
Oracle® Database
Using Oracle Sharding

21c
F32165-13
November 2025

Oracle Database Using Oracle Sharding, 21c

F32165-13

Copyright © 2018, 2025, Oracle and/or its affiliates.

Primary Authors: Virginia Beecher, Roopam Jain

Contributors: Shailesh Dwivedi, Jean-Francois Verrier, Prakash Jashnani, Pankaj Chandiramani, Mark Dilman,
Nourdine Benadjaoud, Rennie Sreekumar Ranjit Kumar , David Colello , Steve Ball, Abhishek Srivastava, Sebastian
Binek, Shahab Hamid

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Oracle Sharding Overview

What is Sharding 1

About Oracle Sharding 1

Oracle Sharding as Distributed Partitioning 2

Benefits of Oracle Sharding 3

Example Applications using Database Sharding 4

Flexible Deployment Models 5

High Availability in Oracle Sharding 5

Sharding Methods 5

Client Request Routing 6

Query Processing 6

High Speed Data Ingest 6

Deployment Automation 7

Data Migration 7

Lifecycle Management of Shards 7

Federated Sharding 8

What's New in Oracle Sharding 21c 8

Where To Go From Here 8

2 Oracle Sharding Architecture and Concepts

Components of the Oracle Sharding Architecture 1

Sharded Database and Shards 1

Shard Catalog 2

Shard Director 3

Global Service 3

Management Interfaces for a Sharded Database 3

Sharded Database Schema Objects 4

Partitions, Tablespaces, and Chunks 4

Tablespace Sets 5

Sharded Tables 6

Sharded Table Family 8

How a Table Family Is Sharded 8

Designing Schemas With Multiple Table Families 9

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page i of x

Duplicated Tables 11

Non-Table Objects Created on All Shards 12

Sharding Methods 13

System-Managed Sharding 13

User-Defined Sharding 16

Composite Sharding 18

Using Subpartitions with Sharding 21

Shard-Level High Availability 23

About Sharding and Replication 23

Using Oracle Data Guard with a Sharded Database 24

Using Oracle GoldenGate with a Sharded Database 29

Client Application Request Routing 31

Query Processing and the Query Coordinator 32

3 Security in an Oracle Sharding Environment

Using TCPS Protocol and Transport Layer Security 1

Using Wallets with Oracle Sharding 1

Using Application Contexts During Cross-Shard Operations 3

Sharding-Specific Behavior Differences 4

Using Transparent Data Encryption with Oracle Sharding 4

Creating a Single Encryption Key on All Shards 5

Oracle Database Vault 7

4 Sharded Database Deployment

Introduction to Sharded Database Deployment 1

Planning Your Sharded Database Deployment 2

Plan the Sharded Database Configuration 2

Provision and Configure Hosts and Operating Systems 3

Multi-Shard Query Coordinator Availability and Scalability 4

Install the Oracle Database Software 5

Install the Shard Director Software 5

Create the Shard Catalog Database 5

Create the Shard Databases 9

Validate the Shard Database 14

Configure the Sharded Database Topology 15

Create the Shard Catalog 16

Add and Start Shard Directors 17

Add Shardspaces If Needed 18

Add Shardgoups If Needed 18

Verify the Sharding Topology 19

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page ii of x

Add the Shard CDBs 20

Add the Shard PDBs 20

Add Host Metadata 21

Deploy the Sharding Configuration 22

Create and Start Global Database Services 23

Verify Shard Status 24

Example Sharded Database Deployment 25

Example Sharded Database Topology 25

Deploy the Example Sharded Database 27

5 Using Oracle Database Sharding in Oracle Cloud Infrastructure

Deploy a Sharded Database on Kubernetes 1

Deploy a Sharded Database With Terraform 1

Deploy a Sharded Database with Docker 1

6 Sharded Database Schema Design

Sharded Database Schema Design Considerations 1

Choosing Sharding Keys 2

Primary Key and Foreign Key Constraints 4

Indexes on Sharded Tables 5

Creating Sharded Database Schema Objects 5

Create an All-Shards User 5

Creating a Sharded Table Family 6

Creating Sharded Tables 8

Creating Duplicated Tables 11

Updating Duplicated Tables and Synchronizing Their Contents 12

DDL Processing in a Sharded Database 12

Creating Objects Locally and Globally 13

DDL Syntax Extensions for Oracle Sharding 14

CREATE TABLESPACE SET 14

ALTER TABLESPACE SET 15

DROP TABLESPACE SET and PURGE TABLESPACE SET 15

CREATE TABLE 15

ALTER TABLE 17

ALTER SESSION 18

Running PL/SQL Procedures in a Sharded Database 18

Schema Creation Examples 20

Create a System-Managed Sharded Database Schema 20

Create a User-Defined Sharded Database Schema 23

Create a Composite Sharded Database Schema 26

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page iii of x

Monitor DDL Processing and Verify Object Creation 29

DDL Failure and Recovery Examples 32

Generating Unique Sequence Numbers Across Shards 37

7 Using the Sharding Advisor

About Sharding Advisor 1

Run Sharding Advisor 2

Run Sharding Advisor on a Non-Production System 3

Review Sharding Advisor Output 4

Choose a Sharding Advisor Recommended Configuration 4

Sharding Advisor Usage and Options 5

Sharding Advisor Output Tables 7

SHARDINGADVISOR_CONFIGURATIONS Table 7

SHARDINGADVISOR_CONFIGDETAILS Table 7

SHARDINGADVISOR_QUERYTYPES Table 8

Sharding Advisor Output Review SQL Examples 8

Sharding Advisor Security 10

8 Migrating to a Sharded Database

Using Oracle Data Pump to Migrate to a Sharded Database 1

Migrating a Schema to a Sharded Database 1

Migrating the Sample Schema 3

Migrating Data to a Sharded Database 5

Loading the Sample Schema Data 7

Migrating Data Without a Sharding Key 9

Using External Tables to Load Data into a Sharded Database 10

Loading Data into Duplicated Tables 11

Loading Data into Sharded Tables 12

Using Oracle GoldenGate to Replicate Data Between Sharded and Non-Sharded Databases 14

Oracle GoldenGate Replication Prerequisites 14

Replicating Data from a Non-Sharded Database to a Sharded Database 14

9 Query and DML Processing

How Database Requests are Routed to the Shards 1

Routing Queries and DMLs Directly to Shards 1

Routing Queries and DMLs by Proxy 2

Connecting to the Query Coordinator 3

Query Coordinator Operation 3

Query Processing for Single-Shard Queries 4

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page iv of x

Query Processing for Multi-Shard Queries 5

Specifying Consistency Levels in a Multi-Shard Query 6

Supported Query Constructs and Example Query Shapes 6

Queries on Sharded Tables Only 7

Queries Involving Both Sharded and Duplicated Tables 7

Aggregate Functions Supported by Oracle Sharding 9

Queries with User-Defined Types 9

Execution Plans for Proxy Routing 10

Supported DMLs and Examples 12

Simple DMLs Where Only the Target Table is Referenced 13

DMLs Referencing Other Tables 13

Example Merge Statements 14

Limitations in Multi-Shard DML Support 14

Gathering Optimizer Statistics on Sharded Tables 15

10

Developing Applications for the Sharded Database

Direct Routing to a Shard 1

Sharding APIs Supporting Direct Routing 2

Oracle JDBC APIs for Oracle Sharding 2

Oracle Call Interface for Oracle Sharding 3

Oracle Universal Connection Pool APIs for Oracle Sharding 4

Oracle Data Provider for .NET APIs for Oracle Sharding 7

JDBC Sharding Data Source 8

11

Sharding JSON Document Collections

Overview of Sharding JSON Documents 1

Preparing the Oracle Sharding Environment 2

Creating an All-Shards User with SODA Privileges 2

Choosing a Sharding Key 3

Using SODA ID as the Sharding Key 4

Creating a Sharded Table for the JSON Collection 4

Creating a Sharded Table: System-Managed 5

Creating a Sharded Table: User-Defined 5

Creating a Mapped SODA Collection on the Sharded Table 6

Code Samples 7

Java Code Sample 7

Python Code Sample 11

Using a JSON Field as a Sharding Key 13

Creating a Sharded Table for the JSON Collection 13

Creating a Sharded Table: System-Managed 13

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page v of x

Creating a Sharded Table: User-Defined 14

Creating a Mapped SODA Collection on the Sharded Table 14

Creating a Trigger to Populate the Sharding Key 16

Code Samples 16

Java Code Sample 16

Python Code Sample 19

Additional Information About Sharding with SODA 21

Performance Tuning 21

Scaling Out Shards 21

12

Sharded Database Administration

Managing the Sharding-Enabled Stack 1

Starting Up the Sharding-Enabled Stack 1

Shutting Down the Sharding-Enabled Stack 1

Oracle Globally Distributed Database Users and Roles 2

Overview of Users and Roles 2

Oracle Globally Distributed Database Roles 2

About the GSMUSER Account 3

About the GSMROOTUSER Account 3

Backing Up and Recovering a Sharded Database 3

Prerequisites to Configuring Centralized Backup and Restore 4

Configuring Automated Backups 6

Enabling and Disabling Automated Backups 9

Backup Job Operation 9

Monitoring Backup Status 10

Viewing an Existing Backup Configuration 11

Running On-Demand Backups 12

Viewing Backup Job Status 12

Listing Backups 14

Validating Backups 15

Deleting Backups 15

Creating and Listing Global Restore Points 16

Restoring From Backup 17

Propagation of Parameter Settings Across Shards 18

Modifying a Sharded Database Schema 18

Managing Sharded Database Software Versions 19

Patching and Upgrading a Sharded Database 19

Performing a Rolling Upgrade 20

Upgrading Sharded Database Components 20

Post-Upgrade Steps for Oracle Sharding 21c 21

Compatibility and Migration from Oracle Database 18c 23

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page vi of x

Downgrading a Sharded Database 24

Managing Oracle Sharded Database with Enterprise Manager Cloud Control 24

Prerequisite: Enable Sharded Database Metrics 25

Prerequisite: Discover the Sharded Database Topology 26

Overview of Sharded Database Management with Oracle Enterprise Manager Cloud
Control 27

Monitoring a Sharded Database 30

Querying System Objects Across Shards 30

Monitoring a Sharded Database with Enterprise Manager Cloud Control 31

Sharded Database Home Page 31

Data Distribution and Performance Page 34

Monitoring a Sharded Database with GDSCTL 38

Shard Management 39

About Adding Shards 39

Work Flow for Adding Shards 39

Removing a Shard From the Pool 40

Replacing a Shard 40

Converting a Physical Standby to a Snapshot Standby 43

Migrating a Non-PDB Shard to a PDB 44

Managing Shards with Oracle Enterprise Manager Cloud Control 44

Validating a Shard 46

Adding Primary Shards 46

Adding Standby Shards 47

Deploying Shards 48

Editing a Shard 48

Removing a Shard 49

Chunk Management 49

Resharding and Hot Spot Elimination 49

Moving Chunks 51

Updating an In-Process Chunk Move Operation 52

Splitting Chunks 53

Managing Chunks with Oracle Enterprise Manager Cloud Control 53

Moving Chunks with Oracle Enterprise Manager Cloud Control 53

Splitting Chunks with Oracle Enterprise Manager Cloud Control 54

Shard Director Management 54

Creating a Shard Director 54

Editing a Shard Director Configuration 55

Removing a Shard Director 55

Region Management 56

Creating a Region 56

Editing a Region Configuration 56

Removing a Region 57

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page vii of x

Shardspace Management 57

Creating a Shardspace 57

Adding a Shardspace to a Composite Sharded Database 58

Shardgroup Management 59

Creating a Shardgroup 59

Services Management 60

Creating a Service 60

13

Achieving Data Sovereignty with Oracle Sharding

Overview of Data Sovereignty 1

Benefits of Implementing Data Sovereignty with Oracle Sharding 1

Implementing Data Sovereignty with Oracle Sharding 2

Use Case of Achieving Data Sovereignty with Oracle Sharding 3

Overview of Oracle Sharding Solution 3

Deployment Topology of Data Sovereignty with Oracle Sharding 5

Configuring Data Sovereignty with Oracle Sharding 6

Configuring VCN Networks in All Three OCI Regions 6

Configuring Remote VCN Peering Between All Three Regions 6

Configuring Private DNS for Naming Resolution Between the Regions 7

Installing a Global Service Manager in Each Region 8

Collecting TNS entries for Shard Catalog and Sharded Databases 8

Configuring the Shard Catalog 9

Configuring the Shard Databases 10

Creating Oracle Sharding Global Database 11

Implementing a Session-Based Application Context Policy 12

14

Troubleshooting Oracle Sharding

Troubleshooting Tips 1

Checking the Sharding Method 1

Checking the Replication Type 2

Checking the Oracle Data Guard Protection Mode 3

Checking Which Shards Are Mapped to a Key 3

Checking Shard Operation Mode (Read-Only or Read-Write) 4

Checking DDL Text 5

Checking Chunk Migration Status 5

Checking Table Type (Sharded or Duplicated) 6

Checking User Type (Local or ALL_SHARD) 7

Identifying Tables Created as Sharded Tablespaces 7

Checking if Shard DDL is Enabled or Disabled 7

Filtering Data by Sharding Key 8

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page viii of x

Setting the Duplicated Table Refresh Rate 9

Oracle Sharding Tracing and Debug Information 9

Enabling Tracing for Oracle Sharding 9

Where to Find Oracle Sharding Alert Logs and Trace Files 10

Common Error Patterns and Resolutions for Sharded Databases 11

Shard Director Fails to Start 11

Issues Using Deploy Command 12

Issues Moving Chunks 12

Issue During Deployment of Oracle Sharding for Role-Separated Environment 13

15

Oracle Sharding Solutions

Combine Existing Non-Sharded Databases into a Federated Sharded Database 1

Overview 1

About Federated Sharding 1

Federated Sharding Schema Requirements 1

Sharded and Duplicated Tables in a Federated Sharding Configuration 2

Limitations to Federated Sharding 2

Federated Sharding Security 2

Creating and Deploying a Federated Sharding Configuration 2

Create the Federated Sharding Configuration 3

Retrieve, Inspect, and Apply the DDLs 3

Convert Tables to Duplicated Tables 5

Prepare the Shards For Multi-Shard Queries 5

Federated Sharding Reference 6

SYNC SCHEMA Operations 6

Troubleshooting Federated Sharding 9

Creating Affinity Between Middle-Tier and Shards 11

16

Oracle Sharding Reference

Using GDSCTL with Oracle Sharding 1

GDSCTL Operation 1

Starting GDSCTL 1

Running GDSCTL Commands Interactively 1

Running GDSCTL Batch Operations 1

GDSCTL Help Text 2

GDSCTL Connections 2

GDSCTL Shard Catalog Connections 2

GDSCTL Shard Director Connections 2

GDSCTL Commands Used with Oracle Sharding 3

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page ix of x

SHARDED_TABLE_FAMILIES 5

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page x of x

Preface

Review the following topics to:

• Discover how you can use this document to learn about Oracle Sharding

• Get accessibility information for this document

• See a list of related documents that may help you design, develop, deploy, and manage
your Oracle Sharding environment

• Learn about typographic conventions used in this document

Audience
This document was written with a wide variety of audienaces in mind. System and application
architects can use it to evaluate Oracle Sharding suitability for their requirements. IT managers
can scope out the work needed to implement Oracle Sharding for proof of concept and
production deployments. Database administrators can find information to help them deploy and
maintain a sharded database. Application developers can learn about any code changes for
using Oracle Sharding. Finally, business analysts can use this document as a guide to figure
out costing for an Oracle Sharding implementation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
The following publications may be of particular interest to you:

• Oracle Database Install and Upgrade

• Oracle Database Administrator’s Guide

• Oracle Data Guard Concepts and Administration

• Oracle Data Guard Broker

• Oracle Database Global Data Services Concepts and Administration Guide

• Oracle Database JDBC Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

• Oracle Call Interface Programmer's Guide

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 2

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/database/oracle/oracle-database/19/install-and-upgrade.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, a value in a list of values, or terms defined in the text.

italic Italic type indicates emphasis on a particular word or phrase, or book titles.

monospace Monospace type indicates

• SQL statements, commands, and code in examples
• SQL statements, configuration parameter names, keywords, and

commands in the text
• URLs, file names, folder or directory names, and paths
• Text that appears on the screen, and text that you enter, when shown in

combination with computer output

monospace italic Monospace italic type indicates placeholder variables for which you supply the
values.

Conventions

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 2

1
Oracle Sharding Overview

Learn about Oracle Sharding capabilities and benefits in this high level conceptual discussion.

What is Sharding
Sharding is a method of partitioning data to distribute the computational and storage workload,
which helps in achieving hyperscale computing.

Hyperscale computing is a computing architecture that can scale up or down quickly to meet
increased demand on the system. This architecture innovation was originally driven by internet
giants that run distributed sites and has been adopted by large-scale cloud providers.

Companies often achieve hyperscale computing using a technology called database sharding,
in which they distribute segments of a data set—a shard—across lots of databases on lots of
different computers.

Sharding uses a shared-nothing architecture in which shards share no hardware or software.
All of the shards together make up a single logical database, called a sharded database.

From the perspective of the application, a sharded database looks like a single database: the
number of shards, and the distribution of data across those shards, are completely transparent
to database applications. From the perspective of a database administrator, a sharded
database consists of multiple databases that can be managed collectively.

Figure 1-1 Distribution of a Table Across Database Shards

Sharded Table in Three Databases

Server B Server CServer A

Server

Unsharded Table in

 One Database

About Oracle Sharding
Oracle Sharding is a feature of Oracle Database that lets you automatically distribute and
replicate data across a pool of Oracle databases that share no hardware or software. Oracle
Sharding provides the best features and capabilities of mature RDBMS and NoSQL databases,
as described here.

• SQL language used for object creation, strict data consistency, complex joins, ACID
transaction properties, distributed transactions, relational data store, security, encryption,
robust performance optimizer, backup and recovery, and patching with Oracle Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 9

• Oracle innovations and enterprise-level features, including Advanced Security, Automatic
Storage Management (ASM), Advanced Compression, partitioning, high-performance
storage engine, SMP scalability, Oracle RAC, Exadata, in-memory columnar, online
redefinition, JSON document store, and so on

• Sharding-aware Oracle Database tools, such as SQL Developer, Enterprise Manager
Cloud Control, Recovery Manager (RMAN), and Data Pump, for sharded database
application development and management

• Programmatic interfaces, such as Java Database Connectivity (JDBC), Oracle Call
Interface (OCI), Universal Connection Pool (UCP), Oracle Data Provider for .NET
(ODP.NET), and PL/SQL, including extensions for sharded application development

• Extreme availability with Oracle Data Guard and Active Data Guard.

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

• Support for multi-model data like relational, text, and JSON

• Existing life-cycle management and operational processes can be kept, leveraging in-
house and world-wide Oracle database administrator skill sets

• Enterprise-level support

• Extreme scalability and availability of NoSQL databases

Oracle Sharding as Distributed Partitioning
Sharding is a database scaling technique based on horizontal partitioning of data across
multiple independent physical databases. Each physical database in such a configuration is
called a shard.

From the perspective of an application, a sharded database in Oracle Sharding looks like a
single database; the number of shards, and the distribution of data across those shards, are
completely transparent to the application.

Even though a sharded database looks like a single database to applications and application
developers, from the perspective of a database administrator, a sharded database consists of
a set of discrete Oracle databases, each of which is a single shard, that can be managed
collectively.

A sharded table is partitioned across all shards of the sharded database. Table partitions on
each shard are not different from partitions that could be used in an Oracle database that is not
sharded.

The following figure shows the difference between partitioning on a single logical database and
partitions distributed across multiple shards.

Chapter 1
Oracle Sharding as Distributed Partitioning

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 9

Figure 1-2 Sharding as Distributed Partitioning

Single Logical Database Multiple Physical Shards

1 2 3

Partitions

4 5

6 7 8 9 10

9 10

11 12

11 12 13 14 15

16 17 18 19 20

Partitions

13 14

15 16

Partitions

17 18

19 20

Partitions

1 2

3 4

Partitions

5 6

7 8

Partitions

Oracle Sharding automatically distributes the partitions across shards when you issue the
CREATE SHARDED TABLE statement, and the distribution of partitions is transparent to
applications. The figure above shows the logical view of a sharded table and its physical
implementation.

Benefits of Oracle Sharding
Oracle Sharding provides linear scalability, complete fault isolation, and global data distribution
for the most demanding applications.

Key benefits of Oracle Sharding include:

• Linear Scalability

The Oracle Sharding shared–nothing architecture eliminates performance bottlenecks and
provides unlimited scalability. Oracle Sharding supports scaling up to 1000 shards.

• Extreme Availability and Fault Isolation

Single points of failure are eliminated because shards do not share resources such as
software, CPU, memory, or storage devices. The failure or slow-down of one shard does
not affect the performance or availability of other shards.

Shards are protected by Oracle MAA best practice solutions, such as Oracle Data Guard
and Oracle RAC.

An unplanned outage or planned maintenance of a shard impacts only the availability of
the data on that shard, so only the users of that small portion of the data are affected, for
example, during a failover brownout.

• Geographical Distribution of Data

Sharding enables Global Database where a single logical database could be distributed
over multiple geographies. This makes it possible to satisfy data privacy regulatory
requirements (Data Sovereignty) as well as allows to store particular data close to its
consumers (Data Proximity).

Chapter 1
Benefits of Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 9

Example Applications using Database Sharding
Oracle Sharding provides benefits for a variety of use cases.

Real Time OLTP

Real time OLTP applications have a very high transaction processing throughput, a large user
population, huge amounts of data, and require strict data consistency and management at
scale. Some examples include internet-facing consumer applications, financial applications
such as mobile payments, large scale SaaS applications such as billing and medical
applications. The benefits of using Oracle Sharding for such applications include:

• Linear scalability of transactions per second, with response time staying constant as new
shards are added to support larger data volume

• Better application SLAs, because planned and unplanned outages on any given shard
does not impact the data stored and available on other shards

• Strict data consistency for transactional applications

• Transactions spanning multiple shards

• Support for complex joins, triggers, and stored procedures

• Simplified manageability at scale

Global Applications

Many enterprise applications are global in nature, where the same application serves
customers in multiple geographic locations. Such applications typically use a single logical
global database which is shared across multiple geographical regions. The benefits of a
shared global database include:

• Strict enforcement of data sovereignty, where data privacy regulations require data to stay
in a certain geographic location, region, country, or even state.

• Reduction of data replication across locations

• Better application SLAs, because planned and unplanned outages in one region do not
impact other regions

Internet of Things and Data Streaming Applications

Typically such applications collect large amounts of data and stream it at a very high speed.
Oracle Sharding has optimized data stream libraries which use Oracle Database's direct path
I/O technology to load data into the sharded database with extremely high speed. Data load
requirements for these applications can be in to 100s of millions of records per second. Once
the data is loaded directly into the database, it is available for immediate processing with
advanced query processing and analytic capabilities.

Machine Learning

Many machine learning applications require training and scoring of models in real time. Model
training and scoring for many applications using algorithms like anomaly detection, and
clustering is specific to a given entity (for example, a given user's financial transaction patterns
or specific device metrics at a certain time of the day). This kind of data can easily be shared
by using a sharding key specific to the user or devices. Additionally, Oracle Database Machine
Learning algorithms can be applied directly in the database obviating the need for a separate
data pipeline and machine learning processing infrastructure.

Big Data Analytics

Chapter 1
Example Applications using Database Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 9

When you have terabytes of data, sharding means you don't have to warehouse data to do
analytics on it. With up to 1000 shards in capacity, Oracle Sharding can turn a relational
database into a warehouse-sized data store. With the Federated Sharding solution, multiple
database installations in different locations that run the same application can be converted into
a federated sharded database so that you can run data analytics without moving the data.

NoSQL Alternative

NoSQL solutions lack major RDBMS features, such as relational schema, SQL, complex data
types, online schema changes, multi-core scalability, security, ACID properties, CR for single-
shard operations, and so on. With Oracle Sharding you get the nearly limitless scaling and
sharding you had with NoSQL and all of the features and benefits of Oracle Database.

Flexible Deployment Models
The shared-nothing architecture of Oracle Sharding lets you keep your data on-premises, in
the cloud, or on a hybrid of cloud and on-premises systems. Because the database shards do
not share any resources, the shards can exist anywhere on a variety of on-premises and cloud
systems.

You can choose to deploy all of the shards on-premises, have them all in the cloud, or you can
split them up between cloud and on-premises systems to suit your needs.

Shards can be deployed on all database deployment models such as single instance, Exadata,
and Oracle RAC.

High Availability in Oracle Sharding
Oracle Sharding is tightly integrated with Oracle Data Guard to provide high availability and
disaster recovery. Replication is automatically configured and deployed when the sharded
database is created.

Oracle Data Guard replication maintains one or more synchronized copies (standbys) of a
shard (the primary) for high availability and data protection. Standbys can be deployed locally
or remotely, and when using Oracle Active Data Guard can also be open for read-only access.
Use this option when application needs strict data consistency and zero data loss.

Oracle GoldenGate is used for fine-grained active-active replication. Though applications must
be able to deal with conflicts and data loss upon potential failover.

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Optionally, you can use Oracle RAC for shard-level high availability, complemented by
replication, to maintain shard-level data availability in the event of a cluster outage. Each shard
can be deployed on an Oracle RAC cluster to give it instant protection from node failure. For
example, each shard could be a two node Oracle RAC cluster.

Sharding Methods
Because Oracle Sharding is based on table partitioning, all of the sub-partitioning methods
provided by Oracle Database are also supported by Oracle Sharding. A data sharding method

Chapter 1
Flexible Deployment Models

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 9

controls the placement of the data on the shards. Oracle Sharding supports system-managed,
user defined, or composite sharding methods.

• System-managed sharding does not require you to map data to shards. The data is
automatically distributed across shards using partitioning by consistent hash. The
partitioning algorithm uniformly and randomly distributes data across shards.

• User-defined sharding lets you explicitly specify the mapping of data to individual shards.
It is used when, because of performance, regulatory, or other reasons, certain data needs
to be stored on a particular shard, and the administrator needs to have full control over
moving data between shards.

• Composite sharding allows you to use two levels of sharding. First the data is sharded by
range or list and then it is sharded further by consistent hash.

In many use cases, especially for data sovereignty and data proximity requirements, the
composite sharding method offers the best of both system-managed and user-defined
sharding methods, giving you the automation you want and the control over data
placement you need.

Client Request Routing
Oracle Sharding supports direct, key-based routing from an application to a shard, routing by
proxy with the shard catalog, and routing to middle tiers, such as application containers, web
containers, and so on, which are affinitized with shards. Oracle Database client drivers and
connection pools are sharding aware.

• Key-based routing. Oracle client-side drivers (JDBC, OCI, UCP, ODP.NET) can recognize
sharding keys specified in the connection string for high performance data dependent
routing. A shard routing cache in the connection layer is used to route database requests
directly to the shard where the data resides.

• Routing by proxy. Oracle Sharding supports routing for queries that do not specify a
sharding key, giving any database application the flexibility to run SQL statements, without
specifying the shards on which the query should be processed. Proxy routing can handle
single-shard queries and multi-shard queries.

• Middle-tier routing. In addition to sharding the data tier, you can shard the web tier and
application tier, distributing the shards of those middle tiers to service a particular set of
database shards, creating a pattern known as a swim lane. A smart router can route client
requests based on specific sharding keys to the appropriate swim lane, which in turn
establishes connections on its subset of shards.

Query Processing
No changes to query and DML statements are required to support Oracle Sharding. Most
existing DDL statements will work the same way on a sharded database with the same syntax
and semantics as they do on a non-sharded Oracle Database.

In the same way that DDL statements can be processed on all shards in a configuration, so too
can certain Oracle-provided PL/SQL procedures.

Oracle Sharding also has its own keywords in the SQL DDL statements, which can only be run
against a sharded database.

High Speed Data Ingest
SQL*Loader enables direct data loading into the database shards for a high speed data ingest.

Chapter 1
Client Request Routing

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 9

SQL*Loader is a bulk loader utility used for moving data from external files into the Oracle
database. Its syntax is similar to that of the DB2 load utility, but comes with more options.
SQL*Loader supports various load formats, selective loading, and multi-table loads. Other
benefits include:

• Streaming capability lets you receive data from a large group of clients without blocking

• Group records according to Oracle RAC shard affinity using native UCP

• Optimize CPU allocation while decoupling record processing from I/O

• Fastest insert method for the Oracle Database through Direct Path Insert, bypassing SQL
and writing directly in the database files

Deployment Automation
Sharded database deployment is highly automated with Terraform, Kubernetes, and Ansible
scripts.

The deployment scripts take a simple input file describing your desired deployment topology,
and run from a single host to deploy shards to all of the sharded database hosts. Pause,
resume, and cleanup operations are included in the scripts in case of errors.

Data Migration
The Sharding Advisor tool helps with sharded database schema design for migration from a
non-sharded to sharded database. Oracle Data Pump is sharding aware and is used to migrate
data from a non-sharded Oracle database to a sharded Oracle database.

Sharding Advisor

The Sharding Advisor is a tool provided with Oracle Sharding which can help you design an
optimal sharded database configuration by analyzing your current database schema and
workload, and recommending Oracle Sharding topology configurations and database schema
designs. The Sharding Advisor bases recommendations on key goals such as parallelism
(distributing query processing evenly among shards), minimizing cross-shard join operations,
and minimizing duplicated data.

Oracle Data Pump

You can load data directly into the shards by running Oracle Data Pump on each shard. This
method is very fast because the entire data loading operation can complete within the period of
time needed to load the shard with the maximum subset of the entire data set.

Lifecycle Management of Shards
The Oracle Sharding command-line interface and Oracle Enterprise Manager help you
manage your sharded database.

Using the tools provided you can:

• Provision new sharded databases with scripts

• Scale out as needed by adding more shards online and take advantage of automatic
rebalancing

• Scale in by moving data and consolidating hardware when loads are low

• Monitor performance statistics using Enterprise Manager

Chapter 1
Deployment Automation

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 9

• Back up for disaster recovery using Cloud Backup Service, RMAN, and Zero Data Loss
Recovery Appliance

• Patches and Upgrades automated with oPatchAuto in rolling mode

Federated Sharding
Unify multiple existing databases into one sharded database architecture.

Global businesses might have multiple instances of same applications deployed for multiple
departments in multiple regions. Federated sharding allows mapping of databases of such
applications in to a single federated database and provides the following benefits.

• Queries can be seamlessly processed against a single federated database using multi-
shard query coordinator

• Removes the need to replicate data for reporting and analytics purposes

• Tolerance for differences in schema and database versions

What's New in Oracle Sharding 21c
The following are major new features for Oracle Sharding in Oracle Database 21c.

• Sharding Advisor is a tool provided with Oracle Sharding which can help you design an
optimal sharded database configuration by analyzing your current database schema and
workload, and recommending Oracle Sharding topology configurations and database
schema designs. The Sharding Advisor bases recommendations on key goals such as
parallelism (distributing query execution evenly among shards), minimizing cross-shard
join operations, and minimizing duplicated data.

See Using the Sharding Advisor for information about using Sharding Advisor.

• Federated Sharding lets you unify multiple existing databases into one sharded database
architecture. Oracle Sharding, in a federated sharding configuration, treats each
independent database as a shard, and as such can issue multi-shard queries on those
shards.

See Combine Existing Non-Sharded Databases into a Federated Sharded Database for
information about created a federated sharded database.

• Centralized Backup and Restore provides an automated and centralized management
and monitoring infrastructure for sharded database backup and restore operations,
including logging those operations using Oracle MAA best practices.

See Backing Up and Recovering a Sharded Database for information about configuring
centralized backup and restore operations.

Where To Go From Here
Planning and deploying a sharded database configuration that best fits your requirements can
be a daunting task. The following roadmap can guide you through the process, from initial
planning to life cycle management of a sharded database.

• Learn about Oracle Sharding components, architecture, and how Oracle Sharding works
in Oracle Sharding Architecture and Concepts

• Plan your specific sharded database requirements, including both the technical and
operational aspects of your IT systems and business processes, as described in Planning
Your Sharded Database Deployment

Chapter 1
Federated Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 9

• Deploy a sharded database topology configuration, as explained, with examples, in
Sharded Database Deployment

• Design a sharded database schema for balanced distribution of data and workload across
shards in Sharded Database Schema Design

• Develop a high performance, efficient sharded database application using the concepts
and APIs described in Developing Applications for the Sharded Database

• Migrate your existing database and application to a sharded database, as explained in
Migrating to a Sharded Database

• Manage your sharded database with the procedures described in Sharded Database
Administration

Chapter 1
Where To Go From Here

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 9

2
Oracle Sharding Architecture and Concepts

Components of the Oracle Sharding Architecture
The following figure illustrates the major architectural components of Oracle Sharding, which
are described in the topics that follow.

Figure 2-1 Oracle Sharding Architecture

Connection
Pools

. . .

Sharded
Database

Shard

Shard
Catalog

Shard
Directors

Sharding Key
CustomerID=28459361

Sharded Database and Shards
A sharded database is a collection of shards.

A sharded database is a single logical Oracle Database that is horizontally partitioned across a
pool of physical Oracle Databases (shards) that share no hardware or software.

Each shard in the sharded database is an independent Oracle Database instance that hosts
subset of a sharded database's data. Shared storage is not required across the shards.

Shards can be hosted anywhere an Oracle database can be hosted. Oracle Sharding supports
all of the deployment choices for a shard that you would expect with a single instance or

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 33

clustered Oracle Database, including on-premises, any cloud platform, Oracle Exadata
Database Machine, virtual machines, and so on.

Shards can all be placed in one region or can be placed in different regions. A region in the
context of Oracle Sharding represents a data center or multiple data centers that are in close
network proximity.

Shards are replicated for high availability and disaster recovery with Oracle Data Guard. For
high availability, Data Guard standby shards can be placed in the same region where the
primary shards are placed. For disaster recovery, the standby shards can be located in another
region.

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Shard Catalog
A shard catalog is an Oracle Database that supports automated shard deployment,
centralized management of a sharded database, and multi-shard queries.

A shard catalog serves following purposes

• Serves as an administrative server for entire sharded database

• Stores a gold copy of the database schema

• Manages multi-shard queries with a multi-shard query coordinator

• Stores a gold copy of duplicated table data

The shard catalog is a special-purpose Oracle Database that is a persistent store for sharded
database configuration data and plays a key role in centralized management of a sharded
database. All configuration changes, such as adding and removing shards and global services,
are initiated on the shard catalog. All DDLs in a sharded database are processed by
connecting to the shard catalog.

The shard catalog also contains the primary copy of all duplicated tables in a sharded
database. The shard catalog uses materialized views to automatically replicate changes to
duplicated tables in all shards. The shard catalog database also acts as a query coordinator
used to process multi-shard queries and queries that do not specify a sharding key.

Multiple shard catalogs can be deployed for high availability purposes. Using Oracle Data
Guard for shard catalog high availability is a recommended best practice.

At run time, unless the application uses key-based queries, the shard catalog is required to
direct queries to the shards. Sharding key-based transactions continue to be routed and
processed by the sharded database and are unaffected by a catalog outage.

During the brief period required to complete an automatic failover to a standby shard catalog,
downtime affects the ability to perform maintenance operations, make schema changes,
update duplicated tables, run multi-shard queries, or perform other operations like add shard,
move chunks, and so on, which induce topology change.

Chapter 2
Components of the Oracle Sharding Architecture

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 33

Shard Director
Shard directors are network listeners that enable high performance connection routing based
on a sharding key.

Oracle Database 12c introduced the global service manager to route connections based on
database role, load, replication lag, and locality. In support of Oracle Sharding, global service
managers support routing of connections based on data location. A global service manager, in
the context of Oracle Sharding, is known as a shard director.

A shard director is a specific implementation of a global service manager that acts as a
regional listener for clients that connect to a sharded database. The director maintains a
current topology map of the sharded database. Based on the sharding key passed during a
connection request, the director routes the connections to the appropriate shard.

For a typical sharded database, a set of shard directors are installed on dedicated low-end
commodity servers in each region. To achieve high availability and scalability, deploy multiple
shard directors. You can deploy up to 5 shard directors in a given region.

The following are the key capabilities of shard directors:

• Maintain runtime data about sharded database configuration and availability of shards

• Measure network latency between its own and other regions

• Act as a regional listener for clients to connect to a sharded database

• Manage global services

• Perform connection load balancing

Global Service
A global service is a database service that is use to access data in a sharded database.

A global service is an extension to the notion of the traditional database service. All of the
properties of traditional database services are supported for global services. For sharded
databases, additional properties are set for global services — for example, database role,
replication lag tolerance, region affinity between clients and shards, and so on. For a read-write
transactional workload, a single global service is created to access data from any primary
shard in a sharded database. For highly available shards using Active Data Guard, a separate
read-only global service can be created.

Management Interfaces for a Sharded Database
The GDSCTL command-line utility is used to configure, deploy, monitor, and manage an
Oracle Sharding sharded database. Oracle Enterprise Manager Cloud Control can also be
used for sharded database monitoring and management.

Like SQL*Plus, GDSCTL is a command-line utility with which you can control all stages of a
sharded database's life cycle. You can run GDSCTL remotely from a different server or laptop to
configure and deploy a sharded database topology, and then montior and manage your
sharded database.

GDSCTL provides a simple declarative way of specifying the configuration of a sharded
database and automating its deployment. Only a few GDSCTL commands are required to
create a sharded database.

Chapter 2
Components of the Oracle Sharding Architecture

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 33

You can also use Cloud Control for sharded database monitoring and life cycle management if
you prefer a graphical user interface. With Cloud Control you can monitor availability and
performance, and you can make changes to a sharding configuration, such as add and deploy
shards, services, shard directors, and other sharding components.

Sharded Database Schema Objects
To obtain the benefits of sharding, the schema of a sharded database should be designed in a
way that maximizes the number of database requests processed on a single shard.

Partitions, Tablespaces, and Chunks
Distribution of partitions across shards is achieved by creating partitions in tablespaces that
reside on different shards.

Each partition of a sharded table is stored in a separate tablespace, making the tablespace the
unit of data distribution in an SDB.

As described in Sharded Table Family, to minimize the number of multi-shard joins,
corresponding partitions of all tables in a table family are always stored in the same shard. This
is guaranteed when tables in a table family are created in the same set of distributed
tablespaces as shown in the syntax examples where tablespace set ts1 is used for all tables.

However, it is possible to create different tables from a table family in different tablespace sets,
for example the Customers table in tablespace set ts1 and Orders in tablespace set ts2. In
this case, it must be guaranteed that the tablespace that stores partition 1 of Customers
always resides in the same shard as the tablespace that stores partition 1 of Orders.

To support this functionality, a set of corresponding partitions from all of the tables in a table
family, called a chunk, is formed. A chunk contains a single partition from each table of a table
family. This guarantees that related data from different sharded tables can be moved together.
In other words, a chunk is the unit of data migration between shards. In system-managed and
composite sharding, the number of chunks within each shard is specified when the sharded
database is created. In user-defined sharding, the total number of chunks is equal to the
number of partitions.

A chunk that contains corresponding partitions from the tables of Cutomers-Orders-LineItems
schema is shown in the following figure.

Figure 2-2 Chunk as a Set of Partitions

Customers_P1 (1-1000000) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Each shard contains multiple chunks as shown in the following figure.

Chapter 2
Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 33

Figure 2-3 Contents of a Shard

Customers_P1 (1-1M) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Customers_P6 (5000001-6M) Orders_P6 Lineitems_P6
Chunk #6

Sharded
Tables

Customers_P11(10000001-11M) Orders_P11 Lineitems_P11
Chunk #11

Sharded
Tables

Stockitems (Duplicated Table)

Shard

In addition to sharded tables, a shard can also contain one or more duplicated tables.
Duplicated tables cannot be stored in tablespaces that are used for sharded tables.

Tablespace Sets
Oracle Sharding creates and manages tablespaces as a unit called a TABLESPACE SET.

System-managed and composite sharding use TABLESPACE SET, while user-defined sharding
uses regular tablespaces.

A tablespace is a logical unit of data distribution in a sharded database. The distribution of
partitions across shards is achieved by automatically creating partitions in tablespaces that
reside on different shards. To minimize the number of multi-shard joins, the corresponding
partitions of related tables are always stored in the same shard. Each partition of a sharded
table is stored in a separate tablespace.

The PARTITIONS AUTO clause specifies that the number of partitions should be automatically
determined. This type of hashing provides more flexibility and efficiency in migrating data
between shards, which is important for elastic scalability.

Chapter 2
Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 33

The number of tablespaces created per tablespace set is determined based on the number of
chunks that were defined for the shardspace during deployment.

Note

Only Oracle Managed Files are supported by tablespace sets.

Individual tablespaces cannot be dropped or altered independently of the entire
tablespace set.

TABLESPACE SET cannot be used with the user-defined sharding method.

Sharded Tables
A database table is split up across the shards, so that each shard contains the table with the
same columns, but a different subset of rows. A table split up in this manner is called a
sharded table.

The following figure shows how a set of large tables (referred to as a table family), shown in
the one database on the left, can be horizontally partitioned across the three shards shown on
the right, so that each shard contains a subset of the data, indicated with red, yellow, and blue
rows.

Figure 2-4 Horizontal Partitioning of a Table Across Shards

Line Items

Customer Order

123 4001

999 4003

123 4001

456 4004

999 4003

999

Line

40011

40012

40013

40014

40015

400164003

Orders

OrderCustomer

4001123

4002456

4003999

4004456

4005456

Customers

Customer Name

123 Mary

456 John

999 Peter

Sharded by Customer

Duplicated

Products

SKU Product

100 Coll

101 Piston

102 Belt

Chapter 2
Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 33

Partitions are distributed across shards at the tablespace level, based on a sharding key.
Examples of keys include customer ID, account number, and country ID. The following data
types are supported for the sharding key.

• NUMBER

• INTEGER

• SMALLINT

• RAW

• (N)VARCHAR

• (N)VARCHAR2

• (N)CHAR

• DATE

• TIMESTAMP

Each partition of a sharded table resides in a separate tablespace, and each tablespace is
associated with a specific shard. Depending on the sharding method, the association can be
established automatically or defined by the administrator.

Even though the partitions of a sharded table reside in multiple shards, to the application, the
table looks and behaves exactly the same as a partitioned table in a single database. SQL
statements issued by an application never have to refer to shards or depend on the number of
shards and their configuration.

The familiar SQL syntax for table partitioning specifies how rows should be partitioned across
shards. For example, the following SQL statement creates a sharded table, horizontally
partitioning the table across shards based on the sharding key cust_id.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
,CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

The sharded table is partitioned by consistent hash, a special type of hash partitioning
commonly used in scalable distributed systems. This technique automatically spreads
tablespaces across shards to provide an even distribution of data and workload.

Note

Global indexes on sharded tables are not supported, but local indexes are supported.

Chapter 2
Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 33

Sharded Table Family
A sharded table family is a set of tables that are sharded in the same way. Often there is a
parent-child relationship between database tables with a referential constraint in a child table
(foreign key) referring to the primary key of the parent table.

Multiple tables linked by such relationships typically form a tree-like structure where every child
has a single parent. A set of such tables is referred to as a table family. A table in a table family
that has no parent is called the root table. There can be only one root table in a table family.

How a Table Family Is Sharded
Sharding a table family is illustrated here with the Customers–Orders–LineItems schema.

Before sharding, the tables in the schema may look as shown in the examples below. The
three tables have a parent-child relationship, with Customers as the root table.

Customers Table (Root) Before Sharding

CustNo Name Address Location Class
--------- ---------- -------------- --------- ------
123 Brown 100 Main St us3 Gold
456 Jones 300 Pine Ave us1 Silver
999 Smith 453 Cherry St us2 Bronze

Orders Table Before Sharding

OrderNo CustNo OrderDate
--------- -------- -----------
4001 123 14-FEB-2013
4002 456 09-MAR-2013
4003 456 05-APR-2013
4004 123 27-MAY-2013
4005 999 01-SEP-2013

LineItems Table Before Sharding

LineNo OrderNo CustNo StockNo Quantity
------ ------- ------ ------- --------
40011 4001 123 05683022 1
40012 4001 123 45423609 4
40013 4001 123 68584904 1
40021 4002 456 05683022 1
40022 4002 456 45423509 3
40022 4003 456 80345330 16
40041 4004 123 45423509 1
40042 4004 123 68584904 2
40051 4005 999 80345330 12

The tables can be sharded by the customer number, CustNo, in the Customers table, which is
the root. The shard containing data pertaining to customer 123 is shown in the following
example tables.

Customers Table Shard With Customer 123 Data

CustNo Name Address Location Class
--------- ---------- -------------- ---------- ------
123 Brown 100 Main St us3 Gold

Orders Table Shard With Customer 123 Data

Chapter 2
Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 33

OrderNo CustNo OrderDate
--------- -------- -----------
4001 123 14-FEB-2013
4004 123 27-MAY-2013

LineItems Table Shard With Customer 123 Data

LineNo OrderNo CustNo StockNo Quantity
------ ------- ------ ------- --------
40011 4001 123 05683022 1
40012 4001 123 45423609 4
40013 4001 123 68584904 1
40041 4004 123 45423509 1
40042 4004 123 68584904 2

Designing Schemas With Multiple Table Families
A sharded database schema can have multiple table families, where all of the data from
different table families reside in the same chunks, which contain partitions from different table
families sharing the same hash key range.

Note

Multiple table families are supported in system-managed sharded databases only.
Composite and user-defined sharded databases only support one table family.

To create a new table family, create a root sharded table and specify tablespace sets that are
not used by existing tablespace families. Each table family is identified by its root table. Tables
in the different table families should not be related to each other.

Each table family should have its own sharding key definition, while the same restriction on
having the same sharding key columns in child tables still holds true within each table family.
This means that all tables from different table families are sharded the same way with
consistent hash into the same number of chunks, with each chunk containing data from all the
table families.

Design your table families such that queries between different table-families are minimal and
only carried out on the sharding coordinator, as many such joins will have an effect on
performance

The following example shows you how to create multiple table families using the PARENT clause
with a system-managed sharding methodology (PARTITION BY CONSISTENT HASH).

CREATE SHARDED TABLE Customers <=== Table Family #1
(CustId NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
)
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Chapter 2
Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 33

CREATE SHARDED TABLE Orders
(OrderNo NUMBER
, CustId NUMBER
, OrderDate DATE
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE LineItems
(LineNo NUMBER
, OrderNo NUMBER
, CustId NUMBER
, StockNo NUMBER
, Quantity NUMBER
)
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Products <=== Table Family #2
(ProdId NUMBER NOT NULL,
 CONSTRAINT pk_products PRIMARY KEY (ProdId)
)
PARTITION BY CONSISTENT HASH (ProdId)
PARTITIONS AUTO
TABLESPACE SET ts_2
;

Note

ORA-3850 is thrown if you attempt to use a tablespace set for a table family, but that
tablespace set is already in use by an existing table family.

Joins across table families may not be efficient, and if you have many such joins, or if
they are performance-critical, you should use duplicated tables instead of multiple
table families.

Associating Global Services With Multiple Table Families

Each table family should be associated with a different global service. Applications from
different table families each have their own connection pool and service, and use their own
sharding key for routing to the correct shard.

When you create the first root table (that is, the first table family) all of the existing global
services are automatically associated with it. You can use the GDSCTL MODIFY SERVICE

Chapter 2
Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 33

command to change the services associated with a table family after more table families are
created, as shown in this example.

GDSCTL> MODIFY SERVICE –GDSPOOL shdpool –TABLE_FAMILY sales.customer -SERVICE
sales

Duplicated Tables
In Oracle Sharding a table with the same contents in each shard is called a duplicated table.

For many applications, the number of database requests handled by a single shard can be
maximized by duplicating read-only or read-mostly tables across all shards. This strategy is a
good choice for relatively small tables that are not updated frequently, and that are often
accessed together with sharded tables. Duplicated tables tend to be updated less frequently
than sharded tables and are not expected to be very large.

A sharded database includes both sharded tables that are horizontally partitioned across
shards, and duplicated tables that are replicated to all shards. Duplicated tables contain
reference information, for example, a Stock Items table that is common to each shard. The
combination of sharded and duplicated tables enables all transactions associated with a
sharding key to be processed by a single shard. This technique enables linear scalability and
fault isolation.

As an example of the need for a duplicated table, consider the table family that is described in
Sharded Table Family. The database schema might also include a Products table which
contains data that is shared by all the customers in the shards that were created for this table
family, and it cannot be sharded by the customer number. To prevent multi-shard queries
during order processing, the entire table must be duplicated on all shards.

The difference between sharded tables (Customers, Orders, and LineItems) and a duplicated
table (Products) is shown in the following figure.

Chapter 2
Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 33

Figure 2-5 Sharded Tables and a Duplicated Table in a Sharded Database

Line Items

Customer Order

123 4001

999 4003

123 4001

456 4004

999 4003

999

Line

40011

40012

40013

40014

40015

400164003

Orders

OrderCustomer

4001123

4002456

4003999

4004456

4005456

Customers

Customer Name

123 Mary

456 John

999 Peter

Sharded by Customer

Duplicated

Products

SKU Product

100 Coll

101 Piston

102 Belt

Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles, views, indexes,
synonyms, functions, procedures, and packages, and non-schema database objects, such as
tablespaces, tablespace sets, directories, and contexts, can be created on all shards.

Unlike tables, which require an extra keyword in the CREATE statement—SHARDED or
DUPLICATED—other objects are created on all shards using existing syntax. The only
requirement is that the SHARD DDL session property must be enabled.

Note that automatic creation on all shards of the following objects is not supported in this
release. These objects can be created by connecting to individual shards.

• Cluster

• Control file

• Database link

• Disk group

• Edition

• Flashback archive

• Materialized zone map

• Outline

Chapter 2
Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 33

• Pfile

• Profile

• Restore point

• Rollback segment

• Summary

Materialized views and view logs are supported starting in Oracle Database 18c, with the
following restrictions:

• Materialized views created on sharded tables remain empty on the catalog database, while
the corresponding materialized views on shards contain data from each of the individual
shards.

• Only the REFRESH COMPLETE ON DEMAND USING TRUSTED CONSTRAINTS option is supported
for materialized views on sharded tables.

Sharding Methods
Learn about the sharding methods supported by Oracle Sharding, how to choose a method,
and how to use subpartitioning.

System-Managed Sharding
System-managed sharding is a sharding method which does not require the user to specify
mapping of data to shards. Data is automatically distributed across shards using partitioning by
consistent hash. The partitioning algorithm evenly and randomly distributes data across
shards.

The distribution used in system-managed sharding is intended to eliminate hot spots and
provide uniform performance across shards. Oracle Sharding automatically maintains the
balanced distribution of chunks when shards are added to or removed from a sharded
database.

Consistent hash is a partitioning strategy commonly used in scalable distributed systems. It is
different from traditional hash partitioning. With traditional hashing, the bucket number is
calculated as HF(key) % N where HF is a hash function and N is the number of buckets. This
approach works fine if N is constant, but requires reshuffling of all data when N changes.

More advanced algorithms, such as linear hashing, do not require rehashing of the entire table
to add a hash bucket, but they impose restrictions on the number of buckets, such as the
number of buckets can only be a power of 2, and on the order in which the buckets can be
split.

The implementation of consistent hashing used in Oracle Sharding avoids these limitations by
dividing the possible range of values of the hash function (for example. from 0 to 232) into a set
of N adjacent intervals, and assigning each interval to a chunk , as shown in the figure below.
In this example, the sharded database contains 1024 chunks, and each chunk gets assigned a
range of 222 hash values. Therefore partitioning by consistent hash is essentially partitioning by
the range of hash values.

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 33

Figure 2-6 Ranges of Hash Values Assigned to Chunks

Chunk #1024

429496672964290772992 41943040

...

8388608

...Chunk #2...Chunk #1

Assuming that all of the shards have the same computing power, an equal number of chunks is
assigned to each shard in the sharded database. For example, if 1024 chunks are created in a
sharded database that contains 16 shards, each shard will contain 64 chunks.

In the event of resharding, when shards are added to or removed from a sharded database,
some of the chunks are relocated among the shards to maintain an even distribution of chunks
across the shards. The contents of the chunks does not change during this process; no
rehashing takes place.

When a chunk is split, its range of hash values is divided into two ranges, but nothing needs to
be done for the rest of the chunks. Any chunk can be independently split at any time.

All of the components of a sharded database that are involved in directing connection requests
to shards maintain a routing table that contains a list of chunks hosted by each shard and
ranges of hash values associated with each chunk. To determine where to route a particular
database request, the routing algorithm applies the hash function to the provided value of the
sharding key, and maps the calculated hash value to the appropriate chunk, and then to a
shard that contains the chunk.

The number of chunks in a sharded database with system-managed sharding can be specified
when the shard catalog is created. If not specified, the default value, 120 chunks per shard, is
used. Once a sharded database is deployed, the number of chunks can only be changed by
splitting chunks.

Before creating a sharded table partitioned by consistent hash, a set of tablespaces (one
tablespace per chunk) has to be created to store the table partitions. The tablespaces are
automatically created by processing the SQL statement, CREATE TABLESPACE SET.

All of the tablespaces in a tablespace set have the same physical attributes and can only
contain Oracle Managed Files (OMF). In its simplest form, the CREATE TABLESPACE SET
statement has only one parameter, the name of the tablespace set, for example:

CREATE TABLESPACE SET ts1;

In this case each tablespace in the set contains a single OMF file with default attributes. To
customize tablespace attributes, the USING TEMPLATE clause (shown in the example below) is
added to the statement. The USING TEMPLATE clause specifies attributes that apply to each
tablespace in the set.

CREATE TABLESPACE SET ts1
USING TEMPLATE
(
 DATAFILE SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K
 SEGMENT SPACE MANAGEMENT AUTO
 ONLINE

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 14 of 33

)
;

After a tablespace set has been created, a table partitioned by consistent hash can be created
with partitions stored in the tablespaces that belong to the set. The CREATE TABLE statement
might look as follows:

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

PARTITIONS AUTO in this statement means that the number of partitions is automatically set to
the number of tablespaces in the tablespace set ts1 (which is equal to the number of chunks)
and each partition will be stored in a separate tablespace.

Each tablespace in a tablespace set belongs to a distinct chunk. In the other words, a chunk
can contain only one tablespace from a given tablespace set. However, the same tablespace
set can be used for multiple tables that belong to the same table family. In this case, each
tablespace in the set will store multiple partitions, one from each table.

Alternatively, each table in a table family can be stored in a separate tablespace set. In this
case, a chunk contains multiple tablespaces, one from each tablespace set with each
tablespace storing a single partition.

The following figure illustrates the relationship between partitions, tablespaces, and shards for
a use case with a single sharded table. In this case, each chunk contains a single tablespace,
and each tablespace stores a single partition.

Figure 2-7 System-Managed Sharding

Shard 1 Shard 2 Shard 3 Shard 4

P_1

tbs_1-1

P_120

tbs1-120

P_121

tbs1_121

P_240

tbs1-240

P_241

tbs1-241
.
.
.

.

.

.

.

.

.

.

.

.

P_360

tbs1-360

P_361

tbs1-361

P_480

tbs1-480

Tablespace Set tbs1

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 15 of 33

Note

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command and
cannot be changed later.

User-Defined Sharding
User-defined sharding lets you explicitly specify the mapping of data to individual shards. It is
used when, because of performance, regulatory, or other reasons, certain data needs to be
stored on a particular shard, and the administrator needs to have full control over moving data
between shards.

For a user-defined sharded database, two replication schemes are supported: Oracle Data
Guard or Oracle Active Data Guard. User-defined sharding is not supported where Oracle
GoldenGate is used as the replication method.

Another advantage of user-defined sharding is that, in case of planned or unplanned outage of
a shard, the user knows exactly what data is not available. The disadvantage of user-defined
sharding is the need for the database administrator to monitor and maintain balanced
distribution of data and workload across shards.

With user-defined sharding, a sharded table can be partitioned by range or list. The CREATE
TABLE syntax for a sharded table is not very different from the syntax for a regular table, except
for the requirement that each partition should be stored in a separate tablespace.

 CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state VARCHAR(2) NOT NULL
, status VARCHAR2(1)
)
PARTITION BY LIST (state)
(PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5
, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
)
;

There is no tablespace set for user-defined sharding. Each tablespace has to be created
individually and explicitly associated with a shardspace. A shardspace is set of shards that
store data that corresponds to a range or list of key values.

In user-defined sharding, a shardspace consists of a shard or a set of fully replicated shards.
For simplicity, assume that each shardspace consists of a single shard.

The following statements can be used to create the tablespaces for the accounts table in the
example above.

CREATE TABLESPACE tbs1 IN SHARDSPACE west;
CREATE TABLESPACE tbs2 IN SHARDSPACE west;

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 16 of 33

CREATE TABLESPACE tbs3 IN SHARDSPACE central;
CREATE TABLESPACE tbs4 IN SHARDSPACE central;

CREATE TABLESPACE tbs5 IN SHARDSPACE east;
CREATE TABLESPACE tbs6 IN SHARDSPACE east;

Before executing the CREATE TABLESPACE statements, the shardspaces must be created and
populated with shards. For example, you can use the following GDSCTL commands:

ADD SHARDSPACE -SHARDSPACE east
ADD SHARDSPACE -SHARDSPACE central
ADD SHARDSPACE -SHARDSPACE west
ADD CDB -CONNECT cdb1
ADD CDB -CONNECT cdb2
ADD CDB -CONNECT cdb3
ADD SHARD –CONNECT shard-1 -CDB cdb1 –SHARDSPACE west;
ADD SHARD –CONNECT shard-2 -CDB cdb2 –SHARDSPACE central;
ADD SHARD –CONNECT shard-3 -CDB cdb3 –SHARDSPACE east;

The following figure shows the mapping of partitions to tablespaces, and tablespaces to
shards, for the accounts table in the previous examples.

Figure 2-8 User-Defined Sharding

Shard 1 Shard 2 Shard 3

P_NorthWest

Tablespace tbs1

P_SouthWest

Tablespace tbs2

P_NorthCentral

Tablespace tbs3

P_SouthCentral

Shardspace Central

Tablespace tbs4

P_NorthEast

Tablespace tbs5

P_SouthEast

Tablespace tbs6

Shardspace EastShardspace West

As with system-managed sharding, tablespaces created for user-defined sharding are
assigned to chunks. However, no chunk migration is automatically started when a shard is
added to the sharded database. You must run the GDSCTL MOVE CHUNK command for each
chunk that needs to be migrated.

The total number of chunks is defined by the number of partitions specified in the sharded
table. The number of chunks for a given shardspace is the number of partitions assigned to it.
The ALTER TABLE ADD, DROP, SPLIT, and MERGE PARTITION commands on the sharded table
increases or decrease the number of chunks.

The GDSCTL SPLIT CHUNK command, which is used to split a chunk in the middle of the hash
range for system-managed sharding, is not supported for user-defined sharding. You must use
the ALTER TABLE SPLIT PARTITION statement to split a chunk.

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 17 of 33

Note

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command and
cannot be changed later.

Composite Sharding
The composite sharding method allows you to create multiple shardspaces for different
subsets of data in a table partitioned by consistent hash. A shardspace is set of shards that
store data that corresponds to a range or list of key values.

System-managed sharding uses partitioning by consistent hash to randomly distribute data
across shards. This provides better load balancing compared to user-defined sharding that
uses partitioning by range or list. However, system-managed sharding does not give the user
any control on assignment of data to shards.

When sharding by consistent hash on a primary key, there is often a requirement to
differentiate subsets of data within a sharded database in order to store them in different
geographic locations, allocate to them different hardware resources, or configure high
availability and disaster recovery differently. Usually this differentiation is done based on the
value of another (non-primary) column, for example, customer location or a class of service.

Composite sharding is a combination of user-defined and system-managed sharding which,
when required, provides benefits of both methods. With composite sharding, data is first
partitioned by list or range across multiple shardspaces, and then further partitioned by
consistent hash across multiple shards in each shardspace. The two levels of sharding make it
possible to automatically maintain balanced distribution of data across shards in each
shardspace, and, at the same time, partition data across shardspaces.

For example, suppose you want to allocate three shards hosted on faster servers to “gold”
customers and four shards hosted on slower machines to “silver” customers. Within each set of
shards, customers have to be distributed using partitioning by consistent hash on customer ID.

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 18 of 33

Figure 2-9 Composite Sharding

Tablespace

Set tbs1

SHARD1

P_1

tbs1-1

P_120

tbs1-120

.

.

.

SHARD2

P_121

tbs1-121

P_240

tbs1-240

.

.

.

SHARD3

P_241

tbs1-241

P_360

tbs1-360

.

.

.

Shardspace for GOLD customers - shspace1

SHARD4

P_1

tbs2-1

P_120

tbs2-120

.

.

.

SHARD5

P_121

tbs2-121

P_240

tbs1-240

.

.

.

SHARD6

P_241

tbs2-241

P_360

tbs2-360

.

.

.

SHARD7

P_361

tbs2-361

P_480

tbs2-480

.

.

.

Shardspace for SILVER customers - shspace2

Tablespace

Set tbs2

The following commands would be issued to create this configuration. Note that two
shardspaces need to be created for this configuration.

create SHARDCATALOG -sharding composite -database
 cat_host:1521/cat_pdb.domain -user gsmcatuser/gsmcatuser_pwd
 -region dc1

add gsm -gsm gsm1 -listener 1540 -catalog cat_host:1521/cat_pdb.domain
 -region dc1 -pwd gsmcatuser_pwd
gdsctl start gsm

add shardspace -shardspace shspace1 -chunks 60
add shardspace -shardspace shspace2 -chunks 120

ADD SHARDGROUP -shardgroup gold -shardspace shspace1 -region dc1 -deploy_as
 primary
ADD SHARDGROUP -shardgroup silver -shardspace shspace2 -region dc1 -deploy_as
 primary

add CDB -connect cdb1_host:1521/cdb1.domain -pwd gsmrootuser_pwd
add CDB -connect cdb2_host:1521/cdb2.domain -pwd gsmrootuser_pwd
add CDB -connect cdb3_host:1521/cdb3.domain -pwd gsmrootuser_pwd
add CDB -connect cdb4_host:1521/cdb4.domain -pwd gsmrootuser_pwd
add CDB -connect cdb5_host:1521/cdb5.domain -pwd gsmrootuser_pwd
add CDB -connect cdb6_host:1521/cdb6.domain -pwd gsmrootuser_pwd
add CDB -connect cdb7_host:1521/cdb7.domain -pwd gsmrootuser_pwd

add shard -cdb cdb1 -shardgroup gold -connect

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 19 of 33

 cdb1_host:1521/sh1_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb2 -shardgroup gold -connect
 cdb2_host:1521/sh2_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb3 -shardgroup gold -connect
 cdb3_host:1521/sh3_pdb.domain -pwd gsmuser_pwd

add shard -cdb cdb4 -shardgroup silver -connect
 cdb4_host:1521/sh4_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb5 -shardgroup silver -connect
 cdb5_host:1521/sh5_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb6 -shardgroup silver -connect
 cdb6_host:1521/sh6_pdb.domain -pwd gsmuser_pwd
add shard -cdb cdb7 -shardgroup silver -connect
 cdb7_host:1521/sh7_pdb.domain -pwd gsmuser_pwd

deploy

With composite sharding, as with the other sharding methods, tablespaces are used to specify
the mapping of partitions to shards. To place subsets of data in a sharded table into different
shardspaces, a separate tablespace set must be created in each shardspace as shown in the
following example.

CREATE TABLESPACE SET tbs1 IN SHARDSPACE shspace1;
CREATE TABLESPACE SET tbs2 IN SHARDSPACE shspace2;

To store user-defined subsets of data in different tablespaces, Oracle Sharding provides syntax
to group partitions into sets and associate each set of partitions with a tablespace set. Support
for partition sets can be considered a logical equivalent of a higher level of partitioning which is
implemented on top of partitioning by consistent hash.

The statement in the following example partitions a sharded table into two partition sets: gold
and silver, based on class of service. Each partition set is stored in a separate tablespace.
Then data in each partition set is further partitioned by consistent hash on customer ID.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
 PARTITION BY CONSISTENT HASH (cust_id)
 PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2)
;

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 20 of 33

Note

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command and
cannot be changed later.

Using Subpartitions with Sharding
Because Oracle Sharding is based on table partitioning, all of the subpartitioning methods
provided by Oracle Database are also supported for sharding.

Subpartitioning splits each partition into smaller parts and may be beneficial for efficient parallel
processing within a shard, especially in the case of sharding by range or list when the number
of partitions per shard may be small.

From a manageability perspective, subpartitioning makes it possible to support the tiered
storage approach by putting subpartitions into separate tablespaces and moving them between
storage tiers. Migration of subpartitions between storage tiers can be done without sacrificing
the scalability and availability benefits of sharding and the ability to perform partition pruning
and partition-wise joins on a primary key.

The following example shows system-managed sharding by consistent hash combined with
subpartitioning by range.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
TABLESPACE SET ts1
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
SUBPARTITION TEMPLATE
(SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY')),
 SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY')),
 SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY')),
 SUBPARTITION future VALUES LESS THAN (MAXVALUE)
)
PARTITIONS AUTO
;

The following figure offers a graphical view of the table created by this statement.

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 21 of 33

Figure 2-10 Subpartitions Stored in the Tablespace of the Parent Partition

Shard 1 Shard 2 Shard 3

Partition 1

Sub-Partitions

Partition 2

Sub-Partitions

Partition 3

Sub-Partitions

Partition 4

Sub-Partitions

Partition 5

Sub-Partitions

Partition 6

Sub-Partitions

tbs1-1

tbs1-2

tbs1-3

tbs1-4

tbs1-5

tbs1-6

2 3 41 2 3 41 2 3 41

2 3 41 2 3 41 2 3 41

Tablespace

Set tbs1

In this example each subpartition is stored in the parent partition’s tablespace. Because
subpartitioning is done by date, it makes more sense to store subpartitions in separate
tablespaces to provide the ability to archive older data or move it to a read-only storage. The
appropriate syntax is shown here.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE(signup_date)
SUBPARTITION TEMPLATE
(SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY'))
 TABLESPACE SET ts1,
 SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
 TABLESPACE SET ts2,
 SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
 TABLESPACE SET ts3,
 SUBPARTITION future VALUES LESS THAN (MAXVALUE)
 TABLESPACE SET ts4
)
PARTITIONS AUTO
;

Note that in the case of a database that is not sharded, when tablespaces are specified in the
subpartition template it means that subpartition N from every partition is stored in the same
tablespace. This is different in case of sharding when subpartitions that belong to the different
partitions must be stored in separate tablespaces so that they can be moved in the event of
resharding.

