source

5.4.4.3 Using the value Method to Derive a Source with an Input

Example 5-9 Using the value Method to Relate a Source to Itself

In this example, the | et t er sVal ue Sour ce is returned by the | ett ers. val ue()

method. The | et t er sVal ue Source has | etters as an input. The input represents

a relation between the values of the Sour ce with the input and the values of the Sour ce
that matches with the input.

The join operation has | ett ers as the base Source and | ett er sVal ue as the joined
Sour ce. The base Sour ce, | ett er s, matches with the input of | et t er sVal ue, which is
also | etters, because they are the same. The Sour ce produced by the join operation,
lettersBylLettersVal ue has | ettersVal ue as an output. It does not have an input.
Each element of | ett ersByLet t er sVal ue has a base value from | ett ers and the
related value from | et t er sVal ue.

Source letters = dp.createListSource(new String[] {"A", "B", "C'});
Source lettersValue = letters.val ue();
Source lettersBylLettersValue = letters.join(lettersValue);

A Cursor forthe | ettersBylLettersVal ue Sour ce has the values shown in the
following table. The table has headings added.

Qut put Val ues Base Val ues
A A
B B
C C

Because | ett er sByLet t er sVal ue contains only those values of the base and

joined Sour ce objects that are related, the base values of the Cur sor for

| ettersByLettersVal ue Source are the same as the output values. If the base and
joined Sour ce objects had been unrelated, asinl etters.join(letters), then the
Sour ce produced by the join operation would contain the Cartesian product of the base
and joined Sour ce objects.

5.4.4.4 Using the value Method to Select Values of a Source

ORACLE

Example 5-10 Using the value Method to Select Elements of a Source

By using the val ue method, you can derive a Sour ce that is a selection of the
elements of another Sour ce. This example selects two elements from the Sour ce for
the PRODUCT_AWJ dimension from Example 5-7. This example demonstrates a base
Sour ce matching with the input of the joined Sour ce.

Source productsToSel ect = dp. createli st Source(new String[]
{" PRODUCT_PRI MARY: : | TEM : ENVY EXE",
" PRODUCT_PRI MARY: : | TEM : ENVY STD'});
prodDi m j oi n(prodDi m val ue(),
product sToSel ect,
Sour ce. COMPARI SON_RULE_SELECT,
false); [// Hde the output.

Sour ce sel ect edProducts

A Cursor for the product sToSel ect Sour ce has the following values.

PRODUCT_PRI MARY: : | TEM : ENVY EXE
PRODUCT_PRI MARY: : | TEM : ENVY STD

5-16

ORACLE

Chapter 5
Inputs and Outputs of a Source

A Cursor for the sel ect edPr oduct s Sour ce has the following values.

PRODUCT_PRI MARY: : | TEM : ENVY EXE
PRODUCT_PRI MARY: : | TEM : ENVY STD

The two Sour ce objects contain the same values. However, the types of the
objects are different. The type of the product sToSel ect Sour ce is the Sour ce

for the Fundament al Met adat aObj ect for the String data type. The type of the

sel ect edProduct s Source is prodDi mbecause sel ect edProduct s is derived from
prodDi m Therefore, sel ect edProduct s is a subtype of prodDi mand as such it can
match with a Sour ce that has the Sour ce for the PRODUCT_AWJ dimension as an
input, as shown in the next example.

Example 5-11 Using Derived Source Objects to Select Measure Values

This example selects elements from the Sour ce objects for two dimensions and
then gets the measure values for the selected dimension members. The example
uses the same dimensions and measure as in Example 5-8. In this example,
however, the Sour ce objects that match with the inputs of the Sour ce for the
measure are not the Sour ce objects for the dimensions. Instead they are subtypes
of the Sour ce objects for the dimensions. The subtypes specify selected members
of the dimensions. The Sour ce that is derived by joining the measure with the
dimensions, pri cesFor Sel ect edPr oduct sAndTi nes, has six elements, which specify
only the measure values for the two products for the three time values, instead of
the 4998 elements of the pri cesByProduct AndTi ne Sour ce in Example 5-8. In this
example, minDBSchena is the MinDat abaseSchena for the GLOBAL schema.

/I Create lists of product and time dinension nenbers.
Sour ce productsToSel ect = dp. createlistSource(new String[]
{" PRODUCT_PRI MARY: : | TEM : ENVY EXE",
" PRODUCT_PRI MARY: : | TEM : ENVY STD'});
Source tinesToSel ect = dp. createLi st Source(new String[]
{" CALENDAR_YEAR: : MONTH: : 2000. 01",
" CALENDAR_YEAR: : MONTH: : 2001. 01",
" CALENDAR_YEAR: : MONTH; : 2002. 01"});
/1 Get the PRI CE_CUBE_AW cube.
MinCube mdnPriceCube = mdnDBSchena. fi ndOr Cr eat eCube(" PRI CE_CUBE_AW") ;
/1 Get the UNIT_PRICE neasure fromthe cube.
MinBaseMeasure ndnbnitPrice =
mdnPri ceCube. fi ndOr Cr eat eBaseMeasur e("UNI T_PRI CE") ;
/1 Get the PRODUCT_AW and TIME_AW di nensi ons.
Mint andar dDi mensi on ndnProdDi m =
mdnDBSchena. fi ndOr Cr eat eSt andar dDi nensi on(" PRODUCT_AW") ;
MInTTi meDi mensi on mdnili meDi m =
mdnDBSchema. fi ndOr Cr eat eTi neDi mensi on(" TI ME_LAW") ;
Il Get the Source objects for the dinensions and the neasure.
Sour ce prodDi m = nmdnProdDi m get Sour ce();
Source tinmeDi m = ndnili meDi m get Sour ce();
Source unitPrice = mdnnit Price. get Source();
/'l Using the val ue nethod, derive Source objects that specify the selected
/1 di mension nenbers.
Sour ce sel ectedProducts = prodDi mjoi n(prodDi mval ue(),
product sToSel ect,
Sour ce. COVPARI SON_RULE_SELECT,
fal se);
Source sel ectedTimes = tinmeDimjoin(timeD mvalue(),
ti mesToSel ect,
Sour ce. COVPARI SON_RULE_SELECT,
fal se);

5-17

Chapter 5
Inputs and Outputs of a Source

/1 Derive a Source that specifies the unitPrice values for the selected products

/'l and times.

Source pricesFor Sel ect edProduct sAndTi nes = uni tPrice.join(sel ectedProducts)
.join(sel ectedTi mes);

A Cur sor for the pri cesFor Sel ect edProduct sAndTi nes Sour ce has the values shown
in the following table. The table has headings added.

Mont h Pr oduct Price
CALENDAR_YEAR: : MONTH: : 2000. 01 PRODUCT_PRI MARY: : | TEM : ENVY EXE 3358. 02
CALENDAR_YEAR: : MONTH: : 2000. 01 PRODUCT_PRI MARY: : | TEM : ENVY STD 3000. 11
CALENDAR_YEAR : MONTH: : 2001. 01 PRODUCT_PRI MARY: : | TEM : ENVY EXE 3223. 28
CALENDAR_YEAR : MONTH: : 2001. 01 PRODUCT_PRI MARY: : | TEM : ENVY STD 2426. 07
CALENDAR_YEAR : MONTH: : 2002. 01 PRODUCT_PRI MARY: : | TEM : ENVY EXE 3008. 95
CALENDAR_YEAR : MONTH: : 2002. 01 PRODUCT_PRI MARY: : | TEM : ENVY STD 2140.71

5.4.4.5 Using the extract Method to Combine Elements of Source Objects

ORACLE

The extract method derives a Sour ce that has the base Sour ce as an input. You use
the ext ract method when the values of the elements of a Sour ce are Sour ce objects
themselves.

Example 5-12 Extracting Elements of a Source

This example uses the sel ect Val ues method to derive two selections of elements
from a St ri ngSour ce for the PRODUCT_AWJ dimension. The sel ect Val ues method
is a shortcut for the full j oi n signature of the methods in Example 5-10 and

Example 5-11 that produce the sel ect edPr oduct s and sel ect edTi mes Sour ce objects.

This example creates a list Sour ce, sour cesToConbi ne, that has the two

derived Sour ce objects as element values. The sour cesToConbi ne. ext ract ()
method produces sour cesToConbi neW t hAnl nput , which is a Sour ce

that has sour cesToConbi ne as an input. The join operation

sour cesToConbi neW t hAnl nput . j oi nH dden(sour cesToConbi ne) matches the input
of sour cesToConbi neW t hAnl nput with the joined sour cesToConbi ne and produces
conbi nedSour ces, which has no inputs or outputs. A shortcut for this combining of
Sour ce elements is the appendVal ues method.

Mintt andar dDi mensi on ndnProdDi m =

mdnDBSchena. f i ndOr Cr eat eSt andar dDi mensi on(" PRODUCT_AW") ;
StringSource prodDim = (StringSource) mdnProdDi m get Source();
Source productsToSel ect = prodDi m sel ect Val ues(new String[]

{" PRODUCT_PRI MARY: : | TEM : ENVY ABM',
" PRODUCT_PRI MARY: : | TEM : ENVY EXE",
" PRODUCT_PRI MARY: : | TEM : ENVY STD'});
Sour ce noreProduct sToSel ect = prodDi m sel ect Val ues(new String[]
{" PRODUCT_PRI MARY: : | TEM : SENT FIN',
" PRODUCT_PRI MARY: : | TEM : SENT MVI',
" PRODUCT_PRI MARY: : | TEM : SENT STD'});

Sour ce sour cesToConbi ne =

dp. creat eLi st Sour ce(new Source[] {productsToSel ect, moreProductsToSel ect});
Sour ce sour cesToCombi neW t hAnl nput = sour cesToConbi ne. extract ();
Sour ce conbi nedProducts =

sour cesToCombi neW t hAnl nput . j oi nHi dden(sour cesToConbi ne) ;

A Cursor for the conbi nedProduct s Sour ce has the following values.

5-18

Chapter 5
Describing Parameterized Source Objects

PRODUCT_PRI MARY: : | TEM : ENVY ABM
PRODUCT_PRI MARY: : | TEM : ENVY EXE
PRODUCT_PRI MARY: : | TEM : ENVY STD
PRODUCT_PRI MARY: : | TEM : SENT FI N
PRODUCT_PRI MARY: : | TEM : SENT MM

PRODUCT_PRI MARY: : | TEM : SENT STD

5.5 Describing Parameterized Source Objects

ORACLE

Parameterized Sour ce objects provide a way of specifying a query and retrieving
different result sets for the query by changing the set of elements specified by

the parameterized Sour ce. You create a parameterized Sour ce with a cr eat eSour ce
method of the Par anet er . The Par anet er supplies the value that the parameterized
Sour ce specifies.

The example in this topic is a very simple demonstration of using a Par anet er object.
A typical use of a Par anet er is to specify the page edges of a cube, as shown in
Example 6-9. Another use of a Par anet er is to fetch from the server only the set

of elements that you currently need. Example 6-15 demonstrates using Par anet er
objects to fetch different sets of elements.

When you create a Par anet er object, you supply an initial value for the Par anet er .
You then create the parameterized Sour ce using the Par anet er. You include the
parameterized Sour ce in specifying a query. You create a Cur sor for the query. You
can change the value of the Par anet er with the set Val ue method, which changes the
set of elements that the query specifies. Using the same Cur sor, you can then retrieve
the new set of values.

This example demonstrates the use of a Par anet er and a parameterized Sour ce to
specify a member in a dimension. The example gets the Mintt andar dDi nensi on for
the PRODUCT_AWJ dimension and gets the Sour ce for the MinSt andar dDi mensi on
cast as a StringSour ce.

The example creates a St ri ngPar anet er object that has a dimension member as
the initial value. It then creates a parameterized Sour ce, par anPr odSel , by using the
creat eSour ce method of the Stri ngPar amet er . Next it uses par anProdSel as the
comparison Sour ce in a join operation that selects the dimension member.

The example gets the Sour ce for the local value attribute of the dimension. It
joins that Sour ce, | ocVal Attr, with par anPr odSel . That join operation produces the
di mvenber Wt hLocal Val ue Sour ce.

The example creates a Cur sor for di mvenber Wt hLocal Val ue and displays the value
of the Cur sor . After resetting the Cur sor position and changing the value of the
prodParamStri ngPar amet er , the example displays the value of the Cur sor again.

The dp object is the Dat aPr ovi der. The get Cont ext method gets a Cont ext 11g object
that has a method that commits the current Tr ansact i on and a method that displays
the values of a Cur sor.

Example 5-13 Using a Parameterized Source to Change a Dimension Selection

Mintt andar dDi mensi on ndnProdDi m =
mdnDBSchena. f i ndOr Cr eat eSt andar dDi mensi on(" PRODUCT_AW") ;
StringSource prodDim = (StringSource) mdnProdDi m get Source();

StringParanet er prodParam =
new StringParameter(dp, "PRODUCT_PRI MARY: : FAM LY: : LTPC");

5-19

ORACLE

Chapter 5
Describing Parameterized Source Objects

Sour ce prodPar anfrc
Sour ce paranProdSel

pr odPar am cr eat eSour ce();
prodDi m j oi n(prodDi mval ue(), prodParantrc);

Source locVal Attr = ndnProdDi m get Local Val ueAttribute(). get Source();
Sour ce di mvenber Wt hLocal Val ue = | ocVal Attr.joi n(paranProdSel);

/1 Commit the Transaction.
get Context ().comit();

/I Create a Cursor for the Source.
Cur sor Manager cursor Mhgr = dp. cr eat eCur sor Manager (di mvenber Wt hLocal Val ue) ;
Cursor cursor = cursorMgr.createCursor();

/1 Display the value of the Cursor.
get Cont ext (). di spl ayCursor (cursor);

/1 Change the product paraneter val ue.
prodPar am set Val ue(" PRODUCT_PRI MARY: : FAM LY: : DTPC") ;

/1 Reset the Cursor positionto 1
cursor.setPosition(1);

/1 Display the value of the Cursor again.
get Cont ext (). di spl ayCursor (cursor);

The Cur sor for di mvenber Wt hLocal Val ue displays the following.

PRODUCT_PRI MARY: : FAM LY: : LTPC, LTPC

After changing the value of the St ri ngPar anet er and resetting the position of the
Cur sor, the Cur sor for di mvenber Wt hLocal Val ue displays the following.

PRODUCT_PRI MARY: : FAM LY: : DTPC, DTPC

5-20

Making Queries Using Source Methods

You create a query by producing a Sour ce that specifies the data that you want to
retrieve and any operations that you want to perform on that data. To produce the
guery, you begin with the primary Sour ce objects that represent the metadata of the
measures and the dimensions and their attributes that you want to query. Typically,
you use the methods of the primary Sour ce objects to derive a number of other Sour ce
objects, each of which specifies a part of the query, such as a selection of dimension
members or an operation to perform on the data. You then join the Sour ce objects
that specify the data and the operations that you want. The result is one Sour ce that
represents the query. You can then retrieve the data by creating a Cur sor for the

Sour ce.

This chapter briefly describes the various kinds of Sour ce methods, and discusses
some of them in greater detail. It also discusses how to make some typical OLAP
gueries using these methods and provides examples of some of them.

This chapter includes the following topics:

* Describing the Basic Source Methods
e Using the Basic Methods
e Using Other Source Methods

6.1 Describing the Basic Source Methods

ORACLE

The Sour ce class has many methods that return a derived Sour ce. The elements of
the derived Sour ce result from operations on the base Sour ce, which is the Sour ce
whose method returns the derived Sour ce. Only a few methods perform the most basic
operations of the Sour ce class.

Many other methods of the Sour ce class use one or more of the basic methods

to perform operations such as selecting elements of the base Sour ce by value

or by position, or sorting elements. Many of the examples in this chapter and in
Understanding Source Objects, use some of these methods. Other Sour ce methods
get objects that have information about the Sour ce, such as the get | D, get | nput s, and
get Type methods, perform comparisons, such as the ge and gt methods, or convert
the values of the Sour ce from one data type to another, such as the t oDoubl eSour ce
method.

Table 6-1 The Basic Source Methods

__|
Method Description

alias Returns a Sour ce that has the same elements as the base
Sour ce, but has the base Sour ce as the type.

di stinct Returns a Sour ce that has the same elements as the base
Sour ce, except that any elements that are duplicated in the base
appear only once in the derived Sour ce.

6-1

Chapter 6
Using the Basic Methods

Table 6-1 (Cont.) The Basic Source Methods

___|
Method Description

join Returns a Sour ce that has the elements of the base
Sour ce that are specified by the | oi ned, conpari son, and
conpar i sonRul e parameters of the method call. If the vi Si bl e
parameter is t r ue, then the joined Sour ce is an output of the
resulting Sour ce.

position Returns a Sour ce that has the positions of the elements of the
base Sour ce, and that has the base Sour ce as an input.

recursiveloin Similar to the j oi n method, except that this method, in the
Sour ce that it returns, orders the elements of the Sour ce
hierarchically by parent-child relationships.

val ue Returns a Sour ce that has the same elements as the base
Sour ce, but that has the base Sour ce as an input.

The following topics describe the basic Sour ce methods and provide some examples
of their use.

» Using the Basic Methods
* Using Other Source Methods

6.2 Using the Basic Methods

The following topics provide examples of using some of the basic methods.
e Using the alias Method

e Using the distinct Method

e Using the join Method

e Using the position Method

e Using the recursiveJoin Method

e Using the value Method

6.2.1 Using the alias Method

ORACLE

You use the al i as method to control the matching of a Sour ce to an input. For
example, if you want to find out if the measure values specified by a member of a
dimension of the measure are greater than the measure values specified by the other
members of the same dimension, then you need to match the inputs of the measure
twice in the same join operation. To do so, you can derive two Sour ce objects that

are aliases for the same dimension, make them inputs of two Sour ce objects that are
derived from the measure, join each derived measure Sour ce to the associated aliased
dimension Sour ce objects, and then compare the results.

Example 6-1 performs such an operation. It produces a Sour ce that specifies whether
the number of units sold for each value of the CHANNEL_AWJ dimension is greater
than the number of units sold for the other values of the CHANNEL_AWJ dimension.

6-2

ORACLE

Chapter 6
Using the Basic Methods

The example joins uni t s, which is the Sour ce for a measure, to Sour ce objects that
are selections of single values of three of the dimensions of the measure to produce
uni tsSel . The uni t sSel Sour ce specifies the uni t s elements for the dimension values
that are specified by the ti neSel , cust Sel , and pr odSel objects, which are outputs of
uni tsSel . The uni t sSel Sour ce has the Sour ce for CHANNEL _AWJ dimension as an
input.

The ti meSel , cust Sel , and prodSel Sour ce objects specify single values from
hierarchies of the TIME_AWJ, CUSTOMER_AWJ, and PRODUCT_AWJ dimensions,
respectively. The ti neSel value is CALENDAR_YEAR: : MONTH: : 2001. 01, which identifies
the month January, 2001, the cust Sel value is SH PMENTS: : SHI P_TG : BUSN WRLD SJ,
which identifies the Business World San Jose customer, and the prodSel value is
PRODUCT_PRI MARY: : | TEM : ENVY ABM which identifies the Envoy Ambassador portable
PC.

The example next creates two aliases, chanAl i as1 and chanAl i as2, for chanHi er,
which is the Sour ce for the CHANNEL_PRIMARY hierarchy of the CHANNEL _AWJ
dimension. It then produces uni t sSel 1 by joining uni t sSel with the Sour ce returned
by chanAl i as1. val ue(). The uni t sSel 1 Sour ce has the elements and outputs of
uni tsSel and it has chanAl i as1 as an input. Similarly, the example produces

uni t sSel 2, which has chanAl i as2 as an input.

The example uses the gt method of uni t sSel 1, which determines whether the values
of uni t sSel 1 are greater than the values of uni t sSel 2. The final join operations
match chanAl i as1 with the input of uni t sSel 1 and match chanAl i as2 with the input of
uni t sSel 2.

Example 6-1 Controlling Input-with-Source Matching with the alias Method

Source unitsSel = units.join(tinmeSel).join(custSel).join(prodSel);
Source chanAliasl = chanH er.alias();
Source chanAlias2 = chanH er.alias();
Number Sour ce unitsSel 1 = (Number Sour ce)
uni tsSel . join(chanAliasl.val ue());
Nurber Sour ce uni tsSel 2 = (Number Sour ce)
uni tsSel . join(chanAlias2.val ue());
Source result = unitsSel 1. gt (unitsSel2)
.join(chanAliasl) // CQutput 2, colum
.join(chanAlias2); [/ CQutput 1, row

The resul t Sour ce specifies the query, "Are the units sold values of uni t sSel 1 for
the channel values of chanAl i asl greater than the units sold values of uni t sSel 2 for
the channel values of chanAl i as2?" Because resul t is produced by the joining of
chanAl i as2 to the Sour ce returned by uni tsSel 1. gt (uni tsSel 2).j oi n(chanAli asl),
chanAl i as2 is the first output of resul t, and chanAl i asl is the second output of
result.

A Cursor for theresult Source has as values the bool ean values that answer the
query. The values of the first output of the Cur sor are the channel values specified by
chanAl i as2 and the values of the second output are the channel values specified by
chanAl i asl.

The following is a display of the values of the Cur sor formatted as a crosstab with
headings added. The column edge values are the values from chanAl i as1, and the
row edge values are the values from chanAl i as2. The values of the crosstab cells are
the bool ean values that indicate whether the units sold value for the column channel
value is greater than the units sold value for the row channel value. For example, the

6-3

Chapter 6
Using the Basic Methods

crosstab values in the first column indicate that the units sold value for the column
channel value Tot al Channel is not greater than the units sold value for the row Tot al
Channel value but it is greater than the units sold value for the Direct Sal es, Cat al og,
and I nt er net row values.

----------------- chanAliasl ----------------
chanAl i as2 Total Channel Catalog Direct Sales I nt er net
Tot al Channel fal se fal se fal se fal se
Cat al og true fal se fal se fal se
Direct Sales true true fal se fal se
| nt ernet true true true fal se

6.2.2 Using the distinct Method

You use the di stinct method to produce a Sour ce that does not have any duplicated
values, as shown in Example 6-2. The example joins two selections of dimension
members. Some dimension members exist in both selections. The example uses the
di stinct method to produce a Sour ce that contains only unique dimension members,
with no duplicated values.

The example gets the Mintt andar dDi mensi on object for the CUSTOMER_AWJ
dimension and gets the MinLevel Hi er ar chy object for the MARKETS hierarchy of
that dimension. It gets the St ri ngSour ce object, nkt Hi er, for the MinLevel Hi er ar chy.
It then uses the sel ect Val ues method of nkt Hi er to produce two selections of
members of the hierarchy, cust oner sToSel ect and nor eCust oner sToSel ect . Two of
the members of cust omer sToSel ect are also present in nmor eCust oner sToSel ect .

The example uses the appendVal ues method to combine the elements of

cust oner sToSel ect and nmor eCust oner sToSel ect in the conbi nedCust omer s Sour ce.
Finally, the example uses the di sti nct method of conbi nedCust oner s, which returns
a Sour ce, di stinct Conbi nedCust oner s, that has only the distinct members of the
hierarchy.

Example 6-2 Using the distinct Method

Mintt andar dDi mensi on ndnCust Di m =

mdnDBSchena. f i ndOr Cr eat eSt andar dDi mensi on(" CUSTOVER_AW") ;
MinLevel H erarchy mim\kt H er =

mdCust Di m fi ndOr Cr eat eLevel Hi erar chy(" MARKETS") ;
StringSource nktH er = (StringSource)ndnmkt Hi er. get Source();

Source customersToSel ect =
mkt Hi er. sel ect Val ues(new String[] {"MARKETS:: SH P_TO : KOSH ENT BOS',
"MARKETS: : SHI P_TQ : KOSH ENT TOK",
"MARKETS: : SHI P_TQO : KOSH ENT WAN'});
Sour ce noreCust omer sToSel ect =
mkt Hi er. sel ect Val ues(new String[] {"MARKETS:: SH P_TO : KOSH ENT BOS',
"MARKETS: : SHI P_TQ : KOSH ENT TOK",
"MARKETS: : SHI P_TQ : BUSN WRLD NY",
"MARKETS: : SHI P_TQ : BUSN WRLD SJ"});
Sour ce conbi nedCustorers =
cust omer sToSel ect . appendVal ues(nor eCust orrer sToSel ect) ;

Sour ce di stinct Conbi nedCust omers = conbi nedCust omer s. di stinct();

A Cursor for the conbi nedCust onmer s Sour ce has the following values:

ORACLE 6-4

Chapter 6
Using the Basic Methods

MARKETS: : SH P_TQ : KOSH ENT BCS
MARKETS: : SH P_TO : KOSH ENT TOK
MARKETS: : SH P_TO : KOSH ENT WAN
MARKETS: : SH P_TQ : KOSH ENT BCS
MARKETS: : SH P_TO : KOSH ENT TOK
MARKETS: : SH P_TO : BUSN WRLD NY
MARKETS: : SH P_TQ : BUSN WRLD SJ

A Cur sor for the di stinct Conbi nedCust orrer s Sour ce has the following values:

MARKETS: : SHI P_TQ: : KOSH ENT BCS
MARKETS: : SHI P_TO : KOSH ENT TOK
MARKETS: : SH P_TO : KOSH ENT WAN
MARKETS: : SH P_TQ: : BUSN WRLD NY
MARKETS: : SHI P_TQ: : BUSN VWRLD SJ

6.2.3 Using the join Method

ORACLE

As described in Understanding Source Objects, you use the j oi n method to produce
a Sour ce that has the elements of the base Sour ce that are determined by the j oi ned,
conpari son, and conpari sonRul e parameters of the method. The vi si bl e parameter
determines whether the j oi ned parameter Sour ce is an output of the Sour ce produced
by the join operation. You also use the j oi n method to match a Sour ce with an input of
the base or j oi ned parameter Sour ce.

Most of the examples in this chapter use one or more signatures of the j oi n

method, as do many of the examples in Understanding Source Objects. Example 6-3
uses the full j oi n signature and the simplest j oi n signature. In the example, the
full j oi n signature demonstrates the use of COVPARI SON_RULE_DESCENDI NG as the
conpari sonRul e parameter.

Example 6-3 uses the following Sour ce objects.

e prodSel WthShort Descr, which is the Sour ce produced by joining the short
description attribute of the PRODUCT_AWJ dimension with the Sour ce for the
FAMILY hierarchy level of the PRODUCT_PRIMARY hierarchy of the dimension.

e sal esMeasur e, which is the Sour ce for the SALES measure of the
UNITS_CUBE_AWJ cube.

e timeSel WthShort Descr, which is the Sour ce produced by joining the short
description attribute of the TIME_AWJ dimension with the Sour ce for a selected
member of the CALENDAR_YEAR hierarchy of the dimension.

e cust Sel Wt hShort Descr, which is the Sour ce produced by joining the short
description attribute of the CUSTOMER_AWJ dimension with the Sour ce for a
selected member of the SHIPMENTS hierarchy of the dimension.

e chanSel Wt hShort Descr, which is the Sour ce produced by joining the short
description attribute of the CHANNEL_AWJ dimension with the Sour ce for a
selected member of the CHANNEL PRIMARY hierarchy of the dimension.

The first join operation uses the full signature of the j oi n method with

prodSel Wt hShort Descr as the base Sour ce, sal esMeasur e as the joined

Sour ce, the Sour ce for the Number data type as the comparison Sour ce, and
COVPARI SON_RULE_DESCENDI NG as the comparison rule. The Sour ce returned by that
join operation has the product family level members and related product short
description values as base values and an output that has the sales amounts in
descending order.

6-5

Chapter 6
Using the Basic Methods

The next three join operations join the single member selections of the other three
dimensions of the measure. The resul t Sour ce specifies the product family level

members in descending order of sales amounts for the month of May, 2001 for all
customers and all channels.

Example 6-3 Using COMPARISON_RULE_DESCENDING

Source result = prodSel Wt hShortDescr. joi n(sal esMeasure,
sal esMeasur e. get Dat aType(),
Sour ce. COMPARI SON_RULE_DESCENDI NG
true)
.join(timeSel WthShortDescr)
.join(custSel WthShortDescr)
.join(chanSel WthShortDescr);

A Cursor forthe result Sour ce has the following values, displayed as a table. The
table includes only the short value descriptions of the hierarchy members and the
sales amount values, and has headings and formatting added.

Total Channel
Total Custoner
MAY- 01

Total Sales Amounts Product Fanily

3,580, 239. 72 Desktop PCs
2,508, 560. 92 Portabl e PCs

891, 807. 30 CD/ DVD

632, 376. 84 Modens/ Fax

444,444, 38 Menory

312, 389. 39 Accessories

291, 510. 88 Monitors

222,995. 92 Qperating Systens

44, 479. 32 Docunent ation

6.2.4 Using the position Method

ORACLE

You use the posi ti on method to produce a Sour ce that has the positions of the
elements of the base and has the base as an input. Example 6-4 uses the posi tion
method in producing a Sour ce that specifies the selection of the first and last members
of the levels of a hierarchy of the TIME_AWJ dimension.

In the example, mdnii meDi mis the MinPri nar yDi mensi on for the TIME_AWJ
dimension. The example gets the level attribute and the CALENDAR_YEAR hierarchy
of the dimension. It then gets Sour ce objects for the attribute and the hierarchy.

Next, the example creates an array of Sour ce objects and gets a Li st of the

MintHi er ar chyLevel components of the hierarchy. It gets the Sour ce object for each
level and adds it to the array, and then creates a list Sour ce that has the Sour ce
objects for the levels as element values.

The example then produces | evel Menber s, which is a Sour ce that specifies the
members of the levels of the hierarchy. Because the conpari son parameter of the

join operation is the Sour ce produced by | evel Li st. val ue(), | evel Menber s has

| evel Li st as an input. Therefore, | evel Menber s is a Sour ce that returns the members
of each level, by level, when the input is matched in a join operation.

The range Sour ce specifies a range of elements from the second element to the next
to last element of a Sour ce.

6-6

Chapter 6
Using the Basic Methods

The next join operation produces the fir st AndLast Sour ce. The base of the
operation is | evel Menbers. The j oi ned parameter is the Sour ce that results from the
| evel Menber s. posi tion() method. The conpari son parameter is the r ange Sour ce
and the comparison rule is COMPARI SON_RULE_REMOVE. The value of the vi si bl e
parameter is true. The first AndLast Sour ce therefore specifies only the first and
last members of the levels because it removes all of the other members of the levels
from the selection. The fi rst AndLast Sour ce still has | evel Li st as an input.

The final join operation matches the input of fi r st AndLast with | evel Li st .

Example 6-4 Selecting the First and Last Time Elements

MimAttri bute ndnili meLevel Attr = nmdnii meDi m get Level Attribute();
MinLevel H erarchy ndnCal H er =
mdniTi meDi m findOr Cr eat eLevel Hi erar chy(" CALENDAR_YEAR') ;

Source | evel Rel = ndnili meLevel Attr. get Source();
StringSource cal Her = (StringSource) mdnCal Hi er. get Source();

Source[] |evel Sources = new Source[3];
Li st level s = mdnCal Hi er. get H erarchyLevel s();
for (int i =0; i < levelSources.length; i++)

| evel Sources[i] = ((MinHi erarchylLevel) |evels.get(i)).getSource();
}

Source |evel List = dp.createlListSource(level Sources);

Source |evel Menbers = calHer.join(level Rel, IevellList.value());

Sour ce range = dp. creat eRangeSource(2, |evel Menbers. count (). nminus(1));

Source firstAndLast = |evel Menbers. join(level Menbers. position(),
range,
Sour ce. COVPARI SON_RULE_REMOVE,
true);

Source result = firstAndLast.join(levellList);

A Cursor forthe result Sour ce has the following values, displayed as a table with
column headings and formatting added. The left column names the level, the middle
column is the position of the member in the level, and the right column is the local
value of the member. The TOTAL_TIME level has only one member.