Subpartitioning can be used with composite sharding, too. In this case data in a table is
organized in three levels: partition sets, partitions, and subpartitions. Examples of the three
levels of data organization are shown below.

Specifying subpartition templates per partitionset is not supported to ensure that there is
uniformity in the number and bounds of subpartitions across partitionsets. If you need to

Chapter 2
Sharding Methods

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 22 of 33

specify tablespaces for subpartitions per partitionset, you can use the SUBPARTITIONS STORE
IN clause.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3) NOT NULL
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class, signup_date)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
 SUBPARTITION TEMPLATE /* applies to both SHARDSPACEs */
 (SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY'))
 , SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
 , SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
 , SUBPARTITION future VALUES LESS THAN (MAXVALUE)
)
PARTITIONS AUTO
(
 PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1
 subpartitions store in(tbs1)
, PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2
 subpartitions store in(tbs2)
)
;

Shard-Level High Availability
Oracle Sharding is integrated with Oracle Database replication technologies for high availability
and disaster recovery at the shard level. Learn how to use Oracle’s replication technologies to
make your sharded databases highly available:

About Sharding and Replication
Oracle Sharding is tightly integrated with Oracle Data Guard and Oracle GoldenGate for
Oracle replication and disaster recovery.

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Replication provides high availability, disaster recovery, and additional scalability for reads. A
unit of replication can be a shard, a part of a shard, or a group of shards.

Replication topology in a sharded database is declaratively specified using GDSCTL command
syntax. You can choose one of two technologies—Oracle Data Guard or Oracle GoldenGate—
to replicate your data. Oracle Sharding automatically deploys the specified replication topology
and enables data replication.

Chapter 2
Shard-Level High Availability

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 23 of 33

The availability of a sharded database is not affected by an outage or slowdown of one or more
shards. Replication is used to provide individual shard-level high availability (Oracle Active
Data Guard or Oracle GoldenGate). Replication is automatically configured and deployed
when the sharded database is created. Optionally, you can use Oracle RAC for shard-level
high availability, complemented by replication, to maintain shard-level data availability in the
event of a cluster outage. Oracle Sharding automatically fails over database connections from
a shard to its replica in the event of an unplanned outage.

Using Oracle Data Guard with a Sharded Database
Oracle Data Guard replication maintains one or more synchronized copies (standbys) of a
shard (the primary) for high availability and data protection. Standbys may be deployed locally
or remotely, and when using Oracle Active Data Guard can also be open for read-only access.

Oracle Data Guard can be used as the replication technology for sharded databases using the
system-managed, user-defined, or composite method of sharding.

Using Oracle Data Guard with a System-Managed Sharded Database

In system-managed and composite sharding, the logical unit of replication is a group of shards
called a shardgroup. In system-managed sharding, a shardgroup contains all of the data stored
in the sharded database. The data is sharded by consistent hash across shards that make up
the shardgroup. Shards that belong to a shardgroup are usually located in the same data
center. An entire shardgroup can be fully replicated to one or more shardgroups in the same or
different data centers.

The following figure illustrates how Data Guard replication is used with system-managed
sharding. In the example in the figure there is a primary shardgroup, Shardgroup 1, and two
standby shardgroups, Shardgroup 2 and Shardgroup 3. Shardgroup 1 consists of Data Guard
primary databases (shards 1-3). Shardgroup 2 consists of local standby databases (shards
4-6) which are located in the same data center and configured for synchronous replication. And
Shardgroup 3 consists of remote standbys (shards 7-9) located in a different data center and
configured for asynchronous replication. Oracle Active Data Guard is enabled in this
configuration, so each standby is open read-only.

Chapter 2
Shard-Level High Availability

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 24 of 33

Figure 2-11 System-Managed Sharding with Data Guard Replication

Datacenter 1

Datacenter 2

Shardgroup 1

Shardgroup 2

Shardgroup 3

1 2

5

3

4 6

7 8 9

The concept of shardgroup as a logical unit of replication hides from the user the
implementation details of replication. With Data Guard, replication is done at the shard
(database) level. The sharded database in the figure above consists of three sets of replicated
shards: {1, 4, 7}, {2, 5, 8} and {3, 6, 9}. Each set of replicated shards is managed as a Data
Guard Broker configuration with fast-start failover (FSFO) enabled.

To deploy replication, specify the properties of the shardgroups (region, role, and so on) and
add shards to them. Oracle Sharding automatically configures Data Guard and starts an FSFO
observer for each set of replicated shards. It also provides load balancing of the read-only
workload, role based global services and replication lag, and locality based routing.

Run the following GDSCTL commands to deploy the example configuration shown in the figure
above.

CREATE SHARDCATALOG –database host00:1521:shardcat –region dc1,dc2

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:shardcat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:shardcat –region dc2
START GSM -gsm gsm1
START GSM -gsm gsm2

ADD SHARDGROUP -shardgroup shardgroup1 -region dc1 -deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup2 -region dc1 -deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup3 -region dc2 -deploy_as active_standby

ADD CDB -connect cdb1
ADD CDB -connect cdb2
...
ADD CDB -connect cdb9

ADD SHARD -connect shard1 -CDB cdb1 -shardgroup shardgroup1

Chapter 2
Shard-Level High Availability

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 25 of 33

ADD SHARD -connect shard2 -CDB cdb2 -shardgroup shardgroup2
...
ADD SHARD -connect shard9 -CDB cdb9 -shardgroup shardgroup3

DEPLOY

Using Oracle Data Guard with a User-Defined Sharded Database

With user-defined sharding the logical (and physical) unit of replication is a shard. Shards are
not combined into shardgroups. Each shard and its replicas make up a shardspace which
corresponds to a single Data Guard Broker configuration. Replication can be configured
individually for each shardspace. Shardspaces can have different numbers of standbys which
can be located in different data centers. An example of user-defined sharding with Data Guard
replication is shown in the following figure.

Figure 2-12 User-Defined Sharding with Data Guard Replication

Datacenter 1

Datacenter 3

Datacenter 2

Shardspace A Shardspace B Shardspace C

1 2 3

4 5

6 7

8 9 10

Run the following GDSCTL commands to deploy the example configuration shown in the figure
above.

CREATE SHARDCATALOG -sharding user –database host00:1521:cat –region
dc1,dc2,dc3

Chapter 2
Shard-Level High Availability

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 26 of 33

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3
START GSM -gsm gsm1
START GSM -gsm gsm2
START GSM -gsm gsm3

ADD SHARDSPACE -shardspace shardspace_a
ADD SHARDSPACE -shardspace shardspace_b
ADD SHARDSPACE -shardspace shardspace_c

ADD CDB -connect cdb1
ADD CDB -connect cdb2
...
ADD CDB -connect cdb10

ADD SHARD -connect shard1 -CDB cdb1 -shardspace shardspace_a
ADD SHARD -connect shard2 -CDB cdb2 -shardspace shardspace_b
...
ADD SHARD -connect shard10 -CDB cdb10 -shardspace shardspace_c

DEPLOY

Using Oracle Data Guard with a Composite Sharded Database

In composite sharding, similar to user-defined sharding, a sharded database consists of
multiple shardspaces. However, each shardspace, instead of replicated shards, contains
replicated shardgroups.

Chapter 2
Shard-Level High Availability

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 27 of 33

Figure 2-13 Composite Sharding with Data Guard Replication

Shardgroup
A1

Shardgroup
B1

Shardgroup
A2

Shardgroup
B2

Shardgroup
B3

Shardgroup
A3

Shardspace A Shardspace B

Datacenter
1

Datacenter
2

Datacenter
3

Run the following GDSCTL commands to deploy the example configuration shown in the figure
above.

CREATE SHARDCATALOG -sharding composite –database host00:1521:cat –region
dc1,dc2,dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3
START GSM -gsm gsm1
START GSM -gsm gsm2
START GSM -gsm gsm3

ADD SHARDSPACE -shardspace shardspace_a
ADD SHARDSPACE -shardspace shardspace_b

ADD SHARDGROUP -shardgroup shardgroup_a1 –shardspace shardspace_a -region dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_a2 –shardspace shardspace_a -region
dc1
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_a3 –shardspace shardspace_a -region

Chapter 2
Shard-Level High Availability

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 28 of 33

dc3
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_b1 –shardspace shardspace_b -region dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_b2 –shardspace shardspace_b -region
dc1
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_b3 –shardspace shardspace_b -region
dc2
-deploy_as active_standby

ADD CDB -connect cdb1
ADD CDB -connect cdb2
...

ADD SHARD -connect shard1 -cdb cdb1 -shardgroup shardgroup_a1
ADD SHARD -connect shard2 -cdb cdb2 -shardgroup shardgroup_a2
...

DEPLOY

Considerations

If a single-instance primary fails over to its standby, unlike Oracle RAC, you must intervene to
reinstate the old primary by starting the database in mount state. The broker will then
automatically complete the reinstatement.

Using Oracle GoldenGate with a Sharded Database
Oracle GoldenGate is used for fine-grained active-active replication where all shards are
writable, and each shard can be partially replicated to other shards within a shardgroup.

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Note

Oracle Database 21c supports only multitenant architecture (CDB). Oracle
GoldenGate versions 12.3-19.1 only support Oracle Sharding with single-instance
Oracle databases (release 11g through 19c.)

Oracle GoldenGate does not support the user-defined sharding method.

For system-managed sharding with Oracle GoldenGate, a shard must have at least
two chunks.

In Oracle GoldenGate, replication is handled at the chunk level. For example, in Shardgroup 1
in the following figure, half of the data stored in each shard is replicated to one shard, and the
other half to another shard. If any shard becomes unavailable, its workload is split between two
other shards in the shardgroup. The multiple failover destinations mitigate the impact of a

Chapter 2
Shard-Level High Availability

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 29 of 33

shard failure because there is no single shard that has to handle all of the workload from the
failed shard.

Figure 2-14 System-Managed Sharding with Golden Gate Replication

Datacenter 1

Datacenter 2

Shardgroup 1

2 31

4

Shardgroup 2

5

With Oracle GoldenGate replication, a shardgroup can contain multiple replicas of each row in
a sharded table; therefore, high availability is provided within a shardgroup, and there is no
need to have a local replica of the shardgroup, as there is in the case of Data Guard
replication. The number of times each row is replicated within a shardgroup is called its
replication factor and is a configurable parameter.

To provide disaster recovery, a shardgroup can be replicated to one or more data centers.
Each replica of a shardgroup can have a different number of shards, replication factor,
database versions, and hardware platforms. However, all shardgroup replicas must have the
same number of chunks, because replication is done at the chunk level.

Shardgroup 2 in the figure above contains the same data as Shardgroup 1, but resides in a
different data center. Shards in both data centers are writable. The default replication factor, 2,
is used for both shardgroups.

Note that because Shardgroup 2 contains only two shards and the replication factor is 2, the
shards are fully replicated, and each of them contains all of the data stored in the sharded
database. This means that any query routed to these shards can be executed without going
across shards. There is only one failover destination in this shardgroup; if a shard goes down,
the load on the other shard doubles.

Oracle Sharding is designed to minimize the number of conflicting updates performed to the
same row on different shards. This is achieved designating a master chunk for each range of
hash values and routing most of requests for the corresponding data to this chunk.

Sometimes it is impossible to avoid update conflicts because of state transitions, such as a
chunk move or split, or a shard going up or down. The user may also intentionally allow

Chapter 2
Shard-Level High Availability

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 30 of 33

conflicts in order to minimize transaction latency. For such cases Oracle GoldenGate provides
automatic conflict detection and resolution which handles all kinds of conflicts including insert-
delete conflicts.

See Also

Working with Oracle GoldenGate Sharding in the Fusion Middleware Step by Step
Data Replication Using Oracle GoldenGate Microservices Architecture guide for more
information about using Oracle GoldenGate with Oracle Sharding.

Client Application Request Routing
To route a client application request directly to a shard, you connect to the shard using the
Oracle drivers and provide a sharding key with the request.

About Sharding Keys

All database requests that require high performance and fault isolation must only access data
associated with a single value of the sharding key. The application must provide the sharding
key when establishing a database connection. If this is the case, the request is routed directly
to the appropriate shard.

Multiple requests can be executed in the same session as long as they all are related to the
same sharding key. Such transactions typically access 10s or 100s of rows. Examples of
single-shard transactions include order entry, lookup and update of a customer’s billing record,
and lookup and update of a subscriber’s documents.

Database requests that must access data associated with multiple values of the sharding key,
or for which the value of the sharding key is unknown, must be executed from the query
coordinator which orchestrates parallel execution of the query across multiple shards.

About Oracle Connection Drivers

At run time, connection pools act as shard directors by routing database requests across
pooled connections. Oracle Database supports connection-pooling in data access drivers such
as OCI, JDBC, and ODP.NET. These drivers can recognize sharding keys specified as part of a
connection request. Similarly, the Oracle Universal Connection Pool (UCP) for JDBC clients
can recognize sharding keys specified in a connection URL. Oracle UCP also enables non-
Oracle application clients such as Apache Tomcat and WebSphere to work with Oracle
Sharding.

Oracle clients use UCP cache routing information to directly route a database request to the
appropriate shard, based on the sharding keys provided by the application. Such data-
dependent routing of database requests eliminates an extra network hop, decreasing the
transactional latency for high volume applications.

Routing information is cached during an initial connection to a shard, which is established
using a shard director. Subsequent database requests for sharding keys within the cached
range are routed directly to the shard, bypassing the shard director.

Like UCP, a shard director can process a sharding key specified in a connect string and cache
routing information. However, UCP routes database requests using an already established
connection, while a shard director routes connection requests to a shard. The routing cache
automatically refreshes when a shard becomes unavailable or changes occur to the sharding
topology. For high-performance, data-dependent routing, Oracle recommends using a
connection pool when accessing data in the sharded database.

Chapter 2
Client Application Request Routing

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 31 of 33

Separate connection pools must be used for direct routing and routing requests through the
query coordinator. For direct routing, separate global services must be created for read-write
and read-only workloads. This is true only if Data Guard replication is used. For proxy routing,
use the GDS$CATALOG service on the shard catalog database.

Query Processing and the Query Coordinator
The query coordinator is part of the shard catalog. The query coordinator provides query
processing support for the sharded database. With its access to the sharded database
topology metadata in the shard catalog, there are three general cases in which the query
coordinator plays an important part.

1. Single Shard Queries with No Sharding Key

If a sharding key is not passed from the application, the query coordinator figures out
which shard contains the data required by the query and sends the query there for
execution.

2. Multi-Shard Queries

The query coordinator can also assist with queries that need data from more than one
shard, called multi-shard queries, for example SELECT COUNT(*) FROM Customer.

3. Aggregate Queries

The query coordinator handles aggregate queries typically used in reporting, such as
aggregates on sales data.

In every case, the query coordinator’s SQL compiler identifies the relevant shards
automatically and coordinates the query execution across all of the participating shards.

In a single-shard query scenario, the entire query is executed on the single participating shard,
and the query coordinator just passes processed rows back to the client.

For a multi-shard query the SQL compiler analyzes and rewrites the query into query
fragments that are sent and executed by the participating shards. The queries are rewritten so
that most of the query processing is done on the participating shards and then aggregated by
the coordinator.

The query coordinator uses Oracle Database's parallel query engine to optimize and push
multi-shard queries in parallel to the shards. Each shard executes the query on the subset of
data that it has. Then the results are returned back to the query coordinator, which sends them
back to the client.

In essence, the shards act as compute nodes for the queries executed by the query
coordinator. Because the computation is pushed to the data, there is reduced movement of
data between shards and the coordinator. This arrangement also enables the effective use of
resources by offloading processing from the query coordinator on to the shards as much as
possible.

Specifying Consistency Levels

You can specify different consistency levels for multi-shard queries. For example, you might
want some queries to avoid the cost of SCN synchronization across shards, and these shards
could be globally distributed. Another use case is when you use standbys for replication and
slightly stale data is acceptable for multi-shard queries, as the results could be fetched from
the primary and its standbys. A multi-shard query must maintain global read consistency (CR)
by issuing the query at the highest common SCN across all the shards.

High Availability and Performance

Chapter 2
Query Processing and the Query Coordinator

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 32 of 33

It is highly recommended that the query coordinator be protected with Oracle Data Guard in
Maximum Availability protection mode (zero data loss failover) with fast-start failover enabled.
The query coordinator may optionally be Oracle RAC-enabled for additional availability and
scalability. To improve the scalability and availability of multi-shard query workloads, Oracle
Active Data Guard standby shard catalog databases in read-only mode can act as multi-shard
query coordinators.

In aggregation use cases and SQL execution without a sharding key, you will experience a
reduced level of performance compared with direct, key-based, routing.

Chapter 2
Query Processing and the Query Coordinator

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 33 of 33

3
Security in an Oracle Sharding Environment

Using TCPS Protocol and Transport Layer Security
To secure the communication between the various Oracle Sharding components in a
distributed environment, Oracle recommends that you use Oracle Database Native Network
Encryption or the TCPS protocol and Transport Layer Security (TLS) for all connections to, and
between, the shard catalog and shards.

For information about configuring this security feature, see the documents based on the types
of database you plan to run shards on.

• Autonomous Database

For Oracle Autonomous Database, TLS is already enabled by default, and you only need
to create the remaining security infrastructure, such as vaults, keys, and certificate
resources on OCI.

• Base Database Service

For Base Database Service on OCI you will need to enable TLS using the information in
Configure TCP/IP with SSL/TLS for Sharding – GSM OCI Mode (Doc ID 2881390.1)

• On-Premises

For on-premises databases, see Configure TCP/IP with SSL/TLS for Sharding – GSM
JDBC THIN MODE (Doc ID 2881420.1)

More information is also available in Configuring Oracle Database Native Network Encryption
and Data Integrity and Configuring Secure Sockets Layer Authentication

Using Wallets with Oracle Sharding
Beginning with Oracle Database Release 21c, sharding-specific Oracle wallets are an
important part of any sharded database deployment. All primary databases and their replicas
within the sharding configuration must have a sharding-specific wallet file present to ensure
proper operation.

These wallets are created during the deployment of a sharded database and enable encrypted
data to be sent between the shard catalog and individual shards. The process by which the
wallets are created establishes a trust relationship between the different components of a
sharded database deployment and prevents unauthorized operations from occurring on a
shard.

The wallets themselves are created on the shard catalog and any shard catalog replicas when
the GDSCTL command CREATE SHARDCATALOG is issued, and the wallets are created on the
shards when the GDSCTL command DEPLOY is issued.

After a successful deployment, the wallet files contain information needed for shard catalogs
and shards to connect to one another to perform operations such as DDL processing, user
context propagation, and the passing of other sensitive data. The information stored in the
wallet includes sharding-specific encryption and decryption keys, connect strings, and

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 7

https://support.oracle.com/rs?type=doc&id=2881390.1
https://support.oracle.com/rs?type=doc&id=2881420.1
https://support.oracle.com/rs?type=doc&id=2881420.1

encrypted passwords. Any command issued from GDSCTL or SQL*Plus which changes this
data will automatically cause the wallet to be updated with the new information.

Compatibility and Migration from Oracle Database 19c

For existing Oracle Sharding configurations which are being upgraded from a previous Oracle
Database release, perform the steps in Post-Upgrade Steps for Oracle Sharding 21c after the
database upgrade.

Locating the Wallet

The location of the wallet files is under the directory specified by the wallet_root database
initialization parameter. If wallet_root is not set before issuing CREATE SHARDCATALOG or
DEPLOY, then wallet_root is set to $ORACLE_BASE/admin/db_unique_name on the shard catalog
or shards, respectively.

For example, assume the following after logging into the shard catalog or into a shard.

SQL> select guid from v$pdbs where con_id = sys_context('userenv','con_id');

GUID

C23E7C78D5B77D50E0537517C40ACE4A

SQL> select value from v$parameter where name='wallet_root';

VALUE
--
--
your-path-to-keystore

Given these values, the sharding-specific wallet file name is your-path-to-keystore/
C23E7C78D5B77D50E0537517C40ACE4A/shard/cwallet.sso.

Wallets on Shard Catalog Replicas

If a standby database is created as a replica of the shard catalog, the shard wallet for the
catalog must be manually copied from the primary shard catalog wallet. Find the location of the
primary wallet using the above method, and make a copy to the correct location on the standby
shard catalog database.

Note

The value of wallet_root may be different on the standby shard catalog, and may not
be set. Remember to set the value of wallet_root before copying the wallet to the
standby location

The wallet only exists on the primary shard catalog after the GDSCTL create
shardcatalog command is run. If a standby shard catalog database is created before
running create shardcatalog, then first run create shardcatalog to create the shard
wallet on the primary shard catalog, then copy the wallet to the standby shard catalog.

The shard catalog database also requires a wallet for CDB$ROOT. When copying and
backing up shard wallets for a shard catalog database, you should also copy the shard
wallet for CDB$ROOT regardless of which PDB is being used for the shard catalog.

Chapter 3
Using Wallets with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 7

Wallet Life Cycle Management

Once a sharded database has been deployed, it is crucial that the shard wallet is maintained
throughout the life cycle of the shard catalog, the shards, and their replicas. Specifically, the
shard wallet should be included in all backup and restore operations for each database, just as
if it were a database data file.

Likewise, if a PDB is cloned, relocated, or otherwise moved, then the shard wallet should
accompany the PDB to its new location. Note that in the case of PDB cloning specifically, the
GUID for the PDB changes during the cloning operation, and therefore the path to the wallet
will change as described above.

Updating a Wallet

If the shard wallet becomes lost, out of date. or is no longer accessible, a newly populated
wallet can be created using the following GDSCTL command:

gdsctl sync database -database shard_name

Attempting to perform certain operations when the wallet is not present, or its contents are out
of date, results in one or more of the following errors.

ORA-03873: unable to encrypt DDL statement with error ...

ORA-03874: unable to encrypt GSMUSER password with error ...

ORA-03876: error ... when attempting to generate a temporary key to add new
shards

ORA-03894: "Failed to send keys to shard %s with error"

ORA-03896: Unable to load the sharding wallet successfully.

ORA-00600: internal error code, arguments: [gwsec_get_latest_key]

Using Application Contexts During Cross-Shard Operations
The ability to use several Oracle security features such as Virtual Private Database (VPD),
Unified Auditing, and Oracle Label Security (OLS) typically depend upon the use of session-
level application contexts.

Before Oracle 21c, any cross-shard operations such as cross-shard queries or DMLs initiated
by the shard catalog would not send session-level application context values to the affected
shards. Therefore, features that depended on the context values being passed from the shard
catalog session to the shards were not supported in a sharded environment.

Starting with Oracle 21c, any database session-based application context values set before a
cross-shard query or DML are sent securely to all shards involved in the operation. This is how
features such as VPD, auditing, and OLS are supported in a sharding environment.

For example, if a user connects to the shard catalog or a query coordinator from SQL*Plus and
calls the DBMS_SESSION.SET_CONTEXT procedure to set a context value, then that value is sent
to any shards involved in subsequent cross-shard operations initiated from the SQL*Plus
session on the shard catalog. Calling the SYS_CONTEXT function on the shard will return the
value originally set on the shard catalog as you would expect.

Note the following limitations when you attempt to use application contexts for cross-shard
operations:

Chapter 3
Using Application Contexts During Cross-Shard Operations

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 7

• The maximum length of a context value is 1968 bytes, as opposed to 4000 bytes in non-
sharded environments.

• The maximum length of a context attribute name is 32 bytes, as opposed to 128 bytes in
non-sharded environments.

• Only database session-based contexts initialized locally are currently supported.

• All of the shards in the configuration must be Oracle Database 21c or later releases for the
context value to be passed during cross-shard operations.

For more information see Using Application Contexts to Retrieve User Information.

Sharding-Specific Behavior Differences
In general, database limits on a per-user or per-schema basis are not aggregated across all
databases in the sharded database, but only apply on a per-database level.

From an application perspective, a sharded database acts a single, logical database in most
respects. However, a sharded database itself consists of several independent, loosely-coupled
Oracle Database instances acting as shard catalogs, query coordinators, and shards. As a
result, some behavior that you would expect from a typical Oracle Database is modified in the
context of a database sharded with Oracle Sharding.

For example, if a sharded user is created and a user profile is assigned to the user with the
SQL statement CREATE PROFILE, the limits set in the profile do not apply to the sharded
database as a whole. Rather, they apply to each database that is a part of the larger, virtual
sharded database.

Therefore, if you set the maximum number of failed login attempts to 20 for a sharded user,
that limit does not apply to the entire sharded database but rather applies to each individual
database in the configuration. If 20 failed attempts are reached when logging into a particular
shard, then those failures do not count against the limits on the other shards or the shard
catalog.

Using Transparent Data Encryption with Oracle Sharding
Oracle Sharding supports Transparent Data Encryption (TDE), but to successfully move
chunks in a sharded database with TDE enabled, all of the shards must share and use the
same encryption key for the encrypted tablespaces.

A sharded database consists of multiple independent databases and a shard catalog
database. For TDE to work properly certain restrictions apply, especially when data is moved
between shards. For chunk movement between shards to work when data is encrypted, you
must ensure that all of the shards use the same encryption key.

There are two ways to accomplish this:

• Create and export an encryption key from the shard catalog, and then import and activate
the key on all of the shards individually.

• Store the wallet in a shared location and have the shard catalog and all of the shards use
the same wallet.

The following TDE statements are automatically propagated to shards when run on the shard
catalog with shard DDL enabled:

• ALTER SYSTEM SET ENCRYPTION WALLET [OPEN|CLOSE] IDENTIFIED BY password

• ALTER SYSTEM SET ENCRYPTION KEY

Chapter 3
Sharding-Specific Behavior Differences

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 7

• ADMINISTER KEY MANAGEMENT SET KEYSTORE [OPEN|CLOSE] IDENTIFIED BY
password

• ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY password

• ADMINISTER KEY MANAGEMENT USE KEY IDENTIFIED BY password

• ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY password

For more information about TDE see Introduction to Transparent Data Encryption

Using Oracle Key Vault with Oracle Sharding

To significantly increase security and convenience, and to avoid human mistakes while copying
wallets and keys across shards, it is highly recommended that you deploy an Oracle Key Vault
(OKV) cluster along with your sharded databases.

All TDE master keys that you create in the shard catalog database will be available to all
shards immediately, with no copying of keys and wallets, and no unintentional downtime due to
a delay of the key's update on a shard. If your sharded database is configured with Oracle
RAC, or Oracle Data Guard, or both, the benefits of OKV become even more appealing: all
primary and standby Oracle RAC instances will have access to the new key instantaneously.

In case your sharded databases are deployed on-premises across globally distributed regions,
and/or in OCI, Azure, AWS, or Google Cloud, Oracle Key Vault can be deployed anywhere,
providing local key management where you need it, providing "Hold your own key" and
eliminating complicated (or impossible) key exchange between cloud-native key management
silos.

Limitations

The following limitations apply to using TDE with Oracle Sharding.

• For GDSCTL MOVE CHUNK to work, all of the shard database hosts must be on the same
platform.

• MOVE CHUNK cannot use compression during data transfer, which may impact performance.

• Only encryption on the tablespace level is supported. Encryption on specific columns is not
supported.

Creating a Single Encryption Key on All Shards
To propagate a single encryption key to all of the databases in the sharded database
configuration, you must create a master encryption key on the shard catalog, then use wallet
export, followed by wallet import onto the shards, and activate the keys.

This procedure assumes that the keystore password and wallet directory path are the same for
the shard catalog and all of the shards. If you require different passwords and directory paths,
all of the commands should be issued individually on each shard and the shard catalog with
shard DDL disabled, using the shard’s own password and path.

These steps should be done before any data encryption is performed.

1. Create an encryption key on the shard catalog.

With shard DDL enabled, issue the following statements.

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE wallet_directory_path
 IDENTIFIED BY keystore_password;

Chapter 3
Creating a Single Encryption Key on All Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 7

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
keystore_password;

The value for keystore_password should be the same if you prefer to issue wallet open
and close commands centrally from the shard catalog.

The wallet directory path should match the WALLET_ROOT in the corresponding initialization
parameter file.

2. With shard DDL disabled, issue the following statement to activate the encryption key.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
 IDENTIFIED BY keystore_password;
ADMINISTER KEY MANAGEMENT USE KEY master_key_id
 IDENTIFIED BY keystore_password WITH BACKUP;

All of the shards and the shard catalog database now have the same encryption key
activated and ready to use for data encryption. On the shard catalog, you can issue TDE
DDLs (with shard DDL enabled), such as:

• Create encrypted tablespaces and tablespace sets.

• Create sharded tables using encrypted tablespaces.

• Create sharded tables containing encrypted columns (with limitations).

3. Validate that the key IDs on all of the shards match the ID on the shard catalog.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

4. ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY keystore_password WITH
BACKUP;

An encryption key is created and activated in the shard catalog database’s wallet.

If you issue this statement with DDL enabled, it will also create encryption keys in each of
the shards’ wallets, which are different keys from that of the shard catalog. For data
movement to work, you cannot use different encryption keys on each shard.

5. Get the master key ID from the shard catalog keystore.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

6. With shard DDL disabled, export the catalog wallet containing the encryption key.

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET secret_phrase
TO
 wallet_export_file IDENTIFIED BY keystore_password;

Chapter 3
Creating a Single Encryption Key on All Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 7

7. Physically copy the wallet file to each of the shard hosts, into their corresponding wallet
export file location, or put the wallet file on a shared disk to which all of the shards have
access.

8. With shard DDL disabled, log on to each shard and import the wallet containing the key.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
keystore_password;
ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS WITH SECRET secret_phrase
FROM
 wallet_export_file IDENTIFIED BY keystore_password WITH BACKUP;

9. Restart the shard databases.

10. Activate the key on all of the shards on the shard catalog with shard DDL enabled.

Oracle Database Vault
Do not enable Oracle Database Vault (Data Vault) on your sharded databases. Oracle
Sharding does not support Oracle Database Vault.

Chapter 3
Oracle Database Vault

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 7

4
Sharded Database Deployment

Create and configure a sharded database, beginning with host provisioning, and continuing
through software configuration, database setup, sharding metadata creation, and schema
creation. This process is known as deployment.

The following topics explain the concepts and tasks to deploy a sharded database:

Introduction to Sharded Database Deployment
Oracle Sharding provides the capability to automatically deploy the sharded database, which
includes both the shards and the replicas.

The sharded database administrator defines the topology (regions, shard hosts, replication
technology) and invokes the DEPLOY command with a declarative specification using the GDSCTL
command-line interface.

Before You Begin

Note that there are many different configurations and topologies that can be used for a
sharded database. Your particular sharded database may employ a variety of Oracle software
components such as Oracle Data Guard and Oracle Real Application Clusters (Oracle RAC)
along with different sharding methodologies including system-managed, composite, and user-
defined sharding.

Depending on your application’s particular architecture and system requirements, you may
have several choices from which to choose when designing your system. Familiarize yourself
with Oracle Sharding Architecture and Concepts before proceeding with deployment.

Sharded Database Deployment Roadmap

At a high level, the deployment steps are:

1. Set up the components.

• Provision and configure the hosts that will be needed for the sharding configuration
and topology selected (see Provision and Configure Hosts and Operating Systems).

• Install Oracle Database software on the selected catalog and shard nodes (see Install
the Oracle Database Software).

• Install global service manager (GSM) software on the shard director nodes (see Install
the Shard Director Software).

2. Create databases needed to store the sharding metadata and the application data.

• Create a database that will become the shard catalog along with any desired replicas
for disaster recovery (DR) and high availability (HA) (see Create the Shard Catalog
Database).

• Create databases that will become the shards in the configuration including any
standby databases needed for DR and HA (see Create the Shard Databases).

3. Specify the sharding topology using some or all the following commands from the GDSCTL
command line utility, among others (see Configure the Sharded Database Topology).

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 30

• CREATE SHARDCATALOG

• ADD GSM

• START GSM

• ADD SHARDGROUP

• ADD SHARD

• ADD INVITEDNODE

4. Run DEPLOY to deploy the sharding topology configuration (see Deploy the Sharding
Configuration).

5. Add the global services needed to access any shard in the sharded database (see Create
and Start Global Database Services).

6. Verify the status of each shard (see Verify Shard Status).

When the sharded database configuration deployment is complete and successful, you can
create the sharded schema objects needed for your application. See Sharded Database
Schema Objects.

The topics that follow describe each of the deployment tasks in more detail along with specific
requirements for various components in the system. These topics can act as a reference for
the set up and configuration of each particular step in the process. However, by themselves,
they will not produce a fully functional sharding configuration since they do not implement a
complete sharding scenario, but only provide the requirements for each step.

Example Sharded Database Deployment walks you through a specific deployment scenario of
a representative reference configurations. This section provides examples of every command
needed to produce a fully functional sharded databases once all the steps are completed.

Planning Your Sharded Database Deployment
Many decisions need to be made when planning your sharded database deployment including
the sharded database topology, replication method, and the sharding methodology.

There are many different configurations and topologies that can be used for a sharded
database. Your particular sharded database may employ a variety of Oracle software
components such as Oracle Data Guard and Oracle Real Application Clusters (Oracle RAC)
along with different sharding methodologies including system-managed, composite, and user-
defined sharding.

Depending on which sharding method you choose (system, composite, or user-defined
sharding), you can further refine your topology planning with decisions about considerations
such as the number of chunks, shardgroups or shardspaces, regions, standbys, and open as
opposed to mounted databases, and so on.

See Oracle Sharding Architecture and Concepts for information pertaining to these topology
options.

Plan the Sharded Database Configuration
To plan your Oracle Sharding configuration you need an understanding of the objects that
make up a sharded database configuration, so that you can best configure and deploy them to
meet your requirements.

The sharded database configuration consists of the sharding method, replication (high
availability) technology, the default number of chunks to be present in the sharded database,

Chapter 4
Planning Your Sharded Database Deployment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 30

the location and number of shard directors, the numbers of shardgroups, shardspaces,
regions, and shards in the sharded database, and the global services that will be used to
connect to the sharded database.

Oracle Database Global Data Services Architecture

Because the Oracle Sharding feature is built on the Oracle Database Global Data Services
feature, to plan your Oracle Sharding topology you might benefit from an understanding of the
Global Data Services architecture. See Introduction to Global Data Services for conceptual
information about Global Data Services.

Provision and Configure Hosts and Operating Systems
Before you install any software, review these hardware, network, and operating system
requirements for Oracle Sharding.

• Oracle Database Enterprise Edition is required when running an Oracle Sharded
Database.

• Hardware and operating system requirements for shards are the same as those for Oracle
Database. See your Oracle Database installation documentation for these requirements.

• Hardware and operating system requirements for the shard catalog and shard directors
are the same as those for the Global Data Services catalog and global service manager.
See Oracle Database Global Data Services Concepts and Administration Guide for these
requirements.

• Network Low Latency GigE is strongly recommended

• Port communication requirements are as follows.

– Each and every shard must be able to reach each and every shard director's listener
and ONS ports. The shard director listener ports and the ONS ports must also be
opened to the application/client tier, all of the shards, the shard catalog, and all other
shard directors.

The default listener port of the shard director is 1522, and the default ONS ports on
most platforms are 6123 for the local ONS and 6234 for remote ONS.

– Each and every shard must be able to reach the TNS Listener port (default 1521) of
the shard catalog (both primary and standbys).

– The TNS Listener port of each shard must be opened to all shard directors and the
shard catalog.

– All of the port numbers listed above are modifiable during the deployment
configuration. However, the port numbers to be used must be known before setting up
the host software.

• Host name resolution must be successful between all of the shard catalog, shards, and
shard director hosts. Operating system commands such as ‘ping’ must succeed from a
given host to any other host when specifying any host names provided during sharded
database configuration commands.

Number and Sizing of Host Systems

Depending on your specific configuration, the hosts that are needed may include the following:

• Shard catalog host. The shard catalog host runs the Oracle Database that serves as the
shard catalog. This database contains a small amount of sharding topology metadata and
any duplicated tables that are created for your application. In addition, the shard catalog
acts as a multi-shard query coordinator for cross-shard queries and services connections

Chapter 4
Planning Your Sharded Database Deployment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 30

https://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19/shard&id=GSMUG-GUID-B7010949-4EAE-4AB1-A136-D5A4CD2AE688

for applications that have not been written to be sharding-aware. In general, the
transaction workload and size of this database are not particularly large.

• Shard catalog database standbys (replicas). At least one more host to contain a replica
or standby of the primary shard catalog database is recommended. This host is necessary
in case of a failure of the primary catalog host. In addition, while acting as a standby
database, this host can also be configured to be a query coordinator for cross-shard
queries.

• Shard director host. The shard director (global service manager) software can reside on
a separate host, or it can be co-located on the same host as the shard catalog. This
component of the sharding system is comprised of a network listener and several
background processes used to monitor and configure a sharded configuration. If it is co-
located on the same host as the catalog database, the shard director must be installed in a
separate Oracle Home from the catalog database, because the installation package is
different than the one used for Oracle Database.

• Multiple shard directors. For high-availability purposes, it is recommended that you have
more than one shard director running in a sharded system. Any additional shard directors
can run on their own hosts or on the hosts running the standby shard catalog databases.

• Shards. In addition to the above hosts, each shard that is configured in the system should
also run on its own separate host. The hosts and their configurations chosen for this task
should be sized in the same way as a typical Oracle Database host depending on how
much load is put on each particular shard.

• Shard standbys (replicas). Again, for high-availability and disaster recovery purposes,
use Oracle Data Guard and replicas created for all sharded data. Additional hosts will be
needed to run these replica or standby databases.

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

When the number of hosts and capacity requirements for each host have been determined,
provision your hardware resources as appropriate for your environment using whatever
methodologies you choose.

Before installing any software, you must confirm that the hosts can communicate with each
other though the ports as described above. Because a sharding configuration is inherently a
distributed system, it is crucial that this connectivity between and among all of the hosts is
confirmed before moving on to the next steps in the deployment process. Failure to set up port
access correctly will lead to failures in subsequent commands.

Multi-Shard Query Coordinator Availability and Scalability
The multi-shard query coordinator, a component of the shard catalog, can be kept highly
available and scaled to meet its workload with these recommendations.

The availability of the multi-shard coordinator impacts proxy-routing based workloads, so it is
highly recommended that the coordinator be protected with Data Guard in Maximum
Availability protection mode (zero data loss failover) with fast-start failover enabled. The
coordinator may optionally be Oracle RAC-enabled for additional availability and scalability.

To improve the scalability and availability of multi-shard query workloads, Oracle Active Data
Guard standby shard catalog databases in read-only mode can act as multi-shard query
coordinators. For each active replica of the catalog database, a special coordinator service,

Chapter 4
Planning Your Sharded Database Deployment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 30

GDS$COORDINATOR.cloud_name (where cloud_name is the value specified for the configname
parameter in the GDSCTL CREATE SHARDCATALOG command, and is oradbcloud by default) is
running and registered on all shard directors.

Clients can connect to this service on any of the replicas and perform multi-shard queries,
allowing shard directors to distribute the multi-shard query workload with respect to runtime
load balancing and decrease the load on in the primary shard catalog, which is the central
component of the Oracle Sharding framework.

Additionally, if the database’s region is set, and the client specifies the region in the connection
string, a shard director routes a connection with respect to regional affinity.

Availability of the multi-shard query coordinator has zero impact on workloads using direct
routing.

Install the Oracle Database Software
Install Oracle Database on each system that will host the shard catalog, a database shard, or
their replicas.

Aside from the requirement that the shard catalog and all of the shards in an Oracle Sharding
configuration require Oracle Database Enterprise Edition, there are no other special installation
considerations needed for sharding as long as the installation is successful and all post-install
scripts have been run successfully.

See your platform’s installation guide at https://docs.oracle.com/en/database/oracle/oracle-
database/ for information about configuring operating system users.

Install the Shard Director Software
Install the global service manager software on each system that you want to host a shard
director.

Note that this software installation is distinct from an Oracle Database installation. If you
choose to co-locate the shard director software on the same host as the shard catalog
database, it must be installed in a separate Oracle Home.

See Oracle Database Global Data Services Concepts and Administration Guide for information
about installing the global service manager software.

Create the Shard Catalog Database
Use the following information and guidelines to create the shard catalog database.

The shard catalog database contains a small amount of sharding topology metadata and also
contains all the duplicated tables that will be created for use by your sharded application. The
shard catalog database also acts as a query coordinator to run cross-shard queries that select
and aggregate data from more than one shard.

From a sharding perspective, the way in which you create or provision the catalog database is
irrelevant. The database can be created with the Database Configuration Assistant (DBCA),
manually using SQL*Plus, or provisioned from cloud infrastructure tools.

As long as you have a running Oracle Database Enterprise Edition instance on the shard
catalog host with the following characteristics, it can used as the shard catalog.

Chapter 4
Install the Oracle Database Software

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 30

https://docs.oracle.com/en/database/oracle/oracle-database/
https://docs.oracle.com/en/database/oracle/oracle-database/

• Create a pluggable database (PDB) for use as the shard catalog database. Using the root
container (CDB$ROOT) of a container database (CDB) as the shard catalog database is not
supported.

• Your shard catalog database must use a server parameter file (SPFILE). This is required
because the sharding infrastructure uses internal database parameters to store
configuration metadata, and that data needs to persist across database startup and
shutdown operations.

$ sqlplus / as sysdba

SQL> show parameter spfile

NAME TYPE VALUE
-------- --------- ------------------------------------
spfile string /u01/app/oracle/dbs/spfilecat.ora

• The database character set and national character set must be the same, because it is
used for all of the shard databases. This means that the character set chosen must contain
all possible characters that will be inserted into the shard catalog or any of the shards.

This requirement arises from the fact that Oracle Data Pump is used internally to move
transportable tablespaces from one shard to another during sharding MOVE CHUNK
commands. A requirement of that mechanism is that character sets must match on the
source and destination.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> select * from nls_database_parameters
 2 where parameter like '%CHARACTERSET';

PARAMETER VALUE
-- --------------------
NLS_NCHAR_CHARACTERSET AL16UTF16
NLS_CHARACTERSET WE8DEC

• Because the shard catalog database can run multi-shard queries which connect to shards
over database links, the OPEN_LINKS and OPEN_LINKS_PER_INSTANCE database initialization
parameter values must be greater than or equal to the number of shards that will be part of
the sharded database configuration.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter open_links

NAME TYPE VALUE
------------------------------------ ----------- ------------
open_links integer 20
open_links_per_instance integer 20

• Set the DB_FILES database initialization parameter greater than or equal to the total
number of chunks and/or tablespaces in the system.

Each data chunk in a sharding configuration is implemented as a tablespace partition and
resides in its own operating system data file. As a result, the DB_FILES database

Chapter 4
Create the Shard Catalog Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 30

initialization parameter must be greater than or equal to the total number of chunks (as
specified on the CREATE SHARDCATALOG or ADD SHARDSPACE commands) and/or tablespaces
in the system.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter db_files

NAME TYPE VALUE
------------------------------------ ----------- ------------
db_files integer 1024

• To support Oracle Managed Files, which is used by the sharding chunk management
infrastructure, the DB_CREATE_FILE_DEST database parameter must be set to a valid value.

This location is used during chunk movement operations (for example MOVE CHUNK or
automatic rebalancing) to store the transportable tablespaces holding the chunk data. In
addition, files described in Oracle Database Administrator’s Guide, "Using Oracle
Managed Files," are also stored in this location as is customary for any Oracle database
using Oracle Managed Files.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter db_create_file_dest

NAME TYPE VALUE
--------------------- --------- -----------------------------
db_create_file_dest string /u01/app/oracle/oradata

• If a standby catalog database will be part of the sharding configuration, the
STANDBY_FILE_MANAGEMENT database parameter should be set to in order to automatically
create new database files on any standby catalog databases.

If this parameter is set to MANUAL (which is the default), then new database files created
during CREATE TABLESPACE commands, for example, will not be created on the standby.
This will cause data unavailability and application errors if the standby ever becomes a
primary database.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter standby_file_management

NAME TYPE VALUE
------------------------------------ ----------- ------------
standby_file_management stirng AUTO

• An Oracle-provided user account named GSMCATUSER must be unlocked and assigned a
password inside the PDB designated for the shard catalog. This account is used by the
shard director processes to connect to the shard catalog database and perform
administrative tasks in response to sharding commands.

Note that GSMCATUSER is a common user in the container database. As a result, its
password is the same for CDB$ROOT and all PDBs in the CDB. If multiple PDBs in a single
CDB are to be used as catalog databases for different sharding configurations, they will all

Chapter 4
Create the Shard Catalog Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 30

share the same GSMCATUSER password which can be a security concern. To avoid this
potential security concern, configure a separate CDB to host each shard catalog. Each
CDB should contain only a single shard catalog PDB so that no other PDBs in the CDB
can share the common GSMCATUSER password. In this way, multiple shard catalogs can be
configured across several CDBs, each having different GSMCATUSER passwords.

The password you specify is used later during sharding topology creation in any ADD GSM
commands that are issued. It never needs to be specified again because the shard director
stores it securely in an Oracle Wallet and decrypts it only when necessary.

The MODIFY GSM command can be used to update the stored password if it is later changed
on the shard catalog database.

$ sqlplus / as sysdba

SQL> alter user gsmcatuser account unlock;

User altered.

SQL> alter user gsmcatuser identified by gsmcatuser_password;

User altered.

SQL> alter session set container=catalog_pdb_name;
SQL> alter user gsmcatuser account unlock;

User altered.

• A shard catalog administrator account must be created, assigned a password, and granted
privileges inside the PDB designated as the shard catalog.

This account is the administrator account for the sharding metadata in the shard catalog
database. It is used to access the shard catalog using the GDSCTL utility when an
administrator needs to makes changes to the sharded database topology or perform other
administrative tasks.

GDSCTL connects as this user to the shard catalog database when GDSCTL commands are
run. The user name and password specified are used later in the CREATE SHARDCATALOG
command. As with the GSMCATUSER account above, the user name and password are
stored securely in an Oracle Wallet for later use. The stored credentials can be updated by
issuing an explicit CONNECT command from GDSCTL to reset the values in the wallet.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> create user mysdbadmin identified by mysdbadmin_password;

User created.

SQL> grant gsmadmin_role to mysdbadmin;

Grant succeeded.

• Set up and run an Oracle Net TNS Listener at your chosen port (default is 1521) that can
service incoming connection requests for the shard catalog PDB.

The TNS Listener can be created and configured in whatever way you wish. Depending on
how the database was created, it may be necessary to explicitly create a database service

Chapter 4
Create the Shard Catalog Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 30

that can allow for direct connection requests to the PDB without the need to use ALTER
SESSION SET CONTAINER.

To validate that the listener is configured correctly, do the following using your newly
created mysdbadmin account above and an appropriate connect string. Running LSNRCTL
SERVICES lists all services currently available using the listener.

$ sqlplus mysdbadmin/mysdbadmin_password@catalog_connect_string

SQL> show con_name

CON_NAME

catalog_pdb_name

Once you confirm connectivity, make note of the catalog_connect_string above. It is used
later in the configuration process in the GDSCTL CREATE SHARDCATALOG command. Typically,
it will be of the form host:port/service_name (for example, cathost.example.com:1521/
catalog_pdb.example.com).

After all of the above requirements have been met, the newly created database can now be the
target of a GDSCTL CREATE SHARDCATALOG command.

For high availability and disaster recovery purposes, it is highly recommended that you also
create one or more standby shard catalog databases. From a sharding perspective, as long as
the above requirements are also met on the standby databases, and all changes to the primary
shard catalog database are consistently applied to the standbys, there are no further sharding-
specific configuration steps required.

Create the Shard Databases
The databases that will be used as shards should be created on their respective hosts.

As with the shard catalog database, the way in which you create or provision the shard
databases is irrelevant from a sharding perspective. The database can be created with the
Database Configuration Assistant (DBCA), manually using SQL*Plus, or provisioned from
cloud infrastructure tools.

As long as you have a running Oracle Database Enterprise Edition instance on each shard
host, with the following characteristics, it can be used as a shard.

• An Oracle-provided user account named GSMROOTUSER must be unlocked and assigned a
password inside CDB$ROOT of the database designated for a shard. In addition, this user
must be granted the SYSDG and SYSBACKUP system privileges.

The GSMROOTUSER account is used by GDSCTL and the shard director processes to connect
to the shard database to perform administrative tasks in response to sharding commands.
The password specified is used by GDSCTL during sharding topology creation in any ADD
CDB commands that are issued. It is also be used by the shard director during the DEPLOY
command to configure Oracle Data Guard (as necessary) on the shard databases. It never
needs to be specified again by the user, because GDSCTL and the shard director store it
securely in an Oracle Wallet and decrypt it only when necessary. The MODIFY CDB
command can be used to update the stored password if it is later changed on the shard
database.

$ sqlplus / as sysdba

Chapter 4
Create the Shard Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 30

SQL> alter user gsmrootuser account unlock;

User altered.

SQL> alter user gsmrootuser identified by gsmrootuser_password;

User altered.

SQL> grant SYSDG, SYSBACKUP to gsmrootuser;

Grant succeeded.

• Create a pluggable database (PDB) for use as the shard database. Using the root
container (CDB$ROOT) of a container database (CDB) as a shard is not supported.

• Your shard database must use a server parameter file (SPFILE). The SPFILE is required
because the sharding infrastructure uses internal database parameters to store
configuration metadata, and that data must persist through database startup and shutdown
operations.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter spfile

NAME TYPE VALUE
-------- --------- ------------------------------------
spfile string /u01/app/oracle/dbs/spfileshard.ora

• The database character set and national character set of the shard database must be the
same as that used for the shard catalog database and all other shard databases. This
means that the character set you choose must contain all possible characters that will be
inserted into the shard catalog or any of the shards.

This requirement arises from the fact that Oracle Data Pump is used internally to move
transportable tablespaces from one shard to another during sharding MOVE CHUNK
commands. A requirement of that mechanism is that character sets must match on the
source and destination.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> select * from nls_database_parameters
 2 where parameter like '%CHARACTERSET';

PARAMETER VALUE
-- --------------------
NLS_NCHAR_CHARACTERSET AL16UTF16
NLS_CHARACTERSET WE8DEC

• The COMPATIBLE initialization parameter must be set to at least 12.2.0.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter compatible

Chapter 4
Create the Shard Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 30

NAME TYPE VALUE
---------------------- ----------- -----------------
compatible string 21.0.0

• Enable Flashback Database if your sharded database will use standby shard databases.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> select flashback_on from v$database;

FLASHBACK_ON

YES

• FORCE LOGGING mode must be enabled if your shard database will use standby shard
databases.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> select force_logging from v$database;

FORCE_LOGGING

YES

• Set the DB_FILES database initialization parameter greater than or equal to the total
number of chunks and/or tablespaces in the system.

Each data chunk in a sharding configuration is implemented as a tablespace partition and
resides in its own operating system datafile. As a result, the DB_FILES database
initialization parameter must be greater than or equal to the total number of chunks (as
specified in the CREATE SHARDCATALOG or ADD SHARDSPACE commands) and/or tablespaces
in the system.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter db_files

NAME TYPE VALUE
------------------------------------ ----------- ------------
db_files integer 1024

• To support Oracle Managed Files, used by the sharding chunk management infrastructure,
the DB_CREATE_FILE_DEST database parameter must be set to a valid value.

This location is used during chunk movement operations (for example MOVE CHUNK or
automatic rebalancing) to store the transportable tablespaces holding the chunk data. In
addition, files described in Oracle Database Administrator’s Guide, "Using Oracle

Chapter 4
Create the Shard Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 30

Managed Files," are also stored in this location as is customary for any Oracle database
using Oracle Managed Files.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter db_create_file_dest

NAME TYPE VALUE
--------------------- --------- -----------------------------
db_create_file_dest string /u01/app/oracle/oradata

• A directory object named DATA_PUMP_DIR must be created and accessible in the PDB from
the GSMADMIN_INTERNAL account.

GSMADMIN_INTERNAL is an Oracle-supplied account that owns all of the sharding metadata
tables and PL/SQL packages. It should remain locked and is never used to login
interactively. It’s only purpose is to own and control access to the sharding metadata and
PL/SQL.

$ sqlplus / as sysdba

SQL> create or replace directory DATA_PUMP_DIR as ‘/u01/app/oracle/
oradata’;

Directory created.

SQL> alter session set container=shard_pdb_name;
SQL> grant read, write on directory DATA_PUMP_DIR to gsmadmin_internal;

Grant succeeded.

• To support file movement from shard to shard, the DB_FILE_NAME_CONVERT database
parameter must be set to a valid value. This location is used when standby databases are
in use, as is typical with non-sharded databases, and the location can also be used during
chunk movement operations. For regular file system locations, it is recommended that this
parameter end with a trailing slash (/).

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter db_file_name_convert

NAME TYPE VALUE
---------------------- --------- -----------------------------
db_file_name_convert string /dbs/SHARD1/, /dbs/SHARD1S/

• If a standby shard databases will be part of the sharding configuration, the
STANDBY_FILE_MANAGEMENT database parameter should be set to AUTO to automatically
create new database files on any standby shard databases.

If this parameter is set to MANUAL (which is the default), then new database files created
during CREATE TABLESPACE commands, for example, will not be created on the standby.

Chapter 4
Create the Shard Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 30

This will cause data unavailability and application errors if the standby ever becomes a
primary database.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter standby_file_management

NAME TYPE VALUE
------------------------------------ ----------- ------------
standby_file_management string AUTO

• An Oracle-provided user account named GSMUSER must be unlocked and assigned a
password inside the PDB designated as the shard database. In addition, this user must be
granted the SYSDG and SYSBACKUP system privileges.

Note that GSMUSER is a common user in the container database. As a result, its password is
the same for CDB$ROOT and all PDBs in the CDB, which can be a security concern. To avoid
this, host only one shard PDB per CDB, and do not unlock the GSMUSER account in any
other PDBs.

This account is used by the shard director processes to connect to the shard database and
perform administrative tasks in response to sharding commands. The password specified
is used later during sharding topology creation in any ADD SHARD commands that are
issued. The password never needs to be specified again because the shard director stores
it securely in an Oracle Wallet and only decrypts it when necessary. You can update the
stored password using the MODIFY SHARD command if the password is later changed on the
shard database.

$ sqlplus / as sysdba

SQL> alter user gsmuser account unlock;

User altered.

SQL> alter user gsmuser identified by gsmuser_password;

User altered.

SQL> alter session set container=shard_pdb_name;
SQL> alter user gsmuser account unlock;

User altered.

SQL> grant SYSDG, SYSBACKUP to gsmuser;

Grant succeeded.

• Set up and run an Oracle Net TNS Listener at your chosen port (default is 1521) that can
service incoming connection requests for the shard PDB.

The TNS Listener can be created and configured in whatever way you wish. Depending on
how the database was created, it may be necessary to explicitly create a database service
that can allow for direct connection requests to the PDB without the need to use ALTER
SESSION SET CONTAINER.

Chapter 4
Create the Shard Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 30

To validate that the listener is configured correctly, run the following command using your
newly unlocked GSMUSER account and an appropriate connect string. Running LSNRCTL
SERVICES lists all services currently available using the listener.

$ sqlplus gsmuser/gsmuser_password@shard_connect_string

SQL> show con_name

CON_NAME

shard_pdb_name

Once you confirm connectivity, make note of the shard_connect_string above. It is used
later in the configuration process in the GDSCTL ADD SHARD command. Typically, the
connect string is in the form host:port/service_name (for example,
shardhost.example.com:1521/shard_pdb.example.com).

Validate the Shard Database
To validate that all of the shard database requirements have been met, you can run an Oracle-
supplied procedure, validateShard, that inspects the shard database and reports any issues
encountered. This procedure is read-only and makes no changes to the database
configuration.

The validateShard procedure can and should be run against primary, mounted (unopened)
standby, and Active Data Guard standby databases that are part of the sharded database
configuration. You can run validateShard multiple times and at any time during the sharded
database life cycle, including after upgrades and patching.

To run the validateShard package, do the following:

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> set serveroutput on
SQL> execute dbms_gsm_fix.validateShard

This procedure will produce output similar to the following:

INFO: Data Guard shard validation requested.
INFO: Database role is PRIMARY.
INFO: Database name is SHARD1.
INFO: Database unique name is shard1.
INFO: Database ID is 4183411430.
INFO: Database open mode is READ WRITE.
INFO: Database in archivelog mode.
INFO: Flashback is on.
INFO: Force logging is on.
INFO: Database platform is Linux x86 64-bit.
INFO: Database character set is WE8DEC. This value must match the character
set of the catalog database.
INFO: 'compatible' initialization parameter validated successfully.
INFO: Database is a multitenant container database.
INFO: Current container is SHARD1_PDB1.

Chapter 4
Validate the Shard Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 14 of 30

INFO: Database is using a server parameter file (spfile).
INFO: db_create_file_dest set to: '/u01/app/oracle/dbs'
INFO: db_recovery_file_dest set to: '/u01/app/oracle/dbs'
INFO: db_files=1000. Must be greater than the number of chunks and/or
tablespaces to be created in the shard.
INFO: dg_broker_start set to TRUE.
INFO: remote_login_passwordfile set to EXCLUSIVE.
INFO: db_file_name_convert set to: '/dbs/SHARD1/, /dbs/SHARD1S/'
INFO: GSMUSER account validated successfully.
INFO: DATA_PUMP_DIR is '/u01/app/oracle/dbs/9830571348DFEBA8E0537517C40AF64B'.

All output lines marked INFO are for informational purposes and should be validated as correct
for your configuration.

All output lines marked ERROR must be fixed before moving on to the next deployment steps.
These issues will cause errors for certain sharding operations if they are not resolved.

All output lines marked WARNING may or may not be applicable for your configuration. For
example, if standby databases will not be used for this particular deployment, then any
warnings related to standby databases or recovery can be ignored. This is especially true for
non-production, proof-of-concept, or application development deployments. Review all
warnings and resolve as necessary.

Once all of the above steps have been completed, the newly created database can now be the
target of a GDSCTL ADD SHARD command.

For high availability and disaster recovery purposes, it is highly recommended that you also
create one or more standby shard databases. From a sharding perspective, as long as the
above requirements are also met on the standby databases, and all changes to the primary
shard database are applied to the standbys, the standby database only needs to be added to
the sharding configuration with an ADD SHARD command.

Configure the Sharded Database Topology
After the databases for the shard catalog and all of the shards are configured, along with
corresponding TNS listeners, you can add the sharding metadata to the shard catalog
database using GDSCTL. The sharding metadata describes the topology used for the sharded
database.

The sharded database topology consists of the sharding method, replication (high availability)
technology, the default number of chunks to be present in the sharded database, the location
and number of shard directors, the numbers of shardgroups, shardspaces, regions, and shards
in the sharded database, and the global services that will be used to connect to the sharded
database.

Keep the Global Data Services Control Utility (GDSCTL) Command Reference in the Oracle
Database Global Data Services Concepts and Administration Guide on hand for information
about usage and options for the GDSCTL commands used in the configuration procedures.

Follow the procedures listed below, in order, to complete your sharded database topology
configuration.

Run the commands from a shard director host, because the GDSCTL command line interface is
installed there as part of the shard director (global service manager) installation.

Chapter 4
Configure the Sharded Database Topology

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 15 of 30

Create the Shard Catalog
Use the GDSCTL CREATE SHARDCATALOG command to create metadata describing the sharded
database topology in the shard catalog database.

Note that once you run CREATE SHARDCATALOG, and the rest of the sharding metadata has been
created, there are several metadata properties that cannot be modified without recreating the
entire sharded database from scratch. These include the sharding method (system-managed,
composite, user-defined), replication technology (Oracle Data Guard, Oracle GoldenGate),
default number of chunks in the shardspace, and others. Make sure that you consult the
GDSCTL reference documentation for the complete list of possible command options and their
defaults.

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Consult the GDSCTL documentation or run GDSCTL HELP CREATE SHARDCATALOG for more details
about the command usage.

Shard Catalog Connect String

When you run the CREATE SHARDCATALOG command, GDSCTL connects to the shard catalog
database with the user name and connect string specified.

If your shard catalog database has an associated standby database for high availability or
disaster recovery purposes, the connection string, catalog_connect_string in the examples that
follow, should specify all primary and standby databases. If you don't include the standby
databases in the connect string, then the shard director processes will not be able to connect
to the standby if the primary shard catalog is unavailable.

Note that catalog_connect_string should specify the PDB for the shard catalog database, not
the CDB$ROOT.

The following is a simple tnsnames.ora entry.

CATALOG_CONNECT_STRING=
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = tcp)(HOST = primary_catalog)(PORT = 1521))
 (ADDRESS = (PROTOCOL = tcp)(HOST = standby_catalog)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = catpdb.example.com)
)
)

• Run CREATE SHARDCATALOG with the settings appropriate for your planned sharding
topology.

System-Managed Sharding Method

In the following example, the sharded database metadata is created for a system-managed
sharding configuration with two regions named region1 and region2. Because system-

Chapter 4
Configure the Sharded Database Topology

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 16 of 30

managed is the default sharding method, it does not need to be specified with the -
sharding parameter.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -repl DG -region region1,region2

Note also that if -shardspace is not specified, a default shardspace named
shardspaceora is created. If -region is not specified, the default region named
regionora is created. If the single default region is created along with the default
shardspace, then a default shardgroup named shardspaceora_regionora is also
created in the shardspace.

Composite Sharding Method

The following example shows you how to create shard catalog metadata for a composite
sharded database with Data Guard replication in MaxAvailability protection mode, 60
chunks per shardspace, and two shardspaces.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -sharding composite -chunks 60
 -protectmode maxavailability -shardspace shardspace1,shardspace2

User-Defined Sharding Method

The next example shows you how to create shard catalog metadata for a user-defined
sharded database with Data Guard replication.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -sharding user
 -protectmode maxperformance

Future Connections to the Shard Catalog

GDSCTL stores the credentials for the shard catalog administrator in a wallet on the local host.
However, for subsequent GDSCTL sessions on other hosts, it may be necessary to explicitly
connect to the shard catalog in order to perform administrative tasks by running the GDSCTL
CONNECT command, as shown here.

GDSCTL> connect mysdbadmin/mysdbadmin_password@catalog_connect_string

Add and Start Shard Directors
Add to the configuration the shard directors, which will monitor the sharding system and run
background tasks in response to GDSCTL commands and other events, and start them.

The following commands must be run on the host where the shard director processes are to
run. This can be the shard catalog host or a dedicated host for the shard director processes.

1. Add and start a shard director (GSM), as shown in the following example.

GDSCTL> connect mysdbadmin/mysdbadmin_password@catalog_connect_string
GDSCTL> add gsm -gsm sharddirector1 -catalog catalog_connect_string -pwd
gsmcatuser_password
GDSCTL> start gsm -gsm sharddirector1

Chapter 4
Configure the Sharded Database Topology

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 17 of 30

The value for the -gsm parameter is the name that you will be using to reference this shard
director in later GDSCTL commands. The values for the -catalog and -pwd parameters
should be the same used when you created the shard catalog database.

Use the -listener, -localons, and -remoteons parameters as described in the GDSCTL
reference to override the default port numbers of 1522, 6123, and 6234, respectively.
Always confirm that the port numbers to be used, whether default or user-specified, are
available on the host and do not conflict with other running software or Oracle listeners.

2. Repeat the ADD GSM and START GSM commands for any additional shard directors on each
shard director host.

Replace the shard director name (that is, sharddirector1 in the example) with an
appropriate value for each shard director.

If more than one shard director is used, then multiple regions must have been created for
them in the CREATE SHARDCATALOG command, or you can add them later by running ADD
REGION.

Specify a region for each shard director with the -region parameter on each ADD GSM
command, as shown here.

GDSCTL> add gsm -gsm sharddirector2 -catalog catalog_connect_string -pwd
gsmcatuser_password -region dc2

For later GDSCTL sessions, you might need to explicitly specify the shard director to be
administered. If an error message is shown referencing the default GSMORA shard director, run
GDSCTL SET GSM before continuing, as shown here.

GDSCTL> set gsm -gsm sharddirector1

Add Shardspaces If Needed
If you are using composite or user-defined sharding, and you need to add more shardspaces
to complete your desired sharding topology, use the ADD SHARDSPACE command to add
additional shardspaces.

• Run ADD SHARDSPACE as shown here.

GDSCTL> add shardspace -shardspace shardspace2

By default, the ADD SHARDSPACE command inherits the -chunks and -protectmode values
that you used in the CREATE SHARDCATALOG command. You can specify, on a per-
shardspace basis,the number of chunks and the Data Guard protection mode by using the
-chunks and -protectmode parameters with ADD SHARDSPACE.

Add Shardgoups If Needed
If your sharded database topology uses the system-managed or composite sharding method,
you can add any necessary additional shardgroups for your application.

Each shardspace must contain at least one primary shardgroup and may contain any number
or type of standby shardgroups. Shardgroups are not used in the user-defined sharding
method.

Chapter 4
Configure the Sharded Database Topology

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 18 of 30

• Run ADD SHARDGROUP to add shardgroups to the configuration.

GDSCTL> add shardgroup -shardgroup shardgroup_primary -shardspace
shardspace1
 -deploy_as primary -region region1
GDSCTL> add shardgroup -shardgroup shardgroup_standby -shardspace
shardspace1
 -deploy_as active_standby -region region2

Note that when you run ADD SHARDGROUP you can specify one of three types of
shardgroups: primary, standby (mounted, not open), and active_standby (open, available
for queries) using the -deploy_as parameter (the default is standby).

Any shards subsequently added to the shardgroup must be opened in the mode
corresponding to the -deploy_as setting for the shardgroup. For example, read-write for
primary shardgroups, mounted for standby shardgroups, or read-only with apply for active
standby shardgroups.

After shards are deployed, their current mode is monitored by the shard directors and
communicated to the shard catalog such that it is possible and expected that shards of
different open modes may be in the same shardgroup, depending upon subsequent
switchover or failover operations.

Verify the Sharding Topology
Before adding information about your shard databases to the catalog, verify that your sharding
topology is correct before proceeding by using the various GDSCTL CONFIG commands.

Once shards are added and deployed, it is no longer possible to change much of the shard
catalog metadata, so validating your configuration is an important task at this point.

• Run GDSCTL CONFIG to view overall configuration information.

GDSCTL> config

Regions

region1
region2

GSMs

sharddirector1
sharddirector2

Sharded Database

orasdb

Databases

Shard Groups

shardgroup_primary
shardgroup_standby

Chapter 4
Configure the Sharded Database Topology

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 19 of 30

Shard spaces

shardspaceora

Services

GDSCTL pending requests

Command Object Status
------- ------ ------

Global properties

Name: oradbcloud
Master GSM: sharddirector1
DDL sequence #: 0

You can use the various GDSCTL CONFIG commands to display more information about
shardspaces, shardgroups, and other shard catalog objects. For a complete list of GDSCTL
CONFIG command variants, see the GDSCTL reference documentation or run GDSCTL HELP.

Add the Shard CDBs
Add the CDBs containing the shard PDBs to the sharding configuration with the ADD CDB
command.

1. Run the ADD CDB command as shown here.

GDSCTL> add cdb -connect cdb_connect_string -pwd gsmrootuser_password

This command causes GDSCTL to connect to GSMROOTUSER/
gsmrootuser_password@cdb_connect_string as SYSDG to validate settings and to retrieve
the DB_UNIQUE_NAME of the CDB, which will become the CDB name in the shard catalog.

2. Repeat the ADD CDB command for all of the CDBs that contain a shard PDB in the
configuration.

3. When all of the CDBs are added, run GDSCTL CONFIG CDB to display a list of CDBs in the
catalog.

GDSCTL> config cdb

Add the Shard PDBs
Use the ADD SHARD command to add the shard PDB information to the shard catalog, then
verify it with the CONFIG SHARD command.

1. Run ADD SHARD with the usage appropriate to your sharding method, as shown in the
following examples.

Chapter 4
Configure the Sharded Database Topology

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 20 of 30

For system-managed or composite sharding, run ADD SHARD with the parameters shown
here.

GDSCTL> add shard -connect shard_connect_string -pwd gsmuser_password
-shardgroup shardgroup_name -cdb cdb_name

For user-defined sharding, the command usage is slightly different.

GDSCTL> add shard -connect shard_connect_string -pwd gsmuser_password
-shardspace shardspace_name -deploy_as db_mode -cdb cdb_name

The -cdb parameter specifies the name of the CDB in which the shard PDB exists, -
shardgroup or -shardspace specifies the location of the shard in your sharding topology,
and -deploy_as specifies the open mode (primary, standby, active_standby) of the
shard.

Note

It is highly recommended that you set server=dedicated in the connect string.

When you run ADD SHARD, GDSCTL connects to GSMUSER/
gsmuser_password@shard_connect_string as SYSDG to validate the settings on the
shard, re-runs dbms_gsm_fix.validateShard to check for errors, and constructs the shard
name using the convention db_unique_name_of_CDB_PDB_name (for example
cdb1_pdb1).

Finally, the metadata that describes the shard is added to the shard catalog.

2. Run GDSCTL CONFIG SHARD to view the shard metadata on the shard catalog.

GDSCTL> config shard
Name Shard Group Status State Region Availability
--------- ------------------- ------ ----- ------ ------------
cdb1_pdb1 shardgroup_primary U none region1 -
cdb2_pdb1 shardgroup_standby U none region2 -
cdb3_pdb2 shardgroup_primary U none region1 -
cdb4_pdb2 shardgroup_standby U none region2 -

Note that the value for Status is U for “undeployed”, and State and Availability are none and
- until the DEPLOY command is successfully run.

Add Host Metadata
Add all of the host names and IP addresses of your shard hosts to the shard catalog.

As part of the deployment process, the shard director contacts the shards and directs them to
register with the shard director’s TNS listener process. This listener process only accepts
incoming registration requests from trusted sources and will reject registration requests from
unknown hosts.

If your shard hosts have multiple host names or network interfaces assigned to them, it is
possible that the incoming registration request to the shard director may come from a host that

Chapter 4
Configure the Sharded Database Topology

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 21 of 30

was not automatically added during ADD SHARD. In this case, the registration request is rejected
and the shard will not deploy correctly. The visible symptom of this problem will be that CONFIG
SHARD shows PENDING for the shard’s Availability after DEPLOY has completed.

To avoid this issue, use the GDSCTL ADD INVITEDNODE command to manually add all host
names and IP addresses of your shard hosts to the shard catalog metadata.

1. View a list of trusted hosts.

By default, the ADD SHARD command adds the default host name of the shard host to the
shard catalog metadata, so that any registration requests from that host to the shard
director will be accepted. You can view the list of trusted hosts by running the GDSCTL
CONFIG VNCR command.

GDSCTL> config vncr

2. Ping from all of the hosts in the configuration to verify successful host name resolution.

Any hosts listed in the CONFIG VNCR output must be reachable by name from all of the other
hosts in the topology. Use the ping command from the shard, shard catalog, and shard
director hosts to verify that hostname resolution succeeds for all of the host names listed.

To resolve any issues, use operating system commands or settings to ensure that all of the
host names can be resolved.

3. Run the REMOVE INVITEDNODE command to manually remove any host names that are not
necessary and cannot be resolved from all of the hosts.

4. Run the ADD INVITEDNODE command to manually add all host names and IP addresses of
your shard hosts to the shard catalog metadata.

GDSCTL> add invitednode 127.0.0.1

Deploy the Sharding Configuration
When the sharded database topology has been fully configured with GDSCTL commands, run
the GDSCTL DEPLOY command to deploy the sharded database configuration.

When you run the GDSCTL DEPLOY command the output looks like the following.

GDSCTL> deploy
deploy: examining configuration...
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
The operation completed successfully

What Happens During Deployment

As you can see, when you run DEPLOY several things happen.

• GDSCTL calls a PL/SQL procedure on the shard catalog that examines the sharded
database topology configuration to determine if there are any undeployed shards present
that are able to be deployed.

• For shards that need to be deployed, the shard catalog sends requests to the shard
director to update database parameters on the shards, populate topology metadata on the
shard, and direct the shard to register with the shard director.

Chapter 4
Deploy the Sharding Configuration

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 22 of 30

• If Oracle Data Guard replication is in use, and standby databases are present to deploy,
then the shard director calls PL/SQL APIs on the primary shards to create a Data Guard
configuration, or to validate an existing configuration on the primary and standby sets. Fast
Start Failover functionality is enabled on all of the shards and, in addition, the shard
director starts a Data Guard observer process on its host to monitor the Data Guard
configuration.

• If new shards are being added to an existing sharded database that already contains
deployed shards (called an incremental deployment), then any DDL statements that have
been run previously are run on the new shards to ensure that the application schemas are
identical across all of the shards.

• Finally, in the case of an incremental deployment on a sharded database using system-
managed or composite sharding methods, automatic chunk movement is scheduled in the
background, which is intended to balance the number of chunks distributed among the
shards now in the configuration. This process can be monitored using the GDSCTL CONFIG
CHUNKS command after the DEPLOY command returns control to GDSCTL.

What Does a Successful Deployment Look Like?

Following a successful deployment, the output from CONFIG SHARD should look similar to the
following, if Data Guard active standby shards are in use.

GDSCTL> config shard
Name Shard Group Status State Region Availability
--------- ------------------- ------- -------- ------- ------------
cdb1_pdb1 shardgroup_primary Ok Deployed region1 ONLINE
cdb2_pdb1 shardgroup_standby Ok Deployed region2 READ ONLY
cdb3_pdb2 shardgroup_primary Ok Deployed region1 ONLINE
cdb4_pdb2 shardgroup_standby Ok Deployed region2 READ ONLY

If mounted, non-open standbys are in use, the output will be similar to the following, because
the shard director is unable to log in to check the status of a mounted database.

GDSCTL> config shard
Name Shard Group Status State Region Availability
--------- ------------------ ------------- -------- ------- ------------
cdb1_pdb1 shardgroup_primary Ok Deployed region1 ONLINE
cdb2_pdb1 shardgroup_standby Uninitialized Deployed region2 -
cdb3_pdb2 shardgroup_primary Ok Deployed region1 ONLINE
cdb4_pdb2 shardgroup_standby Uninitialized Deployed region2 -

What To Do If Something Is Not Right

If any shards are showing an availability of PENDING, confirm that all steps related to ADD
INVITEDNODE and CONFIG VNCR from the topology configuration were completed. If not,
complete them now and run GDSCTL SYNC DATABASE -database shard_name to complete shard
deployment.

Create and Start Global Database Services
After the shards are successfully deployed, and the correct status has been confirmed, create
and start global database services on the shards to service incoming connection requests from
your application.

Chapter 4
Create and Start Global Database Services

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 23 of 30

As an example, the commands in the following examples create read-write services on the
primary shards in the configuration and read-only services on the standby shards. These
service names can then be used in connect strings from your application to appropriately route
requests to the correct shards.

Example 4-1 Add and start a global service that runs on all of the primary shards

The following commands create and start a global service named oltp_rw_srvc that a client
can use to connect to the sharded database. The oltp_rw_srvc service runs read/write
transactions on the primary shards.

GDSCTL> add service -service oltp_rw_srvc -role primary
GDSCTL> start service -service oltp_rw_srvc

Example 4-2 Add and start a global service for the read-only workload to run on the
standby shards

The oltp_ro_srvc global service is created and started to run read-only workloads on the
standby shards. This assumes that the standby shards are Oracle Active Data Guard standby
shards which are open for read-only access. Mounted, non-open standbys cannot service
read-only connections, and exist for disaster recovery and high availability purposes only.

GDSCTL> add service -service oltp_ro_srvc -role physical_standby
GDSCTL> start service -service oltp_ro_srvc

Example 4-3 Verify the status of the global services

GDSCTL> config service

Name Network name Pool Started Preferred all
---- ------------ ---- ------- -------------
oltp_rw_srvc oltp_rw_srvc.orasdb.oracdbcloud orasdb Yes Yes
oltp_ro_srvc oltp_ro_srvc.orasdb.oracdbcloud orasdb Yes Yes

GDSCTL> status service
Service "oltp_rw_srvc.orasdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "orasdb%1", name: "cdb1_pdb1", db: "cdb1_pdb1", region:
"region1", status: ready.
 Instance "orasdb%21", name: "cdb3_pdb2", db: "cdb3_pdb2", region:
"region1", status: ready.
Service "oltp_ro_srvc.orasdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "orasdb%11", name: "cdb2_pdb1", db: "cdb2_pdb1", region:
"region2", status: ready.
 Instance "orasdb%31", name: "cdb4_pdb2", db: "cdb4_pdb2", region:
"region2", status: ready.

Verify Shard Status
Once you complete the DEPLOY step in your sharding configuration deployment, verify the
detailed status of a shard

Chapter 4
Verify Shard Status

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 24 of 30

• Run GDSCTL CONFIG SHARD to see the detailed status of each shard.

GDSCTL> config shard -shard cdb1_pdb1
Name: cdb1_pdb1
Shard Group: shardgroup_primary
Status: Ok
State: Deployed
Region: region1
Connection string:shard_connect_string
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 21.0.0.0
Failed DDL:
DDL Error: ---
Management error:
Failed DDL id:
Availability: ONLINE
Rack:

Supported services

Name Preferred Status
---- --------- ------
oltp_ro_srvc Yes Enabled
oltp_rw_srvc Yes Enabled

Example Sharded Database Deployment
This example explains how to deploy a typical system-managed sharded database with
multiple replicas, using Oracle Data Guard for high availability.

To deploy a system-managed sharded database you create shardgroups and shards, create
and configure the databases to be used as shards, run the DEPLOY command, and create role-
based global services.

You are not required to map data to shards in system-managed sharding, because the data is
automatically distributed across shards using partitioning by consistent hash. The partitioning
algorithm evenly and randomly distributes data across shards. For more conceptual
information about the system-managed sharded Database, see System-Managed Sharding.

Example Sharded Database Topology
Consider the following system-managed sharded database configuration, where shardgroup
sg1 contains the primary shards, while shardgroups sg2 and sg3 contain standby replicas.

In addition, let’s assume that the replicas in shardgroup sg2 are Oracle Active Data Guard
standbys (that is, databases open for read-only access), while the replicas in shardgroup sg3
are mounted databases that have not been opened.

Chapter 4
Example Sharded Database Deployment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 25 of 30

Key

Redo Apply

Backup

Data Center 2 Region = dc2

gsmhost2

shardgroup
sg3

shardhost7

cdb7

pdb1

cathost2

catpdb2

catcdb2

shardhost8

cdb8

pdb2

shardhost9

cdb9

pdb3

Data Center 1 Region = dc1

gsmhost1

gsmhost1b

shardgroup
sg1

shardhost1

cdb1

pdb1

cathost

catpdb

catcdb

cathost1

catpdb1

catcdb1

shardhost2

cdb2

pdb2

shardhost3

cdb3

pdb3

shardgroup
sg2

shardhost4

cdb4

pdb1

shardhost5

cdb5

pdb2

shardhost6

cdb6

pdb3

1522

1521 1521

1521 1521

1521

1521

1521

gsmhost2b

1521

1521

1521

1522

1521 1521

gsm1

gsm2bgsm1b

gsm2

Chapter 4
Example Sharded Database Deployment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 26 of 30

Table 4-1 Example System-Managed Topology Host Names

Topology Object Description

Shard Catalog Database Every sharded database topology requires a shard
catalog. In our example, the shard catalog
database has 2 standbys, one in each data center.

Primary

• Data center = 1
• Host name = cathost
• DB_UNIQUE_NAME = catcdb
• PDB name = catpdb
• Connect service name = catpdb
Active Standby

• Data center = 1
• Host name = cathost1
Standby

• Data center = 2
• Host name = cathost2

Regions Because there are two datacenters involved in this
configuration, there are two corresponding regions
created in the shard catalog database.

Data center 1

• Region name = dc1
Data center 2

• Region name = dc2

Shard Directors (global service managers) Each region requires a shard director running on a
host within that data center.

Data center 1

• Shard director host name = gsmhost1
• Shard director name = gsm1
Data center 2

• Shard director hast name = gsmhost2
• Shard director name = gsm2

Shardgroups Data center 1

• sg1
• sg2
Data center 2

• sg3

Shards • Host names = shardhost1, …, shardhost9
• DB_UNIQUE_NAME = cdb1, …, cdb9
• PDB names = pdb1, pdb2, pdb3

PDB names on standby replicas are the same
as the PDB names on their corresponding
primaries

Deploy the Example Sharded Database
Do the following steps to deploy the example system-managed sharded database with multiple
replicas, using Oracle Data Guard for high availability.

Chapter 4
Example Sharded Database Deployment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 27 of 30

1. Provision and configure the following hosts: cathost, cathost1, cathost2, gsmhost1,
gsmhost2, and hosts shardhost1 through shardhost9.

See Provision and Configure Hosts and Operating Systems for details.

2. Install the Oracle Database software on the following hosts: cathost, cathost1, cathost2,
and shardhost1 through shardhost9.

See Install the Oracle Database Software for details.

3. Install the shard director software on hosts gsmhost1 and gsmhost2.

See Install the Shard Director Software for details.

4. Create the shard catalog database and start an Oracle TNS Listener on cathost.

Additionally, create standby replicas of the catalog on cathost1 and cathost2, and verify
that changes made to the primary catalog are applied on these standbys.

See Create the Shard Catalog Database for details.

5. Create the 3 primary databases that will contain the sharded data on hosts shardhost1,
shardhost2 and shardhost3.

Create the corresponding replicas, located and named as listed here.

• shardhost1 (cdb1/pdb1) replicas on shardhost4 (cdb4) and shardhost7 (cdb7)

• shardhost2 (cdb2/pdb2) replicas on shardhost5 (cdb5) and shardhost8 (cdb8)

• shardhost3 (cdb3/pdb3) replicas on shardhost6 (cdb6) and shardhost9 (cdb9)

The db_unique_name of the 9 container databases (CDB) should be cdb1 through cdb9, in
which the PDB names should be pdb1, pdb2 and pdb3 on the three primaries and their
replicas.

The service names for the CDBs should be cdb1 through cdb9, which the service names
for the PDB shards are pdb1, pdb2, and pdb3.

See Create the Shard Databases for details.

6. Assuming that all port numbers are the defaults, to configure the sharded database
topology, issue the following GDSCTL commands, replacing domains and passwords with
the appropriate values.

a. On host gsmhost1, run the following commands in GDSCTL.

create shardcatalog -database cathost.example.com:1521/
catpdb.example.com -user mydbsadmin/mydbsadmin_password -region dc1,dc2

add gsm -gsm gsm1 -region dc1 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm1

See Create the Shard Catalog and Add and Start Shard Directors for details.

b. On host gsmhost2, run the following commands in GDSCTL.

connect mydbsadmin/mydbsadmin_password@cathost.example.com:1521/
catpdb.example.com
add gsm -gsm gsm2 -region dc2 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm2

Chapter 4
Example Sharded Database Deployment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 28 of 30

See Add and Start Shard Directors for details.

c. Back on host gsmhost1, run the following from GDSCTL to complete the sharded
database setup.

add shardgroup -shardgroup sg1 -deploy_as primary -region dc1
add shardgroup -shardgroup sg2 -deploy_as active_standby -region dc1
add shardgroup -shardgroup sg3 -deploy_as standby -region dc2
add cdb -connect shardhost1.example.com:1521/cdb1.example.com -pwd
gsmrootuser_password
add cdb -connect shardhost2.example.com:1521/cdb2.example.com -pwd
gsmrootuser_password

Repeat the ADD CDB command for shardhost3 through shardhost9 and cdb3 through
cdb9, then run the following commands.

add shard -connect shardhost1.example.com:1521/pdb1.example.com -pwd
gsmuser_password -shardgroup sg1 -cdb cdb1
add shard -connect shardhost2.example.com:1521/pdb2.example.com -pwd
gsmuser_password -shardgroup sg1 -cdb cdb2
add shard -connect shardhost3.example.com:1521/pdb3.example.com -pwd
gsmuser_password -shardgroup sg1 -cdb cdb3
add shard -connect shardhost4.example.com:1521/pdb1.example.com -pwd
gsmuser_password -shardgroup sg2 -cdb cdb4
add shard -connect shardhost5.example.com:1521/pdb2.example.com -pwd
gsmuser_password -shardgroup sg2 -cdb cdb5
add shard -connect shardhost6.example.com:1521/pdb3.example.com -pwd
gsmuser_password -shardgroup sg2 -cdb cdb6
add shard -connect shardhost7.example.com:1521/pdb1.example.com -pwd
gsmuser_password -shardgroup sg3 -cdb cdb7
add shard -connect shardhost8.example.com:1521/pdb2.example.com -pwd
gsmuser_password -shardgroup sg3 -cdb cdb8
add shard -connect shardhost9.example.com:1521/pdb3.example.com -pwd
gsmuser_password -shardgroup sg3 -cdb cdb9

See Add Shardgoups If Needed, Add the Shard CDBs, and Add the Shard PDBs for
details.

d. Use the CONFIG VNCR and ADD INVITEDNODE commands to validate that all of the
VNCR entries are valid and sufficient for a successful deployment.

See Add Host Metadata for details.

e. Run DEPLOY from GDSCTL to complete the configuration of the sharded database.

See Deploy the Sharding Configuration for details.

f. Add and start services for read-write and read-only access to the sharded database.

add service -service oltp_rw_srvc -role primary
start service -service oltp_rw_srvc
add service -service oltp_ro_srvc -role physical_standby
start service -service oltp_ro_srvc

See Create and Start Global Database Services for details.

Chapter 4
Example Sharded Database Deployment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 29 of 30

7. You can use the GDSCL CONFIG, CONFIG SHARD, and CONFIG SERVICE commands to validate
that all of the shards and services are online and running.

See Verify Shard Status for details.

Chapter 4
Example Sharded Database Deployment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 30 of 30

5
Using Oracle Database Sharding in Oracle
Cloud Infrastructure

Tooling for Oracle Sharding includes Terraform, Kubernetes, and Docker scripts to automate
and further simplify the sharded database deployment operations.

Deploy a Sharded Database on Kubernetes
Automate the provisioning of sharded databases on Oracle Kubernetes Engine (OKE) using
Oracle Cloud Infrastructure Ansible Modules and Helm/Chart.

To deploy Oracle Sharding on OKE, Oracle Cloud Infrastructure Ansible Modules create
compute resources, configure the network, and create block storage volumes by using yaml
files passed to Ansible playbooks.

Find the instructions and downloads for sharded database deployment on Kubernetes at
https://github.com/oracle/db-sharding/tree/master/oke-based-sharding-deployment.

Deploy a Sharded Database With Terraform
Tooling for Oracle Sharding includes Terraform modules and scripts to automate your sharded
database deployment on both Oracle Cloud Infrastructure and on-premises systems.

The Terraform modules and scripts create and configure a complete sharded database
infrastructure, including shard directors, shard catalogs, and shards. The scripts also provide
the option to deploy standby shards and shard catalogs using Oracle Data Guard for
replication to provide high availability and disaster recovery of the sharded data.

As part of the set-up process, you install the Terraform binary, download the Oracle Sharding
shard director installation package, and for on-premises deployments, you download the
Oracle Database installation files.

Find the instructions and downloads for Terraform-based sharded database deployment for
your target systems at the following locations.

• Oracle Cloud Infrastructure https://github.com/oracle/db-sharding/tree/master/
deployment-with-terraform/sdb-terraform-oci.

• On-Premises https://github.com/oracle/db-sharding/tree/master/deployment-with-
terraform/sdb-terraform-onprem

Deploy a Sharded Database with Docker
Oracle Sharding provides sample Docker build files to facilitate sharded database installation,
configuration, and environment setup for DevOps users.

In this process you install and configure the Docker engine, create global service manager
(shard director) and Oracle Database images, create a network bridge, create containers for
the Oracle Sharding objects and shard director, and deploy the containers.

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 2

https://github.com/oracle/db-sharding/tree/master/oke-based-sharding-deployment
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-oci
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-oci
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-onprem
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-onprem

Find the instructions and downloads for sharded database deployment with Docker at https://
github.com/oracle/db-sharding/tree/master/docker-based-sharding-deployment.

Chapter 5
Deploy a Sharded Database with Docker

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 2

https://github.com/oracle/db-sharding/tree/master/docker-based-sharding-deployment
https://github.com/oracle/db-sharding/tree/master/docker-based-sharding-deployment

6
Sharded Database Schema Design

To obtain the benefits of sharding, the schema of a sharded database should be designed in a
way that maximizes the number of database requests processed on a single shard.

Sharded Database Schema Design Considerations
Design of the database schema has a big impact on the performance and scalability of a
sharded database. An improperly designed schema can lead to unbalanced distribution of data
and workload across shards and large percentage of multi-shard operations.

The data model should be a hierarchical tree structure with a single root table. Oracle Sharding
supports any number of levels within the hierarchy.

To obtain the benefits of sharding, the schema of a sharded database should be designed in a
way that maximizes the number of database requests processed on a single shard.

A sharded database schema consists of a sharded table family and duplicated tables with the
following characteristics.

Sharded table family

• A set of tables which are equi-partitioned by the sharding key.

– Related data is always stored and moved together.

– Joins and integrity constraint checks are done within a shard.

• The sharding method and key are based on the application's requirements.

• The sharding key must be included in the primary key.

Duplicated tables

• Non-sharded tables which are replicated to all shards.

• Usually contain common reference data.

• Can be read and updated on each shard.

Planning a Sharded Database Schema Design

Once the sharded database is populated with data, it is impossible to change many attributes
of the schema, such as whether a table is sharded or duplicated, sharding key, and so on.
Therefore, the following points should be carefully considered before deploying a sharded
database.

• Which tables should be sharded?

• Which tables should be duplicated?

• Which sharded table should be the root table?

• What method should be used to link other tables to the root table?

• Which sharding method should be used?

• Which sharding key should be used?

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 39

• Which super sharding key should be used (if the sharding method is composite)?

Choosing Sharding Keys
Sharded table partitions are distributed across shards at the tablespace level, based on a
sharding key. Examples of keys include customer ID, account number, and country ID.

Sharding keys must adhere to the following characteristics.

• The sharding key should be very stable; its value should almost never change.

• The sharding key must be present in all of the sharded tables. This allows the creation of a
family of equi-partitioned tables based on the sharding key.

• Joins between tables in a table family should be performed using the sharding key.

Sharding Keys for System-Managed Sharded Databases

For the system-managed sharding method, the sharding key must be based on a column that
has high cardinality; the number of unique values in this column must be much bigger than the
number of shards. Customer ID, for example, is a good candidate for the sharding key, while a
United States state name is not.

A sharding key can be a single column or multiple columns. When multiple columns are
present, the hash of the columns are concatenated to form the sharding key.

The following examples create a sharded table called Customers and specify that columns
cust_id and name form the sharding keys for the table.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE,
CONSTRAINT cust_pk PRIMARY KEY(cust_id, name))
PARTITION BY CONSISTENT HASH (cust_id,name)
PARTITIONS AUTO
TABLESPACE SET ts1;

CREATE SHARDED TABLE Orders
(OrderNo NUMBER NOT NULL
, CustNo NUMBER NOT NULL
, Name VARCHAR2(50) NOT NULL
, OrderDate DATE
, CONSTRAINT OrderPK PRIMARY KEY (CustNo, Name, OrderNo)
, CONSTRAINT CustFK FOREIGN KEY (CustNo, Name) REFERENCES Customers(Cust_ID,
Name)
)
PARTITION BY REFERENCE (CustFK);

Sharding Keys for Composite Sharded Databases

Composite sharding enables two levels of sharding - one by list or range and another by
consistent hash. This is accomplished by the application providing two keys: a super sharding
key and a sharding key.

Chapter 6
Sharded Database Schema Design Considerations

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 39

Composite sharding does not support multi-column LIST partitionsets, as shown here.

CREATE SHARDED TABLE customers (
cust_id NUMBER NOT NULL,
Name VARCHAR2(50) NOT NULL,
class VARCHAR2(3) NOT NULL ,
class2 number not null,
CONSTRAINT cust_pk PRIMARY KEY(cust_id,name,class))
PARTITIONSET BY LIST (class, class2)
PARTITION BY CONSISTENT HASH (cust_id,name)
PARTITIONS AUTO (
PARTITIONSET silver VALUES (('SLV',1),('BRZ',2)) TABLESPACE SET ts1
PARTITIONSET gold VALUES (('GLD',3),('OTH',4)) TABLESPACE SET ts2);

PARTITION BY CONSISTENT HASH (cust_id,name)
*
ERROR at line 8:
ORA-02514: list PARTITIONSET method expects a single partitioning column

Multi-column RANGE partitionsets are supported, as shown below.

CREATE SHARDED TABLE customers (
cust_id NUMBER NOT NULL,
Name VARCHAR2(50) NOT NULL,
class number NOT NULL ,
class2 number not null,
CONSTRAINT cust_pk PRIMARY KEY(cust_id,name,class))
PARTITIONSET BY RANGE (class, class2)
PARTITION BY CONSISTENT HASH (cust_id,name)
PARTITIONS AUTO (
PARTITIONSET silver VALUES LESS THAN (10,100) TABLESPACE SET ts1,
PARTITIONSET gold VALUES LESS THAN (20,200) TABLESPACE SET ts2);

Table created.

In both of the above cases, the sharding key (not the partitionset key) can be multi-column.

Sharding Keys for User-Defined Sharded Databases

For partition by list in user-defined sharding, Oracle Sharding expects a single sharding key
column. An error is thrown when multiple columns are specified for a list-partitioned sharded
table.

CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state VARCHAR(2) NOT NULL
, state2 VARCHAR(2) NOT NULL
, status VARCHAR2(1)
)
PARTITION BY LIST (state,state2)
(PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1

Chapter 6
Sharded Database Schema Design Considerations

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 39

, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5
, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
);

ERROR at line 1:
ORA-03813: list partition method expects a single partitioning column in
user-defined sharding

For a range-partitioned sharded table, you can specify multiple columns as sharding key
columns.

CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state NUMBER NOT NULL
, state2 NUMBER NOT NULL
, status VARCHAR2(1)
)
PARTITION BY RANGE (state, state2)
(PARTITION p_northwest VALUES LESS THAN(10, 100) TABLESPACE ts1
, PARTITION p_southwest VALUES LESS THAN(20,200) TABLESPACE ts2);

Table created.

But in both cases, the sharding key (not the partitionset key) can be multi-column.

Sharding Key Type Support

The following data types are supported for the sharding key.

• NUMBER

• INTEGER

• SMALLINT

• RAW

• (N)VARCHAR

• (N)VARCHAR2

• (N)CHAR

• DATE

• TIMESTAMP

Primary Key and Foreign Key Constraints
In a sharding environment, the primary key constraints and foreign key constraints are
controlled by the following rules.

Chapter 6
Sharded Database Schema Design Considerations

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 39

• For primary keys, there are unique constraints and unique indexes on sharded tables; the
column list must contain the sharding key columns. In earlier Oracle releases the
restriction was that the sharding key must be a prefix of such columns, but this rule is now
more relaxed.

• Foreign keys from one sharded table to another sharded table also must contain the
sharding key. This is automatically enforced because a foreign key refers to either the
primary key or unique columns of the referenced table.

• Foreign keys on sharded tables must be within the same table family. This is required
because different table families have different sharding key columns.

• Foreign keys in sharded tables referencing local tables are not allowed.

• Foreign keys in sharded tables referencing duplicated tables are not allowed.

• Foreign keys in duplicated table referencing sharded tables are not allowed.

Indexes on Sharded Tables
Only local indexes can be created on sharded tables. Unique local indexes on sharded tables
must contain the sharding key.

Global indexes on sharded tables are not allowed because they can compromise the
performance of online chunk movement.

The following example creates a local index named id1 for the id column of the account table.

CREATE INDEX id1 ON account (id) LOCAL;

The following example creates a local unique index named id2 for the id and state columns
of the account table.

CREATE UNIQUE INDEX id2 ON account (id, state) LOCAL;

Creating Sharded Database Schema Objects
The following topics show you how to create the schema objects in your sharded database.
Refer back to the Sharded Database Schema Objects section in chapter 2 for conceptual
information about these objects.

Create an All-Shards User
Local users that only exist in the shard catalog database do not have the privileges to create
schema objects in the sharded database. The first step of creating the sharded database
schema is to create an all-shards user.

Create an all-shards user by connecting to the shard catalog database as a privileged user,
enabling SHARD DDL, and running the CREATE USER command. When the all-shards user
connects to the shard catalog database, the SHARD DDL mode is enabled by default.

Chapter 6
Creating Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 39

Note

Local users can create non-schema sharded database objects, such as tablespaces,
directories, and contexts, if they enable SHARD DDL mode; however, they cannot create
schema objects, such as tables, views, indexes, functions, procedures, and so on.

Sharded objects cannot have any dependency on local objects. For example, you
cannot create an all-shard view on a local table.

You cannot grant SYS privileges to sharded users using sharded DDL. You must log in
to each shard and grant the privilege to the account manually on that shard.

Creating a Sharded Table Family
Create a sharded table family with the SQL CREATE TABLE statement. You can specify parent-
child relationships between tables using reference partitioning or equi-partitioning.

Use Reference Partitioning to Specify Parent-Child Relationships Between Tables

The recommended way to create a sharded table family is to specify parent-child relationships
between tables using reference partitioning.

Partitioning by reference simplifies the syntax since the partitioning scheme is only specified
for the root table. Also, partition management operations that are performed on the root table
are automatically propagated to its descendents. For example, when adding a partition to the
root table, a new partition is created on all its descendents.

The appropriate CREATE TABLE statements for Customers–Orders–LineItems schema using a
system-managed sharding methodology are shown below. The first statement creates the root
table of the table family, Customers.

CREATE SHARDED TABLE Customers
(CustNo NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, CONSTRAINT RootPK PRIMARY KEY(CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

The following two statements create the Orders and LineItems tables, which are a child and
grandchild of the Customers table.

CREATE SHARDED TABLE Orders
(OrderNo NUMBER NOT NULL
, CustNo NUMBER NOT NULL
, OrderDate DATE
, CONSTRAINT OrderPK PRIMARY KEY (CustNo, OrderNo)
, CONSTRAINT CustFK FOREIGN KEY (CustNo) REFERENCES Customers(CustNo)
)

Chapter 6
Creating Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 39

PARTITION BY REFERENCE (CustFK)
;

CREATE SHARDED TABLE LineItems
(CustNo NUMBER NOT NULL
, LineNo NUMBER(2) NOT NULL
, OrderNo NUMBER(5) NOT NULL
, StockNo NUMBER(4)
, Quantity NUMBER(2)
, CONSTRAINT LinePK PRIMARY KEY (CustNo, OrderNo, LineNo)
, CONSTRAINT LineFK FOREIGN KEY (CustNo, OrderNo) REFERENCES Orders(CustNo,
OrderNo)
)
PARTITION BY REFERENCE (LineFK)
;

In the example statements above, corresponding partitions of all tables in the family are stored
in the same tablespace set, TS1. However, it is possible to specify separate tablespace sets
for each table.

Note that in the example statements above, the partitioning column CustNo used as the
sharding key is present in all three tables. This is despite the fact that reference partitioning, in
general, allows a child table to be equi-partitioned with the parent table without having to
duplicate the key columns in the child table. The reason for this is that reference partitioning
requires a primary key in a parent table because the primary key must be specified in the
foreign key constraint of a child table used to link the child to its parent. However, a primary
key on a sharded table must be the same as, or contain, the sharding key. This makes it
possible to enforce global uniqueness of a primary key without coordination with other shards,
a critical requirement for linear scalability.

To summarize, the use of reference-partitioned tables in a sharded database requires adhering
to the following rules:

• A primary key on a sharded table must either be the same as the sharding key, or contain
the sharding key. This is required to enforce global uniqueness of a primary key without
coordination with other shards.

• Reference partitioning requires a primary key in a parent table, because the primary key
must be specified in the foreign key constraint of a child table to link the child to its parent.
It is also possible to have a foreign key constraint when the parent table has just UNIQUE
constraint, but no PRIMARY KEY. The sharding key must also be NOT NULL.

For example, to link the LineItems (child) table to the Orders (parent) table, you need a
primary key in the Orders table. The second rule implies that the primary key in the Orders
table contains the CustNo value. (This is an existing partitioning rule not specific to Oracle
Sharding.)

Use Equi-Partitioning to Specify Parent-Child Relationships Between Tables

In some cases it is impossible or undesirable to create primary and foreign key constraints that
are required for reference partitioning. For such cases, specifying parent-child relationships in
a table family requires that all tables are explicitly equi-partitioned. Each child table is created
with the PARENT clause in CREATE SHARDED TABLE that contains the name of its parent. An
example of the syntax is shown below.

 CREATE SHARDED TABLE Customers
(CustNo NUMBER NOT NULL

Chapter 6
Creating Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 39

, Name VARCHAR2(50)
, Address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders
(OrderNo NUMBER
, CustNo NUMBER NOT NULL
, OrderDate DATE
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE LineItems
(LineNo NUMBER
, OrderNo NUMBER
, CustNo NUMBER NOT NULL
, StockNo NUMBER
, Quantity NUMBER
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Because the partitioning scheme is fully specified in all of the CREATE SHARDED TABLE
statements, any table can be independently subpartitioned. This is not permitted with reference
partitioning where subpartitions can only be specified for the root table and the subpartitioning
scheme is the same for all tables in a table family.

Note that this method only supports two-level table families, that is, all children must have the
same parent and grandchildren cannot exist. This is not a limitation as long as the partitioning
column from the parent table exists in all of the child tables.

See Also

Oracle Database VLDB and Partitioning Guide for information about reference
partitioning

Creating Sharded Tables
A sharded table is a table that is partitioned into smaller and more manageable pieces among
multiple databases, called shards.

Chapter 6
Creating Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 39

Tablespace Set Sizing

In the system-managed and composite sharding methods, when you create a tablespace set
on the shard catalog, you must make sure you have enough space for all of the tablespaces
created on the shard catalog and on each of the shards. This is especially important in a
metered usage environment.

For example, with a shard catalog and three shards in the configuration, you issue the
following statements.

ALTER SESSION ENABLE SHARD DDL;
CREATE TABLESPACE SET TSP_SET_1 IN SHARDSPACE SHSPC_1 USING TEMPLATE
 (DATAFILE SIZE 100M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED);

Assuming a default of 120 chunks per shard, the command creates 360 tablespaces of an
initial tables space 100M each on the shard catalog and on each shard. While that doesn't
sound like a lot of storage, when the database administrator allots 100G initially, they are not
expecting 3.6TB per shard. If that amount of storage is not planned for, this may lead to a
failed DDL, and will require significant effort to recover from.

Creating Sharded Tables in a System-Managed Sharded Database

In a system-managed sharded database, data is automatically distributed across the shards
using partitioning by consistent hash.

Before creating a sharded table, create a tablespace set with CREATE TABLESPACE SET to store
the table partitions.

CREATE TABLESPACE SET ts1;

If you need to customize the tablespace attributes, add the USING TEMPLATE clause to CREATE
TABLESPACE SET as shown in this example.

CREATE TABLESPACE SET ts1
USING TEMPLATE
(DATAFILE SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K
 SEGMENT SPACE MANAGEMENT AUTO
 ONLINE
)
;

You create a sharded table with CREATE SHARDED TABLE, horizontally partitioning the table
across the shards based on the sharding key cust_id.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)

Chapter 6
Creating Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 39

PARTITIONS AUTO
TABLESPACE SET ts1
;

A system-managed sharded table is partitioned by consistent hash, by specifying PARTITION
BY CONSISTENT HASH (primary_key_column).

The PARTITIONS AUTO clause specifies that the number of partitions is automatically set to the
number of tablespaces in the tablespace set ts1, and each partition is stored in a separate
tablespace.

Creating Sharded Tables in a User-Defined Sharded Database

In a user-defined sharded database, you explicitly map data to individual shards. A sharded
table in a user-defined sharded database can be partitioned by range or list.

You do not create tablespace sets for user-defined sharded tables; however, you must create
each tablespace individually and explicitly associate it with a shardspace deployed in the
sharded database configuration, as shown here.

CREATE TABLESPACE tbs1 IN SHARDSPACE west;
CREATE TABLESPACE tbs2 IN SHARDSPACE west;

CREATE TABLESPACE tbs3 IN SHARDSPACE central;
CREATE TABLESPACE tbs4 IN SHARDSPACE central;

CREATE TABLESPACE tbs5 IN SHARDSPACE east;
CREATE TABLESPACE tbs6 IN SHARDSPACE east;

When you create the sharded table, you define the partitions with the ranges or lists of data to
be stored in each tablespace, as shown in the following example.

CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state VARCHAR(2) NOT NULL
, status VARCHAR2(1)
)
PARTITION BY LIST (state)
(PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5
, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
)
;

Creating Sharded Tables in a Composite Sharded Database

The sharded database using the composite sharding method allows you to partition subsets of
data that correspond to a range or list of key values in a table partitioned by consistent hash.

Chapter 6
Creating Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 39

With composite sharding, as with the other sharding methods, tablespaces are used to specify
the mapping of partitions to shards. To partition subsets of data in a sharded table, a separate
tablespace set must be created for each shardspace deployed in the sharded database
configuration as shown in the following example.

CREATE TABLESPACE SET tbs1 IN SHARDSPACE shspace1;
CREATE TABLESPACE SET tbs2 IN SHARDSPACE shspace2;

The statement in the following example partitions a sharded table into two partition sets: gold
and silver, based on class of service. Each partition set is stored in a separate tablespace.
Then data in each partition set is further partitioned by consistent hash on customer ID.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
 PARTITION BY CONSISTENT HASH (cust_id)
 PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2)
;

Creating Duplicated Tables
The number of database requests handled by a single shard can be maximized by duplicating
read-only or read-mostly tables across all shards. This strategy is a good choice for relatively
small tables that are not updated frequently, and that are often accessed together with sharded
tables.

There are some limitations on duplicated tables. The following are not supported for duplicated
tables.

• System and reference partitioned tables

• LONG datatype

• REF datatypes

• abstract datatypes (MDSYS datatypes are supported)

• Maximum number of columns without primary key is 999

• nologging and parallel options

• Creation of duplicated tables with inmemory option is not supported; however, altering a
duplicated table to be inmemory is supported.

The Products duplicated table can be created using the following statement.

CREATE DUPLICATED TABLE Products
(StockNo NUMBER PRIMARY KEY
, Description VARCHAR2(20)

Chapter 6
Creating Sharded Database Schema Objects

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 39

, Price NUMBER(6,2))
;

Updating Duplicated Tables and Synchronizing Their Contents
Oracle Sharding synchronizes the contents of duplicated tables using Materialized View
Replication.

A duplicated table on each shard is represented by a materialized view. The primary table for
the materialized views is located in the shard catalog. The CREATE DUPLICATED TABLE
statement automatically creates the primary table, materialized views, and other objects
required for materialized view replication.

You can connect to any shard and update a duplicated table directly on the shard. The update
is first propagated over a database link from the shard to the primary table on the shard
catalog. Then the update is asynchronously propagated to all other shards as a result of a
materialized view refresh.

The materialized views on all of the shards can be refreshed with one of the two options:

• Automatic refresh at a configurable frequency per table

• On-demand refresh by running a stored procedure

For automatic refresh, to get better refresh performance, you can also use a stored procedure
interface to create materialized view refresh groups.

Note

A race condition is possible when a transaction run on a shard tries to update a row
which was deleted on the shard catalog. In this case, an error is returned and the
transaction on the shard is rolled back.

The following use cases are not supported when updating duplicated tables on a
shard.

• Updating a LOB or a data type not supported by database links

• Updating or deleting of a row inserted by the same transaction

DDL Processing in a Sharded Database
To create a schema in a sharded database, you must issue DDL commands on the shard
catalog database, which validates the DDLs and processes them locally before they are
processed on the shards.

The shard catalog database contains local copies of all of the objects that exist in the sharded
database, and serves as the primary copy of the sharded database schema. If the shard
catalog validation and processing of DDLs are successful, the DDLs are automatically
propagated to all of the shards and applied in the order in which they were issued on the shard
catalog.

If a shard is down or not accessible during DDL propagation, the shard catalog keeps track of
DDLs that could not be applied to the shard, and then applies them when the shard is back up.

Chapter 6
DDL Processing in a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 39

When a new shard is added to a sharded database, all of the DDLs that have been processed
in the sharded database are applied in the same order to the shard before it becomes
accessible to clients.

There are two ways you can issue DDLs in a sharded database.

• Use the GDSCTL SQL command.

When you issue a DDL with the GDSCTL SQL command, as shown in the following example,
GDSCTL waits until all of the shards have finished processing the DDL and returns the
status.

GDSCTL> sql “create tablespace set tbsset”

• Connect to the shard catalog database using SQL*Plus using the GDS$CATALOG.sdbname
service.

When you issue a DDL command on the shard catalog database, it returns the status
when it finishes processing locally, but the propagation of the DDL to all of the shards
happens in the background asynchronously.

SQL> create tablespace set tbsset;

Note

Using the SYS account to process shard DDL is not recommended; create a privileged
account for this purpose.

For information about DDL syntax extensions for Oracle Sharding, see DDL Syntax Extensions
for Oracle Sharding.

Creating Objects Locally and Globally
Objects created using GDSCTL creates global, sharded database objects; however, you can
create local or global objects by connecting to the shard catalog with SQL*Plus.

When a DDL to create an object is issued using the GDSCTL sql command, the object is
created on all of the shards. A primary copy of the object is also created in the shard catalog
database. An object that exists on all shards, and the shard catalog database, is called a
sharded database object.

When connecting to the shard catalog using SQL*Plus, two types of objects can be created:
sharded database objects and local objects. Local objects are traditional objects that exist only
in the shard catalog. Local objects can be used for administrative purposes, or they can be
used by multi-shard queries originated from the shard catalog database, to generate and store
a report, for example.

Sharded objects cannot have any dependency on local objects. For example, you cannot
create an all-shard view on a local table.

The type of object (sharded database or local) that is created in a SQL*Plus session depends
on whether the SHARD DDL mode is enabled in the session. This mode is enabled by default on
the shard catalog database for the all-shards user, which is a user that exists on all of the
shards and the shard catalog database. All of the objects created while SHARD DDL is enabled
in a session are sharded database objects.

Chapter 6
DDL Processing in a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 39

To enable SHARD DDL in the session, the all-shards user must run

ALTER SESSION ENABLE SHARD DDL

All of the objects created while SHARD DDL is disabled are local objects. To create a local object,
the all-shards user must first run

ALTER SESSION DISABLE SHARD DDL

See ALTER SESSION for more information about the SHARD DDL session parameter.

DDL Syntax Extensions for Oracle Sharding
Oracle Sharding includes SQL DDL statements with syntax that can only be run against a
sharded database.

Changes to query and DML statements are not required to support Oracle Sharding, and the
changes to the DDL statements are very limited. Most existing DDL statements will work the
same way on a sharded database, with the same syntax and semantics, as they do on a non-
sharded database.

CREATE TABLESPACE SET
This statement creates a tablespace set that can be used as a logical storage unit for one or
more sharded tables and indexes. A tablespace set consists of multiple Oracle tablespaces
distributed across shards in a shardspace.

The CREATE TABLESPACE SET statement is intended specifically for Oracle Sharding. Its syntax
is similar to CREATE TABLESPACE.

CREATE TABLESPACE SET tablespace_set
 [IN SHARDSPACE shardspace]
 [USING TEMPLATE (
 { MINIMUM EXTENT size_clause
 | BLOCKSIZE integer [K]
 | logging_clause
 | FORCE LOGGING
 | ENCRYPTION tablespace_encryption_spec
 | DEFAULT [table_compression] storage_clause
 | { ONLINE | OFFLINE }
 | extent_management_clause
 | segment_management_clause
 | flashback_mode_clause
 }...
)];

Note that in system-managed sharding there is only one default shardspace in the sharded
database. The number of tablespaces in a tablespace set is determined automatically and is
equal to the number of chunks in the corresponding shardspace.

All tablespaces in a tablespace set are bigfile tablespaces and have the same properties. The
properties are specified in the USING TEMPLATE clause and they describe the properties of one
single tablespace in the tablespace set. This clause is the same as
permanent_tablespace_clause for a typical tablespace, with the exception that a data file

Chapter 6
DDL Processing in a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 14 of 39

name cannot be specified in the datafile_tempfile_spec clause. The data file name for each
tablespace in a tablespace set is generated automatically.

Note that a tablespace set can only consist of permanent tablespaces, there is no system,
undo, or temporary tablespace set. Also, note that in the example below the total data file size
of the tablespace set is 100mxN (where N is the number of tablespaces in the tablespace set).

Example

CREATE TABLESPACE SET TSP_SET_1 IN SHARDSPACE sgr1
USING TEMPLATE
(DATAFILE SIZE 100m
 EXTEND MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO
);

ALTER TABLESPACE SET
This statement alters a tablespace set that can be used as a logical storage unit for one or
more sharded tables and indexes.

The SHARDSPACE property of a tablespace set cannot be modified. All other attributes of a
tablespace set can be altered just as for a regular permanent tablespace. Because
tablespaces in a tablespace set are bigfile, the ADD DATAFILE and DROP DATAFILE clauses are
not supported.

DROP TABLESPACE SET and PURGE TABLESPACE SET
These statements drop or purge a tablespace set, which can be used as a logical storage unit
for one or more sharded tables and indexes.

The syntax and semantics for these statements are similar to DROP and PURGE TABLESPACE
statements.

CREATE TABLE
The CREATE TABLE statement has been extended to create sharded and duplicated tables, and
specify a table family.

Syntax

CREATE [{ GLOBAL TEMPORARY | SHARDED | DUPLICATED}]
 TABLE [schema.] table
 { relational_table | object_table | XMLType_table }
 [PARENT [schema.] table] ;

The following parts of the CREATE TABLE statement are intended to support Oracle Sharding:

• The SHARDED and DUPLICATED keywords indicate that the table content is either partitioned
across shards or duplicated on all shards respectively. The DUPLICATED keyword is the only
syntax change to create duplicated tables. All other changes described below apply only to
sharded tables.

• The PARENT clause links a sharded table to the root table of its table family.

Chapter 6
DDL Processing in a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 15 of 39

• In system and composite sharding, to create a sharded table, TABLESPACE SET is used
instead of TABLESPACE. All clauses that contain TABLESPACE are extended to contain
TABLESPACE SET.

• Three clauses: consistent_hash_partitions, consistent_hash_with_subpartitions,
and partition_set_clause in the table_partitioning_clauses.

table_partitioning_clauses ::=
{range_partitions
| hash_partitions
| list_partitions
| composite_range_partitions
| composite_hash_partitions
| composite_list_partitions
| reference_partitioning
| system_partitioning
| consistent_hash_partitions
| consistent_hash_with_subpartitions
| partition_set_clause
}

Example

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
,
CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET ts2,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET ts1)
;

Example of consistent_hash_with_subpartitions

CREATE SHARDED TABLE Customers
 ("custi_id" NUMBER NOT NULL
 , name VARCHAR2(50)
 , class VARCHAR2(3) NOT NULL
 , signup_date DATE
 ,
 CONSTRAINT cust_pk PRIMARY KEY("custi_id",name,signup_date,class)
)
 PARTITIONSET BY LIST (class)
 PARTITION BY CONSISTENT HASH ("custi_id",name)
 SUBPARTITION BY RANGE (signup_date)
 SUBPARTITION TEMPLATE
 (SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/

Chapter 6
DDL Processing in a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 16 of 39

YYYY'))
 , SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/
YYYY'))
 , SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/
YYYY'))
 , SUBPARTITION future VALUES LESS THAN (MAXVALUE))
 PARTITIONS AUTO
 (
 PARTITIONSET "gold" VALUES ('Gld','BRZ') TABLESPACE SET ts1
SUBPARTITIONS STORE IN(TBS1,TBS2,TBS3,TBS4)
 , PARTITIONSET "silver" VALUES ('Slv','OTH') TABLESPACE SET ts2
SUBPARTITIONS STORE IN(TBS5,TBS6,TBS7,TBS8)
) ;

Limitations

Limitations for sharded tables in the current release:

• There is no default tablespace set for sharded tables.

• A temporary table cannot be sharded or duplicated.

• Index-organized sharded tables are not supported.

• A sharded table cannot contain a nested table column or an identity column.

• A primary key constraint defined on a sharded table must contain the sharding column(s).
A foreign key constraint on a column of a sharded table referencing a duplicated table
column is not supported.

• System partitioning and interval range partitioning are not supported for sharded tables.
Specification of individual hash partitions is not supported for partitioning by consistent
hash.

• A column in a sharded table used in PARTITION BY or PARTITIONSET BY clauses cannot be
a virtual column.

Duplicated tables in the current release are not supported with the following:

• System and reference partitioned tables

• Non-final abstract types

• Maximum number of columns without primary key is 999

• The nologging option

• XMLType column in a duplicated table cannot be used in non-ASSM tablespace

See CREATE TABLE for more information about using the clauses supporting Oracle
Sharding.

ALTER TABLE
The ALTER TABLE statement is extended to modify sharded and duplicated tables.

There are limitations on using ALTER TABLE with a sharded database.

The following options are not supported for a sharded table in a system-managed or composite
sharded database:

• Rename

• All operations on individual partitions and subpartitions

Chapter 6
DDL Processing in a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 17 of 39

• All partition-related operations on the shard, except TRUNCATE partition, UNUSABLE LOCAL
INDEXES, and REBUILD UNUSABLE LOCAL INDEXES

The following are not supported for duplicated tables:

• Data types: Non-final abstract types

• Column options: vector encode, invisible column, nested tables

• Clustered table

• External table

• ILM policy

• PARENT clause

• Flashback table operation

• System and Reference partitioning

• Enable NOLOGGING option

• Drop duplicated table materialized view log

• Drop duplicated table materialized views on shards

• Alter materialized views (of duplicated tables) on shards

ALTER SESSION
The ALTER SESSION statement is extended to support sharded databases.

The session-level SHARD DDL parameter sets the scope for DDLs issued against the shard
catalog database.

ALTER SESSION { ENABLE | DISABLE } SHARD DDL;

When SHARD DDL is enabled, all DDLs issued in the session are executed on the shard catalog
and all shards. When SHARD DDL is disabled, a DDL is executed only against the shard catalog
database. SHARD DDL is enabled by default for a sharded database user (the user that exists on
all shards and the catalog). To create a sharded database user, the SHARD DDL parameter must
be enabled before running CREATE USER.

Running PL/SQL Procedures in a Sharded Database
In the same way that DDL statements can be run on all shards in a sharded database
configuration, so too can certain Oracle-provided PL/SQL procedures.

These specific procedure calls behave as if they were sharded DDL statements, in that they
are propagated to all shards, tracked by the catalog, and run whenever a new shard is added
to a configuration.

All of the following procedures can act as if they were a sharded DDL statement.

• Any procedure in the DBMS_FGA package

• Any procedure in the DBMS_RLS package

• The following procedures from the DBMS_STATS package:

– GATHER_INDEX_STATS

– GATHER_TABLE_STATS

Chapter 6
Running PL/SQL Procedures in a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 18 of 39

– GATHER_SCHEMA_STATS

– GATHER_DATABASE_STATS

– GATHER_SYSTEM_STATS

• The following procedures from the DBMS_GOLDENGATE_ADM package:

– ADD_AUTO_CDR

– ADD_AUTO_CDR_COLUMN_GROUP

– ADD_AUTO_CDR_DELTA_RES

– ALTER_AUTO_CDR

– ALTER_AUTO_CDR_COLUMN_GROUP

– PURGE_TOMBSTONES

– REMOVE_AUTO_CDR

– REMOVE_AUTO_CDR_COLUMN_GROUP

– REMOVE_AUTO_CDR_DELTA_RES

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

To run one of the procedures in the same way as sharded DDL statements, do the following
steps.

1. Connect to the shard catalog database using SQL*Plus as a database user with the
gsm_pooladmin_role.

2. Enable sharding DDL using ALTER SESSION ENABLE SHARD DDL.

3. Run the target procedure using a sharding-specific PL/SQL procedure named
SYS.EXEC_SHARD_PLSQL.

This procedure takes a single CLOB argument, which is a character string specifying a
fully qualified procedure name and its arguments. Note that running the target procedure
without using EXEC_SHARD_PLSQL causes the procedure to only be run on the shard catalog,
and it is not propagated to all of the shards. Running the procedure without specifying the
fully qualified name (for example, SYS.DBMS_RLS.ADD_POLICY) will result in an error.

For example, to run DBMS_RLS.ADD_POLICY on all shards, do the following from SQL*Plus after
enabling SHARD DLL.

exec
sys.exec_shard_plsql('sys.dbms_rls.add_policy(object_schema =>
 ''testuser1'',

 object_name => ''DEPARTMENTS'',

 policy_name => ''dept_vpd_pol'',

 function_schema => ''testuser1'',

 policy_function => ''authorized_emps'',

Chapter 6
Running PL/SQL Procedures in a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 19 of 39

 statement_types => ''INSERT, UPDATE, DELETE, SELECT, INDEX'',

 update_check => TRUE)'

) ;

Take careful note of the need for double single-quotes inside the target procedure call
specification, because the call specification itself is a string parameter to EXEC_SHARD_PLSQL.

If the target procedure runs correctly on the shard catalog database, it is queued for
processing on all of the currently deployed shards. Any error in running the target procedure on
the shard catalog is returned to the SQL*Plus session. Errors while running on the shards can
be tracked in the same way they are for DDLs.

Schema Creation Examples
The following examples show the steps you would take to create a schema for a sharded
database using the system-managed, user-defined, and composite sharding methods.

Create a System-Managed Sharded Database Schema
Create the tablespace set, sharded tables, and duplicated tables for a sharded database that
uses the system-managed sharding method.

1. Connect to the shard catalog database, create the application schema user, and grant
privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create a tablespace set for the sharded tables.

SQL> CREATE TABLESPACE SET TSP_SET_1 using template
 (datafile size 100m autoextend on next 10M maxsize unlimited
 extent management local segment space management auto);

3. If you use LOBs in a column, you can specify a tablespace set for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1;

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 20 of 39

Note

Tablespace sets for LOBS cannot be specified at the subpartitition level in system-
managed sharding.

4. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample Customers-Orders-
Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m
 autoextend on next 10M maxsize unlimited
 extent management local uniform size 1m;

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-Orders-
Products schema.

SQL> CONNECT app_schema/app_schema_password
SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) TABLESPACE SET TSP_SET_1
 PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 21 of 39

Note

If any columns contain LOBs, you can include the tablespace set in the parent
table creation statement, as shown here.

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) TABLESPACE SET TSP_SET_1
 LOB(image) store as (TABLESPACE SET LOBTS1)
 PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in the
sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 CONSTRAINT pk_orders PRIMARY KEY (CustId, OrderId),
 CONSTRAINT fk_orders_parent FOREIGN KEY (CustId)
 REFERENCES Customers ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for LineItems

SQL> CREATE SHARDED TABLE LineItems
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),
 Qty NUMBER,

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 22 of 39

 CONSTRAINT pk_items PRIMARY KEY (CustId, OrderId, ProductId),
 CONSTRAINT fk_items_parent FOREIGN KEY (CustId, OrderId)
 REFERENCES Orders ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
 (
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) TABLESPACE products_tsp;

Next you should monitor the DDL processing and verify that the tablespace sets, tables, and
chunks were correctly created on all of the shards.

Create a User-Defined Sharded Database Schema
Create the schema user, tablespace set, sharded tables, and duplicated tables for a sharded
database that uses the user-defined sharding method.

1. Connect to the shard catalog database, create the application schema user, and grant
privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create tablespaces for the sharded tables.

SQL> CREATE TABLESPACE ck1_tsp DATAFILE SIZE 100M autoextend on next 10M
maxsize
unlimited extent management local segment space management auto in
 shardspace shspace1;

SQL> CREATE TABLESPACE ck2_tsp DATAFILE SIZE 100M autoextend on next 10M
maxsize
unlimited extent management local segment space management auto in
 shardspace shspace2;

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 23 of 39

3. If you use LOBs in any columns, you can specify tablespaces for the LOBs.

SQL> CREATE TABLESPACE lobts1 ... in shardspace shspace1;

SQL> CREATE TABLESPACE lobts2 ... in shardspace shspace2;

4. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample Customers-Orders-
Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m autoextend
 on next 10M maxsize unlimited extent management local uniform size 1m;

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-Orders-
Products schema.

SQL> CONNECT app_schema/app_schema_password

SQL> ALTER SESSION ENABLE SHARD DDL;

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) PARTITION BY RANGE (CustId)
 (PARTITION ck1 values less than ('m') tablespace ck1_tsp,
 PARTITION ck2 values less than (MAXVALUE) tablespace ck2_tsp
);

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 24 of 39

Note

If any columns in the sharded tables contain LOBs, the CREATE SHARDED
TABLE statement can include the LOB tablespaces, as shown here.

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) PARTITION BY RANGE (CustId)
 (PARTITION ck1 values less than ('m') tablespace ck1_tsp
 lob(image) store as (tablespace lobts1),
 PARTITION ck2 values less than (MAXVALUE) tablespace ck2_tsp
 lob(image) store as (tablespace lobts2)
);

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in the
sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 CONSTRAINT pk_orders PRIMARY KEY (CustId, OrderId),
 CONSTRAINT fk_orders_parent FOREIGN KEY (CustId)
 REFERENCES Customers ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for LineItems

SQL> CREATE SHARDED TABLE LineItems
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),
 Qty NUMBER,
 CONSTRAINT pk_items PRIMARY KEY (CustId, OrderId, ProductId),

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 25 of 39

 CONSTRAINT fk_items_parent FOREIGN KEY (CustId, OrderId)
 REFERENCES Orders ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
 (
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) TABLESPACE products_tsp;

Next you should monitor the DDL processing and verify that the tablespace sets, tables, and
chunks were correctly created on all of the shards.

Create a Composite Sharded Database Schema
Create the schema user, tablespace set, sharded tables, and duplicated tables for a sharded
database that uses the composite sharding method.

1. Connect to the shard catalog host, and set the ORACLE_SID to the shard catalog name.

2. Connect to the shard catalog database, create the application schema user, and grant
privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> connect / as sysdba
SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant connect, resource, alter session to app_schema;
SQL> grant execute on dbms_crypto to app_schema;
SQL> grant create table, create procedure, create tablespace,
 create materialized view to app_schema;
SQL> grant unlimited tablespace to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant dba to app_schema;

3. Create tablespace sets for the sharded tables.

SQL> CREATE TABLESPACE SET
 TSP_SET_1 in shardspace cust_america using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management
 local segment space management auto);

SQL> CREATE TABLESPACE SET
 TSP_SET_2 in shardspace cust_europe using template
 (datafile size 100m autoextend on next 10M maxsize

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 26 of 39

 unlimited extent management
 local segment space management auto);

4. If you use LOBs in any columns, you can specify tablespace sets for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1 in shardspace cust_america ... ;

SQL> CREATE TABLESPACE SET LOBTS2 in shardspace cust_europe ... ;

Note

Tablespace sets for LOBs cannot be specified at the subpartitition level in
composite sharding.

5. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample Customers-Orders-
Products schema.

CREATE TABLESPACE products_tsp datafile size 100m autoextend on next 10M
 maxsize unlimited extent management local uniform size 1m;

6. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-Orders-
Products schema.

connect app_schema/app_schema_password
alter session enable shard ddl;

CREATE SHARDED TABLE Customers
(
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set tsp_set_1,
partitionset europe values ('EUROPE') tablespace set tsp_set_2
);

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 27 of 39

Note

If any columns in the sharded tables contain LOBs, the CREATE SHARDED
TABLE statement can include the LOB tablespace set, as shown here.

CREATE SHARDED TABLE Customers
(
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set tsp_set_1
 lob(image) store as (tablespace set lobts1),
partitionset europe values ('EUROPE') tablespace set tsp_set_2
 lob(image) store as (tablespace set lobts2));

7. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in the
sample Customers-Orders-Products schema.

Create the sequence used for the OrderId column.

CREATE SEQUENCE Orders_Seq;

The Orders sharded table is created first:

CREATE SHARDED TABLE Orders
(
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 constraint pk_orders primary key (CustId, OrderId),
 constraint fk_orders_parent foreign key (CustId)
 references Customers on delete cascade
) partition by reference (fk_orders_parent);

Create a sharded table for LineItems

CREATE SHARDED TABLE LineItems
(
 OrderId INTEGER NOT NULL,

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 28 of 39

 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),
 Qty NUMBER,
 constraint pk_items primary key (CustId, OrderId, ProductId),
 constraint fk_items_parent foreign key (CustId, OrderId)
 references Orders on delete cascade
) partition by reference (fk_items_parent);

8. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

CREATE DUPLICATED TABLE Products
(
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) tablespace products_tsp;

Next you should monitor the DDL processing and verify that the tablespace sets, tables, and
chunks were correctly created on all of the shards.

Monitor DDL Processing and Verify Object Creation
You can monitor DDL processing using GDSCTL and SQL, to verify that the DDLs are
propagated to all of the shards.

Monitor DDL Processing

You can check the status of the DDL propagation to the shards by using the GDSCTL show
ddl and config shard commands.

This check is mandatory when a DDL is run using SQL*Plus on the shard catalog, because
SQL*Plus does not return the DDL status on all of the shards.

The show ddl command output might be truncated. You can run SELECT ddl_text FROM
gsmadmin_internal.ddl_requests on the shard catalog to see the full text of the statements.

Run the following command from the shard director host.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
5 grant connect, resource to app_schema
6 grant dba to app_schema
7 grant execute on dbms_crypto to app_s...
8 CREATE TABLESPACE SET TSP_SET_1 usin...
9 CREATE TABLESPACE products_tsp datafi...
10 CREATE SHARDED TABLE Customers (Cu...
11 CREATE SHARDED TABLE Orders (Order...
12 CREATE SEQUENCE Orders_Seq;
13 CREATE SHARDED TABLE LineItems (Or...
14 CREATE MATERIALIZED VIEW "APP_SCHEMA"...

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 29 of 39

Run the config shard command on each shard in your configuration, as shown here, and
note the Last Failed DDL line in the command output.

GDSCTL> config shard -shard sh1
Name: sh1
Shard Group: primary_shardgroup
Status: Ok
State: Deployed
Region: region1
Connection string: shard_host_1:1521/sh1_host:dedicated
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:
Availability: ONLINE

Supported services

Name Preferred Status
---- --------- ------
oltp_ro_srvc Yes Enabled
oltp_rw_srvc Yes Enabled

Verify Tablespace Set Creation

Verify that the tablespaces of the tablespace set you created for the sharded table family, and
the tablespaces you created for the duplicated tables, are created on all of the shards.

The number of tablespaces in the tablespace set, shown below as C001TSP_SET_1 through
C006TSP_SET_1, is based on the number of chunks specified in the GDSCTL create
shardcatalog command when the sharded database configuration was deployed.

The duplicated Products tablespace is shown below as PRODUCTS_TSP.

Run SELECT TABLESPACE_NAME on all of the shards in your configuration, as shown here.

$ sqlplus / as sysdba

SQL> select TABLESPACE_NAME, BYTES/1024/1024 MB from sys.dba_data_files
 order by tablespace_name;

TABLESPACE_NAME MB
----------------------- ----------
C001TSP_SET_1 100
C002TSP_SET_1 100
C003TSP_SET_1 100
C004TSP_SET_1 100
C005TSP_SET_1 100
C006TSP_SET_1 100
PRODUCTS_TSP 100
SYSAUX 650
SYSTEM 890
SYS_SHARD_TS 100

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 30 of 39

TSP_SET_1 100

TABLESPACE_NAME MB
------------------------ ----------
UNDOTBS1 105
USERS 5

13 rows selected.

Verify Chunk Creation and Distribution

Verify that the chunks and chunk tablespaces were created on all of the shards.

Run the GDSCTL config chunks command as shown here, and note the ranges of chunk
IDs on each shard.

GDSCTL> config chunks
Chunks

Database From To
-------- ---- --
sh1 1 6
sh2 1 6
sh3 7 12
sh4 7 12

Run the following SQL statements on each of the shards in your configuration, as shown here.