Level Menber Position in Level Menber Val ue
TOTAL_TI ME 1 TOTAL

YEAR 1 CY1998
YEAR 10 CY2007
QUARTER 1 CY1998. QL
QUARTER 40 CY2007. Q4
MONTH 1 1998. 01
MONTH 120 2007. 12

6.2.5 Using the recursiveJoin Method

ORACLE

You use the r ecur si veJoi n method to produce a Sour ce that has elements that are
ordered hierarchically. You use the r ecur si veJoi n method only with the Sour ce for an
MinHi er ar chy or with a subtype of such a Sour ce. The method produces a Sour ce
whose elements are ordered hierarchically by the parents and their children in the
hierarchy.

6-7

ORACLE

Chapter 6
Using the Basic Methods

Like the j oi n method, you use the r ecur si veJoi n method to produce a Sour ce that
has the elements of the base Sour ce that are determined by the j oi ned, conpari son,
and conpari sonRul e parameters of the method. The vi si bl e parameter determines
whether the joined Sour ce is an output of the Sour ce produced by the recursive join
operation.

The full recur si veJoi n method has other parameters that specify the parent attribute
of the hierarchy, whether the result should have the parents before or after their
children, and how to order the elements of the result if the result includes children but
not the parent. The r ecur si veJoi n method has several signatures that are shortcuts
for the full signature.

Example 6-5 uses ar ecur si veJoi n method that lists the parents first, restricts the
parents to the base, and does not add the joined Sour ce as an output. The example
first sorts the members of the PRODUCT_PRIMARY hierarchy of the PRODUCT_AWJ
dimension by hierarchical levels and then by the value of the package attribute of each
member.

In the first r ecur si veJoi n method, the COVPARI SON_RULE_ASCENDI NG parameter
specifies that the members of the pr odHi er hierarchy be in ascending alphabetical
order within each level. The prodParent Attr object is the Sour ce for the parent
attribute of the hierarchy.

The prodPkgAttr object in the second r ecur si veJoi n method is the Sour ce for

the package attribute of the dimension. Only the members of the ITEM level have

a related package attribute value. Because the members in the aggregate levels
TOTAL_PRODUCT, CLASS, and FAMILY, do not have a related package, the package
attribute value for members in those levels is nul | , which appears as NA in the results.
Some of the ITEM level members do not have a related package value, so their values
are NA, also.

The second recur si veJoi n method joins the package attribute values to their related
hierarchy members and sorts the members hierarchically by level, and then sorts
them in ascending alphabetical order in the level by the package attribute value.

The COMPARI SON_RULE_ASCENDI NG_NULLS_FI RST parameter specifies that members
that have a nul | value appear before the other members in the same level. The
example then joins the result of the method, sort edHi er Ascendi ng, to the package
attribute to produce a Sour ce that has the package attribute values as element values
and sort edH er Ascendi ng as an output.

The third r ecur si veJoi n method is the same as the second, except that the
COVPARI SON_RULE_DESCENDI NG NULLS_FI RST parameter sorts the hierarchy members
in descending alphabetical order in the level by package attribute value.

Example 6-5 Sorting Products Hierarchically by Attribute

Source resultl = prodHi er.recursiveJoin(prodD m val ue(),
prodHi er. get Dat aType(),
prodParent Attr,
Sour ce. COVPARI SON_RULE_ASCENDI NG) ;

Sour ce sortedH erAscending =
prodHi er. recursiveJoi n(prodPkgAttr,
prodPkgAttr. get Dat aType(),
prodParent Attr,
Sour ce. COVPARI SON_RULE_ASCENDI NG NULLS_FI RST);
Source result2 = prodPkgAttr.join(sortedH erAscending);

6-8

Chapter 6
Using the Basic Methods

Source sortedH erDescending =
prodHi er. recursiveJoi n(prodPkgAttr,
prodPkgAt tr. get Dat aType(),
prodParent Attr,
Sour ce. COVPARI SON_RULE_DESCENDI NG NULLS FIRST);
Source result3 = prodPkgAttr.join(sortedH erDescending);

A Cursor for the resul t 1 Sour ce has the following values, displayed with a heading
added. The list contains only the first seventeen values of the Cur sor.

Product Primary Hierarchy Val ue
PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL
PRODUCT_PRI MARY: : CLASS: : HRD
PRODUCT_PRI MARY: : FAM LY: : DI SK
PRODUCT_PRI MARY: : | TEM : EXT CD ROM
PRODUCT_PRI MARY: : | TEM : EXT DVD
PRODUCT_PRI MARY: : | TEM : I NT 8X DVD
PRODUCT_PRI MARY: : | TEM : | NT CD ROM
PRODUCT_PRI MARY: : | TEM : | NT CD USB
PRODUCT_PRI MARY: : | TEM : | NT RW DVD
PRODUCT_PRI MARY: : FAM LY: : DTPC

PRODUCT_PRI MARY: : | TEM : SENT FI N
PRODUCT_PRI MARY: : | TEM : SENT MM
PRODUCT_PRI MARY: : | TEM : SENT STD
PRODUCT_PRI MARY: : FAM LY: : LTPC
PRODUCT_PRI MARY: : | TEM : ENVY ABM
PRODUCT_PRI MARY: : | TEM : ENVY EXE
PRODUCT_PRI MARY: : | TEM : ENVY STD

A Cursor for the resul t 2 Sour ce has the following values, displayed as a table with
headings added. The table contains only the first seventeen values of the Cur sor .
The left column has the member values of the hierarchy and the right column has the
package attribute value for the member.

The ITEM level members that have a nul | value appear first, and then the other level
members appear in ascending order of package value. Since the data type of the
package attribute is String, the package values are in ascending alphabetical order.

Product Primary Hierarchy Val ue Package Attribute Val ue

PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL NA
PRODUCT_PRI MARY: : CLASS: : HRD NA
PRODUCT_PRI MARY: : FAM LY: : DI SK NA
PRODUCT_PRI MARY: : | TEM : EXT CD ROM NA
PRODUCT_PRI MARY: : | TEM : | NT 8X DVD NA
PRODUCT_PRI MARY: : | TEM : | NT CD USB NA
PRODUCT_PRI MARY: : | TEM : EXT DVD Executive
PRODUCT_PRI MARY: : | TEM : I NT CD ROM Laptop Val ue Pack
PRODUCT_PRI MARY: : | TEM : | NT RW DVD Ml timedi a
PRODUCT_PRI MARY: : FAM LY: : DTPC NA
PRODUCT_PRI MARY: : | TEM : SENT FIN NA
PRODUCT_PRI MARY: : | TEM : SENT STD NA
PRODUCT_PRI MARY: : | TEM : SENT MV Ml timedi a
PRODUCT_PRI MARY: : FAM LY: : LTPC NA
RCDUCT_PRI MARY: : | TEM : ENVY ABM NA
PRODUCT_PRI MARY: : | TEM : ENVY EXE Executive

PRODUCT_PRI MARY: : | TEM : ENVY STD Laptop Val ue Pack

ORACLE 6-9

Chapter 6
Using the Basic Methods

A Cursor for the resul t 3 Sour ce has the following values, displayed as a table with
headings added. This time the members are in descending order, alphabetically by
package attribute value.

Product Primary Hi erarchy Val ue

Package Attribute Val ue

PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL NA

PRODUCT_PRI MARY: : CLASS: : HRD NA

PRODUCT_PRI MARY: : FAM LY: : DI SK NA

PRODUCT_PRI MARY: : | TEM : EXT CD ROM NA

PRODUCT_PRI MARY: : | TEM : I NT 8X DVD NA

PRODUCT_PRI MARY: : | TEM : | NT CD USB NA

PRODUCT_PRI MARY: : | TEM : | NT RW DVD Ml timedi a

PRODUCT_PRI MARY: : | TEM : | NT CD ROM Laptop Val ue Pack

PRODUCT_PRI MARY: : | TEM : EXT DVD Executive

PRODUCT_PRI MARY: : FAM LY: : DTPC NA

PRODUCT_PRI MARY: : | TEM : SENT FIN NA

PRODUCT_PRI MARY: : | TEM : SENT STD NA

PRODUCT_PRI MARY: : | TEM : SENT WM Ml timedi a

PRODUCT_PRI MARY: : FAM LY: : LTPC NA

PRODUCT_PRI MARY: : | TEM : ENVY ABM NA

PRODUCT_PRI MARY: : | TEM : ENVY STD Laptop Val ue Pack
| TEM : ENVY EXE Executive

PRODUCT_PRI MARY: :

6.2.6 Using the value Method

As described in "Deriving a Source with an Input”, you use the val ue method to create
a Sour ce that has itself as an input. That relationship enables you to select a subset of
elements of the Sour ce. You can also use the value method to reverse a relation.

The following topics have examples of these operations.

» Selecting Elements of a Source

* Reversing a Relation

6.2.6.1 Selecting Elements of a Source

ORACLE

Example 5-11 and Example 6-6 demonstrate the selection of a subset of the elements
of a Sour ce. In Example 6-6, shi pHi er is a Sour ce for the SHIPMENTS hierarchy of
the CUSTOMER_AWJ dimension. The sel ect Val ues method of shi pHi er produces
cust Sel , which is a selection of some of the elements of shi pHi er. The sel ect Val ues
method of cust Sel produces cust Sel 2, which is a subset of that selection.

The first j oi n method has cust Sel as the base and as the joined Sour ce. It has

cust Sel 2 as the comparison Sour ce. The elements of the resulting Sour ce, resul t 1,
are the Cartesian product of the base and joined Sour ce objects that are specified by
the comparison Sour ce. The resul t 1 Sour ce has one set of the elements of cust Sel

for each element of cust Sel that is in the comparison Sour ce. The true value of the

vi si bl e parameter causes the joined Sour ce to be an output of resul t 1.

The second j oi n method also has cust Sel as the base and cust Sel 2 as the
comparison Sour ce, but it has the Sour ce returned by the cust Sel . val ue() method as
the joined Sour ce. Because cust Sel is an input of the joined Sour ce, the base Sour ce
matches with that input. That input relationship causes the resulting Sour ce, resul t 2,
to have only those elements of cust Sel that are also in the comparison Sour ce.

6-10

Chapter 6
Using the Basic Methods

Example 6-6 Selecting a Subset of the Elements of a Source

StringSource custSel = shipHier.selectValues(new String[]
{" SH PMENTS: : SH P_TO : COWP WHSE SIN',
"SHI PMENTS: : SH P_TO : COWP WHSE LON',
"SH PMENTS: : SH P_TO : COWP WHSE SJ",
"SHI PMENTS: : SH P_TQ : COVP WHSE ATL"});

Sour ce cust Sel 2 = cust Sel . sel ect Val ues(new String[]
{" SH PMENTS: : SH P_TO : COWP WHSE SIN',
"SHI PMENTS: : SHI P_TQ : COWP WHSE SJ"});

Source resultl = custSel.join(custSel, custSel2, true);
Source result2 = custSel.join(custSel.value(), custSel2, true);

A Cursor forresultl has the values shown in the following table. The table has
formatting and headings that are not in the Cur sor . The left column has the values of
the elements of the output of the Cur sor. The right column has the base values of the
Cursor.

Qut put Val ue resultl Val ue
SHI PMVENTS: : SHI P_TQ : COWP WHS SHI PMENTS: : SHI P_TO : COWP WHSE ATL
SHI PMVENTS: : SHI P_TQ : COWP WHS SHI PMENTS: : SH P_TO : COWP WHSE SJ
SHI PMENTS: : SH P_TO : COWP WHSE SJ SHI PMENTS: : SHI P_TO : COWP WHSE SIN
SH PMENTS: : SH P_TQO : COWP WHSE SJ SHI PMENTS: : SH P_TO : COWP WHSE LON
SH PMVENTS: : SHIP_TO : COWP WHSE SIN SHI PMENTS: : SHI P_TO: : COWP WHSE ATL
SHI PMENTS: : SHP_TO : COWP WHSE SIN SHI PMENTS: : SHI P_TO. : COWP WHSE SJ
SH PMVENTS: : SHIP_TO : COWP WHSE SIN SHI PMENTS: : SHI P_TO. : COWP VWHSE SI N
SHI PMVENTS: : SHHP_TO : COWP WHSE SIN SHI PMENTS: : SHI P_TO. : COVP VWHSE LON

A Cursor forresul t 2 has the following values, displayed as a table with headings
added. The left column has the values of the elements of the output of the Cur sor. The
right column has the base values of the Cur sor.

Qut put Val ue result2 Val ue

SHI PMENTS: : SHI P_TO: : COMP WHSE SJ SHI PMENTS: : SHI P_TO : COVWP WHSE SJ
SHI PMENTS: : SHIP_TO : COMP WHSE SIN SHI PMENTS: : SH P_TG: : COWP WHSE SIN

6.2.6.2 Reversing a Relation

ORACLE

Another use of the val ue method is to reverse a relation, as shown in Example 6-7.
The example reverses the ancestor attribute relation of the CUSTOMER_AWJ
dimension to produce a Sour ce, nar ket sDescendant s, that represents a descendants
relation. The mar ket sDescendant s Sour ce has as an input the Sour ce for the
MARKETS hierarchy of the dimension. When you join mar ket sDescendant s with a
Sour ce that matches with that input, you get a Sour ce that specifies the descendants
of the participating members of the hierarchy.

Another example of reversing a relation is Example 6-10. It uses the val ue method in
reversing the parent attribute to get the children of a parent.

Example 6-7 first gets the Minfst andar dDi mensi on object for the CUSTOMER_AWJ
dimension and the MinLevel H er ar chy object for the MARKETS hierarchy of that
dimension. It gets the Sour ce for the hierarchy.

6-11

ORACLE

Chapter 6
Using the Basic Methods

The example next gets the ancestors attribute of the dimension and the Sour ce for
it. The ancestors attribute relates each dimension member to the ancestors of that
member.

To produce a Sour ce that represents the descendants of each member of the
dimension, the example reverses the ancestor relation by joining the Sour ce

for the hierarchy, nkt Hi er, with the ancestors attribute, ancest or sAttr. The join
operation uses nkt Hi er. val ue() as the comparison Sour ce, so that the Sour ce
returned by the join operation, mar ket sDescendant s, has nkt Hi er as an input.

The mar ket sDescendant s Sour ce specifies, for each element of ancest or sAttr, the
elements of nkt Hi er that have the ancest or sAttr element as their ancestor. Because
it has nkt H er as an input, the mar ket sDescendant s Sour ce functions in the same way
as an attribute that represents the descendants relationship for the hierarchy.

The example demonstrates this when it joins nkt H er to mar ket sDescendant s in the
following line.

Sour ce sel Val Descendants = mar ket sDescendants. j oi n(nkt Hier, selVal);

In the join operation, the joined Sour ce, nkt H er, matches with the input of

mar ket sDescendant s. The comparison Sour ce is sel Val , which specifies a single
member of the hierarchy. The join operation returns sel Val Descendant s, which
specifies the elements of nar ket sDescendant s that are the descendants of the sel Val
member. The result also includes the ancestor member itself. The nkt H er Source is
not an output of sel Val Descendant s because the signature of the j oi n method used
derives a Sour ce that does not have the joined Sour ce as an output.

The example next uses the full signature of the j oi n method to produce

sel Val Descendant sOnl y, which contains only the descendants and not the ancestor

value. To remove the ancestor value, the example again uses the val ue method, this
time to return a Sour ce that is the j oi ned parameter of the join operation that returns
sel Val Descendant sOnl y. The comparison Sour ce is sel Val , and the comparison rule
is COVPARI SON_RULE_REMOVE.

Finally, the example uses the r enoveVal ue method to produce

sel Val Descendant sOnl y2, which is the same as sel Val Descendant sOnl y. This simply
demonstrates that the r enoveVal ue method is a shortcut for the join operation that
returned sel Val Descendant sOnl y.

Example 6-7 Using the value Method to Reverse a Relation

MinSt andar dDi nensi on ndnCustDi m =

mdnDBSchena. fi ndOr Cr eat eSt andar dDi mensi on(" CUSTOVER_AW") ;
MinLevel H erarchy ndm\ktH er =

mdnCust Di m fi ndOr Cr eat eLevel Hi erar chy(" MARKETS") ;
StringSource nktH er = (StringSource)ndmkt Hi er. get Source();
MimAttri bute ndmAncestorsAttr = nmdnCust Di m get AncestorsAttribute();
Source ancestorsAttr = nidmAncestorsAttr. get Source();

Il Reverse the ancestors relation to get the descendants relation.
Sour ce mar ket sDescendants = nktHier.join(ancestorsAttr, nktH er.value());

Source sel Val = nktHier.sel ectVal ue(" MARKETS: : ACCOUNT: : BUSN WRLD") ;
/'l Select the descendants of the specified hierarchy menber.

StringSource sel Val Descendants =
(StringSource) mar ket sDescendants. j oi n(nkt Hi er, selVal);

6-12

6.3 Using

ORACLE

Chapter 6
Using Other Source Methods

/1l Renove the ancestor value so that only the descendants renain.
Sour ce sel Val DescendantsOnly =
sel Val Descendant s. j oi n(sel Val Descendant s. val ue(),
sel Val ,
Sour ce. COVPARI SON_RULE_REMOVE) ,
fal se;

/1 Produce the same result using the renmpveVal ue nethod.
Source sel Val Descendant sOnl y2 =
sel Val Descendant s. r enoveVal ue(" MARKETS: : ACCOUNT: : BUSN WRLD") ;

A Cur sor for sel Val Descendant s has the following values.

MARKETS:
MARKETS:
MARKETS:
MARKETS:
MARKETS:

: ACCOUNT:
SH P_TC
SH P_TC
SH P_TC
SH P_TC

: BUSN WRLD

: BUSN WRLD HAM
: BUSN WRLD NAN
: BUSN WRLD NY

: BUSN WRLD SJ

A Cur sor for sel Val Descendant sOnl y has the following values.

MARKETS: :
MARKETS: :
MARKETS: :
MARKETS: :

SH P_TO
SH P_TO
SH P_TO
SH P_TO

: BUSN WRLD HAM
: BUSN VRLD NAN
: BUSN VRLD NY
: BUSN WRLD SJ

A Cursor for sel Val Descendant sOnl y2 has the following values.

MARKETS: :
MARKETS: :
MARKETS: :
MARKETS: :

SH P_TO
SH P_TO
SH P_TO
SH P_TO

Other Source Methods

Along with the methods that are various signatures of the basic methods, the Sour ce
class has many other methods that use combinations of the basic methods. Some
methods perform selections based on a single position, such as the at and of f set
methods. Others operate on a range of positions, such as the i nt erval method.
Some perform comparisons, such as eq and gt , select one or more elements,

such as sel ect Val ue or removeVal ue, or sort elements, such as sort Ascendi ng or
sort Descendi ngHi erarchical | y.

: BUSN WRLD HAM
: BUSN VRLD NAN
: BUSN VRLD NY
: BUSN VRLD SJ

The subclasses of Sour ce each have other specialized methods, also. For example,
the Nunber Sour ce class has many methods that perform mathematical functions such
as abs, di v, and cos, and methods that perform aggregations, such as aver age and
total.

The following topics have examples that demonstrate the use of some of the Sour ce
methods. Some of the examples are tasks that an OLAP application typically performs.

e Using the extract Method

» Creating a Cube and Pivoting Edges

e Dirilling Up and Down in a Hierarchy

e Sorting Hierarchically by Measure Values

e Using NumberSource Methods To Compute the Share of Units Sold

6-13

Chapter 6
Using Other Source Methods

* Selecting Based on Time Series Operations

* Selecting a Set of Elements Using Parameterized Source Objects

6.3.1 Using the extract Method

ORACLE

You use the extract method to extract the values of a Sour ce that is the value of an
element of another Sour ce. If the elements of a Sour ce have element values that are
not Sour ce objects, then the ext ract method operates like the val ue method.

Example 6-8 uses the extract method to get the values of the Nunber Sour ce objects
that are themselves the values of the elements of the list Sour ce nmeasDi m Each of the
Nunber Sour ce objects represents a measure.

The example selects elements from St ri ngSour ce objects for the hierarchies of the
dimensions of the UNITS_CUBE_AWJ cube. The cost, uni ts, and sal es objects are
Nunber Sour ce objects for the COST, UNITS, and SALES measures of the cube.

Next, the example creates measDi m which is a list Sour ce that has the three

Nunber Sour ce objects as element values. It then uses the ext ract method to get the
values of the Nurber Sour ce objects. The resulting unnamed Sour ce has neasDi mas an
extraction input. The first join operation has neasDi m extract () as the base Sour ce.
The input of the base Sour ce matches with neasDi m which is the j oi ned parameter.
The example then matches the other inputs of the measures by joining the dimension
selections to produce the resul t Sour ce.

Example 6-8 Using the extract Method

Source prodSel = prodHier.sel ectVal ues(new String[]
{" PRODUCT_PRI MARY: : | TEM : ENVY STD',
" PRODUCT_PRI MARY: : | TEM : ENVY EXE",
" PRODUCT_PRI MARY: : | TEM : ENVY ABM'});
Source chanSel = chanHi er. sel ect Val ue(" CHANNEL_PRI MARY: : CHANNEL: : DIR") ;
Source tinmeSel = tineH er.selectVal ue(" CALENDAR_YEAR : MONTH: : 2001. 05");
Source custSel = custHier.sel ectVal ue("SH PMENTS: : TOTAL_CUSTOMER: : TOTAL") ;

Source nmeasDi m = dp. creat eLi st Sour ce(new Source[] {cost, units, sales});

Source result = measDimextract().join(neasbDin) // colum
.join(prodSel) // row
.join(timeSel) // page
.join(chanSel) // page
.join(custSel); [/ page

The following crosstab displays the values of a Cur sor for the resul t Sour ce, with
headings and formatting added.

SHI PMENTS: : TOTAL_CUSTOMER: : TOTAL
CHANNEL_PRI MARY: : CHANNEL: : DI R
CALENDAR_YEAR: : MONTH: : 2001. 05

| TEM CosT UNITS SOLD SALES AMOUNT
ENVY ABM 73,316. 10 26 77,825.54
ENVY EXE 111, 588. 30 37 116, 470. 45
ENVY STD 92, 692. 47 39 93, 429. 57

6-14

Chapter 6
Using Other Source Methods

6.3.2 Creating a Cube and Pivoting Edges

ORACLE

One typical OLAP operation is the creation of a cube, which is a multi-dimensional
array of data. The data of the cube is specified by the elements of the column, row,
and page edges of the cube. The data of the cube can be data from a measure that is
specified by the members of the dimensions of the measure. The cube data can also
be dimension members that are specified by some calculation of the measure data,
such as products that have unit sales quantities greater than a specified amount.

Most of the examples in this topic create cubes. Example 6-9 creates a cube that
has the quantity of units sold as the data of the cube. The column edge values are
initially from a channel dimension hierarchy, the row edge values are from a time
dimension hierarchy, and the page edge values are from hierarchies for product and
customer dimensions. The product and customer member values on the page edge
are represented by parameterized Sour ce objects.

The example joins the selections of the hierarchy members to the short value
description attributes for the dimensions so that the results include the attribute values.
The example then joins the Sour ce objects derived from the hierarchies to the Sour ce
for the measure to produce the cube query. It commits the current Tr ansacti on, and
then creates a Cur sor for the query and displays the values.

After displaying the values of the Cur sor, the example changes the value of the

Par anet er for the parameterized Sour ce for the customer selection, thereby retrieving
a different result set using the same Cur sor in the same Tr ansact i on. The example
resets the position of the Cur sor, and displays the values of the Cur sor again.

The example then pivots the column and row edges so that the column values are
time members and the row values are channel members. It commits the Transact i on,
creates another Cur sor for the query, and displays the values. It then changes the
value of each Par anet er object and displays the values of the Cur sor again.

The dp object is the Dat aPr ovi der. The get Cont ext method gets a Cont ext 11g object
that has a method that displays the values of the Cur sor in a crosstab format.

Example 6-9 Creating a Cube and Pivoting the Edges

/] Create Parameter objects with values fromthe hierarchies
/1 of the CUSTOMER_AW and PRCDUCT_AW di nensi ons.
StringParanet er custParam =

new StringParameter(dp, "SH PMENTS:: REG ON: : EMEA");
StringParameter prodParam =

new StringParameter(dp, "PRODUCT_PRI MARY:: FAM LY:: LTPC");

/] Create paraneterized Source objects using the Parameter objects.
Source cust Paranfrc = cust Param creat eSource();
Source prodParanfrc = prodParam creat eSource();

/'l Select single values fromthe hierarchies, using the Paraneter

/1 objects as the conparisons in the join operations.

Sour ce paranCustSel = custHi er.join(custH er.value(), custParanbrc);
Sour ce paranProdSel = prodHier.join(prodH er.value(), prodParantrc);

/1 Select menbers fromthe other dimensions of the measure.
Source timeSel =
timeHier.sel ectVal ues(new String[] {"CALENDAR _YEAR : YEAR : CY1999"
" CALENDAR_YEAR: : YEAR: : CY2000",
" CALENDAR_YEAR: : YEAR: : CY2001"});

6-15

ORACLE

Chapter 6
Using Other Source Methods

Sour ce chanSel =
chanHi er. sel ect Val ues(new String[] {"CHANNEL_PRI MARY: : CHANNEL: : DI R",
" CHANNEL PRI MARY: : CHANNEL: : CAT
" CHANNEL_PRI MARY: : CHANNEL: : I NT"});

/1 Join the hierarchy selections to the short description attributes
[l for the dinensions.

Sour ce col utmEdge = chanSel . j oi n(chanShort Descr);

Sour ce rowkdge = timeSel.join(timeShortDescr);

Source pagel = paranProdSel .| oi n(prodShortDescr);

Source page2 = parantCust Sel . j oi n(cust Short Descr);

/1 Join the dimension selections to the neasure.
Sour ce cube = units.join(col umEdge)

.j oi n(rowEdge)

.j oi n(page2)

.joi n(pagel);

/1 The follow ng method commits the current Transaction.
get Context ().comit();

/I Create a Cursor for the query.
Cur sor Manager cursorhgr = dp. creat eCur sor Manager (cube) ;
ConpoundCur sor cubeCursor = (ConpoundCursor) cursorMgr.createCursor();

/1 Display the values of the Cursor as a crosstab.
get Cont ext (). di spl ayCur sor AsCr osst ab(cubeCursor);

/1 Change the custoner parameter val ue.
cust Param set Val ue(" SH PMENTS: : REG ON. : AMER") ;

/] Reset the Cursor position to 1 and display the values again.
cubeCursor. setPosition(1);

printin();

get Cont ext (). di spl ayCur sor AsCr osst ab(cubeCursor);

/1 Pivot the colum and row edges.
col umEdge = timeSel.join(tineShortDescr);
rowedge = chanSel . j oi n(chanShort Descr);

/1 Join the dinension selections to the neasure.
cube = units.join(col umEdge)

.j oi n(rowEdge))

. oi n(page2)

.joi n(pagel);

// Commit the current Transaction.
get Context ().comit();

/1 Create another Cursor.

cursorMigr = dp. creat eCur sor Manager (cube) ;

cubeCursor = (ConpoundCursor) cursorMgr.createCursor();
get Cont ext (). di spl ayCur sor AsCr osst ab(cubeCursor);

/1l Change the product paraneter val ue.
prodPar am set Val ue(" PRODUCT_PRI MARY: : FAM LY: : DTPC") ;

/] Reset the Cursor positionto 1

cubeCursor. set Position(1);

printin();

get Cont ext (). di spl ayCur sor AsCr osst ab(cubeCursor);

6-16

Chapter 6
Using Other Source Methods

The following crosstab has the values of cubeCur sor displayed by the first
di spl ayCur sor AsCr osst ab method.

Portabl e PCs
Eur ope

Catalog Direct Sales Internet
1999 1986 86 0
2000 1777 193 10
2001 1449 196 215

The following crosstab has the values of cubeCur sor after the example changed the
value of the cust Par amPar anet er object.

Portabl e PCs
North Anerica

Catalog Direct Sales Internet
1999 6841 385 0
2000 6457 622 35
2001 5472 696 846

The next crosstab has the values of cubeCur sor after pivoting the column and row
edges.

Portabl e PCs
North Anerica

1999 2000 2001
Cat al og 6841 6457 5472
Direct Sales 385 622 696
| nt ernet 0 35 846

The last crosstab has the values of cubeCur sor after changing the value of the
prodPar amPar anet er object.

Desktop PCs
North Anerica

1999 2000 2001
Cat al og 14057 13210 11337
Direct Sales 793 1224 1319
| nternet 0 69 1748

6.3.3 Drilling Up and Down in a Hierarchy

ORACLE

Drilling up or down in a dimension hierarchy is another typical OLAP operation.
Example 6-10 demonstrates getting the members of one level of a dimension
hierarchy, selecting a member, and then getting the parent, children, and ancestors
of the member. The example gets the children of a parent by reversing the parent
relation to produce the prodHi er Chi | dren Sour ce.

The example uses the following objects.

e |evel Src, which is the Sour ce for the FAMILY level of the PRODUCT_PRIMARY
hierarchy of the PRODUCT_AWJ dimension.

e prodHi er, which is the Sour ce for the PRODUCT_PRIMARY hierarchy.

6-17

ORACLE

Chapter 6
Using Other Source Methods

e prodH erParent Attr, which is the Sour ce for the parent attribute of the hierarchy.
e prodH er AncsAttr, which is the Sour ce for the ancestors attribute of the hierarchy.

e prodShort Label , which is the Sour ce for the short value description attribute of the
PRODUCT_AWJ dimension.

Example 6-10 Drilling in a Hierarchy

int pos = 5;
Il Get the element at the specified position of the level Source.
Source | evel El enent = | evel Src. at (pos);

Il Get ancestors of the |evel nenber.

Source | evel El enent Ancs = prodH er AncsAttr.join(prodHi er, |evel El enent);

Il Get the parent of the |evel menber.

Source | evel El enent Parent = prodH erParentAttr.join(prodH er, |evel El ement);
Il Get the children of a parent.

Source prodHi erChildren = prodHier.join(prodH erParentAttr, prodHier.value());

/'l Select the children of the |evel menber.
Source | evel El enent Chil dren = prodHi er Chil dren.join(prodH er, |evel El ement);

/1 Get the short value descriptions for the nenbers of the level.
Source | evel SrcWthShortDescr = prodShortLabel . join(level Src);

/1 Get the short value descriptions for the children.
Sour ce | evel El enent Chi | drenW t hShort Descr =
prodShort Label . j oi n(| evel El enent Chi | dren);

/1 Get the short value descriptions for the parents.
Sour ce | evel El ement Par ent Wt hShort Descr =
prodShort Label . joi n(prodH er, |evel El ement Parent, true);

Il Get the short value descriptions for the ancestors.
Sour ce | evel El ement AncsW t hShort Descr =
prodShort Label . j oi n(prodH er, |evel El ement Ancs, true);

// Commit the current Transaction.
get Context ().comit();

/1 Create Cursor objects and display their val ues.
println("Level Source elenent values:");

get Cont ext (). di spl ayResul t (I evel SrcW t hShort Descr);
printIn("\nLevel Source elenent at position " + pos + ":");
get Cont ext (). di spl ayResul t (| evel El ement) ;

printin("\nParent of the level nenber:");

get Cont ext (). di spl ayResul t (| evel El ement Par ent Wt hShort Descr) ;
printIn("\nChildren of the level nenber:");

get Cont ext (). di spl ayResul t (| evel El ement Chi | drenW t hShort Descr);
println("\nAncestors of the level menber:");

get Cont ext (). di spl ayResul t (| evel El ement AncsW t hShort Descr);

The following list has the values of the Cur sor objects created by the di spl ayResul ts
methods.

Level Source el enent val ues:

PRODUCT_PRI MARY: : FAM LY: : ACC, Accessori es
PRODUCT_PRI MARY: : FAM LY: : DI SK, CD/ DVD
PRODUCT_PRI MARY: : FAM LY: : DOC, Docunent at i on
PRODUCT_PRI MARY: : FAM LY: : DTPC, Port abl e PCs
PRODUCT_PRI MARY: : FAM LY: : LTPC, Deskt op PCs

6-18

Chapter 6
Using Other Source Methods

PRCDUCT_PRI MARY: : FAM LY: : MEM Menory
PRODUCT_PRI MARY: : FAM LY: : MOD, Modens/ Fax
PRODUCT_PRI MARY: : FAM LY: : MON, Moni tors
PRODUCT_PRI MARY: : FAM LY: : CS, Operating Systens

Level Source element at position 5:
PRCDUCT_PRI MARY: : FAM LY: LTPC

Parent of the |evel nmenber:
PRODUCT_PRI MARY: : CLASS: : HRD, Har dwar e

Children of the level nenber:

PRODUCT_PRI MARY: : | TEM : ENVY ABM Envoy Anbassador
PRODUCT_PRI MARY: : | TEM : ENVY EXE, Envoy Executive
PRODUCT_PRI MARY: : | TEM : ENVY STD, Envoy St andard

Ancestors of the |evel nenber:

PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL, Total Product
PRODUCT_PRI MARY: : CLASS: : HRD, Har dwar e

PRODUCT_PRI MARY: : FAM LY: : LTPC, Port abl e PCs

6.3.4 Sorting Hierarchically by Measure Values

ORACLE

Example 6-11 uses the r ecur si veJoi n method to sort the members of the
PRODUCT_PRIMARY hierarchy of the PRODUCT_AWJ dimension hierarchically in
ascending order of the values of the UNITS measure. The example joins the sorted
products to the short value description attribute of the dimension, and then joins the
result of that operation, sort edPr oduct sShort Descr, to units.

The successive j oi nH dden methods join the selections of the other dimensions of
uni t s to produce the resul t Sour ce, which has the measure data as element values
and sort edPr oduct sShort Descr as an output. The example uses the j oi nH dden
methods so that the other dimension selections are not outputs of the result.

The example uses the following objects.

e prodHi er, which is the Sour ce for the PRODUCT_PRIMARY hierarchy.
e units, which is the Sour ce for the UNITS measure of product units sold.

e prodParent Attr, which is the Sour ce for the parent attribute of the
PRODUCT_PRIMARY hierarchy.

e prodShort Descr, which is the Sour ce for the short value description attribute of the
PRODUCT_AWJ dimension.

e cust Sel, which is a Sour ce that specifies a single member of the
SHIPMENTS hierarchy of the CUSTOMER_AWJ dimension. The member is
SHI PMVENTS: : TOTAL_CUSTOVER: : TOTAL, which is the total for all customers.

» chanSel , which is a Sour ce that specifies a single member of the
CHANNEL_PRIMARY hierarchy of the CHANNEL_AWJ dimension. The member
value is CHANNEL PRI MARY: : CHANNEL.: : DI R, which is the direct sales channel.

e tineSel, which is a Sour ce that specifies a single member of the
CALENDAR_YEAR hierarchy of the TIME_AWJ dimension. The member is
CALENDAR_YEAR : YEAR: : CY2001, which is the year 2001.

6-19

ORACLE

Example 6-11 Hierarchical Sorting by Measure Value

Sour ce sortedProduct =

prodHi er. recursiveJoin(units,
units. get Dat aType(),
prodParent Attr,
Sour ce. COVPARI SON_ RULE_ASCENDI NG,

true,

/1 Parents first

true); // Restrict parents to base

Sour ce sortedProduct Short Descr = prodShort Descr. joi n(sortedProduct);
Source result = units.join(sortedProduct ShortDescr)
.j oi nHi dden(cust Sel)
.j oi nHi dden(chanSel)
.j oi nHi dden(timeSel);

A Cursor for the resul t Sour ce has the following values, displayed in a table with
column headings and formatting added. The left column has the name of the level
in the PRODUCT_PRI MARY hierarchy. The next column to the right has the product

Chapter 6
Using Other Source Methods

identification value, and the next column has the short value description of the product.
The rightmost column has the number of units of the product sold to all customers in
the year 2001 through the direct sales channel.

The table contains only the first nine and the last eleven values of the Cur sor, plus

the Software/Other class value. The product values are listed hierarchically and in

ascending order by units sold. The Hardware class appears before the Software/Other

class because the Software/Other class has a greater number of units sold. In the
Hardware class, the Portable PCs family sold the fewest units, so it appears first.

In the Software/Other class, the Accessories family has the greatest number of units

sold, so it appears last.

Product Level ID
TOTAL_PRODUCT TOTAL
CLASS HRD

FAM LY LTPC

| TEM ENVY ABM
| TEM ENVY EXE
| TEM ENVY STD
FAM LY MON

| TEM 19 SVAA

| TEM 17 SVAA
CLASS SFT

FAM LY ACC

| TEM ENVY EXT KBD
| TEM EXT KBD

| TEM MV SPKR 5
| TEM STD MOUSE
| TEM MV SPKR 3
| TEM 144MB DI SK
TEM KBRD REST
| TEM LT CASE

| TEM DLX MOUSE
| TEM MOUSE PAD

Description
Total Product
Har dwar e
Portabl e PCs
Envoy Anbassador
Envoy Executive
Envoy Standard
Moni tors
Monitor- 19" Super VGA
Monitor- 17"Super VGA

Sof t war e/ Ot her)

Accessories

Envoy External Keyboard

Ext ernal 101-key keyboard

Mil ti medi a speakers- 5" cones
Standard Muse

Mil ti medi a speakers- 3" cones
1.44MB External 3.5" Diskette
Keyboard Wi st Rest

Laptop carrying case

Del uxe Muse

Mouse Pad

Units Sold

27,242

18, 949
146
678
717
868

1,120
1, 145
2,231
3,704
3,884
4,456

6-20

Chapter 6
Using Other Source Methods

6.3.5 Using NumberSource Methods To Compute the Share of Units

Sold

ORACLE

Example 6-12 uses the Nurmber Sour ce methods di v and ti nes to produce a Sour ce
that specifies the share that the Desktop PC and Portable PC families have of the total
guantity of product units sold for the selected time, customer, and channel values. The
example first uses the sel ect Val ue method of prodHi er, which is the Sour ce for a
hierarchy of the PRODUCT_AWJ dimension, to produce t ot al Pr ods, which specifies
a single element with the value PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL, which is
the highest aggregate level of the hierarchy.

The j oi nH dden method of the Nunber Sour ce uni t s produces t ot al Uni t's, which
specifies the UNITS measure values at the total product level, without having

t ot al Prods appear as an output of t ot al Uni ts. The di v method of uni t s then
produces a Sour ce that represents each units sold value divided by the total quantity
of units sold. The ti mes method then multiplies the result of that di v operation by 100
to produce pr oduct Shar e, which represents the percentage, or share, that a product
member has of the total quantity of units sold. The pr oduct Shar e Sour ce has the
inputs of the uni t s measure as inputs.

The prodFani | i es object is the Sour ce for the FAMILY level of the
PRODUCT_PRIMARY hierarchy. The j oi n method of pr oduct Shar e, with

prodFami | i es as the joined Sour ce, produces a Sour ce that specifies the share that
each product family has of the total quantity of products sold.

The cust Sel , chanSel , and ti meSel Sour ce objects are selections of single
members of hierarchies of the CUSTOMER_AWJ, CHANNEL_AWJ, and TIME_AWJ
dimensions. The remaining j oi n methods match those Sour ce objects to the other
inputs of product Shar e, to produce resul t. The j oi n(Source joined, String
conpari son) signature of the j oi n method produces a Sour ce that does not have
the joined Sour ce as an output.

The result Sour ce specifies the share for each product family of the total quantity of
products sold to all customers through the direct sales channel in the year 2001.

Example 6-12 Getting the Share of Units Sold

Source total Prods =
prodHi er. sel ect Val ue(" PRODUCT_PRI MARY: : TOTAL_PRCDUCT: : TOTAL") ;
Nurber Sour ce total Units = (Nunber Source) units.joinH dden(total Prods);
Source product Share = units.div(total Units).times(100);
Source result =
product Share.join
.join

prodFam | i es)

timeH er, "CALENDAR YEAR: : YEAR : CY2001")
.join(chanH er, "CHANNEL_PRI MARY: : CHANNEL: : DI R")
.join(custH er, "SH PMENTS:: TOTAL_CUSTOMER: : TOTAL");

Source sortedResult = result.sortAscending();

= ===

A Cursor for the sort edResul t Sour ce has the following values, displayed in a table
with column headings and formatting added. The left column has the product family
value and the right column has the share of the total number of units sold for the
product family to all customers through the direct sales channel in the year 2001.

Product Fami |y Menber Share of Total Units Sold

PRODUCT_PRI MARY: : FAM LY: : LTPC 2.72%

6-21

Chapter 6
Using Other Source Methods

PRODUCT_PRI MARY: : FAM LY: : MON 2.73%
PRODUCT_PRI MARY: : FAM LY: : MEM 3.57%
PRODUCT_PRI MARY: : FAM LY: : DTPC 5.13%
PRODUCT_PRI MARY: : FAM LY: : DOC 6. 4%

PRODUCT_PRI MARY: : FAM LY: : DI SK 11. 71%
PRODUCT_PRI MARY: : FAM LY: : MOD 11.92%
PRODUCT_PRI MARY: : FAM LY: : OS 12.54%
PRODUCT_PRI MARY: : FAM LY: : ACC 43. 28%

6.3.6 Selecting Based on Time Series Operations

ORACLE

This topic has two examples of using methods that operate on a series of elements
of the MinLevel Hi er ar chy for the CALENDAR_YEAR hierarchy of the TIME_AWJ
dimension. Example 6-13 uses the | ag method of uni t Pri ce, which is the Sour ce

for the UNIT_PRICE measure, to produce uni t Pri ceLag4, which specifies, for each
element of uni t Pri ce that matches with a member of the hierarchy, the element of
uni t Pri ce that matches with the hierarchy member that is four time periods earlier at
the same level in the hierarchy.

In the example, dp is the Dat aPr ovi der. The cr eat eLi st Sour ce method creates
measur esDi m which has the uni t Pri ce and uni t Pri ceLag4 Sour ce objects as element
values. The extract method of neasur esDi mgets the values of the elements of

measur esDi m The Sour ce produced by the extract method has neasur esDi mas an
extraction input. The first j oi n method matches a Sour ce, measur esDi m to the input of
the Sour ce returned by the ext ract method.

The uni t Price and uni t Pri ceLag4 measures both have the Sour ce objects for
the PRODUCT_AWJ and TIME_AWJ dimensions as inputs. The second j oi n
method matches quart er Level , which is a Sour ce for the QUARTER level of the
CALENDAR_YEAR hierarchy of the TIME_AWJ dimension, with the TIME_AWJ
dimension input of the measure, and makes it an output of the resulting Sour ce.

The j oi nH dden method matches prodSel with the PRODUCT_AWJ dimension
input of the measure, and does not make prodSel an output of the

resulting Sour ce. The prodSel Sour ce specifies the single hierarchy member
PRODUCT PRI MARY: : FAM LY: : DTPC, which is Desktop PCs.

The | agResul t Sour ce specifies the aggregate unit prices for the Desktop PC product
family for each quarter and the quarter that is four quarters earlier.

Example 6-13 Using the Lag Method

Number Sour ce uni tPricelLag4 = unitPrice.lag(mdnCal Her, 4);
Source measuresDi m = dp. creat eLi st Sour ce(new Source[] {unitPrice,
uni t Pri ceLag4});

Source | agResult = measuresDi mextract ()
.j oi n(measur esDi m
.join(quarterLevel)
.j oi nHi dden(prodSel) ;

A Cursor for the | agResul t Sour ce has the following values, displayed in a table with
column headings and formatting added. The left column has the quarter, the middle
column has the total of the unit prices for the members of the Desktop PC family for
that quarter, and the right column has the total of the unit prices for the quarter that is
four quarters earlier. The first four values in the right column are NA because quarter 5,
Q1-98, is the first quarter in the CALENDAR_YEAR hierarchy. The table includes only
the first eight quarters.

6-22

Chapter 6
Using Other Source Methods

Unit Price
Quarter Unit Price Four Quarters Before
CALENDAR_YEAR : QUARTER: : CY1998. Q1 2687. 54 NA
CALENDAR_YEAR : QUARTER: : CY1998. @@ 2704. 48 NA
CALENDAR_YEAR: : QUARTER: : CY1998. @ 2673. 27 NA
CALENDAR_YEAR : QUARTER: : CY1998. 4 2587.76 NA
CALENDAR_YEAR : QUARTER: : CY1999. Q1 2394.79 2687. 54
CALENDAR_YEAR : QUARTER: : CY1999. @2 2337.18 2704. 48
CALENDAR_YEAR : QUARTER: : CY1999. @B 2348. 39 2673. 27

CALENDAR YEAR: : QUARTER : CY1999. 4 2177.89 2587. 76

Example 6-14 Using the movingTotal Method

This example uses the same uni t Pri ce, mdnCal Hi er, quart er Level , and pr odSel
objects as Example 6-13, but it uses the uni t Pri ceMovi ngTot al measure as the
second element of neasur esDi m The uni t Pri ceMovi ngTot al Sour ce is produced by
the nmovi ngTot al method of uni t Pri ce. That method provides ndnCal Hi er, which

is the MinLevel H er ar chy for the CALENDAR_YEAR hierarchy of the TIME_AWJ
dimension, as the di nensi on parameter and the integers 0 and 3 as the starting and
ending offset values.

The novi ngTot al Resul t Sour ce specifies, for each quarter, the aggregate of the unit
prices for the members of the Desktop PC family for that quarter and the total of that
unit price plus the unit prices for the next three quarters.

Nunber Sour ce uni t Pri ceMovi ngTotal =
uni t Price. novi ngTot al (ndnCal Hi er, 0, 3);

Source nmeasuresbDim =
dp. creat eLi st Sour ce(new Source[]{unitPrice, unitPriceMvingTotal});

Source movingTotal Result = neasuresDi mextract()
.join(measuresDi m
.join(quarterLevel)
.} oi nHi dden(prodSel);

A Cur sor for the movi ngTot al Resul t Sour ce has the following values, displayed in a
table with column headings and formatting added. The left column has the quarter,
the middle column has the total of the unit prices for the members of the Desktop
PC family for that quarter, and the left column has the total of the unit prices for that
guarter and the next three quarters. The table includes only the first eight quarters.

Unit Price Mving Total

Quarter Unit Price Current Plus Next Three Periods
CALENDAR _YEAR : QUARTER : CY1998. QL 2687. 54 10653. 05
CALENDAR _YEAR : QUARTER : CY1998. Q2 2704. 48 10360. 30
CALENDAR _YEAR : QUARTER : CY1998. (B 2673. 27 9993. 00
CALENDAR _YEAR : QUARTER : CY1998. (4 2587.76 9668. 12
CALENDAR _YEAR : QUARTER: : CY1999. QL 2394. 79 9258. 25
CALENDAR _YEAR : QUARTER: : CY1999. Q2 2337.18 8911. 87
CALENDAR_YEAR : QUARTER : CY1999. (B 2348. 39 8626. 48

CALENDAR_YEAR : QUARTER: : CY1999. (4 2177. 89 8291. 37

ORACLE 6-23

Chapter 6
Using Other Source Methods

6.3.7 Selecting a Set of Elements Using Parameterized Source

Objects

ORACLE

Example 6-15 uses Nunber Par anet er objects to create parameterized Sour ce objects.
Those objects are the bot t omand t op parameters for the i nt er val method of

prodHi er. That method returns par anPr odSel | nt er val , which is a Sour ce that
specifies the set of elements of pr odHi er from the bot t omto the t op positions of

the hierarchy.

The elements of the product Sour ce specify the elements of the uni t s measure that
appear in the resul t Sour ce. By changing the values of the Par anet er objects, you
can select a different set of units sold values using the same Cur sor and without
having to produce new Sour ce and Cur sor objects.

The example uses the following objects.

e dp, which is the Dat aProvi der for the session.

e prodH er, which is the Sour ce for the PRODUCT_PRIMARY hierarchy of the
PRODUCT_AWJ dimension.

e prodShort Descr, which is the Sour ce for the short value description attribute of the
PRODUCT_AWJ dimension.

e units, which is the Sour ce for the UNITS measure of product units sold.

e chanHi er, which is the Sour ce for the CHANNEL_PRIMARY hierarchy of the
CHANNEL_AWJ dimension.

e cal Hi er, which is the Sour ce for the CALENDAR_YEAR hierarchy of the
TIME_AWJ dimension.

* shipHi er, which is the Sour ce for the SHIPMENTS hierarchy of the
CUSTOMER_AWJ dimension.

* The Cont ext 11g object that is returned by the get Cont ext method. The
Cont ext 119 has methods that commit the current Tr ansact i on, that create a
Cur sor for a Sour ce, that display text, and that display the values of the Cur sor .

The j oi n method of prodShort Descr gets the short value descriptions for the elements
of par anPr odSel I nt erval . The next four j oi n methods match Sour ce objects with the
inputs of the uni ts measure. The example creates a Cur sor and displays the result
set of the query. Next, the set Posi ti on method of resul t Cur sor sets the position of
the Cur sor back to the first element.

The set Val ue methods of the Nunber Par anet er objects change the values of those
objects, which changes the selection of elements of the product Sour ce that are
specified by the query. The example then displays the values of the Cur sor again.

Example 6-15 Selecting a Range With NumberParameter Objects

Nurber Par amet er st art Param = new Nunber Par aneter (dp, 1);
Nunber Par amet er endParam = new Nunber Par anet er (dp, 6);

Nunber Sour ce start ParantSrc = (Nunber Sour ce) st art Param creat eSour ce() ;
Nurber Sour ce endPar anfrc = (Nunmber Sour ce) endPar am cr eat eSour ce() ;

Source paranProdSel I nterval =
prodHi er.interval (startParantrc, endParantrc);

6-24

ORACLE

Chapter 6
Using Other Source Methods

Sour ce paranProdSel | nt erval ShortDescr =
prodShort Descr. j oi n(paranProdSel I nterval);

Nurmber Source result =
(Number Source) units.join
.join
.join
.join

chanHi er, "CHANNEL_PRI MARY: : CHANNEL: : | NT")
cal H er, "CALENDAR YEAR: : YEAR: : CY2001")

shi pHi er, "SH PMENTS: : TOTAL_CUSTOMER: : TOTAL")
par anProdSel | nt erval Short Descr);

= ===

// Commit the current transaction.
get Context ().comit();

Cur sor Manager cursor Mhgr = dp. creat eCursor Manager (resul t);
Cursor resul tCursor = cursorMgr.createCursor();

get Cont ext (). di spl ayCursor (resul t Cursor);

/I Reset the Cursor position to 1.
resul t Cursor. setPosition(1);

/1 Change the value of the parameterized Source.
startParam set Val ue(7);
endPar am set Val ue(12) ;

/1 Display the results again.
get Cont ext (). di spl ayCursor(resul tsCursor);

The following table displays the values of r esul t Cur sor, with column headings and
formatting added. The left column has the product hierarchy members, the middle
column has the short value description, and the right column has the quantity of units
sold.

Product Description Units Sold
PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL ~ Total Product 55, 872
PRODUCT_PRI MARY: : CLASS: : HRD Har dwar e 21, 301
PRODUCT_PRI MARY: : FAM LY: : DI SK Menory 6, 634
PRODUCT_PRI MARY: : | TEM : EXT CD ROM External 48X CD- ROM 136
PRODUCT_PRI MARY: : | TEM : EXT DVD External - DVD-RW- 8X 1,526

PRODUCT_PRI MARY: : | TEM : | NT 8X DVD Internal - DVD-RW- 8X 1,543
Product Description Units Sold
PRODUCT_PRI MARY: : | TEM : | NT CD ROM Internal 48X CD-ROM 380
PRODUCT_PRI MARY: : | TEM : | NT CD USB Internal 48X CD- ROM USB 162
PRODUCT_PRI MARY: : | TEM : | NT RwW DVD Internal - DVD-RW- 6X 2,887
PRODUCT_PRI MARY: : FAM LY: : DTPC Desktop PCs 2,982
PRODUCT_PRI MARY: : | TEM : SENT FI N Sentinel Financial 1,015
PRODUCT_PRI MARY: : | TEM : SENT MV Sentinel Miltinedia 875

6-25

Using a TransactionProvider

This chapter describes the Oracle OLAP Java API Transacti on and

Transacti onProvi der interfaces and describes how you use implementations of those
interfaces in an application. You get a Transact i onProvi der from a Dat aPr ovi der .
You use the conmi t Cur r ent Tr ansact i on method of the Transact i onProvi der to save
a metadata object in persistent storage in the database. You also use that method
after creating a derived Sour ce and before creating a Cur sor for the Sour ce. For
examples of committing a Tr ansact i on after creating a metadata object, see Creating
Metadata and Analytic Workspaces.

This chapter includes the following topics:

» About Creating a Metadata Object or a Query in a Transaction

» Using TransactionProvider Objects

7.1 About Creating a Metadata Object or a Query in a
Transaction

ORACLE

The Oracle OLAP Java APl is transactional. Creating metadata objects or Sour ce
objects for a query occurs in the context of a Transacti on. A Transact i onProvi der
provides Transact i on objects to the application and commits or discards those
Transacti on objects.

The Transact i onProvi der ensures the following:

 ATransaction is isolated from other Transact i on objects. Operations performed
in a Transact i on are not visible in, and do not affect, other Tr ansact i on objects.

* If an operation in a Transact i on fails, then the effects of the operation are undone
(the Transact i on is rolled back).

» The effects of a completed Transact i on persist.

When you create a Dat aPr ovi der and User Sessi on, the session does not at first have
a Transacti on. The first Transacti on in a session is a root Transact i on. You can
explicitly create a root Tr ansact i on by calling the cr eat eRoot Tr ansact i on method

of the Transact i onPr ovi der . If you do not explicitly created one, then Oracle OLAP
automatically creates a root Tr ansact i on the first time that you create or modify an
Minhbj ect or a derived Sour ce. To make permanent the changes to an Minbj ect , you
must commit the root Tr ansact i on in which you made the changes.

A single-user application does not need to explicitly create a root Transacti on. The
ability to create multiple root Tr ansact i on objects is provided for use by multithreaded,
middle-tier applications. If your application uses multiple root Tr ansact i on objects, the
changes that the application makes in one root Tr ansact i on can be overwritten by
changes the application makes in another root Tr ansact i on. The changes that occur
in the last root Tr ansact i on that the application commits are the changes that persist.

7-1

Chapter 7
About Creating a Metadata Object or a Query in a Transaction

When you or Oracle OLAP creates the initial root Transact i on, it is the current
Transacti on. If you create another root Tr ansact i on, it becomes the current
Transacti on.

Oracle OLAP creates other Transact i on objects as you create Sour ce objects or
child Transact i on objects under a root Tr ansact i on. You must commit the root
Transact i on for the Oracle Database to add to persistent storage any metadata
objects that you have created in any Tr ansact i on in the session.

When you create a derived Sour ce by calling a method of another Sour ce, the derived
Sour ce is created in the context of the current Transact i on. The Sour ce is active in the
Transact i on in which you create it or in a child Transact i on of that Tr ansact i on.

You get or set the current Transact i on, or begin a child Transact i on, by calling
methods of a Transact i onProvi der. In a child Transact i on you can alter a query,

for example by changing the selection of dimension elements or by performing a
different mathematical or analytical operation on the data, which changes the state

of a Tenpl at e that you created in the parent Tr ansact i on. By displaying the data
specified by the Sour ce produced by the Tenpl at e in the parent Transact i on and also
displaying the data specified by the Sour ce produced by the Tenpl at e in the child
Transacti on, you can provide the end user of your application with the means of
easily altering a query and viewing the results of different operations on the same set
of data, or the same operations on different sets of data.

7.1.1 Types of Transaction Objects

The OLAP Java API has the following two types of Transact i on objects:

e Avread Transacti on. Initially, the current Transacti on is a read Transaction. A
read Transact i on is required for creating a Cur sor to fetch data from Oracle
OLAP. For more information on Cur sor objects, see Retrieving Query Results.

e Awrite Transacti on. A write Transact i on is required for creating a derived Sour ce
or for changing the state of a Tenpl at e. For more information on creating a derived
Sour ce, see Understanding Source Objects. For information on Tenpl at e objects,
see Creating Dynamic Queries.

In the initial read Tr ansacti on, if you create a derived Sour ce or if you change the
state of a Tenpl at e object, then a child write Tr ansact i on is automatically generated.
That child Transact i on becomes the current Transact i on.

If you then create another derived Sour ce or change the Tenpl at e state again, then
that operation occurs in the same write Transact i on. You can create any humber of
derived Sour ce objects, or make any number of Tenpl at e state changes, in that same
write Transact i on. You can use those Sour ce objects, or the Sour ce produced by the
Tenpl at e, to define a complex query.

Before you can create a Cur sor to fetch the result set specified by a derived Sour ce,
you must move the Sour ce from the child write Tr ansact i on into the parent read
Transacti on. To do so, you commit the Transact i on.

7.1.2 Committing a Transaction

To move a Sour ce that you created in a child Transact i on into the
parent read Tr ansact i on, call the conmi t Cur r ent Tr ansact i on method of the
Transact i onProvi der . When you commit a child write Tr ansact i on, a Sour ce you

ORACLE 7-2

Chapter 7
About Creating a Metadata Object or a Query in a Transaction

created in the child Transact i on moves into the parent read Tr ansact i on. The
child Transact i on disappears and the parent Tr ansact i on becomes the current
Transacti on. The Sour ce is active in the current read Transact i on and you can
therefore create a Cur sor for it.

Example 7-1 Committing the Current Transaction

In this example, commi t () is a method that commits the current Tr ansact i on. In the
example, dp is the Dat aPr ovi der.

private void conmit()

{
try
{
(dp. get Transacti onProvi der()).commitCurrent Transaction();
}
catch (Exception ex)
{
Systemout. printin("Could not conmt the Transaction. " + ex);
}
}

7.1.3 About Transaction and Template Objects

Getting and setting the current Tr ansact i on, beginning a child Transacti on, and
rolling back a Transact i on are operations that you use to allow an end user to make
different selections starting from a given state of a dynamic query.

To present the end user with alternatives based on the same initial query, you do the
following:

1. Create a Tenpl at e in a parent Transact i on and set the initial state for the
Tenpl at e.

2. Get the Sour ce produced by the Tenpl at e, create a Cur sor to retrieve the result
set, get the values from the Cur sor, and then display the results to the end user.

3. Begin a child Transacti on and modify the state of the Tenpl at e.

4. Get the Sour ce produced by the Tenpl at e in the child Transact i on, create a
Cursor, get the values, and display them.

You can then replace the first Tenpl at e state with the second one or discard the
second one and retain the first.

7.1.4 Beginning a Child Transaction

ORACLE

To begin a child read Transact i on, call the begi nSubt r ansact i on method of the
Transacti onProvi der you are using. In the child read Tr ansact i on, if you change

the state of a Tenpl at e, then a child write Transact i on begins automatically. The write
Transacti on is a child of the child read Transact i on.

To get the data specified by the Sour ce produced by the Tenpl at e, you commit the
write Transact i on into the parent read Tr ansact i on. You can then create a Cur sor to
fetch the data. The changed state of the Tenpl at e is not visible in the original parent.
The changed state does not become visible in the parent until you commit the child
read Transact i on into the parent read Transacti on.

7-3

Chapter 7
About Creating a Metadata Object or a Query in a Transaction

After beginning a child read Tr ansact i on, you can begin a child read Transact i on of
that child, or a grandchild of the initial parent Tr ansact i on. For an example of creating
child and grandchild Transact i on objects, see Example 7-3.

7.1.5 About Rolling Back a Transaction

ORACLE

You roll back, or undo, a Transact i on by calling the r ol | backCur r ent Tr ansact i on
method of the Transact i onProvi der you are using. Rolling back a Transacti on
discards any changes that you made during that Tr ansact i on and makes the
Transacti on disappear.

Before rolling back a Transact i on, you must close any Cur sor Manager objects you
created in that Tr ansact i on. After rolling back a Transact i on, any Sour ce objects that
you created or Tenpl at e state changes that you made in the Transacti on are no
longer valid. Any Cur sor objects you created for those Sour ce objects are also invalid.

Once you roll back a Transact i on, you cannot commit that Tr ansact i on. Likewise,
once you commit a Transact i on, you cannot roll it back.

Example 7-2 Rolling Back a Transaction

This example uses the TopBot t onTenpl at e and Si ngl eSel ecti onTenpl at e classes
that are described in Creating Dynamic Queries. In creating the TopBot t onTenpl at e
and Si ngl eSel ecti onTenpl at e objects, the example uses the same code that appears
in Example 10-4. This example does not show that code. It sets the state of the

TopBot t onlTenpl at e. It begins a child Transact i on that sets a different state for the
TopBot t onTenpl at e and then rolls back the child Transacti on. The pri nt| n method
displays text through a Cursor Print Wit er object and the get Cont ext method gets

a Cont ext 11g object that has methods that create Cur sor objects and display their
values through the CursorPrint Witer. The CursorPrintWiter and Cont ext 11g
classes are used by the example programs in this documentation.

/1 The current Transaction is a read Transaction, t1.

/| Create a TopBottonTenpl ate using a hierarchy of the PRODUCT_AW di mension
/1 as the base and dp as the DataProvider.

TopBot t oniTenpl at e t opNBott om = new TopBot t onifenpl at e(prodHi er, dp);

/1 Changing the state of a Tenplate requires a wite Transaction, so a
/Il wite child Transaction, t2, is automatically started.

t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_TOP) ;

t opNBot t om set N(10) ;

topNBott om set Criterion(singl eSel ections. get Source());

Il Get the TransactionProvider and commit the Transaction t2.
TransactionProvider tp = dp.get Transacti onProvi der();

try

{

tp. commit Current Transaction(); /1 t2 disappears

catch(Exception e)
{

println("Cannot commit the Transaction.

}

+e);

/1 The current Transaction is nowt1.
Il Get the dynanic Source produced by the TopBottonTenpl ate.
Source result = topNBottom get Source();

7-4

ORACLE

Chapter 7
About Creating a Metadata Object or a Query in a Transaction

/] Create a Cursor and display the results

printIn("\nThe current state of the TopBottonTenpl ate" +
"\'nproduces the follow ng values:\n");

get Context (). di spl ayTopBottonResul t(result);

/] Start a child Transaction, t3. It is a read Transaction.
t p. begi nSubt ransaction(); /1 t3 is the current Transaction

/1 Change the state of topNBottom Changing the state requires a

/1l wite Transaction so Transaction t4 starts automatically.

t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_BOTTQV) ;
t opNBot t om set N(15) ;

/1 Conmit the Transaction.
try
{
tp. commit Current Transaction(); Il t4 disappears
}
catch(Exception e)
{

printIn("Cannot commit the Transaction. " + e);

}

/]l Create a Cursor and display the results. // t3 is the current Transaction
printIn("\nln the child Transaction, the state of the" +
"\ nTopBot t onfTenpl at e produces the follow ng val ues:\n");
get Context (). di spl ayTopBottonResul t(result);
/1 The displ ayTopBottonResult nethod closes the CursorManager for the
/1 Cursor created in t3.

/1 Undo t3, which discards the state of topNBottomthat was set in t4.
tp.roll backCurrent Transaction(); Il t3 disappears

/1 Transaction tl is now the current Transaction and the state of
/1 topNBottomis the one defined in t2.

/1 To show the current state of the TopNBottom tenpl ate Source, conmmit
/1 the Transaction, create a Cursor, and display the Cursor val ues.
try
{
tp.commit Current Transaction();
}
cat ch(Exception e)
{

printIn("Cannot commit the Transaction. " + e);

}

printIn("\nAfter rolling back the child Transaction, the state of"
+ "\'nthe TopBottonTenpl ate produces the follow ng values:\n");
get Cont ext (). di spl ayTopBottonResul t(result);

The example produces the following output.