SQL> show parameter db_unique_name

NAME TYPE VALUE
---------------- ----------- ------------------------------
db_unique_name string sh1

SQL> select table_name, partition_name, tablespace_name
 from dba_tab_partitions
 where tablespace_name like 'C%TSP_SET_1'
 order by tablespace_name;

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------------- ---------------- --------------------
ORDERS CUSTOMERS_P1 C001TSP_SET_1
CUSTOMERS CUSTOMERS_P1 C001TSP_SET_1
LINEITEMS CUSTOMERS_P1 C001TSP_SET_1
CUSTOMERS CUSTOMERS_P2 C002TSP_SET_1
LINEITEMS CUSTOMERS_P2 C002TSP_SET_1
ORDERS CUSTOMERS_P2 C002TSP_SET_1
CUSTOMERS CUSTOMERS_P3 C003TSP_SET_1
ORDERS CUSTOMERS_P3 C003TSP_SET_1
LINEITEMS CUSTOMERS_P3 C003TSP_SET_1
ORDERS CUSTOMERS_P4 C004TSP_SET_1
CUSTOMERS CUSTOMERS_P4 C004TSP_SET_1

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------------- ---------------- --------------------

Chapter 6
Schema Creation Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 31 of 39

LINEITEMS CUSTOMERS_P4 C004TSP_SET_1
CUSTOMERS CUSTOMERS_P5 C005TSP_SET_1
LINEITEMS CUSTOMERS_P5 C005TSP_SET_1
ORDERS CUSTOMERS_P5 C005TSP_SET_1
CUSTOMERS CUSTOMERS_P6 C006TSP_SET_1
LINEITEMS CUSTOMERS_P6 C006TSP_SET_1
ORDERS CUSTOMERS_P6 C006TSP_SET_1
18 rows selected.

Connect to the shard catalog database and verify that the chunks are uniformly distributed, as
shown here.

$ sqlplus / as sysdba

SQL> SELECT a.name Shard, COUNT(b.chunk_number) Number_of_Chunks
 FROM gsmadmin_internal.database a, gsmadmin_internal.chunk_loc b
 WHERE a.database_num=b.database_num
 GROUP BY a.name
 ORDER BY a.name;

SHARD NUMBER_OF_CHUNKS
------------------------------ ----------------
sh1 6
sh2 6
sh3 6
sh4 6

Verify Table Creation

To verify that the sharded and duplicated tables were created, log in as the application schema
user on the shard catalog database and each of the shards and query the tables on a
database shard, as shown below with the example app_schema user.

$ sqlplus app_schema/app_schema_password
Connected.

SQL> select table_name from user_tables;

TABLE_NAME

CUSTOMERS
ORDERS
LINEITEMS
PRODUCTS

4 rows selected.

DDL Failure and Recovery Examples
The following examples demonstrate the steps to issue a DDL, monitor its status, and what to
do when errors are encountered.

When a DDL fails on a shard, all further DDLs on that shard are blocked until the failure is
resolved and the GDSCTL recover shard command is run.

Chapter 6
DDL Failure and Recovery Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 32 of 39

Note that you must have GSM_ADMIN privileges to run these GDSCTL commands.

The following examples demonstrate the case when a DDL is issued using SQL*Plus, but the
same status checking and corrective actions apply when using the GDSCTL SQL command.

Example 6-1 A DDL processing error on the shard catalog

In this example the user makes a typo in the CREATE USER command.

SQL> alter session enable shard ddl;
Session altered.

SQL> CREATE USER example_user IDENTRIFIED BY out_standing1;
CREATE USER example_user IDENTRIFIED BY out_Standing1
 *
ERROR at line 1:
ORA-00922: missing or invalid option

The DDL fails to run on the shard catalog and, as expected, the GDSCTL show ddl command
shows that no DDL was run on any of the shards:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------

Then the user repeats the command with the correct spelling. Note that there is no need to run
alter session enable shard ddl again because the same session is used.

SQL> CREATE USER example_user IDENTIFIED BY out_Standing1;
User created.

Now show ddl shows that the DDL has been successfully run on the shard catalog database
and it did not fail on any shards that are online.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****

Note

For any shard that is down at the time of the DDL processing, the DDL is automatically
applied when the shard is back up.

Chapter 6
DDL Failure and Recovery Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 33 of 39

Example 6-2 Recovery from an error on a shard by issuing a corrective action on that
shard

In this example, the user attempts to create a tablespace set for system-managed sharded
tables. But the data file directory on one of the shards is not writable, so the DDL is
successfully run on the catalog, but fails on the shard.

SQL> connect example_user/out_Standing1
Connected

SQL> create tablespace set tbsset;
Tablespace created.

Note that there is no need to run alter session enable shard ddl because the user
example_user was created as the sharded database user and shard ddl is enabled by default.

Check status using GDSCTL show ddl:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset shard01

The command output shows that the DDL failed on the shard shard01. Run the GDSCTL
config shard command to get detailed information:

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1
Status: Ok
State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Failed DDL: create tablespace set tbsset
DDL Error: ORA-02585: create tablepsace set failure, one of its tablespaces
not created
ORA-01119: error in creating database file \'/ade/b/3667445372/oracle/
rdbms/dbs/
SHARD01/datafile/o1_mf_tbsset_%u_.dbf\'
ORA-27040: file create error, unable to create file
Linux-x86_64 Error: 13: Permission denied
Additional information: 1 \(ngsmoci_execute\)
Failed DDL id: 2
Availability: ONLINE

Chapter 6
DDL Failure and Recovery Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 34 of 39

The text beginning with “Failed DDL:” indicates the problem. To resolve it, the user must log in
to the shard database host and make the directory writable.

Display the permissions on the directory:

cd $ORACLE_HOME/rdbms/dbs
 ls –l ../ | grep dbs
dr-xr-xr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Change the directory to writable:

chmod +w .
ls –l ../ | grep dbs
drwxrwxr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Go back to the GDSCTL console and issue the recover shard command:

GDSCTL> recover shard -shard shard01

Check the status again:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1
Status: Ok
State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
DDL id:
Availability: ONLINE

As shown above, the failed DDL error no longer appears.

Example 6-3 Recovery from an error on a shard by issuing a corrective action on all
other shards

In this example, the user attempts to create another tablespace set, tbs_set, but the DDL fails
on a shard because there is already an existing local tablespace with the same name.

Chapter 6
DDL Failure and Recovery Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 35 of 39

On the shard catalog:

SQL> create tablespace set tbs_set;
Tablespace created.

Check status using the GDSCTL show ddl command:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set shard01

GDSCTL> config shard -shard shard01
Conversion = ':'Name: shard01
……
Failed DDL: create tablespace set tbs_set
DDL Error: ORA-02585: create tablespace set failure, one of its tablespaces
not created
ORA-01543: tablespace \'TBS_SET\' already exists \(ngsmoci_execute\)

A solution to this problem is to login to shard01 as a local database administrator, drop the
tablespace TBS_SET, and then run GDSCTL recover shard -shard shard01. But suppose
you want to keep this tablespace, and instead choose to drop the newly created tablespace set
that has the name conflict and create another tablespace set with a different name, such as
tbsset2. The following example shows how to do that on the shard catalog:

SQL> drop tablespace set tbs_set;
SQL> create tablespace set tbs_set2;

Check status using GDSCTL:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set shard01
4 drop tablespace set tbs_set
5 create tablespace set tbsset2

You can see that DDLs 4 and 5 are not attempted on shard01 because DDL 3 failed there. To
make this shard consistent with the shard catalog, you must run the GDSCTL recover shard
command. However, it does not make sense to run DDL 3 on this shard because it will fail
again and you actually do not want to create tablespace set tbs_set anymore. To skip DDL 3
run recover shard with the –ignore_first option:

GDSCTL> recover shard -shard shard01 –ignore_first
GSM Errors: dbs1 shard01:ORA-00959: tablespace \'TBS_SET\' does not exist
 (ngsmoci_execute)

GDSCTL> show ddl

Chapter 6
DDL Failure and Recovery Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 36 of 39

id DDL Text Failed shards
-- -------- -------------
1 create user sidney identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set
4 drop tablespace set tbs_set shard01
5 create tablespace set tbsset2

There is no failure with DDL 3 this time because it was skipped. However, the next DDL (4 -
drop tablespace set tbs_set) was applied and resulted in the error because the tablespace set
to be dropped does not exist on the shard.

Because the –ignore_first option only skips the first DDL, you need to run recover shard
again to skip the drop statement as well:

GDSCTL> recover shard -shard shard01 –ignore_first

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user sidney identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set
4 drop tablespace set tbs_set
5 create tablespace set tbsset2

Note that there are no longer any failures shown, and all of the DDLs were applied successfully
on the shards.

When recover shard is run with the –ignore_first option, the failed DDL is marked to be
ignored during incremental deployment. Therefore, DDL numbers 3 and 4 are skipped when a
new shard is added to the sharded database, and only DDL numbers 1, 2, and 5 are applied.

Generating Unique Sequence Numbers Across Shards
You can generate globally unique sequence numbers across shards for non-primary key
columns, and it is handled by the sharded database.

You may need to generate unique IDs for non-primary key columns, for example order_id,
when the customer_id is the sharding key. For this case among others, this feature lets you
generate unique sequence numbers across shards, while not requiring you to manage the
global uniqueness of a given non-primary key column in your application.

This functionality is supported by the SHARDED SEQUENCE object. A sharded sequence is created
on the shard catalog but has an instance on each shard. Each instance generates
monotonically increasing numbers that belong to a range which does not overlap with ranges
used on other shards. Therefore, every generated number is globally unique.

A sharded sequence can be used, for example, to generate a unique order number for a table
sharded by a customer ID. An application that establishes a connection to a shard using the
customer ID as a key can use a local instance of the sharded sequence to generate a globally
unique order number.

Note that the number generated by a sharded sequence cannot be immediately used as a
sharding key for a new row being inserted into this shard, because the key value may belong
to another shard and the insert will result in an error. To insert a new row, the application

Chapter 6
Generating Unique Sequence Numbers Across Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 37 of 39

should first generate a value of the sharding key and then use it to connect to the appropriate
shard. A typical way to generate a new value of the sharding key would be use a regular (non-
sharded) sequence on the shard catalog.

If a single sharding key generator becomes a bottleneck, a sharded sequence can be used for
this purpose. In this case, an application should connect to a random shard (using the global
service without specifying the sharding key), get a unique key value from a sharded sequence,
and then connect to the appropriate shard using the key value.

To support this feature, the SEQUENCE object clauses, SHARD and NOSHARD, are included in the
SEQUENCE object DDL syntax, as shown in the following CREATE statement syntax.

CREATE | ALTER SEQUENCE [schema.]sequence
 [{ INCREMENT BY | START WITH } integer
 | { MAXVALUE integer | NOMAXVALUE }
 | { MINVALUE integer | NOMINVALUE }
 | { CYCLE | NOCYCLE }
 | { CACHE integer | NOCACHE }
 | { ORDER | NOORDER }
 | { SCALE {EXTEND | NOEXTEND} | NOSCALE}
 | { SHARD {EXTEND | NOEXTEND} | NOSHARD}
]

NOSHARD is the default for a sequence. If the SHARD clause is specified, this property is
registered in the sequence object’s dictionary table, and is shown using the DBA_SEQUENCES,
USER_SEQUENCES, and ALL_SEQUENCES views.

When SHARD is specified, the EXTEND and NOEXTEND clauses define the behavior of a sharded
sequence. When EXTEND is specified, the generated sequence values are all of length (x+y),
where x is the length of a SHARD offset of size 4 (corresponding to the width of the maximum
number of shards, that is, 1000) affixed at beginning of the sequence values, and y is the
maximum number of digits in the sequence MAXVALUE/MINVALUE.

The default setting for the SHARD clause is NOEXTEND. With the NOEXTEND setting, the generated
sequence values are at most as wide as the maximum number of digits in the sequence
MAXVALUE/MINVALUE. This setting is useful for integration with existing applications where
sequences are used to populate fixed width columns. On invocation of NEXTVAL on a sequence
with SHARD NOEXTEND specified, a user error is thrown if the generated value requires more
digits of representation than the sequence’s MAXVALUE/MINVALUE.

If the SCALE clause is also specified with the SHARD clause, the sequence generates scalable
values within a shard for multiple instances and sessions, which are globally unique. When
EXTEND is specified with both the SHARD and SCALE keywords, the generated sequence values
are all of length (x+y+z), where x is the length of a prepended SHARD offset of size 4, y is the
length of the scalable offset (default 6), and z is the maximum number of digits in the sequence
MAXVALUE/MINVALUE.

Note

When using the SHARD clause, do not specify ORDER on the sequence. Using SHARD
generates globally unordered values. If ORDER is required, create the sequences locally
on each node.

The SHARD keyword will work in conjunction with CACHE and NOCACHE modes of
operation.

Chapter 6
Generating Unique Sequence Numbers Across Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 38 of 39

See Also

Oracle Database SQL Language Reference

Chapter 6
Generating Unique Sequence Numbers Across Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 39 of 39

7
Using the Sharding Advisor

Sharding Advisor simplifies the migration of your existing, non-sharded Oracle database to a
sharded database, by analyzing your workload and database schema, and recommending the
most effective Oracle Sharding configurations.

About Sharding Advisor
The Sharding Advisor is a client-side, command-line tool that you run against any non-
sharded, production, 10g or later release, Oracle Database that you are considering migrating
to an Oracle Sharding environment.

The Sharding Advisor analysis provides you with the information you need to design a schema
that maximizes performance while reducing duplicated data in the new sharded database
environment.

The following are benefits of using Sharding Advisor to aid you with schema design.

• Maximize query workload performance

• Minimize multi-shard operations requiring cross-shard joins

• Maximize parallelism for complex queries (spread query processing across all shards)

• Minimize the amount of duplicated data on each shard

The Sharding Advisor utility, GWSADV, is installed with Oracle Database as a standalone tool,
and connects to your database using authenticated OCI connections.

To get an understanding of your schema and other preferences, Sharding Advisor asks you
questions as part of an interactive dialog.

Sharding Advisor then connects to the existing non-sharded database, also called the source,
analyzes its schema and query workload, and produces a set of alternative designs for the
sharded database, including recommendations for an effective sharding key, which tables to
shard, and which tables to duplicate on all shards.

Sharding configurations are ranked in terms of query performance, with the ranking favoring
configurations that maximize single and multi-shard queries that do not require cross-shard
joins, while minimizing multi-shard queries that require cross-shard joins.

You choose the design that best fits your requirements. The designs are ranked by the advisor,
so if you don't have specific preferences you can choose the highest ranked design by default.

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 11

Note

There are restrictions to Sharding Advisor capabilities:
The source database must be Oracle Database 10g or later release.

If you cannot run the Sharding Advisor against the live production database, you can
run the Sharding Advisor on a different server that has the schema and workload
imported from the production database.

Sharding Advisor discovers the table families based on primary key-foreign key
relationships. If the schema does not have any primary key-foreign key constraints,
sharding by PARENT clause is recommended.

Currently, Sharding Advisor recommends only single-table family, system-managed
sharding (sharding by reference) configurations if the source database has foreign key
constraints; otherwise, Sharding Advisor recommends sharding using the PARENT
clause.

Run Sharding Advisor
Run the Sharding Advisor command-line tool against your existing, non-sharded Oracle
Database to obtain recommended Oracle Sharding configurations.

The user running Sharding Advisor requires the following privileges.

SQL> ALTER SYSTEM SET statistics_level=all;
SQL> grant create session to sharding_advisor_user;
SQL> grant alter session to sharding_advisor_user;
SQL> grant select on v_$sql_plan to sharding_advisor_user;
SQL> grant select on v_$sql_plan_statistics_all to sharding_advisor_user;
SQL> grant select on gv_$sql_plan to sharding_advisor_user;
SQL> grant select on gv_$sql_plan_statistics_all to sharding_advisor_user;
SQL> grant select on DBA_HIST_SQLSTAT to sharding_advisor_user;
SQL> grant select on dba_hist_sql_plan to sharding_advisor_user;
SQL> grant select on dba_hist_snapshot to sharding_advisor_user;

The Sharding Advisor command-line utility, GWSADV, runs from $ORACLE_HOME/bin.

Run the Sharding Advisor from the command line, as shown here.

$ gwsadv -u username -p password -c –w sch=\(schema1,schema2\)

Note

The parenthesis in this command is escaped on Linux systems.

Where -u and -p are the user name and password of the user that runs the Sharding Advisor.

Use the capture workload parameter, -c, the first time you run Sharding Advisor against an
existing query workload, to capture the predicate information from the source's
GV$SQL_PLAN_STATISTICS_ALL view. You don't need to use -c in subsequent queries on the
same workload.

Chapter 7
Run Sharding Advisor

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 11

The required -w flag indicates that Sharding Advisor uses the query workload for sharding
configuration generation and ranking.

In this case, the sch parameter specifies a list of schemas to run Sharding Advisor against.
There are several other options you can use with Sharding Advisor, detailed in Sharding
Advisor Usage and Options.

Run Sharding Advisor on a Non-Production System
To minimize the impact on a live production system, you can run the Sharding Advisor on a
copy of the database schema and workload, located on a different server than the production
system.

To get the same results as if it were the live production system, the production database
schema and workload can be exported using the Oracle Data Pump utilities and copied to a
different server. Then you can run Sharding Advisor on the imported schema.

You only export the database schema and system tables. There is no need to export the actual
data.

The following procedure uses the HR schema as an example.

Do the following steps on the source (production) database server.

1. Export the schema using Data Pump Export.

> expdp system/password SCHEMAS=HR DIRECTORY=HR_DIR CONTENT=METADATA_ONLY
 DUMPFILE=hr_metadata.dmp LOGFILE=hr_exp.lst

2. Export the Automatic Work Repository (AWR) snapshot.

SQL> @$ORACLE_HOME/rdbms/admin/awrextr.sql

Do the following steps on the target database server.

3. Copy the dump files from the source to the target.

For example, copy the dump files to /scratch/dump.

4. Create a user that can run Sharding Advisor on the schema.

SQL> CREATE USER hr IDENTIFIED BY password;

5. Create (or replace) the dump file directory variable that Data Pump Import can reference.

SQL> CREATE DIRECTORY HR_DIR AS '/scratch/dump'

SQL> CREATE OR REPLACE DIRECTORY HR_DIR AS '/scratch/dump'

6. Import the schema.

> impdp system/password DIRECTORY=HR_DIR DUMPFILE=hr.dmp LOGFILE=imp.lst
SCHEMAS=HR

7. Load the AWR data.

SQL> @$ORACLE_HOME/rdbms/admin/awrload.sql

Chapter 7
Run Sharding Advisor on a Non-Production System

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 11

8. Now you can run Sharding Advisor on the target, non-production, copy of the database
with the user you created.

> gwsadv –u hr –p password –c -awr_snap_begin begin_timestamp –
awr_snap_end end_timestamp -w

Review Sharding Advisor Output
Sharding Advisor discovers the table families for each potential sharding column that it extracts
from the query workload, and ranks the table families based on query classification rules and a
ranking algorithm.

To review the sharding configurations and related information that is owned by the user running
Sharding Advisor, you can query the following output database tables, which are stored in the
same schema as your source database.

• SHARDINGADVISOR_CONFIGURATIONS has one row for each table in a ranked sharded
configuration, and provides details for each table, such as whether to shard or duplicate it,
and if sharded, its level in a table family hierarchy, its parent table, root table sharding key,
foreign key reference constraints, and the estimated size per shard.

• SHARDINGADVISOR_CONFIGDETAILS has one row for each ranked sharding configuration, and
provides details for each ranked sharding configuration, such as the number and collective
size, per shard, of the sharded tables, and the number and collective size of the duplicated
tables. It also provides the number of single shard and multi-shard queries to expect in
production, as well as the number of multi-shard queries requiring cross-shard joins, based
on your source database's current workload, and an estimated cost.

• SHARDINGADVISOR_QUERYTYPES, for each query in the workload, lists the query type for each
sharding configuration. Note that the same query can be of a different query type
depending on the sharding configuration.

Because the Sharding Advisor output is contained in regular database tables, you can run
many kinds of SQL queries against them to look at the output from different perspectives.

For example, to display the sharding configurations in ranking order, run

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
ORDER BY rank, tlevel, tname, parent;

For details about the Sharding Advisor output tables and more example queries see Sharding
Advisor Output Tables and Sharding Advisor Output Review SQL Examples

Choose a Sharding Advisor Recommended Configuration
There are some aspects of database sharding to take into consideration when deciding which
configuration to choose for your sharded database.

Increasing the number of shards will result in higher availability and scalability of the sharded
database.

Chapter 7
Review Sharding Advisor Output

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 11

Minimizing duplicated data can conflict with your desire to minimize multi-shard queries that
require joins across multiple shards. Because joins in a sharded database are usually
performed on related data, storing related data in the same shard can dramatically speed up
processing of such joins.

The overall cost, in terms of query workload, of the recommended sharding configurations is
based on the number of each query type (single shard, multi-shard, and multi-shard with cross-
shard joins) in the workload, where multi-shard queries with cross-shard joins have the highest
cost, and single shard queries have the lowest cost. The cost information is in the COST column
of the Sharding Advisor SHARDINGADVISOR_CONFIGDETAILS output table.

Sharding Advisor Usage and Options
Sharding Advisor is a client command-line tool that connects to an existing non-sharded
database and provides sharding configuration recommendations.

Syntax

gwsadv
 [-n nodeName[:portnum]]
 [-s serviceName]
 -u username
 -p password
 [-c]
 [-awr_snap_begin timestamp]
 [-awr_snap_end timestamp]
 –w
 [sch=(schema1, schema2, …)]
 [-tab importantTabsFile]
 [-pr numpreds:n]
 [-t trace_file]

Options

Note that each option must be prefixed with a minus sign (-) except for the sch argument.

Option Description Required (Y/N)

-awr_snap_begin timestamp Specify the beginning timestamp,
in the format 'YYYY-MM-DD
HH24:MI:SS', to specify the AWR
snapshots to capture the
workload from.

N

-awr_snap_end timestamp Specify the end timestamp, in the
format 'YYYY-MM-DD
HH24:MI:SS', to specify the AWR
snapshots to capture the
workload from.

N

Chapter 7
Sharding Advisor Usage and Options

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 11

Option Description Required (Y/N)

-c Capture a new or changed
workload.

Use -pr to limitthe number of
predicates to be captured

Required on first run of Sharding
Advisor on a new or changed
workload.

Not required on subsequent runs
on the same workload.

By default, the workload is
captured from the
V$SQL_PLAN_STATISTICS_ALL
table.

Alternatively, the workload can be
captured from Automatic
Workload Repository (AWR)
snapshots by using the -
awr_snap_begin and -
awr_snap_end options with the -
c option to specify the beginning
and ending time stamps of the
AWR snapshots.

N

-n nodeName[:portnum] Node name and port number, if
connecting to a database on
another host

N

-p password Oracle password Y

-pr numpreds:n Limits the number of predicates
to be captured when using -c to
capture a new or changed
workload.

N

-s serviceName Service name, if connecting to a
database on another host

N

sch The sch option specifies the list
of schemas to run Sharding
Advisor against, if you want to run
as a different user.

N

-t trace_file Enables tracing of all activities
performed by sharding advisor.
Specify an output file name.

N

-tab importantTabsFile Name of file that consists of table
names, one per line, in the format
schemaname.tablename, to
restrict the number of tables that
the Sharding Advisor needs to
analyze.

N

-u username Oracle user name Y

-w Directs Sharding Advisor to use
the query workload for sharding
configuration generation and
ranking.

Y

Chapter 7
Sharding Advisor Usage and Options

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 11

Usage Notes

The normal usage of the sharding advisor is to not specify the –pr option. The query workload
capture should be faster now even without the –pr option. If however, the you want to speed it
up further, the –pr option can be used. If it is used, it has to be used in conjunction with the –c
option. If unspecified, the number of predicates to be captured is not limited.

For procedures describing how to run the Sharding Advisor with example commands see Run
Sharding Advisor and Run Sharding Advisor on a Non-Production System.

Sharding Advisor Output Tables
To review the sharding configurations and related information, you can query the following
output database tables, which are stored in the same schema as your source database.

SHARDINGADVISOR_CONFIGURATIONS Table
Each row of the SHARDINGADVISOR_CONFIGURATIONS table represents a table in a
ranked sharded configuration, and provides information about whether to shard or duplicate it,
and if sharded, its level in a table family hierarchy, its parent table, root table sharding key,
foreign key reference constraints, and table size per shard.

SHARDINGADVISOR_CONFIGURATIONS Schema

Column Description

RANK The rank of the sharding configuration based on
the ranking algorithm

TABLENAME Name of the table in the sharding configuration

TABLETYPE ‘S’ (Sharded), ‘D’ (Duplicated), or ‘L’ (Local)

TABLELEVEL Level of the table in the table family hierarchy,
NULL for duplicated tables

PARENT Parent of the table in the table family hierarchy,
NULL for duplicated tables

SHARDBY Sharding method. REFERENCE for sharding by
reference, or PARENT for sharding by PARENT
clause, for child tables.

SHARDINGORREFERENCECOLS Sharding key for the root table, partition by
REFERENCE or PARENT for the child tables in a table
family, and NULL for duplicated tables

UNENFORCEABLECONSTRAINTS Foreign key constraints other than the reference
columns, which cannot be enforced

SIZEOFTABLE Size of the table per shard

SHARDINGADVISOR_CONFIGDETAILS Table
Each row of the SHARDINGADVISOR_CONFIGDETAILS table represents a ranked sharding
configuration, and provides the number and collective size, per shard, of each type of table, the

Chapter 7
Sharding Advisor Output Tables

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 11

number of each type of query, and based on your source database's current workload, an
estimated cost.

SHARDINGADVISOR_CONFIGDETAILS Schema

Column Description

RANK The rank of the sharding configuration based on
the ranking algorithm

CHOSENBYUSER ‘Y’ if the sharding configuration is chosen by the
user, NULL for other sharding configurations

NUMSHARDEDTABLES Number of sharded tables in this sharding
configuration

SIZEOFSHARDEDTABLES Cumulative size of sharded tables (per shard) in
this sharding configuration

NUMDUPLICATEDTABLES Number of duplicated tables in this sharding
configuration

SIZEOFDUPLICATEDTABLES Cumulative size of duplicated tables (per shard) in
this sharding configuration

NUMSINGLESHARDQUERIES Number of single shard queries in the query
workload for this sharding configuration

NUMMULTISHARDQUERIES Number of multi-shard queries in the query
workload for this sharding configuration

NUMCROSSSHARDQUERIES Number of multi-shard queries that require an
external join in the query workload for this sharding
configuration

COST Cost of the sharding configuration based on the
costing algorithm

SHARDINGADVISOR_QUERYTYPES Table
Each row of the SHARDINGADVISOR_QUERYTYPES table represents a query in the
workload, and lists the query type and SQL ID. Note that the same query can be of a different
query type depending on the sharding configuration.

SHARDINGADVISOR_QUERYTYPES Schema

Column Description

RANK The rank of the sharding configuration based on
the ranking algorithm

SQLID The query SQL ID

QUERYTYPE The type of the query in this sharding configuration:
SINGLE SHARD QUERY, MULTI SHARD QUERY, or
CROSS SHARD QUERY

Sharding Advisor Output Review SQL Examples
Because the Sharding Advisor output is contained in regular database tables, you can run
many kinds of SQL queries against them to look at the output from different perspectives.

Example 7-1 Display the sharding configurations in ranking order

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,

Chapter 7
Sharding Advisor Output Review SQL Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 11

 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
ORDER BY rank, tlevel, tname, parent;

Example 7-2 Display the table family of the top ranked sharding configuration

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE rank = 1 AND tabletype = 'S'
ORDER BY tlevel, tname, parent;

Example 7-3 Display the table families in ranking order

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE tabletype = 'S'
ORDER BY rank, tlevel, tname, parent;

Example 7-4 Display the duplicated tables of the top ranked sharding configuration

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE rank = 1 AND tabletype = 'D'
ORDER BY tlevel, tname, parent;

Example 7-5 Display the number of sharding configurations with table_name as the
root table

SELECT COUNT(*)
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE tablename = 'TABLE_NAME' AND tablelevel = 0;

Example 7-6 Display the table families of the sharding configurations with root table
table_name

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE tabletype = 'S'
 AND rank IN
 (SELECT rank
 FROM SHARDINGADVISOR_CONFIGURATIONS

Chapter 7
Sharding Advisor Output Review SQL Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 11

 WHERE tablename = 'TABLE_NAME' and tablelevel = 0)
ORDER BY rank, tlevel, tname, parent;

Example 7-7 Display the details of the sharding configurations in ranking order

SELECT rank, chosenbyuser,
 numshardedtables as stabs, sizeofshardedtables as sizestabs,
 numduplicatedtables as dtabs,
 sizeofduplicatedtables as sizedtabs,
 numsingleshardqueries as numssq,
 nummultishardqueries as nummsq,
 numcrossshardqueries as numcsq, cost
FROM SHARDINGADVISOR_CONFIGDETAILS
ORDER BY rank;

Example 7-8 Display the details of your chosen sharding configuration

SELECT rank,
 numshardedtables as stabs, sizeofshardedtables as sizestabs,
 numduplicatedtables as dtabs,
 sizeofduplicatedtables as sizedtabs,
 numsingleshardqueries as numssq,
 nummultishardqueries as nummsq,
 numcrossshardqueries as numcsq, cost
FROM SHARDINGADVISOR_CONFIGDETAILS
WHERE CHOSENBYUSER = ‘Y’
ORDER BY RANK;

Sharding Advisor Security
Sharding Advisor is a client-side utility that connects to the non-sharded database using
authenticated OCI connections.

• The Sharding Advisor requires the appropriate credentials (user name and password) to
connect to the non-sharded source database. Sharding Advisor can be run as a different
user than the user that owns the source database schema that the Sharding Advisor
analyzes. This user must have SELECT privileges on the tables in the non-sharded schema.

• The user needs SELECT privileges on the GV$SQL_PLAN and GV$SQL_PLAN_STATISTICS_ALL
views, and on the DBA_HIST_SQL_PLAN, DBA_HIST_SQLSTAT, and DBA_HIST_SNAPHSOT tables.
The user does not need any other special privileges.

• Sharding Advisor is not vulnerable to privilege escalation and denial of service.

• Sharding Advisor does not store or expose any sensitive data such as passwords,
database service names, or user names.

• Sharding Advisor does not expose sensitive details about the inner workings of the
product.

• Sharding Advisor does not include any interfaces or APIs which are not externally
documented.

• Sharding Advisor does not require any insecure protocols to be enabled.

• Sharding Advisor does not use any insecure modes of operation.

• Sharding Advisor does not store any data or other information in any files.

Chapter 7
Sharding Advisor Security

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 11

• All connections to the database are through authenticated OCI connections.

• There are no SETUID executables created.

• No new grants to PUBLIC are done.

• No new default schemas are created, but Sharding Advisor internal tables are created
under the user that is used to run Sharding Advisor.

Chapter 7
Sharding Advisor Security

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 11

8
Migrating to a Sharded Database

Migration from an existing non-sharded database to a sharded database consists of two
phases: schema migration and data migration. Oracle Sharding provides guidelines for
migrating your existing database schema and data to a sharded database.

The following approaches are recommended for database migration.

Using Oracle Data Pump to Migrate to a Sharded Database
Using the examples and guidelines provided in the following topics, you can extract DDL
definitions and data from the source database with the Oracle Data Pump export utility, and
then use the Data Pump import utility against the database export files to populate the target
sharded database.

If you already created the schema for your sharded database, you can go directly to the data
migration topic.

Migrating a Schema to a Sharded Database
Transition from a non-sharded database to a sharded database requires some schema
changes. At a minimum, the keyword SHARDED or DUPLICATED should be added to CREATE
TABLE statements. In some cases, the partitioning of tables should be changed as well, or a
column with the shading key added.

To properly design the sharded database schema, you must analyze the schema and workload
of the non-sharded database and make the following decisions.

• Which tables should be sharded and which should be duplicated

• What are the parent-child relationships between the sharded tables in the table family

• Which sharding method is used on the sharded tables

• What to use as the sharding key

If these decisions are not straightforward, you can use the Sharding Advisor to help you to
make them. Sharding Advisor is a tool that you run against a non-sharded Oracle Database
that you are considering to migrate to an Oracle Sharding environment.

To illustrate schema and data migration from a non-sharded to sharded database, we will use a
sample data model shown in the following figure.

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 19

Figure 8-1 Schema Migration Example Data Model

The data model consists of four tables, Customers, Orders, StockItems, and LineItems, and
the data model enforces the following primary key constraints.

• Customer.(CustNo)

• Orders.(PONo)

• StockItems.(StockNo)

• LineItems.(LineNo, PONo)

The data model defines the following referential integrity constraints.

• Customers.CustNo -> Orders.CustNo

• Orders.PONo -> LineItems.PONo

• StockItems.StockNo -> LineItems.StockNo

The following DDL statements create the example non-sharded schema definitions.

CREATE TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 PRIMARY KEY (CustNo)
);

CREATE TABLE Orders (
 PoNo NUMBER(5),
 CustNo NUMBER(3) REFERENCES Customers,
 OrderDate DATE,
 ShipDate DATE,
 ToStreet VARCHAR2(20),

Chapter 8
Using Oracle Data Pump to Migrate to a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 19

 ToCity VARCHAR2(20),
 ToState CHAR(2),
 ToZip VARCHAR2(10),
 PRIMARY KEY (PoNo)
);

CREATE TABLE LineItems (
 LineNo NUMBER(2),
 PoNo NUMBER(5) REFERENCES Orders,
 StockNo NUMBER(4) REFERENCES StockItems,
 Quantity NUMBER(2),
 Discount NUMBER(4,2),
 PRIMARY KEY (LineNo, PoNo)
);

CREATE TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
);

Migrating the Sample Schema
As an example, to migrate the sample schema described above to a sharded database, do the
following steps.

1. Get access to the source database export directory.

The database administrator has to authorize the database user for required access to the
database export directory, as shown here.

CREATE OR REPLACE DIRECTORY expdir AS ‘/some/directory’;
GRANT READ, WRITE ON DIRECTORY expdir TO uname;
GRANT EXP_FULL_DATABASE TO uname;

With a full database export, the database administrator must grant you the
EXP_FULL_DATABASE role, uname. No additional role is required for a table level export.

2. Extract the DDL definitions from the source database.

A convenient way to extract the DDL statements is to create a Data Pump extract file. You
can export only metadata, or only a part of the schema containing the set of tables you are
interested in migrating, as shown in this example.

expdp uname/pwd directory=EXPDIR dumpfile=sample_mdt.dmp
logfile=sample_mdt.log INCLUDE=TABLE:\"IN \(\'CUSTOMERS\', \'ORDERS\',
\'STOCKITEMS\', \'LINEITEMS\' \) \" CONTENT=METADATA_ONLY
FLASHBACK_TIME=SYSTIMESTAMP

Then, use the Data Pump import utility against this database export file.

impdp uname/pwd@orignode directory=expdir dumpfile=sample_mdt.dmp
sqlfile=sample_ddl.sql

Chapter 8
Using Oracle Data Pump to Migrate to a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 19

In this example, the impdp command does not actually perform an import of the contents of
the dump file. Rather, the sqlfile parameter triggers the creation of a script named
sample_ddl.sql which contains all of the DDL from within the export dump file.

Trimming down the export in this way more efficiently captures a consistent image of the
database metadata without a possibly lengthy database data dump process. You still must
get the DDL statements in text format to perform the DDL modifications required by your
sharded database schema design.

3. Modify the extracted DDL statements for the sharded database.

For the sample schema shown above, the corresponding DDL statements for the sharded
database may look like the following. This is an example with system-managed sharding.

CREATE SHARDED TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 CONSTRAINT RootPK PRIMARY KEY (CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders (
 PoNo NUMBER(5) NOT NULL,
 CustNo NUMBER(3) NOT NULL,
 OrderDate DATE,
 ShipDate DATE,
 ToStreet VARCHAR2(20),
 ToCity VARCHAR2(20),
 ToState CHAR(2),
 ToZip VARCHAR2(10),
 CONSTRAINT OrderPK PRIMARY KEY (CustNo, PoNo),
 CONSTRAINT CustFK Foreign Key (CustNo) REFERENCES Customers (CustNo)
)
PARTITION BY REFERENCE (CustFK)
;
CREATE SHARDED TABLE LineItems (
 LineNo NUMBER(2) NOT NULL,
 PoNo NUMBER(5) NOT NULL,
 CustNo NUMBER(3) NOT NULL,
 StockNo NUMBER(4) NOT NULL,
 Quantity NUMBER(2),
 Discount NUMBER(4,2),
 CONSTRAINT LinePK PRIMARY KEY (CustNo, LineNo, PoNo),
 CONSTRAINT LineFK FOREIGN KEY (CustNo, PoNo) REFERENCES Orders (CustNo,
PoNo)
)
PARTITION BY REFERENCE (LineFK)
;

Chapter 8
Using Oracle Data Pump to Migrate to a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 19

CREATE DUPLICATED TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
);

Here are some observations about the schema of the sharded database.

• Customers-Orders-LineItems form a table family of SHARDED tables, with Customers as
the root table and child tables are partitioned by reference. StockItems is a DUPLICATED
table.

• CustNo is chosen as the sharding key. Hence, this column must be included in all the
tables of the table family. Note that in the non-sharded database, the LineItems table
did not have a CustNo column, but it was included in the sharded version on the table.
The sharding key column also needs to be present in all primary and foreign key
constraints in sharded tables.

• StockItems is now a duplicated table. The primary copy of a duplicated table resides
on the shard catalog database. Thus, the foreign key constraint in the LineItems table
referencing StockItems table cannot be enforced and is removed.

4. Run the modified DDLs against the target database.

Connect to the shard catalog database and run

ALTER SESSION ENABLE SHARD DDL;

Then run the DDLs listed above to create the sharded and duplicated tables.

It is recommended that you validate the sharding configuration using the GDSCTL VALIDATE
command, before loading the data.

gdsctl> validate

If you see inconsistencies or errors, you must correct the problem using the GDSCTL
commands SHOW DDL and RECOVER. After successful validation, the sharded database is
ready for data loading.

Migrating Data to a Sharded Database
Transitioning from a non-sharded database to a sharded database involves moving the data
from non-sharded tables in the source database to sharded and duplicated tables in the target
database.

Moving data from non-sharded tables to duplicated tables is straightforward, but moving data
from non-sharded tables to sharded tables requires special attention.

Loading Data into Duplicated Tables

You can load data into a duplicated table using any existing database tools, such as Data
Pump, SQL Loader, or plain SQL. The data must be loaded to the shard catalog database.
Then it gets automatically replicated to all shards.

Because the contents of the duplicated table is fully replicated to the database shards using
materialized views, loading a duplicated table may take longer than loading the same data into
a regular table.

Chapter 8
Using Oracle Data Pump to Migrate to a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 19

Figure 8-2 Loading Duplicated Tables

Source
Database

Data
Pump

0

1

1

Shard Catalog
(Coordinator)

Duplicated
TableSource

Table

Shard1

Duplicated
Table

Shard2

Duplicated
Table

ShardN

Duplicated
Table

...

Loading Data into Sharded Tables

When loading a sharded table, each database shard accommodates a distinct subset of the
data set, so the data in each table must be split (partitioned) across shards during the load.

You can use the Oracle Data Pump utility to load the data across database shards in subsets.
Data from the source database can be exported into a Data Pump dump file. Then Data Pump
import can be run on each shard concurrently by using the same dump file.

The dump file can be either placed on shared storage accessible to all shards, or copied to the
local storage of each shard. When importing to individual shards, Data Pump import ignores
the rows that do not belong to the current shard.

Figure 8-3 Loading Sharded Tables Directly to the Database Shards

Data Pump
Export

...Shard 1

Partition 1

Source
Database

Source
Table

Shard Catalog
(Coordinator)

Shard 2

Partition 2

Shard N

Partition N

Data
Pump 1

Data
Pump 2

Data
Pump N

Loading the data directly into the shards is much faster, because all shards are loaded in
parallel. It also provides linear scalability; the more shards there are in the sharded database,
the higher data ingestion rate is achieved.

Chapter 8
Using Oracle Data Pump to Migrate to a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 19

Loading the Sample Schema Data

As an example, the following steps illustrate how to move the sample schema data from a non-
sharded to sharded database. The syntax examples are based on the sample Customers-
Orders-LineItems-StockItems schema introduced in the previous topics.

1. Export the data from your database tables.

expdp uname/pwd@non_sharded_db directory=expdir
dumpfile=original_tables.dmp logfile=original_tables.log SCHEMAS=UNAME
INCLUDE=TABLE:\"IN \(\'CUSTOMERS\', \'ORDERS\', \'STOCKITEMS\') \"
FLASHBACK_TIME=SYSTIMESTAMP CONTENT=DATA_ONLY

If the source table (in the non-sharded database) is partitioned, then export to dump files in
non-partitioned format (data_options=group_partition_table_data).

Example, if the Orders table is a partitioned table on the source database, export it as
follows.

$ cat ordexp.par
directory=expdir
logfile=ordexp.log
dumpfile=ord_%U.dmp
tables=ORDERS
parallel=8
COMPRESSION=ALL
content=data_only
DATA_OPTIONS=GROUP_PARTITION_TABLE_DATA

$ expdp user/password parfile=ordexp.par

Because the SHARDED and DUPLICATED tables were already created in the target database,
you only export the table content (DATA_ONLY).

Data Pump export utility files are consistent on a per table basis. If you want all of the
tables in the export to be consistent at the same point in time, you must use the
FLASHBACK_SCN or FLASHBACK_TIME parameters as shown in the example above. Having a
consistent “as of” point in time database export files is recommended.

2. Make the export file (original_tables.dmp) accessible by the target database nodes
before you start importing the data to the sharded database.

You can either move this file (or multiple files in the case of parallel export) to the target
database system or share the file over the network.

3. Prepare all the target databases (shard catalog and shards) for import.

The database administrator has to authorize the database user for required access to the
database import directory, as shown here.

CREATE OR REPLACE DIRECTORY expdir AS ‘/some/directory’;
GRANT READ, WRITE ON DIRECTORY expdir TO uname;
GRANT IMP_FULL_DATABASE TO uname;

4. Load the DUPLICATED table (StockItems) using the shard catalog.

Chapter 8
Using Oracle Data Pump to Migrate to a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 19

The following is an example of the import command.

impdp uname/pwd@catnode:1521/ctlg directory=expdir
dumpfile=original_tables.dmp logfile=imp_dup.log tables=StockItems
content=DATA_ONLY

5. Load the SHARDED tables on the shards directly.

The best way to load the exported SHARDED tables (Customers, Orders) is to run the Data
Pump on each shard (shrd1,2,…, N) directly. The following is an example of the import
command on the first shard.

impdp uname/pwd@shrdnode:1521/shrd1 directory=expdir
DUMPFILE=original_tables.dmp LOGFILE=imp_shd1.log TABLES=”Customers,
Orders, LineItems” CONTENT=DATA_ONLY

Repeat this step on all of the other shards. Note that the same dump file
(original_tables.dmp) is used to load data for all of the shards. Data Pump import will
ignore rows that do not belong to the current shard. This operation can be run in parallel on
all shards.

To benefit from fast loading into very large partitioned tables with parallelism, the data
pump parameter DATA_OPTIONS should include the value _FORCE_PARALLEL_DML.

$ cat ordimp.par
directory=expdir
logfile=ordimp.log
dumpfile=ord_%U.dmp
tables=ORDERS
parallel=8
content=data_only
DATA_OPTIONS=_force_parallel_dml
$ impdp user/password parfile=ordimp.par

You can alternatively migrate data using an external table of type DATA PUMP, as shown in
the following example.

a. Export on the source database.

CREATE TABLE ORDERS_EXT
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY "expdir"
 ACCESS PARAMETERS (DEBUG = (3 , 33489664))
 LOCATION ('ord1.dat',
 'ord2.dat',
 'ord3.dat',
 'ord4.dat')
)
PARALLEL 8
REJECT LIMIT UNLIMITED
AS SELECT * FROM user.ORDERS;

Chapter 8
Using Oracle Data Pump to Migrate to a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 19

b. Import into each target shard.

CREATE TABLE ORDERS_EXT
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY "expdir"
 ACCESS PARAMETERS (DEBUG = (3 , 33489664))
 LOCATION ('ord1.dat',
 'ord2.dat',
 'ord3.dat',
 'ord4.dat')
)
PARALLEL 8
REJECT LIMIT UNLIMITED
;
INSERT /*+ APPEND ENABLE_PARALLEL_DML PARALLEL(a,12) pq_distribute(a,
random) */ INTO "user"."ORDERS" a
SELECT /*+ full(b) parallel(b,12) pq_distribute(b, random)*/
*
FROM "ORDERS_EXT"
WHERE <predicate*>;
Commit;

(*) The predicate in the WHERE clause depends on the sharding method. For user-
defined sharding by range, for example, it will be based on the range of CustNo on a
particular shard. For system-managed (consistent hash-based) sharding, see the use
case in Using External Tables to Load Data into a Sharded Database.

Note

You can make Data Pump run faster by using the PARALLEL parameter in the expdp
and impdp commands. For export, this parameter should be used in conjunction with
the %U wild card in the DUMPFILE parameter to allow multiple dump files be created, as
shown in this example.

expdp uname/pwd@orignode SCHEMAS=uname directory=expdir
dumpfile=samp_%U.dmp logfile=samp.log FLASHBACK_TIME=SYSTIMESTAMP
PARALLEL=4

The above command uses four parallel workers and creates four dump files with
suffixes _01, _02, _03, and _04. The same wild card can be used during the import to
allow you to reference multiple input files.

Migrating Data Without a Sharding Key
As an example, the following steps illustrate how to migrate data to a sharded table from a
source table that does not contain the sharding key.

The examples of the Data Pump export and import commands in the previous topic do not
include the LineItems table. The reason is that this table in the non-sharded database does not
contain the sharding key column (CustNo). However, this column is required in the sharded
version of the table.

Chapter 8
Using Oracle Data Pump to Migrate to a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 19

Because of the schema mismatch between the non-sharded and sharded versions of the table,
data migration for LineItems must be handled differently, as shown in the following steps.

1. On the source, non-sharded, database, create a temporary view with the missing column
and SQL expression to generate value for this column.

CREATE OR REPLACE VIEW Lineitems_View AS
 SELECT l.*,
 (SELECT o.CustNo From Orders o WHERE l.PoNo=o.PoNo) CustNo
FROM LineItems l;

This creates a view LineItems_View with the column CustNo populated based on the
foreign key relationship with the Orders table.

2. Export the new view with VIEWS_AS_TABLES option of the data pump export utility.

expdp uname/pwd@non_sharded_db directory=expdir
DUMPFILE=original_tables_vat.dmp LOGFILE=original_tables_vat.log
FLASHBACK_TIME=SYSTIMESTAMP CONTENT=DATA_ONLY
TABLES=Uname.Customers,Uname.Orders,Uname.StockItems
VIEWS_AS_TABLES=Uname.LineItems_

3. Import the data to sharded tables by directly running the data pump import on individual
shards (shrd1, shrd2,.., shrdN).

The following is an example of running the import on the first shard.

impdp uname/pwd@shrdnode:1521/shrd1 directory=expdir
DUMPFILE=original_tables_vat.dmp LOGFILE=imp_shd_vat1.log
CONTENT=DATA_ONLY TABLES=Uname.Customers,Uname.Orders,Uname.LineItems_View
VIEWS_AS_TABLES=Uname.LineItems_View REMAP_TABLE=Lineitems_View:Lineitems

The examples uses the impdp tool VIEWS_AS_TABLES option to import the view
LineItems_View exported as a table during export operation. And the parameter
REMAP_TABLE is used to indicate that this data should actually be inserted in the original
table LineItems.

Using External Tables to Load Data into a Sharded Database
Using the examples and guidelines in the following topics, you can load data into a sharded
database by creating external tables and then loading the data from the external tables into
sharded or duplicated tables.

This data loading method is useful when the data to be loaded resides in external files, for
example in CSV files.

External tables can be defined using the ORGANIZATION EXTERNAL keyword in the CREATE
TABLE statement. This table must be local to each shard and not sharded or duplicated.
Loading the data into the sharded or duplicated table involves a simple INSERT … SELECT
statement from an external table, with a condition to filter only a subset of data for sharded
tables.

You may choose to keep the files on different hosts based on the access time and size of the
files. For example, copy the files for duplicated tables on the shard catalog host and keep files
for sharded tables on a network share that is accessible to all of the shards. It is also possible
to keep a copy of the sharded table files on each shard for faster loading.

Chapter 8
Using External Tables to Load Data into a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 19

For more information about external tables, see External Tables in Oracle Database Utilities.

Loading Data into Duplicated Tables
Data for the duplicated tables resides on the shard catalog, so loading the data into the
duplicated tables is also done on the shard catalog. The data is then automatically replicated to
shards after loading is complete.

Consider the following table defined as a duplicated table.

CREATE DUPLICATED TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
);

Loading data into the table StockItems involves the following steps.

1. Create a directory object pointing to the directory containing the data file and grant access
to the shard user on this directory.

CREATE OR REPLACE DIRECTORY shard_dir AS '/path/to/datafile';
GRANT ALL on DIRECTORY shard_dir TO uname;

2. Create an external table that is local to the shard catalog, with the same columns as the
duplicated table.

On the shard catalog, run:

ALTER SESSION DISABLE SHARD DDL;
CREATE TABLE StockItems_Ext (
 StockNo NUMBER(4) NOT NULL,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER DEFAULT DIRECTORY shard_dir
 ACCESS PARAMETERS
 (FIELDS TERMINATED BY ’|’ (
 StockNo,
 Description,
 Price)
)LOCATION (’StockItems.dat’)
);

In this example, the data file for the duplicated table is named StockItems.dat and column
values are separated by the character ‘|’.

3. Insert data from the external table into the duplicated table.

INSERT INTO StockItems (SELECT * FROM StockItems_Ext);

Chapter 8
Using External Tables to Load Data into a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 19

You can use also optimizer hints such as APPEND and PARALLEL (with degree of
parallelism) for faster loading depending on your system resources. For example:

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ APPEND PARALLEL */ INTO StockItems
 (SELECT * FROM StockItems_Ext);

or

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ APPEND PARALLEL(24) */ INTO StockItems
 (SELECT * FROM StockItems_Ext);

4. Commit the insert operation.

COMMIT;

5. Drop the external table.

DROP TABLE StockItems_Ext;

Repeat these steps for each duplicated table.

Loading Data into Sharded Tables
Loading data into a sharded table needs to be performed on individual shards because data for
a sharded table is partitioned across shards. The load can be done concurrently on all the
shards, even if the source data file is shared.

The process of loading is similar to the loading of duplicated tables, with an additional filter in
the INSERT … SELECT statement to filter out the rows that do not belong to the current shard.

As an example, consider the sharded table created as follows.

CREATE SHARDED TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 CONSTRAINT RootPK PRIMARY KEY (CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Loading data into this table involves doing the following steps on each shard.

1. Create the directory object in the same way as done for the duplicated tables.

Chapter 8
Using External Tables to Load Data into a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 19

2. Create an external table for Customers table.

ALTER SESSION DISABLE SHARD DDL;
CREATE TABLE Customers_Ext (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER DEFAULT DIRECTORY shard_dir
 ACCESS PARAMETERS
 (FIELDS TERMINATED BY ’|’ (
 CustNo, CusName, Street, City, State, Zip, Phone)
)LOCATION (’Customers.dat’)
);

3. Insert data from external table into sharded table.

ALTER SESSION ENABLE PARALLEL DML;

INSERT /*+ APPEND PARALLEL(24) */ INTO Customers
 (SELECT * FROM Customers_Ext WHERE
 SHARD_CHUNK_ID(’UNAME.CUSTOMERS’, CUSTNO) IS NOT NULL
);

The operator SHARD_CHUNK_ID is used to filter the rows that belong to the current shard.
This operator returns a valid chunk number for the given sharding key value. The
parameters for this operator are the root table name (in this case UNAME.CUSTOMERS) and
values of the sharding key columns. When a value does not belong to the current shard,
this operator returns NULL.

Note that this operator is introduced in the current release (Oracle Database 21c). If this
operator is not available in your version, you must modify the insert statement as follows
for the case of system-managed sharding.

INSERT /*+ APPEND PARALLEL(24) */ INTO Customers c
 (SELECT * FROM Customers_Ext WHERE
 EXISTS (SELECT chunk_number FROM gsmadmin_internal.chunks
 WHERE ora_hash(c.CustNo)>= low_key
 AND ora_hash c.CustNo)< high_key)
);

This query user internal sharding metadata to decide the eligibility for the row to be
inserted.

4. Commit the insert operation.

COMMIT;

Chapter 8
Using External Tables to Load Data into a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 19

5. Drop external tables.

DROP TABLE Customers_Ext;

Repeat the above steps for each sharded table, starting with the root table and descending
down the table family hierarchy to maintain any foreign key constraints.

Using Oracle GoldenGate to Replicate Data Between Sharded
and Non-Sharded Databases

You can migrate data from a non-sharded database to a sharded database using Oracle
GoldenGate.

Migrating data from a non-sharded database to sharded database using Oracle GoldenGate is
done in two phases.

Extraction on source database

• All of the tables from the source database are extracted using single extract on the source
database.

Replication on target database

• The replication into sharded tables is performed on the shards and the replication into
duplicated tables is performed on the shard catalog.

Oracle GoldenGate Replication Prerequisites
Make sure your source and target databases, and Oracle GoldenGate environments meet
these prerequisites before attempting sharded database Oracle GoldenGate replication.

Assumptions

1. It is assumed that the tables to be migrated from the non-sharded to sharded database
have already been classified into sharded and duplicated tables.

2. The sharding keys for all of the tables to be migrated to sharded tables have already been
identified.

3. Sharded and duplicated tables have been pre-created in the target sharded database.

4. Oracle GoldenGate software is already installed on the source and target systems.

Source and Target Databases

• Oracle Database version: 19c (19.15.0.0.0) or later in a Multitenant architecture

• Target database sharding type: System-managed

Oracle GoldenGate Configuration

Oracle GoldenGate Version: 19c Classic Architecture in a hub configuration

Replicating Data from a Non-Sharded Database to a Sharded Database

Example environment

The examples in the steps below use the following topology

Chapter 8
Using Oracle GoldenGate to Replicate Data Between Sharded and Non-Sharded Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 14 of 19

System/Object Source Environment Target Environment

CDB Name srccdb sdbcdb

PDB Name srcpdb Shards:
sdbpdb1,sdbpdb2,sdbpdb3

Shard catalog: scpdb

Application Schema app_schema app_schema

Sharded Tables Customers, Orders, LineItems Customers, Orders, LineItems

Duplicated Tables Products Products

High Level Steps

1) Create an extract on the source database to capture transactions from the source tables
and start it.

2) Capture data from source database for initial load using expdp and flashback_scn.

3) Perform initial load into the sharded tables on target shards using impdp.

4) Perform initial load into the duplicated tables on the target shard catalog using impdp.

5) Create the same number of replicats as number of target shards to replicate sharded tables.

6) Create one replicat for the shard catalog to replicate duplicated tables.

7) Start replicats on the target shards using at csn

8) Start replicat on the shard catalog using at csn

9) Validate the data replication from the source to target tables.

1. Configure the source (non-sharded) database

a. Create an extract on the source database to capture transactions from source tables
and start it.

$ ggsci

GGSCI > dblogin useridalias ggadmin
GGSCI > add extract extnshd, integrated tranlog, begin now
GGSCI > register extract extnshd, database container (SRCPDB)
GGSCI > add exttrail ./dirdat/tr, extract extnshd

Add the following parameters in extract parameter file

GGSCI > edit params extnshd

extract extnshd
useridalias ggadmin
TranlogOptions IntegratedParams (max_sga_size 256)
extTrail ./dirdat/tr
DiscardFile ./dirrpt/extnshd.dsc, Append Megabytes 50
REPORTCOUNT EVERY 2 HOURS, RATE
Table SRCPDB.app_schema.customers;
Table SRCPDB.app_schema.orders;
Table SRCPDB.app_schema.lineitems;
Table SRCPDB.app_schema.products;

Chapter 8
Using Oracle GoldenGate to Replicate Data Between Sharded and Non-Sharded Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 15 of 19

GGSCI> start extract extnshd

b. Capture data from the source database for initial load using expdp.

SQL> select current_scn from v$database;

$ expdp app_schema/xxxxx@SRCPDB
flashback_scn=current_scn_from_previous_step
 directory=DATA_PUMP_DIR dumpfile=app_schema_exp.dmp
 logfile=app_schema_exp.log

2. Configure the target (sharded) database.

a. Perform the initial load on the target shard databases and shard catalog using impdp.

Import into shards
$ impdp app_schema/xxxxx@SDBPDB1 directory=DATA_PUMP_DIR
dumpfile=app_schema_exp.dmp
 logfile=app_schema_imp.log tables=CUSTOMERS,ORDERS,LINEITEMS,
CONTENT=DATA_ONLY
$ impdp app_schema/xxxxx@SDBPDB2 directory=DATA_PUMP_DIR
dumpfile=app_schema_exp.dmp
 logfile=app_schema_imp.log tables=CUSTOMERS,ORDERS,LINEITEMS,
CONTENT=DATA_ONLY
$ impdp app_schema/xxxxx@SDBPDB3 directory=DATA_PUMP_DIR
dumpfile=app_schema_exp.dmp
 logfile=app_schema_imp.log tables=CUSTOMERS,ORDERS,LINEITEMS,
CONTENT=DATA_ONLY

Import into shard catalog
$ impdp app_schema/xxxxx@SCPDB directory=DATA_PUMP_DIR
dumpfile=app_schema_exp.dmp
 logfile=app_schema_imp.log tables=PRODUCTS CONTENT=DATA_ONLY

b. Create replicats (same as the number of shards) on the target database.

Replicat for sharded tables on Shard 1
======================================
GGSCI > dblogin useridalias ggadmin_shd1
GGSCI > add replicat repshd1, INTEGRATED, exttrail ./dirdat/tr
 CHECKPOINTTABLE ggadmin.GGCHKPT

Add the following parameters in replicat for shard1

GGSCI > edit params repshd1

replicat repshd1
useridalias ggadmin_shd1
HANDLECOLLISIONS
SOURCECATALOG SDBPDB1
MAP NSHDPDB.APP_SCHEMA.CUSTOMERS , target APP_SCHEMA.CUSTOMERS, &
SQLEXEC (ID chunklookup1, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(:CODE_IN_PARAM) >= low_key and ora_hash(:CODE_IN_PARAM)
< high_key',&

Chapter 8
Using Oracle GoldenGate to Replicate Data Between Sharded and Non-Sharded Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 16 of 19

PARAMS (CODE_IN_PARAM = CUSTID),
BEFOREFILTER), &
FILTER (chunklookup1.COUNT = 1);

MAP NSHDPDB.APP_SCHEMA.ORDERS, target APP_SCHEMA.ORDERS, &
SQLEXEC (ID chunklookup2, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(:CODE_IN_PARAM) >= low_key and ora_hash(:CODE_IN_PARAM)
< high_key',&
PARAMS (CODE_IN_PARAM = CUSTID),
BEFOREFILTER), &
FILTER (chunklookup2.COUNT = 1);

MAP NSHDPDB.APP_SCHEMA.LINEITEMS, target APP_SCHEMA.LINEITEMS, &
SQLEXEC (ID chunklookup3, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(:CODE_IN_PARAM) >= low_key and ora_hash(:CODE_IN_PARAM)
< high_key',&
PARAMS (CODE_IN_PARAM = CUSTID),
BEFOREFILTER), &
FILTER (chunklookup3.COUNT = 1);

Replicat for sharded tables on Shard 2
======================================

GGSCI > dblogin useridalias ggadmin_shd2
GGSCI > add replicat repshd2, INTEGRATED, exttrail ./dirdat/tr
 CHECKPOINTTABLE ggadmin.GGCHKPT

Add the following parameters in replicat for shard2

GGSCI > edit params repshd2

replicat repshd2
useridalias ggadmin_shd2
HANDLECOLLISIONS
SOURCECATALOG SDBPDB2
MAP NSHDPDB.APP_SCHEMA.CUSTOMERS , target APP_SCHEMA.CUSTOMERS, &
SQLEXEC (ID chunklookup1, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(:CODE_IN_PARAM) >= low_key and ora_hash(:CODE_IN_PARAM)
< high_key',&
PARAMS (CODE_IN_PARAM = CUSTID),
BEFOREFILTER), &
FILTER (chunklookup1.COUNT = 1);

MAP NSHDPDB.APP_SCHEMA.ORDERS, target APP_SCHEMA.ORDERS, &
SQLEXEC (ID chunklookup2, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(:CODE_IN_PARAM) >= low_key and ora_hash(:CODE_IN_PARAM)
< high_key',&
PARAMS (CODE_IN_PARAM = CUSTID),
BEFOREFILTER), &
FILTER (chunklookup2.COUNT = 1);

Chapter 8
Using Oracle GoldenGate to Replicate Data Between Sharded and Non-Sharded Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 17 of 19

MAP NSHDPDB.APP_SCHEMA.LINEITEMS, target APP_SCHEMA.LINEITEMS, &
SQLEXEC (ID chunklookup3, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(:CODE_IN_PARAM) >= low_key and ora_hash(:CODE_IN_PARAM)
< high_key',&
PARAMS (CODE_IN_PARAM = CUSTID),
BEFOREFILTER), &
FILTER (chunklookup3.COUNT = 1);

Replicat for sharded tables on Shard 3
======================================

GGSCI > dblogin useridalias ggadmin_shd3
GGSCI > add replicat repshd3, INTEGRATED, exttrail ./dirdat/tr
 CHECKPOINTTABLE ggadmin.GGCHKPT

Add the following parameters in replicat for shard3

GGSCI > edit params repshd3

replicat repshd3
useridalias ggadmin_shd3
HANDLECOLLISIONS
SOURCECATALOG SDBPDB3
MAP NSHDPDB.APP_SCHEMA.CUSTOMERS , target APP_SCHEMA.CUSTOMERS, &
SQLEXEC (ID chunklookup1, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(:CODE_IN_PARAM) >= low_key and ora_hash(:CODE_IN_PARAM)
< high_key',&
PARAMS (CODE_IN_PARAM = CUSTID),
BEFOREFILTER), &
FILTER (chunklookup1.COUNT = 1);

MAP NSHDPDB.APP_SCHEMA.ORDERS, target APP_SCHEMA.ORDERS, &
SQLEXEC (ID chunklookup2, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(:CODE_IN_PARAM) >= low_key and ora_hash(:CODE_IN_PARAM)
< high_key',&
PARAMS (CODE_IN_PARAM = CUSTID),
BEFOREFILTER), &
FILTER (chunklookup2.COUNT = 1);

MAP NSHDPDB.APP_SCHEMA.LINEITEMS, target APP_SCHEMA.LINEITEMS, &
SQLEXEC (ID chunklookup3, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(:CODE_IN_PARAM) >= low_key and ora_hash(:CODE_IN_PARAM)
< high_key',&
PARAMS (CODE_IN_PARAM = CUSTID),
BEFOREFILTER), &
FILTER (chunklookup3.COUNT = 1);

NOTE
1. Remove Handlecollisions parameter and restart replicats after deltas
 have been applied on target shards.
2. If sharding key column is of number datatype, please use below

Chapter 8
Using Oracle GoldenGate to Replicate Data Between Sharded and Non-Sharded Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 18 of 19

sqlexec
 filter which has to_number in ora_hash function.

SQLEXEC (ID chunklookup, QUERY 'select count(*) count FROM
gsmadmin_internal.chunks
 WHERE ora_hash(to_number(:CODE_IN_PARAM)) >= low_key
 and ora_hash(to_number(:CODE_IN_PARAM)) < high_key',&

Replicat for duplicate tables on Catalog
==

GGSCI > dblogin useridalias ggadmin_cat
GGSCI > add replicat repcat, INTEGRATED, exttrail ./dirdat/tr
 CHECKPOINTTABLE ggadmin.GGCHKPT

Add the following parameters in replicat for shard1
GGSCI > edit params repcat

replicat repcat
useridalias ggadmin_cat
HANDLECOLLISIONS
SOURCECATALOG SCPDB
map NSHDPDB.APP_SCHEMA.PRODUCTS, target APP_SCHEMA.PRODUCTS;

c. Start replicats on target shards using atcsn.

GGSCI> start replicat repshd1, atcsn <SCN captured on source>
GGSCI> start replicat repshd2, atcsn <SCN captured on source>
GGSCI> start replicat repshd3, atcsn <SCN captured on source>
GGSCI> start replicat repcat, atcsn <SCN captured on source>
GGSCI > info all

Program Status Group Lag at Chkpt Time Since Chkpt

MANAGER RUNNING
EXTRACT RUNNING EXTNSHD 00:00:00 00:00:05
REPLICAT RUNNING REPCAT 00:00:00 00:00:00
REPLICAT RUNNING REPSHD1 00:00:00 00:00:03
REPLICAT RUNNING REPSHD2 00:00:00 00:00:06
REPLICAT RUNNING REPSHD3 00:09:01 00:00:09

3. Validate the data replication from source to target tables.

To validate that rows are replicated from the non-sharded table to the shards, for example,
if you have 9000 rows in the source table, and three target shards, about 3000 rows should
be distributed to each shard.

Chapter 8
Using Oracle GoldenGate to Replicate Data Between Sharded and Non-Sharded Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 19 of 19

9
Query and DML Processing

On a sharded database, queries and DML can be routed to the shards for processing with or
without a sharding key. If a key is provided by the application a database request is routed
directly to the shards, but if no key is provided the request is processed by the shard catalog,
and then directed to the necessary shards for processing.

How Database Requests are Routed to the Shards
In Oracle Sharding, database query and DML requests are routed to the shards in two main
ways, depending on whether a sharding key is supplied with the request.

These two routing methods are called direct routing and proxy routing.

Direct Routing

You can connect directly to the shards to process queries and DML by providing a sharding
key with the database request. Direct routing is the preferred way of accessing shards to
achieve better performance, among other benefits.

Proxy Routing

Queries that need data from multiple shards, and queries that do not specify a sharding key,
cannot be routed directly by the application. Those queries require a proxy to route requests
between the application and the shards. Proxy routing is handled by the shard catalog query
coordinator.

Routing Queries and DMLs Directly to Shards
Applications can have their requests routed directly to the shards if they provide a sharding
key. With the direct routing mechanism, requests can only query and manipulate the data that
belongs to the shard they were routed to.

Direct access to the data on the shards has several advantages.

• Offers better performance: Overall, applications experience better performance compared
to routing requests to the shards indirectly through the shard catalog (by proxy). With direct
routing there is no need for the requests and the results to pass through a coordinator
database.

• Accommodates geographic distribution of shards: Applications can access the data in
shards localized in their region.

• Eases load balancing: Load balancing application requests across the shards can be
easily achieved by moving the data across shards using chunk moves.

• Supports all type of queries:

– SELECT, INSERT, and UPDATE on sharded tables: The scope of these requests is the
data that belong to the shards accessed.

– SELECT, INSERT, and UPDATE on duplicated tables: The scope of theses requests is all
of the data in the duplicated tables. Because the primary copies of a duplicated tables

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 17

reside in the coordinator database, the DMLs on the duplicated tables are re-routed to
the coordinator database.

The following figure illustrates DML on duplicated tables using direct routing to a shard.

1. The Application sends the DML request directly to one of the shards, Shard DB1.

2. The DML is forwarded from Shard DB1 to the Coordinator Database, where it is run on the
primary duplicated tables.

3. The Coordinator Database refresh mechanism runs periodically to update the instances of
the duplicated tables on all of the shards.

Figure 9-1 DML on a Duplicated Table with Direct Routing

Application

Coordinator Database

Shard DB2 Shard DB3Shard DB1

2

1

3 3 3

For more information about direct routing, see Client Application Request Routing.

For information about developing applications for direct routing, see Developing Applications
for the Sharded Database

Routing Queries and DMLs by Proxy
Using the shard catalog query coordinator as a proxy, Oracle Sharding can handle request
routing for queries and DMLs that do not specify a sharding key.

By using the coordinator as a proxy, Oracle Sharding provides you with the flexibility to allow
any database application to run SQL statements without the need to specify the shards where
the query should be processed.

For more information about the coordinator, see Query Processing and the Query Coordinator.

The following figure illustrates DML on duplicated tables using proxy routing.

1. The Application sends the DML request to the Coordinator Database where it is run on the
primary duplicated tables.

2. The Coordinator Database refresh mechanism runs periodically to update the instances of
the duplicated tables on all of the shards.

Chapter 9
How Database Requests are Routed to the Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 17

Figure 9-2 DML on a Duplicated Table with Proxy Routing

Coordinator Database

Shard DB2 Shard DB3Shard DB1

1

2 2 2

Application

The remaining topics in this chapter discuss routing and processing database requests by
proxy.

Connecting to the Query Coordinator
The Oracle Sharding query coordinator, a component of the shard catalog, contains the
metadata of the sharded topology and provides query processing support for sharded
databases.

To perform multi-shard queries, connect to the multi-shard coordinator using the GDS$CATALOG
service on the shard catalog database.

sqlplus app_schema/app_schema@shardcatvm:1521/GDS\$CATALOG.oradbcloud

For more information about the coordinator, see Query Processing and the Query Coordinator

Query Coordinator Operation
The SQL compiler in the shard catalog identifies the relevant shards automatically, and
coordinates the query processing across all of the participating shards. Database links are
used for the communication between the coordinator and the shards.

As shown in the following figure, at a high level, the coordinator rewrites each incoming query,
Q, into two queries, Coordinator Query (CQ) and Shard Query (SQ) where SQ, where SQ
(Shard Query) is the part of Q that runs on each participating shard, and CQ (Coordinator
Query) is the part of Q that runs on the coordinator shard.

A query, Q, is rewritten into CQ (Shard_Iterator(SQ)), where the Shard_Iterator is
the operator that connects to the shards and runs SQ. It can be run in parallel or serially.

Chapter 9
Connecting to the Query Coordinator

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 17

Figure 9-3 Query Coordinator Operation

Application Coordinator Database

Shard DB2 Shard DB3Shard DB1

CQ + Shard Iterator

Q

R

SQ r1 r2 r3SQSQ

The following is an example of an aggregate query, Q1, rewritten into Q1’.

Q1 : SELECT COUNT(*) FROM customers

Q1’: SELECT SUM(sc) FROM (Shard_Iterator(SELECT COUNT(*) sc FROM s1 (i)))

There are two main elements in this process.

1. The relevant shards are identified.

2. The query is rewritten into a distributive form and iterated across the relevant shards.

During the query compilation on the coordinator database, the query compiler analyzes the
predicates on the sharding key, and extracts the predicates that can be used to identify the
participating shards, that is, the shards that will contribute rows for the sharded tables
referenced in the query. The rest of the shards are referred to as pruned shards.

In the case where only one participating shard was identified, the full query is routed to that
shard for processing. This is called a single-shard query.

If there is more than one participating shard, the query is called a multi-shard query and it is
rewritten. The rewriting process takes into account the expressions computed by the query as
well as the query shape.

Query Processing for Single-Shard Queries
A single-shard query is a query which needs to scan data from only one shard and does not
need to lookup data from any other shards.

The single-shard query is similar to a client connecting to a specific shard and issuing a query
on that shard. In this scenario, the entire query will be processed on the single participating
shard, and the coordinator just passes processed rows back to the client. The plan on the
coordinator is similar to the remote mapped cursor.

Chapter 9
Query Processing for Single-Shard Queries

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 17

For example, the following query is fully mapped to a single shard because the data for
customer 123 is located only on that shard.

SELECT count(*) FROM customers c, orders o WHERE c.custno = o.custno and
c.custno = 123;

The query contains a condition on the shard key that maps to one and only one shard which is
known at query compilation time (literals) or query start time (bind). The query is fully
processed on the qualifying shard.

Single-shard queries are supported for:

• Equality and In-list, such as Area = ‘West’

• Conditions containing literal, bind, or expression of literals and binds, such as

Area = :bind

Area = CASE :bind <10 THEN ‘West’ ELSE ‘East’ END

• SELECT, UPDATE, DELETE, INSERT, FOR UPDATE, and MERGE.

All other types of queries are not supported in single-shard mode.

Query Processing for Multi-Shard Queries
A multi-shard query is a query that must scan data from more than one shard, and the
processing on each shard is independent of any other shard.

A multi-shard query maps to more than one shard and the coordinator might need to do
some processing before sending the result to the client. For example, the following query gets
the number of orders placed by each customer.

SELECT count(*), c.custno FROM customers c, orders o WHERE c.custno = o.custno
 GROUP BY c.custno;

The query is transformed to the following by the coordinator.

SELECT sum(count_col), custno FROM (SELECT count(*) count_col, c.custno
 FROM customers c, orders o
 WHERE c.custno = o.custno GROUP BY c.custno) GROUP BY custno;

The inline query block is mapped to every shard just as a remote mapped query block. The
coordinator performs further aggregation and GROUP BY on top of the result set from all shards.
The unit of processing on every shard is the inline query block.

Multi-Shard Queries and Global Read Consistency

A multi-shard query must maintain global read consistency (CR) by issuing the query at the
highest common SCN across all the shards. See Specifying Consistency Levels in a Multi-
Shard Query for information about how to set consistency levels.

Passing Hints in Multi-Shard Queries

Any hint specified in the original query on the coordinator is propagated to the shards.

Chapter 9
Query Processing for Multi-Shard Queries

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 17

Tracing and Troubleshooting Slow Running Multi-Shard Queries

Set the trace event shard_sql on the coordinator to trace the query rewrite and shard pruning.
One of the common performance issues observed is when the GROUP BY is not pushed to
the shards because of certain limitations of the sharding. Check if all of the possible operations
are pushed to the shards and the coordinator has minimal work to consolidate the results from
shards.

Specifying Consistency Levels in a Multi-Shard Query
You can use the initialization parameter MULTISHARD_QUERY_DATA_CONSISTENCY to set
different consistency levels when running multi-shard queries across shards.

You can specify different consistency levels for multi-shard queries. For example, you might
want some queries to avoid the cost of SCN synchronization across shards, and these shards
could be globally distributed. Another use case is when you use standbys for replication and
slightly stale data is acceptable for multi-shard queries, as the results could be fetched from
the primary and its standbys.

The default mode is strong, which performs SCN synchronization across all shards. Other
modes skip SCN synchronization. The delayed_standby_allowed level allows fetching data
from the standbys as well, depending on load balancing and other factors, and could contain
stale data.

This parameter can be set either at the system level or at the session level.

See Also

Oracle Database Reference for more information about
MULTISHARD_QUERY_DATA_CONSISTENCY usage.

Supported Query Constructs and Example Query Shapes
Oracle Sharding supports single-shard and multi-shard query shapes with some restrictions.

The following are restrictions on query constructs in Oracle Sharding.

• CONNECT BY Queries CONNECT BY queries are not supported.

• MODEL Clause The MODEL clause is not supported.

• User-Defined PL/SQL in the WHERE Clause User-defined PL/SQL is allowed in multi-
shard queries only in the SELECT clause. If it is specified in the WHERE clause then an error
is thrown.

• XLATE and XML Query type XLATE and XML Query type columns are not supported.

• Object types You can include object types in SELECT lists, WHERE clauses, and so on, but
custom constructors and member functions of type object type are not permitted in WHERE
clauses.

Furthermore, for duplicated tables, non-final types, that is, object types that are created
with the NOT FINAL keyword, cannot be used as a column data type. For sharded tables,
non-final types can be used as a column data type but the column must be created with
keywords NOT SUBSTITUTABLE AT ALL LEVELS.

Chapter 9
Supported Query Constructs and Example Query Shapes

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 17

Note

Queries involving only duplicated tables are run on the coordinator.

The following topics show several examples of query shapes supported in Oracle Sharding.

Queries on Sharded Tables Only
For a single-table query, the query can have an equality filter on the sharding key that qualifies
a shard. For join queries, all of the tables should be joined using equality on the sharding key.

The following examples show queries where only sharded tables participate.

Example 9-1 Inner Join

SELECT … FROM s1 INNER JOIN s2 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Example 9-2 Left Outer Join

SELECT … FROM s1 LEFT OUTER JOIN s2 ON s1.sk=s2.sk

Example 9-3 Right Outer Join

SELECT … FROM s1 RIGHT OUTER JOIN s2 ON s1.sk=s2.sk

Example 9-4 Full Outer Join

SELECT … FROM s1 FULL OUTER JOIN s2 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Queries Involving Both Sharded and Duplicated Tables
A query involving both sharded and duplicated tables can be either a single-shard or multi-
shard query, based on the predicates on the sharding key. The only difference is that the query
contains a non-sharded table.

Note

Joins between a sharded table and a duplicated table can be on any column, using
any comparison operator, = < > <= >=, or arbitrary join expressions.

Example 9-5 Inner Join

SELECT … FROM s1 INNER JOIN r1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

Chapter 9
Supported Query Constructs and Example Query Shapes

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 17

Example 9-6 Left or Right Outer Join

In this case, the sharded table is the first table in LEFT OUTER JOIN.

SELECT … FROM s1 LEFT OUTER JOIN r1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2)
AND any_filter(r1) AND filter_one_shard(s1)

In this case, the sharded table is the second table in RIGHT OUTER JOIN.

SELECT … FROM r1 RIGHT OUTER JOIN s1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2)
AND filter_one_shard(s1) AND any_filter(r1)

In some cases, the duplicated table is the first table in LEFT OUTER JOIN, or the sharded table
is first and it maps to a single shard, based on filter predicate on the sharding key.

SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2)
AND any_filter(r1) AND any_filter(s1)

In some cases, the duplicated table is the second table in RIGHT OUTER JOIN, or the sharded
table is second and it maps to a single shard based on filter predicate on sharding key.

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2)
AND any_filter (s1) AND any_filter(r1)

Example 9-7 Full Outer Join

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

In this case, the sharded table requires access to multiple shards:

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.non_sk=s2.non_sk
WHERE any_filter(s1) AND any_filter(s2)

Example 9-8 Semi-Join (EXISTS)

SELECT … FROM s1 EXISTS
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)

SELECT … FROM r1 EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey and filter_one_shard(s1))

Chapter 9
Supported Query Constructs and Example Query Shapes

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 17

In this case, the sharded table is in a subquery that requires the participation of multiple
shards.

SELECT … FROM r1 EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey)

Example 9-9 Anti-Join (NOT EXISTS)

SELECT … FROM s1 NOT EXISTS
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)

In this case, the sharded table is in the sub-query.

SELECT … FROM r1 NOT EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey

Aggregate Functions Supported by Oracle Sharding
The following aggregations are supported by proxy routing in Oracle Sharding.

• COUNT

• SUM

• MIN

• MAX

• AVG

Queries with User-Defined Types
User-defined SQL object types and user-defined SQL collection types are referred to as user-
defined types. Oracle Sharding supports queries with user-defined types.

Example 9-10 Create Table with User-Defined Types

The following example creates an all-shard type and type body, then creates a sharded table
referencing the type.

ALTER SESSION ENABLE SHARD DDL;

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone VARCHAR2(20),
 MEMBER FUNCTION details (
 self IN person_typ
) RETURN VARCHAR2
);
/

CREATE OR REPLACE TYPE BODY person_typ AS
 MEMBER FUNCTION details (
 self IN person_typ

Chapter 9
Supported Query Constructs and Example Query Shapes

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 17

) RETURN VARCHAR2 IS
 result VARCHAR2(100);
 BEGIN
 result := first_name || ' ' || last_name || ' ' || email || ' ' ||
phone;
 RETURN result;
 END;
END;
/

CREATE SHARDED TABLE Employees
(Employee_id NUMBER NOT NULL
, person person_typ
, signup_date DATE NOT NULL
, CONSTRAINT RootPK PRIMARY KEY(CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Example 9-11 Insert Data Using Type Constructor

INSERT INTO Employees values (1, person_typ('John', 'Doe',
'jdoe@example.com', '123-456-7890'), to_date('24 Jun 2020', 'dd Mon YYYY'));

Example 9-12 Multi-Shard Query of a User-Defined Type Column

SELECT e.person FROM Employees e;

SELECT e.person.first_name, e.person.last_name FROM Employees e;

SELECT e.person.details() FROM Employee e where e.person.first_name = 'John’;

SELECT signup_date from Employees e where e.person = person_typ('John',
'Doe', 'jdoe@example.com', '123-456-7890’);

Execution Plans for Proxy Routing
In a multi-shard query, each shard produces an independent execution plan which is optimized
for the data size and compute resources available on the shard.

You do not need to connect to individual shards to see the explain plan for SQL fragments.
Interfaces provided in dbms_xplan.display_cursor() display on the coordinator the plans for
the SQL segments run on the shards, and [V/X]$SHARD_SQL uniquely maps a shard SQL
fragment of a multi-shard query to the target shard database.

Chapter 9
Supported Query Constructs and Example Query Shapes

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 17

SQL Segment Interfaces for dbms_xplan.display_cursor()

Two interfaces can display the plan for a SQL segment run on shards. The interfaces take
shard IDs as the argument to display the plans from the specified shards. The ALL_SHARDS
format displays the plans from all of the shards.

To print all of the plans from all shards use the format value ALL_SHARDS as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC +ALL_SHARDS‘,
 shard_ids=>shard_ids))

To print selective plans from the shards, pass shard IDs in the display_cursor() function. For
plans from multiple shards, pass an array of numbers containing shard IDs in the shard_ids
parameter as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC',
 shard_ids=>ids))

To return a plan from one shard pass the shard ID directly to the shard_id parameter, as
shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC',
 shard_id=>1))

V$SQL_SHARD

V$SQL_SHARD uniquely maps a shard SQL fragment of a multi-shard query to the target shard
database. This view is relevant only for the shard coordinator database to store a list of shards
accessed for each shard SQL fragment for a given multi-shard query. Every time a multi-shard
query runs, it can run a shard SQL fragment on different set of shards, so the shard IDs update
each time it is runs. This view maintains the SQL ID of a shard SQL fragment for each
REMOTE node and the SHARD IDs on which the shard SQL fragment was run.

Name Null? Type
--- --------

 SQL_ID VARCHAR2(13)
 CHILD_NUMBER NUMBER
 NODE_ID NUMBER
 SHARD_SQL_ID VARCHAR2(13)
 SHARD_ID NUMBER
 SHARD_CHILD_NUMBER NUMBER

• SQL_ID – SQL ID of a multi-shard query on coordinator

• CHILD_NUMBER – cursor child number of a multi-shard query on coordinator

• NODE_ID – ID of REMOTE node for a shard SQL fragment of a multi-shard query

Chapter 9
Supported Query Constructs and Example Query Shapes

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 17

• SHARD_SQL_ID – SQL ID of the shard SQL fragment for given remote NODE ID

• SHARD_ID – IDs of shards where the shard SQL fragment was run

• SHARD _CHILD_NUMBER– cursor child number of a shard SQL fragment on a shard
(default 0)

The following is an example of a multi-shard query on the sharded database and the execution
plan.

SQL> select count(*) from departments a where exists (select distinct
department_id
 from departments b where b.department_id=60);
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	FILTER	
3	VIEW	VW_SHARD_377C5901
4	SHARD ITERATOR	
5	REMOTE	
6	VIEW	VW_SHARD_EEC581E4
7	SHARD ITERATOR	
8	REMOTE	
--

A query of SQL_ID on the V$SQL_SHARD view.

SQL> Select * from v$sql_shard where SQL_ID = ‘1m024z033271u’;
SQL_ID NODE_ID SHARD_SQL_ID SHARD_ID
------------- ------- -------------- --------
1m024z033271u 5 5z386yz9suujt 1
1m024z033271u 5 5z386yz9suujt 11
1m024z033271u 5 5z386yz9suujt 21
1m024z033271u 8 8f50ctj1a2tbs 11

See Also

Oracle Database PL/SQL Packages and Types Reference

Oracle Database Reference

Supported DMLs and Examples
DMLs in Oracle sharding can target either duplicated tables or sharded tables. There are no
limitations on DMLs when the target is a duplicated table.

DMLs (mainly Insert, Update and Delete) targeting sharded tables can be

• Simple DMLs where only the target table is referenced

• DMLs referencing other tables

• Merge statements

Chapter 9
Supported DMLs and Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 17

Simple DMLs Where Only the Target Table is Referenced
The following are several examples of supported DMLs.

Example 9-13 Update all of the rows

UPDATE employees SET salary = salary *1.1;

Example 9-14 Insert one row

INSERT INTO employees VALUES (102494, 'Jane Doe, ...
);

Example 9-15 Delete one row

DELETE employees WHERE employee_id = 103678;

DMLs Referencing Other Tables
DMLs on sharded tables can reference other sharded tables, duplicated tables, or local tables.

Example 9-16 DML referencing duplicated table

In this example, employees is a sharded table and ref_jobs is a duplicated table.

DELETE employees
 WHERE job_id IN (SELECT job_id FROM ref_jobs
 WHERE job_id = 'SA_REP');

Example 9-17 DML referencing another sharded table

UPDATE departments SET department_name = 'ABC‘
 WHERE department_id IN (SELECT department_id
 FROM employees
 WHERE salary < 10000);

Example 9-18 Insert as select from a local table

INSERT INTO employees SELECT * FROM local_employees;

Example 9-19 DML affecting one shard

A DML statement might affect only one shard, or it can involve multiple shards. For example,
the DELETE statement shown here affects only one shard because there is a predicate on the
sharding key (employee_id) in the WHERE clause..

DELETE employees WHERE employee_id = 103678;

Chapter 9
Supported DMLs and Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 17

Example 9-20 DML affecting multiple shards

The following statement affects all of the rows in the EMPLOYEES table because it does not have
a WHERE clause.

UPDATE employees SET salary = salary *1.1;

To run this UPDATE statement on all shards, the shard coordinator iterates over all of the primary
shard databases and invokes the UPDATE statement remotely. The coordinator starts a
distributed transaction and performs two phase commit to guarantee the consistency of the
distributed transaction. If there is an in-doubt transaction, you must recover it manually.

Example Merge Statements
The MERGE statement can target a sharded table or a duplicated table. The merge is allowed as
long as the MERGE operation itself can be pushed to the shards.

Example 9-21 Merge statement with sharded table employees as the target table

In this example, the employee_id column is the sharding key, and the join predicate on the
source query is on the sharding key, so the MERGE statement will get pushed to all of the shards
to be processed.

MERGE INTO employees D
 USING (SELECT employee_id, salary, department_id FROM employees
 WHERE department_id = 80) S
 ON (D.employee_id = S.employee_id)
 WHEN MATCHED THEN UPDATE SET D.salary = D.salary + S.salary*.01
 DELETE WHERE (S.salary > 8000)
 WHEN NOT MATCHED THEN INSERT (D.employee_id, D.salary)
 VALUES (S.employee_id, S.salary*0.1)
 WHERE (S.salary <= 8000);

Example 9-22 Merge statement with duplicated table as the target table

In this example, the target table is the duplicated table ref_employees. The source query
references the sharded table employees and the join predicate is on the sharding key
employee_id.

MERGE INTO ref_employees D
 USING (SELECT employee_id, salary, department_id FROM employees
 WHERE department_id = 80) S
 ON (D.employee_id = S.employee_id)
 WHEN MATCHED THEN UPDATE SET D.salary = D.salary + S.salary*.01
 DELETE WHERE (S.salary > 8000)
 WHEN NOT MATCHED THEN INSERT (D.employee_id, D.salary)
 VALUES (S.employee_id, S.salary*0.1)
 WHERE (S.salary <= 8000);

Limitations in Multi-Shard DML Support
The following DML features are not supported by multi-shard DML in Oracle Sharding.

Chapter 9
Supported DMLs and Examples

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 14 of 17

• Parallel DML Parallel DML is not supported by multi-shard DML. The DML will always run
on one shard at a time (serially) in multi-shard DML.

• Error Logging The ERROR LOG clause with DML is not supported by multi-shard DML. A
user error is raised in this case.

• Array DML Array DML is not supported by multi-shard DML. ORA-2681 is raised in this
cases.

• RETURNING Clause The RETURNING INTO clause is not supported by regular distributed
DMLs; therefore, it is not supported by Oracle Sharding. ORA-22816 is raised if you try to
use the RETURNING INTO clause in multi-shard DMLs.

• MERGE and UPSERT The MERGE statement is partially supported by Oracle Sharding, that
is, a MERGE statement affecting only single shard is supported. ORA error is raised if a
MERGE statement requires the modification of multiple shards.

• Multi-Table INSERT Multi-table inserts are not supported by database links; therefore,
multi-table inserts are not supported by Oracle Sharding.

• Updatable Join View ORA-1779 is thrown when the updatable join view has a join on a
sharded table on sharding keys. The reason for this error is that the primary key defined on
a sharded table is combination of internal column SYS_HASHVAL + sharding key and you
cannot specify SYS_HASHVAL in the updatable join view. Because of this restriction you
cannot establish the key-preserved table resulting in raising ORA-1779.

• Triggers

Gathering Optimizer Statistics on Sharded Tables
You can gather statistics on sharded tables from the coordinator database.

The statistic preference parameter COORDINATOR_TRIGGER_SHARD, when set to TRUE on all of the
shards, allows the coordinator database to import the statistics gathered on the shards.

The PL/SQL procedures DBMS_STATS.GATHER_SCHEMA_STATS() and
DBMS_STATS.GATHER_TABLE_STATS() gather statistics on sharded tables and duplicated tables
in the shards and in the coordinator database. See also, REPORT_GATHER_TABLE_STATS
Function.

Manual Statistics Gathering

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

This step is performed only one time and only on the shards. If, for example, you have a
schema named sharduser:

connect / as sysdba
EXECUTE
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD','TRUE')
;

2. Gather statistics across the shards.

The user should be an all-shards user and needs to have privileges to access dictionary
tables.

Chapter 9
Gathering Optimizer Statistics on Sharded Tables

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 15 of 17

a. On the shards run the following.

connect sharduser/password
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER', options =>
'GATHER');

b. When all shards are completed, to pull aggregated statistics run the following on the
coordinator.

connect sharduser/password
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER', options =>
'GATHER');

c. Check the statistics on all of the shards.

connect sharduser/password

ALTER SESSION SET nls_date_format='DD-MON-YYYY HH24:MI:SS';
 col TABLE_NAME form a40
 set pagesize 200 linesize 200

SELECT TABLE_NAME, NUM_ROWS, sharded, duplicated, last_analyzed
 FROM user_tables
 WHERE table_name not like 'MLOG%' and table_name not like 'RUPD%'
 and table_name not like 'USLOG%';

Automatic Statistics Gathering

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

This step is performed only one time and only on the shards. If, for example, you have a
schema named sharduser:

connect / as sysdba
EXECUTE
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD','TRUE')
;

2. Schedule a job to pull aggregated statistics on the shards and on the coordinator
database.

The user should be an all-shards user and must have privileges to access dictionary
tables.

Start the following job on the shards:

connect sharduser/password
BEGIN
DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'Gather_Stats_2',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN DBMS_STATS.GATHER_SCHEMA_STATS(ownname =>
''DEMO'', options => ''GATHER''); END;',
 start_date => SYSDATE,
 repeat_interval =>
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=14;byminute=10;bysecon
d=00',

Chapter 9
Gathering Optimizer Statistics on Sharded Tables

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 16 of 17

 end_date => NULL,
 enabled => TRUE,
 comments => 'Gather table statistics');
END;
/

After the job on all of the shards is finished, start the following job on the coordinator.

connect sharduser/password
BEGIN
DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'Gather_Stats_2',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN DBMS_STATS.GATHER_SCHEMA_STATS(ownname
=> ''DEMO'', options => ''GATHER''); END;',
 start_date => SYSDATE,
 repeat_interval =>
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=15;byminute=10;bysecon
d=00',
 end_date => NULL,
 enabled => TRUE,
 comments => 'Gather table statistics');
END;
/

Chapter 9
Gathering Optimizer Statistics on Sharded Tables

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 17 of 17

10
Developing Applications for the Sharded
Database

Direct Routing to a Shard
Oracle clients and connections pools are able to recognize sharding keys specified in the
connection string for high performance data dependent routing. A shard routing cache in the
connection layer is used to route database requests directly to the shard where the data
resides.

In direct, key-based, routing to a shard, a connection is established to a single, relevant shard
which contains the data pertinent to the required transaction using a sharding key.

A sharding key is used to route database connection requests at a user session level during
connection checkout. The composite sharding method requires both a sharding key and a
super sharding key. Direct, key-based, routing requires the sharding key (or super sharding
key) be passed as part of the connection. Based on this information, a connection is
established to the relevant shard which contains the data pertinent to the given sharding key or
super sharding key.

Once the session is established with a shard, all SQL queries and DMLs are run in the scope
of the given shard. This routing is fast and is used for all OLTP workloads that perform intra-
shard transactions. It is recommended that direct routing be employed for all OLTP workloads
that require the highest performance and availability.

In support of Oracle Sharding, key enhancements have been made to Oracle connection pools
and drivers. JDBC, Universal Connection Pool (UCP), OCI Session Pool (OCI), and Oracle
Data Provider for .NET (ODP.NET) provide APIs to pass sharding keys during the connection
creation. Apache Tomcat, IBM Websphere, Oracle WebLogic Server, and JBOSS can leverage
JDBC/UCP support and use sharding. PHP, Python, Perl, and Node.js can leverage OCI
support.

A shard topology cache is a mapping of the sharding key ranges to the shards. Oracle
Integrated Connection Pools maintain this shard topology cache in their memory. Upon the first
connection to a given shard (during pool initialization or when the pool connects to newer
shards), the sharding key range mapping is collected from the shards to dynamically build the
shard topology cache.

Caching the shard topology creates a fast path to the shards and expedites the process of
creating a connection to a shard. When a connection request is made with a sharding key, the
connection pool looks up the corresponding shard on which this particular sharding key exists
(from its topology cache). If a matching connection is available in the pool then the pool returns
a connection to the shard by applying its internal connection selection algorithm.

A database connection request for a given sharding key that is in any of the cached topology
map, goes directly to the shard (that is, bypassing the shard director). Connection Pool also
subscribes to RLB notifications from the SDB and dispenses the best connection based on
runtime load balancing advisory. Once the connection is established, the client runs
transactions directly on the shard. After all transactions for the given sharding key are

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 8

complete, the application must return the connection to the pool and obtain a connection for
another key.

If a matching connection is not available in the pool, then a new connection is created by
forwarding the connection request with the sharding key to the shard director.

Once the pools are initialized and the shard topology cache is built based on all shards, a
shard director outage has no impact on direct routing.

Sharding APIs Supporting Direct Routing
Oracle connection pools and drivers support Oracle Sharding.

JDBC, UCP, OCI, and Oracle Data Provider for .NET (ODP.NET) recognize sharding keys as
part of the connection check. Apache Tomcat, Websphere, and WebLogic leverage UCP
support for sharding and PHP, Python, Perl, and Node.js leverage OCI support.

Oracle JDBC APIs for Oracle Sharding
Oracle Java Database Connectivity (JDBC) provides APIs for connecting to database shards in
an Oracle Sharding configuration.

The JDBC driver recognizes the specified sharding key and super sharding key and connects
to the relevant shard that contains the data. Once the connection is established to a shard,
then any database operations, such as DMLs, SQL queries and so on, are supported and run
in the usual way.

A shard-aware application gets a connection to a given shard by specifying the sharding key
using the database sharding APIs.

• The OracleShardingKey interface indicates that the current object represents an Oracle
sharding key that is to be used with Oracle sharded database.

• The OracleShardingKeyBuilder interface builds the compound sharding key with subkeys
of various supported data types. This interface uses the new JDK 8 builder pattern for
building a sharding key.

• The OracleConnectionBuilder interface builds connection objects with additional
parameters other than user name and password.

• The OracleDataSource class provides database sharding support with the
createConnectionBuilder and createShardingKeyBulider methods.

• The OracleXADataSource class provides database sharding support with the
createConnectionBuilder method

• The OracleConnection class provides database sharding support with the
setShardingKeyIfValid and setShardingKey methods.

• The OracleXAConnection class provides database sharding support with the
setShardingKeyIfValid and setShardingKey methods.

See the Oracle Database JDBC Developer’s Guide for more information and examples.

Example 10-1 Sample Shard-Aware Application Code Using JDBC

The following code snippet shows how to use JDBC sharding APIs

OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=myhost)
(PORT=1521)(PROTOCOL=tcp))

Chapter 10
Sharding APIs Supporting Direct Routing

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 8

(CONNECT_DATA=(SERVICE_NAME=myorcldbservicename)))");
 ods.setUser("hr");
 ods.setPassword("hr");

 // Employee name is the sharding Key in this example.
 // Build the Sharding Key using employee name as shown below.

 OracleShardingKey employeeNameShardKey = ods.createShardingKeyBuilder()
 .subkey("Mary",
JDBCType.VARCHAR)// First Name
 .subkey("Claire",
JDBCType.VARCHAR)// Last Name
 .build();

 OracleShardingKey locationSuperShardKey =
ods.createShardingKeyBuilder() // Building a super sharding key using
location as the key
 .subkey("US",
JDBCType.VARCHAR)
 .build();

 OracleConnection connection = ods.createConnectionBuilder()
 .shardingKey(employeeNameShardKey)
 .superShardingKey(locationSuperShardKey)
 .build();

Related Topics

• JDBC Support for Database Sharding in Oracle Database JDBC Developer’s Guide

Oracle Call Interface for Oracle Sharding
Oracle Call Interface (OCI) provides an interface for connecting to database shards in an
Oracle Sharding configuration.

To make requests that read from or write to a chunk, your application must be routed to the
appropriate database (shard) that stores that chunk during the connection initiation step. This
routing is accomplished by using a data key. The data key enables routing to the specific chunk
by specifying its sharding key or to a group of chunks by specifying its super sharding key.

In order to get a connection to the correct shard containing the chunk you wish to operate on,
you must specify a key in your application before getting a connection to a sharded Oracle
database for either stand-alone connections or connections obtained from an OCI Session
pool. For an OCI Session pool, you must specify a data key before you check out connections
from the pool.

At a high-level, the following steps have to be followed to form sharding keys and shard group
keys and get a session with an underlying connection:

1. Allocate the sharding key descriptor by calling OCIDescriptorAlloc() and specifying the
descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the sharding key.

2. Allocate the shard group key descriptor by calling OCIDescriptorAlloc() and specifying
the descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the shard group key.

3. Call OCISessionGet() using the initialized authentication handle from the previous step
containing the sharding key and shard group key information to get the database

Chapter 10
Sharding APIs Supporting Direct Routing

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 8

connection to the shard and chunk specified by the sharding key and group of chunks as
specified by the shard group key.

See Oracle Call Interface Programmer's Guide for information about creating connections to
OCI Session pools, stand-alone connections, and custom pool connections.

Related Topics

• OCI Interface for Using Shards in Oracle Call Interface Programmer's Guide

Oracle Universal Connection Pool APIs for Oracle Sharding
Oracle Universal Connection Pool (UCP) provides APIs for connecting to database shards in
an Oracle Sharding configuration.

A shard-aware application gets a connection to a given shard by specifying the sharding key
using the enhanced sharding API calls createShardingKeyBuilder and
createConnectionBuilder.

At a high-level, the following steps have to be followed in making an application work with a
sharded database:

1. Update the URL to reflect the shard directors and global service.

2. Set the following pool parameters at the pool level and the shard level.

• setInitialPoolSize sets the initial number of connections to be created when UCP is
started

• setMinPoolSize sets the minimum number of connections maintained by pool at
runtime

• setMaxPoolSize sets maximum number of connections allowed on connection pool

• setMaxConnectionsPerShard sets max connections per shard

3. Build a sharding key object with createShardingKeyBuilder.

4. Establish a connection using createConnectionBuilder.

5. Run transactions within the scope of the given shard.

Example 10-2 Establishing a Connection Using UCP Sharding API

The following is a code fragment which illustrates how the sharding keys are built and
connections established using UCP Sharding API calls.

...

PoolDataSource pds =
 PoolDataSourceFactory.getPoolDataSource();

 // Set Connection Pool properties
pds.setURL(DB_URL);
pds.setUser("hr");
pds.setPassword("****");
pds.setInitialPoolSize(10);
pds.setMinPoolSize(20);
pds.setMaxPoolSize(30);

// build the sharding key object

Chapter 10
Sharding APIs Supporting Direct Routing

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 8

OracleShardingKey shardingKey =
 pds.createShardingKeyBuilder()
 .subkey("mary.smith@example.com", OracleType.VARCHAR2)
 .build();

 // Get an UCP connection for a shard
Connection conn =
 pds.createConnectionBuilder()
 .shardingKey(shardingKey)
 .build();
...

Example 10-3 Sample Shard-Aware Application Code Using UCP Connection Pool

In this example the pool settings are defined at the pool level and at the shard level.

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;

public class MaxConnPerShard
{
 public static void main(String[] args) throws SQLException
 {
 String url = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=shard-dir1)
(PORT=3216)
 (PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=shsvc.shpool.oradbcloud)
(REGION=east)))";
 String user="testuser1", pwd = "testuser1";

 int maxPerShard = 100, initPoolSize = 20;

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
 pds.setURL(url);
 pds.setUser(user);
 pds.setPassword(pwd);
 pds.setConnectionPoolName("testpool");
 pds.setInitialPoolSize(initPoolSize);

 // set max connection per shard
 pds.setMaxConnectionsPerShard(maxPerShard);
 System.out.println("Max-connections per shard is:
"+pds.getMaxConnectionsPerShard());

 // build the sharding key object
 int shardingKeyVal = 123;
 OracleShardingKey sdkey = pds.createShardingKeyBuilder()
 .subkey(shardingKeyVal, OracleType.NUMBER)

Chapter 10
Sharding APIs Supporting Direct Routing

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 8

 .build();

 // try to build maxPerShard connections with the sharding key
 Connection[] conns = new Connection[maxPerShard];
 for (int i=0; i<maxPerShard; i++)
 {
 conns[i] = pds.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

Statement stmt = conns[i].createStatement();
 ResultSet rs = stmt.executeQuery("select sys_context('userenv',
'instance_name'),
 sys_context('userenv', 'chunk_id') from dual");
 while (rs.next()) {
 System.out.println((i+1)+" - inst:"+rs.getString(1)+",
chunk:"+rs.getString(2));
 }
 rs.close();
 stmt.close();
 }

 System.out.println("Try to build "+(maxPerShard+1)+" connection ...");
 try {
 Connection conn = pds.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select sys_context('userenv',
'instance_name'),
 sys_context('userenv', 'chunk_id') from dual");
 while (rs.next()) {
 System.out.println((maxPerShard+1)+" - inst:"+rs.getString(1)+",
 chunk:"+rs.getString(2));
 }
 rs.close();
 stmt.close();

 System.out.println("Problem!!! could not build connection as max-
connections per
 shard exceeded");
 conn.close();
 } catch (SQLException e) {
 System.out.println("Max-connections per shard met, could not build
connection
 any more, expected exception: "+e.getMessage());
 }
 for (int i=0; i<conns.length; i++)
 {
 conns[i].close();
 }
 }
}

Chapter 10
Sharding APIs Supporting Direct Routing

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 8

Related Topics

• UCP APIs for Database Sharding Support in Oracle Universal Connection Pool
Developer’s Guide

Oracle Data Provider for .NET APIs for Oracle Sharding
Oracle Data Provider for .NET (ODP.NET) provides APIs for connecting to database shards in
an Oracle Sharding configuration.

Using ODP.NET APIs, a shard-aware application gets a connection to a given shard by
specifying the sharding key and super sharding key with APIs such as the
SetShardingKey(OracleShardingKey shardingKey, OracleShardingKey superShardingKey)
instance method in the OracleConnection class.

At a high level, the following steps are necessary for a .NET application to work with a sharded
database:

1. Use ODP.NET, Unmanaged Driver.

Sharding is supported with or without ODP.NET connection pooling. Each pool can
maintain connections to different shards of the sharded database.

2. Use an OracleShardingKey class to set the sharding key and another instance for the
super sharding key.

3. Invoke the OracleConnection.SetShardingKey() method prior to calling
OracleConnection.Open() so that ODP.NET can return a connection with the specified
sharding key and super sharding key.

These keys must be set while the OracleConnection is in a Closed state, otherwise an
exception is thrown.

Example 10-4 Sample Shard-Aware Application Code Using ODP.NET

using System;
using Oracle.DataAccess.Client;

class Sharding
{
 static void Main()
 {
 OracleConnection con = new OracleConnection
 ("user id=hr;password=hr;Data Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32,
123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection
 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query

Chapter 10
Sharding APIs Supporting Direct Routing

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 8

 }
}

Related Topics

• Database Sharding in Oracle Data Provider for .NET Developer's Guide for Microsoft
Windows

JDBC Sharding Data Source
Oracle Java Database Connectivity (JDBC) sharding data source enables Java connectivity to
a sharded database without requiring the application to provide a sharding key.

Using the JDBC sharding data source, you do not need to identify and build the sharding key
and the super sharding key to establish a connection. The sharding data source scales out to
sharded databases transparently because it does not involve any change to the application
code.

To use the JDBC sharding data source, set the connection property
oracle.jdbc.useShardingDriverConnection to true as shown here.

Properties prop = new Properties();
prop.setProperty("oracle.jdbc.useShardingDriverConnection", "true");

The default value of oracle.jdbc.useShardingDriverConnection is false.

See the Oracle Database JDBC Developer’s Guide for more information and examples.

Related Topics

• Overview of the Sharding Data Source in Oracle Database JDBC Developer’s Guide

Chapter 10
JDBC Sharding Data Source

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 8

11
Sharding JSON Document Collections

Learn how to shard tables of JSON documents using Oracle Sharding with SODA.

Overview of Sharding JSON Documents
Oracle Sharding allows JSON documents to scale to massive data and transactions volume,
provide fault isolation, and support data sovereignty. Oracle Database has support for native
JSON objects. Applications can interact with the sharded database using the SODA (Simple
Oracle Document Access) API, which allows you to access data using JSON document
attributes.

In Oracle Database, JSON documents can be stored in a database table. The database tables
act as JSON collections, and each row is a JSON document. JSON documents are stored in
the database as type JSON, which is backed by a highly optimized binary JSON format called
OSON.

Although Oracle provides support for JSON operators to create, work with, and retrieve JSON
documents, the SODA interface is also supported. SODA provides a more intuitive interface for
working with JSON documents.

SODA is an API for NoSQL-style JSON (and not only JSON) document collections in Oracle
Database. Using SODA APIs, application can perform CRUD operations on documents in
collections. Collections are backed by regular Oracle tables (or views).

Typically, to create a collection, one would use SODA API. That creates the underlying table
backing the collection. In order to create a sharded collection, however, a shared table has to
be created first. Then, a collection can be created on top of a sharded table, by using a
mapped collection feature of SODA.

Working with JSON documents in an Oracle Sharding environment introduces the notion of a
sharding key. JSON documents are distributed to the individual database table shards
according to the sharding key. The sharding key can either be a field from within the JSON
document or an external column such as the ID assigned by the SODA API.

For further reading about JSON and SODA, see JSON in Oracle Database and Overview of
SODA.

The topics that follow provide details about how to shard JSON objects in Oracle Database.
The high level steps are:

• Deploy a sharded database

• Identify a sharding key that the application can use to fetch data

• Define a data store for JSON in Oracle Database by creating sharded tables

• Map the sharded table with SODA

Then life cycle management tasks detailed are:

• Add documents to the sharded JSON collection in the application

• Fetch document data from the sharded JSON collection in the application

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 22

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/adsdi/overview-soda.html#GUID-BE42F8D3-B86B-43B4-B2A3-5760A4DF79FB
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/adsdi/overview-soda.html#GUID-BE42F8D3-B86B-43B4-B2A3-5760A4DF79FB

Preparing the Oracle Sharding Environment
Before you begin configuring Oracle Sharding with SODA, deploy a sharding configuration and
start the global services.

A Oracle Sharding sharded database configuration, including shard directors, shard catalog,
and shard databases, and any replicas must be deployed. After deploying the sharded
database, you must create and start global database services on the shards to service
incoming connection requests from your application.

See Sharded Database Deployment for information about creating and deploying a sharded
database configuration.

Creating an All-Shards User with SODA Privileges
Create a user on the shard catalog that has the privileges to create schema objects in the
sharded database, and also has the necessary execute privileges on the DBMS_SODA PL/SQL
package.

For the purposes of this document, the user is referred to as the Sharding/SODA user, and the
user name is app_schema in the examples.

To create the Sharding/SODA user:

1. Connect to the shard catalog database (for example, as SYSDBA).

2. Enable SHARD DDL.

3. Run CREATE USER command, granting the permissions shown in the example below.
Note that the Sharding/SODA user is created on the PDB, not the CDB.

The following is an example Sharding/SODA user creation script.

-- Set the container and create the sharded user
alter session set container=SDBPDB;
alter session enable shard ddl;
create user app_schema identified by password;

-- Grant basic privileges
grant connect, resource, alter session to app_schema;
grant execute on dbms_crypto to app_schema;

-- All privileges below are required. User can also be granted all privileges
grant create table, create procedure, create tablespace, create
materialized view to app_schema;
grant unlimited tablespace to app_schema;
grant select_catalog_role to app_schema;

-- Grant soda_app for this user
grant soda_app to app_schema;

-- Specific grants on shard plsql
grant execute on exec_shard_plsql to app_schema;
grant gsmadmin_role to app_schema;
grant gsm_pooladmin_role to app_schema;

Chapter 11
Preparing the Oracle Sharding Environment

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 22

Note the standard database schema privileges and the standard SODA privileges granted to
the user. The exec_shard_plsql grant, which gives the user the ability to run PL/SQL
procedures on a sharded database, is a sharding-specific privilege required for the Sharding/
SODA user.

For more information about Oracle Sharding schema design, including sharding user creation
and running PL/SQL, see Sharded Database Schema Design.

Choosing a Sharding Key
SODA collections are backed by regular Oracle tables. One of the columns in these tables is
the ID column, which contains unique keys for the documents in the collection. This column
can be used as the sharding key. Alternatively, you can choose a JSON field in the document
content to be the sharding key.

The choice of sharding key is application dependent.

The advantages and disadvantages of each sharding key choice are listed in the sections
below.

Using the SODA ID as the Sharding Key

The SODA API automatically manages a unique ID for each SODA document. This ID is used
by the SODA API to create and retrieve documents within a collection.

The SODA ID must be provided manually by the application when it is used as a sharding key.
This is because when creating a new document on a specific shard, the sharding key is
required beforehand in order to connect to the appropriate shard. The SODA API allows for
this manual (also known as CLIENT key) assignment of a SODA ID on document creation.
Examples are provided in the code samples in Using SODA ID as the Sharding Key.

It is up to the application to decide if this SODA ID represents something meaningful (for
example, a Customer ID) or is merely a unique Document ID. In any case, the ID must be
unique. This is not a requirement imposed by Oracle Sharding but by the SODA API.

A summary of using the SODA ID as the sharding key:

• The sharding key must be unique.

• The sharding key is a document ID, which can be independent of the contents of the JSON
fields.

• Whenever a new document is inserted, this ID must be provided by the application.

Using a JSON field as the Sharding Key

A JSON field can be used as the sharding key. This key does not need to be unique.

In this case, each document in a collection has a separate SODA ID (as required by SODA),
but it is managed automatically by the SODA API as a separate document ID.

A summary of using a JSON field as the sharding key:

• The sharding key does not need to be unique.

• The sharding key is a field within the JSON of each document.

• The SODA ID does not need to be specified when inserting a new document.

Considerations in choosing a Sharding Key method

Chapter 11
Choosing a Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 22

Note that in both cases, a sharding key is a field which rarely or never changes. This might be
a uniquely assigned Customer or Document ID. It can also be a non-unique ID such as a
customer birth date, with day, month and year, or a postal code.

For system-managed sharding, either sharding key method is appropriate for distributing
documents across shards.

For user-defined sharding, SODA ID as shard key only makes sense if the ID has a meaningful
value and it makes sense to partition this by range, for example.

Given no other constraints, using a JSON field as the sharding key offers greater flexibility and
allows the sharding key to be stored naturally as part of the JSON.

System-managed vs. User-defined Sharding
Although similar in many ways, user-defined sharding gives you greater control over where
data resides. This can be useful when data needs to be separated geographically, or other
reasons arise so that data also requires a physical mapping.

Much of the procedures and examples in later topics apply to both sharding methods. There
are two exceptions:

1. On creation of the sharded table which underlies the SODA collection, the physical
mapping for user-defined sharding must be specified. You can find an example in which a
range of ZIP codes must reside on specific shards in Using a JSON Field as a Sharding
Key.

2. SODA queries (QBEs) can rely on this data grouping to be able to perform queries on one
shard which includes a range of sharding keys.

How to Implement a Solution

After choosing which type of sharding key to use, refer to the following use cases to see
examples of how to create a sharded table for the JSON collection, and how to interact with
the sharded table from an application.

• Using SODA ID as the Sharding Key

• Using a Sharding Key Other Than the SODA ID

Using SODA ID as the Sharding Key
You can designate the SODA ID as the sharding key when creating the sharded database
schema.

The following examples show you how to create a sharded table for the JSON collection,
create the SODA mapping, and access the sharded table from an application with Java and
Python code samples.

Creating a Sharded Table for the JSON Collection

To create a sharded table that uses the SODA ID as the sharding key:

1. Connect to the shard catalog as the Sharding/SODA user.

2. Enable SHARD DDL.

3. Create a tablespace set.

4. Run CREATE SHARDED TABLE, as shown in the example below.

Chapter 11
Using SODA ID as the Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 22

The following example creates a sharded table (Customers) for a JSON collection of customer
profile documents (CUSTPROFILE).

A column for the SODA ID (ID) identifies the JSON entries, and is also used as the primary key
and sharding key. When creating a JSON entry in the table with SODA, the application
populates the ID column with a unique value.

The other columns are the default column names given when SODA creates a table to hold an
underlying collection. You can see this for yourself when creating a SODA collection and then
examining the created table.

Creating a Sharded Table: System-Managed

/* Enable shard DDL */
ALTER SESSION ENABLE SHARD DDL;

/* Create a tablespace set */
CREATE TABLESPACE SET TSP_SET_1 USING TEMPLATE
 (datafile size 100m autoextend on next 10M maxsize unlimited
 extent management local segment space management auto);

/* Create the sharded table */
CREATE SHARDED TABLE CUSTOMERS
(
"ID" VARCHAR2(255) NOT NULL,
"CREATED_ON" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"LAST_MODIFIED" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"VERSION" varchar2(255) NOT NULL,
"CUSTPROFILE" JSON,
PRIMARY KEY (ID),
)
TABLESPACE SET TSP_SET_1
PARTITION BY CONSISTENT HASH (ID) PARTITIONS AUTO;

Creating a Sharded Table: User-Defined
If the SODA ID has a meaningful value, then the database can be sharded with the user-
defined method, and you can create a sharded table using the example below.

Before creating the sharded table in a user-defined sharded database, ensure that the
necessary tablespaces and shardspaces have been created. See User-Defined Sharding and
Configure the Sharded Database Topology for details about creating sharded database
objects.

/* Enable shard DDL */
ALTER SESSION ENABLE SHARD DDL;

/* Create the sharded table */
CREATE SHARDED TABLE CUSTOMERS
(
"ID" VARCHAR2(255) NOT NULL,
"CREATED_ON" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"LAST_MODIFIED" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"VERSION" varchar2(255) NOT NULL,
"CUSTPROFILE" JSON,

Chapter 11
Using SODA ID as the Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 22

PRIMARY KEY (ID),
)
PARTITION BY RANGE (ID)
(PARTITION p1 VALUES LESS THAN ('5000') TABLESPACE ts1,
PARTITION p2 VALUES LESS THAN ('10000') TABLESPACE ts2)

Creating a Mapped SODA Collection on the Sharded Table
Create a mapped SODA collection to let SODA know which columns to use when working with
the sharded table.

In this task, you first run a procedure to create the mapped collection, which creates the
metadata necessary for SODA to recognize the previously created table as a SODA collection.

Afterwards you run an additional procedure, sys.exec_shard_plsql(), which ensures that the
map collection is created on all shards and all future shards.

Creating a SODA Mapped Collection Across All Shards

As the Sharding/SODA user and with SHARD DDL enabled, run the following commands on the
shard catalog. The shard catalog propagates the procedure to all of the shards to be
processed automatically.

GRANT SODA_APP TO PROCEDURE APP_SCHEMA.COLLECTION_PROC_CUSTOMERS;

create or replace procedure COLLECTION_PROC_CUSTOMERS AS
METADATA varchar2(8000);
 COL SODA_COLLECTION_T;
 begin METADATA := '{"tableName":"CUSTOMERS",
 "keyColumn":{"name":"ID","assignmentMethod" : "CLIENT"},
 "contentColumn":{"name":"CUSTPROFILE","sqlType":"JSON"},
 "versionColumn":{"name":"VERSION","method":"UUID"},
 "lastModifiedColumn":{"name":"LAST_MODIFIED"},
 "creationTimeColumn":{"name":"CREATED_ON"},
 "readOnly":false}';
-- Create a collection using "map" mode, based on
-- the table you've created above and specified in
-- the custom metadata under "tableName" field.
COL :=
dbms_soda.create_collection('CUSTOMERS',METADATA,DBMS_SODA.CREATE_MODE_MAP);
end ;
/

exec sys.exec_shard_plsql('app_schema.collection_proc_customers()',4+1);

Note that the keyColumn is mapped as ID, which holds the unique ID of each document. It is
designated as CLIENT here because the application will supply a unique key for each
document on insert.

At this point, a new collection has been created.

You can run PL/SQL to list the collections. On the shard catalog, run the following commands,
and verify that the output lists the CUSTOMERS collection as shown here.

SET SERVEROUTPUT ON
DECLARE

Chapter 11
Using SODA ID as the Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 22

l_coll_list SODA_COLLNAME_LIST_T;
BEGIN
l_coll_list := DBMS_SODA.list_collection_names;

IF l_coll_list.COUNT > 0 THEN
FOR i IN 1 .. l_coll_list.COUNT LOOP
DBMS_OUTPUT.put_line(i || ' : ' || l_coll_list(i));
END LOOP;
END IF;
END;
/
1 : CUSTOMERS

PL/SQL procedure successfully completed.

Code Samples
The following code samples in Java and Python show you how to connect to a shard using the
sharding key and insert a new document.

Note that when using SODA in a sharded database environment, new documents should be
created by connecting to specific shards, and not using the shard catalog.

Java Code Sample
These Java code samples are created for the "Using SODA ID as the Sharding Key" use case.

The Java sample below shows you how to connect to a shard and insert a JSON document
into the collection.

import java.sql.Connection;
import java.util.Properties;
import java.util.List;

// SODA specific imports
import oracle.soda.rdbms.OracleRDBMSClient;
import oracle.soda.OracleDatabase;
import oracle.soda.OracleCursor;
import oracle.soda.OracleCollection;
import oracle.soda.OracleDocument;
import oracle.soda.OracleException;

// Sharding and UCP imports
import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/*
* The sample demonstrates connecting to a Sharded Database using
* Oracle JDBC driver and UCP as a client side connection pool.
*/
public class QuickInsertShard {

Chapter 11
Using SODA ID as the Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 22

 public static void main(String args[]) throws Exception {

// TNS_ADMIN - Should be the path where the tnsnames.ora file resides
// dbshard_rw - It is the TNS alias present in tnsnames.ora.
// Note that the connection is to the Shard Director (GSM) and the service
name is the shard RW service
final String DB_URL="jdbc:oracle:thin:@dbshard_rw?TNS_ADMIN=/home/opc/
dbhome/";

// Update the Database Username and Password to the Shard User
final String DB_USER = "app_schema";
String DB_PASSWORD = "<user_password>" ;

// Get the PoolDataSource for UCP
PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

// Set the connection factory first before all other properties
pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
pds.setURL(DB_URL);
pds.setUser(DB_USER);
pds.setPassword(DB_PASSWORD);
pds.setConnectionPoolName("JDBC_UCP_POOL");

// Default is 0. Set the initial number of connections to be created
// when UCP is started.
pds.setInitialPoolSize(10);
// Default is 0. Set the minimum number of connections
// that is maintained by UCP at runtime.
pds.setMinPoolSize(10);
// Instead of Max Pool Size, we can set the number of max connections per
shard
pds.setMaxConnectionsPerShard(20);

// We cannot get the connection until we have the Shard key which is part of
the SQL
//We first set the sharding key or document id explicitly
String shardingKeyVal="10";

// Now we build the connection using this shard key
OracleShardingKey sdkey =
pds.createShardingKeyBuilder().subkey(shardingKeyVal,
OracleType.VARCHAR2).build();
System.out.println("Initiating UCP and Creating Connection...");
Connection conn = pds.createConnectionBuilder().shardingKey(sdkey).build();

// Enable the SODA Shared Metadata cache
Properties props = new Properties();
props.put("oracle.soda.sharedMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);

// Get a DB Connection for use in SODA
OracleDatabase db = cl.getDatabase(conn);

// Print all the Collections in this DB

Chapter 11
Using SODA ID as the Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 22

List<String> names = db.admin().getCollectionNames();
for (String name : names)
 System.out.println ("Collection name: " + name);

// Open up the CUSTOMERS Collection
OracleCollection col = db.openCollection("CUSTOMERS");

//For a collection configured with client-assigned document keys,
//you must provide the key for the input document. Build a document with JSON.
OracleDocument cKeyDoc = db.createDocumentFromString(shardingKeyVal,
"{\"name\": \"Matilda\", \"State\": \"CA\", \"ZIP\":\"94065\"}");

// Insert the document above
//If the key already identifies a document in the collection
//then this will replace the existing doc.
OracleDocument savedDoc = col.saveAndGet(cKeyDoc);

// Get the document back assuming we only know the key
// We are still connected to the same shard
OracleDocument doc = col.find().key(shardingKeyVal).getOne();
String content = doc.getContentAsString();
System.out.println("Retrieved content is: " + content);

// We are done, so close the connection to the shard
conn.close();

// At this point we could open up a new shard connection using a different
sharding key

 }} // End of QuickInsertShard

This Java sample shows how you would perform a multi-shard query.

import java.sql.Connection;
import java.util.Properties;
import java.util.List;

// SODA specific imports
import oracle.soda.rdbms.OracleRDBMSClient;
import oracle.soda.OracleDatabase;
import oracle.soda.OracleCursor;
import oracle.soda.OracleCollection;
import oracle.soda.OracleDocument;
import oracle.soda.OracleException;

// Sharding and UCP imports
import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/*

Chapter 11
Using SODA ID as the Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 22

* The sample demonstrates connecting to a Sharded Database using
* Oracle JDBC driver and UCP as a client side connection pool.
*/
public class QuickQueryCat {

 public static void main(String args[]) throws Exception {

// TNS_ADMIN - Should be the path where the tnsnames.ora file resides
// dbshard_rw - It is the TNS alias present in tnsnames.ora.
// This connection is to the shard director using the catalog service name.
final String DB_URL="jdbc:oracle:thin:@dbcat?TNS_ADMIN=/home/opc/dbhome/";

// Update the Database Username and Password to the Shard User
final String DB_USER = "app_schema";
String DB_PASSWORD = "<user_password>" ;

// Get the PoolDataSource for UCP
PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

// Set the connection factory first before all other properties
pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
pds.setURL(DB_URL);
pds.setUser(DB_USER);
pds.setPassword(DB_PASSWORD);
pds.setConnectionPoolName("JDBC_UCP_POOL");

// Now we get a direct connection to the shard catalog
System.out.println("Initiating UCP and Creating Connection...");
Connection conn = pds.getConnection();

// Enable the SODA Shared Metadata cache
Properties props = new Properties();
props.put("oracle.soda.sharedMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);

// Get a DB Connection
OracleDatabase db = cl.getDatabase(conn);

// Print all the Collections in this DB
List<String> names = db.admin().getCollectionNames();
for (String name : names)
 System.out.println ("Collection name: " + name);

// Open up the CUSTOMERS Collection
OracleCollection col = db.openCollection("CUSTOMERS");

// Do a search across ALL Shards. In this case all users named Matilda
// Setup the specification and open a cursor
OracleDocument filterSpec = db.createDocumentFromString("{ \"name\" :
\"Matilda\"}");

OracleCursor c = col.find().filter(filterSpec).getCursor();

// Print the results of the query
while (c.hasNext()) {

Chapter 11
Using SODA ID as the Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 22

 OracleDocument resultDoc = c.next();

 // Print the document key and document content
 System.out.println ("Document key: " + resultDoc.getKey() + "\n" +
 " document content: " +
resultDoc.getContentAsString());
}

// Close the cursor
c.close();

// Here, we could initiate another multi-shard query if desired

// We are done, so close the connection
conn.close();

 }} // End of QuickQueryCat

Python Code Sample
This Python sample shows how you can actually work with JSON objects using SODA in a
sharded database environment.

To use this sample code in your environment, follow the instructions to install the cx_Oracle
module for Python: https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html

This example shows how to connect to a shard using the sharding key and insert a new
document.

Note that when using SODA in a sharded database environment, new documents should be
created by connecting to specific shards and not using the shard catalog.

import the cx_Oracle module for Python
import cx_Oracle

Create a connection pool that will be used for connecting to all shards
The components of the dsn are hostname (shard director),
port (usually 1522), global service (created with GDSCTL)
The pool is then created and SODA metadata caching is enabled.
dsn=cx_Oracle.makedsn("shard_director_host",1522,service_name="service_name")
pool=cx_Oracle.SessionPool("app_schema","password",dsn,
soda_metadata_cache=True)

Connect to a specific shard by using the sharding key, which in this
example is
set explicitly with "sodaid", but this might be passed in or part of a loop
You must know beforehand if you are creating or working with a document for
a specific Customer

sodaid="2468"
connection=pool.acquire(shardingkey=[sodaid])

Set autocommit and open the CUSTOMERS collection
connection.autocommit = True
soda = connection.getSodaDatabase()

Chapter 11
Using SODA ID as the Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 22

https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html

collection = soda.openCollection("CUSTOMERS")

Insert a document
Because you are specifying the shard key, you must pass that in with the
document (key=custid)
The value can be a UUID for example but it need not have any relation to
the JSON Content.

content = {'name': 'Matilda', 'State': 'CA', 'ZIP':'94065'}
idcontent=soda.createDocument(content, key=sodaid)
doc = collection.insertOneAndGet(idcontent)

Fetch the document back by key
doc = collection.find().key(sodaid).getOne()
content = doc.getContent()
print('Retrieved SODA document dictionary is:')
print(content)

After you have finished, release this connection back into the pool
pool.release(connection)

If you want to add or work with more customers, start with another
connection
For example: connection=pool.acquire(shardingkey=["123"]) and so on.

#When you are completely finished working with customers you can shut down
the pool
pool.close()

This code sample shows you how to run a multi-shard query to return all customer names
whose names begin with an "M".

import cx_Oracle

Create an unpooled connection to the shard catalog
In general, pooled connections should be used for all connections. This is
shown here only as an example.
The connect string connects to the shard director, but uses the catalog
service, e.g. GD$catalog.oradbcloud
connection = cx_Oracle.connect("app_schema","password","db_connect_string")

Open the CUSTOMERS collection
connection.autocommit = True
soda = connection.getSodaDatabase()
collection = soda.openCollection("CUSTOMERS")

Now query the collection
It is important to note that this is a query across ALL shards
In other words, you will get ALL users whose names start with M
documents = collection.find().filter({'name': {'$like': 'M%'}}).getDocuments()
for d in documents:
 content = d.getContent()
 print(content["name"])

Chapter 11
Using SODA ID as the Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 22

Close the connection
connection.close()

Using a JSON Field as a Sharding Key
You can designate a JSON field to be the sharding key when creating your sharded database
schema.

The examples in the topics that follow show you how to create a sharded table for the JSON
collection, create the SODA mapping, trigger the sharding key column population, and access
the sharded table from an application with Java and Python code samples.

Creating a Sharded Table for the JSON Collection

To create a sharded table that uses a sharding key other than the SODA ID:

1. Connect to the shard catalog as the Sharding/SODA user.

2. Enable SHARD DDL.

3. Create a tablespace set.

4. Run CREATE SHARDED TABLE, as shown in the example below.

The following examples create a sharded table (Customers) for a JSON collection of customer
profile documents (CUSTPROFILE).

A column for the SODA ID (ID) identifies the JSON entries. When creating a JSON entry in the
table with SODA, the application populates the ID column with a unique value.

A sharding key column (ZIP) is the ZIP code value extracted from the JSON document.

The other columns are the default column names given when SODA creates a table to hold an
underlying collection. You can see this for yourself when creating a SODA collection and then
examining the created table.

Note that the ID column by itself cannot be the primary key. The PK must be or must include
the sharding key, in this case ZIP. In the application examples, both ID and ZIP are used to
work with the sharded data. In the example above the PK consists of the sharding key and the
SODA ID (ZIP, ID), because ZIP will not be a unique value by itself.

Note that in Oracle 21c, you can use either (ZIP, ID) or (ID, ZIP) as the combined Primary Key.
In general, you should expect access to this table to be for these values individually, not as a
combination. SODA access for these examples looking for ID and customer queries might be
using the JSON field (ZIP in this case), so you will create individual indexes in any case. .

Choosing a good sharding key depends on the usage and application requirements. You can
use a unique sharding key, for example a Customer ID, but in that case you could also use the
SODA ID to store the sharding key.

Creating a Sharded Table: System-Managed

/* Enable shard DDL */
ALTER SESSION ENABLE SHARD DDL;

/* Create a tablespace set */
CREATE TABLESPACE SET TSP_SET_1 USING TEMPLATE

Chapter 11
Using a JSON Field as a Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 22

 (datafile size 100m autoextend on next 10M maxsize unlimited
 extent management local segment space management auto);

/* Create the sharded table */
CREATE SHARDED TABLE CUSTOMERS
(
"ID" VARCHAR2(255) NOT NULL,
"CREATED_ON" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"LAST_MODIFIED" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"VERSION" varchar2(255) NOT NULL,
"ZIP" VARCHAR2(60) NOT NULL,
"CUSTPROFILE" JSON,
PRIMARY KEY (ID,ZIP))
TABLESPACE SET TSP_SET_1
PARTITION BY CONSISTENT HASH (ZIP) PARTITIONS AUTO;

Creating a Sharded Table: User-Defined

Ensure that all of the necessary tablespaces and shardspaces have been created.

/* Enable shard DDL */
ALTER SESSION ENABLE SHARD DDL;

/* Create the sharded table */
CREATE SHARDED TABLE CUSTOMERS
(
"ID" VARCHAR2(255) NOT NULL,
"CREATED_ON" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"LAST_MODIFIED" timestamp default sys_extract_utc(SYSTIMESTAMP) NOT NULL,
"VERSION" varchar2(255) NOT NULL,
"ZIP" VARCHAR2(60) NOT NULL,
"CUSTPROFILE" JSON,
PRIMARY KEY (ID,ZIP))
PARTITION BY RANGE (ZIP)
(PARTITION p1 VALUES LESS THAN ('50000') TABLESPACE ts1,
PARTITION p2 VALUES LESS THAN ('99999') TABLESPACE ts2)

Creating a Mapped SODA Collection on the Sharded Table
Create a map to let SODA know which columns to use when working with the sharded table,
and add the sharded table to the list of collections.

You can run a procedure to create the map, but this procedure also must be run on ALL of the
shards in the sharded database. The procedure also needs to be run on any shards added in
the future. You can accomplish both of these requirements using a sharding-specific PL/SQL
procedure, sys.exec_shard_plsql().

To create a SODA map across all shards:

Chapter 11
Using a JSON Field as a Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 14 of 22

As the Sharding/SODA user and with SHARD DDL enabled, run the following commands on the
shard catalog. The shard catalog propagates the procedure to all of the shards to be
processed automatically.

create or replace procedure COLLECTION_PROC_CUSTOMERS AS
METADATA varchar2(8000);
COL SODA_COLLECTION_T;
begin
METADATA := '{"tableName":"CUSTOMERS",
"keyColumn":{"name":"ID"},
"contentColumn":{"name":"CUSTPROFILE","sqlType":"JSON"},
"versionColumn":{"name":"VERSION","method":"UUID"},
"lastModifiedColumn":{"name":"LAST_MODIFIED"},
"creationTimeColumn":{"name":"CREATED_ON"},
"readOnly":false}';
 -- Create a collection using "map" mode, based on
 -- the table you've created above and specified in
 -- the custom metadata under "tableName" field.
COL :=
dbms_soda.create_collection('CUSTOMERS',METADATA,DBMS_SODA.CREATE_MODE_MAP);
end ;
/

exec sys.exec_shard_plsql('app_schema.collection_proc_customers()',4+1);

Note that the keyColumn is ID, the key used by SODA to insert and retrieve collections. There
is no reference to the ZIP column because it is not used by SODA in the mapping.