The current state of the TopBottonfTenpl ate
produces the fol | owi ng val ues:

PRODUCT_PRI MARY: : TOTAL_PRCDUCT: : TOTAL
PRODUCT_PRI MARY: : CLASS: : SFT
PRODUCT_PRI MARY: : FAM LY: : ACC
PRODUCT_PRI MARY: : CLASS: : HRD
PRODUCT_PRI MARY: : FAM LY: : MOD

o whE

7-5

©©®oNo

1

In the child Transaction,
TopBot t ontTenpl at e produces

PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:

Chapter 7
Using TransactionProvider Objects

:FAMLY:: OS
:FAMLY:: DI SK

.| TEM : MOUSE PAD
I TEM:0S 1 USER
I TEM : DLX MOUSE

the state of the
the foll owi ng val ues:

1. PRODUCT_PRI MARY: : | TEM : EXT CD ROM
2. PRODUCT_PRI MARY: : | TEM : CS DCC | TA
3. PRODUCT_PRI MARY: : | TEM : CS DCC SPA
4. PRODUCT_PRI MARY: : | TEM : I NT CD USB
5. PRODUCT_PRI MARY: : | TEM : ENVY EXT KBD
6. PRODUCT_PRI MARY: : | TEM : 19 SVGA
7. PRODUCT_PRI MARY: : | TEM : CS DCC FRE
8. PRODUCT_PRI MARY: : | TEM : CS DCC GER
9. PRODUCT_PRI MARY: : | TEM : ENVY ABM
10. PRODUCT_PRI MARY: : I TEM : I NT CD ROM
11. PRCODUCT_PRI MARY: : | TEM : ENVY EXE
12. PRODUCT_PRI MARY: : | TEM : OS DOC KAN
13. PRODUCT_PRI MARY: : | TEM : ENVY STD
14. PRODUCT_PRI MARY: : | TEM : 1GB USB DRV
15. PRODUCT_PRI MARY: : | TEM : SENT WM

After rolling back the child Transaction, the state of
the TopBottonTenpl ate produces the follow ng val ues:

COONOEWDNE

[EEY

PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:
PRODUCT_PRI MARY:

. TOTAL_PRODUCT: : TOTAL
. CLASS: : SFT

:FAMLY:: ACC

: CLASS: : HRD

:FAMLY: : MOD
:FAMLY:: OS

:FAMLY:: DI SK

.| TEM : MOUSE PAD

I TEM:0S 1 USER

I TEM : DLX MOUSE

7.1.6 Getting and Setting the Current Transaction

7.2 Using

ORACLE

You get the current Transact i on by calling the get Curr ent Tr ansact i on method of the
Transacti onProvi der you are using, as in the following example.

Transaction t1 = tp.getCurrentTransaction();

To make a previously saved Transact i on the current Transacti on, you call the
set Current Transact i on method of the Transact i onProvi der, as in the following
example.

tp.setCurrent Transaction(tl);

TransactionProvider Objects

In the Oracle OLAP Java API, a Dat aPr ovi der provides an implementation of the
Transacti onProvi der interface. The Transacti onProvi der provides Transaction
objects to your application.

7-6

ORACLE

Chapter 7
Using TransactionProvider Objects

As described in "Committing a Transaction”, you use the conmi t Curr ent Tr ansact i on
method to make a derived Sour ce that you created in a child write Transact i on visible
in the parent read Tr ansacti on. You can then create a Cur sor for that Sour ce.

If you are using Tenpl at e objects in your application, then you might also use the other
methods of Transacti onProvi der to do the following:

e Begin a child Transact i on.
e Getthe current Transact i on so you can save it.
e Setthe current Transact i on to a previously saved one.

» Rollback, or undo, the current Transact i on, which discards any changes made
in the Transacti on. Once a Transact i on has been rolled back, it is invalid and
cannot be committed. Once a Transact i on has been committed, it cannot be
rolled back. If you created a Cur sor for a Sour ce in a Transact i on, then you must
close the Cur sor Manager before rolling back the Transacti on.

Example 7-3 demonstrates the use of Tr ansact i on objects to modify dynamic queries.
Like Example 7-2, this example uses the same code to create TopBot t onifenpl at e
and Si ngl eSel ecti onTenpl at e objects as does Example 10-4. This example does not
show that code.

To help track the Transact i on objects, this example saves the different Transacti on
objects with calls to the get Current Tr ansact i on method. In the example, the t p
object is the Transacti onProvi der. The pri ntl n method displays text through a
CursorPrintWiter and the get Cont ext method gets a Cont ext 11g object that

has methods that create Cur sor objects and display their values through the
CursorPrintWiter. The commit method is the method from Example 7-1.

Example 7-3 Using Child Transaction Objects

/1 The parent Transaction is the current Transaction at this point.
/1 Save the parent read Transaction as parentT1.
Transaction parentTl = tp.getCurrentTransaction();

/1l Get the dynanmic Source produced by the TopBottonTenpl at e.
Source result = topNBottom get Source();

/I Create a Cursor and display the results.

printIn("\nThe current state of the TopBottonienpl ate" +
"\'nproduces the follow ng values:\n");

get Cont ext (). di spl ayTopBottonResul t (result);

/1 Begin a child Transaction of parentTl.
tp. begi nSubtransaction(); // This is a read Transaction.

/1 Save the child read Transaction as childT2.
Transaction childT2 = tp.getCurrent Transaction();

/1 Change the state of the TopBottonienplate. This starts a

/!l wite Transaction, a child of the read Transaction chil dT2.

t opNBot t om set N(12) ;

t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_BOTTQV) ;

/1 Save the child wite Transaction as witeT3.
Transaction witeT3 = tp.getCurrent Transaction();

[/l Commit the wite Transaction witeT3.
conmit();

7-7

ORACLE

Chapter 7
Using TransactionProvider Objects

/1 The commit noves the changes nade in witeT3 into its parent,
/1 the read Transaction childT2. The witeT3 Transaction

/| disappears. The current Transaction is now childT2

/] again but the state of the TopBottonTenpl ate has changed.

/] Create a Cursor and display the results of the changes to the
/1 TopBottonTenpl ate that are visible in childT2.

try

printIn("\nln the child Transaction, the state of the" +
"\ nTopBot t onifenpl ate produces the followi ng val ues:\n");

get Cont ext (). di spl ayTopBott onResul t (result);

}
catch(Exception e)

{
println("Cannot display the results of the query. " + e);

}

/1 Begin a grandchild Transaction of the initial parent.
t p. begi nSubtransaction(); // This is a read Transacti on.

/1 Save the grandchild read Transaction as grandchil dT4.
Transaction grandchi |l dT4 = tp.get Current Transaction();

/1 Change the state of the TopBottonilenplate. This starts another
Il wite Transaction, a child of grandchildT4.
t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_TOP) ;

/] Save the wite Transaction as witeT5.
Transaction witeT5 = tp.getCurrentTransaction();

/1 Commit witeT5.
commit();

/1 Transaction grandchildT4 is now the current Transaction and the
/1 changes nmade to the TopBottonilenpl ate state are visible.

/I Create a Cursor and display the results visible in grandchil dT4.
try
printIn("\nln the grandchild Transaction, the state of the" +
"\ nTopBot t onifenpl ate produces the foll owi ng val ues:\n");
get Cont ext (). di spl ayTopBott onResul t (result);

catch(Exception e)

{
println(""Cannot display the results of the query. " + e);
}
/1 Commit the grandchild into the child.
commit();

[l Transaction childT2 is now the current Transaction.

/'l Instead of preparing and commtting the grandchild Transaction,
/'l you could rollback the Transaction, as in the fol | ow ng

/1 method call:

/1 rollbackCurrentTransaction();

/1 If you roll back the grandchild Transaction, then the changes
/1 you nmade to the TopBottonilenpl ate state in the grandchild

7-8

Chapter 7
Using TransactionProvider Objects

/] are discarded and childT2 is the current Transaction.

[/ Commit the child into the parent.
commit();

/1 Transaction parentTl is now the current Transaction. Again,

/1 you can roll back the childT2 Transaction instead of committing it.

/1 1f you do so, then the changes that you made in childT2 are discarded.
/'l The current Transaction is be parentTl, which has the original state
/1 of the TopBottonTenplate, without any of the changes nade in the

/1 grandchild or the child transactions.

Example 7-3 produces the following output.

The current state of the TopBottonienpl ate
produces the foll owi ng val ues:

PRCDUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL

ORACLE

[y

CLOXNDOAELNE

PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:

: CLASS: : SFT
:FAMLY:: ACC

: CLASS: : HRD
:FAM LY: : MOD
:FAMLY:: S
:FAMLY:: Dl SK

.| TEM : MOUSE PAD
I TEM:0S 1 USER
.| TEM : DLX MOUSE

In the child Transaction,

TopBot t onfTenpl at e produces

the state of the

the fol l owi ng val ues:

1. PRODUCT_PRI MARY: : | TEM : EXT CD ROM
2. PRODUCT_PRI MARY: : | TEM : CS DCC | TA
3. PRODUCT_PRI MARY: : | TEM : CS DCC SPA
4. PRCODUCT_PRI MARY: : | TEM : I NT CD USB
5. PRODUCT_PRI MARY: : | TEM : ENVY EXT KBD
6. PRODUCT_PRI MARY: : | TEM : 19 SVGA
7. PRODUCT_PRI MARY: : | TEM : CS DCC FRE
8. PRODUCT_PRI MARY: : | TEM : S DCC GER
9. PRODUCT_PRI MARY: : | TEM : ENVY ABM
10. PRCDUCT_PRI MARY: : I TEM : I NT CD ROM
11. PRCDUCT_PRI MARY: : | TEM : ENVY EXE
12. PRODUCT_PRI MARY: : | TEM : OS DOC KAN

In the grandchild Transaction, the state of the
TopBot t onTenpl at e produces the fol | owi ng val ues:

N WN

PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:
PRCDUCT_PRI MARY:

: TOTAL_PRCDUCT: : TOTAL
: CLASS: : SFT

:FAMLY:: ACC

: CLASS: : HRD

:FAM LY: : MOD
:FAMLY:: S

:FAMLY:: Dl SK

.| TEM
.| TEM
.| TEM
.| TEM
.| TEM

- MOUSE PAD
:05 1 USER

: DLX MOUSE
:LT CASE

: 56KPS MODEM

7-9

Understanding Cursor Classes and
Concepts

This chapter describes the Oracle OLAP Java API Cur sor class and the related
classes that you use to retrieve the results of a query. This chapter also describes
the Cur sor concepts of position, fetch size, and extent. For examples of creating and
using a Cur sor and its related objects, see Retrieving Query Results.

This chapter includes the following topics:

e Overview of the OLAP Java API Cursor Objects
* Cursor Classes

e CursorinfoSpecification Classes

e CursorManager Class

* About Cursor Positions and Extent

* About Fetch Sizes

8.1 Overview of the OLAP Java API Cursor Objects

A Cur sor retrieves the result set specified by a Sour ce. You create a Cur sor by calling
the creat eCur sor method of a Cur sor Manager . You create a Cur sor Manager by calling
the cr eat eCur sor Manager method of a Dat aPr ovi der .

You can get the SQL generated for a Sour ce by the Oracle OLAP SQL generator
without having to create a Cur sor. To get the SQL for the Sour ce, you create an
SQLCur sor Manager by using a cr eat eSQLCur sor Manager method of a Dat aPr ovi der .
You can then use classes outside of the OLAP Java API, or other methods, to retrieve
data using the generated SQL.

8.1.1 Creating a Cursor

You create a Cur sor for a Sour ce by doing the following:

1. Creating a Cur sor Manager by calling one of the cr eat eCur sor Manager methods
of the Dat aPr ovi der and passing it the Sour ce. If you want to alter the behavior
of the Cur sor, then you can create a Cur sor | nf oSpeci fi cati on and use the
methods of it to specify the behavior. You then create a Cur sor Manager with a
method that takes the Sour ce and the Cur sor | nf oSpeci fication.

2. Creating a Cur sor by calling the cr eat eCur sor method of the Cur sor Manager .

8.1.2 Sources For Which You Cannot Create a Cursor

Some Sour ce objects do not specify data that a Cur sor can retrieve from the data
store. The following are Sour ce objects for which you cannot create a Cur sor that
contains values.

ORACLE 8-1

Chapter 8
Cursor Classes

* A Sour ce that specifies an operation that is hot computationally possible. An
example is a Sour ce that specifies an infinite recursion.

* A Sour ce that defines an infinite result set. An example is the fundamental Sour ce
that represents the set of all St ri ng objects.

* A Source that has no elements or includes another Sour ce that has no elements.
Examples are a Sour ce returned by the get Enpt ySour ce method of Dat aPr ovi der
and another Sour ce derived from the empty Sour ce. Another example is a derived
Sour ce that results from selecting a value from a primary Sour ce that you got from
an MInDi nensi on and the selected value does not exist in the dimension.

If you create a Cur sor for such a Sour ce and try to get the values of the Cur sor, then
an Excepti on occurs.

8.1.3 Cursor Objects and Transaction Objects

When you create a derived Sour ce or change the state of a Tenpl at e, you create

the Sour ce in the context of the current Transact i on. The Sour ce is active in the
Transacti on in which you create it or in a child Transacti on of that Transacti on. A
Sour ce must be active in the current Tr ansact i on for you to be able to create a Cur sor
for it.

Creating a derived Sour ce occurs in a write Transact i on. Creating a Cur sor

occurs in a read Transact i on. After creating a derived Sour ce, and before you

can create a Cur sor for that Sour ce, you must change the write Tr ansacti on

into a read Transact i on by calling the conmi t Curr ent Tr ansact i on methods of the
Transacti onProvi der your application is using. For information on Transacti on and
Transacti onProvi der objects, see Using a TransactionProvider.

For a Cur sor that you create for a query that includes a parameterized Sour ce,
you can change the value of the Par anet er object and then get the new values

of the Cur sor without having to commit the Transact i on again. For information on
parameterized Sour ce objects, see Understanding Source Objects.

8.2 Cursor Classes

In the or acl e. ol api . dat a. cur sor package, the Oracle OLAP Java API defines the
interfaces described in the following table.

Interface Description

Cursor An abstract superclass that encapsulates the notion of a current
position.

Val ueCur sor A Cursor that has a value at the current position. A Val ueCur sor

has no child Cur sor objects.

ConpoundCur sor A Cur sor that has child Cur sor objects, which are a child
Val ueCur sor for the values of the Sour ce associated with it and
an output child Cur sor for each output of the Sour ce.

8.2.1 Structure of a Cursor

The structure of a Cur sor mirrors the structure of the Sour ce associated with it.
If the Sour ce does not have any outputs, then the Cur sor for that Sour ce is a

ORACLE 8-2

ORACLE

Chapter 8
Cursor Classes

Val ueCur sor . If the Sour ce has one or more outputs, then the Cur sor for that Sour ce is
a CompoundCur sor . A ConpoundCur sor has as children a base Val ueCur sor, which has
the values of the base of the Sour ce of the ConpoundCur sor, and one or more output
Cur sor objects.

The output of a Sour ce is another Sour ce. An output Sour ce can itself have outputs.
The child Cur sor for an output of a Sour ce is a Val ueCur sor if the output Sour ce does
not have any outputs and a ConpoundCur sor if it does.

Example 8-1 creates a query that specifies the prices of selected product items for
selected months. In the example, ti neHi er is a Sour ce for a hierarchy of a dimension
of time values, and pr odHi er is a Sour ce for a hierarchy of a dimension of product
values.

If you create a Cur sor for prodSel or forti meSel , then either Cur sor is a Val ueCur sor
because both prodSel and ti meSel have no outputs.

The uni t Pri ce object is a Sour ce for an MinBaseMeasur e that represents values for the
price of product units. The MinBaseMeasur e has as inputs the MinPri mar yDi nensi on
objects representing products and times, and the uni t Pri ce Sour ce has as inputs the
Sour ce objects for those dimensions.

The example selects elements of the dimension hierarchies and then joins the Sour ce
objects for the selections to that of the measure to produce quer ySour ce, which has
prodSel andtineSel as outputs.

Example 8-1 Creating the querySource Query

Source timeSel = timeH er.selectValues(new String[]
{" CALENDAR_YEAR: : MONTH: : 2001. 01",
" CALENDAR_YEAR: : MONTH; : 2001. 04",
" CALENDAR_YEAR: : MONTH; : 2001. 07",
" CALENDAR_YEAR: : MONTH: : 2001. 10"}) ;

Source prodSel = prodHier.sel ectVal ues(new String[]
{" PRODUCT_PRI MARY: : | TEM : ENVY ABM',
" PRODUCT_PRI MARY: : | TEM : ENVY EXE",
" PRODUCT_PRI MARY: : | TEM : ENVY STD'});

Source querySource = unitPrice.join(timeSel).join(prodSel);

The result set defined by quer ySour ce is the unit price values for the selected products
for the selected months. The results are organized by the outputs. Since ti meSel is
joined to the Sour ce produced by the uni t Pri ce. j oi n(prodSel) operation, ti neSel is
the slower varying output, which means that the result set specifies the set of selected
products for each selected time value. For each time value the result set has three
product values so the product values vary faster than the time values. The values of
the base Val ueCur sor of quer ySour ce are the fastest varying of all, because there is
one price value for each product for each day.

Example 9-1 in Retrieving Query Results, creates a Cur sor, quer yCur sor, for

quer ySour ce. Since quer ySour ce has outputs, quer yCur sor is a ConpoundCur sor . The
base Val ueCur sor of quer yCur sor has values from uni t Pri ce, which is the base

Sour ce of the operation that created quer ySour ce. The values from unit Pri ce are
those specified by the outputs. The outputs for quer yCur sor are a Val ueCur sor that
has values from prodSel and a Val ueCur sor that has values from ti meSel .

8-3

Chapter 8
Cursor Classes

Figure 8-1 Structure of the queryCursor CompoundCursor

This figure illustrates the structure of quer yCur sor . The base Val ueCur sor and the
two output Val ueCur sor objects are the children of quer yCur sor, which is the parent

ConmpoundCur sor .
queryCursor
CompoundCursor
Base
\L Output 1 Output 2 ¢ ValueCursor
ValueCursor for ValueCursor for ValueCursor for
timeSel prodSel querySource

The following table displays the values from quer yCur sor in a table. The left column
has time values, the middle column has product values, and the right column has the
unit price of the product for the month.

Month Product Price of Unit
2001.01 ENVY ABM 3042.22
2001.01 ENVY EXE 3223.28
2001.01 ENVY STD 3042.22
2001.04 ENVY ABM 2412.42
2001.04 ENVY EXE 3107.65
2001.04 ENVY STD 3026.12
2001.07 ENVY ABM 2505.57
2001.07 ENVY EXE 3155.91
2001.07 ENVY STD 2892.18
2001.10 ENVY ABM 2337.30
2001.10 ENVY EXE 3105.53
2001.10 ENVY STD 2856.86

For examples of getting the values from a Val ueCur sor, see Retrieving Query Results.

8.2.2 Specifying the Behavior of a Cursor

Cur sor Speci fi cati on objects specify some aspects of the behavior of
their corresponding Cur sor objects. You must specify the behavior on a
Cur sor Speci fi cati on before creating the corresponding Cur sor . To specify the
behavior, use the following Cur sor Speci fi cati on methods:

ORACLE

set Def aul t Fet chSi ze

set Ext ent Cal cul ati onSpeci fi ed

set Par ent EndCal cul ati onSpeci fi ed

set Parent Start Cal cul ati onSpeci fied

8-4

Chapter 8
CursorlnfoSpecification Classes

e specifyDefaul t Fet chSi zeOnChi | dr en (for a ConpoundCur sor Speci fi cati on only)

A Cur sor Speci fi cation also has methods that you can use to discover if the behavior
is specified. Those methods are the following:

e isExtentCal cul ationSpecified
e isParent EndCal cul ati onSpecified
e isParentStartCal cul ationSpecified

If you have used the Cur sor Speci fi cati on methods to set the default fetch size, or to
calculate the extent or the starting or ending positions of a value in the parent of the
value, then you can successfully use the following Cur sor methods:

e getExtent

e getFetchSize

e getParent End

e getParentStart
* setFetchSize

For examples of specifying Cur sor behavior, see Retrieving Query Results. For
information on fetch sizes, see "About Fetch Sizes". For information on the extent

of a Cur sor, see "What is the Extent of a Cursor?". For information on the starting and
ending positions in a parent Cur sor of the current value of a Cur sor, see "About the
Parent Starting and Ending Positions in a Cursor".

8.3 CursorinfoSpecification Classes

ORACLE

The Cursor | nfoSpeci fi cati on interface and the subinterfaces

ConpoundCur sor | nf oSpeci fi cati on and Val ueCur sor | nf oSpeci fi cat i on, specify
methods for the abstract Cur sor Speci fi cati on class and the concrete
ConmpoundCur sor Speci fi cati on and Val ueCur sor Speci fi cati on classes. A

Cur sor Speci fi cat i on specifies certain aspects of the behavior of the Cur sor

that corresponds to it. You can create instances of classes that implement the
Cursor | nf oSpeci fi cati on interface either directly or indirectly.

You can create a Cur sor Speci fi cati on for a Sour ce by calling the

creat eCursor | nfoSpeci ficati on method of a Dat aPr ovi der . That method returns

a CormpoundCur sor Speci fi cati on or a Val ueCur sor Speci fi cati on. You can use

the methods of the Cur sor Speci fi cati on to specify aspects of the behavior of a

Cur sor. You can then use the Cur sor Speci fi cati on in creating a Cur sor Manager by
passing it as the cur sor I nf oSpec argument to the cr eat eCur sor Manager method of a
Dat aPr ovi der .

With Cur sor Speci fi cati on methods, you can do the following:

e Get the Sour ce that corresponds to the Cur sor Speci fi cati on.

* Get or set the default fetch size for the corresponding Cur sor .

e Specify that Oracle OLAP should calculate the extent of a Cur sor .
» Determine whether calculating the extent is specified.

» Specify that Oracle OLAP should calculate the starting or ending position of the
current value of the corresponding Cur sor in the parent Cur sor . If you know the

8-5

Chapter 8
CursorManager Class

starting and ending positions of a value in the parent, then you can determine how
many faster varying elements the parent Cur sor has for that value.

« Determine whether calculating the starting or ending position of the current value
of the corresponding Cur sor in the parent is specified.

e AcceptaCursorSpecificationVisitor.

For more information, see "About Cursor Positions and Extent" and "About Fetch
Sizes".

In the or acl e. ol api . dat a. sour ce package, the Oracle OLAP Java API defines the
classes described in the following table.

Interface Description

Cursor | nfoSpecification An interface that specifies methods for
Cur sor Speci fi cati on objects.

Cur sor Speci fication An abstract class that implements some
methods of the Cur sor | nf oSpeci fi cation
interface.

ConpoundCur sor Speci fi cati on A Cur sor Speci fi cation for a Sour ce

that has one or more outputs.
A ConpoundCur sor Speci fi cation has
component child Cur sor Speci fi cation

objects.

Conpoundl nf oCur sor Speci fi cation An interface that specifies methods for
ConpoundCur sor Speci fi cati on objects.

Val ueCur sor Speci fi cation A Cur sor Speci fi cati on for a Sour ce that
has values and no outputs.

Val ueCur sor | nf oSpeci fication An interface for Val ueCur sor Speci fi cation
objects.

A Cur sor has the same structure as the Cur sor Speci fi cati on. Every

Val ueCur sor Speci fi cat i on or ConpoundCur sor Speci fi cati on has a corresponding
Val ueCur sor or ConpoundCur sor . To be able to get certain information or behavior
from a Cur sor, your application must specify that it wants that information or behavior
by calling methods of the corresponding Cur sor Speci fi cati on before it creates the
Cursor.

8.4 CursorManager Class

ORACLE

With a Cur sor Manager , you can create a Cur sor for a Sour ce. The class returned by
one of the creat eCur sor Manager methods of a Dat aPr ovi der manages the buffering of
data for the Cur sor objects it creates.

You can create more than one Cur sor from the same Cur sor Manager , which is useful
for displaying data from a result set in different formats such as a table or a graph. All
of the Cur sor objects created by a Cur sor Manager have the same specifications, such
as the default fetch sizes. Because the Cur sor objects have the same specifications,
they can share the data managed by the Cur sor Manager .

A SQLCur sor Manager has methods that return the SQL generated by the Oracle OLAP
SQL generator for a Sour ce. You create one or more SQLCur sor Manager objects
by calling the cr eat eSQLCur sor Manager or cr eat eSQLCur sor Manager s methods of a

8-6

Chapter 8
About Cursor Positions and Extent

Dat aProvi der . You do not use a SQLCur sor Manager to create a Cur sor . Instead, you
use the SQL returned by the SQLCur sor Manager with classes outside of the OLAP Java
API, or by other means, to retrieve the data specified by the query.

8.4.1 Updating the CursorinfoSpecification for a CursorManager

If your application is using OLAP Java API Tenpl at e objects and the state of a
Tenpl at e changes in a way that alters the structure of the Sour ce produced by the
Tenpl at e, then any Cur sor | nf oSpeci fi cati on objects for the Sour ce are no longer
valid. You need to create new Cur sor | nf oSpeci fi cat i on objects for the changed
Sour ce.

After creating a new Cur sor | nf oSpeci fi cati on, you can create a new Cur sor Manager
for the Sour ce. You do not, however, need to create a new Cur sor Manager . You can
call the updat eSpeci fi cati on method of the existing Cur sor Manager to replace the
previous Cur sor | nf oSpeci fi cati on with the new Cur sor | nf oSpeci fi cati on. You can
then create a new Cur sor from the Cur sor Manager .

8.5 About Cursor Positions and Extent

A Cur sor has one or more positions. The current position of a Cur sor is the position
that is currently active in the Cur sor. To move the current position of a Cur sor call the
set Posi ti on or next methods of the Cur sor.

Oracle OLAP does not validate the position that you set on the Cur sor until you
attempt an operation on the Cur sor, such as calling the get Cur r ent Val ue method.
If you set the current position to a negative value or to a value that is greater than
the number of positions in the Cur sor and then attempt a Cur sor operation, then the
Cur sor throws a Posi tionCut Of BoundsExcept i on.

The extent of a Cur sor is described in "What is the Extent of a Cursor?".

8.5.1 Positions of a ValueCursor

ORACLE

The current position of a Val ueCur sor specifies a value, which you can retrieve. For
example, prodSel , a derived Sour ce described in "Structure of a Cursor", is a selection
of three products from a primary Sour ce that specifies a dimension of products and
their hierarchical groupings. The Val ueCur sor for prodSel has three elements. The
following example gets the position of each element of the Val ueCur sor, and displays
the value at that position.

/'l prodSel Val Cursor is the ValueCursor for prodSel
println("Val ueCursor Position Value ");

Println(M-c-me e e ");
do
{

println(" " + prodSel Val Cursor. getPosition() +

" + prodSel Val Cursor. get Current Val ue());
} while(prodSel Val Cursor.next());

The preceding example displays the following:

Val ueCur sor Position Val ue

1 PRODUCT_PRI MARY: : | TEM : ENVY ABM

8-7

Chapter 8
About Cursor Positions and Extent

2 PRODUCT_PRI MARY: : | TEM : ENVY EXE
3 PRODUCT_PRI MARY: : | TEM : ENVY STD

The following example sets the current position of pr odSel Val Cur sor to 2 and
retrieves the value at that position.

prodSel Val Cursor. set Position(2);
println(prodSel Val Cursor.getCurrentString());

The preceding example displays the following:
PRODUCT_PRI MARY: : | TEM : ENVY EXE

For more examples of getting the current value of a Val ueCur sor, see Retrieving
Query Results.

8.5.2 Positions of a CompoundCursor

A ConpoundCur sor has one position for each set of the elements of the descendent
Val ueCur sor objects. The current position of the ConpoundCur sor specifies one of
those sets.

For example, quer ySour ce, the Sour ce created in Example 8-1, has values from a
measure, uni t Pri ce. The values are the prices of product units at different times. The
outputs of quer ySour ce are Sour ce objects that represent selections of four month
values from a time dimension and three product values from a product dimension.

The result set for quer ySour ce has one measure value for each tuple (each set of
output values), so the total number of values is twelve (one value for each of the three
products for each of the four months). Therefore, the quer yCur sor ConpoundCur sor
created for quer ySour ce has twelve positions.

Each position of quer yCur sor specifies one set of positions of the outputs and the
base Val ueCur sor . For example, position 1 of quer yCur sor defines the following set of
positions for the outputs and the base Val ueCur sor:

e Position 1 of output 1 (the Val ueCur sor forti nmeSel)
* Position 1 of output 2 (the Val ueCur sor for prodSel)

e Position 1 of the base Val ueCur sor for quer yCur sor (This position has the value
from the uni t Pri ce measure that is specified by the values of the outputs.)

Figure 8-2 Cursor Positions in queryCursor

This example illustrates the positions of quer yCur sor ConpoundCur sor, the base
Val ueCur sor, and the outputs.

ORACLE 8-8

ORACLE

Chapter 8
About Cursor Positions and Extent

queryCursor
CompoundCursor

Positions
Output 1 =1, Output2 =1, VC
Output 1 =1, Output 2 =2, VC
Output 1 =1, Output 2 = 3, VC
Output 1 =2, Output2 =1, VC
Output 1 =2, Output 2 =2, VC
OQutput 1 =2, Output 2 =3, VC
Output 1 =3, Output2 =1, VC
C
C
C
C
C

Qutput 1 =3, Output2=2, V
Output 1 =3, Output 2 =3, V
Output 1 = 4, Output 2 =1, VC=
Output 1 =4, Output2 =2, V
Output 1 =4, Output2 =3,V

| ; .

O©CoONOOAWN =

—_
—_ O

1
1
1
1
1
1
1
1
1
1
1
1

—_
N

v

Positions Positions Positions

1| 2001.01 1 | ENVY ABM 1| n

2| 2001.04 2 | ENVY EXE

3| 2001.07 3 | ENVY STD

4| 2001.10
Output 1 Output 2 Base ValueCursor

ValueCursor for ValueCursor for with specified values

timeSel prodSel from unitPrice

The Val ueCur sor for quer yCur sor has only one position because only one value of
uni t Pri ce is specified by any one set of values of the outputs. For a query such as
quer ySour ce, the Val ueCur sor of the Cur sor has only one value, and therefore only
one position, at a time for any one position of the root ConpoundCur sor .

Figure 8-3 Crosstab Display of queryCursor

This figure illustrates one possible display of the data from queryCursor. Itis a
crosstab view with four columns and five rows. In the left column are the month values.
In the top row are the product values. In each of the intersecting cells of the crosstab is
the price of the product for the month.

Product
Month | ENVY ABM | ENVY EXE | ENVY STD
2001.01 3042.22 3223.28 2426.07
2001.04 3026.12 3107.65 2412.42
2001.07 2892.18 3155.91 2505.57
2001.10 2892.18 3105.53 2337.30

A ConpoundCur sor coordinates the positions of the Val ueCur sor objects relative to
each other. The current position of the ConpoundCur sor specifies the current positions
of the descendent Val ueCur sor objects.

8-9

ORACLE

Chapter 8
About Cursor Positions and Extent

Example 8-2 Setting the CompoundCursor Position and Getting the Current
Values

This example sets the position of quer yCur sor and then gets the current values and
the positions of the child Cur sor objects.

ConpoundCur sor root Cursor = (ConpoundCursor) queryCursor;

Val ueCur sor baseVal ueCursor = root Cursor. get Val ueCursor();

Li st outputs = rootCursor.getQutputs();

Val ueCursor outputl = (Val ueCursor) outputs.get(0);

Val ueCursor output2 = (ValueCursor) outputs.get(1);

int pos = 5;

root Cur sor . set Posi tion(pos);

println("ConpoundCursor position set to " + pos +".");

printIn("The current position of the ConpoundCursor is =" +
root Cursor.getPosition() + ".");

printIn("CQutput 1 position =" + outputl.getPosition() +
", value =" + outputl. getCurrentValue());

printIn("CQutput 2 position =" + output2.getPosition() +
", value =" + output2. getCurrentValue());

printIn("VC position =" + baseVal ueCursor.getPosition() +
", value = " + baseVal ueCursor. get CurrentVal ue());

This example displays the following:

ConpoundCur sor position set to 5.

The current position of the ConpoundCursor is 5.

Qutput 1 position = 2, value = CALENDAR_YEAR: : MONTH: : 2001. 04
Qutput 2 position = 2, value = PRODUCT_PRI MARY: : | TEM : ENVY EXE
VC position = 1, value = 3107.65

The positions of quer yCur sor are symmetric in that the result set for quer ySour ce
always has three product values for each time value. The Val ueCur sor for prodSel ,
therefore, always has three positions for each value of the ti meSel Val ueCursor. The
ti meSel output Val ueCur sor is slower varying than the prodSel Val ueCursor.

In an asymmetric case, however, the number of positions in a Val ueCur sor is not
always the same relative to the slower varying output. For example, if the price of

units for product ENVY ABM for month 2001.10 were null because that product was no
longer being sold by that date, and if null values were suppressed in the query, then
quer yCur sor would only have eleven positions. The Val ueCur sor for prodSel would
only have two positions when the position of the Val ueCur sor forti meSel was 4.