At this point, a new collection has been created just as if you had run a CREATE COLLECTION
command.

You can run some PL/SQL to list out the collections. On the shard catalog, run the following
command, and verify that the output lists the Customers table.

SET SERVEROUTPUT ON
DECLARE
l_coll_list SODA_COLLNAME_LIST_T;
BEGIN
l_coll_list := DBMS_SODA.list_collection_names;

IF l_coll_list.COUNT > 0 THEN
FOR i IN 1 .. l_coll_list.COUNT LOOP
DBMS_OUTPUT.put_line(i || ' : ' || l_coll_list(i));
END LOOP;
END IF;
END;
/
1 : CUSTOMERS

PL/SQL procedure successfully completed.

SQL>

Chapter 11
Using a JSON Field as a Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 15 of 22

Creating a Trigger to Populate the Sharding Key

When SODA inserts or updates the document, it automatically populates the underlying table
columns described in the collection metadata (that is ID, CUSTPROFILE, LAST_MODIFIED,
CREATED_ON, and VERSION). However, you also need to populate the ZIP column, and the
value must come from within the JSON document. This is accomplished using a trigger.

Note that this is a BEFORE trigger, which allows you to populate a column even when that
column is the primary key.

Run the following statements on the shard catalog as the application schema user. The
procedure sys.exec_shard_plsql ensures that it is also run on all shards and all future shards.

alter session enable shard ddl

create or replace procedure COLLECTION_BF_ZIP_CUSTOMERS AS
begin
EXECUTE IMMEDIATE 'alter session enable shard operations';
EXECUTE IMMEDIATE q'%
Create or Replace TRIGGER CUST_BF_TRIG
BEFORE INSERT or UPDATE on CUSTOMERS
FOR EACH ROW
begin
:new.ZIP := JSON_VALUE(:NEW.CUSTPROFILE, '$.ZIP' error on error error on
empty);
end;
%';
end;
/

exec sys.exec_shard_plsql('app_schema.collection_bf_zip_customers()',4+1+2);

In the example above, ZIP is assumed to be a top-level field in the JSON document. If the
value is in a nested field, for example under an ADDRESS field, you must include the field
hierarchy, for example '$.ADDRESS.ZIP'.

Code Samples
The Java and Python code samples for "Using a JSON Field as the Sharding Key"
demonstrate how you can actually work with JSON objects using SODA in a sharded database
environment.

In these examples, you connect to a shard using the sharding key and insert a new document.

Note that when using SODA in a sharded database environment, new documents should be
created by connecting to specific shards and not using the shard catalog.

Java Code Sample
The Java code sample below shows you how to insert JSON documents in a collection where
the data is sharded by a JSON field, ZIP code in this example.

import java.sql.Connection;
import java.util.Properties;

Chapter 11
Using a JSON Field as a Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 16 of 22

import java.util.List;

// SODA specific imports
import oracle.soda.rdbms.OracleRDBMSClient;
import oracle.soda.OracleDatabase;
import oracle.soda.OracleCursor;
import oracle.soda.OracleCollection;
import oracle.soda.OracleDocument;
import oracle.soda.OracleException;

// Sharding and UCP imports
import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

/*
* The sample demonstrates connecting to a Sharded Database using
* Oracle JDBC driver and UCP as a client side connection pool.
*/
public class QuickInsertShardJSONField {

 public static void main(String args[]) throws Exception {

// TNS_ADMIN - Should be the path where the tnsnames.ora file resides
// dbshard_rw - It is the TNS alias present in tnsnames.ora.
// Note that the connection is to the Shard Director (GSM) and the service
name is the shard RW service
final String DB_URL="jdbc:oracle:thin:@dbshard_rw?TNS_ADMIN=/home/opc/
dbhome/";

// Update the Database Username and Password to the Shard User
final String DB_USER = "app_schema";
String DB_PASSWORD = "<user_password>" ;

// Get the PoolDataSource for UCP
PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

// Set the connection factory first before all other properties
pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
pds.setURL(DB_URL);
pds.setUser(DB_USER);
pds.setPassword(DB_PASSWORD);
pds.setConnectionPoolName("JDBC_UCP_POOL");

// Default is 0. Set the initial number of connections to be created
// when UCP is started.
pds.setInitialPoolSize(10);
// Default is 0. Set the minimum number of connections
// that is maintained by UCP at runtime.
pds.setMinPoolSize(10);
// Instead of Max Pool Size, we can set the number of max connections per
shard

Chapter 11
Using a JSON Field as a Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 17 of 22

pds.setMaxConnectionsPerShard(20);

// We cannot get the connection until we have the Shard key which is part of
the SQL
//We first set the sharding key which in our case is the value of the ZIP
code field
String shardingKeyVal="94065";

// Now we build the connection using this shard key
OracleShardingKey sdkey =
pds.createShardingKeyBuilder().subkey(shardingKeyVal,
OracleType.VARCHAR2).build();
System.out.println("Initiating UCP and Creating Connection...");
Connection conn = pds.createConnectionBuilder().shardingKey(sdkey).build();

// Enable the SODA Shared Metadata cache
Properties props = new Properties();
props.put("oracle.soda.sharedMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);

// Get a DB Connection
OracleDatabase db = cl.getDatabase(conn);

// Print all the Collections in this DB
List<String> names = db.admin().getCollectionNames();
for (String name : names)
 System.out.println ("Collection name: " + name);

// Open up the CUSTOMERS Collection
OracleCollection col = db.openCollection("CUSTOMERS");

//We do not provide an SODA ID column.
//This is provided by SODA when the document is created
// Note that the ZIP field MUST match what we have specified as the key
OracleDocument cDoc = db.createDocumentFromString("{\"name\": \"Matilda\",
\"State\": \"CA\", \"ZIP\":\"94065\"}");

// Insert the document above
OracleDocument insertedDoc = col.insertAndGet(cDoc);

// Get the document key
String dockey = insertedDoc.getKey();

// Get the document back by key
// We are still connected to the same shard
OracleDocument doc = col.find().key(dockey).getOne();
String content = doc.getContentAsString();
System.out.println("Retrieved content is: " + content);

// We are done, so close the connection to the shard
conn.close();

// At this point we could open up a new shard connection using a different
sharding key

Chapter 11
Using a JSON Field as a Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 18 of 22

 }} // End of QuickInsertShardJSONField

Python Code Sample
This code sample in Python shows how you can actually work with JSON objects using SODA
in a sharded database environment.

To use this sample code in your environment, follow the instructions to install the cx_Oracle
module for Python: https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html

In this example, you connect to a shard using the sharding key and insert a new document.

Note that when using SODA in a sharded database environment, new documents should be
created by connecting to specific shards and not using the shard catalog.

import the cx_Oracle module for Python
import cx_Oracle

Create a connection pool that will be used for connecting to all shards
The components of the dsn are hostname (shard director),
port (usually 1522), global service (created using GDSCTL)
We also enable SODA metadata caching
dsn=cx_Oracle.makedsn("shard_director_host",1522,service_name="service_name")
pool=cx_Oracle.SessionPool("app_schema","password",dsn,soda_metadata_cache=Tru
e)

Connect to a specific shard by using the shard key, a ZIP code. which in
this
example is set explicitly as '94065', but this might be passed in or part
of a loop
You must know beforehand whether you are creating or working with a document
with a specific ZIP code value.
connection=pool.acquire(shardingkey=["94065"])

set autocommit and open the CUSTOMERS collection
connection.autocommit = True
soda = connection.getSodaDatabase()
collection = soda.openCollection("CUSTOMERS")

Insert a document
A system generated SODA key is created by default.
content = {'name': 'Matilda', 'STATE': 'CA', 'ZIP': '94065'}
doc = collection.insertOneAndGet(content)

The SODA key can now be used to work with this document directly
We can retrieve it immediately
key = doc.key
print('The key of the new SODA document is: ', key)

Fetch the document back by this same SODA key.
This only works because we are still connected to the same shard
doc = collection.find().key(key).getOne()
content = doc.getContent()
print('Retrieved SODA document dictionary is:')
print(content)

Chapter 11
Using a JSON Field as a Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 19 of 22

https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html

Next, add another customer. We are in the shard containing 94065,
so we can add a customer with the same ZIP code '94065'
content = {'name': 'Mildred', 'STATE': 'CA', 'ZIP: '94065'}
doc = collection.insertOneAndGet(content)

Now do a query.
It is important to note that this query is ONLY executed within this one
shard,
the shard which contains the part of the sharded table with 94065 ZIP codes.
In other words, the actual query has the additional bound of customers whose
names start with 'M' in 94065
and any other ZIPs stored on this shard. This is unlikely to be a useful
query
for system-managed sharding.
documents = collection.find().filter({'name': {'$like': 'M%'}}).getDocuments()
for d in documents:
 content = d.getContent()
 print(content["name"])

After you have finished, release this connection back into the pool
pool.release(connection)

If you want to add or work with more customers with a different
shard key start with another connection
For example: connection=pool.acquire(shardingkey=["10012"]) and so on.

When you are completely finished working with customers, shut down the pool.
pool.close()

This code sample shows you how to run a multi-shard query to return all customer names in all
shards whose names begin with an "M".

import cx_Oracle

Create an unpooled connection to the shard catalog
The connect string connects to the shard director, but uses the catalog
service,
e.g. GD$catalog.oradbcloud
connection = cx_Oracle.connect("app_schema","password","db_connect_string")

Open the CUSTOMERS collection
connection.autocommit = True
soda = connection.getSodaDatabase()
collection = soda.openCollection("CUSTOMERS")

Now query the collection
It is important to note that this is a query across ALL shards
In other words, you will get ALL users whose name starts with M across ALL
Zip codes
documents = collection.find().filter({'name': {'$like': 'M%'}}).getDocuments()
for d in documents:
 content = d.getContent()
 print(content["name"])

Chapter 11
Using a JSON Field as a Sharding Key

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 20 of 22

#Close the connection
connection.close()

Additional Information About Sharding with SODA

Performance Tuning

Metadata and Statement Caching

For all implementations, statement caching should be turned on the connection pool. This
avoids unnecessary round trips to the database.

To turn on SODA metadata caching:

• In Java:

Properties props = new Properties();
props.put("oracle.soda.sharedMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);

More information is available at SODA Collection Metadata Caching.

• In Python:

Create the session pool
pool = cx_Oracle.SessionPool(user="hr", password=userpwd,
 dsn="dbhost.example.com/orclpdb1",soda_metadata_cache=True)

More information is available at Using the SODA Metadata Cache

Threading

For optimal use of resources, an instantiation of OracleClient is only required once as it is
shared among threads.

The objects obtained from it, such as OracleDatabase and consequently OracleCollection are
not thread-safe and do need to be instantiated when creating new requests.

Index Creation and Management

Oracle Sharding requires that the shard key be part of the Primary Key. There are no
restrictions on creating additional indexes.

All of the guidelines provided by the SODA documentation on creating and managing indexes
continue to apply.

Scaling Out Shards

When adding a new shard to the database configuration, all of the DDL, including the SODA
metadata and triggers, are automatically available on the new shard.

No extra configuration is required for SODA/JSON Sharding.

Chapter 11
Additional Information About Sharding with SODA

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 21 of 22

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/java/adsda/soda-collection-metadata-caching.html#GUID-23756EFE-6F87-4246-BC9B-72CC207763EE
https://cx-oracle.readthedocs.io/en/latest/user_guide/soda.html?highlight=metadata%20caching#using-the-soda-metadata-cache

Chapter 11
Additional Information About Sharding with SODA

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 22 of 22

12
Sharded Database Administration

Oracle Sharding provides tools and some automation for the administration of a sharded
database.

Note

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB, depending
on context. In some contexts, such as upgrades, "non-CDB" refers to a non-CDB from
a previous release.

The following topics describe sharded database administration in detail:

Managing the Sharding-Enabled Stack
This section describes the startup and shutdown of components in the sharded database
configuration. It contains the following topics:

Starting Up the Sharding-Enabled Stack
The following is the recommended startup sequence of the sharding-enabled stack:

• Start the shard catalog database and local listener.

• Start the shard directors (GSMs).

• Start up the shard databases and local listeners.

• Start the global services.

• Start the connection pools and clients.

Shutting Down the Sharding-Enabled Stack
The following is the recommended shutdown sequence of the sharding-enabled stack:

• Shut down the connection pools and clients.

• Stop the global services.

• Shut down the shard databases and local listeners.

• Stop the shard directors (GSMs).

• Stop the shard catalog database and local listener.

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 61

Oracle Globally Distributed Database Users and Roles
Here you will learn about the management of database users and roles specific to Oracle
Globally Distributed Database.

Overview of Users and Roles
In Oracle Globally Distributed Database some types of users require certain roles and
privileges.

For sharded databases there are three kinds of users:

• Sharded database/GSM administrator - Grant this user the GSMADMIN_ROLE role. This role
should be granted to one, or only a few accounts, that require elevated privileges to do
administrative tasks. This role has a number of powerful privileges, including ALTER
SYSTEM.

• Sharded database schema owner - Grant this user the SHARDED_SCHEMA_OWNER role. This
role should be granted only to accounts which own a sharded database schema. The role
only has enough privileges to allow the account to manage their own schema for various
sharded operations, for example, "select any table" would not be a privilege this role has.

• Regular sharded database user - This type of user includes any account which has been
created under ENABLE SHARD DDL; these users have no special privileges or roles except
those needed to run a sharded application. The database administrator decides which
privileges these accounts need, and grants them individually to the account.

Oracle Globally Distributed Database Roles
Oracle Globally Distributed Database provides a set of predefined database roles to help in
sharded database administration.

Most of the Oracle Globally Distributed Database roles don't have many privileges, but they do
have execute rights on certain Oracle-delivered procedures and packages which allow them to
perform administrative tasks.

Predefined Role Description

GSMADMIN_ROLE Should be granted to Oracle Globally Distributed
Database administrators, so that they can
administer the Oracle Globally Distributed
Database configuration

SHARDED_SCHEMA_OWNER Provides privileges for Oracle Globally Distributed
Database schema owners to perform administrative
tasks on their own schema

GSMCATUSER_ROLE Granted only the Oracle delivered account
GSMCATUSER for internal use

GSMROOTUSER_ROLE Granted only to Oracle delivered account
GSMROOTUSER for internal use

GSMUSER_ROLE Granted only to Oracle delivered account GSMUSER
for internal use

For more information about database roles, see Predefined Roles in an Oracle Database
Installation.

Chapter 12
Oracle Globally Distributed Database Users and Roles

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 61

About the GSMUSER Account
The GSMUSER account is used by GDSCTL and shard directors (global service managers) to
connect to databases in an Oracle Sharding configuration.

This account need to be unlocked for both the CDB and PDB.

GSMUSER exists by default on any Oracle database. In an Oracle Sharding configuration, the
account is used to connect to shards instead of pool databases, and it must be granted both
the SYSDG and SYSBACKUP system privileges after the account has been unlocked.

The password given to the GSMUSER account is used in the gdsctl add shard command.
Failure to grant SYSDG and SYSBACKUP to GSMUSER on a new shard causes gdsctl add
shard to fail with an ORA-1031: insufficient privileges error.

See Also

add shard in Global Data Services Concepts and Administration Guide

About the GSMROOTUSER Account
GSMROOTUSER is a database account specific to Oracle Sharding that is only used when
pluggable database (PDB) shards are present. The account is used by GDSCTL and global
service managers to connect to the root container of container databases (CDBs) to perform
administrative tasks.

If PDB shards are not in use, the GSMROOTUSER user should not by unlocked nor assigned
a password on any database. However, in sharded configurations containing PDB shards,
GSMROOTUSER must be unlocked and granted the SYSDG and SYSBACKUP privileges
before a successful gdsctl add cdb command can be run. The password for the
GSMROOTUSER account can be changed after deployment if desired using the alter user
SQL command in the root container of the CDB in combination with the gdsctl modify cdb -
pwd command.

See Also

add cdb in Global Data Services Concepts and Administration Guide

Backing Up and Recovering a Sharded Database
The GDSCTL utility lets you define a backup policy for a sharded database and restore one or
more shards, or the entire sharded database, to the same point in time. Configured backups
are run automatically, and you can define a schedule to run backups during off-peak hours.

Enhancements to GDSCTL in Oracle Database 21c enable and simplify the centralized
management of backup policies for a sharded database, using Oracle MAA best practices. You
can create a backup schedule using an incremental scheme that leverages the Oracle Job
Scheduler. Oracle Recovery Manager (RMAN) performs the actual backup and restore
operations.

Using the GDSCTL centralized backup and restore operations, you can configure backups,
monitor backup status, list backups, validate backups, and restore from backups.

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 61

There are two type of backups: automated backups and on-demand backups. Automated
backups are started by DBMS Scheduler jobs based on the job schedules, and they run in the
background on the database servers. The on-demand backups are started by users from
GDSCTL.

Internally, the on-demand backups are also started by DBMS Scheduler jobs on the database
servers. The jobs are created on-fly when the on-demand backup commands are issued. They
are temporary jobs and automatically dropped after the backups have finished.

Sharded database structural changes such as chunk move are built in to the backup and
restore policy.

Supported Backup Destinations

Backups can be saved to a common disk/directory structure (NFS mount) which can be
located anywhere, including the shard catalog database host.

Terminology

The following is some terminology you will encounter in the backup and restore procedures
described here.

• Target database - A database RMAN is to back up.

• Global SCN - A common point in time for all target databases for which a restore of the
entire sharded database is supported. A restore point is taken at this global SCN, and the
restore point is the point to which the sharded database (including the shard catalog) can
be restored.

Note that you are not prohibited from restoring the shard catalog or a specific shard to an
arbitrary point in time. However, doing so may put that target in an inconsistent state with
the rest of the sharded database and you may need to take corrective action outside of the
restore operation.

• Incremental backup - Captures block-level changes to a database made after a previous
incremental backup.

• Level 0 incremental backup (level 0 backup) - The incremental backup strategy starting
point, which backs up blocks in the database. This backup is identical in content to a full
backup; however, unlike a full backup, the level 0 backup is considered a part of the
incremental backup strategy.

• Level 1 incremental backup (level 1 backup) - A level 1 incremental backup contains
only blocks changed after a previous incremental backup. If no level 0 backup exists in
either the current or parent database incarnation and you run a level 1 backup, then RMAN
takes a level 0 backup automatically. A level 1 incremental backup can be either
cumulative or differential.

Limitations

Note the following limitations for this version of Oracle Sharding backup and restore using
GDSCTL.

• Microsoft Windows is not supported.

• Oracle GoldenGate replicated databases are not supported.

• You must provide for backup of Clusterware Repository if Clusterware is deployed

Prerequisites to Configuring Centralized Backup and Restore
Before configuring backup for a sharded database, make sure the following prerequisites are
met.

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 61

• Create a recovery catalog in a dedicated database.

Before you can backup or restore a sharded database using GDSCTL, you must have
access to a recovery catalog created in a dedicated database. This recovery catalog
serves as a centralized RMAN repository for the shard catalog database and all of the
shard databases.

Note the following:

– The version of the recovery catalog schema in the recovery catalog database must be
compatible with the sharded database version because RMAN has compatibility
requirements for the RMAN client, the target databases, and the recovery catalog
schema. For more information, see Oracle Database Backup and Recovery
Reference, cross-referenced below.

– The recovery catalog must not share a host database with the shard catalog because
the shard catalog database is one of the target databases in the sharded database
backup configuration, and RMAN does not allow the recovery catalog to reside in a
target database.

– It is recommended that you back up the recovery catalog backup periodically, following
appropriate best practices.

– The shard catalog database and all of the shard databases must be configured to use
the same recovery catalog.

• Configure backup destinations for the shard catalog database and all of the shard
databases.

The backup destination types are either DISK or system backup to tape. The supported
DISK destinations are NFS and Oracle ASM file systems.

System backup to tape destinations require additional software modules to be installed on
the database host. They must be properly configured to work with RMAN.

If the shard catalog database or the shard databases are in Data Guard configurations,
you can choose to back up either the primary or standby databases.

• RMAN connects to the target databases as specific internal users to do database backup
and restore with the exception of the shard catalog.

For the shard catalog, a common user in the CDB hosting the shard catalog PDB must be
provided at the time when sharded database backup is configured. This user must be
granted the SYSDG and SYSBACKUP privileges. If the CDB is configured to use local undo for
its PDBs, the SYSBACKUP privilege must also be granted commonly.

For the shard databases, the internal CDB common user, GSMROOTUSER, is used. This user
must be unlocked in the shard CDB root databases and granted the SYSBACKUP privilege in
addition to other privileges that the sharded database requires for GSMROOUSER. If the CDB
is configured to use local undo for its PDBs, the SYSBACKUP privilege must be granted
commonly to GSMROOTUSER, meaning the CONTAINER=ALL clause must be used when
granting the SYSBACKUP privilege.

• All of the GDSCTL commands for sharded database backup and restore operations require
the shard catalog database to be open. If the shard catalog database itself must be
restored, you must manually restore it.

• You are responsible for offloading backups to tape or other long-term storage media and
following the appropriate data retention best practices.

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 61

Note

See RMAN Compatibility in Oracle Database Backup and Recovery Reference

Configuring Automated Backups
Use the GDSCTL CONFIG BACKUP command to configure automated sharded database backups.

You should connect to a shard director (GSM) host to run the GDSCTL backup commands. If the
commands are run from elsewhere, you must explicitly connect to the shard catalog database
using the GDSCTL CONNECT command.

When you run the GDSCTL backup configuration, you can provide the following inputs.

• A list of databases.

The databases are the shard catalog database and shard databases. Backup configuration
requires that the primary databases of the specified databases be open for read and write,
but the standby databases can be mounted or open.

If a database is in a Data Guard configuration when it is configured for backup, all of the
databases in the Data Guard configuration are configured for backup. For a shard in Data
Guard configuration, you must provide the backup destinations and start times for the
primary and all of the standby shards.

This is different for the shard catalog database. The shard catalog database and all the
shard catalog standby databases will share a backup destination and a start time.

• A connect string to the recovery catalog database.

For the connect string you need a user account with privileges for RMAN, such as
RECOVERY_CATALOG_OWNER role.

• RMAN backup destination parameters.

These parameters include backup device and channel configurations. Different backup
destinations can be used for different shards.

Please note the following.

– Backup destinations for shards in Data Guard configuration must be properly defined
to ensure that the backups created from standby databases can be used to restore the
primary database and conversely. See "Using RMAN to Back Up and Restore Files" in
Oracle Data Guard Concepts and Administration for Data Guard RMAN support.

– The same destination specified for the shard catalog database is used as the backup
destination for the shard catalog standby databases.

– For system backup to tape devices, the media managers for the specific system
backup to tape devices are needed for RMAN to create channels to read and write
data to the devices. The media manager must be installed and properly configured.

• Backup target type.

Backup target type defines whether the backups for the shard catalog database and
shards should be done at the primary or one of the standby databases. It can be either
PRIMARY or STANDBY. The default backup target type is STANDBY. For the shard catalog
database or shards that are not in Data Guard configurations, the backups will be done on
the shard catalog database or the shards themselves even when the backup target type is
STANDBY.

• Backup retention policy.

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 61

The backup retention policy specifies a database recovery window for the backups. It is
specified as a number of days.

Obsolete backups are not deleted automatically, but a GDSCTL command is provided for
you to manually delete them.

• Backup schedule.

Backup schedules specify the automated backup start time and repeat intervals for the
level 0 and level 1 incremental backups. Different automated backup start times can be
used for the shard catalog database and individual shards. The time is a local time in the
time zone in which the shard catalog database or shard is located. The backup repeat
intervals for the level 0 and level 1 incremental backups are the same for the shard catalog
database and all the shards in the sharded database,

• CDB root database connect string for the shard catalog database.

The provided user account must have common SYSBACKUP privilege in the provided CDB.

When no parameters are provided for the CONFIG BACKUP command, GDSCTL displays the
current sharded database backup configuration. If the backup has not been configured yet
when the command is used to show the backup configuration, it displays that the backup is not
configured.

To configure a backup, run GDSCTL CONFIG BACKUP as shown in the following example. For
complete syntax, command options, and usage notes, run HELP CONFIG BACKUP.

The following example configures a backup channel of type DISK for the shard catalog
database, two parallel channels of type DISK for each of the shards (shard spaces dbs1 and
dbs2 are used in the shard list), the backup retention window is set to 14 days, the level 0 and
level 1 incremental backup repeat intervals are set to 7 and 1 day, and the backup start time is
set to 12:00 AM, leaving the incremental backup type the default DIFFERENTIAL, and the
backup target type the default STANDBY.

GDSCTL> config backup -rccatalog rccatalog_connect_string
-destination "CATALOG::configure channel device type disk format '/tmp/rman/
backups/%d_%U'"
-destination "dbs1,dbs2:configure device type disk parallelism 2:configure
channel 1 device type disk format '/tmp/rman/backups/1/%U';configure channel
2 device type disk format '/tmp/rman/backups/2/%U'"
-starttime ALL:00:00 -retention 14 -frequency 7,1 -catpwd gsmcatuser_password
-cdb catcdb_connect_string;

Once GDSCTL has the input it displays output similar to the following, pertaining to the current
status of the configuration operation.

Configuring backup for database "v1908" ...

Updating wallet ...
The operation completed successfully

Configuring RMAN ...
new RMAN configuration parameters:
CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/tmp/rman/backups/%d_%u';
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete

new RMAN configuration parameters:

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 61

CONFIGURE BACKUP OPTIMIZATION ON;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
...

Creating RMAN backup scripts ...
replaced global script full_backup
replaced global script incremental_backup
...
Creating backup scheduler jobs ...
The operation completed successfully

Creating restore point creation job ...
The operation completed successfully

Configuring backup for database "v1908b" ...

Updating wallet ...
The operation completed successfully

Configuring RMAN ...
new RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK PARALLELISM 2 BACKUP TYPE TO BACKUPSET;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete

new RMAN configuration parameters:
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT '/tmp/rman/backups/1/%u';
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
...

Configuring backup for database "v1908d" ...
Updating wallet ...
The operation completed successfully

Configuring RMAN ...
...

Recovery Manager complete.

As shown in the CONFIG BACKUP command output above, GDSCTL does the following steps.

1. GDSCTL updates the shard wallets.

The updated wallets will contain:

• Connect string and authentication credentials to the RMAN catalog database.

• Connect string and authentication credentials to the RMAN TARGET database.

• Automated backup target type and start time.

2. GDSCTL sets up the RMAN backup environment for the database.

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 61

This includes the following tasks.

• Registering the database as a target in the recovery catalog.

• Setting up backup channels.

• Setting up backup retention policies.

• Enabling control file and server parameter file auto-backup.

• Enabling block change tracking for all the target databases.

3. On the shard catalog, GDSCTL creates global RMAN backup scripts for level 0 and level 1
incremental backups.

4. On the shard catalog, GDSCTL creates a global restore point creation job.

5. On the shard catalog and each of the primary databases, GDSCTL

• Creates DBMS Scheduler database backup jobs for level 0 and level 1 incremental
backups

• Schedules the jobs based on the backup repeat intervals you configure.

Enabling and Disabling Automated Backups
You can enable or disable backups on all shards, or specific shards, shardspaces, or
shardgroups.

All backup jobs are initially disabled. They can be enabled by running the GDSCTL ENABLE
BACKUP command.

GDSCTL> ENABLE BACKUP

When not specified, ENABLE BACKUP enables the backup on all shards. You can optionally list
specific shards, shardspaces, or shardgroups on which to enable the backup.

GDSCTL> ENABLE BACKUP -shard dbs1

The DISABLE BACKUP command disables an enabled backup.

GDSCTL> DISABLE BACKUP -shard dbs1

Backup Job Operation
Once configured and enabled, backup jobs run on the primary shard catalog database and the
primary shards as scheduled.

After a backup job is configured, it is initially disabled. You must enable a backup job for it to
run as scheduled. Use the GDSCTL commands ENABLE BACKUP and DISABLE BACKUP to enable
or disable the jobs.

Backup jobs are scheduled based on the backup repeat intervals you configure for the level 0
and level 1 incremental backups, and the backup start time for the shard catalog database and
the shards.

Two separate jobs are created for level 0 and level 1 incremental backups. The names of the
jobs are AUTOMATED_SDB_LEVEL0_BACKUP_JOB and AUTOMATED_SDB_LEVEL1_BACKUP_JOB. Full
logging is enabled for both jobs.

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 61

When running, the backup jobs find the configured backup target type (PRIMARY or STANDBY),
figure out the correct target databases based on the backup target type, and then launch
RMAN to back up the target databases. RMAN uses the shard wallets updated during the
backup configuration for database connection authentication.

Note that sharded database chunk moves do not delay automated backups.

Monitoring Backup Status
There are a few different ways to monitor the status of automated and on-demand backup jobs.

Monitoring an Automated Backup Job

Because full logging is enabled for the automated backup jobs, DBMS Scheduler writes job
processing details in the job log and views. The Scheduler job log and views are your basic
resources and starting point for monitoring the automated backups. Note that although the
DBMS Scheduler makes a list of job state change events available for email notification
subscription. This capability is not used for sharded database automated backups.

You can use the GDSCTL command LIST BACKUP to view the backups and find out whether
backups are created at the configured backup job repeat intervals.

Automated backups are not delayed by chunk movement in the sharded database, so the
backup creation times should be close to the configured backup repeat intervals and the
backup start time.

Monitoring an On-Demand Backup Job

Internally, on-demand backup jobs are also started by DBMS Scheduler jobs on the database
servers. The names of the temporary jobs are prefixed with tag MANUAL_BACKUP_JOB_. On-
demand backups always run in the same session that GDSCTL uses to communicate with the
database server. Failures from the job are sent directly to the client.

Using DBMS Scheduler Jobs Views

The automated backup jobs only run on the primary shard catalog database and the primary
shards. To check the backup job details for a specific target database, connect to the
database, or its primary database if the database is in a Data Guard configuration, using
SQL*PLUS, and query the DBMS Scheduler views *_SCHEDULER_JOB_LOG and
*_SCHEDULER_JOB_RUN_DETAILS based on the job names.

The names of the two automated backup jobs are AUTOMATED_SDB_LEVEL0_BACKUP_JOB and
AUTOMATED_SDB_LEVEL1_BACKUP_JOB.

You can also use the GDSCTL command STATUS BACKUP to retrieve the job state and run
details from these views. See Viewing Backup Job Status for more information about running
STATUS BACKUP.

The job views only contain high level information about the job. For job failure diagnosis, you
can find more details about the job in the RDBMS trace files by grepping the job names.

If no errors are found in the job, but still no backups have been created, you can find the PIDs
of the processes that the jobs have created to run RMAN for the backups in the trace files, and
then look up useful information in the trace files associated with the PIDs.

Using Backup Command Output

This option is only available for on-demand backups.

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 61

When you start on-demand backups with GDSCTL RUN BACKUP, you can specify the -sync
command option. This forces all backup tasks to run in the foreground, and the output from the
internally launched RMAN on the database servers is displayed in the GDSCTL console.

The downside of running the backup tasks in the foreground is that the tasks will be run in
sequence, therefore the whole backup will take more time to complete.

See the GDSCTL reference in Oracle Database Global Data Services Concepts and
Administration Guide for detailed command syntax and options.

Viewing an Existing Backup Configuration
When GDSCTL CONFIG BACKUP is not provided with any parameters, it shows the current backup
configuration.

Because the parameters -destination and -starttime can appear more than once in CONFIG
BACKUP command line for different shards and backup configuration can be done more than
once, multiple items could be listed in each of the Backup destinations and Backup start times
sections. The items are listed in the same order as they are specified in the CONFIG BACKUP
command line and the order the command is repeatedly run.

To view an existing backup configuration, run CONFIG BACKUP, as shown here.

GDSCTL> CONFIG BACKUP;

If a sharded database backup has not been configured yet, the command output will indicate it.
Otherwise the output looks like the following:

GDSCTL> config backup
Recovery catalog database user: rcadmin
Recovery catalog database connect descriptor:
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=den02qxr)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=cdb6_pdb1.example.com)))
Catalog database root container user: gsm_admin
Catalog database root container connect descriptor:
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=den02qxr)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=v1908.example.com)))
Backup retention policy in days: 14
Level 0 incremental backup repeat interval in minutes: 10080
Level 1 incremental backup repeat interval in minutes: 1440
Level 1 incremental backup type : DIFFERENTIAL
Backup target type: STANDBY
Backup destinations:
catalog::channel device type disk format '/tmp/rman/backups/%d_%u'
dbs1,dbs2:device type disk parallelism 2:channel 1 device type disk format
'/tmp/rman/backups/1/%u';channel 2 device type disk format '/tmp/rman/
backups/2/%u'
catalog::configure channel device type disk format '/tmp/rman/backups/%d_%u'
dbs1,dbs2:configure device type disk parallelism 2:configure channel 1 device
type disk format '/tmp/rman/backups/1/%u';configure channel 2 device type
disk format '/tmp/rman/backups/2/%u'
Backup start times:
all:00:00

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 61

Running On-Demand Backups
The GDSCTL RUN BACKUP command lets you start backups for the shard catalog database and a
list of shards.

All on-demand backups are level 0 incremental backups. On-demand backups have no impact
on the automated backup schedules configured for the shard catalog database and the shards.

Internally, on-demand backups are started by DBMS Scheduler jobs on the database servers.
The jobs are created on-the-fly when the on-demand backup command RUN BACKUP is run.

On-demand backup jobs are temporary jobs, and they are automatically dropped after the
backups have finished.

The names of the temporary jobs are prefixed with tag MANUAL_BACKUP_JOB_.

To use RUN BACKUP, you must have already set up the backup configuration with the CONFIG
BACKUP command.

The RUN BACKUP command requires the shard catalog database and any primary shards to be
backed up to be open.

GDSCTL> RUN BACKUP -shard dbs1

The -shard option lets you specify a set of shards, shardspaces or shardgroups on which to
run the backup. To take an on-demand backup on shardspace dbs1, you can run RUN BACKUP
as shown in the example above.

See the GDSCTL reference in Oracle Database Global Data Services Concepts and
Administration Guide for detailed command syntax and options.

Viewing Backup Job Status
Use GDSCTL command STATUS BACKUP to view the detailed state on the scheduled backup
jobs in the specified shards. Command output includes the job state (enabled or disabled) and
the job run details.

By default, the command displays the job run details of all the runs that the automated backup
jobs have had from 30 days ago in the specified shards. If the job run details for different
periods are needed, options -start_time and -end_time must be used.

Run STATUS BACKUP as shown in the following examples.

The following STATUS BACKUP command example lists the job state and all job run details from
the SDB catalog and the primary shard “rdbmsb_cdb2_pdb1”:

GDSCTL> status backup -catpwd -shard catalog,rdbmsb_cdb2_pdb1;
"GSMCATUSER" password:***

Retrieving scheduler backup job status for database "rdbms" ...
Jobs:
 Incremental Level 0 backup job is enabled
 Job schedule start time: 2020-07-27 00:00:00.000 -0400
 Job repeat interval: freq=daily;interval=1
 Incremental Level 1 backup job is enabled
 Job schedule start time: 2020-07-27 00:00:00.000 -0400

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 61

 Job repeat interval: freq=minutely;interval=60
 Global restore point create job is enabled
 Job schedule start time: 2020-07-27 23:59:55.960 -0400
 Job repeat interval: freq=hourly

Run Details:
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:00:00.177 -0400
 Job run slave process ID: 9023
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 22:00:01.305 -0400
Job run slave process ID: 59526
…
Global restore point create job status: SUCCEEDED
 Job run actual start time: 2020-07-27 15:28:37.603 -0400
 Job run slave process ID: 44227
 …
 Global restore point create job status: SUCCEEDED
 Job run actual start time: 2020-07-27 17:28:38.251 -0400
 Job run slave process ID: 57611

Retrieving scheduler backup job status for database "rdbmsb_cdb2_pdb1" ...
Jobs:
 Incremental Level 0 backup job is enabled
 Job schedule start time: 2020-07-28 00:00:00.000 -0400
 Job repeat interval: freq=daily;interval=1
 Incremental Level 1 backup job is enabled
 Job schedule start time: 2020-07-28 00:00:00.000 -0400
 Job repeat interval: freq=minutely;interval=60

Run Details:
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:00:00.485 -0400
 Job run slave process ID: 9056
 …
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-27 14:33:42.702 -0400
 Job run slave process ID: 9056
 Incremental Level 0 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-27 00:00:01.469 -0400
 Job run slave process ID: 75176

The following command lists the scheduler backup job state and the details of the job runs in
the time frame from 2020/07/26 12:00:00 to 07/27 00:00 from the SDB catalog and the primary
shard “rdbmsb_cdb2_pdb1”:

GDSCTL> status backup -start_time "2020-07-26 12:00:00" -end_time "2020-07-27
00:00:00" -catpwd -shard catalog,rdbmsb_cdb2_pdb1;
"GSMCATUSER" password:***

Retrieving scheduler backup job status for database "rdbms" ...
Jobs:
 Incremental Level 0 backup job is enabled
 Job schedule start time: 2020-07-27 00:00:00.000 -0400
 Job repeat interval: freq=daily;interval=1

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 61

 Incremental Level 1 backup job is enabled
 Job schedule start time: 2020-07-27 00:00:00.000 -0400
 Job repeat interval: freq=minutely;interval=60
 Globa1 restore point create job is enabled
 Job schedule start time: 2020-07-27 23:59:55.960 -0400
 Job repeat interval: freq=hourly

Run Details:
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:00:00.177 -0400
 Job run slave process ID: 9023
 …
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 23:50:00.293 -0400
 Job run slave process ID: 74171
 Globa1 restore point create job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:28:38.263 -0400
 Job run slave process ID: 11987
 …
 Globa1 restore point create job status: SUCCEEDED
 Job run actual start time: 2020-07-26 23:28:37.577 -0400
 Job run slave process ID: 69451

Retrieving scheduler backup job status for database "rdbmsb_cdb2_pdb1" ...
Jobs:
 Incremental Level 0 backup job is enabled
 Job schedule start time: 2020-07-28 00:00:00.000 -0400
 Job repeat interval: freq=daily;interval=1
 Incremental Level 1 backup job is enabled
 Job schedule start time: 2020-07-28 00:00:00.000 -0400
 Job repeat interval: freq=minutely;interval=60

Run Details:
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:00:00.485 -0400
 Job run slave process ID: 9056
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 22:11:50.931 -0400
 Job run slave process ID: 9056

Listing Backups
Use GDSCTL LIST BACKUP to list backups usable to restore a sharded database or a list of
shards to a specific global restore point.

The command requires the shard catalog database to be open, but the shards can be in any of
the started states: nomount, mount, or open.

You can specify a list of shards to list backups for in the command. You can also list backups
usable to restore the control files of the listed databases and list backups for standby shards.

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 14 of 61

The following example shows the use of the command to list the backups from shard
cdb2_pdb1 recoverable to restore point BACKUP_BEFORE_DB_MAINTENANCE.

GDSCTL> LIST BACKUP -shard cdb2_pdb1 -restorepoint
BACKUP_BEFORE_DB_MAINTENANCE

If option -controlfile is used, LIST BACKUPS will only list the backups usable to restore the
control files of the specified shards. If option -summary is used, the backup will be listed in a
summary format.

GDSCTL> list backup -shard cat1, cat2 -controlfile -summary

Validating Backups
Run the GDSCTL VALIDATE BACKUP command to validate sharded database backups against a
specific global restore point for a list of shards. The validation confirms that the backups to
restore the databases to the specified restore point are available and not corrupted.

The shard catalog database must be open, but the shard databases can be either mounted or
open. If the backup validation is for database control files, the shards can be started nomount.

The following example validates the backups of the control files from the shard catalog
databases recoverable to restore point BACKUP_BEFORE_DB_MAINTENANCE.

GDSCTL> VALIDATE BACKUP -shard cat1,cat2 -controlfile -restorepoint
BACKUP_BEFORE_DB_MAINTENANCE

Backup validation for shards are done one shard a time sequentially.

Deleting Backups
Use the GDSCTL DELETE BACKUP command to delete backups from the recovery repository.

The DELETE BACKUP command deletes the sharded database backups identified with specific
tags from the recovery repository. It deletes the records in the recovery database for the
backups identified with the provided tags, and, if the media where the files are located is
accessible, the physical files from the backup sets from those backups. This is done for each
of the target databases. You will be prompted to confirm before the actual deletion starts.

To run this command, the shard catalog database must be open, but the shard databases can
be either mounted or open.

The following is an example of deleting backups with tag odb_200414205057124_0400 from
shard cdb2_pdb1.

GDSCTL> DELETE BACKUP -shard cdb2_pdb1 -tag ODB_200414205057124_0400
"GSMCATUSER" password:

This will delete identified backups, would you like to continue [No]?y

Deleting backups for database "cdb2_pdb1" ...

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 15 of 61

Creating and Listing Global Restore Points
A restore point for a sharded database that we call a global restore point, actually maps to a
set of normal restore points in the individual primary databases in a sharded database.

These restore points are created at a common SCN across all of the primary databases in the
sharded database. The restore points created in the primary databases are automatically
replicated to the Data Guard standby databases. When the databases are restored to this
common SCN, the restored sharded database is guaranteed to be in a consistent state.

The global restore point creation must be mutually exclusive with sharded database chunk
movement. When the job runs, it first checks whether any chunk moves are going on and waits
for them to finish. Sometimes the chunk moves might take a long time. Also, new chunk moves
can start before the previous ones have finished. In that case the global restore point creation
job might wait for a very long time before there is an opportunity to generate a common SCN
and create a global restore point from it. Therefore, it is not guaranteed that a global restore
point will be created every hour.

To create the global restore point, run the GDSCTL command CREATE RESTOREPOINT as shown
here.

GDSCTL> CREATE RESTOREPOINT

The global restore point creation job is configured on the shard catalog database. The name of
the job is AUTOMATED_SDB_RESTOREPOINT_JOB. Full logging for this job is enabled.

You can optionally enter a name for the restore point by using the -name option as shown here.

GDSCTL> CREATE RESTOREPOINT -name CUSTOM_SDB_RESTOREPOINT_JOB

The job is initially disabled, so you must use GDSCTL ENABLE BACKUP to enable the job. The job
runs every hour and the schedule is not configurable.

To list all global restore points, run LIST RESTOREPOINT.

GDSCTL> LIST RESTOREPOINT

This command lists all of the available global restore points in the sharded database that were
created during the specified time period with SCNs (using the -start_scn and -end_scn
options) in the specified SCN interval (using the -start_time and -end_time options).

The following command lists the available restore points in the sharded database with the SCN
between 2600000 and 2700000.

GDSCTL> LIST RESTOREPOINT -start_scn 2600000 -end_scn 2700000

The command below lists the available restore points in the sharded database that were
created in the time frame from 2020/07/27 00:00:00 to 2020/07/28 00:00:00.

GDSCTL> LIST RESTOREPOINT -start_time "2020-07-27 00:00:00" -end_time
"2020-07-28 00:00:00"

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 16 of 61

Restoring From Backup
The GDSCTL RESTORE BACKUP command lets you restore sharded database shards to a specific
global restore point.

This command is used to restore shard database to a specific global restore point. It can also
be used to restore only the shard database control files. It does not support shard catalog
database restore. You must restore the shard catalog database directly using RMAN.

The typical procedure for restoring a sharded database is:

1. List the available restore points.

2. Select a restore point to validate the backups.

3. Restore the databases to the selected restore point.

You should validate the backups for a shard against the selected restore point to verify that all
the needed backups are available before you start to restore the shard to the restore point.

Note that you are not prohibited from restoring the shard catalog or a specific shard to an
arbitrary point in time. However, doing so may put that target in an inconsistent state with the
rest of the sharded database and you may need to take corrective action outside of the restore
operation.

The database to be restored must be in NOMOUNT state. This command alters the database
to MOUNT state after it has restored the control file.

The RESTORE BACKUP command requires the shard catalog database to be open.

If the shard catalog database itself needs to be restored, you must logon to the shard catalog
database host and restore the database manually using RMAN. After the shard catalog
database has been successfully restored and opened, you then use the RESTORE BACKUP
command to restore the list of shards.

For data file restore, the shards must be in MOUNT state, but if the command is to restore the
control files, the shard databases must be started in NOMOUNT state. To bring the databases
to the proper states will be a manual step.

To restore the shard database control files, the database must be started in nomount mode.
The control files will be restored from AUTOBACKUP. To restore the database data files, the
database must be mounted. The shard catalog database must be open for this command to
work.

The following example restores the control files of shard cdb2_pdb1 to restore point
BACKUP_BEFORE_DB_MAINTENANCE.

GDSCTL> RESTORE BACKUP -shard cdb2_pdb1 -restorepoint
BACKUP_BEFORE_DB_MAINTENANCE –controlfile

The restore operation can be done for the shards in parallel. When the restore for the shards
happens in parallel, you should not close GDSCTL until the command has finished running,
because interrupting the restore operation can result in database corruption or get the sharded
database into an inconsistent state.

Backup validation only logically restores the database while RESTORE BACKUP will do both the
physical database restore and the database recovery. Therefore, after RESTORE BACKUP is
done, usually the restored the databases need to be opened with the resetlogs option.

Chapter 12
Backing Up and Recovering a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 17 of 61

After the database restore is completed, you should open the database and verify that the
database has been restored as intended and it is in a good state.

Propagation of Parameter Settings Across Shards
When you configure system parameter settings at the shard catalog, they are automatically
propagated to all shards of the sharded database.

Oracle Sharding provides centralized management by allowing you to set parameters on the
shard catalog. Then the settings are automatically propagated to all shards of the sharded
database.

Propagation of system parameters happens only if done under ENABLE SHARD DDL on the shard
catalog, then include SHARD=ALL in the ALTER statement.

SQL>alter session enable shard ddl;
SQL>alter system set enable_ddl_logging=true shard=all;

Note

Propagation of the enable_goldengate_replication parameter setting is not
supported.

Modifying a Sharded Database Schema
When making changes to duplicated tables or sharded tables in a sharded database, these
changes should be done from the shard catalog database.

Before running any DDL operations on a sharded database, enable sharded DDL with

ALTER SESSION ENABLE SHARD DDL;

This statement ensures that the DDL changes will be propagated to each shard in the sharded
database.

The DDL changes that are propagated are commands that are defined as “schema related,”
which include operations such as ALTER TABLE. There are other operations that are
propagated to each shard, such as the CREATE, ALTER, DROP user commands for simplified
user management, and TABLESPACE operations to simplify the creation of tablespaces on
multiple shards.

GRANT and REVOKE operations can be done from the shard catalog and are propagated to each
shard, providing you have enabled shard DDL for the session. If more granular control is
needed you can issue the command directly on each shard.

Operations such as DBMS package calls or similar operations are not propagated. For
example, operations gathering statistics on the shard catalog are not propagated to each
shard.

If you perform an operation that requires a lock on a table, such as adding a not null column, it
is important to remember that each shard needs to obtain the lock on the table in order to
perform the DDL operation. Oracle’s best practices for applying DDL in a single instance apply
to sharded environments.

Chapter 12
Propagation of Parameter Settings Across Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 18 of 61

Multi-shard queries, which are processed on the shard catalog, issue remote queries across
database connections on each shard. In this case it is important to ensure that the user has the
appropriate privileges on each of the shards, whether or not the query will return data from that
shard.

See Also

Oracle Database SQL Language Reference for information about operations used with
duplicated tables and sharded tables

Managing Sharded Database Software Versions
This section describes the version management of software components in the sharded
database configuration. It contains the following topics:

Patching and Upgrading a Sharded Database
Applying an Oracle patch to a sharded database environment can be done on a single shard or
all shards; however, the method you use depends on the replication option used for the
environment and the type of patch being applied.

Oracle Sharding uses consolidated patching to update a shard director (GSM)
ORACLE_HOME, so you must apply the Oracle Database release updates to the
ORACLE_HOME to get security and Global Data Services fixes.

Patching a Sharded Database

Most patches can be applied to a single shard at a time; however, some patches should be
applied across all shards. Use Oracle’s best practices for applying patches to single shards just
as you would a non-sharded database, keeping in mind the replication method that is being
used with the sharded database. Oracle opatchauto can be used to apply patches to multiple
shards at a time, and can be done in a rolling manner. Data Guard configurations are applied
one after another, and in some cases (depending on the patch) you can use Standby First
patching.

Note

Because logical standbys are not supported in Oracle Sharding, rolling upgrades may
run into a DDL recovery issue because a physical standby database becomes a
'transient logical standby' during a rolling upgrade. To avoid this issue, follow the steps
in Performing a Rolling Upgrade.

When using Oracle GoldenGate be sure to apply patches in parallel across the entire
shardspace. If a patch addresses an issue with multi-shard queries, replication, or the sharding
infrastructure, it should be applied to all of the shards in the sharded database.

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Chapter 12
Managing Sharded Database Software Versions

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 19 of 61

Upgrading a Sharded Database

Upgrading the Oracle Sharding environment is not much different from upgrading other Oracle
Database and global service manager environments; however, the components must be
upgraded in a particular sequence such that the shard catalog is upgraded first, followed by the
shard directors, and finally the shards.

See Also

Oracle OPatch User's Guide

Oracle Database Global Data Services Concepts and Administration Guide for
information about upgrading the shard directors.

Oracle Data Guard Concepts and Administration for information about patching and
upgrading in an Oracle Data Guard configuration.

Performing a Rolling Upgrade
Because logical standbys are not supported in Oracle Sharding, rolling upgrades may run into
a DDL recovery issue because a physical standby database becomes a 'transient logical
standby' during a rolling upgrade.

To avoid this issue, perform the following steps.

1. Shut down the shard catalog database.

Shutting down the shard catalog database prevents any shard director (GSM) from
becoming the master, and the catalog will not try to apply any DDL in this state, but the
shard director will continue in steady-state allowing production applications to connect and
run.

2. Perform the rolling upgrade.

3. When the rolling upgrade is complete, start up the shard catalog database.

Note

During a rolling upgrade, some operations such as automatic failover may not be
available while the shard catalog is shut down.

Upgrading Sharded Database Components
The order in which sharded database components are upgraded is important for limiting
downtime and avoiding errors as components are brought down and back online.

Before upgrading any sharded database components you must

• Complete any pending MOVE CHUNK operations that are in progress.

• Do not start any new MOVE CHUNK operations.

• Do not add any new shards during the upgrade process.

1. Upgrade the shards with the following points in mind.

Chapter 12
Managing Sharded Database Software Versions

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 20 of 61

• For system-managed sharded databases: upgrade each set of shards in a Data Guard
Broker configuration in a rolling manner.

• For user-defined sharded databases: upgrade each set of shards in a shardspace in a
rolling manner.

• For composite sharded databases: in a given shardspace, upgrade each set of shards
in a Data Guard Broker configuration in a rolling manner.

• If you are upgrading an Oracle Database 18c sharded database configuration
containing pluggable database (PDB) shards, follow the PDB-specific upgrade
instructions in Compatibility and Migration from Oracle Database 18c.

2. Upgrade the shard catalog database.

 For best results the catalog should be upgraded using a rolling database upgrade;
however, global services will remain available during the upgrade if the catalog is
unavailable, although service failover will not occur.

3. Upgrade any shard directors that are used to run GDSCTL clients, and which do not also
run a global service manager server, before you update the shard directors running global
service managers.

4. For shard directors running global service managers, do the following steps on one global
service manager at a time.

To ensure zero downtime, at least one shard director server should always be
running. Shard director servers at an earlier version than the catalog will continue to
operate fully until catalog changes are made.

a. Stop one of the global service managers to be upgraded.

b. Install the 21c global service manager kit

c. Copy the tnsnames.ora,gsm.ora,gsm_observer_1.dat,gsmwallt directory from the
previous version to the new version.

d. Connect to the new version GDSCTL and start the global service manager which was
stopped in the old version

e. Stop the old global service manager and start it the new global service manager.

See Also

Oracle Data Guard Concepts and Administration for information about using
DBMS_ROLLING to perform a rolling upgrade.

Oracle Data Guard Concepts and Administration for information about patching and
upgrading databases in an Oracle Data Guard configuration.

Post-Upgrade Steps for Oracle Sharding 21c
If you have a fully operational Oracle Sharding environment in a release earlier than 21c, no
wallets exist, and no deployment will be done by Oracle Sharding after an upgrade to 21c to
create them. You must perform manual steps to create the wallets.

Note

The steps must be followed in EXACTLY this order.

Chapter 12
Managing Sharded Database Software Versions

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 21 of 61

1. Modify the GSMCATUSER password on the shard catalog database using ALTER USER, which
automatically creates the wallet on the primary shard catalog.

SQL> alter user gsmcatuser identified by gsmcatuser_password;

This statement creates a shard wallet file if it does not exist, but does not change the
password if the previous password is re-used.

You can keep the same password for both GSMCATUSER accounts, but you must run ALTER
USER to create the wallet.

2. If the GSMCATUSER password was changed, run GDSCTL modify catalog to update the
Oracle Sharding system with the new GSMCATUSER password.

This step is not necessary if the GSMCATUSER password was not changed.

3. If the GSMCATUSER password was changed, also run GDSCTL modify gsm for each shard
director (GSM) to inform the shard director of the new password.

Again, this step is not necessary if the GSMCATUSER password was not changed.

4. Modify the GSMUSER password on each primary shard using ALTER USER, which
automatically creates the wallet on that shard.

SQL> alter user gsmuser identified by gsmuser_password;

This statement creates a shard wallet file if it does not exist, but does not change the
password if the previous password is re-used.

You can keep the same password for both GSMCATUSER accounts, but you must run ALTER
USER to create the wallet.

5. If the GSMUSER password was changed, run GDSCTL modify shard on each primary shard
to update the Oracle Sharding system with the new GSMUSER password for that shard.

This step is not necessary if the GSMUSER password was not changed.

6. Run GDSCTL sync database on each shard to populate the shard wallet file with the
required information.

7. After completing all of the above steps, locate the primary wallet file using the method
described below, and copy this file to the wallet_root location on the standby database.

All standby databases need an identical copy of the wallet file corresponding to its primary.

This also applies to standby shard catalogs (if any).

Before copying the wallet, you should check that wallet_root has been set on the standby
database, if it has not already been set, then set it before copying the wallet file.

Note that wallet_root is a global parameter that can only be set in the container database
(CDB).

The wallets themselves are created on the shard catalog, and any shard catalog replicas,
during the GDSCTL create shardcatalog command, and on the shards during the GDSCTL
deploy command.

All primary databases and their replicas must have a sharding-specific wallet file present to
ensure proper operation. The location of the wallet files is under the directory specified by
the wallet_root database initialization parameter. If it is not set before running create
shardcatalog or deploy, wallet_root is set to $ORACLE_BASE/admin/db_unique_name on
either the shard catalog or shards, respectively.

Chapter 12
Managing Sharded Database Software Versions

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 22 of 61

For example, assume the following after logging into the shard catalog or into a shard:

SQL> select guid from v$pdbs where con_id =
sys_context('userenv','con_id');

GUID

C23E7C78D5B77D50E0537517C40ACE4A

SQL> select value from v$parameter where name='wallet_root';

VALUE

your-path-to-keystore

Given these values, the sharding-specific wallet file name is

your-path-to-keystore/C23E7C78D5B77D50E0537517C40ACE4A/shard/cwallet.sso

Compatibility and Migration from Oracle Database 18c
When upgrading from an Oracle Database 18c installation which contains a single PDB shard
for a given CDB, you must update the shard catalog metadata for any PDB.

Specifically, in 18c, the name of a PDB shard is the DB_UNIQUE_NAME of its CDB; however, in
later Oracle Database releases, the shard names are db_unique_name_of_CDB_pdb_name.

To update the catalog metadata to reflect this new naming methodology, and to also support
the new GSMROOTUSER account as described in About the GSMROOTUSER Account, perform
the following steps during the upgrade process as described in Upgrading Sharded Database
Components.

1. After upgrading any CDB that contains a PDB shard, ensure that the GSMROOTUSER
account exists, is unlocked, has been assigned a password, and has been granted
SYSDG, SYSBACKUP, and gsmrootuser_role privileges.

The following SQL statements in SQL*Plus will successfully set up GSMROOTUSER while
connected to the root container (CDB$ROOT) of the CDB.

SQL> alter session set "_oracle_script"=true;
Session altered.

SQL> create user gsmrootuser;
User created.

SQL> alter user gsmrootuser identified by new_GSMROOTUSER_password
 account unlock;
User altered.

SQL> grant sysdg, sysbackup, gsmrootuser_role to gsmrootuser
container=current;
Grant succeeded.

SQL> alter session set "_oracle_script"=false;
Session altered.

Chapter 12
Managing Sharded Database Software Versions

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 23 of 61

2. After upgrading the catalog database to the desired Oracle Database version, run the
following PL/SQL procedure to update the catalog metadata to reflect the new name for
the PDB shards present in the configuration.

This procedure must be run for each Oracle Database 18c PDB shard.

The first parameter to pdb_fixup is the value of db_unique_name in the CDB that contains
the PDB shard. In Oracle Database 18c, this is the same as the shard name as shown by
gdsctl config shard.

The second parameter is the PDB name of the shard PDB as shown by show con_name in
SQL*Plus when connected to the shard PDB.

The pdb_fixup procedure will update the catalog metadata to make it compatible with the
new naming method for PDB shards.

SQL> connect sys/password as sysdba
Connected.
SQL> set serveroutput on
SQL> execute gsmadmin_internal.dbms_gsm_pooladmin.pdb_fixup('cdb1',
'pdb1');

3. After upgrading all of the shard directors to the desired version, run the following GDSCTL
command once for each CDB in the configuration to inform the shard directors of the
password for the GSMROOTUSER in each CDB.

GDSCTL> modify cdb -cdb CDB_name -pwd new_GSMROOTUSER_password

Downgrading a Sharded Database
Oracle Sharding does not support downgrading.

Sharded database catalogs and shards cannot be downgraded.

Managing Oracle Sharded Database with Enterprise Manager
Cloud Control

Oracle Enterprise Manager Cloud Control lets you discover, monitor, and manage a sharded
database and its components.

See the following topics for information about sharded database discovery, monitoring, and
management using Enterprise Manager Cloud Control:

• Prerequisite: Enable Sharded Database Metrics

• Prerequisite: Discover the Sharded Database Topology

• Monitoring a Sharded Database with Enterprise Manager Cloud Control

• Overview of Sharded Database Management Using Oracle Enterprise Manager Cloud
Control

• Shard Management

• Chunk Management

• Shard Director Management

• Region Management

Chapter 12
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 24 of 61

• Shardspace Management

• Shardgroup Management

• Services Management

Prerequisite: Enable Sharded Database Metrics
By default sharded database performance metrics are disabled. They can be enabled from the
Enterprise Manager Cloud Console or the monitoring template.

There are two methods of gathering metrics, which require you to follow different setup steps
as explained in each section below.

Using Default Enterprise Manager Database Metrics

By default metrics shown in the Enterprise Manager Cloud Console Sharded Database pages
are the default database metrics, require that you create a metrics query user, and are only
gathered on the shard databases discovered in Enterprise Manager.

The default database metrics do not give you data as frequently as the enhanced sharded
database metrics described later.

Because multi-shard queries are used to gather metrics, you must also create a user that can
access all shards in the sharded database to run the queries.

To use default metrics:

1. Create a new metrics query account on every shard and the shard catalog manually.

create user SHARD_SYS identified by password;
grant connect, create session, gsmadmin_role to SHARD_SYS;
GRANT ALL PRIVILEGES TO SHARD_SYS; /*Needed to get all the schemas stats*/
GRANT SELECT ANY DICTIONARY TO SHARD_SYS; /*Needed to get all the schemas
stats*/

2. Use the same metrics query account credentials to discover the shard catalog and all
shard databases in Enterprise Manager.

See Prerequisite: Discovering the Sharded Database Topology

3. To enable the default metrics:

$emctl set property
 -sysman_pwd password
 -name oracle.sysman.db.ha.sdb.dd.usesdbmetrics
 -value false

Using Enhanced Sharded Database Metrics

With Sharded Database enhanced metrics you can gather information about the shards from
the shard catalog, so it is not required that you discover all of the shard databases in
Enterprise Manager to get complete metrics for the sharded database topology.

To use enhanced metrics:

1. Discover the shard catalog in Enterprise Manager.

See Prerequisite: Discovering the Sharded Database Topology

Chapter 12
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 25 of 61

2. Enable the Sharded Database metrics using the Console or using the monitoring template.

$emctl set property
 -sysman_pwd password
 -name oracle.sysman.db.ha.sdb.dd.usesdbmetrics
 -value true

Prerequisite: Discover the Sharded Database Topology
In Enterprise Manager Cloud Control, you can discover the shard catalog and optionally the
shard databases, then add the shard directors, sharded databases, shardspaces, and
shardgroups using guided discovery.

As a prerequisite to managing the sharded database in Cloud Control, you must first discover
at minimum the shard director hosts and the shard catalog database. Optionally to manage all
of the shards in the sharded database, you must also discover the shard databases.

Because the shard catalog database and each of the shards is a database itself, you can use
standard database discovery procedures.

Managing the shards is only possible when the individual shards are discovered using
database discovery. Discovering the shards is optional to discovering a sharded database,
because you can have a sharded database configuration without the shards.

1. In Enterprise Manager Cloud Control, select Setup, choose Add Target, then choose Add
Target Manually.

2. In the Add Targets Manually page, click Add Using Guided Process in the Add Non-Host
Target Using Guided Process panel.

3. In the Add Using Guided Process dialog, locate and select Sharded Database, and click
Add.

4. In the Add Sharded Database: Catalog Database page, click the browse icon next to
Catalog Database to locate the shard catalog database.

5. In the Select Targets dialog, click the target name corresponding to the catalog database
and click Select.

The Catalog Database and Monitoring Credentials fields are filled in if they exist. The
monitoring credential is used to query the shard catalog database to get the configuration
information.

The monitoring user (usually DBSNMP) should be granted the GDS_CATALOG_SELECT role
and has read only privileges on the shard catalog repository tables.

SQL> grant GDS_CATALOG_SELECT to dbsnmp;

Click Next to proceed to the next step.

In the Add Sharded Database: Components page you are shown information about the
sharded database that is managed by the catalog database, including the sharded
database name, its domain name, the sharding method employed on the sharded
database, and a list of discovered shard directors.

6. To set monitoring credentials on a shard director, click the plus sign icon on the right side
of the list entry.

A dialog opens allowing you to set the credentials.

Click OK to close the dialog, and click Next to proceed to the next step.

Chapter 12
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 26 of 61

7. In the Add Sharded Database: Review page, verify that all of the shard directors,
shardspaces, and shardgroups were discovered.

8. Click Submit to finalize the steps.

An Enterprise Manager Deployment Procedure is submitted and you are returned to the
Add Targets Manually page.

At the top of the page you will see information about the script that was submitted to add
all of the discovered components to Cloud Control.

9. Click the link to view the provisioning status of the sharded database components.

In another browser window you can go to the Cloud Control All Targets page to observe
the status of the sharded database.

When the target discovery procedure is finished, sharded database targets are added in Cloud
Control. You can open the sharded database in Cloud Control to monitor and manage the
components.

Overview of Sharded Database Management with Oracle Enterprise
Manager Cloud Control

Your sharded database can be configured, deployed, monitored, and managed using Oracle
Enterprise Manager Cloud Control

Any discovered sharded database objects can be found in the All Targets page in Enterprise
Manager.

Shown below are the Oracle Sharding objects Shard Director and Shard Database in the
Databases target type category.

Shown below are the Oracle Sharding objects Shardgroup and Shardspace in the Groups,
Systems and Services target type category.

Chapter 12
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 27 of 61

On the Sharded Database page, you can access most of the management tools from the
Sharded Database menu, such as Add Primary Shards, Add Standby Shards, and Deploy
Shards, as shown below.

Chapter 12
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 28 of 61

Management tools for other sharded database objects are located in the menus of other
Sharded Database object pages, which are described in the procedures requiring that access
to those pages.

Chapter 12
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 29 of 61

Monitoring a Sharded Database
Sharded databases can be monitored using Enterprise Manager Cloud Control or GDSCTL.

See the following topics to use Enterprise Manager Cloud Control or GDSCTL to monitor
sharded databases.

Querying System Objects Across Shards
Use the SHARDS() clause to query Oracle-supplied tables to gather performance, diagnostic,
and audit data from V$ views and DBA_* views.

The shard catalog database can be used as the entry point for centralized diagnostic
operations using the SQL SHARDS() clause. The SHARDS() clause allows you to query the same
Oracle supplied objects, such as V$, DBA/USER/ALL views and dictionary objects and tables,
on all of the shards and return the aggregated results.

As shown in the examples below, an object in the FROM part of the SELECT statement is
wrapped in the SHARDS() clause to specify that this is not a query to local object, but to objects
on all shards in the sharded database configuration. A virtual column called SHARD_ID is
automatically added to a SHARDS()-wrapped object while processing a multi-shard query to
indicate the source of every row in the result. The same column can be used in predicate for
pruning the query.

A query with the SHARDS() clause can only be run on the shard catalog database.

Examples

The following statement queries performance views

SQL> SELECT shard_id, callspersec FROM SHARDS(v$servicemetric)
 WHERE service_name LIKE 'oltp%' AND group_id = 10;

The following statement gathers statistics.

SQL> SELECT table_name, partition_name, blocks, num_rows
 FROM SHARDS(dba_tab_partition) p
 WHERE p.table_owner= :1;

The following example statement shows how to find the SHARD_ID value for each shard.

SQL> select ORA_SHARD_ID, INSTANCE_NAME from SHARDS(sys.v_$instance);

 ORA_SHARD_ID INSTANCE_NAME
 ------------ ----------------
 1 sh1
 11 sh2
 21 sh3
 31 sh4

Chapter 12
Monitoring a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 30 of 61

The following example statement shows how to use the SHARD_ID to prune a query.

SQL> select ORA_SHARD_ID, INSTANCE_NAME
 from SHARDS(sys.v_$instance)
 where ORA_SHARD_ID=21;

 ORA_SHARD_ID INSTANCE_NAME
 ------------ ----------------
 21 sh3

See Also

Oracle Database SQL Language Reference for more information about the SHARDS()
clause.

Monitoring a Sharded Database with Enterprise Manager Cloud Control
Sharded database targets are found in the All Targets page in Enterprise Manager Cloud
Control.

To monitor sharded database components you must first enable statistics gathering and then
discover the sharded database. See Prerequisite: Enable Sharded Database Metrics and
Prerequisite: Discover the Sharded Database Topology for more information.

Sharded Database Home Page
The target home page for a sharded database shows you a summary of the sharded database
components and their statuses.

Summary

The Summary pane, in the top left of the page, shows the following information:

• Sharded Database Name: Sharded database name

• Sharded Database Domain Name: Sharded database domain name

• Catalog Database: Shard catalog database name. You can click the name to view more
information about the shard catalog database.

• Catalog Version: Oracle Database version of the shard catalog

• Sharding Type: Sharding method used to shard the database. This could be System-
managed, User-defined, or Composite.

• Replication Type: Replication technology used for high availability.

• Shard Directors: Number and status of the shard directors

• Master Shard Director: Primary shard director name. You can click the shard director
name to view more information about the primary shard director, including the shard
director (global service manager) version, current status, ports used, and incidents.

Chapter 12
Monitoring a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 31 of 61

Members

The Members pane, in the upper right of the page, shows some relevant information about
each of the sharded database components.

The pane is divided into tabs for each component: Shardspaces, Shardgroups, Shard
Directors, Shards, Catalog Databases, and Global Services. Click on a tab to view the
information about each type of component

• Shardspaces:

Shardspaces are only displayed for databases sharded with the user-defined or composite
sharding method.

The Shardspaces tab displays the shardspace names, status, number of chunks, and
protection mode. The shardspace names can be clicked to reveal more details about the
selected shardspace.

You can click the shardspace name to view more details, including information about the
shardgroups within the shardspace (for composite sharding) and incidents.

• Shardgroups:

Shardgroups are only displayed for databases sharded with the system-managed or
composite sharding method.

The Shardgroups tab displays the shardgroup names, status, the shardspace to which it
belongs, the number of chunks, Data Guard role, and the region to which it belongs.

You can click the shardgroup name to reveal more details about the selected component,
including information about the shards within the shardgroup, and incidents.

Note that for a database sharded using the system-managed sharding method,
shardspaceora is the shardspace created by Oracle Sharding to contain all of the
shardgroups. It is managed by Oracle Sharding and will not appear in the Shardspaces
tab.

• Shard Directors:

The Shard Directors tab displays the shard director names, status, region, host, and
Oracle home.

You can click the shard director names to reveal more details about the selected shard
director, including the shard director (global service manager) version, current status, ports
used, and incidents.

You can also click the shard director host to view more details about the host system.

• Shards:

The Shards tab displays the shard names, Data Guard roles, target type, target status, the
shardspaces and shardgroups to which they belong, the regions to which they belong, and
the state (deployed or .

In the Names column, you can expand the primary shards to display the information about
their corresponding standby shards.

You can hover the mouse over the Deployed column icon and the deployment status
details are displayed. You can click on the shard, shardspace, and shardgroup names to
reveal more details about the selected component.

• Catalog Databases

The Catalog Databases tab lists the shard catalog databases and displays the shard
catalog database name, type, status, and role for each catalog database.

Chapter 12
Monitoring a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 32 of 61

You can click on the catalog database name to view more information about the database.

• Global Services:

The Global Services tab displays the name, status, and Data Guard role of the sharded
database global services. Above the list is shown the total number of services and an icon
showing how many services are in a particular status. You can hover your mouse pointer
over the icon to read a description of the status icon.

Incidents

The Incidents pane displays messages and warnings about the various components in the
sharded database environment. More information about how to use this pane is in the Cloud
Control online help.

Sharded Database Menu

The Sharded Database menu, located in the top left corner, provides you with access to tools
to manage the sharded database components.

Target Navigation

The Target Navigation pane gives you easy access to more details about any of the
components in the sharded database.

Clicking the navigation tree icon on the upper left corner of the Sharded Database home page
opens the Target Navigation pane. This pane shows all of the discovered components in the
sharded database in tree form.

Expanding a shardspace reveals the shardgroups in them. Expanding a shardgroup reveals
the shards in that shardgroup.

Any of the component names can be clicked to view more details about them.

Chapter 12
Monitoring a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 33 of 61

Data Distribution and Performance Page
In Enterprise Manager Cloud Control, the Sharded Database page, Data Distribution and
Performance, gives you an overall view of the data in your sharded database and how the
shards are performing.

Overview

The Overview section at the top of the page displays number of regions, shardspaces,
shardgroups, shards (broken down into primary and standby), chunks, and services in the
sharded database configuration that are represented by the data in the chart. If you apply a
filter to the chart these numbers change.

Data Distribution and Performance Chart Views

The two icons at the top left corner of the chart toggle the chart between two views:

Figure 12-1 Home and Top Shards Icons

Chapter 12
Monitoring a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 34 of 61

• Home: is the default view. Home displays data for all shards in the sharded database by
default. You can filter the chart and change the metrics on display as described below.

• Top Shards: shows you charts for the top 5, 10, or 20 shards for certain metrics.

Shard Blocks

The color-coded chart displays data by shard. Each shard is indicated by a block.

Figure 12-2 Shard Block with Mouse Over Text

Each block is labeled with the shard name. Moving the mouse over a block displays the Shard
name, Data Guard Role, Number of Chunks in the shard, and the Service Time (msec/call).

Note

If you are using default database metrics then you will not see data from any
undiscovered shards in the chart.
If you are using enhanced metrics, the data for all shards is displayed because the
shards are discovered by the shard catalog.

Home View Summary Icons

The row of icons above the chart display the following information:

Chapter 12
Monitoring a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 35 of 61

Figure 12-3 Home View Summary Icons

• Up: (Green arrow pointing up) Number of shard databases that are up

• Down: (Red arrow pointing down) Number of shards that are down

• Unmonitored: (Yellow arrow with "X") Number of shards that are unmonitored. This is the
number of shards not discovered by Enterprise Manager.

• Other: (Yellow gear with question mark "?")Sharded database targets discovered in
Enterprise Manager, but that have some issue with target monitoring, such as an
unreachable agent, or an availability evaluation error.

• Critical: (Red circle with "X") Number of critical incidents

• Warning: (Yellow triangle with exclamation point "!") Number of warning incidents

Chart View Controls

Compare metrics on each of the shards by size and color of the blocks in the chart.

Figure 12-4 Chart View Controls

• View Size By: changes the size distribution of the blocks by the metric selected

• View Color By: changes the comparative color of the blocks by the metric selected

By default, the colors are light, medium, and dark blue, which indicates that the thresholds
for the lightest and darkest color categories are set to arbitrary Enterprise Manager
defaults.

Click Configure Threshold (button with three dots) to set custom thresholds for low and
high categories in each metric. Charts configured with custom thresholds are shown in a
different color spectrum with green=low, yellow=medium, and red=high.

• Tree Map Table View: (button with table at the top right corner of the chart) displays a
table view of the data shown in the chart

Filters

Click the hamburger icon at the top left corner of the chart to apply filters to the data.

Figure 12-5 Filters Icon

Chapter 12
Monitoring a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 36 of 61

• Shard Search: Filter by shard name. You can use an asterisk (*) to select a group of
shards with matching name patterns.

• Key Search: Lets you enter a shard key value to view the shards that contain data with
that key. In the resulting chart you can right-click a block and select Shard-Level Data
Distribution to drill down into a particular shard.

• SQL ID Search: Display which shards are processing a query by the SQL ID for the query,
which you can find in the V$SQL_SHARD view in the catalog database.

• Sort By: Sort the blocks in the chart by size in the default tiled view, in a sequence of bars,
or show only the top or bottom 5 blocks.

• Filter By: Lets you display only shards in the specified Role, Shardgroup, or Service.

Hide Inactive Shards: When using the Service filter, you will see all of the shards;
however, shards on which the service is not running are shown in grey (inactive), and you
can use the checkbox to hide the inactive shards.

• Group By: Toggles that display aggregates for the group, which is indicated by a box line
around the group of shards.

– Shardgroup displays a shardgroup box at the top of the grouping, which displays
aggregate info about the shardgroup on hover, and you can drill down for shardgroup-
based data.

– Region displays a region box at the top of the group, which displays aggregate info
about the region on hover.

– Data Guard Aggregate Group groups each shard and its standbys as a single entity,
so that you can see the data set being handled by a particular shard and its standbys
as a whole.

Top Shards View

Click the Top Shards button on the left side of the chart to view graphs with metrics on the
shards with the highest Data Size, Number of Chunks, Throughput, and Service Time.

Chapter 12
Monitoring a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 37 of 61

Use the View list at the top right corner of the view to display the top 5, 10, or 20 shards in
each graph.

Monitoring a Sharded Database with GDSCTL
There are numerous GDSCTL CONFIG commands that you can use to obtain the health status of
individual shards, shardgroups, shardspaces, and shard directors.

Monitoring a shard is just like monitoring a normal database, and standard Oracle best
practices should be used to monitor the individual health of a single shard. However, it is also
important to monitor the overall health of the entire sharded environment. The GDSCTL
commands can also be scripted and through the use of a scheduler and can be done at regular
intervals to help ensure that everything is running smoothly.

See Also

Oracle Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL CONFIG commands

Chapter 12
Monitoring a Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 38 of 61

Shard Management
You can manage shards in your Oracle Sharding deployment with Oracle Enterprise Manager
Cloud Control and GDSCTL.

The following topics describe shard management concepts and tasks:

About Adding Shards
New shards can be added to an existing sharded database environment to scale out and to
improve fault tolerance.

For fault tolerance, it is beneficial to have many smaller shards than a few very large ones. As
an application matures and the amount of data increases, you can add an entire shard or
multiple shards to the sharded database to increase capacity.

When you add a shard to a sharded database, if the environment is sharded by consistent
hash (system-managed), then chunks from existing shards are automatically moved to the new
shard to rebalance the sharded environment.

When using user-defined sharding, populating a new shard with data may require manually
moving chunks from existing shards to the new shard using the GDSCTL split chunk and
move chunk commands.

Oracle Enterprise Manager Cloud Control can be used to help identify chunks that would be
good candidates to move, or split and move to the new shard.

When you add a shard to the environment, verify that the standby server is ready, and after the
new shard is in place take backups of any shards that have been involved in a move chunk
operation.

Work Flow for Adding Shards
Task 1: Create the shard databases

Before you add new shards to the sharded database configuration, you must install the Oracle
Database software on the shard host systems and configure new databases for each primary
and standby shard. Following these steps, referring to the linked topics for details:

1. Install the Oracle Database Software

2. Create the Shard Databases

Task 2: Validate the shard databases

Validate the shard database to verify that all of the shard database requirements have been
met.

• Validate the Shard Database using SQL*Plus

• Validating a Shard using Enterprise Manager

Task 3: Add the shard databases to the configuration

Add each primary and standby shard to the sharded database configuration.

• Add the Shard CDBs and Add the Shard PDBs using GDSCTL

• Adding Primary Shards and Adding Standby Shards using Enterprise Manager

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 39 of 61

Task 4: Deploy the updated sharded database configuration

The final task is to deploy the updated sharded database configuration with the new shard and
its standbys that you added.

• Deploy the Sharding Configuration using GDSCTL

• Deploying Shards using Enterprise Manager
Note that using Enterprise Manager sharded database management tools, you can
optionally add and deploy a shard in a single step. However, if you choose not to deploy
when adding the shard to the configuration, then use this procedure to deploy it.

Removing a Shard From the Pool
It may become necessary to remove a shard from the sharded database environment, either
temporarily or permanently, without losing any data that resides on that shard.

For example, removing a shard might become necessary if a sharded environment is scaled
down after a busy holiday, or to replace a server or infrastructure within the data center. Prior to
decommissioning the shard, you must move all of the chunks from the shard to other shards
that will remain online. As you move them, try to maintain a balance of data and activity across
all of the shards.

If the shard is only temporarily removed, keep track of the chunks moved to each shard so that
they can be easily identified and moved back once the maintenance is complete.

You can remove shards using GDSCTL or Oracle Enterprise Manager Cloud Control:

• Oracle Database Global Data Services Concepts and Administration Guide for information
about using the GDSCTL REMOVE SHARD command

• Removing a Shard with Oracle Enterprise Manager Cloud Control

Replacing a Shard
If a shard fails, or if you just want to move a shard to a new host for other reasons, you can
replace it using the ADD SHARD -REPLACE command in GDSCTL.

When a shard database fails and the database can be recovered on the same host (using
RMAN backup/restore or other methods), there is no need to replace the shard using the -
replace parameter. If the shard cannot be recovered locally, or for some other reason you want
to relocate the shard to another host or CDB, it is possible to create its replica on the new host.
The sharding configuration can be updated with the new information by specifying the -replace
option in GDSCTL command ADD SHARD.

The following are some cases where replacing a shard using ADD SHARD -REPLACE is
useful.

• The server (machine) where the shard database was running suffered irreparable damage
and has to be replaced

• You must replace a working server with another (more powerful, for example) server

• A shard in a PDB was relocated from one CDB to another

In all of these cases the number of shards and data distribution across shards does not change
after ADD SHARD is run; a shard is replaced with another shard that holds the same data.
This is different from ADD SHARD used without the -replace option when the number of shards
increases and data gets redistributed.

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 40 of 61

Upon running ADD SHARD -REPLACE, the old shard parameters, such as connect_string,
 db_unique_name, and so on, are replaced with their new values. A new database can have
different db_unique_name than the failed one. When replacing a standby in a Data Guard
configuration, the DBID of the new database must match the old one, as Data Guard requires
all of the members of the configuration to have same DBID.

Before Using Replace

Before you use ADD SHARD -REPLACE, verify the following:

• You have restored the database correctly (for example, using RMAN restore or other
method). The new database shard must have the same sharding metadata as the failed
one. Perform basic validation to ensure that you do not accidently provide a connect string
to the wrong shard.

• The shard that failed must have been in a deployed state before failure happened.

• The shard that failed must be down when running the ADD SHARD -REPLACE command.

• Fast-start failover observer must be running, if fast-start failover is enabled (which it is by
default).

Replacing a Shard in a Data Guard Environment

The ADD SHARD -REPLACE command can only be used to replace a standby shard if the primary
is still available. In order to replace a primary shard that failed, wait for one of the remaining
standbys to switch over to the primary role before trying to replace the failed shard.

When a switchover is not possible (primary and all the standbys are down), you must run ADD
SHARD -REPLACE for each member starting with the primary. This creates a new broker
configuration from scratch.

In MAXPROTECTION mode with no standbys available, the primary database shuts down to
maintain the protection mode. In this case, the primary database cannot be opened if the
standby is not available. To handle the replace operation in this scenario, you must first
downgrade Data Guard protection mode using DGMGRL (to MAXAVAILABILITY or
MAXPERFORMANCE) by starting up the database in mounted mode. After the protection
mode is set, open the primary database and perform the replace operation using GDSCTL.
After the replace operation finishes you can revert the protection mode back to the previous
level using DGMGRL.

When replacing a standby in a Data Guard configuration, the DBID of the new database must
match the old one, as Data Guard requires all of the members of the configuration to have
same DBID.

Example 12-1 Example 1: Replacing the primary shard with no standbys in the
configuration

The initial configuration has two primary shards deployed and no standbys, as shown in the
following example. The Availability for shdc is shown as a dash because it has gone down in a
disaster scenario.

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east -

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 41 of 61

To recover, you create a replica of the primary from the backup, using RMAN for example. For
this example, a new shard is created with db_unique_name shdd and connect string inst4.
Now, the old shard, shdc, can be replaced with the new shard, shdd, as follows:

$ gdsctl add shard -replace shdc -connect inst4 -pwd password

DB Unique Name: SHDD

You can verify the configuration as follows:

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdd dbs1 Ok Deployed east ONLINE

Example 12-2 Example 2: Replacing a standby shard

Note that you cannot replace a primary shard when the configuration contains a standby shard.
In such cases, if the primary fails, the replace operation must be performed after one of the
standbys becomes the new primary by automatic switchover.

The initial configuration has two shardgroups: one primary and one standby, each containing
two shards, when the standby, shdd goes down.

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east ONLINE
shdd dbs2 Ok Deployed east -
shde dbs2 Ok Deployed east READ ONLY

Create a new standby. Because the primary is running, this should be done using the RMAN
DUPLICATE command with the FOR STANDBY option. Once the new standby, shdf, is ready,
replace the old shard, shdd, as follows:

$ gdsctl add shard -replace shdd -connect inst6 -pwd password

DB Unique Name: shdf

You can verify the configuration as follows:

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east ONLINE
shde dbs2 Ok Deployed east READ ONLY
shdf dbs2 Ok Deployed east READ ONLY

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 42 of 61

Replacing a Shard in an Oracle GoldenGate Environment

The GDSCTL command option ADD SHARD -REPLACE is not supported with Oracle GoldenGate.

Note

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Common Errors

ORA-03770: incorrect shard is given for replace

This error is thrown when the shard given for the replace operation is not the replica of the
original shard. Specifically, the sharding metadata does not match the metadata stored in the
shard catalog for this shard. Make sure that the database was copied correctly, preferably
using RMAN. Note that this is not an exhaustive check. It is assumed that you created the
replica correctly.

ORA-03768: The database to be replaced is still up: shardc

The database to be replaced must not be running when running the add shard -replace
command. Verify this by looking at the output of GDSCTL command config shard. If the shard
failed but still shows ONLINE in the output, wait for some time (about 2 minutes) and retry.

See Also

Oracle Database Global Data Services Concepts and Administration Guide for
information about the ADD SHARD command.

Converting a Physical Standby to a Snapshot Standby
When using Oracle Data Guard as the replication method for a sharded database, Oracle
Sharding supports only the addition of a primary or physical standby shard; other types of Data
Guard standby databases are not supported when adding a new standby to the sharded
database.

However, a shard that is already part of the sharded database can be converted from a
physical standby to a snapshot standby.

1. Stop all global services on the shard using the GDSCTL command STOP SERVICE.

2. Disable all global services on the shard using the GDSCTL command DISABLE SERVICE.

3. Convert the shard to a snapshot standby using the procedure described in the Oracle Data
Guard documentation Converting a Physical Standby Database into a Snapshot Standby
Database.

At this point, the shard remains part of the sharded database, but will not accept
connections which use the sharding key.

If the database is converted back to a physical standby, the global services can be enabled
and started again, and the shard becomes an active member of the sharded database.

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 43 of 61

Migrating a Non-PDB Shard to a PDB
Do the following steps if you want to migrate shards from a traditional single-instance database
to Oracle multitenant architecture. Also, you must migrate to a multitenant architecture before
upgrading to Oracle Database 21c or later releases.

1. Back up each existing non-PDB shard, and then create a new CDB, and a PDB inside it.

2. Restore each shard to the PDB inside the CDB.

3. Run the GDSCTL ADD CDB command to add the new CDB.

GDSCTL> add cdb -connect cdb_connect_string -pwd gsmrootuser_password

4. Run the GDSCTL ADD SHARD -REPLACE command, specifying the connect string of the PDB,
shard_connect_string, which tells the sharding infrastructure to replace the old location of
the shard with new PDB location.

For system-managed or composite sharding, run ADD SHARD with the parameters shown
here.

GDSCTL> add shard -replace db_unique_name_of_non_PDB -connect
shard_connect_string -pwd gsmuser_password
-shardgroup shardgroup_name -cdb cdb_name

For user-defined sharding, the command usage is slightly different.

GDSCTL> add shard -replace db_unique_name_of_non_PDB -connect
shard_connect_string -pwd gsmuser_password
-shardspace shardspace_name -deploy_as db_mode -cdb cdb_name

Managing Shards with Oracle Enterprise Manager Cloud Control
You can manage database shards using Oracle Enterprise Manager Cloud Control

To manage shards using Cloud Control, they must first be discovered. Because each database
shard is a database itself, you can use standard Cloud Control database discovery procedures.

Shards are managed from within their respective shardgroups. To manage a shard you must
first navigate to the shardgroup which contains the shard you wish to manage. This can be
done from the All Targets page or the Sharded Database page.

In the Shardgroup page, open the Shardgroup menu, located in the top left corner of the
shardgroup target page, and choose Manage Shards.

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 44 of 61

Figure 12-6 Shardgroup Menu

If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

The following topics describe shard management using Oracle Enterprise Manager Cloud
Control:

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 45 of 61

Validating a Shard
Validate a shard prior to adding it to your Oracle Sharding deployment.

You can use Oracle Enterprise Manager Cloud Control to validate shards before adding them
to your Oracle Sharding deployment. You can also validate a shard after deployment to confirm
that the settings are still valid later in the shard life cycle. For example, after a software
upgrade you can validate existing shards to confirm correctness of their parameters and
configuration.

To validate shards with Cloud Control, they should be existing targets that are being monitored
by Cloud Control.

1. In the Shardgroup page, open the Shardgroup menu, located in the top left corner of the
shardgroup target page, and choose Manage Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. In the Manage Shards page, select a shard from the list and click Validate.

4. Click OK to confirm you want to validate the shard.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shard.

When the shard validation script runs successfully check for errors reported in the output.

Adding Primary Shards
You can use Oracle Enterprise Manager Cloud Control to add a primary shards to your Oracle
Sharding deployment.

To add a primary shard using Cloud Control it must be an existing target being monitored by
Cloud Control.

Note

It is highly recommended that you validate a shard before adding it to your Oracle
Sharding environment. You can either use Cloud Control to validate the shard (see
Validating a Shard), or run the DBMS_GSM_FIX.validateShard procedure against the
shard using SQL*Plus (see Validate the Shard Database).

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Add Primary Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. To add and deploy the shards in the same operation, select Deploy All Shards in the
sharded database to deploy all shards added to the sharded database configuration.

The deployment operation validates the configuration of the shards and performs final
configuration steps. Shards can be used only after they are deployed.

4. Click Add.

5. In the Database field of the Shard Details dialog, select the shard database target and
click Select.

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 46 of 61

6. In a composite Oracle Sharding environment you can select also the shardspace to which
to add the shard.

7. Configure any Advanced Settings:

Connect Descriptor (you can use the default Enterprise Manager connect descriptor or
specify another connect descriptor in the Connect Descriptor box)

CPU Utilization Threshold (%)

Disk Threshold (ms)

8. Click OK.

9. Enter the GSMUSER credentials if necessary, then click Next.

10. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the adjacent
field

11. Review the configuration of the shard to be added and click Submit.

12. Click the link in the Information box at the top of the page to view the provisioning status
of the shard.

If you did not select Deploy All Shards in the sharded database in the procedure above,
deploy the shard in your Oracle Sharding deployment as described in Deploying Shards.

Adding Standby Shards
Use Oracle Enterprise Manager Cloud Control to add a standby shards to your Oracle
Sharding deployment.

To add a standby shard using Cloud Control the database must be an existing target being
monitored by Cloud Control.

Note

It is highly recommended that you validate a shard before adding it to your Oracle
Sharding environment. You can either use Cloud Control to validate the shard (see
Validating a Shard), or run the DBMS_GSM_FIX.validateShard procedure against the
shard using SQL*Plus (see Validate the Shard Database).

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Add Standby Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. To add and deploy the shards in the same operation, select Deploy All Shards in the
sharded database to deploy all shards added to the sharded database configuration.

The deployment operation validates the configuration of the shards and performs final
configuration steps. Shards can be used only after they are deployed.

4. In the Primary Shards list, select a primary shard for which the new shard database will
act as a standby.

5. At the top of the Standby Shards list, click Add.

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 47 of 61

6. In the Database field of the Shard Details dialog, select the standby shard.

7. Select the shardgroup to which to add the shard.

Only shardgroups that do not already contain a standby for the selected primary are
shown.

8. Click OK.

9. Enter the GSMUSER credentials if necessary, then click Next.

10. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the adjacent
field

11. Review the configuration of the shard to be added and click Submit.

12. Click the link in the Information box at the top of the page to view the provisioning status
of the shard.

If you did not select Deploy All Shards in the sharded database in the procedure above,
deploy the shard in your Oracle Sharding deployment as described in Deploying Shards.

Deploying Shards
Use Oracle Enterprise Manager Cloud Control to deploy shards that have been added to your
Oracle Sharding environment.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Deploy Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select the Perform Rebalance check box to redistribute data between shards
automatically after the shard is deployed.

If you want to move chunks to the shard manually, uncheck this box.

4. Click Submit.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shard.

Editing a Shard
Oracle Sharding lets you update a shard's CPU Utilization Threshold (%), Disk Threshold (ms),
ONS Port, SCAN Address, Connect Descriptor, and GSMUSER Password in the Manage Shards
page in Oracle Enterprise Management Cloud Control.

1. In the Shardgroup page, open the Shardgroup menu, located in the top left corner of the
shardgroup target page, and choose Manage Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. In the Manage Shards page, select a shard from the list and click Edit.

4. Click OK to save any changes made in the Edit Shard dialog.

Chapter 12
Shard Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 48 of 61

Removing a Shard
Oracle Sharding lets you remove a shard from your sharded database configuration in the
Manage Shards page in Oracle Enterprise Management Cloud Control.

1. In the Shardgroup page, open the Shardgroup menu, located in the top left corner of the
shardgroup target page, and choose Manage Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. In the Manage Shards page, select a shard from the list and click Remove.

Use the Force option to remove the specified shard even if it is inaccessible and/or
contains chunks. Using this option might result in a lower number of replicas or total
unavailability for a certain range of data.

4. Click OK to confirm that you want to remove the shard.

Chunk Management
You can manage chunks in your Oracle Sharding deployment with Oracle Enterprise Manager
Cloud Control and GDSCTL.

The following topics describe chunk management concepts and tasks:

Resharding and Hot Spot Elimination
The process of redistributing data between shards, triggered by a change in the number of
shards, is called resharding. Automatic resharding is a feature of the system-managed
sharding method that provides elastic scalability of a sharded database.

Sometimes data in a sharded database needs to be migrated from one shard to another. Data
migration across shards is required in the following cases:

• When one or multiple shards are added to or removed from a sharded database

• When there is skew in the data or workload distribution across shards

The unit of data migration between shards is the chunk. Migrating data in chunks guaranties
that related data from different sharded tables are moved together.

When a shard is added to or removed from a sharded database, multiple chunks are migrated
to maintain a balanced distribution of chunks and workload across shards.

Depending on the sharding method, resharding happens automatically (system-managed) or is
directed by the user (composite). The following figure shows the stages of automatic
resharding when a shard is added to a sharded database with three shards.

Chapter 12
Chunk Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 49 of 61

Figure 12-7 Resharding a Sharded Database

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

5

6

7

9

10

11

4 8 12

+

1

2

3

5

6

7

9

10

11

4

8

12

A particular chunk can also be moved from one shard to another, when data or workload skew
occurs, without any change in the number of shards. In this case, chunk migration can be
initiated by the database administrator to eliminate the hot spot.

RMAN Incremental Backup, Transportable Tablespace, and Oracle Notification Service
technologies are used to minimize impact of chunk migration on application availability. A
chunk is kept online during chunk migration. There is a short period of time (a few seconds)
when data stored in the chunk is available for read-only access only.

FAN-enabled clients receive a notification when a chunk is about to become read-only in the
source shard, and again when the chunk is fully available in the destination shard on
completion of chunk migration. When clients receive the chunk read-only event, they can
either repeat connection attempts until the chunk migration is completed, or access the read-
only chunk in the source chunk. In the latter case, an attempt to write to the chunk will result in
a run-time error.

Chapter 12
Chunk Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 50 of 61

Note

Running multi-shard queries while a sharded database is resharding can result in
errors, so it is recommended that you do not deploy new shards during multi-shard
workloads.

Moving Chunks
Sometimes it becomes necessary to move a chunk from one shard to another. To maintain
scalability of the sharded environment, it is important to attempt to maintain an equal
distribution of the load and activity across all shards.

As the environment matures in a composite sharded database, some shards may become
more active and have more data than other shards. In order to keep a balance within the
environment you must move chunks from more active servers to less active servers. There are
other reasons for moving chunks:

• When a shard becomes more active than other shards, you can move a chunk to a less
active shard to help redistribute the load evenly across the environment.

• When using range, list, or composite sharding, and you are adding a shard to a
shardgroup.

• When using range, list, or composite sharding, and you a removing a shard from a
shardgroup.

• After splitting a chunk it is often advisable to move one of the resulting chunks to a new
shard.

When moving shards to maintain scalability, the ideal targets of the chunks are shards that are
less active, or have a smaller portion of data. Oracle Enterprise Manager and AWR reports can
help you identify the distribution of activity across the shards, and help identify shards that are
good candidates for chunk movement.

Note

Any time a chunk is moved from one shard to another, you should make a full backup
of the databases involved in the operation (both the source of the chunk move, and
the target of the chunk move.)

You can manage chunks using GDSCTL or Oracle Enterprise Manager Cloud Control:

• Oracle Database Global Data Services Concepts and Administration Guide for information
about using the GDSCTL MOVE CHUNK command

• Moving Chunks with Oracle Enterprise Manager Cloud Control

Chapter 12
Chunk Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 51 of 61

Updating an In-Process Chunk Move Operation
While a MOVE CHUNK operation is in process, you can use the GDSCTL ALTER MOVE command to
suspend, resume, or cancel any or all chunks scheduled to be moved (where the move is not
yet started) in the operation.

There are three variations on this command: -SUSPEND is used to postpone chunk migration
operation, -RESUME is used to restart the move process, and -CANCEL cancels chunk migration.

In addition, the -CHUNK and -SHARD options are used to filter the list of scheduled chunk moves.
You can use the CONFIG CHUNKS -SHOW_RESHARD command to get a list of scheduled chunk
moves.

Suspending Chunk Moves

ALTER MOVE -SUSPEND postpones chunk migration for a specified scope until you wish resume
or cancel the operation. The shards on which to suspend operation must be specified, and you
can list source and target shards. You can also specify a list of specific chunks to suspend.

If any chunk in the defined scope is already being moved (any state other than "scheduled"),
that chunk will not be suspended.

For example, the following command suspends all scheduled chunk moves to or from shard1.

GDSCTL> alter move -suspend -shard shard1

Restarting Chunk Moves

ALTER MOVE -RESUME resets any "move failed" flags on specified shards, and restarts any
stalled or suspended chunk moves.

You can optionally provide a list of source and target shards that will have their "move failed"
flags reset before the moves restart. If no shards are specified, the suspended moves are
restarted once any moves in process are complete.

For example, the following command restarts chunk moves on any suspended or "failed"
chunk moves scheduled to or from shard1.

GDSCTL> alter move -resume -shard shard1

Canceling Chunk Moves

ALTER MOVE -CANCEL removes specified chunks from the move chunk schedule.

The -CHUNK option specifies that all listed chunks will be removed from the schedule, and -
SHARD specifies that all chunk moves to/from this database will be removed from the schedule.
If no chunks or shards are specified, then all chunk moves not already in process are
canceled.

If any chunk in the defined scope is currently being moved (any state other than "scheduled"),
that chunk move will not be canceled.

Chunks that are canceled cannot be resumed/restarted. You must issue a new MOVE CHUNK
command to move these chunks.

Chapter 12
Chunk Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 52 of 61

For example, the following command removes chunks 1, 2, and 3 from the chunk move
schedule, if they are not already being moved.

GDSCTL> alter move -cancel -chunk 1,2,3

Splitting Chunks
Splitting a chunk in a sharded database is required when chunks become too big, or only part
of a chunk must be migrated to another shard.

Oracle Sharding supports the online split of a chunk. Theoretically it is possible to have a
single chunk for each shard and split it every time data migration is required. However, even
though a chunk split does not affect data availability, the split is a time-consuming and CPU-
intensive operation because it scans all of the rows of the partition being split, and then inserts
them one by one into the new partitions. For composite sharding, it is time consuming and may
require downtime to redefine new values for the shard key or super shard key.

Therefore, it is recommended that you pre-create multiple chunks on each shard and split them
either when the number of chunks is not big enough for balanced redistribution of data during
re-sharding, or a particular chunk has become a hot spot.

Even with system-managed sharding, a single chunk may grow larger than other chunks or
may become more active. In this case, splitting that chunk and allowing automatic re-sharding
to move one of the resulting chunks to another shard maintains a more equal balanced
distribution of data and activity across the environment.

Oracle Enterprise Manager heat maps show which chunks are more active than other chunks.
Using this feature will help identify which chunks could be split, and one of the resulting chunks
could then be moved to another shard to help rebalance the environment.

You can manage chunks using GDSCTL or Oracle Enterprise Manager Cloud Control:

• Oracle Database Global Data Services Concepts and Administration Guide for information
about using the GDSCTL SPLIT CHUNK command

• Splitting Chunks with Oracle Enterprise Manager Cloud Control

Managing Chunks with Oracle Enterprise Manager Cloud Control
You can manage sharded database chunks using Oracle Enterprise Manager Cloud Control.

The following topics describe chunk management using Oracle Enterprise Manager Cloud
Control:

Moving Chunks with Oracle Enterprise Manager Cloud Control
You can move chunks from one shard to another in your Oracle Sharding deployment using
Oracle Enterprise Manager Cloud Control.

1. From a shardspace management page, open the Shardspace menu, located in the top left
corner of the Sharded Database target page, and choose Manage Shardgroups.

2. Select a shardgroup in the list and click Move Chunks.

3. In the Move Chunks dialog, select the source and destination shards between which to
move the chunks.

4. Select the chunks that you want to move by choosing one of the options.

Chapter 12
Chunk Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 53 of 61

• Enter ID List: enter a comma separates list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk move should occur.

• Immediately: the chunk move is provisioned upon confirmation

• Later: schedule the timing of the chunk move using the calendar tool in the adjacent
field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning status
of the chunk move.

Splitting Chunks with Oracle Enterprise Manager Cloud Control
You can split chunks in your Oracle Sharding deployment using Oracle Enterprise Manager
Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Shardspaces.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a shardspace in the list and click Split Chunks.

4. Select the chunks that you want to split by choosing one of the options.

• Enter ID List: enter a comma separate list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk split should occur.

• Immediately: the chunk split is provisioned upon confirmation

• Later: schedule the timing of the chunk split using the calendar tool in the adjacent
field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning status
of the chunk split.

When the chunk is split successfully the number of chunks is updated in the Shardspaces list.
You might need to refresh the page to see the updates.

Shard Director Management
You can add, edit, and remove shard directors in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control.

The following topics describe shard director management tasks:

Creating a Shard Director
Use Oracle Enterprise Manager Cloud Control to create and add a shard director to your
Oracle Sharding deployment.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Shard Directors.

Chapter 12
Shard Director Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 54 of 61

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create, or select a shard director from the list and click Create Like.

Choosing Create opens the Add Shard Director dialog with default configuration values in
the fields.

Choosing Create Like opens the Add Shard Director dialog with configuration values from
the selected shard director in the fields. You must select a shard director from the list to
enable the Create Like option.

4. Enter the required information in the Add Shard Director dialog, and click OK.

Note

If you do not want the shard director to start running immediately upon creation,
you must uncheck the Start Shard Director After Creation checkbox.

5. Click OK on the confirmation dialog.

6. Click the link in the Information box at the top of the page to view the provisioning status
of the shard director.

When the shard director is created successfully it appears in the Shard Directors list. You
might need to refresh the page to see the updates.

Editing a Shard Director Configuration
Use Oracle Enterprise Manager Cloud Control to edit a shard director configuration in your
Oracle Sharding deployment.

You can change the region, ports, local endpoint, and host credentials for a shard director in
Cloud Control. You cannot edit the shard director name, host, or Oracle home.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a shard director from the list and click Edit.

Note that you cannot edit the shard director name, host, or Oracle home.

4. Edit the fields, enter the GSMCATUSER password, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shard director configuration changes.

Removing a Shard Director
Use Oracle Enterprise Manager Cloud Control to remove shard directors from your Oracle
Sharding deployment.

If the shard director you want to remove is the administrative shard director, as indicated by a
check mark in that column of the Shard Directors list, you must choose another shard director
to be the administrative shard director before removing it.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Shard Directors.

Chapter 12
Shard Director Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 55 of 61

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a shard director from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning status
of the shard director removal.

When the shard director is removed successfully it no longer appears in the Shard Directors
list. You might need to refresh the page to see the changes.

Region Management
You can add, edit, and remove regions in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control.

The following topics describe region management tasks:

Creating a Region
Create sharded database regions in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create.

4. Enter a unique name for the region in the Create Region dialog.

5. Optionally, select a buddy region from among the existing regions.

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning status
of the region.

When the region is created successfully it appears in the Regions list. You might need to
refresh the page to see the updates.

Editing a Region Configuration
Edit sharded database region configurations in your Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

You can change the buddy region for a sharded database region in Cloud Control. You cannot
edit the region name.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director under Shard
Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Edit.

4. Select or remove a buddy region, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the region configuration changes.

Chapter 12
Region Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 56 of 61

When the region configuration is successfully updated the changes appear in the Regions list.
You might need to refresh the page to see the updates.

Removing a Region
Remove sharded database regions in your Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director under Shard
Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning status
of the region removal.

When the region configuration is successfully removed the changes appear in the Regions list.
You might need to refresh the page to see the updates.

Shardspace Management
You can add, edit, and remove shardspaces in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control.

The following topics describe shardspace management tasks:

Creating a Shardspace
Create shardspaces in your composite Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

Only databases that are sharded using the composite method can have more than one
shardspace. A system-managed sharded database can have only one shardspace.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Shardspaces.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create.

Note

This option is disabled in the Shardspaces page for a system-managed sharded
database.

4. Enter the values in the fields in the Add Shardspace dialog, and click OK.

• Name: enter a unique name for the shardspace (required)

• Chunks: Enter the number of chunks that should be created in the shardspace
(default 120)

• Protection Mode: select the Data Guard protection mode (default Maximum
Performance)

Chapter 12
Shardspace Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 57 of 61

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shardspace.

When the shardspace is created successfully it appears in the Shardspaces list. You might
need to refresh the page to see the updates.

Adding a Shardspace to a Composite Sharded Database
Learn to create a new shardspace, add shards to the shardspace, create a tablespace set in
the new shardspace, and add a partitionset to the sharded table for the added shardspace.
Then verify that the partitions in the tables are created in the newly added shards in the
corresponding tablespaces.

To add a new shardspace to an existing sharded database, make sure that the composite
sharded database is deployed and all DDLs are propagated to the shards.

1. Create a new shardspace, add shards to the shardspace, and deploy the environment.

a. Connect to the shard catalog database.

GDSCTL> connect mysdbadmin/mysdbadmin_password

b. Add a shardspace and add a shardgroup to the shardspace.

GDSCTL> add shardspace -chunks 8 -shardspace cust_asia
GDSCTL> add shardgroup -shardspace cust_asia -shardgroup asia_shgrp1 -
deploy_as primary -region region3

c. Add shards

GDSCTL> add shard -shardgroup asia_shgrp1 –connect
shard_host:TNS_listener_port/shard_database_name –pwd GSMUSER_password
GDSCTL> add shard asia_shgrp1 –connect shard_host:TNS_listener_port/
shard_database_name –pwd GSMUSER_password

d. Deploy the environment.

GDSCTL> deploy

Running DEPLOY ensures that all of the previous DDLs are replayed on the new shards and
all of the tables are created. The partition is created in the default SYS_SHARD_TS
tablespace.

2. On the shard catalog create the tablespace set for the shardspace and add partitionsets to
the sharded root table.

a. Create the tablespace set.

SQL> CREATE TABLESPACE SET
 TSP_SET_3 in shardspace cust_asia using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management
 local segment space management auto);

Chapter 12
Shardspace Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 58 of 61

b. Add the partitionset.

SQL> ALTER table customers add PARTITIONSET asia VALUES ('ASIA”')
TABLESPACE SET TSP_SET_3 ;

c. When lobs are present, create the tablespace set for lobs and mention the lob storage
information in the add partitionset command.

SQL> alter table customers add partitionset asia VALUES ('ASIA')
tablespace set TSP_SET_3 lob(docn) store as (tablespace set
LOBTSP_SET_4)) ;

d. When the root table contains subpartitions, use the store as clause to specify the
tablespace set for the subpartitions.

SQL> alter table customers add partitionset asia VALUES ('ASIA')
tablespace set TSP_SET_3 subpartitions store in(SUB_TSP_SET_1,
SUB_TSP_SET_2);

The ADD PARTITIONSET command ensures that the child tables are moved to the
appropriate tablespaces.

3. Verify that the partitions in the new shardspace are moved to the new tablespaces.

Connect to the new shards and verify that the partitions are created in the new tablespace
set.

SQL> select table_name, partition_name, tablespace_name, read_only from
dba_tab_partitions;

Shardgroup Management
You can add, edit, and remove shardgroups in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control.

The following topics describe shardgroup management tasks:

Creating a Shardgroup
Create shardgroups in your Oracle Sharding deployment using Oracle Enterprise Manager
Cloud Control.

1. Select a shardspace to which to add the shardgroup.

2. Open the Shardspace menu, located in the top left corner of the shardspace target page,
and choose Manage Shardgroups.

3. Click Create.

4. Enter values in the Create Shardgroup dialog, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shardgroup.

Chapter 12
Shardgroup Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 59 of 61

For example, with the values entered in the screenshots above, the following command is
run:

GDSCTL Command: ADD SHARDGROUP -SHARDGROUP 'north' -SHARDSPACE
'shardspaceora'
 -REGION 'north' -DEPLOY_AS 'STANDBY'

When the shardgroup is created successfully it appears in the Manage Shardgroups list. You
might need to refresh the page to see the updates.

Services Management
You can manage services in your Oracle Sharding deployment with Oracle Enterprise Manager
Cloud Control.

To manage Oracle Sharding services, open the Sharded Database menu, located in the top
left corner of the Sharded Database target page, and choose Services. On the Services page,
using the controls at the top of the list of services, you can start, stop, enable, disable, create,
edit, and delete services.

Selecting a service opens a service details list which displays the hosts and shards on which
the service is running, and the status, state, and Data Guard role of each of those instances.
Selecting a shard in this list allows you to enable, disable, start, and stop the service on the
individual shards.

The following topics describe services management tasks:

Creating a Service
Create services in your Oracle Sharding deployment using Oracle Enterprise Manager Cloud
Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded Database
target page, and choose Services.

2. If prompted, enter the shard catalog credentials, select the shard director to manage under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create, or select a service from the list and click Create Like.

Choosing Create opens the Create Service dialog with default configuration values in the
fields.

Choosing Create Like opens the Create Like Service dialog with configuration values from
the selected service in the fields. You must select a service from the list to enable the
Create Like option.

4. Enter the required information in the dialog, and click OK.

Note

If you do not want the service to start running immediately upon creation, you must
uncheck the Start service on all shards after creation checkbox.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the service.

Chapter 12
Services Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 60 of 61

When the service is created successfully it appears in the Services list. You might need to
refresh the page to see the updates.

Chapter 12
Services Management

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 61 of 61

13
Achieving Data Sovereignty with Oracle
Sharding

The proliferation of cloud computing has brought heightened concerns about industry-standard
regulations especially around protecting data and its privacy. Today, most organizations want to
know where their data is stored, and who has access to it. This creates a key concern about
managing data residency—the requirement that data be stored in a specific geographic
location.

There are more than 120 countries already engaged in some form of international privacy laws
for data protection to ensure that citizens' data are offered more rigorous protections and
controls, be it on-premises or on cloud.

Overview of Data Sovereignty
Data sovereignty generally refers to how data is governed by regulations specific to the region
in which it originated. These types of regulations can specify where data is stored, how it is
accessed, how it is processed, and the life-cycle of the data.

With the exponential growth of data crossing borders and public cloud regions, more than 100
countries now have passed regulations concerning where data is stored and how it is
transferred. Personally identifiable information (PII) in particular increasingly is subject to the
laws and governance structures of the nation in which it is collected. Data transfers to other
countries often are restricted or allowed based on whether that country offers similar levels of
data protection, and whether that nation collaborates in forensic investigations.

Data sovereignty requirements are driven by local regulations which could result in different
application architectures. A few of them are:

• Data must be physically stored in a certain geographic location. For example, within the
boundaries of a specific country or a region comprising of several countries. It is fine to
access and process the data remotely so far as the data is not stored in remote locations.
From a technical standpoint, this implies that data stores like databases, object stores, and
messaging stores that physically store the persistent data must be in a certain geographic
location. However, the application run time which has business logic for processing of data
could be outside the geographic location. Examples of such applications parts include
application servers, mobile applications, API Gateways, Workflows, and so on.

• Data must be physically stored and processed in a certain geographic location: In this
case, storing of data and processing of data must take place within the defined geographic
location.

Benefits of Implementing Data Sovereignty with Oracle Sharding
Oracle Sharding meets data sovereignty requirements and supports applications that require
low latency and high availability.

• Sharding makes it possible to locate different parts of the data in different countries or
regions – thus satisfying regulatory requirements where data has to be located in a certain
jurisdiction.

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 16

• It also supports storing particular data closer to its consumers. Oracle Sharding automates
the entire lifecycle of a sharded database – deployment, schema creation, data-dependent
routing with superior run-time performance, elastic scaling, and life-cycle management.

• It also provides the advantages of an enterprise RDBMS, including relational schema,
SQL, and other programmatic interfaces, support for complex data types, online schema
changes, multi-core scalability, advanced security, compression, high-availability, ACID
properties, consistent reads, developer agility with JSON, and much more.

Implementing Data Sovereignty with Oracle Sharding
Oracle Sharding distributes segments of a data set across many databases (shards) on
different computers, on-premises, or in the cloud. These shards can be deployed in multiple
regions across the globe. This enables Oracle Sharding to create globally distributed
databases honoring data residency.

All of the shards in a given database are presented to the application as a single logical
database. Applications are seamlessly connected to the right shard based on the queries they
run. For example, if an application instance deployed in the US needs data that resides in
Europe, the application request is seamlessly routed to an EU data center, without the
application having to do anything special.

Figure 13-1 Oracle Sharding Architecture

Connection
Pools

. . .

Sharded
Database

Shard

Shard
Catalog

Shard
Directors

Sharding Key
CustomerID=28459361

Additionally, Oracle Database security features such as Real Application Security (RAS),
Virtual Private Database (VPD), and Oracle Database Vault can be used to limit data access
further, even within a region. For example, an administrator in the EU region can further be
restricted to see data only from a subset of countries and not all EU countries. Within a Data
Sovereignty region, data can be replicated across multiple data centers by using Oracle Data
Guard and Oracle GoldenGate for such replication.

Chapter 13
Implementing Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 16

Oracle Sharding management interfaces give you control of the global metadata and provide a
view of the physical databases (replicas), data they contain, replication topology, and more.
Oracle Sharding handles data redistribution when nodes are added or dropped.

You can access worldwide reporting without actually copying the data from the various regions.
Sharding can run multi-shard reports without copying any data from any region. Oracle
Sharding pushes queries to the nodes where the data resides.

Oracle Sharding provides comprehensive data sovereignty solutions that focus on the following
aspects:

• Data Residency: Data can be distributed across multiple shards, which can be deployed in
different geographical locations.

• Data Processing: Application requests are automatically routed to the correct shard
irrespective of where the application is running.

• Data Access: Data access within a region can be restricted further using the Virtual Private
Database capability of Oracle Database.

• Derivative Data: Ensuring that the data is stored in an Oracle Database, and using Oracle
Database features to contain the proliferation of derivative data.

• Data Replication: Oracle Sharding can be used with Oracle Data Guard or Oracle
GoldenGate to replicate data within the same Data Sovereignty region.

Use Case of Achieving Data Sovereignty with Oracle Sharding
A large but imaginary financial institute, Shard Bank, wants to offer credit services to users in
multiple counties. Each country where credit service will be provided has its own data privacy
regulations and the Personally Identifiable Information (PII) data have to be stored in this
country.

The access to the data has to be limited and data administrators in one country cannot see
data in others. The solution for this use case is user-defined Sharding with shards configured
in different countries and Real Application Security (RAS) or Virtual Private Database (VPD) for
data access control.

Overview of Oracle Sharding Solution
Oracle Sharding solution provides you with in-country data storage, and still supports a global
view of all the data.

The example below demonstrates a hybrid Oracle Sharding user-defined deployment between
OCI data centers and on-premises across multiple regions. In this Oracle Sharding
configuration, you can store and process all data locally. Each database (in each sovereign
region) is made into a shard and the shards belong to a single sharded database. Oracle
Sharding allows you to query data in one shard (within one country), and Oracle Sharding
supports multi-shard queries (that can query data from all the countries).

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 16

Figure 13-2 Sharded Database

The global sharded database is sharded by a key indicating the country in which it must reside.
In-country applications connect to the local database as usual, and all data is stored and
processed locally.

Any multi-shard queries are directed to the shard coordinator. The coordinator rewrites the
query and sends it to each shard (country) that has the required data. The coordinator
processes and aggregates the results from all of the countries and returns result.

Oracle Sharding makes this use case possible with the following capabilities:

• Direct-to-shard routing for in-country queries.

• The user-defined sharding method allows you to use a range or list of countries to partition
data among the shards.

• Automatic configuration of replication using Oracle Active Data Guard, and constrain the
replicas to be in-country.

• Data federation support (starting with Oracle Database 21c) for converting and adding
existing databases into a sharded database. For more information, see Combine Existing
Non-Sharded Databases into a Federated Sharded Database.

• Automatic derivation of sharding key (starting with Oracle Database 21c).

The benefits of this approach are:

• Each shard can be in a cloud or on-premises within the country.

• Shards can use different cloud providers (multi-cloud strategy) and replicas of a shard can
be in a different cloud or on-premises.

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 16

• Online resharding allows you to move data between clouds, or to and from the cloud and
on-premises.

• Strict enforcement of data sovereignty providing protection from inadvertent cross region
data leak.

• Single Multimodel Big Data store with reduced volume of data duplication.

• Better fault isolation as planned/unplanned down time within one region/LOB does not
impact other regions/LOBs.

• Ability to split busy partitions and shards as needed.

• Support for full ACID properties is critical for transactional applications.

Deployment Topology of Data Sovereignty with Oracle Sharding
In this example use case, we create a sharded database on Oracle Cloud Infrastructure that
spans three regions, Frankfurt (Region1 FRA), Amsterdam (Region 2 AMS), and London
(Region 3 LON).

Each region hosts a shard director (Virtual Machine global service manager (GSM)) and one
shard (System Database Shard 1, 2, and 3 respectively), and Region 1 (FRA) hosts the shard
catalog (System Database GSM Catalog Database).

Figure 13-3 Deployment Topology of Data Sovereignty with Oracle Sharding

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 16

Configuring Data Sovereignty with Oracle Sharding
Configure Data Sovereignty with Oracle Sharding by performing the steps given in the
following topics.

Configuring VCN Networks in All Three OCI Regions
In Oracle Cloud Infrastructure (OCI), a virtual cloud network is a virtual version of a traditional
network on which your instances run. Deploy and configure a virtual cloud network (VCN) in
each of our regions (FRA, AMS, and LON).

In each region, create a VCN with two subnets: public and private.

1. Create new route table for private subnet and associate it with private subnet. The default
route table should only be used for the public subnet and the private subnet should have a
dedicated private route table.

2. Create an internet gateway and associate it with default route table.

3. Create a Network Address Translation (NAT) gateway, Service Gateway, and associate it
with route table for private subnet.

• VCN Name/CIDER: Oracle Sharding VCN FRA 10.0.0.0/16

• Public Subnet name/CIDER: public_fra 10.0.5.0/24

• Private Subnet name/CIDER: private_fra 10.0.6.0/24

Note

Repeat the steps in all regions used in the sharding deployment. The subnet CIDER
must be different in each region and you must provide region prefix in the VCN/subnet
name.

Configuring Remote VCN Peering Between All Three Regions
Remote VCN peering is the process of connecting two VCNs in different regions, which allows
the VCNs' resources to communicate using private IP addresses without routing the traffic over
the internet.

Configure two remote peering connections (RPCs) in each region to connect with the other two
regions in the topology.

1. See Remote VCN Peering using an RPC for the steps to configure an RPC.

2. Configure routing rules for the public subnet/VCN.

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 16

https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/remoteVCNpeering.htm

3. Configure routing rules for the private subnet/VCN.

4. Configure security rules.

Configuring Private DNS for Naming Resolution Between the Regions
You create private views for the public and private subnet for each domain in each region,
resulting in a total of 6 private zones within 1 zone. Then all entries are added to each private
zone configuration.

1. See Private DNS to create and manage private DNS zones.

2. Verify that all names are resolved correctly before you proceed with the next task.

Note

These steps must be done in each region on all VCNs/VMs so that names can be
correctly resolved.

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 16

https://docs.oracle.com/en-us/iaas/Content/DNS/Tasks/privatedns.htm

Installing a Global Service Manager in Each Region
Oracle Global Data Services global service manager (GSM) is used in Oracle Sharding to
route queries from the application to the correct shard in a sharded database.

Download the software and perform the following tasks:

• Download the global service manager (Oracle Database 19c) software into the bastion VM.

• Apply the latest version of OPatch.

• Apply the latest available Oracle Database Bundle Patch on the newly installed global
service manager (Oracle Database 19c).

To install a GSM in each region:

1. Create a 200 GB block storage using iSCSI. Configure iSCSI on the OCI Compute for
GSM. Mount block storage under/u01 .

See Connecting to Volumes With Consistent Device Paths for the mounting block storage
process.

2. As the root user, install all the required packages.

yum install -y oracle-database-preinstall-19c

3. As the root user, ensure that /u01 is owned by oracle:oinstall.

chown oracle:oinstall /u01

4. Download the GSM software to the designated shard director VM and install it in silent
mode.

See Performing a Silent Install of Global Service Manager.

5. Add gsm home to /etc/oratab.

gsm:/u01/app/oracle/product/19.0.0.0/dbhome_1:N

6. Apply the latest OPatch version.

7. Apply the latest available bundle patch version for Oracle Database 19c.

8. Open GSM port on Firewall:

$ systemctl start firewalld.service
$ systemctl enable firewalld.service
$ firewall-cmd --permanent --zone=public --add-port=1522/tcp # firewall-
cmd --reload
$ firewall-cmd --permanent --zone=public --list-ports
1522/tcp 22/tcp

9. Ensure that the required port is open on security lists assigned to GSM VMs to allow
applications to connect to GSM.

Collecting TNS entries for Shard Catalog and Sharded Databases
The collection of TNS entries is required to prepare GSM server for configuration of shard
catalog and shard databases. The shard catalog requires access only to PDB that stores the
shard catalog objects. However for the shard database, prepare the entries for each shared
CDB and PDB that stores the application schemas.

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 16

https://docs.oracle.com/en-us/iaas/Content/Block/References/consistentdevicepaths.htm
https://docs.oracle.com/en/database/oracle/oracle-database/21/gsmug/global-data-services-config.html#GUID-C03F39F9-576F-48B7-892B-2636F423BF21

1. Prepare the tnsnames entries to access the shard catalog database and all shards (Shard
Catalog and Shards).

2. Add these entries to $ORACLE_HOME/network/admin/tnsnames.ora on the GSM VMs.

Note

Use FQDN for hostnames in connection strings.

db_unique_name =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = host_name_fqdn)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = cdb_service_name)
)
)

pdb_name =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = host_name_fqdn)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = pdb_service_name)
)
)

Configuring the Shard Catalog
The shard catalog manages the metadata for Oracle Sharding. Configure a database on
Region 1 (FRA) which will be the shard catalog database.

1. Connect to all DBCS instances and update sqlnet encryption algorithms configured in
sqlnet.ora file and add the RC4_256 encryption method as a supported algorithm for client
and server.

Note

The patch is required to enable the AES encryption as the AES encryption is not
supported by default by GSM: Enh 29496977 - GDS ONLY USES RC4_256 TYPE
ENCRYPTION. To enable the AES encryption, apply the patch in Oracle Database
19c. However, this patch is not required in Oracle Database 21c.

Note

The RC4_256 algorithm is required only for Oracle Database 19c.

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 16

2. Configure the shard catalog database with requirements for Oracle Sharding.

SQL> alter system set open_links=16 scope=spfile;
SQL> alter system set open_links_per_instance=16 scope=spfile;
SQL> shu immediate
SQL> startup

3. Configure users on the shard catalog database.

SQL> alter user gsmcatuser account unlock.
SQL> alter user gsmcatuser identified by password;
Switch to PDB dedicated for catalog database
SQL> alter session set container=catalog_db_pdb;
SQL> create user mysdbadmin identified by password;
SQL> grant connect, create session, gsmadmin_role to mysdbadmin;
SQL> grant inherit privileges on user SYS to GSMADMIN_INTERNAL;

Configuring the Shard Databases
Configure a database in each region which will be a shard in the Oracle Sharding
configuration.

1. Connect to all DBCS instances and update sqlnet encryption algorithms configured in
sqlnet.ora file and add the RC4_256 encryption method as a supported algorithm for client
and server.

Note

The patch is required to enable the AES encryption as the AES encryption is not
supported by default by GSM: Enh 29496977 - GDS ONLY USES RC4_256 TYPE
ENCRYPTION. To enable the AES encryption, apply the patch in Oracle Database
19c. However, this patch is not required in Oracle Database 21c.

Note

The RC4_256 algorithm is required only for Oracle Database 19c.

2. Run the following commands:

SQL> alter database flashback on;
SQL> alter system set dg_broker_start=true;
SQL> alter user GSMROOTUSER account unlock;
SQL> alter user GSMUSER account unlock;
SQL> alter user GSMADMIN_INTERNAL account unlock;
SQL> alter user GSMROOTUSER identified by password;
SQL> alter user GSMUSER identified by password;
SQL> alter user GSMADMIN_INTERNAL identified by password;
SQL> grant sysdg to gsmuser;
SQL> grant SYSBACKUP to gsmuser;
SQL> grant sysdg to GSMROOTUSER;
SQL> grant SYSBACKUP to GSMROOTUSER;
SQL> alter system set global_names=false;

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 16

SQL> shu immediate
SQL> startup
Switch to PDB used as shared database
SQL> alter session set container= pdb_name;
SQL> grant read,write on directory DATA_PUMP_DIR to GSMADMIN_INTERNAL;
SQL> grant sysdg to gsmuser;
SQL> grant SYSBACKUP to gsmuser;

Creating Oracle Sharding Global Database
Configure global service manager listener, create shard catalog database, and add all shards
to configuration. The deployment step configures all shards as a single global database.

1. Configure the shard catalog in Oracle Sharding.

Note

By default system-managed sharding is configured. If you require any other
sharding method, specify it during shard catalog creation.

GDSCTL> create shardcatalog -database catalog_pdb_tns_entry -sharding user
-user
 mysdbadmin/password -region region1

2. Add the GSM listener and start it. Run the listener from GDSCTL.

GDSCTL> add gsm -gsm sharddirector1 -listener 1522 -pwd password -catalog
pdb_tns_entry
 -region region1

3. Use the following template to add shards to the configuration. Repeat for each shard
database.

Add shard in FRA:

GDSCTL> add invitednode shard_hostname
GDSCTL> add cdb -connect cdb_conn_tns_entry -pwd gsmrootuser_pwd
GDSCTL> add shardspace -shardspace primary_shardspace_fra
GDSCTL> add shard -cdb cdb_conn_string -connect pdb_conn_string
 -shardspace primary_shardspace_fra -pwd gsmuser_pwd -deploy_as PRIMARY

Add shard in AMS:

GDSCTL> add invitednode shard_hostname
GDSCTL> add cdb -connect cdb_conn_tns_entry -pwd gsmrootuser_pwd
GDSCTL> add shardspace -shardspace primary_shardspace_ams
GDSCTL> add shard -cdb cdb_conn_string -connect pdb_conn_string
 -shardspace primary_shardspace_ams -pwd gsmuser_pwd -deploy_as PRIMARY

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 16

Add shard in LON:

GDSCTL> add invitednode shard_hostname
GDSCTL> add cdb -connect cdb_conn_tns_entry -pwd gsmrootuser_pwd
GDSCTL> add shardspace -shardspace primary_shardspace_lon
GDSCTL> add shard -cdb cdb_conn_string -connect pdb_conn_string
 -shardspace primary_shardspace_lon -pwd gsmuser_pwd -deploy_as PRIMARY

4. Deploy the sharded database configuration.

Run the GDSCTL DEPLOY command, to get the following output:

GDSCTL> deploy
deploy: examining configuration...
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
The operation completed successfully

5. Create global database services on the shards to service incoming connection requests
from your application. The global service is an extension to the traditional database
service. All the properties of traditional services are supported for global services. For
sharded databases additional properties are set for global services. See Create and Start
Global Database Services.

For example, database role, replication lag tolerance, region affinity between clients and
shards, and so on. For a read-write transactional workload, create a single global service
to access data from any primary shard in a sharded database. For highly available shards
using Active Data Guard, create a separate read-only global service.

GDSCTL> add service -service oltp_rw_srvc -role primary

Load the data into the shards using the methods described in Migrating to a Sharded Database

Related Topics

• C.35 create shardcatalog

• Create the Shard Catalog Database

Implementing a Session-Based Application Context Policy
Add row-level data access control on the sharded database in conjunction with the Oracle
Database virtual private database (VPD) feature for both single shard queries and multi-shard
queries. Oracle Global Data Services global service manager (GSM) is used in Oracle
Sharding to route queries from the application to the correct shard in a sharded database.

1. Create user accounts and sample tables on the shard catalog.

connect / as sysdba
alter session enable shard ddl;
create user bt identified by bt;
grant dba, all privileges to bt;

--CREATE USER sysadmin_vpd IDENTIFIED BY password CONTAINER = CURRENT;
CREATE USER sysadmin_vpd IDENTIFIED BY password ; --CONTAINER = CURRENT;

GRANT CREATE SESSION, CREATE ANY CONTEXT, CREATE PROCEDURE, CREATE
TRIGGER, ADMINISTER DATABASE TRIGGER, ALTER SESSION TO sysadmin_vpd;

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 16

https://docs.oracle.com/en/database/oracle/oracle-database/19/gsmug/gdsctl-reference.html#GUID-16E4FFF2-29C9-4954-9474-6D269BF3F6AF

GRANT EXECUTE ON DBMS_SESSION TO sysadmin_vpd;
GRANT EXECUTE ON DBMS_RLS TO sysadmin_vpd;

CREATE USER CT identified by ct;
CREATE USER DT identified by dt;
GRANT CREATE SESSION TO CT, DT;

GRANT EXECUTE ON sys.exec_shard_plsql to bt, ct, dt, sysadmin_vpd;

connect bt/bt
create tablespace set ts1 in shardspace shd1;
CREATE SHARDED TABLE customers (custid number, name varchar2(20),
constraint pk1 primary key(custid)) PARTITION BY CONSISTENT HASH(custid)
PARTITIONS AUTO TABLESPACE SET ts1;
-- user-defined:
-- CREATE SHARDED TABLE customers (custid number primary key, name
varchar2(20)) PARTITION BY RANGE (custid) (PARTITION p1 values less than
(100) TABLESPACE ts1, PARTITION p2 values less than(200) TABLESPACE ts2,
PARTITION p3 values less than(300) TABLESPACE ts11, PARTITION p4 values
less than(400) TABLESPACE ts12);

insert into customers(custid, name) values(1,'CT');
insert into customers(custid, name) values(2,'DT');
insert into customers(custid, name) values(4,'ET');
insert into customers(custid, name) values(5,'FT');
commit;

GRANT READ ON customers TO sysadmin_vpd;

create sharded table orders(oid number not null, custid number not null,
constraint ordfk foreign key(custid) references customers(custid))
partition by reference(ordfk);
-- user-defined:
-- CREATE SHARDED TABLE orders(oid number not null, custid number not
null, constraint orders_fk1 foreign key(custid) references
customers(custid)) partition by reference(orders_fk1);

insert into orders values(9876, 1);
insert into orders values(8888, 2);
insert into orders values(7777, 2);
insert into orders values(7771, 4);
insert into orders values(7772, 4);
insert into orders values(7773, 5);
commit;

GRANT READ ON orders TO CT, DT;

2. Create a database session-based application context.

CONNECT sysadmin_vpd/password
CREATE OR REPLACE CONTEXT orders_ctx USING orders_ctx_pkg;

3. Create a PL/SQL package to set the application context.

CONNECT sysadmin_vpd/password
CREATE OR REPLACE PACKAGE orders_ctx_pkg IS

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 16

-- PROCEDURE set_custnum SHARD_ENABLE;
 PROCEDURE set_custnum;
 END;
/
CREATE OR REPLACE PACKAGE BODY orders_ctx_pkg IS
 --PROCEDURE set_custnum SHARD_ENABLE
 PROCEDURE set_custnum
 AS
 custnum NUMBER;
 cnt number;
 cname varchar2(256);
 BEGIN
 -- workaround for bug 33131789: run a CSQ before SET_CONTEXT
 SELECT count(*) INTO cnt FROM BT.CUSTOMERS;
 SELECT SYS_CONTEXT('USERENV', 'SESSION_USER') INTO cname FROM dual;
 SELECT custid INTO custnum FROM BT.CUSTOMERS WHERE name = cname;
 DBMS_SESSION.SET_CONTEXT('orders_ctx', 'cust_no', custnum);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN NULL;
 END set_custnum;
END;
/

4. Create a logon trigger to run the application context PL/SQL package.

/* create trigger fails to propagate from catalog.
 CREATE TRIGGER set_custno_ctx_...
 DDL Error: ORA-06550: line 1, column 7:
 PLS-00352: Unable to access another database \'GDS$CATALOG.SYSLOCLINK\'
 ORA-06512: at "GSMADMIN_INTERNAL.EXECUTECOMMAND", line 166
 ORA-06550: line 1, column 7:
 PLS-00201: identifier \'SYS@GDS$CATALOG.SYSLOCLINK\' must be declared
 ORA-06550: line 1, column 7:
 PL/SQL: Statement ignored
 ORA-06512: at "SYS.DBMS_GSM_FIXED", line 3764
 ORA-06512: at "SYS.DBMS_GSM_FIXED", line 3866
 ORA-06512: at "GSMADMIN_INTERNAL.EXECUTECOMMAND", line 118
 ORA-06512: at "GSMADMIN_INTERNAL.EXECUTEDDL", line
 So we create it on shards as well manually. => Use alter session enable
shard operations before creating the trigger.
*/
/* execute sys.exec_shard_plsql('CREATE OR REPLACE TRIGGER
set_custno_ctx_trig AFTER LOGON ON DATABASE BEGIN
sysadmin_vpd.orders_ctx_pkg.set_custnum; END;');
ORA-03753: The procedure cannot be propagated.
*/
-- run on catalog and all shards
CONNECT sysadmin_vpd/password
CREATE OR REPLACE TRIGGER set_custno_ctx_trig AFTER LOGON ON DATABASE
BEGIN sysadmin_vpd.orders_ctx_pkg.set_custnum; END;
/

5. Test the logon trigger.

connect dt/dt
SELECT SYS_CONTEXT('orders_ctx', 'cust_no') custnum FROM DUAL;

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 14 of 16

connect ct/ct
SELECT SYS_CONTEXT('orders_ctx', 'cust_no') custnum FROM DUAL;
/* Example output:
SQL> SELECT SYS_CONTEXT('orders_ctx', 'cust_no') custnum FROM DUAL;
CUSTNUM

2
*/

6. On the shard catalog and shards, create a PL/SQL policy function to limit user access to
their orders only.

/* IF you see following error while propagation of DDL to shards, create
the function on catalog and each shards manually.
 PLS-00352: Unable to access another database \'GDS$CATALOG.SYSLOCLINK\'
*/
connect sysadmin_vpd/password
CREATE OR REPLACE FUNCTION get_user_orders(
 schema_p IN VARCHAR2,
 table_p IN VARCHAR2)
 RETURN VARCHAR2
 AS
 orders_pred VARCHAR2 (400);
 cnum NUMBER;
 BEGIN
 SELECT NVL(SYS_CONTEXT('orders_ctx', 'cust_no'), 0) INTO cnum FROM dual;
 --orders_pred := 'custid = '||cnum;
 orders_pred := 'custid = SYS_CONTEXT(''orders_ctx'', ''cust_no'')';
 RETURN orders_pred;
END;
/

7. Create the new security policy.

execute sys.exec_shard_plsql(' SYS.DBMS_RLS.ADD_POLICY (object_schema =>
''BT'', object_name => ''orders'', policy_name => ''orders_policy'',
function_schema => ''sysadmin_vpd'', policy_function =>
''get_user_orders'', statement_types => ''select'', policy_type =>
DBMS_RLS.CONTEXT_SENSITIVE, namespace => ''orders_ctx'', attribute =>
''cust_no'')');

-- exec sys.exec_shard_plsql('sys.DBMS_RLS.DROP_POLICY(''BT'', ''orders'',
''orders_policy'')');
-- exec sys.exec_shard_plsql('sys.DBMS_RLS.REFRESH_POLICY(''BT'',
''orders'', ''orders_policy'')');

8. Test the new policy.

connect ct/ct
select * from bt.orders;
connect dt/dt
select * from bt.orders;
/*
connect dt/dt
SQL> select * from bt.orders;

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 15 of 16

 OID CUSTID
---------- ----------
 8888 2
 7777 2

connect ct/ct
SQL> select * from bt.orders;
 OID CUSTID
---------- ----------
 9876 1
*/

Chapter 13
Use Case of Achieving Data Sovereignty with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 16 of 16

14
Troubleshooting Oracle Sharding

You can enable tracing, locate log and trace files, and troubleshooting common issues.