Example 8-3 demonstrates an asymmetric result set that is produced by selecting
elements of one dimension based on a comparison of measure values. The example
uses the same product and time selections as in Example 8-1. It uses a Sour ce for

a measure of product units sold, uni t s, that is dimensioned by product, time, sales
channels, and customer dimensions. The chanSel and cust Sel objects are selections
of single values of the dimensions. The example produces a Sour ce, quer ySour ce2,
that specifies which of the selected products sold more than one unit for the selected
time, channel, and customer values. Because quer ySour ce2 is a derived Sour ce, this
example commits the current Transacti on.

The example creates a Cur sor for quer ySour ce2, loops through the positions of the
ConpoundCur sor, gets the position and current value of the first output Val ueCur sor
and the Val ueCur sor of the ConpoundCur sor, and displays the positions and values of
the Val ueCur sor objects. The get Local Val ue method is a method in the program that
extracts the local value from a unique value.

8-10

ORACLE

Chapter 8
About Cursor Positions and Extent

Example 8-3 Positions in an Asymmetric Query

Il Create the query
prodSel . join(chanSel).join(custSel).join(timeSel).select(units.gt(1));

/1 Commit the current Transaction.
try
{ /I The DataProvider is dp.
(dp. get Transact i onProvi der()).comit Current Transaction();

cat ch(Exception e)
{

out put. println("Cannot conmit current Transaction " + e);

}

Il Create the CursorManager and the Cursor.
Cur sor Manager cursor Manager = dp. creat eCur sor Manager (quer ySour ce2) ;
Cursor queryCursor2 = cursorManager. createCursor();

ConpoundCur sor root Cursor = (ConpoundCursor) queryCursor2;
Val ueCur sor baseVal ueCursor = root Cursor. get Val ueCursor();
Li st outputs = root Cursor.get Qut puts();

Val ueCursor outputl = (Val ueCursor) outputs.get(0);

/1 Get the positions and values and display them

println("ConpoundCursor CQutput Val ueCursor Val ueCursor");
printIn(" position position | value position | value");
do

{

printIn(spé + rootCursor.getPosition() + // sp6 is 6 spaces
spl3 + outputl.getPosition() + /'l spl3 is 13 spaces
sp7 + getLocal Val ue(outputl.getCurrentString()) + //sp7 is 7 spaces
sp7 + baseVal ueCursor.getPosition() +
sp7 + getLocal Val ue(baseVal ueCursor. getCurrentString()));

}
whi | e(queryCursor2.next());

The example displays the following:

ConpoundCur sor Qut put Val ueCur sor Val ueCur sor
position position | val ue position | val ue
1 1 2001. 01 1 ENVY ABM
2 1 2001. 01 2 ENVY EXE
3 1 2001. 01 3 ENVY STD
4 2 2001. 04 1 ENVY ABM
5 3 2001. 07 1 ENVY ABM
6 3 2001. 07 2 ENVY EXE
7 4 2001. 10 1 ENVY EXE
8 4 2001. 10 2 ENVY STD

Because not every combination of product and time selections has unit sales greater
than 1 for the specified channel and customer selections, the number of elements of
the Val ueCur sor for the values derived from prodSel is not the same for each value of
the output Val ueCur sor . For time value 2001.01, all three products have sales greater
than one, but for time value 2001.04, only one of the products does. The other two
time values, 2001.07 and 2001.10, have two products that meet the criteria. Therefore,
the Val ueCur sor for the ConpoundCur sor has three positions for time 2001.01, only
one position for time 2001.04, and two positions for times 2001.07 and 2001.10.

8-11

8.5.3 About

8.5.4 What |

ORACLE

Chapter 8
About Cursor Positions and Extent

the Parent Starting and Ending Positions in a Cursor

To effectively manage the display of the data that you get from a ConpoundCur sor, you
sometimes need to know how many faster varying values exist for the current slower
varying value. For example, suppose that you are displaying in a crosstab one row of
values from an edge of a cube, then you might want to know how many columns to
draw in the display for the row.

To determine how many faster varying values exist for the current value of a child
Cur sor, you find the starting and ending positions of that current value in the parent
Cur sor . Subtract the starting position from the ending position and then add 1, as in
the following.

| ong span = (cursor.getParentEnd() - cursor.getParentStart()) + 1;

The result is the span of the current value of the child Cur sor in the parent Cur sor,
which tells you how many values of the fastest varying child Cur sor exist for the
current value. Calculating the starting and ending positions is costly in time and
computing resources, so you should only specify that you want those calculations
performed when your application needs the information.

An Oracle OLAP Java API Cur sor enables your application to have only the data that
it is currently displaying actually present on the client computer. For information on
specifying the amount of data for a Cur sor, see "About Fetch Sizes".

From the data on the client computer, however, you cannot determine at what position
of the parent Cur sor the current value of a child Cur sor begins or ends. To get that
information, you use the get Par ent St art and get Par ent End methods of a Cur sor .

To specify that you want Oracle OLAP to calculate the starting and

ending positions of a value of a child Cur sor in the parent Cur sor, call

the set Parent Start Cal cul ati onSpeci fi ed and set Par ent EndCal cul ati onSpeci fi ed
methods of the Cur sor Speci fi cati on corresponding to the Cur sor. You can
determine whether calculating the starting or ending positions is specified by calling
the i sParent Start Cal cul ati onSpeci fied ori sParent EndCal cul ati onSpeci fied
methods of the Cur sor Speci fi cati on. For an example of specifying these
calculations, see Retrieving Query Results.

s the Extent of a Cursor?

The extent of a Cur sor is the total number of elements it contains relative to any
slower varying outputs.

The extent is information that you can use, for example, to display the correct number
of columns or correctly-sized scroll bars. The extent, however, can be expensive to
calculate. For example, a Sour ce that represents a cube might have four outputs. Each
output might have hundreds of values. If all null values and zero values of the measure
for the sets of outputs are eliminated from the result set, then to calculate the extent of
the ConpoundCur sor for the Sour ce, Oracle OLAP must traverse the entire result space
before it creates the ConpoundCur sor . If you do not specify that you wants the extent
calculated, then Oracle OLAP only needs to traverse the sets of elements defined by
the outputs of the cube as specified by the fetch size of the Cur sor and as needed by
your application.

8-12

Chapter 8
About Fetch Sizes

To specify that you want Oracle OLAP to calculate the extent for a Cur sor, call the

set Ext ent Cal cul ati onSpeci fi ed method of the Cur sor Speci fi cati on corresponding
to the Cur sor. You can determine whether calculating the extent is specified by

calling the i sExt ent Cal cul ati onSpeci fi ed method of the Cur sor Speci fi cati on. For
an example of specifying the calculation of the extent of a Cur sor, see Retrieving
Query Results.

8.6 About Fetch Sizes

An OLAP Java API Cur sor represents the entire result set for a Sour ce. The Cur sor is
a virtual Cur sor, however, because it retrieves only a portion of the result set at a time
from Oracle OLAP. A Cur sor Manager manages a virtual Cur sor and retrieves results
from Oracle OLAP as your application needs them. By managing the virtual Cur sor,
the Cur sor Manager relieves your application of a substantial burden.

The amount of data that a Cur sor retrieves in a single fetch operation is determined
by the fetch size specified for the Cur sor . You specify a fetch size to limit the amount
of data your application needs to cache on the local computer and to maximize the
efficiency of the fetch by customizing it to meet the needs of your method of displaying
the data.

You can also regulate the number of elements that Oracle OLAP returns by using
Par anet er and parameterized Sour ce objects in constructing your query. For more
information on Par anet er objects, see Understanding Source Objects. For examples
of using parameterized Sour ce objects, see Making Queries Using Source Methods.

When you create a Cur sor Manager for a Sour ce, Oracle OLAP specifies a default fetch
size on the root Cur sor Speci fi cat i on. You can change the default fetch size with the
set Def aul t Fet chSi ze method of the root Cur sor Speci fi cati on.

You can create two or more Cur sor objects from the same Cur sor Manager and use
both Cur sor objects simultaneously. Rather than having separate data caches, the
Cur sor objects can share the data managed by the Cur sor Manager .

An example is an application that displays the results of a query to the user as both
a table and a graph. The application creates a Cur sor Manager for the Sour ce. The
application creates two separate Cur sor objects from the same Cur sor Manager, one
for a table view and one for a graph view. The two views share the same query and
display the same data, just in different formats.

Figure 8-4 A Source and Two Cursors for Different Views of the Values

This figure illustrates the relationship between the Sour ce, the Cur sor objects, and the
views.

ORACLE 8-13

ORACLE

Table View

tableView : View

tableCursor : Cursor

Bar Graph View

graphView : View

graphCurs

or : Cursor

queryCM : CursorManager

querySource : Source

Chapter 8
About Fetch Sizes

8-14

Retrieving Query Results

This chapter describes how to retrieve the results of a query with an Oracle OLAP
Java API Cur sor and how to gain access to those results. This chapter also describes
how to customize the behavior of a Cur sor to fit your method of displaying the

results. For information on the class hierarchies of Cur sor and its related classes,

and for information on the Cur sor concepts of position, fetch size, and extent, see
Understanding Cursor Classes and Concepts.

This chapter includes the following topics:

* Retrieving the Results of a Query

* Navigating a CompoundCursor for Different Displays of Data

» Specifying the Behavior of a Cursor

e Calculating Extent and Starting and Ending Positions of a Value

* Specifying a Fetch Size

9.1 Retrieving the Results of a Query

ORACLE

A query is an OLAP Java API Sour ce that specifies the data that you want to retrieve
from the data store and any calculations that you want Oracle OLAP to perform on
the data. A Cursor is the object that retrieves, or fetches, the result set specified by a
Sour ce. Creating a Cur sor for a Sour ce involves the following steps:

1. Get a primary Sour ce from an MInObj ect or create a derived Sour ce through
operations on a Dat aPr ovi der or a Sour ce. For information on getting or creating
Sour ce objects, see Understanding Source Objects.

2. If the Sour ce is a derived Sour ce, then commit the Transacti on in
which you created the Sour ce. To commit the Transact i on, call the
conmi t Current Transact i on method of your Tr ansact i onProvi der. For more
information on committing a Tr ansact i on, see Using a TransactionProvider. If the
Sour ce is a primary Sour ce, then you do not need to commit the Transacti on.

3. Create a Cursor Manager by calling a cr eat eCur sor Manager method of your
Dat aPr ovi der and passing that method the Sour ce.

4. Create a Cursor by calling the cr eat eCur sor method of the Cur sor Manager .

Example 9-1 Creating a Cursor

This example creates a Cur sor for the derived Sour ce named quer ySour ce. The
example uses a Dat aPr ovi der named dp. The example creates a Cur sor Manager
named cur sor Mhgr and a Cur sor named quer yCur sor .

Finally, the example closes the Cur sor Manager . When you have finished using the
Cur sor, you should close the Cur sor Manager to free resources.

Cur sor Manager cursorMhgr = dp. creat eCur sor Manager (quer ySour ce) ;
Cursor queryCursor = cursorMgr.createCursor();

9-1

Chapter 9
Retrieving the Results of a Query

/1 Use the Cursor in some way, such as to display the values of it.

cursorMgr. cl ose();

9.1.1 Getting Values from a Cursor

ORACLE

The Cur sor interface encapsulates the notion of a current position and has methods
for moving the current position. The Val ueCur sor and ConpoundCur sor interfaces
extend the Cur sor interface. The Oracle OLAP Java API has implementations of the
Val ueCur sor and ConpoundCur sor interfaces. Calling the cr eat eCur sor method of a
Cur sor Manager returns either a Val ueCur sor or a ConpoundCur sor implementation,
depending on the Sour ce for which you are creating the Cur sor.

A Val ueCur sor is returned for a Sour ce that has a single set of values. A Val ueCur sor
has a value at its current position, and it has methods for getting the value at the
current position.

A ConpoundCur sor is created for a Sour ce that has more than one set of values,
which is a Sour ce that has one or more outputs. Each set of values of the Sour ce is
represented by a child Val ueCur sor of the ConpoundCur sor . A ConpoundCur sor has
methods for getting its child Cur sor objects.

The structure of the Sour ce determines the structure of the Cur sor. A Sour ce can have
nested outputs, which occurs when one or more of the outputs of the Sour ce is itself a
Sour ce with outputs. If a Sour ce has a nested output, then the ConpoundCur sor for that
Sour ce has a child ConpoundCur sor for that nested output.

The ConpoundCur sor coordinates the positions of the child Cur sor objects that it
contains. The current position of the ConpoundCur sor specifies one set of positions
of the child Cur sor objects.

For an example of a Sour ce that has only one level of output values, see Example 9-4.
For an example of a Sour ce that has nested output values, see Example 9-5.

An example of a Sour ce that represents a single set of values is one returned by

the get Sour ce method of an MInDi nensi on, such as an MinPri naryDi nensi on that
represents product values. Creating a Cur sor for that Sour ce returns a Val ueCur sor .
Calling the get Cur r ent Val ue method returns the product value at the current position
of that Val ueCur sor .

Example 9-2 Getting a Single Value from a ValueCursor

This example gets the Sour ce from mdnPr odHi er, which is an MinLevel Hi er ar chy that
represents product values, and creates a Cur sor for that Sour ce. The example sets
the current position to the fifth element of the Val ueCur sor and gets the product value
from the Cur sor. The example then closes the Cur sor Manager . In the example, dp is
the Dat aProvi der.

Source prodSource = mdnProdHi er. get Source();

/1 Because prodSource is a primry Source, you do not need to
[/ conmit the current Transaction.

Cur sor Manager cursorgr = dp. creat eCur sor Manager (pr odSour ce) ;
Cursor prodCursor = cursorhgr.createCursor();

/1 Cast the Cursor to a Val ueCursor.

Val ueCur sor prodVal ues = (Val ueCursor) prodCursor;

/1 Set the position to the fifth element of the Val ueCursor.
prodVal ues. set Posi tion(5);

9-2

ORACLE

Chapter 9
Retrieving the Results of a Query

/1 Product values are strings. Get the value at the current position.
String value = prodVal ues. get Current String();

/1 Do sonmething with the value, such as display it.

/1 O ose the CursorMnager.
cursor Mhgr. cl ose();

Example 9-3 Getting All of the Values from a ValueCursor

This example uses the same Cur sor as Example 9-2. This example uses a

do. .. whi | e loop and the next method of the Val ueCur sor to move through the
positions of the Val ueCur sor . The next method begins at a valid position and returns
true when an additional position exists in the Cur sor. It also advances the current
position to that next position.

The example sets the position to the first position of the Val ueCur sor. The example
loops through the positions and uses the get Curr ent Val ue method to get the value at
the current position.

/1 prodVal ues is the Val ueCursor for prodSource.
prodVal ues. set Posi tion(1);
do

{
println(prodVal ues. get Current Val ue);

} whil e(prodVal ues. next());

The values of the result set represented by a ConpoundCur sor are in the child
Val ueCur sor objects of the ConpoundCur sor . To get those values, you must get the
child Val ueCur sor objects from the ConpoundCur sor.

An example of a ConpoundCur sor is one that is returned by calling the cr eat eCur sor
method of a Cur sor Manager for a Sour ce that represents the values of a measure as
specified by selected values from the dimensions of the measure.

Example 9-4 uses a Sour ce, named uni t s, that results from calling the get Sour ce
method of an MinBaseMeasur e that represents the number of units sold. The
dimensions of the measure are MinPri mar yDi mensi on objects representing products,
customers, times, and channels. This example uses Sour ce objects that represent
selected values from the default hierarchies of those dimensions. The names of those
Sour ce objects are prodSel , cust Sel , ti meSel , and chanSel . The creation of the

Sour ce objects representing the measure and the dimension selections is not shown.

Example 9-4 joins the dimension selections to the measure, which results

in a Sour ce named uni t sFor Sel ecti ons. It creates a ConpoundCur sor, named

uni t sFor Sel Cur sor, for uni t sFor Sel ect i ons, and gets the base Val ueCur sor and the
outputs from the ConpoundCur sor . Each output is a Val ueCur sor, in this case. The
outputs are returned in a Li st. The order of the outputs in the Li st is the inverse of
the order in which the outputs were added to the list of outputs by the successive join
operations. In the example, dp is the Dat aPr ovi der .

Example 9-4 Getting ValueCursor Objects from a CompoundCursor

Sour ce unitsForSel ections = units.join(prodSel)
.join(custSel)
.join(timSel)
.join(chanSel);

/I Commit the current Transaction (code not shown).

9-3

ORACLE

Chapter 9
Retrieving the Results of a Query

/I Create a Cursor for unitsForSelections.
Cur sor Manager cursor Mhgr = dp. creat eCur sor Manager (uni t sFor Sel ecti ons);
ConpoundCur sor uni t sFor Sel Cursor = (ConpoundCur sor)

cursor Mhgr. creat eCursor();

Il Get the base Val ueCursor.
Val ueCur sor speci fiedUnitsVal s = unitsForSel Cursor. get Val ueCursor();

/] Get the outputs.
Li st outputs = unitsForSel Cursor.getQutputs();

Val ueCur sor chanSel Val s = (Val ueCursor) outputs.get(0)
Val ueCursor timeSel Vals = (Val ueCursor) outputs.get(1)
Val ueCursor cust Sel Val s = (Val ueCursor) outputs.get(2);
Val ueCursor prodSel Val s = (Val ueCursor) outputs.get(3)

/'l You can now get the values fromthe Val ueCursor objects.
/1 When you have finished using the Cursor objects, close the CursorManager.
cursorMgr. cl ose();

Example 9-5 uses the same units measure as Example 9-4, but it joins the dimension
selections to the measure differently. Example 9-5 joins two of the dimension
selections together. It then joins the result to the Sour ce produced by joining the single
dimension selections to the measure. The resulting Sour ce, uni t sFor Sel ect i ons,
represents a query has nested outputs, which means it has more than one level of
outputs.

The ConpoundCur sor that this example creates for uni t sFor Sel ect i ons therefore also
has nested outputs. The ConpoundCur sor has a child base Val ueCur sor and has as
outputs three child Val ueCur sor objects and one child ConpoundCur sor .

Example 9-5 joins the selection of channel dimension values, chanSel , to the selection
of customer dimension values, cust Sel . The result is cust ByChanSel , a Sour ce that
has customer values as the base values and channel values as the values of the
output. The example joins to uni t s the selections of product and time values, and then
joins cust ByChanSel . The resulting query is represented by uni t sFor Sel ecti ons.

The example commits the current Tr ansact i on and creates a ConpoundCur sor, named
uni t sFor Sel Cur sor, for uni t sFor Sel ecti ons.

The example gets the base Val ueCur sor and the outputs from the ConpoundCur sor. In
the example, dp is the Dat aPr ovi der .

Example 9-5 Getting Values from a CompoundCursor with Nested Outputs

Sour ce custByChanSel = cust Sel.join(chanSel);
Sour ce unitsForSel ections = units.join(prodSel)
.join(timSel)
.j oi n(cust ByChanSel) ;
/1 Conmmit the current Transaction (code not shown).

/I Create a Cursor for unitsForSelections.
Cur sor Manager cursorhgr = dp. creat eCur sor Manager (uni t sFor Sel ecti ons);
Cursor unitsFor Sel Cursor = cursorMgr.createCursor();

/1 Send the Cursor to a nethod that does different operations
/'l depending on whether the Cursor is a ConpoundCursor or a
/'l Val ueCursor.

print Cursor (unit sFor Sel Cursor);

cursor Mgr. cl ose();

9-4

Chapter 9
Retrieving the Results of a Query

/1 The remaining code of someMethod is not shown.

/1 The following code is in fromthe CursorPrintWiter class.
/1 The printCursor nmethod has a do...while loop that noves through the positions
/1 of the Cursor passed to it. At each position, the method prints the nunber of
/1 the iteration through the I oop and then a colon and a space. The out put
/] object is a PrintWiter. The nethod calls the private _printTuple method and
/1 then prints a newline. A "tuple" is the set of output ValueCursor val ues
/'l specified by one position of the parent ConpoundCursor. The method prints one
/1 line for each position of the parent ConpoundCursor.
private void printCursor(Cursor rootCursor)
{ . .
int i =1,
do
{
print(i++ +": ");
_printTupl e(root Cursor);
printlin();
flush();
} while(rootCursor.next());

}

/1 1f the Cursor passed to the _printTuple method is a Val ueCursor, then
/1 the method prints the value at the current position of the Val ueCursor.
/1 1f the Cursor passed in is a ConpoundCursor, then the nmethod gets the
/1 outputs of the ConpoundCursor and iterates through the outputs,
Il recursively calling itself for each output. The method then gets the
/'l base Val ueCursor of the ConpoundCursor and calls itself again.
private void _printTupl e(Cursor cursor)
{
i f(cursor instanceof ConpoundCursor)
{
ConpoundCur sor conpoundCursor = (ConpoundCur sor) cursor;
/1 Put an open parenthesis before the value of each output.
print("(");
Iterator iterQutputs = conpoundCursor.getQutputs().iterator();
Cursor output = (Cursor)iterQutputs.next();
_printTupl e(output);
whi | e(iterQutputs.hasNext())
{
/1 Put a comma after the value of each output.
print(",");
_printTuple((Cursor)iterQutputs.next());
}
[l Put a comm after the value of the last output.
print(",");
/] Get the base Val ueCursor.
_printTupl e(conmpoundCur sor. get Val ueCursor ());

/1 Put a close parenthesis after the base value to indicate
/'l the end of the tuple.

print(")");

el se if(cursor instanceof Val ueCursor)
{
Val ueCursor val ueCursor = (Val ueCursor) cursor;
i f (val ueCursor. hasCurrent Val ue())
print(val ueCursor.get CurrentVal ue());
el se /1 1f this position has a null val ue.
print("NA");

ORACLE 9-5

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

}
}

9.2 Navigating a CompoundCursor for Different Displays of

Data

ORACLE

With the methods of a ConpoundCur sor you can easily move through, or navigate, the
ConpoundCur sor structure and get the values from the Val ueCur sor descendents of
the ConpoundCur sor . Data from a multidimensional OLAP query is often displayed in a
crosstab format, or as a table or a graph.

To display the data for multiple rows and columns, you loop through the positions
at different levels of the ConpoundCur sor depending on the needs of your display.
For some displays, such as a table, you loop through the positions of the parent
ConpoundCur sor . For other displays, such as a crosstab, you loop through the
positions of the child Cur sor objects.

To display the results of a query in a table view, in which each row contains a value
from each output Val ueCur sor and from the base Val ueCur sor, you determine the
position of the top-level, or root, ConpoundCur sor and then iterate through its positions.
Example 9-6 displays only a portion of the result set at one time. It creates a Cur sor
for a Sour ce that represents a query that is based on a measure that has unit cost
values. The dimensions of the measure are the product and time dimensions. The
creation of the primary Sour ce objects and the derived selections of the dimensions is
not shown.

The example joins the Sour ce objects representing the dimension value selections to
the Sour ce representing the measure. It commits the current Transact i on and then
creates a Cur sor, casting it to a ConpoundCur sor . The example sets the position of the
ConmpoundCur sor , iterates through twelve positions of the ConpoundCur sor, and prints
out the values specified at those positions. The Dat aPr ovi der is dp.

Example 9-6 Navigating for a Table View

Source unitPriceByMnth = unitPrice.join(productSel)
.join(timSel);
/1 Commit the current Transaction (code not shown).

/I Create a Cursor for unitPriceByMnth.
Cur sor Manager cursor Mhgr = dp. creat eCur sor Manager (uni t Pri ceByMont h);
ConpoundCur sor root Cursor = (ConpoundCursor) cursorMgr. createCursor();

/] Determine a starting position and the nunber of rows to display.
int start = 7;
int numRows = 12;

printin("Mnth Product Unit Price");
printin("------- -------- oo ")

/1 Iterate through the specified positions of the root ConpoundCursor.
/1 Assume that the Cursor contains at |east (start + numRows) positions.
for(int pos = start; pos < start + numRows; pos++)
{

Il Set the position of the root ConpoundCursor.

root Cur sor. set Posi tion(pos);

Il Print the local values of the output and base Val ueCursors.

/'l The getlLocal Val ue nethod gets the |ocal value fromthe unique

9-6

ORACLE

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

Il value of a dinension elenent.

String timeValue = ((Val ueCursor)root Cursor.get Qutputs().get(0))
.getCurrentString();

String timelLocVal = getLocal Val ue(tinmeVal ue);

String prodVal ue = ((Val ueCursor)rootCursor.getQutputs().get(1))
.getCurrentString();

String prodLocVal = getLocal Val ue(prodVal ue);

bj ect price = rootCursor.getVal ueCursor().getCurrentVal ue();

printin(tineLocval +" " + prodLocVal +" " + price);

}

cursorMgr. cl ose();

If the time selection for the query has eight values, such as the first month of each
calendar quarter for the years 2001 and 2002, and the product selection has three
values, then the result set of the uni t Pri ceByMnt h query has twenty-four positions.
The example displays the following table, which has the values specified by positions
7 through 18 of the ConpoundCur sor .

Mont h Pr oduct Unit Price

Example 9-7 Navigating for a Crosstab View Without Pages

This example uses the same query as Example 9-6. In a crosstab view, the first row
is column headings, which are the values from prodSel in this example. The output
for prodSel is the faster varying output because the prodSel dimension selection

is the last output in the list of outputs that results from the operations that join the
measure to the dimension selections. The remaining rows begin with a row heading.
The row headings are values from the slower varying output, which is ti meSel . The
remaining positions of the rows, under the column headings, contain the uni t Pri ce
values specified by the set of the dimension values. To display the results of a query
in a crosstab view, you iterate through the positions of the children of the top-level
ConmpoundCur sor .

The Dat aPr ovi der is dp.

Source unitPriceByMnth = unitPrice.join(productSel)
.join(timSel);
/1 Commit the current Transaction (code not shown).

/] Create a Cursor for unitPriceByMnth.
Cur sor Manager cursorMhgr = dp. creat eCur sor Manager (uni t Pri ceByMont h);
ConpoundCur sor root Cursor = (ConpoundCursor) cursorMgr.createCursor();

/] Get the outputs and the Val ueCursor objects.

Li st outputs = rootCursor.getQutputs();

[l The first output has the values of tineSel, the slower varying output.
Val ueCursor rowCursor = (Val ueCursor) outputs.get(0);

9-7

ORACLE

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

/1 The second output has the faster varying val ues of product Sel.
Val ueCursor col umCursor = (ValueCursor) outputs.get(1);

/'l The base Val ueCursor has the values fromunitPrice.

Val ueCursor unitPriceVal ues = root Cursor. get Val ueCursor();

/1 Display the values as a crosstab.

println(" PRODUCT") ;

printIn(" e ");

print("Mnth ");

do

{
String value = ((ValueCursor) columCursor).getCurrentString();
print(get Context().getlLocal Val ue(value) + " ");

} while (columCursor.next());

printIn("\n------- —----o-oaaaooo aoaoon ");

/| Reset the colum Cursor to its first elenent.
col umCur sor . set Posi tion(1);

do
{

Il Print the row dinension val ues.

String value = ((ValueCursor) rowCursor).getCurrentString();
print(get Context().getlLocal Val ue(value) + " ");

/'l Loop over col ums.

do

[/ Print data val ue.
print(unitPriceValues.getCurrentValue() + " ");
} while (columCursor.next());

printin();

Il Reset the colum Cursor to its first elenment.
col umCur sor. set Posi tion(1);

} while (rowCursor.next());

cursorMgr. cl ose();

The following is a crosstab view of the values from the result set specified by the

uni t Pri ceByMont h query. The first line labels the rightmost three columns as having
product values. The third line labels the first column as having month values and then
labels each of the rightmost three columns with the product value for that column. The
remaining lines have the month value in the left column and then have the data values
from the units measure for the specified month and product.

9-8

ORACLE

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

Example 9-8 Navigating for a Crosstab View With Pages

This example creates a Sour ce that is based on a measure of units sold values. The
dimensions of the measure are the customer, product, time, and channel dimensions.
The Sour ce objects for the dimensions represent selections of the dimension values.
The creation of those Sour ce objects is not shown.

The query that results from joining the dimension selections to the measure Sour ce
represents unit sold values as specified by the values of the outputs.

The example creates a Cur sor for the query and then sends the Cur sor to the
print AsCr osst ab method, which prints the values from the Cur sor in a crosstab. That
method calls other methods that print page, column, and row values.

The fastest-varying output of the Cur sor is the selection of products, which has three
values (the product items ENVY ABM, ENVY EXE, and ENVY STD). The product
values are the column headings of the crosstab. The next fastest-varying output is

the selection of customers, which has three values (the customers COMP SERV

TOK, COMP WHSE LON, and COMP WHSE SD). Those three values are the row
headings. The page dimensions are selections of three time values (the months
2000.01, 2000.02, and 2000.03), and one channel value (DIR, which is the direct sales
channel).

The Dat aProvi der is dp. The get Local Val ue method gets the local value from a
unique dimension value.

/'l I'n sonmeMet hod.

Source unitsForSel ections = units.join(prodSel)
.join(custSel)
.join(timSel)
.join(chanSel);

/1 Conmmit the current Transaction (code not shown).

/I Create a Cursor for unitsForSelections.
Cur sor Manager cursorhgr = dp. creat eCur sor Manager (uni t sFor Sel ecti ons);
ConpoundCur sor uni t sFor Sel Cursor = (CompoundCur sor) cursor Mhgr. createCursor();

/1 Send the Cursor to the printAsCrosstab nethod.
print AsCrosst ab(uni t sFor Sel Cursor);

cursor Mgr. cl ose();
/| The remainder of the code of someMethod is not shown.

private void printAsCrosstab(ConpoundCursor root Cursor)
{
List outputs
int nCutputs

= root Cursor. get Qut puts();
= out puts. size();
/1 Set the initial positions of all outputs.
Iterator outputlter = outputs.iterator();
whil e (outputlter.hasNext())

((Cursor) outputlter.next()).setPosition(1);

/1 The last output is fastest-varying; it represents col ums.
/1 The next to last output represents rows.

/1 Al'l other outputs are on the page.

Cursor col Cursor = (Cursor) outputs.get(nQutputs - 1);
Cursor rowCursor = (Cursor) outputs.get(nQutputs - 2);
ArraylLi st pageCursors = new ArrayList();

for (int i =0 ; i <nQutputs - 2 ; i++)

9-9

ORACLE

}

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

{
pageCur sors. add(out puts. get(i));

}

Il Get the base Val ueCursor, which has the data val ues.
Val ueCur sor dataCursor = root Cursor. get Val ueCursor();

Il Print the pages of the crosstab.
print Pages(pageCursors, 0, rowCursor, col Cursor, dataCursor);

/1 Prints the pages of a crosstab.
private void printPages(List pageCursors, int pagelndex, Cursor rowCursor,

{

}

Cursor col Cursor, Val ueCursor dataCursor)

Il Get a Cursor for this page.
Cursor pageCursor = (Cursor) pageCursors. get(pagel ndex);

Il Loop over the values of this page di mension.
do

Il 1f this is the fastest-varying page dinmension, print a page.
i f (pagel ndex == pageCursors.size() - 1)

[l Print the values of the page dinensions.
pri nt PageHeadi ngs(pageCursors);

[l Print the colum headings.
pri nt Col umHeadi ngs(col Cursor);

[l Print the rows.
print Rows(rowCursor, col Cursor, dataCursor);

/1 Print a couple of blank lines to delinit pages.
printin();
printin();

}

/1 1f this is not the fastest-varying page, recurse to the
/'l next fastest-varying dimension.

el se
{
print Pages(pageCursors, pagelndex + 1, rowCursor, col Cursor,
dataCursor);
}

} while (pageCursor.next());

/] Reset this page dinmension Cursor to its first elenent.
pageCur sor. set Posi tion(1);

Il Prints the values of the page dinensions on each page.
private void printPageHeadi ngs(List pageCursors)

{

Il Print the values of the page di mensions.
Iterator pagelter = pageCursors.iterator();
whil e (pagelter.hasNext())

String value = ((Val ueCursor) pagelter.next()).getCurrentString();

println(getLocal Val ue(val ue));

}

9-10

ORACLE

printin();
}

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

[l Prints the col um headings on each page.
private void printCol utmHeadi ngs(Cursor col Cursor)

{
do

print("\t");
String value = ((ValueCursor) col Cursor).getCurrentString();
print(getLocal Val ue(val ue));

} while (col Cursor.next());

printin();

col Cursor. setPosi tion(1);

}

/1 Prints the rows of each page.
private void printRows(Cursor rowCursor, Cursor col Cursor,

{

Val ueCur sor dat aCursor)

/'l Loop over rows.

do
{

/!l Print row dinension val ue.

String val ue

= ((Val ueCursor) rowCursor).getCurrentString();

print(getLocal Val ue(val ue));

print("\t");

/'l Loop over col ums.

do

/1 Print data val ue.
print(dataCursor. getCurrentVal ue());
print("\t");

} while (col Cursor.next());

printin();

/] Reset the colum Cursor to its first elenent.
col Cursor.setPosition(1);
} while (rowCursor.next());

/1 Reset the row Cursor to its first elenent.
rowCur sor. set Posi tion(1);

}

The example displays the following values, formatted as a crosstab. The display has
added page, column, and row headings to identify the local values of the dimensions.

Channel DIR
Mont h 2001. 01

Channel DIR
Mont h 2000. 02

Pr oduct
ENVY ABM ENVY EXE ENVY STD
0 0 1
2 4 2
1 1 2
Pr oduct

9-11

Chapter 9
Specifying the Behavior of a Cursor

Cust oner ENVY ABM ENVY EXE ENVY STD
COWMP VWHSE SD 1 1 1
COWMP SERV TCK 5 6 6
COVMP VHSE LON 1 2 2
Channel DR
Mont h 2000. 03

Pr oduct
Cust oner ENVY ABM ENVY EXE ENVY STD
COWP WHSE SD 0 2 2
COWP SERV TOK 2 0 2
COWMP VHSE LON 0 2 3

9.3 Specifying the Behavior of a Cursor

You can specify the following aspects of the behavior of a Cur sor .

* The fetch size of a Cur sor, which is the number of elements of the result set that
the Cur sor retrieves during one fetch operation.

* Whether or not Oracle OLAP calculates the extent of the Cur sor. The extent
is the total number of positions of the Cur sor. The extent of a child Cur sor
of a ConpoundCur sor is relative to any of the slower varying outputs of the
ConmpoundCur sor .

* Whether or not Oracle OLAP calculates the positions in the parent Cur sor at which
the value of a child Cur sor starts or ends.

To specify the behavior of Cur sor, you use methods of a Cur sor Speci fication
that you specify for that Cur sor. A Cur sor Speci fi cati on implements the
Cur sor I nf oSpeci fi cati on interface.

You create a Cur sor Speci fi cati on for a Sour ce by calling the

creat eCursor I nfoSpeci ficati on method of the Dat aPr ovi der . You use methods of
the Cur sor Speci fi cat i on to set the characteristics that you want. You then create

a Cur sor Manager by calling the appropriate cr eat eCur sor Manager method of the

Dat aPr ovi der .

< Note:

Specifying the calculation of the extent or the starting or ending position in a
parent Cur sor of the current value of a child Cur sor can be a very expensive
operation. The calculation can require considerable time and computing
resources. You should only specify these calculations when your application
needs them.

For more information on the relationships of Sour ce, Cur sor, and
Cur sor Speci fi cati on objects or the concepts of fetch size, extent, or Cur sor
positions, see Understanding Cursor Classes and Concepts.

ORACLE 9-12

Chapter 9
Calculating Extent and Starting and Ending Positions of a Value

Example 9-9 creates a Sour ce, creates a ConpoundCur sor Speci fi cati on for a
Sour ce, and then gets the child Cur sor Speci fi cati on objects from the top-level
ConpoundCur sor Speci fi cati on.

Example 9-9 Getting CursorSpecification Objects for a Source

Source unitsForSel ections = units.join(prodSel)
.join(custSel)
.join(timeSel)
.join(chanSel);

/1 Conmit the current Transaction (code not shown).

/1 Create a ConpoundCursor Specification for unitsForSelections.
ConpoundCur sor Speci fi cation root Cursor Spec = (ConmpoundCur sor Speci fi cati on)
dp. creat eCursor | nf oSpeci fi cati on(unitsForSel ections);

/1 Get the Val ueCursorSpecification for the base val ues.
Val ueCur sor Speci fi cati on baseVal ueSpec =
r oot Cur sor Spec. get Val ueCur sor Speci fi cation();

/'l Get the Val ueCursorSpecification objects for the outputs.
Li st out put Specs = root Cursor Spec. get Qut puts();
Val ueCur sor Speci fi cati on chanSel Val CSpec =

(Val ueCur sor Speci fication) output Specs. get (0);
Val ueCur sor Speci fication timeSel Val CSpec =

(Val ueCur sor Speci fication) output Specs. get(1);
Val ueCur sor Speci fi cation prodSel Val CSpec =

(Val ueCur sor Speci fication) output Specs. get(2);
Val ueCur sor Speci fi cation cust Sel Val CSpec =

(Val ueCur sor Speci fication) output Specs. get(3);

Once you have the Cur sor Speci fi cati on objects, you can use their methods to
specify the behavior of the Cur sor objects that correspond to them.

9.4 Calculating Extent and Starting and Ending Positions of

a Value

ORACLE

To manage the display of the result set retrieved by a ConrpoundCur sor, you sometimes
need to know the extent of the child Cur sor components. You might also want to

know the position at which the current value of a child Cur sor starts in the parent
ConmpoundCur sor . You might want to know the span of the current value of a child

Cur sor . The span is the number of positions of the parent Cur sor that the current
value of the child Cur sor occupies. You can calculate the span by subtracting the
starting position of the value from the ending position and subtracting 1.

Before you can get the extent of a Cur sor or get the starting or ending positions of a
value in the parent Cur sor, you must specify that you want Oracle OLAP to calculate
the extent or those positions. To specify the performance of those calculations, you
use methods of the Cur sor Speci fi cati on for the Cur sor.

Example 9-10 specifies calculating the extent of a Cur sor. The example uses the
ConmpoundCur sor Speci fi cati on from Example 9-9.

Example 9-10 Specifying the Calculation of the Extent of a Cursor

r oot Cur sor Spec. set Ext ent Cal cul ati onSpeci fied(true);

9-13

ORACLE

Chapter 9
Calculating Extent and Starting and Ending Positions of a Value

You can use methods of a Cur sor Speci fi cati on to determine whether the
Cur sor Speci fi cat i on specifies the calculation of the extent of a Cur sor as in the
following example.

bool ean i sSet = root Cursor Spec. i sExt ent Cal cul ati onSpecified();

Example 9-11 specifies calculating the starting and ending positions of the
current value of a child Cur sor in the parent Cur sor. The example uses the
ConpoundCur sor Speci fi cati on from Example 9-9.

Example 9-11 Specifying the Calculation of Starting and Ending Positions in a
Parent

/1 Get the List of CursorSpecification objects for the outputs.
Il lterate through the list, specifying the calculation of the extent
/1 for each output CursorSpecification.
Iterator iterQutputSpecs = rootCursorSpec.getQutputs().iterator();
whi | e(ii t er Qut put Specs. hasNext ())
{

Val ueCur sor Speci fi cati on val Cursor Spec =

(Val ueCur sor Speci fication)iterQutput Specs. next();
val Cur sor Spec. set Parent Start Cal cul ati onSpeci fied(true);
val Cur sor Spec. set Par ent EndCal cul ati onSpeci fied(true);

}

You can use methods of a Cur sor Speci fi cati on to determine whether the
Cur sor Speci fi cat i on specifies the calculation of the starting or ending positions of
the current value of a child Cur sor in a parent Cur sor, as in the following example.

Iterator iterQutputSpecs = rootCursorSpec.get Qutputs().iterator();
Val ueCur sor Speci fi cation val Cursor Spec =

(Val ueCur sor Speci fi cation)iterQut put Specs. next ();
whi | e(ii t er Qut put Specs. hasNext ())

{
i f (val CursorSpec.isParentStartCal cul ati onSpecified())
/1 Do sonet hing.
i f (val CursorSpec.isParent EndCal cul ati onSpeci fied())
/1 Do sonet hi ng.
val Cursor Spec = (Val ueCursor Speci fication) iterQutputSpecs. next();
}

Example 9-12 determines the span of the positions in a parent ConpoundCur sor of
the current value of a child Cur sor for two of the outputs of the ConpoundCur sor. The
example uses the uni t For Sel ect i ons Sour ce from Example 9-8.

The example gets the starting and ending positions of the current values of the time
and product selections and then calculates the span of those values in the parent
Cur sor. The parent is the root ConpoundCur sor . The Dat aPr ovi der is dp.

Example 9-12 Calculating the Span of the Positions in the Parent of a Value

Source unitsForSel ections = units.join(prodSel)
.join(custSel)
.join(timSel)
.join(chanSel);

/1 Commit the current Transaction (code not shown).

/1 Create a ConpoundCursor Specification for unitsForSelections.

ConpoundCur sor Speci fi cati on root Cursor Spec = (ConpoundCur sor Speci fi cati on)
dp. creat eCur sor I nf oSpeci fi cation(unitsFor Sel ections);

/] Get the CursorSpecification objects for the outputs.

9-14

Chapter 9
Specifying a Fetch Size

Li st out put Specs = root Cursor Spec. get Qut puts();
Val ueCur sor Speci fication timeSel Val CSpec =
(Val ueCur sor Speci fi cati on)out put Specs. get(1); // Qutput for tine.
Val ueCur sor Speci fi cati on prodSel Val CSpec =
(Val ueCur sor Speci fi cati on) out put Specs. get (3); // Qutput for product.

/'l Specify the calculation of the starting and ending positions.
timeSel Val CSpec. set Parent Start Cal cul ati onSpeci fied(true);

ti meSel Val CSpec. set Par ent EndCal cul ati onSpeci fi ed(true);

prodSel Val CSpec. set Parent St art Cal cul ati onSpeci fied(true);
prodSel Val CSpec. set Par ent EndCal cul ati onSpeci fied(true);

/1 Create the CursorManager and the Cursor.
Cur sor Manager cursor Mhgr =

dp. creat eCur sor Manager (uni t sFor Sel ections, 100, root Cursor Spec);
ConpoundCur sor root Cursor = (ConpoundCursor) cursorMgr.createCursor();

/1 Get the child Cursor objects.
Val ueCur sor baseVal Cursor = cursor. get Val ueCursor();
Li st outputs = root Cursor.get Qutputs();

Val ueCur sor chanSel Val s = (Val ueCursor) outputs.get(0)
Val ueCursor timeSel Vals = (Val ueCursor) outputs.get(1)
Val ueCursor cust Sel Val s = (Val ueCursor) outputs.get(2);
Val ueCur sor prodSel Val s = (Val ueCursor) outputs.get(3)

/1 Set the position of the root ConpoundCursor.
root Cur sor. set Posi tion(15);

/1 Get the values at the current position and deternine the span
/1 of the values of the tinme and product outputs.

print(chanSel Val s. getCurrentValue() + ", ");
print(tinmeSelVals.getCurrentValue() + ",\n ");
print(custSel Val s. getCurrentValue() + ", ");
print(prodSel Val s. getCurrentValue() + ", ");
print (baseVal Cursor. get Current Val ue());
printlin();

/1 Determine the span of the values of the two fastest-varying outputs.
| ong span;
span = (prodSel Val s. get Parent End() - prodSel Val s. getParentStart()) +1);
printIn("\nThe span of " + prodSel Val s. get CurrentVal ue() +

" at the current positionis " + span + ".")
span = (tineSel Val s. getParent End() - timeSel Vals.getParentStart()) +1);
printIn("The span of " + timeSel Val s. getCurrentVal ue() +

" at the current positionis " + span + ".")
cursorMgr. cl ose();

This example displays the following text.

CHANNEL_PRI MARY: : CHANNEL: : DI R, CALENDAR_YEAR: : MONTH: : 2000. 02,
SHI PMENTS: : SHI P_TO : COWP SERV TCOK, PRODUCT_PRI MARY: : |1 TEM : ENVY STD, 6.0

The span of PRODUCT_PRI MARY:: | TEM : ENVY STD at the current position is 1.
The span of CALENDAR _YEAR: : MONTH: : 2000. 02 at the current position is 9.

9.5 Specifying a Fetch Size

The number of elements of a Cur sor that Oracle OLAP sends to the client application
during one fetch operation depends on the fetch size specified for that Cur sor. The

ORACLE 9-15

ORACLE

Chapter 9
Specifying a Fetch Size

default fetch size is 100. To change the fetch size, you can set the fetch size on the
root Cur sor for a Sour ce.

Example 9-13 Specifying a Fetch Size

This example gets the default fetch size from the ConpoundCur sor Speci fi cati on from
Example 9-9. The example creates a Cur sor and sets a different fetch size on it, and
then gets the fetch size for the Cur sor. The Dat aPr ovi der is dp.

printIn("The default fetch size is "
+ root Cursor Spec. get Defaul t FetchSi ze() + ".");
Source source = root Cursor Spec. get Source();
Cur sor Manager cursorhgr = dp. creat eCur sor Manager (sour ce) ;
Cursor root Cursor = cursorhhgr. createCursor();
root Cur sor. set Fet chSi ze(10);
printIn("The fetch size is now" + rootCursor.getFetchSize()) + "."

The example displays the following text.

The default fetch size is 100.
The fetch size is now 10.

9-16

Creating Dynamic Queries

To create dynamic queries, you use the Oracle OLAP Java API Tenpl at e class
and other related classes. The following topics describe these classes and provide
examples of implementations of them.

* About Template Objects
* Overview of Template and Related Classes

» Designing and Implementing a Template

10.1 About Template Objects

The Tenpl at e class is the basis of a very powerful feature of the Oracle OLAP Java
API. You use Tenpl at e objects to create modifiable Sour ce objects. With those Sour ce
objects, you can create dynamic queries that can change in response to end-user
selections. Tenpl at e objects also offer a convenient way for you to translate user-
interface elements into OLAP Java API operations and objects.

For information on the Transact i on objects that you use to make changes to
the dynamic Sour ce and to either save or discard those changes, see Using a
TransactionProvider.

10.1.1 About Creating a Dynamic Source

ORACLE

The main feature of a Tenpl at e is the ability to produce a dynamic Sour ce. That
ability is based on two of the other objects that a Tenpl at e uses: instances of the
Dynami cDefini tion and Met adat aSt at e classes.

When a Sour ce is created, Oracle OLAP automatically associates a Sour ceDefinition
with it. The Sour ceDef i ni ti on has information about the Sour ce. Once created,

the Sour ce and the associated Sour ceDefi ni ti on are associated immutably. The

get Sour ce method of a Sour ceDef i ni ti on returns the Sour ce associated with it.

Dynani cDef i ni tion is a subclass of Sour ceDefini ti on. A Tenpl at e creates a
Dynani cDef i ni ti on, which acts as a proxy for the Sour ceDef i ni ti on of the Sour ce
produced by the Tenpl at e. This means that instead of always getting the same
immutably associated Sour ce, the get Sour ce method of the Dynami cDefinition
gets whatever Sour ce is currently produced by the Tenpl at e. The instance of the
Dynani cDef i ni ti on does not change even though the Sour ce that it gets is different.

The Sour ce that a Tenpl at e produces can change because the values, including other
Sour ce objects, that the Tenpl at e uses to create the Sour ce can change. A Tenpl at e
stores those values in a Met adat aSt at e. A Tenpl at e provides methods to get the
current state of the Met adat aSt at e, to get or set a value, and to set the state. You use
those methods to change the data values that the Met adat aSt at e stores.

You use a Dynani cDef i ni tion to get the Sour ce produced by a Tenpl at e. If your
application changes the state of the values that the Tenpl at e uses to create the

10-1

Chapter 10
Overview of Template and Related Classes

Sour ce, for example, in response to end-user selections, then the application uses
the same Dynami cDef i ni ti on to get the Sour ce again, even though the new Sour ce
defines a result set different than the previous Sour ce.

The Sour ce produced by a Tenpl at e can be the result of a series of Sour ce operations
that create other Sour ce objects, such as a series of selections, sortings, calculations,
and joins. You put the code for those operations in the gener at eSour ce method of a
Sour ceGener at or for the Tenpl at e. That method returns the Sour ce produced by the
Tenpl at e. The operations use the data stored in the Met adat aSt at e.

You might build an extremely complex query that involves the interactions of dynamic
Sour ce objects produced by many different Tenpl at e objects. The end result of the
guery building is a Sour ce that defines the entire complex query. If you change the
state of any one of the Tenpl at e objects that you used to create the final Sour ce,
then the final Sour ce represents a result set that is different from that of the previous
Sour ce. You can thereby modify the final query without having to reproduce all of the
operations involved in defining the query.

10.1.2 About Translating User Interface Elements into OLAP Java API
Objects

You design Tenpl at e objects to represent elements of the user interface of an
application. Your Tenpl at e objects turn the selections that the end user makes into
OLAP Java API query-building operations that produce a Sour ce. You then create a
Cur sor to fetch from Oracle OLAP the result set defined by the Sour ce. You get the
values from the Cur sor and display them to the end user. When an end user makes
changes to the selections, you change the state of the Tenpl at e. You then get the
Sour ce produced by the Tenpl at e, create a new Cur sor, get the new values, and
display them.

10.2 Overview of Template and Related Classes

In the OLAP Java API, several classes work together to produce a dynamic Sour ce. In
designing a Tenpl at e, you must implement or extend the following:

e The Tenpl at e abstract class
* The Met adat aSt at e interface
e The Sour ceGener at or interface

Instances of those three classes, plus instances of the Dat aPr ovi der and
Dynamni cDef i ni tion classes, work together to produce the Sour ce that the Tenpl at e
defines.

10.2.1 What Is the Relationship Between the Classes That Produce a
Dynamic Source?

The classes that produce a dynamic Sour ce work together as follows:

A Tenpl at e has methods that create a Dynam cDef i ni ti on and that get and set
the current state of a Met adat aSt at e. An extension to the Tenpl at e abstract class
adds methods that get and set the values of fields on the Met adat aSt at e.

ORACLE 10-2

Chapter 10
Overview of Template and Related Classes

* The Met adat aSt at e implementation has fields for storing the data to use in
generating the Sour ce for the Tenpl at e. When you create a new Tenpl at e, you
pass the Met adat aSt at e to the constructor of the Tenpl at e. When you call the
get Sour ce method of the Dynami cDef i ni ti on, the Met adat aSt at e is passed to the
gener at eSour ce method of the Sour ceCGener at or.

e The Dat aProvi der is used in creating a Tenpl at e and by the Sour ceGener at or in
creating new Sour ce objects.

e The Sour ceGenerat or implementation has a gener at eSour ce method that uses
the current state of the data in the Met adat aSt at e to produce a Sour ce for the
Tenpl at e. You pass in the Sour ceGener at or to the creat eDynani cDefi nition
method of the Tenpl at e to create a Dynami cDef i ni ti on.

e The Dynanmi cDefinition has a get Sour ce method that gets the Sour ce produced
by the Sour ceGener at or. The Dynamni cDef i ni ti on serves as a proxy for the
Sour ceDef i ni ti on that is immutably associated with the Sour ce.

10.2.2 Template Class

You use a Tenpl at e to produce a modifiable Sour ce. A Tenpl at e has methods for
creating a Dynam cDef i ni ti on and for getting and setting the current state of the
Tenpl at e. In extending the Tenpl at e class, you add methods that provide access

to the fields on the Met adat aSt at e for the Tenpl at e. The Tenpl at e creates a

Dynani cDef i ni ti on that you use to get the Sour ce produced by the Sour ceGener at or
for the Tenpl at e.

For an example of a Tenpl at e implementation, see Example 10-1.

10.2.3 MetadataState Interface

An implementation of the Met adat aSt at e interface stores the current state of the
values for a Tenpl at e. A Met adat aSt at e must include a cl one method that creates a
copy of the current state.

When instantiating a new Tenpl at e, you pass a Met adat aSt at e to the Tenpl at e
constructor. The Tenpl at e has methods for getting and setting the values stored

by the Met adat aSt at e. The gener at eSour ce method of the Sour ceGener at or for the
Tenpl at e uses the Met adat aSt at e when the method produces a Sour ce for the
Tenpl ate.

For an example of a Met adat aSt at e implementation, see Example 10-2.

10.2.4 SourceGenerator Interface

ORACLE

An implementation of Sour ceCGener at or must include a gener at eSour ce method, which
produces a Sour ce for a Tenpl at e. A Sour ceGener at or must produce only one type of
Sour ce, such as a Bool eanSour ce, a Nunber Sour ce, or a Stri ngSour ce. In producing
the Sour ce, the gener at eSour ce method uses the current state of the data represented
by the Met adat aSt at e for the Tenpl at e.

To get the Sour ce produced by the gener at eSour ce method, you

create a Dynani cDef i ni ti on by passing the Sour ceGener at or to the

creat eDynani cDef i ni ti on method of the Tenpl at e. You then get the Sour ce by calling
the get Sour ce method of the Dynani cDef i ni ti on.

10-3

Chapter 10
Designing and Implementing a Template

A Tenpl at e can create more than one Dynam cDef i ni ti on, each with a differently
implemented Sour ceGener at or . The gener at eSour ce methods of the different

Sour ceGener at or objects use the same data, as defined by the current state of

the Met adat aSt at e for the Tenpl at e, to produce Sour ce objects that define different
queries.

For an example of a Sour ceGener at or implementation, see Example 10-3.

10.2.5 DynamicDefinition Class

Dynani cDef i ni tion is a subclass of Sour ceDef i ni tion. You create a

Dynami cDef i ni ti on by calling the cr eat eDynani cDefi ni ti on method of a Tenpl at e
and passing it a Sour ceCGener at or . You get the Sour ce produced by the

Sour ceCener at or by calling the get Sour ce method of the Dynami cDefi niti on.

A Dynami cDefinition created by a Tenpl at e is a proxy for the Sour ceDef i ni ti on of
the Sour ce produced by the Sour ceGener at or. The Sour ceDefi ni ti on is immutably
associated with the Sour ce. If the state of the Tenpl at e changes, then the Sour ce
produced by the Sour ceGener at or is different. Because the Dynami cDefinitionis a
proxy, you use the same Dynani cDef i ni ti on to get the new Sour ce even though that
Sour ce has a different Sour ceDef i ni tion.

The get Current method of a Dynani cDef i ni ti on returns the Sour ceDefinition
immutably associated with the Sour ce that the gener at eSour ce method currently
returns. For an example of the use of a Dynani cDefi ni ti on, see Example 10-4.

10.3 Designing and Implementing a Template

ORACLE

The design of a Tenpl at e reflects the query-building elements of the user interface of
an application. For example, suppose you want to develop an application that allows
the end user to create a query that requests a humber of values from the top or
bottom of a list of values. The values are from one dimension of a measure. The other
dimensions of the measure are limited to single values.

The user interface of your application has a dialog box that allows the end user to do
the following:

» Select a radio button that specifies whether the data values should be from the top
or bottom of the range of values.

e Select a measure from a drop-down list of measures.

* Select a number from a field. The number specifies the number of data values to
display.

» Select one of the dimensions of the measure as the base of the data values to
display. For example, if the user selects the product dimension, then the query
specifies some number of products from the top or bottom of the list of products.
The list is determined by the measure and the selected values of the other
dimensions.

e Click a button to bring up a dialog box through which the end user selects the
single values for the other dimensions of the selected measure. After selecting the
values of the dimensions, the end user clicks an OK button on the second dialog
box and returns to the first dialog box.

* Click an OK button to generate the query. The results of the query appear.

10-4

Chapter 10
Designing and Implementing a Template

To generate a Sour ce that represents the query that the end user creates in

the first dialog box, you design a Tenpl at e called TopBot t onTenpl at e. You also
design a second Tenpl at e, called Si ngl eSel ecti onTenpl at e, to create a Sour ce that
represents the end user's selections of single values for the dimensions other than
the base dimension. The designs of your Tenpl at e objects reflect the user interface
elements of the dialog boxes.

In designing the TopBot t onTenpl at e and its Met adat aSt at e and Sour ceGener at or,
you do the following:

e Create a class called TopBot t onifenpl at e that extends Tenpl at e. To the class, you
add methods that get the current state of the Tenpl at e, set the values specified by
the user, and then set the current state of the Tenpl at e.

» Create a class called TopBot t onifenpl at eSt at e that implements Met adat aSt at e.
You provide fields on the class to store values for the Sour ceGener at or to use in
generating the Sour ce produced by the Tenpl at e. The values are set by methods
of the TopBot t onifenpl at e.

e Create a class called TopBot t onifenpl at eGener at or that implements
Sour ceCener at or . In the gener at eSour ce method of the class, you provide the
operations that create the Sour ce specified by the end user's selections.

Using your application, an end user selects units sold as the measure and products as
the base dimension in the first dialog box. The end user also selects the Asia Pacific
region, the first quarter of 2001, and the direct sales channel as the single values for
each of the remaining dimensions.

The query that the end user has created requests the ten products that have the
highest total amount of units sold through the direct sales channel to customers in the
Asia Pacific region during the calendar year 2001.

For examples of implementations of the TopBot t onifenpl at e,

TopBot t onTenpl at eSt at e, and TopBot t onTenpl at eGener at or classes, and an
example of an application that uses them, see Example 10-1, Example 10-2,
Example 10-3, and Example 10-4. The TopBot t oniTenpl at eSt at e and

TopBot t onTenpl at eGener at or classes are implemented as inner classes of the
TopBot t onTenpl at e outer class.

10.3.1 Implementing the Classes for a Template

ORACLE

The examples in this topic implement the Tenpl at e, Met adat aSt at e, and
Sour ceCGener at or classes.

Example 10-1 Implementing a Template
This example is an implementation of the TopBot t onTenpl at e class.

i nport oracl e. ol api . dat a. sour ce. Dat aPr ovi der;

i nport oracl e. ol api . data. source. Dynami cDefini ti on;

i nport oracl e. ol api . dat a. sour ce. Sour ce;

i nport oracl e. ol api . dat a. sour ce. Sour ceGener at or;

i nport oracl e. ol api . dat a. sour ce. Tenpl at e;

i nport oracl e.ol api.transaction. met adat aSt at eManager . Met adat aSt at e;

/**

* Creates a TopBottonTenpl ateState, a TopBottoniTenpl at eGener at or,
* and a Dynami cDefinition.
* CGets the current state of the TopBottoniTenpl ateState and the val ues

10-5

ORACLE

Chapter 10
Designing and Implementing a Template

* that it stores.
* Sets the data values stored by the TopBottonilenpl ateState and sets the
* changed state as the current state.
*/
public class TopBottonTenpl ate extends Tenpl ate
{
/1 Constants for specifying the selection of elenents fromthe
/1 beginning or the end of the result set.
public static final int TOP_BOTTOM TYPE TOP = 0;
public static final int TOP_BOTTOM TYPE BOTTOM = 1,

Il Variable to store the Dynam cDefinition.
private Dynani cDefinition dynani cDef;

/**
* Creates a TopBottoniTenplate with a default type and nunber val ues
* and the specified base di mension.
*/
publ i ¢ TopBottonenpl at e(Sour ce base, DataProvi der dataProvider)
{
super (new TopBot t oniTenpl at eSt at e(base, TOP_BOTTOM TYPE_TOP, 0),
dat aProvi der);
Il Create the DynanmicDefinition for this Tenplate. Create the
/'l TopBott onifenpl at eGenerator that the Dynami cDefinition uses.
dynani cDef =
creat eDynani cDef i ni ti on(new TopBot t oniTenpl at eGener at or (dat aPr ovi der)) ;

}
/**

* CGets the Source produced by the TopBottonilenpl at eGener at or
* fromthe Dynam cDefinition.

*/
public final Source getSource()
{

return dynam cDef. get Source();
}
/**

* Gets the Source that is the base of the elements in the result set.

* Returns null if the state has no base.

*
/

public Source getBase()

{
TopBot t onTenpl at eState state = (TopBottonTenpl ateState) getCurrentState();
return state. base;

}
/**
* Sets a Source as the base.
*/
public void setBase(Source base)
{

TopBot t onTenpl at eState state = (TopBottonTenpl ateState) getCurrentState();
state. base = base;
setCurrent State(state);

}
/**
* Cets the Source that specifies the measure and the single

* selections fromthe dimensions other than the base.
*/

10-6

ORACLE

Chapter 10
Designing and Implementing a Template

public Source getCriterion()

{
TopBot t onTenpl at eState state = (TopBottonTenpl ateState) getCurrentState();
return state.criterion;

}

/**
* Specifies a Source that defines the neasure and the single val ues
* selected fromthe dinensions other than the base.
* The SingleSel ectionTenpl ate produces such a Source.
*
/
public void setCriterion(Source criterion)
{
TopBot t onTenpl at eState state = (TopBottonTenpl ateState) getCurrentState();
state.criterion = criterion;
setCurrent State(state);
}

/**

* Cets the type, which is either TOP_BOTTOM TYPE_TOP or

* TOP_BOTTOM TYPE_BOTTOM

*/

public int getTopBottonType()

{
TopBot t onTenpl at eState state = (TopBottonTenpl ateState) getCurrentState();
return state.topBottoniype;

}
/**
* Sets the type.
*/
public void set TopBottonType(int topBottonType)
{

if ((topBottonType < TOP_BOTTOM TYPE_TOP) ||
(topBot t onffype > TOP_BOTTOM TYPE_BOTTOM)
throw new |11 egal Argument Exception("Inval i dTopBott onilype");
TopBot t onTenpl at eState state = (TopBottonTenpl ateState) getCurrentState();
state.topBottonType = topBottoniype;
setCurrent State(state);

}

/**
* Gets the number of values selected.
*/

public float getN()

{

TopBot t onTenpl at eState state = (TopBottonTenpl ateState) getCurrentState();
return state. N

}

/**
* Sets the nunmber of values to select.
*/

public void setN(float N)

{

TopBot t onTenpl at eState state = (TopBottonTenpl ateState) getCurrentState();
state.N =N
setCurrent State(state);

}

10-7

ORACLE

Chapter 10
Designing and Implementing a Template

Example 10-2 Implementing a MetadataState

This example is an implementation of the TopBot t oniTenpl at eSt at e inner class.
/**
* Stores data that can be changed by a TopBottonienpl ate.
* The data is used by a TopBottonTenpl at eGenerator in producing
* a Source for the TopBottoniTenpl ate.
*/
private static final class TopBottonTenpl ateState
i npl enents Cl oneabl e, MetadataState
{

public int topBottonType;
public float N,

public Source criterion;
public Source base;

/**

* Creates a TopBottonTenpl ateState.

*/

publi ¢ TopBottonTenpl at eSt at e(Source base, int topBottonlType, float N)
{

this.base = base;
this.topBottonilype = topBottonilype;
this.N=N

}

/**
* Creates a copy of this TopBottonienpl ateState.
*
/
public final Chject clone()
{
try
{

return super.clone();

cat ch(O oneNot Support edException e)
{

}
}
}

return null;

Example 10-3 Implementing a SourceGenerator

This example is an implementation of the TopBot t onTenpl at eGener at or inner class.
/**

* Produces a Source for a TopBottonTenpl ate based on the data
* values of a TopBottonTenpl at eSt at e.

*/
private final class TopBottoniTenpl at eGener at or

i npl ement's Sour ceCGener at or

{

/1 Store the DataProvider.

private DataProvi der _dataProvider;

/**

* Creates a TopBottoniTenpl at eGener at or .

*/

publ i ¢ TopBott onTenpl at eGener at or (Dat aPr ovi der dat aPr ovi der)
{

10-8

Chapter 10
Designing and Implementing a Template

_dataProvi der = dataProvider;

}

/**
* CGenerates a Source for a TopBottonienpl ate using the current
* state of the data values stored by the TopBottoniTenpl ateState.
*
/
public Source generateSource(MtadataState state)
{
TopBot t onTenpl at eState castState = (TopBottonTenpl ateState) state;
if (castState.criterion == null)
t hrow new Nul | Poi nt er Exception("CriterionParanmeterM ssing");
Source sortedBase = null;

/'l Depending on the topBottonType val ue, select fromthe base Source
/'l the elenments specified by the criterion Source and sort the

/1 elements in ascending or descending order.