The following topics describe Oracle Sharding troubleshooting in detail:

Troubleshooting Tips
Use these tips to discover information about the sharded database that you need to help you
troubleshoot issues.

Topics:

• Checking the Sharding Method

• Checking the Replication Type

• Checking the Oracle Data Guard Protection Mode

• Checking Which Shards Are Mapped to a Key

• Checking Shard Operation Mode (Read-Only or Read-Write)

• Checking DDL Text

• Checking Chunk Migration Status

• Checking Table Type (Sharded or Duplicated)

• Checking User Type (Local or ALL_SHARD)

• Identifying Tables Created as Sharded Tablespaces

• Checking if Shard DDL is Enabled or Disabled

• Filtering Data by Sharding Key

Checking the Sharding Method
Run gdsctl config sdb to check which sharding method, also known as the shard type, is
used in the sharded database.

The sharding method can be system-managed, composite, or user-defined.

The sharding method is shown under "Shard type" in the output of gdsctl config sdb as
shown here.

gdsctl> config sdb

GDS Pool administrators

Replication Type

Data Guard

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 13

Shard type

System-managed

Shard spaces

shd1

Services

srv1

Checking the Replication Type
Run gdsctl config sdb to check which method is used for shard replication in the sharded
database.

The replication type is shown under "Replication Type" in the output of gdsctl config sdb as
shown here.

gdsctl> config sdb

GDS Pool administrators

Replication Type

Data Guard

Shard type

System-managed

Shard spaces

shd1

Services

srv1

Table 14-1 Replication types in config sdb output

Replication Type Value Shown in Output

Oracle Data Guard Data Guard

Oracle GoldenGate Golden Gate

Chapter 14
Troubleshooting Tips

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 13

Checking the Oracle Data Guard Protection Mode
You can run gdsctl config shardspace on a given shardspace to check the Oracle Data
Guard protection mode in your GDSCTL session, rather than switching to DGMGRL.

Data Guard can be configured in three different protection modes: MaxProtection,
MaxAvailability, and MaxPerformance.

The Data Guard protection mode is shown under PROTECTION MODE in the gdsctl config
shardspace command output, as shown here.

GDSCTL> config shardspace -shardspace shd1
Shard Group Region Role
----------- ------ ----
dbs1 east Primary

PROTECTION_MODE Chunks
--------------- ------
MaxProtection 6

Checking Which Shards Are Mapped to a Key
You can run gdsctl config chunks -key to check which shards are mapped to a sharding
key.

Example 1: Single Table Family

In the following example, there is only one table family in the sharded database configuration,
and the table is partitioned (sharded) on data type number.

In this example, the user is checking which chunk sharding key value "2" is mapped to. In the
output it shows sharding key 2 is mapped to chunk "3" and is present in the database
"aime1b".

GDSCTL> config chunks -key 2
Range Definition

Chunks Range Definition
------ ----------------
3 1431655764-2147483646

Databases

aime1b

Similarly, this can be done for any data type sharding is done on. Also, a multiple column
sharding key can be checked with comma separated values.

The range definition is the range of hash values and can be ignored.

Example 2: Multiple Table Families

In a multiple table family configuration, add the option -table_family to specify the table
family to which the specified sharding key belongs.

Chapter 14
Troubleshooting Tips

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 13

The config chunks command lists shards from all shardgroups in the topology. This example
also lists a Data Guard standby shardgroup, as shown by the addition of "aime1e" to the
Databases (shards) list.

GDSCTL> config chunks -key 1 -table_family testuserfam3.customersfam1

Range Definition

Chunks Range Definition
------ ----------------
1 0-357913941

Databases

aime1b
aime1e

Example 3: Specifying a Multiple Column Sharding Key

When a table is sharded by multiple columns, specify the sharding key value as a comma-
separated list as shown here.

GDSCTL> config chunks -key 10,mary,2010-04-04

Range Definition

Chunks Range Definition
------ ----------------
4 1288490187-1717986916

Databases

aime1b
aime1e

Checking Shard Operation Mode (Read-Only or Read-Write)
You can check whether shards are running in read-only or read-write mode by running gdsctl
config chunks -cross_shard.

The gdsctl config chunks -cross_shard command output shows which shards, listed under
"Database", are running in read-only and read-write modes, as shown below. The command
also lists the chunk ranges on those shards.

gdsctl config chunks -cross_shard

Read-Only cross shard targets

Database From To
-------- ---- --
tst3b_cdb2_pdb1 1 3
tst3c_cdb3_pdb1 9 10
tst3d_cdb2_pdb1 4 5
tst3e_cdb3_pdb1 6 8

Chapter 14
Troubleshooting Tips

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 13

Chunks not offered for cross-shard

Shard space From To
----------- ---- --

Read-Write cross-shard targets

Database From To
-------- ---- --
tst3b_cdb2_pdb1 1 5
tst3c_cdb3_pdb1 6 10

Chunks not offered for Read-Write cross-shard activity

Data N/A

Checking DDL Text
Run gdsctl show ddl -ddl ddl_id to get the text for the specified DDL.

The DDL numeric identifier is specified with -ddl ddl_id to get the text and other details of a
particular DDL, as shown here.

gdsctl show ddl -ddl 5

DDL Text: CREATE SHARDED TABLE Customers (CustNo NUMBER NOT NULL, Name
VARCHAR2(50), Address VARCHAR2(250), Location VARCHAR2(20), Class
VARCHAR2(3), CONSTRAINT RootPK PRIMARY KEY(CustNo)) PARTITION BY CONSISTENT
HASH (CustNo) PARTITIONS AUTO TABLESPACE SET ts1
Owner: TESTUSER1
Object name: CUSTOMERS
DDL type: C
Obsolete: 0
Failed shards:

Note

The show ddl command output might be truncated. You can run SELECT ddl_text
FROM gsmadmin_internal.ddl_requests on the shard catalog to see the full text of the
statements.

Checking Chunk Migration Status
Run gdsctl config chunks -show_reshard to check the status of chunk migration.

A chunk move is a long running operation, whether user-initiated or internal (during
incremental deploy), so if you need to check the status, the gdsctl config chunks -
show_reshard provides the following status indicators as the move progresses.

• empty - indicates no chunk migration in progress

• scheduled - chunk is pending movement, which could be because it is waiting on another
chunk move to complete, or the move didn't initiate due to some error

Chapter 14
Troubleshooting Tips

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 13

• running - current in progress

• failed - chunk move failed. Check GSM traces and source and target database traces for
details.

In the following example, chunk move status is shown in the "Ongoing chunk movement" table
in the command output.

gdsctl config chunks -show_reshard

Chunks

Database From To
-------- ---- --
tst3b_cdb2_pdb1 1 6
tst3c_cdb3_pdb1 7 10
tst3d_cdb2_pdb1 1 6
tst3e_cdb3_pdb1 7 10

Ongoing chunk movement

Chunk Source Target status
----- ------ ------ ------
7 tst3c_cdb3_pdb1 tst3b_cdb2_pdb1 Running
8 tst3c_cdb3_pdb1 tst3b_cdb2_pdb1
scheduled
9 tst3c_cdb3_pdb1 tst3b_cdb2_pdb1
scheduled
10 tst3c_cdb3_pdb1 tst3b_cdb2_pdb1
scheduled

Checking Table Type (Sharded or Duplicated)
You can check whether tables are sharded or duplicated in dba/all/user_tables using SELECT
TABLE_NAME,SHARDED,DUPLICATED FROM user_tables;.

In the following example, column "S" indicates whether a table is sharded, and column "D"
indicates whether a table is duplicated.

SQL> select TABLE_NAME,SHARDED,DUPLICATED from user_tables;

TABLE_NAME S D
--------------- - -
CUSTOMERS Y N
DUP1 N Y
LINEITEMS Y N
MLOG$_DUP1 N N
ORDERS Y N

Chapter 14
Troubleshooting Tips

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 13

Checking User Type (Local or ALL_SHARD)
You can find out which users are created as local users and which are sharded database users
by selecting the username and ALL_SHARD column in dba/all/user_users.

SQL> select USERNAME,ALL_SHARD from users_users where username='TESTUSER1';

USERNAME ALL_SHARD
--------------- ---------
TESTUSER1 YES

Identifying Tables Created as Sharded Tablespaces
You can find out whether tablespaces are used for a sharded table by selecting the
TABLESPACE_NAME and CHUNK_TABLESPACE columns in dba/all/user_tablespaces.

The value in the CHUNK_TABLESPACE column is Y in dba/all/user_tablespaces if it is a
tablespace for a sharded table.

SQL> select TABLESPACE_NAME,CHUNK_TABLESPACE from user_tablespaces;

TABLESPACE_NAME C
------------------------------ -
SYSTEM N
SYSAUX N
TEMP N
SYSEXT N
TS1 Y

Checking if Shard DDL is Enabled or Disabled
You can check if Shard DDL is enabled or disabled in the current SQL session.

These examples show the result of checking Shard DDL status after enabling and disabling
Shard DDL.

SQL> alter session enable shard ddl;

Session altered.

SQL> select shard_ddl_status from v$session where AUDSID =
userenv('SESSIONID');

SHARD_DD

ENABLED

SQL> alter session disable shard ddl;

Session altered.

SQL> select shard_ddl_status from v$session where AUDSID =

Chapter 14
Troubleshooting Tips

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 13

userenv('SESSIONID');

SHARD_DD

DISABLED

Filtering Data by Sharding Key
You can set the SHARD_QUERIES_RESTRICTED_BY_KEY parameter to enable or disable data
filtering by a specified sharding key.

The parameter SHARD_QUERIES_RESTRICTED_BY_KEY can be set with ALTER at the system or
session level. If enabled, DMLs will only display select data for specified SHARDING_KEY set in
the client connection.

In the following example, the client connection is established with a shard with SHARDING_KEY
specified as "1". However, when the client runs a SELECT on the customers table, all of the rows
in that table in the shard are displayed.

connection established for client with sharding_key=1

SQL> select * from customers order by custno;

 CUSTNO NAME ADDRESS LOCATION CLA
---------- ---------- ---------- ---------- ---
 1 John Oracle KM Bangalore A
 50 Larry Oracle HQ SFO B

2 rows selected.

SQL>

Now, as shown below, we enable session level filtering, and the result of the same SELECT
statement is restricted to only the single row that matches the SHARD_KEY specified in the client
connection.

SQL> alter session set shard_queries_restricted_by_key = true;

Session altered.

SQL> select current_shard_key from dual;

CURRENT_SHARD_KEY

 1

1 row selected.

SQL> select * from customers;

 CUSTNO NAME ADDRESS LOCATION CLA
---------- ---------- ---------- ---------- ---
 1 John Oracle KM Bangalore A

Chapter 14
Troubleshooting Tips

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 13

Setting the Duplicated Table Refresh Rate
You can modify the refresh rate for duplicated tables by setting the
SHRD_DUPL_TABLE_REFRESH_RATE database parameter.

By default duplicated tables are refreshed every 60 seconds. The example below shows
increasing the refresh interval to 100 seconds.

SQL> show parameter refresh

NAME TYPE VALUE
------------------------------------ -----------

shrd_dupl_table_refresh_rate integer 60

SQL> alter system set shrd_dupl_table_refresh_rate=100 scope=both;

System altered.

SQL> show parameter refresh

NAME TYPE VALUE
------------------------------------ -----------

shrd_dupl_table_refresh_rate integer 100

Oracle Sharding Tracing and Debug Information
The following topics explain how to enable tracing and find the logs.

Enabling Tracing for Oracle Sharding
Enable PL/SQL tracing to track down issues in the sharded database.

To get full tracing, set the GWM_TRACE level as shown here. The following statement provides
immediate tracing, but the trace is disabled after a database restart.

ALTER SYSTEM SET EVENTS 'immediate trace name GWM_TRACE level 7';

The following statement enables tracing that continues in perpetuity, but only after restarting
the database.

ALTER SYSTEM SET EVENT='10798 trace name context forever, level 7'
SCOPE=spfile;

It is recommended that you set both of the above traces to be thorough.

To trace everything in the Oracle Sharding environment, you must enable tracing on the shard
catalog and all of the shards. The traces are written to the RDBMS session trace file for either
the GDSCTL session on the shard catalog, or the session(s) created by the shard director
(a.k.a. GSM) on the individual shards.

Chapter 14
Oracle Sharding Tracing and Debug Information

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 13

Where to Find Oracle Sharding Alert Logs and Trace Files
There are several places to look for trace and alert logs in the Oracle Sharding environment.

Standard RDBMS trace files located in diag/rdbms/.. will contain trace output.

Output from ‘deploy’ will go to job queue trace files db_unique_name_jXXX_PID.trc.

Output from other GDSCTL commands will go to either a shared server trace file
db_unique_name_sXXX_PID.trc or dedicated trace file db_unique_name_ora_PID.trc
depending on connect strings used.

Shared servers are typically used for many of the connections to the catalog and shards, so
the tracing is in a shared server trace file named SID_s00*.trc.

GDSCTL has several commands that can display status and error information.

Use GDSCTL STATUS GSM to view locations for shard director (GSM) trace and log files.

GDSCTL> status
Alias SHARDDIRECTOR1
Version 18.0.0.0.0
Start Date 25-FEB-2016 07:27:39
Trace Level support
Listener Log File /u01/app/oracle/diag/gsm/slc05abw/sharddirector1/
alert/log.xml
Listener Trace File /u01/app/oracle/diag/gsm/slc05abw/sharddirector1/
trace/
ora_10516_139939557888352.trc
Endpoint summary (ADDRESS=(HOST=shard0)(PORT=1571)(PROTOCOL=tcp))
GSMOCI Version 2.2.1
Mastership N
Connected to GDS catalog Y
Process Id 10535
Number of reconnections 0
Pending tasks. Total 0
Tasks in process. Total 0
Regional Mastership TRUE
Total messages published 71702
Time Zone +00:00
Orphaned Buddy Regions: None
GDS region region1
Network metrics:
 Region: region2 Network factor:0

The non-XML version of the alert.log file can be found in the /trace directory as shown here.

/u01/app/oracle/diag/gsm/shard-director-node/sharddirector1/trace/alert*.log

To decrypt log output in GSM use the following command.

GDSCTL> set _event 17 -config_only

Chapter 14
Oracle Sharding Tracing and Debug Information

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 13

Primary shard director (GSM) trace/alert files include status and errors on any and all
asynchronous commands or background tasks (move chunk, split chunk, deploy, shard
registration, Data Guard configuration, shard DDL processing, etc.)

To find pending AQ requests for the shard director, including error status, use GDSCTL
CONFIG.

To see ongoing and scheduled chunk movement, use GDSCTL CONFIG CHUNKS -
show_reshard

To see shards with failed DDLs, use GDSCTL SHOW DDL -failed_only

To see the DDL error information for a given shard, use GDSCTL CONFIG SHARD -shard
shard_name

Common Error Patterns and Resolutions for Sharded Databases
See the following topics for information about troubleshooting common errors in Oracle
Sharding.

Shard Director Fails to Start
If you encounter issues starting the shard director, try the following:

To start Scheduler you must be inside ORACLE_HOME on each shard server.

GDSCTL>start gsm -gsm shardDGdirector
GSM-45054: GSM error
GSM-40070: GSM is not able to establish connection to GDS catalog

GSM alert log, /u01/app/oracle/diag/gsm/shard1/sharddgdirector/trace/
alert_gds.log
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.
GSM-40122: OCI Catalog Error. Code: 12514. Message: ORA-12514: TNS:listener
does not
currently know of service requested in connect descriptor
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.
2017-04-20T22:50:22.496362+05:30
Process 1 in GSM instance is down
GSM shutdown is successful
GSM shutdown is in progress
NOTE : if not message displayed in the GSM log then enable GSM trace level to
16
while adding GSM itself.

1. Remove the newly created shard director (GSM) that failed to start.

GDSCTL> remove gsm -gsm shardDGdirector

2. Add the shard director using trace level 16.

GDSCTL> add gsm -gsm shardDGdirector -listener port_num -pwd
gsmcatuser_password

Chapter 14
Common Error Patterns and Resolutions for Sharded Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 13

 -catalog hostname:port_num:shard_catalog_name
 -region region1 -trace_level 16

3. If the shard catalog database is running on a non-default port (other than 1521), set the
remote listener.

SQL> alter system set local_listener='(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=hostname)(PORT=port_num)))';

Issues Using Deploy Command

GDSCTL> deploy
GSM-45029: SQL error
ORA-29273: HTTP request failed
ORA-06512: at "SYS.DBMS_ISCHED", line 3715
ORA-06512: at "SYS.UTL_HTTP", line 1267
ORA-29276: transfer timeout
ORA-06512: at "SYS.UTL_HTTP", line 651
ORA-06512: at "SYS.UTL_HTTP", line 1257
ORA-06512: at "SYS.DBMS_ISCHED", line 3708
ORA-06512: at "SYS.DBMS_SCHEDULER", line 2609
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 14284
ORA-06512: at line 1

Solution : Check the $ORACLE_HOME/data/pendingjobs for the exact error. ORA-1017 is
thrown if any issues on wallet.

1. On problematic Shard host stop the remote scheduler agent.

schagent -stop

2. rename wallet direcotry on Database home

mv $ORACLE_HOME/data/wallet $ORACLE_HOME/data/wallet.old

3. start the remote scheduler agent and it will create new wallet directory

schagent -start
schagent -status
echo welcome | schagent -registerdatabase 10.10.10.10 8080

Issues Moving Chunks
If you encounter issues with MOVE CHUNK, try the following:

Issue: Initialization parameter remote_dependencies_mode has a default value of timestamp;
therefore, because prvtgwmut.plb is run and DBMS_GSM_UTILITY recompiled durning upgrade,
GDSCTL MOVE CHUNK runs into ORA-04062 errors similar to the following.

GSM Errors:
server:ORA-03749: Chunk move cannot be performed at this time.
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 79

Chapter 14
Common Error Patterns and Resolutions for Sharded Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 13

ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_DBADMIN", line 5497
ORA-04062: timestamp of package "GSMADMIN_INTERNAL.DBMS_GSM_UTILITY" has been
changed
ORA-06512: at line 1
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_DBADMIN", line 5366
ORA-06512: at line 1 (ngsmoci_execute)

Workaround 1: Restart the source and target shards after upgrade.

Workaround 2: ALTER SYSTEM SET remote_dependencies_mode=signature on both source
and target.

Issue During Deployment of Oracle Sharding for Role-Separated
Environment

The GSM-45029: SQL ERROR NO MORE DATA TO READ FROM SOCKET error occurs when you
perform administrative operations for Oracle Sharding or for Oracle Global Data Services
(GDS) and connect through a listener that runs in the Oracle Real Application Clusters (Oracle
RAC) or Oracle Restart account in a role-separated environment. The error occurs where the
Oracle RAC or Oracle Restart account is different from the Oracle Database account.

Solution:

Start a listener in the Oracle Database account on the sharded catalog database and on each
shard, if it is not already running.

The listener can be used to connect and perform administrative operations.

This listener can also be used when you provide an Oracle Database Transparent Network
Substrate (TNS) address, when it is required for administrative commands, such as add shard.

Chapter 14
Common Error Patterns and Resolutions for Sharded Databases

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 13

15
Oracle Sharding Solutions

The following solutions show you how to use Oracle Sharding to solve a business problem.

Combine Existing Non-Sharded Databases into a Federated
Sharded Database

If you have several database installations in different locations that run the same application,
and you want to to include the data from all of them, to run data analytics queries for example,
you can combine the independent databases into a sharded database to take advantage of
Oracle Sharding multi-shard queries.

Overview

About Federated Sharding
Learn what a federated sharding configuration is, why you need it, and how it works.

Federated sharding is an Oracle Sharding configuration where the shards consist of
independent databases with similar schemas.

Creating a sharded database from independent databases reduces the need to import tons of
data into a single location for data analytics.

Consider the following benefits to this approach.

• Create a sharding environment using existing, geographically distributed databases; there
is no need to provision new systems.

• Run multi-shard queries; access data from many locations in a single query.

Oracle Sharding, in a federated sharding configuration, treats each independent database as a
shard, and as such can issue multi-shard queries on those shards.

You can create a federated sharding configuration with minor version mismatches between the
shards. For example, one region could be on Oracle Database 21.1 and another could be on
Oracle Database 21.3. All database shards and the shard catalog must be on Oracle Database
21c or later.

Federated Sharding Schema Requirements
You can convert existing databases running the same application into a federated sharding
configuration, without modifying the database schemas or the application.

However, the databases must have the same schema or minor differences. For example, a
table can have an extra column in one of the databases.

An application upgrade can trigger changes in the schema, such as when you add a new table,
new column, new check constraint, or/and modify a column data type. When part of an overall

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 13

federated sharding configuration, Oracle Sharding handles the schema differences caused by
an application upgrade, as long as the overall schema structure stays the same.

Sharded and Duplicated Tables in a Federated Sharding Configuration
Tables that have different sets of data on each of the federated databases are equivalent to the
sharded tables in a traditional sharded database. Tables with the same content on all of the
federated databases are equivalent to the duplicated tables in a traditional sharded database.

When you create the federated sharding configuration, the system assumes that all of the
tables are sharded, so you must explicitly mark the tables that must be considered duplicated
by the multi-shard query coordinator.

Limitations to Federated Sharding
There are some limitations to creating a federated sharding configuration.

• There is no concept of chunk in a federated sharding configuration, so the GDSCTL MOVE
CHUNK command is not supported.

• Application sharding key-based routing is not supported.

• The existing databases, before being added to a federated sharding configuration, must be
upgraded to Oracle Database 21c or later.

• DDLs, cross-shard insert, update, and delete are not supported from the shard catalog in a
federated sharding architecture under ENABLE SHARD DDL.

Federated Sharding Security

The database users do not need to exist on all of the federated databases, but the schema
owners should exist on all of the databases. The privileges and the passwords of these
schema owners can be different. Only common privileges are imported for security.

Creating and Deploying a Federated Sharding Configuration
To deploy a federated sharding environment using existing databases, you define the database
layout just as you would for user-defined sharding, using GDSCTL commands.

The following is a high level description of the process for creating and deploying a federated
sharding configuration.

1. Run the GDSCTL CREATE SHARDCATALOG command with the FOR_FEDERATED_DATABASE option
to create the federated sharding configuration

2. Add shard directors to the configuration.

3. Add a shardspace to the configuration. A shardspace is defined as an existing database
and its replica.

4. Add a shard by adding the existing database to the shardspace, then run DEPLOY.

5. Run GDSCTL SYNC SCHEMA to compare the schemas in the federated sharding configuration
and retrieve the common shared schemas. Use SYNC SCHEMA to inspect and apply the
DDLs.

6. Use SQL ALTER TABLE on the shard catalog to convert tables containing the same data
across the federated shards to duplicated tables.

7. Prepare the shards in the federated sharding configuration for multi-shard queries.

Chapter 15
Combine Existing Non-Sharded Databases into a Federated Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 13

The following topics describe the federated sharding-specific tasks in detail.

Create the Federated Sharding Configuration
The GDSCTL command CREATE SHARDCATALOG is used to create the federated sharding
configuration, with the FOR_FEDERATED_DATABASE option used instead of selecting a sharding
method in the SHARDING parameter.

The usage for the GDSCTL command CREATE SHARDCATALOG in creating a federated sharding
configuration is similar to how it is used to create the shard catalog in user-defined sharding,
except that instead of specifying a sharding method in the SHARDING parameter, you use the
FOR_FEDERATED_DATABASE option. That is, the FOR_FEDERATED_DATABASE option is mutually
exclusive with the SHARDING option.

CREATE SHARDCATALOG -DATABASE connect_identifier
 [-USER username[/password]]
 [-REGION region_name_list]
 [-CONFIGNAME config_name]
 [-AUTOVNCR ON/OFF]
 [-FORCE]
 [-SDB sdb_name]
 [-SHARDSPACE shardspace_name_list]
 -FOR_FEDERATED_DATABASE

The CREATE SHARDCATALOG syntax statement above shows which parameters are supported.
The parameters not shown are not supported when used with the FOR_FEDERATED_DATABASE
sharding method, for example, –AGENT_PASSWORD, REPFACTOR, and the Oracle Data Guard
protection mode PROTECTMODE.

Note

Only Oracle Data Guard replication is supported for federated sharding configurations.
Oracle Sharding doesn't handle the creation and management of the Data Guard
configuration, but you can use Data Guard parameters with the ADD SHARD command
so that you can add the primary and standbys to see the status in GDSCTL.

See Also

The GDSCTL create shardcatalog topic in Oracle Database Global Data Services
Concepts and Administration Guide for usage notes and command options.

Retrieve, Inspect, and Apply the DDLs
Run the GDSCTL SYNC SCHEMA command in phases to create the schema objects common to
the existing databases in the shard catalog.

The GDSCTL SYNC SCHEMA syntax shown here illustrates the three phases of the opertion.

sync[hronize] schema
 [-schema [schemalist | all] [-retrieve_only] [-restart [-force]]

Chapter 15
Combine Existing Non-Sharded Databases into a Federated Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 13

 | -apply [-skip_first]
 | -show [[-ddl ddlnum] [-count n] | [-failed_only]]]

SYNC SCHEMA should be run in phases, as described here.

1. Retrieve Phase

Run SYNC SCHEMA with the -retrieve_only option to inspect and verify the DDLs before
they are run on the shard catalog.

sync schema -schema schemalist –retrieve_only

When SYNC SCHEMA is run without -retrieve_only, the DDL is retrieved and applied at the
same time.

2. Inspection Phase

You can examine the DDL statements and their processing status with the -show option.
The -ddl ddlnum option shows the specified DDL, and the -count n option specifies the
maximum number of entries to show.

sync schema –show -ddl ddlnum -count n

Or you can use the -failed_only option to examine only the errored out statements.

sync schema –show -failed_only

3. Apply Phase

In the final phase, you run the DDLs on the shard catalog to create the schemas and their
objects.

sync schema –apply

If you get an error in the apply phase, there are a couple of ways to work around it:

• If you can fix the cause of the error, fix and then retry SYNC SCHEMA -apply, which
retries the failed DDL.

• If the DDL cannot be fixed or it is not required, you can run SYNC SCHEMA –apply -
skip_first, which resumes the apply phase from the point of the DDL failure.

For security reasons, Oracle Sharding doesn't offer a way to edit the DDLs.

4. Import Incremental Changes

If there are changes in the schema at a later point, the previous phases can be run again
to import incremental changes. For example, when new objects are added, or a new
column is added to a table, which will generate an ALTER TABLE ADD statement.

Chapter 15
Combine Existing Non-Sharded Databases into a Federated Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 13

See Also

The sync schema (synchronize schema) topic in Oracle Database Global Data
Services Concepts and Administration Guide for more SYNC SCHEMA usage notes and
option details.

SYNC SCHEMA Operations for information about the tasks performed by SYNC
SCHEMA

Convert Tables to Duplicated Tables
Use ALTER TABLE table_name externally duplicated to mark tables as duplicated in a
federated sharding configuration.

Any table created by SYNC SCHEMA is considered by the multi-shard query layer as an
externally sharded table. If the table contains the same data on all of the shards, you can
alter the table to externally duplicated, so that the multi-shard query retrieves the data from
one shard only, even if it is a query on a table with no filter predicates on
ORA_SHARDSPACE_NAME.

ALTER TABLE table_name [externally duplicated | externally sharded]

Prepare the Shards For Multi-Shard Queries
Create all shard users and use the ORA_SHARDSPACE_NAME pseudo-column to perform queries
on specific shards.

All Shard Users

Before running multi-shard queries from the shard catalog, you must create all shard users
and grant them access to the sharded and duplicated tables. These users and their privileges
should be created in the shard catalog under shard DDL enabled.

Create Shardspace-Specific Queries

A shardspace in federated sharding is a set consisting of a primary shard and zero or more
standby shards. To filter query results for a particular shard[space], a pseudo-column called
ORA_SHARDSPACE_NAME is added to every externally sharded table. The value of this pseudo
column in the tables is the name of the shardspace.

Depending on the value of MULTISHARD_QUERY_DATA_CONSISTENCY, the rows can be fetched
from the primary or from any of the standbys in the shardspace. To run a multi-shard query on
a given shard, you can filter the query with the predicate ORA_SHARDSPACE_NAME =
shardspace_name_shard_belongs_to.

A query like SELECT CUST_NAME, CUST_ID FROM CUSTOMER, where the table CUSTOMER is
marked as externally sharded, runs on all of the shards.

A query like SELECT CUST_NAME, CUST_ID FROM CUSTOMER WHERE ora_shardspace_name =
‘EUROPE’ runs on the shards belonging to the shardspace_name Europe. Depending on the
MULTISHARD_QUERY_DATA_CONSISTENCY parameter value, the query is run on either the primary
shard of the shardspace Europe or on its standbys.

Chapter 15
Combine Existing Non-Sharded Databases into a Federated Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 13

You can join sharded tables from different shardspaces. For example, to find the customers
from shardspace Europe with orders in shardspace NA, write a query similar to the following.

SELECT order_id, customer_name FROM customers c , orders o WHERE c.cust_id =
o.cust_id and
c.ora_shardspace_name = ‘Europe’ and o.ora_shardspace_name = ‘NA’

Querying an externally duplicated table, with or without the ORA_SHARDSPACE_NAME
predicate, should go to only one of the shardspaces. The
MULTISHARD_QUERY_DATA_CONSISTENCY parameter value determines whether to query a primary
shard in the shardspace or its replicas.

Federated Sharding Reference

SYNC SCHEMA Operations

DDL Synchronization
DDL synchronization is an operation that SYNC SCHEMA runs just after the deployment of the
shards in a federated sharding configuration.

The goal of this operation is to import the object definitions from all of the shards, compare the
definitions across the shards, and generate DDLs for the objects that exist on all of the shards
(common objects). Once the DDLs are run and the objects are created, you can reference
these objects in multi-shard queries.

Import Users
A user or schema is a candidate for import by SYNC SCHEMA if it exists on all of the shards and
owns importable schema objects.

You can narrow the list of users to be imported by passing a list of users in the -SCHEMA
parameter. For example,

gdsctl> sync schema -schema scott

gdsctl> sync schema -schema scott,myschema

For case-sensitive schemas use quoted identifiers.

gdsctl> sync schema -schema "O'Brien",scott

To include all non-Oracle schemas, use the value ALL in the SCHEMA parameter.

gdsctl> sync schema -schema all

Before importing the users, SYNC SCHEMA verifies that any discovered users exist on all shards,
and no user already exists on the shard catalog with the same name. The users are then
created on the shard catalog as local users and they are locked. Because these are local
users, they only share the same name with shards and are essentially the same as any other
user that may have the same name across different databases. Note that these users are not

Chapter 15
Combine Existing Non-Sharded Databases into a Federated Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 13

able to login and issue queries because they are not all shard users. To issue multi-shard
queries, an all shard user must be created.

Note

Only users local to a PDB are imported. Common CDB users are not imported.

Grant User Roles and Priviledges
For the imported users, SYNC SCHEMA compares users' privileges.

SYNC SCHEMA grants only the privileges that are granted on all of the shards (common grants).
A user A who has a DBA role on shard1, but does not have DBA role on shard2, is not granted
the DBA role in the shard catalog.

Import Object Definitions
The objects compared and imported by SYNC SCHEMA to the shard catalog are the objects that
will be referenced in multi-shard queries or used by multi-shard query processing.

These objects are:

• Tables

• Views and Materialized Views (exported as tables)

• Check Constraints

• Object Types

• Synonyms

Running SYNC SCHEMA does not import objects related to storage, or objects that have no
impact on multi-shard query processing, such as tablespaces, indexes, indextypes, directories,
or zone maps.

Schema Object Comparison
The objects, from one shard to another, can have different definitions. SYNC SCHEMA compares
the different definitions and creates a common definition to enable multi-shard queries against
imported objects.

SYNC SCHEMA detects the objects' differences at two levels: number of objects, and object
definitions.

First, SYNC SCHEMA considers the number of objects. It is likely that, during an application
upgrade, some objects are added to the schemas. Only objects that are on all of the shards
will be imported into the shard catalog.

Second, the object definitions from one shard to another can have different attributes. For the
objects that SYNC SCHEMA imports, the following differences are noted:

Differences in Tables

When comparing objects in a federated sharding configuration, some differences in tables
have an impact on multi-shard queries and some do not.

Column Differences

Chapter 15
Combine Existing Non-Sharded Databases into a Federated Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 7 of 13

Only column differences have an impact on multi-shard queries. SYNC SCHEMA addresses only
this difference.

• The number of columns can be different.

• The data type of a given column can be different.

• The default value of a given column can be different.

• The expression of a virtual column can be different

When a table has a different numbers of columns, SYNC SCHEMA will opt for the creation of a
table that contains the union of all of the columns. Taking the union of all of the columns,
compared to just taking the intersection, will spare you from re-writing multi-shard queries in
case of an incremental deploy, when the added shard has fewer columns than indicated in the
shard catalog.

When a column has different data types, SYNC SCHEMA defines it as the highest (largest)
datatype.

When a column has different data types, and one of the columns is a user-defined object type,
then that column is not imported into the shard catalog.

When a column has different default values, SYNC SCHEMA sets NULL as the default value.

Nested table columns are not imported into the shard catalog.

Example: a Customer table is defined on shard1 and shard2 as shown here.

On shard1:

Customer(Cust_id number, Name varchar(30),
 Address varchar(50),Zip_code number)

On shard2:

Customer(Cust_id varchar(20), Name varchar(30),
 Address varchar(50),Zip_code number,
 Country_code number)

Note that the column Cust_id is a number on shard1 and a varchar(20) on shard2. Also, note
that Country_code exists on shard2 but does not exist on shard1.

The Customer table created by SYNC SCHEMA in the shard catalog has all of the columns,
including Country_code, and the Cust_id type is varchar(20).

Customer(Cust_id varchar(20), Name varchar(30),
 Address varchar(50),Zip_code number,
 Country_code number)

SYNC SCHEMA keeps track of these differences between schemas in the shard catalog. A query
issued on the catalog database that accesses these heterogeneous columns is rewritten to
address the differences before it is sent to the shards. On the shard, if there is a data type
mismatch, the data is CAST into the "superior" data type as created on the catalog. If the
column is missing on the shard, the default value is returned as set on the catalog.

Partition Scheme Differences

Note that this difference has no impact on multi-shard queries, and is ignored.

Chapter 15
Combine Existing Non-Sharded Databases into a Federated Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 8 of 13

• Partitioning column can be different.

• Partition type can be different.

• Number of partitions can be different.

Storage Attribute Differences

Note that this difference has no impact on multi-shard queries, and is ignored.

• Tablespaces, on which the table is created, are different.

• The encryption can be different.

• The INMEMORY attribute can be different.

Differences in Views

Views on shards are created and handled as tables in the shard catalog. The same restrictions
that apply to tables also apply to views.

Differences in Constraints

Only CHECK constraints are created in the shard catalog. The CHECK constraint condition
should be same on all of the shards.

Differences in Object Types

Object types and type bodies are only created if they have the same definition on all of the
shards.

Troubleshooting Federated Sharding
Solve common federated sharding issues with these troubleshooting tips.

ORA-03851: Operation not supported in federated database

ORA-03701: Invalid parameter combination: federated database and ...

Some of the operations and command options that apply to a traditional sharded database are
not applicable to a federated database. This is because:

• There is no concept of a chunk in a federated database. Any chunk-related operation is
invalid, for example SPLIT CHUNK and MOVE CHUNK.

• The Data Guard broker configuration is not set up or managed by the system in federated
database, because the existing shards may already have been set up with their own high
availability configurations. Operations such as SET DATAGUARD_PROPERTY or MODIFY
SHARDSPACE are not supported.

• Oracle GoldenGate configuration is not supported.

• The CREATE SHARD command is not supported.

ORA-03885: Some primary shards are undeployed or unavailable

The SYNC SCHEMA operation requires that all primary shards be available. Check the output of
the CONFIG SHARD command, and check the status of all primary shards. Fix any issues and
retry the operations when the shards become available.

ORA-03871: Some DDL statements are not applied to the catalog

Chapter 15
Combine Existing Non-Sharded Databases into a Federated Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 9 of 13

The SYNC SCHEMA operation cannot import object definitions from the shards when some
statements from the previous issuance are still not applied on the shard catalog. Run SYNC
SCHEMA with the -apply option to run these statements.

Handling Errors During Multi-Shard Queries

If a multi-shard query fails with this error due to a mismatch of the object definition on the shard
and the catalog, make sure that the shard catalog has the latest schema changes imported.
Any time there are schema changes in the federated database, you must run SYNC SCHEMA to
import any changes in the schemas on the shards.

Note that subsequent runs of SYNC SCHEMA will not drop and recreate the object, but will
generate ALTER statements to incorporate the definition changes. This ensures that if there are
queries already running during the SYNC SCHEMA operation, they won't fail with invalid object
errors.

Handling Errors During DDL Processing Phase

If DDL fails on the shard catalog, the status of each DDL can be examined with the SYNC
SCHEMA -show option.

gdsctl> sync schema -show

Note: The SYNC SCHEMA -show command is different from the command SHOW DDL. SHOW DDL
lists DDL statements run by an all-shard user that are first run on the catalog and then
propagated to the shards, whereas SYNC SCHEMA -show DDL statements are generated from
the objects imported from shards.

By default, SYNC SCHEMA -show lists a fixed number of the latest DDLs. The -count and -ddl
options can be used to inspect specific range of DDLs. For example,

gdsctl> sync schema -show -count 20
gdsctl> sync schema -show -count 20 -ddl 5

To check the complete DDL text and error message, if any, use the -ddl option.

gdsctl> sync schema -show -ddl 5

To list only the failed DDL statements, use the -failed_only option.

gdsctl> sync schema –failed_only

Based on the error message of the failed DDL, fix the cause of the error and perform the apply
phase.

gdsctl> sync schema -apply

The SYNC SCHEMA command also has a -restart option to perform the complete operation
from the beginning as if it were run for the first time. This option will DROP all existing schemas
imported during all previous runs of SYNC SCHEMA and any related metadata. Be aware that this
will cause any running queries on these objects to fail.

gdsctl> sync schema -restart

Chapter 15
Combine Existing Non-Sharded Databases into a Federated Sharded Database

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 10 of 13

Creating Affinity Between Middle-Tier and Shards
Middle-tier routing allows smart routers to route to the middle tier associated with a sharding
key.

You can use the middle-tier routing API to publish the sharded database topology to the router
tier so that requests based on specific sharding keys are routed to the appropriate application
middle tier, which in turn establishes connections on the given subset of shards.

In a typical Oracle Sharding environment, middle-tier connection pools route database
requests to specific shards. This can lead to a situation where each middle-tier connection pool
establishes connections to each shard. This can create too many connections to the database.
The issue can be solved by creating an affinity between the middle tiers and shards. In this
scenario it would be ideal to dedicate a middle tier (web server, application server) for each
data center or cloud, and to have client requests routed directly to the middle tier where the
shard containing the client data (corresponding to the client shard key) resides. A common
term used for this kind of setup is swim lanes, where each swim lane is a dedicated stack, from
web server to application server all the way to the database.

Oracle Universal Connection Pool (UCP) solves this problem by providing a middle-tier routing
API which can be used to route client requests to the relevant middle tier. The UCP middle tier
API is exposed by the OracleShardRoutingCache class. An instance of this class represents
the UCP internal shard routing cache, which can be created by providing connection properties
such as user, password, and URL. The routing cache connects to the sharding catalog to
retrieve the key to shard mapping topology and stores it in its cache.

The routing cache is used by UCP middle-tier API
getShardInfoForKey(shardKey,superShardKey), which accepts a sharding key as input and
returns a set of ShardInfo instances mapped to the input sharding key. The ShardInfo
instance encapsulates a unique shard name and priority of the shard. An application using the
middle-tier API can map the returned unique shard name value to a middle tier that has
connections to a specific shard. The routing cache is automatically updated when chunks are
split or moved to other shards by subscribing to respective ONS events.

The following code example illustrates the usage of Oracle UCP middle-tier routing API.

Example 15-1 Middle-Tier Routing Using UCP API

import java.sql.SQLException;
import java.util.Properties;
import java.util.Random;
import java.util.Set;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.ucp.UniversalConnectionPoolException;
import oracle.ucp.routing.ShardInfo;
import oracle.ucp.routing.oracle.OracleShardRoutingCache;

/**
 * The code example illustrates the usage of UCP's mid-tier routing feature.
 * The API accepts sharding key as input and returns the set of ShardInfo
 * instances mapped to the sharding key. The ShardInfo instance encapsulates
 * unique shard name and priority. The unique shard name then can be mapped
 * to a mid-tier server which connects to a specific shard.
 *

Chapter 15
Creating Affinity Between Middle-Tier and Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 11 of 13

 */
public class MidtierShardingExample {

 private static String user = "testuser1";
 private static String password = "testuser1";

 // catalog DB URL
 private static String url = "jdbc:oracle:thin:@//hostName:1521/
catalogServiceName";
 private static String region = "regionName";

 public static void main(String args[]) throws Exception {
 testMidTierRouting();
 }

 static void testMidTierRouting() throws UniversalConnectionPoolException,
 SQLException {

 Properties dbConnectProperties = new Properties();
 dbConnectProperties.setProperty(OracleShardRoutingCache.USER, user);
 dbConnectProperties.setProperty(OracleShardRoutingCache.PASSWORD,
password);
 // Mid-tier routing API accepts catalog DB URL
 dbConnectProperties.setProperty(OracleShardRoutingCache.URL, url);

 // Region name is required to get the ONS config string
 dbConnectProperties.setProperty(OracleShardRoutingCache.REGION, region);

 OracleShardRoutingCache routingCache = new OracleShardRoutingCache(
 dbConnectProperties);

 final int COUNT = 10;
 Random random = new Random();

 for (int i = 0; i < COUNT; i++) {
 int key = random.nextInt();
 OracleShardingKey shardKey = routingCache.getShardingKeyBuilder()
 .subkey(key, OracleType.NUMBER).build();
 OracleShardingKey superShardKey = null;

 Set<ShardInfo> shardInfoSet = routingCache.getShardInfoForKey(shardKey,
 superShardKey);

 for (ShardInfo shardInfo : shardInfoSet) {
 System.out.println("Sharding Key=" + key + " Shard Name="
 + shardInfo.getName() + " Priority=" + shardInfo.getPriority());
 }
 }

 }
}

Chapter 15
Creating Affinity Between Middle-Tier and Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 12 of 13

See Also

Middle-Tier Routing Using UCP in Oracle Universal Connection Pool Developer’s
Guide

Chapter 15
Creating Affinity Between Middle-Tier and Shards

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 13 of 13

16
Oracle Sharding Reference

The following topics provide you with reference information to help you plan, configure, deploy,
and manage your Oracle Sharding sharded database configuration.

Using GDSCTL with Oracle Sharding
Several of the Global Data Services GDSCTL commands are used for setting up and
deploying an Oracle Sharding configuration. Learn how to use the GDSCTL command-line tool
and the Oracle Sharding-related GDSCTL commands in the following topics.

GDSCTL Operation
Learn how to start GDSCTL, run commands, and get command help text.

Starting GDSCTL
To start GDSCTL, enter gdsctl at the operating system prompt.

$ gdsctl

GDSCTL starts and displays the GDSCTL command prompt.

GDSCTL>

Running GDSCTL Commands Interactively
You can run GDSCTL commands interactively at either the operating system prompt or the
GDSCTL command prompt.

Run a GDSCTL command at the system prompt.

$ gdsctl add gsm -gsm gsm1 -catalog 127.0.0.1:1521:db1

Run a GDSCTL command at the GDSCTL command prompt.

GDSCTL> add gsm -gsm gsm1 -catalog 127.0.0.1:1521:db1

Both of these methods achieve the same result. The command syntax examples in this
document use the GDSCTL command prompt.

Running GDSCTL Batch Operations
You can gather all the GDSCTL commands in one file and run them as a batch with GDSCTL.

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 1 of 6

The following command starts GDSCTL and runs the commands contained in the specified
script file.

$ gdsctl @script_file_name

GDSCTL Help Text
You can display help for GDSCTL and GDSCTL commands.

The GDSCTL HELP command displays a summary of all GDSCTL commands.

GDSCTL> help

If you specify a command name after HELP, then the help text for that command is shown.

GDSCTL> help start gsm

You can also use the -h option with any GDSCTL command to show the help text for the
specified command.

GDSCTL> start gsm -h

GDSCTL Connections
Some GDSCTL commands require a connection to the shard catalog, and for ceratin
operations, GDSCTL must connect to a shard director.

GDSCTL Shard Catalog Connections
If you run GDSCTL commands that require a connection to the shard catalog, then you must
run the GDSCTL CONNECT command before the first command that requires the connection.

The CONNECT command only needs to be run once in a GDSCTL session.

GDSCTL uses Oracle Net Services to connect to the shard catalog database or another
database in the Oracle Sharding configuration. For these connections you can run GDSCTL
from any client or host that has the necessary network configuration.

Unless specified, GDSCTL resolves connect strings with the current name resolution methods
(such as TNSNAMES).

The GDSCTL operations that require a connection to a shard catalog are noted in the usage
notes for each command.

GDSCTL Shard Director Connections
For certain operations, GDSCTL must connect to a shard director, also known as global
service manager.

Unless specified, GDSCTL resolves connect strings with the current name resolution methods
(such as TNSNAMES). However, to resolve the shard director name, GDSCTL queries the
gsm.ora file.

Chapter 16
Using GDSCTL with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 2 of 6

To connect to a shard director, GDSCTL must be running on the same host as the shard
director. When connecting to a shard director, GDSCTL looks for the gsm.ora file associated
with the local shard director.

The following are the GDSCTL operations that require a connection to a shard director.

• ADD GSM adds a shard director.

• START GSM starts the shard director.

• STOP GSM stops the shard director.

• MODIFY GSM modifies the configuration parameters of the shard director.

• STATUS GSM returns the status of a shard director.

• SET INBOUND_CONNECT_LEVEL sets the INBOUND_CONNECT_LEVEL listener parameter.

• SET TRACE_LEVEL sets the trace level for the listener associated with the specified shard
director.

• SET OUTBOUND_CONNECT_LEVEL sets the timeout value for the outbound connections for the
listener associated with a specific shard director.

• SET LOG_LEVEL sets the log level for the listener associated with a specific shard director.

GDSCTL Commands Used with Oracle Sharding
A subset of GDSCTL commands is used with Oracle Sharding.

• add cdb

• add credential

• add file

• add gsm

• add invitednode (add invitedsubnet)

• add region

• add service

• add shard

• add shardgroup

• add shardspace

• config

• config backup

• config cdb

• config chunks

• config credential

• config file

• config gsm

• config region

• config sdb

• config service

Chapter 16
Using GDSCTL with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 3 of 6

• config shard

• config shardgroup

• config shardspace

• config table family

• config vncr

• configure

• connect

• create restorepoint

• create shardcatalog

• delete backup

• delete catalog

• deploy

• disable backup

• disable service

• enable backup

• enable service

• list backup

• list restorepoint

• modify catalog

• modify cdb

• modify credential

• modify file

• modify gsm

• modify region

• modify service

• modify shard

• modify shardgroup

• modify shardspace

• move chunk

• relocate service

• recover shard

• remove cdb

• remove credential

• remove file

• remove gsm

• remove invitednode (remove invitedsubnet)

• remove region

• remove service

Chapter 16
Using GDSCTL with Oracle Sharding

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 4 of 6

• remove shard

• remove shardgroup

• remove shardspace

• restore backup

• run backup

• services

• set gsm

• set inbound_connect_level

• set log_level

• set outbound_connect_level

• set trace_level

• split chunck

• sql

• start gsm

• start service

• status backup

• status gsm

• status service

• stop gsm

• stop service

• sync schema (synchronize schema)

• validate backup

• validate catalog

SHARDED_TABLE_FAMILIES
The SHARDED_TABLE_FAMILIES public view shows all sharded tables and the corresponding root
table and schema names.

Column Data Type NULL Description

TABFAM_ID NUMBER This unique table family
identifier is a numeric
value and each table
family is assigned a
unique number

ROOT_SCHEMA_NAME VARCHAR2(128) The schema owning root
(parent) table for a table
family

ROOT_TABLE_NAME VARCHAR2(128) The root (parent) table
name for a table family

SCHEMA_NAME VARCHAR2(128) The schema name for
tables

TABLE_NAME VARCHAR2(128) NOT NULL The table name

Chapter 16
SHARDED_TABLE_FAMILIES

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 5 of 6

Sample Output

The following is sample output from a query on the SHARDED_TABLE_FAMILIES view. In this table
family customers1 is root table, and orders1 and lineitems1 are the child tables of
customers1.

SQL> select * from SHARDED_TABLE_FAMILIES order by
TABFAM_ID,ROOT_SCHEMA_NAME,ROOT_TABLE_NAME,SCHEMA_NAME,TABLE_NAME;

 TABFAM_ID ROOT_SCHEMA_NAM ROOT_TABLE_NAME SCHEMA_NAM TABLE_NAME
---------- --------------- --------------- ---------- ---------------
 6 TESTUSER1 CUSTOMERS1 TESTUSER1 CUSTOMERS1
 6 TESTUSER1 CUSTOMERS1 TESTUSER1 LINEITEMS1
 6 TESTUSER1 CUSTOMERS1 TESTUSER1 ORDERS1

 10 TESTUSER1 CUSTOMERS2 TESTUSER1 CUSTOMERS2
 10 TESTUSER1 CUSTOMERS2 TESTUSER1 LINEITEMS2
 10 TESTUSER1 CUSTOMERS2 TESTUSER1 ORDERS2

 13 TESTUSER1 CUSTOMERS3 TESTUSER1 CUSTOMERS3
 13 TESTUSER1 CUSTOMERS3 TESTUSER1 LINEITEMS3
 13 TESTUSER1 CUSTOMERS3 TESTUSER1 ORDERS3

Chapter 16
SHARDED_TABLE_FAMILIES

Using Oracle Sharding
F32165-13
Copyright © 2018, 2025, Oracle and/or its affiliates.

November 26, 2025
Page 6 of 6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Oracle Sharding Overview
	What is Sharding
	About Oracle Sharding
	Oracle Sharding as Distributed Partitioning
	Benefits of Oracle Sharding
	Example Applications using Database Sharding
	Flexible Deployment Models
	High Availability in Oracle Sharding
	Sharding Methods
	Client Request Routing
	Query Processing
	High Speed Data Ingest
	Deployment Automation
	Data Migration
	Lifecycle Management of Shards
	Federated Sharding
	What's New in Oracle Sharding 21c
	Where To Go From Here

	2 Oracle Sharding Architecture and Concepts
	Components of the Oracle Sharding Architecture
	Sharded Database and Shards
	Shard Catalog
	Shard Director
	Global Service
	Management Interfaces for a Sharded Database

	Sharded Database Schema Objects
	Partitions, Tablespaces, and Chunks
	Tablespace Sets
	Sharded Tables
	Sharded Table Family
	How a Table Family Is Sharded
	Designing Schemas With Multiple Table Families

	Duplicated Tables
	Non-Table Objects Created on All Shards

	Sharding Methods
	System-Managed Sharding
	User-Defined Sharding
	Composite Sharding
	Using Subpartitions with Sharding

	Shard-Level High Availability
	About Sharding and Replication
	Using Oracle Data Guard with a Sharded Database
	Using Oracle GoldenGate with a Sharded Database

	Client Application Request Routing
	Query Processing and the Query Coordinator

	3 Security in an Oracle Sharding Environment
	Using TCPS Protocol and Transport Layer Security
	Using Wallets with Oracle Sharding
	Using Application Contexts During Cross-Shard Operations
	Sharding-Specific Behavior Differences
	Using Transparent Data Encryption with Oracle Sharding
	Creating a Single Encryption Key on All Shards
	Oracle Database Vault

	4 Sharded Database Deployment
	Introduction to Sharded Database Deployment
	Planning Your Sharded Database Deployment
	Plan the Sharded Database Configuration
	Provision and Configure Hosts and Operating Systems
	Multi-Shard Query Coordinator Availability and Scalability

	Install the Oracle Database Software
	Install the Shard Director Software
	Create the Shard Catalog Database
	Create the Shard Databases
	Validate the Shard Database
	Configure the Sharded Database Topology
	Create the Shard Catalog
	Add and Start Shard Directors
	Add Shardspaces If Needed
	Add Shardgoups If Needed
	Verify the Sharding Topology
	Add the Shard CDBs
	Add the Shard PDBs
	Add Host Metadata

	Deploy the Sharding Configuration
	Create and Start Global Database Services
	Verify Shard Status
	Example Sharded Database Deployment
	Example Sharded Database Topology
	Deploy the Example Sharded Database

	5 Using Oracle Database Sharding in Oracle Cloud Infrastructure
	Deploy a Sharded Database on Kubernetes
	Deploy a Sharded Database With Terraform
	Deploy a Sharded Database with Docker

	6 Sharded Database Schema Design
	Sharded Database Schema Design Considerations
	Choosing Sharding Keys
	Primary Key and Foreign Key Constraints
	Indexes on Sharded Tables

	Creating Sharded Database Schema Objects
	Create an All-Shards User
	Creating a Sharded Table Family
	Creating Sharded Tables
	Creating Duplicated Tables
	Updating Duplicated Tables and Synchronizing Their Contents

	DDL Processing in a Sharded Database
	Creating Objects Locally and Globally
	DDL Syntax Extensions for Oracle Sharding
	CREATE TABLESPACE SET
	ALTER TABLESPACE SET
	DROP TABLESPACE SET and PURGE TABLESPACE SET
	CREATE TABLE
	ALTER TABLE
	ALTER SESSION

	Running PL/SQL Procedures in a Sharded Database
	Schema Creation Examples
	Create a System-Managed Sharded Database Schema
	Create a User-Defined Sharded Database Schema
	Create a Composite Sharded Database Schema
	Monitor DDL Processing and Verify Object Creation

	DDL Failure and Recovery Examples
	Generating Unique Sequence Numbers Across Shards

	7 Using the Sharding Advisor
	About Sharding Advisor
	Run Sharding Advisor
	Run Sharding Advisor on a Non-Production System
	Review Sharding Advisor Output
	Choose a Sharding Advisor Recommended Configuration
	Sharding Advisor Usage and Options
	Sharding Advisor Output Tables
	SHARDINGADVISOR_CONFIGURATIONS Table
	SHARDINGADVISOR_CONFIGDETAILS Table
	SHARDINGADVISOR_QUERYTYPES Table

	Sharding Advisor Output Review SQL Examples
	Sharding Advisor Security

	8 Migrating to a Sharded Database
	Using Oracle Data Pump to Migrate to a Sharded Database
	Migrating a Schema to a Sharded Database
	Migrating the Sample Schema
	Migrating Data to a Sharded Database
	Loading the Sample Schema Data
	Migrating Data Without a Sharding Key

	Using External Tables to Load Data into a Sharded Database
	Loading Data into Duplicated Tables
	Loading Data into Sharded Tables

	Using Oracle GoldenGate to Replicate Data Between Sharded and Non-Sharded Databases
	Oracle GoldenGate Replication Prerequisites
	Replicating Data from a Non-Sharded Database to a Sharded Database

	9 Query and DML Processing
	How Database Requests are Routed to the Shards
	Routing Queries and DMLs Directly to Shards
	Routing Queries and DMLs by Proxy

	Connecting to the Query Coordinator
	Query Coordinator Operation
	Query Processing for Single-Shard Queries
	Query Processing for Multi-Shard Queries
	Specifying Consistency Levels in a Multi-Shard Query

	Supported Query Constructs and Example Query Shapes
	Queries on Sharded Tables Only
	Queries Involving Both Sharded and Duplicated Tables
	Aggregate Functions Supported by Oracle Sharding
	Queries with User-Defined Types
	Execution Plans for Proxy Routing

	Supported DMLs and Examples
	Simple DMLs Where Only the Target Table is Referenced
	DMLs Referencing Other Tables
	Example Merge Statements
	Limitations in Multi-Shard DML Support

	Gathering Optimizer Statistics on Sharded Tables

	10 Developing Applications for the Sharded Database
	Direct Routing to a Shard
	Sharding APIs Supporting Direct Routing
	Oracle JDBC APIs for Oracle Sharding
	Oracle Call Interface for Oracle Sharding
	Oracle Universal Connection Pool APIs for Oracle Sharding
	Oracle Data Provider for .NET APIs for Oracle Sharding

	JDBC Sharding Data Source

	11 Sharding JSON Document Collections
	Overview of Sharding JSON Documents
	Preparing the Oracle Sharding Environment
	Creating an All-Shards User with SODA Privileges
	Choosing a Sharding Key
	Using SODA ID as the Sharding Key
	Creating a Sharded Table for the JSON Collection
	Creating a Sharded Table: System-Managed
	Creating a Sharded Table: User-Defined

	Creating a Mapped SODA Collection on the Sharded Table
	Code Samples
	Java Code Sample
	Python Code Sample

	Using a JSON Field as a Sharding Key
	Creating a Sharded Table for the JSON Collection
	Creating a Sharded Table: System-Managed
	Creating a Sharded Table: User-Defined

	Creating a Mapped SODA Collection on the Sharded Table
	Creating a Trigger to Populate the Sharding Key
	Code Samples
	Java Code Sample
	Python Code Sample

	Additional Information About Sharding with SODA
	Performance Tuning
	Scaling Out Shards

	12 Sharded Database Administration
	Managing the Sharding-Enabled Stack
	Starting Up the Sharding-Enabled Stack
	Shutting Down the Sharding-Enabled Stack

	Oracle Globally Distributed Database Users and Roles
	Overview of Users and Roles
	Oracle Globally Distributed Database Roles
	About the GSMUSER Account
	About the GSMROOTUSER Account

	Backing Up and Recovering a Sharded Database
	Prerequisites to Configuring Centralized Backup and Restore
	Configuring Automated Backups
	Enabling and Disabling Automated Backups
	Backup Job Operation
	Monitoring Backup Status
	Viewing an Existing Backup Configuration
	Running On-Demand Backups
	Viewing Backup Job Status
	Listing Backups
	Validating Backups
	Deleting Backups
	Creating and Listing Global Restore Points
	Restoring From Backup

	Propagation of Parameter Settings Across Shards
	Modifying a Sharded Database Schema
	Managing Sharded Database Software Versions
	Patching and Upgrading a Sharded Database
	Performing a Rolling Upgrade
	Upgrading Sharded Database Components
	Post-Upgrade Steps for Oracle Sharding 21c
	Compatibility and Migration from Oracle Database 18c
	Downgrading a Sharded Database

	Managing Oracle Sharded Database with Enterprise Manager Cloud Control
	Prerequisite: Enable Sharded Database Metrics
	Prerequisite: Discover the Sharded Database Topology
	Overview of Sharded Database Management with Oracle Enterprise Manager Cloud Control

	Monitoring a Sharded Database
	Querying System Objects Across Shards
	Monitoring a Sharded Database with Enterprise Manager Cloud Control
	Sharded Database Home Page
	Data Distribution and Performance Page

	Monitoring a Sharded Database with GDSCTL

	Shard Management
	About Adding Shards
	Work Flow for Adding Shards
	Removing a Shard From the Pool
	Replacing a Shard
	Converting a Physical Standby to a Snapshot Standby
	Migrating a Non-PDB Shard to a PDB
	Managing Shards with Oracle Enterprise Manager Cloud Control
	Validating a Shard
	Adding Primary Shards
	Adding Standby Shards
	Deploying Shards
	Editing a Shard
	Removing a Shard

	Chunk Management
	Resharding and Hot Spot Elimination
	Moving Chunks
	Updating an In-Process Chunk Move Operation
	Splitting Chunks
	Managing Chunks with Oracle Enterprise Manager Cloud Control
	Moving Chunks with Oracle Enterprise Manager Cloud Control
	Splitting Chunks with Oracle Enterprise Manager Cloud Control

	Shard Director Management
	Creating a Shard Director
	Editing a Shard Director Configuration
	Removing a Shard Director

	Region Management
	Creating a Region
	Editing a Region Configuration
	Removing a Region

	Shardspace Management
	Creating a Shardspace
	Adding a Shardspace to a Composite Sharded Database

	Shardgroup Management
	Creating a Shardgroup

	Services Management
	Creating a Service

	13 Achieving Data Sovereignty with Oracle Sharding
	Overview of Data Sovereignty
	Benefits of Implementing Data Sovereignty with Oracle Sharding
	Implementing Data Sovereignty with Oracle Sharding
	Use Case of Achieving Data Sovereignty with Oracle Sharding
	Overview of Oracle Sharding Solution
	Deployment Topology of Data Sovereignty with Oracle Sharding
	Configuring Data Sovereignty with Oracle Sharding
	Configuring VCN Networks in All Three OCI Regions
	Configuring Remote VCN Peering Between All Three Regions
	Configuring Private DNS for Naming Resolution Between the Regions
	Installing a Global Service Manager in Each Region
	Collecting TNS entries for Shard Catalog and Sharded Databases
	Configuring the Shard Catalog
	Configuring the Shard Databases
	Creating Oracle Sharding Global Database
	Implementing a Session-Based Application Context Policy

	14 Troubleshooting Oracle Sharding
	Troubleshooting Tips
	Checking the Sharding Method
	Checking the Replication Type
	Checking the Oracle Data Guard Protection Mode
	Checking Which Shards Are Mapped to a Key
	Checking Shard Operation Mode (Read-Only or Read-Write)
	Checking DDL Text
	Checking Chunk Migration Status
	Checking Table Type (Sharded or Duplicated)
	Checking User Type (Local or ALL_SHARD)
	Identifying Tables Created as Sharded Tablespaces
	Checking if Shard DDL is Enabled or Disabled
	Filtering Data by Sharding Key
	Setting the Duplicated Table Refresh Rate

	Oracle Sharding Tracing and Debug Information
	Enabling Tracing for Oracle Sharding
	Where to Find Oracle Sharding Alert Logs and Trace Files

	Common Error Patterns and Resolutions for Sharded Databases
	Shard Director Fails to Start
	Issues Using Deploy Command
	Issues Moving Chunks
	Issue During Deployment of Oracle Sharding for Role-Separated Environment

	15 Oracle Sharding Solutions
	Combine Existing Non-Sharded Databases into a Federated Sharded Database
	Overview
	About Federated Sharding
	Federated Sharding Schema Requirements
	Sharded and Duplicated Tables in a Federated Sharding Configuration
	Limitations to Federated Sharding
	Federated Sharding Security

	Creating and Deploying a Federated Sharding Configuration
	Create the Federated Sharding Configuration
	Retrieve, Inspect, and Apply the DDLs
	Convert Tables to Duplicated Tables
	Prepare the Shards For Multi-Shard Queries

	Federated Sharding Reference
	SYNC SCHEMA Operations
	DDL Synchronization
	Import Users
	Grant User Roles and Priviledges
	Import Object Definitions
	Schema Object Comparison
	Differences in Tables
	Differences in Views
	Differences in Constraints
	Differences in Object Types

	Troubleshooting Federated Sharding

	Creating Affinity Between Middle-Tier and Shards

	16 Oracle Sharding Reference
	Using GDSCTL with Oracle Sharding
	GDSCTL Operation
	Starting GDSCTL
	Running GDSCTL Commands Interactively
	Running GDSCTL Batch Operations
	GDSCTL Help Text

	GDSCTL Connections
	GDSCTL Shard Catalog Connections
	GDSCTL Shard Director Connections

	GDSCTL Commands Used with Oracle Sharding

	SHARDED_TABLE_FAMILIES