/'l For descending order, specify that null values are |last.

/'l For ascending order, specify that null values are first.

if (castState.topBottoniType == TOP_BOTTOM TYPE_TOP)
sortedBase = cast State. base. sortDescendi ng(castState.criterion, false);
el se
sortedBase = cast State. base. sort Ascendi ng(cast State.criterion, true);
return sortedBase.interval (1, Math.round(castState.N));
}
}

10.3.2 Implementing an Application That Uses Templates

ORACLE

After you have stored the selections made by the end user in the Met adat aSt at e

for the Tenpl at e, use the get Sour ce method of the Dynam cDefi nition to get the
dynamic Sour ce created by the Tenpl at e. This topic provides an example of an
application that uses the TopBot t onTenpl at e described in Example 10-1. For brevity,
the code does not contain much exception handling.

The BaseExanpl ellg class creates and stores an instance of the Cont ext 119 class,
which has methods that do the following:

» Connect to an Oracle Database instance as the user in the command line
arguments.

e Create Cursor objects and displays their values.

Example 10-4 does the following:

e Gets the Mim\kt adat aPr ovi der and the MinRoot Schena.
* Gets the Dat aProvi der.
» Gets the MinDat abaseSchenn for the user.

e Gets the MinCube that has the COSTS, UNITS and SALES measures. From the
cube, the example gets the UNITS and SALES measures and the dimensions
associated with the cube.

» Creates a Si ngl eSel ecti onTenpl at e for selecting single values from some of the
dimensions of the measure. For the code of the Si ngl eSel ecti onTenpl at e class
that this example uses, see SingleSelectionTemplate Class.

» Creates a TopBot t oniTenpl at e and stores selections made by the end user.

10-9

ORACLE

Chapter 10
Designing and Implementing a Template

* Gets the Sour ce produced by the TopBot t onTenpl at e.

e Uses the Cont ext 11g object to create a Cur sor for that Sour ce and to display the
Cur sor values.

The complete code for Example 7-3 includes some of the same code that is in
Example 10-4. The example does not show this code, which extends from the
beginning of Example 10-4 to the following comment in the example:

/1 End of code not shown in
/I Example 7-3.

Example 10-4 Getting the Source Produced by the Template

i nport oracle. ol api . data. sour ce. Dat aProvi der;

i nport oracle. ol api . data. source. Sour ce;

i mport oracl e. ol api . exanpl es. *;

i nport oracle. ol api.netadata. mdm MimAttri bute;

i nport oracle. ol api . net adat a. mdm MinBaseMeasur e;

i nport oracle. ol api . net adat a. mdm MinCube;

inport oracle. ol api . net adat a. mdm MinDat abaseSchens;

i nport oracl e. ol api . met adat a. ndm MinDi mensi onLevel ;

i nport oracle. ol api . net adat a. mdm MinDi mensi onMenber | nf o;
i mport oracl e. ol api . met adat a. mdm MinHi er ar chyLevel ;
inport oracle. ol api.netadata. mdm MinLevel H erar chy;
inport oracle. ol api . netadata. mdm Mimvet adat aPr ovi der ;
i mport oracl e. ol api . met adat a. ndm MinPri mar yDi nensi on;
inport oracle. ol api . net adat a. mdm MinRoot Schensa;

/**
* Creates a query that specifies a number of elenents fromthe top
* or bottomof a selection of dinension nenbers, creates a Cursor
* for the query, and displays the values of the Cursor.
* The sel ected dimension nmenbers are those that have nmeasure val ues
* that are specified by selected menbers of the other dinensions of
* the measure.
*/
public class TopBottonTest extends BaseExanpl ellg
{
/**
* CGets the Mimvet adat aProvi der, the DataProvider, the MinRoot Schema, and the
* MinDat abaseSchenma for the current user.
* Cets the UNITS_CUBE_AW MinCube.
* Fromthe cube, gets the MinBaseMeasure objects for the UNITS and SALES
* measures and the MinPrimaryDi nmension objects that dinmension them
* CGets a hierarchy of the PRODUCT_AW dinension and the |eaf |evel of the
* di mensi on.
* Cets the short description attribute of the dinension.
* Creates a SingleSelectionTenpl ate and adds selections to it.
* Creates a TopBottonTenplate and sets the properties of it.
* CGets the Source produced by the TopBottoniTenpl ate, creates a Cursor
* for it, and displays the values of the Cursor.
* Changes the state of the SingleSelectionTenplate and the
* TopBottonifenpl ate, creates a new Cursor for the Source produced by the
* TopBottonTenpl ate, and displays the values of that Cursor.
*/
public void run() throws Exception
{
Il Get the Mim\et adat aProvider fromthe supercl ass.
MimVet adat aPr ovi der net adat aProvi der = get Mim\et adat aPr ovi der () ;
/1 CGet the DataProvider fromthe Context1lg object of the superclass.
Dat aProvi der dp = get Context (). get DataProvider();

10-10

ORACLE

Chapter 10
Designing and Implementing a Template

/1 Get the MinRoot Schena and the MinDat abaseSchena for the user.
MinmRoot Schena mdnRoot Schena =

(MimRoot Schema) net adat aPr ovi der . get Root Schena() ;
MinmDat abaseSchena mdnDBSchena =

mdnRoot Schena. get Dat abaseSchena(get Cont ext (). get User());

MinCube unitsCube =

(MimCube) mdnDBSchema. get TopLevel Gbj ect (" UNI TS_CUBE_AW") ;
MinBaseMeasur e ndnnits = unitsCube. fi ndOr Creat eBaseMeasure("UNITS");
MinBaseMeasur e ndnBal es = uni t sCube. fi ndOr Cr eat eBaseMeasur e(" SALES") ;

/1 CGet the Source objects for the neasures.
Source units = mdnlni ts. get Source();
Source sal es = ndnBal es. get Source();

[l Get the MinPrimaryDi mension objects for the dimensions of the cube.
Li st <MdnPr i mar yDi mensi on> cubeDi ms = uni t sCube. get Di nensi ons();

MinPr i mar yDi mensi on mdnili neDi m = nul | ;

MinPri mar yDi mensi on mdnProdDi m = nul | ;

MinPri mar yDi mensi on mdmCustDim = nul | ;

MinPri mar yDi mensi on mdnChanDi m = nul | ;

for(MnPri maryDi mensi on ndnPrinDim: cubeDi ns)
{
if (mdnPrinDimgetName().startsWth("TIME"))
mdnili meDi m = ndnPri nDi m
else if (mdnPrinDi mgetName().startsWth("PROD"))
mdnProdDi m = ndnPri nDi m
else if (mdnPrinDi mgetName().startsWth("CUST"))
mdnCust Di m = ndnPri nDi m
else if (mdnPrinDi mgetName().startsWth("CHAN'))
mdnChanDi m = ndnPri nDi m
}

/1 Get the hierarchy of the PRODUCT_AW di mensi on.
Mim_evel Hi erarchy mdnProdHi er =
mdnPr odDi m fi ndOr Cr eat eLevel Hi erar chy(" PRODUCT_PRI MARY") ;

Il Get the detail dimenson |evel of the PRODUCT_AW di nension.
MinDi mensi onLevel mdnltenDi nmievel =
mdnPr odDi m fi ndOr Cr eat eDi nensi onLevel ("I TEM');
Il Get the hierarchy level of the dinension |evel.
MinmH erar chyLevel ndm tenti erLevel =

mdnPr odHi er. fi ndOr Cr eat eHi erar chyLevel (ndnl t enDi nievel) ;

Il Get the Source for the hierarchy |evel.
Source itenmLevel = ndmltenH erlLevel . get Source();

/1 Get the short description attribute for the PRODUCT_AW di mension and
Il the Source for the attribute.
MimAt t ri but e mdnProdShort DescrAttr =
mdnPr odDi m get Short Val ueDescri ptionAttribute();
Sour ce prodShortDescrAttr = nminProdShort DescrAttr. get Source();

/] Create a SingleSelectionTenplate to produce a Source that
/'l represents the neasure val ues specified by single menbers of each of
/'l the dinmensions of the measure other than the base di nension.
Singl eSel ecti onTenpl ate singl eSel ections =
new Singl eSel ectionTenpl ate(units, dp);

10-11

ORACLE

Chapter 10
Designing and Implementing a Template

/1 Create MInDi mensi onMenber | nfo objects for single menbers of the
/1 other dinensions of the neasure.
MiInDi nensi onMenber I nfo ti meMeminfo =
new MInDi nensi onMenber | nf o(mdnili meDi m " CALENDAR_YEAR: : YEAR: : CY2001");
MiInDi nensi onMenber I nfo custMeminfo =
new MInDi mensi onMenber | nf o(mdnCust Dim " SHI PMENTS: : REG ON: : APAC') ;
MiInDi nensi onMenber I nfo chanMeminfo =
new MInDi nensi onMenber | nf o(mdnChanDi m " CHANNEL_PRI MARY: : CHANNEL: : DI R") ;

/1 Add the dimension menmber information objects to the
/'l SingleSelectionTenpl ate.

singl eSel ecti ons. addDi mvenber I nf o(cust Mem nf o) ;

singl eSel ecti ons. addDi mvenber I nf o(chanMen nf o) ;

singl eSel ecti ons. addDi mvenber I nfo(ti meMer nf o) ;

/] Create a TopBottonTenpl ate specifying, as the base, the Source for a
Il a level of a hierarchy.
TopBot t onTenpl at e t opNBott om = new TopBot t onifenpl at e(i tenLevel, dp);

Il Specify whether to retrieve the elements fromthe beginning (top) or the
/1 end (bottom) of the selected elements of the base di nension.
t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_TOP) ;

/1 Set the nunber of elenents of the base dinension to retrieve.

t opNBot t om set N(10) ;

/] Get the Source produced by the SingleSelectionTenplate and specify it as
Il the criterion object.

topNBott om set Criterion(singl eSel ections. get Source());

/1 End of code not shown in
/' Example 7-3.

/] Display a description of the result.
String resultDescription =" products with the most units sold \nfor";
di spl ayResul t Descr (si ngl eSel ections, topNBottom resultDescription);

/] Get the Source produced by the TopBottoniTenpl ate.
Source result = topNBottom get Source();

/1 Join the Source produced by the TopBottoniTenplate with the short
/'l val ue descriptions. Use the joinH dden nethod so that the

/1 dimension member val ues do not appear in the result.

Source result = prodShortDescrAttr.joi nH dden(topNBottonResult);

// Commit the current transaction.
get Context().comit(); // Method of Context1lg.

/] Create a Cursor for the result and display the values of the Cursor.
get Cont ext (). di spl ayTopBottonResul t (result);

/1l Change a dinension nenber selection of the SingleSelectionTenplate.
ti meMem nf o. set Uni queVal ue(" CALENDAR_YEAR : YEAR: : CY2000") ;
singl eSel ecti ons. changeSel ection(ti meMem nfo);

/1 Change the nunber of elements selected and the type of selection.
t opNBot t om set N(5) ;
t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_BOTTQV) ;

/1 Join the Source produced by the TopBottoniTenplate to the short

/] description attribute.
result = prodShortDescrAttr.joinH dden(topNBottonResult);

10-12

Chapter 10
Designing and Implementing a Template

/1 Commit the current transaction.
get Context ().comit();

/1 Display a description of the result.
resul tDescription =" products with the fewest units sold \nfor";
di spl ayResul t Descr (si ngl eSel ections, topNBottom resultDescription);

/I Create a new Cursor for the Source produced by the TopBottoniTenpl ate
/1 and display the Cursor val ues.
get Context (). di spl ayTopBottonResul t(result);

/I Now change the neasure to SALES, and get the top and bottom products by
/'l SALES.

si ngl eSel ecti ons. set Measur e(sal es);

/'l Change the nunber of elements selected.

t opNBott om set N(7) ;

/1 Change the type of selection back to the top.

t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_TOP) ;

resul tDescription =" products with the highest sales anounts \nfor";
di spl ayResul t Descr (si ngl eSel ections, topNBottom resultDescription);

t opNBot t omResul t = t opNBot t om get Sour ce();
result = prodShortDescrAttr.joinH dden(topNBottonResul t);

/1 Commit the current transaction.
get Context ().comit();
get Context (). di spl ayTopBottonResul t(result);

/1 Change the type of selection back to the bottom
t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_BOTTOM) ;

resul tDescription =" products with the | owest sales amunts \nfor";
di spl ayResul t Descr (si ngl eSel ections, topNBottom resultDescription);

t opNBot t omResul t = t opNBot t om get Source();
result = prodShortDescrAttr.joinH dden(topNBottonResul t);

/1 Commit the current transaction.
get Context ().comit();
get Context (). di spl ayTopBottonResul t (result);

}

/**

* Displays a description of the results of the query.

*

@ar am si ngl eSel ections The SingleSel ectionsTenpl ate used by the query.
@ar am t opNBot t om The TopBottoniTenpl ate used by the query.

@aramresultDescr A String that contains a description of the query.

*
*
*
*
*
*

/
private void displayResul t Descr(Singl eSel ectionTenpl ate singl eSel ecti ons,
TopBot t onfTenpl at e t opNBot t om
String resul t Descr)
{
Dat aProvi der dp = get Context (). get DataProvider();

Il Get the short descriptions of the dimension menbers of the

ORACLE 10-13

Chapter 10
Designing and Implementing a Template

/'l SingleSelectionTenpl ate.
StringBuffer shortDescrsFor MenberVals =
si ngl eSel ecti ons. get Menber Short Descrs(dp) ;

/1 Display the number of dimension nenbers selected, the result description,
/1 and the short descriptions of the single selection dinension nenbers.
printIn("\nThe " + Math.round(topNBottom getN()) + resultDescr

+ short DescrsFor MenberVal s +" are:\n");

}

/**

* Runs the TopBottoniTest application.

*

* @aramargs An array of String objects that provides the argunments

* required to connect to an Oracle Database instance, as
* specified in the Contextllg class.
*
/
public static void main(String[] args)
{
new TopBot t onTTest () . execut e(args);
}

}
The TopBot t onTest program produces the following output.

The 10 products with the most units sold
for Asia Pacific, Direct Sales, 2001 are:

Mouse Pad

Uni x/ Wndows 1-user pack

Del uxe Mouse

Laptop carrying case

56Kbps V.90 Type Il Mdem
56Kbps V.92 Type Il Fax/ Mddem
Keyboard Wi st Rest

Internal - DVD-RW- 6X

Q'S Docunentation Set - English
External - DVD-RW- 8X

COXNTOELDNE

[y

5 products with the fewest units sold
Asia Pacific, Direct Sales, 2000 are:

- -
o =
- @D

Envoy External Keyboard

Q'S Docunentation Set - Italian
External 48X CD-ROM

Q'S Docunentation Set - Spanish
Internal 48X CD- ROM USB

g whE

The 7 products with the highest sales amounts
for Asia Pacific, Direct Sales, 2000 are:

Sentinel Financial
Sentinel Standard

Envoy Executive

Sentinel Miltinedia

Envoy Standard

Envoy Anbassador

56Kbps V.90 Type Il Mdem

NoohkwhE

The 7 products with the |owest sales anpunts

ORACLE 10-14

ORACLE

for Asia Pacific, Direct Sales, 2000 are:

Noogkwh e

Envoy External Keyboard
Keyboard Wi st Rest

Mouse Pad

Q'S Docunentation Set - Italian
Q'S Docunentation Set - Spanish
Standard Muse

Q'S Docunentation Set - French

Chapter 10
Designing and Implementing a Template

10-15

Setting Up the Development Environment

This appendix describes the development environment for creating applications that
use the OLAP Java API.

This appendix includes the following topics:

* Overview
* Required Class Libraries

e Obtaining the Class Libraries

A.1 Overview

The OLAP Java API client software is a set of Java packages containing classes that
implement a Java programming interface to Oracle OLAP. An Oracle Database with
the OLAP option provides the OLAP Java API and other required class libraries as
Java archive (JAR) files. As an application developer, you must copy the required JAR
files to the computer on which you develop your Java application, or otherwise make
them accessible to your development environment.

When a Java application calls methods of OLAP Java API objects, it uses the OLAP
Java API client software to communicate with Oracle OLAP, which resides within

an Oracle Database instance. The communication between the OLAP Java API

client software and Oracle OLAP is provided through the Java Database Connectivity
(JDBC) API, which is a standard Java interface for connecting to relational databases.
Another required JAR file provides support for importing and exporting OLAP Java API
metadata objects XML.

To use the OLAP Java API classes as you develop your application, import them into
your Java code. When you deliver your application to users, include the OLAP Java
API classes with the application. You must also ensure that users can access JDBC.

To develop an OLAP Java API application, you must have the Java Development
Kit (JDK), such as one in Oracle JDeveloper. Users must have a Java Runtime
Environment (JRE) whose version number is compatible with the JDK that you used
for development.

A.2 Required Class Libraries

ORACLE

Your application development environment must have the following files:

* Theolap_api.jar file, which contains the OLAP Java API class libraries.

e The oj dbcé. | ar file, which is an Oracle JDBC (Java Database Connectivity)
library that contains classes required to connect to an Oracle Database instance.
The Oracle installation includes the JDBC file. You must use that JDBC file and not
one from another Oracle product or from a product from another vender.

e The xm parserv2.jar file, which contains classes that provide XML parsing
support.

A-1

Appendix A
Obtaining the Class Libraries

* The Java Development Kit (JDK) version 1.6. The Oracle Database installation
does not provide the JDK. If you are using Oracle JDeveloper as your
development environment, then the JDK is already installed on your computer.
However, ensure that you are using the correct version of the JDK in JDeveloper.
For information about obtaining and using some other JDK, see the Oracle
Technology Network Java website at htt p: / / ww. or acl e. coni t echnet wor k/ | ava/
i ndex. htm .

A.3 Obtaining the Class Libraries

ORACLE

Table A-1 lists the OLAP Java API and other JAR files that you must include in your
application development environment. The table includes the locations of the files
under the directory identified by the ORACLE_HOME environment variable on the system
on which the Oracle Database is installed. You can copy these files to your application
development computer, or otherwise include them in your development environment.

Table A-1 Required Class Libraries and Their Locations in the Oracle
Installation

Class Library jar File Location under ORACLE_HOME
ol ap_api.jar lolap/api/lib

oj dbc6j ar [jdbc/lib

xm parserv2.jar Ilib

A-2

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

SingleSelectionTemplate Class

This appendix contains the code for the Si ngl eSel ecti onTenpl at e class. This class is
used by the examples in Using a TransactionProvider, and Creating Dynamic Queries.

B.1 Code for the SingleSelectionTemplate Class

The following is the Si ngl eSel ecti onTenpl at e. j ava class.

ORACLE

inport java.util.Arraylist;

inmport java.util.Collections;

inmport java.util.lterator;

import java.util.List;

i mport oracl e. ol api . dat a. cur sor. Cur sor Manager ;

i nport oracl e. ol api . dat a. cursor. Val ueCursor;

i nport oracl e. ol api . dat a. sour ce. Dat aPr ovi der;

i mport oracl e. ol api . dat a. sour ce. Dynami cDefiniti on;

i nport oracl e. ol api . dat a. sour ce. Sour ce;

i nport oracl e. ol api . dat a. source. StringSource;

i nport oracl e. ol api . dat a. sour ce. Sour ceGener at or;

i nport oracl e. ol api . dat a. sour ce. Tenpl at e;

i mport oracl e. ol api . met adat a. ndim MimAt t ri but e;

i nport oracl e. ol api . met adat a. mdm MinDi mensi onMenber | nf o;
i mport oracl e. ol api . met adat a. ndm MinHi er ar chy;

i nport oracl e. ol api . met adat a. ndm MinPri mar yDi nensi on;

i mport oracle.ol api.transaction. Transacti onProvi der;

i mport oracle. ol api.transaction. Not Commi tt abl eExcepti on;
i mport oracl e.ol api.transaction. met adat aSt at eManager . Met adat aSt at e;

/**

* A Tenplate that joins Source objects for selected nenbers of
* dinmension hierarchies to a Source for a neasure.
*|

public class SingleSel ectionTenpl ate extends Tenpl ate

{

Il Variable to store the Dynani cDefinition.
private Dynani cDefinition dynani cDef;

/**
* Creates a SingleSel ectionTenpl ate.
*/
public SingleSel ectionTenpl at e(Source measure, DataProvider dataProvider)
{
super (new Singl eSel ecti onTenpl at eSt at e(measure), dataProvider);
dynani cDef = createDynam cDefinition(
new Singl eSel ecti onTenpl at eGener at or (dat aPr ovi der));
}

/**

* CGets the Source produced by the SingleSel ectionTenpl at eGener at or
* fromthe Dynami cDefinition.

*/

public final Source getSource()

B-1

ORACLE

Appendix B
Code for the SingleSelectionTemplate Class

{
return dynanm cDef. get Source();

}

/**

* CGets the Source for the neasure stored by the SingleSel ectionTenpl ateState.
*/

public Source get Measure()

Singl eSel ectionTenpl ateState state =
(Si ngl eSel ectionTenpl ateState)get CurrentState();
return state. neasure;

}

/**

* Specifies the Source for the measure stored by the
* SingleSel ectionTenpl ateSt ate.

*/

public void set Measure(Source nmeasure)

Singl eSel ectionTenpl ateState state =

(Singl eSel ectionTenpl ateState)get CurrentState();
state. measure = neasure;
setCurrent State(state);

}

/**

* CGets the List of MinDi nensi onMenberinfo objects for the selected nenbers
* of the dinmensions.

*/

public List getDi mvenberl nfos()

Singl eSel ectionTenpl ateState state =
(Singl eSel ectionTenpl ateState)get CurrentState();
return Col |l ections. unnodifiabl elLi st (state. di mvenberlnfos);

}

/**
* Adds an MInDi mensi onMenberinfo to the List of
* MinDi mensi onMenber I nfo obj ect s.
*/
public void addDi mvenber | nf o(MinDi nensi onMenber | nfo mdnDi mvenber | nf o)

Singl eSel ectionTenpl ateState state =

(Singl eSel ectionTenpl ateState)get CurrentState();
state. di mvenber | nf os. add(ndnDi mvenber | nf o) ;
setCurrent State(state);

}

/**

* Changes the nenber specified for a dinension.

*/

public void changeSel ecti on(MinDi mensi onMenber | nf o ndnDi mvenber | nf o)

Singl eSel ectionTenpl ateState state =
(Singl eSel ectionTenpl ateState)get CurrentState();
int i =0;

Iterator di mvenberlinfosltr = state.di mvenberinfos.iterator();
whi | e (di mvenber|nfosltr.hasNext())

{

B-2

ORACLE

}
/

}

Appendix B
Code for the SingleSelectionTemplate Class

MinDi mensi onMenber | nf o ndnDi mvenber I nf ol nLi st =

(MInDi nensi onMenber | nf o) di mverber | nfosl tr. next();
MdnPr i mar yDi mensi on mdnPri nDi ml = ndnDi mvenber | nf o. get Pri mar yDi mensi on();
MinPr i mar yDi mensi on mdnPrinDi n2 =

mdnDi mvenber | nf ol nLi st. get Pri maryDi mensi on();
/1String value = (String)valuesltr.next();
if (mdnPrinDi ml. get Nane(). equal s(ndnPri nDi n2. get Name()))
{

state. di mvenber I nfos. renmove(i);

state. di mvenber | nfos. add(i, ndnDi mvenber|nfo);

br eak;

}

i ++;

setCurrent State(state);

* %

* CGets the short value description of the each of the dinension menbers
* specified by the list of MinDi nensi onMenber!|nfo objects and returns
* the descriptions in a StringBuffer.

*/

public StringBuffer get Menber Short Descrs(DataProvider dp)

{

boolean firsttime = true;

Li st ndnDi mvem nf oLi st = get Di mvenber | nfos();

StringBuffer shortDescrFor MenberVals = new StringBuffer(" ");
Iterator mdnDi mvem nfoListltr = ndnDi mVem nfolist.iterator();

whi | e(mdnDi mvem nf oLi st1tr. hasNext())

{

MinDi mensi onMenber | nf o mdnDi mvem nfo =
(MInDi nensi onMenber | nf o) mdnDi miverm nf oLi stltr. next();
MinPr i mar yDi mensi on mdnPri nDi m = mdnDi mvend nf o. get Pri maryDi mensi on();
MimAt tri bute nmdnBhortDescrAttr =
mdrPr i mDi m get Short Val ueDescriptionAttribute();
Source shortDescrAttr = mdnShortDescrAttr. get Source();
MinHi erar chy ndnHi er = ndnDi nmivent nf 0. get Hi erarchy();
StringSource hierSrc = (StringSource) mdnHier. get Source();
Source menber Sel = hierSrc. sel ect Val ue(ndnDi mven nf 0. get Uni queVal ue());
Sour ce short DescrFor Menber = shortDescrAttr.joi nH dden(nenber Sel);

/1 Conmit the current transaction.
try
{
(dp. get Transacti onProvi der()).comnitCurrent Transaction();
catch (Exception ex)
printIn("Could not commt the Transaction. " + ex);

}

Cur sor Manager cmmgr = dp. cr eat eCur sor Manager (shor t Descr For Menber) ;
Val ueCur sor val Cursor = (Val ueCursor)cmgr. createCursor();

String shortDescrFor MenberVal = val Cursor.getCurrentString();

B-3

Appendix B
Code for the SingleSelectionTemplate Class

if(firsttinme)

{
short Descr For Menber Val s. append(short Descr For Menber Val) ;
firsttime = fal se;

}
el se
{
short Descr For Menber Val s. append(", " + shortDescr For Menber Val);
}
}
return short DescrFor Menber Val s;
}
/**

* |nner class that inplenents the MetadataState object for this Tenplate.
* Stores data that can be changed by its SingleSel ectionTenpl ate.

* The data is used by a SingleSel ecti onTenpl at eGenerator in producing
* a Source for the SingleSelectionTenplate.

*

/
private static class SingleSelectionTenplateState

i npl enents Met adat aSt at e
{

public Source measure;

public ArraylList di mvenberl nfos;

/**

* Creates a SingleSel ectionTenpl ateState.

*/
public SingleSel ectionTenpl at eSt at e(Source neasure)
{

thi s(measure, new ArrayList());

}

private SingleSel ectionTenpl ateSt ate(Source neasure,
ArraylLi st di mvenber | nf os)

{
this. measure = neasure;
this. di mvenber | nfos = di mvenber I nf os;
}
public Cbject clone()
{
return new Singl eSel ectionTenpl at eSt at e(measur e,
(ArraylList)
di mvenber I nfos. cl one());
}
}
/**

* | nner class that inplenents the SourceCGenerator object for this Tenplate.
* Produces a Source based on the data values of a SingleSel ectionTenplate.
*/
private static final class SingleSelectionTenpl ateGenerator
i npl ements Sour ceCener at or

{
Dat aProvi der dp = null;

/**

* Creates a SingleSel ectionTenpl at eGenerat or.
*/

ORACLE B-4

ORACLE

Appendix B
Code for the SingleSelectionTemplate Class

public SingleSel ectionTenpl at eGener at or (Dat aProvi der dat aProvi der)

{
}

dp = dataProvider;

/**

* Cenerates a Source for the SingleSelectionTenpl ate.
*/

public Source generateSource(MetadataState state)

{

Singl eSel ectionTenpl ateState castState =

(Si ngl eSel ectionTenpl ateSt at e) st ate;

Source result = castState. neasure;

Iterator dimvenberinfoslitr = castState.dimvenberinfos.iterator();
whi | e (di mvenber | nfosltr. hasNext())

{

}

MinDi nensi onMenber | nf o ndnDi mvem nfo =
(MInDi nensi onMenber | nf o) di mvenber I nfosltr. next();
MirHi erar chy ndnHi er = ndnDi mven nf 0. get Hi erarchy();
StringSource hierSrc = (StringSource) mdrHi er. get Source();
Source nenber Sel = hierSrc. sel ect Val ue(mdnDi mivem nf 0. get Uni queVal ue());
/1 Join the Source objects for the selected dinension nenbers
/'l to the neasure.
result = result.joi nH dden(nmenber Sel);

return result;

B-5

Index

A attributes (continued)
specifying target dimension for, 2-25
access to metadata objects unique key, 2-28
restricting, 2-14 AW objects
addObjectClassification method, 2-9 creating, 4-2
aggregate levels of a hierarchy, 2-21 naming, 2-4
AggregationCommand objects AWCubeOrganization class, 2-17
example of creating, 4-8 AWCubeOrganization objects
alias method example of creating, 4-8
description, 6-1 AWPrimaryDimensionOrganization objects
example of, 6-3 creating, 4-3
ALL metadata reader mode, 2-5, 2-6
Analytic Workspace Manager, 1-5 B
analytic workspaces
building, 1-5 base Source
building, example of, 4-11 definition, 5-4, 6-1
creating, 4-2 of a join operation, 5-6
sample, 1-6 BaseExamplellg.java example program, 1-7
ancestors attribute BaseMetadataObject class, 2-3
example of getting, 6-12 basic Source methods, 6-1
method for getting, 2-21 bind variables
appendValues method, 5-18 in XML templates, 2-12
example of, 6-4 Buildable interface, 2-20
applications building analytic workspaces, 1-5
requirements for developing, A-1 example of, 4-11
typical tasks performed by, 1-8 Buildltem objects
ascending creating, 4-11
comparison rules in a join operation, 5-7 BuildProcess objects
asymmetric result set, Cursor positions in an, creating, 4-11
8-10
at method
example of, 6-17 C
AttributeMap objects Cartesian product
creating, 4-3 result of joining unrelated Source objects, 5-6
attributes _ class libraries
as dimensional data objects, 1-4 obtaining, A-2
creating, 4-7

classifying metadata objects, 2-9

ColumnExpression objects
creating, 4-3

. committing transactions, 4-10

mapping, example of, 4-3 comparison parameter

multilingual, 2-26 of the join method, 5-7

prefixes for in materialized views, 2-29 COMPARISON RULE ASCENDING
represented by MdmAttribute objects, 2-23 example of 6-8. 6-19

specifying language for, 2-26

creating an index for, 2-26
grouping, 2-26
mapping, 4-8

ORACLE Index-1

COMPARISON_RULE_ASCENDING_NULLS_FIRST

example of, 6-8
COMPARISON_RULE_DESCENDING
example of, 6-5

COMPARISON_RULE_DESCENDING_NULLS_FIRST

example of, 6-8
COMPARISON_RULE_REMOVE

description, 5-7

example of, 5-10, 6-7, 6-12
COMPARISON_RULE_SELECT

description, 5-7

example of, 5-9, 5-10, 5-16, 5-17
comparisonRule parameter

of a join method, 5-7
CompoundCursor objects

getting children of, example, 9-3

navigating for a crosstab view, example, 9-7,

9-9

navigating for a table view, example, 9-6

positions of, 8-8
connections

closing, 3-3

creating, 3-2

prerequisites for, 3-1
consistent cube, 2-17
ConsistentSolveCommand objects

contained by a ConsistentSolveSpecification,

2-17

example of creating, 4-8
ConsistentSolveSpecification objects

associated with an MdmCube, 2-17
container

of a BaseMetadataObject, 2-3
Contextllg.java example program, 1-7
count method

example of, 5-15
CreateAndBuildAW.java example program, 1-7
createCursor method, 8-1

example of, 6-24, 8-11, 9-1, 9-3
createCursorManager method, 8-1, 8-6

example of, 6-24, 8-11, 9-1
createListSource method

example of, 5-19, 6-14, 6-22, 6-23
createParameterizedSource method

example of, 5-19
createRangeSource method

example of, 6-6
createRootTransaction method, 7-1
createSource method, 5-19

example of, 5-19, 6-15, 6-24
createSQLCursorManager method, 8-6
CreateValueHierarchy.java example program, 4-5
crosstab view

example of, 6-3

navigating Cursor for, example, 9-7, 9-9

ORACLE

Index

CubeDimensionalityMap objects
contained by a CubeMap, 2-16
creating, 4-9
CubeMap objects
creating, 4-9
specifying a Query for, 2-16
CubeOrganization objects
contained by an MdmCube, 2-17
cubes
as dimensional data objects, 1-3
consistent, 2-17
creating, 4-8
example of, 6-15
metadata object representing, 2-16
current position in a Cursor, definition, 8-7
current Transaction, 7-2, 7-6
Cursor objects
created in the current Transaction, 8-2
creating, 8-1
creating, example of, 6-15, 9-1
current position, definition, 8-7
CursorManager objects for creating, 8-6
extent calculation, example, 9-13
extent, definition, 8-12
faster and slower varying components, 8-3
fetch size, definition, 8-13
getting children of, example, 9-3
getting the values of, examples, 9-2
parent starting and ending position, 8-12
position, 8-7
retrieving data with, 1-6
Source objects for which you cannot create,
8-1
span, definition, 8-12
specifying fetch size for a table view,
example, 9-16
specifying the behavior of, 8-4, 9-12
starting and ending positions of a value,
example of calculating, 9-14
structure, 8-2
cursor package
description, 1-2
CursorinfoSpecification interface, 8-5
CursorManager class, 8-6
CursorManager objects
closing before rolling back a Transaction, 7-7
creating, 8-1
creating, example of, 6-15, 9-1
updating the CursorManagerSpecification,
8-7
CursorPrintWriter.java example program, 1-7
CursorSpecification class, 8-5
CursorSpecification objects
getting from a CursorManagerSpecification,
example, 9-13

Index-2

D

data
retrieving, 1-6, 8-1
specifying, 1-6, 5-1
data objects
first-class, 2-9
data store
definition, 1-5
exploring, 3-3
gaining access to data in, 1-5, 2-15, 3-3
scope of, 3-3
data types, 5-3
converting, 6-1
of Source objects, 5-3
See also SQL data types
data warehouse, 1-5
database schemas
represented by MdmDatabaseSchema
objects, 2-14
DataProvider objects
creating, 3-2
needed to create MdmMetadataProvider, 3-4
deployment package
description, 1-2
derived Source objects
definition, 5-2
descending
comparison rules in a join operation, 5-7
descriptions
metadata objects for, 2-6
types provided by API, 2-6
dimension levels
mapping, 4-3
metadata object for, 2-21
dimensional data model
associations between classes, 2-15
description, 1-3
designing an OLAP, 1-5
implementing, 1-5
objects corresponding to MDM objects, 2-2
star schema as a, 1-5
dimensioned Source
definition, 5-12
dimensions
as dimensional data objects, 1-4
creating, 4-2
dimensioning measures, 2-19
MdmDimension classes, 2-19
MdmDimension objects, 4-2
member value formatting, 1-6
metadata objects representing, 2-20
distinct method
description, 6-1
example of, 6-4

ORACLE

Index

div method
example of, 6-21
drilling in a hierarchy
example of, 6-17
dynamic queries, 10-1
dynamic Source objects
definition, 5-2
example of getting, 10-9
produced by a Template, 10-1
DynamicDefinition class, 10-4

E

edges of a cube

creating, 4-2

definition, 1-3

pivoting, example of, 6-15
elements

of a Source, 5-3
empty Source objects

definition, 5-2
EnableMVs.java example program, 2-28
end date

attribute, 2-24

of a time dimension, 2-20
ET views, 2-29

embedded total views for OLAP metadata

objects, 2-29
See also OLAP views

example programs

compressed file containing, 1-7

sample schema for, 1-6
executeBuild method

example of, 4-11
exportFullXML methods

description, 2-11

example of, 4-11
exportincrementalXML methods

description, 2-11
exporting XML templates, 2-10, 4-11
Expression objects

creating, 4-3

example of, 4-9
extent of a Cursor

definition, 8-12

example of calculating, 9-13

use of, 8-12
extract method, 5-12

description, 6-14

example of, 5-19, 6-14, 6-22, 6-23
extraction input

definition, 5-13

Index-3

Index

F getContainedByObject method, 2-3
getDataType method
faster varying Cursor components, 8-3 of a Source, 5-3
fetch size of a Cursor of a Source, example of, 6-6, 6-9, 6-20
definition, 8-13 getEmptySource method, 5-2
example of specifying, 9-16 example of, 5-8
reasons for specifying, 8-13 getETAttributeColumn method, 2-25
findOrCreateAttributeMap method, 2-26, 4-8 getID method
example of, 4-3, 4-4 example of, 5-19
findOrCreateAW method, 2-4 of a BaseMetadataObject, 2-4
example of, 4-2 of a Source, 5-5
findOrCreateAWCubeOrganization method getlnputs method, 5-12
example of, 4-8 getLevelAttribute method
findOrCreateAWPrimaryDimensionOrganization example of, 6-6
method getMdmMetadataProvider method
example of, 4-3 example of, 3-4
findOrCreateBaseAttribute method getMetadataObject method, 2-10
description, 2-25 getMetadataObjects method, 2-10
example of, 4-7 getNewName method, 2-4
findOrCreateBaseMeasure method, 2-16 getOutputs method, 5-8
example of, 2-35, 4-9 getOwner method, 2-3
findOrCreateCube method getParentAttribute method, 2-21
example of, 2-30, 4-8 getRootSchema method, 2-9
findOrCreateCubeDimensionalityMap method getSource method
example of, 4-10 example of, 3-10, 6-6, 6-17
findOrCreateDerivedMeasure method, 2-16 for getting Source produced by a Template,
findOrCreateDescription method, 2-6 example, 10-9
findOrCreateDimensionLevel method, 2-21 in DynamicDefinition class, 10-1
example of, 4-3, 4-4 getTopLevelObject method, 2-14
findOrCreateHierarchyLevel method example of, 4-9
example of, 4-5 getType method, 5-4
findOrCreatelLevelHierarchy method getValidNamespaces method, 2-5
example of, 2-32 getVoidSource method, 5-2
findOrCreateMeasureMap method Global schema for example programs, 1-6
example of, 4-9 GLOBAL_AWJ sample analytic workspace, 1-6
findOrCreateMemberListMap method grouping attributes, 2-26
example of, 4-3 gt method
findOrCreateStandardDimension method, 2-5 of a Source, example of, 6-3
example of, 4-3
first-class data objects, 2-9 H
fromSyntax method
example of, 4-3 hierarchical sorting
fundamental Source objects example of, 6-19
dEfinition, 5-2 hierarchies
for data types, 5-3 as dimensional data objects, 1-4
FundamentalMetadataObject class creating, 4-4
representing data types, 5-3 lineage in materialized views, 2-17
FundamentalMetadataProvider objects lineage in OLAP views, 2-27
example of, 5-4 ragged, 222
skip-level, 2-22
G
generated SQL, getting, 8-1 !
getAncestorsAttribute method, 2-21 ID, 2-4
getAttributeGroupName method, 2-26 getting metadata objects by, 2-10

ORACLE Index-4

ID (continued)
of a metadata object, 2-4
of a Source, 5-5
See also unique identifiers
importing XML templates, 2-11, 4-11
importXML methods
description, 2-11
indexes
for attributes, 2-26
inputs
of a derived Source, 5-12
of a primary Source, 5-12
of a Source
definition, 5-12
deriving with the value method, 5-16
matching with a Source, 5-13
obtaining, 5-12
types of, 5-13
interval method
example of, 6-24
isSubType method
example of, 5-4

J

levels (continued)

creating, 4-4

MdmDimensionLevel objects, 2-21
lineage

populating attribute hierarchy values, 2-27
list Source objects

definition, 5-2

example of creating, 6-6
local dimension member values, 1-6

M

Index

Java archive (JAR) files, required, A-1
Java Development Kit, version required, A-1
JDBC
creating connections, 3-2
libraries required, A-1
join method
description, 5-6, 6-2
examples of, 6-2
full signature, 5-6
rules governing matching an input with a
Source, 5-13
joined parameter
of a join method, 5-6
joinHidden method
example of, 5-11, 6-21, 6-22

L

lag method
example of, 6-22
languages
specifying for an attribute, 2-26
leaves of a hierarchy
defined, 2-21
legacy metadata objects
namespaces for, 2-5
supporting, 2-4
level-based hierarchy, 2-21
levels
as dimensional data objects, 1-4

ORACLE

mapping
dimension levels, 4-3
hierarchy levels, 4-4
measures, 4-9
objects contained by an MdmCube, 2-16
mapping package
description, 1-2
matching an input with a Source
example of, 5-15, 5-16
rules governing, 5-13
materialized views
for a cube, 2-17
for OLAP metadata, 2-28
including hierarchy lineage, 2-17
populating attribute hierarchy lineage for,
2-27
prefixes for attribute columns in, 2-29
MDM metadata model
description, 2-2
mdm package
description, 1-2
MdmAttribute objects
creating, 4-7
description, 2-23
example of the values of, 2-23
inputs of, 5-12
MdmBaseAttribute class
description, 2-25
MdmBaseAttribute objects
creating, 2-25, 4-7
mapping, 2-25, 4-8
mapping, example of, 4-3
MdmBaseMeasure objects
creating, 4-9
description, 2-18
MdmCube class
description, 2-16
MdmCube objects
associations, 2-17
corresponding to a fact table or view, 2-16
example of creating, 4-8
MdmbDatabaseSchema objects
creating, 4-2

Index-5

MdmDatabaseSchema objects (continued)
definition, 2-14
owner of top-level objects, 2-9
MdmDerivedAttribute class
description, 2-29
MdmDerivedMeasure objects
description, 2-18
MdmDescription objects, 2-6
associations, 2-6
MdmDescriptionType objects
associations, 2-6
creating, 2-6
MdmDimension classes
description, 2-19
MdmDimension objects
creating, 4-2
example of getting related objects, 3-7, 3-8
related MdmAttribute objects, 2-23
MdmDimensionLevel objects
creating, 4-3
description, 2-21
MdmHierarchy class, 2-21
MdmHierarchy objects
creating, 4-4
MdmHierarchyLevel class
description, 2-23
MdmHierarchyLevel objects
creating, 4-4
mapping, 4-4
MdmLevelHierarchy objects
creating, 4-4
description, 2-21
MdmMeasure objects
creating, 4-9
description, 2-18
inputs of, 5-12
origin of values, 2-18
MdmMemberListMapOwner interface
implemented by MdmPrimaryDimension,
2-20
MdmMetadataProvider class
associations with MdmSchema subclasses,
2-14
MdmMetadataProvider objects
creating, 3-4
description, 2-9, 3-4
MdmObject class
10g accessor methods for descriptions, 2-6
11g methods for descriptions, 2-6
associations with descriptions, 2-6
MdmOrganizationalSchema objects
description, 2-15
MdmPrimaryDimension class
interfaces implemented by, 2-20

ORACLE

Index

MdmPrimaryDimension objects
creating, 4-3
description, 2-20
MdmQuery interface
implemented by MdmPrimaryDimension,
2-20
MdmRootSchema class, 2-9
MdmRootSchema objects
description, 2-13
MdmSchema class
associations between subclass and
MdmMetadataProvider, 2-14
MdmSchema objects
getting contents of, 3-6
subclasses of, 2-13
MdmSingleValuedAttribute class
description, 2-24
MdmSource class, 2-16
MdmStandardDimension objects
creating, 4-3
description, 2-20
MdmSubDimension class, 2-21
MdmTable objects
getting, 2-14, 4-9
MdmTimeDimension objects
creating, 4-3
description, 2-20
MdmValueHierarchy class
description, 2-23
MdmValueHierarchy objects
example of, 4-5
MdmViewColumn class, 2-3
MdmViewColumn objects, 2-25
MdmViewColumnOwner interface, 2-3
implemented by MdmPrimaryDimension,
2-20
measure folders
represented by MdmOrganizationalSchema
objects, 2-15
MeasureMap objects
contained by a CubeMap, 2-16
creating, 4-9
measures
as dimensional data objects, 1-3
creating, 4-9
dimensioned by dimensions, 2-19
getting values from, 5-14
MdmMeasure objects representing, 2-18
sources of data for, 2-18
MemberListMap objects
creating, 4-3
members
of an MdmDimension, 2-19
of an MdmDimensionLevel, 2-21

Index-6

metadata
creating, 4-1
creating a provider, 3-4
discovering, 3-3
mapping, 4-1
metadata model
implementing, 1-5
MDM, 2-2
metadata objects
classifying, 2-9
creating OLAP, 1-5
getting and setting names for, 2-4
getting by ID, 2-10
in example programs, 1-7
OLAP, 1-5
renaming, 2-4
representing data sources, 2-15
restricting access to, 2-14
supporting legacy, 2-4
top-level, 2-14
unique identifiers of, 2-4
metadata package
description, 1-2
subpackages, 2-2
metadata reader modes, 2-5
MetadataObject interface
implemented by MdmPrimaryDimension,
2-20
MetadataState class, 10-3
example of implementation, 10-8
movingTotal method
example of, 6-23
multidimensional metadata objects
corresponding to dimensional data model
objects, 2-2
corresponding to relational objects, 2-3
multilingual attributes, 2-26
multiple user sessions, 1-1

N

names
getting and setting for metadata objects, 2-4
namespaces
description, 2-5
nested outputs
getting values from a Cursor with, example,
9-4
of a Source, definition, 9-2
null Source objects
definition, 5-2
nullSource method, 5-2
NumberParameter objects
example of, 6-24

ORACLE

Index

O

ojdbcé.jar file, A-2
OLAP Java API
description, 1-1
required class libraries, A-1
sample schema for examples, 1-6
software components, A-1
uses of, 1-1, 1-8
OLAP metadata, 1-5
OLAP metadata objects, 1-5
OLAP views,
description, 2-29
getting name of cube view, 2-29
getting name of dimension or hierarchy view,
2-30
populating attribute hierarchy lineage in, 2-27
olap_api.jar file, A-2
Oracle OLAP
database administration and management
tasks related to, 1-1
Oracle Technology Network (OTN), 1-6
ORACLE_HOME environment variable, A-2
OracleConnection objects
creating, 3-2
OracleDataSource objects
creating, 3-2
outputs
getting from a CompoundCursor, example,
9-3
getting from a
CompoundCursorSpecification,
example, 9-13
getting nested, example, 9-4
in a CompoundCursor, 8-2, 8-12
positions of, 8-8
of a Source
definition, 5-8
hiding, 5-11
obtaining, 5-8
order of, 6-3
producing, 5-8
owner
of a BaseMetadataObject, 2-3

P

package attribute
MdmAttribute for the PRODUCT_AWJ
dimension, 2-23
packages
in the OLAP Java API, 1-2
metadata, 2-2
Parameter objects
description, 5-19

Index-7

Parameter objects (continued)

example of, 5-19, 6-15, 6-24
parameterized Source objects

definition, 5-2

description, 5-19

example of, 5-19, 6-15, 6-24
parent attribute

method for getting, 2-21
parent-child relationships

in a level hierarchy, 2-21

in hierarchies, 2-21
pivoting cube edges, example of, 6-15
position method, 5-12

description, 6-2

example of, 6-6
positions

of a CompoundCursor, 8-8

of a Cursor, 8-7

of a ValueCursor, 8-7

parent starting and ending, 8-12
prefixes

for attribute column in materialized view, 2-29
primary Source objects

definition, 5-2

result of getSource method, 3-10
privileges

specifying, 1-5

Q

gueries
creating using Source methods, 6-1
definition, 1-4
dynamic, 10-1
represented by Source objects, 1-6, 5-1
retrieving data specified by, 1-6
Source objects that are not, 8-1
specifying data, 1-6
SQL, of OLAP views, 2-29
steps in retrieving results of, 9-1
Query class, 1-5
Query objects
associating with a CubeMap, 2-16
creating, 4-9
query rewrite, 2-17

R

ragged hierarchies, 2-22
range Source objects
definition, 5-2
example of creating, 6-6
read Transaction object, 7-2
recursiveJoin method
description, 6-2

ORACLE

Index

recursiveJoin method (continued)
example of, 6-7, 6-19
signature of, 5-1
regular input
definition, 5-13
relating Source objects
with inputs, 5-12
relational objects
corresponding to MDM objects, 2-3
relational schemas
for a data warehouse, 1-5
represented by MdmDatabaseSchema
objects, 2-14
sample, 1-6
relations
reversing with the value method, 6-11, 6-17
removeValue method
example of, 6-12
removing
elements in a join operation, 5-7
resource package
description, 1-2
reversing relations
example of, 6-11, 6-17
REWRITE_MV_OPTION, 2-17
REWRITE_WITH_ATTRIBUTES_MV_OPTION,
2-17
root schema, 2-9, 2-13
root Transaction
definition, 7-1
rotating cube edges, example of, 6-15

S

sample analytic workspace, 1-6
sample schema
used by examples, 1-6
schemas
getting MdmDatabaseSchema for, 4-2
metadata objects representing, 2-13
represented by MdmDatabaseSchema
objects, 2-14
sample, 1-6
star, 1-5
selecting
by position, 6-24
by time series, 6-22
by value, 6-4, 6-10, 6-14, 6-15, 6-21
elements to include in a join operation, 5-7
selectValue method
example of, 6-4, 6-14, 6-21
selectValues method
example of, 5-18, 6-10, 6-15
session package
description, 1-2

Index-8

sessions
creating a UserSession object, 3-2
sharing connection, 1-1
setAllowAutoDataTypeChange method, 2-18,
2-26
example of, 4-7, 4-9
setConsistentSolveSpecification method, 2-17
example of, 4-9
setCreateAttributeIndex method, 2-26
setETALttrPrefix method, 2-29
setExpression method
example of, 4-3
setJoinCondition method, 2-16
setKeyExpression method
example of, 4-3
setLanguage method, 2-26
setMultiLingual method, 2-26
setName method, 2-4
setPopulateLineage method, 2-27
setQuery method
example of, 4-3
setShortValueDescriptionAttribute method, 2-24
setTimeSpanAttribute method, 2-24
setValue method

of a Parameter, example of, 5-19, 6-15, 6-24

of an MdmDescription, 2-6
setValueDescriptionAttribute method
example of, 4-7
sharing connection, 1-1
SID (system identifier), 3-2
SingleSelectionTemplate class, 7-4, 7-7, 10-9,
B-1
skip-level hierarchies, 2-22
slower varying Cursor components, 8-3, 8-10
sort order
determined by comparisonRule parameter,
5-7
sortAscending method
example of, 6-21
sorting hierarchically
example of, 6-19
Source class
basic methods, 6-1
subclasses of, 5-3
Source objects
active in a Transaction object, 8-2
base of a join operation, 5-6
data type
definition, 5-3
getting, 5-4
dimensioned, 5-12
elements of, 5-3
getting ID of, 5-5
inputs of
a derived, 5-12

ORACLE

Index

Source objects (continued)
inputs of (continued)
a primary, 5-12
definition, 5-12
matching with a Source, 5-13
obtaining, 5-12
types, 5-13
kinds of, 5-2
methods of getting, 5-2
modifiable, 10-1
outputs of
definition, 5-8
obtaining, 5-8
parameterized, 5-19
representing queries, 1-6, 5-1
SourceDefinition for, 5-5
subtype
definition, 5-4
obtaining, 5-4
type
definition, 5-4
obtaining, 5-4
source package
description, 1-2
SourceDefinition class, 5-5, 10-1
SourceGenerator class, 10-3
example of implementation, 10-8
span of a value in a Cursor
definition, 8-12, 9-13
SpecifyAWValues.java
example program, 1-7
SQL
getting generated, 1-9, 8-1
gueries of OLAP objects, 2-9, 2-14
gueries of OLAP views, 2-29
SQL data types,
allowing automatic changing of, 2-18, 2-26
specifying for an MdmBaseAttribute, 2-26
specifying for an MdmBaseMeasure, 2-18
SQLCursorManager class, 1-9, 8-6
star schema, 1-5
StringParameter objects
example of, 5-19, 6-15
subtype of a Source object
definition, 5-4
matching an input, 5-17
obtaining, 5-4
syntax package
description, 1-3

T

table view
navigating Cursor for, example, 9-6

Index-9

target dimension

of an attribute, 2-25
Template class, 10-3

designing, 10-4

example of implementation, 10-5
Template objects

classes used to create, 10-2

for creating modifiable Source objects, 10-1
relationship of classes producing a dynamic

Source, 10-2

Transaction objects used in, 7-3
templates

bind variables in XML, 2-12

exporting XML, 2-10, 4-11

importing XML, 2-11, 4-11
time series

selecting based on, 6-22
time span

attribute, 2-24

of a time dimension, 2-20
times method

example of, 6-21
top-level metadata objects

creating, 2-14

defined, 2-9

getting, 2-14

listed, 2-14
TopBottomTemplate class, 7-4, 7-7, 10-5
Transaction objects

child read and write, 7-2

committing, 4-10, 7-2

creating a Cursor in the current, 8-2

current, 7-2

example of using child, 7-7

getting the current, 7-6

preparing, 7-2

read, 7-2

rolling back, 7-4

root, 7-1

setting the current, 7-6

using in Template classes, 7-3

write, 7-2
transaction package

description, 1-3
TransactionProvider

provided by DataProvider, 7-6
tuple

definition, 2-18

in a Cursor, example, 9-5

specifying a measure value, 8-8
type of an Source object

definition, 5-4

obtaining, 5-4

ORACLE

U

unique dimension member values, 1-6
unique identifiers,

of a Source, 5-5

of dimension members, 1-6

of metadata objects, 2-4
unique key attributes, 2-28
UserSession objects

creating, 3-2

sharing connection, 1-1

Vv

Value data type, 5-2
value method, 5-12
description, 6-2
example of, 5-16, 6-6, 6-10, 6-11, 6-17
value separation string, 1-6
value-based hierarchy, 2-23
ValueCursor objects
getting from a parent CompoundCursor,
example, 9-3
getting values from, example, 9-2, 9-3
position, 8-7
values
of a Cursor, 8-2, 8-7
of the elements of a Source, 5-3
views
materialized, 2-28
OLAP, 2-29
virtual Cursor
definition, 8-13
visible parameter
of a join method, 5-7
void Source objects
definition, 5-2

W

write Transaction object, 7-2

X

XML templates
bind variables in, 2-12
controlling attribute export, 2-11
exporting, 2-10, 4-11
importing, 2-11, 4-11
XMLParserCallback interface, 2-10
xmlparserv2.jar file, A-2
XMLWriterCallback interface, 2-11

Index-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle OLAP Java API Developer's Guide
	Changes in Oracle Database 12c Release 1 (12.1)
	Desupported Features

	1 Introduction to the OLAP Java API
	1.1 OLAP Java API Overview
	1.1.1 What the OLAP Java API Can Do
	1.1.2 Describing the Classes in the OLAP Java API
	1.1.3 Describing the Dimensional Data Model
	1.1.4 Implementing the Dimensional Data Model
	1.1.5 Organizing the Data for OLAP

	1.2 Accessing Data Through the OLAP Java API
	1.2.1 Creating Queries
	1.2.2 Specifying Dimension Members
	1.2.3 Creating Cursors

	1.3 Sample Schema for OLAP Java API Examples
	1.4 Tasks That an OLAP Java API Application Performs

	2 Understanding OLAP Java API Metadata
	2.1 Overview of OLAP Java API Metadata Classes
	2.2 Identifying, Describing, and Classifying Metadata Objects
	2.2.1 Identifying Objects
	2.2.1.1 Getting and Setting Names
	2.2.1.2 Describing Unique Identifiers
	2.2.1.3 Supporting Legacy Metadata Objects
	2.2.1.3.1 Supporting Legacy Applications
	2.2.1.3.2 Describing Namespaces

	2.2.2 Using Descriptions
	2.2.3 Using Classifications

	2.3 Providing Metadata Objects
	2.3.1 Describing Metadata Providers
	2.3.1.1 Getting Metadata Objects by ID
	2.3.1.2 Exporting and Importing Metadata as XML Templates
	2.3.1.2.1 Exporting XML Templates
	2.3.1.2.2 Importing XML Templates
	2.3.1.2.3 Describing Bind Variables in XML Templates

	2.3.2 Representing Schemas
	2.3.2.1 Representing the Root Schema
	2.3.2.2 Representing Database Schemas
	2.3.2.3 Representing Organizational Schemas

	2.4 Providing Access to Data Sources
	2.4.1 Representing Cubes and Measures
	2.4.1.1 Representing Cubes
	2.4.1.2 Representing Measures

	2.4.2 Representing Dimensions, Levels, and Hierarchies
	2.4.2.1 Representing Dimensions
	2.4.2.2 Representing Dimension Levels
	2.4.2.3 Representing Hierarchies
	2.4.2.3.1 Representing a Level-based Hierarchy
	2.4.2.3.2 Representing a Value-based Hierarchy

	2.4.2.4 Representing Hierarchy Levels

	2.4.3 Representing Dimension Attributes
	2.4.3.1 Describing the MdmAttribute Class
	2.4.3.1.1 Describing Types of Attributes
	2.4.3.1.2 Associating an Attribute with an MdmSubDimension
	2.4.3.1.3 Getting MdmAttribute Objects
	2.4.3.1.4 Specifying a Target Dimension

	2.4.3.2 Describing the MdmBaseAttribute Class
	2.4.3.2.1 Specifying a Data Type
	2.4.3.2.2 Grouping Attributes
	2.4.3.2.3 Creating an Index
	2.4.3.2.4 Specifying a Language for an Attribute
	2.4.3.2.5 Specifying Multilingual Attributes
	2.4.3.2.6 Populating OLAP Views with Hierarchical Attribute Values
	2.4.3.2.7 Preparing Attributes for Materialized Views

	2.4.3.3 Describing the MdmDerivedAttribute Class

	2.4.4 Using OLAP Views
	2.4.4.1 Getting Cube View and View Column Names
	2.4.4.2 Getting Dimension and Hierarchy View and View Column Names
	2.4.4.3 Using OLAP View Columns
	2.4.4.4 Using Source Objects

	3 Discovering Metadata
	3.1 Connecting to Oracle OLAP
	3.1.1 Prerequisites for Connecting
	3.1.2 Establishing a Connection
	3.1.2.1 Creating a JDBC Connection
	3.1.2.2 Creating a DataProvider and a UserSession

	3.1.3 Closing the Connection and the DataProvider

	3.2 Overview of the Procedure for Discovering Metadata
	3.2.1 Purpose of Discovering the Metadata
	3.2.2 Steps in Discovering the Metadata

	3.3 Creating an MdmMetadataProvider
	3.4 Getting the MdmSchema Objects
	3.5 Getting the Contents of an MdmSchema
	3.6 Getting the Objects Contained by an MdmPrimaryDimension
	3.6.1 Getting the Hierarchies and Levels of an MdmPrimaryDimension
	3.6.2 Getting the Attributes for an MdmPrimaryDimension

	3.7 Getting the Source for a Metadata Object

	4 Creating Metadata and Analytic Workspaces
	4.1 Overview of Creating and Mapping Metadata
	4.2 Creating an Analytic Workspace
	4.3 Creating the Dimensions, Levels, and Hierarchies
	4.3.1 Creating and Mapping Dimensions
	4.3.2 Creating and Mapping Dimension Levels
	4.3.3 Creating and Mapping Hierarchies
	4.3.3.1 Creating and Mapping an MdmLevelHierarchy
	4.3.3.2 Creating and Mapping an MdmValueHierarchy

	4.4 Creating Attributes
	4.5 Creating Cubes and Measures
	4.5.1 Creating Cubes
	4.5.2 Creating and Mapping Measures

	4.6 Committing Transactions
	4.7 Exporting and Importing XML Templates
	4.8 Building an Analytic Workspace

	5 Understanding Source Objects
	5.1 Overview of Source Objects
	5.2 Kinds of Source Objects
	5.3 Characteristics of Source Objects
	5.3.1 Elements and Values of a Source
	5.3.2 Data Type of a Source
	5.3.3 Type of a Source
	5.3.4 Source Identification and SourceDefinition of a Source

	5.4 Inputs and Outputs of a Source
	5.4.1 Describing the join Method
	5.4.1.1 Describing the joined Parameter
	5.4.1.2 Describing the comparison Parameter
	5.4.1.3 Describing the comparisonRule Parameter
	5.4.1.4 Describing the visible Parameter

	5.4.2 Outputs of a Source
	5.4.2.1 Producing a Source with an Output
	5.4.2.2 Using COMPARISON_RULE_SELECT
	5.4.2.3 Using COMPARISON_RULE_REMOVE
	5.4.2.4 Producing a Source with Two Outputs
	5.4.2.5 Hiding an Output

	5.4.3 Inputs of a Source
	5.4.3.1 Primary Source Objects with Inputs
	5.4.3.2 Deriving a Source with an Input
	5.4.3.3 Type of Inputs

	5.4.4 Matching a Source with an Input
	5.4.4.1 Matching the Input of the Source for an MdmAttribute
	5.4.4.2 Matching the Inputs of a Measure
	5.4.4.3 Using the value Method to Derive a Source with an Input
	5.4.4.4 Using the value Method to Select Values of a Source
	5.4.4.5 Using the extract Method to Combine Elements of Source Objects

	5.5 Describing Parameterized Source Objects

	6 Making Queries Using Source Methods
	6.1 Describing the Basic Source Methods
	6.2 Using the Basic Methods
	6.2.1 Using the alias Method
	6.2.2 Using the distinct Method
	6.2.3 Using the join Method
	6.2.4 Using the position Method
	6.2.5 Using the recursiveJoin Method
	6.2.6 Using the value Method
	6.2.6.1 Selecting Elements of a Source
	6.2.6.2 Reversing a Relation

	6.3 Using Other Source Methods
	6.3.1 Using the extract Method
	6.3.2 Creating a Cube and Pivoting Edges
	6.3.3 Drilling Up and Down in a Hierarchy
	6.3.4 Sorting Hierarchically by Measure Values
	6.3.5 Using NumberSource Methods To Compute the Share of Units Sold
	6.3.6 Selecting Based on Time Series Operations
	6.3.7 Selecting a Set of Elements Using Parameterized Source Objects

	7 Using a TransactionProvider
	7.1 About Creating a Metadata Object or a Query in a Transaction
	7.1.1 Types of Transaction Objects
	7.1.2 Committing a Transaction
	7.1.3 About Transaction and Template Objects
	7.1.4 Beginning a Child Transaction
	7.1.5 About Rolling Back a Transaction
	7.1.6 Getting and Setting the Current Transaction

	7.2 Using TransactionProvider Objects

	8 Understanding Cursor Classes and Concepts
	8.1 Overview of the OLAP Java API Cursor Objects
	8.1.1 Creating a Cursor
	8.1.2 Sources For Which You Cannot Create a Cursor
	8.1.3 Cursor Objects and Transaction Objects

	8.2 Cursor Classes
	8.2.1 Structure of a Cursor
	8.2.2 Specifying the Behavior of a Cursor

	8.3 CursorInfoSpecification Classes
	8.4 CursorManager Class
	8.4.1 Updating the CursorInfoSpecification for a CursorManager

	8.5 About Cursor Positions and Extent
	8.5.1 Positions of a ValueCursor
	8.5.2 Positions of a CompoundCursor
	8.5.3 About the Parent Starting and Ending Positions in a Cursor
	8.5.4 What is the Extent of a Cursor?

	8.6 About Fetch Sizes

	9 Retrieving Query Results
	9.1 Retrieving the Results of a Query
	9.1.1 Getting Values from a Cursor

	9.2 Navigating a CompoundCursor for Different Displays of Data
	9.3 Specifying the Behavior of a Cursor
	9.4 Calculating Extent and Starting and Ending Positions of a Value
	9.5 Specifying a Fetch Size

	10 Creating Dynamic Queries
	10.1 About Template Objects
	10.1.1 About Creating a Dynamic Source
	10.1.2 About Translating User Interface Elements into OLAP Java API Objects

	10.2 Overview of Template and Related Classes
	10.2.1 What Is the Relationship Between the Classes That Produce a Dynamic Source?
	10.2.2 Template Class
	10.2.3 MetadataState Interface
	10.2.4 SourceGenerator Interface
	10.2.5 DynamicDefinition Class

	10.3 Designing and Implementing a Template
	10.3.1 Implementing the Classes for a Template
	10.3.2 Implementing an Application That Uses Templates

	A Setting Up the Development Environment
	A.1 Overview
	A.2 Required Class Libraries
	A.3 Obtaining the Class Libraries

	B SingleSelectionTemplate Class
	B.1 Code for the SingleSelectionTemplate Class

	Index

